


Springer Texts in Statistics

Advisors:
George Casella Stephen Fienberg Ingram Olkin



Springer Texts in Statistics  

Alfred: Elements of Statistics for the Life and Social Sciences  
Berger: An Introduction to Probability and Stochastic Processes  
Bilodeau and Brenner: Theory of Multivariate Statistics  
Blom: Probability and Statistics: Theory and Applications  
Brockwell and Davis: Introduction to Times Series and Forecasting, Second 

Edition  
Chow and Teicher: Probability Theory: Independence, Interchangeability, 

Martingales, Third Edition  
Christensen: Advanced Linear Modeling: Multivariate, Time Series, and Spatial 

Edition  
Christensen: Log-Linear Models and Logistic Regression, Second Edition  
Christensen: Plane Answers to Complex Questions: The Theory of Linear 

Models, Third Edition  
Creighton: A First Course in Probability Models and Statistical Inference  
Davis: Statistical Methods for the Analysis of Repeated Measurements  
Dean and Voss: Design and Analysis of Experiments  
du Toit, Steyn, and Stumpf: Graphical Exploratory Data Analysis  
Durrett: Essentials of Stochastic Processes  

Finkelstein and Levin: Statistics for Lawyers  
Flury: A First Course in Multivariate Statistics  
Jobson: Applied Multivariate Data Analysis, Volume I: Regression and 

Experimental Design  
Jobson: Applied Multivariate Data Analysis, Volume II: Categorical and 

Multivariate Methods  
Kalbfleisch: Probability and Statistical Inference, Volume I: Probability, Second 

Edition  
Kalbfleisch: Probability and Statistical Inference, Volume II: Statistical 

Inference, Second Edition  
Karr: Probability  
Keyfitz: Applied Mathematical Demography, Second Edition  
Kiefer: Introduction to Statistical Inference  
Kokoska and Nevison: Statistical Tables and Formulae  
Kulkarni: Modeling, Analysis, Design, and Control of Stochastic Systems  
Lange: Applied Probability  
Lehmann: Elements of Large-Sample Theory  
Lehmann: Testing Statistical Hypotheses, Second Edition  
Lehmann and Casella: Theory of Point Estimation, Second Edition  
Lindman: Analysis of Variance in Experimental Design  
Lindsey: Applying Generalized Linear Models  
 
 

Data: Nonparametric Regression and Response Surface Maximization, Second 

Edwards: Introduction to Graphical Modelling, Second Edition  

(continued after index)



Jun Shao

Mathematical Statistics
Second Edition



Jun Shao
Department of Statistics
University of Wisconsin, Madison
Madison, WI 53706-1685
USA
shao@stat.wisc.edu

Editorial Board
George Casella Stephen Fienberg Ingram Olkin
Department of Statistics Department of Statistics Department of Statistics
University of Florida Carnegie Mellon University Stanford University
Gainesville, FL 32611-8545 Stanford, CA 94305
USA USA USA

With 7 figures.

Library of Congress Cataloging-in-Publication Data
Shao, Jun.

Mathematical statistics / Jun Shao.—2nd ed.
p. cm.— (Springer texts in statistics)

Includes bibliographical references and index.
ISBN 0-387-95382-5 (alk. paper)
1. Mathematical statistics. I. Title. II. Series.

QA276.S458 2003
519.5—dc21 2003045446

ISBN 0-387-95382-5

All rights reserved. This work may not be translated or copied in whole or in part without the

New York, N.Y., 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis.
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Printed in the United States of America.

springer.com

Use in connection with any form of

ISBN-13 978-0-387-95382-3

Printed on acid-free paper.

9 8 7 6 5 4 (corrected printing as of 4
th

 printing, 2007)

© 2003 Springer Science+Business Media, LLC.

written permission of the publisher (Springer Science+Business Media, LLC., 233 Spring St.,

Pittsburgh, PA 15213-3890

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

information storage and retrieval, electronic



To Guang, Jason, and Annie



Preface to the First

Edition

This book is intended for a course entitled Mathematical Statistics offered
at the Department of Statistics, University of Wisconsin-Madison. This
course, taught in a mathematically rigorous fashion, covers essential ma-
terials in statistical theory that a first or second year graduate student
typically needs to learn as preparation for work on a Ph.D. degree in statis-
tics. The course is designed for two 15-week semesters, with three lecture
hours and two discussion hours in each week. Students in this course are
assumed to have a good knowledge of advanced calculus. A course in real
analysis or measure theory prior to this course is often recommended.

Chapter 1 provides a quick overview of important concepts and results
in measure-theoretic probability theory that are used as tools in math-
ematical statistics. Chapter 2 introduces some fundamental concepts in
statistics, including statistical models, the principle of sufficiency in data
reduction, and two statistical approaches adopted throughout the book:
statistical decision theory and statistical inference. Each of Chapters 3
through 7 provides a detailed study of an important topic in statistical de-
cision theory and inference: Chapter 3 introduces the theory of unbiased
estimation; Chapter 4 studies theory and methods in point estimation un-
der parametric models; Chapter 5 covers point estimation in nonparametric
settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses
interval estimation and confidence sets. The classical frequentist approach
is adopted in this book, although the Bayesian approach is also introduced
(§2.3.2, §4.1, §6.4.4, and §7.1.3). Asymptotic (large sample) theory, a cru-
cial part of statistical inference, is studied throughout the book, rather than
in a separate chapter.

About 85% of the book covers classical results in statistical theory that
are typically found in textbooks of a similar level. These materials are in the
Statistics Department’s Ph.D. qualifying examination syllabus. This part
of the book is influenced by several standard textbooks, such as Casella and
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viii Preface to the First Edition

Berger (1990), Ferguson (1967), Lehmann (1983, 1986), and Rohatgi (1976).
The other 15% of the book covers some topics in modern statistical theory
that have been developed in recent years, including robustness of the least
squares estimators, Markov chain Monte Carlo, generalized linear models,
quasi-likelihoods, empirical likelihoods, statistical functionals, generalized
estimation equations, the jackknife, and the bootstrap.

In addition to the presentation of fruitful ideas and results, this book
emphasizes the use of important tools in establishing theoretical results.
Thus, most proofs of theorems, propositions, and lemmas are provided
or left as exercises. Some proofs of theorems are omitted (especially in
Chapter 1), because the proofs are lengthy or beyond the scope of the
book (references are always provided). Each chapter contains a number of
examples. Some of them are designed as materials covered in the discussion
section of this course, which is typically taught by a teaching assistant (a
senior graduate student). The exercises in each chapter form an important
part of the book. They provide not only practice problems for students,
but also many additional results as complementary materials to the main
text.

The book is essentially based on (1) my class notes taken in 1983-84
when I was a student in this course, (2) the notes I used when I was a
teaching assistant for this course in 1984-85, and (3) the lecture notes I
prepared during 1997-98 as the instructor of this course. I would like to
express my thanks to Dennis Cox, who taught this course when I was
a student and a teaching assistant, and undoubtedly has influenced my
teaching style and textbook for this course. I am also very grateful to
students in my class who provided helpful comments; to Mr. Yonghee Lee,
who helped me to prepare all the figures in this book; to the Springer-Verlag
production and copy editors, who helped to improve the presentation; and
to my family members, who provided support during the writing of this
book.

Madison, Wisconsin Jun Shao
January 1999



Preface to the Second

Edition

In addition to correcting typos and errors and making a better presentation,
the main effort in preparing this new edition is adding some new material
to Chapter 1 (Probability Theory) and a number of new exercises to each
chapter. Furthermore, two new sections are created to introduce semipara-
metric models and methods (§5.1.4) and to study the asymptotic accuracy
of confidence sets (§7.3.4). The structure of the book remains the same.

In Chapter 1 of the new edition, moment generating and characteristic
functions are treated in more detail and a proof of the uniqueness theorem
is provided; some useful moment inequalities are introduced; discussions
on conditional independence, Markov chains, and martingales are added,
as a continuation of the discussion of conditional expectations; the con-
cepts of weak convergence and tightness are introduced; proofs to some key
results in asymptotic theory, such as the dominated convergence theorem
and monotone convergence theorem, the Lévy-Cramér continuity theorem,
the strong and weak laws of large numbers, and Lindeberg’s central limit
theorem, are included; and a new section (§1.5.6) is created to introduce
Edgeworth and Cornish-Fisher expansions. As a result, Chapter 1 of the
new edition is self-contained for important concepts, results, and proofs in
probability theory with emphasis in statistical applications.

Since the original book was published in 1999, I have been using it as
a textbook for a two-semester course in mathematical statistics. Exercise
problems accumulated during my teaching are added to this new edition.
Some exercises that are too trivial have been removed.

In the original book, indices on definitions, examples, theorems, propo-
sitions, corollaries, and lemmas are included in the subject index. In the
new edition, they are in a separate index given in the end of the book (prior
to the author index). A list of notation and a list of abbreviations, which
are appendices of the original book, are given after the references.
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x Preface to the Second Edition

The most significant change in notation is the notation for a vector.
In the text of the new edition, a k-dimensional vector is denoted by c =
(c1, ..., ck), whether it is treated as a column or a row vector (which is not
important if matrix algebra is not considered). When matrix algebra is
involved, any vector c is treated as a k × 1 matrix (a column vector) and
its transpose cτ is treated as a 1 × k matrix (a row vector). Thus, for
c = (c1, ..., ck), c

τ c = c21 + · · ·+ c2k and ccτ is the k×k matrix whose (i, j)th
element is cicj .

I would like to thank reviewers of this book for their constructive com-
ments, the Springer-Verlag production and copy editors, students in my
classes, and two teaching assistants, Mr. Bin Cheng and Dr. Hansheng
Wang, who provided help in preparing the new edition. Any remaining
errors are of course my own responsibility, and a correction of them may
be found on my web page http://www.stat.wisc.edu/˜ shao.

Madison, Wisconsin Jun Shao
April, 2003
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Chapter 1

Probability Theory

Mathematical statistics relies on probability theory, which in turn is based
on measure theory. The present chapter provides some principal concepts
and notational conventions of probability theory, and some important re-
sults that are useful tools in statistics. A more complete account of proba-
bility theory can be found in a standard textbook, for example, Billingsley
(1986), Chung (1974), or Loève (1977). The reader is assumed to be familiar
with set operations and set functions (mappings) in advanced calculus.

1.1 Probability Spaces and Random Elements

In an elementary probability course, one defines a random experiment to
be an experiment whose outcome cannot be predicted with certainty, and
the probability of A (a collection of possible outcomes) to be the fraction
of times that the outcome of the random experiment results in A in a
large number of trials of the random experiment. A rigorous and logically
consistent definition of probability was given by A. N. Kolmogorov in his
measure-theoretic fundamental development of probability theory in 1933
(Kolmogorov, 1933).

1.1.1 σ-fields and measures

Let Ω be a set of elements of interest. For example, Ω can be a set of
numbers, a subinterval of the real line, or all possible outcomes of a random
experiment. In probability theory, Ω is often called the outcome space,
whereas in statistical theory, Ω is called the sample space. This is because
in probability and statistics, Ω is usually the set of all possible outcomes of
a random experiment under study.

1



2 1. Probability Theory

A measure is a natural mathematical extension of the length, area, or
volume of subsets in the one-, two-, or three-dimensional Euclidean space.
In a given sample space Ω, a measure is a set function defined for certain
subsets of Ω. It is necessary for this collection of subsets to satisfy certain
properties, which are given in the following definition.

Definition 1.1. Let F be a collection of subsets of a sample space Ω. F is
called a σ-field (or σ-algebra) if and only if it has the following properties.
(i) The empty set ∅ ∈ F .
(ii) If A ∈ F , then the complement Ac ∈ F .
(iii) If Ai ∈ F , i = 1, 2, ..., then their union ∪Ai ∈ F .

A pair (Ω,F) consisting of a set Ω and a σ-field F of subsets of Ω is
called a measurable space. The elements of F are called measurable sets in
measure theory or events in probability and statistics.

Since ∅c = Ω, it follows from (i) and (ii) in Definition 1.1 that Ω ∈ F
if F is a σ-field on Ω. Also, it follows from (ii) and (iii) that if Ai ∈ F ,
i = 1, 2, ..., and F is a σ-field, then the intersection ∩Ai ∈ F . This can be
shown using DeMorgan’s law: (∩Ai)c = ∪Aci .

For any given Ω, there are two trivial σ-fields. The first one is the
collection containing exactly two elements, ∅ and Ω. This is the smallest
possible σ-field on Ω. The second one is the collection of all subsets of Ω,
which is called the power set and is the largest σ-field on Ω.

Let us now consider some nontrivial σ-fields. Let A be a nonempty
proper subset of Ω (A ⊂ Ω, A 6= Ω). Then (verify)

{∅, A,Ac,Ω} (1.1)

is a σ-field. In fact, this is the smallest σ-field containing A in the sense that
if F is any σ-field containing A, then the σ-field in (1.1) is a subcollection
of F . In general, the smallest σ-field containing C, a collection of subsets of
Ω, is denoted by σ(C) and is called the σ-field generated by C. Hence, the
σ-field in (1.1) is σ({A}). Note that σ({A,Ac}), σ({A,Ω}), and σ({A, ∅})
are all the same as σ({A}). Of course, if C itself is a σ-field, then σ(C) = C.

On the real line R, there is a special σ-field that will be used almost
exclusively. Let C be the collection of all finite open intervals on R. Then
B = σ(C) is called the Borel σ-field. The elements of B are called Borel
sets. The Borel σ-field Bk on the k-dimensional Euclidean space Rk can be
similarly defined. It can be shown that all intervals (finite or infinite), open
sets, and closed sets are Borel sets. To illustrate, we now show that, on the
real line, B = σ(O), where O is the collection of all open sets. Typically,
one needs to show that σ(C) ⊂ σ(O) and σ(O) ⊂ σ(C). Since an open
interval is an open set, C ⊂ O and, hence, σ(C) ⊂ σ(O) (why?). Let U be
an open set. Then U can be expressed as a union of a sequence of finite open
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intervals (see Royden (1968, p.39)). Hence, U ∈ σ(C) (Definition 1.1(iii))
and O ⊂ σ(C). By the definition of σ(O), σ(O) ⊂ σ(C). This completes
the proof.

Let C ⊂ Rk be a Borel set and let BC = {C ∩ B : B ∈ Bk}. Then
(C,BC) is a measurable space and BC is called the Borel σ-field on C.

Now we can introduce the notion of a measure.

Definition 1.2. Let (Ω,F) be a measurable space. A set function ν defined
on F is called a measure if and only if it has the following properties.
(i) 0 ≤ ν(A) ≤ ∞ for any A ∈ F .
(ii) ν(∅) = 0.
(iii) If Ai ∈ F , i = 1, 2, ..., and Ai’s are disjoint, i.e., Ai ∩ Aj = ∅ for any
i 6= j, then

ν

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

ν(Ai).

The triple (Ω,F , ν) is called a measure space. If ν(Ω) = 1, then ν is
called a probability measure and we usually denote it by P instead of ν, in
which case (Ω,F , P ) is called a probability space.

Although measure is an extension of length, area, or volume, some-
times it can be quite abstract. For example, the following set function is a
measure:

ν(A) =

{ ∞ A ∈ F , A 6= ∅
0 A = ∅. (1.2)

Since a measure can take ∞ as its value, we must know how to do arithmetic
with ∞. In this book, it suffices to know that (1) for any x ∈ R, ∞+x = ∞,
x∞ = ∞ if x > 0, x∞ = −∞ if x < 0, and 0∞ = 0; (2) ∞+∞ = ∞; and
(3) ∞a = ∞ for any a > 0. However, ∞−∞ or ∞/∞ is not defined.

The following examples provide two very important measures in proba-
bility and statistics.

Example 1.1 (Counting measure). Let Ω be a sample space, F the collec-
tion of all subsets, and ν(A) the number of elements in A ∈ F (ν(A) = ∞
if A contains infinitely many elements). Then ν is a measure on F and is
called the counting measure.

Example 1.2 (Lebesgue measure). There is a unique measure m on (R,B)
that satisfies

m([a, b]) = b− a (1.3)

for every finite interval [a, b], −∞ < a ≤ b <∞. This is called the Lebesgue
measure. If we restrict m to the measurable space ([0, 1],B[0,1]), then m is
a probability measure.



4 1. Probability Theory

If Ω is countable in the sense that there is a one-to-one correspondence
between Ω and the set of all integers, then one can usually consider the
trivial σ-field that contains all subsets of Ω and a measure that assigns a
value to every subset of Ω. When Ω is uncountable (e.g., Ω = R or [0, 1]),
it is not possible to define a reasonable measure for every subset of Ω; for
example, it is not possible to find a measure on all subsets of R and still
satisfy property (1.3). This is why it is necessary to introduce σ-fields that
are smaller than the power set.

The following result provides some basic properties of measures. When-
ever we consider ν(A), it is implicitly assumed that A ∈ F .

Proposition 1.1. Let (Ω,F , ν) be a measure space.
(i) (Monotonicity). If A ⊂ B, then ν(A) ≤ ν(B).
(ii) (Subadditivity). For any sequence A1, A2, ...,

ν

( ∞⋃

i=1

Ai

)
≤

∞∑

i=1

ν(Ai).

(iii) (Continuity). If A1 ⊂ A2 ⊂ A3 ⊂ · · · (or A1 ⊃ A2 ⊃ A3 ⊃ · · · and
ν(A1) <∞), then

ν
(

lim
n→∞

An

)
= lim
n→∞

ν (An) ,

where

lim
n→∞

An =

∞⋃

i=1

Ai

(
or =

∞⋂

i=1

Ai

)
.

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Since A ⊂ B, B = A ∪ (Ac ∩ B) and A and Ac ∩ B are disjoint. By
Definition 1.2(iii), ν(B) = ν(A)+ ν(Ac ∩B), which is no smaller than ν(A)
since ν(Ac ∩B) ≥ 0 by Definition 1.2(i).

There is a one-to-one correspondence between the set of all probability
measures on (R,B) and a set of functions on R. Let P be a probability
measure. The cumulative distribution function (c.d.f.) of P is defined to be

F (x) = P ((−∞, x]) , x ∈ R. (1.4)

Proposition 1.2. (i) Let F be a c.d.f. on R. Then
(a) F (−∞) = limx→−∞ F (x) = 0;
(b) F (∞) = limx→∞ F (x) = 1;
(c) F is nondecreasing, i.e., F (x) ≤ F (y) if x ≤ y;
(d) F is right continuous, i.e., limy→x,y>x F (y) = F (x).

(ii) Suppose that a real-valued function F on R satisfies (a)-(d) in part (i).
Then F is the c.d.f. of a unique probability measure on (R,B).
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The Cartesian product of sets (or collections of sets) Γi, i ∈ I = {1, ..., k}
(or {1, 2, ...}) is defined as the set of all (a1, ..., ak) (or (a1, a2, ...)), ai ∈ Γi,
i ∈ I, and is denoted by

∏
i∈I Γi = Γ1 × · · · × Γk (or Γ1 × Γ2 × · · ·). Let

(Ωi,Fi), i ∈ I, be measurable spaces. Since
∏
i∈I Fi is not necessarily a σ-

field, σ
(∏

i∈I Fi
)

is called the product σ-field on the product space
∏
i∈I Ωi

and
(∏

i∈I Ωi, σ
(∏

i∈I Fi
))

is denoted by
∏
i∈I(Ωi,Fi). As an example,

consider (Ωi,Fi) = (R,B), i = 1, ..., k. Then the product space is Rk and
it can be shown that the product σ-field is the same as the Borel σ-field on
Rk, which is the σ-field generated by the collection of all open sets in Rk.

In Example 1.2, the usual length of an interval [a, b] ⊂ R is the same as
the Lebesgue measure of [a, b]. Consider a rectangle [a1, b1]× [a2, b2] ⊂ R2.
The usual area of [a1, b1] × [a2, b2] is

(b1 − a1)(b2 − a2) = m([a1, b1])m([a2, b2]), (1.5)

i.e., the product of the Lebesgue measures of two intervals [a1, b1] and
[a2, b2]. Note that [a1, b1] × [a2, b2] is a measurable set by the definition
of the product σ-field. Is m([a1, b1])m([a2, b2]) the same as the value of a
measure defined on the product σ-field? The following result answers this
question for any product space generated by a finite number of measurable
spaces. (Its proof can be found in Billingsley (1986, pp. 235-236).) Be-
fore introducing this result, we need the following technical definition. A
measure ν on (Ω,F) is said to be σ-finite if and only if there exists a se-
quence {A1, A2, ...} such that ∪Ai = Ω and ν(Ai) <∞ for all i. Any finite
measure (such as a probability measure) is clearly σ-finite. The Lebesgue
measure in Example 1.2 is σ-finite, since R = ∪An with An = (−n, n),
n = 1, 2, .... The counting measure in Example 1.1 is σ-finite if and only if
Ω is countable. The measure defined by (1.2), however, is not σ-finite.

Proposition 1.3 (Product measure theorem). Let (Ωi,Fi, νi), i = 1, ..., k,
be measure spaces with σ-finite measures, where k ≥ 2 is an integer. Then
there exists a unique σ-finite measure on the product σ-field σ(F1×· · ·×Fk),
called the product measure and denoted by ν1 × · · · × νk, such that

ν1 × · · · × νk(A1 × · · · ×Ak) = ν1(A1) · · · νk(Ak)
for all Ai ∈ Fi, i = 1, ..., k.

In R2, there is a unique measure, the product measure m×m, for which
m×m([a1, b1]× [a2, b2]) is equal to the value given by (1.5). This measure
is called the Lebesgue measure on (R2,B2). The Lebesgue measure on
(R3,B3) is m×m×m, which equals the usual volume for a subset of the
form [a1, b1]× [a2, b2]× [a3, b3]. The Lebesgue measure on (Rk,Bk) for any
positive integer k is similarly defined.

The concept of c.d.f. can be extended to Rk. Let P be a probability
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measure on (Rk,Bk). The c.d.f. (or joint c.d.f.) of P is defined by

F (x1, ..., xk) = P ((−∞, x1] × · · · × (−∞, xk]) , xi ∈ R. (1.6)

Again, there is a one-to-one correspondence between probability measures
and joint c.d.f.’s on Rk. Some properties of a joint c.d.f. are given in
Exercise 10 in §1.6. If F (x1, ..., xk) is a joint c.d.f., then

Fi(x) = lim
xj→∞,j=1,...,i−1,i+1,...,k

F (x1, ..., xi−1, x, xi+1, ..., xk)

is a c.d.f. and is called the ith marginal c.d.f. Apparently, marginal c.d.f.’s
are determined by their joint c.d.f. But a joint c.d.f. cannot be determined
by k marginal c.d.f.’s. There is one special but important case in which a
joint c.d.f. F is determined by its k marginal c.d.f. Fi’s through

F (x1, ..., xk) = F1(x1) · · ·Fk(xk), (x1, ..., xk) ∈ Rk, (1.7)

in which case the probability measure corresponding to F is the product
measure P1×· · ·×Pk with Pi being the probability measure corresponding
to Fi.

Proposition 1.3 can be extended to cases involving infinitely many mea-
sure spaces (Billingsley, 1986). In particular, if (Rk,Bk, Pi), i = 1, 2, ...,
are probability spaces, then there is a product probability measure P on∏∞
i=1(Rk,Bk) such that for any positive integer l and Bi ∈ Bk, i = 1, ..., l,

P (B1 × · · · ×Bl ×Rk ×Rk × · · ·) = P1(B1) · · ·Pl(Bl).

1.1.2 Measurable functions and distributions

Since Ω can be quite arbitrary, it is often convenient to consider a function
(mapping) f from Ω to a simpler space Λ (often Λ = Rk). Let B ⊂ Λ.
Then the inverse image of B under f is

f−1(B) = {f ∈ B} = {ω ∈ Ω : f(ω) ∈ B}.

The inverse function f−1 need not exist for f−1(B) to be defined. The
reader is asked to verify the following properties:

(a) f−1(Bc) = (f−1(B))c for any B ⊂ Λ;
(b) f−1(∪Bi) = ∪f−1(Bi) for any Bi ⊂ Λ, i = 1, 2, ....

Let C be a collection of subsets of Λ. We define

f−1(C) = {f−1(C) : C ∈ C}.

Definition 1.3. Let (Ω,F) and (Λ,G) be measurable spaces and f a
function from Ω to Λ. The function f is called a measurable function from
(Ω,F) to (Λ,G) if and only if f−1(G) ⊂ F .
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If Λ = R and G = B (Borel σ-field), then f is said to be Borel measurable
or is called a Borel function on (Ω,F) (or with respect to F).

In probability theory, a measurable function is called a random ele-
ment and denoted by one of X , Y , Z,.... If X is measurable from (Ω,F)
to (R,B), then it is called a random variable; if X is measurable from
(Ω,F) to (Rk,Bk), then it is called a random k-vector. If X1, ..., Xk are
random variables defined on a common probability space, then the vector
(X1, ..., Xk) is a random k-vector. (As a notational convention, any vector
c ∈ Rk is denoted by (c1, ..., ck), where ci is the ith component of c.)

If f is measurable from (Ω,F) to (Λ,G), then f−1(G) is a sub-σ-field of
F (verify). It is called the σ-field generated by f and is denoted by σ(f).

Now we consider some examples of measurable functions. If F is the
collection of all subsets of Ω, then any function f is measurable. Let A ⊂ Ω.
The indicator function for A is defined as

IA(ω) =

{
1 ω ∈ A

0 ω 6∈ A.

For any B ⊂ R,

I−1
A (B) =





∅ 0 6∈ B, 1 6∈ B

A 0 6∈ B, 1 ∈ B

Ac 0 ∈ B, 1 6∈ B

Ω 0 ∈ B, 1 ∈ B.

Then σ(IA) is the σ-field given in (1.1). If A is a measurable set, then IA
is a Borel function.

Note that σ(IA) is a much smaller σ-field than the original σ-field F .
This is another reason why we introduce the concept of measurable func-
tions and random variables, in addition to the reason that it is easy to
deal with numbers. Often the σ-field F (such as the power set) contains
too many subsets and we are only interested in some of them. One can
then define a random variable X with σ(X) containing subsets that are of
interest. In general, σ(X) is between the trivial σ-field {∅,Ω} and F , and
contains more subsets if X is more complicated. For the simplest function
IA, we have shown that σ(IA) contains only four elements.

The class of simple functions is obtained by taking linear combinations
of indicators of measurable sets, i.e.,

ϕ(ω) =
k∑

i=1

aiIAi(ω), (1.8)

where A1, ..., Ak are measurable sets on Ω and a1, ..., ak are real numbers.
One can show directly that such a function is a Borel function, but it
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follows immediately from Proposition 1.4. Let A1, ..., Ak be a partition of
Ω, i.e., Ai’s are disjoint and A1 ∪ · · · ∪ Ak = Ω. Then the simple function
ϕ given by (1.8) with distinct ai’s exactly characterizes this partition and
σ(ϕ) = σ({A1, ..., Ak}).

Proposition 1.4. Let (Ω,F) be a measurable space.
(i) f is Borel if and only if f−1(a,∞) ∈ F for all a ∈ R.
(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real
numbers; also, f/g is Borel provided g(ω) 6= 0 for any ω ∈ Ω.
(iii) If f1, f2, ... are Borel, then so are supn fn, infn fn, lim supn fn, and
lim infn fn. Furthermore, the set

A =
{
ω ∈ Ω : lim

n→∞
fn(ω) exists

}

is an event and the function

h(ω) =

{
limn→∞ fn(ω) ω ∈ A

f1(ω) ω 6∈ A

is Borel.
(iv) Suppose that f is measurable from (Ω,F) to (Λ,G) and g is measurable
from (Λ,G) to (∆,H). Then the composite function g◦f is measurable from
(Ω,F) to (∆,H).
(v) Let Ω be a Borel set in Rp. If f is a continuous function from Ω to Rq,
then f is measurable.

Proposition 1.4 indicates that there are many Borel functions. In fact,
it is hard to find a non-Borel function.

The following result is very useful in technical proofs. Let f be a non-
negative Borel function on (Ω,F). Then there exists a sequence of simple
functions {ϕn} satisfying 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f and limn→∞ ϕn = f
(Exercise 17 in §1.6).

Let (Ω,F , ν) be a measure space and f be a measurable function from
(Ω,F) to (Λ,G). The induced measure by f , denoted by ν◦f−1, is a measure
on G defined as

ν ◦ f−1(B) = ν(f ∈ B) = ν
(
f−1(B)

)
, B ∈ G. (1.9)

It is usually easier to deal with ν ◦ f−1 than to deal with ν since (Λ,G)
is usually simpler than (Ω,F). Furthermore, subsets not in σ(f) are not
involved in the definition of ν ◦ f−1. As we discussed earlier, in some cases
we are only interested in subsets in σ(f).

If ν = P is a probability measure and X is a random variable or a
random vector, then P ◦X−1 is called the law or the distribution of X and
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is denoted by PX . The c.d.f. of PX defined by (1.4) or (1.6) is also called
the c.d.f. or joint c.d.f. of X and is denoted by FX . On the other hand,
for any c.d.f. or joint c.d.f. F , there exists at least one random variable
or vector (usually there are many) defined on some probability space for
which FX = F . The following are some examples of random variables and
their c.d.f.’s. More examples can be found in §1.3.1.

Example 1.3 (Discrete c.d.f.’s). Let a1 < a2 < · · · be a sequence of real
numbers and let pn, n = 1, 2, ..., be a sequence of positive numbers such
that

∑∞
n=1 pn = 1. Define

F (x) =

{ ∑n
i=1 pi an ≤ x < an+1, n = 1, 2, ...

0 −∞ < x < a1.
(1.10)

Then F is a stepwise c.d.f. It has a jump of size pn at each an and is flat
between an and an+1, n = 1, 2, .... Such a c.d.f. is called a discrete c.d.f.
and the corresponding random variable is called a discrete random variable.
We can easily obtain a random variable having F in (1.10) as its c.d.f. For
example, let Ω = {a1, a2, ...}, F be the collection of all subsets of Ω,

P (A) =
∑

i:ai∈A
pi, A ∈ F , (1.11)

and X(ω) = ω. One can show that P is a probability measure and the
c.d.f. of X is F in (1.10).

Example 1.4 (Continuous c.d.f.’s). Opposite to the class of discrete c.d.f.’s
is the class of continuous c.d.f.’s. Without the concepts of integration and
differentiation introduced in the next section, we can only provide a few
examples of continuous c.d.f.’s. One such example is the uniform c.d.f. on
the interval [a, b] defined as

F (x) =





0 −∞ < x < a
x−a
b−a a ≤ x < b

1 b ≤ x <∞.

Another example is the exponential c.d.f. defined as

F (x) =

{
0 −∞ < x < 0

1 − e−x/θ 0 ≤ x <∞,

where θ is a fixed positive constant. Note that both uniform and exponential
c.d.f.’s are continuous functions.
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1.2 Integration and Differentiation

Differentiation and integration are two of the main components of calculus.
This is also true in measure theory or probability theory, except that inte-
gration is introduced first whereas in calculus, differentiation is introduced
first.

1.2.1 Integration

An important concept needed in probability and statistics is the integration
of Borel functions with respect to (w.r.t.) a measure ν, which is a type of
“average”. The definition proceeds in several steps. First, we define the
integral of a nonnegative simple function, i.e., a simple function ϕ given by
(1.8) with ai ≥ 0, i = 1, ..., k.

Definition 1.4(a). The integral of a nonnegative simple function ϕ given
by (1.8) w.r.t. ν is defined as

∫
ϕdν =

k∑

i=1

aiν(Ai). (1.12)

The right-hand side of (1.12) is a weighted average of ai’s with ν(Ai)’s
as weights. Since a∞ = ∞ if a > 0 and a∞ = 0 if a = 0, the right-hand
side of (1.12) is always well defined, although

∫
ϕdν = ∞ is possible. Note

that different ai’s and Ai’s may produce the same function ϕ; for example,
with Ω = R,

2I(0,1)(x) + I[1,2](x) = I(0,2](x) + I(0,1)(x).

However, one can show that different representations of ϕ in (1.8) pro-
duce the same value for

∫
ϕdν so that the integral of a nonnegative simple

function is well defined.

Next, we consider a nonnegative Borel function f .

Definition 1.4(b). Let f be a nonnegative Borel function and let Sf be
the collection of all nonnegative simple functions of the form (1.8) satisfying
ϕ(ω) ≤ f(ω) for any ω ∈ Ω. The integral of f w.r.t. ν is defined as

∫
fdν = sup

{∫
ϕdν : ϕ ∈ Sf

}
.

Hence, for any Borel function f ≥ 0, there exists a sequence of simple
functions ϕ1, ϕ2, ... such that 0 ≤ ϕi ≤ f for all i and limn→∞

∫
ϕndν =∫

fdν.
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Finally, for a Borel function f , we first define the positive part of f by

f+(ω) = max{f(ω), 0}
and the negative part of f by

f−(ω) = max{−f(ω), 0}.
Note that f+ and f− are nonnegative Borel functions, f(ω) = f+(ω) −
f−(ω), and |f(ω)| = f+(ω) + f−(ω).

Definition 1.4(c). Let f be a Borel function. We say that
∫
fdν exists if

and only if at least one of
∫
f+dν and

∫
f−dν is finite, in which case

∫
fdν =

∫
f+dν −

∫
f−dν. (1.13)

When both
∫
f+dν and

∫
f−dν are finite, we say that f is integrable. Let

A be a measurable set and IA be its indicator function. The integral of f
over A is defined as ∫

A

fdν =

∫
IAfdν.

Note that a Borel function f is integrable if and only if |f | is integrable.

It is convenient to define the integral of a measurable function f from
(Ω,F , ν) to (R̄, B̄), where R̄ = R∪ {−∞,∞}, B̄ = σ(B ∪ {{∞}, {−∞}}).
Let A+ = {f = ∞} and A− = {f = −∞}. If ν(A+) = 0, we define

∫
f+dν

to be
∫
IAc

+
f+dν; otherwise

∫
f+dν = ∞.

∫
f−dν is similarly defined. If at

least one of
∫
f+dν and

∫
f−dν is finite, then

∫
fdν is defined by (1.13).

The integral of f may be denoted differently whenever there is a need
to indicate the variable(s) to be integrated and the integration domain; for
example,

∫
Ω
fdν,

∫
f(ω)dν,

∫
f(ω)dν(ω), or

∫
f(ω)ν(dω), and so on. In

probability and statistics,
∫
XdP is usually written as EX or E(X) and

called the expectation or expected value of X . If F is the c.d.f. of P on
(Rk,Bk),

∫
f(x)dP is also denoted by

∫
f(x)dF (x) or

∫
fdF .

Example 1.5. Let Ω be a countable set, F be all subsets of Ω, and ν be
the counting measure given in Example 1.1. For any Borel function f , it
can be shown (exercise) that

∫
fdν =

∑

ω∈Ω

f(ω). (1.14)

Example 1.6. If Ω = R and ν is the Lebesgue measure, then the Lebesgue

integral of f over an interval [a, b] is written as
∫
[a,b]

f(x)dx =
∫ b
a
f(x)dx,

which agrees with the Riemann integral in calculus when the latter is well
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defined. However, there are functions for which the Lebesgue integrals are
defined but not the Riemann integrals.

We now introduce some properties of integrals. The proof of the follow-
ing result is left to the reader.

Proposition 1.5 (Linearity of integrals). Let (Ω,F , ν) be a measure space
and f and g be Borel functions.
(i) If

∫
fdν exists and a ∈ R, then

∫
(af)dν exists and is equal to a

∫
fdν.

(ii) If both
∫
fdν and

∫
gdν exist and

∫
fdν +

∫
gdν is well defined, then∫

(f + g)dν exists and is equal to
∫
fdν +

∫
gdν.

If N is an event with ν(N) = 0 and a statement holds for all ω in the
complementN c, then the statement is said to hold a.e. (almost everywhere)
ν (or simply a.e. if the measure ν is clear from the context). If ν is a
probability measure, then a.e. may be replaced by a.s. (almost surely).

Proposition 1.6. Let (Ω,F , ν) be a measure space and f and g be Borel.
(i) If f ≤ g a.e., then

∫
fdν ≤

∫
gdν, provided that the integrals exist.

(ii) If f ≥ 0 a.e. and
∫
fdν = 0, then f = 0 a.e.

Proof. (i) The proof for part (i) is left to the reader.
(ii) Let A = {f > 0} and An = {f ≥ n−1}, n = 1, 2, .... Then An ⊂ A
for any n and limn→∞ An = ∪An = A (why?). By Proposition 1.1(iii),
limn→∞ ν(An) = ν(A). Using part (i) and Proposition 1.5, we obtain that

n−1ν(An) =

∫
n−1IAndν ≤

∫
fIAndν ≤

∫
fdν = 0

for any n. Hence ν(A) = 0 and f = 0 a.e.

Some direct consequences of Proposition 1.6(i) are: |
∫
fdν| ≤

∫
|f |dν;

if f ≥ 0 a.e., then
∫
fdν ≥ 0; and if f = g a.e., then

∫
fdν =

∫
gdν.

It is sometimes required to know whether the following interchange of
two operations is valid:∫

lim
n→∞

fndν = lim
n→∞

∫
fndν, (1.15)

where {fn : n = 1, 2, ...} is a sequence of Borel functions. Note that we
only require limn→∞ fn exists a.e. Also, limn→∞ fn is Borel (Proposition
1.4). The following example shows that (1.15) is not always true.

Example 1.7. Consider (R,B) and the Lebesgue measure. Define fn(x) =
nI[0,n−1](x), n = 1, 2, .... Then limn→∞ fn(x) = 0 for all x but x = 0.
Since the Lebesgue measure of a single point set is 0 (see Example 1.2),
limn→∞ fn(x) = 0 a.e. and

∫
limn→∞ fn(x)dx = 0. On the other hand,∫

fn(x)dx = 1 for any n and, hence, limn→∞
∫
fn(x)dx = 1.
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The following result gives sufficient conditions under which (1.15) holds.

Theorem 1.1. Let f1, f2, ... be a sequence of Borel functions on (Ω,F , ν).
(i) (Fatou’s lemma). If fn ≥ 0, then∫

lim inf
n

fndν ≤ lim inf
n

∫
fndν.

(ii) (Dominated convergence theorem). If limn→∞ fn = f a.e. and there
exists an integrable function g such that |fn| ≤ g a.e., then (1.15) holds.
(iii) (Monotone convergence theorem). If 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn
= f a.e., then (1.15) holds.
Proof. The results in (i) and (iii) are equivalent (exercise). Applying
Fatou’s lemma to functions g+ fn and g− fn, we obtain that

∫
(g+ f)dν ≤

lim infn
∫

(g + fn)dν and
∫

(g − f)dν ≤ lim infn
∫
(g − fn)dν (which is the

same as
∫
(f − g)dν ≥ lim supn

∫
(fn − g)dν). Since g is integrable, these

results imply that
∫
fdν ≤ lim infn

∫
fndν ≤ lim supn

∫
fndν ≤

∫
fdν.

Hence, the result in (i) implies the result in (ii).

It remains to show part (iii). Let f, f1, f2, ... be given in part (iii).
From Proposition 1.6(i), there exists limn→∞

∫
fndν ≤

∫
fdν. Let ϕ be

a simple function with 0 ≤ ϕ ≤ f and let Aϕ = {ϕ > 0}. Suppose
that ν(Aϕ) = ∞. Then

∫
fdν = ∞. Let a = 2−1 minω∈Aϕ ϕ(ω) and

An = {fn > a}. Then a > 0, A1 ⊂ A2 ⊂ · · ·, and Aϕ ⊂ ∪An (why?).
By Proposition 1.1, ν(An) → ν(∪An) ≥ ν(Aϕ) = ∞ and, hence,

∫
fndν ≥∫

An
fndν ≥ aν(An) → ∞. Suppose now ν(Aϕ) <∞. By Egoroff’s theorem

(Exercise 20 in §1.6), for any ǫ > 0, there is B ⊂ Aϕ with ν(B) < ǫ such that
fn converges to f uniformly on Aϕ ∩Bc. Hence,

∫
fndν ≥

∫
Aϕ∩Bc fndν →∫

Aϕ∩Bc fdν ≥
∫
Aϕ∩Bc ϕdν =

∫
ϕdν−

∫
B ϕdν ≥

∫
ϕdν−ǫmaxω ϕ(ω). Since

ǫ is arbitrary, limn→∞
∫
fndν ≥

∫
ϕdν. Since ϕ is arbitrary, by Definition

1.4(b), limn→∞
∫
fndν ≥

∫
fdν. This completes the proof.

Example 1.8 (Interchange of differentiation and integration). Let (Ω,F , ν)
be a measure space and, for any fixed θ ∈ R, let f(ω, θ) be a Borel function
on Ω. Suppose that ∂f(ω, θ)/∂θ exists a.e. for θ ∈ (a, b) ⊂ R and that
|∂f(ω, θ)/∂θ| ≤ g(ω) a.e., where g is an integrable function on Ω. Then,
for each θ ∈ (a, b), ∂f(ω, θ)/∂θ is integrable and, by Theorem 1.1(ii),

d

dθ

∫
f(ω, θ)dν =

∫
∂f(ω, θ)

∂θ
dν.

Theorem 1.2 (Change of variables). Let f be measurable from (Ω,F , ν)
to (Λ,G) and g be Borel on (Λ,G). Then∫

Ω

g ◦ fdν =

∫

Λ

gd(ν ◦ f−1), (1.16)

i.e., if either integral exists, then so does the other, and the two are the
same.



14 1. Probability Theory

The reader is encouraged to provide a proof. A complete proof is in
Billingsley (1986, p. 219). This result extends the change of variable formula
for Riemann integrals, i.e.,

∫
g(y)dy =

∫
g(f(x))f ′(x)dx, y = f(x).

Result (1.16) is very important in probability and statistics. Let X
be a random variable on a probability space (Ω,F , P ). If EX =

∫
ΩXdP

exists, then usually it is much simpler to compute EX =
∫
R xdPX , where

PX = P ◦X−1 is the law of X . Let Y be a random vector from Ω to Rk and
g be Borel from Rk to R. According to (1.16), Eg(Y ) can be computed as∫
Rk g(y)dPY or

∫
R xdPg(Y ), depending on which of PY and Pg(Y ) is easier

to handle. As a more specific example, consider k = 2, Y = (X1, X2), and
g(Y ) = X1 + X2. Using Proposition 1.5(ii), E(X1 + X2) = EX1 + EX2

and, hence, E(X1 +X2) =
∫
R xdPX1 +

∫
R xdPX2 . Then we need to handle

two integrals involving PX1 and PX2 . On the other hand, E(X1 + X2) =∫
R xdPX1+X2 , which involves one integral w.r.t. PX1+X2 . Unless we have

some knowledge about the joint c.d.f. of (X1, X2), it is not easy to obtain
PX1+X2 .

The following theorem states how to evaluate an integral w.r.t. a product
measure via iterated integration. The reader is encouraged to prove this
theorem. A complete proof can be found in Billingsley (1986, pp. 236-238).

Theorem 1.3 (Fubini’s theorem). Let νi be a σ-finite measure on (Ωi,Fi),
i = 1, 2, and let f be a Borel function on

∏2
i=1(Ωi,Fi). Suppose that either

f ≥ 0 or f is integrable w.r.t. ν1 × ν2. Then

g(ω2) =

∫

Ω1

f(ω1, ω2)dν1

exists a.e. ν2 and defines a Borel function on Ω2 whose integral w.r.t. ν2
exists, and

∫

Ω1×Ω2

f(ω1, ω2)dν1 × ν2 =

∫

Ω2

[∫

Ω1

f(ω1, ω2)dν1

]
dν2.

This result can be naturally extended to the integral w.r.t. the product
measure on

∏k
i=1(Ωi,Fi) for any finite positive integer k.

Example 1.9. Let Ω1 = Ω2 = {0, 1, 2, ...}, and ν1 = ν2 be the counting
measure (Example 1.1). A function f on Ω1×Ω2 defines a double sequence.
If f ≥ 0 or

∫
|f |dν1 × ν2 <∞, then

∫
fdν1 × ν2 =

∞∑

i=0

∞∑

j=0

f(i, j) =

∞∑

j=0

∞∑

i=0

f(i, j) (1.17)

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed
in either order, if it is summable or f ≥ 0.
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1.2.2 Radon-Nikodym derivative

Let (Ω,F , ν) be a measure space and f be a nonnegative Borel function.
One can show that the set function

λ(A) =

∫

A

fdν, A ∈ F , (1.18)

is a measure on (Ω,F) (verify). Note that

ν(A) = 0 implies λ(A) = 0. (1.19)

If (1.19) holds for two measures λ and ν defined on the same measurable
space, then we say λ is absolutely continuous w.r.t. ν and write λ≪ ν.

Formula (1.18) gives us not only a way of constructing measures, but
also a method of computing measures of measurable sets. Let ν be a well-
known measure (such as the Lebesgue measure or the counting measure)
and λ a relatively unknown measure. If we can find a function f such that
(1.18) holds, then computing λ(A) can be done through integration. A
necessary condition for (1.18) is clearly λ≪ ν. The following result shows
that λ≪ ν is also almost sufficient for (1.18).

Theorem 1.4 (Radon-Nikodym theorem). Let ν and λ be two measures
on (Ω,F) and ν be σ-finite. If λ≪ ν, then there exists a nonnegative Borel
function f on Ω such that (1.18) holds. Furthermore, f is unique a.e. ν,
i.e., if λ(A) =

∫
A gdν for any A ∈ F , then f = g a.e. ν.

The proof of this theorem can be found in Billingsley (1986, pp. 443-
444). If (1.18) holds, then the function f is called the Radon-Nikodym
derivative or density of λ w.r.t. ν and is denoted by dλ/dν.

A useful consequence of Theorem 1.4 is that if f is Borel on (Ω,F) and∫
A
fdν = 0 for any A ∈ F , then f = 0 a.e.

If
∫
fdν = 1 for an f ≥ 0 a.e. ν, then λ given by (1.18) is a probability

measure and f is called its probability density function (p.d.f.) w.r.t. ν.
For any probability measure P on (Rk,Bk) corresponding to a c.d.f. F or
a random vector X , if P has a p.d.f. f w.r.t. a measure ν, then f is also
called the p.d.f. of F or X w.r.t. ν.

Example 1.10 (p.d.f. of a discrete c.d.f.). Consider the discrete c.d.f. F
in (1.10) of Example 1.3 with its probability measure given by (1.11). Let
Ω = {a1, a2, ...} and ν be the counting measure on the power set of Ω. By
Example 1.5,

P (A) =

∫

A

fdν =
∑

ai∈A
f(ai), A ⊂ Ω, (1.20)
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where f(ai) = pi, i = 1, 2, .... That is, f is the p.d.f. of P or F w.r.t.
ν. Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f.
w.r.t. counting measure is called a discrete p.d.f.

Example 1.11. Let F be a c.d.f. Assume that F is differentiable in the
usual sense in calculus. Let f be the derivative of F . From calculus,

F (x) =

∫ x

−∞
f(y)dy, x ∈ R. (1.21)

Let P be the probability measure corresponding to F . It can be shown
that P (A) =

∫
A
fdm for any A ∈ B, where m is the Lebesgue measure on

R. Hence, f is the p.d.f. of P or F w.r.t. Lebesgue measure. In this case,
the Radon-Nikodym derivative is the same as the usual derivative of F in
calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.
A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t.
Lebesgue measure is that F is absolute continuous in the sense that for any
ǫ > 0, there exists a δ > 0 such that for each finite collection of disjoint
bounded open intervals (ai, bi),

∑
(bi−ai) < δ implies

∑
[F (bi)−F (ai)] < ǫ.

Absolute continuity is weaker than differentiability, but is stronger than
continuity. Thus, any discontinuous c.d.f. (such as a discrete c.d.f.) is not
absolute continuous. Note that every c.d.f. is differentiable a.e. Lebesgue
measure (Chung, 1974, Chapter 1). Hence, if f is the p.d.f. of F w.r.t.
Lebesgue measure, then f is the usual derivative of F a.e. Lebesgue mea-
sure and (1.21) holds. In such a case probabilities can be computed through
integration. It can be shown that the uniform and exponential c.d.f.’s in
Example 1.4 are absolute continuous and their p.d.f.’s are, respectively,

f(x) =

{
1
b−a a ≤ x < b

0 otherwise

and

f(x) =

{
0 −∞ < x < 0

θ−1e−x/θ 0 ≤ x <∞.

A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.

More examples of p.d.f.’s are given in §1.3.1.

The following result provides some basic properties of Radon-Nikodym
derivatives. The proof is left to the reader.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives). Let ν be a
σ-finite measure on a measure space (Ω,F). All other measures discussed
in (i)-(iii) are defined on (Ω,F).
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(i) If λ is a measure, λ≪ ν, and f ≥ 0, then
∫
fdλ =

∫
f
dλ

dν
dν.

(Notice how the dν’s “cancel” on the right-hand side.)
(ii) If λi, i = 1, 2, are measures and λi ≪ ν, then λ1 + λ2 ≪ ν and

d(λ1 + λ2)

dν
=
dλ1

dν
+
dλ2

dν
a.e. ν.

(iii) (Chain rule). If τ is a measure, λ is a σ-finite measure, and τ ≪ λ≪ ν,
then

dτ

dν
=
dτ

dλ

dλ

dν
a.e. ν.

In particular, if λ ≪ ν and ν ≪ λ (in which case λ and ν are equivalent),
then

dλ

dν
=

(
dν

dλ

)−1

a.e. ν or λ.

(iv) Let (Ωi,Fi, νi) be a measure space and νi be σ-finite, i = 1, 2. Let λi be
a σ-finite measure on (Ωi,Fi) and λi ≪ νi, i = 1, 2. Then λ1×λ2 ≪ ν1×ν2
and

d(λ1 × λ2)

d(ν1 × ν2)
(ω1, ω2) =

dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1 × ν2.

1.3 Distributions and Their Characteristics

We now discuss some distributions useful in statistics, and their moments
and generating functions.

1.3.1 Distributions and probability densities

It is often more convenient to work with p.d.f.’s than to work with c.d.f.’s.
We now introduce some p.d.f.’s useful in statistics.

We first consider p.d.f.’s on R. Most discrete p.d.f.’s are w.r.t. counting
measure on the space of all nonnegative integers. Table 1.1 lists all discrete
p.d.f.’s in elementary probability textbooks. For any discrete p.d.f. f , its
c.d.f. F (x) can be obtained using (1.20) with A = (∞, x]. Values of F (x)
can be obtained from statistical tables or software.

Two Lebesgue p.d.f.’s are introduced in Example 1.11. Some other use-
ful Lebesgue p.d.f.’s are listed in Table 1.2. Note that the exponential
p.d.f. in Example 1.11 is a special case of that in Table 1.2 with a = 0.
For any Lebesgue p.d.f. f , (1.21) gives its c.d.f. A few c.d.f.’s have explicit
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Table 1.1. Discrete Distributions on R

Uniform p.d.f. 1/m, x = a1, ..., am
m.g.f.

∑m
j=1 e

ajt/m, t ∈ R
DU(a1, ..., am) Expectation

∑m
j=1 aj/m

Variance
∑m
j=1(aj − ā)2/m, ā =

∑m
j=1 aj/m

Parameter ai ∈ R, m = 1, 2, ...

Binomial p.d.f. (nx) p
x(1 − p)n−x, x = 0, 1, ..., n

m.g.f. (pet + 1 − p)n, t ∈ R
Bi(p, n) Expectation np

Variance np(1 − p)

Parameter p ∈ [0, 1], n = 1, 2, ...

Poisson p.d.f. θxe−θ/x!, x = 0, 1, 2, ...

m.g.f. eθ(e
t−1), t ∈ R

P (θ) Expectation θ

Variance θ

Parameter θ > 0

Geometric p.d.f. (1 − p)x−1p, x = 1, 2, ...

m.g.f. pet/[1 − (1 − p)et], t < − log(1 − p)

G(p) Expectation 1/p

Variance (1 − p)/p2

Parameter p ∈ [0, 1]

Hyper- p.d.f. (nx)
(
m
r−x
) / (

N
r

)

geometric x = 0, 1, ...,min{r, n}, r − x ≤ m

m.g.f. No explicit form

HG(r, n,m) Expectation rn/N

Variance rnm(N − r)/[N2(N − 1)]

Parameter r, n,m = 1, 2, ..., N = n+m

Negative p.d.f.
(
x−1
r−1

)
pr(1 − p)x−r, x = r, r + 1, ...

binomial m.g.f. prert/[1 − (1 − p)et]r, t < − log(1 − p)

Expectation r/p

NB(p, r) Variance r(1 − p)/p2

Parameter p ∈ [0, 1], r = 1, 2, ...

Log- p.d.f. −(log p)−1x−1(1 − p)x, x = 1, 2, ...

distribution m.g.f. log[1 − (1 − p)et]/ log p, t ∈ R
Expectation −(1 − p)/(p log p)

L(p) Variance −(1 − p)[1 + (1 − p)/ log p]/(p2 log p)

Parameter p ∈ (0, 1)

All p.d.f.’s are w.r.t. counting measure.
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forms, whereas many others do not and they have to be evaluated numeri-
cally or computed using tables or software.

There are p.d.f.’s that are neither discrete nor Lebesgue.

Example 1.12. Let X be a random variable on (Ω,F , P ) whose c.d.f. FX
has a Lebesgue p.d.f. fX and FX(c) < 1, where c is a fixed constant. Let
Y = min{X, c}, i.e., Y is the smaller ofX and c. Note that Y −1((−∞, x]) =
Ω if x ≥ c and Y −1((−∞, x]) = X−1((∞, x]) if x < c. Hence Y is a random
variable and the c.d.f. of Y is

FY (x) =

{
1 x ≥ c

FX(x) x < c.

This c.d.f. is discontinuous at c, since FX(c) < 1. Thus, it does not have
a Lebesgue p.d.f. It is not discrete either. Does PY , the probability mea-
sure corresponding to FY , have a p.d.f. w.r.t. some measure? Define a
probability measure on (R,B), called point mass at c, by

διc(A) =

{
1 c ∈ A

0 c 6∈ A,
A ∈ B (1.22)

(which is a special case of the discrete uniform distribution in Table 1.1).
Then PY ≪ m+ διc, where m is the Lebesgue measure, and the p.d.f. of PY
is

dPY
d(m+ διc)

(x) =





0 x > c

1 − FX(c) x = c

fX(x) x < c.

(1.23)

A p.d.f. corresponding to a joint c.d.f. is called a joint p.d.f. The fol-
lowing is a joint Lebesgue p.d.f. on Rk that is important in statistics:

f(x) = (2π)−k/2[Det(Σ)]−1/2e−(x−µ)τΣ−1(x−µ)/2, x ∈ Rk, (1.24)

where µ ∈ Rk, Σ is a positive definite k× k matrix, Det(Σ) is the determi-
nant of Σ and, when matrix algebra is involved, any k-vector c is treated as
a k × 1 matrix (column vector) and cτ denotes its transpose (row vector).
The p.d.f. in (1.24) and its c.d.f. are called the k-dimensional multivariate
normal p.d.f. and c.d.f., and both are denoted by Nk(µ,Σ). Random vec-
tors distributed as Nk(µ,Σ) are also denoted by Nk(µ,Σ) for convenience.
The normal distribution N(µ, σ2) in Table 1.2 is a special case of Nk(µ,Σ)
with k = 1. In particular, N(0, 1) is called the standard normal distribu-
tion. When Σ is a nonnegative definite but singular matrix, we define X
to be Nk(µ,Σ) if and only if cτX is N(cτµ, cτΣc) for any c ∈ Rk (N(a, 0)
is defined to be the c.d.f. of the point mass at a), which is an important
property of Nk(µ,Σ) with a nonsingular Σ (Exercise 81).

Another important joint p.d.f. will be introduced in Example 2.7.
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Table 1.2. Distributions on R with Lebesgue p.d.f.’s

Uniform p.d.f. (b− a)−1I(a,b)(x)

m.g.f. (ebt − eat)/[(b− a)t], t ∈ R
U(a, b) Expectation (a+ b)/2

Variance (b− a)2/12

Parameter a, b ∈ R, a < b

Normal p.d.f. 1√
2πσ

e−(x−µ)2/2σ2

m.g.f. eµt+σ
2t2/2, t ∈ R

N(µ, σ2) Expectation µ

Variance σ2

Parameter µ ∈ R, σ > 0

Exponential p.d.f. θ−1e−(x−a)/θI(a,∞)(x)

m.g.f. eat(1 − θt)−1, t < θ−1

E(a, θ) Expectation θ + a

Variance θ2

Parameter θ > 0, a ∈ R
Chi-square p.d.f. 1

Γ(k/2)2k/2 x
k/2−1e−x/2I(0,∞)(x)

m.g.f. (1 − 2t)−k/2, t < 1/2

χ2
k Expectation k

Variance 2k

Parameter k = 1, 2, ...

Gamma p.d.f. 1
Γ(α)γαx

α−1e−x/γI(0,∞)(x)

m.g.f. (1 − γt)−α, t < γ−1

Γ(α, γ) Expectation αγ

Variance αγ2

Parameter γ > 0, α > 0

Beta p.d.f. Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1I(0,1)(x)

m.g.f. No explicit form

B(α, β) Expectation α/(α+ β)

Variance αβ/[(α+ β + 1)(α+ β)2]

Parameter α > 0, β > 0

Cauchy p.d.f. 1
πσ

[
1 +

(
x−µ
σ

)2]−1

ch.f. e
√
−1µt−σ|t|

C(µ, σ) Expectation Does not exist

Variance Does not exist

Parameter µ ∈ R, σ > 0
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Table 1.2. (continued)

t-distribution p.d.f. Γ[(n+1)/2]√
nπΓ(n/2)

(
1 + x2

n

)−(n+1)/2

ch.f. No explicit form

tn Expectation 0, (n > 1)

Variance n/(n− 2), (n > 2)

Parameter n = 1, 2, ...

F-distribution p.d.f. nn/2mm/2Γ[(n+m)/2]xn/2−1

Γ(n/2)Γ(m/2)(m+nx)(n+m)/2 I(0,∞)(x)

ch.f. No explicit form

Fn,m Expectation m/(m− 2), (m > 2)

Variance 2m2(n+m− 2)/[n(m− 2)2(m− 4)],

(m > 4)

Parameter n = 1, 2, ..., m = 1, 2, ...

Log-normal p.d.f. 1√
2πσ

x−1e−(log x−µ)2/2σ2

I(0,∞)(x)

ch.f. No explicit form

LN(µ, σ2) Expectation eµ+σ2/2

Variance e2µ+σ2

(eσ
2 − 1)

Parameter µ ∈ R, σ > 0

Weibull p.d.f. α
θ x

α−1e−x
α/θI(0,∞)(x)

ch.f. No explicit form

W (α, θ) Expectation θ1/αΓ(α−1 + 1)

Variance θ2/α
{

Γ(2α−1 + 1) −
[
Γ(α−1 + 1)

]2}

Parameter θ > 0, α > 0

Double p.d.f. 1
2θe

−|x−µ|/θ

Exponential m.g.f. eµt/(1 − θ2t2), |t| < θ−1

Expectation µ

DE(µ, θ) Variance 2θ2

Parameter µ ∈ R, θ > 0

Pareto p.d.f. θaθx−(θ+1)I(a,∞)(x)

ch.f. No explicit form

Pa(a, θ) Expectation θa/(θ − 1), (θ > 1)

Variance θa2/[(θ − 1)2(θ − 2)], (θ > 2)

Parameter θ > 0, a > 0

Logistic p.d.f. σ−1e−(x−µ)/σ/[1 + e−(x−µ)/σ]2

m.g.f. eµtΓ(1 + σt)Γ(1 − σt), |t| < σ−1

LG(µ, σ) Expectation µ

Variance σ2π2/3

Parameter µ ∈ R, σ > 0
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If a random k-vector (X1, ..., Xk) has a joint p.d.f. f w.r.t. a product
measure ν1 × · · · × νk defined on Bk, then Xi has the following marginal
p.d.f. w.r.t. νi:

fi(x) =

∫

Rk−1

f(x1, ..., xi−1, x, xi+1, ..., xk)dν1 · · · dνi−1dνi+1 · · ·dνk.

Let F be the joint c.d.f. of a random k-vector (X1, ..., Xk) and Fi be
the marginal c.d.f. of Xi, i = 1, ..., k. If (1.7) holds, then random variables
X1, ..., Xk are said to be independent. From the discussion in the end of
§1.1.1, this independence means that the probability measure corresponding
to F is the product measure of the k probability measures corresponding
to Fi’s. The meaning of independence is further discussed in §1.4.2. If
(X1, ..., Xk) has a joint p.d.f. f w.r.t. a product measure ν1 × · · · × νk
defined on Bk, then X1, ..., Xk are independent if and only if

f(x1, ..., xk) = f1(x1) · · · fk(xk), (x1, ..., xk) ∈ Rk, (1.25)

where fi is the p.d.f. of Xi w.r.t. νi, i = 1, ..., k. For example, using (1.24),
one can show (exercise) that the components of Nk(µ,Σ) are independent
if and only if Σ is a diagonal matrix.

The following lemma is useful in considering the independence of func-
tions of independent random variables.

Lemma 1.1. Let X1, ..., Xn be independent random variables. Then ran-
dom variables g(X1, ..., Xk) and h(Xk+1, ..., Xn) are independent, where g
and h are Borel functions and k is an integer between 1 and n.

Lemma 1.1 can be proved directly (exercise). But it is a simple conse-
quence of an equivalent definition of independence introduced in §1.4.2.

Let X1, ..., Xk be random variables. If Xi and Xj are independent for
every pair i 6= j, then X1, ..., Xk are said to be pairwise independent. If
X1, ..., Xk are independent, then clearly they are pairwise independent.
However, the converse is not true. The following is an example.

Example 1.13. Let X1 and X2 be independent random variables each as-
suming the values 1 and −1 with probability 0.5, andX3 = X1X2. Let Ai =
{Xi = 1}, i = 1, 2, 3. Then P (Ai) = 0.5 for any i and P (A1)P (A2)P (A3) =
0.125. However, P (A1∩A2∩A3) = P (A1∩A2) = P (A1)P (A2) = 0.25. This
implies that (1.7) does not hold and, hence, X1, X2, X3 are not indepen-
dent. We now show that X1, X2, X3 are pairwise independent. It is enough
to show that X1 and X3 are independent. Let Bi = {Xi = −1}, i = 1, 2, 3.
Note that A1 ∩ A3 = A1 ∩ A2, A1 ∩ B3 = A1 ∩ B2, B1 ∩ A3 = B1 ∩ B2,
and B1 ∩ B3 = B1 ∩ A2. Then the result follows from the fact that
P (Ai) = P (Bi) = 0.5 for any i and X1 and X2 are independent.
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The random variable Y in Example 1.12 is a transformation of the
random variable X . Transformations of random variables or vectors are
frequently used in statistics. For a random variable or vector X , g(X) is
a random variable or vector as long as g is measurable (Proposition 1.4).
How do we find the c.d.f. (or p.d.f.) of g(X) when the c.d.f. (or p.d.f.) of X
is known? In many cases, the most effective method is direct computation.
Example 1.12 is one example. The following is another one.

Example 1.14. Let X be a random variable with c.d.f. FX and Lebesgue
p.d.f. fX , and let Y = X2. Since Y −1((−∞, x]) is empty if x < 0 and
equals Y −1([0, x]) = X−1([−√

x,
√
x ]) if x ≥ 0, the c.d.f. of Y is

FY (x) = P ◦ Y −1((−∞, x])

= P ◦X−1([−√
x,

√
x ])

= FX(
√
x) − FX(−√

x)

if x ≥ 0 and FY (x) = 0 if x < 0. Clearly, the Lebesgue p.d.f. of FY is

fY (x) =
1

2
√
x

[fX(
√
x) + fX(−√

x)]I(0,∞)(x). (1.26)

In particular, if

fX(x) =
1√
2π
e−x

2/2, (1.27)

which is the Lebesgue p.d.f. of the standard normal distribution N(0, 1)
(Table 1.2), then

fY (x) =
1√
2πx

e−x/2I(0,∞)(x),

which is the Lebesgue p.d.f. for the chi-square distribution χ2
1 (Table 1.2).

This is actually an important result in statistics.

In some cases, one may apply the following general result whose proof
is left to the reader.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. fX
and let Y = g(X), where g is a Borel function from (Rk,Bk) to (Rk,Bk).
Let A1, ..., Am be disjoint sets in Bk such that Rk − (A1 ∪ · · · ∪ Am) has
Lebesgue measure 0 and g on Aj is one-to-one with a nonvanishing Jaco-
bian, i.e., the determinant Det(∂g(x)/∂x) 6= 0 on Aj , j = 1, ...,m. Then Y
has the following Lebesgue p.d.f.:

fY (x) =

m∑

j=1

∣∣Det (∂hj(x)/∂x)
∣∣ fX (hj(x)) ,

where hj is the inverse function of g on Aj , j = 1, ...,m.
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One may apply Proposition 1.8 to obtain result (1.26) in Example 1.14,
using A1 = (−∞, 0), A2 = (0,∞), and g(x) = x2. Note that h1(x) = −√

x,
h2(x) =

√
x, and |dhj(x)/dx| = 1/(2

√
x). Another immediate application

of Proposition 1.8 is to show that Y = AX is Nk(Aµ,AΣAτ ) when X is
Nk(µ,Σ), where Σ is positive definite, A is a k × k matrix of rank k, and
Aτ denotes the transpose of A.

Example 1.15. Let X = (X1, X2) be a random 2-vector having a joint
Lebesgue p.d.f. fX . Consider first the transformation g(x) = (x1, x1 + x2).
Using Proposition 1.8, one can show that the joint p.d.f. of g(X) is

fg(X)(x1, y) = fX(x1, y − x1),

where y = x1 + x2 (note that the Jacobian equals 1). The marginal p.d.f.
of Y = X1 +X2 is then

fY (y) =

∫
fX(x1, y − x1)dx1.

In particular, if X1 and X2 are independent, then

fY (y) =

∫
fX1(x1)fX2(y − x1)dx1. (1.28)

Next, consider the transformation h(x1, x2) = (x1/x2, x2), assuming that
X2 6= 0 a.s. Using Proposition 1.8, one can show that the joint p.d.f. of
h(X) is

fh(X)(z, x2) = |x2|fX(zx2, x2),

where z = x1/x2. The marginal p.d.f. of Z = X1/X2 is

fZ(z) =

∫
|x2|fX(zx2, x2)dx2.

In particular, if X1 and X2 are independent, then

fZ(z) =

∫
|x2|fX1(zx2)fX2(x2)dx2. (1.29)

A number of results can be derived from (1.28) and (1.29). For example,
if X1 and X2 are independent and both have the standard normal p.d.f.
given by (1.27), then, by (1.29), the Lebesgue p.d.f. of Z = X1/X2 is

fZ(z) =
1

2π

∫
|x2|e−(1+z2)x2

2/2dx2

=
1

π

∫ ∞

0

e−(1+z2)xdx

=
1

π(1 + z2)
,
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which is the p.d.f. of the Cauchy distribution C(0, 1) in Table 1.2. Another
application of formula (1.29) leads to the following important result in
statistics.

Example 1.16 (t-distribution and F-distribution). Let X1 and X2 be
independent random variables having the chi-square distributions χ2

n1
and

χ2
n2

(Table 1.2), respectively. By (1.29), the p.d.f. of Z = X1/X2 is

fZ(z) =
zn1/2−1I(0,∞)(z)

2(n1+n2)/2Γ(n1/2)Γ(n2/2)

∫ ∞

0

x
(n1+n2)/2−1
2 e−(1+z)x2/2dx2

=
Γ[(n1 + n2)/2]

Γ(n1/2)Γ(n2/2)

zn1/2−1

(1 + z)(n1+n2)/2
I(0,∞)(z),

where the last equality follows from the fact that

1

2(n1+n2)/2Γ[(n1 + n2)/2]
x

(n1+n2)/2−1
2 e−x2/2I(0,∞)(x2)

is the p.d.f. of the chi-square distribution χ2
n1+n2

. Using Proposition 1.8,
one can show that the p.d.f. of Y = (X1/n1)/(X2/n2) = (n2/n1)Z is the
p.d.f. of the F-distribution Fn1,n2 given in Table 1.2.

Let U1 be a random variable having the standard normal distribution
N(0, 1) and U2 a random variable having the chi-square distribution χ2

n.
Using the same argument, one can show that if U1 and U2 are independent,
then the distribution of T = U1/

√
U2/n is the t-distribution tn given in

Table 1.2. This result can also be derived using the result given in this
example as follows. Let X1 = U2

1 and X2 = U2. Then X1 and X2 are
independent (which can be shown directly but follows from Lemma 1.1).
By Example 1.14, the distribution of X1 is χ2

1. Then Y = X1/(X2/n) has
the F-distribution F1,n and its Lebesgue p.d.f. is

nn/2Γ[(n+ 1)/2]x−1/2

√
πΓ(n/2)(n+ x)(n+1)/2

I(0,∞)(x).

Note that

T =

{ √
Y U1 ≥ 0

−
√
Y U1 < 0.

The result follows from Proposition 1.8 and the fact that

P ◦ T−1 ((−∞,−t]) = P ◦ T−1 ([t,∞)) , t > 0. (1.30)

If a random variable T satisfies (1.30), i.e., T and −T have the same
distribution, then T and its c.d.f. and p.d.f. (if it exists) are said to be
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symmetric about 0. If T has a Lebesgue p.d.f. fT , then T is symmetric
about 0 if and only if fT (x) = fT (−x) for any x > 0. T and its c.d.f.
and p.d.f. are said to be symmetric about a (or symmetric for simplicity)
if and only if T − a is symmetric about 0 for a fixed a ∈ R. The c.d.f.’s of
t-distributions are symmetric about 0 and the normal, Cauchy, and double
exponential c.d.f.’s are symmetric.

The chi-square, t-, and F-distributions in the previous examples are
special cases of the following noncentral chi-square, t-, and F-distributions,
which are useful in some statistical problems.

Let X1, ..., Xn be independent random variables and Xi = N(µi, σ
2),

i = 1, ..., n. The distribution of the random variable Y = (X2
1 +· · ·+X2

n)/σ
2

is called the noncentral chi-square distribution and denoted by χ2
n(δ), where

δ = (µ2
1 + · · · + µ2

n)/σ
2 is the noncentrality parameter. The chi-square

distribution χ2
k in Table 1.2 is a special case of the noncentral chi-square

distribution χ2
k(δ) with δ = 0 and, therefore, is called a central chi-square

distribution. It can be shown (exercise) that Y has the following Lebesgue
p.d.f.:

e−δ/2
∞∑

j=0

(δ/2)j

j!
f2j+n(x), (1.31)

where fk(x) is the Lebesgue p.d.f. of the chi-square distribution χ2
k. It

follows from the definition of noncentral chi-square distributions that if
Y1, ..., Yk are independent random variables and Yi has the noncentral chi-
square distribution χ2

ni
(δi), i = 1, ..., k, then Y = Y1 + · · · + Yk has the

noncentral chi-square distribution χ2
n1+···+nk

(δ1 + · · · + δk).

The result for the t-distribution in Example 1.16 can be extended to the
case where U1 has a nonzero expectation µ (U2 still has the χ2

n distribution
and is independent of U1). The distribution of T = U1/

√
U2/n is called

the noncentral t-distribution and denoted by tn(δ), where δ = µ is the
noncentrality parameter. Using the same argument as that in Example
1.15, one can show (exercise) that T has the following Lebesgue p.d.f.:

1

2(n+1)/2Γ(n/2)
√
πn

∫ ∞

0

y(n−1)/2e−[(x
√
y/n−δ)2+y]/2dy. (1.32)

The t-distribution tn in Example 1.16 is called a central t-distribution, since
it is a special case of the noncentral t-distribution tn(δ) with δ = 0.

Similarly, the result for the F-distribution in Example 1.16 can be ex-
tended to the case where X1 has the noncentral chi-square distribution
χ2
n1

(δ), X2 has the central chi-square distribution χ2
n2

, and X1 and X2 are
independent. The distribution of Y = (X1/n1)/(X2/n2) is called the non-
central F-distribution and denoted by Fn1,n2(δ), where δ is the noncentrality
parameter. The F-distribution Fn1,n2 in Example 1.16 is called a central
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F-distribution, since it is a special case of the noncentral F-distribution
Fn1,n2(δ) with δ = 0. It can be shown (exercise) that the noncentral F-
distribution Fn1,n2(δ) has the following Lebesgue p.d.f.:

e−δ/2
∞∑

j=0

n1(δ/2)j

j!(2j + n1)
f2j+n1,n2

(
n1x

2j + n1

)
, (1.33)

where fk1,k2(x) is the Lebesgue p.d.f. of the central F-distribution Fk1,k2
given in Table 1.2.

Using some results from linear algebra, we can prove the following result
useful in analysis of variance (Scheffé, 1959; Searle, 1971).

Theorem 1.5. (Cochran’s theorem). Suppose that X = Nn(µ, In) and

XτX = XτA1X + · · · +XτAkX, (1.34)

where In is the n× n identity matrix and Ai is an n× n symmetric matrix
with rank ni, i = 1, ..., k. A necessary and sufficient condition that XτAiX
has the noncentral chi-square distribution χ2

ni
(δi), i = 1, ..., k, andXτAiX ’s

are independent is n = n1 + · · · + nk, in which case δi = µτAiµ and
δ1 + · · · + δk = µτµ.
Proof. Suppose that XτAiX , i = 1, ..., k, are independent and XτAiX
has the χ2

ni
(δi) distribution. Then XτX has the χ2

n1+···+nk
(δ1 + · · · + δk)

distribution. By definition, XτX has the noncentral chi-square distribution
χ2
n(µ

τµ). By (1.34), n = n1 + · · · + nk and δ1 + · · · + δk = µτµ.

Suppose now that n = n1 + · · · + nk. From linear algebra, for each i
there exists cij ∈ Rn, j = 1, ..., ni, such that

XτAiX = ±(cτi1X)2 ± · · · ± (cτini
X)2. (1.35)

Let Ci be the n×ni matrix whose jth column is cij , and Cτ = (C1, ..., Ck).
By (1.34) and (1.35), XτX = XτCτ∆CX with an n× n diagonal matrix
∆ whose diagonal elements are either 1 or −1. This implies Cτ∆C = In.
Thus, C is of full rank and, hence, ∆ = (Cτ )−1C−1, which is positive
definite. This shows ∆ = In, which implies CτC = In and

XτAiX =

n1+···+ni−1+ni∑

j=n1+···+ni−1+1

Y 2
j , (1.36)

where Yj is the jth component of Y = CX . Note that Y = Nn(Cµ, In)
(Exercise 43). Hence Yj ’s are independent and Yj = N(λj , 1), where λj
is the jth component of Cµ. This shows that XτAiX has the χ2

ni
(δi)

distribution with δi = λ2
n1+···+ni−1+1 + · · · + λ2

n1+···+ni−1+ni
. Letting X =

µ in (1.36) and (1.34), we obtain that δi = µτAiµ and δ1 + · · · + δk =
µτCτCµ = µτµ. Finally, from (1.36) and Lemma 1.1, we conclude that
XτAiX , i = 1, ..., k, are independent.
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1.3.2 Moments and moment inequalities

We have defined the expectation of a random variable in §1.2.1. It is an
important characteristic of a random variable. In this section, we introduce
moments, which are some other important characteristics of a random vari-
able or vector.

Let X be a random variable. If EXk is finite, where k is a positive
integer, then EXk is called the kth moment of X or PX (the distribution
of X). If E|X |a <∞ for some real number a, then E|X |a is called the ath
absolute moment of X or PX . If µ = EX and E(X − µ)k are finite for a
positive integer k, then E(X − µ)k is called the kth central moment of X
or PX . If E|X |a <∞ for an a > 0, then E|X |t <∞ for any positive t < a
and EXk is finite for any positive integer k ≤ a (Exercise 54).

The expectation and the second central moment (if they exist) are two
important characteristics of a random variable (or its distribution) in statis-
tics. They are listed in Tables 1.1 and 1.2 for those useful distributions.
The expectation, also called the mean in statistics, is a measure of the cen-
tral location of the distribution of a random variable. The second central
moment, also called the variance in statistics, is a measure of dispersion
or spread of a random variable. The variance of a random variable X is
denoted by Var(X). The variance is always nonnegative. If the variance
of X is 0, then X is equal to its mean a.s. (Proposition 1.6). The squared
root of the variance is called the standard deviation, another important
characteristic of a random variable in statistics.

The concept of mean and variance can be extended to random vectors.
The expectation of a random matrix M with (i, j)th element Mij is defined
to be the matrix whose (i, j)th element is EMij . Thus, for a random k-
vector X = (X1, ..., Xk), its mean is EX = (EX1, ..., EXk). The extension
of variance is the variance-covariance matrix of X defined as

Var(X) = E(X − EX)(X − EX)τ ,

which is a k × k symmetric matrix whose diagonal elements are variances
of Xi’s. The (i, j)th element of Var(X), i 6= j, is E(Xi−EXi)(Xj −EXj),
which is called the covariance of Xi and Xj and is denoted by Cov(Xi, Xj).

Let c ∈ Rk and X = (X1, ..., Xk) be a random k-vector. Then Y =
cτX is a random variable and, by Proposition 1.5 (linearity of integrals),
EY = cτEX if EX exists. Also, when Var(X) is finite (i.e., all elements of
Var(X) are finite),

Var(Y ) = E(cτX − cτEX)2

= E[cτ (X − EX)(X − EX)τc]

= cτ [E(X − EX)(X − EX)τ ]c

= cτVar(X)c.
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Since Var(Y ) ≥ 0 for any c ∈ Rk, the matrix Var(X) is nonnegative definite.
Consequently,

[Cov(Xi, Xj)]
2 ≤ Var(Xi)Var(Xj), i 6= j. (1.37)

An important quantity in statistics is the correlation coefficient defined to
be ρ

Xi,Xj
= Cov(Xi, Xj)/

√
Var(Xi)Var(Xj), which, by inequality (1.37),

is always between −1 and 1. It is a measure of relationship between Xi and
Xj ; if ρ

Xi,Xj
is positive (or negative), then Xi and Xj tend to be positively

(or negatively) related; if ρ
Xi,Xj

= ±1, then P (Xi = c1 ± c2Xj) = 1 with

some constants c1 and c2 > 0; if ρXi,Xj
= 0 (i.e., Cov(Xi, Xj) = 0), then

Xi and Xj are said to be uncorrelated. If Xi and Xj are independent, then
they are uncorrelated. This follows from the following more general result.
If X1, ..., Xn are independent random variables and E|X1 · · ·Xn| < ∞,
then, by Fubini’s theorem and the fact that the joint c.d.f. of (X1, ..., Xn)
corresponds to a product measure, we obtain that

E(X1 · · ·Xn) = EX1 · · ·EXn. (1.38)

In fact, pairwise independence of X1, ..., Xn implies that Xi’s are uncorre-
lated, since Cov(Xi, Xj) involves only a pair of random variables. However,
the converse is not necessarily true: uncorrelated random variables may not
be pairwise independent. Examples can be found in Exercises 60-61.

Let RM = {y ∈ Rk : y = Mx with some x ∈ Rk} for any k × k
symmetric matrix M . If a random k-vector X has a finite Var(X), then
P (X−EX ∈ RVar(X)) = 1. This means that if the rank of Var(X) is r < k,

then X is in a subspace of Rk with dimension r. Consequently, if PX ≪
Lebesgue measure on Rk, then the rank of Var(X) is k.

Example 1.17. Let X be a random k-vector having the Nk(µ,Σ) distri-
bution. It can be shown (exercise) that EX = µ and Var(X) = Σ. Thus, µ
and Σ in (1.24) are the mean vector and the variance-covariance matrix of
X . If Σ is a diagonal matrix (i.e., all components of X are uncorrelated),
then by (1.25), the components of X are independent. This shows an im-
portant property of random variables having normal distributions: they are
independent if and only if they are uncorrelated.

There are many useful inequalities related to moments. The inequal-
ity in (1.37) is in fact the well-known Cauchy-Schwartz inequality whose
general form is

[E(XY )]2 ≤ EX2EY 2, (1.39)

where X and Y are random variables with a well-defined E(XY ). Inequal-
ity (1.39) is a special case of the following Hölder’s inequality:

E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q, (1.40)
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where p and q are constants satisfying p > 1 and p−1 + q−1 = 1. To show
inequality (1.40), we use the following inequality (Exercise 62):

xty1−t ≤ tx+ (1 − t)y, (1.41)

where x and y are nonnegative real numbers and t ∈ (0, 1). If either E|X |p
or E|Y |q is ∞, then (1.40) holds. Hence we can assume that both E|X |p
and E|Y |q are finite. Let a = (E|X |p)1/p and b = (E|Y |q)1/q. If either
a = 0 or b = 0, then the equality in (1.40) holds because of Proposition
1.6(ii). Assume now a 6= 0 and b 6= 0. Letting x = |X/a|p, y = |Y/b|q, and
t = p−1 in (1.41), we obtain that

∣∣∣∣
XY

ab

∣∣∣∣ ≤
|X |p
pap

+
|Y |q
qbq

.

Taking expectations on both sides of this expression, we obtain that

E|XY |
ab

≤ E|X |p
pap

+
E|Y |q
qaq

=
1

p
+

1

q
= 1,

which is (1.40). In fact, the equality in (1.40) holds if and only if α|X |p =
β|Y |q a.s. for some nonzero constants α and β (Exercise 62).

Using Hölder’s inequality, we can prove Liapounov’s inequality

(E|X |r)1/r ≤ (E|X |s)1/s, (1.42)

where r and s are constants satisfying 1 ≤ r ≤ s, and Minkowski’s inequal-
ity

(E|X + Y |p)1/p ≤ (E|X |p)1/p + (E|Y |p)1/p, (1.43)

where X and Y are random variables and p is a constant larger than or
equal to 1 (Exercise 63).

Minkowski’s inequality can be extended to the case of more than two
random variables (Exercise 63). The following inequality is a tightened
form of Minkowski’s inequality due to Esseen and von Bahr (1965). Let
X1, ..., Xn be independent random variables with mean 0 and E|Xi|p <∞,
i = 1, ..., n, where p is a constant in [1, 2]. Then

E

∣∣∣∣
n∑

i=1

Xi

∣∣∣∣
p

≤ Cp

n∑

i=1

E|Xi|p, (1.44)

where Cp is a constant depending only on p. When 1 < p < 2, inequality
(1.44) can be proved (Exercise 63) using inequality

|a+ b|p ≤ |a|p + psgn(a)|a|p−1b+ Cp|b|p, a ∈ R, b ∈ R,
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where sgn(x) is 1 or −1 as x is positive or negative and

Cp = sup
x∈R,x 6=0

(|1 + x|p − 1 − px)/|x|p.

For p ≥ 2, there is a similar inequality due to Marcinkiewicz and Zygmund:

E

∣∣∣∣
n∑

i=1

Xi

∣∣∣∣
p

≤ Cp
n1−p/2

n∑

i=1

E|Xi|p, (1.45)

where Cp is a constant depending only on p. A proof of inequality (1.45)
can be found in Loève (1977, p. 276).

Recall from calculus that a subset A of Rk is convex if and only if x ∈ A
and y ∈ A imply tx + (1 − t)y ∈ A for any t ∈ [0, 1]; a function f from a
convex A ⊂ Rk to R is convex if and only if

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y), x ∈ A, y ∈ A, t ∈ [0, 1]; (1.46)

and f is strictly convex if and only if (1.46) holds with ≤ replaced by the
strict inequality <. If f is twice differentiable on A, then a necessary and
sufficient condition for f to be convex (or strictly convex) is that the k× k
second-order partial derivative matrix ∂2f/∂x∂xτ , the so-called Hessian
matrix, is nonnegative definite (or positive definite). For a convex function
f defined on an open convex A ⊂ Rk and a random k-vector X with finite
mean and P (X ∈ A) = 1, a very useful inequality in probability theory and
statistics is the following Jensen’s inequality:

f(EX) ≤ Ef(X). (1.47)

If f is strictly convex, then ≤ in (1.47) can be replaced by < unless
P (f(X) = Ef(X)) = 1. To prove (1.47), we use without proof the fol-
lowing fact for convex f on an open convex A ⊂ Rk (see, e.g., Lehmann,
1983, p. 53). For any y ∈ A, there exists a vector ay ∈ A such that

f(x) ≥ f(y) + ay(x− y)τ , x ∈ A. (1.48)

We also use the fact that EX ∈ A (see, e.g., Ferguson, 1967, p. 74). Letting
x = X and y = EX , we obtain (1.47) by taking expectations on both sides
of (1.48). If f is strictly convex, then (1.48) holds with ≥ replaced by >.
By Proposition 1.6(ii), Ef(X) > f(EX) unless P (f(X) = Ef(X)) = 1.

Example 1.18. A direct application of Jensen’s inequality (1.47) is that
if X is a nonconstant positive random variable with finite mean, then

(EX)−1 < E(X−1) and E(logX) < log(EX),
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since t−1 and − log t are convex functions on (0,∞). Another application
is to prove the following inequality related to entropy. Let f and g be
positive integrable functions on a measure space with a σ-finite measure ν.
If
∫
fdν ≥

∫
gdν > 0, then one can show (exercise) that

∫
f log

(
f

g

)
dν ≥ 0. (1.49)

The next inequality, Chebyshev’s inequality, is almost trivial but very
useful and famous. Let X be a random variable and ϕ a nonnegative and
nondecreasing function on [0,∞) satisfying ϕ(−t) = ϕ(t). Then, for each
constant t ≥ 0,

ϕ(t)P (|X | ≥ t) ≤
∫

{|X|≥t}
ϕ(X)dP ≤ Eϕ(X), (1.50)

where both inequalities in (1.50) follow from Proposition 1.6(i) and the first
inequality also uses the fact that on the set {|X | ≥ t}, ϕ(X) ≥ ϕ(t). The
most familiar application of (1.50) is when ϕ(t) = |t|p for p ∈ (0,∞), in
which case inequality (1.50) is also called Markov’s inequality. Chebyshev’s
inequality, sometimes together with one of the moment inequalities intro-
duced in this section, can be used to yield a desired upper bound for the
“tail” probability P (|X | ≥ t). For example, let Y be a random variable
with mean µ and variance σ2. Then X = (Y − µ)/σ has mean 0 and vari-
ance 1 and, by (1.50) with ϕ(t) = t2, P (|X | ≥ 2) ≤ 1

4 . This means that
the probability that the random variable |Y −µ| exceeds twice its standard
deviation is bounded by 1

4 . Similarly, we can also claim that the probabil-
ity of |Y − µ| exceeding 3σ is bounded by 1

9 . These bounds are rough but
they can be applied to any random variable with a finite variance. Other
applications of Chebyshev’s inequality can be found in §1.5.

In some cases, we need an improvement over inequality (1.50) when
X is of some special form. Let Y1, ..., Yn be independent random variables
having finite variances. The following inequality is due to Hájek and Rènyi:

P

(
max

1≤l≤n
cl

∣∣∣∣
l∑

i=1

(Yi − EYi)

∣∣∣∣ > t

)
≤ 1

t2

n∑

i=1

c2iVar(Yi), t > 0, (1.51)

where ci’s are positive constants satisfying c1 ≥ c2 ≥ · · · ≥ cn. If ci = 1 for
all i, then inequality (1.51) reduces to the famous Kolmogorov’s inequality.
A proof for (1.51) is given in Sen and Singer (1993, pp. 65-66).

1.3.3 Moment generating and characteristic functions

Moments are important characteristics of a distribution, but they do not
determine a distribution in the sense that two different distributions may
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have the same moments of all orders. Functions that determine a distribu-
tion are introduced in the following definition.

Definition 1.5. Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or PX is defined as

ψX(t) = Eet
τX , t ∈ Rk.

(ii) The characteristic function (ch.f.) of X or PX is defined as

φX(t) = Ee
√
−1tτX = E[cos(tτX)] +

√
−1E[sin(tτX)], t ∈ Rk.

Obviously ψX(0) = φX(0) = 1 for any random vector X . The ch.f. is
complex-valued and always well defined. In fact, any ch.f. is bounded by
1 and is a uniformly continuous function on Rk (exercise). The m.g.f. is
nonnegative but may be ∞ everywhere except at t = 0 (Example 1.19). If
the m.g.f. is finite in a neighborhood of 0 ∈ Rk, then φX(t) can be obtained
by replacing t in ψX(t) by

√
−1t. Tables 1.1 and 1.2 contain the m.g.f. (or

ch.f. when the m.g.f. is ∞ everywhere except at 0) for distributions useful
in statistics. For a linear transformation Y = AτX + c, where A is a k×m
matrix and c ∈ Rm, it follows from Definition 1.5 that

ψY (u) = ec
τuψX(Au) and φY (u) = e

√
−1cτuφX(Au), u ∈ Rm.

(1.52)

For a random variable X , if its m.g.f. is finite at t and −t for a t 6= 0,
then X has finite moments and absolute moments of any order. To compute
moments of X using its m.g.f., a condition stronger than the finiteness of
the m.g.f. at some t 6= 0 is needed. Consider a random k-vector X . If ψX
is finite in a neighborhood of 0, then µr1,...,rk

= E(Xr1
1 · · ·Xrk

k ) is finite for
any nonnegative integers r1, ..., rk, where Xj is the jth component of X ,
and ψX has the power series expansion

ψX(t) =
∑

(r1,...,rk)∈Z

µr1,...,rk
tr11 · · · trk

k

r1! · · · rk!
(1.53)

for t in the neighborhood of 0, where tj is the jth component of t and
Z ⊂ Rk containing vectors whose components are nonnegative integers.
Consequently, the components of X have finite moments of all orders and

E(Xr1
1 · · ·Xrk

k ) =
∂r1+···+rkψX(t)

∂tr11 · · · ∂trk

k

∣∣∣∣
t=0

,

which are also called moments of X . In particular,

∂ψX(t)

∂t

∣∣∣∣
t=0

= EX,
∂2ψX(t)

∂t∂tτ

∣∣∣∣
t=0

= E(XXτ), (1.54)
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and, when k = 1 and p is a positive integer, ψ
(p)
X (0) = EXp, where g(p)(t)

denotes the pth order derivative of a function g(t).

If 0 < ψX(t) < ∞, then κX(t) = logψX(t) is called the cumulant
generating function of X or PX . If 0 < ψX(t) <∞ for t in a neighborhood
of 0, then κX has a power series expansion similar to that in (1.53):

κX(t) =
∑

(r1,...,rk)∈Z

κr1,...,rk
tr11 · · · trk

k

r1! · · · rk!
, (1.55)

where κr1,...,rk
’s are called cumulants ofX . There is a one-to-one correspon-

dence between the set of moments and the set of cumulants. An example
for the case of k = 1 is given in Exercise 68.

When ψX is not finite, finite moments of X can be obtained by differen-
tiating its ch.f. φX . Suppose that E|Xr1

1 · · ·Xrk

k | <∞ for some nonnegative
integers r1, ..., rk. Let r = r1 + · · · + rk and

g(t) =
∂re

√
−1tτX

∂tr11 · · ·∂trk

k

= (−1)r/2Xr1
1 · · ·Xrk

k e
√
−1tτX .

Then |g(t)| ≤ |Xr1
1 · · ·Xrk

k |, which is integrable. Hence, from Example 1.8,

∂rφX(t)

∂tr11 · · ·∂trk

k

= (−1)r/2E
(
Xr1

1 · · ·Xrk

k e
√
−1tτX

)
(1.56)

and
∂rφX(t)

∂tr11 · · ·∂trk

k

∣∣∣∣
t=0

= (−1)r/2E(Xr1
1 · · ·Xrk

k ).

In particular,

∂φX(t)

∂t

∣∣∣∣
t=0

=
√
−1EX,

∂2φX(t)

∂t∂tτ

∣∣∣∣
t=0

= −E(XXτ),

and, if k = 1 and p is a positive integer, then φ
(p)
X (0) = (−1)p/2EXp,

provided that all moments involved are finite. In fact, when k = 1, if φX
has a finite derivative of even order p at t = 0, then EXp < ∞ (see, e.g.,
Chung, 1974, pp. 166-168).

Example 1.19. Let X = N(µ, σ2). From Table 1.2, ψX(t) = eµt+σ
2t2/2. A

direct calculation shows that EX = ψ′
X(0) = µ, EX2 = ψ′′

X(0) = σ2 + µ2,

EX3 = ψ
(3)
X (0) = 3σ2µ+µ3, and EX4 = ψ

(4)
X (0) = 3σ4+6σ2µ2+µ4. If µ =

0, then EXp = 0 when p is an odd integer and EXp = (p−1)(p−3) · · ·3·1σp
when p is an even integer (exercise). The cumulant generating function of
X is κX(t) = logψX(t) = µt+σ2t2/2. Hence, κ1 = µ, κ2 = σ2, and κr = 0
for r = 3, 4, ....
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We now find a random variable having finite moments of all order but
having an m.g.f. = ∞ except for t = 0. Let Pn be the probability mea-
sure for the N(0, σ2

n) distribution, n = 1, 2, .... Then P =
∑∞

n=1 2−nPn
is a probability measure (Exercise 35). Let X be a random variable hav-

ing distribution P . Since the m.g.f. of N(0, σ2
n) is eσ

2
nt

2/2, it follows from

Fubini’s theorem that the m.g.f. of X is ψX(t) =
∑∞

n=1 2−neσ
2
nt

2/2. When
σ2
n = n2, ψX(t) = ∞ for any t 6= 0 but EXk = 0 for any odd integer k and
EXk =

∑∞
n=1 2−n(k − 1)(k− 3) · · · 1nk <∞ for any even integer k. When

σ2
n = n, ψX(t) = (2e−t

2/2 − 1)−1 for |t| < √
log 4 and, hence, the moments

of X can be obtained by differentiating ψX . For example, EX = φ′X(0) = 0
and EX2 = φ′′X(0) = 2.

A fundamental fact about ch.f.’s is that there is a one-to-one correspon-
dence between the set of all distributions on Rk and the set of all ch.f.’s
defined on Rk. The same fact is true for m.g.f.’s, but we have to focus on
distributions having m.g.f.’s finite in neighborhoods of 0.

Theorem 1.6. (Uniqueness). Let X and Y be random k-vectors.
(i) If φX(t) = φY (t) for all t ∈ Rk, then PX = PY .
(ii) If ψX(t) = ψY (t) <∞ for all t in a neighborhood of 0, then PX = PY .
Proof. (i) The result follows from the following inversion formula whose
proof can be found, for example, in Billingsley (1986, p. 395): for any a =
(a1, ..., ak) ∈ Rk, b = (b1, ..., bk) ∈ Rk, and (a, b] = (a1, b1] × · · · × (ak, bk]
satisfying PX(the boundary of (a, b]) = 0,

PX
(
(a, b]

)
= lim

c→∞

∫ c

−c
· · ·
∫ c

−c

φX(t1, ..., tk)

(−1)k/2(2π)k

k∏

i=1

e−
√
−1tiai − e−

√
−1tibi

ti
dti.

(ii) First consider the case of k = 1. From es|x| ≤ esx + e−sx, we con-
clude that |X | has an m.g.f. that is finite in the neighborhood (−c, c) for
some c > 0 and |X | has finite moments of all order. Using the inequality

|e
√
−1tx[e

√
−1ax −∑n

j=0(
√
−1ax)j/j!]| ≤ |ax|n+1/(n+ 1)!, we obtain that

∣∣∣∣φX(t+ a) −
n∑

j=0

aj

j!
E[(

√
−1X)je

√
−1tX ]

∣∣∣∣ ≤
|a|n+1E|X |n+1

(n+ 1)!
,

which together with (1.53) and (1.56) imply that, for any t ∈ R,

φX(t+ a) =

∞∑

j=0

φ
(j)
X (t)

j!
aj , |a| < c. (1.57)

Similarly, (1.57) holds with φX replaced by φY . Under the assumption that
ψX = ψY <∞ in a neighborhood of 0, X and Y have the same moments of

all order. By (1.56), φ
(j)
X (0) = φ

(j)
Y (0) for all j = 1, 2, ..., which and (1.57)
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with t = 0 imply that φX and φY are the same on the interval (−c, c) and
hence have identical derivatives there. Considering t = c− ǫ and −c+ ǫ for
an arbitrarily small ǫ > 0 in (1.57) shows that φX and φY also agree on
(−2c+ ǫ, 2c− ǫ) and hence on (−2c, 2c). By the same argument φX and φY
are the same on (−3c, 3c) and so on. Hence, φX(t) = φY (t) for all t and,
by part (i), PX = PY .

Consider now the general case of k ≥ 2. If PX 6= PY , then by part (i)
there exists t ∈ Rk such that φX(t) 6= φY (t). Then φtτX(1) 6= φtτY (1),
which implies that PtτX 6= PtτY . But ψX = ψY <∞ in a neighborhood of
0 ∈ Rk implies that ψtτX = ψtτY <∞ in a neighborhood of 0 ∈ R and, by
the proved result for k = 1, PtτX = PtτY . This contradiction shows that
PX = PY .

Applying result (1.38) and Lemma 1.1, we obtain that

ψX+Y (t) = ψX(t)ψY (t) and φX+Y (t) = φX(t)ψY (t), t ∈ Rk, (1.58)

for independent random k-vectors X and Y . This result, together with
Theorem 1.6, provides a useful tool to obtain distributions of sums of inde-
pendent random vectors with known distributions. The following example
is an illustration.

Example 1.20. Let Xi, i = 1, ..., k, be independent random variables and
Xi have the gamma distribution Γ(αi, γ) (Table 1.2), i = 1, ..., k. From
Table 1.2, Xi has the m.g.f. ψXi(t) = (1 − γt)−αi , t < γ−1, i = 1, ..., k.
By result (1.58), the m.g.f. of Y = X1 + · · · + Xk is equal to ψY (t) =
(1 − γt)−(α1+···+αk), t < γ−1. From Table 1.2, the gamma distribution
Γ(α1 + · · · + αk, γ) has the m.g.f. ψY (t) and, hence, is the distribution of
Y (by Theorem 1.6).

Similarly, result (1.52) and Theorem 1.6 can be used to determine dis-
tributions of linear transformations of random vectors with known distri-
butions. The following is another interesting application of Theorem 1.6.
Note that a random variable X is symmetric about 0 (defined according
to (1.30)) if and only if X and −X have the same distribution, which can
then be used as the definition of a random vector X symmetric about 0.
We now show that X is symmetric about 0 if and only if its ch.f. φX is real-
valued. If X and −X have the same distribution, then by Theorem 1.6,
φX(t) = φ−X(t). From (1.52), φ−X(t) = φX(−t). Then φX(t) = φX(−t).
Since sin(−tτX) = − sin(tτX) and cos(tτX) = cos(−tτX), this proves
E[sin(tτX)] = 0 and, thus, φX is real-valued. Conversely, if φX is real-
valued, then φX(t) = E[cos(tτX)] and φ−X(t) = φX(−t) = φX(t). By
Theorem 1.6, X and −X must have the same distribution.

Other applications of ch.f.’s can be found in §1.5.
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1.4 Conditional Expectations

In elementary probability the conditional probability of an event B given
an event A is defined as P (B|A) = P (A∩B)/P (A), provided that P (A) >
0. In probability and statistics, however, we sometimes need a notion of
“conditional probability” even for A’s with P (A) = 0; for example, A =
{Y = c}, where c ∈ R and Y is a random variable having a continuous c.d.f.
General definitions of conditional probability, expectation, and distribution
are introduced in this section, and they are shown to agree with those
defined in elementary probability in special cases.

1.4.1 Conditional expectations

Definition 1.6. Let X be an integrable random variable on (Ω,F , P ).
(i) Let A be a sub-σ-field of F . The conditional expectation of X given
A, denoted by E(X |A), is the a.s.-unique random variable satisfying the
following two conditions:

(a) E(X |A) is measurable from (Ω,A) to (R,B);
(b)

∫
A
E(X |A)dP =

∫
A
XdP for any A ∈ A.

(Note that the existence of E(X |A) follows from Theorem 1.4.)
(ii) Let B ∈ F . The conditional probability of B given A is defined to be
P (B|A) = E(IB |A).
(iii) Let Y be measurable from (Ω,F , P ) to (Λ,G). The conditional expec-
tation of X given Y is defined to be E(X |Y ) = E[X |σ(Y )].

Essentially, the σ-field σ(Y ) contains “the information in Y ”. Hence,
E(X |Y ) is the “expectation” of X given the information provided by σ(Y ).
The following useful result shows that there is a Borel function h defined
on the range of Y such that E(X |Y ) = h ◦ Y .

Lemma 1.2. Let Y be measurable from (Ω,F) to (Λ,G) and Z a function
from (Ω,F) to Rk. Then Z is measurable from (Ω, σ(Y )) to (Rk,Bk) if
and only if there is a measurable function h from (Λ,G) to (Rk,Bk) such
that Z = h ◦ Y .

The function h in E(X |Y ) = h ◦ Y is a Borel function on (Λ,G). Let
y ∈ Λ. We define

E(X |Y = y) = h(y)

to be the conditional expectation of X given Y = y. Note that h(y) is a
function on Λ, whereas h ◦ Y = E(X |Y ) is a function on Ω.

For a random vector X , E(X |A) is defined as the vector of conditional
expectations of components of X .
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Example 1.21. Let X be an integrable random variable on (Ω,F , P ),
A1, A2, ... be disjoint events on (Ω,F , P ) such that ∪Ai = Ω and P (Ai) > 0
for all i, and let a1, a2, ... be distinct real numbers. Define Y = a1IA1 +
a2IA2 + · · ·. We now show that

E(X |Y ) =

∞∑

i=1

∫
Ai
XdP

P (Ai)
IAi . (1.59)

We need to verify (a) and (b) in Definition 1.6 with A = σ(Y ). Since
σ(Y ) = σ({A1, A2, ...}), it is clear that the function on the right-hand side
of (1.59) is measurable on (Ω, σ(Y )). For any B ∈ B, Y −1(B) = ∪i:ai∈BAi.
Using properties of integrals, we obtain that

∫

Y −1(B)

XdP =
∑

i:ai∈B

∫

Ai

XdP

=

∞∑

i=1

∫
Ai
XdP

P (Ai)
P
(
Ai ∩ Y −1(B)

)

=

∫

Y −1(B)

[ ∞∑

i=1

∫
Ai
XdP

P (Ai)
IAi

]
dP.

This verifies (b) and thus (1.59) holds.

Let h be a Borel function on R satisfying h(ai) =
∫
Ai
XdP/P (Ai).

Then, by (1.59), E(X |Y ) = h ◦ Y and E(X |Y = y) = h(y).

Let A ∈ F and X = IA. Then

P (A|Y ) = E(X |Y ) =
∞∑

i=1

P (A ∩Ai)
P (Ai)

IAi ,

which equals P (A ∩Ai)/P (Ai) = P (A|Ai) if ω ∈ Ai. Hence, the definition
of conditional probability in Definition 1.6 agrees with that in elementary
probability.

The next result generalizes the result in Example 1.21 to conditional
expectations of random variables having p.d.f.’s.

Proposition 1.9. Let X be a random n-vector and Y a random m-vector.
Suppose that (X,Y ) has a joint p.d.f. f(x, y) w.r.t. ν × λ, where ν and λ
are σ-finite measures on (Rn,Bn) and (Rm,Bm), respectively. Let g(x, y)
be a Borel function on Rn+m for which E|g(X,Y )| <∞. Then

E[g(X,Y )|Y ] =

∫
g(x, Y )f(x, Y )dν(x)∫

f(x, Y )dν(x)
a.s. (1.60)
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Proof. Denote the right-hand side of (1.60) by h(Y ). By Fubini’s theorem,
h is Borel. Then, by Lemma 1.2, h(Y ) is Borel on (Ω, σ(Y )). Also, by
Fubini’s theorem, fY (y) =

∫
f(x, y)dν(x) is the p.d.f. of Y w.r.t. λ. For

B ∈ Bm,
∫

Y −1(B)

h(Y )dP =

∫

B

h(y)dPY

=

∫

B

∫
g(x, y)f(x, y)dν(x)∫

f(x, y)dν(x)
fY (y)dλ(y)

=

∫

Rn×B
g(x, y)f(x, y)dν × λ

=

∫

Rn×B
g(x, y)dP(X,Y )

=

∫

Y −1(B)

g(X,Y )dP,

where the first and the last equalities follow from Theorem 1.2, the second
and the next to last equalities follow from the definition of h and p.d.f.’s,
and the third equality follows from Theorem 1.3 (Fubini’s theorem).

For a random vector (X,Y ) with a joint p.d.f. f(x, y) w.r.t. ν×λ, define
the conditional p.d.f. of X given Y = y to be

fX|Y (x|y) =
f(x, y)

fY (y)
, (1.61)

where fY (y) =
∫
f(x, y)dν(x) is the marginal p.d.f. of Y w.r.t. λ. One can

easily check that for each fixed y with fY (y) > 0, fX|Y (x|y) in (1.61) is a
p.d.f. w.r.t. ν. Then equation (1.60) can be rewritten as

E[g(X,Y )|Y ] =

∫
g(x, Y )fX|Y (x|Y )dν(x).

Again, this agrees with the conditional expectation defined in elementary
probability (i.e., the conditional expectation of g(X,Y ) given Y is equal to
the expectation of g(X,Y ) w.r.t. the conditional p.d.f. of X given Y ).

Now we list some useful properties of conditional expectations. The
proof is left to the reader.

Proposition 1.10. Let X , Y , X1, X2, ... be integrable random variables
on (Ω,F , P ) and A be a sub-σ-field of F .
(i) If X = c a.s., c ∈ R, then E(X |A) = c a.s.
(ii) If X ≤ Y a.s., then E(X |A) ≤ E(Y |A) a.s.
(iii) If a ∈ R and b ∈ R, then E(aX + bY |A) = aE(X |A) + bE(Y |A) a.s.
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(iv) E[E(X |A)] = EX .
(v) E[E(X |A)|A0] = E(X |A0) = E[E(X |A0)|A] a.s., where A0 is a sub-σ-
field of A.
(vi) If σ(Y ) ⊂ A and E|XY | <∞, then E(XY |A) = Y E(X |A) a.s.
(vii) If X and Y are independent and E|g(X,Y )| <∞ for a Borel function
g, then E[g(X,Y )|Y = y] = E[g(X, y)] a.s. PY .
(viii) If EX2 <∞, then [E(X |A)]2 ≤ E(X2|A) a.s.
(ix) (Fatou’s lemma). If Xn ≥ 0 for any n, then E

(
lim infnXn

∣∣A
)
≤

lim infnE(Xn|A) a.s.
(x) (Dominated convergence theorem). Suppose that |Xn| ≤ Y for any n
and Xn →a.s. X . Then E(Xn|A) →a.s. E(X |A).

Although part (vii) of Proposition 1.10 can be proved directly, it is a
consequence of a more general result given in Theorem 1.7(i). Since E(X |A)
is defined only for integrableX , a version of monotone convergence theorem
(i.e., 0 ≤ X1 ≤ X2 ≤ · · · and Xn →a.s. X imply E(Xn|A) →a.s. E(X |A))
becomes a special case of Proposition 1.10(x).

It can also be shown (exercise) that Hölder’s inequality (1.40), Lia-
pounov’s inequality (1.42), Minkowski’s inequality (1.43), and Jensen’s in-
equality (1.47) hold a.s. with the expectation E replaced by the conditional
expectation E(·|A).

As an application, we consider the following example.

Example 1.22. Let X be a random variable on (Ω,F , P ) with EX2 <∞
and let Y be a measurable function from (Ω,F , P ) to (Λ,G). One may wish
to predict the value of X based on an observed value of Y . Let g(Y ) be a
predictor, i.e., g ∈ ℵ = {all Borel functions g with E[g(Y )]2 < ∞}. Each
predictor is assessed by the “mean squared prediction error” E[X−g(Y )]2.
We now show that E(X |Y ) is the best predictor of X in the sense that

E[X − E(X |Y )]2 = min
g∈ℵ

E[X − g(Y )]2. (1.62)

First, Proposition 1.10(viii) implies E(X |Y ) ∈ ℵ. Next, for any g ∈ ℵ,

E[X − g(Y )]2 = E[X − E(X |Y ) + E(X |Y ) − g(Y )]2

= E[X − E(X |Y )]2 + E[E(X |Y ) − g(Y )]2

+ 2E{[X − E(X |Y )][E(X |Y ) − g(Y )]}
= E[X − E(X |Y )]2 + E[E(X |Y ) − g(Y )]2

+ 2E
{
E{[X − E(X |Y )][E(X |Y ) − g(Y )]|Y }

}

= E[X − E(X |Y )]2 + E[E(X |Y ) − g(Y )]2

+ 2E{[E(X |Y ) − g(Y )]E[X − E(X |Y )|Y ]}
= E[X − E(X |Y )]2 + E[E(X |Y ) − g(Y )]2

≥ E[X − E(X |Y )]2,
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where the third equality follows from Proposition 1.10(iv), the fourth equal-
ity follows from Proposition 1.10(vi), and the last equality follows from
Proposition 1.10(i), (iii), and (vi).

1.4.2 Independence

Definition 1.7. Let (Ω,F , P ) be a probability space.
(i) Let C be a collection of subsets in F . Events in C are said to be indepen-
dent if and only if for any positive integer n and distinct events A1,...,An
in C,

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An).

(ii) Collections Ci ⊂ F , i ∈ I (an index set that can be uncountable), are
said to be independent if and only if events in any collection of the form
{Ai ∈ Ci : i ∈ I} are independent.
(iii) Random elements Xi, i ∈ I, are said to be independent if and only if
σ(Xi), i ∈ I, are independent.

The following result is useful for checking the independence of σ-fields.

Lemma 1.3. Let Ci, i ∈ I, be independent collections of events. Suppose
that each Ci has the property that if A ∈ Ci and B ∈ Ci, then A ∩B ∈ Ci.
Then σ(Ci), i ∈ I, are independent.

An immediate application of Lemma 1.3 is to show (exercise) that ran-
dom variables Xi, i = 1, ..., k, are independent according to Definition 1.7
if and only if (1.7) holds with F being the joint c.d.f. of (X1, ..., Xk) and Fi
being the marginal c.d.f. of Xi. Hence, Definition 1.7(iii) agrees with the
concept of independence of random variables discussed in §1.3.1.

It is easy to see from Definition 1.7 that if X and Y are independent
random vectors, then so are g(X) and h(Y ) for Borel functions g and h.
Since the independence in Definition 1.7 is equivalent to the independence
discussed in §1.3.1, this provides a simple proof of Lemma 1.1.

For two events A and B with P (A) > 0, A and B are independent if
and only if P (B|A) = P (B). This means that A provides no information
about the probability of the occurrence of B. The following result is a
useful extension.

Proposition 1.11. Let X be a random variable with E|X | < ∞ and
let Yi be random ki-vectors, i = 1, 2. Suppose that (X,Y1) and Y2 are
independent. Then

E[X |(Y1, Y2)] = E(X |Y1) a.s.
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Proof. First, E(X |Y1) is Borel on (Ω, σ(Y1, Y2)), since σ(Y1) ⊂ σ(Y1, Y2).
Next, we need to show that for any Borel set B ∈ Bk1+k2 ,

∫

(Y1,Y2)−1(B)

XdP =

∫

(Y1,Y2)−1(B)

E(X |Y1)dP. (1.63)

If B = B1×B2, where Bi ∈ Bki , then (Y1, Y2)
−1(B) = Y −1

1 (B1)∩Y −1
2 (B2)

and
∫

Y −1
1 (B1)∩Y −1

2 (B2)

E(X |Y1)dP =

∫
IY −1

1 (B1)IY −1
2 (B2)

E(X |Y1)dP

=

∫
IY −1

1 (B1)E(X |Y1)dP

∫
IY −1

2 (B2)
dP

=

∫
IY −1

1 (B1)XdP

∫
IY −1

2 (B2)
dP

=

∫
IY −1

1 (B1)IY −1
2 (B2)

XdP

=

∫

Y −1
1 (B1)∩Y −1

2 (B2)

XdP,

where the second and the next to last equalities follow from result (1.38)
and the independence of (X,Y1) and Y2, and the third equality follows from
the fact that E(X |Y1) is the conditional expectation of X given Y1. This
shows that (1.63) holds for B = B1 ×B2. We can show that the collection
H = {B ⊂ Rk1+k2 : B satisfies (1.63)} is a σ-field. Since we have already
shown that Bk1 ×Bk2 ⊂ H, Bk1+k2 = σ(Bk1 ×Bk2) ⊂ H and thus the result
follows.

Clearly, the result in Proposition 1.11 still holds if X is replaced by
h(X) for any Borel h and, hence,

P (A|Y1, Y2) = P (A|Y1) a.s. for any A ∈ σ(X), (1.64)

if (X,Y1) and Y2 are independent. If Y1 is a constant and Y = Y2, (1.64)
reduces to P (A|Y ) = P (A) a.s. for any A ∈ σ(X), if X and Y are inde-
pendent, i.e., σ(Y ) does not provide any additional information about the
stochastic behavior of X . This actually provides another equivalent but
more intuitive definition of the independence of X and Y (or two σ-fields).

With a nonconstant Y1, we say that given Y1, X and Y2 are conditionally
independent if and only if (1.64) holds. Then the result in Proposition 1.11
can be stated as: if Y2 and (X,Y1) are independent, then given Y1, X and
Y2 are conditionally independent. It is important to know that the result in
Proposition 1.11 may not be true if Y2 is independent of X but not (X,Y1)
(Exercise 96).
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1.4.3 Conditional distributions

The conditional p.d.f. was introduced in §1.4.1 for random variables having
p.d.f.’s w.r.t. some measures. We now consider conditional distributions in
general cases where we may not have any p.d.f.

Let X and Y be two random vectors defined on a common probability
space. It is reasonable to consider P [X−1(B)|Y = y] as a candidate for
the conditional distribution of X , given Y = y, where B is any Borel set.
However, since conditional probability is defined almost surely, for any fixed
y, P [X−1(B)|Y = y] may not be a probability measure. The first part of
the following theorem (whose proof can be found in Billingsley (1986, pp.
460-461)) shows that there exists a version of conditional probability such
that P [X−1(B)|Y = y] is a probability measure for any fixed y.

Theorem 1.7. (i) (Existence of conditional distributions). Let X be a
random n-vector on a probability space (Ω,F , P ) and A be a sub-σ-field of
F . Then there exists a function P (B,ω) on Bn × Ω such that

(a) P (B,ω) = P [X−1(B)|A] a.s. for any fixed B ∈ Bn, and
(b) P (·, ω) is a probability measure on (Rn,Bn) for any fixed ω ∈ Ω.

Let Y be measurable from (Ω,F , P ) to (Λ,G). Then there exists PX|Y (B|y)
such that

(a) PX|Y (B|y) = P [X−1(B)|Y = y] a.s. PY for any fixed B ∈ Bn, and
(b) PX|Y (·|y) is a probability measure on (Rn,Bn) for any fixed y ∈ Λ.

Furthermore, if E|g(X,Y )| <∞ with a Borel function g, then

E[g(X,Y )|Y = y] = E[g(X, y)|Y = y] =

∫

Rn

g(x, y)dPX|Y (x|y) a.s. PY .

(ii) Let (Λ,G, P1) be a probability space. Suppose that P2 is a function
from Bn × Λ to R and satisfies

(a) P2(·, y) is a probability measure on (Rn,Bn) for any y ∈ Λ, and
(b) P2(B, ·) is Borel for any B ∈ Bn.

Then there is a unique probability measure P on (Rn×Λ, σ(Bn×G)) such
that, for B ∈ Bn and C ∈ G,

P (B × C) =

∫

C

P2(B, y)dP1(y). (1.65)

Furthermore, if (Λ,G) = (Rm,Bm), and X(x, y) = x and Y (x, y) = y define
the coordinate random vectors, then PY = P1, PX|Y (·|y) = P2(·, y), and
the probability measure in (1.65) is the joint distribution of (X,Y ), which
has the following joint c.d.f.:

F (x, y) =

∫

(−∞,y]

PX|Y
(
(−∞, x]|z

)
dPY (z), x ∈ Rn, y ∈ Rm, (1.66)

where (−∞, a] denotes (−∞, a1] × · · · × (−∞, ak] for a = (a1, ..., ak).
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For a fixed y, PX|Y=y = PX|Y (·|y) is called the conditional distribution
of X given Y = y. Under the conditions in Theorem 1.7(i), if Y is a random
m-vector and (X,Y ) has a p.d.f. w.r.t. ν×λ (ν and λ are σ-finite measures
on (Rn,Bn) and (Rm,Bm), respectively), then fX|Y (x|y) defined in (1.61)
is the p.d.f. of PX|Y=y w.r.t. ν for any fixed y.

The second part of Theorem 1.7 states that given a distribution on one
space and a collection of conditional distributions (which are conditioned
on values of the first space) on another space, we can construct a joint
distribution in the product space. It is sometimes called the “two-stage
experiment theorem” for the following reason. If Y ∈ Rm is selected in
stage 1 of an experiment according to its marginal distribution PY = P1,
and X is chosen afterward according to a distribution P2(·, y), then the
combined two-stage experiment produces a jointly distributed pair (X,Y )
with distribution P(X,Y ) given by (1.65) and PX|Y=y = P2(·, y). This pro-
vides a way of generating dependent random variables. The following is an
example.

Example 1.23. A market survey is conducted to study whether a new
product is preferred over the product currently available in the market (old
product). The survey is conducted by mail. Questionnaires are sent along
with the sample products (both new and old) to N customers randomly
selected from a population, where N is a positive integer. Each customer is
asked to fill out the questionnaire and return it. Responses from customers
are either 1 (new is better than old) or 0 (otherwise). Some customers,
however, do not return the questionnaires. Let X be the number of ones in
the returned questionnaires. What is the distribution of X?

If every customer returns the questionnaire, then (from elementary
probability) X has the binomial distribution Bi(p,N) in Table 1.1 (as-
suming that the population is large enough so that customers respond in-
dependently), where p ∈ (0, 1) is the overall rate of customers who prefer
the new product. Now, let Y be the number of customers who respond.
Then Y is random. Suppose that customers respond independently with
the same probability π ∈ (0, 1). Then PY is the binomial distribution
Bi(π,N). Given Y = y (an integer between 0 and N), PX|Y=y is the bi-
nomial distribution Bi(p, y) if y ≥ 1 and the point mass at 0 (see (1.22)) if
y = 0. Using (1.66) and the fact that binomial distributions have p.d.f.’s
w.r.t. counting measure, we obtain that the joint c.d.f. of (X,Y ) is

F (x, y) =

y∑

k=0

PX|Y=k

(
(−∞, x]

)(N
k

)
πk(1 − π)N−k

=

y∑

k=0

min{x,k}∑

j=0

(
k

j

)
pj(1 − p)k−j

(
N

k

)
πk(1 − π)N−k
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for x = 0, 1, ..., y, y = 0, 1, ..., N . The marginal c.d.f. FX(x) = F (x,∞) =
F (x,N). The p.d.f. of X w.r.t. counting measure is

fX(x) =

N∑

k=x

(
k

x

)
px(1 − p)k−x

(
N

k

)
πk(1 − π)N−k

=

(
N

x

)
(πp)x(1 − πp)N−x

N∑

k=x

(
N − x

k − x

)(
π − πp

1 − πp

)k−x(
1 − π

1 − πp

)N−k

=

(
N

x

)
(πp)x(1 − πp)N−x

for x = 0, 1, ..., N . It turns out that the marginal distribution of X is the
binomial distribution Bi(πp,N).

1.4.4 Markov chains and martingales

As applications of conditional expectations, we introduce here two impor-
tant types of dependent sequences of random variables.

Markov chains

A sequence of random vectors {Xn : n = 1, 2, ...} is said to be a Markov
chain or Markov process if and only if

P (B|X1, ..., Xn) = P (B|Xn) a.s., B∈σ(Xn+1), n = 2, 3, .... (1.67)

Comparing (1.67) with (1.64), we conclude that (1.67) implies that
Xn+1 (tomorrow) is conditionally independent of (X1, ..., Xn−1) (the past),
given Xn (today). But (X1, ..., Xn−1) is not necessarily independent of
(Xn, Xn+1).

Clearly, a sequence of independent random vectors forms a Markov chain
since, by Proposition 1.11, both quantities on two sides of (1.67) are equal to
P (B) for independent Xi’s. The following example describes some Markov
processes of dependent random variables.

Example 1.24 (First-order autoregressive processes). Let ε1, ε2, ... be in-
dependent random variables defined on a probability space, X1 = ε1, and
Xn+1 = ρXn + εn+1, n = 1, 2, ..., where ρ is a constant in R. Then {Xn}
is called a first-order autoregressive process. We now show that for any
B ∈ B and n = 1, 2, ...,

P (Xn+1 ∈ B|X1, ..., Xn) = Pεn+1(B − ρXn) = P (Xn+1 ∈ B|Xn) a.s.,
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where B − y = {x ∈ R : x+ y ∈ B}, which implies that {Xn} is a Markov
chain. For any y ∈ R,

Pεn+1(B − y) = P (εn+1 + y ∈ B) =

∫
IB(x+ y)dPεn+1(x)

and, by Fubini’s theorem, Pεn+1(B − y) is Borel. Hence, Pεn+1(B − ρXn)
is Borel w.r.t. σ(Xn) and, thus, is Borel w.r.t. σ(X1, ..., Xn). Let Bj ∈ B,
j = 1, ..., n, and A = ∩nj=1X

−1
j (Bj). Since εn+1 + ρXn = Xn+1 and εn+1

is independent of (X1, ..., Xn), it follows from Theorem 1.2 and Fubini’s
theorem that

∫

A

Pεn+1(B − ρXn)dP =

∫

xj∈Bj ,j=1,...,n

∫

t∈B−ρxn

dPεn+1(t)dPX(x)

=

∫

xj∈Bj ,j=1,...,n,xn+1∈B
dP(X,εn+1)(x, t)

= P
(
A ∩X−1

n+1(B)
)
,

where X and x denote (X1, ..., Xn) and (x1, ..., xn), respectively, and xn+1

denotes ρxn + t. Using this and the argument in the end of the proof for
Proposition 1.11, we obtain P (Xn+1 ∈ B|X1, ..., Xn) = Pεn+1(B − ρXn)
a.s. The proof for Pεn+1(B − ρXn) = P (Xn+1 ∈ B|Xn) a.s. is similar and
simpler.

The following result provides some characterizations of Markov chains.

Proposition 1.12. A sequence of random vectors {Xn} is a Markov chain
if and only if one of the following three conditions holds.
(a) For any n = 2, 3, ... and any integrable h(Xn+1) with a Borel function
h, E[h(Xn+1)|X1, ..., Xn] = E[h(Xn+1)|Xn] a.s.
(b) For any n = 1, 2, ... and B ∈ σ(Xn+1, Xn+2, ...), P (B|X1, ..., Xn) =
P (B|Xn) a.s.
(c) For any n = 2, 3, ..., A ∈ σ(X1, ..., Xn), and B ∈ σ(Xn+1, Xn+2, ...),
P (A ∩B|Xn) = P (A|Xn)P (B|Xn) a.s.
Proof. (i) It is clear that (a) implies (1.67). If h is a simple function,
then (1.67) and Proposition 1.10(iii) imply (a). If h is nonnegative, then
by Exercise 17 there are nonnegative simple functions h1 ≤ h2 ≤ · · · ≤ h
such that hj → h. Then (1.67) together with Proposition 1.10(iii) and (x)
imply (a). Since h = h+ − h−, we conclude that (1.67) implies (a).
(ii) It is also clear that (b) implies (1.67). We now show that (1.67) implies
(b). Note that σ(Xn+1, Xn+2, ...) = σ

(
∪∞
j=1σ(Xn+1, ..., Xn+j)

)
(Exercise

19). Hence, it suffices to show that P (B|X1, ..., Xn) = P (B|Xn) a.s. for
B ∈ σ(Xn+1, ..., Xn+j) for any j = 1, 2, .... We use induction. The result
for j = 1 follows from (1.67). Suppose that the result holds for any B ∈
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σ(Xn+1, ..., Xn+j). To show the result for any B ∈ σ(Xn+1, ..., Xn+j+1),
it is enough (why?) to show that for any B1 ∈ σ(Xn+j+1) and any B2 ∈
σ(Xn+1, ..., Xn+j), P (B1 ∩B2|X1, ..., Xn) = P (B1 ∩B2|Xn) a.s. From the
proof in (i), the induction assumption implies

E[h(Xn+1, ..., Xn+j)|X1, ..., Xn] = E[h(Xn+1, ..., Xn+j)|Xn] (1.68)

for any Borel function h. The result follows from

E(IB1IB2 |X1, ..., Xn) = E[E(IB1IB2 |X1, ..., Xn+j)|X1, ..., Xn]

= E[IB2E(IB1 |X1, ..., Xn+j)|X1, ..., Xn]

= E[IB2E(IB1 |Xn+j)|X1, ..., Xn]

= E[IB2E(IB1 |Xn+j)|Xn]

= E[IB2E(IB1 |Xn, ..., Xn+j)|Xn]

= E[E(IB1IB2 |Xn, ..., Xn+j)|Xn]

= E(IB1IB2 |Xn) a.s.,

where the first and last equalities follow from Proposition 1.10(v), the sec-
ond and sixth equalities follow from Proposition 1.10(vi), the third and fifth
equalities follow from (1.67), and the fourth equality follows from (1.68).
(iii) Let A ∈ σ(X1, ..., Xn) and B ∈ σ(Xn+1, Xn+2, ...). If (b) holds, then
E(IAIB |Xn) = E[E(IAIB |X1, ..., Xn)|Xn] = E[IAE(IB |X1, ..., Xn)|Xn] =
E[IAE(IB |Xn)|Xn] = E(IA|Xn)E(IB |Xn), which is (c).

Assume that (c) holds. Let A1 ∈ σ(Xn), A2 ∈ σ(X1, ..., Xn−1), and
B ∈ σ(Xn+1, Xn+2, ...). Then

∫

A1∩A2

E(IB |Xn)dP =

∫

A1

IA2E(IB |Xn)dP

=

∫

A1

E[IA2E(IB |Xn)|Xn]dP

=

∫

A1

E(IA2 |Xn)E(IB |Xn)dP

=

∫

A1

E(IA2IB |Xn)dP

= P (A1 ∩A2 ∩B).

Since disjoint unions of events of the form A1∩A2 as specified above gener-
ate σ(X1, ..., Xn), this shows that E(IB |Xn) = E(IB |X1, ..., Xn) a.s., which
is (b).

Note that condition (b) in Proposition 1.12 can be stated as “the past
and the future are conditionally independent given the present”, which is a
property of any Markov chain. More discussions and applications of Markov
chains can be found in §4.1.4.



48 1. Probability Theory

Martingales

Let {Xn} be a sequence of integrable random variables on a probability
space (Ω,F , P ) and F1 ⊂ F2 ⊂ · · · ⊂ F be a sequence of σ-fields such that
σ(Xn) ⊂ Fn, n = 1, 2, .... The sequence {Xn,Fn : n = 1, 2, ...} is said to be
a martingale if and only if

E(Xn+1|Fn) = Xn a.s., n = 1, 2, ..., (1.69)

a submartingale if and only if (1.69) holds with = replaced by ≥, and a
supermartingale if and only if (1.69) holds with = replaced by ≤. {Xn}
is said to be a martingale (submartingale or supermartingale) if and only
if {Xn, σ(X1, ..., Xn)} is a martingale (submartingale or supermartingale).
From Proposition 1.10(v), if {Xn,Fn} is a martingale (submartingale or
supermartingale), then so is {Xn}.

A simple property of a martingale (or a submartingale) {Xn,Fn} is that
E(Xn+j |Fn) = Xn a.s. (or E(Xn+j |Fn) ≥ Xn a.s.) and EX1 = EXj (or
EX1 ≤ EX2 ≤ · · ·) for any j = 1, 2, ... (exercise).

For any probability space (Ω,F , P ) and σ-fields F1 ⊂ F2 ⊂ · · · ⊂ F ,
we can always construct a martingale {E(Y |Fn)} by using an integrable
random variable Y . Another way to construct a martingale is to use a
sequence of independent integrable random variables {εn} by letting Xn =
ε1 + · · · + εn, n = 1, 2, .... Since

E(Xn+1|X1, ..., Xn) = E(Xn + εn+1|X1, ..., Xn) = Xn + Eεn+1 a.s.,

{Xn} is a martingale if Eεn = 0 for all n, a submartingale if Eεn ≥ 0 for
all n, and a supermartingale if Eεn ≤ 0 for all n. Note that in Example
1.24 with ρ = 1, {Xn} is shown to be a Markov chain.

The next example provides another example of martingales.

Example 1.25 (Likelihood ratio). Let (Ω,F , P ) be a probability space,
Q be a probability measure on F , and F1 ⊂ F2 ⊂ · · · ⊂ F be a sequence
of σ-fields. Let Pn and Qn be P and Q restricted to Fn, respectively,
n = 1, 2, .... Suppose that Qn ≪ Pn for each n. Then {Xn,Fn} is a
martingale, where Xn = dQn/dPn (the Radon-Nikodym derivative of Qn
w.r.t. Pn), n = 1, 2, ... (exercise). Suppose now that {Yn} is a sequence of
random variables on (Ω,F , P ), Fn = σ(Y1, ..., Yn) and that there exists a σ-
finite measure νn on Fn such that Pn ≪ νn and νn ≪ Pn, n = 1, 2, .... Let
pn(Y1, ..., Yn) = dPn/dνn and qn(Y1, ..., Yn) = dQn/dνn. By Proposition
1.7(iii), Xn = qn(Y1, ..., Yn)/pn(Y1, ..., Yn), which is called a likelihood ratio
in statistical terms.

The following results contain some useful properties of martingales and
submartingales.
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Proposition 1.13. Let ϕ be a convex function on R.
(i) If {Xn,Fn} is a martingale and ϕ(Xn) is integrable for all n, then
{ϕ(Xn),Fn} is a submartingale.
(ii) If {Xn,Fn} is a submartingale, ϕ(Xn) is integrable for all n, and ϕ is
nondecreasing, then {ϕ(Xn),Fn} is a submartingale.
Proof. (i) Note that ϕ(Xn) = ϕ(E(Xn+1|Fn)) ≤ E[ϕ(Xn+1|Fn)] a.s. by
Jensen’s inequality for conditional expectations (Exercise 89(c)).
(ii) Since ϕ is nondecreasing and {Xn,Fn} is a submartingale, ϕ(Xn) ≤
ϕ(E(Xn+1|Fn)) ≤ E[ϕ(Xn+1|Fn)] a.s.

An application of Proposition 1.13 shows that if {Xn,Fn} is a sub-
martingale, then so is {(Xn)+,Fn}; if {Xn,Fn} is a martingale, then
{|Xn|,Fn} is a submartingale and so are {|Xn|p,Fn}, where p > 1 is a con-
stant, and {|Xn|(log |Xn|)+,Fn}, provided that |Xn|p and |Xn|(log |Xn|)+
are integrable for all n.

Proposition 1.14 (Doob’s decomposition). Let {Xn,Fn} be a submartin-
gale. Then Xn = Yn + Zn, n = 1, 2, ..., where {Yn,Fn} is a martin-
gale, 0 = Z1 ≤ Z2 ≤ · · ·, and EZn < ∞ for all n. Furthermore, if
supnE|Xn| <∞, then supnE|Yn| <∞ and supnEZn <∞.
Proof. Define η1 = ξ1, ζ1 = 0, ηn = Xn−Xn−1−E(Xn−Xn−1|Fn−1), and
ζn = E(Xn−Xn−1|Fn−1) for n ≥ 2. Then Yn =

∑n
i=1 ηi and Zn =

∑n
i=1 ζi

satisfy Xn = Yn + Zn and the required conditions (exercise).

Assume now that supnE|Xn| < ∞. Since EY1 = EYn for any n and
Zn ≤ |Xn| − Yn, EZn ≤ E|Xn| − EY1. Hence supnEZn < ∞. Also,
|Yn| ≤ |Xn| + Zn. Hence supnE|Yn| <∞.

The following martingale convergence theorem, due to Doob, has many
applications (see, e.g., Example 1.27 in §1.5.1). Its proof can be found, for
example, in Billingsley (1986, pp. 490-491).

Proposition 1.15. Let {Xn,Fn} be a submartingale. If c = supnE|Xn| <
∞, then limn→∞Xn = X a.s., where X is a random variable satisfying
E|X | ≤ c.

1.5 Asymptotic Theory

Asymptotic theory studies limiting behavior of random variables (vectors)
and their distributions. It is an important tool for statistical analysis. A
more complete coverage of asymptotic theory in statistical analysis can
be found in Serfling (1980), Shorack and Wellner (1986), Sen and Singer
(1993), Barndorff-Nielsen and Cox (1994), and van der Vaart (1998).
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1.5.1 Convergence modes and stochastic orders

There are several convergence modes for random variables/vectors. Let
r > 0 be a constant. For any c = (c1, ..., ck) ∈ Rk, we define ‖c‖r =

(
∑k

j=1 |cj |r)1/r. If r ≥ 1, then ‖c‖r is the Lr-distance between 0 and c.

When r = 2, the subscript r is omitted and ‖c‖ = ‖c‖2 =
√
cτ c.

Definition 1.8. Let X,X1, X2, . . . be random k-vectors defined on a prob-
ability space.
(i) We say that the sequence {Xn} converges to X almost surely (a.s.) and
write Xn →a.s. X if and only if limn→∞Xn = X a.s.
(ii) We say that {Xn} converges to X in probability and write Xn →p X
if and only if, for every fixed ǫ > 0,

lim
n→∞

P (‖Xn −X‖ > ǫ) = 0. (1.70)

(iii) We say that {Xn} converges to X in Lr (or in rth moment) and write
Xn →Lr X if and only if

lim
n→∞

E‖Xn −X‖rr = 0,

where r > 0 is a fixed constant.
(iv) Let F , Fn, n = 1, 2, ..., be c.d.f.’s on Rk and P , Pn, n = 1, ..., be their
corresponding probability measures. We say that {Fn} converges to F
weakly (or {Pn} converges to P weakly) and write Fn →w F (or Pn →w P )
if and only if, for each continuity point x of F ,

lim
n→∞

Fn(x) = F (x).

We say that {Xn} converges to X in distribution (or in law) and write
Xn →d X if and only if FXn →w FX .

The a.s. convergence has already been considered in previous sections.
The concept of convergence in probability, convergence in Lr, or a.s. con-
vergence represents a sense in which, for n sufficiently large, Xn and X
approximate each other as functions on the original probability space. The
concept of convergence in distribution in Definition 1.8(iv), however, de-
pends only on the distributions FXn and FX (or probability measures PXn

and PX) and does not necessitate that Xn and X are close in any sense; in
fact, Definition 1.8(iv) still makes sense even if X and Xn’s are not defined
on the same probability space. In Definition 1.8(iv), it is not required that
limn→∞ Fn(x) = F (x) for every x. However, if F is a continuous function,
then we have the following stronger result.
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Proposition 1.16 (Pólya’s theorem). If Fn →w F and F is continuous on
Rk, then

lim
n→∞

sup
x∈Rk

|Fn(x) − F (x)| = 0.

A useful characterization of a.s. convergence is given in the following
lemma.

Lemma 1.4. For random k-vectors X,X1, X2, . . . on a probability space,
Xn →a.s. X if and only if for every ǫ > 0,

lim
n→∞

P

( ∞⋃

m=n

{‖Xm −X‖ > ǫ}
)

= 0. (1.71)

Proof. Let Aj = ∪∞
n=1 ∩∞

m=n {‖Xm −X‖ ≤ j−1}, j = 1, 2, .... By Propo-
sition 1.1(iii) and DeMorgan’s law, (1.71) holds for every ǫ > 0 if and only
if P (Aj) = 1 for every j, which is equivalent to P (∩∞

j=1Aj) = 1. The result
follows from ∩∞

j=1Aj = {ω : limn→∞Xn(ω) = X(ω)} (exercise).

The following result describes the relationship among the four conver-
gence modes in Definition 1.8.

Theorem 1.8. Let X,X1, X2, . . . be random k-vectors.
(i) If Xn →a.s. X , then Xn →p X .
(ii) If Xn →Lr X for an r > 0, then Xn →p X .
(iii) If Xn →p X , then Xn →d X .
(iv) (Skorohod’s theorem). If Xn →d X , then there are random vectors
Y, Y1, Y2, ... defined on a common probability space such that PY = PX ,
PYn = PXn , n = 1, 2,..., and Yn →a.s. Y .
(v) If, for every ǫ > 0,

∑∞
n=1 P (‖Xn −X‖ ≥ ǫ) <∞, then Xn →a.s. X .

(vi) If Xn →p X , then there is a subsequence {Xnj , j = 1, 2, ...} such that
Xnj →a.s. X as j → ∞.
(vii) If Xn →d X and P (X = c) = 1, where c ∈ Rk is a constant vector,
then Xn →p c.
(viii) Suppose that Xn →d X . Then, for any r > 0,

lim
n→∞

E‖Xn‖rr = E‖X‖rr <∞ (1.72)

if and only if {‖Xn‖rr} is uniformly integrable in the sense that

lim
t→∞

sup
n
E
(
‖Xn‖rrI{‖Xn‖r>t}

)
= 0. (1.73)

The proof of Theorem 1.8 is given after the following discussion and
example.
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The converse of Theorem 1.8(i), (ii), or (iii) is generally not true (see
Example 1.26 and Exercise 116). Note that part (iv) of Theorem 1.8 (Sko-
rohod’s theorem) is not a converse of part (i), but it is an important result
in probability theory. It is useful when we study convergence of quantities
related to FXn and FX when Xn →d X (see, e.g., the proofs of Theorems
1.8 and 1.9). Part (v) of Theorem 1.8 indicates that the converse of part (i)
is true under the additional condition that P (‖Xn−X‖ ≥ ǫ) tends to 0 fast
enough. Part (vi) provides a partial converse of part (i) whereas part (vii) is
a partial converse of part (iii). A consequence of Theorem 1.8(viii) is that if
Xn →p X and {‖Xn −X‖rr} is uniformly integrable, then Xn →Lr X ; i.e.,
the converse of Theorem 1.8(ii) is true under the additional condition of
uniform integrability. A useful sufficient condition for uniform integrability
of {‖Xn‖rr} is that

sup
n
E‖Xn‖r+δr <∞ (1.74)

for a δ > 0. Some other sufficient conditions are given in Exercises 117-120.

Example 1.26. Let θn = 1 + n−1 and Xn be a random variable having
the exponential distribution E(0, θn) (Table 1.2), n = 1, 2, .... Let X be
a random variable having the exponential distribution E(0, 1). For any
x > 0,

FXn(x) = 1 − e−x/θn → 1 − e−x = FX(x)

as n → ∞. Since FXn(x) ≡ 0 ≡ FX(x) for x ≤ 0, we have shown that
Xn →d X .

Is it true thatXn →p X? This question cannot be answered without any
further information about the random variables X and Xn. We consider
two cases in which different answers can be obtained. First, suppose that
Xn ≡ θnX (then Xn has the given c.d.f.). Note that Xn−X = (θn−1)X =
n−1X , which has the c.d.f. (1 − e−nx)I[0,∞)(x). Hence

P (|Xn −X | ≥ ǫ) = e−nǫ → 0

for any ǫ > 0. In fact, by Theorem 1.8(v), Xn →a.s. X ; since E|Xn−X |p =
n−pEXp < ∞ for any p > 0, Xn →Lp X for any p > 0. Next, suppose
that Xn and X are independent random variables. Using result (1.28)
and the fact that the p.d.f.’s for Xn and −X are θ−1

n e−x/θnI(0,∞)(x) and
exI(−∞,0)(x), respectively, we obtain that

P (|Xn −X | ≤ ǫ) =

∫ ǫ

−ǫ

∫
θ−1
n e−x/θney−xI(0,∞)(x)I(−∞,x)(y)dxdy,

which converges to (by the dominated convergence theorem)
∫ ǫ

−ǫ

∫
e−xey−xI(0,∞)(x)I(−∞,x)(y)dxdy = 1 − e−ǫ.
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Thus, P (|Xn −X | ≥ ǫ) → e−ǫ > 0 for any ǫ > 0 and, therefore, {Xn}
does not converge to X in probability. The previous discussion, however,
indicates how to construct the random variables Yn and Y in Theorem
1.8(iv) for this example.

The following famous result is used in the proof of Theorem 1.8(v). Its
proof is left to the reader.

Lemma 1.5. (Borel-Cantelli lemma). Let An be a sequence of events in a
probability space and lim supnAn = ∩∞

n=1 ∪∞
m=n Am.

(i) If
∑∞

n=1 P (An) <∞, then P (lim supnAn) = 0.
(ii) If A1, A2, ... are pairwise independent and

∑∞
n=1 P (An) = ∞, then

P (lim supnAn) = 1.

Proof of Theorem 1.8. (i) The result follows from Lemma 1.4, since
(1.71) implies (1.70).
(ii) The result follows from Chebyshev’s inequality with ϕ(t) = |t|r.
(iii) For any c = (c1, ..., ck) ∈ Rk, define (−∞, c] = (−∞, c1]×· · ·×(−∞, ck].
Let x be a continuity point of FX , ǫ > 0 be given, and Jk be the k-vector
of ones. Then {X ∈ (−∞, x− ǫJk], Xn 6∈ (−∞, x]} ⊂ {‖Xn −X‖ > ǫ} and

FX(x− ǫJk) = P
(
X∈(−∞, x − ǫJk]

)

≤ P
(
Xn∈(−∞, x]

)
+ P

(
X∈(−∞, x− ǫJk], Xn 6∈(−∞, x]

)

≤ FXn(x) + P (‖Xn −X‖ > ǫ) .

Letting n → ∞, we obtain that FX(x − ǫJk) ≤ lim infn FXn(x). Similarly,
we can show that FX(x+ ǫJk) ≥ lim supn FXn(x). Since ǫ is arbitrary and
FX is continuous at x, FX(x) = limn→∞ FXn(x).
(iv) The proof of this part can be found in Billingsley (1986, pp. 399-402).
(v) Let An = {‖Xn−X‖ ≥ ǫ}. The result follows from Lemma 1.4, Lemma
1.5(i), and Proposition 1.1(iii).
(vi) From (1.70), for every j = 1, 2, ..., there is a positive integer nj such
that P (‖Xnj −X‖ > 2−j) < 2−j. For any ǫ > 0, there is a kǫ such that for
j ≥ kǫ, P (‖Xnj −X‖ > ǫ) < P (‖Xnj −X‖ > 2−j). Since

∑∞
j=1 2−j = 1, it

follows from the result in (v) that Xnj →a.s. X as j → ∞.
(vii) The proof for this part is left as an exercise.
(viii) First, by part (iv), we may assume that Xn →a.s. X (why?). Assume
that {‖Xn‖rr} is uniformly integrable. Then supnE‖Xn‖rr < ∞ (why?)
and by Fatou’s lemma (Theorem 1.1(i)), E‖X‖rr ≤ lim infnE‖Xn‖rr < ∞.
Hence, (1.72) follows if we can show that

lim sup
n

E‖Xn‖rr ≤ E‖X‖rr. (1.75)

For any ǫ > 0 and t > 0, let An = {‖Xn−X‖r ≤ ǫ} and Bn = {‖Xn‖r > t}.
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Then

E‖Xn‖rr = E(‖Xn‖rrIAc
n∩Bn) + E(‖Xn‖rrIAc

n∩Bc
n
) + E(‖Xn‖rrIAn)

≤ E(‖Xn‖rrIBn) + trP (Acn) + E‖XnIAn‖rr.

For r ≤ 1, ‖XnIAn‖rr ≤ (‖Xn −X‖rr + ‖X‖rr)IAn and

E‖XnIAn‖rr ≤ E[(‖Xn −X‖rr + ‖X‖rr)IAn ] ≤ ǫr + E‖X‖rr.

For r > 1, an application of Minkowski’s inequality leads to

E‖XnIAn‖rr = E‖(Xn −X)IAn +XIAn‖rr
≤ E [‖(Xn −X)IAn‖r + ‖XIAn‖r]r

≤
{
[E‖(Xn −X)IAn‖rr]1/r + [E‖XIAn‖rr]1/r

}r

≤
{
ǫ+ [E‖X‖rr]1/r

}r
.

In any case, since ǫ is arbitrary, lim supnE‖XnIAn‖rr ≤ E‖X‖rr. This result
and the previously established inequality imply that

lim sup
n

E‖Xn‖rr ≤ lim sup
n

E(‖Xn‖rrIBn) + tr lim
n→∞

P (Acn)

+ lim sup
n

E‖XnIAn‖rr
≤ sup

n
E(‖Xn‖rrI{‖Xn‖r>t}) + E‖X‖rr,

since P (Acn) → 0. Since {‖Xn‖rr} is uniformly integrable, letting t→ ∞ we
obtain (1.75).

Suppose now that (1.72) holds. Let ξn = ‖Xn‖rrIBc
n
− ‖X‖rrIBc

n
. Then

ξn →a.s. 0 and |ξn| ≤ tr + ‖X‖rr, which is integrable. By the dominated
convergence theorem, Eξn → 0; this and (1.72) imply that

E(‖Xn‖rrIBn) − E(‖X‖rrIBn) → 0.

From the definition of Bn, Bn ⊂ {‖Xn − X‖r > t/2} ∪ {‖X‖r > t/2}.
Since E‖X‖rr < ∞, it follows from the dominated convergence theorem
that E(‖X‖rrI{‖Xn−X‖r>t/2}) → 0 as n→ ∞. Hence,

lim sup
n

E(‖Xn‖rrIBn) ≤ lim sup
n

E(‖X‖rrIBn) ≤ E(‖X‖rrI{‖X‖r>t/2}).

Letting t→ ∞, it follows from the dominated convergence theorem that

lim
t→∞

lim sup
n

E(‖Xn‖rrIBn) ≤ lim
t→∞

E(‖X‖rrI{‖X‖r>t/2}) = 0.

This proves (1.73).
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Example 1.27. As an application of Theorem 1.8(viii) and Proposition
1.15, we consider again the prediction problem in Example 1.22. Suppose
that we predict a random variableX by a random n-vector Y = (Y1, ..., Yn).
It is shown in Example 1.22 that Xn = E(X |Y1, ..., Yn) is the best predictor
in terms of the mean squared prediction error, when EX2 < ∞. We now
show that Xn →a.s. X when n → ∞ under the assumption that σ(X) ⊂
F∞ = σ(Y1, Y2, ...) (i.e., X provides no more information than Y1, Y2, ...).

From the discussion in §1.4.4, {Xn} is a martingale. Also, supnE|Xn| ≤
supnE[E(|X ||Y1, ..., Yn)] = E|X | < ∞. Hence, by Proposition 1.15, Xn

→a.s. Z for some random variable Z. We now need to show Z = X a.s.
Since σ(X) ⊂ F∞, X = E(X |F∞) a.s. Hence, it suffices to show that Z =
E(X |F∞) a.s. Since EX2

n ≤ EX2 < ∞ (why?), condition (1.74) holds for
sequence {|Xn|} and, hence, {|Xn|} is uniformly integrable. By Theorem
1.8(viii), E|Xn − Z| → 0, which implies

∫
A
XndP →

∫
A
ZdP for any event

A. Note that if A ∈ σ(Y1, ..., Ym), then A ∈ σ(Y1, ..., Yn) for n ≥ m and∫
A
XndP =

∫
A
XdP . This implies that for any A ∈ ∪∞

j=1σ(Y1, ..., Yj),∫
AXdP =

∫
A ZdP . Since ∪∞

j=1σ(Y1, ..., Yj) generates F∞, we conclude

that
∫
AXdP =

∫
A ZdP for any A ∈ F∞ and thus Z = E(X |F∞) a.s.

In the proof above, the condition EX2 <∞ is used only for showing the
uniform integrability of {|Xn|}. But by Exercise 120, {|Xn|} is uniformly
integrable as long as E|X | < ∞. Hence Xn →a.s. X is still true if the
condition EX2 <∞ is replaced by E|X | <∞.

We now introduce the notion of O( · ), o( · ), and stochastic O( · ) and
o( · ). In calculus, two sequences of real numbers, {an} and {bn}, satisfy
an = O(bn) if and only if |an| ≤ c|bn| for all n and a constant c; and
an = o(bn) if and only if an/bn → 0 as n→ ∞.

Definition 1.9. Let X1, X2, ... be random vectors and Y1, Y2, ... be random
variables defined on a common probability space.
(i) Xn = O(Yn) a.s. if and only if P (‖Xn‖ = O(|Yn|)) = 1.
(ii) Xn = o(Yn) a.s. if and only if Xn/Yn →a.s. 0.
(iii) Xn = Op(Yn) if and only if, for any ǫ > 0, there is a constant Cǫ > 0
such that supn P (‖Xn‖ ≥ Cǫ|Yn|) < ǫ.
(iv) Xn = op(Yn) if and only if Xn/Yn →p 0.

Note that Xn = op(Yn) implies Xn = Op(Yn); Xn = Op(Yn) and Yn =
Op(Zn) implies Xn = Op(Zn); but Xn = Op(Yn) does not imply Yn =
Op(Xn). The same conclusion can be obtained if Op( · ) and op( · ) are
replaced by O( · ) a.s. and o( · ) a.s., respectively. Some results related to Op
are given in Exercise 127. For example, if Xn →d X for a random variable
X , then Xn = Op(1). Since an = O(1) means that {an} is bounded, {Xn}
is said to be bounded in probability if Xn = Op(1).
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1.5.2 Weak convergence

We now discuss more about convergence in distribution or weak conver-
gence of probability measures. A sequence {Pn} of probability measures
on (Rk,Bk) is tight if for every ǫ > 0, there is a compact set C ⊂ Rk

such that infn Pn(C) > 1 − ǫ. If {Xn} is a sequence of random k-vectors,
then the tightness of {PXn} is the same as the boundedness of {‖Xn‖} in
probability. The proof of the following result can be found in Billingsley
(1986, pp. 392-395).

Proposition 1.17. Let {Pn} be a sequence of probability measures on
(Rk,Bk).
(i) Tightness of {Pn} is a necessary and sufficient condition that for every
subsequence {Pni} there exists a further subsequence {Pnj} ⊂ {Pni} and
a probability measure P on (Rk,Bk) such that Pnj →w P as j → ∞.
(ii) If {Pn} is tight and if each subsequence that converges weakly at all
converges to the same probability measure P , then Pn →w P .

The following result gives some useful sufficient and necessary conditions
for convergence in distribution.

Theorem 1.9. Let X,X1, X2, . . . be random k-vectors.
(i) Xn →d X is equivalent to any one of the following conditions:

(a) E[h(Xn)] → E[h(X)] for every bounded continuous function h;
(b) lim supn PXn(C) ≤ PX(C) for any closed set C ⊂ Rk;
(c) lim infn PXn(O) ≥ PX(O) for any open set O ⊂ Rk.

(ii) (Lévy-Cramér continuity theorem). Let φX , φX1 , φX2 , ... be the ch.f.’s of
X,X1, X2, ..., respectively. Xn →d X if and only if limn→∞ φXn(t) = φX(t)
for all t ∈ Rk.
(iii) (Cramér-Wold device). Xn →d X if and only if cτXn →d c

τX for
every c ∈ Rk.
Proof. (i) First, we show Xn →d X implies (a). By Theorem 1.8(iv)
(Skorohod’s theorem), there exists a sequence of random vectors {Yn}
and a random vector Y such that PYn = PXn for all n, PY = PX and
Yn →a.s. Y . For bounded continuous h, h(Yn) →a.s. h(Y ) and, by the
dominated convergence theorem, E[h(Yn)] → E[h(Y )]. Then (a) follows
from E[h(Xn)] = E[h(Yn)] for all n and E[h(X)] = E[h(Y )].

Next, we show (a) implies (b). Let C be a closed set and fC(x) =
inf{‖x − y‖ : y ∈ C}. Then fC is continuous. For j = 1, 2, ..., define
ϕj(t) = I(−∞,0] + (1 − jt)I(0,j−1 ]. Then hj(x) = ϕj(fC(x)) is continuous
and bounded, hj ≥ hj+1, j = 1, 2, ..., and hj(x) → IC(x) as j → ∞. Hence
lim supn PXn(C) ≤ limn→∞E[hj(Xn)] = E[hj(X)] for each j (by (a)).
By the dominated convergence theorem, E[hj(X)] → E[IC(X)] = PX(C).
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This proves (b).

For any open setO, Oc is closed. Hence, (b) is equivalent to (c). Now, we
show (b) and (c) imply Xn →d X . For x = (x1, ..., xk) ∈ Rk, let (−∞, x] =
(−∞, x1]×· · ·× (−∞, xk] and (−∞, x) = (−∞, x1)×· · ·× (−∞, xk). From
(b) and (c), PX

(
(−∞, x)

)
≤ lim infn PXn

(
(−∞, x)

)
≤ lim infn FXn(x) ≤

lim supn FXn(x) = lim supn PXn

(
(−∞, x]

)
≤ PX

(
(−∞, x]

)
= FX(x). If

x is a continuity point of FX , then PX
(
(−∞, x)

)
= FX(x). This proves

Xn →d X and completes the proof of (i).

(ii) From (a) of part (i), Xn →d X implies φXn(t) → φX(t), since e
√
−1tτx =

cos(tτx) +
√
−1 sin(tτx) and cos(tτx) and sin(tτx) are bounded continuous

functions for any fixed t.

Suppose now that k = 1 and that φXn(t) → φX(t) for every t ∈ R. By
Fubini’s theorem,

1

u

∫ u

−u
[1 − φXn(t)]dt =

∫ ∞

−∞

[
1

u

∫ u

−u
(1 − e

√
−1tx)dt

]
dPXn(x)

= 2

∫ ∞

−∞

(
1 − sinux

ux

)
dPXn(x)

≥ 2

∫

{|x|>2u−1}

(
1 − 1

|ux|

)
dPXn(x)

≥ PXn

(
(−∞,−2u−1) ∪ (2u−1,∞)

)

for any u > 0. Since φX is continuous at 0 and φX(0) = 1, for any ǫ > 0
there is a u > 0 such that u−1

∫ u
−u[1 − φX(t)]dt < ǫ/2. Since φXn → φX ,

by the dominated convergence theorem, supn{u−1
∫ u
−u[1 − φXn(t)]dt} < ǫ.

Hence,

inf
n
PXn

(
[−2u−1, 2u−1]

)
≥ 1 − sup

n

{
1

u

∫ u

−u
[1 − φXn(t)]dt

}
≥ 1 − ǫ,

i.e., {PXn} is tight. Let {PXnj
} be any subsequence that converges to a

probability measure P . By the first part of the proof, φXnj
→ φ, which is

the ch.f. of P . By the convergence of φXn , φ = φX . By Theorem 1.6(i),
P = PX . By Proposition 1.17(ii), Xn →d X .

Consider now the case where k ≥ 2 and φXn → φX . Let Ynj be the jth
component of Xn and Yj be the jth component of X . Then φYnj → φYj

for each j. By the proof for the case of k = 1, Ynj →d Yj . By Proposition
1.17(i), {PYnj} is tight, j = 1, ..., k. This implies that {PXn} is tight (why?).
Then the proof for Xn →d X is the same as that for the case of k = 1.
(iii) From (1.52), φcτXn(u) = φXn(uc) and φcτX(u) = φX(uc) for any
u ∈ R and any c ∈ Rk. Hence, convergence of φXn to φX is equivalent to
convergence of φcτXn to φcτX for every c ∈ Rk. Then the result follows
from part (ii).
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Example 1.28. Let X1, ..., Xn be independent random variables having
a common c.d.f. and Tn = X1 + · · · + Xn, n = 1, 2, .... Suppose that
E|X1| <∞. It follows from (1.56) and a result in calculus that the ch.f. of
X1 satisfies

φX1 (t) = φX1(0) +
√
−1µt+ o(|t|)

as |t| → 0, where µ = EX1. From (1.52) and (1.58), the ch.f. of Tn/n is

φTn/n(t) =

[
φX1

(
t

n

)]n
=

[
1 +

√
−1µt

n
+ o

(
t

n

)]n

for any t ∈ R, as n→ ∞. Since (1+cn/n)n → ec for any complex sequence

{cn} satisfying cn → c, we obtain that φTn/n(t) → e
√
−1µt, which is the

ch.f. of the distribution degenerated at µ (i.e., the point mass probability
measure at µ; see (1.22)). By Theorem 1.9(ii), Tn/n→d µ. From Theorem
1.8(vii), this also shows that Tn/n→p µ.

Similarly, µ = 0 and σ2 = Var(X1) <∞ imply

φTn/
√
n(t) =

[
1 − σ2t2

2n
+ o

(
t2

n

)]n

for any t ∈ R, which implies that φTn/
√
n(t) → e−σ

2t2/2, the ch.f. of

N(0, σ2). Hence Tn/
√
n →d N(0, σ2). (Recall that N(µ, σ2) denotes a

random variable having the N(µ, σ2) distribution.) If µ 6= 0, a transforma-
tion of Yi = Xi − µ leads to (Tn − nµ)/

√
n→d N(0, σ2).

Suppose now that X1, ..., Xn are random k-vectors and µ = EX1 and
Σ = Var(X1) are finite. For any fixed c ∈ Rk, it follows from the previous
discussion that (cτTn − ncτµ)/

√
n →d N(0, cτΣc). From Theorem 1.9(iii)

and a property of the normal distribution (Exercise 81), we conclude that
(Tn − nµ)/

√
n→d Nk(0,Σ).

Example 1.28 shows that Theorem 1.9(ii) together with some properties
of ch.f.’s can be applied to show convergence in distribution for sums of
independent random variables (vectors). The following is another example.

Example 1.29. Let X1, ..., Xn be independent random variables having a
common Lebesgue p.d.f. f(x) = (1 − cosx)/(πx2). Then the ch.f. of X1 is
max{1− |t|, 0} (Exercise 73) and the ch.f. of Tn/n = (X1 + · · ·+Xn)/n is

(
max

{
1 − |t|

n
, 0

})n
→ e−|t|, t ∈ R.

Since e−|t| is the ch.f. of the Cauchy distribution C(0, 1) (Table 1.2), we
conclude that Tn/n→d X , where X has the Cauchy distribution C(0, 1).

Does this result contradict the first result in Example 1.28?
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Other examples of applications of Theorem 1.9 are given in Exercises
135-140 in §1.6. The following result can be used to check whether Xn →d

X when X has a p.d.f. f and Xn has a p.d.f. fn.

Proposition 1.18 (Scheffé’s theorem). Let {fn} be a sequence of p.d.f.’s
on Rk w.r.t. a measure ν. Suppose that limn→∞ fn(x) = f(x) a.e. ν and
f(x) is a p.d.f. w.r.t. ν. Then limn→∞

∫
|fn(x) − f(x)|dν = 0.

Proof. Let gn(x) = [f(x) − fn(x)]I{f≥fn}(x), n = 1, 2,.... Then

∫
|fn(x) − f(x)|dν = 2

∫
gn(x)dν.

Since 0 ≤ gn(x) ≤ f(x) for all x and gn → 0 a.e. ν, the result follows from
the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. fn of the t-distribution tn
(Table 1.2), n = 1, 2,.... One can show (exercise) that fn → f , where f is
the standard normal p.d.f. This is an important result in statistics.

1.5.3 Convergence of transformations

Transformation is an important tool in statistics. For random vectors Xn

converging to X in some sense, we often want to know whether g(Xn)
converges to g(X) in the same sense. The following result provides an
answer to this question in many problems. Its proof is left to the reader.

Theorem 1.10. Let X,X1, X2, ... be random k-vectors defined on a prob-
ability space and g be a measurable function from (Rk,Bk) to (Rl,Bl).
Suppose that g is continuous a.s. PX . Then
(i) Xn →a.s. X implies g(Xn) →a.s. g(X);
(ii) Xn →p X implies g(Xn) →p g(X);
(iii) Xn →d X implies g(Xn) →d g(X).

Example 1.30. (i) Let X1, X2, ... be random variables. If Xn →d X ,
where X has the N(0, 1) distribution, then X2

n →d Y , where Y has the
chi-square distribution χ2

1 (Example 1.14).
(ii) Let (Xn, Yn) be random 2-vectors satisfying (Xn, Yn) →d (X,Y ), where
X and Y are independent random variables having the N(0, 1) distribution,
then Xn/Yn →d X/Y , which has the Cauchy distribution C(0, 1) (§1.3.1).
(iii) Under the conditions in part (ii), max{Xn, Yn} →d max{X,Y }, which
has the c.d.f. [Φ(x)]2 (Φ(x) is the c.d.f. of N(0, 1)).

In Example 1.30(ii) and (iii), the condition that (Xn, Yn) →d (X,Y )
cannot be relaxed to Xn →d X and Yn →d Y (exercise); i.e., we need the
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convergence of the joint c.d.f. of (Xn, Yn). This is different when →d is re-
placed by →p or →a.s.. The following result, which plays an important role
in probability and statistics, establishes the convergence in distribution of
Xn+Yn or XnYn when no information regarding the joint c.d.f. of (Xn, Yn)
is provided.

Theorem 1.11 (Slutsky’s theorem). Let X,X1, X2, ..., Y1, Y2, ... be ran-
dom variables on a probability space. Suppose that Xn →d X and Yn →p c,
where c is a fixed real number. Then
(i) Xn + Yn →d X + c;
(ii) YnXn →d cX ;
(iii) Xn/Yn →d X/c if c 6= 0.
Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Let t ∈ R and ǫ > 0 be fixed constants. Then

FXn+Yn(t) = P (Xn + Yn ≤ t)

≤ P ({Xn + Yn ≤ t} ∩ {|Yn − c| < ǫ}) + P (|Yn − c| ≥ ǫ)

≤ P (Xn ≤ t− c+ ǫ) + P (|Yn − c| ≥ ǫ)

and, similarly,

FXn+Yn(t) ≥ P (Xn ≤ t− c− ǫ) − P (|Yn − c| ≥ ǫ).

If t− c, t− c+ ǫ, and t− c− ǫ are continuity points of FX , then it follows
from the previous two inequalities and the hypotheses of the theorem that

FX(t− c− ǫ) ≤ lim inf
n

FXn+Yn(t) ≤ lim sup
n

FXn+Yn(t) ≤ FX(t− c+ ǫ).

Since ǫ can be arbitrary (why?),

lim
n→∞

FXn+Yn(t) = FX(t− c).

The result follows from FX+c(t) = FX(t− c).

An application of Theorem 1.11 is given in the proof of the following
important result.

Theorem 1.12. Let X1, X2, ... and Y be random k-vectors satisfying

an(Xn − c) →d Y, (1.76)

where c ∈ Rk and {an} is a sequence of positive numbers with limn→∞ an =
∞. Let g be a function from Rk to R.
(i) If g is differentiable at c, then

an[g(Xn) − g(c)] →d [∇g(c)]τY, (1.77)
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where ∇g(x) denotes the k-vector of partial derivatives of g at x.
(ii) Suppose that g has continuous partial derivatives of order m > 1 in a
neighborhood of c, with all the partial derivatives of order j, 1 ≤ j ≤ m−1,
vanishing at c, but with the mth-order partial derivatives not all vanishing
at c. Then

amn [g(Xn) − g(c)] →d
1

m!

k∑

i1=1

· · ·
k∑

im=1

∂mg

∂xi1 · · · ∂xim

∣∣∣∣
x=c

Yi1 · · ·Yim , (1.78)

where Yj is the jth component of Y .
Proof. We prove (i) only. The proof of (ii) is similar. Let

Zn = an[g(Xn) − g(c)] − an[∇g(c)]τ (Xn − c).

If we can show that Zn = op(1), then by (1.76), Theorem 1.9(iii), and
Theorem 1.11(i), result (1.77) holds.

The differentiability of g at c implies that for any ǫ > 0, there is a δǫ > 0
such that

|g(x) − g(c) − [∇g(c)]τ (x − c)| ≤ ǫ‖x− c‖ (1.79)

whenever ‖x− c‖ < δǫ. Let η > 0 be fixed. By (1.79),

P (|Zn| ≥ η) ≤ P (‖Xn − c‖ ≥ δǫ) + P (an‖Xn − c‖ ≥ η/ǫ).

Since an → ∞, (1.76) and Theorem 1.11(ii) imply Xn →p c. By Theorem
1.10(iii), (1.76) implies an‖Xn− c‖ →d ‖Y ‖. Without loss of generality, we
can assume that η/ǫ is a continuity point of F‖Y ‖. Then

lim sup
n

P (|Zn| ≥ η) ≤ lim
n→∞

P (‖Xn − c‖ ≥ δǫ)

+ lim
n→∞

P (an‖Xn − c‖ ≥ η/ǫ)

= P (‖Y ‖ ≥ η/ǫ).

The proof is complete since ǫ can be arbitrary.

In statistics, we often need a nondegenerated limiting distribution of
an[g(Xn) − g(c)] so that probabilities involving an[g(Xn) − g(c)] can be
approximated by the c.d.f. of [∇g(c)]τY , if (1.77) holds. Hence, result
(1.77) is not useful for this purpose if ∇g(c) = 0, and in such cases result
(1.78) may be applied.

A useful method in statistics, called the delta-method, is based on the
following corollary of Theorem 1.12.

Corollary 1.1. Assume the conditions of Theorem 1.12. If Y has the
Nk(0,Σ) distribution, then

an[g(Xn) − g(c)] →d N (0, [∇g(c)]τΣ∇g(c)) .
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Example 1.31. Let {Xn} be a sequence of random variables satisfying√
n(Xn−c) →d N(0, 1). Consider the function g(x) = x2. If c 6= 0, then an

application of Corollary 1.1 gives that
√
n(X2

n− c2) →d N(0, 4c2). If c = 0,
the first-order derivative of g at 0 is 0 but the second-order derivative of
g ≡ 2. Hence, an application of result (1.78) gives that nX2

n →d [N(0, 1)]2,
which has the chi-square distribution χ2

1 (Example 1.14). The last result
can also be obtained by applying Theorem 1.10(iii).

1.5.4 The law of large numbers

The law of large numbers concerns the limiting behavior of sums of indepen-
dent random variables. The weak law of large numbers (WLLN) refers to
convergence in probability, whereas the strong law of large numbers (SLLN)
refers to a.s. convergence.

The following lemma is useful in establishing the SLLN. Its proof is left
as an exercise.

Lemma 1.6. (Kronecker’s lemma). Let xn ∈ R, an ∈ R, 0 < an ≤
an+1, n = 1, 2, ..., and an → ∞. If the series

∑∞
n=1 xn/an converges, then

a−1
n

∑n
i=1 xi → 0.

Our first result gives the WLLN and SLLN for a sequence of independent
and identically distributed (i.i.d.) random variables.

Theorem 1.13. Let X1, X2, ... be i.i.d. random variables.
(i) (The WLLN). A necessary and sufficient condition for the existence of
a sequence of real numbers {an} for which

1

n

n∑

i=1

Xi − an →p 0 (1.80)

is that nP (|X1| > n) → 0, in which case we may take an = E(X1I{|X1|≤n}).
(ii) (The SLLN). A necessary and sufficient condition for the existence of a
constant c for which

1

n

n∑

i=1

Xi →a.s. c (1.81)

is that E|X1| <∞, in which case c = EX1 and

1

n

n∑

i=1

ci(Xi − EX1) →a.s. 0 (1.82)

for any bounded sequence of real numbers {ci}.
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Proof. (i) We prove the sufficiency. The proof of necessity can be found
in Petrov (1975). Consider a sequence of random variables obtained by
truncating Xj ’s at n: Ynj = XjI{|Xj |≤n}. Let Tn = X1 + · · · + Xn and
Zn = Yn1 + · · · + Ynn. Then

P (Tn 6= Zn) ≤
n∑

j=1

P (Ynj 6= Xj) = nP (|X1| > n) → 0. (1.83)

For any ǫ > 0, it follows from Chebyshev’s inequality that

P

(∣∣∣∣
Zn − EZn

n

∣∣∣∣ > ǫ

)
≤ Var(Zn)

ǫ2n2
=

Var(Yn1)

ǫ2n
≤ EY 2

n1

ǫ2n
,

where the last equality follows from the fact that Ynj , j = 1, ..., n, are i.i.d.
From integration by parts, we obtain that

EY 2
n1

n
=

1

n

∫

[0,n]

x2dF|X1|(x) =
2

n

∫ n

0

xP (|X1| > x)dx − nP (|X1| > n),

which converges to 0 since nP (|X1| > n) → 0 (why?). This proves that
(Zn −EZn)/n→p 0, which together with (1.83) and the fact that EYnj =
E(X1I{|X1|≤n}) imply the result.

(ii) For the sufficiency, let Yn = XnI{|Xn|≤n}, n = 1, 2, .... Let m > 0 be an
integer smaller than n. If we define ci = i−1 for i ≥ m, Z1 = · · · = Zm−1 =
0, Zm = Y1 + · · ·+Ym, Zi = Yi, i = m+1, ..., n, and apply the Hájek-Rènyi
inequality (1.51) to Zi’s, then we obtain that for any ǫ > 0,

P

(
max
m≤l≤n

|ξl| > ǫ

)
≤ 1

ǫ2m2

m∑

i=1

Var(Yi) +
1

ǫ2

n∑

i=m+1

Var(Yi)

i2
, (1.84)

where ξn = n−1
∑n
i=1(Zi − EZi) (= n−1

∑n
i=1(Yi − EYi) if l ≥ m). Note

that

∞∑

n=1

EY 2
n

n2
=

∞∑

n=1

n∑

j=1

E(X2
1I{j−1<|X1|≤j})

n2

=

∞∑

j=1

∞∑

n=j

E(X2
1I{j−1<|X1|≤j})

n2

≤
∞∑

j=1

∞∑

n=j

jE(|X1|I{j−1<|X1|≤j})

n2

≤ λ
∞∑

j=1

E(|X1|I{j−1<|X1|≤j})

= λE|X1|,
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where the last inequality follows from the fact that
∑∞

n=j n
−2 ≤ λj−1 for a

constant λ > 0 and all j = 1, 2, .... Then, letting n → ∞ first and m → ∞
next in (1.84), we obtain that

lim
m→∞

P

( ∞⋃

l=m

{|ξl| > ǫ}
)

= lim
m→∞

lim
n→∞

P

(
max
m≤l≤n

|ξl| > ǫ

)

≤ lim
m→∞

1

ǫ2m2

m∑

i=1

Var(Yi)

= 0,

where the last equality follows from Lemma 1.6. By Lemma 1.4, ξn →a.s. 0.
Since EYn → EX1, n

−1
∑n

i=1 EYi → EX1 and, hence, (1.81) holds with
Xi’s replaced by Yi’s and c = EX1. It follows from

∞∑

n=1

P (Xn 6= Yn) =

∞∑

n=1

P (|Xn| > n) =

∞∑

n=1

P (|X1| > n) <∞

(Exercise 54) and Lemma 1.5(i) that P (∩∞
n=1 ∪∞

m=n {Xm 6= Ym}) = 0, i.e.,
there is an event A with P (A) = 1 such that if ω ∈ A, then Xn(ω) = Yn(ω)
for sufficiently large n. This implies

1

n

n∑

i=1

Xi −
1

n

n∑

i=1

Yi →a.s. 0, (1.85)

which proves the sufficiency. The proof of (1.82) is left as an exercise.

We now prove the necessity. Suppose that (1.81) holds for some c ∈ R.
Then

Xn

n
=
Tn
n

− c− n− 1

n

(
Tn−1

n− 1
− c

)
+
c

n
→a.s. 0.

From Exercise 114, Xn/n→a.s. 0 and the i.i.d. assumption on Xn’s imply

∞∑

n=1

P (|Xn| ≥ n) =

∞∑

n=1

P (|X1| ≥ n) <∞,

which implies E|X1| < ∞ (Exercise 54). From the proved sufficiency, c =
EX1.

If E|X1| < ∞, then an in (1.80) converges to EX1 and result (1.80) is
actually established in Example 1.28 in a much simpler way. On the other
hand, if E|X1| <∞, then the stronger result (1.81) can be obtained. Some
results for the case of E|X1| = ∞ can be found in Exercise 148 in §1.6 and
Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily iden-
tically distributed random variables.
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Theorem 1.14. Let X1, X2, ... be independent random variables with
finite expectations.
(i) (The SLLN). If there is a constant p ∈ [1, 2] such that

∞∑

i=1

E|Xi|p
ip

<∞, (1.86)

then
1

n

n∑

i=1

(Xi − EXi) →a.s. 0. (1.87)

(ii) (The WLLN). If there is a constant p ∈ [1, 2] such that

lim
n→∞

1

np

n∑

i=1

E|Xi|p = 0, (1.88)

then
1

n

n∑

i=1

(Xi − EXi) →p 0. (1.89)

Proof. (i) Consider again the truncated Xn: Yn = XnI{|Xn|≤n}, n =
1, 2, .... Since X2

nI{|Xn|≤n} ≤ n2−p|Xn|p,
∞∑

n=1

EY 2
n

n2
=

∞∑

n=1

E(X2
nI{|Xn|≤n})

n2
≤

∞∑

n=1

E|Xn|p
np

<∞.

It follows from the proof of Theorem 1.13(ii) that n−1
∑n

i=1(Yi−EYi) →a.s.

0. Also,

∞∑

n=1

P (Xn 6= Yn) =

∞∑

n=1

P (|Xn| > n) ≤
∞∑

n=1

E|Xn|p
np

<∞.

Hence, it follows from the proof of Theorem 1.13(ii) that (1.85) holds.
Finally,

∞∑

n=1

|E(Xn − Yn)|
n

=

∞∑

n=1

E(|Xn|I{|Xn|>n})

n
≤

∞∑

n=1

E|Xn|p
np

<∞,

which together with Lemma 1.6 imply that n−1
∑n

i=1 |E(Xi−Yi)| → 0 and
thus (1.87) holds.
(ii) For any ǫ > 0, an application of Chebyshev’s inequality and inequality
(1.44) leads to

P

(
1

n

∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣ > ǫ

)
≤ Cp
ǫpnp

n∑

i=1

E|Xi − EXi|p,

which converges to 0 under (1.88). This proves (1.89).
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Note that (1.86) implies (1.88) (Lemma 1.6). The result in Theorem
1.14(i) is called Kolmogorov’s SLLN when p = 2 and is due to Marcinkiewicz
and Zygmund when 1 ≤ p < 2. An obvious sufficient condition for (1.86)
with p ∈ (1, 2] is supnE|Xn|p <∞.

For dependent random variables, a result for Markov chains introduced
in §1.4.4 is discussed in §4.1.4. We now consider martingales studied in
§1.4.4. First, consider the WLLN. Inequality (1.44) still holds if the inde-
pendence assumption of Xi’s is replaced by the martingale assumption on
the sequence {∑n

i=1(Xi−EXi)} (why?). Hence, from the proof of Theorem
1.14(ii) we conclude that (1.89) still holds if the independence assumption
of Xi’s in Theorem 1.14 is replaced by that {∑n

i=1(Xi−EXi)} is a martin-
gale. A result similar to the SLLN in Theorem 1.14(i) can be established
if the independence assumption of Xi’s is replaced by that the sequence
{∑n

i=1(Xi − EXi)} is a martingale and if condition (1.86) is replaced by

∞∑

n=2

E(|Xn|p|X1, ..., Xn−1)

np
<∞ a.s.,

which is the same as (1.86) if Xi’s are independent. The proof of this
martingale SLLN and many other versions of WLLN and SLLN can be
found in standard probability textbooks, for example, Chung (1974) and
Loève (1977).

The WLLN and SLLN have many applications in probability and statis-
tics. The following is an example. Other examples can be found in later
chapters.

Example 1.32. Let f and g be continuous functions on [0, 1] satisfying
0 ≤ f(x) ≤ Cg(x) for all x, where C > 0 is a constant. We now show that

lim
n→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∑n
i=1 f(xi)∑n
i=1 g(xi)

dx1dx2 · · · dxn =

∫ 1

0
f(x)dx

∫ 1

0 g(x)dx
(1.90)

(assuming that
∫ 1

0
g(x)dx 6= 0). Let X1, X2, ... be i.i.d. random variables

having the uniform distribution on [0, 1]. By Theorem 1.2, E[f(X1)] =∫ 1

0 f(x)dx < ∞ and E[g(X1)] =
∫ 1

0 g(x)dx < ∞. By the SLLN (Theorem
1.13(ii)),

1

n

n∑

i=1

f(Xi) →a.s. E[f(X1)],

and the same result holds when f is replaced by g. By Theorem 1.10(i),

∑n
i=1 f(Xi)∑n
i=1 g(Xi)

→a.s.
E[f(X1)]

E[g(X1)]
. (1.91)
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Since the random variable on the left-hand side of (1.91) is bounded by C,
result (1.90) follows from the dominated convergence theorem and the fact
that the left-hand side of (1.90) is the expectation of the random variable
on the left-hand side of (1.91).

Moment inequalities introduced in §1.3.2 play important roles in prov-
ing convergence theorems. They can also be used to obtain convergence
rates of tail probabilities of the form P

(
|n−1

∑n
i=1(Xi − EXi)| > t

)
. For

example, an application of the Esseen-von Bahr, Marcinkiewicz-Zygmund,
and Chebyshev inequalities produces

P

(∣∣∣∣
1

n

n∑

i=1

(Xi − EXi)

∣∣∣∣ > t

)
≤
{
O(n1−p) if 1 < p < 2

O(n−p/2) if p ≥ 2

for independent random variables X1, ..., Xn with supnE|Xn|p <∞.

1.5.5 The central limit theorem

The WLLN and SLLN may not be useful in approximating the distributions
of (normalized) sums of independent random variables. We need to use the
central limit theorem (CLT), which plays a fundamental role in statistical
asymptotic theory.

Theorem 1.15 (Lindeberg’s CLT). Let {Xnj, j = 1, ..., kn} be independent

random variables with 0 < σ2
n = Var(

∑kn

j=1Xnj) < ∞, n = 1, 2,..., and
kn → ∞ as n→ ∞. If

kn∑

j=1

E
[
(Xnj − EXnj)

2I{|Xnj−EXnj |>ǫσn}
]

= o(σ2
n) for any ǫ > 0, (1.92)

then

1

σn

kn∑

j=1

(Xnj − EXnj) →d N(0, 1). (1.93)

Proof. Considering (Xnj − EXnj)/σn, without loss of generality we may
assume EXnj = 0 and σ2

n = 1 in this proof. Let t ∈ R be given. From the

inequality |e
√
−1tx − (1 +

√
−1tx− t2x2/2)| ≤ min{|tx|2, |tx|3}, the ch.f. of

Xnj satisfies
∣∣∣∣φXnj (t) −

(
1 − t2σ2

nj/2
) ∣∣∣∣ ≤ E

(
min{|tXnj|2, |tXnj |3}

)
, (1.94)

where σ2
nj = Var(Xnj). For any ǫ > 0, the right-hand side of (1.94) is

bounded by E(|tXnj |3I{|Xnj |<ǫ}) +E(|tXnj |2I{|Xnj |≥ǫ}), which is bounded
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by ǫ|t|3σ2
nj + t2E(X2

njI{|Xnj |≥ǫ}). Summing over j and using condition
(1.92), we obtain that

kn∑

j=1

∣∣∣∣φXnj (t) −
(
1 − t2σ2

nj/2
) ∣∣∣∣→ 0. (1.95)

By condition (1.92), maxj≤kn σ
2
nj ≤ ǫ2 + maxj≤kn E(X2

njI{|Xnj |>ǫ}) → ǫ2

for arbitrary ǫ > 0. Hence

lim
n→∞

max
j≤kn

σ2
nj

σ2
n

= 0. (1.96)

(Note that σ2
n = 1 is assumed for convenience.) This implies that 1− t2σ2

nj

are all between 0 and 1 for large enough n. Using the inequality

|a1 · · · am − b1 · · · bm| ≤
m∑

j=1

|aj − bj |

for any complex numbers aj ’s and bj ’s with |aj | ≤ 1 and |bj | ≤ 1, j =
1, ...,m, we obtain that

∣∣∣∣
kn∏

j=1

e−t
2σ2

nj/2 −
kn∏

j=1

(
1 − t2σ2

nj/2
) ∣∣∣∣ ≤

kn∑

j=1

∣∣∣∣e−t
2σ2

nj/2 −
(
1 − t2σ2

nj/2
) ∣∣∣∣,

which is bounded by t4
∑kn

j=1 σ
4
nj ≤ t4 maxj≤kn σ

2
nj → 0, since |ex−1−x| ≤

x2/2 if |x| ≤ 1
2 and

∑kn

j=1 σ
2
nj = σ2

n = 1. Also,

∣∣∣∣
kn∏

j=1

φXnj (t) −
kn∏

j=1

(
1 − t2σ2

nj/2
) ∣∣∣∣

is bounded by the quantity on the left-hand side of (1.95) and, hence,
converges to 0 by (1.95). Thus,

kn∏

j=1

φXnj (t) =

kn∏

j=1

e−t
2σ2

nj/2 + o(1) = e−t
2/2 + o(1).

This shows that the ch.f. of
∑kn

j=1Xnj converges to the ch.f. of N(0, 1) for
every t. By Theorem 1.9(ii), the result follows.

Condition (1.92) is called Lindeberg’s condition. From the proof of
Theorem 1.15, Lindeberg’s condition implies (1.96), which is called Feller’s
condition. Feller’s condition (1.96) means that all terms in the sum σ2

n =
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∑kn

j=1 σ
2
nj are uniformly negligible as n → ∞. If Feller’s condition is as-

sumed, then Lindeberg’s condition is not only sufficient but also necessary
for result (1.93), which is the well-known Lindeberg-Feller CLT. A proof can
be found in Billingsley (1986, pp. 373-375). Note that neither Lindeberg’s
condition nor Feller’s condition is necessary for result (1.93) (Exercise 158).

A sufficient condition for Lindeberg’s condition is the following Lia-
pounov’s condition, which is somewhat easier to verify:

kn∑

j=1

E|Xnj − EXnj |2+δ = o(σ2+δ
n ) for some δ > 0. (1.97)

Example 1.33. Let X1, X2, ... be independent random variables. Suppose
that Xi has the binomial distribution Bi(pi, 1), i = 1, 2,..., and that σ2

n =∑n
i=1 Var(Xi) =

∑n
i=1 pi(1 − pi) → ∞ as n → ∞. For each i, EXi =

pi and E|Xi − EXi|3 = (1 − pi)
3pi + p3

i (1 − pi) ≤ 2pi(1 − pi). Hence∑n
i=1E|Xi − EXi|3 ≤ 2σ2

n, i.e., Liapounov’s condition (1.97) holds with
δ = 1. Thus, by Theorem 1.15,

1

σn

n∑

i=1

(Xi − pi) →d N(0, 1). (1.98)

It can be shown (exercise) that the condition σn → ∞ is also necessary for
result (1.98).

The following are useful corollaries of Theorem 1.15 (and Theorem
1.9(iii)). Corollary 1.2 is in fact proved in Example 1.28. The proof of
Corollary 1.3 is left as an exercise.

Corollary 1.2 (Multivariate CLT). Let X1, ..., Xn be i.i.d. random k-
vectors with a finite Σ = Var(X1). Then

1√
n

n∑

i=1

(Xi − EX1) →d Nk(0,Σ).

Corollary 1.3. Let Xni ∈ Rmi , i = 1, ..., kn, be independent random
vectors with mi ≤ m (a fixed integer), n = 1, 2,..., kn → ∞ as n→ ∞, and
infi,n λ−[Var(Xni)] > 0, where λ−[A] is the smallest eigenvalue of A. Let
cni ∈ Rmi be vectors such that

lim
n→∞

(
max

1≤i≤kn

‖cni‖2

/ kn∑

i=1

‖cni‖2

)
= 0.
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(i) Suppose that supi,nE‖Xni‖2+δ <∞ for some δ > 0. Then

kn∑

i=1

cτni(Xni − EXni)

/[
kn∑

i=1

Var(cτniXni)

]1/2

→d N(0, 1). (1.99)

(ii) Suppose that whenever mi=mj , 1≤ i<j≤kn, n=1, 2, ..., Xni and Xnj

have the same distribution with E‖Xni‖2 <∞. Then (1.99) holds.

Applications of these corollaries can be found in later chapters.

An extension of Lindeberg’s CLT is the so-called martingale CLT. In
Theorem 1.15, if the independence assumption of Xnj , j = 1, ..., kn, is
replaced by that {Yn} is a martingale and

1

σ2
n

kn∑

j=1

E[(Xnj − EXnj)
2|Xn1, ..., Xn(j−1)] →p 1,

where Yn =
∑kn

j=1(Xnj −EXnj) when n ≤ kn, Yn = Ykn when n > kn, and
Xn0 is defined to be 0, then result (1.93) still holds (see, e.g., Billingsley,
1986, p. 498 and Sen and Singer 1993, p. 120).

More results on the CLT can be found, for example, in Serfling (1980)
and Shorack and Wellner (1986).

Let Yn be a sequence of random variables, {µn} and {σn} be sequences
of real numbers such that σn > 0 for all n, and (Yn − µn)/σn →d N(0, 1).
Then, by Proposition 1.16,

lim
n→∞

sup
x

|F(Yn−µn)/σn
(x) − Φ(x)| = 0, (1.100)

where Φ is the c.d.f. of N(0, 1). This implies that for any sequence of real
numbers {cn}, limn→∞ |P (Yn ≤ cn) − Φ

(
cn−µn

σn

)
| = 0, i.e., P (Yn ≤ cn) can

be approximated by Φ
(
cn−µn

σn

)
, regardless of whether {cn} has a limit. Since

Φ
(
t−µn

σn

)
is the c.d.f. ofN(µn, σ

2
n), Yn is said to be asymptotically distributed

as N(µn, σ
2
n) or simply asymptotically normal. For example,

∑kn

i=1 c
τ
niXni

in Corollary 1.3 is asymptotically normal. This can be extended to ran-
dom vectors. For example,

∑n
i=1Xi in Corollary 1.2 is asymptotically

distributed as Nk(nEX1, nΣ).

1.5.6 Edgeworth and Cornish-Fisher expansions

Let {Yn} be a sequence of random variables satisfying (1.100) and Wn =
(Yn − µn)/σn. The convergence speed of (1.100) can be used to assess
whether Φ provides a good approximation to the c.d.f. FWn . Also, some-
times we would like to find an approximation to FWn that is better than
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Φ in terms of convergence speed. The Edgeworth expansion is a useful tool
for these purposes.

To illustrate the idea, let Wn = n−1/2
∑n

i=1(Xi−µ)/σ, where X1, X2, ...
are i.i.d. random variables with EX1 = µ and Var(X1) = σ2. Assume that
the m.g.f. of Z = (X1 − µ)/σ is finite and positive in a neighborhood of 0.
From (1.55), the cumulant generating function of Z has the expansion

κ(t) =

∞∑

j=1

κj
j!
tj ,

where κj, j = 1, 2, ..., are cumulants of Z (e.g., κ1 = 0, κ2 = 1, κ3 = EZ3,
and κ4 = EZ4 − 3), and the m.g.f. of Wn is equal to

ψn(t) =
[
exp{κ(t/

√
n)}
]n

= exp

{
t2

2
+

∞∑

j=3

κjt
j

j!n(j−2)/2

}
,

where exp{x} denotes the exponential function ex. Using the series expan-

sion for et
2/2, we obtain that

ψn(t) = et
2/2 + n−1/2r1(t)e

t2/2 + · · · + n−j/2rj(t)e
t2/2 + · · · , (1.101)

where rj is a polynomial of degree 3j depending on κ3, ..., κj+2 but not on
n, j = 1, 2, .... For example, it can be shown (exercise) that

r1(t) = 1
6κ3t

3 and r2(t) = 1
24κ4t

4 + 1
72κ

2
3t

6. (1.102)

Since ψn(t) =
∫
etxdFWn(x) and et

2/2 =
∫
etxdΦ(x), expansion (1.101)

suggests the inverse expansion

FWn(x) = Φ(x) + n−1/2R1(x) + · · · + n−j/2Rj(x) + · · · ,

where Rj(x) is a function satisfying
∫
etxdRj(x) = rj(t)e

t2/2, j = 1, 2, ....

Let ∇j = dj

dxj be the differential operator and ∇ = ∇1. Then Rj(x) =
rj(−∇)Φ(x), j = 1, 2, ..., where rj(−∇) is interpreted as a differential op-
erator. Thus, Rj ’s can be obtained once rj ’s are derived. It follows from
(1.102) (exercise) that

R1(x) = − 1
6κ3(x

2 − 1)Φ′(x) (1.103)

and

R2(x) = −[ 1
24κ4x(x

2 − 3) + 1
72κ

2
3x(x

4 − 10x2 + 15)]Φ′(x). (1.104)

A rigorous statement of the Edgeworth expansion for a more generalWn

is given in the following theorem whose proof can be found in Hall (1992).
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Theorem 1.16 (Edgeworth expansions). Let m be a positive integer and
X1, X2, ... be i.i.d. random k-vectors having finite m+2 moments. Consider
Wn =

√
nh(X̄)/σh, where X̄ = n−1

∑n
i=1Xi, h is a Borel function on

Rk that is m + 2 times continuously differentiable in a neighborhood of
µ = EX1, h(µ) = 0, and σ2

h = [∇h(µ)]τVar(X1)∇h(µ) > 0. Assume that

lim sup
‖t‖→∞

|φX1
(t)| < 1, (1.105)

where φX1
is the ch.f. of X1. Then, FWn admits the Edgeworth expansion

sup
x

∣∣∣∣FWn(x) − Φ(x) −
m∑

j=1

pj(x)Φ
′(x)

nj/2

∣∣∣∣ = o

(
1

nm/2

)
, (1.106)

where pj(x) is a polynomial of degree at most 3j − 1, odd for even j and
even for odd j, with coefficients depending on the first m + 2 moments of
X1, j = 1, ...,m. In particular,

p1(x) = −c1σ−1
h + 6−1c2σ

−3
h (x2 − 1) (1.107)

with c1 = 2−1
∑k

i=1

∑k
j=1 aijµij and c2 =

∑k
i=1

∑k
j=1

∑k
l=1 aiajalµijl +

3
∑k
i=1

∑k
j=1

∑k
l=1

∑k
h=1 aiajalhµilµjh, where ai is the ith component of

∇h(µ), aij is the (i, j)th element of the Hessian matrix ∇2h(µ), µij =
E(YiYj), µijl = E(YiYjYl), and Yi is the ith component of X1 − µ.

Condition (1.105) is Cramér’s continuity condition. It is satisfied if one
component of X1 has a Lebesgue p.d.f. The polynomial pj with j ≥ 2
may be derived using the method in deriving (1.103) and (1.104), but the
derivation is usually complicated (see Hall (1992)).

Under the conditions of Theorem 1.16, the convergence speed of (1.100)
is O(n−1/2) and, as an approximation to FWn , Φ+

∑m
j=1 n

−j/2pjΦ′ is better

than Φ, since its convergence speed is o(n−m/2).

The results in Theorem 1.16 can be applied to many cases, as the fol-
lowing example indicates.

Example 1.34. Let X̄ = n−1
∑n

i=1Xi with i.i.d. random variablesX1, X2,
... satisfying condition (1.105). First, consider the normalized random
variable Wn =

√
n(X̄ − µ)/σ, where µ = EX1 and σ2 = Var(X1). Then,

Theorem 1.16 can be applied with h(x) = x − µ and σ2
h = σ2, and the

Edgeworth expansion in (1.106) holds if E|X1|m+2 < ∞. In this case,
results (1.103) and (1.104) imply that pj(x) = Rj(x)/Φ

′(x), j = 1, 2.

Next, consider the studentized random variable Wn =
√
n(X̄ − µ)/σ̂,

where σ̂2 = n−1
∑n

i=1(Xi− X̄)2. Assuming that EX2m+4
1 <∞ and apply-

ing Theorem 1.16 to random vectors (Xi, X
2
i ), i = 1, 2, ..., and h(x, y) =
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(x−µ)/
√

(y − x2), we obtain the Edgeworth expansion (1.106) with σh = 1,

p1(x) = 1
6κ3(2x

2 + 1)

(exercise). Furthermore, it can be found in Hall (1992, p. 73) that

p2(x) = 1
12κ4x(x

2 − 3) − 1
18κ

2
3x(x

4 + 2x2 − 3) − 1
4x(x

2 + 3).

Consider now the random variable
√
n(σ̂2 − σ2). Theorem 1.16 can be

applied to random vectors (Xi, X
2
i ), i = 1, 2, ..., and h(x, y) = (y−x2−σ2).

Assume that EX2m+4
1 <∞. It can be shown (exercise) that the Edgeworth

expansion in (1.106) holds with Wn =
√
n(σ̂2 −σ2)/σh, σ

2
h = E(X1−µ)4−

σ4, and

p1(x) = (ν4 − 1)−1/2[1 − 1
6 (ν4 − 1)−1(ν6 − 3ν4 − 6ν2

3 + 2)(x2 − 1)],

where νj = σ−jE(X1 − µ)j , j = 3, ..., 6.

Finally, consider the studentized random variableWn =
√
n(σ̂2−σ2)/τ̂ ,

where τ̂2 = n−1
∑n

i=1(Xi − X̄)4 − σ̂4. Theorem 1.16 can be applied to
random vectors (Xi, X

2
i , X

3
i , X

4
i ), i = 1, 2, ..., and

h(x, y, z, w) = (y − x2 − σ2)[w − y2 − 4xz + 8x2y − 4x4]−1/2.

Assume that EX4m+8
1 <∞. It can be shown (exercise) that the Edgeworth

expansion in (1.106) holds with σ2
h = 1 and

p1(x) = −(ν4−1)−3/2[12 (4ν2
3 +ν4−ν6) + 1

3 (3ν2
3 +3ν4−ν6−2)(x2−1)].

An inverse Edgeworth expansion is referred to as a Cornish-Fisher
expansion, which is useful in statistics (see §7.4). For α ∈ (0, 1), let
zα = Φ−1(α). Since the c.d.f. FWn may not be strictly increasing and
continuous, we define wnα = inf{x : FWn(x) ≥ α}. The following result
can be found in Hall (1992).

Theorem 1.17 (Cornish-Fisher expansions). Under the conditions of The-
orem 1.16, wnα admits the Cornish-Fisher expansion

sup
ǫ<α<1−ǫ

∣∣∣∣wnα − zα −
m∑

j=1

qj(zα)

nj/2

∣∣∣∣ = o

(
1

nm/2

)
, (1.108)

where ǫ is any constant in (0, 1
2 ) and qj ’s are polynomials depending on pj ’s

in (1.106).

The polynomials in (1.108) can be determined using results (1.106) and
(1.108). We illustrate it by deriving q1 and q2. Without loss of generality,
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assume that FWn(wnα) = α (why?). Using (1.106), (1.108), Taylor’s ex-
pansions at zα for Φ(wnα), p1(wnα)Φ′(wnα), and p2(wnα)Φ′(wnα), and the
fact that Φ′′(x) = −xΦ′(x), we obtain that

α = Φ(wnα) + n−1/2p1(wnα)Φ′(wnα) + n−1p2(wnα)Φ′(wnα)

= Φ(zα) + {n−1/2q1(zα) + n−1q2(zα) − 1
2 [n−1/2q1(zα)]2zα}Φ′(zα)

+ n−1/2{p1(zα) + n−1/2q1(zα)[p′1(zα) − zαp1(zα)]}Φ′(zα)

+ n−1p2(zα)Φ′(zα) + o(n−1)

= α+ n−1/2[q1(zα) + p1(zα)]Φ′(zα) + n−1{q2(zα) − 1
2zα[q1(zα)]2

+ q1(zα)[p′1(zα) − zαp1(zα)] + p2(zα)}Φ′(zα) + o(n−1).

Ignoring terms of order o(n−1), we conclude that

q1(x) = −p1(x)

and
q2(x) = p1(x)p

′
1(x) − 1

2x[p1(x)]
2 − p2(x).

Edgeworth and Cornish-Fisher expansions for Wn in Theorem 1.16
based on non-i.i.d. Xi’s or for other random variables can be found in Hall
(1992), Barndorff-Nielsen and Cox (1994), and Shao and Tu (1995).

1.6 Exercises

1. Let A and B be two nonempty proper subsets of a sample space
Ω, A 6= B and A ∩ B 6= ∅. Obtain σ({A,B}), the smallest σ-field
containing A and B.

2. Let C be a collection of subsets of Ω and let Γ = {F : F is a σ-field
on Ω and C ⊂ F}. Show that Γ 6= ∅ and σ(C) = ∩F∈ΓF .

3. Let (Ω,Fj), j = 1, 2, ..., be measurable spaces such that Fj ⊂ Fj+1,
j = 1, 2, .... Is ∪jFj a σ-field?

4. Let C be the collection of intervals of the form (a, b], where −∞ <
a < b < ∞, and let D be the collection of closed sets on R. Show
that B = σ(C) = σ(D), where B is the Borel σ-field on R.

5. (π- and λ-systems). A class C of subsets of Ω is a π-system if and
only if A ∈ C and B ∈ C imply A ∩B ∈ C. A class D of subsets of Ω
is a λ-system if and only if (i) Ω ∈ D, (ii) A ∈ D implies Ac ∈ D, and
(iii) Aj ∈ D, j = 1, 2, ..., and Ai’s are disjoint imply that ∪jAj ∈ D.
(a) Show that if C is a π-system and D is a λ-system, then C ⊂ D
implies σ(C) ⊂ D.
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(b) Show that D is a λ-system if and only if the following conditions
hold: (i) Ω ∈ D, (ii) A ∈ D, B ∈ D, and A ⊂ B imply Ac ∩ B ∈ D,
and (iii) Aj ∈ D and Aj ⊂ Aj+1, j = 1, 2, ..., imply ∪jAj ∈ D.

6. Prove part (ii) and part (iii) of Proposition 1.1.

7. Let νi, i = 1, 2, ..., be measures on (Ω,F) and ai, i = 1, 2, ..., be
positive numbers. Show that a1ν1 +a2ν2 + · · · is a measure on (Ω,F).

8. Let {An} be a sequence of events on a probability space (Ω,F , P ).
Define lim supnAn = ∩∞

n=1 ∪∞
i=n Ai and lim infnAn = ∪∞

n=1 ∩∞
i=n Ai.

Show that P (lim infnAn) ≤ lim infn P (An) and lim supn P (An) ≤
P (lim supnAn).

9. Prove Proposition 1.2.

10. Let F (x1, ..., xk) be a c.d.f. on Rk. Show that
(a) F (x1, ..., xk−1, xk) ≤ F (x1, ..., xk−1, x

′
k) if xk ≤ x′k.

(b) limxi→−∞ F (x1, ..., xk) = 0 for any 1 ≤ i ≤ k.
(c) F (x1,..., xk−1,∞)=limxk→∞F (x1,..., xk−1, xk) is a c.d.f. on Rk−1.

11. Let (Ωi,Fi) = (R,B), i = 1, ..., k. Show that the product σ-field
σ(F1 × · · · × Fk) is the σ-field generated by all open sets in Rk.

12. Let ν and λ be two measures on (Ω,F) such that ν(A) = λ(A) for
any A ∈ C, where C ⊂ F and C is a π-system (i.e., if A and B are in
C, then so is A ∩B). Assume that there are Ai ∈ C, i = 1, 2, ..., such
that ∪Ai = Ω and ν(Ai) < ∞ for all i. Show that ν(A) = λ(A) for
any A ∈ σ(C). This proves the uniqueness part of Proposition 1.3.
(Hint: show that {A ∈ σ(C) : ν(A) = λ(A)} is a σ-field.)

13. Let f be a function from Ω to Λ. Show that
(a) f−1(Bc) = (f−1(B))c and f−1(∪Bi) = ∪f−1(Bi);
(b) σ(f−1(C)) = f−1(σ(C)), where C is a collection of subsets of Λ.

14. Prove Proposition 1.4.

15. Show that a monotone function from R to R is Borel and a c.d.f. on
Rk is Borel.

16. Let f be a function from (Ω,F) to (Λ,G) and A1, A2, ... be disjoint
events in F such that ∪Ai = Ω. Let fn be a function from (An,FAn)
to (Λ,G) such that fn(ω) = f(ω) for any ω ∈ An, n = 1, 2,.... Show
that f is measurable from (Ω,F) to (Λ,G) if and only if fn is mea-
surable from (An,FAn) to (Λ,G) for each n.

17. Let f be a nonnegative Borel function on (Ω,F). Show that f is the
limit of a sequence of simple functions {ϕn} on (Ω,F) with 0 ≤ ϕ1 ≤
ϕ2 ≤ · · · ≤ f .
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18. Let
∏k
i=1(Ωi,Fi) be a product measurable space.

(a) Let πi be the ith projection, i.e., πi(ω1, ..., ωk) = ωi, ωi ∈ Ωi,
i = 1, ..., k. Show that π1, ..., πk are measurable.
(b) Let f be a function on

∏k
i=1 Ωi and gi(ωi) = f(ω1, ..., ωi, ..., ωk),

where ωj is a fixed point in Ωj , j = 1, ..., k but j 6= i, and i = 1, ..., k.

Show that if f is Borel on
∏k
i=1(Ωi,Fi), then g1, ..., gk are Borel.

(c) In part (b), is it true that f is Borel if g1, ..., gk are Borel?

19. Let {fn} be a sequence of Borel functions on a measurable space.
Show that
(a) σ(f1, f2, ...) = σ

(
∪∞
j=1σ(fj)

)
= σ

(
∪∞
j=1σ(f1, ..., fj)

)
;

(b) σ(lim supn fn) ⊂ ∩∞
n=1σ(fn, fn+1, ...).

20. (Egoroff’s theorem). Suppose that {fn} is a sequence of Borel func-
tions on a measure space (Ω,F , ν) and fn(ω) → f(ω) for ω ∈ A with
ν(A) <∞. Show that for any ǫ > 0, there is a B ⊂ A with ν(B) < ǫ
such that fn(ω) → f(ω) uniformly on A ∩Bc.

21. Prove (1.14) in Example 1.5.

22. Prove Proposition 1.5 and Proposition 1.6(i).

23. Let νi, i = 1, 2, be measures on (Ω,F) and f be Borel. Show that
∫
fd(ν1 + ν2) =

∫
fdν1 +

∫
fdν2,

i.e., if either side of the equality is well defined, then so is the other
side, and the two sides are equal.

24. Let f be an integrable Borel function on (Ω,F , ν). Show that for each
ǫ > 0, there is a δǫ such that ν(A) < δǫ and A ∈ F imply

∫
A
|f |dν < ǫ.

25. Prove that part (i) and part (iii) of Theorem 1.1 are equivalent.

26. Prove Theorem 1.2.

27. Prove Theorem 1.3. (Hint: first consider simple nonnegative f .)

28. Consider Example 1.9. Show that (1.17) does not hold for

f(i, j) =





1 i = j

−1 i = j − 1

0 otherwise.

Does this contradict Fubini’s theorem?

29. Let f be a nonnegative Borel function on (Ω,F , ν) with a σ-finite
ν, A = {(ω, x) ∈ Ω × R : 0 ≤ x ≤ f(ω)}, and m be the Lebesgue
measure on (R,B). Show that A ∈ σ(F ×B) and

∫
Ω
fdν = ν×m(A).
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30. For any c.d.f. F and any a ≥ 0, show that
∫
[F (x+ a)−F (x)]dx = a.

31. (Integration by parts). Let F and G be two c.d.f.’s on R. Show that if
F and G have no common points of discontinuity in the interval (a, b],
then

∫
(a,b]G(x)dF (x) = F (b)G(b) − F (a)G(a) −

∫
(a,b] F (x)dG(x).

32. Let f be a Borel function on R2 such that f(x, y) = 0 for each x ∈ R
and y 6∈ Cx, where m(Cx) = 0 for each x and m is the Lebesgue
measure. Show that f(x, y) = 0 for each y 6∈ C and x 6∈ By, where
m(C) = 0 and m(By) = 0 for each y 6∈ C.

33. Consider Example 1.11. Show that if (1.21) holds, then P (A) =∫
A f(x)dx for any Borel set A. (Hint: A = {A : P (A) =

∫
A f(x)dx}

is a σ-field containing all sets of the form (−∞, x].)

34. Prove Proposition 1.7.

35. Let {an} be a sequence of positive numbers satisfying
∑∞

n=1 an = 1
and let {Pn} be a sequence of probability measures on a common
measurable space. Define P =

∑∞
n=1 anPn.

(a) Show that P is a probability measure.
(b) Show that Pn ≪ ν for all n and a measure ν if and only if P ≪ ν
and, when P ≪ ν and ν is σ-finite, dPdν =

∑∞
n=1 an

dPn

dν .
(c) Derive the Lebesgue p.d.f. of P when Pn is the gamma distribution
Γ(α, n−1) (Table 1.2) with α > 1 and an is proportional to n−α.

36. Let Fi be a c.d.f. having a Lebesgue p.d.f. fi, i = 1, 2. Assume that
there is a c ∈ R such that F1(c) < F2(c). Define

F (x) =

{
F1(x) −∞ < x < c

F2(x) c ≤ x <∞.

Show that the probability measure P corresponding to F satisfies
P ≪ m+ διc and find dP/d(m+ διc), where m+ διc is given in (1.23).

37. Let (X,Y ) be a random 2-vector with the following Lebesgue p.d.f.:

f(x, y) =

{
8xy 0 ≤ x ≤ y ≤ 1

0 otherwise.

Find the marginal p.d.f.’s of X and Y . Are X and Y independent?

38. Let (X,Y, Z) be a random 3-vector with the following Lebesgue p.d.f.:

f(x, y, z) =

{ 1−sinx sin y sin z
8π3 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π, 0 ≤ z ≤ 2π

0 otherwise.

Show that X , Y , and Z are not independent, but are pairwise inde-
pendent.
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39. Prove Lemma 1.1 without using Definition 1.7 for independence.

40. Let X be a random variable having a continuous c.d.f. F . Show that
Y = F (X) has the uniform distribution U(0, 1) (Table 1.2).

41. Let U be a random variable having the uniform distribution U(0, 1)
and let F be a c.d.f. Show that the c.d.f. of Y = F−1(U) is F , where
F−1(t) = inf{x ∈ R : F (x) ≥ t}.

42. Prove Proposition 1.8.

43. Let X = Nk(µ,Σ) with a positive definite Σ.
(a) Let Y = AX + c, where A is an l × k matrix of rank l ≤ k and
c ∈ Rl. Show that Y has the Nl(Aµ+ c, AΣAτ ) distribution.
(b) Show that the components of X are independent if and only if Σ
is a diagonal matrix.
(c) Let Λ be positive definite and Y = Nm(η,Λ) be independent of
X . Show that (X,Y ) has the Nk+m((µ, η), D) distribution, where D
is a block diagonal matrix whose two diagonal blocks are Σ and Λ.

44. Let X be a random variable having the Lebesgue p.d.f. 2x
π2 I(0,π)(x).

Derive the p.d.f. of Y = sinX .

45. Let Xi, i = 1, 2, 3, be independent random variables having the same
Lebesgue p.d.f. f(x) = e−xI(0,∞)(x). Obtain the joint Lebesgue p.d.f.
of (Y1, Y2, Y3), where Y1 = X1 + X2 +X3, Y2 = X1/(X1 +X2), and
Y3 = (X1 +X2)/(X1 +X2 +X3). Are Yi’s independent?

46. Let X1 and X2 be independent random variables having the stan-
dard normal distribution. Obtain the joint Lebesgue p.d.f. of (Y1, Y2),
where Y1 =

√
X2

1 +X2
2 and Y2 = X1/X2. Are Yi’s independent?

47. Let X1 and X2 be independent random variables and Y = X1 +X2.
Show that FY (y) =

∫
FX2(y − x)dFX1 (x).

48. Show that the Lebesgue p.d.f.’s given by (1.31) and (1.33) are the
p.d.f.’s of the χ2

n(δ) and Fn1,n2(δ) distributions, respectively.

49. Show that the Lebesgue p.d.f. given by (1.32) is the p.d.f. of the tn(δ)
distribution.

50. Let X = Nn(µ, In) and A be an n× n symmetric matrix. Show that
if XτAX has the χ2

r(δ) distribution, then A2 = A, r is the rank of A,
and δ = µτAµ.

51. Let X = Nn(µ, In). Apply Cochran’s theorem (Theorem 1.5) to show
that ifA2 = A, thenXτAX has the noncentral chi-square distribution
χ2
r(δ), where A is an n×n symmetric matrix, r is the rank of A, and
δ = µτAµ.
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52. Let X1, ..., Xn be independent and Xi = N(0, σ2
i ), i = 1, ..., n. Let

X̃ =
∑n
i=1 σ

−2
i Xi/

∑n
i=1 σ

−2
i and S̃2 =

∑n
i=1 σ

−2
i (Xi − X̃)2. Apply

Cochran’s theorem to show that X̃2 and S̃2 are independent and that
S̃2 has the chi-square distribution χ2

n−1.

53. Let X = Nn(µ, In) and Ai be an n × n symmetric matrix satisfying
A2
i = Ai, i = 1, 2. Show that a necessary and sufficient condition that

XτA1X and XτA2X are independent is A1A2 = 0.

54. Let X be a random variable and a > 0. Show that E|X |a <∞ if and
only if

∑∞
n=1 n

a−1P (|X | ≥ n) <∞.

55. Let X be a random variable. Show that
(a) if EX exists, then EX =

∫∞
0 P (X > x)dx−

∫ 0

−∞ P (X ≤ x)dx;

(b) if X has range {0, 1, 2, ...}, then EX =
∑∞
n=1 P (X ≥ n).

56. Let T be a random variable having the noncentral t-distribution tn(δ).
Show that
(a) E(T ) = δΓ((n− 1)/2)

√
n/2/Γ(n/2) when n > 1;

(b) Var(T ) = n(1+δ2)
n−2 − δ2n

2

[
Γ((n−1)/2)

Γ(n/2)

]2
when n > 2.

57. Let F be a random variable having the noncentral F-distribution
Fn1,n2(δ). Show that

(a) E(F) = n2(n1+δ)
n1(n2−2) when n2 > 2;

(b) Var(F) =
2n2

2[(n1+δ)
2+(n2−2)(n1+2δ)]

n2
1(n2−2)2(n2−4)

when n2 > 4.

58. Let X = Nk(µ,Σ) with a positive definite Σ.
(a) Show that EX = µ and Var(X) = Σ.
(b) Let A be an l × k matrix and B be an m× k matrix. Show that
AX and BX are independent if and only if AΣBτ = 0.
(c) Suppose that k = 2, X = (X1, X2), µ = 0, Var(X1) = Var(X2) =
1, and Cov(X1, X2) = ρ. Show that E(max{X1, X2}) =

√
(1 − ρ)/π.

59. Let X be a random variable and g and h be nondecreasing functions
on R. Show that Cov(g(X), h(X)) ≥ 0 when E|g(X)h(X)| <∞.

60. LetX be a random variable with EX2 <∞ and let Y = |X |. Suppose
that X has a Lebesgue p.d.f. symmetric about 0. Show that X and
Y are uncorrelated, but they are not independent.

61. Let (X,Y ) be a random 2-vector with the following Lebesgue p.d.f.:

f(x, y) =

{
π−1 x2 + y2 ≤ 1

0 x2 + y2 > 1.

Show that X and Y are uncorrelated, but are not independent.
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62. Show that inequality (1.41) holds and that when 0 < E|X |p <∞ and
0 < E|Y |q < ∞, the equality in (1.40) holds if and only if α|X |p =
β|Y |q a.s. for some nonzero constants α and β.

63. Prove the following inequalities.
(a) Liapounov’s inequality (1.42).
(b) Minkowski’s inequality (1.43). (Hint: apply Hölder’s inequality
to random variables |X + Y |p−1 and |X |.)
(c) (Cr-inequality). E|X+Y |r ≤ Cr(E|X |r+E|Y |r), where X and Y
are random variables, r is a positive constant, and Cr = 1 if 0 < r ≤ 1
and Cr = 2r−1 if r > 1.
(d) Let Xi be a random variable with E|Xi|p <∞, i = 1, ..., n, where
p is a constant larger than 1. Show that

E

∣∣∣∣
1

n

n∑

i=1

Xi

∣∣∣∣
p

≤ min

{
1

n

n∑

i=1

E|Xi|p,
[

1

n

n∑

i=1

(E|Xi|p)1/p
]p}

.

(e) Inequality (1.44). (Hint: prove the case of n = 2 first and then
use induction.)
(f) Inequality (1.49).

64. Show that the following functions of x are convex and discuss whether
they are strictly convex.
(a) |x− a|p, where p ≥ 1 and a ∈ R.
(b) x−p, x ∈ (0,∞), where p > 0.
(c) ecx, where c ∈ R.
(d) x log x, x ∈ (0,∞).
(e) g(ϕ(x)), x ∈ (a, b), where −∞ ≤ a < b ≤ ∞, ϕ is convex on (a, b),
and g is convex and nondecreasing on the range of ϕ.
(f) ϕ(x) =

∑k
i=1 ciϕi(xi), x = (x1, ..., xk) ∈ ∏k

i=1 Xi, where ci is a
positive constant and ϕi is convex on Xi, i = 1, ..., k.

65. Let X = Nk(µ,Σ) with a positive definite Σ.
(a) Show that the m.g.f. of X is et

τµ+tτ Σt/2.
(b) Show that EX = µ and Var(X) = Σ by applying (1.54).
(c) When k = 1 (Σ = σ2), show that EX = ψ′

X(0) = µ, EX2 =

ψ′′
X(0) = σ2 +µ2, EX3 = ψ

(3)
X (0) = 3σ2µ+µ3, and EX4 = ψ

(4)
X (0) =

3σ4 + 6σ2µ2 + µ4.
(d) In part (c), show that if µ = 0, then EXp = 0 when p is an odd
integer and EXp = (p−1)(p−3) · · · 3 ·1σp when p is an even integer.

66. Let X be a random variable having the gamma distribution Γ(α, γ).
Find moments EXp, p = 1, 2, ..., by differentiating the m.g.f. of X .

67. Let X be a random variable with finite EetX and Ee−tX for a t 6= 0.
Show that E|X |a <∞ for any a > 0.
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68. LetX be a random variable having ψX(t) <∞ for t in a neighborhood
of 0. Show that the moments and cumulants ofX satisfy the following
equations: µ1 = κ1, µ2 = κ2 + κ2

1, µ3 = κ3 + 3κ1κ2 + κ3
1, and

µ4 = κ4 + 3κ2
2 + 4κ1κ3 + 6κ2

1κ2 + κ4
1, where µi and κi are the ith

moment and cumulant of X , respectively.

69. LetX be a discrete random variable taking values 0,1,2.... The proba-
bility generating function of X is defined to be ρX(t) = E(tX). Show
that
(a) ρX(t) = ψX(log t), where ψX is the m.g.f. of X ;

(b) dpρX (t)
dtp

∣∣
t=1

= E[X(X − 1) · · · (X − p+1)] for any positive integer
p, if ρX is finite in a neighborhood of 1.

70. Let Y be a random variable having the noncentral chi-square distri-
bution χ2

k(δ). Show that

(a) the ch.f. of Y is (1 − 2
√
−1t)−k/2e

√
−1δt/(1−2

√
−1t);

(b) E(Y ) = k + δ and Var(Y ) = 2k + 4δ.

71. Let φ be a ch.f. on Rk. Show that |φ| ≤ 1 and φ is uniformly contin-
uous on Rk.

72. For a complex number z = a+
√
−1b, where a and b are real numbers,

z̄ is defined to be a−
√
−1b. Show that

∑n
i=1

∑n
j=1 φ(ti− tj)ziz̄j ≥ 0,

where φ is a ch.f. on Rk, t1, ..., tn are k-vectors, and z1, ..., zn are
complex numbers.

73. Show that the following functions of t ∈ R are ch.f.’s, where a > 0
and b > 0 are constants:
(a) a2/(a2 + t2);

(b) (1 + ab− abe
√
−1t)−1/b;

(c) max{1 − |t|/a, 0};
(d) 2(1 − cos at)/(a2t2);
(e) e−|t|a, where 0 < a ≤ 2;
(f) |φ|2, where φ is a ch.f. on R;
(g)

∫
φ(ut)dG(u), where φ is a ch.f. on R and G is a c.d.f. on R.

74. Let φn be the ch.f. of a probability measure Pn, n = 1, 2,.... Let {an}
be a sequence of nonnegative numbers with

∑∞
n=1 an = 1. Show that∑∞

n=1 anφn is a ch.f. and find its corresponding probability measure.

75. Let X be a random variable whose ch.f. φX satisfies
∫
|φX(t)|dt <∞.

Show that (2π)−1
∫
e−

√
−1xtφX(t)dt is the Lebesgue p.d.f. of X .

76. A random variable X or its distribution is of the lattice type if and
only if FX(x) =

∑∞
j=−∞ pjI{a+jd}(x), x ∈ R, where a, d, pj ’s are
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constants, d > 0, pj ≥ 0, and
∑∞

j=−∞ pj = 1. Show that X is of the
lattice type if and only if its ch.f. satisfies |φX(t)| = 1 for some t 6= 0.

77. Let φ be a ch.f. on R. Show that
(a) if |φ(t1)| = |φ(t2)| = 1 and t1/t2 is an irrational number, then

φ(t) = e
√
−1at for some constant a;

(b) if tn → 0, tn 6= 0, and |φ(tn)| = 1, then the result in (a) holds;
(c) | cos t| is not a ch.f., although cos t is a ch.f.

78. LetX1, ..., Xk be independent random variables and Y =X1+· · ·+Xk.
Prove the following statements, using Theorem 1.6 and result (1.58).
(a) If Xi has the binomial distribution Bi(p, ni), i = 1, ..., k, then Y
has the binomial distribution Bi(p, n1 + · · · + nk).
(b) If Xi has the Poisson distribution P (θi), i = 1, ..., k, then Y has
the Poisson distribution P (θ1 + · · · + θk).
(c) If Xi has the negative binomial distribution NB(p, ri), i = 1, ..., k,
then Y has the negative binomial distribution NB(p, r1 + · · · + rk).
(d) If Xi has the exponential distribution E(0, θ), i = 1, ..., k, then Y
has the gamma distribution Γ(k, θ).
(e) If Xi has the Cauchy distribution C(0, 1), i = 1, ..., k, then Y/k
has the same distribution as X1.

79. Find an example of two random variables X and Y such that X and
Y are not independent but their ch.f.’s satisfy φX(t)φY (t) = φX+Y (t)
for all t ∈ R.

80. Let X1, X2, ... be independent random variables having the exponen-
tial distribution E(0, θ). For given t > 0, let Y be the maximum of n
such that Tn ≤ t, where T0 = 0 and Tn = X1 + · · ·+Xn, n = 1, 2, ....
Show that Y has the Poisson distribution P (t/θ).

81. Let Σ be a k × k nonnegative definite matrix.
(a) For a nonsingular Σ, show that X is Nk(µ,Σ) if and only if cτX
is N(cτµ, cτΣc) for any c ∈ Rk.
(b) For a singular Σ, we define X to be Nk(µ,Σ) if and only if cτX is
N(cτµ, cτΣc) for any c ∈ Rk (N(a, 0) is the c.d.f. of the point mass
at a). Show that the results in Exercise 43(a)-(c), Exercise 58(a)-(b),
and Exercise 65(a) still hold for X = Nk(µ,Σ) with a singular Σ.

82. Let (X1, X2) be Nk(µ,Σ) with a k × k positive definite

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where X1 is a random l-vector and Σ11 is an l× l matrix. Show that
the conditional Lebesgue p.d.f. of X2 given X1 = x1 is

Nk−l
(
µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
,
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where µi = EXi, i = 1, 2. (Hint: consider X2−µ2−Σ21Σ
−1
11 (X1−µ1)

and X1 − µ1.)

83. Let X be an integrable random variable with a Lebesgue p.d.f. fX
and let Y = g(X), where g is a function with positive derivative on
(0,∞) and g(x) = g(−x). Find an expression for E(X |Y ) and verify
that it is indeed the conditional expectation.

84. Prove Lemma 1.2. (Hint: first consider simple functions.)

85. Prove Proposition 1.10. (Hint for proving (ix): first show that 0 ≤
X1 ≤ X2 ≤ · · · and Xn →a.s. X imply E(Xn|A) →a.s. E(X |A).)

86. Let X and Y be integrable random variables on (Ω,F , P ) and A ⊂ F
be a σ-field. Show that E[Y E(X |A)] = E[XE(Y |A)], assuming that
both integrals exist.

87. Let X,X1, X2, ... be a sequence of random variables on (Ω,F , P ) and
A ⊂ F be a σ-field. Suppose that E(XnY ) → E(XY ) for every inte-
grable (or bounded) random variable Y . Show that E[E(Xn|A)Y ] →
E[E(X |A)Y ] for every integrable (or bounded) random variable Y .

88. Let X be a nonnegative integrable random variable on (Ω,F , P ) and
A ⊂ F be a σ-field. Show that E(X |A) =

∫∞
0 P

(
X > t|A

)
dt a.s.

89. Let X and Y be random variables on (Ω,F , P ) and A ⊂ F be a σ-
field. Prove the following inequalities for conditional expectations.
(a) If E|X |p<∞ and E|Y |q<∞ for constants p and q with p>1 and
p−1 + q−1 = 1, then E(|XY ||A) ≤ [E(|X |p|A)]1/p[E(|Y |q|A)]1/q a.s.
(b) If E|X |p < ∞ and E|Y |p < ∞ for a constant p ≥ 1, then
[E(|X + Y |p|A)]1/p ≤ [E(|X |p|A)]1/p + [E(|Y |p|A)]1/p a.s.
(c) If f is a convex function on R, then f(E(X |A)) ≤ E[f(X)|A] a.s.

90. Let X and Y be random variables on a probability space with Y =
E(X |Y ) a.s. and let ϕ be a nondecreasing convex function on [0,∞).
(a) Show that if Eϕ(|X |) <∞, then Eϕ(|Y |) <∞.
(b) Find an example in which Eϕ(|Y |) <∞ but Eϕ(|X |) = ∞.
(c) Suppose that Eϕ(|X |) = Eϕ(|Y |) < ∞ and ϕ is strictly convex
and strictly increasing. Show that X = Y a.s.

91. LetX , Y , and Z be random variables on a probability space. Suppose
that E|X | <∞ and Y = h(Z) with a Borel h. Show that
(a) if X and Z are independent and E|Z| < ∞, then E(XZ|Y ) =
E(X)E(Z|Y ) a.s.;
(b) if E[f(X)|Z] = f(Y ) for all bounded continuous functions f on
R, then X = Y a.s.;
(c) if E[f(X)|Z] ≥ f(Y ) for all bounded, continuous, nondecreasing
functions f on R, then X ≥ Y a.s.
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92. Prove Lemma 1.3.

93. Show that random variables Xi, i = 1, ..., n, are independent accord-
ing to Definition 1.7 if and only if (1.7) holds with F being the joint
c.d.f. of Xi’s and Fi being the marginal c.d.f. of Xi.

94. Show that a random variable X is independent of itself if and only if
X is constant a.s. Can X and f(X) be independent for a Borel f?

95. Let X , Y , and Z be independent random variables on a probability
space and let U = X +Z and V = Y +Z. Show that given Z, U and
V are conditionally independent.

96. Show that the result in Proposition 1.11 may not be true if Y2 is
independent of X but not (X,Y1).

97. Let X and Y be independent random variables on a probability space.
Show that if E|X |a < ∞ for some a ≥ 1 and E|Y | < ∞, then
E|X + Y |a ≥ E|X + EY |a.

98. Let PY be a discrete distribution on {0, 1, 2, ...} and PX|Y=y be the
binomial distribution Bi(p, y). Let (X,Y ) be the random vector hav-
ing the joint c.d.f. given by (1.66). Show that
(a) if Y has the Poisson distribution P (θ), then the marginal distri-
bution of X is the Poisson distribution P (pθ);
(b) if Y +r has the negative binomial distribution NB(π, r), then the
marginal distribution of X + r is the negative binomial distribution
NB(π/[1 − (1 − p)(1 − π)], r).

99. Let X1, X2, ... be i.i.d. random variables and Y be a discrete random
variable taking positive integer values. Assume that Y and Xi’s are
independent. Let Z =

∑Y
i=1Xi.

(a) Obtain the ch.f. of Z.
(b) Show that EZ = EY EX1.
(c) Show that Var(Z) = EY Var(X1) + Var(Y )(EX1)

2.

100. LetX , Y , and Z be random variables having a positive joint Lebesgue
p.d.f. Let fX|Y (x|y) and fX|Y,Z(x|y, z) be respectively the condi-
tional p.d.f. of X given Y and the conditional p.d.f. of X given
(Y, Z), as defined by (1.61). Show that Var(1/fX|Y (X |Y )|X) ≤
Var(1/fX|Y,Z(X |Y, Z)|X) a.s., where Var(ξ|ζ) = E{[ξ − E(ξ|ζ)]2|ζ}
for any random variables ξ and ζ with Eξ2 <∞.

101. Let {Xn} be a Markov chain. Show that if g is a one-to-one Borel
function, then {g(Xn)} is also a Markov chain. Give an example to
show that {g(Xn)} may not be a Markov chain in general.
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102. A sequence of random vectors {Xn} is said to be a Markov chain of or-
der r for a positive integer r if P (B|X1, ..., Xn)=P (B|Xn−r+1, ..., Xn)
a.s. for any B ∈ σ(Xn+1) and n = r, r + 1, ....
(a) Let s > r be two positive integers. Show that if {Xn} is a Markov
chain of order r, then it is a Markov chain of order s.
(b) Let {Xn} be a sequence of random variables, r be a positive inte-
ger, and Yn = (Xn, Xn+1, ..., Xn+r−1). Show that {Yn} is a Markov
chain if and only if {Xn} is a Markov chain of order r.
(c) (Autoregressive process of order r). Let {εn} be a sequence of
independent random variables and r be a positive integer. Show that
{Xn} is a Markov chain of order r, where Xn =

∑r
j=1 ρjXn−j + εn

and ρj ’s are constants.

103. Show that if {Xn,Fn} is a martingale (or a submartingale), then
E(Xn+j |Fn) = Xn a.s. (or E(Xn+j |Fn) ≥ Xn a.s.) and EX1 = EXj

(or EX1 ≤ EX2 ≤ · · ·) for any j = 1, 2, ....

104. Show that {Xn} in Example 1.25 is a martingale.

105. Let {Xj} and {Zj} be sequences of random variables and let fn and
gn denote the Lebesgue p.d.f.’s of Yn = (X1, ..., Xn) and (Z1, ..., Zn),
respectively, n = 1, 2, .... Define λn = −gn(Yn)/fn(Yn)I{fn(Yn)>0},
n = 1, 2, .... Show that {λn} is a submartingale.

106. Let {Yn} be a sequence of independent random variables.
(a) Suppose that EYn = 0 for all n. Let X1 = Y1 and Xn+1 =
Xn + Yn+1hn(X1, ..., Xn), n ≥ 2, where {hn} is a sequence of Borel
functions. Show that {Xn} is a martingale.
(b) Suppose that EYn = 0 and Var(Yn) = σ2 for all n. Let Xn =
(
∑n
j=1 Yj)

2 − nσ2. Show that {Xn} is a martingale.
(c) Suppose that Yn > 0 and EYn = 1 for all n. Let Xn = Y1 · · ·Yn.
Show that {Xn} is a martingale.

107. Prove the claims in the proof of Proposition 1.14.

108. Show that every sequence of integrable random variables is the sum
of a supermartingale and a submartingale.

109. Let {Xn} be a martingale. Show that if {Xn} is bounded either above
or below, then supnE|Xn| <∞.

110. Let {Xn} be a martingale satisfying EX1 = 0 and EX2
n < ∞ for all

n. Show that E(Xn+m−Xn)
2 =

∑m
j=1 E(Xn+j −Xn+j−1)

2 and that
{Xn} converges a.s.

111. Show that {Xn} in Exercises 104, 105, and 106(c) converge a.s. to
integrable random variables.
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112. Prove Proposition 1.16.

113. In the proof of Lemma 1.4, show that {ω : limn→∞Xn(ω) = X(ω)} =
∩∞
j=1Aj .

114. Let {Xn} be a sequence of independent random variables. Show that
Xn →a.s. 0 if and only if, for any ǫ > 0,

∑∞
n=1 P (|Xn| ≥ ǫ) <∞.

115. Let X1, X2, ... be a sequence of identically distributed random vari-
ables with a finite E|X1| and let Yn = n−1 maxi≤n |Xi|. Show that
(a) Yn →L1 0;
(b) Yn →a.s. 0.

116. Let X,X1, X2, ... be random variables. Find an example for each of
the following cases:
(a) Xn →p X , but {Xn} does not converge to X a.s.
(b) Xn →p X , but {Xn} does not converge to X in Lp for any p > 0.
(c) Xn →d X , but {Xn} does not converge to X in probability (do
not use Example 1.26).
(d) Xn →p X , but {g(Xn)} does not converge to g(X) in probability
for some function g.

117. Let X1, X2, ... be random variables. Show that
(a) {|Xn|} is uniformly integrable if and only if supnE|Xn| <∞ and,
for any ǫ > 0, there is a δǫ > 0 such that supnE(|Xn|IA) < ǫ for any
event A with P (A) < δǫ;
(b) supnE|Xn|1+δ < ∞ for a δ > 0 implies that {|Xn|} is uniformly
integrable.

118. Let X,X1, X2, ... be random variables satisfying P (|Xn| ≥ c) ≤
P (|X | ≥ c) for all n and c > 0. Show that if E|X | < ∞, then
{|Xn|} is uniformly integrable.

119. Let X1, X2, ... and Y1, Y2, ... be random variables. Show that
(a) if {|Xn|} and {|Yn|} are uniformly integrable, then {|Xn+Yn|} is
uniformly integrable;
(b) if {|Xn|} is uniformly integrable, then {|n−1

∑n
i=1Xi|} is uni-

formly integrable.

120. Let Y be an integrable random variable and {Fn} be a sequence of
σ-fields. Show that {|E(Y |Fn)|} is uniformly integrable.

121. Let X,Y,X1, X2, ... be random variables satisfying Xn →p X and
P (|Xn| ≤ |Y |) = 1 for all n. Show that if E|Y |r <∞ for some r > 0,
then Xn →Lr X .

122. LetX1, X2, ... be a sequence of random k-vectors. Show thatXn →p 0
if and only if E[‖Xn‖/(1 + ‖Xn‖)] → 0.
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123. Let X , X1, X2, ... be random variables. Show that Xn →p X if and
only if, for any subsequence {nk} of integers, there is a further sub-
sequence {nj} ⊂ {nk} such that Xnj →a.s. X as j → ∞.

124. Let X1, X2, ... be a sequence of random variables satisfying |Xn| ≤ C1

and Var(Xn) ≥ C2 for all n, where Ci’s are positive constants. Show
that Xn →p 0 does not hold.

125. Prove Lemma 1.5. (Hint for part (ii): use Chebyshev’s inequality
to show that P (

∑∞
n=1 IAn = ∞) = 1, which can be shown to be

equivalent to the result in (ii).)

126. Prove part (vii) of Theorem 1.8.

127. Let X , X1, X2, ..., Y1, Y2, ..., Z1, Z2, ... be random variables. Prove
the following statements.
(a) If Xn →d X , then Xn = Op(1).
(b) If Xn = Op(Zn) and P (Yn = 0) = 0, then XnYn = Op(YnZn).
(c) If Xn = Op(Zn) and Yn = Op(Zn), then Xn + Yn = Op(Zn).
(d) If E|Xn| = O(an), then Xn = Op(an), where an ∈ (0,∞).
(e) If Xn →a.s. X , then supn |Xn| = Op(1).

128. Let {Xn} and {Yn} be two sequences of random variables such that
Xn = Op(1) and P (Xn ≤ t, Yn ≥ t+ǫ)+P (Xn ≥ t+ǫ, Yn ≤ t) = o(1)
for any fixed t ∈ R and ǫ > 0. Show that Xn − Yn = op(1).

129. Let {Fn} be a sequence of c.d.f.’s on R, Gn(x) = Fn(anx + cn), and
Hn(x) = Fn(bnx+dn), where {an} and {bn} are sequences of positive
numbers and {cn} and {dn} are sequences of real numbers. Suppose
that Gn →w G and Hn →w H , where G and H are nondegenerate
c.d.f.’s. Show that an/bn → a > 0, (cn − dn)/an → b ∈ R, and
H(ax+ b) = G(x) for all x ∈ R.

130. Let {Pn} be a sequence of probability measures on (R,B) and f be a
nonnegative Borel function such that supn

∫
fdPn <∞ and f(x) → 0

as |x| → ∞. Show that {Pn} is tight.

131. Let P, P1, P2, ... be probability measures on (Rk,Bk). Show that if
Pn(O) → P (O) for every open subset of R, then Pn(B) → P (B) for
every B ∈ Bk.

132. Let P, P1, P2, ... be probability measures on (R,B). Show that Pn →w

P if and only if there exists a dense subset D of R such that
limn→∞ Pn((a, b]) = P ((a, b]) for any a < b, a ∈ D and b ∈ D.

133. Let Fn, n = 0, 1, 2, ..., be c.d.f.’s such that Fn →w F0. Let Gn(U) =
sup{x : Fn(x) ≤ U}, n = 0, 1, 2, ..., where U is a random variable
having the uniform U(0, 1) distribution. Show thatGn(U) →p G0(U).
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134. Let P, P1, P2, ... be probability measures on (R,B). Suppose that
Pn →w P and {gn} is a sequence of bounded continuous functions on
R converging uniformly to g. Show that

∫
gndPn →

∫
gdP .

135. Let X,X1, X2, ... be random k-vectors and Y, Y1, Y2, ... be random l-
vectors. Suppose that Xn →d X , Yn →d Y , and Xn and Yn are
independent for each n. Show that (Xn, Yn) converges in distribution
to a random (k + l)-vector.

136. Let X1, X2, ... be independent random variables with P (Xn = ±2−n)
= 1

2 , n = 1, 2, .... Show that
∑n

i=1Xi →d U , where U has the uniform
distribution U(−1, 1).

137. Let {Xn} and {Yn} be two sequences of random variables. Suppose
that Xn →d X and that PYn|Xn=xn

→w PY almost surely for every
sequence of numbers {xn}, where X and Y are independent random
variables. Show that Xn + Yn →d X + Y .

138. Let X1, X2, ... be i.i.d. random variables having the ch.f. of the form
1− c|t|a+ o(|t|a) as t→ 0, where 0 < a ≤ 2. Determine the constants
b and u so that

∑n
i=1Xi/(bn

u) converges in distribution to a random
variable having ch.f. e−|t|a.

139. Let X,X1, X2, ... be random k-vectors and A1, A2, ... be events. Sup-
pose thatXn→dX . Show thatXnIAn →dX if and only if P (An) → 1.

140. Let Xn be a random variable having the N(µn, σ
2
n) distribution, n =

1, 2,..., and X be a random variable having the N(µ, σ2) distribution.
Show that Xn →d X if and only if µn → µ and σn → σ.

141. Suppose that Xn is a random variable having the binomial distribu-
tion Bi(pn, n). Show that if npn → θ > 0, then Xn →d X , where X
has the Poisson distribution P (θ).

142. Let fn be the Lebesgue p.d.f. of the t-distribution tn, n = 1, 2,....
Show that fn(x) → f(x) for any x ∈ R, where f is the Lebesgue
p.d.f. of the standard normal distribution.

143. Prove Theorem 1.10.

144. Show by example that Xn →d X and Yn →d Y does not necessarily
imply that g(Xn, Yn) →d g(X,Y ), where g is a continuous function.

145. Prove Theorem 1.11(ii)-(iii) and Theorem 1.12(ii). Extend Theorem
1.12(i) to the case where g is a function from Rp to Rq with 2 ≤ q ≤ p.

146. Let U1, U2, ... be i.i.d. random variables having the uniform distribu-

tion on [0, 1] and Yn = (
∏n
i=1 Ui)

−1/n
. Show that

√
n(Yn − e) →d

N(0, e2).
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147. Prove Lemma 1.6. (Hint: a−1
n

∑n
i=1 xi = bn−a−1

n

∑n−1
i=0 bi(ai+1−ai),

where bn =
∑n

i=1 xi/ai.)

148. In Theorem 1.13,
(a) prove (1.82) for bounded ci’s when E|X1| <∞;
(b) show that if EX1 = ∞, then n−1

∑n
i=1Xi →a.s. ∞;

(c) show that if E|X1| = ∞, then P (lim supn{|
∑n
i=1Xi| > cn}) =

P (lim supn{|Xn| > cn}) = 1 for any fixed positive constant c, and
lim supn |n−1

∑n
i=1Xi| = ∞ a.s.

149. Let X1, ..., Xn be i.i.d. random variables such that for x = 3, 4, ...,
P (X1 = ±x) = (2cx2 log x)−1, where c =

∑∞
x=3 x

−2/ log x. Show
that E|X1| = ∞ but n−1

∑n
i=1Xi →p 0, using Theorem 1.13(i).

150. Let X1, X2, ... be i.i.d. random variables satisfying P (X1 = 2j) = 2−j,
j = 1, 2, .... Show that the WLLN does not hold for {Xn}, i.e., (1.80)
does not hold for any {an}.

151. Let X1, X2, ... be independent random variables. Suppose that, as
n → ∞,

∑n
i=1 P (|Xi| > n) → 0 and n−2

∑n
i=1 E(X2

i I{|Xi|≤n}) →
0. Show that (Tn − bn)/n →p 0, where Tn =

∑n
i=1Xi and bn =∑n

i=1 E(XiI{|Xi|≤n}).

152. Let Tn =
∑n

i=1Xi, where Xn’s are independent random variables
satisfying P (Xn = ±nθ) = 0.5 and θ > 0 is a constant. Show that
(a) when θ < 0.5, Tn/n→a.s. 0;
(b) when θ ≥ 1, Tn/n→p 0 does not hold.

153. Let X2, X3, ... be a sequence of independent random variables satis-
fying P (Xn = ±

√
n/ logn) = 0.5. Show that (1.86) does not hold for

p ∈ [1, 2] but (1.88) is satisfied for p = 2 and, thus, (1.89) holds.

154. Let X1, ..., Xn be i.i.d. random variables with Var(X1) < ∞. Show
that [n(n+ 1)]−1

∑n
j=1 jXj →p EX1.

155. Let {Xn} be a sequence of random variables and let X̄ =
∑n

i=1Xi/n.
(a) Show that if Xn →a.s. 0, then X̄ →a.s. 0.
(b) Show that if Xn →Lr 0, then X̄ →Lr 0, where r ≥ 1 is a constant.
(c) Show that the result in (b) may not be true for r ∈ (0, 1).
(d) Show that Xn →p 0 may not imply X̄ →p 0.

156. Let X1, ..., Xn be random variables and {µn}, {σn}, {an}, and {bn}
be sequences of real numbers with σn ≥ 0 and an ≥ 0. Suppose that
Xn is asymptotically distributed as N(µn, σ

2
n). Show that anXn + bn

is asymptotically distributed as N(µn, σ
2
n) if and only if an → 1 and

[µn(an − 1) + bn]/σn → 0.
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157. Show that Liapounov’s condition (1.97) implies Lindeberg’s condition
(1.92).

158. Let X1, X2, ... be a sequence of independent random variables and
σ2
n = Var(

∑n
j=1Xj).

(a) Show that if Xn = N(0, 2−n), n = 1, 2, ..., then Feller’s condition
(1.96) does not hold but

∑n
j=1(Xj − EXj)/σn →d N(0, 1).

(b) Show that the result in (a) is still true if X1 has the uniform
distribution U(−1, 1) and Xn = N(0, 2n−1), n = 2, 3, ....

159. In Example 1.33, show that
(a) the condition σ2

n → ∞ is also necessary for (1.98);
(b) n−1

∑n
i=1(Xi − pi) →Lr 0 for any constant r > 0;

(c) n−1
∑n
i=1(Xi − pi) →a.s. 0.

160. Prove Corollary 1.3.

161. Suppose that Xn is a random variable having the binomial distribu-
tion Bi(θ, n), where 0 < θ < 1, n = 1, 2,.... Define Yn = log(Xn/n)
when Xn ≥ 1 and Yn = 1 when Xn = 0. Show that Yn →a.s. log θ
and

√
n(Yn − log θ) →d N

(
0, 1−θ

θ

)
. Establish similar results when

Xn has the Poisson distribution P (nθ).

162. Let X1, X2, ... be independent random variables such that Xj has the
uniform distribution on [−j, j], j = 1, 2,.... Show that Lindeberg’s
condition is satisfied and state the resulting CLT.

163. Let X1, X2, ... be independent random variables such that for j =
1, 2,..., P (Xj = ±ja)=6−1j−2(a−1) and P (Xj = 0)=1−3−1j−2(a−1),
where a > 1 is a constant. Show that Lindeberg’s condition is satisfied
if and only if a < 1.5.

164. Let X1, X2, ... be independent random variables with P (Xj = ±ja) =
P (Xj = 0) = 1/3, where a > 0, j = 1, 2,.... Can we apply Theorem
1.15 to {Xj} by checking Liapounov’s condition (1.97)?

165. Let {Xn} be a sequence of independent random variables. Suppose
that

∑n
j=1(Xj − EXj)/σn →d N(0, 1), where σ2

n = Var(
∑n

j=1Xj).

Show that n−1
∑n

j=1(Xj − EXj) →p 0 if and only if σn = o(n).

166. Consider Exercise 152. Show that Tn/
√

Var(Tn) →d N(0, 1) and,
when 0.5 ≤ θ < 1, Tn/n→p 0 does not hold.

167. Prove (1.102)-(1.104).

168. In Example 1.34, prove σ2
h = 1 for

√
n(X̄ − µ)/σ̂ and

√
n(σ̂2 − σ2)/τ̂

and derive the expressions for p1(x) in all four cases.



Chapter 2

Fundamentals of Statistics

This chapter discusses some fundamental concepts of mathematical statis-
tics. These concepts are essential for the material in later chapters.

2.1 Populations, Samples, and Models

A typical statistical problem can be described as follows. One or a series of
random experiments is performed; some data from the experiment(s) are
collected; and our task is to extract information from the data, interpret
the results, and draw some conclusions. In this book we do not consider
the problem of planning experiments and collecting data, but concentrate
on statistical analysis of the data, assuming that the data are given.

A descriptive data analysis can be performed to obtain some summary
measures of the data, such as the mean, median, range, standard devia-
tion, etc., and some graphical displays, such as the histogram and box-
and-whisker diagram, etc. (see, e.g., Hogg and Tanis (1993)). Although
this kind of analysis is simple and requires almost no assumptions, it may
not allow us to gain enough insight into the problem. We focus on more
sophisticated methods of analyzing data: statistical inference and decision
theory.

2.1.1 Populations and samples

In statistical inference and decision theory, the data set is viewed as a real-
ization or observation of a random element defined on a probability space
(Ω,F , P ) related to the random experiment. The probability measure P is
called the population. The data set or the random element that produces

91
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the data is called a sample from P . The size of the data set is called the
sample size. A population P is known if and only if P (A) is a known value
for every event A ∈ F . In a statistical problem, the population P is at least
partially unknown and we would like to deduce some properties of P based
on the available sample.

Example 2.1 (Measurement problems). To measure an unknown quan-
tity θ (for example, a distance, weight, or temperature), n measurements,
x1, ..., xn, are taken in an experiment of measuring θ. If θ can be measured
without errors, then xi = θ for all i; otherwise, each xi has a possible mea-
surement error. In descriptive data analysis, a few summary measures may
be calculated, for example, the sample mean

x̄ =
1

n

n∑

i=1

xi

and the sample variance

s2 =
1

n− 1

n∑

i=1

(xi − x̄)
2
.

However, what is the relationship between x̄ and θ? Are they close (if
not equal) in some sense? The sample variance s2 is clearly an average of
squared deviations of xi’s from their mean. But, what kind of information
does s2 provide? Finally, is it enough to just look at x̄ and s2 for the purpose
of measuring θ? These questions cannot be answered in descriptive data
analysis.

In statistical inference and decision theory, the data set, (x1, ..., xn), is
viewed as an outcome of the experiment whose sample space is Ω = Rn.
We usually assume that the n measurements are obtained in n indepen-
dent trials of the experiment. Hence, we can define a random n-vector
X = (X1, ..., Xn) on

∏n
i=1(R,B, P ) whose realization is (x1, ..., xn). The

population in this problem is P (note that the product probability measure
is determined by P ) and is at least partially unknown. The random vector
X is a sample and n is the sample size. Define

X̄ =
1

n

n∑

i=1

Xi (2.1)

and

S2 =
1

n− 1

n∑

i=1

(
Xi − X̄

)2
. (2.2)

Then X̄ and S2 are random variables that produce x̄ and s2, respectively.
Questions raised previously can be answered if some assumptions are im-
posed on the population P , which are discussed later.
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When the sample (X1, ..., Xn) has i.i.d. components, which is often the
case in applications, the population is determined by the marginal distri-
bution of Xi.

Example 2.2 (Life-time testing problems). Let x1, ..., xn be observed life-
times of some electronic components. Again, in statistical inference and
decision theory, x1, ..., xn are viewed as realizations of independent random
variables X1, ..., Xn. Suppose that the components are of the same type
so that it is reasonable to assume that X1, ..., Xn have a common marginal
c.d.f. F . Then the population is F , which is often unknown. A quantity of
interest in this problem is 1 − F (t) with a t > 0, which is the probability
that a component does not fail at time t. It is possible that all xi’s are
smaller (or larger) than t. Conclusions about 1− F (t) can be drawn based
on data x1, ..., xn when certain assumptions on F are imposed.

Example 2.3 (Survey problems). A survey is often conducted when one is
not able to evaluate all elements in a collection P = {y1, ..., yN} containing
N values in Rk, where k and N are finite positive integers but N may be
very large. Suppose that the quantity of interest is the population total
Y =

∑N
i=1 yi. In a survey, a subset s of n elements are selected from

{1, ..., N} and values yi, i ∈ s, are obtained. Can we draw some conclusion
about Y based on data yi, i ∈ s?

How do we define some random variables that produce the survey data?
First, we need to specify how s is selected. A commonly used probability
sampling plan can be described as follows. Assume that every element in
{1, ..., N} can be selected at most once, i.e., we consider sampling without
replacement. Let S be the collection of all subsets of n distinct elements
from {1, ..., N}, Fs be the collection of all subsets of S, and p be a probabil-
ity measure on (S,Fs). Any s ∈ S is selected with probability p(s). Note
that p(s) is a known value whenever s is given. Let X1, ..., Xn be random
variables such that

P (X1 = yi1 , ..., Xn = yin) =
p(s)

n!
, s = {i1, ..., in} ∈ S. (2.3)

Then (yi, i ∈ s) can be viewed as a realization of the sample (X1, ..., Xn).
If p(s) is constant, then the sampling plan is called the simple random
sampling (without replacement) and (X1, ..., Xn) is called a simple random
sample. Although X1, ..., Xn are identically distributed, they are not nec-
essarily independent. Thus, unlike in the previous two examples, the pop-
ulation in this problem may not be specified by the marginal distributions
of Xi’s. The population is determined by P and the known selection prob-
ability measure p. For this reason, P is often treated as the population.
Conclusions about Y and other characteristics of P can be drawn based on
data yi, i ∈ s, which are discussed later.
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2.1.2 Parametric and nonparametric models

A statistical model (a set of assumptions) on the population P in a given
problem is often postulated to make the analysis possible or easy. Although
testing the correctness of postulated models is part of statistical inference
and decision theory, postulated models are often based on knowledge of the
problem under consideration.

Definition 2.1. A set of probability measures Pθ on (Ω,F) indexed by a
parameter θ ∈ Θ is said to be a parametric family if and only if Θ ⊂ Rd for
some fixed positive integer d and each Pθ is a known probability measure
when θ is known. The set Θ is called the parameter space and d is called
its dimension.

A parametric model refers to the assumption that the population P is
in a given parametric family. A parametric family {Pθ : θ ∈ Θ} is said to
be identifiable if and only if θ1 6= θ2 and θi ∈ Θ imply Pθ1 6= Pθ2 . In most
cases an identifiable parametric family can be obtained through reparame-
terization. Hence, we assume in what follows that every parametric family
is identifiable unless otherwise stated.

Let P be a family of populations and ν be a σ-finite measure on (Ω,F).
If P ≪ ν for all P ∈ P , then P is said to be dominated by ν, in which case P
can be identified by the family of densities { dP

dν : P ∈ P} (or { dPθ

dν : θ ∈ Θ}
for a parametric family).

Many examples of parametric families can be obtained from Tables 1.1
and 1.2 in §1.3.1. All parametric families from Tables 1.1 and 1.2 are
dominated by the counting measure or the Lebesgue measure on R.

Example 2.4 (The k-dimensional normal family). Consider the normal
distribution Nk(µ,Σ) given by (1.24) for a fixed positive integer k. An im-
portant parametric family in statistics is the family of normal distributions

P = {Nk(µ,Σ) : µ ∈ Rk, Σ ∈ Mk},

where Mk is a collection of k×k symmetric positive definite matrices. This
family is dominated by the Lebesgue measure on Rk.

In the measurement problem described in Example 2.1, Xi’s are often
i.i.d. from the N(µ, σ2) distribution. Hence, we can impose a parametric
model on the population, i.e., P ∈ P = {N(µ, σ2) : µ ∈ R, σ2 > 0}.

The normal parametric model is perhaps not a good model for the life-
time testing problem described in Example 2.2, since clearly Xi ≥ 0 for
all i. In practice, the normal family {N(µ, σ2) : µ ∈ R, σ2 > 0} can
be used for a life-time testing problem if one puts some restrictions on µ
and σ so that P (Xi < 0) is negligible. Common parametric models for
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life-time testing problems are the exponential model (containing the expo-
nential distributions E(0, θ) with an unknown parameter θ; see Table 1.2
in §1.3.1), the gamma model (containing the gamma distributions Γ(α, γ)
with unknown parameters α and γ), the log-normal model (containing the
log-normal distributions LN(µ, σ2) with unknown parameters µ and σ), the
Weibull model (containing the Weibull distributionsW (α, θ) with unknown
parameters α and θ), and any subfamilies of these parametric families (e.g.,
a family containing the gamma distributions with one known parameter and
one unknown parameter).

The normal family is often not a good choice for the survey problem
discussed in Example 2.3.

In a given problem, a parametric model is not useful if the dimension
of Θ is very high. For example, the survey problem described in Example
2.3 has a natural parametric model, since the population P can be indexed
by the parameter θ = (y1, ..., yN). If there is no restriction on the y-values,
however, the dimension of the parameter space is kN , which is usually much
larger than the sample size n. If there are some restrictions on the y-values
(for example, yi’s are nonnegative integers no larger than a fixed integer
m), then the dimension of the parameter space is at most m + 1 and the
parametric model becomes useful.

A family of probability measures is said to be nonparametric if it is not
parametric according to Definition 2.1. A nonparametric model refers to the
assumption that the population P is in a given nonparametric family. There
may be almost no assumption on a nonparametric family, for example, the
family of all probability measures on (Rk,Bk). But in many applications,
we may use one or a combination of the following assumptions to form a
nonparametric family on (Rk,Bk):
(1) The joint c.d.f.’s are continuous.

(2) The joint c.d.f.’s have finite moments of order ≤ a fixed integer.

(3) The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).

(4) k = 1 and the c.d.f.’s are symmetric.

For instance, in Example 2.1, we may assume a nonparametric model
with symmetric and continuous c.d.f.’s. The symmetry assumption may
not be suitable for the population in Example 2.2, but the continuity as-
sumption seems to be reasonable.

In statistical inference and decision theory, methods designed for para-
metric models are called parametric methods, whereas methods designed
for nonparametric models are called nonparametric methods. However,
nonparametric methods are used in a parametric model when paramet-
ric methods are not effective, such as when the dimension of the parameter
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space is too high (Example 2.3). On the other hand, parametric methods
may be applied to a semi-parametric model, which is a nonparametric model
having a parametric component. Some examples are provided in §5.1.4.

2.1.3 Exponential and location-scale families

In this section, we discuss two types of parametric families that are of
special importance in statistical inference and decision theory.

Definition 2.2 (Exponential families). A parametric family {Pθ : θ ∈ Θ}
dominated by a σ-finite measure ν on (Ω,F) is called an exponential family
if and only if

dPθ
dν

(ω) = exp
{
[η(θ)]τT (ω) − ξ(θ)

}
h(ω), ω ∈ Ω, (2.4)

where exp{x} = ex, T is a random p-vector with a fixed positive integer p,
η is a function from Θ to Rp, h is a nonnegative Borel function on (Ω,F),
and ξ(θ) = log

{∫
Ω

exp{[η(θ)]τT (ω)}h(ω)dν(ω)
}
.

In Definition 2.2, T and h are functions of ω only, whereas η and ξ
are functions of θ only. Ω is usually Rk. The representation (2.4) of an
exponential family is not unique. In fact, any transformation η̃(θ) = Dη(θ)
with a p × p nonsingular matrix D gives another representation (with T
replaced by T̃ = (Dτ )−1T ). A change of the measure that dominates the
family also changes the representation. For example, if we define λ(A) =∫
A
hdν for any A ∈ F , then we obtain an exponential family with densities

dPθ
dλ

(ω) = exp
{
[η(θ)]τT (ω) − ξ(θ)

}
. (2.5)

In an exponential family, consider the reparameterization η = η(θ) and

fη(ω) = exp
{
ητT (ω)− ζ(η)

}
h(ω), ω ∈ Ω, (2.6)

where ζ(η) = log
{∫

Ω exp{ητT (ω)}h(ω)dν(ω)
}
. This is the canonical form

for the family, which is not unique for the reasons discussed previously. The
new parameter η is called the natural parameter. The new parameter space
Ξ = {η(θ) : θ ∈ Θ}, a subset of Rp, is called the natural parameter space.
An exponential family in canonical form is called a natural exponential
family. If there is an open set contained in the natural parameter space of
an exponential family, then the family is said to be of full rank.

Example 2.5. Let Pθ be the binomial distribution Bi(θ, n) with param-
eter θ, where n is a fixed positive integer. Then {Pθ : θ ∈ (0, 1)} is an
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exponential family, since the p.d.f. of Pθ w.r.t. the counting measure is

fθ(x) = exp
{
x log θ

1−θ + n log(1 − θ)
}(n

x

)
I{0,1,...,n}(x)

(T (x)=x, η(θ)=log θ
1−θ , ξ(θ)=−n log(1− θ), and h(x)=

(
n
x

)
I{0,1,...,n}(x)).

If we let η = log θ
1−θ , then Ξ = R and the family with p.d.f.’s

fη(x) = exp {xη − n log(1 + eη)}
(
n

x

)
I{0,1,...,n}(x)

is a natural exponential family of full rank.

Example 2.6. The normal family {N(µ, σ2) : µ ∈ R, σ > 0} is an
exponential family, since the Lebesgue p.d.f. of N(µ, σ2) can be written as

1√
2π

exp

{
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log σ

}
.

Hence, T (x) = (x,−x2), η(θ) =
(
µ
σ2 ,

1
2σ2

)
, θ = (µ, σ2), ξ(θ) = µ2

2σ2 + log σ,

and h(x) = 1/
√

2π. Let η = (η1, η2) =
(
µ
σ2 ,

1
2σ2

)
. Then Ξ = R × (0,∞)

and we can obtain a natural exponential family of full rank with ζ(η) =
η2
1/(4η2) + log(1/

√
2η2).

A subfamily of the previous normal family, {N(µ, µ2) : µ ∈ R, µ 6= 0},
is also an exponential family with the natural parameter η =

(
1
µ ,

1
2µ2

)
and

natural parameter space Ξ = {(x, y) : y = 2x2, x ∈ R, y > 0}. This
exponential family is not of full rank.

For an exponential family, (2.5) implies that there is a nonzero measure
λ such that

dPθ
dλ

(ω) > 0 for all ω and θ. (2.7)

We can use this fact to show that a family of distributions is not an expo-
nential family. For example, consider the family of uniform distributions,
i.e., Pθ is U(0, θ) with an unknown θ ∈ (0,∞). If {Pθ : θ ∈ (0,∞)} is an
exponential family, then from the previous discussion we have a nonzero
measure λ such that (2.7) holds. For any t > 0, there is a θ < t such that
Pθ([t,∞)) = 0, which with (2.7) implies that λ([t,∞)) = 0. Also, for any
t ≤ 0, Pθ((−∞, t]) = 0, which with (2.7) implies that λ((−∞, t]) = 0. Since
t is arbitrary, λ ≡ 0. This contradiction implies that {Pθ : θ ∈ (0,∞)}
cannot be an exponential family.

The reader may verify which of the parametric families from Tables
1.1 and 1.2 are exponential families. As another example, we consider an
important exponential family containing multivariate discrete distributions.
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Example 2.7 (The multinomial family). Consider an experiment having
k + 1 possible outcomes with pi as the probability for the ith outcome,
i = 0, 1, ..., k,

∑k
i=0 pi = 1. In n independent trials of this experiment, let

Xi be the number of trials resulting in the ith outcome, i = 0, 1, ..., k. Then
the joint p.d.f. (w.r.t. counting measure) of (X0, X1, ..., Xk) is

fθ(x0, x1, ..., xk) =
n!

x0!x1! · · ·xk!
px0
0 px1

1 · · · pxk

k IB(x0, x1, ..., xk),

where B = {(x0, x1, ..., xk) : xi’s are integers ≥ 0,
∑k
i=0 xi = n} and θ =

(p0, p1, ..., pk). The distribution of (X0, X1, ..., Xk) is called the multinomial
distribution, which is an extension of the binomial distribution. In fact,
the marginal c.d.f. of each Xi is the binomial distribution Bi(pi, n). Let

Θ = {θ ∈ Rk+1 : 0 < pi < 1,
∑k
i=0 pi = 1}. The parametric family

{fθ : θ ∈ Θ} is called the multinomial family. Let x = (x0, x1, ..., xk),
η = (log p0, log p1, ..., log pk), and h(x) = [n!/(x0!x1! · · ·xk!)]IB(x). Then

fθ(x0, x1, ..., xk) = exp {ητx} h(x), x ∈ Rk+1. (2.8)

Hence, the multinomial family is a natural exponential family with natural
parameter η. However, representation (2.8) does not provide an exponential
family of full rank, since there is no open set of Rk+1 contained in the
natural parameter space. A reparameterization leads to an exponential
family with full rank. Using the fact that

∑k
i=0Xi = n and

∑k
i=0 pi = 1,

we obtain that

fθ(x0, x1, ..., xk) = exp {ητ∗x∗ − ζ(η∗)}h(x), x ∈ Rk+1, (2.9)

where x∗ = (x1, ..., xk), η∗ = (log(p1/p0), ..., log(pk/p0)), and ζ(η∗) =
−n log p0. The η∗-parameter space is Rk. Hence, the family of densities
given by (2.9) is a natural exponential family of full rank.

If X1, ..., Xm are independent random vectors with p.d.f.’s in exponen-
tial families, then the p.d.f. of (X1, ..., Xm) is again in an exponential family.
The following result summarizes some other useful properties of exponential
families. Its proof can be found in Lehmann (1986).

Theorem 2.1. Let P be a natural exponential family given by (2.6).
(i) Let T = (Y, U) and η = (ϑ, ϕ), where Y and ϑ have the same dimension.
Then, Y has the p.d.f.

fη(y) = exp{ϑτy − ζ(η)}
w.r.t. a σ-finite measure depending on ϕ. In particular, T has a p.d.f. in a
natural exponential family. Furthermore, the conditional distribution of Y
given U = u has the p.d.f. (w.r.t. a σ-finite measure depending on u)

fϑ,u(y) = exp{ϑτy − ζu(ϑ)},
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which is in a natural exponential family indexed by ϑ.
(ii) If η0 is an interior point of the natural parameter space, then the m.g.f.
ψη0 of Pη0 ◦ T−1 is finite in a neighborhood of 0 and is given by

ψη0(t) = exp{ζ(η0 + t) − ζ(η0)}.

Furthermore, if f is a Borel function satisfying
∫
|f |dPη0 < ∞, then the

function ∫
f(ω) exp{ητT (ω)}h(ω)dν(ω)

is infinitely often differentiable in a neighborhood of η0, and the derivatives
may be computed by differentiation under the integral sign.

Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that
the m.g.f. of the binomial distribution Bi(p, n) is

ψη(t) = exp{n log(1 + eη+t) − n log(1 + eη)}

=

(
1 + eηet

1 + eη

)n

= (1 − p+ pet)n,

since p = eη/(1 + eη).

Definition 2.3 (Location-scale families). Let P be a known probability
measure on (Rk,Bk), V ⊂ Rk, and Mk be a collection of k × k symmetric
positive definite matrices. The family

{P(µ,Σ) : µ ∈ V , Σ ∈ Mk} (2.10)

is called a location-scale family (on Rk), where

P(µ,Σ)(B) = P
(
Σ−1/2(B − µ)

)
, B ∈ Bk,

Σ−1/2(B−µ) = {Σ−1/2(x−µ) : x ∈ B} ⊂ Rk, and Σ−1/2 is the inverse of
the “square root” matrix Σ1/2 satisfying Σ1/2Σ1/2 = Σ. The parameters µ
and Σ1/2 are called the location and scale parameters, respectively.

The following are some important examples of location-scale families.
The family {P(µ,Ik) : µ ∈ Rk} is called a location family, where Ik is
the k × k identity matrix. The family {P(0,Σ) : Σ ∈ Mk} is called a
scale family. In some cases, we consider a location-scale family of the form
{P(µ,σ2Ik) : µ ∈ Rk, σ > 0}. If X1, ..., Xk are i.i.d. with a common dis-
tribution in the location-scale family {P(µ,σ2) : µ ∈ R, σ > 0}, then the
joint distribution of the vector (X1, ..., Xk) is in the location-scale family
{P(µ,σ2Ik) : µ ∈ V , σ > 0} with V = {(x, ..., x) ∈ Rk : x ∈ R}.
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A location-scale family can be generated as follows. Let X be a random
k-vector having a distribution P . Then the distribution of Σ1/2X + µ is
P(µ,Σ). On the other hand, if X is a random k-vector whose distribution is
in the location-scale family (2.10), then the distribution DX + c is also in
the same family, provided that Dµ+ c ∈ V and DΣDτ ∈ Mk.

Let F be the c.d.f. of P . Then the c.d.f. of P(µ,Σ) is F
(
Σ−1/2(x − µ)

)
,

x ∈ Rk. If F has a Lebesgue p.d.f. f , then the Lebesgue p.d.f. of P(µ,Σ) is

Det(Σ−1/2)f
(
Σ−1/2(x− µ)

)
, x ∈ Rk (Proposition 1.8).

Many families of distributions in Table 1.2 (§1.3.1) are location, scale, or
location-scale families. For example, the family of exponential distributions
E(a, θ) is a location-scale family on R with location parameter a and scale
parameter θ; the family of uniform distributions U(0, θ) is a scale family on
R with a scale parameter θ. The k-dimensional normal family discussed in
Example 2.4 is a location-scale family on Rk.

2.2 Statistics, Sufficiency, and Completeness

Let us assume now that our data set is a realization of a sample X (a
random vector) from an unknown population P on a probability space.

2.2.1 Statistics and their distributions

A measurable function of X , T (X), is called a statistic if T (X) is a known
value whenever X is known, i.e., the function T is a known function. Sta-
tistical analyses are based on various statistics, for various purposes. Of
course, X itself is a statistic, but it is a trivial statistic. The range of a
nontrivial statistic T (X) is usually simpler than that of X . For example,
X may be a random n-vector and T (X) may be a random p-vector with a
p much smaller than n. This is desired since T (X) simplifies the original
data.

From a probabilistic point of view, the “information” within the statistic
T (X) concerning the unknown distribution of X is contained in the σ-
field σ(T (X)). To see this, assume that S is any other statistic for which
σ(S(X)) = σ(T (X)). Then, by Lemma 1.2, S is a measurable function of
T , and T is a measurable function of S. Thus, once the value of S (or T ) is
known, so is the value of T (or S). That is, it is not the particular values
of a statistic that contain the information, but the generated σ-field of the
statistic. Values of a statistic may be important for other reasons.

Note that σ(T (X)) ⊂ σ(X) and the two σ-fields are the same if and
only if T is one-to-one. Usually σ(T (X)) simplifies σ(X), i.e., a statistic
provides a “reduction” of the σ-field.
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Any T (X) is a random element. If the distribution of X is unknown,
then the distribution of T may also be unknown, although T is a known
function. Finding the form of the distribution of T is one of the major
problems in statistical inference and decision theory. Since T is a transfor-
mation of X , tools we learn in Chapter 1 for transformations may be useful
in finding the distribution or an approximation to the distribution of T (X).

Example 2.8. Let X1, ..., Xn be i.i.d. random variables having a common
distribution P and X = (X1, ..., Xn). The sample mean X̄ and sample
variance S2 defined in (2.1) and (2.2), respectively, are two commonly used
statistics. Can we find the joint or the marginal distributions of X̄ and S2?
It depends on how much we know about P .

First, let us consider the moments of X̄ and S2. Assume that P has a
finite mean denoted by µ. Then

EX̄ = µ.

If P is in a parametric family {Pθ : θ ∈ Θ}, then EX̄ =
∫
xdPθ = µ(θ)

for some function µ(·). Even if the form of µ is known, µ(θ) may still be
unknown when θ is unknown. Assume now that P has a finite variance
denoted by σ2. Then

Var(X̄) = σ2/n,

which equals σ2(θ)/n for some function σ2(·) if P is in a parametric family.
With a finite σ2 = Var(X1), we can also obtain that

ES2 = σ2.

With a finite E|X1|3, we can obtain E(X̄)3 and Cov(X̄, S2), and with a
finite E|X1|4, we can obtain Var(S2) (exercise).

Next, consider the distribution of X̄. If P is in a parametric family, we
can often find the distribution of X̄. See Example 1.20 and some exercises
in §1.6. For example, X̄ is N(µ, σ2/n) if P is N(µ, σ2); nX̄ has the gamma
distribution Γ(n, θ) if P is the exponential distribution E(0, θ). If P is not
in a parametric family, then it is usually hard to find the exact form of the
distribution of X̄. One can, however, use the CLT (§1.5.4) to obtain an
approximation to the distribution of X̄ . Applying Corollary 1.2 (for the
case of k = 1), we obtain that

√
n(X̄ − µ) →d N(0, σ2)

and, by (1.100), the distribution of X̄ can be approximated by N(µ, σ2/n),
where µ and σ2 are the mean and variance of P , respectively, and are
assumed to be finite.

Compared to X̄, the distribution of S2 is harder to obtain. Assuming
that P is N(µ, σ2), one can show that (n − 1)S2/σ2 has the chi-square
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distribution χ2
n−1 (see Example 2.18). An approximate distribution for

S2 can be obtained from the approximate joint distribution of X̄ and S2

discussed next.

Under the assumption that P is N(µ, σ2), it can be shown that X̄
and S2 are independent (Example 2.18). Hence, the joint distribution of
(X̄, S2) is the product of the marginal distributions of X̄ and S2 given in the
previous discussion. Without the normality assumption, an approximate
joint distribution can be obtained as follows. Assume again that µ = EX1,
σ2 = Var(X1), and E|X1|4 are finite. Let Yi = (Xi − µ, (Xi − µ)2), i =
1, ..., n. Then Y1, ..., Yn are i.i.d. random 2-vectors with EY1 = (0, σ2) and
variance-covariance matrix

Σ =

(
σ2 E(X1 − µ)3

E(X1 − µ)3 E(X1 − µ)4 − σ4

)
.

Note that Ȳ = n−1
∑n

i=1 Yi = (X̄−µ, S̃2), where S̃2 = n−1
∑n

i=1(Xi−µ)2.
Applying the CLT (Corollary 1.2) to Yi’s, we obtain that

√
n(X̄ − µ, S̃2 − σ2) →d N2(0,Σ).

Since
S2 =

n

n− 1

[
S̃2 − (X̄ − µ)2

]

and X̄ →a.s. µ (the SLLN, Theorem 1.13), an application of Slutsky’s
theorem (Theorem 1.11) leads to

√
n(X̄ − µ, S2 − σ2) →d N2(0,Σ).

Example 2.9 (Order statistics). Let X = (X1, ..., Xn) with i.i.d. random
components and let X(i) be the ith smallest value of X1, ..., Xn. The statis-
tics X(1), ..., X(n) are called the order statistics, which is a set of very useful
statistics in addition to the sample mean and variance in the previous ex-
ample. Suppose that Xi has a c.d.f. F having a Lebesgue p.d.f. f . Then
the joint Lebesgue p.d.f. of X(1), ..., X(n) is

g(x1, x2, ..., xn) =

{
n!f(x1)f(x2) · · · f(xn) x1 < x2 < · · · < xn
0 otherwise.

The joint Lebesgue p.d.f. of X(i) and X(j), 1 ≤ i < j ≤ n, is

gi,j(x, y) =

{
n![F (x)]i−1[F (y)−F (x)]j−i−1[1−F (y)]n−jf(x)f(y)

(i−1)!(j−i−1)!(n−j)! x < y

0 otherwise

and the Lebesgue p.d.f. of X(i) is

gi(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1[1 − F (x)]n−if(x).
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2.2.2 Sufficiency and minimal sufficiency

Having discussed the reduction of the σ-field σ(X) by using a statistic
T (X), we now ask whether such a reduction results in any loss of infor-
mation concerning the unknown population. If a statistic T (X) is fully as
informative as the original sample X , then statistical analyses can be done
using T (X) that is simpler than X . The next concept describes what we
mean by fully informative.

Definition 2.4 (Sufficiency). Let X be a sample from an unknown pop-
ulation P ∈ P , where P is a family of populations. A statistic T (X) is
said to be sufficient for P ∈ P (or for θ ∈ Θ when P = {Pθ : θ ∈ Θ} is a
parametric family) if and only if the conditional distribution of X given T
is known (does not depend on P or θ).

Definition 2.4 can be interpreted as follows. Once we observe X and
compute a sufficient statistic T (X), the original data X do not contain any
further information concerning the unknown population P (since its con-
ditional distribution is unrelated to P ) and can be discarded. A sufficient
statistic T (X) contains all information about P contained in X (see Ex-
ercise 36 in §3.6 for an interpretation of this from another viewpoint) and
provides a reduction of the data if T is not one-to-one. Thus, one of the
questions raised in Example 2.1 can be answered as follows: it is enough to
just look at x̄ and s2 for the problem of measuring θ if (X̄, S2) is sufficient
for P (or θ when θ is the only unknown parameter).

The concept of sufficiency depends on the given family P . If T is suffi-
cient for P ∈ P , then T is also sufficient for P ∈ P0 ⊂ P but not necessarily
sufficient for P ∈ P1 ⊃ P .

Example 2.10. Suppose that X = (X1, ..., Xn) and X1, ..., Xn are i.i.d.
from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

fθ(z) = θz(1 − θ)1−zI{0,1}(z), z ∈ R, θ ∈ (0, 1).

For any realization x of X , x is a sequence of n ones and zeros. Consider
the statistic T (X) =

∑n
i=1Xi, which is the number of ones in X . Before

showing that T is sufficient, we can intuitively argue that T contains all
information about θ, since θ is the probability of an occurrence of a one
in x. Given T = t (the number of ones in x), what is left in the data set
x is the redundant information about the positions of t ones. Since the
random variables are discrete, it is not difficult to compute the conditional
distribution of X given T = t. Note that

P (X = x|T = t) =
P (X = x, T = t)

P (T = t)
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and P (T = t) =
(
n
t

)
θt(1 − θ)n−tI{0,1,...,n}(t). Let xi be the ith component

of x. If t 6= ∑n
i=1 xi, then P (X = x, T = t) = 0. If t =

∑n
i=1 xi, then

P (X = x, T = t) =
n∏

i=1

P (Xi = xi) = θt(1 − θ)n−t
n∏

i=1

I{0,1}(xi).

Let Bt = {(x1, ..., xn) : xi = 0, 1,
∑n

i=1 xi = t}. Then

P (X = x|T = t) =
1(
n
t

)IBt(x)

is a known p.d.f. This shows that T (X) is sufficient for θ ∈ (0, 1), according
to Definition 2.4 with the family {fθ : θ ∈ (0, 1)}.

Finding a sufficient statistic by means of the definition is not conve-
nient since it involves guessing a statistic T that might be sufficient and
computing the conditional distribution of X given T = t. For families of
populations having p.d.f.’s, a simple way of finding sufficient statistics is to
use the factorization theorem. We first prove the following lemma.

Lemma 2.1. If a family P is dominated by a σ-finite measure, then P is
dominated by a probability measure Q =

∑∞
i=1 ciPi, where ci’s are nonneg-

ative constants with
∑∞
i=1 ci = 1 and Pi ∈ P .

Proof. Assume that P is dominated by a finite measure ν (the case of
σ-finite ν is left as an exercise). Let P0 be the family of all measures of the
form

∑∞
i=1 ciPi, where Pi ∈ P , ci ≥ 0, and

∑∞
i=1 ci = 1. Then, it suffices

to show that there is a Q ∈ P0 such that Q(A) = 0 implies P (A) = 0 for all
P ∈ P0. Let C be the class of events C for which there exists P ∈ P0 such
that P (C) > 0 and dP/dν > 0 a.e. ν on C. Then there exists a sequence
{Ci} ⊂ C such that ν(Ci) → supC∈C ν(C). Let C0 be the union of all Ci’s
and Q =

∑∞
i=1 ciPi, where Pi is the probability measure corresponding to

Ci. Then C0 ∈ C (exercise). Suppose now that Q(A) = 0. Let P ∈ P0

and B = {x : dP/dν > 0}. Since Q(A ∩ C0) = 0, ν(A ∩ C0) = 0 and
P (A ∩ C0) = 0. Then P (A) = P (A ∩ Cc0 ∩B). If P (A ∩ Cc0 ∩B) > 0, then
ν(C0∪(A∩Cc0 ∩B)) > ν(C0), which contradicts ν(C0) = supC∈C ν(C) since
A∩Cc0 ∩B and therefore C0 ∪ (A∩Cc0 ∩B) is in C. Thus, P (A) = 0 for all
P ∈ P0.

Theorem 2.2 (The factorization theorem). Suppose that X is a sample
from P ∈ P and P is a family of probability measures on (Rn,Bn) dom-
inated by a σ-finite measure ν. Then T (X) is sufficient for P ∈ P if and
only if there are nonnegative Borel functions h (which does not depend on
P ) on (Rn,Bn) and g

P
(which depends on P ) on the range of T such that

dP

dν
(x) = g

P

(
T (x)

)
h(x). (2.11)
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Proof. (i) Suppose that T is sufficient for P ∈ P . Then, for any A ∈ Bn,
P (A|T ) does not depend on P . Let Q be the probability measure in Lemma
2.1. By Fubini’s theorem and the result in Exercise 35 of §1.6,

Q(A ∩B) =

∞∑

j=1

cjPj(A ∩B)

=

∞∑

j=1

cj

∫

B

P (A|T )dPj

=

∫

B

∞∑

j=1

cjP (A|T )dPj

=

∫

B

P (A|T )dQ

for any B ∈ σ(T ). Hence, P (A|T ) = EQ(IA|T ) a.s. Q, where EQ(IA|T )
denotes the conditional expectation of IA given T w.r.t. Q. Let g

P
(T ) be

the Radon-Nikodym derivative dP/dQ on the space (Rn, σ(T ), Q). From
Propositions 1.7 and 1.10,

P (A) =

∫
P (A|T )dP

=

∫
EQ(IA|T )g

P
(T )dQ

=

∫
EQ[IAgP

(T )|T ]dQ

=

∫

A

gP (T )
dQ

dν
dν

for any A ∈ Bn. Hence, (2.11) holds with h = dQ/dν.
(ii) Suppose that (2.11) holds. Then

dP

dQ
=
dP

dν

/ ∞∑

i=1

ci
dPi
dν

= g
P
(T )

/ ∞∑

i=1

g
Pi

(T ) a.s. Q, (2.12)

where the second equality follows from the result in Exercise 35 of §1.6. Let
A ∈ σ(X) and P ∈ P . The sufficiency of T follows from

P (A|T ) = EQ(IA|T ) a.s. P , (2.13)

where EQ(IA|T ) is given in part (i) of the proof. This is because EQ(IA|T )
does not vary with P ∈ P , and result (2.13) and Theorem 1.7 imply that
the conditional distribution of X given T is determined by EQ(IA|T ), A ∈
σ(X). By the definition of conditional probability, (2.13) follows from

∫

B

IAdP =

∫

B

EQ(IA|T )dP (2.14)



106 2. Fundamentals of Statistics

for any B ∈ σ(T ). Let B ∈ σ(T ). By (2.12), dP/dQ is a Borel function of
T . Then, by Proposition 1.7(i), Proposition 1.10(vi), and the definition of
the conditional expectation, the right-hand side of (2.14) is equal to

∫

B

EQ(IA|T )
dP

dQ
dQ =

∫

B

EQ

(
IA
dP

dQ

∣∣∣∣T
)
dQ =

∫

B

IA
dP

dQ
dQ,

which equals the left-hand side of (2.14). This proves (2.14) for any B ∈
σ(T ) and completes the proof.

If P is an exponential family with p.d.f.’s given by (2.4) and X(ω) = ω,
then we can apply Theorem 2.2 with gθ(t) = exp{[η(θ)]τ t − ξ(θ)} and
conclude that T is a sufficient statistic for θ ∈ Θ. In Example 2.10 the joint
distribution ofX is in an exponential family with T (X) =

∑n
i=1Xi. Hence,

we can conclude that T is sufficient for θ ∈ (0, 1) without computing the
conditional distribution of X given T .

Example 2.11 (Truncation families). Let φ(x) be a positive Borel function

on (R,B) such that
∫ b
a
φ(x)dx < ∞ for any a and b, −∞ < a < b < ∞.

Let θ = (a, b), Θ = {(a, b) ∈ R2 : a < b}, and

fθ(x) = c(θ)φ(x)I(a,b)(x),

where c(θ) =
[∫ b
a
φ(x)dx

]−1

. Then {fθ : θ ∈ Θ}, called a truncation

family, is a parametric family dominated by the Lebesgue measure on R.
Let X1, ..., Xn be i.i.d. random variables having the p.d.f. fθ. Then the
joint p.d.f. of X = (X1, ..., Xn) is

n∏

i=1

fθ(xi) = [c(θ)]nI(a,∞)(x(1))I(−∞,b)(x(n))

n∏

i=1

φ(xi), (2.15)

where x(i) is the ith smallest value of x1, ..., xn. Let T (X) = (X(1), X(n)),
gθ(t1, t2) = [c(θ)]nI(a,∞)(t1)I(−∞,b)(t2), and h(x) =

∏n
i=1 φ(xi). By (2.15)

and Theorem 2.2, T (X) is sufficient for θ ∈ Θ.

Example 2.12 (Order statistics). Let X = (X1, ..., Xn) and X1, ..., Xn be
i.i.d. random variables having a distribution P ∈ P , where P is the family
of distributions on R having Lebesgue p.d.f.’s. Let X(1), ..., X(n) be the
order statistics given in Example 2.9. Note that the joint p.d.f. of X is

f(x1) · · · f(xn) = f(x(1)) · · · f(x(n)).

Hence, T (X) = (X(1), ..., X(n)) is sufficient for P ∈ P . The order statistics
can be shown to be sufficient even when P is not dominated by any σ-finite
measure, but Theorem 2.2 is not applicable (see Exercise 31 in §2.6).
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There are many sufficient statistics for a given family P . In fact, if
T is a sufficient statistic and T = ψ(S), where ψ is measurable and S is
another statistic, then S is sufficient. This is obvious from Theorem 2.2 if
the population has a p.d.f., but it can be proved directly from Definition
2.4 (Exercise 25). For instance, in Example 2.10, (

∑m
i=1Xi,

∑n
i=m+1Xi)

is sufficient for θ, where m is any fixed integer between 1 and n. If T
is sufficient and T = ψ(S) with a measurable ψ that is not one-to-one,
then σ(T ) ⊂ σ(S) and T is more useful than S, since T provides a further
reduction of the data (or σ-field) without loss of information. Is there a
sufficient statistic that provides “maximal” reduction of the data?

Before introducing the next concept, we need the following notation. If
a statement holds except for outcomes in an event A satisfying P (A) = 0
for all P ∈ P , then we say that the statement holds a.s. P .

Definition 2.5 (Minimal sufficiency). Let T be a sufficient statistic for
P ∈ P . T is called a minimal sufficient statistic if and only if, for any other
statistic S sufficient for P ∈ P , there is a measurable function ψ such that
T = ψ(S) a.s. P .

If both T and S are minimal sufficient statistics, then by definition there
is a one-to-one measurable function ψ such that T = ψ(S) a.s. P . Hence,
the minimal sufficient statistic is unique in the sense that two statistics
that are one-to-one measurable functions of each other can be treated as
one statistic.

Example 2.13. Let X1, ..., Xn be i.i.d. random variables from Pθ, the
uniform distribution U(θ, θ + 1), θ ∈ R. Suppose that n > 1. The joint
Lebesgue p.d.f. of (X1, ..., Xn) is

fθ(x) =

n∏

i=1

I(θ,θ+1)(xi) = I(x(n)−1,x(1))(θ), x = (x1, ..., xn) ∈ Rn,

where x(i) denotes the ith smallest value of x1, ..., xn. By Theorem 2.2,
T = (X(1), X(n)) is sufficient for θ. Note that

x(1) = sup{θ : fθ(x) > 0} and x(n) = 1 + inf{θ : fθ(x) > 0}.

If S(X) is a statistic sufficient for θ, then by Theorem 2.2, there are Borel
functions h and gθ such that fθ(x) = gθ(S(x))h(x). For x with h(x) > 0,

x(1) = sup{θ : gθ(S(x)) > 0} and x(n) = 1 + inf{θ : gθ(S(x)) > 0}.

Hence, there is a measurable function ψ such that T (x) = ψ(S(x)) when
h(x) > 0. Since h > 0 a.s. P , we conclude that T is minimal sufficient.
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Minimal sufficient statistics exist under weak assumptions, e.g., P con-
tains distributions on Rk dominated by a σ-finite measure (Bahadur, 1957).
The next theorem provides some useful tools for finding minimal sufficient
statistics.

Theorem 2.3. Let P be a family of distributions on Rk.
(i) Suppose that P0 ⊂ P and a.s. P0 implies a.s. P . If T is sufficient for
P ∈ P and minimal sufficient for P ∈ P0, then T is minimal sufficient for
P ∈ P .
(ii) Suppose that P contains p.d.f.’s f0, f1, f2, ..., w.r.t. a σ-finite mea-
sure. Let f∞(x) =

∑∞
i=0 cifi(x), where ci > 0 for all i and

∑∞
i=0 ci = 1,

and let Ti(X) = fi(x)/f∞(x) when f∞(x) > 0, i = 0, 1, 2, .... Then
T (X) = (T0, T1, T2, ...) is minimal sufficient for P ∈ P . Furthermore, if
{x : fi(x) > 0} ⊂ {x : f0(x) > 0} for all i, then we may replace f∞ by f0,
in which case T (X) = (T1, T2, ...) is minimal sufficient for P ∈ P .
(iii) Suppose that P contains p.d.f.’s fP w.r.t. a σ-finite measure and that
there exists a sufficient statistic T (X) such that, for any possible values x
and y of X , f

P
(x) = f

P
(y)φ(x, y) for all P implies T (x) = T (y), where φ

is a measurable function. Then T (X) is minimal sufficient for P ∈ P .
Proof. (i) If S is sufficient for P ∈ P , then it is also sufficient for P ∈ P0

and, therefore, T = ψ(S) a.s. P0 holds for a measurable function ψ. The
result follows from the assumption that a.s. P0 implies a.s. P .
(ii) Note that f∞ > 0 a.s. P . Let gi(T ) = Ti, i = 0, 1, 2, .... Then
fi(x) = gi(T (x))f∞(x) a.s. P . By Theorem 2.2, T is sufficient for P ∈ P .
Suppose that S(X) is another sufficient statistic. By Theorem 2.2, there
are Borel functions h and g̃i such that fi(x) = g̃i(S(x))h(x), i = 0, 1, 2, ....
Then Ti(x) = g̃i(S(x))/

∑∞
j=0 cj g̃j(S(x)) for x’s satisfying f∞(x) > 0. By

Definition 2.5, T is minimal sufficient for P ∈ P . The proof for the case
where f∞ is replaced by f0 is the same.
(iii) From Bahadur (1957), there exists a minimal sufficient statistic S(X).
The result follows if we can show that T (X) = ψ(S(X)) a.s. P for a mea-
surable function ψ. By Theorem 2.2, there are Borel functions g

P
and h

such that f
P
(x) = g

P
(S(x))h(x) for all P . Let A = {x : h(x) = 0}. Then

P (A) = 0 for all P . For x and y such that S(x) = S(y), x 6∈ A and y 6∈ A,

f
P
(x) = g

P
(S(x))h(x)

= g
P
(S(y))h(x)h(y)/h(y)

= f
P
(y)h(x)/h(y)

for all P . Hence T (x) = T (y). This shows that there is a function ψ
such that T (x) = ψ(S(x)) except for x ∈ A. It remains to show that
ψ is measurable. Since S is minimal sufficient, g(T (X)) = S(X) a.s. P
for a measurable function g. Hence g is one-to-one and ψ = g−1. The
measurability of ψ follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = {fθ : θ ∈ Θ} be an exponential family with
p.d.f.’s fθ given by (2.4) and X(ω) = ω. Suppose that there exists Θ0 =
{θ0, θ1, ..., θp} ⊂ Θ such that the vectors ηi = η(θi)− η(θ0), i = 1, ..., p, are
linearly independent in Rp. (This is true if the family is of full rank.) We
have shown that T (X) is sufficient for θ ∈ Θ. We now show that T is in
fact minimal sufficient for θ ∈ Θ. Let P0 = {fθ : θ ∈ Θ0}. Note that the
set {x : fθ(x) > 0} does not depend on θ. It follows from Theorem 2.3(ii)
with f∞ = fθ0 that

S(X) =
(
exp{ητ1T (x) − ξ1}, ..., exp{ητpT (x) − ξp}

)

is minimal sufficient for θ ∈ Θ0, where ξi = ξ(θi) − ξ(θ0). Since ηi’s are
linearly independent, there is a one-to-one measurable function ψ such that
T (X) = ψ(S(X)) a.s. P0. Hence, T is minimal sufficient for θ ∈ Θ0. It
is easy to see that a.s. P0 implies a.s. P . Thus, by Theorem 2.3(i), T is
minimal sufficient for θ ∈ Θ.

The results in Examples 2.13 and 2.14 can also be proved by using
Theorem 2.3(iii) (Exercise 32).

The sufficiency (and minimal sufficiency) depends on the postulated
family P of populations (statistical models). Hence, it may not be a useful
concept if the proposed statistical model is wrong or at least one has some
doubts about the correctness of the proposed model. From the examples
in this section and some exercises in §2.6, one can find that for a wide
variety of models, statistics such as X̄ in (2.1), S2 in (2.2), (X(1), X(n)) in
Example 2.11, and the order statistics in Example 2.9 are sufficient. Thus,
using these statistics for data reduction and summarization does not lose
any information when the true model is one of those models but we do not
know exactly which model is correct.

2.2.3 Complete statistics

A statistic V (X) is said to be ancillary if its distribution does not depend
on the population P and first-order ancillary if E[V (X)] is independent
of P . A trivial ancillary statistic is the constant statistic V (X) ≡ c ∈
R. If V (X) is a nontrivial ancillary statistic, then σ(V (X)) ⊂ σ(X) is a
nontrivial σ-field that does not contain any information about P . Hence,
if S(X) is a statistic and V (S(X)) is a nontrivial ancillary statistic, it
indicates that σ(S(X)) contains a nontrivial σ-field that does not contain
any information about P and, hence, the “data” S(X) may be further
reduced. A sufficient statistic T appears to be most successful in reducing
the data if no nonconstant function of T is ancillary or even first-order
ancillary. This leads to the following concept of completeness.
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Definition 2.6 (Completeness). A statistic T (X) is said to be complete
for P ∈ P if and only if, for any Borel f , E[f(T )] = 0 for all P ∈ P implies
f(T ) = 0 a.s. P . T is said to be boundedly complete if and only if the
previous statement holds for any bounded Borel f .

A complete statistic is boundedly complete. If T is complete (or bound-
edly complete) and S = ψ(T ) for a measurable ψ, then S is complete (or
boundedly complete). Intuitively, a complete and sufficient statistic should
be minimal sufficient, which was shown by Lehmann and Scheffé (1950) and
Bahadur (1957) (see Exercise 48). However, a minimal sufficient statistic
is not necessarily complete; for example, the minimal sufficient statistic
(X(1), X(n)) in Example 2.13 is not complete (Exercise 47).

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s
given by (2.6), then T (X) is complete and sufficient for η ∈ Ξ.
Proof. We have shown that T is sufficient. Suppose that there is a function
f such that E[f(T )] = 0 for all η ∈ Ξ. By Theorem 2.1(i),

∫
f(t) exp{ητ t− ζ(η)}dλ = 0 for all η ∈ Ξ,

where λ is a measure on (Rp,Bp). Let η0 be an interior point of Ξ. Then
∫
f+(t)eη

τ tdλ =

∫
f−(t)eη

τ tdλ for all η ∈ N(η0), (2.16)

where N(η0) = {η ∈ Rp : ‖η − η0‖ < ǫ} for some ǫ > 0. In particular,
∫
f+(t)eη

τ
0 tdλ =

∫
f−(t)eη

τ
0 tdλ = c.

If c = 0, then f = 0 a.e. λ. If c > 0, then c−1f+(t)eη
τ
0 t and c−1f−(t)eη

τ
0 t

are p.d.f.’s w.r.t. λ and (2.16) implies that their m.g.f.’s are the same in a
neighborhood of 0. By Theorem 1.6(ii), c−1f+(t)eη

τ
0 t = c−1f−(t)eη

τ
0 t, i.e.,

f = f+ − f− = 0 a.e. λ. Hence T is complete.

Proposition 2.1 is useful for finding a complete and sufficient statistic
when the family of distributions is an exponential family of full rank.

Example 2.15. Suppose that X1, ..., Xn are i.i.d. random variables having
the N(µ, σ2) distribution, µ ∈ R, σ > 0. From Example 2.6, the joint p.d.f.
of X1, ..., Xn is (2π)−n/2 exp {η1T1 + η2T2 − nζ(η)}, where T1 =

∑n
i=1Xi,

T2 = −∑n
i=1X

2
i , and η = (η1, η2) =

(
µ
σ2 ,

1
2σ2

)
. Hence, the family of

distributions for X = (X1, ..., Xn) is a natural exponential family of full
rank (Ξ = R × (0,∞)). By Proposition 2.1, T (X) = (T1, T2) is complete
and sufficient for η. Since there is a one-to-one correspondence between η
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and θ = (µ, σ2), T is also complete and sufficient for θ. It can be shown that
any one-to-one measurable function of a complete and sufficient statistic
is also complete and sufficient (exercise). Thus, (X̄, S2) is complete and
sufficient for θ, where X̄ and S2 are the sample mean and variance given
by (2.1) and (2.2), respectively.

The following examples show how to find a complete statistic for a non-
exponential family.

Example 2.16. Let X1, ..., Xn be i.i.d. random variables from Pθ, the
uniform distribution U(0, θ), θ > 0. The largest order statistic, X(n), is
complete and sufficient for θ ∈ (0,∞). The sufficiency of X(n) follows from
the fact that the joint Lebesgue p.d.f. of X1, ..., Xn is θ−nI(0,θ)(x(n)). From
Example 2.9, X(n) has the Lebesgue p.d.f. (nxn−1/θn)I(0,θ)(x) on R. Let f
be a Borel function on [0,∞) such that E[f(X(n))] = 0 for all θ > 0. Then

∫ θ

0

f(x)xn−1dx = 0 for all θ > 0.

Let G(θ) be the left-hand side of the previous equation. Applying the result
of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain
that G′(θ) = f(θ)θn−1 a.e. m+, where m+ is the Lebesgue measure on
([0,∞),B[0,∞)). Since G(θ) = 0 for all θ > 0, f(θ)θn−1 = 0 a.e. m+ and,
hence, f(x) = 0 a.e. m+. Therefore, X(n) is complete and sufficient for
θ ∈ (0,∞).

Example 2.17. In Example 2.12, we showed that the order statistics
T (X) = (X(1), ..., X(n)) of i.i.d. random variables X1, ..., Xn is sufficient
for P ∈ P , where P is the family of distributions on R having Lebesgue
p.d.f.’s. We now show that T (X) is also complete for P ∈ P . Let P0 be
the family of Lebesgue p.d.f.’s of the form

f(x) = C(θ1, ..., θn) exp{−x2n + θ1x+ θ2x
2 + · · · + θnx

n},

where θj ∈ R and C(θ1, ..., θn) is a normalizing constant such that
∫
f(x)dx

= 1. Then P0 ⊂ P and P0 is an exponential family of full rank. Note that
the joint distribution of X = (X1, ..., Xn) is also in an exponential family of
full rank. Thus, by Proposition 2.1, U = (U1, ..., Un) is a complete statistic
for P ∈ P0, where Uj =

∑n
i=1X

j
i . Since a.s. P0 implies a.s. P , U(X) is

also complete for P ∈ P .

The result follows if we can show that there is a one-to-one correspon-
dence between T (X) and U(X). Let V1 =

∑n
i=1Xi, V2 =

∑
i<j XiXj ,

V3 =
∑

i<j<k XiXjXk,..., Vn = X1 · · ·Xn. From the identities

Uk − V1Uk−1 + V2Uk−2 − · · · + (−1)k−1Vk−1U1 + (−1)kkVk = 0,
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k = 1, ..., n, there is a one-to-one correspondence between U(X) and
V (X) = (V1, ..., Vn). From the identity

(t−X1) · · · (t−Xn) = tn − V1t
n−1 + V2t

n−2 − · · · + (−1)nVn,

there is a one-to-one correspondence between V (X) and T (X). This com-
pletes the proof and, hence, T (X) is sufficient and complete for P ∈ P . In
fact, both U(X) and V (X) are sufficient and complete for P ∈ P .

The relationship between an ancillary statistic and a complete and suf-
ficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from
a population P ∈ P . If V is ancillary and T is boundedly complete and
sufficient for P ∈ P , then V and T are independent w.r.t. any P ∈ P .
Proof. Let B be an event on the range of V . Since V is ancillary,
P (V −1(B)) is a constant. Since T is sufficient, E[IB(V )|T ] is a func-
tion of T (independent of P ). Since E{E[IB(V )|T ] − P (V −1(B))} = 0
for all P ∈ P , P (V −1(B)|T ) = E[IB(V )|T ] = P (V −1(B)) a.s. P , by the
bounded completeness of T . Let A be an event on the range of T . Then,
P (T−1(A) ∩ V −1(B)) = E{E[IA(T )IB(V )|T ]} = E{IA(T )E[IB(V )|T ]} =
E{IA(T )P (V −1(B))} = P (T−1(A))P (V −1(B)). Hence T and V are inde-
pendent w.r.t. any P ∈ P .

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X1, ..., Xn are i.i.d. random variables having
the N(µ, σ2) distribution, with µ ∈ R and a known σ > 0. It can be easily
shown that the family {N(µ, σ2) : µ ∈ R} is an exponential family of full
rank with natural parameter η = µ/σ2. By Proposition 2.1, the sample
mean X̄ in (2.1) is complete and sufficient for η (and µ). Let S2 be the
sample variance given by (2.2). Since S2 = (n−1)−1

∑n
i=1(Zi− Z̄)2, where

Zi = Xi−µ isN(0, σ2) and Z̄ = n−1
∑n
i=1 Zi, S

2 is an ancillary statistic (σ2

is known). By Basu’s theorem, X̄ and S2 are independent w.r.t. N(µ, σ2)
with µ ∈ R. Since σ2 is arbitrary, X̄ and S2 are independent w.r.t.N(µ, σ2)
for any µ ∈ R and σ2 > 0.

Using the independence of X̄ and S2, we now show that (n − 1)S2/σ2

has the chi-square distribution χ2
n−1. Note that

n

(
X̄ − µ

σ

)2

+
(n− 1)S2

σ2
=

n∑

i=1

(
Xi − µ

σ

)2

.

From the properties of the normal distributions, n(X̄ −µ)2/σ2 has the chi-
square distribution χ2

1 with the m.g.f. (1 − 2t)−1/2 and
∑n
i=1(Xi − µ)2/σ2
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has the chi-square distribution χ2
n with the m.g.f. (1−2t)−n/2, t < 1/2. By

the independence of X̄ and S2, the m.g.f. of (n− 1)S2/σ2 is

(1 − 2t)−n/2/(1 − 2t)−1/2 = (1 − 2t)−(n−1)/2

for t < 1/2. This is the m.g.f. of the chi-square distribution χ2
n−1 and,

therefore, the result follows.

2.3 Statistical Decision Theory

In this section, we describe some basic elements in statistical decision the-
ory. More developments are given in later chapters.

2.3.1 Decision rules, loss functions, and risks

Let X be a sample from a population P ∈ P . A statistical decision is an
action that we take after we observe X , for example, a conclusion about P
or a characteristic of P . Throughout this section, we use A to denote the
set of allowable actions. Let FA be a σ-field on A. Then the measurable
space (A,FA) is called the action space. Let X be the range of X and FX

be a σ-field on X. A decision rule is a measurable function (a statistic) T
from (X,FX) to (A,FA). If a decision rule T is chosen, then we take the
action T (X) ∈ A whence X is observed.

The construction or selection of decision rules cannot be done without
any criterion about the performance of decision rules. In statistical decision
theory, we set a criterion using a loss function L, which is a function from
P × A to [0,∞) and is Borel on (A,FA) for each fixed P ∈ P . If X = x is
observed and our decision rule is T , then our “loss” (in making a decision)
is L(P, T (x)). The average loss for the decision rule T , which is called the
risk of T , is defined to be

RT (P ) = E[L(P, T (X))] =

∫

X

L(P, T (x))dPX(x). (2.17)

The loss and risk functions are denoted by L(θ, a) and RT (θ) if P is a
parametric family indexed by θ. A decision rule with small loss is preferred.
But it is difficult to compare L(P, T1(X)) and L(P, T2(X)) for two decision
rules, T1 and T2, since both of them are random. For this reason, the
risk function (2.17) is introduced and we compare two decision rules by
comparing their risks. A rule T1 is as good as another rule T2 if and only if

RT1(P ) ≤ RT2(P ) for any P ∈ P , (2.18)

and is better than T2 if and only if (2.18) holds and RT1(P ) < RT2(P ) for
at least one P ∈ P . Two decision rules T1 and T2 are equivalent if and only
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if RT1(P ) = RT2(P ) for all P ∈ P . If there is a decision rule T∗ that is as
good as any other rule in ℑ, a class of allowable decision rules, then T∗ is
said to be ℑ-optimal (or optimal if ℑ contains all possible rules).

Example 2.19. Consider the measurement problem in Example 2.1. Sup-
pose that we need a decision on the value of θ ∈ R, based on the sample
X = (X1, ..., Xn). If Θ is all possible values of θ, then it is reasonable to
consider the action space (A,FA) = (Θ,BΘ). An example of a decision rule
is T (X) = X̄, the sample mean defined by (2.1). A common loss function
in this problem is the squared error loss L(P, a) = (θ − a)2, a ∈ A. Then
the loss for the decision rule X̄ is the squared deviation between X̄ and θ.
Assuming that the population has mean µ and variance σ2 <∞, we obtain
the following risk function for X̄:

RX̄(P ) = E(θ − X̄)2

= (θ − EX̄)2 + E(EX̄ − X̄)2

= (θ − EX̄)2 + Var(X̄) (2.19)

= (µ− θ)2 + σ2

n , (2.20)

where result (2.20) follows from the results for the moments of X̄ in Exam-
ple 2.8. If θ is in fact the mean of the population, then the first term on
the right-hand side of (2.20) is 0 and the risk is an increasing function of
the population variance σ2 and a decreasing function of the sample size n.

Consider another decision rule T1(X) = (X(1) + X(n))/2. However,
RT1(P ) does not have an explicit form if there is no further assumption on
the population P . Suppose that P ∈ P . Then, for some P , X̄ (or T1) is
better than T1 (or X̄) (exercise), whereas for some P , neither X̄ nor T1 is
better than the other.

A different loss function may also be considered. For example, L(P, a) =
|θ−a|, which is called the absolute error loss. However, RX̄(P ) and RT1(P )
do not have explicit forms unless P is of some specific form.

The problem in Example 2.19 is a special case of a general problem called
estimation, in which the action space is the set of all possible values of a
population characteristic ϑ to be estimated. In an estimation problem, a
decision rule T is called an estimator and result (2.19) holds with θ = ϑ and
X̄ replaced by any estimator with a finite variance. The following example
describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, P0 ⊂ P , and P1 =
{P ∈ P : P 6∈ P0}. A hypothesis testing problem can be formulated as that
of deciding which of the following two statements is true:

H0 : P ∈ P0 versus H1 : P ∈ P1. (2.21)
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Here, H0 is called the null hypothesis and H1 is called the alternative hy-
pothesis. The action space for this problem contains only two elements, i.e.,
A = {0, 1}, where 0 is the action of accepting H0 and 1 is the action of
rejecting H0. A decision rule is called a test. Since a test T (X) is a function
from X to {0, 1}, T (X) must have the form IC(X), where C ∈ FX is called
the rejection region or critical region for testing H0 versus H1.

A simple loss function for this problem is the 0-1 loss: L(P, a) = 0
if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P, j) = 0 for P ∈ Pj and L(P, j) = 1 otherwise, j = 0, 1. Under this loss,
the risk is

RT (P ) =

{
P (T (X) = 1) = P (X ∈ C) P ∈ P0

P (T (X) = 0) = P (X 6∈ C) P ∈ P1.

See Figure 2.2 on page 127 for an example of a graph of RT (θ) for some T
and P in a parametric family.

The 0-1 loss implies that the loss for two types of incorrect decisions
(accepting H0 when P ∈ P1 and rejecting H0 when P ∈ P0) are the same.
In some cases, one might assume unequal losses: L(P, j) = 0 for P ∈ Pj ,
L(P, 0) = c0 when P ∈ P1, and L(P, 1) = c1 when P ∈ P0.

In the following example the decision problem is neither an estimation
nor a testing problem. Another example is given in Exercise 93 in §2.6.

Example 2.21. A hazardous toxic waste site requires clean-up when the
true chemical concentration θ in the contaminated soil is higher than a given
level θ0 ≥ 0. Because of the limitation in resources, we would like to spend
our money and efforts more in those areas that pose high risk to public
health. In a particular area where soil samples are obtained, we would
like to take one of these three actions: a complete clean-up (a1), a partial
clean-up (a2), and no clean-up (a3). Then A = {a1, a2, a3}. Suppose that
the cost for a complete clean-up is c1 and for a partial clean-up is c2 < c1;
the risk to public health is c3(θ − θ0) if θ > θ0 and 0 if θ ≤ θ0; a complete
clean-up can reduce the toxic concentration to an amount ≤ θ0, whereas a
partial clean-up can only reduce a fixed amount of the toxic concentration,
i.e., the chemical concentration becomes θ−t after a partial clean-up, where
t is a known constant. Then the loss function is given by

L(θ, a) a1 a2 a3

θ ≤ θ0 c1 c2 0

θ0 < θ ≤ θ0 + t c1 c2 c3(θ − θ0)

θ > θ0 + t c1 c2 + c3(θ − θ0 − t) c3(θ − θ0)

The risk function can be calculated once the decision rule is specified. We
discuss this example again in Chapter 4.
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Sometimes it is useful to consider randomized decision rules. Examples
are given in §2.3.2, Chapters 4 and 6. A randomized decision rule is a
function δ on X×FA such that, for every A ∈ FA, δ(·, A) is a Borel function
and, for every x ∈ X, δ(x, ·) is a probability measure on (A,FA). To choose
an action in A when a randomized rule δ is used, we need to simulate a
pseudorandom element of A according to δ(x, ·). Thus, an alternative way
to describe a randomized rule is to specify the method of simulating the
action from A for each x ∈ X. If A is a subset of a Euclidean space, for
example, then the result in Theorem 1.7(ii) can be applied. Also, see §7.2.3.

A nonrandomized decision rule T previously discussed can be viewed
as a special randomized decision rule with δ(x, {a}) = I{a}(T (x)), a ∈ A,
x ∈ X. Another example of a randomized rule is a discrete distribution
δ(x, ·) assigning probability pj(x) to a nonrandomized decision rule Tj(x),
j = 1, 2, ..., in which case the rule δ can be equivalently defined as a rule
taking value Tj(x) with probability pj(x). See Exercise 64 for an example.

The loss function for a randomized rule δ is defined as

L(P, δ, x) =

∫

A

L(P, a)dδ(x, a),

which reduces to the same loss function we discussed when δ is a nonran-
domized rule. The risk of a randomized rule δ is then

Rδ(P ) = E[L(P, δ,X)] =

∫

X

∫

A

L(P, a)dδ(x, a)dPX (x). (2.22)

2.3.2 Admissibility and optimality

Consider a given decision problem with a given loss L(P, a).

Definition 2.7 (Admissibility). Let ℑ be a class of decision rules (ran-
domized or nonrandomized). A decision rule T ∈ ℑ is called ℑ-admissible
(or admissible when ℑ contains all possible rules) if and only if there does
not exist any S ∈ ℑ that is better than T (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than T .
Thus, T should not be used in principle. However, an admissible decision
rule is not necessarily good. For example, in an estimation problem a silly
estimator T (X) ≡ a constant may be admissible (Exercise 71).

The relationship between the admissibility and the optimality defined in
§2.3.1 can be described as follows. If T∗ is ℑ-optimal, then it is ℑ-admissible;
if T∗ is ℑ-optimal and T0 is ℑ-admissible, then T0 is also ℑ-optimal and is
equivalent to T∗; if there are two ℑ-admissible rules that are not equivalent,
then there does not exist any ℑ-optimal rule.



2.3. Statistical Decision Theory 117

Suppose that we have a sufficient statistic T (X) for P ∈ P . Intuitively,
our decision rule should be a function of T , based on the discussion in
§2.2.2. This is not true in general, but the following result indicates that
this is true if randomized decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of Rk. Let T (X) be a
sufficient statistic for P ∈ P and let δ0 be a decision rule. Then

δ1(t, A) = E[δ0(X,A)|T = t], (2.23)

which is a randomized decision rule depending only on T , is equivalent to
δ0 if Rδ0(P ) <∞ for any P ∈ P .
Proof. Note that δ1 defined by (2.23) is a decision rule since δ1 does not
depend on the unknown P by the sufficiency of T . From (2.22),

Rδ1(P ) = E

{∫

A

L(P, a)dδ1(X, a)

}

= E

{
E

[∫

A

L(P, a)dδ0(X, a)

∣∣∣∣T
]}

= E

{∫

A

L(P, a)dδ0(X, a)

}

= Rδ0(P ),

where the proof of the second equality is left to the reader.

Note that Proposition 2.2 does not imply that δ0 is inadmissible. Also,
if δ0 is a nonrandomized rule,

δ1(t, A) = E[IA(δ0(X))|T = t] = P (δ0(X) ∈ A|T = t)

is still a randomized rule, unless δ0(X) = h(T (X)) a.s. P for some Borel
function h (Exercise 75). Hence, Proposition 2.2 does not apply to situa-
tions where randomized rules are not allowed.

The following result tells us when nonrandomized rules are all we need
and when decision rules that are not functions of sufficient statistics are
inadmissible.

Theorem 2.5. Suppose that A is a convex subset of Rk and that for any
P ∈ P , L(P, a) is a convex function of a.
(i) Let δ be a randomized rule satisfying

∫
A
‖a‖dδ(x, a) < ∞ for any

x ∈ X and let T1(x) =
∫

A
adδ(x, a). Then L(P, T1(x)) ≤ L(P, δ, x) (or

L(P, T1(x))<L(P, δ, x) if L is strictly convex in a) for any x∈X and P ∈P .
(ii) (Rao-Blackwell theorem). Let T be a sufficient statistic for P ∈ P , T0 ∈
Rk be a nonrandomized rule satisfying E‖T0‖ <∞, and T1 = E[T0(X)|T ].
Then RT1(P ) ≤ RT0(P ) for any P ∈ P . If L is strictly convex in a and T0

is not a function of T , then T0 is inadmissible.
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The proof of Theorem 2.5 is an application of Jensen’s inequality (1.47)
and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.
However, usually there are still too many rules left after the elimination
of some rules according to admissibility and sufficiency. Although one is
typically interested in a ℑ-optimal rule, frequently it does not exist, if ℑ is
either too large or too small. The following examples are illustrations.

Example 2.22. LetX1, ..., Xn be i.i.d. random variables from a population
P ∈ P that is the family of populations having finite mean µ and variance
σ2. Consider the estimation of µ (A = R) under the squared error loss. It
can be shown that if we let ℑ be the class of all possible estimators, then
there is no ℑ-optimal rule (exercise). Next, let ℑ1 be the class of all linear
functions in X = (X1, ..., Xn), i.e., T (X) =

∑n
i=1 ciXi with known ci ∈ R,

i = 1, ..., n. It follows from (2.19) and the discussion after Example 2.19
that

RT (P ) = µ2

(
n∑

i=1

ci − 1

)2

+ σ2
n∑

i=1

c2i . (2.24)

We now show that there does not exist T∗ =
∑n

i=1 c
∗
iXi such that RT∗(P )

≤ RT (P ) for any P ∈ P and T ∈ ℑ1. If there is such a T∗, then (c∗1, ..., c
∗
n)

is a minimum of the function of (c1, ..., cn) on the right-hand side of (2.24).
Then c∗1, ..., c

∗
n must be the same and equal to µ2/(σ2+nµ2), which depends

on P . Hence T∗ is not a statistic. This shows that there is no ℑ1-optimal
rule.

Consider now a subclass ℑ2 ⊂ ℑ1 with ci’s satisfying
∑n
i=1 ci = 1. From

(2.24), RT (P ) = σ2
∑n

i=1 c
2
i if T ∈ ℑ2. Minimizing σ2

∑n
i=1 c

2
i subject to∑n

i=1 ci = 1 leads to an optimal solution of ci = n−1 for all i. Thus, the
sample mean X̄ is ℑ2-optimal.

There may not be any optimal rule if we consider a small class of decision
rules. For example, if ℑ3 contains all the rules in ℑ2 except X̄ , then one
can show that there is no ℑ3-optimal rule.

Example 2.23. Assume that the sample X has the binomial distribution
Bi(θ, n) with an unknown θ ∈ (0, 1) and a fixed integer n > 1. Consider the
hypothesis testing problem described in Example 2.20 with H0 : θ ∈ (0, θ0]
versus H1 : θ ∈ (θ0, 1), where θ0 ∈ (0, 1) is a fixed value. Suppose that we
are only interested in the following class of nonrandomized decision rules:
ℑ = {Tj : j = 0, 1, ..., n−1}, where Tj(X) = I{j+1,...,n}(X). From Example
2.20, the risk function for Tj under the 0-1 loss is

RTj (θ) = P (X > j)I(0,θ0](θ) + P (X ≤ j)I(θ0,1)(θ).
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For any integers k and j, 0 ≤ k < j ≤ n− 1,

RTj (θ) −RTk
(θ) =

{ −P (k < X ≤ j) < 0 0 < θ ≤ θ0
P (k < X ≤ j) > 0 θ0 < θ < 1.

Hence, neither Tj nor Tk is better than the other. This shows that every
Tj is ℑ-admissible and, thus, there is no ℑ-optimal rule.

In view of the fact that an optimal rule often does not exist, statisticians
adopt the following two approaches to choose a decision rule. The first
approach is to define a class ℑ of decision rules that have some desirable
properties (statistical and/or nonstatistical) and then try to find the best
rule in ℑ. In Example 2.22, for instance, any estimator T in ℑ2 has the
property that T is linear in X and E[T (X)] = µ. In a general estimation
problem, we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an
estimator T (X) of a real-valued parameter ϑ of the unknown population
is defined to be bT (P ) = E[T (X)] − ϑ (which is denoted by bT (θ) when P
is in a parametric family indexed by θ). An estimator T (X) is said to be
unbiased for ϑ if and only if bT (P ) = 0 for any P ∈ P .

Thus, ℑ2 in Example 2.22 is the class of unbiased estimators linear in
X . In Chapter 3, we discuss how to find a ℑ-optimal estimator when ℑ is
the class of unbiased estimators or unbiased estimators linear in X .

Another class of decision rules can be defined after we introduce the
concept of invariance.

Definition 2.9 Let X be a sample from P ∈ P .
(i) A class G of one-to-one transformations of X is called a group if and
only if gi ∈ G implies g1◦g2 ∈ G and g−1

i ∈ G.
(ii) We say that P is invariant under G if and only if ḡ(PX) = Pg(X) is a
one-to-one transformation from P onto P for each g ∈ G.
(iii) A decision problem is said to be invariant if and only if P is invari-
ant under G and the loss L(P, a) is invariant in the sense that, for ev-
ery g ∈ G and every a ∈ A, there exists a unique g(a) ∈ A such that
L(PX , a) = L

(
Pg(X), g(a)

)
. (Note that g(X) and g(a) are different func-

tions in general.)
(iv) A decision rule T (x) is said to be invariant if and only if, for every
g ∈ G and every x ∈ X, T (g(x)) = g(T (x)).

Invariance means that our decision is not affected by one-to-one trans-
formations of data.

In a problem where the distribution of X is in a location-scale family
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P on Rk, we often consider location-scale transformations of data X of the
form g(X) = AX + c, where c ∈ C ⊂ Rk and A ∈ T , a class of invertible
k × k matrices. Assume that if Ai ∈ T , i = 1, 2, then A−1

i ∈ T and
A1A2 ∈ T , and that if ci ∈ C, i = 1, 2, then −ci ∈ C and Ac1 + c2 ∈ C for
any A ∈ T . Then the collection of all transformations is a group. A special
case is given in the following example.

Example 2.24. Let X have i.i.d. components from a population in a
location family P = {Pµ : µ ∈ R}. Consider the location transformation
gc(X) = X+cJk, where c ∈ R and Jk is the k-vector whose components are
all equal to 1. The group of transformation is G = {gc : c ∈ R}, which is a
location-scale transformation group with T = {Ik} and C = {cJk : c ∈ R}.
P is invariant under G with ḡc(Pµ) = Pµ+c. For estimating µ under the loss
L(µ, a) = L(µ−a), where L(·) is a nonnegative Borel function, the decision
problem is invariant with gc(a) = a + c. A decision rule T is invariant if
and only if T (x+ cJk) = T (x)+ c for every x ∈ Rk and c ∈ R. An example
of an invariant decision rule is T (x) = lτx for some l ∈ Rk with lτJk = 1.
Note that T (x) = lτx with lτJk = 1 is in the class ℑ2 in Example 2.22.

In §4.2 and §6.3, we discuss the problem of finding a ℑ-optimal rule
when ℑ is a class of invariant decision rules.

The second approach to finding a good decision rule is to consider some
characteristic RT of RT (P ), for a given decision rule T , and then minimize
RT over T ∈ ℑ. The following are two popular ways to carry out this idea.
The first one is to consider an average of RT (P ) over P ∈ P :

r
T
(Π) =

∫

P
RT (P )dΠ(P ),

where Π is a known probability measure on (P ,FP) with an appropri-
ate σ-field FP . rT (Π) is called the Bayes risk of T w.r.t. Π. If T∗ ∈ ℑ
and r

T∗
(Π) ≤ r

T
(Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes rule

(or Bayes rule when ℑ contains all possible rules) w.r.t. Π. The second
method is to consider the worst situation, i.e., supP∈P RT (P ). If T∗ ∈ ℑ
and supP∈P RT∗(P ) ≤ supP∈P RT (P ) for any T ∈ ℑ, then T∗ is called a
ℑ-minimax rule (or minimax rule when ℑ contains all possible rules). Bayes
and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a
parametric problem where P = Pθ for a θ ∈ Rk. Consider the special case
of k = 1 and L(θ, a) = (θ − a)2, the squared error loss. Note that

r
T
(Π) =

∫

R
E[θ − T (X)]2dΠ(θ),
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which is equivalent to E[θ − T (X)]2, where θ is a random variable having
the distribution Π and, given θ = θ, the conditional distribution of X is
Pθ. Then, the problem can be viewed as a prediction problem for θ using
functions of X . Using the result in Example 1.22, the best predictor is
E(θ|X), which is the ℑ-Bayes rule w.r.t. Π with ℑ being the class of rules
T (X) satisfying E[T (X)]2 <∞ for any θ.

As a more specific example, let X = (X1, ..., Xn) with i.i.d. components
having the N(µ, σ2) distribution with an unknown µ = θ ∈ R and a known
σ2, and let Π be the N(µ0, σ

2
0) distribution with known µ0 and σ2

0 . Then
the conditional distribution of θ given X = x is N(µ∗(x), c2) with

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0σ
2

nσ2
0 + σ2

(2.25)

(exercise). The Bayes rule w.r.t. Π is E(θ|X) = µ∗(X).

In this special case we can show that the sample mean X̄ is ℑ-minimax
with ℑ being the collection of all decision rules. For any decision rule T ,

sup
θ∈R

RT (θ) ≥
∫

R
RT (θ)dΠ(θ)

≥
∫

R
Rµ∗(θ)dΠ(θ)

= E
{
[θ − µ∗(X)]2

}

= E
{
E{[θ − µ∗(X)]2|X}

}

= E(c2)

= c2,

where µ∗(X) is the Bayes rule given in (2.25) and c2 is also given in (2.25).
Since this result is true for any σ2

0 > 0 and c2 → σ2/n as σ2
0 → ∞,

sup
θ∈R

RT (θ) ≥ σ2

n
= sup

θ∈R
RX̄(θ),

where the equality holds because the risk of X̄ under the squared error loss
is, by (2.20), σ2/n and independent of θ = µ. Thus, X̄ is minimax.

A minimax rule in a general case may be difficult to obtain. It can be
seen that if both µ and σ2 are unknown in the previous discussion, then

sup
θ∈R×(0,∞)

RX̄(θ) = ∞, (2.26)

where θ = (µ, σ2). Hence X̄ cannot be minimax unless (2.26) holds with
X̄ replaced by any decision rule T , in which case minimaxity becomes
meaningless.
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2.4 Statistical Inference

The loss function plays a crucial role in statistical decision theory. Loss
functions can be obtained from a utility analysis (Berger, 1985), but in
many problems they have to be determined subjectively. In statistical in-
ference, we make an inference about the unknown population based on
the sample X and inference procedures without using any loss function, al-
though any inference procedure can be cast in decision-theoretic terms as
a decision rule.

There are three main types of inference procedures: point estimators,
hypothesis tests, and confidence sets.

2.4.1 Point estimators

The problem of estimating an unknown parameter related to the unknown
population is introduced in Example 2.19 and the discussion after Example
2.19 as a special statistical decision problem. In statistical inference, how-
ever, estimators of parameters are derived based on some principle (such as
the unbiasedness, invariance, sufficiency, substitution principle, likelihood
principle, Bayesian principle, etc.), not based on a loss or risk function.
Since confidence sets are sometimes also called interval estimators or set
estimators, estimators of parameters are called point estimators.

In Chapters 3 through 5, we consider how to derive a “good” point esti-
mator based on some principle. Here we focus on how to assess performance
of point estimators.

Let ϑ ∈ Θ̃ ⊂ R be a parameter to be estimated, which is a function of
the unknown population P or θ if P is in a parametric family. An estimator
is a statistic with range Θ̃. First, one has to realize that any estimator T (X)
of ϑ is subject to an estimation error T (x) − ϑ when we observe X = x.
This is not just because T (X) is random. In some problems T (x) never
equals ϑ. A trivial example is when T (X) has a continuous c.d.f. so that
P (T (X) = ϑ) = 0. As a nontrivial example, let X1, ..., Xn be i.i.d. binary
random variables (also called Bernoulli variables) with P (Xi = 1) = p and
P (Xi = 0) = 1 − p. The sample mean X̄ is shown to be a good estimator
of ϑ = p in later chapters, but x̄ never equals ϑ if ϑ is not one of j/n,
j = 0, 1, ..., n. Thus, we cannot assess the performance of T (X) by the
values of T (x) with particular x’s and it is also not worthwhile to do so.

The bias bT (P ) and unbiasedness of a point estimator T (X) is defined
in Definition 2.8. Unbiasedness of T (X) means that the mean of T (X) is
equal to ϑ. An unbiased estimator T (X) can be viewed as an estimator
without “systematic” error, since, on the average, it does not overestimate
(i.e., bT (P ) > 0) or underestimate (i.e., bT (P ) < 0). However, an unbiased
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estimator T (X) may have large positive and negative errors T (x)−ϑ, x ∈ X,
although these errors cancel each other in the calculation of the bias, which
is the average

∫
[T (x) − ϑ]dPX(x).

Hence, for an unbiased estimator T (X), it is desired that the values of
T (x) be highly concentrated around ϑ. The variance of T (X) is commonly
used as a measure of the dispersion of T (X). The mean squared error (mse)
of T (X) as an estimator of ϑ is defined to be

mseT (P ) = E[T (X)− ϑ]2 = [bT (P )]2 + Var(T (X)), (2.27)

which is denoted by mseT (θ) if P is in a parametric family. mseT (P ) is
equal to the variance Var(T (X)) if and only if T (X) is unbiased. Note
that the mse is simply the risk of T in statistical decision theory under the
squared error loss.

In addition to the variance and the mse, the following are other measures
of dispersion that are often used in point estimation problems. The first one
is the mean absolute error of an estimator T (X) defined to be E|T (X)−ϑ|.
The second one is the probability of falling outside a stated distance of ϑ,
i.e., P (|T (X) − ϑ| ≥ ǫ) with a fixed ǫ > 0. Again, these two measures of
dispersion are risk functions in statistical decision theory with loss functions
|ϑ− a| and I(ǫ,∞)(|ϑ− a|), respectively.

For the bias, variance, mse, and mean absolute error, we have implicitly
assumed that certain moments of T (X) exist. On the other hand, the dis-
persion measure P (|T (X)−ϑ| ≥ ǫ) depends on the choice of ǫ. It is possible
that some estimators are good in terms of one measure of dispersion, but
not in terms of other measures of dispersion. The mse, which is a function
of bias and variance according to (2.27), is mathematically easy to handle
and, hence, is used the most often in the literature. In this book, we use
the mse to assess and compare point estimators unless otherwise stated.

Examples 2.19 and 2.22 provide some examples of estimators and their
biases, variances, and mse’s. The following are two more examples.

Example 2.26. Consider the life-time testing problem in Example 2.2. Let
X1, ..., Xn be i.i.d. from an unknown c.d.f. F . Suppose that the parameter
of interest is ϑ = 1 − F (t) for a fixed t > 0. If F is not in a parametric
family, then a nonparametric estimator of F (t) is the empirical c.d.f.

Fn(t) =
1

n

n∑

i=1

I(−∞,t](Xi), t ∈ R. (2.28)

Since I(−∞,t](X1), ..., I(−∞,t](Xn) are i.i.d. binary random variables with
P (I(−∞,t](Xi) = 1) = F (t), the random variable nFn(t) has the binomial
distribution Bi(F (t), n). Consequently, Fn(t) is an unbiased estimator of
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F (t) and Var(Fn(t)) = mseFn(t)(P ) = F (t)[1 − F (t)]/n. Since any linear
combination of unbiased estimators is unbiased for the same linear com-
bination of the parameters (by the linearity of expectations), an unbiased
estimator of ϑ is U(X) = 1 − Fn(t), which has the same variance and mse
as Fn(t).

The estimator U(X) = 1 − Fn(t) can be improved in terms of the
mse if there is further information about F . Suppose that F is the c.d.f.
of the exponential distribution E(0, θ) with an unknown θ > 0. Then
ϑ = e−t/θ. From §2.2.2, the sample mean X̄ is sufficient for θ > 0. Since
the squared error loss is strictly convex, an application of Theorem 2.5(ii)
(Rao-Blackwell theorem) shows that the estimator T (X) = E[1−Fn(t)|X̄ ],
which is also unbiased, is better than U(X) in terms of the mse. Figure
2.1 shows graphs of the mse’s of U(X) and T (X), as functions of θ, in the
special case of n = 10, t = 2, and F (x) = (1 − e−x/θ)I(0,∞)(x).

Example 2.27. Consider the sample survey problem in Example 2.3 with a
constant selection probability p(s) and univariate yi. Let ϑ = Y =

∑N
i=1 yi,

the population total. We now show that the estimator Ŷ = N
n

∑
i∈s yi is

an unbiased estimator of Y . Let ai = 1 if i ∈ s and ai = 0 otherwise. Thus,
Ŷ = N

n

∑N
i=1 aiyi. Since p(s) is constant, E(ai) = P (ai = 1) = n/N and

E(Ŷ ) = E

(
N

n

N∑

i=1

aiyi

)
=
N

n

N∑

i=1

yiE(ai) =

N∑

i=1

yi = Y.

Note that
Var(ai) = E(ai) − [E(ai)]

2 =
n

N

(
1 − n

N

)

and for i 6= j,

Cov(ai, aj) = P (ai = 1, aj = 1) − E(ai)E(aj) =
n(n− 1)

N(N − 1)
− n2

N2
.

Hence, the variance or the mse of Ŷ is

Var(Ŷ ) =
N2

n2
Var

(
N∑

i=1

aiyi

)

=
N2

n2



N∑

i=1

y2
iVar(ai) + 2

∑

1≤i<j≤N
yiyjCov(ai, aj)




=
N

n

(
1 − n

N

)



N∑

i=1

y2
i −

2

N − 1

∑

1≤i<j≤N
yiyj




=
N2

n(N − 1)

(
1 − n

N

) N∑

i=1

(
yi −

Y

N

)2

.
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Figure 2.1: mse’s of U(X) and T (X) in Example 2.26

2.4.2 Hypothesis tests

The basic elements of a hypothesis testing problem are described in Exam-
ple 2.20. In statistical inference, tests for a hypothesis are derived based on
some principles similar to those given in an estimation problem. Chapter
6 is devoted to deriving tests for various types of hypotheses. Several key
ideas are discussed here.

To test the hypotheses H0 versus H1 given in (2.21), there are only two
types of statistical errors we may commit: rejecting H0 when H0 is true
(called the type I error) and accepting H0 when H0 is wrong (called the
type II error). In statistical inference, a test T , which is a statistic from X

to {0, 1}, is assessed by the probabilities of making two types of errors:

αT (P ) = P (T (X) = 1) P ∈ P0 (2.29)

and

1 − αT (P ) = P (T (X) = 0) P ∈ P1, (2.30)

which are denoted by αT (θ) and 1 − αT (θ) if P is in a parametric family
indexed by θ. Note that these are risks of T under the 0-1 loss in statistical
decision theory. However, an optimal decision rule (test) does not exist even
for a very simple problem with a very simple class of tests (Example 2.23).

m
se
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That is, error probabilities in (2.29) and (2.30) cannot be minimized simul-
taneously. Furthermore, these two error probabilities cannot be bounded
simultaneously by a fixed α ∈ (0, 1) when we have a sample of a fixed size.

Therefore, a common approach to finding an “optimal” test is to assign
a small bound α to one of the error probabilities, say αT (P ), P ∈ P0, and
then to attempt to minimize the other error probability 1−αT (P ), P ∈ P1,
subject to

sup
P∈P0

αT (P ) ≤ α. (2.31)

The bound α is called the level of significance. The left-hand side of (2.31)
is called the size of the test T . Note that the level of significance should
be positive, otherwise no test satisfies (2.31) except the silly test T (X) ≡ 0
a.s. P .

Example 2.28. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with
an unknown µ ∈ R and a known σ2. Consider the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant. Since the sample mean X̄ is sufficient for
µ ∈ R, it is reasonable to consider the following class of tests: Tc(X) =
I(c,∞)(X̄), i.e., H0 is rejected (accepted) if X̄ > c (X̄ ≤ c), where c ∈ R is
a fixed constant. Let Φ be the c.d.f. of N(0, 1). Then, by the property of
the normal distributions,

αTc(µ) = P (Tc(X) = 1) = 1 − Φ

(√
n(c− µ)

σ

)
. (2.32)

Figure 2.2 provides an example of a graph of two types of error probabilities,
with µ0 = 0. Since Φ(t) is an increasing function of t,

sup
P∈P0

αTc(µ) = 1 − Φ

(√
n(c− µ0)

σ

)
.

In fact, it is also true that

sup
P∈P1

[1 − αTc(µ)] = Φ

(√
n(c− µ0)

σ

)
.

If we would like to use an α as the level of significance, then the most
effective way is to choose a cα (a test Tcα(X)) such that

α = sup
P∈P0

αTcα
(µ),

in which case cα must satisfy

1 − Φ

(√
n(cα − µ0)

σ

)
= α,
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Figure 2.2: Error probabilities in Example 2.28

i.e., cα = σz1−α/
√
n + µ0, where za = Φ−1(a). In Chapter 6, it is shown

that for any test T (X) satisfying (2.31),

1 − αT (µ) ≥ 1 − αTcα
(µ), µ > µ0.

The choice of a level of significance α is usually somewhat subjective.
In most applications there is no precise limit to the size of T that can be
tolerated. Standard values, such as 0.10, 0.05, or 0.01, are often used for
convenience.

For most tests satisfying (2.31), a small α leads to a “small” rejection
region. It is good practice to determine not only whether H0 is rejected or
accepted for a given α and a chosen test Tα, but also the smallest possible
level of significance at which H0 would be rejected for the computed Tα(x),
i.e., α̂ = inf{α ∈ (0, 1) : Tα(x) = 1}. Such an α̂, which depends on x and
the chosen test and is a statistic, is called the p-value for the test Tα.

Example 2.29. Consider the problem in Example 2.28. Let us calculate
the p-value for Tcα . Note that

α = 1 − Φ

(√
n(cα − µ0)

σ

)
> 1 − Φ

(√
n(x̄− µ0)

σ

)
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if and only if x̄ > cα (or Tcα(x) = 1). Hence

1 − Φ

(√
n(x̄ − µ0)

σ

)
= inf{α ∈ (0, 1) : Tcα(x) = 1} = α̂(x)

is the p-value for Tcα . It turns out that Tcα(x) = I(0,α)(α̂(x)).

With the additional information provided by p-values, using p-values is
typically more appropriate than using fixed-level tests in a scientific prob-
lem. However, a fixed level of significance is unavoidable when acceptance
or rejection of H0 implies an imminent concrete decision. For more discus-
sions about p-values, see Lehmann (1986) and Weerahandi (1995).

In Example 2.28, the equality in (2.31) can always be achieved by a
suitable choice of c. This is, however, not true in general. In Example 2.23,
for instance, it is possible to find an α such that

sup
0<θ≤θ0

P (Tj(X) = 1) 6= α

for all Tj’s. In such cases, we may consider randomized tests, which are
introduced next.

Recall that a randomized decision rule is a probability measure δ(x, ·)
on the action space for any fixed x. Since the action space contains only
two points, 0 and 1, for a hypothesis testing problem, any randomized test
δ(X,A) is equivalent to a statistic T (X) ∈ [0, 1] with T (x) = δ(x, {1}) and
1 − T (x) = δ(x, {0}). A nonrandomized test is obviously a special case
where T (x) does not take any value in (0, 1).

For any randomized test T (X), we define the type I error probability
to be αT (P ) = E[T (X)], P ∈ P0, and the type II error probability to be
1 − αT (P ) = E[1 − T (X)], P ∈ P1. For a class of randomized tests, we
would like to minimize 1 − αT (P ) subject to (2.31).

Example 2.30. Consider Example 2.23 and the following class of random-
ized tests:

Tj,q(X) =





1 X > j

q X = j

0 X < j,

where j = 0, 1, ..., n− 1 and q ∈ [0, 1]. Then

αTj,q (θ) = P (X > j) + qP (X = j) 0 < θ ≤ θ0

and

1 − αTj,q (θ) = P (X < j) + (1 − q)P (X = j) θ0 < θ < 1.

It can be shown that for any α ∈ (0, 1), there exist an integer j and q ∈ (0, 1)
such that the size of Tj,q is α (exercise).
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2.4.3 Confidence sets

Let ϑ be a k-vector of unknown parameters related to the unknown pop-
ulation P ∈ P and C(X) ∈ Bk

Θ̃
depending only on the sample X , where

Θ̃ ∈ Bk is the range of ϑ. If

inf
P∈P

P (ϑ ∈ C(X)) ≥ 1 − α, (2.33)

where α is a fixed constant in (0, 1), then C(X) is called a confidence set
for ϑ with level of significance 1 − α. The left-hand side of (2.33) is called
the confidence coefficient of C(X), which is the highest possible level of
significance for C(X). A confidence set is a random element that covers
the unknown ϑ with certain probability. If (2.33) holds, then the coverage
probability of C(X) is at least 1−α, although C(x) either covers or does not
cover ϑ whence we observe X = x. The concepts of level of significance and
confidence coefficient are very similar to the level of significance and size in
hypothesis testing. In fact, it is shown in Chapter 7 that some confidence
sets are closely related to hypothesis tests.

Consider a real-valued ϑ. If C(X) = [ϑ(X), ϑ(X)] for a pair of real-
valued statistics ϑ and ϑ, then C(X) is called a confidence interval for ϑ.
If C(X) = (−∞, ϑ(X)] (or [ϑ(X),∞)), then ϑ (or ϑ) is called an upper (or
a lower) confidence bound for ϑ.

A confidence set (or interval) is also called a set (or an interval) estimator
of ϑ, although it is very different from a point estimator (discussed in
§2.4.1).

Example 2.31. Consider Example 2.28. Suppose that a confidence inter-
val for ϑ = µ is needed. Again, we only need to consider ϑ(X̄) and ϑ(X̄),
since the sample mean X̄ is sufficient. Consider confidence intervals of the
form [X̄ − c, X̄ + c], where c ∈ (0,∞) is fixed. Note that

P
(
µ ∈ [X̄ − c, X̄ + c]

)
= P

(
|X̄ − µ| ≤ c

)
= 1 − 2Φ

(
−√

nc/σ
)
,

which is independent of µ. Hence, the confidence coefficient of [X̄−c, X̄+c]
is 1−2Φ (−√

nc/σ), which is an increasing function of c and converges to 1
as c → ∞ or 0 as c → 0. Thus, confidence coefficients are positive but less
than 1 except for silly confidence intervals [X̄, X̄] and (−∞,∞). We can
choose a confidence interval with an arbitrarily large confidence coefficient,
but the chosen confidence interval may be so wide that it is practically
useless.

If σ2 is also unknown, then [X̄ − c, X̄ + c] has confidence coefficient 0
and, therefore, is not a good inference procedure. In such a case a different
confidence interval for µ with positive confidence coefficient can be derived
(Exercise 97 in §2.6).
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This example tells us that a reasonable approach is to choose a level of
significance 1 − α ∈ (0, 1) (just like the level of significance in hypothesis
testing) and a confidence interval or set satisfying (2.33). In Example 2.31,
when σ2 is known and c is chosen to be σz1−α/2/

√
n, where za = Φ−1(a),

the confidence coefficient of the confidence interval [X̄ − c, X̄ + c] is exactly
1 − α for any fixed α ∈ (0, 1). This is desirable since, for all confidence
intervals satisfying (2.33), the one with the shortest interval length is pre-
ferred.

For a general confidence interval [ϑ(X), ϑ(X)], its length is ϑ(X)−ϑ(X),
which may be random. We may consider the expected (or average) length
E[ϑ(X)−ϑ(X)]. The confidence coefficient and expected length are a pair of
good measures of performance of confidence intervals. Like the two types
of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected
length) simultaneously. A common approach is to minimize the length (or
expected length) subject to (2.33).

For an unbounded confidence interval, its length is ∞. Hence we have
to define some other measures of performance. For an upper (or a lower)
confidence bound, we may consider the distance ϑ(X)−ϑ (or ϑ−ϑ(X)) or
its expectation.

To conclude this section, we discuss an example of a confidence set for
a two-dimensional parameter. General discussions about how to construct
and assess confidence sets are given in Chapter 7.

Example 2.32. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution
with both µ ∈ R and σ2 > 0 unknown. Let θ = (µ, σ2) and α ∈ (0, 1) be
given. Let X̄ be the sample mean and S2 be the sample variance. Since
(X̄, S2) is sufficient (Example 2.15), we focus on C(X) that is a function of
(X̄, S2). From Example 2.18, X̄ and S2 are independent and (n− 1)S2/σ2

has the chi-square distribution χ2
n−1. Since

√
n(X̄ − µ)/σ has the N(0, 1)

distribution (Exercise 43 in §1.6),

P

(
−c̃α ≤ X̄ − µ

σ/
√
n

≤ c̃α

)
=

√
1 − α,

where c̃α = Φ−1
(

1+
√

1−α
2

)
(verify). Since the chi-square distribution χ2

n−1

is a known distribution, we can always find two constants c1α and c2α such
that

P

(
c1α ≤ (n− 1)S2

σ2
≤ c2α

)
=

√
1 − α.

Then

P

(
−c̃α ≤ X̄ − µ

σ/
√
n

≤ c̃α, c1α ≤ (n− 1)S2

σ2
≤ c2α

)
= 1 − α,
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Figure 2.3: A confidence set for θ in Example 2.32

or

P

(
n(X̄ − µ)2

c̃2α
≤ σ2,

(n− 1)S2

c2α
≤ σ2 ≤ (n− 1)S2

c1α

)
= 1 − α. (2.34)

The left-hand side of (2.34) defines a set in the range of θ = (µ, σ2) bounded
by two straight lines, σ2 = (n − 1)S2/ciα, i = 1, 2, and a curve σ2 =
n(X̄−µ)2/c̃2α (see the shadowed part of Figure 2.3). This set is a confidence
set for θ with confidence coefficient 1 − α, since (2.34) holds for any θ.

2.5 Asymptotic Criteria and Inference

We have seen that in statistical decision theory and inference, a key to
the success of finding a good decision rule or inference procedure is being
able to find some moments and/or distributions of various statistics. Al-
though many examples are presented (including those in the exercises in
§2.6), there are more cases in which we are not able to find exactly the
moments or distributions of given statistics, especially when the problem
is not parametric (see, e.g., the discussions in Example 2.8).

In practice, the sample size n is often large, which allows us to ap-
proximate the moments and distributions of statistics that are impossible
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to derive, using the asymptotic tools discussed in §1.5. In an asymptotic
analysis, we consider a sample X = (X1, ..., Xn) not for fixed n, but as a
member of a sequence corresponding to n = n0, n0 + 1, ..., and obtain the
limit of the distribution of an appropriately normalized statistic or variable
Tn(X) as n → ∞. The limiting distribution and its moments are used as
approximations to the distribution and moments of Tn(X) in the situation
with a large but actually finite n. This leads to some asymptotic statistical
procedures and asymptotic criteria for assessing their performances, which
are introduced in this section.

The asymptotic approach is not only applied to the situation where no
exact method is available, but also used to provide an inference procedure
simpler (e.g., in terms of computation) than that produced by the exact
approach (the approach considering a fixed n). Some examples are given
in later chapters.

In addition to providing more theoretical results and/or simpler infer-
ence procedures, the asymptotic approach requires less stringent mathemat-
ical assumptions than does the exact approach. The mathematical precision
of the optimality results obtained in statistical decision theory, for example,
tends to obscure the fact that these results are approximations in view of
the approximate nature of the assumed models and loss functions. As the
sample size increases, the statistical properties become less dependent on
the loss functions and models. However, a major weakness of the asymp-
totic approach is that typically no good estimates for the precision of the
approximations are available and, therefore, we cannot determine whether
a particular n in a problem is large enough to safely apply the asymptotic
results. To overcome this difficulty, asymptotic results are frequently used
in combination with some numerical/empirical studies for selected values
of n to examine the finite sample performance of asymptotic procedures.

2.5.1 Consistency

A reasonable point estimator is expected to perform better, at least on
the average, if more information about the unknown population is avail-
able. With a fixed model assumption and sampling plan, more data (larger
sample size n) provide more information about the unknown population.
Thus, it is distasteful to use a point estimator Tn which, if sampling were
to continue indefinitely, could possibly have a nonzero estimation error, al-
though the estimation error of Tn for a fixed n may never equal 0 (see the
discussion in §2.4.1).

Definition 2.10 (Consistency of point estimators). Let X = (X1, ..., Xn)
be a sample from P ∈ P and Tn(X) be a point estimator of ϑ for every n.
(i) Tn(X) is called consistent for ϑ if and only if Tn(X) →p ϑ w.r.t. any
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P ∈ P .
(ii) Let {an} be a sequence of positive constants diverging to ∞. Tn(X) is
called an-consistent for ϑ if and only if an[Tn(X) − ϑ] = Op(1) w.r.t. any
P ∈ P .
(iii) Tn(X) is called strongly consistent for ϑ if and only if Tn(X) →a.s. ϑ
w.r.t. any P ∈ P .
(iv) Tn(X) is called Lr-consistent for ϑ if and only if Tn(X) →Lr ϑ w.r.t.
any P ∈ P for some fixed r > 0.

Consistency is actually a concept relating to a sequence of estimators,
{Tn, n = n0, n0 + 1, ...}, but we usually just say “consistency of Tn” for
simplicity. Each of the four types of consistency in Definition 2.10 describes
the convergence of Tn(X) to ϑ in some sense, as n → ∞. In statistics,
consistency according to Definition 2.10(i), which is sometimes called weak
consistency since it is implied by any of the other three types of consistency,
is the most useful concept of convergence of Tn to ϑ. L2-consistency is also
called consistency in mse, which is the most useful type of Lr-consistency.

Example 2.33. Let X1, ..., Xn be i.i.d. from P ∈ P . If ϑ = µ, which is
the mean of P and is assumed to be finite, then by the SLLN (Theorem
1.13), the sample mean X̄ is strongly consistent for µ and, therefore, is
also consistent for µ. If we further assume that the variance of P is finite,
then by (2.20), X̄ is consistent in mse and is

√
n-consistent. With the finite

variance assumption, the sample variance S2 is strongly consistent for the
variance of P , according to the SLLN.

Consider estimators of the form Tn =
∑n

i=1 cniXi, where {cni} is a
double array of constants. If P has a finite variance, then by (2.24), Tn
is consistent in mse if and only if

∑n
i=1 cni → 1 and

∑n
i=1 c

2
ni → 0. If we

only assume the existence of the mean of P , then Tn with cni = ci/n sat-
isfying n−1

∑n
i=1 ci → 1 and supi |ci| <∞ is strongly consistent (Theorem

1.13(ii)).

One or a combination of the law of large numbers, the CLT, Slutsky’s
theorem (Theorem 1.11), and the continuous mapping theorem (Theorems
1.10 and 1.12) are typically applied to establish consistency of point estima-
tors. In particular, Theorem 1.10 implies that if Tn is (strongly) consistent
for ϑ and g is a continuous function of ϑ, then g(Tn) is (strongly) consistent
for g(ϑ). For example, in Example 2.33 the point estimator X̄2 is strongly
consistent for µ2. To show that X̄2 is

√
n-consistent under the assumption

that P has a finite variance σ2, we can use the identity

√
n(X̄2 − µ2) =

√
n(X̄ − µ)(X̄ + µ)

and the fact that X̄ is
√
n-consistent for µ and X̄ +µ = Op(1). (Note that
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X̄2 may not be consistent in mse since we do not assume that P has a finite
fourth moment.) Alternatively, we can use the fact that

√
n(X̄2 − µ2) →d

N(0, 4µ2σ2) (by the CLT and Theorem 1.12) to show the
√
n-consistency

of X̄2.

The following example shows another way to establish consistency of
some point estimators.

Example 2.34. Let X1, ..., Xn be i.i.d. from an unknown P with a con-
tinuous c.d.f. F satisfying F (θ) = 1 for some θ ∈ R and F (x) < 1 for any
x < θ. Consider the largest order statistic X(n). For any ǫ > 0, F (θ−ǫ) < 1
and

P (|X(n) − θ| ≥ ǫ) = P (X(n) ≤ θ − ǫ) = [F (θ − ǫ)]
n
,

which imply (according to Theorem 1.8(v)) X(n) →a.s. θ, i.e., X(n) is

strongly consistent for θ. If we assume that F (i)(θ−), the ith-order left-
hand derivative of F at θ, exists and vanishes for any i ≤ m and that
F (m+1)(θ−) exists and is nonzero, where m is a nonnegative integer, then

1 − F (X(n)) =
(−1)mF (m+1)(θ−)

(m+ 1)!
(θ −X(n))

m+1 + o
(
|θ −X(n)|m+1

)
a.s.

This result and the fact that P
(
n[1 − F (X(n))] ≥ s

)
= (1 − s/n)n imply

that (θ −X(n))
m+1 = Op(n

−1), i.e., X(n) is n(m+1)−1

-consistent. If m = 0,
then X(n) is n-consistent, which is the most common situation. If m = 1,

then X(n) is
√
n-consistent. The limiting distribution of n(m+1)−1

(X(n)−θ)
can be derived as follows. Let

hn(θ) =

[
(−1)m(m+ 1)!

nF (m+1)(θ−)

](m+1)−1

.

For t ≤ 0, by Slutsky’s theorem,

lim
n→∞

P

(
X(n) − θ

hn(θ)
≤ t

)
= lim

n→∞
P

([
θ −X(n)

hn(θ)

]m+1

≥ (−t)m+1

)

= lim
n→∞

P
(
n[1 − F (X(n))] ≥ (−t)m+1

)

= lim
n→∞

[
1 − (−t)m+1/n

]n

= e−(−t)m+1

.

It can be seen from the previous examples that there are many consistent
estimators. Like the admissibility in statistical decision theory, consistency
is a very essential requirement in the sense that any inconsistent estimators
should not be used, but a consistent estimator is not necessarily good.
Thus, consistency should be used together with one or a few more criteria.
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We now discuss a situation in which finding a consistent estimator is
crucial. Suppose that an estimator Tn of ϑ satisfies

cn[Tn(X) − ϑ] →d σY, (2.35)

where Y is a random variable with a known distribution, σ > 0 is an
unknown parameter, and {cn} is a sequence of constants; for example, in
Example 2.33,

√
n(X̄ − µ) →d N(0, σ2); in Example 2.34, (2.35) holds

with cn = n(m+1)−1

and σ = [(−1)m(m + 1)!/F (m+1)(θ−)](m+1)−1

. If a
consistent estimator σ̂n of σ can be found, then, by Slutsky’s theorem,

cn[Tn(X) − ϑ]/σ̂n →d Y

and, thus, we may approximate the distribution of cn[Tn(X) − ϑ]/σ̂n by
the known distribution of Y .

2.5.2 Asymptotic bias, variance, and mse

Unbiasedness as a criterion for point estimators is discussed in §2.3.2 and
§2.4.1. In some cases, however, there is no unbiased estimator (Exercise 84
in §2.6). Furthermore, having a “slight” bias in some cases may not be a
bad idea (see Exercise 63 in §2.6). Let Tn(X) be a point estimator of ϑ
for every n. If ETn exists for every n and limn→∞E(Tn − ϑ) = 0 for any
P ∈ P , then Tn is said to be approximately unbiased.

There are many reasonable point estimators whose expectations are
not well defined. For example, consider i.i.d. (X1, Y1), ..., (Xn, Yn) from a
bivariate normal distribution with µx = EX1 and µy = EY1 6= 0. Let
ϑ = µx/µy and Tn = X̄/Ȳ , the ratio of two sample means. Then ETn is
not defined for any n. It is then desirable to define a concept of asymptotic
bias for point estimators whose expectations are not well defined.

Definition 2.11. (i) Let ξ, ξ1, ξ2, ... be random variables and {an} be
a sequence of positive numbers satisfying an → ∞ or an → a > 0. If
anξn →d ξ and E|ξ| < ∞, then Eξ/an is called an asymptotic expectation
of ξn.
(ii) Let Tn be a point estimator of ϑ for every n. An asymptotic expectation
of Tn − ϑ, if it exists, is called an asymptotic bias of Tn and denoted by
b̃Tn(P ) (or b̃Tn(θ) if P is in a parametric family). If limn→∞ b̃Tn(P ) = 0 for
any P ∈ P , then Tn is said to be asymptotically unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept
relating to sequences {ξn} and {Eξ/an} (or {Tn} and {b̃Tn(P )}). Note
that the exact bias bTn(P ) is not necessarily the same as b̃Tn(P ) when both
of them exist (Exercise 115 in §2.6). The following result shows that the
asymptotic expectation defined in Definition 2.11 is essentially unique.
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Proposition 2.3. Let {ξn} be a sequence of random variables. Suppose
that both Eξ/an and Eη/bn are asymptotic expectations of ξn defined
according to Definition 2.11(i). Then, one of the following three must hold:
(a) Eξ = Eη = 0; (b) Eξ 6= 0, Eη = 0, and bn/an → 0; or Eξ = 0, Eη 6= 0,
and an/bn → 0; (c) Eξ 6= 0, Eη 6= 0, and (Eξ/an)/(Eη/bn) → 1.
Proof. According to Definition 2.11(i), anξn →d ξ and bnξn →d η.
(i) If both ξ and η have nondegenerate c.d.f.’s, then the result follows from
Exercise 129 of §1.6.
(ii) Suppose that ξ has a nondegenerate c.d.f. but η is a constant. If η 6= 0,
then by Theorem 1.11(iii), an/bn → ξ/η, which is impossible since ξ has a
nondegenerate c.d.f. If η = 0, then by Theorem 1.11(ii), bn/an → 0.
(iii) Suppose that both ξ and η are constants. If ξ = η = 0, the result
follows. If ξ 6= 0 and η = 0, then bn/an → 0. If ξ 6= 0 and η 6= 0, then
bn/an → η/ξ.

If Tn is a consistent estimator of ϑ, then Tn = ϑ + op(1) and, by Defi-
nition 2.11(ii), Tn is asymptotically unbiased, although Tn may not be ap-
proximately unbiased; in fact, g(Tn) is asymptotically unbiased for g(ϑ) for
any continuous function g. For the example of Tn = X̄/Ȳ , Tn →a.s. µx/µy
by the SLLN and Theorem 1.10. Hence Tn is asymptotically unbiased, al-
though ETn may not be defined. In Example 2.34, X(n) has the asymptotic

bias b̃X(n)
(P ) = hn(θ)EY , which is of order n−(m+1)−1

.

When an(Tn − ϑ) →d Y with EY = 0 (e.g., Tn = X̄2 and ϑ = µ2 in
Example 2.33), a more precise order of the asymptotic bias of Tn may be
obtained (for comparing different estimators in terms of their asymptotic
biases). Suppose that there is a sequence of random variables {ηn} such
that

anηn →d Y and a2
n(Tn − ϑ− ηn) →d W, (2.36)

where Y and W are random variables with finite means, EY = 0 and
EW 6= 0. Then we may define a−2

n to be the order of b̃Tn(P ) or define
EW/a2

n to be the a−2
n order asymptotic bias of Tn. However, ηn in (2.36)

may not be unique. Some regularity conditions have to be imposed so that
the order of asymptotic bias of Tn can be uniquely defined. In the following
we focus on the case where X1, ..., Xn are i.i.d. random k-vectors. Suppose
that Tn has the following expansion:

Tn − ϑ =
1

n

n∑

i=1

φ(Xi) +
1

n2

n∑

i=1

n∑

j=1

ψ(Xi, Xj) + op

(
1

n

)
, (2.37)

where φ and ψ are functions that may depend on P , Eφ(X1) = 0, E[φ(X1)]
2

<∞, ψ(x, y) = ψ(y, x), Eψ(x,X1) = 0 for all x, E[ψ(Xi, Xj)]
2 <∞, i ≤ j,

and Eψ(X1, X1) 6= 0. From the result for V-statistics in §3.5.3 (Theorem
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3.16 and Exercise 113 in §3.6),

1

n

n∑

i=1

n∑

j=1

ψ(Xi, Xj) →d W,

where W is a random variable with EW = Eψ(X1, X1). Hence (2.36)
holds with an =

√
n and ηn = n−1

∑n
i=1 φ(Xi). Consequently, we can

define Eψ(X1, X1)/n to be the n−1 order asymptotic bias of Tn. Examples
of estimators that have expansion (2.37) are provided in §3.5.3 and §5.2.1.
In the following we consider the special case of functions of sample means.

Let X1, ..., Xn be i.i.d. random k-vectors with finite Σ = Var(X1), X̄ =
n−1

∑n
i=1Xi, and Tn = g(X̄), where g is a function on Rk that is second-

order differentiable at µ = EX1 ∈ Rk. Consider Tn as an estimator of ϑ =
g(µ). Using Taylor’s expansion, we obtain expansion (2.37) with φ(x) =
[∇g(µ)]τ (x−µ) and ψ(x, y) = (x−µ)τ∇2g(µ)(y−µ)/2, where ∇g is the k-
vector of partial derivatives of g and ∇2g is the k×k matrix of second-order
partial derivatives of g. By the CLT and Theorem 1.10(iii),

1

n

n∑

i=1

n∑

j=1

ψ(Xi, Xj) =
n

2
(X̄ − µ)τ∇2g(µ)(X̄ − µ) →d

ZτΣ∇2g(µ)ZΣ

2
,

where ZΣ = Nk(0,Σ). Thus,

E[ZτΣ∇2g(µ)ZΣ]

2n
=

tr
(
∇2g(µ)Σ

)

2n
(2.38)

is the n−1 order asymptotic bias of Tn = g(X̄), where tr(A) denotes the
trace of the matrix A. Note that the quantity in (2.38) is the same as the
leading term in the exact bias of Tn = g(X̄) obtained under a much more
stringent condition on the derivatives of g (Lehmann, 1983, Theorem 2.5.1).

Example 2.35. Let X1, ..., Xn be i.i.d. binary random variables with
P (Xi = 1) = p, where p ∈ (0, 1) is unknown. Consider first the estimation
of ϑ = p(1−p). Since Var(X̄) = p(1−p)/n, the n−1 order asymptotic bias of
Tn = X̄(1−X̄) according to (2.38) with g(x) = x(1−x) is −p(1−p)/n. On
the other hand, a direct computation shows E[X̄(1 − X̄)] = EX̄ −EX̄2 =
p− (EX̄)2 − Var(X̄) = p(1 − p) − p(1 − p)/n. Hence, the exact bias of Tn
is the same as the n−1 order asymptotic bias.

Consider next the estimation of ϑ = p−1. In this case, there is no
unbiased estimator of p−1 (Exercise 84 in §2.6). Let Tn = X̄−1. Then, an
n−1 order asymptotic bias of Tn according to (2.38) with g(x) = x−1 is
(1 − p)/(p2n). On the other hand, ETn = ∞ for every n.

Like the bias, the mse of an estimator Tn of ϑ, mseTn(P ) = E(Tn−ϑ)2,
is not well defined if the second moment of Tn does not exist. We now
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define a version of asymptotic mean squared error (amse) and a measure of
assessing different point estimators of a common parameter.

Definition 2.12. Let Tn be an estimator of ϑ for every n and {an} be a
sequence of positive numbers satisfying an → ∞ or an → a > 0. Assume
that an(Tn − ϑ) →d Y with 0 < EY 2 <∞.
(i) The asymptotic mean squared error of Tn, denoted by amseTn(P ) or
amseTn(θ) if P is in a parametric family indexed by θ, is defined to be
the asymptotic expectation of (Tn − ϑ)2, i.e., amseTn(P ) = EY 2/a2

n. The
asymptotic variance of Tn is defined to be σ2

Tn
(P ) = Var(Y )/a2

n.
(ii) Let T ′

n be another estimator of ϑ. The asymptotic relative efficiency of
T ′
n w.t.r. Tn is defined to be eT ′

n,Tn(P ) = amseTn(P )/amseT ′
n
(P ).

(iii) Tn is said to be asymptotically more efficient than T ′
n if and only if

lim supn eT ′
n,Tn(P ) ≤ 1 for any P and < 1 for some P .

The amse and asymptotic variance are the same if and only if EY = 0.
By Proposition 2.3, the amse or the asymptotic variance of Tn is essen-
tially unique and, therefore, the concept of asymptotic relative efficiency in
Definition 2.12(ii)-(iii) is well defined.

In Example 2.33, amseX̄2(P ) = σ2
X̄2(P ) = 4µ2σ2/n. In Example 2.34,

σ2
X(n)

(P ) = [hn(θ)]
2Var(Y ) and amseX(n)

(P ) = [hn(θ)]2EY 2.

When both mseTn(P ) and mseT ′
n
(P ) exist, one may compare Tn and

T ′
n by evaluating the relative efficiency mseTn(P )/mseT ′

n
(P ). However, this

comparison may be different from the one using the asymptotic relative
efficiency in Definition 2.12(ii), since the mse and amse of an estimator
may be different (Exercise 115 in §2.6). The following result shows that
when the exact mse of Tn exists, it is no smaller than the amse of Tn. It
also provides a condition under which the exact mse and the amse are the
same.

Proposition 2.4. Let Tn be an estimator of ϑ for every n and {an} be a
sequence of positive numbers satisfying an → ∞ or an → a > 0. Suppose
that an(Tn − ϑ) →d Y with 0 < EY 2 <∞. Then
(i) EY 2 ≤ lim infnE[a2

n(Tn − ϑ)2] and
(ii) EY 2 = limn→∞E[a2

n(Tn−ϑ)2] if and only if {a2
n(Tn−ϑ)2} is uniformly

integrable.
Proof. (i) By Theorem 1.10(iii),

min{a2
n(Tn − ϑ)2, t} →d min{Y 2, t}

for any t > 0. Since min{a2
n(Tn − ϑ)2, t} is bounded by t,

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t}) = E(min{Y 2, t})



2.5. Asymptotic Criteria and Inference 139

(Theorem 1.8(viii)). Then

EY 2 = lim
t→∞

E(min{Y 2, t})

= lim
t→∞

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t})

= lim inf
t,n

E(min{a2
n(Tn − ϑ)2, t})

≤ lim inf
n

E[a2
n(Tn − ϑ)2],

where the third equality follows from the fact that E(min{a2
n(Tn − ϑ)2, t})

is nondecreasing in t for any fixed n.
(ii) The result follows from Theorem 1.8(viii).

Example 2.36. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ)
with an unknown θ > 0. Consider the estimation of ϑ = P (Xi = 0) = e−θ.
Let T1n = Fn(0), where Fn is the empirical c.d.f. defined in (2.28). Then
T1n is unbiased and has mseT1n(θ) = e−θ(1−e−θ)/n. Also,

√
n(T1n−ϑ) →d

N(0, e−θ(1−e−θ)) by the CLT. Thus, in this case amseT1n(θ) = mseT1n(θ).

Next, consider T2n = e−X̄ . Note that ET2n = enθ(e
−1/n−1). Hence

nbT2n(θ) → θe−θ/2. Using Theorem 1.12 and the CLT, we can show that√
n(T2n−ϑ) →d N(0, e−2θθ). By Definition 2.12(i), amseT2n(θ) = e−2θθ/n.

Thus, the asymptotic relative efficiency of T1n w.r.t. T2n is

eT1n,T2n(θ) = θ/(eθ − 1),

which is always less than 1. This shows that T2n is asymptotically more
efficient than T1n.

The result for T2n in Example 2.36 is a special case (with Un = X̄) of
the following general result.

Theorem 2.6. Let g be a function on Rk that is differentiable at θ ∈ Rk

and let Un be a k-vector of statistics satisfying an(Un − θ) →d Y for a
random k-vector Y with 0 < E‖Y ‖2 < ∞ and a sequence of positive
numbers {an} satisfying an → ∞. Let Tn = g(Un) be an estimator of
ϑ = g(θ). Then, the amse and asymptotic variance of Tn are, respectively,
E{[∇g(θ)]τY }2/a2

n and [∇g(θ)]τVar(Y )∇g(θ)/a2
n.

2.5.3 Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is
called asymptotic statistical inference or simply asymptotic inference. We
have previously considered asymptotic estimation. We now focus on asymp-
totic hypothesis tests and confidence sets.
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Definition 2.13. Let X = (X1, ..., Xn) be a sample from P ∈ P and
Tn(X) be a test for H0 : P ∈ P0 versus H1 : P ∈ P1.
(i) If lim supn αTn(P ) ≤ α for any P ∈ P0, then α is an asymptotic signifi-
cance level of Tn.
(ii) If limn→∞ supP∈P0

αTn(P ) exists, then it is called the limiting size of
Tn.
(iii) Tn is called consistent if and only if the type II error probability con-
verges to 0, i.e., limn→∞[1 − αTn(P )] = 0, for any P ∈ P1.
(iv) Tn is called Chernoff-consistent if and only if Tn is consistent and the
type I error probability converges to 0, i.e., limn→∞ αTn(P ) = 0, for any
P ∈ P0. Tn is called strongly Chernoff-consistent if and only if Tn is con-
sistent and the limiting size of Tn is 0.

Obviously if Tn has size (or significance level) α for all n, then its limiting
size (or asymptotic significance level) is α. If the limiting size of Tn is
α ∈ (0, 1), then for any ǫ > 0, Tn has size α+ ǫ for all n ≥ n0, where n0 is
independent of P . Hence Tn has level of significance α+ ǫ for any n ≥ n0.
However, if P0 is not a parametric family, it is likely that the limiting size
of Tn is 1 (see, e.g., Example 2.37). This is the reason why we consider the
weaker requirement in Definition 2.13(i). If Tn has asymptotic significance
level α, then for any ǫ > 0, αTn(P ) < α + ǫ for all n ≥ n0(P ) but n0(P )
depends on P ∈ P0; and there is no guarantee that Tn has significance level
α+ ǫ for any n.

The consistency in Definition 2.13(iii) only requires that the type II er-
ror probability converge to 0. We may define uniform consistency to be
limn→∞ supP∈P1

[1 − αTn(P )] = 0, but it is not satisfied in most problems.
If α ∈ (0, 1) is a pre-assigned level of significance for the problem, then a
consistent test Tn having asymptotic significance level α is called asymptot-
ically correct, and a consistent test having limiting size α is called strongly
asymptotically correct.

The Chernoff-consistency (or strong Chernoff-consistency) in Definition
2.13(iv) requires that both types of error probabilities converge to 0. Math-
ematically, Chernoff-consistency (or strong Chernoff-consistency) is better
than asymptotic correctness (or strongly asymptotic correctness). After
all, both types of error probabilities should decrease to 0 if sampling can be
continued indefinitely. However, if α is chosen to be small enough so that
error probabilities smaller than α can be practically treated as 0, then the
asymptotic correctness (or strongly asymptotic correctness) is enough, and
is probably preferred, since requiring an unnecessarily small type I error
probability usually results in an unnecessary increase in the type II error
probability, as the following example illustrates.

Example 2.37. Consider the testing problem H0 : µ ≤ µ0 versus H1 :
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µ > µ0 based on i.i.d. X1, ..., Xn with EX1 = µ ∈ R. If each Xi has the
N(µ, σ2) distribution with a known σ2, then the test Tcα given in Example
2.28 with cα = σz1−α/

√
n + µ0 and α ∈ (0, 1) has size α (and, therefore,

limiting size α). It also follows from (2.32) that for any µ > µ0,

1 − αTcα
(µ) = Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
→ 0 (2.39)

as n → ∞. This shows that Tcα is consistent and, hence, is strongly
asymptotically correct. Note that the convergence in (2.39) is not uniform
in µ > µ0, but is uniform in µ > µ1 for any fixed µ1 > µ0.

Since the size of Tcα is α for all n, Tcα is not Chernoff-consistent. A
strongly Chernoff-consistent test can be obtained as follows. Let

αn = 1 − Φ(
√
nan), (2.40)

where an’s are positive numbers satisfying an → 0 and
√
nan → ∞. Let

Tn be Tcα with α = αn for each n. Then, Tn has size αn. Since αn → 0,
The limiting size of Tn is 0. On the other hand, (2.39) still holds with α
replaced by αn. This follows from the fact that

z1−αn +

√
n(µ0 − µ)

σ
=

√
n

(
an +

µ0 − µ

σ

)
→ −∞

for any µ > µ0. Hence Tn is strongly Chernoff-consistent. However, if
αn < α, then, from the left-hand side of (2.39), 1 − αTcα

(µ) < 1 − αTn(µ)
for any µ > µ0.

We now consider the case where the population P is not in a parametric
family. We still assume that σ2 = Var(Xi) is known. Using the CLT, we
can show that for µ > µ0,

lim
n→∞

[1 − αTcα
(µ)] = lim

n→∞
Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
= 0,

i.e., Tcα is still consistent. For µ ≤ µ0,

lim
n→∞

αTcα
(µ) = 1 − lim

n→∞
Φ

(
z1−α +

√
n(µ0 − µ)

σ

)
,

which equals α if µ = µ0 and 0 if µ < µ0. Thus, the asymptotic significance
level of Tcα is α. Combining these two results, we know that Tcα is asymp-
totically correct. However, if P contains all possible populations on R with
finite second moments, then one can show that the limiting size of Tcα is
1 (exercise). For αn defined by (2.40), we can show that Tn = Tcα with
α = αn is Chernoff-consistent (exercise). But Tn is not strongly Chernoff-
consistent if P contains all possible populations on R with finite second
moments.
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Definition 2.14. Let X = (X1, ..., Xn) be a sample from P ∈ P , ϑ be a
k-vector of parameters related to P , and C(X) be a confidence set for ϑ.
(i) If lim infn P (ϑ ∈ C(X)) ≥ 1 − α for any P ∈ P , then 1 − α is an
asymptotic significance level of C(X).
(ii) If limn→∞ infP∈P P (ϑ ∈ C(X)) exists, then it is called the limiting
confidence coefficient of C(X).

Note that the asymptotic significance level and limiting confidence co-
efficient of a confidence set are very similar to the asymptotic significance
level and limiting size of a test, respectively. Some conclusions are also sim-
ilar. For example, in a parametric problem one can often find a confidence
set having limiting confidence coefficient 1 − α ∈ (0, 1), which implies that
for any ǫ > 0, the confidence coefficient of C(X) is 1−α− ǫ for all n ≥ n0,
where n0 is independent of P ; in a nonparametric problem the limiting
confidence coefficient of C(X) might be 0, whereas C(X) may have asymp-
totic significance level 1 − α ∈ (0, 1), but for any fixed n, the confidence
coefficient of C(X) might be 0.

The confidence interval in Example 2.31 with c = σz1−α/2/
√
n and the

confidence set in Example 2.32 have confidence coefficient 1 − α for any n
and, therefore, have limiting confidence coefficient 1 − α. If we drop the
normality assumption and assume EX4

i < ∞, then these confidence sets
have asymptotic significance level 1−α; their limiting confidence coefficients
may be 0 (exercise).

2.6 Exercises

1. Consider Example 2.3. Suppose that p(s) is constant. Show that Xi

and Xj, i 6= j, are not uncorrelated and, hence, X1, ..., Xn are not
independent. Furthermore, when yi’s are either 0 or 1, show that
Z =

∑n
i=1Xi has a hypergeometric distribution and compute the

mean of Z.

2. Consider Example 2.3. Suppose that we do not require that the ele-
ments in s be distinct, i.e., we consider sampling with replacement.
Define a probability measure p and a sample (X1, ..., Xn) such that
(2.3) holds. If p(s) is constant, are X1, ..., Xn independent? If p(s)
is constant and yi’s are either 0 or 1, what are the distribution and
mean of Z =

∑n
i=1Xi?

3. Show that {Pθ : θ ∈ Θ} is an exponential family and find its canonical
form and natural parameter space, when
(a) Pθ is the Poisson distribution P (θ), θ ∈ Θ = (0,∞);
(b) Pθ is the negative binomial distribution NB(θ, r) with a fixed r,
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θ ∈ Θ = (0, 1);
(c) Pθ is the exponential distribution E(a, θ) with a fixed a, θ ∈ Θ =
(0,∞);
(d) Pθ is the gamma distribution Γ(α, γ), θ = (α, γ) ∈ Θ = (0,∞) ×
(0,∞);
(e) Pθ is the beta distribution B(α, β), θ = (α, β) ∈ Θ = (0, 1)×(0, 1);
(f) Pθ is the Weibull distribution W (α, θ) with a fixed α > 0, θ ∈ Θ =
(0,∞).

4. Show that the family of exponential distributions E(a, θ) with two
unknown parameters a and θ is not an exponential family.

5. Show that the family of negative binomial distributionsNB(p, r) with
two unknown parameters p and r is not an exponential family.

6. Show that the family of Cauchy distributions C(µ, σ) with two un-
known parameters µ and σ is not an exponential family.

7. Show that the family of Weibull distributions W (α, θ) with two un-
known parameters α and θ is not an exponential family.

8. Is the family of log-normal distributions LN(µ, σ2) with two unknown
parameters µ and σ2 an exponential family?

9. Show that the family of double exponential distributions DE(µ, θ)
with two unknown parameters µ and θ is not an exponential family,
but the family of double exponential distributions DE(µ, θ) with a
fixed µ and an unknown parameter θ is an exponential family.

10. Show that the k-dimensional normal family discussed in Example 2.4
is an exponential family. Identify the functions T , η, ξ, and h.

11. Obtain the variance-covariance matrix for (X1, ..., Xk) in Example
2.7, using (a) Theorem 2.1(ii) and (b) direct computation.

12. Show that the m.g.f. of the gamma distribution Γ(α, γ) is (1− γt)−α,
t < γ−1, using Theorem 2.1(ii).

13. A discrete random variable X with

P (X = x) = γ(x)θx/c(θ), x = 0, 1, 2, ...,

where γ(x) ≥ 0, θ > 0, and c(θ) =
∑∞

x=0 γ(x)θx, is called a random
variable with a power series distribution.
(a) Show that {γ(x)θx/c(θ) : θ > 0} is an exponential family.
(b) Suppose that X1, ..., Xn are i.i.d. with a power series distribution
γ(x)θx/c(θ). Show that

∑n
i=1Xi has the power series distribution

γn(x)θ
x/[c(θ)]n, where γn(x) is the coefficient of θx in the power series

expansion of [c(θ)]n.
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14. Let X be a random variable with a p.d.f. fθ in an exponential family
{Pθ : θ ∈ Θ} and let A be a Borel set. Show that the distribution
of X truncated on A (i.e., the conditional distribution of X given
X ∈ A) has a p.d.f. fθIA/Pθ(A) that is in an exponential family.

15. Let {P(µ,Σ) : µ ∈ Rk,Σ ∈ Mk} be a location-scale family on Rk.
Suppose that P(0,Ik) has a Lebesgue p.d.f. that is always positive and
that the mean and variance-covariance matrix of P(0,Ik) are 0 and Ik,
respectively. Show that the mean and variance-covariance matrix of
P(µ,Σ) are µ and Σ, respectively.

16. Show that if the distribution of a positive random variable X is in a
scale family, then the distribution of logX is in a location family.

17. Let X be a random variable having the gamma distribution Γ(α, γ)
with a known α and an unknown γ > 0 and let Y = σ logX .
(a) Show that if σ > 0 is unknown, then the distribution of Y is in a
location-scale family.
(b) Show that if σ > 0 is known, then the distribution of Y is in an
exponential family.

18. Let X1, ..., Xn be i.i.d. random variables having a finite E|X1|4 and
let X̄ and S2 be the sample mean and variance defined by (2.1) and
(2.2). Express E(X̄3), Cov(X̄, S2), and Var(S2) in terms of µk =
EXk

1 , k = 1, 2, 3, 4. Find a condition under which X̄ and S2 are
uncorrelated.

19. Let X1, ..., Xn be i.i.d. random variables having the gamma distri-
bution Γ(α, γx) and Y1, ..., Yn be i.i.d. random variables having the
gamma distribution Γ(α, γy), where α > 0, γx > 0, and γy > 0. As-
sume that Xi’s and Yi’s are independent. Derive the distribution of
the statistic X̄/Ȳ , where X̄ and Ȳ are the sample means based on
Xi’s and Yi’s, respectively.

20. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(a, θ), a ∈ R, and θ > 0. Show that the smallest order
statistic, X(1), has the exponential distribution E(a, θ/n) and that
2
∑n
i=1(Xi −X(1))/θ has the chi-square distribution χ2

2n−2.

21. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors. Suppose that
X1 has the Cauchy distribution C(0, 1) and given X1 = x, Y1 has
the Cauchy distribution C(βx, 1), where β ∈ R. Let X̄ and Ȳ be
the sample means based on Xi’s and Yi’s, respectively. Obtain the
marginal distributions of Ȳ , Ȳ − βX̄ , and Ȳ /X̄.
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22. Let Xi = (Yi, Zi), i = 1, ..., n, be i.i.d. random 2-vectors. The sample
correlation coefficient is defined to be

T (X) =
1

(n− 1)
√
S2
Y S

2
Z

n∑

i=1

(Yi − Ȳ )(Zi − Z̄),

where Ȳ =n−1
∑n
i=1 Yi, Z̄=n−1

∑n
i=1 Zi, S

2
Y =(n−1)−1

∑n
i=1(Yi−Ȳ )2,

and S2
Z=(n−1)−1

∑n
i=1(Zi−Z̄)2.

(a) Assume that E|Yi|4 <∞ and E|Zi|4 <∞. Show that

√
n[T (X)− ρ] →d N(0, c2),

where ρ is the correlation coefficient between Y1 and Z1 and c is a
constant depending on some unknown parameters.
(b) Assume that Yi and Zi are independently distributed as N(µ1, σ

2
1)

and N(µ2, σ
2
2), respectively. Show that T has the Lebesgue p.d.f.

f(t) =
Γ
(
n−1

2

)
√
πΓ
(
n−2

2

) (1 − t2)(n−4)/2I(−1,1)(t).

(c) Assume the conditions in (b). Obtain the result in (a) using
Scheffé’s theorem (Proposition 1.18).

23. Let X1, ..., Xn be i.i.d. random variables with EX4
1 <∞, T = (Y, Z),

and T1 = Y/
√
Z, where Y = n−1

∑n
i=1 |Xi| and Z = n−1

∑n
i=1X

2
i .

(a) Show that
√
n(T − θ) →d N2(0,Σ) and

√
n(T1 − ϑ) →d N(0, c2).

Identify θ, Σ, ϑ, and c2 in terms of moments of X1.
(b) Repeat (a) when X1 has the normal distribution N(0, σ2).
(c) Repeat (a) when X1 has the double exponential distribution
D(0, σ).

24. Prove the claims in Example 2.9 for the distributions related to order
statistics.

25. Show that if T is a sufficient statistic and T = ψ(S), where ψ is
measurable and S is another statistic, then S is sufficient.

26. In the proof of Lemma 2.1, show that C0 ∈ C. Also, prove Lemma
2.1 when P is dominated by a σ-finite measure.

27. Let X1, ..., Xn be i.i.d. random variables from Pθ ∈ {Pθ : θ ∈ Θ}. In
the following cases, find a sufficient statistic for θ ∈ Θ that has the
same dimension as θ.
(a) Pθ is the Poisson distribution P (θ), θ ∈ (0,∞).
(b) Pθ is the negative binomial distribution NB(θ, r) with a known
r, θ ∈ (0, 1).
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(c) Pθ is the exponential distribution E(0, θ), θ ∈ (0,∞).
(d) Pθ is the gamma distribution Γ(α, γ), θ = (α, γ) ∈ (0,∞)×(0,∞).
(e) Pθ is the beta distribution B(α, β), θ = (α, β) ∈ (0, 1) × (0, 1).
(f) Pθ is the log-normal distribution LN(µ, σ2), θ = (µ, σ2) ∈ R ×
(0,∞).
(g) Pθ is the Weibull distribution W (α, θ) with a known α > 0, θ ∈
(0,∞).

28. LetX1, ..., Xn be i.i.d. random variables from P(a,θ), where (a, θ) ∈ R2

is a parameter. Find a two-dimensional sufficient statistic for (a, θ)
in the following cases.
(a) P(a,θ) is the exponential distribution E(a, θ), a ∈ R, θ ∈ (0,∞).
(b) P(a,θ) is the Pareto distribution Pa(a, θ), a ∈ (0,∞), θ ∈ (0,∞).

29. In Example 2.11, show that X(1) (or X(n)) is sufficient for a (or b) if
we consider a subfamily {f(a,b) : a < b} with a fixed b (or a).

30. Let X and Y be two random variables such that Y has the binomial
distribution Bi(π,N) and, given Y = y, X has the binomial distri-
bution Bi(p, y).
(a) Suppose that p ∈ (0, 1) and π ∈ (0, 1) are unknown and N is
known. Show that (X,Y ) is minimal sufficient for (p, π).
(b) Suppose that π and N are known and p ∈ (0, 1) is unknown. Show
whether X is sufficient for p and whether Y is sufficient for p.

31. Let X1, ..., Xn be i.i.d. random variables having a distribution P ∈
P , where P is the family of distributions on R having continuous
c.d.f.’s. Let T = (X(1), ..., X(n)) be the vector of order statistics. Show
that, given T , the conditional distribution of X = (X1, ..., Xn) is a
discrete distribution putting probability 1/n! on each of the n! points
(Xi1 , ..., Xin) ∈ Rn, where {i1, ..., in} is a permutation of {1, ..., n};
hence, T is sufficient for P ∈ P .

32. In Example 2.13 and Example 2.14, show that T is minimal sufficient
for θ by using Theorem 2.3(iii).

33. A coin has probability p of coming up heads and 1 − p of coming
up tails, where p ∈ (0, 1). The first stage of an experiment consists
of tossing this coin a known total of M times and recording X , the
number of heads. In the second stage, the coin is tossed until a total
of X + 1 tails have come up. The number Y of heads observed in
the second stage along the way to getting the X + 1 tails is then
recorded. This experiment is repeated independently a total of n
times and the two counts (Xi, Yi) for the ith experiment are recorded,
i = 1, ..., n. Obtain a statistic that is minimal sufficient for p and
derive its distribution.
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34. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.

fθ(x) = exp
{
−
(
x−µ
σ

)4 − ξ(θ)
}
,

where θ = (µ, σ) ∈ Θ = R× (0,∞). Show that P = {Pθ : θ ∈ Θ} is
an exponential family, where Pθ is the joint distribution of X1, ..., Xn,
and that the statistic T =

(∑n
i=1Xi,

∑n
i=1X

2
i ,
∑n
i=1X

3
i ,
∑n

i=1X
4
i

)

is minimal sufficient for θ ∈ Θ.

35. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.

fθ(x) = (2θ)−1
[
I(0,θ)(x) + I(2θ,3θ)(x)

]
.

Find a minimal sufficient statistic for θ ∈ (0,∞).

36. Let X1, ..., Xn be i.i.d. random variables having the Cauchy distribu-
tion C(µ, σ) with unknown µ ∈ R and σ > 0. Show that the vector
of order statistics is minimal sufficient for (µ, σ).

37. Let X1, ..., Xn be i.i.d. random variables having the double exponen-
tial distribution DE(µ, θ) with unknown µ ∈ R and θ > 0. Show that
the vector of order statistics is minimal sufficient for (µ, θ).

38. Let X1, ..., Xn be i.i.d. random variables having the Weibull distribu-
tion W (α, θ) with unknown α > 0 and θ > 0. Show that the vector
of order statistics is minimal sufficient for (α, θ).

39. Let X1, ..., Xn be i.i.d. random variables having the beta distribution
B(β, β) with an unknown β > 0. Find a minimal sufficient statistic
for β.

40. Let X1, ..., Xn be i.i.d. random variables having a population P in
a parametric family indexed by (θ, j), where θ > 0, j = 1, 2, and
n ≥ 2. When j = 1, P is the N(0, θ2) distribution. When j = 2,
P is the double exponential distribution DE(0, θ). Show that T =
(
∑n
i=1X

2
i ,
∑n
i=1 |Xi|) is minimal sufficient for (θ, j).

41. Let X1, ..., Xn be i.i.d. random variables having a population P in a
parametric family indexed by (θ, j), where θ ∈ (0, 1), j = 1, 2, and
n ≥ 2. When j = 1, P is the Poisson distribution P (θ). When j = 2,
P is the binomial distribution Bi(θ, 1).
(a) Show that T =

∑n
i=1Xi is not sufficient for (θ, j).

(b) Find a two-dimensional minimal sufficient statistic for (θ, j).

42. Let X be a sample from P ∈ P = {fθ,j : θ ∈ Θ, j = 1, ..., k}, where
fθ,j’s are p.d.f.’s w.r.t. a common σ-finite measure and Θ is a set of
parameters. Assume that {x : fθ,j(x) > 0} ⊂ {x : fθ,k(x) > 0} for all
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θ and j = 1, ..., k − 1. Suppose that for each fixed j, T = T (X) is a
statistic sufficient for θ.
(a) Obtain a k-dimensional statistic that is sufficient for (θ, j).
(b) Derive a sufficient condition under which T is minimal sufficient
for (θ, j).

43. A box has an unknown odd number of balls labeled consecutively as
−θ,−(θ − 1), ...,−2,−1, 0, 1, 2, ..., (θ − 1), θ, where θ is an unknown
nonnegative integer. A simple random sample X1, ..., Xn is taken
without replacement, where Xi is the label on the ith ball selected
and n < 2θ + 1.
(a) Find a statistic that is minimal sufficient for θ and derive its
distribution.
(b) Show that the minimal sufficient statistic in (a) is also complete.

44. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.
θ−1e−(x−θ)/θI(θ,∞)(x), where θ > 0 is an unknown parameter.
(a) Find a statistic that is minimal sufficient for θ.
(b) Show whether the minimal sufficient statistic in (a) is complete.

45. Let X1, ..., Xn (n ≥ 2) be i.i.d. random variables having the normal
distribution N(θ, 2) when θ = 0 and the normal distribution N(θ, 1)
when θ ∈ R and θ 6= 0. Show that the sample mean X̄ is a complete
statistic for θ but it is not a sufficient statistic for θ.

46. Let X be a random variable with a distribution Pθ in {Pθ : θ ∈ Θ},
fθ be the p.d.f. of Pθ w.r.t. a measure ν, A be an event, and PA =
{fθIA/Pθ(A) : θ ∈ Θ}.
(a) Show that if T (X) is sufficient for Pθ ∈ P , then it is sufficient for
Pθ ∈ PA.
(b) Show that if T is sufficient and complete for Pθ ∈ P , then it is
complete for Pθ ∈ PA.

47. Show that (X(1), X(n)) in Example 2.13 is not complete.

48. Let T be a complete (or boundedly complete) and sufficient statistic.
Suppose that there is a minimal sufficient statistic S. Show that T is
minimal sufficient and S is complete (or boundedly complete).

49. Let T and S be two statistics such that S = ψ(T ) for a measurable
ψ. Show that
(a) if T is complete, then S is complete;
(b) if T is complete and sufficient and ψ is one-to-one, then S is
complete and sufficient;
(c) the results in (a) and (b) still hold if the completeness is replaced
by the bounded completeness.
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50. Find complete and sufficient statistics for the families in Exercises 27
and 28.

51. Show that (X(1), X(n)) in Example 2.11 is complete.

52. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors having the follow-
ing Lebesgue p.d.f.

fθ(x, y) = (2πγ2)−1I(0,γ)

(√
(x − a)2 + (y − b)2

)
, (x, y) ∈ R2,

where θ = (a, b, γ) ∈ R2 × (0,∞).
(a) If a = 0 and b = 0, find a complete and sufficient statistic for γ.
(b) If all parameters are unknown, show that the convex hull of the
sample points is a sufficient statistic for θ.

53. Let X be a discrete random variable with p.d.f.

fθ(x) =





θ x = 0

(1 − θ)2θx−1 x = 1, 2, ...

0 otherwise,

where θ ∈ (0, 1). Show that X is boundedly complete, but not com-
plete.

54. Show that the sufficient statistic T in Example 2.10 is also complete
without using Proposition 2.1.

55. Let Y1, ..., Yn be i.i.d. random variables having the Lebesgue p.d.f.
λxλ−1I(0,1)(x) with an unknown λ > 0 and let Z1, ..., Zn be i.i.d.
discrete random variables having the power series distribution given
in Exercise 13 with an unknown θ > 0. Assume that Yi’s and Zj’s
are independent. Let Xi = Yi + Zi, i = 1, ..., n. Find a complete
and sufficient statistic for the unknown parameter (θ, λ) based on the
sample X = (X1, ..., Xn).

56. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d. random 2-vectors and
Xi and Yi are independently distributed as N(µ, σ2

X) and N(µ, σ2
Y ),

respectively, with θ = (µ, σ2
X , σ

2
Y ) ∈ R× (0,∞) × (0,∞). Let X̄ and

S2
X be the sample mean and variance given by (2.1) and (2.2) for Xi’s

and Ȳ and S2
Y be the sample mean and variance for Yi’s. Show that

T = (X̄, Ȳ , S2
X , S

2
Y ) is minimal sufficient for θ but T is not boundedly

complete.

57. Let X1, ..., Xn be i.i.d. from the N(θ, θ2) distribution, where θ > 0
is a parameter. Find a minimal sufficient statistic for θ and show
whether it is complete.
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58. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d. random 2-vectors having
the normal distribution with EX1 = EY1 = 0, Var(X1) = Var(Y1) =
1, and Cov(X1, Y1) = θ ∈ (−1, 1).
(a) Find a minimal sufficient statistic for θ.
(b) Show whether the minimal sufficient statistic in (a) is complete
or not.
(c) Prove that T1 =

∑n
i=1X

2
i and T2 =

∑n
i=1 Y

2
i are both ancillary

but (T1, T2) is not ancillary.

59. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(a, θ).
(a) Show that

∑n
i=1(Xi − X(1)) and X(1) are independent for any

(a, θ).
(b) Show that Zi = (X(n) − X(i))/(X(n) − X(n−1)), i = 1, ..., n − 2,
are independent of (X(1),

∑n
i=1(Xi −X(1))).

60. Let X1, ..., Xn be i.i.d. random variables having the gamma distri-
bution Γ(α, γ). Show that

∑n
i=1Xi and

∑n
i=1[logXi − logX(1)] are

independent for any (α, γ).

61. Let X1, ..., Xn be i.i.d. random variables having the uniform distri-
bution on the interval (a, b), where −∞ < a < b < ∞. Show
that (X(i) − X(1))/(X(n) − X(1)), i = 2, ..., n − 1, are independent
of (X(1), X(n)) for any a and b.

62. Consider Example 2.19. Assume that n > 2.
(a) Show that X̄ is better than T1 if P = N(θ, σ2), θ ∈ R, σ > 0.
(b) Show that T1 is better than X̄ if P is the uniform distribution on
the interval (θ − 1

2 , θ + 1
2 ), θ ∈ R.

(c) Find a family P for which neither X̄ nor T1 is better than the
other.

63. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution, where µ ∈ R
and σ > 0. Consider the estimation of σ2 with the squared error loss.
Show that n−1

n S2 is better than S2, the sample variance. Can you
find an estimator of the form cS2 with a nonrandom c such that it is
better than n−1

n S2?

64. LetX1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = θ ∈
(0, 1). Consider estimating θ with the squared error loss. Calculate
the risks of the following estimators:
(a) the nonrandomized estimators X̄ (the sample mean) and

T0(X) =





0 if more than half of Xi’s are 0

1 if more than half of Xi’s are 1
1
2 if exactly half of Xi’s are 0;
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(b) the randomized estimators

T1(X) =

{
X̄ with probability 1

2

T0 with probability 1
2

and

T2(X) =

{
X̄ with probability X̄
1
2 with probability 1 − X̄ .

65. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(0, θ), θ ∈ (0,∞). Consider estimating θ with the squared
error loss. Calculate the risks of the sample mean X̄ and cX(1), where
c is a positive constant. Is X̄ better than cX(1) for some c?

66. Consider the estimation of an unknown parameter θ ≥ 0 under the
squared error loss. Show that if T and U are two estimators such that
T ≤ U and RT (P ) < RU (P ), then RT+(P ) < RU+(P ), where RT (P )
is the risk of an estimator T and T+ denotes the positive part of T .

67. Let X1, ..., Xn be i.i.d. random variables having the exponential dis-
tribution E(0, θ), θ ∈ (0,∞). Consider the hypotheses

H0 : θ ≤ θ0 versus H1 : θ > θ0,

where θ0 > 0 is a fixed constant. Obtain the risk function (in terms
of θ) of the test rule Tc(X) = I(c,∞)(X̄), under the 0-1 loss.

68. Let X1, ..., Xn be i.i.d. random variables having the Cauchy distribu-
tionC(µ, σ) with unknown µ ∈ R and σ > 0. Consider the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant. Obtain the risk function of the test rule
Tc(X) = I(c,∞)(X̄), under the 0-1 loss.

69. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = θ,
where θ ∈ (0, 1) is unknown and n is an even integer. Consider the
problem of testing H0 : θ ≤ 0.5 versus H1 : θ > 0.5 with action space
{0, 1} (0 means H0 is accepted and 1 means H1 is accepted). Let
the loss function be L(θ, a) = 0 if Hj is true and a = j, j = 0, 1;
L(θ, 0) = C0 when θ > 0.5; and L(θ, 1) = C1 when θ ≤ 0.5, where
C0 > C1 > 0 are some constants. Calculate the risk function of the
following randomized test (decision rule):

T =





0 if more than half of Xi’s are 0

1 if more than half of Xi’s are 1
1
2 if exactly half of Xi’s are 0.
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70. Consider Example 2.21. Suppose that our decision rule, based on
a sample X = (X1, ..., Xn) with i.i.d. components from the N(θ, 1)
distribution with an unknown θ > 0, is

T (X) =





a1 b1 < X̄

a2 b0 < X̄ ≤ b1
a3 X̄ ≤ b0.

Express the risk of T in terms of θ.

71. Consider an estimation problem with P = {Pθ : θ ∈ Θ} (a parametric
family), A = Θ, and the squared error loss. If θ0 ∈ Θ satisfies that
Pθ ≪ Pθ0 for any θ ∈ Θ, show that the estimator T ≡ θ0 is admissible.

72. Let ℑ be a class of decision rules. A subclass ℑ0 ⊂ ℑ is called ℑ-
complete if and only if, for any T ∈ ℑ and T 6∈ ℑ0, there is a T0 ∈ ℑ0

that is better than T , and ℑ0 is called ℑ-minimal complete if and
only if ℑ0 is ℑ-complete and no proper subclass of ℑ0 is ℑ-complete.
Show that if a ℑ-minimal complete class exists, then it is exactly the
class of ℑ-admissible rules.

73. Let X1, ..., Xn be i.i.d. random variables having a distribution P ∈ P .
Assume that EX2

1 < ∞. Consider estimating µ = EX1 under the
squared error loss.
(a) Show that any estimator of the form aX̄+b is inadmissible, where
X̄ is the sample mean, a and b are constants, and a > 1.
(b) Show that any estimator of the form X̄ + b is inadmissible, where
b 6= 0 is a constant.

74. Consider an estimation problem with ϑ ∈ [c, d] ⊂ R, where c and d
are known. Suppose that the action space is A ⊃ [c, d] and the loss
function is L(|ϑ− a|), where L(·) is an increasing function on [0,∞).
Show that any decision rule T with P (T (X) 6∈ [c, d]) > 0 for some
P ∈ P is inadmissible.

75. Suppose that the action space is (Ω,BkΩ), where Ω ∈ Bk. Let X
be a sample from P ∈ P , δ0(X) be a nonrandomized rule, and T
be a sufficient statistic for P ∈ P . Show that if E[IA(δ0(X))|T ] is a
nonrandomized rule, i.e., E[IA(δ0(X))|T ] = IA(h(T )) for any A ∈ BkΩ,
where h is a Borel function, then δ0(X) = h(T (X)) a.s. P .

76. Let T , δ0, and δ1 be as given in the statement of Proposition 2.2.
Show that

∫

A

L(P, a)dδ1(X, a) = E

[∫

A

L(P, a)dδ0(X, a)

∣∣∣∣T
]

a.s. P .
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77. Prove Theorem 2.5.

78. In Exercise 64, use Theorem 2.5 to find decision rules that are better
than Tj , j = 0, 1, 2.

79. In Exercise 65, use Theorem 2.5 to find a decision rule better than
cX(1).

80. Consider Example 2.22.
(a) Show that there is no optimal rule if ℑ contains all possible esti-
mators. (Hint: consider constant estimators.)
(b) Find a ℑ2-optimal rule if X1, ..., Xn are independent random vari-
ables having a common mean µ and Var(Xi) = σ2/ai with known ai,
i = 1, ..., n.
(c) Find a ℑ2-optimal rule if X1, ..., Xn are identically distributed but
are correlated with a common correlation coefficient ρ.

81. Let Xij = µ + ai + ǫij , i = 1, ...,m, j = 1, ..., n, where ai’s and ǫij ’s
are independent random variables, ai is N(0, σ2

a), ǫij is N(0, σ2
e), and

µ, σ2
a, and σ2

e are unknown parameters. Define X̄i = n−1
∑n

j=1Xij ,

X̄ = m−1
∑m

i=1 X̄i, MSA = n(m − 1)−1
∑m
i=1(X̄i − X̄)2, and MSE

= m−1(n− 1)−1
∑m
i=1

∑n
j=1(Xij − X̄i)

2. Assume that m(n− 1) > 4.

Consider the following class of estimators of θ = σ2
a/σ

2
e :

{
θ̂(δ) =

1

n

[
(1 − δ)

MSA

MSE
− 1

]
: δ ∈ R

}
.

(a) Show that MSA and MSE are independent.

(b) Obtain a δ ∈ R such that θ̂(δ) is unbiased for θ.

(c) Show that the risk of θ̂(δ) under the squared error loss is a func-
tion of (δ, θ).
(d) Show that there is a constant δ∗ such that for any fixed θ, the risk

of θ̂(δ) is strictly decreasing in δ for δ < δ∗ and strictly increasing for
δ > δ∗.
(e) Show that the unbiased estimator of θ derived in (b) is inadmis-
sible.

82. Let T0(X) be an unbiased estimator of ϑ in an estimation problem.
Show that any unbiased estimator of ϑ is of the form T (X) = T0(X)−
U(X), where U(X) is an “unbiased estimator” of 0.

83. Let X be a discrete random variable with

P (X = −1) = p, P (X = k) = (1 − p)2pk, k = 0, 1, 2, ...,

where p ∈ (0, 1) is unknown.
(a) Show that U(X) is an unbiased estimator of 0 if and only if U(k) =
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ak for all k = −1, 0, 1, 2, ... and some a.
(b) Show that T0(X) = I{0}(X) is unbiased for ϑ = (1−p)2 and that,
under the squared error loss, T0 is a ℑ-optimal rule, where ℑ is the
class of all unbiased estimators of ϑ.
(c) Show that T0(X) = I{−1}(X) is unbiased for ϑ = p and that,
under the squared error loss, there is no ℑ-optimal rule, where ℑ is
the class of all unbiased estimators of ϑ.

84. (Nonexistence of an unbiased estimator). Let X be a random variable
having the binomial distribution Bi(p, n) with an unknown p ∈ (0, 1)
and a known n. Consider the problem of estimating ϑ = p−1. Show
that there is no unbiased estimator of ϑ.

85. Let X1, ..., Xn be i.i.d. random variables having the normal distribu-
tion N(θ, 1), where θ = 0 or 1. Consider the estimation of θ.
(a) Let ℑ be the class of nonrandomized rules (estimators), i.e., esti-
mators that take values 0 and 1 only. Show that there does not exist
any unbiased estimator of θ in ℑ.
(b) Find an estimator in ℑ that is approximately unbiased.

86. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an
unknown θ > 0. Find the bias and mse of Tn = (1 − a/n)nX̄ as an
estimator of ϑ = e−aθ, where a 6= 0 is a known constant.

87. Let X1, ..., Xn be i.i.d. (n ≥ 3) from N(µ, σ2), where µ > 0 and σ > 0
are unknown parameters. Let T1 = X̄/S be an estimator of µ/σ and
T2 = X̄2 be an estimator of µ2, where X̄ and S2 are the sample mean
and variance, respectively. Calculate the mse’s of T1 and T2.

88. Consider a location family {Pµ : µ ∈ Rk} on Rk, where Pµ = P(µ,Ik)

is given in (2.10). Let l0 ∈ Rk be a fixed vector and L(P, a) =
L(‖µ − a‖), where a ∈ A = Rk and L(·) is a nonnegative Borel
function on [0,∞). Show that the family is invariant and the decision
problem is invariant under the transformation g(X) = X+cl0, c ∈ R.
Find an invariant decision rule.

89. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with unknown
µ ∈ R and σ2 > 0. Consider the scale transformation aX , a ∈ (0,∞).
(a) For estimating σ2 under the loss function L(P, a) = (1 − a/σ2)2,
show that the problem is invariant and that the sample variance S2

is invariant.
(b) For testing H0 : µ ≤ 0 versus H1 : µ > 0 under the loss

L(P, 0) =
µ

σ
I(0,∞)(µ) and L(P, 1) =

|µ|
σ
I(−∞,0](µ),

show that the problem is invariant and any test that is a function of
X̄/
√
S2/n is invariant.
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90. Let X1, ..., Xn be i.i.d. random variables having the c.d.f. F (x − θ),
where F is symmetric about 0 and θ ∈ R is unknown.
(a) Show that the c.d.f. of

∑n
i=1 wiX(i) − θ is symmetric about 0,

where X(i) is the ith order statistic and wi’s are constants satisfying
wi = wn−i+1 and

∑n
i=1 wi = 1.

(b) Show that
∑n

i=1 wiX(i) in (a) is unbiased for θ if the mean of F
exists.
(c) Show that

∑n
i=1 wiX(i) is location invariant when

∑n
i=1 wi = 1.

91. In Example 2.25, show that the conditional distribution of θ given
X = x is N(µ∗(x), c2) with µ∗(x) and c2 given by (2.25).

92. A median of a random variable Y (or its distribution) is any value m
such that P (Y ≤ m) ≥ 1

2 and P (Y ≥ m) ≥ 1
2 .

(a) Show that the set of medians is a closed interval [m0,m1].
(b) Suppose that E|Y | < ∞. If c is not a median of Y , show that
E|Y − c| ≥ E|Y −m| for any median m of Y .
(c) Let X be a sample from Pθ, where θ ∈ Θ ⊂ R. Consider the
estimation of θ under the absolute error loss function |a− θ|. Let Π
be a given distribution on Θ with finite mean. Find the ℑ-Bayes rule
w.r.t. Π, where ℑ is the class of all rules.

93. (Classification). Let X be a sample having a p.d.f. fj(x) w.r.t. a σ-
finite measure ν, where j is unknown and j ∈ {1, ..., J} with a known
integer J ≥ 2. Consider a decision problem in which the action space
A = {1, ..., J} and the loss function is

L(j, a) =

{
0 if a = j

1 if a 6= j.

(a) Let ℑ be the class of all nonrandomized decision rules. Obtain
the risk of a δ ∈ ℑ.
(b) Let Π be a probability measure on {1, ..., J} with Π({j}) = πj ,
j = 1, ..., J . Obtain the Bayes risk of δ ∈ ℑ w.r.t. Π.
(c) Obtain a ℑ-Bayes rule w.r.t. Π in (b).
(d) Assume that J = 2, π1 = π2 = 0.5, and fj(x) = φ(x− µj), where
φ(x) is the p.d.f. of the standard normal distribution and µj , j = 1, 2,
are known constants. Obtain the Bayes rule in (c) and compute the
Bayes risk.
(e) Obtain the risk and the Bayes risk (w.r.t. Π in (b)) of a randomized
decision rule.
(f) Obtain a Bayes rule w.r.t. Π.
(g) Obtain a minimax rule.

94. Let θ̂ be an unbiased estimator of an unknown θ ∈ R.
(a) Under the squared error loss, show that the estimator θ̂+ c is not
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minimax unless supθ RT (θ) = ∞ for any estimator T , where c 6= 0 is
a known constant.
(b) Under the squared error loss, show that the estimator cθ̂ is not
minimax unless supθ RT (θ) = ∞ for any estimator T , where c ∈ (0, 1)
is a known constant.
(c) Consider the loss function L(θ, a) = (a−θ)2/θ2 (assuming θ 6= 0).

Show that θ̂ is not minimax unless supθ RT (θ) = ∞ for any T .

95. Let X be a binary observation with P (X = 1) = θ1 or θ2, where
0 < θ1 < θ2 < 1 are known values. Consider the estimation of θ
with action space {a1, a2} and loss function L(θi, aj) = lij , where
l21 ≥ l12 > l11 = l22 = 0. For a decision rule δ(X), the vector
(Rδ(θ1), Rδ(θ2)) is defined to be its risk point.
(a) Show that the set of risk points of all decision rules is the convex
hull of the set of risk points of all nonrandomized rules.
(b) Find a minimax rule.
(c) Let Π be a distribution on {θ1, θ2}. Obtain the class of all Bayes
rules w.r.t. Π. Discuss when there is a unique Bayes rule.

96. Consider the decision problem in Example 2.23.
(a) Let Π be the uniform distribution on (0, 1). Show that a ℑ-Bayes
rule w.r.t. Π is Tj∗(X), where j∗ is the largest integer in {0, 1, ..., n−1}
such thatBj+1,n−j+1(θ0) ≥ 1

2 andBa,b(·) denotes the c.d.f. of the beta
distribution B(a, b).
(b) Derive a ℑ-minimax rule.

97. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with unknown
µ ∈ R and σ2 > 0. To test the hypotheses

H0 : µ ≤ µ0 versus H1 : µ > µ0,

where µ0 is a fixed constant, consider a test of the form Tc(X) =
I(c,∞)(Tµ0), where Tµ0 = (X̄ − µ0)/

√
S2/n and c is a fixed constant.

(a) Find the size of Tc. (Hint: Tµ0 has the t-distribution tn−1.)
(b) If α is a given level of significance, find a cα such that Tcα has
size α.
(c) Compute the p-value for Tcα derived in (b).
(d) Find a cα such that [X̄−cα

√
S2/n, X̄+cα

√
S2/n] is a confidence

interval for µ with confidence coefficient 1−α. What is the expected
interval length?

98. In Exercise 67, calculate the size of Tc(X); find a cα such that Tcα

has size α, a given level of significance; and find the p-value for Tcα .

99. In Exercise 68, assume that σ is known. Calculate the size of Tc(X);
find a cα such that Tcα has size α, a given level of significance; and
find the p-value for Tcα .
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100. Let α ∈ (0, 1) be given and Tj,q(X) be the test given in Example 2.30.
Show that there exist integer j and q ∈ (0, 1) such that the size of
Tj,q is α.

101. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a ∈ R and θ > 0. Let α ∈ (0, 1) be given.
(a) Using T1(X) =

∑n
i=1(Xi −X(1)), construct a confidence interval

for θ with confidence coefficient 1 − α and find the expected interval
length.
(b) Using T1(X) and T2(X) = X(1), construct a confidence interval
for a with confidence coefficient 1 − α and find the expected interval
length.
(c) Using the method in Example 2.32, construct a confidence set for
the two-dimensional parameter (a, θ) with confidence coefficient 1−α.

102. Suppose that X is a sample and a statistic T (X) has a distribution
in a location family {Pµ : µ ∈ R}. Using T (X), derive a confidence
interval for µ with level of significance 1−α and obtain the expected
interval length. Show that if the c.d.f. of T (X) is continuous, then we
can always find a confidence interval for µ with confidence coefficient
1 − α for any α ∈ (0, 1).

103. Let X = (X1, ..., Xn) be a sample from Pθ, where θ ∈ {θ1, ..., θk}
with a fixed integer k. Let Tn(X) be an estimator of θ with range
{θ1, ..., θk}.
(a) Show that Tn(X) is consistent if and only if Pθ(Tn(X) = θ) → 1.
(b) Show that if Tn(X) is consistent, then it is an-consistent for any
{an}.

104. Let X1, ..., Xn be i.i.d. from the uniform distribution on (θ− 1
2 , θ+ 1

2 ),
where θ ∈ R is unknown. Show that (X(1) + X(n))/2 is strongly
consistent for θ and also consistent in mse.

105. Let X1, ..., Xn be i.i.d. from a population with the Lebesgue p.d.f.
fθ(x) = 2−1(1 + θx)I(−1,1)(x), where θ ∈ (−1, 1) is an unknown pa-
rameter. Find a consistent estimator of θ. Is your estimator

√
n-

consistent?

106. Let X1, ..., Xn be i.i.d. observations. Suppose that Tn is an unbiased
estimator of ϑ based on X1, ..., Xn such that for any n, Var(Tn) <∞
and Var(Tn) ≤ Var(Un) for any other unbiased estimator Un of ϑ
based on X1, ..., Xn. Show that Tn is consistent in mse.

107. Consider the Bayes rule µ∗(X) in Example 2.25. Show that µ∗(X) is
a strongly consistent,

√
n-consistent, and L2-consistent estimator of

µ. What is the order of the bias of µ∗(X) as an estimator of µ?
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108. In Exercise 21, show that
(a) Ȳ /X̄ is an inconsistent estimator of β;

(b) β̂ = Z(m) is a consistent estimator of β, where m = n/2 when n
is even, m = (n + 1)/2 when n is odd, and Z(i) is the ith smallest
value of Yi/Xi, i = 1, ..., n.

109. Show that the estimator T0 of θ in Exercise 64 is inconsistent.

110. Let g1, g2,... be continuous functions on (a, b) ⊂ R such that gn(x) →
g(x) uniformly for x in any closed subinterval of (a, b). Let Tn be a
consistent estimator of θ ∈ (a, b). Show that gn(Tn) is consistent for
ϑ = g(θ).

111. Let X1, ..., Xn be i.i.d. from P with unknown mean µ ∈ R and vari-
ance σ2 > 0, and let g(µ) = 0 if µ 6= 0 and g(0) = 1. Find a consistent
estimator of ϑ = g(µ).

112. Establish results for the smallest order statistic X(1) (based on i.i.d.
random variables X1, ..., Xn) similar to those in Example 2.34.

113. (Consistency for finite population). In Example 2.27, show that Ŷ →p

Y as n → N for any fixed N and population. Is Ŷ still consistent if
sampling is with replacement?

114. Assume that Xi = θti + ei, i = 1, ..., n, where θ ∈ Θ is an unknown
parameter, Θ is a closed subset of R, ei’s are i.i.d. on the interval
[−τ, τ ] with some unknown τ > 0 and Eei = 0, and ti’s are fixed
constants. Let

Tn = Sn(θ̃n) = min
γ∈Θ

Sn(γ),

where
Sn(γ) = 2 max

i≤n
|Xi − γti|/

√
1 + γ2.

(a) Assume that supi |ti| < ∞ and supi ti − infi ti > 2τ . Show that
the sequence {θ̃n, n = 1, 2, ...} is bounded a.s.
(b) Let θn ∈ Θ, n = 1, 2, .... If θn → θ, show that

Sn(θn) − Sn(θ) = O(|θn − θ|) a.s.

(c) Under the conditions in (a), show that Tn is a strongly consistent
estimator of ϑ = minγ∈Θ S(γ), where S(γ) = limn→∞ Sn(γ) a.s.

115. Let X1, ..., Xn be i.i.d. random variables with EX2
1 < ∞ and X̄ be

the sample mean. Consider the estimation of µ = EX1.
(a) Let Tn = X̄ + ξn/

√
n, where ξn is a random variable satisfying

ξn = 0 with probability 1− n−1 and ξn = n3/2 with probability n−1.
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Show that bTn(P ) 6= b̃Tn(P ) for any P .
(b) Let Tn = X̄ + ηn/

√
n, where ηn is a random variable that is

independent of X1, ..., Xn and equals 0 with probability 1−2n−1 and
±√

n with probability n−1. Show that amseTn(P ) = amseX̄(P ) =
mseX̄(P ) and mseTn(P ) > amseTn(P ) for any P .

116. Let X1, ..., Xn be i.i.d. random variables with finite θ = EX1 and
Var(X1) = θ, where θ > 0 is unknown. Consider the estimation of

ϑ =
√
θ. Let T1n =

√
X̄ and T2n = X̄/S, where X̄ and S2 are the

sample mean and sample variance.
(a) Obtain the n−1 order asymptotic biases of T1n and T2n according
to (2.38).
(b) Obtain the asymptotic relative efficiency of T1n w.r.t. T2n.

117. Let X1, ..., Xn be i.i.d. according to N(µ, 1) with an unknown µ ∈ R.
Let ϑ = P (X1 ≤ c) for a fixed constant c. Consider the following
estimators of ϑ: T1n = Fn(c), where Fn is the empirical c.d.f. defined
in (2.28), and T2n = Φ(c− X̄), where Φ is the c.d.f. of N(0, 1).
(a) Find the n−1 order asymptotic bias of T2n according to (2.38).
(b) Find the asymptotic relative efficiency of T1n w.r.t. T2n.

118. Let X1, ..., Xn be i.i.d. from the N(0, σ2) distribution with an un-
known σ > 0. Consider the estimation of ϑ = σ. Find the asymptotic
relative efficiency of

√
π/2

∑n
i=1 |Xi|/n w.r.t. (

∑n
i=1X

2
i /n)1/2.

119. Let X1, ..., Xn be i.i.d. from P with EX4
1 < ∞ and unknown mean

µ ∈ R and variance σ2 > 0. Consider the estimation of ϑ = µ2 and
the following three estimators: T1n = X̄2, T2n = X̄2 − S2/n, T3n =
max{0, T2n}, where X̄ and S2 are the sample mean and variance.
Show that the amse’s of Tjn, j = 1, 2, 3, are the same when µ 6= 0 but
may be different when µ = 0. Which estimator is the best in terms
of the asymptotic relative efficiency when µ = 0?

120. Prove Theorem 2.6.

121. Let X1, ..., Xn be i.i.d. with EXi = µ, Var(Xi) = 1, and EX4
i < ∞.

Let T1n = n−1
∑n

i=1X
2
i − 1 and T2n = X̄2 − n−1 be estimators of

ϑ = µ2.
(a) Find the asymptotic relative efficiency of T1n w.r.t. T2n.
(b) Show that eT1n,T2n(P ) ≤ 1 if the c.d.f. of Xi − µ is symmetric
about 0 and µ 6= 0.
(c) Find a distribution P for which eT1n,T2n(P ) > 1.

122. Let X1, ..., Xn be i.i.d. binary random variables with unknown p =
P (Xi = 1) ∈ (0, 1). Consider the estimation of p. Let a and b be
two positive constants. Find the asymptotic relative efficiency of the
estimator (a+ nX̄)/(a+ b+ n) w.r.t. X̄.
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123. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown µ ∈ R and a
known σ2. Let T1 = X̄ be the sample mean and T2 = µ∗(X) be the
Bayes estimator given in (2.25). Assume that EX4

1 <∞.
(a) Calculate the exact mse of both estimators. Can you conclude
that one estimator is better than the other in terms of the mse?
(b) Find the asymptotic relative efficiency of T1 w.r.t. T2.

124. In Example 2.37, show that
(a) the limiting size of Tcα is 1 if P contains all possible populations
on R with finite second moments;
(b) Tn = Tcα with α = αn (given by (2.40)) is Chernoff-consistent;
(c) Tn in (b) is not strongly Chernoff-consistent if P contains all
possible populations on R with finite second moments.

125. Let X1, ..., Xn be i.i.d. with unknown mean µ ∈ R and variance
σ2 > 0. For testing H0 : µ ≤ µ0 versus H1 : µ > µ0, consider
the test Tcα obtained in Exercise 97(b).
(a) Show that Tcα has asymptotic significance level α and is consis-
tent.
(b) Find a test that is Chernoff-consistent.

126. Consider the test Tj in Example 2.23. For each n, find a j = jn such
that Tjn has asymptotic significance level α ∈ (0, 1).

127. Show that the test Tcα in Exercise 98 is consistent, but Tcα in Exercise
99 is not consistent.

128. In Example 2.31, suppose that we drop the normality assumption but
assume that µ = EXi and σ2 = Var(Xi) are finite.
(a) Show that when σ2 is known, the asymptotic significance level
of the confidence interval [X̄ − cα, X̄ + cα] is 1 − α, where cα =
σz1−α/2/

√
n and za = Φ−1(a).

(b) Show that when σ2 is known, the limiting confidence coefficient
of the interval in (a) might be 0 if P contains all possible populations
on R.
(c) Show that the confidence interval in Exercise 97(d) has asymptotic
significance level 1 − α.

129. Let X1, ..., Xn be i.i.d. with unknown mean µ ∈ R and variance σ2 >
0. Assume that EX4

1 <∞. Using the sample variance S2, construct a
confidence interval for σ2 that has asymptotic significance level 1−α.

130. Consider the sample correlation coefficient T defined in Exercise 22.
Construct a confidence interval for ρ that has asymptotic significance
level 1 − α, assuming that (Yi, Zi) is normally distributed. (Hint:
show that the asymptotic variance of T is (1 − ρ2)2.)



Chapter 3

Unbiased Estimation

Unbiased or asymptotically unbiased estimation plays an important role
in point estimation theory. Unbiasedness of point estimators is defined in
§2.3.2. In this chapter, we discuss in detail how to derive unbiased esti-
mators and, more importantly, how to find the best unbiased estimators in
various situations. Although an unbiased estimator (even the best unbiased
estimator if it exists) is not necessarily better than a slightly biased esti-
mator in terms of their mse’s (see Exercise 63 in §2.6), unbiased estimators
can be used as “building blocks” for the construction of better estimators.
Furthermore, one may give up the exact unbiasedness, but cannot give up
asymptotic unbiasedness since it is necessary for consistency (see §2.5.2).
Properties and the construction of asymptotically unbiased estimators are
studied in the last part of this chapter.

3.1 The UMVUE

Let X be a sample from an unknown population P ∈ P and ϑ be a real-
valued parameter related to P . Recall that an estimator T (X) of ϑ is
unbiased if and only if E[T (X)] = ϑ for any P ∈ P . If there exists an
unbiased estimator of ϑ, then ϑ is called an estimable parameter.

Definition 3.1. An unbiased estimator T (X) of ϑ is called the uni-
formly minimum variance unbiased estimator (UMVUE) if and only if
Var(T (X)) ≤ Var(U(X)) for any P ∈ P and any other unbiased estimator
U(X) of ϑ.

Since the mse of any unbiased estimator is its variance, a UMVUE is
ℑ-optimal in mse with ℑ being the class of all unbiased estimators. One
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162 3. Unbiased Estimation

can similarly define the uniformly minimum risk unbiased estimator in sta-
tistical decision theory when we use an arbitrary loss instead of the squared
error loss that corresponds to the mse.

3.1.1 Sufficient and complete statistics

The derivation of a UMVUE is relatively simple if there exists a sufficient
and complete statistic for P ∈ P .

Theorem 3.1 (Lehmann-Scheffé theorem). Suppose that there exists a
sufficient and complete statistic T (X) for P ∈ P . If ϑ is estimable, then
there is a unique unbiased estimator of ϑ that is of the form h(T ) with a
Borel function h. (Two estimators that are equal a.s. P are treated as one
estimator.) Furthermore, h(T ) is the unique UMVUE of ϑ.

This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell the-
orem). One can easily extend this theorem to the case of the uniformly
minimum risk unbiased estimator under any loss function L(P, a) that is
strictly convex in a. The uniqueness of the UMVUE follows from the com-
pleteness of T (X).

There are two typical ways to derive a UMVUE when a sufficient and
complete statistic T is available. The first one is solving for h when the
distribution of T is available. The following are two typical examples.

Example 3.1. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(0, θ), θ > 0. Let ϑ = g(θ), where g is a differentiable function on (0,∞).
Since the sufficient and complete statistic X(n) has the Lebesgue p.d.f.
nθ−nxn−1I(0,θ)(x), an unbiased estimator h(X(n)) of ϑ must satisfy

θng(θ) = n

∫ θ

0

h(x)xn−1dx for all θ > 0.

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral (Royden (1968, §5.3)) lead to

nθn−1g(θ) + θng′(θ) = nh(θ)θn−1.

Hence, the UMVUE of ϑ is h(X(n)) = g(X(n)) + n−1X(n)g
′(X(n)). In

particular, if ϑ = θ, then the UMVUE of θ is (1 + n−1)X(n).

Example 3.2. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ)
with an unknown θ > 0. Then T (X) =

∑n
i=1Xi is sufficient and complete

for θ > 0 and has the Poisson distribution P (nθ). Suppose that ϑ = g(θ),
where g is a smooth function such that g(x) =

∑∞
j=0 ajx

j , x > 0. An
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unbiased estimator h(T ) of ϑ must satisfy

∞∑

t=0

h(t)nt

t!
θt = enθg(θ)

=

∞∑

k=0

nk

k!
θk

∞∑

j=0

ajθ
j

=

∞∑

t=0


 ∑

j,k:j+k=t

nkaj
k!


 θt

for any θ > 0. Thus, a comparison of coefficients in front of θt leads to

h(t) =
t!

nt

∑

j,k:j+k=t

nkaj
k!

,

i.e., h(T ) is the UMVUE of ϑ. In particular, if ϑ = θr for some fixed integer
r ≥ 1, then ar = 1 and ak = 0 if k 6= r and

h(t) =

{
0 t < r

t!
nr(t−r)! t ≥ r.

The second method of deriving a UMVUE when there is a sufficient and
complete statistic T (X) is conditioning on T , i.e., if U(X) is any unbiased
estimator of ϑ, then E[U(X)|T ] is the UMVUE of ϑ. To apply this method,
we do not need the distribution of T , but need to work out the conditional
expectation E[U(X)|T ]. From the uniqueness of the UMVUE, it does not
matter which U(X) is used and, thus, we should choose U(X) so as to make
the calculation of E[U(X)|T ] as easy as possible.

Example 3.3. Consider the estimation problem in Example 2.26, where
ϑ = 1 − Fθ(t) and Fθ(x) = (1 − e−x/θ)I(0,∞)(x). Since X̄ is sufficient and
complete for θ > 0 and I(t,∞)(X1) is unbiased for ϑ,

T (X) = E[I(t,∞)(X1)|X̄ ] = P (X1 > t|X̄)

is the UMVUE of ϑ. If the conditional distribution of X1 given X̄ is avail-
able, then we can calculate P (X1 > t|X̄) directly. But the following tech-
nique can be applied to avoid the derivation of conditional distributions.
By Basu’s theorem (Theorem 2.4), X1/X̄ and X̄ are independent. By
Proposition 1.10(vii),

P (X1 > t|X̄ = x̄) = P (X1/X̄ > t/X̄|X̄ = x̄) = P (X1/X̄ > t/x̄).
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To compute this unconditional probability, we need the distribution of

X1

/ n∑

i=1

Xi = X1

/(
X1 +

n∑

i=2

Xi

)
.

Using the transformation technique discussed in §1.3.1 and the fact that∑n
i=2Xi is independent of X1 and has a gamma distribution, we obtain

that X1/
∑n
i=1Xi has the Lebesgue p.d.f. (n−1)(1−x)n−2I(0,1)(x). Hence

P (X1 > t|X̄ = x̄) = (n− 1)

∫ 1

t/(nx̄)

(1 − x)n−2dx =

(
1 − t

nx̄

)n−1

and the UMVUE of ϑ is

T (X) =

(
1 − t

nX̄

)n−1

.

We now show more examples of applying these two methods to find
UMVUE’s.

Example 3.4. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ ∈ R
and σ2 > 0. From Example 2.18, T = (X̄, S2) is sufficient and com-
plete for θ = (µ, σ2) and X̄ and (n − 1)S2/σ2 are independent and have
the N(µ, σ2/n) and chi-square distribution χ2

n−1, respectively. Using the
method of solving for h directly, we find that the UMVUE for µ is X̄ ; the
UMVUE of µ2 is X̄2−S2/n; the UMVUE for σr with r > 1−n is kn−1,rS

r,
where

kn,r =
nr/2Γ(n/2)

2r/2Γ
(
n+r

2

)

(exercise); and the UMVUE of µ/σ is kn−1,−1X̄/S, if n > 2.

Suppose that ϑ satisfies P (X1 ≤ ϑ) = p with a fixed p ∈ (0, 1). Let Φ
be the c.d.f. of the standard normal distribution. Then ϑ = µ + σΦ−1(p)
and its UMVUE is X̄ + kn−1,1SΦ−1(p).

Let c be a fixed constant and ϑ = P (X1 ≤ c) = Φ
(
c−µ
σ

)
. We can

find the UMVUE of ϑ using the method of conditioning and the technique
used in Example 3.3. Since I(−∞,c)(X1) is an unbiased estimator of ϑ, the
UMVUE of ϑ is E[I(−∞,c)(X1)|T ] = P (X1 ≤ c|T ). By Basu’s theorem,
the ancillary statistic Z(X) = (X1 − X̄)/S is independent of T = (X̄, S2).
Then, by Proposition 1.10(vii),

P
(
X1 ≤ c|T = (x̄, s2)

)
= P

(
Z ≤ c− X̄

S

∣∣∣∣T = (x̄, s2)

)

= P

(
Z ≤ c− x̄

s

)
.
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It can be shown that Z has the Lebesgue p.d.f.

f(z) =

√
nΓ
(
n−1

2

)
√
π(n− 1)Γ

(
n−2

2

)
[
1 − nz2

(n− 1)2

](n/2)−2

I(0,(n−1)/
√
n)(|z|) (3.1)

(exercise). Hence the UMVUE of ϑ is

P (X1 ≤ c|T ) =

∫ (c−X̄)/S

−(n−1)/
√
n

f(z)dz (3.2)

with f given by (3.1).

Suppose that we would like to estimate ϑ = 1
σΦ′ ( c−µ

σ

)
, the Lebesgue

p.d.f. of X1 evaluated at a fixed c, where Φ′ is the first-order derivative
of Φ. By (3.2), the conditional p.d.f. of X1 given X̄ = x̄ and S2 = s2 is
s−1f

(
x−x̄
s

)
. Let fT be the joint p.d.f. of T = (X̄, S2). Then

ϑ =

∫ ∫
1

s
f

(
c− x̄

s

)
fT (t)dt = E

[
1

S
f

(
c− X̄

S

)]
.

Hence the UMVUE of ϑ is

1

S
f

(
c− X̄

S

)
.

Example 3.5. Let X1, ..., Xn be i.i.d. from a power series distribution (see
Exercise 13 in §2.6), i.e.,

P (Xi = x) = γ(x)θx/c(θ), x = 0, 1, 2, ...,

with a known function γ(x) ≥ 0 and an unknown parameter θ > 0. It turns
out that the joint distribution of X = (X1, ..., Xn) is in an exponential fam-
ily with a sufficient and complete statistic T (X) =

∑n
i=1Xi. Furthermore,

the distribution of T is also in a power series family, i.e.,

P (T = t) = γn(t)θ
t/[c(θ)]n, t = 0, 1, 2, ...,

where γn(t) is the coefficient of θt in the power series expansion of [c(θ)]n

(Exercise 13 in §2.6). This result can help us to find the UMVUE of ϑ =
g(θ). For example, by comparing both sides of

∞∑

t=0

h(t)γn(t)θ
t = [c(θ)]n−pθr,

we conclude that the UMVUE of θr/[c(θ)]p is

h(T ) =

{
0 T < r
γn−p(T−r)
γn(T ) T ≥ r,
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where r and p are nonnegative integers. In particular, the case of p = 1
produces the UMVUE γ(r)h(T ) of the probability P (X1 = r) = γ(r)θr/c(θ)
for any nonnegative integer r.

Example 3.6. Let X1, ..., Xn be i.i.d. from an unknown population P in a
nonparametric family P . We have discussed in §2.2 that in many cases the
vector of order statistics, T = (X(1), ..., X(n)), is sufficient and complete for
P ∈ P . Note that an estimator ϕ(X1, ..., Xn) is a function of T if and only if
the function ϕ is symmetric in its n arguments. Hence, if T is sufficient and
complete, then a symmetric unbiased estimator of any estimable ϑ is the
UMVUE. For example, X̄ is the UMVUE of ϑ = EX1; S

2 is the UMVUE
of Var(X1); n

−1
∑n
i=1X

2
i − S2 is the UMVUE of (EX1)

2; and Fn(t) is the
UMVUE of P (X1 ≤ t) for any fixed t.

Note that these conclusions are not true if T is not sufficient and com-
plete for P ∈ P . For example, if P contains all symmetric distributions
having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for
ϑ = EX1 (exercise).

More discussions of UMVUE’s in nonparametric problems are provided
in §3.2.

3.1.2 A necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very
difficult to derive a UMVUE. In some cases, the following result can be
applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2. Let U be the set of all unbiased estimators of 0 with finite
variances and T be an unbiased estimator of ϑ with E(T 2) <∞.
(i) A necessary and sufficient condition for T (X) to be a UMVUE of ϑ is
that E[T (X)U(X)] = 0 for any U ∈ U and any P ∈ P .
(ii) Suppose that T = h(T̃ ), where T̃ is a sufficient statistic for P ∈ P and h
is a Borel function. Let UT̃ be the subset of U consisting of Borel functions

of T̃ . Then a necessary and sufficient condition for T to be a UMVUE of ϑ
is that E[T (X)U(X)] = 0 for any U ∈ UT̃ and any P ∈ P .
Proof. (i) Suppose that T is a UMVUE of ϑ. Then Tc = T + cU , where
U ∈ U and c is a fixed constant, is also unbiased for ϑ and, thus,

Var(Tc) ≥ Var(T ), c ∈ R, P ∈ P ,
which is the same as

c2Var(U) + 2cCov(T, U) ≥ 0, c ∈ R, P ∈ P .
This is impossible unless Cov(T, U) = E(TU) = 0 for any P ∈ P .
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Suppose now E(TU) = 0 for any U ∈ U and P ∈ P . Let T0 be another
unbiased estimator of ϑ with Var(T0) <∞. Then T − T0 ∈ U and, hence,

E[T (T − T0)] = 0 P ∈ P ,
which with the fact that ET = ET0 implies that

Var(T ) = Cov(T, T0) P ∈ P .
By inequality (1.37), [Cov(T, T0)]

2 ≤ Var(T )Var(T0). Hence Var(T ) ≤
Var(T0) for any P ∈ P .
(ii) It suffices to show that E(TU) = 0 for any U ∈ UT̃ and P ∈ P implies

that E(TU) = 0 for any U ∈ U and P ∈ P . Let U ∈ U . Then E(U |T̃ ) ∈ UT̃
and the result follows from the fact that T = h(T̃ ) and

E(TU) = E[E(TU |T̃ )] = E[E(h(T̃ )U |T̃ )] = E[h(T̃ )E(U |T̃ )].

Theorem 3.2 can be used to find a UMVUE, to check whether a partic-
ular estimator is a UMVUE, and to show the nonexistence of any UMVUE.
If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only
need to focus on functions of the sufficient statistic and, hence, Theorem
3.2(ii) is more convenient to use.

Example 3.7. Let X1, ..., Xn be i.i.d. from the uniform distribution on
the interval (0, θ). In Example 3.1, (1 + n−1)X(n) is shown to be the
UMVUE for θ when the parameter space is Θ = (0,∞). Suppose now that
Θ = [1,∞). Then X(n) is not complete, although it is still sufficient for θ.
Thus, Theorem 3.1 does not apply. We now illustrate how to use Theorem
3.2(ii) to find a UMVUE of θ. Let U(X(n)) be an unbiased estimator of 0.
Since X(n) has the Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x),

0 =

∫ 1

0

U(x)xn−1dx+

∫ θ

1

U(x)xn−1dx

for all θ ≥ 1. This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞)
and ∫ 1

0

U(x)xn−1dx = 0.

Consider T = h(X(n)). To have E(TU) = 0, we must have

∫ 1

0

h(x)U(x)xn−1dx = 0.

Thus, we may consider the following function:

h(x) =

{
c 0 ≤ x ≤ 1

bx x > 1,
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where c and b are some constants. From the previous discussion,

E[h(X(n))U(X(n))] = 0, θ ≥ 1.

Since E[h(X(n))] = θ, we obtain that

θ = cP (X(n) ≤ 1) + bE[X(n)I(1,∞)(X(n))]

= cθ−n + [bn/(n+ 1)](θ − θ−n).

Thus, c = 1 and b = (n+ 1)/n. The UMVUE of θ is then

T =

{
1 0 ≤ X(n) ≤ 1

(1 + n−1)X(n) X(n) > 1.

This estimator is better than (1 + n−1)X(n), which is the UMVUE when
Θ = (0,∞) and does not make use of the information about θ ≥ 1.

Example 3.8. Let X be a sample (of size 1) from the uniform distribution
U(θ − 1

2 , θ + 1
2 ), θ ∈ R. We now apply Theorem 3.2 to show that there

is no UMVUE of ϑ = g(θ) for any nonconstant function g. Note that an
unbiased estimator U(X) of 0 must satisfy

∫ θ+ 1
2

θ− 1
2

U(x)dx = 0 for all θ ∈ R.

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral lead to U(x) = U(x+ 1) a.e. m, where m is
the Lebesgue measure on R. If T is a UMVUE of g(θ), then T (X)U(X) is
unbiased for 0 and, hence, T (x)U(x) = T (x+1)U(x+1) a.e.m, where U(X)
is any unbiased estimator of 0. Since this is true for all U , T (x) = T (x+1)
a.e. m. Since T is unbiased for g(θ),

g(θ) =

∫ θ+ 1
2

θ− 1
2

T (x)dx for all θ ∈ R.

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral, we obtain that

g′(θ) = T
(
θ + 1

2

)
− T

(
θ − 1

2

)
= 0 a.e. m.

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let Tj be a UMVUE of ϑj , j = 1, ..., k, where k is a

fixed positive integer. Then
∑k

j=1 cjTj is a UMVUE of ϑ =
∑k
j=1 cjϑj for

any constants c1, ..., ck.
(ii) Let T1 and T2 be two UMVUE’s of ϑ. Then T1 = T2 a.s. P for any
P ∈ P .
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3.1.3 Information inequality

Suppose that we have a lower bound for the variances of all unbiased esti-
mators of ϑ and that there is an unbiased estimator T of ϑ whose variance
is always the same as the lower bound. Then T is a UMVUE of ϑ. Al-
though this is not an effective way to find UMVUE’s (compared with the
methods introduced in §3.1.1 and §3.1.2), it provides a way of assessing
the performance of UMVUE’s. The following result provides such a lower
bound in some cases.

Theorem 3.3 (Cramér-Rao lower bound). Let X = (X1, ..., Xn) be a sam-
ple from P ∈ P = {Pθ : θ ∈ Θ}, where Θ is an open set in Rk. Suppose
that T (X) is an estimator with E[T (X)] = g(θ) being a differentiable func-
tion of θ; Pθ has a p.d.f. fθ w.r.t. a measure ν for all θ ∈ Θ; and fθ is
differentiable as a function of θ and satisfies

∂

∂θ

∫
h(x)fθ(x)dν =

∫
h(x)

∂

∂θ
fθ(x)dν, θ ∈ Θ, (3.3)

for h(x) ≡ 1 and h(x) = T (x). Then

Var(T (X)) ≥
[
∂
∂θ g(θ)

]τ
[I(θ)]−1 ∂

∂θg(θ), (3.4)

where

I(θ) = E

{
∂

∂θ
log fθ(X)

[
∂

∂θ
log fθ(X)

]τ}
(3.5)

is assumed to be positive definite for any θ ∈ Θ.
Proof. We prove the univariate case (k = 1) only. The proof for the
multivariate case (k > 1) is left to the reader. When k = 1, (3.4) reduces
to

Var(T (X)) ≥ [g′(θ)]2

E
[
∂
∂θ log fθ(X)

]2 . (3.6)

From inequality (1.37), we only need to show that

E

[
∂

∂θ
log fθ(X)

]2
= Var

(
∂

∂θ
log fθ(X)

)

and

g′(θ) = Cov

(
T (X),

∂

∂θ
log fθ(X)

)
.

These two results are consequences of condition (3.3).

The k × k matrix I(θ) in (3.5) is called the Fisher information matrix.
The greater I(θ) is, the easier it is to distinguish θ from neighboring values
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and, therefore, the more accurately θ can be estimated. In fact, if the
equality in (3.6) holds for an unbiased estimator T (X) of g(θ) (which is
then a UMVUE), then the greater I(θ) is, the smaller Var(T (X)) is. Thus,
I(θ) is a measure of the information that X contains about the unknown
θ. The inequalities in (3.4) and (3.6) are called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1. (i) LetX and Y be independent with the Fisher informa-
tion matrices IX(θ) and IY (θ), respectively. Then, the Fisher information
about θ contained in (X,Y ) is IX(θ) + IY (θ). In particular, if X1, ..., Xn

are i.i.d. and I1(θ) is the Fisher information about θ contained in a single
Xi, then the Fisher information about θ contained in X1, ..., Xn is nI1(θ).
(ii) Suppose that X has the p.d.f. fθ that is twice differentiable in θ and
that (3.3) holds with h(x) ≡ 1 and fθ replaced by ∂fθ/∂θ. Then

I(θ) = −E
[

∂2

∂θ∂θτ
log fθ(X)

]
. (3.7)

Proof. Result (i) follows from the independence of X and Y and the
definition of the Fisher information. Result (ii) follows from the equality

∂2

∂θ∂θτ
log fθ(X) =

∂2

∂θ∂θτ fθ(X)

fθ(X)
− ∂

∂θ
log fθ(X)

[
∂

∂θ
log fθ(X)

]τ
.

The following example provides a formula for the Fisher information
matrix for many parametric families with a two-dimensional parameter θ.

Example 3.9. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. 1
σ f
(
x−µ
σ

)
,

where f(x) > 0 and f ′(x) exists for all x ∈ R, µ ∈ R, and σ > 0 (a
location-scale family). Let θ = (µ, σ). Then, the Fisher information about
θ contained in X1, ..., Xn is (exercise)

I(θ) =
n

σ2




∫ [f ′(x)]2

f(x) dx
∫ f ′(x)[xf ′(x)+f(x)]

f(x) dx

∫ f ′(x)[xf ′(x)+f(x)]
f(x) dx

∫ [xf ′(x)+f(x)]2

f(x) dx


 .

Note that I(θ) depends on the particular parameterization. If θ = ψ(η)
and ψ is differentiable, then the Fisher information that X contains about
η is

∂
∂ηψ(η)I(ψ(η))

[
∂
∂ηψ(η)

]τ
.

However, it is easy to see that the Cramér-Rao lower bound in (3.4) or (3.6)
is not affected by any one-to-one reparameterization.
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If we use inequality (3.4) or (3.6) to find a UMVUE T (X), then we
obtain a formula for Var(T (X)) at the same time. On the other hand, the
Cramér-Rao lower bound in (3.4) or (3.6) is typically not sharp. Under
some regularity conditions, the Cramér-Rao lower bound is attained if and
only if fθ is in an exponential family; see Propositions 3.2 and 3.3 and
the discussion in Lehmann (1983, p. 123). Some improved information
inequalities are available (see, e.g., Lehmann (1983, Sections 2.6 and 2.7)).

Proposition 3.2. Suppose that the distribution of X is from an expo-
nential family {fθ : θ ∈ Θ}, i.e., the p.d.f. of X w.r.t. a σ-finite measure
is

fθ(x) = exp
{
[η(θ)]τT (x) − ξ(θ)

}
c(x) (3.8)

(see §2.1.3), where Θ is an open subset of Rk.
(i) The regularity condition (3.3) is satisfied for any h with E|h(X)| < ∞
and (3.7) holds.
(ii) If I(η) is the Fisher information matrix for the natural parameter η,
then the variance-covariance matrix Var(T ) = I(η).
(iii) If I(ϑ) is the Fisher information matrix for the parameter ϑ = E[T (X)],
then Var(T ) = [I(ϑ)]−1.
Proof. (i) This is a direct consequence of Theorem 2.1.
(ii) From (2.6), the p.d.f. under the natural parameter η is

fη(x) = exp {ητT (x) − ζ(η)} c(x).

From Theorem 2.1 and result (1.54) in §1.3.3, E[T (X)] = ∂
∂η ζ(η). The

result follows from

∂
∂η log fη(x) = T (x) − ∂

∂η ζ(η).

(iii) Since ϑ = E[T (X)] = ∂
∂η ζ(η),

I(η) = ∂ϑ
∂η I(ϑ)

(
∂ϑ
∂η

)τ
= ∂2

∂η∂ητ ζ(η)I(ϑ)
[

∂2

∂η∂ητ ζ(η)
]τ
.

By Theorem 2.1, result (1.54), and the result in (ii), ∂2

∂η∂ητ ζ(η) = Var(T ) =

I(η). Hence

I(ϑ) = [I(η)]−1I(η)[I(η)]−1 = [I(η)]−1 = [Var(T )]−1.

A direct consequence of Proposition 3.2(ii) is that the variance of any
linear function of T in (3.8) attains the Cramér-Rao lower bound. The
following result gives a necessary condition for Var(U(X)) of an estimator
U(X) to attain the Cramér-Rao lower bound.
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Proposition 3.3. Assume that the conditions in Theorem 3.3 hold with
T (X) replaced by U(X) and that Θ ⊂ R.
(i) If Var(U(X)) attains the Cramér-Rao lower bound in (3.6), then

a(θ)[U(X) − g(θ)] = g′(θ)
∂

∂θ
log fθ(X) a.s. Pθ

for some function a(θ), θ ∈ Θ.
(ii) Let fθ and T be given by (3.8). If Var(U(X)) attains the Cramér-Rao
lower bound, then U(X) is a linear function of T (X) a.s. Pθ, θ ∈ Θ.

Example 3.10. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with
an unknown µ ∈ R and a known σ2. Let fµ be the joint distribution of
X = (X1, ..., Xn). Then

∂
∂µ log fµ(X) =

n∑

i=1

(Xi − µ)/σ2.

Thus, I(µ) = n/σ2. It is obvious that Var(X̄) attains the Cramér-Rao lower
bound in (3.6). Consider now the estimation of ϑ = µ2. Since EX̄2 =
µ2 + σ2/n, the UMVUE of ϑ is h(X̄) = X̄2 − σ2/n. A straightforward
calculation shows that

Var(h(X̄)) =
4µ2σ2

n
+

2σ4

n2
.

On the other hand, the Cramér-Rao lower bound in this case is 4µ2σ2/n.
Hence Var(h(X̄)) does not attain the Cramér-Rao lower bound. The dif-
ference is 2σ4/n2.

Condition (3.3) is a key regularity condition for the results in Theorem
3.3 and Proposition 3.3. If fθ is not in an exponential family, then (3.3) has
to be checked. Typically, it does not hold if the set {x : fθ(x) > 0} depends
on θ (Exercise 37). More discussions can be found in Pitman (1979).

3.1.4 Asymptotic properties of UMVUE’s

UMVUE’s are typically consistent (see Exercise 106 in §2.6). If there is
an unbiased estimator of ϑ whose mse is of the order a−2

n , where {an} is
a sequence of positive numbers diverging to ∞, then the UMVUE of ϑ (if
it exists) has an mse of order a−2

n and is an-consistent. For instance, in
Example 3.3, the mse of U(X) = 1− Fn(t) is Fθ(t)[1− Fθ(t)]/n; hence the
UMVUE T (X) is

√
n-consistent and its mse is of the order n−1.

UMVUE’s are exactly unbiased so that there is no need to discuss their
asymptotic biases. Their variances (or mse’s) are finite, but amse’s can be



3.1. The UMVUE 173

used to assess their performance if the exact forms of mse’s are difficult
to obtain. In many cases, although the variance of a UMVUE Tn does
not attain the Cramér-Rao lower bound, the limit of the ratio of the amse
(or mse) of Tn over the Cramér-Rao lower bound (if it is not 0) is 1. For
instance, in Example 3.10,

Var(X̄2 − σ2/n)

the Cramér-Rao lower bound
= 1 +

σ2

2µ2n
→ 1

if µ 6= 0. In general, under the conditions in Theorem 3.3, if Tn(X) is
unbiased for g(θ) and if, for any θ ∈ Θ,

Tn(X) − g(θ) =
[
∂
∂θg(θ)

]τ
[I(θ)]−1 ∂

∂θ log fθ(X) [1 + op(1)] a.s. Pθ, (3.9)

then
amseTn(θ) = the Cramér-Rao lower bound (3.10)

whenever the Cramér-Rao lower bound is not 0. Note that the case of zero
Cramér-Rao lower bound is not of interest since a zero lower bound does
not provide any information on the performance of estimators.

Consider the UMVUE Tn =
(
1 − t

nX̄

)n−1
of e−t/θ in Example 3.3.

Using the fact that

log(1 − x) = −
∞∑

j=1

xj

j
, |x| ≤ 1,

we obtain that
Tn − e−t/X̄ = Op

(
n−1

)
.

Using Taylor’s expansion, we obtain that

e−t/X̄ − e−t/θ = g′(θ)(X̄ − θ)[1 + op(1)],

where g(θ) = e−t/θ. On the other hand,

[I(θ)]−1 ∂
∂θ log fθ(X) = X̄ − θ.

Hence (3.9) and (3.10) hold. Note that the exact variance of Tn is not
easy to obtain. In this example, it can be shown that {n[Tn − g(θ)]2} is
uniformly integrable and, therefore,

lim
n→∞

nVar(Tn) = lim
n→∞

n[amseTn(θ)]

= lim
n→∞

n[g′(θ)]2[I(θ)]−1

=
t2e−2t/θ

θ2
.

It is shown in Chapter 4 that if (3.10) holds, then Tn is asymptotically
optimal in some sense. Hence UMVUE’s satisfying (3.9), which is often
true, are asymptotically optimal, although they may be improved in terms
of the exact mse’s.
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3.2 U-Statistics

Let X1, ..., Xn be i.i.d. from an unknown population P in a nonparametric
family P . In Example 3.6 we argued that if the vector of order statistic is
sufficient and complete for P ∈ P , then a symmetric unbiased estimator
of any estimable ϑ is the UMVUE of ϑ. In a large class of problems,
parameters to be estimated are of the form

ϑ = E[h(X1, ..., Xm)]

with a positive integer m and a Borel function h that is symmetric and
satisfies E|h(X1, ..., Xm)| < ∞ for any P ∈ P . It is easy to see that a
symmetric unbiased estimator of ϑ is

Un =

(
n

m

)−1∑

c

h(Xi1 , ..., Xim), (3.11)

where
∑

c denotes the summation over the
(
n
m

)
combinations of m distinct

elements {i1, ..., im} from {1, ..., n}.

Definition 3.2. The statistic Un in (3.11) is called a U -statistic with kernel
h of order m.

3.2.1 Some examples

The use of U-statistics is an effective way of obtaining unbiased estimators.
In nonparametric problems, U-statistics are often UMVUE’s, whereas in
parametric problems, U-statistics can be used as initial estimators to derive
more efficient estimators.

If m = 1, Un in (3.11) is simply a type of sample mean. Examples
include the empirical c.d.f. (2.28) evaluated at a particular t and the sample
moments n−1

∑n
i=1X

k
i for a positive integer k. We now consider some

examples with m > 1.

Consider the estimation of ϑ = µm, where µ = EX1 and m is a positive
integer. Using h(x1, ..., xm) = x1 · · ·xm, we obtain the following U-statistic
unbiased for ϑ = µm:

Un =

(
n

m

)−1∑

c

Xi1 · · ·Xim . (3.12)

Consider next the estimation of ϑ = σ2 = Var(X1). Since

σ2 = [Var(X1) + Var(X2)]/2 = E[(X1 −X2)
2/2],
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we obtain the following U-statistic with kernel h(x1, x2) = (x1 − x2)
2/2:

Un =
2

n(n− 1)

∑

1≤i<j≤n

(Xi −Xj)
2

2
=

1

n− 1

(
n∑

i=1

X2
i − nX̄2

)
= S2,

which is the sample variance in (2.2).

In some cases, we would like to estimate ϑ = E|X1 −X2|, a measure of
concentration. Using kernel h(x1, x2) = |x1 − x2|, we obtain the following
U-statistic unbiased for ϑ = E|X1 −X2|:

Un =
2

n(n− 1)

∑

1≤i<j≤n
|Xi −Xj |,

which is known as Gini’s mean difference.

Let ϑ = P (X1 +X2 ≤ 0). Using kernel h(x1, x2) = I(−∞,0](x1 +x2), we
obtain the following U-statistic unbiased for ϑ:

Un =
2

n(n− 1)

∑

1≤i<j≤n
I(−∞,0](Xi +Xj),

which is known as the one-sample Wilcoxon statistic.

Let Tn = Tn(X1, ..., Xn) be a given statistic and let r and d be two
positive integers such that r + d = n. For any s = {i1, ..., ir} ⊂ {1, ..., n},
define

Tr,s = Tr(Xi1 , ..., Xir ),

which is the statistic Tn computed after Xi, i 6∈ s, are deleted from the
original sample. Let

Un =

(
n

r

)−1∑

c

r
d(Tr,s − Tn)

2. (3.13)

Then Un is a U-statistic with kernel

hn(x1, ..., xr) = r
d [Tr(x1, ..., xr) − Tn(x1, ..., xn)]2.

Unlike the kernels in the previous examples, the kernel in this example
depends on n. The order of the kernel, r, may also depend on n. The
statistic Un in (3.13) is known as the delete-d jackknife variance estimator
for Tn (see, e.g., Shao and Tu (1995)), since it is often true that

E[hn(X1, ..., Xr)] ≈ Var(Tn).

It can be shown that if Tn = X̄, then nUn in (3.13) is exactly the same as
the sample variance S2 (exercise).
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3.2.2 Variances of U-statistics

If E[h(X1, ..., Xm)]2 < ∞, then the variance of Un in (3.11) with kernel
h has an explicit form. To derive Var(Un), we need some notation. For
k = 1, ...,m, let

hk(x1, ..., xk) = E[h(X1, ..., Xm)|X1 = x1, ..., Xk = xk]

= E[h(x1, ..., xk, Xk+1, ..., Xm)].

Note that hm = h. It can be shown that

hk(x1, ..., xk) = E[hk+1(x1, ..., xk, Xk+1)]. (3.14)

Define
h̃k = hk − E[h(X1, ..., Xm)], (3.15)

k = 1, ...,m, and h̃ = h̃m. Then, for any Un defined by (3.11),

Un − E(Un) =

(
n

m

)−1∑

c

h̃(Xi1 , ..., Xim). (3.16)

Theorem 3.4 (Hoeffding’s theorem). For a U-statistic Un given by (3.11)
with E[h(X1, ..., Xm)]2 <∞,

Var(Un) =

(
n

m

)−1 m∑

k=1

(
m

k

)(
n−m

m− k

)
ζk,

where
ζk = Var(hk(X1, ..., Xk)).

Proof. Consider two sets {i1, ..., im} and {j1, ..., jm} of m distinct integers
from {1, ..., n} with exactly k integers in common. The number of distinct
choices of two such sets is

(
n
m

)(
m
k

)(
n−m
m−k

)
. By the symmetry of h̃m and

independence of X1, ..., Xn,

E[h̃(Xi1 , ..., Xim)h̃(Xj1 , ..., Xjm)] = ζk (3.17)

for k = 1, ...,m (exercise). Then, by (3.16),

Var(Un) =

(
n

m

)−2∑

c

∑

c

E[h̃(Xi1 , ..., Xim)h̃(Xj1 , ..., Xjm)]

=

(
n

m

)−2 m∑

k=1

(
n

m

)(
m

k

)(
n−m

m− k

)
ζk.

This proves the result.
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Corollary 3.2. Under the condition of Theorem 3.4,

(i) m2

n ζ1 ≤ Var(Un) ≤ m
n ζm;

(ii) (n+ 1)Var(Un+1) ≤ nVar(Un) for any n > m;
(iii) For any fixed m and k = 1, ...,m, if ζj = 0 for j < k and ζk > 0, then

Var(Un) =
k!
(
m
k

)2
ζk

nk
+O

(
1

nk+1

)
.

It follows from Corollary 3.2 that a U-statistic Un as an estimator of its
mean is consistent in mse (under the finite second moment assumption on
h). In fact, for any fixed m, if ζj = 0 for j < k and ζk > 0, then the mse of
Un is of the order n−k and, therefore, Un is nk/2-consistent.

Example 3.11. Consider first h(x1, x2) = x1x2, which leads to a U-
statistic unbiased for µ2, µ = EX1. Note that h1(x1) = µx1, h̃1(x1) =
µ(x1 − µ), ζ1 = E[h̃1(X1)]

2 = µ2Var(X1) = µ2σ2, h̃(x1, x2) = x1x2 − µ2,
and ζ2 = Var(X1X2) = E(X1X2)

2 − µ4 = (µ2 + σ2)2 − µ4. By Theorem

3.4, for Un =
(
n
2

)−1∑
1≤i<j≤nXiXj ,

Var(Un) =

(
n

2

)−1 [(
2

1

)(
n− 2

1

)
ζ1 +

(
2

2

)(
n− 2

0

)
ζ2

]

=
2

n(n− 1)

[
2(n− 2)µ2σ2 + (µ2 + σ2)2 − µ4

]

=
4µ2σ2

n
+

2σ4

n(n− 1)
.

Comparing Un with X̄2 − σ2/n in Example 3.10, which is the UMVUE
under the normality and known σ2 assumption, we find that

Var(Un) − Var(X̄2 − σ2/n) =
2σ4

n2(n− 1)
.

Next, consider h(x1, x2) = I(−∞,0](x1 + x2), which leads to the one-
sample Wilcoxon statistic. Note that h1(x1) = P (x1 +X2 ≤ 0) = F (−x1),
where F is the c.d.f. of P . Then ζ1 = Var(F (−X1)). Let ϑ = E[h(X1, X2)].
Then ζ2 = Var(h(X1, X2)) = ϑ(1−ϑ). Hence, for Un being the one-sample
Wilcoxon statistic,

Var(Un) =
2

n(n− 1)
[2(n− 2)ζ1 + ϑ(1 − ϑ)] .

If F is continuous and symmetric about 0, then ζ1 can be simplified as

ζ1 = Var(F (−X1)) = Var(1 − F (X1)) = Var(F (X1)) = 1
12 ,
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since F (X1) has the uniform distribution on [0, 1].

Finally, consider h(x1, x2) = |x1 − x2|, which leads to Gini’s mean dif-
ference. Note that

h1(x1) = E|x1 −X2| =

∫
|x1 − y|dP (y),

and

ζ1 = Var(h1(X1)) =

∫ [∫
|x− y|dP (y)

]2
dP (x) − ϑ2,

where ϑ = E|X1 −X2|.

3.2.3 The projection method

Since P is nonparametric, the exact distribution of any U-statistic is hard
to derive. In this section, we study asymptotic distributions of U-statistics
by using the method of projection.

Definition 3.3. Let Tn be a given statistic based on X1, ..., Xn. The
projection of Tn on kn random elements Y1, ..., Ykn is defined to be

Ťn = E(Tn) +

kn∑

i=1

[E(Tn|Yi) − E(Tn)].

Let ψn(Xi) = E(Tn|Xi). If Tn is symmetric (as a function ofX1, ..., Xn),
then ψn(X1), ..., ψn(Xn) are i.i.d. with mean E[ψn(Xi)] = E[E(Tn|Xi)] =
E(Tn). If E(T 2

n) <∞ and Var(ψn(Xi)) > 0, then

1√
nVar(ψn(X1))

n∑

i=1

[ψn(Xi) − E(Tn)] →d N(0, 1) (3.18)

by the CLT. Let Ťn be the projection of Tn on X1, ..., Xn. Then

Tn − Ťn = Tn − E(Tn) −
n∑

i=1

[ψn(Xi) − E(Tn)]. (3.19)

If we can show that Tn − Ťn has a negligible order of magnitude, then
we can derive the asymptotic distribution of Tn by using (3.18)-(3.19) and
Slutsky’s theorem. The order of magnitude of Tn− Ťn can be obtained with
the help of the following lemma.

Lemma 3.1. Let Tn be a symmetric statistic with Var(Tn) <∞ for every
n and Ťn be the projection of Tn on X1, ..., Xn. Then E(Tn) = E(Ťn) and

E(Tn − Ťn)
2 = Var(Tn) − Var(Ťn).
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Proof. Since E(Tn) = E(Ťn),

E(Tn − Ťn)
2 = Var(Tn) + Var(Ťn) − 2Cov(Tn, Ťn).

From Definition 3.3 with Yi = Xi and kn = n,

Var(Ťn) = nVar(E(Tn|Xi)).

The result follows from

Cov(Tn, Ťn) = E(TnŤn) − [E(Tn)]2

= nE[TnE(Tn|Xi)] − n[E(Tn)]
2

= nE{E[TnE(Tn|Xi)|Xi]} − n[E(Tn)]
2

= nE{[E(Tn|Xi)]
2} − n[E(Tn)]

2

= nVar(E(Tn|Xi))

= Var(Ťn).

This method of deriving the asymptotic distribution of Tn is known as
the method of projection and is particularly effective for U-statistics. For
a U-statistic Un given by (3.11), one can show (exercise) that

Ǔn = E(Un) +
m

n

n∑

i=1

h̃1(Xi), (3.20)

where Ǔn is the projection of Un on X1, ..., Xn and h̃1 is defined by (3.15).
Hence

Var(Ǔn) = m2ζ1/n

and, by Corollary 3.2 and Lemma 3.1,

E(Un − Ǔn)
2 = O(n−2).

If ζ1 > 0, then (3.18) holds with ψn(Xi) = mh1(Xi), which leads to the
result in Theorem 3.5(i) stated later.

If ζ1 = 0, then h̃1 ≡ 0 and we have to use another projection of Un.
Suppose that ζ1 = · · · = ζk−1 = 0 and ζk > 0 for an integer k > 1.
Consider the projection Ǔkn of Un on

(
n
k

)
random vectors {Xi1 , ..., Xik},

1 ≤ i1 < · · · < ik ≤ n. We can establish a result similar to that in Lemma
3.1 (exercise) and show that

E(Un − Ǔn)
2 = O(n−(k+1)).

Also, see Serfling (1980, §5.3.4).

With these results, we obtain the following theorem.
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Theorem 3.5. Let Un be given by (3.11) with E[h(X1, ..., Xm)]2 <∞.
(i) If ζ1 > 0, then

√
n[Un − E(Un)] →d N(0,m2ζ1).

(ii) If ζ1 = 0 but ζ2 > 0, then

n[Un − E(Un)] →d
m(m− 1)

2

∞∑

j=1

λj(χ
2
1j − 1), (3.21)

where χ2
1j ’s are i.i.d. random variables having the chi-square distribution χ2

1

and λj ’s are some constants (which may depend on P ) satisfying
∑∞

j=1 λ
2
j =

ζ2.

We have actually proved Theorem 3.5(i). A proof for Theorem 3.5(ii) is
given in Serfling (1980, §5.5.2). One may derive results for the cases where
ζ2 = 0, but the case of either ζ1 > 0 or ζ2 > 0 is the most interesting case
in applications.

If ζ1 > 0, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that
amseUn(P ) = m2ζ1/n = Var(Un) + O(n−2). By Proposition 2.4(ii),
{n[Un − E(Un)]

2} is uniformly integrable.

If ζ1 = 0 but ζ2 > 0, it follows from Theorem 3.5(ii) that amseUn(P ) =
EY 2/n2, where Y denotes the random variable on the right-hand side of
(3.21). The following result provides the value of EY 2.

Lemma 3.2. Let Y be the random variable on the right-hand side of

(3.21). Then EY 2 = m2(m−1)2

2 ζ2.
Proof. Define

Yk =
m(m− 1)

2

k∑

j=1

λj(χ
2
1j − 1), k = 1, 2, ....

It can be shown (exercise) that {Y 2
k } is uniformly integrable. Since Yk →d Y

as k → ∞, limk→∞ EY 2
k = EY 2 (Theorem 1.8(viii)). Since χ2

1j ’s are

independent chi-square random variables with Eχ2
1j = 1 and Var(χ2

1j) = 2,
EYk = 0 for any k and

EY 2
k =

m2(m− 1)2

4

k∑

j=1

λ2
jVar(χ2

1j)

=
m2(m− 1)2

4


2

k∑

j=1

λ2
j




→ m2(m− 1)2

2
ζ2.
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It follows from Corollary 3.2(iii) and Lemma 3.2 that amseUn(P ) =
m2(m−1)2

2 ζ2/n
2 = Var(Un) + O(n−3) if ζ1 = 0. Again, by Proposition

2.4(ii), the sequence {n2[Un − E(Un)]
2} is uniformly integrable.

We now apply Theorem 3.5 to the U-statistics in Example 3.11. For
Un = 2

n(n−1)

∑
1≤i<j≤nXiXj , ζ1 = µ2σ2. Thus, if µ 6= 0, the result in

Theorem 3.5(i) holds with ζ1 = µ2σ2. If µ = 0, then ζ1 = 0, ζ2 = σ4 > 0,
and Theorem 3.5(ii) applies. However, it is not convenient to use Theorem
3.5(ii) to find the limiting distribution of Un. We may derive this limiting
distribution using the following technique, which is further discussed in
§3.5. By the CLT and Theorem 1.10,

nX̄2/σ2 →d χ
2
1

when µ = 0, where χ2
1 is a random variable having the chi-square distribu-

tion χ2
1. Note that

nX̄2

σ2
=

1

σ2n

n∑

i=1

X2
i +

(n− 1)Un
σ2

.

By the SLLN, 1
σ2n

∑n
i=1X

2
i →a.s. 1. An application of Slutsky’s theorem

leads to

nUn/σ
2 →d χ

2
1 − 1.

Since µ = 0, this implies that the right-hand side of (3.21) is σ2(χ2
1 − 1),

i.e., λ1 = σ2 and λj = 0 when j > 1.

For the one-sample Wilcoxon statistic, ζ1 = Var(F (−X1)) > 0 unless
F is degenerate. Similarly, for Gini’s mean difference, ζ1 > 0 unless F is
degenerate. Hence Theorem 3.5(i) applies to these two cases.

Theorem 3.5 does not apply to Un defined by (3.13) if r, the order of
the kernel, depends on n and diverges to ∞ as n → ∞. We consider the
simple case where

Tn =
1

n

n∑

i=1

ψ(Xi) +Rn (3.22)

for some Rn satisfying E(R2
n) = o(n−1). Note that (3.22) is satisfied for

Tn being a U-statistic (exercise). Assume that r/d is bounded. Let S2
ψ =

(n− 1)−1
∑n

i=1[ψ(Xi) − n−1
∑n

i=1 ψ(Xi)]
2. Then

nUn = S2
ψ + op(1) (3.23)

(exercise). Under (3.22), if 0 < E[ψ(Xi)]
2 < ∞, then amseTn(P ) =

E[ψ(Xi)]
2/n. Hence, the jackknife estimator Un in (3.13) provides a con-

sistent estimator of amseTn(P ), i.e., Un/amseTn(P ) →p 1.
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3.3 The LSE in Linear Models

One of the most useful statistical models for non-i.i.d. data in applications
is the general linear model

Xi = βτZi + εi, i = 1, ..., n, (3.24)

where Xi is the ith observation and is often called the ith response; β
is a p-vector of unknown parameters, p < n; Zi is the ith value of a p-
vector of explanatory variables (or covariates); and ε1, ..., εn are random
errors. Our data in this case are (X1, Z1), ..., (Xn, Zn) (εi’s are not ob-
served). Throughout this book Zi’s are considered to be nonrandom or
given values of a random p-vector, in which case our analysis is conditioned
on Z1, ..., Zn. Each εi can be viewed as a random measurement error in
measuring the unknown mean of Xi when the covariate vector is equal to
Zi. The main parameter of interest is β. More specific examples of model
(3.24) are provided in this section. Other examples and examples of data
from model (3.24) can be found in many standard books for linear models,
for example, Draper and Smith (1981) and Searle (1971).

3.3.1 The LSE and estimability

Let X = (X1, ..., Xn), ε = (ε1, ..., εn), and Z be the n× p matrix whose ith
row is the vector Zi, i = 1, ..., n. Then, a matrix form of model (3.24) is

X = Zβ + ε. (3.25)

Definition 3.4. Suppose that the range of β in model (3.25) is B ⊂ Rp.

A least squares estimator (LSE) of β is defined to be any β̂ ∈ B such that

‖X − Zβ̂‖2 = min
b∈B

‖X − Zb‖2. (3.26)

For any l ∈ Rp, lτ β̂ is called an LSE of lτβ.

Throughout this book, we consider B = Rp unless otherwise stated.
Differentiating ‖X − Zb‖2 w.r.t. b, we obtain that any solution of

ZτZb = ZτX (3.27)

is an LSE of β. If the rank of the matrix Z is p, in which case (ZτZ)−1

exists and Z is said to be of full rank, then there is a unique LSE, which is

β̂ = (ZτZ)−1ZτX. (3.28)
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If Z is not of full rank, then there are infinitely many LSE’s of β. It can
be shown (exercise) that any LSE of β is of the form

β̂ = (ZτZ)−ZτX, (3.29)

where (ZτZ)− is called a generalized inverse of ZτZ and satisfies

ZτZ(ZτZ)−ZτZ = ZτZ.

Generalized inverse matrices are not unique unless Z is of full rank, in which
case (ZτZ)− = (ZτZ)−1 and (3.29) reduces to (3.28).

To study properties of LSE’s of β, we need some assumptions on the
distribution of X . Since Zi’s are nonrandom, assumptions on the distribu-
tion of X can be expressed in terms of assumptions on the distribution of
ε. Several commonly adopted assumptions are stated as follows.

Assumption A1: ε is distributed as Nn(0, σ
2In) with an unknown σ2 > 0.

Assumption A2: E(ε) = 0 and Var(ε) = σ2In with an unknown σ2 > 0.

Assumption A3: E(ε) = 0 and Var(ε) is an unknown matrix.

Assumption A1 is the strongest and implies a parametric model. We
may assume a slightly more general assumption that ε has the Nn(0, σ

2D)
distribution with unknown σ2 but a known positive definite matrix D. Let
D−1/2 be the inverse of the square root matrix of D. Then model (3.25)
with assumption A1 holds if we replace X , Z, and ε by the transformed
variables X̃ = D−1/2X , Z̃ = D−1/2Z, and ε̃ = D−1/2ε, respectively. A
similar conclusion can be made for assumption A2.

Under assumption A1, the distribution of X is Nn(Zβ, σ
2In), which

is in an exponential family P with parameter θ = (β, σ2) ∈ Rp × (0,∞).
However, if the matrix Z is not of full rank, then P is not identifiable (see
§2.1.2), since Zβ1 = Zβ2 does not imply β1 = β2.

Suppose that the rank of Z is r ≤ p. Then there is an n× r submatrix
Z∗ of Z such that

Z = Z∗Q (3.30)

and Z∗ is of rank r, where Q is a fixed r × p matrix. Then

Zβ = Z∗Qβ

and P is identifiable if we consider the reparameterization β̃ = Qβ. Note
that the new parameter β̃ is in a subspace of Rp with dimension r.

In many applications, we are interested in estimating some linear func-
tions of β, i.e., ϑ = lτβ for some l ∈ Rp. From the previous discussion,
however, estimation of lτβ is meaningless unless l = Qτc for some c ∈ Rr

so that
lτβ = cτQβ = cτ β̃.
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The following result shows that lτβ is estimable if l = Qτc, which is also
necessary for lτβ to be estimable under assumption A1.

Theorem 3.6. Assume model (3.25) with assumption A3.
(i) A necessary and sufficient condition for l ∈ Rp being Qτc for some
c ∈ Rr is l ∈ R(Z) = R(ZτZ), where Q is given by (3.30) and R(A) is the
smallest linear subspace containing all rows of A.
(ii) If l ∈ R(Z), then the LSE lτ β̂ is unique and unbiased for lτβ.
(iii) If l 6∈ R(Z) and assumption A1 holds, then lτβ is not estimable.
Proof. (i) Note that a ∈ R(A) if and only if a = Aτ b for some vector b. If
l = Qτc, then

l = Qτc = QτZτ∗Z∗(Z
τ
∗Z∗)

−1c = Zτ [Z∗(Z
τ
∗Z∗)

−1c].

Hence l ∈ R(Z). If l ∈ R(Z), then l = Zτζ for some ζ and

l = (Z∗Q)τ ζ = Qτc

with c = Zτ∗ ζ.
(ii) If l ∈ R(Z) = R(ZτZ), then l = ZτZζ for some ζ and by (3.29),

E(lτ β̂) = E[lτ (ZτZ)−ZτX ]

= ζτZτZ(ZτZ)−ZτZβ

= ζτZτZβ

= lτβ.

If β̄ is any other LSE of β, then, by (3.27),

lτ β̂ − lτ β̄ = ζτ (ZτZ)(β̂ − β̄) = ζτ (ZτX − ZτX) = 0.

(iii) Under assumption A1, if there is an estimator h(X,Z) unbiased for
lτβ, then

lτβ =

∫

Rn

h(x, Z)(2π)−n/2σ−n exp
{
− 1

2σ2 ‖x− Zβ‖2
}
dx.

Differentiating w.r.t. β and applying Theorem 2.1 lead to

l = Zτ
∫

Rn

h(x, Z)(2π)−n/2σ−n−2(x− Zβ) exp
{
− 1

2σ2 ‖x− Zβ‖2
}
dx,

which implies l ∈ R(Z).

Theorem 3.6 shows that LSE’s are unbiased for estimable parameters
lτβ. If Z is of full rank, then R(Z) = Rp and, therefore, lτβ is estimable
for any l ∈ Rp.
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Example 3.12 (Simple linear regression). Let β = (β0, β1) ∈ R2 and
Zi = (1, ti), ti ∈ R, i = 1, ..., n. Then model (3.24) or (3.25) is called a
simple linear regression model. It turns out that

ZτZ =

(
n

∑n
i=1 ti∑n

i=1 ti
∑n

i=1 t
2
i

)
.

This matrix is invertible if and only if some ti’s are different. Thus, if some
ti’s are different, then the unique unbiased LSE of lτβ for any l ∈ R2 is
lτ (ZτZ)−1ZτX , which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression
of order p in which β = (β0, β1, ..., βp−1) and Zi = (1, ti, ..., t

p−1
i ).

Example 3.13 (One-way ANOVA). Suppose that n =
∑m

j=1 nj with m
positive integers n1, ..., nm and that

Xi = µj + εi, i = kj−1 + 1, ..., kj, j = 1, ...,m,

where k0 = 0, kj =
∑j
l=1 nl, j = 1, ...,m, and (µ1, ..., µm) = β. Let Jm be

the m-vector of ones. Then the matrix Z in this case is a block diagonal
matrix with Jnj as the jth diagonal column. Consequently, ZτZ is an
m × m diagonal matrix whose jth diagonal element is nj . Thus, ZτZ is
invertible and the unique LSE of β is the m-vector whose jth component

is n−1
j

∑kj

i=kj−1+1Xi, j = 1, ...,m.

Sometimes it is more convenient to use the following notation:

Xij = Xki−1+j , εij = εki−1+j , j = 1, ..., ni, i = 1, ...,m,

and
µi = µ+ αi, i = 1, ...,m.

Then our model becomes

Xij = µ+ αi + εij , j = 1, ..., ni, i = 1, ...,m, (3.31)

which is called a one-way analysis of variance (ANOVA) model. Under
model (3.31), β = (µ, α1, ..., αm) ∈ Rm+1. The matrix Z under model
(3.31) is not of full rank (exercise). An LSE of β under model (3.31) is

β̂ =
(
X̄, X̄1· − X̄, ..., X̄m· − X̄

)
,

where X̄ is still the sample mean of Xij ’s and X̄i· is the sample mean of the
ith group {Xij , j = 1, ..., ni}. The problem of finding the form of l ∈ R(Z)
under model (3.31) is left as an exercise.

The notation used in model (3.31) allows us to generalize the one-way
ANOVA model to any s-way ANOVA model with a positive integer s under
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the so-called factorial experiments. The following example is for the two-
way ANOVA model.

Example 3.14 (Two-way balanced ANOVA). Suppose that

Xijk = µ+αi+βj +γij + εijk, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, (3.32)

where a, b, and c are some positive integers. Model (3.32) is called a two-
way balanced ANOVA model. If we view model (3.32) as a special case of
model (3.25), then the parameter vector β is

β = (µ, α1, ..., αa, β1, ..., βb, γ11, ..., γ1b, ..., γa1, ..., γab). (3.33)

One can obtain the matrix Z and show that it is n× p, where n = abc and
p = 1 + a + b+ ab, and is of rank ab < p (exercise). It can also be shown
(exercise) that an LSE of β is given by the right-hand side of (3.33) with µ,

αi, βj , and γij replaced by µ̂, α̂i, β̂j , and γ̂ij , respectively, where µ̂ = X̄···,

α̂i = X̄i·· − X̄···, β̂j = X̄·j· − X̄···, γ̂ij = X̄ij· − X̄i·· − X̄·j· + X̄···, and a dot
is used to denote averaging over the indicated subscript, e.g.,

X̄·j· =
1

ac

a∑

i=1

c∑

k=1

Xijk

with a fixed j.

3.3.2 The UMVUE and BLUE

We now study UMVUE’s in model (3.25) with assumption A1.

Theorem 3.7. Consider model (3.25) with assumption A1.

(i) The LSE lτ β̂ is the UMVUE of lτβ for any estimable lτβ.

(ii) The UMVUE of σ2 is σ̂2 = (n − r)−1‖X − Zβ̂‖2, where r is the rank
of Z.
Proof. (i) Let β̂ be an LSE of β. By (3.27),

(X − Zβ̂)τZ(β̂ − β) = (XτZ −XτZ)(β̂ − β) = 0

and, hence,

‖X − Zβ‖2 = ‖X − Zβ̂ + Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 − 2βτZτX + ‖Zβ‖2 + ‖Zβ̂‖2.

Using this result and assumption A1, we obtain the following joint Lebesgue
p.d.f. of X :

(2πσ2)−n/2exp
{
βτZτx
σ2 − ‖x−Zβ̂‖2+‖Zβ̂‖2

2σ2 − ‖Zβ‖2

2σ2

}
.
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By Proposition 2.1 and the fact that Zβ̂ = Z(ZτZ)−ZτX is a function of

ZτX , (ZτX, ‖X − Zβ̂‖2) is complete and sufficient for θ = (β, σ2). Note

that β̂ is a function of ZτX and, hence, a function of the complete sufficient
statistic. If lτβ is estimable, then lτ β̂ is unbiased for lτβ (Theorem 3.6)

and, hence, lτ β̂ is the UMVUE of lτβ.
(ii) From ‖X − Zβ‖2 = ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2 and E(Zβ̂) = Zβ
(Theorem 3.6),

E‖X − Zβ̂‖2 = E(X − Zβ)τ (X − Zβ) − E(β − β̂)τZτZ(β − β̂)

= tr
(
Var(X) − Var(Zβ̂)

)

= σ2[n− tr
(
Z(ZτZ)−ZτZ(ZτZ)−Zτ

)
]

= σ2[n− tr
(
(ZτZ)−ZτZ

)
].

Since each row of Z ∈ R(Z), Zβ̂ does not depend on the choice of (ZτZ)− in

β̂ = (ZτZ)−ZτX (Theorem 3.6). Hence, we can evaluate tr((ZτZ)−ZτZ)
using a particular (ZτZ)−. From the theory of linear algebra, there exists
a p× p matrix C such that CCτ = Ip and

Cτ (ZτZ)C =

(
Λ 0

0 0

)
,

where Λ is an r × r diagonal matrix whose diagonal elements are positive.
Then, a particular choice of (ZτZ)− is

(ZτZ)− = C

(
Λ−1 0

0 0

)
Cτ (3.34)

and

(ZτZ)−ZτZ = C

(
Ir 0

0 0

)
Cτ

whose trace is r. Hence σ̂2 is the UMVUE of σ2, since it is a function of
the complete sufficient statistic and

Eσ̂2 = (n− r)−1E‖X − Zβ̂‖2 = σ2.

In general,

Var(lτ β̂) = lτ (ZτZ)−ZτVar(ε)Z(ZτZ)−l. (3.35)

If l ∈ R(Z) and Var(ε) = σ2In (assumption A2), then the use of the gen-

eralized inverse matrix in (3.34) leads to Var(lτ β̂) = σ2lτ (ZτZ)−l, which
attains the Cramér-Rao lower bound under assumption A1 (Proposition
3.2).
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The vector X−Zβ̂ is called the residual vector and ‖X−Zβ̂‖2 is called
the sum of squared residuals and is denoted by SSR. The estimator σ̂2 is
then equal to SSR/(n− r).

Since X − Zβ̂ = [In − Z(ZτZ)−Zτ ]X and lτ β̂ = lτ (ZτZ)−ZτX are
linear in X , they are normally distributed under assumption A1. Also,
using the generalized inverse matrix in (3.34), we obtain that

[In − Z(ZτZ)−Zτ ]Z(ZτZ)− = Z(ZτZ)− − Z(ZτZ)−ZτZ(ZτZ)− = 0,

which implies that σ̂2 and lτ β̂ are independent (Exercise 58 in §1.6) for any
estimable lτβ. Furthermore,

[Z(ZτZ)−Zτ ]2 = Z(ZτZ)−Zτ

(i.e., Z(ZτZ)−Zτ is a projection matrix) and

SSR = Xτ [In − Z(ZτZ)−Zτ ]X.

The rank of Z(ZτZ)−Zτ is tr(Z(ZτZ)−Zτ ) = r. Similarly, the rank of the
projection matrix In − Z(ZτZ)−Zτ is n− r. From

XτX = Xτ [Z(ZτZ)−Zτ ]X +Xτ [In − Z(ZτZ)−Zτ ]X

and Theorem 1.5 (Cochran’s theorem), SSR/σ2 has the chi-square distri-
bution χ2

n−r(δ) with

δ = σ−2βτZτ [In − Z(ZτZ)−Zτ ]Zβ = 0.

Thus, we have proved the following result.

Theorem 3.8. Consider model (3.25) with assumption A1. For any es-

timable parameter lτβ, the UMVUE’s lτ β̂ and σ̂2 are independent; the
distribution of lτ β̂ is N(lτβ, σ2lτ(ZτZ)−l); and (n − r)σ̂2/σ2 has the chi-
square distribution χ2

n−r.

Example 3.15. In Examples 3.12-3.14, UMVUE’s of estimable lτβ are the
LSE’s lτ β̂, under assumption A1. In Example 3.13,

SSR =
m∑

i=1

ni∑

j=1

(Xij − X̄i·)
2;

in Example 3.14, if c > 1,

SSR =
a∑

i=1

b∑

j=1

c∑

k=1

(Xijk − X̄ij·)
2.
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We now study properties of lτ β̂ and σ̂2 under assumption A2, i.e., with-
out the normality assumption on ε. From Theorem 3.6 and the proof of
Theorem 3.7(ii), lτ β̂ (with an l ∈ R(Z)) and σ̂2 are still unbiased without

the normality assumption. In what sense are lτ β̂ and σ̂2 optimal beyond
being unbiased? We have the following result for the LSE lτ β̂. Some dis-
cussion about σ̂2 can be found, for example, in Rao (1973, p. 228).

Theorem 3.9. Consider model (3.25) with assumption A2.
(i) A necessary and sufficient condition for the existence of a linear unbiased
estimator of lτβ (i.e., an unbiased estimator that is linear in X) is l ∈ R(Z).

(ii) (Gauss-Markov theorem). If l ∈ R(Z), then the LSE lτ β̂ is the best
linear unbiased estimator (BLUE) of lτβ in the sense that it has the mini-
mum variance in the class of linear unbiased estimators of lτβ.
Proof. (i) The sufficiency has been established in Theorem 3.6. Suppose
now a linear function of X , cτX with c ∈ Rn, is unbiased for lτβ. Then

lτβ = E(cτX) = cτEX = cτZβ.

Since this equality holds for all β, l = Zτ c, i.e., l ∈ R(Z).

(ii) Let l ∈ R(Z) = R(ZτZ). Then l = (ZτZ)ζ for some ζ and lτ β̂ =

ζτ (ZτZ)β̂ = ζτZτX by (3.27). Let cτX be any linear unbiased estimator
of lτβ. From the proof of (i), Zτc = l. Then

Cov(ζτZτX, cτX − ζτZτX) = E(XτZζcτX) − E(XτZζζτZτX)

= σ2tr(Zζcτ ) + βτZτZζcτZβ

− σ2tr(ZζζτZτ ) − βτZτZζζτZτZβ

= σ2ζτ l+ (lτβ)2 − σ2ζτ l− (lτβ)2

= 0.

Hence

Var(cτX) = Var(cτX − ζτZτX + ζτZτX)

= Var(cτX − ζτZτX) + Var(ζτZτX)

+ 2Cov(ζτZτX, cτX − ζτZτX)

= Var(cτX − ζτZτX) + Var(lτ β̂)

≥ Var(lτ β̂).

3.3.3 Robustness of LSE’s

Consider now model (3.25) under assumption A3. An interesting ques-
tion is under what conditions on Var(ε) is the LSE of lτβ with l ∈ R(Z)

still the BLUE. If lτ β̂ is still the BLUE, then we say that lτ β̂, considered
as a BLUE, is robust against violation of assumption A2. In general, a
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statistical procedure having certain properties under an assumption is said
to be robust against violation of the assumption if and only if the statistical
procedure still has the same properties when the assumption is (slightly)
violated. For example, the LSE of lτβ with l ∈ R(Z), as an unbiased esti-
mator, is robust against violation of assumption A1 or A2, since the LSE
is unbiased as long as E(ε) = 0, which can be always assumed without loss
of generality. On the other hand, the LSE as a UMVUE may not be robust
against violation of assumption A1 (see §3.5).

Theorem 3.10. Consider model (3.25) with assumption A3. The following
are equivalent.
(a) lτ β̂ is the BLUE of lτβ for any l ∈ R(Z).

(b) E(lτ β̂ητX) = 0 for any l ∈ R(Z) and any η such that E(ητX) = 0.
(c) ZτVar(ε)U = 0, where U is a matrix such that ZτU = 0 and R(U τ ) +
R(Zτ ) = Rn.
(d) Var(ε) = ZΛ1Z

τ + UΛ2U
τ for some Λ1 and Λ2.

(e) The matrix Z(ZτZ)−ZτVar(ε) is symmetric.
Proof. We first show that (a) and (b) are equivalent, which is an analogue
of Theorem 3.2(i). Suppose that (b) holds. Let l ∈ R(Z). If cτX is
unbiased for lτβ, then E(ητX) = 0 with η = c− Z(ZτZ)−l. Hence

Var(cτX) = Var(cτX − lτ β̂ + lτ β̂)

= Var(cτX − lτ (ZτZ)−ZτX + lτ β̂)

= Var(ητX + lτ β̂)

= Var(ητX) + Var(lτ β̂) + 2Cov(ητX, lτ β̂)

= Var(ητX) + Var(lτ β̂) + 2E(lτ β̂ητX)

= Var(ητX) + Var(lτ β̂)

≥ Var(lτ β̂).

Suppose now that there are l ∈ R(Z) and η such that E(ητX) = 0 but

δ = E(lτ β̂ητX) 6= 0. Let ct = tη + Z(ZτZ)−l. From the previous proof,

Var(cτtX) = t2Var(ητX) + Var(lτ β̂) + 2δt.

As long as δ 6= 0, there exists a t such that Var(cτtX) < Var(lτ β̂). This

shows that lτ β̂ cannot be a BLUE and, therefore, (a) implies (b).

We next show that (b) implies (c). Suppose that (b) holds. Since
l ∈ R(Z), l = Zτγ for some γ. Let η ∈ R(U τ ). Then E(ητX) = ητZβ = 0
and, hence,

0 = E(lτ β̂ητX) = E[γτZ(ZτZ)−ZτXXτη] = γτZ(ZτZ)−ZτVar(ε)η.

Since this equality holds for all l ∈ R(Z), it holds for all γ. Thus,

Z(ZτZ)−ZτVar(ε)U = 0,
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which implies

ZτZ(ZτZ)−ZτVar(ε)U = ZτVar(ε)U = 0,

since ZτZ(ZτZ)−Zτ = Zτ . Thus, (c) holds.

To show that (c) implies (d), we need to use the following facts from
the theory of linear algebra: there exists a nonsingular matrix C such
that Var(ε) = CCτ and C = ZC1 + UC2 for some matrices Cj (since
R(U τ ) + R(Zτ ) = Rn). Let Λ1 = C1C

τ
1 , Λ2 = C2C

τ
2 , and Λ3 = C1C

τ
2 .

Then

Var(ε) = ZΛ1Z
τ + UΛ2U

τ + ZΛ3U
τ + UΛτ3Z

τ (3.36)

and ZτVar(ε)U = ZτZΛ3U
τU , which is 0 if (c) holds. Hence, (c) implies

0 = Z(ZτZ)−ZτZΛ3U
τU(U τU)−U τ = ZΛ3U

τ ,

which with (3.36) implies (d).

If (d) holds, then Z(ZτZ)−ZτVar(ε) = ZΛ1Z
τ , which is symmetric.

Hence (d) implies (e). To complete the proof, we need to show that (e)
implies (b), which is left as an exercise.

As a corollary of this theorem, the following result shows when the
UMVUE’s in model (3.25) with assumption A1 are robust against the vio-
lation of Var(ε) = σ2In.

Corollary 3.3. Consider model (3.25) with a full rank Z, ε = Nn(0,Σ),

and an unknown positive definite matrix Σ. Then lτ β̂ is a UMVUE of lτβ
for any l ∈ Rp if and only if one of (b)-(e) in Theorem 3.10 holds.

Example 3.16. Consider model (3.25) with β replaced by a random vector
β that is independent of ε. Such a model is called a linear model with
random coefficients. Suppose that Var(ε) = σ2In and E(β) = β. Then

X = Zβ + Z(β − β) + ε = Zβ + e, (3.37)

where e = Z(β − β) + ε satisfies E(e) = 0 and

Var(e) = ZVar(β)Zτ + σ2In.

Since

Z(ZτZ)−ZτVar(e) = ZVar(β)Zτ + σ2Z(ZτZ)−Zτ

is symmetric, by Theorem 3.10, the LSE lτ β̂ under model (3.37) is the
BLUE for any lτβ, l ∈ R(Z). If Z is of full rank and ε is normal, then, by

Corollary 3.3, lτ β̂ is the UMVUE of lτβ for any l ∈ Rp.
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Example 3.17 (Random effects models). Suppose that

Xij = µ+Ai + eij , j = 1, ..., ni, i = 1, ...,m, (3.38)

where µ ∈ R is an unknown parameter, Ai’s are i.i.d. random variables
having mean 0 and variance σ2

a, eij ’s are i.i.d. random errors with mean 0
and variance σ2, and Ai’s and eij ’s are independent. Model (3.38) is called
a one-way random effects model and Ai’s are unobserved random effects.
Let εij = Ai+ eij. Then (3.38) is a special case of the general model (3.25)
with

Var(ε) = σ2
aΣ + σ2In,

where Σ is a block diagonal matrix whose ith block is JniJ
τ
ni

and Jk is the k-
vector of ones. Under this model, Z = Jn, n =

∑m
i=1 ni, and Z(ZτZ)−Zτ =

n−1JnJ
τ
n . Note that

JnJ
τ
nΣ =




n1Jn1J
τ
n1

n2Jn1J
τ
n2

· · · nmJn1J
τ
nm

n1Jn2J
τ
n1

n2Jn2J
τ
n2

· · · nmJn2J
τ
nm

· · · · · · · · · · · · · · · · · · · · ·
n1JnmJ

τ
n1

n2JnmJ
τ
n2

· · · nmJnmJ
τ
nm


 ,

which is symmetric if and only if n1 = n2 = · · · = nm. Since JnJ
τ
nVar(ε)

is symmetric if and only if JnJ
τ
nΣ is symmetric, a necessary and sufficient

condition for the LSE of µ to be the BLUE is that all ni’s are the same.
This condition is also necessary and sufficient for the LSE of µ to be the
UMVUE when εij ’s are normal.

In some cases, we are interested in some (not all) linear functions of β.
For example, consider lτβ with l ∈ R(H), where H is an n× p matrix such
that R(H) ⊂ R(Z). We have the following result.

Proposition 3.4. Consider model (3.25) with assumption A3. Suppose
that H is a matrix such that R(H) ⊂ R(Z). A necessary and sufficient

condition for the LSE lτ β̂ to be the BLUE of lτβ for any l ∈ R(H) is
H(ZτZ)−ZτVar(ε)U = 0, where U is the same as that in (c) of Theorem
3.10.

Example 3.18. Consider model (3.25) with assumption A3 and Z =
(H1 H2), where Hτ

1H2 = 0. Suppose that under the reduced model

X = H1β1 + ε,

lτ β̂1 is the BLUE for any lτβ1, l ∈ R(H1), and that under the reduced
model

X = H2β2 + ε,
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lτ β̂2 is not a BLUE for some lτβ2, l ∈ R(H2), where β = (β1, β2) and β̂j ’s
are LSE’s under the reduced models. Let H = (H1 0) be n× p. Note that

H(ZτZ)−ZτVar(ε)U = H1(H
τ
1H1)

−Hτ
1 Var(ε)U,

which is 0 by Theorem 3.10 for the U given in (c) of Theorem 3.10, and

Z(ZτZ)−ZτVar(ε)U = H2(H
τ
2H2)

−Hτ
2 Var(ε)U,

which is not 0 by Theorem 3.10. This implies that some LSE lτ β̂ is not a
BLUE of lτβ but lτ β̂ is the BLUE of lτβ if l ∈ R(H).

Finally, we consider model (3.25) with Var(ε) being a diagonal matrix
whose ith diagonal element is σ2

i , i.e., εi’s are uncorrelated but have unequal
variances. A straightforward calculation shows that condition (e) in Theo-
rem 3.10 holds if and only if, for all i 6= j, σ2

i 6= σ2
j only when hij = 0, where

hij is the (i, j)th element of the projection matrix Z(ZτZ)−Zτ . Thus, an
LSE is not a BLUE in general, although it is still unbiased for estimable
lτβ.

Suppose that the unequal variances of εi’s are caused by some small
perturbations, i.e., εi = ei + ui, where Var(ei) = σ2, Var(ui) = δi, and ei
and ui are independent so that σ2

i = σ2 + δi. From (3.35),

Var(lτ β̂) = lτ (ZτZ)−
n∑

i=1

σ2
i ZiZ

τ
i (ZτZ)−l.

If δi = 0 for all i (no perturbations), then assumption A2 holds and lτ β̂

is the BLUE of any estimable lτβ with Var(lτ β̂) = σ2lτ (ZτZ)−l. Suppose
that 0 < δi ≤ σ2δ. Then

Var(lτ β̂) ≤ (1 + δ)σ2lτ (ZτZ)−l.

This indicates that the LSE is robust in the sense that its variance increases
slightly when there is a slight violation of the equal variance assumption
(small δ).

3.3.4 Asymptotic properties of LSE’s

We consider first the consistency of the LSE lτ β̂ with l ∈ R(Z) for every
n.

Theorem 3.11. Consider model (3.25) with assumption A3. Suppose that
supn λ+[Var(ε)] < ∞, where λ+[A] is the largest eigenvalue of the matrix

A, and that limn→∞ λ+[(ZτZ)−] = 0. Then lτ β̂ is consistent in mse for
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any l ∈ R(Z).

Proof. The result follows from the fact that lτ β̂ is unbiased and

Var(lτ β̂) = lτ (ZτZ)−ZτVar(ε)Z(ZτZ)−l

≤ λ+[Var(ε)]lτ (ZτZ)−l.

Without the normality assumption on ε, the exact distribution of lτ β̂
is very hard to obtain. The asymptotic distribution of lτ β̂ is derived in the
following result.

Theorem 3.12. Consider model (3.25) with assumption A3. Suppose that
0 < infn λ−[Var(ε)], where λ−[A] is the smallest eigenvalue of the matrix
A, and that

lim
n→∞

max
1≤i≤n

Zτi (ZτZ)−Zi = 0. (3.39)

Suppose further that n =
∑k
j=1mj for some integers k, mj , j = 1, ..., k,

with mj ’s bounded by a fixed integer m, ε = (ξ1, ..., ξk), ξj ∈ Rmj , and ξj ’s
are independent.
(i) If supi E|εi|2+δ <∞, then for any l ∈ R(Z),

lτ (β̂ − β)

/√
Var(lτ β̂) →d N(0, 1). (3.40)

(ii) Suppose that when mi = mj , 1 ≤ i < j ≤ k, ξi and ξj have the same
distribution. Then result (3.40) holds for any l ∈ R(Z).
Proof. Let l ∈ R(Z). Then

lτ (ZτZ)−ZτZβ − lτβ = 0

and

lτ (β̂ − β) = lτ (ZτZ)−Zτε =

k∑

j=1

cτnjξj ,

where cnj is the mj-vector whose components are lτ (ZτZ)−Zi, i = kj−1 +

1, ..., kj , k0 = 0, and kj =
∑j

t=1mt, j = 1, ..., k. Note that

k∑

j=1

‖cnj‖2 = lτ (ZτZ)−ZτZ(ZτZ)−l = lτ (ZτZ)−l. (3.41)

Also,

max
1≤j≤k

‖cnj‖2 ≤ m max
1≤i≤n

[lτ (ZτZ)−Zi]
2

≤ mlτ (ZτZ)−l max
1≤i≤n

Zτi (ZτZ)−Zi,
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which, together with (3.41) and condition (3.39), implies that

lim
n→∞


 max

1≤j≤k
‖cnj‖2

/ k∑

j=1

‖cnj‖2


 = 0.

The results then follow from Corollary 1.3.

Under the conditions of Theorem 3.12, Var(ε) is a diagonal block matrix
with Var(ξj) as the jth diagonal block, which includes the case of indepen-
dent εi’s as a special case.

The following lemma tells us how to check condition (3.39).

Lemma 3.3. The following are sufficient conditions for (3.39).
(a) λ+[(ZτZ)−] → 0 and Zτn(ZτZ)−Zn → 0, as n→ ∞.
(b) There is an increasing sequence {an} such that an → ∞, an/an+1 → 1,
and ZτZ/an converges to a positive definite matrix.

If n−1
∑n
i=1 t

2
i → c and n−1

∑n
i=1 ti → d in the simple linear regression

model (Example 3.12), where c is positive and c > d2, then condition (b) in
Lemma 3.3 is satisfied with an = n and, therefore, Theorem 3.12 applies.
In the one-way ANOVA model (Example 3.13),

max
1≤i≤n

Zτi (ZτZ)−Zi = λ+[(ZτZ)−] = max
1≤j≤m

n−1
j .

Hence conditions related to Z in Theorem 3.12 are satisfied if and only
if minj nj → ∞. Some similar conclusions can be drawn in the two-way
ANOVA model (Example 3.14).

3.4 Unbiased Estimators in Survey Problems

In this section, we consider unbiased estimation for another type of non-
i.i.d. data often encountered in applications: survey data from finite pop-
ulations. A description of the problem is given in Example 2.3 of §2.1.1.
Examples and a fuller account of theoretical aspects of survey sampling
can be found, for example, in Cochran (1977) and Särndal, Swensson, and
Wretman (1992).

3.4.1 UMVUE’s of population totals

We use the same notation as in Example 2.3. Let X = (X1, ..., Xn) be a
sample from a finite population P = {y1, ..., yN} with

P (X1 = yi1 , ..., Xn = yin) = p(s)/n!,
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where s = {i1, ..., in} is a subset of distinct elements of {1, ..., N} and p is
a selection probability measure. We consider univariate yi, although most
of our conclusions are valid for the case of multivariate yi. In many survey
problems the parameter to be estimated is Y =

∑N
i=1 yi, the population

total.

In Example 2.27, it is shown that Ŷ = NX̄ = N
n

∑
i∈s yi is unbiased for

Y if p(s) is constant (simple random sampling); a formula of Var(Ŷ ) is also
given. We now show that Ŷ is in fact the UMVUE of Y under simple ran-
dom sampling. Let Y be the range of yi, θ = (y1, ..., yN) and Θ =

∏N
i=1 Y.

Under simple random sampling, the population under consideration is a
parametric family indexed by θ ∈ Θ.

Theorem 3.13 (Watson-Royall theorem). (i) If p(s) > 0 for all s, then
the vector of order statistics X(1) ≤ · · · ≤ X(n) is complete for θ ∈ Θ.
(ii) Under simple random sampling, the vector of order statistics is suffi-
cient for θ ∈ Θ.
(iii) Under simple random sampling, for any estimable function of θ, its
unique UMVUE is the unbiased estimator g(X1, ..., Xn), where g is sym-
metric in its n arguments.
Proof. (i) Let h(X) be a function of the order statistics. Then h is sym-
metric in its n arguments. We need to show that if

E[h(X)] =
∑

s={i1,...,in}⊂{1,...,N}
p(s)h (yi1 , ..., yin) /n! = 0 (3.42)

for all θ ∈ Θ, then h(yi1 , ..., yin) = 0 for all yi1 , ..., yin . First, suppose that
all N elements of θ are equal to a ∈ Y. Then (3.42) implies h(a, ..., a) = 0.
Next, suppose that N − 1 elements in θ are equal to a and one is b > a.
Then (3.42) reduces to

q1h(a, ..., a) + q2h(a, ..., a, b),

where q1 and q2 are some known numbers in (0, 1). Since h(a, ..., a) = 0
and q2 6= 0, h(a, ..., a, b) = 0. Using the same argument, we can show
that h(a, ..., a, b, ..., b) = 0 for any k a’s and n − k b’s. Suppose next that
elements of θ are equal to a, b, or c, a < b < c. Then we can show that
h(a, ..., a, b, ..., b, c, ..., c) = 0 for any k a’s, l b’s, and n−k−l c’s. Continuing
inductively, we see that h(y1, ..., yn) = 0 for all possible y1, ..., yn. This
completes the proof of (i).
(ii) The result follows from the factorization theorem (Theorem 2.2), the
fact that p(s) is constant under simple random sampling, and

P (X1 = yi1 , ..., Xn = yin) = P (X(1) = y(i1), ..., X(n) = y(in))/n!,

where y(i1) ≤ · · · ≤ y(in) are the ordered values of yi1 , ..., yin .
(iii) The result follows directly from (i) and (ii).
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It is interesting to note the following two issues. (1) Although we have
a parametric problem under simple random sampling, the sufficient and
complete statistic is the same as that in a nonparametric problem (Example
2.17). (2) For the completeness of the order statistics, we do not need the
assumption of simple random sampling.

Example 3.19. From Example 2.27, Ŷ = NX̄ is unbiased for Y . Since Ŷ
is symmetric in its arguments, it is the UMVUE of Y . We now derive the
UMVUE for Var(Ŷ ). From Example 2.27,

Var(Ŷ ) =
N2

n

(
1 − n

N

)
σ2, (3.43)

where

σ2 =
1

N − 1

N∑

i=1

(
yi −

Y

N

)2

.

It can be shown (exercise) that E(S2) = σ2, where S2 is the usual sample
variance

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2 =
1

n− 1

∑

i∈s

(
yi −

Ŷ

N

)2

.

Since S2 is symmetric in its arguments, N2

n

(
1 − n

N

)
S2 is the UMVUE of

Var(Ŷ ).

Simple random sampling is simple and easy to use, but it is inefficient
unless the population is fairly homogeneous w.r.t. the yi’s. A sampling
plan often used in practice is the stratified sampling plan, which can be
described as follows. The population P is divided into nonoverlapping sub-
populations P1, ...,PH called strata; a sample is drawn from each stratum
Ph, independently across the strata. There are many reasons for strati-
fication: (1) it may produce a gain in precision in parameter estimation
when a heterogeneous population is divided into strata, each of which is
internally homogeneous; (2) sampling problems may differ markedly in dif-
ferent parts of the population; and (3) administrative considerations may
also lead to stratification. More discussions can be found, for example, in
Cochran (1977).

In stratified sampling, if a simple random sample (without replacement),
Xh = (Xh1, ..., Xhnh

), is drawn from each stratum, where nh is the sample
size in stratum h, then the joint distribution of X = (X1, ..., XH) is in a
parametric family indexed by θ = (θ1, ..., θH), where θh = (yi, i ∈ Ph), h =

1, ..., H . Let Yh be the range of yi’s in stratum h and Θh =
∏Nh

i=1 Yh, where

Nh is the size of Ph. We assume that the parameter space is Θ =
∏H
i=1 Θh.

The following result is similar to Theorem 3.13.



198 3. Unbiased Estimation

Theorem 3.14. Let X be a sample obtained using the stratified simple
random sampling plan described previously.
(i) For each h, let Zh be the vector of the ordered values of the sample in
stratum h. Then (Z1, ..., ZH) is sufficient and complete for θ ∈ Θ.
(ii) For any estimable function of θ, its unique UMVUE is the unbiased
estimator g(X) that is symmetric in its first n1 arguments, symmetric in
its second n2 arguments,..., and symmetric in its last nH arguments.

Example 3.20. Consider the estimation of the population total Y based on
a sample X = (Xhi, i = 1, ..., nh, h = 1, ..., H) obtained by stratified simple
random sampling. Let Yh be the population total of the hth stratum and
let Ŷh = NhX̄h·, where X̄h· is the sample mean of the sample from stratum
h, h = 1, ..., H . From Example 2.27, each Ŷh is an unbiased estimator of
Yh. Let

Ŷst =

H∑

h=1

Ŷh =

H∑

h=1

nh∑

i=1

Nh
nh

Xhi.

Then, by Theorem 3.14, Ŷst is the UMVUE of Y . Since Ŷ1, ..., ŶH are
independent, it follows from (3.43) that

Var(Ŷst) =

H∑

h=1

N2
h

nh

(
1 − nh

Nh

)
σ2
h, (3.44)

where σ2
h = (Nh − 1)−1

∑
i∈Ph

(yi − Yh/Nh)
2. An argument similar to that

in Example 3.19 shows that the UMVUE of Var(Ŷst) is

S2
st =

H∑

h=1

N2
h

nh

(
1 − nh

Nh

)
S2
h, (3.45)

where S2
h is the usual sample variance based on Xh1, ..., Xhnh

.

It is interesting to compare the mse of the UMVUE Ŷst with the mse of
the UMVUE Ŷ under simple random sampling (Example 3.19). Let σ2 be
given in (3.43). Then

(N − 1)σ2 =

H∑

h=1

(Nh − 1)σ2
h +

H∑

h=1

Nh(µh − µ)2,

where µh = Yh/Nh is the population mean of the hth stratum and µ = Y/N
is the overall population mean. By (3.43), (3.44), and (3.45), Var(Ŷ ) ≥
Var(Ŷst) if and only if

H∑

h=1

N2Nh

n(N−1)

(
1 − n

N

)
(µh−µ)2 ≥

H∑

h=1

[
N2

h

nh

(
1 − nh

Nh

)
− N2(Nh−1)

n(N−1)

(
1 − n

N

)]
σ2
h.
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This means that stratified simple random sampling is better than simple
random sampling if the deviations µh − µ are sufficiently large. If nh

Nh
≡ n

N

(proportional allocation), then this condition simplifies to

H∑

h=1

Nh(µh − µ)2 ≥
H∑

h=1

(
1 − Nh

N

)
σ2
h, (3.46)

which is usually true when µh’s are different and some Nh’s are large.

Note that the variances Var(Ŷ ) and Var(Ŷst) are w.r.t. different sam-
pling plans under which Ŷ and Ŷst are obtained.

3.4.2 Horvitz-Thompson estimators

If some elements of the finite population P are groups (called clusters) of
subunits, then sampling from P is cluster sampling. Cluster sampling is
used often because of administrative convenience or economic considera-
tions. Although sometimes the first intention may be to use the subunits
as sampling units, it is found that no reliable list of the subunits in the
population is available. For example, in many countries there are no com-
plete lists of the people or houses in a region. From the maps of the region,
however, it can be divided into units such as cities or blocks in the cities.

In cluster sampling, one may greatly increase the precision of estima-
tion by using sampling with probability proportional to cluster size. Thus,
unequal probability sampling is often used.

Suppose that a sample of clusters is obtained. If subunits within a
selected cluster give similar results, then it may be uneconomical to measure
them all. A sample of the subunits in any chosen cluster may be selected.
This is called two-stage sampling. One can continue this process to have a
multistage sampling (e.g., cities → blocks → houses → people). Of course,
at each stage one may use stratified sampling and/or unequal probability
sampling.

When the sampling plan is complex, so is the structure of the observa-
tions. We now introduce a general method of deriving unbiased estimators
of population totals, which are called Horvitz-Thompson estimators.

Theorem 3.15. Let X = {yi, i ∈ s} denote a sample from P = {y1, ..., yN}
that is selected, without replacement, by some method. Define

πi = probability that i ∈ s, i = 1, ..., N.

(i) (Horvitz-Thompson). If πi > 0 for i = 1, ..., N and πi is known when
i ∈ s, then Ŷht =

∑
i∈s yi/πi is an unbiased estimator of the population
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total Y .
(ii) Define

πij = probability that i ∈ s and j ∈ s, i = 1, ..., N, j = 1, ..., N.

Then

Var(Ŷht) =

N∑

i=1

1 − πi
πi

y2
i + 2

N∑

i=1

N∑

j=i+1

πij − πiπj
πiπj

yiyj (3.47)

=

N∑

i=1

N∑

j=i+1

(πiπj − πij)

(
yi
πi

− yj
πj

)2

. (3.48)

Proof. (i) Let ai = 1 if i ∈ s and ai = 0 if i 6∈ s, i = 1, ..., N . Then
E(ai) = πi and

E(Ŷht) = E

(
N∑

i=1

aiyi
πi

)
=

N∑

i=1

yi = Y.

(ii) Since a2
i = ai,

Var(ai) = E(ai) − [E(ai)]
2 = πi(1 − πi).

For i 6= j,

Cov(ai, aj) = E(aiaj) − E(ai)E(aj) = πij − πiπj .

Then

Var(Ŷht) = Var

(
N∑

i=1

aiyi
πi

)

=
N∑

i=1

y2
i

π2
i

Var(ai) + 2
N∑

i=1

N∑

j=i+1

yiyj
πiπj

Cov(ai, aj)

=

N∑

i=1

1 − πi
πi

y2
i + 2

N∑

i=1

N∑

j=i+1

πij − πiπj
πiπj

yiyj .

Hence (3.47) follows. To show (3.48), note that

N∑

i=1

πi = n and
∑

j=1,...,N,j 6=i
πij = (n− 1)πi,

which implies
∑

j=1,...,N,j 6=i
(πij − πiπj) = (n− 1)πi − πi(n− πi) = −πi(1 − πi).
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Hence

N∑

i=1

1 − πi
πi

y2
i =

N∑

i=1

∑

j=1,...,N,j 6=i
(πiπj − πij)

y2
i

π2
i

=

N∑

i=1

N∑

j=i+1

(πiπj − πij)

(
y2
i

π2
i

+
y2
j

π2
j

)

and, by (3.47),

Var(Ŷht) =

N∑

i=1

N∑

j=i+1

(πij − πiπj)

(
y2
i

π2
i

+
y2
j

π2
j

− 2yiyj
πiπj

)

=

N∑

i=1

N∑

j=i+1

(πiπj − πij)

(
yi
πi

− yj
πj

)2

.

Using the same idea, we can obtain unbiased estimators of Var(Ŷht).
Suppose that πij > 0 for all i and j and πij is known when i ∈ s and j ∈ s.

By (3.47), an unbiased estimator of Var(Ŷht) is

v1 =
∑

i∈s

1 − πi
π2
i

y2
i + 2

∑

i∈s

∑

j∈s,j>i

πij − πiπj
πiπjπij

yiyj . (3.49)

By (3.48), an unbiased estimator of Var(Ŷht) is

v2 =
∑

i∈s

∑

j∈s,j>i

πiπj − πij
πij

(
yi
πi

− yj
πj

)2

. (3.50)

Variance estimators v1 and v2 may not be the same in general, but they
are the same in some special cases (Exercise 92). A more serious problem
is that they may take negative values. Some discussions about deriving
better estimators of Var(Ŷht) are provided in Cochran (1977, Chapter 9A).

Some special cases of Theorem 3.15 are considered as follows.

Under simple random sampling, πi = n/N . Thus, Ŷ in Example 3.19 is
the Horvitz-Thompson estimator.

Under stratified simple random sampling, πi = nh/Nh if unit i is in stra-
tum h. Hence, the estimator Ŷst in Example 3.20 is the Horvitz-Thompson
estimator.

Suppose now each yi ∈ P is a cluster, i.e., yi = (yi1, ..., yiMi), where
Mi is the size of the ith cluster, i = 1, ..., N . The total number of units in
P is then M =

∑N
i=1Mi. Consider a single-stage sampling plan, i.e., if yi

is selected, then every yij is observed. If simple random sampling is used,
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then πi = k/N , where k is the first-stage sample size (the total sample size

is n =
∑k

i=1Mi), and the Horvitz-Thompson estimator is

Ŷs =
N

k

∑

i∈s1

Mi∑

j=1

yij =
N

k

∑

i∈s1

Yi,

where s1 is the index set of first-stage sampled clusters and Yi is the total
of the ith cluster. In this case,

Var(Ŷs) =
N2

k(N − 1)

(
1 − k

N

) N∑

i=1

(
Yi −

Y

N

)2

.

If the selection probability is proportional to the cluster size, then πi =
kMi/M and the Horvitz-Thompson estimator is

Ŷpps =
M

k

∑

i∈s1

1

Mi

Mi∑

j=1

yij =
M

k

∑

i∈s1

Yi
Mi

whose variance is given by (3.47) or (3.48). Usually Var(Ŷpps) is smaller

than Var(Ŷs); see the discussions in Cochran (1977, Chapter 9A).

Consider next a two-stage sampling in which k first-stage clusters are se-
lected and a simple random sample of size mi is selected from each sampled
cluster yi, where sampling is independent across clusters. If the first-stage
sampling plan is simple random sampling, then πi = kmi/(NMi) and the
Horvitz-Thompson estimator is

Ŷs =
N

k

∑

i∈s1

Mi

mi

∑

j∈s2i

yij ,

where s2i denotes the second-stage sample from cluster i. If the first-stage
selection probability is proportional to the cluster size, then πi = kmi/M
and the Horvitz-Thompson estimator is

Ŷpps =
M

k

∑

i∈s1

1

mi

∑

j∈s2i

yij .

Finally, let us consider another popular sampling method called sys-
tematic sampling. Suppose that P = {y1, ..., yN} and the population size
N = nk for two integers n and k. To select a sample of size n, we first draw
a j randomly from {1, ..., k}. Our sample is then

{yj, yj+k, yj+2k, ..., yj+(n−1)k}.
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Systematic sampling is used mainly because it is easier to draw a systematic
sample and often easier to execute without mistakes. It is also likely that
systematic sampling provides more efficient point estimators than simple
random sampling or even stratified sampling, since the sample units are
spread more evenly over the population. Under systematic sampling, πi =
k−1 for every i and the Horvitz-Thompson estimator of the population total
is

Ŷsy = k

n∑

t=1

yj+(t−1)k.

The unbiasedness of this estimator is a direct consequence of Theorem 3.15,
but it can be easily shown as follows. Since j takes value i ∈ {1, ..., k} with
probability k−1,

E(Ŷsy) = k

(
1

k

k∑

i=1

n∑

t=1

yi+(t−1)k

)
=

N∑

i=1

yi = Y.

The variance of Ŷsy is simply

Var(Ŷsy) =
N2

k

k∑

i=1

(µi − µ)2,

where µi = n−1
∑n
t=1 yi+(t−1)k and µ = k−1

∑k
i=1 µi = Y/N . Let σ2 be

given in (3.43) and

σ2
sy =

1

k(n− 1)

k∑

i=1

n∑

t=1

(yi+(t−1)k − µi)
2.

Then

(N − 1)σ2 = n
k∑

i=1

(µi − µ)2 +
k∑

i=1

n∑

t=1

(yi+(t−1)k − µi)
2.

Thus,
(N − 1)σ2 = N−1Var(Ŷsy) + k(n− 1)σ2

sy

and
Var(Ŷsy) = N(N − 1)σ2 −N(N − k)σ2

sy .

Since the variance of the Horvitz-Thompson estimator of the population
total under simple random sampling is, by (3.43),

N2

n

(
1 − n

N

)
σ2 = N(k − 1)σ2,

the Horvitz-Thompson estimator under systematic sampling has a smaller
variance if and only if σ2

sy > σ2.
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3.5 Asymptotically Unbiased Estimators

As we discussed in §2.5, we often need to consider biased but asymptoti-
cally unbiased estimators. A large and useful class of such estimators are
smooth functions of some exactly unbiased estimators such as UMVUE’s,
U-statistics, LSE’s, and Horvitz-Thompson estimators. Some other meth-
ods of constructing asymptotically unbiased estimators are also introduced
in this section.

3.5.1 Functions of unbiased estimators

If the parameter to be estimated is ϑ = g(θ) with a vector-valued parameter
θ and Un is a vector of unbiased estimators of components of θ (i.e., EUn =
θ), then Tn = g(Un) is often asymptotically unbiased for ϑ. Assume that g
is differentiable and cn(Un − θ) →d Y . Then

amseTn(P ) = E{[∇g(θ)]τY }2/c2n

(Theorem 2.6). Hence, Tn has a good performance in terms of amse if Un
is optimal in terms of mse (such as the UMVUE).

The following are some examples.

Example 3.21 (Ratio estimators). Let (X1, Y1), ..., (Xn, Yn) be i.i.d. ran-
dom 2-vectors with EX1 = µx and EY1 = µy. Consider the estimation of
the ratio of two population means: ϑ = µy/µx (µx 6= 0). Note that (Ȳ , X̄),
the vector of sample means, is unbiased for (µy , µx). The sample means are
UMVUE’s under some statistical models (§3.1 and §3.2) and are BLUE’s
in general (Example 2.22). The ratio estimator is Tn = Ȳ /X̄. Assume
that σ2

x = Var(X1), σ
2
y = Var(Y1), and σxy = Cov(X1, Y1) exist. A direct

calculation shows that the n−1 order asymptotic bias of Tn according to
(2.38) is

b̃Tn(P ) =
ϑσ2

x − σxy
µ2
xn

(verify). Using the CLT and the delta-method (Corollary 1.1), we obtain
that

√
n(Tn − ϑ) →d N

(
0,
σ2
y − 2ϑσxy + ϑ2σ2

x

µ2
x

)

(verify), which implies

amseTn(P ) =
σ2
y − 2ϑσxy + ϑ2σ2

x

µ2
xn

.

In some problems, we are not interested in the ratio, but the use of a
ratio estimator to improve an estimator of a marginal mean. For example,
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suppose that µx is known and we are interested in estimating µy. Consider
the following estimator:

µ̂y = (Ȳ /X̄)µx.

Note that µ̂y is not unbiased; its n−1 order asymptotic bias according to
(2.38) is

b̃µ̂y(P ) =
ϑσ2

x − σxy
µxn

;

and

amseµ̂y (P ) =
σ2
y − 2ϑσxy + ϑ2σ2

x

n
.

Comparing µ̂y with the unbiased estimator Ȳ , we find that µ̂y is asymp-
totically more efficient if and only if

2ϑσxy > ϑ2σ2
x,

which means that µ̂y is a better estimator if and only if the correlation
between X1 and Y1 is large enough to pay off the extra variability caused
by using µx/X̄.

Another example related to a bivariate sample is the sample correlation
coefficient defined in Exercise 22 in §2.6.

Example 3.22. Consider a polynomial regression of order p:

Xi = βτZi + εi, i = 1, ..., n,

where β = (β0, β1, ..., βp−1), Zi = (1, ti, ..., t
p−1
i ), and εi’s are i.i.d. with

mean 0 and variance σ2 > 0. Suppose that the parameter to be estimated
is tβ ∈ T ⊂ R such that

p−1∑

j=0

βjt
j
β = max

t∈T

p−1∑

j=0

βjt
j .

Note that tβ = g(β) for some function g. Let β̂ be the LSE of β. Then the

estimator t̂β = g(β̂) is asymptotically unbiased and its amse can be derived
under some conditions (Exercise 98).

Example 3.23. In the study of the reliability of a system component, we
assume that

Xij = θτi z(tj) + εij , i = 1, ..., k, j = 1, ...,m.

Here Xij is the measurement of the ith sample component at time tj; z(t)
is a q-vector whose components are known functions of the time t; θi’s
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are unobservable random q-vectors that are i.i.d. from Nq(θ,Σ), where θ
and Σ are unknown; εij ’s are i.i.d. measurement errors with mean zero
and variance σ2; and θi’s and εij ’s are independent. As a function of t,
θτz(t) is the degradation curve for a particular component and θτz(t) is
the mean degradation curve. Suppose that a component will fail to work if
θ
τz(t) < η, a given critical value. Assume that θ

τz(t) is always a decreasing
function of t. Then the reliability function of a component is

R(t) = P (θτz(t) > η) = Φ

(
θτz(t) − η

s(t)

)
,

where s(t) =
√

[z(t)]τΣz(t) and Φ is the standard normal distribution
function. For a fixed t, estimators of R(t) can be obtained by estimating
θ and Σ, since Φ is a known function. It can be shown (exercise) that the
BLUE of θ is the LSE

θ̂ = (ZτZ)−1Zτ X̄,

where Z is the m × q matrix whose jth row is the vector z(tj), Xi =
(Xi1, ..., Xim), and X̄ is the sample mean of Xi’s. The estimation of Σ is
more difficult. It can be shown (exercise) that a consistent (as k → ∞)
estimator of Σ is

Σ̂ =
1

k

k∑

i=1

(ZτZ)−1Zτ (Xi − X̄)(Xi − X̄)τZ(ZτZ)−1 − σ̂2(ZτZ)−1,

where

σ̂2 =
1

k(m− q)

k∑

i=1

[Xτ
i Xi −Xτ

i Z(ZτZ)−1ZτXi].

Hence an estimator of R(t) is

R̂(t) = Φ

(
θ̂τz(t) − η

ŝ(t)

)
,

where

ŝ(t) =

√
[z(t)]τ Σ̂z(t).

If we define Yi1 = Xτ
i Z(ZτZ)−1z(t), Yi2 = [Xτ

i Z(ZτZ)−1z(t)]2, Yi3 =
[Xτ

i Xi − Xτ
i Z(ZτZ)−1ZτXi]/(m − q), and Yi = (Yi1, Yi2, Yi3), then it is

apparent that R̂(t) can be written as g(Ȳ ) for a function

g(y1, y2, y3) = Φ

(
y1 − η√

y2 − y2
1 − y3[z(t)]τ (ZτZ)−1z(t)

)
.

Suppose that εij has a finite fourth moment, which implies the existence of

Var(Yi). The amse of R̂(t) can be derived (exercise).
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3.5.2 The method of moments

The method of moments is the oldest method of deriving point estima-
tors. It almost always produces some asymptotically unbiased estimators,
although they may not be the best estimators.

Consider a parametric problem where X1, ..., Xn are i.i.d. random vari-
ables from Pθ, θ ∈ Θ ⊂ Rk, and E|X1|k < ∞. Let µj = EXj

1 be the jth
moment of P and let

µ̂j =
1

n

n∑

i=1

Xj
i

be the jth sample moment, which is an unbiased estimator of µj , j = 1, ..., k.
Typically,

µj = hj(θ), j = 1, ..., k, (3.51)

for some functions hj on Rk. By substituting µj ’s on the left-hand side of

(3.51) by the sample moments µ̂j , we obtain a moment estimator θ̂, i.e., θ̂
satisfies

µ̂j = hj(θ̂), j = 1, ..., k,

which is a sample analogue of (3.51). This method of deriving estimators is
called the method of moments. Note that an important statistical principle,
the substitution principle, is applied in this method.

Let µ̂ = (µ̂1, ..., µ̂k) and h = (h1, ..., hk). Then µ̂ = h(θ̂). If the inverse

function h−1 exists, then the unique moment estimator of θ is θ̂ = h−1(µ̂).

When h−1 does not exist (i.e., h is not one-to-one), any solution of µ̂ = h(θ̂)

is a moment estimator of θ; if possible, we always choose a solution θ̂ in the
parameter space Θ. In some cases, however, a moment estimator does not
exist (see Exercise 111).

Assume that θ̂ = g(µ̂) for a function g. If h−1 exists, then g = h−1. If

g is continuous at µ = (µ1, ..., µk), then θ̂ is strongly consistent for θ, since
µ̂j →a.s. µj by the SLLN. If g is differentiable at µ and E|X1|2k <∞, then

θ̂ is asymptotically normal, by the CLT and Theorem 1.12, and

amseθ̂(θ) = n−1[∇g(µ)]τVµ∇g(µ),

where Vµ is a k × k matrix whose (i, j)th element is µi+j − µiµj . Fur-

thermore, it follows from (2.38) that the n−1 order asymptotic bias of θ̂
is

(2n)−1tr
(
∇2g(µ)Vµ

)
.

Example 3.24. Let X1, ..., Xn be i.i.d. from a population Pθ indexed by
the parameter θ = (µ, σ2), where µ = EX1 ∈ R and σ2 = Var(X1) ∈
(0,∞). This includes cases such as the family of normal distributions,
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double exponential distributions, or logistic distributions (Table 1.2, page
20). Since EX1 = µ and EX2

1 = Var(X1) + (EX1)
2 = σ2 + µ2, setting

µ̂1 = µ and µ̂2 = σ2 + µ2 we obtain the moment estimator

θ̂ =

(
X̄,

1

n

n∑

i=1

(Xi − X̄)2

)
=

(
X̄,

n− 1

n
S2

)
.

Note that X̄ is unbiased, but n−1
n S2 is not. If Xi is normal, then θ̂ is suffi-

cient and is nearly the same as an optimal estimator such as the UMVUE.
On the other hand, if Xi is from a double exponential or logistic distribu-
tion, then θ̂ is not sufficient and can often be improved.

Consider now the estimation of σ2 when we know that µ = 0. Obviously
we cannot use the equation µ̂1 = µ to solve the problem. Using µ̂2 = µ2 =
σ2, we obtain the moment estimator σ̂2 = µ̂2 = n−1

∑n
i=1X

2
i . This is

still a good estimator when Xi is normal, but is not a function of sufficient
statistic when Xi is from a double exponential distribution. For the double
exponential case one can argue that we should first make a transformation
Yi = |Xi| and then obtain the moment estimator based on the transformed
data. The moment estimator of σ2 based on the transformed data is Ȳ 2 =
(n−1

∑n
i=1 |Xi|)2, which is sufficient for σ2. Note that this estimator can

also be obtained based on absolute moment equations.

Example 3.25. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(θ1, θ2), −∞ < θ1 < θ2 <∞. Note that

EX1 = (θ1 + θ2)/2

and
EX2

1 = (θ21 + θ22 + θ1θ2)/3.

Setting µ̂1 = EX1 and µ̂2 = EX2
1 and substituting θ1 in the second equa-

tion by 2µ̂1 − θ2 (the first equation), we obtain that

(2µ̂1 − θ2)
2 + θ22 + (2µ̂1 − θ2)θ2 = 3µ̂2,

which is the same as

(θ2 − µ̂1)
2 = 3(µ̂2 − µ̂2

1).

Since θ2 > EX1, we obtain that

θ̂2 = µ̂1 +
√

3(µ̂2 − µ̂2
1) = X̄ +

√
3(n−1)
n S2

and

θ̂1 = µ̂1 −
√

3(µ̂2 − µ̂2
1) = X̄ −

√
3(n−1)
n S2.
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These estimators are not functions of the sufficient and complete statistic
(X(1), X(n)).

Example 3.26. Let X1, ..., Xn be i.i.d. from the binomial distribution
Bi(p, k) with unknown parameters k ∈ {1, 2, ...} and p ∈ (0, 1). Since

EX1 = kp

and
EX2

1 = kp(1 − p) + k2p2,

we obtain the moment estimators

p̂ = (µ̂1 + µ̂2
1 − µ̂2)/µ̂1 = 1 − n−1

n S2/X̄

and
k̂ = µ̂2

1/(µ̂1 + µ̂2
1 − µ̂2) = X̄/(1 − n−1

n S2/X̄).

The estimator p̂ is in the range of (0, 1). But k̂ may not be an integer. It

can be improved by an estimator that is k̂ rounded to the nearest positive
integer.

Example 3.27. Suppose that X1, ..., Xn are i.i.d. from the Pareto distri-
bution Pa(a, θ) with unknown a > 0 and θ > 2 (Table 1.2, page 20). Note
that

EX1 = θa/(θ − 1)

and
EX2

1 = θa2/(θ − 2).

From the moment equation,

(θ−1)2

θ(θ−2) = µ̂2/µ̂
2
1.

Note that (θ−1)2

θ(θ−2) − 1 = 1
θ(θ−2) . Hence

θ(θ − 2) = µ̂2
1/(µ̂2 − µ̂2

1).

Since θ > 2, there is a unique solution in the parameter space:

θ̂ = 1 +
√
µ̂2/(µ̂2 − µ̂2

1) = 1 +
√

1 + n
n−1X̄

2/S2

and

â =
µ̂1(θ̂ − 1)

θ̂

= X̄
√

1 + n
n−1X̄

2/S2
/(

1 +
√

1 + n
n−1X̄

2/S2
)
.
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The method of moments can also be applied to nonparametric problems.
Consider, for example, the estimation of the central moments

cj = E(X1 − µ1)
j , j = 2, ..., k.

Since

cj =

j∑

t=0

(
j

t

)
(−µ1)

tµj−t,

the moment estimator of cj is

ĉj =

j∑

t=0

(
j

t

)
(−X̄)tµ̂j−t,

where µ̂0 = 1. It can be shown (exercise) that

ĉj =
1

n

n∑

i=1

(Xi − X̄)j , j = 2, ..., k, (3.52)

which are sample central moments. From the SLLN, ĉj ’s are strongly con-
sistent. If E|X1|2k <∞, then

√
n (ĉ2 − c2, ..., ĉk − ck) →d Nk−1(0, D) (3.53)

(exercise), where the (i, j)th element of the (k − 1) × (k − 1) matrix D is

ci+j+2 − ci+1cj+1 − (i+ 1)cicj+2 − (j + 1)ci+2cj + (i+ 1)(j + 1)cicjc2.

3.5.3 V-statistics

Let X1, ..., Xn be i.i.d. from P . For every U-statistic Un defined in (3.11) as
an estimator of ϑ = E[h(X1, ..., Xm)], there is a closely related V-statistic
defined by

Vn =
1

nm

n∑

i1=1

· · ·
n∑

im=1

h(Xi1 , ..., Xim). (3.54)

As an estimator of ϑ, Vn is biased; but the bias is small asymptotically as
the following results show. For a fixed sample size n, Vn may be better than
Un in terms of their mse’s. Consider, for example, the kernel h(x1, x2) =
(x1 − x2)

2/2 in §3.2.1, which leads to ϑ = σ2 = Var(X1) and Un = S2, the
sample variance. The corresponding V-statistic is

1

n2

n∑

i=1

n∑

j=1

(Xi −Xj)
2

2
=

1

n2

∑

1≤i<j≤n
(Xi −Xj)

2 =
n− 1

n
S2,
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which is the moment estimator of σ2 discussed in Example 3.24. In Exercise
63 in §2.6, n−1

n S2 is shown to have a smaller mse than S2 when Xi is
normally distributed. Of course, there are situations where U-statistics are
better than their corresponding V-statistics.

The following result provides orders of magnitude of the bias and vari-
ance of a V-statistic as an estimator of ϑ.

Proposition 3.5. Let Vn be defined by (3.54).
(i) Assume that E|h(Xi1 , ..., Xim)| < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Then the bias of Vn satisfies

bVn(P ) = O(n−1).

(ii) Assume that E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Then the variance of Vn satisfies

Var(Vn) = Var(Un) +O(n−2),

where Un is given by (3.11).
Proof. (i) Note that

Un − Vn =
[
1 − n!

nm(n−m)!

]
(Un −Wn), (3.55)

where Wn is the average of all terms h(Xi1 , ..., Xim) with at least one equal-
ity im = il, m 6= l. The result follows from E(Un −Wn) = O(1).
(ii) The result follows from E(Un−Wn)2 = O(1), E[Wn(Un−ϑ)] = O(n−1)
(exercise), and (3.55).

To study the asymptotic behavior of a V-statistic, we consider the fol-
lowing representation of Vn in (3.54):

Vn =

m∑

j=1

(
m

j

)
Vnj ,

where

Vnj = ϑ+
1

nj

n∑

i1=1

· · ·
n∑

ij=1

gj(Xi1 , ..., Xij )

is a “V-statistic” with

gj(x1, ..., xj) = hj(x1, ..., xj) −
j∑

i=1

∫
hj(x1, ..., xj)dP (xi)

+
∑

1≤i1<i2≤j

∫ ∫
hj(x1, ..., xj)dP (xi1 )dP (xi2 ) − · · ·

+ (−1)j
∫

· · ·
∫
hj(x1, ..., xj)dP (x1) · · · dP (xj)
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and hj(x1, ..., xj) = E[h(x1, ..., xj , Xj+1, ..., Xm)]. Using an argument sim-
ilar to the proof of Theorem 3.4, we can show (exercise) that

EV 2
nj = O(n−j), j = 1, ...,m, (3.56)

provided that E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Thus,

Vn − ϑ = mVn1 + m(m−1)
2 Vn2 + op(n

−1), (3.57)

which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let Vn be given by (3.54) with E[h(Xi1 , ..., Xim)]2 < ∞
for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
(i) If ζ1 = Var(h1(X1)) > 0, then

√
n(Vn − ϑ) →d N(0,m2ζ1).

(ii) If ζ1 = 0 but ζ2 = Var(h2(X1, X2)) > 0, then

n(Vn − ϑ) →d
m(m− 1)

2

∞∑

j=1

λjχ
2
1j ,

where χ2
1j ’s and λj ’s are the same as those in (3.21).

Result (3.57) and Theorem 3.16 imply that Vn has expansion (2.37)
and, therefore, the n−1 order asymptotic bias of Vn is E[g2(X1, X1)]/n =
nEVn2 = m(m− 1)

∑∞
j=1 λj/(2n) (exercise).

Theorem 3.16 shows that if ζ1 > 0, then the amse’s of Un and Vn are
the same. If ζ1 = 0 but ζ2 > 0, then an argument similar to that in the
proof of Lemma 3.2 leads to

amseVn(P ) =
m2(m− 1)2ζ2

2n2
+
m2(m− 1)2

4n2




∞∑

j=1

λj




2

= amseUn(P ) +
m2(m− 1)2

4n2




∞∑

j=1

λj




2

(see Lemma 3.2). Hence Un is asymptotically more efficient than Vn, unless∑∞
j=1 λj = 0. Technically, the proof of the asymptotic results for Vn also

requires moment conditions stronger than those for Un.

Example 3.28. Consider the estimation of µ2, where µ = EX1. From the
results in §3.2, the U-statistic Un = 1

n(n−1)

∑
1≤i<j≤nXiXj is unbiased for
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µ2. The corresponding V-statistic is simply Vn = X̄2. If µ 6= 0, then ζ1 6= 0
and the asymptotic relative efficiency of Vn w.r.t. Un is 1. If µ = 0, then

nVn →d σ
2χ2

1 and nUn →d σ
2(χ2

1 − 1),

where χ2
1 is a random variable having the chi-square distribution χ2

1. Hence
the asymptotic relative efficiency of Vn w.r.t. Un is

E(χ2
1 − 1)2/E(χ2

1)
2 = 2/3.

3.5.4 The weighted LSE

In linear model (3.25), the unbiased LSE of lτβ may be improved by a
slightly biased estimator when Var(ε) is not σ2In and the LSE is not BLUE.

Assume that Z in (3.25) is of full rank so that every lτβ is estimable.
For simplicity, let us denote Var(ε) by V . If V is known, then the BLUE

of lτβ is lτ β̆, where

β̆ = (ZτV −1Z)−1ZτV −1X (3.58)

(see the discussion after the statement of assumption A3 in §3.3.1). If V is
unknown and V̂ is an estimator of V , then an application of the substitution
principle leads to a weighted least squares estimator

β̂w = (Zτ V̂ −1Z)−1Zτ V̂ −1X. (3.59)

The weighted LSE is not linear in X and not necessarily unbiased for β. If
the distribution of ε is symmetric about 0 and V̂ remains unchanged when
ε changes to −ε (Examples 3.29 and 3.30), then the distribution of β̂w − β

is symmetric about 0 and, if Eβ̂w is well defined, β̂w is unbiased for β. In
such a case the LSE lτ β̂ may not be a UMVUE (when ε is normal), since

Var(lτ β̂w) may be smaller than Var(lτ β̂).

Asymptotic properties of the weighted LSE depend on the asymptotic
behavior of V̂ . We say that V̂ is consistent for V if and only if

‖V̂ −1V − In‖max →p 0, (3.60)

where ‖A‖max = maxi,j |aij | for a matrix A whose (i, j)th element is aij .

Theorem 3.17. Consider model (3.25) with a full rank Z. Let β̆ and β̂w
be defined by (3.58) and (3.59), respectively, with a V̂ consistent in the
sense of (3.60). Assume the conditions in Theorem 3.12. Then

lτ (β̂w − β)/an →d N(0, 1),
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where l ∈ Rp, l 6= 0, and

a2
n = Var(lτ β̆) = lτ (ZτV −1Z)−1l.

Proof. Using the same argument as in the proof of Theorem 3.12, we
obtain that

lτ (β̆ − β)/an →d N(0, 1).

By Slutsky’s theorem, the result follows from

lτ β̂w − lτ β̆ = op(an). (3.61)

Define
ξn = lτ(Zτ V̂ −1Z)−1Zτ (V̂ −1 − V −1)ε

and
ζn = lτ [(Zτ V̂ −1Z)−1 − (ZτV −1Z)−1]ZτV −1ε.

Then
lτ β̂w − lτ β̆ = ξn + ζn.

Let Bn = (Zτ V̂ −1Z)−1ZτV −1Z − Ip and Cn = V̂ 1/2V −1V̂ 1/2 − In. By

(3.60), ‖Cn‖max = op(1). For any matrix A, denote
√

tr(AτA) by ‖A‖.
Then

‖Bn‖2 = ‖(Zτ V̂ −1Z)−1Zτ V̂ −1/2CnV̂
−1/2Z‖2

= tr
(
(Zτ V̂ −1Z)−1(Zτ V̂ −1/2CnV̂

−1/2Z)2(Zτ V̂ −1Z)−1
)

≤ ‖Cn‖2
max tr

(
(Zτ V̂ −1Z)−1(Zτ V̂ −1Z)2(Zτ V̂ −1Z)−1

)

= op(1)tr(Ip).

This proves that ‖Bn‖max = op(1). Let An = V 1/2V̂ −1V 1/2 − In. Using
inequality (1.37) and the previous results, we obtain that

ξ2n = [lτ (Zτ V̂ −1Z)−1ZτV −1/2AnV
−1/2ε]2

≤ εV −1ετ lτ (Zτ V̂ −1Z)−1ZτV −1/2A2
nV

−1/2Z(Zτ V̂ −1Z)−1l

≤ Op(1)‖An‖2
maxl

τ (Zτ V̂ −1Z)−1ZτV −1Z(Zτ V̂ −1Z)−1l

= op(1)lτ (Bn + Ip)
2(ZτV −1Z)−1l

= op(an).

Since E‖(ZτV −1Z)−1/2ZτV −1ε‖2 = p, ‖(ZτV −1Z)−1/2ZτV −1ε‖ = Op(1).

Define B1n = (Zτ V̂ −1Z)1/2Bn(Z
τ V̂ −1Z)−1/2. Then

B1n = (Zτ V̂ −1Z)−1/2Zτ V̂ −1/2CnV̂
−1/2Z(Zτ V̂ −1Z)−1/2

≤ ‖Cn‖max(Z
τ V̂ −1Z)−1/2Zτ V̂ −1Z(Zτ V̂ −1Z)−1/2

= op(1)Ip.
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Let B2n = (ZτV −1Z)1/2(Zτ V̂ −1Z)−1/2. Since

‖B2n‖2 = tr
(
(ZτV −1Z)1/2(Zτ V̂ −1Z)−1(ZτV −1Z)1/2

)

= tr
(
(Zτ V̂ −1Z)−1ZτV −1Z

)

= tr(Bn + Ip)

= p+ op(1),

we obtain that

‖B2nB1nB
τ
2n‖ = op(1).

Then

ζ2
n = [lτBn(Z

τV −1Z)−1ZτV −1ε]2

= [lτ (ZτV −1Z)−1/2B2nB1nB
τ
2n(Z

τV −1Z)−1/2ZτV −1ε]2

≤ lτ (ZτV −1Z)−1l‖B2nB1nB
τ
2n‖2‖(ZτV −1Z)−1/2ZτV −1ε‖2

= op(a
2
n).

This proves (3.61) and thus completes the proof.

Theorem 3.17 shows that as long as V̂ is consistent in the sense of (3.60),

the weighted LSE β̂w is asymptotically as efficient as β̆, which is the BLUE
if V is known. If V is known and ε is normal, then Var(lτ β̆) attains the
Cramér-Rao lower bound (Proposition 3.2) and, thus, (3.10) holds with

Tn = lτ β̂w.

By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the
LSE lτ β̂ w.r.t. the weighted LSE lτ β̂w is

lτ (ZτV −1Z)−1l

lτ (ZτZ)−1ZτV Z(ZτZ)−1l
,

which is always less than 1 and equals 1 if lτ β̂ is a BLUE (in which case

β̂ = β̆).

Finding a consistent V̂ is possible when V has a certain type of structure.
We consider three examples.

Example 3.29. Consider model (3.25). Suppose that V = Var(ε) is a
block diagonal matrix with the ith diagonal block

σ2Imi + UiΣU
τ
i , i = 1, ..., k, (3.62)

wheremi’s are integers bounded by a fixed integerm, σ2 > 0 is an unknown
parameter, Σ is a q×q unknown nonnegative definite matrix, Ui is an mi×q
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full rank matrix whose columns are in R(Wi), q < infimi, and Wi is the
p×mi matrix such that Zτ = ( W1 W2 ... Wk ). Under (3.62), a consistent
V̂ can be obtained if we can obtain consistent estimators of σ2 and Σ.

Let X = (Y1, ..., Yk), where Yi is an mi-vector, and let Ri be the matrix
whose columns are linearly independent rows of Wi. Then

σ̂2 =
1

n− kq

k∑

i=1

Y τi [Imi −Ri(R
τ
i Ri)

−1Rτi ]Yi (3.63)

is an unbiased estimator of σ2. Assume that Yi’s are independent and that
supiE|εi|2+δ < ∞ for some δ > 0. Then σ̂2 is consistent for σ2 (exercise).

Let ri = Yi −W τ
i β̂ and

Σ̂ =
1

k

k∑

i=1

[
(U τi Ui)

−1U τi rir
τ
i Ui(U

τ
i Ui)

−1 − σ̂2(U τi Ui)
−1
]
. (3.64)

It can be shown (exercise) that Σ̂ is consistent for Σ in the sense that
‖Σ̂ − Σ‖max →p 0 or, equivalently, ‖Σ̂ − Σ‖ →p 0 (see Exercise 116).

Example 3.30. Suppose that V is a block diagonal matrix with the ith
diagonal block matrix Vmi , i = 1, ..., k, where Vt is an unknown t× t matrix
and mi ∈ {1, ...,m} with a fixed positive integer m. Thus, we need to
obtain consistent estimators of at most m different matrices V1, ..., Vm. It
can be shown (exercise) that the following estimator is consistent for Vt
when kt → ∞ as k → ∞:

V̂t =
1

kt

∑

i∈Bt

rir
τ
i , t = 1, ...,m,

where ri is the same as that in Example 3.29, Bt is the set of i’s such that
mi = t, and kt is the number of i’s in Bt.

Example 3.31. Suppose that V is diagonal with the ith diagonal element
σ2
i = ψ(Zi), where ψ is an unknown function. The simplest case is ψ(t) =
θ0 + θ1v(Zi) for a known function v and some unknown θ0 and θ1. One can
then obtain a consistent estimator V̂ by using the LSE of θ0 and θ1 under
the “model”

Er2i = θ0 + θ1v(Zi), i = 1, ..., n, (3.65)

where ri = Xi − Zτi β̂ (exercise). If ψ is nonlinear or nonparametric, some
results are given in Carroll (1982) and Müller and Stadrmüller (1987).

Finally, if V̂ is not consistent (i.e., (3.60) does not hold), then the

weighted LSE lτ β̂w can still be consistent and asymptotically normal, but
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its asymptotic variance is not lτ (ZτV −1Z)−1l; in fact, lτ β̂w may not be

asymptotically as efficient as the LSE lτ β̂ (Carroll and Cline, 1988; Chen
and Shao, 1993). For example, if

‖V̂ −1U − In‖max →p 0,

where U is positive definite, 0 < infn λ−[U ] ≤ supn λ+[U ] <∞, and U 6= V
(i.e., V̂ is inconsistent for V ), then, using the same argument as that in the
proof of Theorem 3.17, we can show (exercise) that

lτ (β̂w − β)/bn →d N(0, 1) (3.66)

for any l 6= 0, where b2n = lτ (ZτU−1Z)−1ZτU−1V U−1Z(ZτU−1Z)−1l.

Hence, the asymptotic relative efficiency of the LSE lτ β̂ w.r.t. lτ β̂w can be
less than 1 or larger than 1.

3.6 Exercises

1. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) =
p ∈ (0, 1).
(a) Find the UMVUE of pm, m ≤ n.
(b) Find the UMVUE of P (X1 + · · · +Xm = k), where m and k are
positive integers ≤ n.
(c) Find the UMVUE of P (X1 + · · · +Xn−1 > Xn).

2. Let X1, ..., Xn be i.i.d. having the N(µ, σ2) distribution with an un-
known µ ∈ R and a known σ2 > 0.
(a) Find the UMVUE’s of µ3 and µ4.
(b) Find the UMVUE’s of P (X1 ≤ t) and d

dtP (X1 ≤ t) with a fixed
t ∈ R.

3. In Example 3.4,
(a) show that the UMVUE of σr is kn−1,rS

r, where r > 1 − n;
(b) prove that (X1 − X̄)/S has the p.d.f. given by (3.1);
(c) show that (X1 − X̄)/S →d N(0, 1) by using (i) the SLLN and (ii)
Scheffé’s theorem (Proposition 1.18).

4. Let X1, ..., Xm be i.i.d. having the N(µx, σ
2
x) distribution and let

Y1, ..., Yn be i.i.d. having the N(µy, σ
2
y) distribution. Assume that

Xi’s and Yj ’s are independent.
(a) Assume that µx ∈ R, µy ∈ R, σ2

x > 0, and σ2
y > 0. Find the

UMVUE’s of µx − µy and (σx/σy)
r, where r > 0 and r < n.

(b) Assume that µx ∈ R, µy ∈ R, and σ2
x = σ2

y > 0. Find the
UMVUE’s of σ2

x and (µx − µy)/σx.
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(c) Assume that µx = µy ∈ R, σ2
x > 0, σ2

y > 0, and σ2
x/σ

2
y = γ is

known. Find the UMVUE of µx.
(d) Assume that µx = µy ∈ R, σ2

x > 0, and σ2
y > 0. Show that a

UMVUE of µx does not exist.
(e) Assume that µx ∈ R, µy ∈ R, σ2

x > 0, and σ2
y > 0. Find the

UMVUE of P (X1 ≤ Y1).
(f) Repeat (e) under the assumption that σx = σy.

5. Let X1, ..., Xn be i.i.d. having the uniform distribution on the interval
(θ1−θ2, θ1+θ2), where θ1 ∈ R, θ2 > 0, and n > 2. Find the UMVUE’s
of θj , j = 1, 2, and θ1/θ2.

6. Let X1, ..., Xn be i.i.d. having the exponential distribution E(a, θ)
with parameters θ > 0 and a ∈ R.
(a) Find the UMVUE of a when θ is known.
(b) Find the UMVUE of θ when a is known.
(c) Find the UMVUE’s of θ and a.
(d) Assume that θ is known. Find the UMVUE of P (X1 ≥ t) and
d
dtP (X1 ≥ t) for a fixed t > a.
(e) Find the UMVUE of P (X1 ≥ t) for a fixed t > a.

7. Let X1, ..., Xn be i.i.d. having the Pareto distribution Pa(a, θ) with
θ > 0 and a > 0.
(a) Find the UMVUE of θ when a is known.
(b) Find the UMVUE of a when θ is known.
(c) Find the UMVUE’s of a and θ.

8. Consider Exercise 52(a) of §2.6. Find the UMVUE of γ.

9. Let X1, ..., Xm be i.i.d. having the exponential distribution E(ax, θx)
with θx > 0 and ax ∈ R and Y1, ..., Yn be i.i.d. having the exponential
distribution E(ay, θy) with θy > 0 and ay ∈ R. Assume that Xi’s
and Yj ’s are independent.
(a) Find the UMVUE’s of ax − ay and θx/θy.
(b) Suppose that θx = θy but it is unknown. Find the UMVUE’s of
θx and (ax − ay)/θx.
(c) Suppose that ax = ay but it is unknown. Show that a UMVUE
of ax does not exist.
(d) Suppose that n = m and ax = ay = 0 and that our sample is
(Z1,∆1), ..., (Zn,∆n), where Zi = min{Xi, Yi} and ∆i = 1 if Xi ≥ Yi
and 0 otherwise, i = 1, ..., n. Find the UMVUE of θx − θy.

10. Let X1, ..., Xm be i.i.d. having the uniform distribution U(0, θx) and
Y1, ..., Yn be i.i.d. having the uniform distribution U(0, θy). Suppose
that Xi’s and Yj ’s are independent and that θx > 0 and θy > 0. Find
the UMVUE of θx/θy when n > 1.



3.6. Exercises 219

11. Let X be a random variable having the negative binomial distribution
NB(p, r) with an unknown p ∈ (0, 1) and a known r.
(a) Find the UMVUE of pt, t < r.
(b) Find the UMVUE of Var(X).
(c) Find the UMVUE of log p.

12. Let X1, ..., Xn be i.i.d. random variables having the Poisson distri-
bution P (θ) truncated at 0, i.e., P (Xi = x) = (eθ − 1)−1θx/x!,
x = 1, 2, ..., θ > 0. Find the UMVUE of θ when n = 1, 2.

13. Let X be a random variable having the negative binomial distribution
NB(p, r) truncated at r, where r is known and p ∈ (0, 1) is unknown.
Let k be a fixed positive integer > r. For r = 1, 2, 3, find the UMVUE
of pk.

14. Let X1, ..., Xn be i.i.d. having the log-distribution L(p) with an un-
known p ∈ (0, 1). Let k be a fixed positive integer.
(a) For n = 1, 2, 3, find the UMVUE of pk.
(b) For n = 1, 2, 3, find the UMVUE of P (X = k).

15. Consider Exercise 43 of §2.6.
(a) Show that the estimator U = 2(|X1| − 1

4 )I{X1 6=0} is unbiased for
θ.
(b) Derive the UMVUE of θ.

16. Derive the UMVUE of p in Exercise 33 of §2.6.

17. Derive the UMVUE’s of θ and λ in Exercise 55 of §2.6, based on data
X1, ..., Xn.

18. Suppose that (X0, X1, ..., Xk) has the multinomial distribution in Ex-

ample 2.7 with pi ∈ (0, 1),
∑k
j=0 pj = 1. Find the UMVUE of

pr00 · · · prk

k , where rj ’s are nonnegative integers with r0 + · · ·+ rk ≤ n.

19. Let Y1, ..., Yn be i.i.d. from the uniform distribution U(0, θ) with an
unknown θ ∈ (1,∞).
(a) Suppose that we only observe

Xi =

{
Yi if Yi ≥ 1

1 if Yi < 1,
i = 1, ..., n.

Derive a UMVUE of θ.
(b) Suppose that we only observe

Xi =

{
Yi if Yi ≤ 1

1 if Yi > 1,
i = 1, ..., n.

Derive a UMVUE of the probability P (Y1 > 1).
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20. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors distributed as bi-
variate normal with EXi = EYi = βzi, Var(Xi) = Var(Yi) = σ2, and
Cov(Xi, Yi) = ρσ2, i = 1, ..., n, where β ∈ R, σ > 0, and ρ ∈ (−1, 1)
are unknown parameters, and zi’s are known constants.
(a) Obtain a UMVUE of β and calculate its variance.
(b) Obtain a UMVUE of σ2 and calculate its variance.

21. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors from a population
P ∈ P that is the family of all bivariate populations with Lebesgue
p.d.f.’s.
(a) Show that the set of n pairs (Xi, Yi) ordered according to the value
of their first coordinate constitutes a sufficient and complete statistic
for P ∈ P .
(b) A statistic T is a function of the complete and sufficient statistic
if and only if T is invariant under permutation of the n pairs.
(c) Show that (n − 1)−1

∑n
i=1(Xi − X̄)(Yi − Ȳ ) is the UMVUE of

Cov(X1, Y1).
(d) Find the UMVUE’s of P (Xi ≤ Yi) and P (Xi ≤ Xj and Yi ≤ Yj),
i 6= j.

22. Let X1, ..., Xn be i.i.d. from P ∈ P containing all symmetric c.d.f.’s
with finite means and with Lebesgue p.d.f.’s on R. Show that there
is no UMVUE of µ = EX1 when n > 1.

23. Prove Corollary 3.1.

24. Suppose that T is a UMVUE of an unknown parameter ϑ. Show that
T k is a UMVUE of E(T k), where k is any positive integer for which
E(T 2k) <∞.

25. Consider the problem in Exercise 83 of §2.6. Use Theorem 3.2 to show
that I{0}(X) is a UMVUE of (1 − p)2 and that there is no UMVUE
of p.

26. Let X1, ..., Xn be i.i.d. from a discrete distribution with

P (Xi = θ − 1) = P (Xi = θ) = P (Xi = θ + 1) = 1
3 ,

where θ is an unknown integer. Show that no nonconstant function
of θ has a UMVUE.

27. Let X be a random variable having the Lebesgue p.d.f.

[(1 − θ) + θ/(2
√
x)]I(0,1)(x),

where θ ∈ [0, 1]. Show that there is no UMVUE of θ.
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28. Let X be a discrete random variable with P (X = −1) = 2p(1 − p)
and P (X = k) = pk(1 − p)3−k, k = 0, 1, 2, 3, where p ∈ (0, 1).
(a) Determine whether there is a UMVUE of p.
(b) Determine whether there is a UMVUE of p(1 − p).

29. Let X1, ..., Xn be i.i.d. observations. Obtain a UMVUE of a in the
following cases.
(a) Xi has the exponential distribution E(a, θ) with a known θ and
an unknown a ≤ 0.
(b) Xi has the Pareto distribution Pa(a, θ) with a known θ > 1 and
an unknown a ∈ (0, 1].

30. In Exercise 41 of §2.6, find a UMVUE of θ and show that it is unique
a.s.

31. Prove Theorem 3.3 for the multivariate case (k > 1).

32. Let X be a single sample from Pθ. Find the Fisher information I(θ)
in the following cases.
(a) Pθ is the N(µ, σ2) distribution with θ = µ ∈ R.
(b) Pθ is the N(µ, σ2) distribution with θ = σ2 > 0.
(c) Pθ is the N(µ, σ2) distribution with θ = σ > 0.
(d) Pθ is the N(σ, σ2) distribution with θ = σ > 0.
(e) Pθ is the N(µ, σ2) distribution with θ = (µ, σ2) ∈ R× (0,∞).
(f) Pθ is the negative binomial distribution NB(θ, r) with θ ∈ (0, 1).
(g) Pθ is the gamma distribution Γ(α, γ) with θ = (α, γ) ∈ (0,∞) ×
(0,∞).
(h) Pθ is the beta distribution B(α, β) with θ = (α, β) ∈ (0, 1)×(0, 1).

33. Find a function of θ for which the amount of information is indepen-
dent of θ, when Pθ is
(a) the Poisson distribution P (θ) with θ > 0;
(b) the binomial distribution Bi(θ, r) with θ ∈ (0, 1);
(c) the gamma distribution Γ(α, θ) with θ > 0.

34. Prove the result in Example 3.9.

35. Obtain the Fisher information matrix for a random variable with
(a) the Cauchy distribution C(µ, σ), µ ∈ R, σ > 0;
(b) the double exponential distribution DE(µ, θ), µ ∈ R, θ > 0;
(c) the logistic distribution LG(µ, σ), µ ∈ R, σ > 0;
(d) the c.d.f. Fr

(
x−µ
σ

)
, where Fr is the c.d.f. of the t-distribution tr

with a known r, µ ∈ R, σ > 0;
(e) the Lebesgue p.d.f. fθ(x) = (1 − ǫ)φ(x − µ) + ǫ

σφ
(
x−µ
σ

)
, θ =

(µ, σ, ǫ) ∈ R× (0,∞) × (0, 1), where φ is the standard normal p.d.f.
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36. LetX be a sample having a p.d.f. satisfying the conditions in Theorem
3.3, where θ is a k-vector of unknown parameters, and let T (X) be
a statistic. If T has a p.d.f. gθ satisfying the conditions in Theorem
3.3, then we define IT (θ) = E{ ∂

∂θ log gθ(T )[ ∂∂θ log gθ(T )]τ} to be the
Fisher information about θ contained in T .
(a) Show that IX(θ) − IT (θ) is nonnegative definite, where IX(θ) is
the Fisher information about θ contained in X .
(b) Show that IX(θ) = IT (θ) if T is sufficient for θ.

37. Let X1, ..., Xn be i.i.d. from the uniform distribution U(0, θ) with
θ > 0.
(a) Show that condition (3.3) does not hold for h(X) = X(n).
(b) Show that the inequality in (3.6) does not hold for the UMVUE
of θ.

38. Prove Proposition 3.3.

39. Let X be a single sample from the double exponential distribution
DE(µ, θ) with µ = 0 and θ > 0. Find the UMVUE’s of the following
parameters and, in each case, determine whether the variance of the
UMVUE attains the Cramér-Rao lower bound.
(a) ϑ = θ;
(b) ϑ = θr, where r > 1;
(c) ϑ = (1 + θ)−1.

40. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) =
p ∈ (0, 1).
(a) Show that the UMVUE of p(1 − p) is Tn = nX̄(1 − X̄)/(n− 1).
(b) Show that Var(Tn) does not attain the Cramér-Rao lower bound.
(c) Show that (3.10) holds.

41. Let X1, ..., Xn be i.i.d. having the Poisson distribution P (θ) with θ >
0. Find the amse of the UMVUE of e−tθ with a fixed t > 0 and show
that (3.10) holds.

42. Let X1, ..., Xn be i.i.d. having the N(µ, σ2) distribution with an un-
known µ ∈ R and a known σ2 > 0.
(a) Find the UMVUE of ϑ = etµ with a fixed t 6= 0.
(b) Determine whether the variance of the UMVUE in (a) attains the
Cramér-Rao lower bound.
(c) Show that (3.10) holds.

43. Show that if X1, ..., Xn are i.i.d. binary random variables, Un in (3.12)
equals T (T − 1) · · · (T − m + 1)/[n(n − 1) · · · (n − m + 1)], where
T =

∑n
i=1Xi.
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44. Show that if Tn = X̄ , then Un in (3.13) is the same as the sample
variance S2 in (2.2). Show that (3.23) holds for Tn given by (3.22)
with E(R2

n) = o(n−1).

45. Prove (3.14), (3.16), and (3.17).

46. Let ζk be given in Theorem 3.4. Show that ζ1 ≤ ζ2 ≤ · · · ≤ ζm.

47. Prove Corollary 3.2.

48. Prove (3.20) and show that Un − Ǔn is also a U-statistic.

49. Let Tn be a symmetric statistic with Var(Tn) <∞ for every n and Ťn
be the projection of Tn on

(
n
k

)
random vectors {Xi1 , ..., Xik}, 1 ≤ i1 <

· · · < ik ≤ n. Show that E(Tn) = E(Ťn) and calculate E(Tn − Ťn)
2.

50. Let Yk be defined in Lemma 3.2. Show that {Y 2
k } is uniformly inte-

grable.

51. Show that (3.22) with E(R2
n) = o(n−1) is satisfied for Tn being a

U-statistic with E[h(X1, ..., Xm)]2 <∞.

52. Let S2 be the sample variance given by (2.2), which is also a U-
statistic (§3.2.1). Find the corresponding h1, h2, ζ1, and ζ2. Discuss
how to apply Theorem 3.5 to this case.

53. Let h(x1, x2, x3) = I(−∞,0)(x1 + x2 + x3). Define the U-statistic with
this kernel and find hk and ζk, k = 1, 2, 3.

54. Let X1, ..., Xn be i.i.d. random variables having finite µ = EX1 and
µ̄ = EX−1

1 . Find a U-statistic that is an unbiased estimator of µµ̄
and derive its variance and asymptotic distribution.

55. Show that β̂ is an LSE of β if and only if it is given by (3.29).

56. Obtain explicit forms for the LSE’s of βj , j = 0, 1, and SSR, under
the simple linear regression model in Example 3.11, assuming that
some ti’s are different.

57. Consider the polynomial model

Xi = β0 + β1ti + β2t
2
i + εi, i = 1, ..., n.

Find explicit forms for the LSE’s of βj , j = 0, 1, 2, and SSR, assuming
that some ti’s are different.

58. Suppose that

Xij = αi + βtij + εij , i = 1, ..., a, j = 1, ..., b.

Find explicit forms for the LSE’s of β, αi, i = 1, ..., a, and SSR.
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59. Consider the polynomial model

Xi = β0 + β1ti + β2t
2
i + β3t

3
i + εi, i = 1, ..., n,

where εi’s are i.i.d. from N(0, σ2). Suppose that n = 12, ti = −1,
i = 1, ..., 4, ti = 0, i = 5, ..., 8, and ti = 1, i = 9, ..., 12.
(a) Obtain the matrix ZτZ when this polynomial model is considered
as a special case of model (3.24).
(b) Show whether the following parameters are estimable: β0 + β2,
β1, β0 − β1, β1 + β3, and β0 + β1 + β2 + β3.

60. Find the matrix Z, ZτZ, and the form of l ∈ R(Z) under the one-way
ANOVA model (3.31).

61. Obtain the matrix Z under the two-way balanced ANOVA model
(3.32). Show that the rank of Z is ab. Verify the form of the LSE of
β given in Example 3.14. Find the form of l ∈ R(Z).

62. Consider the following model as a special case of model (3.25):

Xijk = µ+ αi + βj + εijk, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c.

Obtain the matrix Z, the parameter vector β, and the form of LSE’s
of β. Discuss conditions under which l ∈ R(Z).

63. Under model (3.25) and assumption A1, find the UMVUE’s of (lτβ)2,
lτβ/σ, and (lτβ/σ)2 for an estimable lτβ.

64. Verify the formulas for SSR’s in Example 3.15.

65. Consider the one-way random effects model in Example 3.17. Assume
that ni = n for all i and that Ai’s and eij ’s are normally distributed.
Show that the family of populations is an exponential family with
sufficient and complete statistics X̄··, SA = n

∑m
i=1(X̄i· − X̄··)2, and

SE =
∑m

i=1

∑n
j=1(Xij − X̄i·)2. Find the UMVUE’s of µ, σ2

a, and σ2.

66. Consider model (3.25). Suppose that εi’s are i.i.d. with Eεi = 0 and
a Lebesgue p.d.f. σ−1f(x/σ), where f is a known Lebesgue p.d.f. and
σ > 0 is unknown.
(a) Show that X is from a location-scale family given by (2.10).
(b) Find the Fisher information about (β, σ) contained in Xi.
(c) Find the Fisher information about (β, σ) contained in X .

67. Consider model (3.25) with assumption A2. Let c ∈ Rp. Show that if
the equation c = Zτy has a solution, then there is a unique solution
y0 ∈ R(Zτ ) such that Var(yτ0X) ≤ Var(yτX) for any other solution
of c = Zτy.
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68. Consider model (3.25). Show that the number of independent linear
functions of X with mean 0 is n− r, where r is the rank of Z.

69. Consider model (3.25) with assumption A2. Let X̂i = Zτi β̂, which
is called the least squares prediction of Xi. Let hij be the (i, j)th
element of Z(ZτZ)−Zτ and hi = hii. Show that
(a) Var(X̂i) = σ2hi;
(b) Var(Xi − X̂i) = σ2(1 − hi);
(c) Cov(X̂i, X̂j) = σ2hij ;

(d) Cov(Xi − X̂i, Xj − X̂j) = −σ2hij , i 6= j;

(e) Cov(X̂i, Xj − X̂j) = 0.

70. Consider model (3.25) with assumption A2. Let Z = (Z1, Z2) and
β = (β1, β2), where Zj is n × pj and βj is a pj-vector, j = 1, 2.
Assume that (Zτ1Z1)

−1 and [Zτ2Z2 − Zτ2Z1(Z
τ
1Z1)

−1Zτ1Z2]
−1 exist.

(a) Derive the LSE of β in terms of Z1, Z2, and X .

(b) Let β̂ = (β̂1, β̂2) be the LSE in (a). Calculate the covariance

between β̂1 and β̂2.
(c) Suppose that it is known that β2 = 0. Let β̃1 be the LSE of β1

under the reduced model X = Z1β1 + ε. Show that, for any l ∈ Rp1 ,
lτ β̃1 is better than lτ β̂1 in terms of their mse’s.

71. Prove that (e) implies (b) in Theorem 3.10.

72. Show that (a) in Theorem 3.10 is equivalent to either
(f) Var(ε)Z = ZB for some matrix B, or
(g) R(Zτ ) is generated by r eigenvectors of Var(ε), where r is the
rank of Z.

73. Prove Corollary 3.3.

74. Suppose that
X = µJn +Hξ + e,

where µ ∈ R is an unknown parameter, Jn is the n-vector of 1’s, H
is an n × p known matrix of full rank, ξ is a random p-vector with
E(ξ) = 0 and Var(ξ) = σ2

ξIp, e is a random n-vector with E(e) = 0

and Var(e) = σ2In, and ξ and e are independent. Show that the LSE
of µ is the BLUE if and only if the row totals of HHτ are the same.

75. Consider a special case of model (3.25):

Xij = µ+ αi + βj + εij , i = 1, ..., a, j = 1, ..., b,

where µ, αi’s, and βj ’s are unknown parameters, E(εij) = 0, Var(εij)
= σ2, Cov(εij , εi′j′ ) = 0 if i 6= i′, and Cov(εij , εij′ ) = σ2ρ if j 6= j′.
Show that the LSE of lτβ is the BLUE for any l ∈ R(Z).
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76. Consider model (3.25) under assumption A3 with Var(ε) = a block
diagonal matrix whose ith block diagonal Vi is ni×ni and has a single
eigenvalue λi with eigenvector Jni (the ni-vector of 1’s) and a repeated

eigenvalue ρi with multiplicity ni−1, i = 1, ..., k,
∑k

i=1 ni = n. Let U
be the n×k matrix whose ith column is Ui, where U1 = (Jτn1

, 0, ..., 0),
U2 = (0, Jτn2

, ..., 0),..., Uk = (0, 0, ..., Jτnk
).

(a) If R(Zτ ) ⊂ R(U τ ) and λi ≡ λ, show that lτ β̂ is the BLUE of lτβ
for any l ∈ R(Z).

(b) If ZτUi = 0 for all i and ρi ≡ ρ, show that lτ β̂ is the BLUE of
lτβ for any l ∈ R(Z).

77. Prove Proposition 3.4.

78. Show that the condition supn λ+[Var(ε)] < ∞ is equivalent to the
condition supiVar(εi) <∞.

79. Find a condition under which the mse of lτ β̂ is of the order n−1.
Apply it to problems in Exercises 56, 58, and 60-62.

80. Consider model (3.25) with i.i.d. ε1, ..., εn having E(εi) = 0 and

Var(εi) = σ2. Let X̂i = Zτi β̂ and hi = Zτi (ZτZ)−Zi.
(a) Show that for any ǫ > 0,

P (|X̂i − EX̂i| ≥ ǫ) ≥ min{P (εi ≥ ǫ/hi), P (εi ≤ −ǫ/hi)}.

(Hint: for independent random variables X and Y , P (|X+Y | ≥ ǫ) ≥
P (X ≥ ǫ)P (Y ≥ 0) + P (X ≤ −ǫ)P (Y < 0).)
(b) Show that X̂i − EX̂i →p 0 if and only if hi → 0.

81. Prove Lemma 3.3 and show that condition (a) is implied by {‖Zi‖}
being bounded and λ+(ZτZ)− → 0.

82. Consider the problem in Exercise 58. Suppose that {tij} is bounded.
Find a condition under which (3.39) holds.

83. Under the two-way ANOVA models in Example 3.14 and Exercise 62,
find sufficient conditions for (3.39).

84. Consider the one-way random effects model in Example 3.17. Assume
that {ni} is bounded and E|eij |2+δ < ∞ for some δ > 0. Show that
the LSE µ̂ of µ is asymptotically normal and derive an explicit form
of Var(µ̂).

85. Suppose that
Xi = ρti + εi, i = 1, ..., n,

where ρ ∈ R is an unknown parameter, ti’s are known and in (a, b), a
and b are known positive constants, and εi’s are independent random
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variables satisfying E(εi) = 0, E|εi|2+δ < ∞ for some δ > 0, and
Var(εi) = σ2ti with an unknown σ2 > 0.
(a) Obtain the LSE of ρ.
(b) Obtain the BLUE of ρ.
(c) Show that both the LSE and BLUE are asymptotically normal
and obtain the asymptotic relative efficiency of the BLUE w.r.t. the
LSE.

86. In Example 3.19, show that E(S2) = σ2 given in (3.43).

87. Suppose that X = (X1, ..., Xn) is a simple random sample (without
replacement) from a finite populationP = {y1, ..., yN} with univariate
yi.
(a) Show that a necessary condition for h(θ) to be estimable is that
h is symmetric in its N arguments.
(b) Find the UMVUE of Y m, where m is a fixed positive integer < n
and Y is the population total.
(c) Find the UMVUE of P (Xi ≤ Xj), i 6= j.
(d) Find the UMVUE of Cov(Xi, Xj), i 6= j.

88. Prove Theorem 3.14.

89. Under stratified simple random sampling described in §3.4.1, show
that the vector of ordered values of all Xhi’s is neither sufficient nor
complete for θ ∈ Θ.

90. Let P = {y1, ..., yN} be a population with univariate yi. Define the

population c.d.f. by F (t) = N−1
∑N
i=1 I(−∞,t](yi). Find the UMVUE

of F (t) under (a) simple random sampling and (b) stratified simple
random sampling.

91. Consider the estimation of F (t) in the previous exercise. Suppose that
a sample of size n is selected with πi > 0. Find the Horvitz-Thompson
estimator of F (t). Is it a c.d.f.?

92. Show that v1 in (3.49) and v2 in (3.50) are unbiased estimators of
Var(Ŷht). Prove that v1 = v2 under (a) simple random sampling and
(b) stratified simple random sampling.

93. Consider the following two-stage stratified sampling plan. In the first
stage, the population is stratified into H strata and kh clusters are
selected from stratum h with probability proportional to cluster size,
where sampling is independent across strata. In the second stage, a
sample of mhi units is selected from sampled cluster i in stratum h,
and sampling is independent across clusters. Find πi and the Horvitz-
Thompson estimator Ŷht of the population total.
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94. In the previous exercise, prove the unbiasedness of Ŷht directly (with-
out using Theorem 3.15).

95. Under systematic sampling, show that Var(Ŷsy) is equal to

(
1 − 1

N

)
σ2

n
+

2

nN

k∑

i=1

∑

1≤t<u≤n

(
yi+(t−1)k −

Y

N

)(
yi+(u−1)k −

Y

N

)
.

96. In Exercise 91, discuss how to obtain a consistent (as n → N) esti-
mator F̂ (t) of F (t) such that F̂ is a c.d.f.

97. Derive the n−1 order asymptotic bias of the sample correlation coef-
ficient defined in Exercise 22 in §2.6.

98. Derive the n−1 order asymptotic bias and amse of t̂β in Example 3.22,

assuming that
∑p−1

j=0 βjt
j is convex in t ∈ T .

99. Consider Example 3.23.
(a) Show that θ̂ is the BLUE of θ.
(b) Show that σ̂2 is unbiased for σ2.
(c) Show that Σ̂ is consistent for Σ as k → ∞.
(d) Derive the amse of R̂(t) as k → ∞.

100. Let X1, ..., Xn be i.i.d. from N(µ, σ2), where µ ∈ R and σ2 > 0.
Consider the estimation of ϑ = EΦ(a+bX1), where Φ is the standard
normal c.d.f. and a and b are known constants. Obtain an explicit
form of a function g(µ, σ2) = ϑ and the amse of ϑ̂ = g(X̄, S2).

101. LetX1, ..., Xn be i.i.d. with mean µ, variance σ2, and finite µj = EXj
1 ,

j = 2, 3, 4. The sample coefficient of variation is defined to be S/X̄,
where S is the squared root of the sample variance S2.
(a) If µ 6= 0, show that

√
n(S/X̄ − σ/µ) →d N(0, τ) and obtain an

explicit formula of τ in terms of µ, σ2, and µj .
(b) If µ = 0, show that n−1/2S/X̄ →d [N(0, 1)]−1.

102. Prove (3.52) and (3.53).

103. LetX1, ..., Xn be i.i.d. from P in a parametric family. Obtain moment
estimators of parameters in the following cases.
(a) P is the gamma distribution Γ(α, γ), α > 0, γ > 0.
(b) P is the exponential distribution E(a, θ), a ∈ R, θ > 0.
(c) P is the beta distribution B(α, β), α > 0, β > 0.
(d) P is the log-normal distribution LN(µ, σ2), µ ∈ R, σ > 0.
(e) P is the uniform distribution U(θ − 1

2 , θ + 1
2 ), θ ∈ R.

(f) P is the negative binomial distribution NB(p, r), p ∈ (0, 1), r =
1, 2,....
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(g) P is the log-distribution L(p), p ∈ (0, 1).
(h) P is the log-normal distribution LN(µ, σ2), µ ∈ R, σ = 1.
(i) P is the chi-square distribution χ2

k with an unknown k = 1, 2, ....

104. Obtain moment estimators of λ and p in Exercise 55 of §2.6, based
on data X1, ..., Xn.

105. Obtain the asymptotic distributions of the moment estimators in Ex-
ercise 103(a), (c), (e), and (g), and the asymptotic relative efficiencies
of moment estimators w.r.t. UMVUE’s in Exercise 103(b) and (h).

106. In Exercise 19(a), find a moment estimator of θ and derive its asymp-
totic distribution. In Exercise 19(b), obtain a moment estimator of
θ−1 and its asymptotic relative efficiency w.r.t. the UMVUE of θ−1.

107. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.
fα,β(x) = αβ−αxα−1I(0,β)(x), where α > 0 and β > 0 are unknown.
(a) Obtain moment estimators of α and β.
(b) Obtain the asymptotic distribution of the moment estimators of
α and β derived in (a).

108. Let X1, ..., Xn be i.i.d. from the following discrete distribution:

P (X1 = 1) =
2(1 − θ)

2 − θ
, P (X1 = 2) =

θ

2 − θ
,

where θ ∈ (0, 1) is unknown.
(a) Obtain an estimator of θ using the method of moments.
(b) Obtain the amse of the moment estimator in (a).

109. LetX1, ..., Xn (n > 1) be i.i.d. from a population having the Lebesgue
p.d.f.

fθ(x) = (1 − ǫ)φ(x− µ) +
ǫ

σ
φ

(
x− µ

σ

)
,

where φ is the standard normal p.d.f., θ = (µ, σ) ∈ R × (0,∞) is
unknown, and ǫ ∈ (0, 1) is a known constant.
(a) Obtain an estimator of θ using the method of moments.
(b) Obtain the asymptotic distribution of the moment estimator in
part (a).

110. Let X1, ..., Xn be i.i.d. random variables having the Lebesgue p.d.f.

fθ1,θ2(x) =

{
(θ1 + θ2)

−1e−x/θ1 x > 0

(θ1 + θ2)
−1ex/θ2 x ≤ 0,

where θ1 > 0 and θ2 > 0 are unknown.
(a) Obtain an estimator of (θ1, θ2) using the method of moments.
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(b) Obtain the asymptotic distribution of the moment estimator in
part (a).

111. (Nonexistence of a moment estimator). Consider X1, ..., Xn and the
parametric family indexed by (θ, j) ∈ (0, 1)× {1, 2} in Exercise 41 of
§2.6. Let hi(θ, j) = EX i

1, i = 1, 2. Show that

P (µ̂i = hi(θ, j) has a solution) → 0

as n→ ∞, when Xi’s are from the Poisson distribution P (θ).

112. In the proof of Proposition 3.5, show that E[Wn(Un − ϑ)] = O(n−1).

113. Assume the conditions of Theorem 3.16.
(a) Prove (3.56).
(b) Show that E[g2(X1, X1)]/n = nEVn2 = m(m− 1)

∑∞
j=1 λj/(2n).

114. Let X1, ..., Xn be i.i.d. with a c.d.f. F and Un and Vn be the U- and V-
statistics with kernel

∫
[I(−∞,y](x1)− F0(y)][I(−∞,y](x2)− F0(y)]dF0,

where F0 is a known c.d.f.
(a) Obtain the asymptotic distributions of Un and Vn when F 6= F0.
(b) Obtain the asymptotic relative efficiency of Un w.r.t. Vn when
F = F0.

115. Let X1, ..., Xn be i.i.d. with a c.d.f. F having a finite sixth moment.
Consider the estimation of µ3, where µ = EX1. When µ = 0, find

amseX̄3(P )/amseUn(P ), where Un =
(
n
3

)−1∑
1≤i<j<k≤nXiXjXk.

116. Let An, n = 1, 2, ..., be a sequence of k × k matrices, where k is a
fixed integer.
(a) Show that ‖An‖max → 0 if and only if ‖An‖ → 0, where ‖An‖max

is defined in (3.60) and ‖An‖2 = tr(AτnAn).
(b) Show that if An’s are nonnegative definite, then ‖An‖ → 0 if and
only if λ+[An] → 0, where λ+[An] is the largest eigenvalue of An.
(c) Show that the result in (a) is not always true if k varies with n.

117. Prove that σ̂2 in (3.63) is unbiased and consistent for σ2 under model
(3.25) with (3.62) and supiE|εi|2+δ < ∞ for some δ > 0. Under the
same conditions, show that Σ̂ in (3.64) is consistent for Σ in the sense
that ‖Σ̂ − Σ‖max →p 0.

118. In Example 3.30, show that V̂t is consistent for Vt when kt → ∞ as
k → ∞.

119. Show how to use equation (3.65) to obtain consistent estimators of θ0
and θ1.

120. Prove (3.66) under the assumed conditions in §3.5.4.



Chapter 4

Estimation in Parametric

Models

In this chapter, we consider point estimation methods in parametric models.
One such method, the moment method, has been introduced in §3.5.2. It
is assumed in this chapter that the sample X is from a population in a
parametric family P={Pθ : θ ∈ Θ}, where Θ⊂Rk for a fixed integer k ≥ 1.

4.1 Bayes Decisions and Estimators

Bayes rules are introduced in §2.3.2 as decision rules minimizing the average
risk w.r.t. a given probability measure Π on Θ. Bayes rules, however, are
optimal rules in the Bayesian approach, which is fundamentally different
from the classical frequentist approach that we have been adopting.

4.1.1 Bayes actions

In the Bayesian approach, θ is viewed as a realization of a random vector θ

whose prior distribution is Π. The prior distribution is based on past expe-
rience, past data, or a statistician’s belief and thus may be very subjective.
A sample X is drawn from Pθ = Px|θ, which is viewed as the conditional
distribution of X given θ = θ. The sample X = x is then used to obtain an
updated prior distribution, which is called the posterior distribution and
can be derived as follows. By Theorem 1.7, the joint distribution of X and
θ is a probability measure on X × Θ determined by

P (A×B) =

∫

B

Px|θ(A)dΠ(θ), A ∈ BX, B ∈ BΘ,

231
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where X is the range of X . The posterior distribution of θ, given X = x, is
the conditional distribution Pθ|x whose existence is guaranteed by Theorem
1.7 for almost all x ∈ X. When Px|θ has a p.d.f., the following result
provides a formula for the p.d.f. of the posterior distribution Pθ|x.

Theorem 4.1 (Bayes formula). Assume that P = {Px|θ : θ ∈ Θ} is

dominated by a σ-finite measure ν and fθ(x) =
dPx|θ

dν (x) is a Borel function
on (X×Θ, σ(BX ×BΘ)). Let Π be a prior distribution on Θ. Suppose that
m(x) =

∫
Θ
fθ(x)dΠ > 0.

(i) The posterior distribution Pθ|x ≪ Π and

dPθ|x
dΠ

=
fθ(x)

m(x)
.

(ii) If Π ≪ λ and dΠ
dλ = π(θ) for a σ-finite measure λ, then

dPθ|x
dλ

=
fθ(x)π(θ)

m(x)
. (4.1)

Proof. Result (ii) follows from result (i) and Proposition 1.7(iii). To show
(i), we first show that m(x) <∞ a.e. ν. Note that

∫

X

m(x)dν =

∫

X

∫

Θ

fθ(x)dΠdν =

∫

Θ

∫

X

fθ(x)dνdΠ = 1, (4.2)

where the second equality follows from Fubini’s theorem. Thus, m(x) is
integrable w.r.t. ν and m(x) <∞ a.e. ν.

For x ∈ X with m(x) <∞, define

P (B, x) =
1

m(x)

∫

B

fθ(x)dΠ, B ∈ BΘ.

Then P (·, x) is a probability measure on Θ a.e. ν. By Theorem 1.7, it
remains to show that

P (B, x) = P (θ ∈ B|X = x).

By Fubini’s theorem, P (B, ·) is a measurable function of x. Let Px,θ denote
the “joint” distribution of (X,θ). For any A ∈ σ(X),

∫

A×Θ

IB(θ)dPx,θ =

∫

A

∫

B

fθ(x)dΠdν

=

∫

A

[∫

B

fθ(x)

m(x)
dΠ

] [∫

Θ

fθ(x)dΠ

]
dν

=

∫

Θ

∫

A

[∫

B

fθ(x)

m(x)
dΠ

]
fθ(x)dνdΠ

=

∫

A×Θ

P (B, x)dPx,θ,
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where the third equality follows from Fubini’s theorem. This completes the
proof.

Because of (4.2), m(x) is called the marginal p.d.f. of X w.r.t. ν. If
m(x) = 0 for an x ∈ X, then fθ(x) = 0 a.s. Π. Thus, either x should be
eliminated from X or the prior Π is incorrect and a new prior should be
specified. Therefore, without loss of generality we may assume that the
assumption of m(x) > 0 in Theorem 4.1 is always satisfied.

If both X and θ are discrete and ν and λ are the counting measures,
then (4.1) becomes

P (θ = θ|X = x) =
P (X = x|θ = θ)P (θ = θ)∑
θ∈Θ P (X = x|θ = θ)P (θ = θ)

,

which is the Bayes formula that appears in elementary probability.

In the Bayesian approach, the posterior distribution Pθ|x contains all
the information we have about θ and, therefore, statistical decisions and
inference should be made based on Pθ|x, conditional on the observedX = x.
In the problem of estimating θ, Pθ|x can be viewed as a randomized decision
rule under the approach discussed in §2.3.

Definition 4.1. Let A be an action space in a decision problem and
L(θ, a) ≥ 0 be a loss function. For any x ∈ X, a Bayes action w.r.t. Π
is any δ(x) ∈ A such that

E[L(θ, δ(x))|X = x] = min
a∈A

E[L(θ, a)|X = x], (4.3)

where the expectation is w.r.t. the posterior distribution Pθ|x.

The existence and uniqueness of Bayes actions can be discussed under
some conditions on the loss function and the action space.

Proposition 4.1. Assume that the conditions in Theorem 4.1 hold; L(θ, a)
is convex in a for each fixed θ; and for each x ∈ X, E[L(θ, a)|X = x] < ∞
for some a.
(i) If A is a compact subset of Rp for some integer p ≥ 1, then a Bayes
action δ(x) exists for each x ∈ X.
(ii) If A = Rp and L(θ, a) tends to ∞ as ‖a‖ → ∞ uniformly in θ ∈ Θ0 ⊂ Θ
with Π(Θ0) > 0, then a Bayes action δ(x) exists for each x ∈ X.
(iii) In (i) or (ii), if L(θ, a) is strictly convex in a for each fixed θ, then the
Bayes action is unique.
Proof. The convexity of the loss function implies the convexity and con-
tinuity of E[L(θ, a)|X = x] as a function of a with any fixed x. Then, the
result in (i) follows from the fact that any continuous function on a compact
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set attains its minimum. The result in (ii) follows from the fact that

lim
‖a‖→∞

E[L(θ, a)|X = x] ≥ lim
‖a‖→∞

∫

Θ0

L(θ, a)dPθ|x = ∞

under the assumed condition in (ii). Finally, the result in (iii) follows from
the fact that E[L(θ, a)|X = x] is strictly convex in a for any fixed x under
the assumed conditions.

Other conditions on L under which a Bayes action exists can be found,
for example, in Lehmann (1983, §1.6 and §4.1).

Example 4.1. Consider the estimation of ϑ = g(θ) for some real-valued
function g such that

∫
Θ
[g(θ)]2dΠ <∞. Suppose that A = the range of g(θ)

and L(θ, a) = [g(θ)− a]2 (squared error loss). Using the same argument as
in Example 1.22, we obtain the Bayes action

δ(x) =

∫
Θ g(θ)fθ(x)dΠ

m(x)
=

∫
Θ g(θ)fθ(x)dΠ∫

Θ
fθ(x)dΠ

, (4.4)

which is the posterior expectation of g(θ), given X = x.

More specifically, let us consider the case where g(θ) = θj for some
integer j ≥ 1, fθ(x) = e−θθxI{0,1,2,...}(x)/x! (the Poisson distribution) with

θ > 0, and Π has a Lebesgue p.d.f. π(θ) = θα−1e−θ/γI(0,∞)(θ)/[Γ(α)γα]
(the gamma distribution Γ(α, γ) with known α > 0 and γ > 0). Then, for
x = 0, 1, 2, ...,

fθ(x)π(θ)

m(x)
= c(x)θx+α−1e−θ(γ+1)/γI(0,∞)(θ), (4.5)

where c(x) is some function of x. By using Theorem 4.1 and matching the
right-hand side of (4.5) with that of the p.d.f. of the gamma distribution,
we know that the posterior is the gamma distribution Γ(x+ α, γ/(γ + 1)).
Hence, without actually working out the integralm(x), we know that c(x) =
(1 + γ−1)x+α/Γ(x+ α). Then

δ(x) = c(x)

∫ ∞

0

θj+x+α−1e−θ(γ+1)/γdθ.

Note that the integrand is proportional to the p.d.f. of the gamma distri-
bution Γ(j + x+ α, γ/(γ + 1)). Hence

δ(x) = c(x)Γ(j + x+ α)/(1 + γ−1)j+x+α

= (j + x+ α− 1) · · · (x+ α)/(1 + γ−1)j .

In particular, δ(x) = (x+ α)γ/(γ + 1) when j = 1.
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An interesting phenomenon in Example 4.1 is that the prior and the
posterior are in the same parametric family of distributions. Such a prior is
called a conjugate prior. Under a conjugate prior, Bayes actions often have
explicit forms (in x) when the loss function is simple. Whether a prior is
conjugate involves a pair of families; one is the family P = {fθ : θ ∈ Θ}
and the other is the family from which Π is chosen. Example 4.1 shows
that the Poisson family and the gamma family produce conjugate priors.
It can be shown (exercise) that many pairs of families in Table 1.1 (page
18) and Table 1.2 (pages 20-21) produce conjugate priors.

In general, numerical methods have to be used in evaluating the inte-
grals in (4.4) or Bayes actions under general loss functions. Even under a
conjugate prior, the integral in (4.4) involving a general g may not have an
explicit form. More discussions on the computation of Bayes actions are
given in §4.1.4.

As an example of deriving a Bayes action in a general decision problem,
we consider Example 2.21.

Example 4.2. Consider the decision problem in Example 2.21. Let Pθ|x
be the posterior distribution of θ, given X = x. In this problem, A =
{a1, a2, a3}, which is compact in R. By Proposition 4.1, we know that there
is a Bayes action if the mean of Pθ|x is finite. Let Eθ|x be the expectation
w.r.t. Pθ|x. Since A contains only three elements, a Bayes action can be
obtained by comparing

Eθ|x[L(θ, aj)] =





c1 j = 1

c2 + c3Eθ|x[ψ(θ, t)] j = 2

c3Eθ|x[ψ(θ, 0)] j = 3,

where ψ(θ, t) = (θ − θ0 − t)I(θ0+t,∞)(θ).

The minimization problem (4.3) is the same as the minimization prob-
lem ∫

Θ

L(θ, δ(x))fθ(x)dΠ = min
a∈A

∫

Θ

L(θ, a)fθ(x)dΠ. (4.6)

The minimization problem (4.6) is still defined even if Π is not a probability
measure but a σ-finite measure on Θ, in which case m(x) may not be finite.
If Π(Θ) 6= 1, Π is called an improper prior. A prior with Π(Θ) = 1 is then
called a proper prior. An action δ(x) that satisfies (4.6) with an improper
prior is called a generalized Bayes action.

The following is a reason why we need to discuss improper priors and
generalized Bayes actions. In many cases, one has no past information
and has to choose a prior subjectively. In such cases, one would like to
select a noninformative prior that tries to treat all parameter values in Θ
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equitably. A noninformative prior is often improper. We only provide one
example here. For more detailed discussions of the use of improper priors,
see Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Example 4.3. Suppose that X = (X1, ..., Xn) and Xi’s are i.i.d. from
N(µ, σ2), where µ ∈ Θ ⊂ R is unknown and σ2 is known. Consider the
estimation of ϑ = µ under the squared error loss. If Θ = [a, b] with −∞ <
a < b < ∞, then a noninformative prior that treats all parameter values
equitably is the uniform distribution on [a, b]. If Θ = R, however, the
corresponding “uniform distribution” is the Lebesgue measure on R, which
is an improper prior. If Π is the Lebesgue measure on R, then

(2πσ2)−n/2
∫ ∞

−∞
µ2 exp

{
−

n∑

i=1

(xi − µ)2

2σ2

}
dµ <∞.

By differentiating a in

(2πσ2)−n/2
∫ ∞

−∞
(µ− a)2 exp

{
−

n∑

i=1

(xi − µ)2

2σ2

}
dµ

and using the fact that
∑n

i=1(xi−µ)2 =
∑n
i=1(xi − x̄)2 +n(x̄−µ)2, where

x̄ is the sample mean of the observations x1, ..., xn, we obtain that

δ(x) =

∫∞
−∞ µ exp

{
−n(x̄− µ)2/(2σ2)

}
dµ∫∞

−∞ exp {−n(x̄− µ)2/(2σ2)} dµ = x̄.

Thus, the sample mean is a generalized Bayes action under the squared
error loss. From Example 2.25 and Exercise 91 in §2.6, if Π is N(µ0, σ

2
0),

then the Bayes action is µ∗(x) in (2.25). Note that in this case x̄ is a limit
of µ∗(x) as σ2

0 → ∞.

4.1.2 Empirical and hierarchical Bayes methods

A Bayes action depends on the chosen prior that may depend on some pa-
rameters called hyperparameters. In §4.1.1, hyperparameters are assumed
to be known. If hyperparameters are unknown, one way to solve the prob-
lem is to estimate them using data x1, ..., xn; the resulting Bayes action is
called an empirical Bayes action.

The simplest empirical Bayes method is to estimate prior parameters
by viewing x = (x1, ..., xn) as a “sample” from the marginal distribution

Px|ξ(A) =

∫

Θ

Px|θ(A)dΠθ|ξ, A ∈ BX,
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where Πθ|ξ is a prior depending on an unknown vector ξ of hyperparameters,
or from the marginal p.d.f.m(x) in (4.2), if Px|θ has a p.d.f. fθ. The method
of moments introduced in §3.5.3, for example, can be applied to estimate
ξ. We consider an example.

Example 4.4. Let X = (X1, ..., Xn) and Xi’s be i.i.d. from N(µ, σ2) with
an unknown µ ∈ R and a known σ2. Consider the prior Πµ|ξ = N(µ0, σ

2
0)

with ξ = (µ0, σ
2
0). To obtain a moment estimate of ξ, we need to calculate
∫

Rn

x1m(x)dx and

∫

Rn

x2
1m(x)dx,

where x = (x1, ..., xn). These two integrals can be obtained without calcu-
lating m(x). Note that

∫

Rn

x1m(x)dx =

∫

Θ

∫

Rn

x1fµ(x)dxdΠµ|ξ =

∫

R
µdΠµ|ξ = µ0

and
∫

Rn

x2
1m(x)dx =

∫

Θ

∫

Rn

x2
1fµ(x)dxdΠµ|ξ = σ2+

∫

R
µ2dΠµ|ξ = σ2+µ2

0+σ
2
0 .

Thus, by viewing x1, ..., xn as a sample from m(x), we obtain the moment
estimates

µ̂0 = x̄ and σ̂2
0 =

1

n

n∑

i=1

(xi − x̄)2 − σ2,

where x̄ is the sample mean of xi’s. Replacing µ0 and σ2
0 in formula (2.25)

(Example 2.25) by µ̂0 and σ̂2
0 , respectively, we find that the empirical Bayes

action under the squared error loss is simply the sample mean x̄ (which is
a generalized Bayes action; see Example 4.3).

Note that σ̂2
0 in Example 4.4 can be negative. Better empirical Bayes

methods can be found, for example, in Berger (1985, §4.5). The follow-
ing method, called the hierarchical Bayes method, is generally better than
empirical Bayes methods.

Instead of estimating hyperparameters, in the hierarchical Bayes ap-
proach we put a prior on hyperparameters. Let Πθ|ξ be a (first-stage) prior
with a hyperparameter vector ξ and let Λ be a prior on Ξ, the range of ξ.
Then the “marginal” prior for θ is defined by

Π(B) =

∫

Ξ

Πθ|ξ(B)dΛ(ξ), B ∈ BΘ. (4.7)

If the second-stage prior Λ also depends on some unknown hyperparameters,
then one can go on to consider a third-stage prior. In most applications,
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however, two-stage priors are sufficient, since misspecifying a second-stage
prior is much less serious than misspecifying a first-stage prior (Berger,
1985, §4.6). In addition, the second-stage prior can be chosen to be nonin-
formative (improper).

Bayes actions can be obtained in the same way as before using the prior
in (4.7). Thus, the hierarchical Bayes method is simply a Bayes method
with a hierarchical prior. Empirical Bayes methods, however, deviate from
the Bayes method since x1, ..., xn are used to estimate hyperparameters.

Suppose that X has a p.d.f. fθ(x) w.r.t. a σ-finite measure ν and Πθ|ξ
has a p.d.f. πθ|ξ(θ) w.r.t. a σ-finite measure κ. Then the prior Π in (4.7)
has a p.d.f.

π(θ) =

∫

Ξ

πθ|ξ(θ)dΛ(ξ)

w.r.t. κ and

m(x) =

∫

Θ

∫

Ξ

fθ(x)πθ|ξ(θ)dΛdκ.

Let Pθ|x,ξ be the posterior distribution of θ given x and ξ (or ξ is assumed
known) and

mx|ξ(x) =

∫

Θ

fθ(x)πθ|ξ(θ)dκ,

which is the marginal of X given ξ (or ξ is assumed known). Then the
posterior distribution Pθ|x has a p.d.f.

dPθ|x
dκ

=
fθ(x)π(θ)

m(x)

=

∫

Ξ

fθ(x)πθ|ξ(θ)

m(x)
dΛ(ξ)

=

∫

Ξ

fθ(x)πθ|ξ(θ)

mx|ξ(x)

mx|ξ(x)

m(x)
dΛ(ξ)

=

∫

Ξ

dPθ|x,ξ
dκ

dPξ|x,

where Pξ|x is the posterior distribution of ξ given x. Thus, under the
estimation problem considered in Example 4.1, the (hierarchical) Bayes
action is

δ(x) =

∫

Ξ

δ(x, ξ)dPξ|x, (4.8)

where δ(x, ξ) is the Bayes action when ξ is known. A result similar to (4.8)
is given in Lemma 4.1.

Example 4.5. Consider Example 4.4 again. Suppose that one of the
parameters in the first-stage prior N(µ0, σ

2
0), µ0, is unknown and σ2

0 is
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known. Let the second-stage prior for ξ = µ0 be the Lebesgue measure on
R (improper prior). From Example 2.25,

δ(x, ξ) =
σ2

nσ2
0 + σ2

ξ +
nσ2

0

nσ2
0 + σ2

x̄.

To obtain the Bayes action δ(x), it suffices to calculate Eξ|x(ξ), where the
expectation is w.r.t. Pξ|x. Note that the p.d.f. of Pξ|x is proportional to

ψ(ξ) =

∫ ∞

−∞
exp

{
−n(x̄−µ)2

2σ2 − (µ−ξ)2
2σ2

0

}
dµ.

Using the properties of normal distributions, one can show that

ψ(ξ) = C1exp

{(
n

2σ2 + 1
2σ2

0

)−1 (
nx̄
2σ2 + ξ

2σ2
0

)2

− ξ2

2σ2
0

}

= C2exp
{
− nξ2

2(nσ2
0+σ2)

+ nx̄ξ
nσ2

0+σ2

}

= C3exp
{
− n(ξ−x̄)2

2(nσ2
0+σ2)

}
,

where C1, C2, and C3 are quantities not depending on ξ. Hence Eξ|x(ξ) = x̄.
The (hierarchical) generalized Bayes action is then

δ(x) =
σ2

nσ2
0 + σ2

Eξ|x(ξ) +
nσ2

0

nσ2
0 + σ2

x̄ = x̄.

4.1.3 Bayes rules and estimators

The discussion in §4.1.1 and §4.1.2 is more general than point estimation
and adopts an approach that is different from the frequentist approach used
in the rest of this book. In the frequentist approach, if a Bayes action δ(x)
is a measurable function of x, then δ(X) is a nonrandomized decision rule.
It can be shown (exercise) that δ(X) defined in Definition 4.1 (if it exists
for X = x ∈ A with

∫
Θ Pθ(A)dΠ = 1) also minimizes the Bayes risk

r
T
(Π) =

∫

Θ

RT (θ)dΠ

over all decision rules T (randomized or nonrandomized), where RT (θ) is
the risk function of T defined in (2.22). Thus, δ(X) is a Bayes rule (§2.3.2).
In an estimation problem, a Bayes rule is called a Bayes estimator.

Generalized Bayes risks, generalized Bayes rules (or estimators), and
empirical Bayes rules (or estimators) can be defined similarly.

In view of the discussion in §2.3.2, even if we do not adopt the Bayesian
approach, the method described in §4.1.1 can be used as a way of generating
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decision rules. In this section, we study a Bayes rule or estimator in terms
of its risk (and bias and consistency for a Bayes estimator).

Bayes rules are typically admissible since, if there is a rule better than
a Bayes rule, then that rule has the same Bayes risk as the Bayes rule
and, therefore, is itself a Bayes rule. This actually proves part (i) of the
following result. The proof of the other parts of the following result is left
as an exercise.

Theorem 4.2. In a decision problem, let δ(X) be a Bayes rule w.r.t. a
prior Π.
(i) If δ(X) is a unique Bayes rule, then δ(X) is admissible.
(ii) If Θ is a countable set, the Bayes risk r

δ
(Π) <∞, and Π gives positive

probability to each θ ∈ Θ, then δ(X) is admissible.
(iii) Let ℑ be the class of decision rules having continuous risk functions. If
δ(X) ∈ ℑ, r

δ
(Π) <∞, and Π gives positive probability to any open subset

of Θ, then δ(X) is ℑ-admissible.

Generalized Bayes rules or estimators are not necessarily admissible.
Many generalized Bayes rules are limits of Bayes rules (see Examples 4.3
and 4.7). Limits of Bayes rules are often admissible (Farrell, 1968a,b). The
following result shows a technique of proving admissibility using limits of
generalized Bayes risks.

Theorem 4.3. Suppose that Θ is an open set of Rk. In a decision problem,
let ℑ be the class of decision rules having continuous risk functions. A
decision rule T ∈ ℑ is ℑ-admissible if there exists a sequence {Πj} of
(possibly improper) priors such that (a) the generalized Bayes risks r

T
(Πj)

are finite for all j; (b) for any θ0 ∈ Θ and η > 0,

lim
j→∞

r
T
(Πj) − r∗j (Πj)

Πj(Oθ0,η)
= 0,

where r∗j (Πj) = inf
T ∈ℑ rT

(Πj) and Oθ0,η = {θ ∈ Θ : ‖θ − θ0‖ < η} with
Πj(Oθ0,η) <∞ for all j.
Proof. Suppose that T is not ℑ-admissible. Then there exists T0 ∈ ℑ such
that RT0(θ) ≤ RT (θ) for all θ and RT0(θ0) < RT (θ0) for a θ0 ∈ Θ. From
the continuity of the risk functions, we conclude that RT0(θ) < RT (θ) − ǫ
for all θ ∈ Oθ0,η and some constants ǫ > 0 and η > 0. Then, for any j,

r
T
(Πj) − r∗j (Πj) ≥ r

T
(Πj) − r

T0
(Πj)

≥
∫

Oθ0,η

[RT (θ) −RT0(θ)]dΠj(θ)

≥ ǫΠj(Oθ0,η),

which contradicts condition (b). Hence, T is ℑ-admissible.
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Example 4.6. Consider Example 4.3 and the estimation of µ under the
squared error loss. From Theorem 2.1, the risk function of any decision rule
is continuous in µ if the risk is finite. We now apply Theorem 4.3 to show
that the sample mean X̄ is admissible. Let Πj = N(0, j). Since RX̄(µ) =
σ2/n, rX̄(Πj) = σ2/n for any j. Hence, condition (a) in Theorem 4.3 is
satisfied. From Example 2.25, the Bayes estimator w.r.t. Πj is δj(X) =
nj

nj+σ2 X̄ (see formula (2.25)). Thus,

Rδj (µ) =
σ2nj2 + σ4µ2

(nj + σ2)2

and

r∗j (Πj) =

∫
Rδj (µ)dΠj =

σ2j

nj + σ2
.

For any Oµ0,η = {µ : |µ− µ0| < η},

Πj(Oµ0,η) = Φ

(
µ0 + η√

j

)
− Φ

(
µ0 − η√

j

)
=

2ηΦ′(ξj)√
j

for some ξj satisfying (µ0 − η)/
√
j ≤ ξj ≤ (µ0 + η)/

√
j, where Φ is the

standard normal c.d.f. and Φ′ is its derivative. Since Φ′(ξj) → Φ′(0) =
(2π)−1/2,

r
X̄

(Πj) − r∗j (Πj)

Πj(Oµ0,η)
=

σ4
√
j

2ηΦ′(ξj)n(nj + σ2)
→ 0

as j → ∞. Thus, condition (b) in Theorem 4.3 is satisfied and, hence, the
sample mean X̄ is admissible.

More results in admissibility can be found in §4.2 and §4.3.

The following result concerns the bias of a Bayes estimator.

Proposition 4.2. Let δ(X) be a Bayes estimator of ϑ = g(θ) under
the squared error loss. Then δ(X) is not unbiased unless the Bayes risk
r

δ
(Π) = 0.

Proof. Suppose that δ(X) is unbiased, i.e., E[δ(X)|θ] = g(θ). Condition-
ing on θ and using Proposition 1.10, we obtain that

E[g(θ)δ(X)] = E{g(θ)E[δ(X)|θ]} = E[g(θ)]2.

Since δ(X) = E[g(θ)|X ], conditioning on X and using Proposition 1.10, we
obtain that

E[g(θ)δ(X)] = E{δ(X)E[g(θ)|X ]} = E[δ(X)]2.

Then

r
δ
(Π) = E[δ(X) − g(θ)]2 = E[δ(X)]2 + E[g(θ)]2 − 2E[g(θ)δ(X)] = 0.
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Since r
δ
(Π) = 0 occurs usually in some trivial cases, a Bayes estimator

is typically not unbiased. Hence, Proposition 4.2 can be used to check
whether an estimator can be a Bayes estimator w.r.t. some prior under
the squared error loss. However, a generalized Bayes estimator may be
unbiased; see, for instance, Examples 4.3 and 4.7.

Bayes estimators are usually consistent and approximately unbiased. In
a particular problem, it is usually easy to check directly whether Bayes
estimators are consistent and approximately unbiased (Examples 4.7-4.9),
especially when Bayes estimators have explicit forms. Bayes estimators also
have some other good asymptotic properties, which are studied in §4.5.3.

Let us consider some examples.

Example 4.7. LetX = (X1, ..., Xn) andXi’s be i.i.d. from the exponential
distribution E(0, θ) with an unknown θ > 0. Let the prior be such that θ−1

has the gamma distribution Γ(α, γ) with known α > 0 and γ > 0. Then
the posterior of ω = θ−1 is the gamma distribution Γ(n+α, (nX̄+γ−1)−1)
(verify), where X̄ is the sample mean.

Consider first the estimation of θ = ω−1. The Bayes estimator of θ
under the squared error loss is

δ(X) =
(nX̄ + γ−1)n+α

Γ(n+ α)

∫ ∞

0

ωn+α−2e−(nX̄+γ−1)ωdω =
nX̄ + γ−1

n+ α− 1
.

The bias of δ(X) is

nθ + γ−1

n+ α− 1
− θ =

γ−1 − (α− 1)θ

n+ α− 1
= O

(
1

n

)
.

It is also easy to see that δ(X) is consistent. The UMVUE of θ is X̄.
Since Var(X̄) = θ2/n, r

X̄
(Π) > 0 for any Π and, hence, X̄ is not a Bayes

estimator. In this case, X̄ is the generalized Bayes estimator w.r.t. the
improper prior dΠ

dω = I(0,∞)(ω) and is a limit of Bayes estimators δ(X) as
α → 1 and γ → ∞ (exercise). The admissibility of δ(X) is considered in
Exercises 32 and 80.

Consider next the estimation of e−t/θ = e−tω (see Examples 2.26 and
3.3). The Bayes estimator under the squared error loss is

δt(X) =
(nX̄ + γ−1)n+α

Γ(n+ α)

∫ ∞

0

ωn+α−1e−(nX̄+γ−1+t)ωdω

=

(
1 +

t

nX̄ + γ−1

)−(n+α)

.

Again, this estimator is biased and it is easy to show that δt(X) is consistent
as n → ∞. In this case, the UMVUE given in Example 3.3 is neither a
Bayes estimator nor a limit of δt(X).



4.1. Bayes Decisions and Estimators 243

Example 4.8. Let X = (X1, ..., Xn) and Xi’s be i.i.d. from N(µ, σ2)
with unknown µ ∈ R and σ2 > 0. Let the prior for ω = (2σ2)−1 be the
gamma distribution Γ(α, γ) with known α and γ and let the prior for µ
be N(µ0, σ

2
0/ω) (conditional on ω). Then the posterior p.d.f. of (µ, ω) is

proportional to

ω(n+1)/2+α−1 exp
{
−
[
γ−1 + Y + n(X̄ − µ)2 + (µ−µ0)2

2σ2
0

]
ω
}
,

where Y =
∑n

i=1(Xi − X̄)2 and X̄ is the sample mean. Note that

n(X̄ − µ)2 + (µ−µ0)2

2σ2
0

=
(
n+ 1

2σ2
0

)
µ2 − 2

(
nX̄ + µ0

2σ2
0

)
µ+ nX̄2 +

µ2
0

2σ2
0
.

Hence, the posterior p.d.f. of (µ, ω) is proportional to

ω(n+1)/2+α−1 exp
{
−
[
γ−1 +W +

(
n+ 1

2σ2
0

)
(µ− ζ(X))2

]
ω
}
,

where

ζ(X) =
nX̄ + µ0

2σ2
0

n+ 1
2σ2

0

and W = Y + nX̄2 +
µ2

0

2σ2
0

−
(
n+

1

2σ2
0

)
[ζ(X)]2.

Thus, the posterior of ω is the gamma distribution Γ(n/2+α, (γ−1+W )−1)
and the posterior of µ (given ω and X) is N

(
ζ(X), [(2n+σ−2

0 )ω]−1
)
. Under

the squared error loss, the Bayes estimator of µ is ζ(X) and the Bayes
estimator of σ2 = (2ω)−1 is (γ−1+W )/(n+2α−2), provided that n+2α > 2.
Apparently, these Bayes estimators are biased but the biases are of the order
n−1; and they are consistent as n→ ∞.

To consider the last example, we need the following useful lemma whose
proof is similar to the proof of result (4.8).

Lemma 4.1. Suppose that X has a p.d.f. fθ(x) w.r.t. a σ-finite measure
ν. Suppose that θ = (θ1, θ2), θj ∈ Θj, and that the prior has a p.d.f.

π(θ) = πθ1|θ2(θ1)πθ2(θ2),

where πθ2(θ2) is a p.d.f. w.r.t. a σ-finite measure ν2 on Θ2 and for any
given θ2, πθ1|θ2(θ1) is a p.d.f. w.r.t. a σ-finite measure ν1 on Θ1. Suppose
further that if θ2 is given, the Bayes estimator of h(θ1) = g(θ1, θ2) under
the squared error loss is δ(X, θ2). Then the Bayes estimator of g(θ1, θ2)
under the squared error loss is δ(X) with

δ(x) =

∫

Θ2

δ(x, θ2)pθ2|x(θ2)dν2,

where pθ2|x(θ2) is the posterior p.d.f. of θ2 given X = x.



244 4. Estimation in Parametric Models

Example 4.9. Consider a linear model

Xij = βτZi + εij , j = 1, ..., ni, i = 1, ..., k,

where β ∈ Rp is unknown, Zi’s are known vectors, εij ’s are independent,
and εij is N(0, σ2

i ), j = 1, ..., ni, i = 1, ..., k. Let X be the sample vector
containing all Xij ’s. The parameter vector is then θ = (β, ω), where ω =
(ω1, ..., ωk) and ωi = (2σ2

i )
−1. Assume that the prior for θ has the Lebesgue

p.d.f.

c π(β)
k∏

i=1

ωαi e
−ωi/γ , (4.9)

where α > 0, γ > 0, and c > 0 are known constants and π(β) is a known
Lebesgue p.d.f. on Rp. The posterior p.d.f. of θ is then proportional to

h(X, θ) = π(β)

k∏

i=1

ω
ni/2+α
i e−[γ−1+vi(β)]ωi,

where vi(β) =
∑ni

j=1(Xij − βτZi)
2. If β is known, the Bayes estimator of

σ2
i under the squared error loss is

∫
1

2ωi

h(X, θ)∫
h(X, θ)dω

dω =
γ−1 + vi(β)

2α+ ni
.

By Lemma 4.1, the Bayes estimator of σ2
i is

σ̂2
i =

∫
γ−1 + vi(β)

2α+ ni
fβ|X(β)dβ, (4.10)

where

fβ|X(β) ∝
∫
h(X, θ)dω

∝ π(β)
k∏

i=1

∫
ω
α+ni/2
i e−[γ−1+vi(β)]ωidωi

∝ π(β)
k∏

i=1

[
γ−1 + vi(β)

]−(α+1+ni/2)
(4.11)

is the posterior p.d.f. of β. The Bayes estimator of lτβ for any l ∈ Rp is
then the posterior mean of lτβ w.r.t. the p.d.f. fβ|X(β).

In this problem, Bayes estimators do not have explicit forms. A nu-
merical method (such as one of those in §4.1.4) has to be used to evaluate
Bayes estimators (see Example 4.10).
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Let X̄i· and S2
i be the sample mean and variance of Xij , j = 1, ..., ni

(S2
i is defined to be 0 if ni = 1), and let σ2

0 = (2αγ)−1 (the prior mean of
σ2
i ). Then the Bayes estimator σ̂2

i in (4.10) can be written as

2α

2α+ ni
σ2

0 +
ni − 1

2α+ ni
S2
i +

ni
2α+ ni

∫
(X̄i· − βτZi)

2fβ|X(β)dβ. (4.12)

The Bayes estimator in (4.12) is a weighted average of prior information,
“within group” variation, and averaged squared “residuals”.

If ni → ∞, then the first term in (4.12) converges to 0 and the second
term in (4.12) is consistent and approximately unbiased for σ2

i . Hence,
the Bayes estimator σ̂2

i is consistent and approximately unbiased for σ2
i if

the mean of the last term in (4.12) tends to 0, which is true under some
conditions (see, e.g., Exercise 36). It is easy to see that σ̂2

i is consistent and
approximately unbiased for σ2

i w.r.t. the joint distribution of (X,θ), since
the mean of the last term in (4.12) w.r.t. the joint distribution of (X,θ) is
bounded by σ2

0/ni.

4.1.4 Markov chain Monte Carlo

As we discussed previously, Bayes actions or estimators have to be com-
puted numerically in many applications. Typically we need to compute an
integral of the form

Ep(g) =

∫

Θ

g(θ)p(θ)dν

with some function g, where p(θ) is a p.d.f. w.r.t. a σ-finite measure ν on
(Θ,BΘ) and Θ ⊂ Rk. For example, if g is an indicator function of A ∈ BΘ

and p(θ) is the posterior p.d.f. of θ given X = x, then Ep(g) is the posterior
probability of A; under the squared error loss, Ep(g) is the Bayes action
(4.4) if p(θ) is the posterior p.d.f.

There are many numerical methods for computing integrals Ep(g); see,
for example, §4.5.3 and Berger (1985, §4.9). In this section, we discuss
the Markov chain Monte Carlo (MCMC) methods, which are powerful nu-
merical methods not only for Bayesian computations, but also for general
statistical computing (see, e.g., §4.4.1).

We start with the simple Monte Carlo method, which can be viewed as a
special case of the MCMC. Suppose that we can generate i.i.d. θ(1), ..., θ(m)

from a p.d.f. h(θ) > 0 w.r.t. ν. By the SLLN (Theorem 1.13(ii)), asm→ ∞,

Êp(g) =
1

m

m∑

j=1

g(θ(j))p(θ(j))

h(θ(j))
→a.s.

∫

Θ

g(θ)p(θ)

h(θ)
h(θ)dν = Ep(g).

Hence Êp(g) can be used as a numerical approximation to Ep(g). The
process of generating θ(j) according to h is called importance sampling and
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h(θ) is called the importance function. More discussions on importance
sampling can be found, for example, in Berger (1985), Geweke (1989), Shao
(1989), and Tanner (1996). When p(θ) is intractable or complex, it is
often difficult to choose a function h that is simple enough for importance
sampling and results in a fast convergence of Êp(g) as well.

The simple Monte Carlo method, however, may not work well when k,
the dimension of Θ, is large. This is because, when k is large, the conver-
gence of Êp(g) requires a very large m; generating a random vector from
a k-dimensional distribution is usually expensive, if not impossible. More
sophisticated MCMC methods are different from the simple Monte Carlo
in two aspects: generating random vectors can be done using distributions
whose dimensions are much lower than k; and θ(1), ..., θ(m) are not inde-
pendent, but form a Markov chain.

Let {Y (t) : t = 0, 1, ...} be a Markov chain (§1.4.4) taking values in
Y ⊂ Rk. {Y (t)} is homogeneous if and only if

P (Y (t+1) ∈ A|Y (t)) = P (Y (1) ∈ A|Y (0))

for any t. For a homogeneous Markov chain {Y (t)}, define

P (y,A) = P (Y (1) ∈ A|Y (0) = y), y ∈ Y, A ∈ BY,

which is called the transition kernel of the Markov chain. Note that P (y, ·)
is a probability measure for every y ∈ Y; P (·, A) is a Borel function for every
A ∈ BY; and the distribution of a homogeneous Markov chain is determined
by P (y,A) and the distribution of Y (0) (initial distribution). MCMC ap-
proximates an integral of the form

∫
Y
g(y)p(y)dν by m−1

∑m
t=1 g(Y

(t)) with

a Markov chain {Y (t) : t = 0, 1, ...}. The basic justification of the MCMC
approximation is given in the following result.

Theorem 4.4. Let p(y) be a p.d.f. on Y w.r.t. a σ-finite measure ν and g be
a Borel function on Y with

∫
Y
|g(y)|p(y)dν <∞. Let {Y (t) : t = 0, 1, ...} be

a homogeneous Markov chain taking values on Y ⊂ Rk with the transition
kernel P (y,A). Then

1

m

m∑

t=1

g(Y (t)) →a.s.

∫

Y

g(y)p(y)dν (4.13)

and, as t→ ∞,

P t(y,A) = P (Y (t) ∈ A|Y (0) = y) →a.s.

∫

A

p(y)dν, (4.14)

provided that
(a) the Markov chain is aperiodic in the sense that there does not exist d ≥ 2
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nonempty disjoint events A0, ..., Ad−1 in BY such that for all i = 0, ..., d− 1
and all y ∈ Ai, P (y,Aj) = 1 for j = i+ 1 (mod d);
(b) the Markov chain is p-invariant in the sense that

∫
P (y,A)p(y)dν =∫

A
p(y)dν for all A ∈ BY;

(c) the Markov chain is p-irreducible in the sense that for any y ∈ Y and any
A with

∫
A p(y)dν > 0, there exists a positive integer t such that P t(y,A)

in (4.14) is positive; and
(d) the Markov chain is Harris recurrent in the sense that for any A with∫
A
p(y)dν > 0, P

(∑∞
t=1 IA(Y (t)) = ∞|Y (0) = y

)
= 1 for all y.

The proof of these results is beyond the scope of this book and, hence, is
omitted. It can be found, for example, in Nummelin (1984), Chan (1993),
and Tierney (1994). A homogeneous Markov chain satisfying conditions
(a)-(d) in Theorem 4.4 is called ergodic with equilibrium distribution p.
Result (4.13) means that the MCMC approximation is consistent and result
(4.14) indicates that p is the limiting p.d.f. of the Markov chain.

One of the key issues in MCMC is the choice of the kernel P (y,A). The
first requirement on P (y,A) is that conditions (a)-(d) in Theorem 4.4 be
satisfied. Condition (a) is usually easy to check for any given P (y,A). In the
following, we consider two popular MCMC methods satisfying conditions
(a)-(d).

Gibbs sampler

One way to construct a p-invariant homogeneous Markov chain is to use
conditioning. Suppose that Y has the p.d.f. p(y). Let Yi (or yi) be the ith
component of Y (or y) and let Y−i (or y−i) be the (k−1)-vector containing
all components of Y (or y) except Yi (or yi). Then

Pi(y−i, A) = P (Y ∈ A|Y−i = y−i)

is a transition kernel for any i. The MCMC method using this kernel is
called the single-site Gibbs sampler. Note that

∫
Pi(y−i, A)p(y)dν = E[P (Y ∈ A|Y−i)] = P (Y ∈ A) =

∫

A

p(y)dν

and, therefore, the chain with kernel Pi(y−i, A) is p-invariant. However,
this chain is not p-irreducible since Pi(y−i, ·) puts all its mass on the set
ψ−1
i (y−i), where ψi(y) = y−i. Gelfand and Smith (1990) considered a sys-

tematic scan Gibbs sampler whose kernel P (y,A) is a composite of k kernels
Pi(y−i, A), i = 1, ..., k. More precisely, the chain is defined as follows. Given

Y (t−1) = y(t−1), we generate y
(t)
1 from P1(y

(t−1)
2 , ..., y

(t−1)
k , · ),..., y(t)

j from

Pj(y
(t)
1 , ..., y

(t)
j−1, y

(t−1)
j+1 , ..., y

(t−1)
k , · ),..., y(t)

k from Pk(y
(t)
1 , ..., y

(t)
k−1, · ). It can
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be shown that this Markov chain is still p-invariant. We illustrate this with

the case of k = 2. Note that Y
(1)
1 is generated from P2(y

(0)
2 , ·), the con-

ditional distribution of Y given Y2 = y
(0)
2 . Hence (Y

(1)
1 , Y

(0)
2 ) has p.d.f. p.

Similarly, we can show that Y (1) = (Y
(1)
1 , Y

(1)
2 ) has p.d.f. p. Thus,

∫
P (y,A)p(y)dν =

∫
P (Y (1) ∈ A|Y (0) = y)p(y)dν

= E[P (Y (1) ∈ A|Y (0))]

= P (Y (1) ∈ A)

=

∫

A

p(y)dν.

This Markov chain is also p-irreducible and aperiodic if p(y) > 0 for all
y ∈ Y; see, for example, Chan (1993). Finally, if p(y) > 0 for all y ∈ Y,
then P (y,A) ≪ the distribution with p.d.f. p for all y and, by Corollary 1
of Tierney (1994), the Markov chain is Harris recurrent. Thus, Theorem
4.4 applies and (4.13) and (4.14) hold.

The previous Gibbs sampler can obviously be extended to the case where
yi’s are subvectors (of possibly different dimensions) of y.

Let us now return to Bayesian computation and consider the following
example.

Example 4.10. Consider Example 4.9. Under the given prior for θ =
(β, ω), it is difficult to generate random vectors directly from the posterior
p.d.f., given X = x (which does not have a familiar form). To apply a
Gibbs sampler with y = θ, y1 = β, and y2 = ω, we need to generate random
vectors from the posterior of β, given x and ω, and the posterior of ω, given
x and β. From (4.9) and (4.11), the posterior of ω = (ω1, ..., ωk), given x
and β, is a product of marginals of ωi’s that are the gamma distributions
Γ(α + 1 + ni/2, [γ

−1 + vi(β)]−1), i = 1, ..., k. Assume now that π(β) ≡ 1
(noninformative prior for β). It follows from (4.9) that the posterior p.d.f.
of β, given x and ω, is proportional to

k∏

i=1

e−ωivi(β) ∝ e−‖W 1/2Zβ−W 1/2X‖2

,

where W is the diagonal block matrix whose ith block on the diagonal
is ωiIni . Let n =

∑k
i=1 ni. Then, the posterior of W 1/2Zβ, given X

and ω, is Nn(W
1/2X, 2−1In) and the posterior of β, given X and ω, is

Np((Z
τWZ)−1ZτWX, 2−1(ZτWZ)−1) (ZτWZ is assumed of full rank for

simplicity), since β = [(ZτWZ)−1ZτW 1/2]W 1/2Zβ. Note that random
generation using these two posterior distributions is fairly easy.
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The Metropolis algorithm

A large class of MCMC methods are obtained using the Metropolis al-
gorithm (Metropolis et al., 1953). We introduce Hastings’ version of the
algorithm. Let Q(y,A) be a transition kernel of a homogeneous Markov
chain satisfying

Q(y,A) =

∫

A

q(y, z)dν(z)

for a measurable function q(y, z) ≥ 0 on Y×Y and a σ-finite measure ν on
(Y,BY). Without loss of generality, assume that

∫
Y
p(y)dν = 1 and that p

is not concentrated on a single point. Define

α(y, z) =

{
min

{
p(z)q(z,y)
p(y)q(y,z) , 1

}
p(y)q(y, z) > 0

1 p(y)q(y, z) = 0

and

p(y, z) =

{
q(y, z)α(y, z) y 6= z

0 y = z.

The Metropolis kernel P (y,A) is defined by

P (y,A) =

∫

A

p(y, z)dν(z) + r(y)διy(A), (4.15)

where r(y) = 1 −
∫
p(y, z)dν(z) and διy is the point mass at y defined in

(1.22). The corresponding Markov chain can be described as follows. If the
chain is currently at a point Y (t) = y, then it generates a candidate value
z for the next location Y (t+1) from Q(y, ·). With probability α(y, z), the
chain moves to Y (t+1) = z. Otherwise, the chain remains at Y (t+1) = y.

Note that this algorithm only depends on p(y) through p(y)/p(z). Thus,
it can be used when p(y) is known up to a normalizing constant, which often
occurs in Bayesian analysis.

We now show that a Markov chain with a Metropolis kernel P (y,A) is
p-invariant. First, by the definition of p(y, z) and α(y, z),

p(y)p(y, z) = p(z)p(z, y)

for any y and z. Then, for any A ∈ BY,
∫
P (y,A)p(y)dν =

∫ [∫

A

p(y, z)dν(z)

]
p(y)dν(y) +

∫
r(y)διy(A)p(y)dν(y)

=

∫

A

[∫
p(y, z)p(y)dν(y)

]
dν(z) +

∫

A

r(y)p(y)dν(y)

=

∫

A

[∫
p(z, y)p(z)dν(y)

]
dν(z) +

∫

A

r(y)p(y)dν(y)
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=

∫

A

[1 − r(z)]p(z)dν(z) +

∫

A

r(z)p(z)dν(z)

=

∫

A

p(z)dν(z).

If a Markov chain with a Metropolis kernel defined by (4.15) is p-
irreducible and

∫
r(y)>0

p(y)dν > 0, then, by the results of Nummelin (1984,

§2.4), the chain is aperiodic; by Corollary 2 of Tierney (1994), the chain is
Harris recurrent. Hence, to apply Theorem 4.4 to a Markov chain with a
Metropolis kernel, it suffices to show that the chain is p-irreducible.

Lemma 4.2. Suppose thatQ(y,A) is the transition kernel of a p-irreducible
Markov chain and that either q(y, z) > 0 for all y and z or q(y, z) = q(z, y)
for all y and z. Then the chain with the Metropolis kernel p(y,A) in (4.15)
is p-irreducible.
Proof. It can be shown (exercise) that if Q is any transition kernel of a
homogeneous Markov chain, then

Qt(y,A) =

∫

A

∫
· · ·
∫ t∏

j=1

q(zn−j+1, zn−j)dν(zn−j), (4.16)

where zn = y, y ∈ Y, and A ∈ BY. Let y ∈ Y, A ∈ BY with
∫
A
p(z)dν > 0,

and By = {z : α(y, z) = 1}. If
∫
A∩Bc

y
p(z)dν > 0, then

P (y,A) ≥
∫

A∩Bc
y

q(y, z)α(y, z)dν(z) =

∫

A∩Bc
y

q(z, y)p(z)

p(y)
dν(z) > 0,

which follows from either q(z, y) > 0 or q(z, y) = q(y, z) > 0 on Bcy. If∫
A∩Bc

y
p(z)dν = 0, then

∫
A∩By

p(z)dν > 0. From the irreducibility of

Q(y,A), there exists a t ≥ 1 such that Qt(y,A ∩ By) > 0. Then, by
(4.15) and (4.16),

P t(y,A) ≥ P t(y,A ∩By) ≥ Qt(y,A ∩By) > 0.

Two examples of q(y, z) given by Tierney (1994) are q(y, z) = f(z − y)
with a Lebesgue p.d.f. f on Rk, which corresponds to a random walk chain,
and q(y, z) = f(z) with a p.d.f. f , which corresponds to an independence
chain and is closely related to the importance sampling discussed earlier.

Although the MCMC methods have been used over the last 50 years,
the research on the theory of MCMC is still very active. Important top-
ics include the choice of the transition kernel for MCMC; the rate of the
convergence in (4.13); the choice of the Monte Carlo size m; and the esti-
mation of the errors due to Monte Carlo. See more results and discussions
in Tierney (1994), Basag et al. (1995), Tanner (1996), and the references
therein.
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4.2 Invariance

The concept of invariance is introduced in §2.3.2 (Definition 2.9). In this
section, we study the best invariant estimators and their properties in
one-parameter location families (§4.2.1), in one-parameter scale families
(§4.2.2), and in general location-scale families (§4.2.3). Note that invariant
estimators are also called equivariant estimators.

4.2.1 One-parameter location families

Assume that the sample X = (X1, ..., Xn) has a joint distribution Pµ with
a Lebesgue p.d.f.

f(x1 − µ, ..., xn − µ), (4.17)

where f is known and µ ∈ R is an unknown location parameter. The family
P = {Pµ : µ ∈ R} is called a one-parameter location family, a special case of
the general location-scale family described in Definition 2.3. It is invariant
under the location transformations gc(X) = (X1 + c,..., Xn + c), c ∈ R.

We consider the estimation of µ as a statistical decision problem with
action space A = R and loss function L(µ, a). It is natural to consider
the same transformation in the action space, i.e., if Xi is transformed to
Xi+c, then our action a is transformed to a+c. Consequently, the decision
problem is invariant under location transformation if and only if

L(µ, a) = L(µ+ c, a+ c) for all c ∈ R,

which is equivalent to
L(µ, a) = L(a− µ) (4.18)

for a Borel function L(·) on R.

According to Definition 2.9 (see also Example 2.24), an estimator T
(decision rule) of µ is location invariant if and only if

T (X1 + c, ..., Xn + c) = T (X1, ..., Xn) + c. (4.19)

Many estimators of µ, such as the sample mean and weighted average of
the order statistics, are location invariant. The following result provides a
characterization of location invariant estimators.

Proposition 4.3. Let T0 be a location invariant estimator of µ. Let
di = xi − xn, i = 1, ..., n − 1, and d = (d1, ..., dn−1). A necessary and
sufficient condition for an estimator T to be location invariant is that there
exists a Borel function u on Rn−1 (u ≡ a constant if n = 1) such that

T (x) = T0(x) − u(d) for all x ∈ Rn. (4.20)
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Proof. It is easy to see that T given by (4.20) satisfies (4.19) and, therefore,
is location invariant. Suppose that T is location invariant. Let ũ(x) =
T (x) − T0(x) for any x ∈ Rn. Then

ũ(x1 + c, ..., xn + c) = T (x1 + c, ..., xn + c) − T0(x1 + c, ..., xn + c)

= T (x1, ..., xn) − T0(x1, ..., xn)

for all c ∈ R and xi ∈ R. Putting c = −xn leads to

ũ(x1 − xn, ..., xn−1 − xn, 0) = T (x) − T0(x), x ∈ Rn.

The result follows with u(d1, ..., dn−1) = ũ(x1 − xn, ..., xn−1 − xn, 0).

Therefore, once we have a location invariant estimator T0 of µ, any
other location invariant estimator of µ can be constructed by taking the
difference between T0 and a Borel function of the ancillary statistic D =
(X1 −Xn, ..., Xn−1 −Xn).

The next result states an important property of location invariant esti-
mators.

Proposition 4.4. Let X be distributed with the p.d.f. given by (4.17) and
let T be a location invariant estimator of µ under the loss function given
by (4.18). If the bias, variance, and risk of T are well defined, then they
are all constant (do not depend on µ).
Proof. The result for the bias follows from

bT (µ) =

∫
T (x)f(x1 − µ, ..., xn − µ)dx− µ

=

∫
T (x1 + µ, ..., xn + µ)f(x)dx − µ

=

∫
[T (x) + µ]f(x)dx− µ

=

∫
T (x)f(x)dx.

The proof of the result for variance or risk is left as an exercise.

An important consequence of this result is that the problem of finding
the best location invariant estimator reduces to comparing constants in-
stead of risk functions. The following definition can be used not only for
location invariant estimators, but also for general invariant estimators.

Definition 4.2. Consider an invariant estimation problem in which all
invariant estimators have constant risks. An invariant estimator T is called
the minimum risk invariant estimator (MRIE) if and only if T has the
smallest risk among all invariant estimators.
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Theorem 4.5. Let X be distributed with the p.d.f. given by (4.17) and
consider the estimation of µ under the loss function given by (4.18). Sup-
pose that there is a location invariant estimator T0 of µ with finite risk.
Let D = (X1 −Xn, ..., Xn−1 −Xn).
(i) Assume that for each d there exists a u∗(d) that minimizes

h(d) = E0[L(T0(X) − u(d))|D = d]

over all functions u, where the expectation E0 is calculated under the as-
sumption that X has p.d.f. f(x1, ..., xn). Then an MRIE exists and is given
by

T∗(X) = T0(X) − u∗(D).

(ii) The function u∗ in (i) exists if L(t) is convex and not monotone; it is
unique if L is strictly convex.
(iii) If T0 and D are independent, then u∗ is a constant that minimizes
E0[L(T0(X)−u)]. If, in addition, the distribution of T0 is symmetric about
µ and L is convex and even, then u∗ = 0.
Proof. By Theorem 1.7 and Propositions 4.3 and 4.4,

RT (µ) = E0[h(D)],

where T (X) = T0(X)−u(D). This proves part (i). If L is (strictly) convex
and not monotone, then E0[L(T0(x)−a)|D = d] is (strictly) convex and not
monotone in a (exercise). Hence lim|a|→∞E0[L(T0(x) − a)|D = d] = ∞.
This proves part (ii). The proof of part (iii) is left as an exercise.

Theorem 4.6. Assume the conditions of Theorem 4.5 and that the loss is
the squared error loss.
(i) The unique MRIE of µ is

T∗(X) =

∫∞
−∞ tf(X1 − t, ..., Xn − t)dt∫∞
−∞ f(X1 − t, ..., Xn − t)dt

,

which is known as the Pitman estimator of µ.
(ii) The MRIE of µ is unbiased.
Proof. (i) Under the squared error loss,

u∗(d) = E0[T0(X)|D = d] (4.21)

(exercise). Let T0(X) = Xn (the nth observation). Then Xn is location
invariant. If there exists a location invariant estimator of µ with finite risk,
then E0(Xn|D = d) is finite a.s. P (exercise). By Proposition 1.8, when
µ = 0, the joint Lebesgue p.d.f. of (D,Xn) is f(d1 + xn, ..., dn−1 + xn, xn),
d = (d1, ..., dn−1). The conditional p.d.f. of Xn given D = d is then

f(d1 + xn, ..., dn−1 + xn, xn)∫∞
−∞ f(d1 + t, ..., dn−1 + t, t)dt
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(see (1.61)). By Proposition 1.9,

E0(Xn|D = d) =

∫∞
−∞ tf(d1 + t, ..., dn−1 + t, t)dt∫∞
−∞ f(d1 + t, ..., dn−1 + t, t)dt

=

∫∞
−∞ tf(x1 − xn + t, ..., xn−1 − xn + t, t)dt∫∞
−∞ f(x1 − xn + t, ..., xn−1 − xn + t, t)dt

= xn −
∫∞
−∞ uf(x1 − u, ..., xn − u)du∫∞
−∞ f(x1 − u, ..., xn − u)du

by letting u = xn−t. The result in (i) follows from T∗(X) = Xn−E(Xn|D)
(Theorem 4.5).
(ii) Let b be the constant bias of T∗ (Proposition 4.4). Then T1(X) =
T∗(X) − b is a location invariant estimator of µ and

RT1 = E[T∗(X) − b− µ]2 = Var(T∗) ≤ Var(T∗) + b2 = RT∗ .

Since T∗ is the MRIE, b = 0, i.e., T∗ is unbiased.

Theorem 4.6(ii) indicates that we only need to consider unbiased lo-
cation invariant estimators in order to find the MRIE, if the loss is the
squared error loss. In particular, a location invariant UMVUE is an MRIE.

Example 4.11. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown
µ ∈ R and a known σ2. Note that X̄ is location invariant. Since X̄ is the
UMVUE of µ (§2.1), it is the MRIE under the squared error loss. Since the
distribution of X̄ is symmetric about µ and X̄ is independent of D (Basu’s
theorem), it follows from Theorem 4.5(iii) that X̄ is an MRIE if L is convex
and even.

Example 4.12. Let X1, ..., Xn be i.i.d. from the exponential distribution
E(µ, θ), where θ is known and µ ∈ R is unknown. Since X(1) − θ/n is
location invariant and is the UMVUE of µ, it is the MRIE under the squared
error loss. Note that X(1) is independent of D (Basu’s theorem). By
Theorem 4.5(iii), an MRIE is of the form X(1) − u∗ with a constant u∗.
For the absolute error loss, X(1) − θ log 2/n is an MRIE (exercise).

Example 4.13. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(µ − 1

2 , µ + 1
2 ) with an unknown µ ∈ R. Consider the squared error loss.

Note that

f(x1 − µ, ..., xn − µ) =

{
1 µ− 1

2 ≤ x(1) ≤ x(n) ≤ µ+ 1
2

0 otherwise.
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By Theorem 4.6(i), the MRIE of µ is

T∗(X) =

∫ X(1)+
1
2

X(n)− 1
2

tdt

/∫ X(1)+
1
2

X(n)− 1
2

dt =
X(1) +X(n)

2
.

We end this section with a brief discussion of the admissibility of MRIE’s
in a one-parameter location problem. Under the squared error loss, the
MRIE (Pitman’s estimator) is admissible if there exists a location invariant
estimator T0 with E|T0(X)|3 < ∞ (Stein, 1959). Under a general loss
function, an MRIE is admissible when it is a unique MRIE (under some
other minor conditions). See Farrell (1964), Brown (1966), and Brown and
Fox (1974) for further discussions.

4.2.2 One-parameter scale families

Assume that the sample X = (X1, ..., Xn) has a joint distribution Pσ with
a Lebesgue p.d.f.

1
σn f

(
x1

σ , ...,
xn

σ

)
, (4.22)

where f is known and σ > 0 is an unknown scale parameter. The family
P = {Pσ : σ > 0} is called a one-parameter scale family and is a special
case of the general location-scale family in Definition 2.3. This family is
invariant under the scale transformations gr(X) = rX , r > 0.

We consider the estimation of σh with A = [0,∞), where h is a nonzero
constant. The transformation gr induces the transformation gr(σ

h) = rhσh.
Hence, a loss function L is scale invariant if and only if

L(rσ, rha) = L(σ, a) for all r > 0,

which is equivalent to
L(σ, a) = L

(
a
σh

)
(4.23)

for a Borel function L(·) on [0,∞). An example of a loss function satisfying
(4.23) is

L(σ, a) =

∣∣∣∣
a

σh
− 1

∣∣∣∣
p

=
|a− σh|p
σph

, (4.24)

where p ≥ 1 is a constant. However, the squared error loss does not satisfy
(4.23).

An estimator T of σh is scale invariant if and only if

T (rX1, ..., rXn) = rhT (X1, ..., Xn).

Examples of scale invariant estimators are the sample variance S2 (for h =

2), the sample standard deviation S =
√
S2 (for h = 1), the sample range
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X(n) −X(1) (for h = 1), and the sample mean deviation n−1
∑n

i=1 |Xi− X̄|
(for h = 1).

The following result is an analogue of Proposition 4.3. Its proof is left
as an exercise.

Proposition 4.5. Let T0 be a scale invariant estimator of σh. A necessary
and sufficient condition for an estimator T to be scale invariant is that there
exists a positive Borel function u on Rn such that

T (x) = T0(x)/u(z) for all x ∈ Rn,

where z = (z1, ..., zn), zi = xi/xn, i = 1, ..., n− 1, and zn = xn/|xn|.

The next result is similar to Proposition 4.4. It applies to any invariant
problem defined in Definition 2.9. We use the notation in Definition 2.9.

Theorem 4.7. Let P be a family invariant under G (a group of transfor-
mations). Suppose that the loss function is invariant and T is an invariant
decision rule. Then the risk function of T is a constant.

The proof is left as an exercise. Note that a special case of Theorem 4.7
is that any scale invariant estimator of σh has a constant risk and, therefore,
an MRIE (Definition 4.2) of σh usually exists. However, Proposition 4.4
is not a special case of Theorem 4.7, since the bias of a scale invariant
estimator may not be a constant in general. For example, the bias of the
sample standard deviation is a function of σ.

The next result and its proof are analogues of those of Theorem 4.5.

Theorem 4.8. Let X be distributed with the p.d.f. given by (4.22) and
consider the estimation of σh under the loss function given by (4.23). Sup-
pose that there is a scale invariant estimator T0 of σh with finite risk. Let
Z = (Z1, ..., Zn) with Zi = Xi/Xn, i = 1, ..., n− 1, and Zn = Xn/|Xn|.
(i) Assume that for each z there exists a u∗(z) that minimizes

E1[L(T0(X)/u(z))|Z = z]

over all positive Borel functions u, where the conditional expectation E1 is
calculated under the assumption that X has p.d.f. f(x1, ..., xn). Then, an
MRIE exists and is given by

T∗(X) = T0(X)/u∗(Z).

(ii) The function u∗ in (i) exists if γ(t) = L(et) is convex and not monotone;
it is unique if γ(t) is strictly convex.
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The loss function given by (4.24) satisfies the condition in Theorem
4.8(ii). A loss function corresponding to the squared error loss in this
problem is the loss function (4.24) with p = 2. We have the following result
similar to Theorem 4.6 (its proof is left as an exercise).

Corollary 4.1. Under the conditions of Theorem 4.8 and the loss function
(4.24) with p = 2, the unique MRIE of σh is

T∗(X) =
T0(X)E1[T0(X)|Z]

E1{[T0(X)]2|Z} =

∫∞
0
tn+h−1f(tX1, ..., tXn)dt∫∞

0
tn+2h−1f(tX1, ..., tXn)dt

,

which is known as the Pitman estimator of σh.

Example 4.14. Let X1, ..., Xn be i.i.d. from N(0, σ2) and consider the es-
timation of σ2. Then T0 =

∑n
i=1X

2
i is scale invariant. By Basu’s theorem,

T0 is independent of Z. Hence u∗ in Theorem 4.8 is a constant minimizing
E1[L(T0/u)] over u > 0. When the loss is given by (4.24) with p = 2, by
Corollary 4.1, the MRIE (Pitman’s estimator) is

T∗(X) =
T0(X)E1[T0(X)]

E1[T0(X)]2
=

1

n+ 2

n∑

i=1

X2
i ,

since T0 has the chi-square distribution χ2
n when σ = 1. Note that the

UMVUE of σ2 is T0/n, which is different from the MRIE.

Example 4.15. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(0, σ) and consider the estimation of σ. By Basu’s theorem, the scale in-
variant estimator X(n) is independent of Z. Hence u∗ in Theorem 4.8 is a
constant minimizing E1[L(X(n)/u)] over u > 0. When the loss is given by
(4.24) with p = 2, by Corollary 4.1, the MRIE (Pitman’s estimator) is

T∗(X) =
X(n)E1X(n)

E1X2
(n)

=
(n+ 2)X(n)

n+ 1
.

4.2.3 General location-scale families

Assume that X = (X1, ..., Xn) has a joint distribution Pθ with a Lebesgue
p.d.f.

1
σn f

(
x1−µ
σ , ..., xn−µ

σ

)
, (4.25)

where f is known, θ = (µ, σ) ∈ Θ, and Θ = R × (0,∞). The family
P = {Pθ : θ ∈ Θ} is a location-scale family defined by Definition 2.3 and
is invariant under the location-scale transformations of the form gc,r(X) =
(rX1 + c, ..., rXn + c), c ∈ R, r > 0, which induce similar transformations
on Θ: gc,r(θ) = (rµ + c, rσ), c ∈ R, r > 0.
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Consider the estimation of σh with a fixed h 6= 0 under the loss function
(4.23), which is invariant under the location-scale transformations gc,r. An
estimator T of σh is location-scale invariant if and only if

T (rX1 + c, ..., rXn + c) = rhT (X1, ..., Xn). (4.26)

By Theorem 4.7, any location-scale invariant T has a constant risk. Letting
r = 1 in (4.26), we obtain that

T (X1 + c, ..., Xn + c) = T (X1, ..., Xn)

for all c ∈ R. Therefore, T is a function of D = (D1, ..., Dn−1), Di =
Xi −Xn, i = 1, ..., n− 1. From (4.25), the joint Lebesgue p.d.f. of D is

1
σn−1

∫∞
−∞ f

(
d1
σ + t, ..., dn−1

σ + t, t
)
dt, (4.27)

which is of the form (4.22) with n replaced by n−1 and xi’s replaced by di’s.
It follows from Theorem 4.8 that if T0(D) is any finite risk scale invariant
estimator of σh based on D, then an MRIE of σh is

T∗(D) = T0(D)/u∗(W ), (4.28)

where W = (W1, ...,Wn−1), Wi = Di/Dn−1, i = 1, ..., n − 2, Wn−1 =
Dn−1/|Dn−1|, u∗(w) is any number minimizing Ẽ1[L(T0(D)/u(w))|W = w]
over all positive Borel functions u, and Ẽ1 is the conditional expectation
calculated under the assumption that D has p.d.f. (4.27) with σ = 1.

Consider next the estimation of µ. Under the location-scale transfor-
mation gc,r, it can be shown (exercise) that a loss function is invariant if
and only if it is of the form

L
(
a−µ
σ

)
. (4.29)

An estimator T of µ is location-scale invariant if and only if

T (rX1 + c, ..., rXn + c) = rT (X1, ..., Xn) + c.

Again, by Theorem 4.7, the risk of an invariant T is a constant.

The following result is an analogue of Proposition 4.3 or 4.5.

Proposition 4.6. Let T0 be any estimator of µ invariant under location-
scale transformation and let T1 be any estimator of σ satisfying (4.26) with
h = 1 and T1 > 0. Then an estimator T of µ is location-scale invariant if
and only if there is a Borel function u on Rn−1 such that

T (X) = T0(X) − u(W )T1(X),

where W is given in (4.28).
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The proofs of Proposition 4.6 and the next result, an analogue of The-
orem 4.5 or 4.8, are left as exercises.

Theorem 4.9. Let X be distributed with p.d.f. given by (4.25) and con-
sider the estimation of µ under the loss function given by (4.29). Suppose
that there is a location-scale invariant estimator T0 of µ with finite risk.
Let T1 be given in Proposition 4.6. Then an MRIE of µ is

T∗(X) = T0(X) − u∗(W )T1(X),

where W is given in (4.28), u∗(w) is any number minimizing

E0,1[L(T0(X) − u(w)T1(X))|W = w]

over all Borel functions u, and E0,1 is computed under the assumption that
X has the p.d.f. (4.25) with µ = 0 and σ = 1.

Corollary 4.2. Under the conditions of Theorem 4.9 and the loss function
(a− µ)2/σ2, u∗(w) in Theorem 4.9 is equal to

u∗(w) =
E0,1[T0(X)T1(X)|W = w]

E0,1{[T1(X)]2|W = w} .

Example 4.16. Let X1, ..., Xn be i.i.d. from N(µ, σ2), where µ ∈ R and
σ2 > 0 are unknown. Consider first the estimation of σ2 under loss function
(4.23). The sample variance S2 is location-scale invariant and is indepen-
dent of W in (4.28) (Basu’s theorem). Thus, by (4.28), S2/u∗ is an MRIE,
where u∗ is a constant minimizing Ẽ1[L(S2/u)] over all u > 0. If the loss
function is given by (4.24) with p = 2, then by Corollary 4.1, the MRIE of
σ2 is

T∗(X) =
S2Ẽ1(S

2)

Ẽ1(S2)2
=

S2

(n2 − 1)/(n− 1)2
=

1

n+ 1

n∑

i=1

(Xi − X̄)2,

since (n− 1)S2 has a chi-square distribution χ2
n−1 when σ = 1.

Next, consider the estimation of µ under the loss function (4.29). Since
X̄ is a location-scale invariant estimator of µ and is independent of W in
(4.28) (Basu’s theorem), by Theorem 4.9, an MRIE of µ is

T∗(X) = X̄ − u∗S
2,

where u∗ is a constant. If L in (4.29) is convex and even, then u∗ = 0 (see
Theorem 4.5(iii)) and, hence, X̄ is an MRIE of µ.

Example 4.17. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(µ− 1

2σ, µ+ 1
2σ), where µ ∈ R and σ > 0 are unknown. Consider first the
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estimation of σ under the loss function (4.24) with p = 2. The sample range
X(n) −X(1) is a location-scale invariant estimator of σ and is independent
of W in (4.28) (Basu’s theorem). By (4.28) and Corollary 4.1, the MRIE
of σ is

T∗(X) =
(X(n) −X(1))Ẽ1(X(n) −X(1))

Ẽ1(X(n) −X(1))2
=

(n+ 2)(X(n) −X(1))

n
.

Consider now the estimation of µ under the loss function (4.29). Since
(X(1) + X(n))/2 is a location-scale invariant estimator of µ and is inde-
pendent of W in (4.28) (Basu’s theorem), by Theorem 4.9, an MRIE of µ
is

T∗(X) =
X(1) +X(n)

2
− u∗(X(n) −X(1)),

where u∗ is a constant. If L in (4.29) is convex and even, then u∗ = 0 (see
Theorem 4.5(iii)) and, hence, (X(1) +X(n))/2 is an MRIE of µ.

Finding MRIE’s in various location-scale families under transformations
AX+c, where A ∈ T and c ∈ C with given T and C, can be done in a similar
way. We only provide some brief discussions for two important cases. The
first case is the two-sample location-scale problem in which two samples,
X = (X1, ..., Xm) and Y = (Y1, ..., Yn), are taken from a distribution with
Lebesgue p.d.f.

1
σm

x σ
n
y
f
(
x1−µx

σx
, ..., xm−µx

σx
,
y1−µy

σy
, ...,

yn−µy

σy

)
, (4.30)

where f is known, µx ∈ R and µy ∈ R are unknown location parameters,
and σx > 0 and σy > 0 are unknown scale parameters. The family of
distributions is invariant under the transformations

g(X,Y ) = (rX1 + c, ..., rXm + c, r′Y1 + c′, ..., r′Yn + c′), (4.31)

where r > 0, r′ > 0, c ∈ R, and c′ ∈ R. The parameters to be estimated
in this problem are usually ∆ = µy − µx and η = (σy/σx)

h with a fixed
h 6= 0. If X and Y are from two populations, ∆ and η are measures of the
difference between the two populations. For estimating η, results similar to
those in this section can be established. For estimating ∆, MRIE’s can be
obtained under some conditions. See Exercises 63-65.

The second case is the general linear model (3.25) under the assumption
that εi’s are i.i.d. with the p.d.f. σ−1f(x/σ), where f is a known Lebesgue
p.d.f. The family of populations is invariant under the transformations

g(X) = rX + Zc, r ∈ (0,∞), c ∈ Rp (4.32)
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(exercise). The estimation of lτβ with l ∈ R(Z) is invariant under the

loss function L
(
a−lτβ
σ

)
and the LSE lτ β̂ is an invariant estimator of lτβ

(exercise). When f is normal, the following result can be established using
an argument similar to that in Example 4.16.

Theorem 4.10. Consider model (3.25) with assumption A1.

(i) Under transformations (4.32) and the loss function L
(
a−lτβ
σ

)
, where L

is convex and even, the LSE lτ β̂ is an MRIE of lτβ for any l ∈ R(Z).
(ii) Under transformations (4.32) and the loss function (a − σ2)2/σ4, the
MRIE of σ2 is SSR/(n− r+ 2), where SSR is given by (3.35) and r is the
rank of Z.

MRIE’s in a parametric family with a multi-dimensional θ are often
inadmissible. See Lehmann (1983, p. 285) for more discussions.

4.3 Minimaxity and Admissibility

Consider the estimation of a real-valued ϑ = g(θ) based on a sampleX from
Pθ, θ ∈ Θ, under a given loss function. A minimax estimator minimizes the
maximum risk supθ∈ΘRT (θ) over all estimators T (see §2.3.2).

A unique minimax estimator is admissible, since any estimator better
than a minimax estimator is also minimax. This indicates that we should
consider minimaxity and admissibility together. The situation is different
for a UMVUE (or an MRIE), since if a UMVUE (or an MRIE) is inadmis-
sible, it is dominated by an estimator that is not unbiased (or invariant).

4.3.1 Estimators with constant risks

By minimizing the maximum risk, a minimax estimator tries to do as well
as possible in the worst case. Such an estimator can be very unsatisfactory.
However, if a minimax estimator has some other good properties (e.g., it is
a Bayes estimator), then it is often a reasonable estimator. Here we study
when estimators having constant risks (e.g., MRIE’s) are minimax.

Theorem 4.11. Let Π be a proper prior on Θ and δ be a Bayes estimator
of ϑ w.r.t. Π. Let ΘΠ = {θ : Rδ(θ) = supθ∈ΘRδ(θ)}. If Π(ΘΠ) = 1, then δ
is minimax. If, in addition, δ is the unique Bayes estimator w.r.t. Π, then
it is the unique minimax estimator.
Proof. Let T be any other estimator of ϑ. Then

sup
θ∈Θ

RT (θ) ≥
∫

ΘΠ

RT (θ)dΠ ≥
∫

ΘΠ

Rδ(θ)dΠ = sup
θ∈Θ

Rδ(θ).
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If δ is the unique Bayes estimator, then the second inequality in the previous
expression should be replaced by > and, therefore, δ is the unique minimax
estimator.

The condition of Theorem 4.11 essentially means that δ has a constant
risk. Thus, a Bayes estimator having constant risk is minimax.

Example 4.18. Let X1, ..., Xn be i.i.d. binary random variables with
P (X1 = 1) = p ∈ (0, 1). Consider the estimation of p under the squared er-
ror loss. The UMVUE X̄ has risk p(1−p)/n which is not constant. In fact,
X̄ is not minimax (Exercise 67). To find a minimax estimator by applying
Theorem 4.11, we consider the Bayes estimator w.r.t. the beta distribution
B(α, β) with known α and β (Exercise 1):

δ(X) = (α + nX̄)
/
(α+ β + n).

A straightforward calculation shows that

Rδ(p) = [np(1 − p) + (α− αp− βp)2]
/
(α+ β + n)2.

To apply Theorem 4.11, we need to find values of α > 0 and β > 0 such
that Rδ(p) is constant. It can be shown that Rδ(p) is constant if and only
if α = β =

√
n/2, which leads to the unique minimax estimator

T (X) = (nX̄ +
√
n/2)

/
(n+

√
n).

The risk of T is RT = 1/[4(1 +
√
n)2].

Note that T is a Bayes estimator and has some good properties. Com-
paring the risk of T with that of X̄, we find that T has smaller risk if and
only if

p ∈
(

1
2 − 1

2

√
1 − n

(1+
√
n)2

, 1
2 + 1

2

√
1 − n

(1+
√
n)2

)
. (4.33)

Thus, for a small n, T is better (and can be much better) than X̄ for most
of the range of p (Figure 4.1). When n→ ∞, the interval in (4.33) shrinks
toward 1

2 . Hence, for a large (and even moderate) n, X̄ is better than T
for most of the range of p (Figure 4.1). The limit of the asymptotic relative
efficiency of T w.r.t. X̄ is 4p(1 − p), which is always smaller than 1 when
p 6= 1

2 and equals 1 when p = 1
2 .

The minimax estimator depends strongly on the loss function. To see
this, let us consider the loss function L(p, a) = (a−p)2/[p(1−p)]. Under this
loss function, X̄ has constant risk and is the unique Bayes estimator w.r.t.
the uniform prior on (0, 1). By Theorem 4.11, X̄ is the unique minimax
estimator. On the other hand, the risk of T is equal to 1/[4(1+

√
n)2p(1−p)],

which is unbounded.
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Figure 4.1: mse’s of X̄ (curve) and T (X) (straight line) in Example 4.18

In many cases a constant risk estimator is not a Bayes estimator (e.g.,
an unbiased estimator under the squared error loss), but a limit of Bayes
estimators w.r.t. a sequence of priors. Then the following result may be
used to find a minimax estimator.

Theorem 4.12. Let Πj , j = 1, 2, ..., be a sequence of priors and rj be the
Bayes risk of a Bayes estimator of ϑ w.r.t. Πj . Let T be a constant risk
estimator of ϑ. If lim infj rj ≥ RT , then T is minimax.

The proof of this theorem is similar to that of Theorem 4.11. Although
Theorem 4.12 is more general than Theorem 4.11 in finding minimax esti-
mators, it does not provide uniqueness of the minimax estimator even when
there is a unique Bayes estimator w.r.t. each Πj .

In Example 2.25, we actually applied the result in Theorem 4.12 to show
the minimaxity of X̄ as an estimator of µ = EX1 when X1, ..., Xn are i.i.d.
from a normal distribution with a known σ2 = Var(X1), under the squared
error loss. To discuss the minimaxity of X̄ in the case where σ2 is unknown,
we need the following lemma.
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Lemma 4.3. Let Θ0 be a subset of Θ and T be a minimax estimator of ϑ
when Θ0 is the parameter space. Then T is a minimax estimator if

sup
θ∈Θ

RT (θ) = sup
θ∈Θ0

RT (θ).

Proof. If there is an estimator T0 with supθ∈ΘRT0(θ) < supθ∈ΘRT (θ),
then

sup
θ∈Θ0

RT0(θ) ≤ sup
θ∈Θ

RT0(θ) < sup
θ∈Θ

RT (θ) = sup
θ∈Θ0

RT (θ),

which contradicts the minimaxity of T when Θ0 is the parameter space.
Hence, T is minimax when Θ is the parameter space.

Example 4.19. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown θ =
(µ, σ2). Consider the estimation of µ under the squared error loss. Suppose
first that Θ = R× (0, c] with a constant c > 0. Let Θ0 = R× {c}. From
Example 2.25, X̄ is a minimax estimator of µ when the parameter space
is Θ0. An application of Lemma 4.3 shows that X̄ is also minimax when
the parameter space is Θ. Although σ2 is assumed to be bounded by c, the
minimax estimator X̄ does not depend on c.

Consider next the case where Θ = R × (0,∞), i.e., σ2 is unbounded.
Let T be any estimator of µ. For any fixed σ2,

σ2

n
≤ sup

µ∈R
RT (θ),

since σ2/n is the risk of X̄ that is minimax when σ2 is known (Example
2.25). Letting σ2 → ∞, we obtain that supθ RT (θ) = ∞ for any estimator
T . Thus, minimaxity is meaningless (any estimator is minimax).

Theorem 4.13. Suppose that T as an estimator of ϑ has constant risk and
is admissible. Then T is minimax. If the loss function is strictly convex,
then T is the unique minimax estimator.
Proof. By the admissibility of T , if there is another estimator T0 with
supθ RT0(θ) ≤ RT , then RT0(θ) = RT for all θ. This proves that T is
minimax. If the loss function is strictly convex and T0 is another minimax
estimator, then

R(T+T0)/2(θ) < (RT0 +RT )/2 = RT

for all θ and, therefore, T is inadmissible. This shows that T is unique if
the loss is strictly convex.

Combined with Theorem 4.7, Theorem 4.13 tells us that if an MRIE is
admissible, then it is minimax. From the discussion at the end of §4.2.1,
MRIE’s in one-parameter location families (such as Pitman’s estimators)
are usually minimax.
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4.3.2 Results in one-parameter exponential families

The following result provides a sufficient condition for the admissibility of
a class of estimators when the population Pθ is in a one-parameter expo-
nential family. Using this result and Theorem 4.13, we can obtain a class
of minimax estimators. The proof of this result is an application of the
information inequality introduced in §3.1.3.

Theorem 4.14. Suppose that X has the p.d.f. c(θ)eθT (x) w.r.t. a σ-finite
measure ν, where T (x) is real-valued and θ ∈ (θ−, θ+) ⊂ R. Consider the
estimation of ϑ = E[T (X)] under the squared error loss. Let λ ≥ 0 and γ
be known constants and let Tλ,γ(X) = (T + γλ)/(1 + λ). Then a sufficient
condition for the admissibility of Tλ,γ is that

∫ θ+

θ0

e−γλθ

[c(θ)]λ
dθ =

∫ θ0

θ−

e−γλθ

[c(θ)]λ
dθ = ∞, (4.34)

where θ0 ∈ (θ−, θ+).
Proof. From Theorem 2.1, ϑ = E[T (X)] = −c′(θ)/c(θ) and dϑ

dθ = Var(T )=
I(θ), the Fisher information defined in (3.5). Suppose that there is an
estimator δ of ϑ such that for all θ,

Rδ(θ) ≤ RTλ,γ
(θ) = [I(θ) + λ2(ϑ− γ)2]/(1 + λ)2.

Let bδ(θ) be the bias of δ. From the information inequality (3.6),

Rδ(θ) ≥ [bδ(θ)]
2 + [I(θ) + b′δ(θ)]

2/I(θ).

Let h(θ) = bδ(θ) − λ(γ − ϑ)/(1 + λ). Then

[h(θ)]2 − 2λh(θ)(ϑ− γ) + 2h′(θ)

1 + λ
+

[h′(θ)]2

I(θ)
≤ 0,

which implies

[h(θ)]2 − 2λh(θ)(ϑ − γ) + 2h′(θ)

1 + λ
≤ 0. (4.35)

Let a(θ) = h(θ)[c(θ)]λeγλθ. Differentiation of a(θ) reduces (4.35) to

[a(θ)]2e−γλθ

[c(θ)]λ
+

2a′(θ)

1 + λ
≤ 0. (4.36)

Suppose that a(θ0) < 0 for some θ0 ∈ (θ−, θ+). From (4.36), a′(θ) ≤ 0 for
all θ. Hence a(θ) < 0 for all θ ≥ θ0 and, for θ > θ0, (4.36) can be written
as

d

dθ

[
1

a(θ)

]
≥ (1 + λ)e−γλθ

2[c(θ)]λ
.
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Integrating both sides from θ0 to θ gives

1 + λ

2

∫ θ

θ0

e−γλθ

[c(θ)]λ
dθ ≤ 1

a(θ)
− 1

a(θ0)
≤ − 1

a(θ0)
.

Letting θ → θ+, the left-hand side of the previous expression diverges to ∞
by condition (4.34), which is impossible. This shows that a(θ) ≥ 0 for all θ.
Similarly, we can show that a(θ) ≤ 0 for all θ. Thus, a(θ) = 0 for all θ. This
means that h(θ) = 0 for all θ and b′δ(θ) = −λϑ′/(1 + λ) = −λI(θ)/(1 + λ),
which implies Rδ(θ) ≡ RTλ,γ

(θ). This proves the admissibility of Tλ,γ .

The reason why Tλ,γ is considered is that it is often a Bayes estimator
w.r.t. some prior; see, for example, Examples 2.25, 4.1, 4.7, and 4.8. To
find minimax estimators, we may use the following result.

Corollary 4.3. Assume that X has the p.d.f. as described in Theorem
4.14 with θ− = −∞ and θ+ = ∞.
(i) As an estimator of ϑ = E(T ), T (X) is admissible under the squared
error loss and the loss (a− ϑ)2/Var(T ).
(ii) T is the unique minimax estimator of ϑ under the loss (a−ϑ)2/Var(T ).
Proof. (i) With λ = 0, condition (4.34) is clearly satisfied. Hence, Theorem
4.14 applies under the squared error loss. The admissibility of T under the
loss (a − ϑ)2/Var(T ) follows from the fact that T is admissible under the
squared error loss and Var(T ) 6= 0.
(ii) This is a consequence of part (i) and Theorem 4.13.

Example 4.20. Let X1, ..., Xn be i.i.d. from N(0, σ2) with an unknown
σ2 > 0. Let Y =

∑n
i=1X

2
i . From Example 4.14, Y/(n+2) is the MRIE of σ2

and has constant risk under the loss (a− σ2)2/σ4. We now apply Theorem
4.14 to show that Y/(n+2) is admissible. Note that the joint p.d.f. of Xi’s
is of the form c(θ)eθT (x) with θ = −n/(4σ2), c(θ) = (−2θ/n)n/2, T (X) =
2Y/n, θ− = −∞, and θ+ = 0. By Theorem 4.14, Tλ,γ = (T + γλ)/(1 + λ)
is admissible under the squared error loss if

∫ −c

−∞
e−γλθ

(−2θ

n

)−nλ/2
dθ =

∫ c

0

eγλθθ−nλ/2dθ = ∞

for some c > 0. This means that Tλ,γ is admissible if γ = 0 and λ = 2/n, or
if γ > 0 and λ ≥ 2/n. In particular, 2Y/(n+2) is admissible for estimating
E(T ) = 2E(Y )/n = 2σ2, under the squared error loss. It is easy to see that
Y/(n + 2) is then an admissible estimator of σ2 under the squared error
loss and the loss (a− σ2)2/σ4. Hence Y/(n+ 2) is minimax under the loss
(a− σ2)2/σ4.

Note that we cannot apply Corollary 4.3 directly since θ+ = 0.
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Example 4.21. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ)
with an unknown θ > 0. The joint p.d.f. of Xi’s w.r.t. the counting measure
is (x1! · · ·xn!)−1e−nθenx̄ log θ. For η = n log θ, the conditions of Corollary
4.3 are satisfied with T (X) = X̄ . Since E(T ) = θ and Var(T ) = θ/n,
by Corollary 4.3, X̄ is the unique minimax estimator of θ under the loss
function (a− θ)2/θ.

4.3.3 Simultaneous estimation and shrinkage estimators

In this chapter (and most of Chapter 3) we have focused on the estimation
of a real-valued ϑ. The problem of estimating a vector-valued ϑ under the
decision theory approach is called simultaneous estimation. Many results
for the case of a real-valued ϑ can be extended to simultaneous estimation
in a straightforward manner.

Let ϑ be a p-vector of parameters (functions of θ) with range Θ̃. A
vector-valued estimator T (X) can be viewed as a decision rule taking values
in the action space A = Θ̃. Let L(θ, a) be a given nonnegative loss function
on Θ × A. A natural generalization of the squared error loss is

L(θ, a) = ‖a− ϑ‖2 =

p∑

i=1

(ai − ϑi)
2, (4.37)

where ai and ϑi are the ith components of a and ϑ, respectively.

A vector-valued estimator T is called unbiased if and only if E(T ) = ϑ
for all θ ∈ Θ. If there is an unbiased estimator of ϑ, then ϑ is called
estimable. It can be seen that the result in Theorem 3.1 extends to the
case of vector-valued ϑ with any L strictly convex in a. If the loss function
is given by (4.37) and Ti is a UMVUE of ϑi for each i, then T = (T1, ..., Tp)
is a UMVUE of ϑ. If there is a sufficient and complete statistic U(X) for
θ, then by Theorem 2.5 (Rao-Blackwell theorem), T must be a function of
U(X) and is the unique best unbiased estimator of ϑ.

Example 4.22. Consider the general linear model (3.25) with assumption
A1 and a full rank Z. Let ϑ = β. An unbiased estimator of β is then the
LSE β̂. From the proof of Theorem 3.7, β̂ is a function of the sufficient and
complete statistic for θ = (β, σ2). Hence, β̂ is the unique best unbiased

estimator of ϑ under any strictly convex loss function. In particular, β̂ is
the UMVUE of β under the loss function (4.37).

Next, we consider Bayes estimators of ϑ, which is still defined to be
Bayes actions considered as functions of X . Under the loss function (4.37),
the Bayes estimator is still given by (4.4) with vector-valued g(θ) = ϑ.
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Example 4.23. Let X = (X0, X1, ..., Xk) have the multinomial dis-
tribution given in Example 2.7. Consider the estimation of the vector
θ = (p0, p1, ..., pk) under the loss function (4.37), and the Dirichlet prior
for θ that has the Lebesgue p.d.f.

Γ(α0 + · · · + αk)

Γ(α0) · · ·Γ(αk)
pα0−1
0 · · · pαk−1

k IA(θ), (4.38)

where αj ’s are known positive constants and A = {θ : 0 ≤ pj ,
∑k

j=0 pj = 1}.
It turns out that the Dirichlet prior is conjugate so that the posterior of θ
given X = x is also a Dirichlet distribution having the p.d.f. given by (4.38)
with αj replaced by αj + xj , j = 0, 1, ..., k. Thus, the Bayes estimator of θ
is δ = (δ0, δ1, ..., δk) with

δj(X) =
αj +Xj

α0 + α1 + · · · + αk + n
, j = 0, 1, ..., k.

After a suitable class of transformations is defined, the results in §4.2
for invariant estimators and MRIE’s are still valid. This is illustrated by
the following example.

Example 4.24. Let X be a sample with the Lebesgue p.d.f. f(x − θ),
where f is a known Lebesgue p.d.f. on Rp with a finite second moment and
θ ∈ Rp is an unknown parameter. Consider the estimation of θ under the
loss function (4.37). This problem is invariant under the location transfor-
mations g(X) = X + c, where c ∈ Rp. Invariant estimators of θ are of the
form X + l, l ∈ Rp. It is easy to show that any invariant estimator has
constant bias and risk (a generalization of Proposition 4.4) and the MRIE
of θ is the unbiased invariant estimator. In particular, if f is the p.d.f. of
Np(0, Ip), then the MRIE is X .

The definition of minimax estimators applies without changes.

Example 4.25. Let X be a sample from Np(θ, Ip) with an unknown
θ ∈ Rp. Consider the estimation of θ under the loss function (4.37). A
modification of the proof of Theorem 4.12 with independent priors for θi’s
shows that X is a minimax estimator of θ (exercise).

Example 4.26. Consider Example 4.23. If we choose α0 = · · · = αk =√
n/(k + 1), then the Bayes estimator of θ in Example 4.23 has constant

risk. Using the same argument in the proof of Theorem 4.11, we can show
that this Bayes estimator is minimax.

The previous results for simultaneous estimation are fairly straightfor-
ward generalizations of those for the case of a real-valued ϑ. Results for
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admissibility in simultaneous estimation, however, are quite different. A
surprising result, due to Stein (1956), is that in estimating the vector mean
θ = EX of a normally distributed p-vector X (Example 4.25), X is in-
admissible under the loss function (4.37) when p ≥ 3, although X is the
UMVUE, MRIE (Example 4.24), and minimax estimator (Example 4.25).
Since any estimator better than a minimax estimator is also minimax, there
exist many (in fact, infinitely many) minimax estimators in Example 4.25
when p ≥ 3, which is different from the case of p = 1 in which X is the
unique admissible minimax estimator (Example 4.6 and Theorem 4.13).

We start with the simple case where X is from Np(θ, Ip) with an un-
known θ ∈ Rp. James and Stein (1961) proposed the following class of
estimators of ϑ = θ having smaller risks than X when the loss is given by
(4.37) and p ≥ 3:

δc = X − p− 2

‖X − c‖2
(X − c), (4.39)

where c ∈ Rp is fixed. The choice of c is discussed next and at the end of
this section.

Before we prove that δc in (4.39) is better than X , we try to motivate
δc from two viewpoints. First, suppose that it were thought a priori likely,
though not certain, that θ = c. Then we might first test a hypothesis
H0 : θ = c and estimate θ by c if H0 is accepted and by X otherwise. The
best rejection region has the form ‖X − c‖2 > t for some constant t > 0
(see Chapter 6) so that we might estimate θ by

I(t,∞)(‖X − c‖2)X + [1 − I(t,∞)(‖X − c‖2)]c.

It can be seen that δc in (4.39) is a smoothed version of this estimator,
since

δc = ψ(‖X − c‖2)X + [1 − ψ(‖X − c‖2)]c (4.40)

for some function ψ. Any estimator having the form of the right-hand side
of (4.40) shrinks the observations toward a given point c and, therefore, is
called a shrinkage estimator.

Next, δc in (4.40) can be viewed as an empirical Bayes estimator (§4.1.2).
In view of (2.25) in Example 2.25, a Bayes estimator of θ is of the form

δ = (1 −B)X +Bc,

where c is the prior mean of θ and B involves prior variances. If 1 − B is
“estimated” by ψ(‖X − c‖2), then δc is an empirical Bayes estimator.

Theorem 4.15. Suppose that X is from Np(θ, Ip) with p ≥ 3. Then,
under the loss function (4.37), the risks of the following estimators of θ,

δc,r = X − r(p− 2)

‖X − c‖2
(X − c), (4.41)
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are given by

Rδc,r (θ) = p− (2r − r2)(p− 2)2E(‖X − c‖−2), (4.42)

where c ∈ Rp and r ∈ R are known.
Proof. Let Z = X − c. Then

Rδc,r (θ) = E‖δc,r − E(X)‖2 = E

∥∥∥∥
[
1 − r(p− 2)

‖Z‖2

]
Z − E(Z)

∥∥∥∥
2

.

Hence, we only need to show the case of c = 0. Let h(θ) = Rδ0,r (θ), g(θ) be

the right-hand side of (4.42) with c = 0, and πα(θ) = (2πα)−p/2e−‖θ‖2/(2α),
which is the p.d.f. of Np(0, αIp). Note that the distribution of X can be
viewed as the conditional distribution of X given θ = θ, where θ has the
Lebesgue p.d.f. πα(θ). Then

∫

Rp

g(θ)πα(θ)dθ = p− (2r − r2)(p− 2)2E[E(‖X‖−2|θ)]

= p− (2r − r2)(p− 2)2E(‖X‖−2)

= p− (2r − r2)(p− 2)/(α+ 1),

where the expectation in the second line of the previous expression is w.r.t.
the joint distribution of (X,θ) and the last equality follows from the fact
that the marginal distribution ofX is Np(0, (α+1)Ip), ‖X‖2/(α+1) has the
chi-square distribution χ2

p and, therefore, E(‖X‖−2) = 1/[(p− 2)(α + 1)].

Let B = 1/(α+ 1) and B̂ = r(p− 2)/‖X‖2. Then

∫

Rp

h(θ)πα(θ)dθ = E‖(1 − B̂)X − θ‖2

= E{E[‖(1 − B̂)X − θ‖2|X ]}
= E{E[‖θ − E(θ|X)‖2|X ]

+ ‖E(θ|X) − (1 − B̂)X‖2}
= E{p(1 −B) + (B̂ −B)2‖X‖2}
= E{p(1 −B) +B2‖X‖2

− 2Br(p− 2) + r2(p− 2)2‖X‖−2}
= p− (2r − r2)(p− 2)B,

where the fourth equality follows from the fact that the conditional distri-
bution of θ given X is Np

(
(1−B)X, (1−B)Ip

)
and the last equality follows

from E‖X‖−2 = B/(p− 2) and E‖X‖2 = p/B. This proves

∫

Rp

g(θ)πα(θ)dθ =

∫

Rp

h(θ)πα(θ)dθ, α > 0. (4.43)
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Note that h(θ) and g(θ) are expectations of functions of ‖X‖2, θτX ,
and ‖θ‖2. Make an orthogonal transformation from X to Y such that
Y1 = θτX/‖θ‖, EYj = 0 for j > 1, and Var(Y ) = Ip. Then h(θ) and g(θ)
are expectations of functions of Y1,

∑p
j=2 Y

2
j , and ‖θ‖2. Thus, both h and

g are functions of ‖θ‖2.

For the family of p.d.f.’s {πα(θ) : α > 0}, ‖θ‖2 is a complete and
sufficient “statistic”. Hence, (4.43) and the fact that h and g are functions
of ‖θ‖2 imply that h(θ) = g(θ) a.e. w.r.t. the Lebesgue measure. From
Theorem 2.1, both h and g are continuous functions of ‖θ‖2 and, therefore,
h(θ) = g(θ) for all θ ∈ Rp. This completes the proof.

It follows from Theorem 4.15 that the risk of δc,r is smaller than that
of X (for every value of θ) when p ≥ 3 and 0 < r < 2, since the risk of X is
p under the loss function (4.37). From Example 4.6, X is admissible when
p = 1. When p = 2, X is still admissible (Stein, 1956). But we have just
shown that X is inadmissible when p ≥ 3.

The James-Stein estimator δc in (4.39), which is a special case of (4.41)
with r = 1, is better than any δc,r in (4.41) with r 6= 1, since the factor
2r − r2 takes on its maximum value 1 if and only if r = 1. To see that δc
may have a substantial improvement over X in terms of risks, consider the
special case where θ = c. Since ‖X− c‖2 has the chi-square distribution χ2

p

when θ = c, E‖X−c‖−2 = (p−2)−1 and the right-hand side of (4.42) equals
2. Thus, the ratio RX(θ)/Rδc(θ) equals p/2 when θ = c and, therefore, can
be substantially larger than 1 near θ = c when p is large.

SinceX is minimax (Example 4.25), any shrinkage estimator of the form
(4.41) is minimax provided that p ≥ 3 and 0 < r < 2.

Unfortunately, the James-Stein estimator with any c is also inadmissible.
It is dominated by

δ+c = X − min

{
1,

p− 2

‖X − c‖2

}
(X − c); (4.44)

see, for example, Lehmann (1983, Theorem 4.6.2). This estimator, however,
is still inadmissible. An example of an admissible estimator of the form
(4.40) is provided by Strawderman (1971); see also Lehmann (1983, p.
304). Although neither the James-Stein estimator δc nor δ+c in (4.44) is
admissible, it is found that no substantial improvements over δ+c are possible
(Efron and Morris, 1973).

To extend Theorem 4.15 to general Var(X), we consider the case where
Var(X) = σ2D with an unknown σ2 > 0 and a known positive definite
matrix D. If σ2 is known, then an extended James-Stein estimator is

δ̃c,r = X − r(p− 2)σ2

‖D−1(X − c)‖2
D−1(X − c). (4.45)
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One can show (exercise) that under the loss (4.37), the risk of δ̃c,r is

σ2
[
tr(D) − (2r − r2)(p− 2)2σ2E(‖D−1(X − c)‖−2)

]
. (4.46)

When σ2 is unknown, we assume that there exists a statistic S2
0 such

that S2
0 is independent of X and S2

0/σ
2 has the chi-square distribution χ2

m

(see Example 4.27). Replacing rσ2 in (4.45) by σ̂2 = tS2
0 with a constant

t > 0 leads to the following extended James-Stein estimator:

δ̃c = X − (p− 2)σ̂2

‖D−1(X − c)‖2
D−1(X − c). (4.47)

By (4.46) and the independence of σ̂2 and X , the risk of δ̃c (as an estimator
of ϑ = EX) is

Rδ̃c
(θ) = E

[
E(‖δ̃c − ϑ‖2|σ̂2)

]

= E
[
E(‖δ̃c,(σ̂2/σ2) − ϑ‖2|σ̂2)

]

= σ2E
{
tr(D) − [2(σ̂2/σ2) − (σ̂2/σ2)2](p− 2)2σ2κ(θ)

}

= σ2
{
tr(D) − [2E(σ̂2/σ2) − E(σ̂2/σ2)2](p− 2)2σ2κ(θ)

}

= σ2
{
tr(D) − [2tm− t2m(m+ 2)](p− 2)2σ2κ(θ)

}
,

where θ = (ϑ, σ2) and κ(θ) = E(‖D−1(X−c)‖−2). Since 2tm− t2m(m+2)
is maximized at t = 1/(m+ 2), replacing t by 1/(m+ 2) leads to

Rδ̃c
(θ) = σ2

[
tr(D) −m(m+ 2)−1(p− 2)2σ2E(‖D−1(X − c)‖−2)

]
.

Hence, the risk of the extended James-Stein estimator in (4.47) is smaller
than that of X for any fixed θ, when p ≥ 3.

Example 4.27. Consider the general linear model (3.25) with assumption
A1, p ≥ 3, and a full rank Z, and the estimation of ϑ = β under the loss
function (4.37). From Theorem 3.8, the LSE β̂ is from N(β, σ2D) with a

known matrix D = (ZτZ)−1; S2
0 = SSR is independent of β̂; and S2

0/σ
2

has the chi-square distribution χ2
n−p. Hence, from the previous discussion,

the risk of the shrinkage estimator

β̂ − (p− 2)σ̂2

‖ZτZ(β̂ − c)‖2
ZτZ(β̂ − c)

is smaller than that of β̂ for any β and σ2, where c ∈ Rp is fixed and
σ̂2 = SSR/(n− p+ 2).

From the previous discussion, the James-Stein estimators improve X
substantially when we shrink the observations toward a vector c that is near
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ϑ = EX . Of course, this cannot be done since ϑ is unknown. One may
consider shrinking the observations toward the mean of the observations
rather than a given point; that is, one may obtain a shrinkage estimator by
replacing c in (4.39) or (4.47) by X̄Jp, where X̄ = p−1

∑p
i=1Xi and Jp is

the p-vector of ones. However, we have to replace the factor p− 2 in (4.39)
or (4.47) by p− 3. This leads to shrinkage estimators

X − p− 3

‖X − X̄Jp‖2
(X − X̄Jp) (4.48)

and

X − (p− 3)σ̂2

‖D−1(X − X̄Jp)‖2
D−1(X − X̄Jp). (4.49)

These estimators are better than X (and, hence, are minimax) when p ≥ 4,
under the loss function (4.37) (exercise).

The results discussed in this section for the simultaneous estimation
of a vector of normal means can be extended to a wide variety of cases
where the loss functions are not given by (4.37) (Brown, 1966). The results
have also been extended to exponential families and to general location pa-
rameter families. For example, Berger (1976) studied the inadmissibility
of generalized Bayes estimators of a location vector; Berger (1980) consid-
ered simultaneous estimation of gamma scale parameters; and Tsui (1981)
investigated simultaneous estimation of several Poisson parameters. See
Lehmann (1983, pp. 320-330) for some further references.

4.4 The Method of Maximum Likelihood

So far we have studied estimation methods in parametric families using the
decision theory approach. The maximum likelihood method introduced next
is the most popular method for deriving estimators in statistical inference
that does not use any loss function.

4.4.1 The likelihood function and MLE’s

To introduce the idea, let us consider an example.

Example 4.28. Let X be a single observation taking values from {0, 1, 2}
according to Pθ, where θ = θ0 or θ1 and the values of Pθj ({i}) are given by
the following table:

x = 0 x = 1 x = 2

θ = θ0 0.8 0.1 0.1

θ = θ1 0.2 0.3 0.5
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If X = 0 is observed, it is more plausible that it came from Pθ0 , since
Pθ0({0}) is much larger than Pθ1({0}). We then estimate θ by θ0. On
the other hand, if X = 1 or 2, it is more plausible that it came from Pθ1 ,
although in this case the difference between the probabilities is not as large
as that in the case of X = 0. This suggests the following estimator of θ:

T (X) =

{
θ0 X = 0

θ1 X 6= 0.

The idea in Example 4.28 can be easily extended to the case where Pθ
is a discrete distribution and θ ∈ Θ ⊂ Rk. If X = x is observed, θ1 is more
plausible than θ2 if and only if Pθ1({x}) > Pθ2({x}). We then estimate

θ by a θ̂ that maximizes Pθ({x}) over θ ∈ Θ, if such a θ̂ exists. The
word plausible rather than probable is used because θ is considered to be
nonrandom and Pθ is not a distribution of θ. Under the Bayesian approach
with a prior that is the discrete uniform distribution on {θ1, ..., θm}, Pθ({x})
is proportional to the posterior probability and we can say that θ1 is more
probable than θ2 if Pθ1({x}) > Pθ2({x}).

Note that Pθ({x}) in the previous discussion is the p.d.f. w.r.t. the
counting measure. Hence, it is natural to extend the idea to the case of
continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some σ-finite
measure on the range X of X . This leads to the following definition.

Definition 4.3. Let X ∈ X be a sample with a p.d.f. fθ w.r.t. a σ-finite
measure ν, where θ ∈ Θ ⊂ Rk.
(i) For each x ∈ X, fθ(x) considered as a function of θ is called the likelihood
function and denoted by ℓ(θ).

(ii) Let Θ̄ be the closure of Θ. A θ̂ ∈ Θ̄ satisfying ℓ(θ̂) = maxθ∈Θ̄ ℓ(θ) is

called a maximum likelihood estimate (MLE) of θ. If θ̂ is a Borel function

of X a.e. ν, then θ̂ is called a maximum likelihood estimator (MLE) of θ.

(iii) Let g be a Borel function from Θ to Rp, p ≤ k. If θ̂ is an MLE of θ,

then ϑ̂ = g(θ̂) is defined to be an MLE of ϑ = g(θ).

Note that Θ̄ instead of Θ is used in the definition of an MLE. This is
because a maximum of ℓ(θ) may not exist when Θ is an open set (Examples
4.29 and 4.30). As an estimator, an MLE is defined a.e. ν. Part (iii) of
Definition 4.3 is motivated by a fact given in Exercise 95 of §4.6.

If the parameter space Θ contains finitely many points, then Θ̄ = Θ
and an MLE can always be obtained by comparing finitely many values
ℓ(θ), θ ∈ Θ. If ℓ(θ) is differentiable on Θ◦, the interior of Θ, then possible
candidates for MLE’s are the values of θ ∈ Θ◦ satisfying

∂ℓ(θ)

∂θ
= 0, (4.50)
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which is called the likelihood equation. Note that θ’s satisfying (4.50) may
be local or global minima, local or global maxima, or simply stationary
points. Also, extrema may occur at the boundary of Θ or when ‖θ‖ → ∞.
Furthermore, if ℓ(θ) is not always differentiable, then extrema may occur
at nondifferentiable or discontinuity points of ℓ(θ). Hence, it is important
to analyze the entire likelihood function to find its maxima.

Since log x is a strictly increasing function and ℓ(θ) can be assumed

to be positive without loss of generality, θ̂ is an MLE if and only if it
maximizes the log-likelihood function log ℓ(θ). It is often more convenient
to work with log ℓ(θ) and the following analogue of (4.50) (which is called
the log-likelihood equation or likelihood equation for simplicity):

∂ log ℓ(θ)

∂θ
= 0. (4.51)

Example 4.29. Let X1, ..., Xn be i.i.d. binary random variables with
P (X1 = 1) = p ∈ Θ = (0, 1). When (X1, ..., Xn) = (x1, ..., xn) is observed,
the likelihood function is

ℓ(p) =

n∏

i=1

pxi(1 − p)1−xi = pnx̄(1 − p)n(1−x̄),

where x̄ = n−1
∑n

i=1 xi. Note that Θ̄ = [0, 1] and Θ◦ = Θ. The likelihood
equation (4.51) reduces to

nx̄

p
− n(1 − x̄)

1 − p
= 0.

If 0 < x̄ < 1, then this equation has a unique solution x̄. The second-order
derivative of log ℓ(p) is

−nx̄
p2

− n(1 − x̄)

(1 − p)2
,

which is always negative. Also, when p tends to 0 or 1 (the boundary of
Θ), ℓ(p) → 0. Thus, x̄ is the unique MLE of p.

When x̄ = 0, ℓ(p) = (1 − p)n is a strictly decreasing function of p and,
therefore, its unique maximum is 0. Similarly, the MLE is 1 when x̄ = 1.
Combining these results with the previous result, we conclude that the MLE
of p is x̄.

When x̄ = 0 or 1, a maximum of ℓ(p) does not exist on Θ = (0, 1),
although supp∈(0,1) ℓ(p) = 1; the MLE takes a value outside of Θ and,
hence, is not a reasonable estimator. However, if p ∈ (0, 1), the probability
that x̄ = 0 or 1 tends to 0 quickly as n→ ∞.
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Example 4.29 indicates that, for small n, a maximum of ℓ(θ) may not
exist on Θ and an MLE may be an unreasonable estimator; however, this
is unlikely to occur when n is large. A rigorous result of this sort is given
in §4.5.2, where we study asymptotic properties of MLE’s.

Example 4.30. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown
θ = (µ, σ2), where n ≥ 2. Consider first the case where Θ = R × (0,∞).
When (X1, ..., Xn) = (x1, ..., xn) is observed, the log-likelihood function is

log ℓ(θ) = − 1

2σ2

n∑

i=1

(xi − µ)2 − n

2
log σ2 − n

2
log(2π).

The likelihood equation (4.51) becomes

1

σ2

n∑

i=1

(xi − µ) = 0 and
1

σ4

n∑

i=1

(xi − µ)2 − n

σ2
= 0. (4.52)

Solving the first equation in (4.52) for µ, we obtain a unique solution x̄ =
n−1

∑n
i=1 xi, and substituting x̄ for µ in the second equation in (4.52),

we obtain a unique solution σ̂2 = n−1
∑n
i=1(xi − x̄)2. To show that θ̂ =

(x̄, σ̂2) is an MLE, first note that Θ is an open set and ℓ(θ) is differentiable
everywhere; as θ tends to the boundary of Θ or ‖θ‖ → ∞, ℓ(θ) tends to 0;
and

∂2 log ℓ(θ)

∂θ∂θτ
= −

(
n
σ2

1
σ4

∑n
i=1(xi − µ)

1
σ4

∑n
i=1(xi − µ) 1

σ6

∑n
i=1(xi − µ)2 − n

2σ4

)

is negative definite when µ = x̄ and σ2 = σ̂2. Hence θ̂ is the unique MLE.
Sometimes we can avoid the calculation of the second-order derivatives.
For instance, in this example we know that ℓ(θ) is bounded and ℓ(θ) → 0
as ‖θ‖ → ∞ or θ tends to the boundary of Θ; hence the unique solution

to (4.52) must be the MLE. Another way to show that θ̂ is the MLE is
indicated by the following discussion.

Consider next the case where Θ = (0,∞) × (0,∞), i.e., µ is known
to be positive. The likelihood function is differentiable on Θ◦ = Θ and
Θ̄ = [0,∞) × [0,∞). If x̄ > 0, then the same argument for the previous
case can be used to show that (x̄, σ̂2) is the MLE. If x̄ ≤ 0, then the first
equation in (4.52) does not have a solution in Θ. However, the function
log ℓ(θ) = log ℓ(µ, σ2) is strictly decreasing in µ for any fixed σ2. Hence, a
maximum of log ℓ(µ, σ2) is µ = 0, which does not depend on σ2. Then, the
MLE is (0, σ̃2), where σ̃2 is the value maximizing log ℓ(0, σ2) over σ2 ≥ 0.
Applying (4.51) to the function log ℓ(0, σ2) leads to σ̃2 = n−1

∑n
i=1 x

2
i .

Thus, the MLE is

θ̂ =

{
(x̄, σ̂2) x̄ > 0

(0, σ̃2) x̄ ≤ 0.
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Again, the MLE in this case is not in Θ if x̄ ≤ 0. One can show that a
maximum of ℓ(θ) does not exist on Θ when x̄ ≤ 0.

Example 4.31. LetX1, ..., Xn be i.i.d. from the uniform distribution on an
interval Iθ with an unknown θ. First, consider the case where Iθ = (0, θ)
and θ > 0. The likelihood function is ℓ(θ) = θ−nI(x(n),∞)(θ), which is
not always differentiable. In this case Θ◦ = (0, x(n)) ∪ (x(n),∞). But, on
(0, x(n)), ℓ ≡ 0 and on (x(n),∞), ℓ′(θ) = −nθn−1 < 0 for all θ. Hence, the
method of using the likelihood equation is not applicable to this problem.
Since ℓ(θ) is strictly decreasing on (x(n),∞) and is 0 on (0, x(n)), a unique
maximum of ℓ(θ) is x(n), which is a discontinuity point of ℓ(θ). This shows
that the MLE of θ is the largest order statistic X(n).

Next, consider the case where Iθ = (θ − 1
2 , θ + 1

2 ) with θ ∈ R. The
likelihood function is ℓ(θ) = I(x(n)− 1

2 ,x(1)+
1
2 )(θ). Again, the method of

using the likelihood equation is not applicable. However, it follows from
Definition 4.3 that any statistic T (X) satisfying x(n) − 1

2 ≤ T (x) ≤ x(1) + 1
2

is an MLE of θ. This example indicates that MLE’s may not be unique and
can be unreasonable.

Example 4.32. Let X be an observation from the hypergeometric dis-
tribution HG(r, n, θ − n) (Table 1.1, page 18) with known r, n, and an
unknown θ = n+1, n+2, .... In this case, the likelihood function is defined
on integers and the method of using the likelihood equation is certainly not
applicable. Note that

ℓ(θ)

ℓ(θ − 1)
=

(θ − r)(θ − n)

θ(θ − n− r + x)
,

which is larger than 1 if and only if θ < rn/x and is smaller than 1 if and
only if θ > rn/x. Thus, ℓ(θ) has a maximum θ = the integer part of rn/x,
which is the MLE of θ.

Example 4.33. Let X1, ..., Xn be i.i.d. from the gamma distribution
Γ(α, γ) with unknown α > 0 and γ > 0. The log-likelihood function is

log ℓ(θ) = −nα log γ − n log Γ(α) + (α− 1)

n∑

i=1

log xi −
1

γ

n∑

i=1

xi

and the likelihood equation (4.51) becomes

−n log γ − nΓ′(α)

Γ(α)
+

n∑

i=1

log xi = 0

and

−nα
γ

+
1

γ2

n∑

i=1

xi = 0.
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The second equation yields γ = x̄/α. Substituting γ = x̄/α into the first
equation we obtain that

logα− Γ′(α)

Γ(α)
+

1

n

n∑

i=1

log xi − log x̄ = 0.

In this case, the likelihood equation does not have an explicit solution,
although it can be shown (exercise) that a solution exists almost surely and
it is the unique MLE. A numerical method has to be applied to compute
the MLE for any given observations x1, ..., xn.

These examples indicate that we need to use various methods to derive
MLE’s. In applications, MLE’s typically do not have analytic forms and
some numerical methods have to be used to compute MLE’s. A commonly
used numerical method is the Newton-Raphson iteration method, which
repeatedly computes

θ̂(t+1) = θ̂(t) −
[
∂2 log ℓ(θ)

∂θ∂θτ

∣∣∣∣
θ=θ̂(t)

]−1
∂ log ℓ(θ)

∂θ

∣∣∣∣
θ=θ̂(t)

, (4.53)

t = 0, 1, ..., where θ̂(0) is an initial value and ∂2 log ℓ(θ)/∂θ∂θτ is assumed of
full rank for every θ ∈ Θ. If, at each iteration, we replace ∂2 log ℓ(θ)/∂θ∂θτ

in (4.53) by its expected value E[∂2 log ℓ(θ)/∂θ∂θτ ], where the expectation
is taken under Pθ, then the method is known as the Fisher-scoring method.
If the iteration converges, then θ̂(∞) or θ̂(t) with a sufficiently large t is a
numerical approximation to a solution of the likelihood equation (4.51).

The following example shows that the MCMC methods discussed in
§4.1.4 can also be useful in computing MLE’s.

Example 4.34. Let X be a random k-vector from Pθ with the following
p.d.f. w.r.t. a σ-finite measure ν:

fθ(x) =

∫
fθ(x, y)dν(y),

where fθ(x, y) is a joint p.d.f. w.r.t. ν × ν. This type of distribution is
called a mixture distribution. Thus, the likelihood ℓ(θ) = fθ(x) involves a
k-dimensional integral. In many cases this integral has to be computed in
order to compute an MLE of θ.

Let ℓ̃m(θ) be the MCMC approximation to ℓ(θ) based on one of the
MCMC methods described in §4.1.4 and a Markov chain of lengthm. Under
the conditions of Theorem 4.4, ℓ̃m(θ) →a.s. ℓ(θ) for every fixed θ and x.
Suppose that, for each m, there exists θ̃m that maximizes ℓ̃m(θ) over θ ∈ Θ.
Geyer (1994) studies the convergence of θ̃m to an MLE.
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In terms of their mse’s, MLE’s are not necessarily better than UMVUE’s
or Bayes estimators. Also, MLE’s are frequently inadmissible. This is
not surprising, since MLE’s are not derived under any given loss function.
The main theoretical justification for MLE’s is provided in the theory of
asymptotic efficiency considered in §4.5.

4.4.2 MLE’s in generalized linear models

Suppose that X has a distribution from a natural exponential family so
that the likelihood function is

ℓ(η) = exp{ητT (x) − ζ(η)}h(x),

where η ∈ Ξ is a vector of unknown parameters. The likelihood equation
(4.51) is then

∂ log ℓ(η)

∂η
= T (x) − ∂ζ(η)

∂η
= 0,

which has a unique solution T (x) = ∂ζ(η)/∂η, assuming that T (x) is in the
range of ∂ζ(η)/∂η. Note that

∂2 log ℓ(η)

∂η∂ητ
= −∂

2ζ(η)

∂η∂ητ
= −Var(T ) (4.54)

(see the proof of Proposition 3.2). Since Var(T ) is positive definite,
− log ℓ(η) is convex in η and T (x) is the unique MLE of the parameter
µ(η) = ∂ζ(η)/∂η. By (4.54) again, the function µ(η) is one-to-one so that
µ−1 exists. By Definition 4.3, the MLE of η is η̂ = µ−1(T (x)).

If the distribution of X is in a general exponential family and the like-
lihood function is

ℓ(θ) = exp{[η(θ)]τT (x) − ξ(θ)}h(x),

then the MLE of θ is θ̂ = η−1(η̂), if η−1 exists and η̂ is in the range of η(θ).

Of course, θ̂ is also the solution of the likelihood equation

∂ log ℓ(θ)

∂θ
=
∂η(θ)

∂θ
T (x) − ∂ξ(θ)

∂θ
= 0.

The results for exponential families lead to an estimation method in a
class of models that have very wide applications. These models are gener-
alizations of the normal linear model (model (3.25) with assumption A1)
discussed in §3.3.1-§3.3.2 and, therefore, are named generalized linear mod-
els (GLM).
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A GLM has the following structure. The sample X = (X1, ..., Xn) ∈ Rn

has independent components and Xi has the p.d.f.

exp
{
ηixi−ζ(ηi)

φi

}
h(xi, φi), i = 1, ..., n, (4.55)

w.r.t. a σ-finite measure ν, where ηi and φi are unknown, φi > 0,

ηi ∈ Ξ =
{
η : 0 <

∫
h(x, φ)eηx/φdν(x) <∞

}
⊂ R

for all i, ζ and h are known functions, and ζ ′′(η) > 0 is assumed for all
η ∈ Ξ◦, the interior of Ξ. Note that the p.d.f. in (4.55) belongs to an
exponential family if φi is known. As a consequence,

E(Xi) = ζ′(ηi) and Var(Xi) = φiζ
′′(ηi), i = 1, ..., n. (4.56)

Define µ(η) = ζ ′(η). It is assumed that ηi is related to Zi, the ith value of
a p-vector of covariates (see (3.24)), through

g(µ(ηi)) = βτZi, i = 1, ..., n, (4.57)

where β is a p-vector of unknown parameters and g, called a link function,
is a known one-to-one, third-order continuously differentiable function on
{µ(η) : η ∈ Ξ◦}. If µ = g−1, then ηi = βτZi and g is called the canonical or
natural link function. If g is not canonical, we assume that d

dη (g ◦µ)(η) 6= 0
for all η.

In a GLM, the parameter of interest is β. We assume that the range
of β is B = {β : (g ◦ µ)−1(βτz) ∈ Ξ◦ for all z ∈ Z}, where Z is the
range of Zi’s. φi’s are called dispersion parameters and are considered to
be nuisance parameters. It is often assumed that

φi = φ/ti, i = 1, ..., n, (4.58)

with an unknown φ > 0 and known positive ti’s.

As we discussed earlier, the linear model (3.24) with εi = N(0, φ) is a
special GLM. One can verify this by taking g(µ) ≡ µ and ζ(η) = η2/2. The
usefulness of the GLM is that it covers situations where the relationship
between E(Xi) and Zi is nonlinear and/or Xi’s are discrete (in which case
the linear model (3.24) is clearly not appropriate). The following is an
example.

Example 4.35. Let Xi’s be independent discrete random variables taking
values in {0, 1, ...,m}, where m is a known positive integer. First, suppose
that Xi has the binomial distribution Bi(pi,m) with an unknown pi ∈
(0, 1), i = 1, ..., n. Let ηi = log pi

1−pi
and ζ(ηi) = m log(1 + eηi). Then the

p.d.f. of Xi (w.r.t. the counting measure) is given by (4.55) with φi = 1,
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h(xi, φi) =
(
m
xi

)
, and Ξ = R. Under (4.57) and the logit link (canonical

link) g(t) = log t
m−t ,

E(Xi) = mpi =
meηi

1 + eηi
=

meβ
τZi

1 + eβτZi
.

Another popular link in this problem is the probit link g(t) = Φ−1(t/m),
where Φ is the c.d.f. of the standard normal. Under the probit link, E(Xi) =
mΦ(βτZi).

The variance of Xi is mpi(1 − pi) under the binomial distribution as-
sumption. This assumption is often violated in applications, which results
in an over-dispersion, i.e., the variance of Xi exceeds the nominal vari-
ance mpi(1 − pi). Over-dispersion can arise in a number of ways, but the
most common one is clustering in the population. Families, households,
and litters are common instances of clustering. For example, suppose that
Xi =

∑m
j=1Xij , where Xij are binary random variables having a common

distribution. If Xij ’s are independent, then Xi has a binomial distribution.
However, if Xij ’s are from the same cluster (family or household), then
they are often positively correlated. Suppose that the correlation coeffi-
cient (§1.3.2) between Xij and Xil, j 6= l, is ρi > 0. Then

Var(Xi) = mpi(1 − pi) +m(m− 1)ρipi(1 − pi) = φimpi(1 − pi),

where φi = 1 + (m − 1)ρi is the dispersion parameter. Of course, over-
dispersion can occur only if m > 1 in this case.

This motivates the consideration of GLM (4.55)-(4.57) with dispersion
parameters φi. If Xi has the p.d.f. (4.55) with ζ(ηi) = m log(1 + eηi), then

E(Xi) =
meηi

1 + eηi
and Var(Xi) = φi

meηi

(1 + eηi)2
,

which is exactly (4.56). Of course, the distribution of Xi is not binomial
unless φi = 1.

We now derive an MLE of β in a GLM under assumption (4.58). Let
θ = (β, φ) and ψ = (g ◦ µ)−1. Then the log-likelihood function is

log ℓ(θ) =
n∑

i=1

[
log h(xi, φ/ti) +

ψ(βτZi)xi − ζ(ψ(βτZi))

φ/ti

]

and the likelihood equation is

∂ log ℓ(θ)

∂β
=

1

φ

n∑

i=1

{[xi − µ(ψ(βτZi))]ψ
′(βτZi)tiZi} = 0 (4.59)
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and

∂ log ℓ(θ)

∂φ
=

n∑

i=1

{
∂ log h(xi, φ/ti)

∂φ
− ti[ψ(βτZi)xi − ζ(ψ(βτZi))]

φ2

}
= 0.

From the first equation, an MLE of β, if it exists, can be obtained without
estimating φ. The second equation, however, is usually difficult to solve.
Some other estimators of φ are suggested by various researchers; see, for
example, McCullagh and Nelder (1989).

Suppose that there is a solution β̂ ∈ B to equation (4.59). (The exis-

tence of β̂ is studied in §4.5.2.) We now study whether β̂ is an MLE of β.
Let

Mn(β) =

n∑

i=1

[ψ′(βτZi)]
2ζ′′(ψ(βτZi))tiZiZ

τ
i (4.60)

and

Rn(β) =

n∑

i=1

[xi − µ(ψ(βτZi))]ψ
′′(βτZi)tiZiZ

τ
i . (4.61)

Then

Var

(
∂ log ℓ(θ)

∂β

)
= Mn(β)/φ (4.62)

and
∂2 log ℓ(θ)

∂β∂βτ
= [Rn(β) −Mn(β)]/φ. (4.63)

Consider first the simple case of canonical g. Then ψ′′ ≡ 0 and Rn ≡ 0.
If Mn(β) is positive definite for all β, then − log ℓ(θ) is strictly convex in

β for any fixed φ and, therefore, β̂ is the unique MLE of β. For the case
of noncanonical g, Rn(β) 6= 0 and β̂ is not necessarily an MLE. If Rn(β)
is dominated by Mn(β) (i.e., [Mn(β)]−1/2Rn(β)[Mn(β)]−1/2 → 0 in some

sense), then − log ℓ(θ) is convex and β̂ is an MLE for large n; see more
details in the proof of Theorem 4.18 in §4.5.2.

Example 4.36. Consider the GLM (4.55) with ζ(η) = η2/2, η ∈ R. If g
in (4.57) is the canonical link, then the model is the same as (3.24) with
independent εi’s distributed as N(0, φi). If (4.58) holds with ti ≡ 1, then
(4.59) is exactly the same as equation (3.27). If Z is of full rank, then

Mn(β) = ZτZ is positive definite. Thus, we have shown that the LSE β̂
given by (3.28) is actually the unique MLE of β.

Suppose now that g is noncanonical but (4.58) still holds with ti ≡ 1.
Then the model reduces to the one with independent Xi’s and

Xi = N
(
g−1(βτZi), φ

)
, i = 1, ..., n. (4.64)



4.4. The Method of Maximum Likelihood 283

This type of model is called a nonlinear regression model (with normal
errors) and an MLE of β under this model is also called a nonlinear LSE,
since maximizing the log-likelihood is equivalent to minimizing the sum of
squares

∑n
i=1[Xi−g−1(βτZi)]

2. Under certain conditions the matrix Rn(β)
is dominated by Mn(β) and an MLE of β exists. More details can be found
in §4.5.2.

Example 4.37 (The Poisson model). Consider the GLM (4.55) with ζ(η) =
eη, η ∈ R. If φi ≡ 1, then Xi has the Poisson distribution with mean eηi .
Assume that (4.58) holds. Under the canonical link g(t) = log t,

Mn(β) =

n∑

i=1

eβ
τZitiZiZ

τ
i ,

which is positive definite if infi e
βτZi > 0 and the matrix (

√
t1Z1, ...,

√
tnZn)

is of full rank.

There is one noncanonical link that deserves attention. Suppose that
we choose a link function so that [ψ′(t)]2ζ′′(ψ(t)) ≡ 1. Then Mn(β) ≡∑n

i=1 tiZiZ
τ
i does not depend on β. In §4.5.2 it is shown that the asymp-

totic variance of the MLE β̂ is φ[Mn(β)]−1. The fact that Mn(β) does not
depend on β makes the estimation of the asymptotic variance (and, thus,
statistical inference) easy. Under the Poisson model, ζ′′(t) = et and, there-
fore, we need to solve the differential equation [ψ′(t)]2eψ(t) = 1. A solution
is ψ(t) = 2 log(t/2), which gives the link function g(µ) = 2

√
µ.

In a GLM, an MLE β̂ usually does not have an analytic form. A numer-
ical method such as the Newton-Raphson or the Fisher-scoring method has
to be applied. Using the Newton-Raphson method, we have the following
iteration procedure:

β̂(t+1) = β̂(t) − [Rn(β̂(t)) −Mn(β̂
(t))]−1sn(β̂

(t)), t = 0, 1, ...,

where sn(β) = φ∂ log ℓ(θ)/∂β. Note that E[Rn(β)] = 0 if β is the true
parameter value and xi is replaced by Xi. This means that the Fisher-
scoring method uses the following iteration procedure:

β̂(t+1) = β̂(t) + [Mn(β̂
(t))]−1sn(β̂

(t)), t = 0, 1, ....

If the canonical link is used, then the two methods are identical.

4.4.3 Quasi-likelihoods and conditional likelihoods

We now introduce two variations of the method of using likelihoods.
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Consider a GLM (4.55)-(4.57). Assumption (4.58) is often unrealistic in
applications. If there is no restriction on φi’s, however, there are too many
parameters and an MLE of β may not exist. (Note that assumption (4.58)
reduces n nuisance parameters to one.) One way to solve this problem
is to assume that φi = h̄(Zi, ξ) for some known function h̄ and unknown
parameter vector ξ (which may include β as a subvector). Let θ = (β, ξ).
Then we can try to solve the likelihood equation ∂ log ℓ(θ)/∂θ = 0 to obtain
an MLE of β and/or ξ. We omit the details, which can be found, for
example, in Smyth (1989).

Suppose that we do not impose any assumptions on φi’s but still esti-
mate β by solving

s̃n(β) =

n∑

i=1

{[xi − µ(ψ(βτZi))]ψ
′(βτZi)tiZi} = 0. (4.65)

Note that (4.65) is not a likelihood equation unless (4.58) holds. In the
special case of Example 4.36 whereXi = N(βτZi, φi), i = 1, ..., n, a solution
to (4.65) is simply an LSE of β whose properties are discussed at the end
of §3.3.3. Estimating β by solving equation (4.65) is motivated by the
following facts. First, if (4.58) does hold, then our estimate is an MLE.
Second, if (4.58) is slightly violated, the performance of our estimate is
still nearly the same as that of an MLE under assumption (4.58) (see the
discussion of robustness at the end of §3.3.3). Finally, estimators obtained
by solving (4.65) usually have good asymptotic properties. As a special
case of a general result in §5.4, a solution to (4.65) is asymptotically normal
under some regularity conditions.

In general, an equation such as (4.65) is called a quasi-likelihood equation
if and only if it is a likelihood equation when certain assumptions hold. The
“likelihood” corresponding to a quasi-likelihood equation is called quasi-
likelihood and a maximum of the quasi-likelihood is then called a maximum
quasi-likelihood estimate (MQLE). Thus, a solution to (4.65) is an MQLE.

Note that (4.65) is a likelihood equation if and only if both (4.55) and
(4.58) hold. The LSE (§3.3) without normality assumption on Xi’s is a
simple example of an MQLE without (4.55). Without assumption (4.55),
the model under consideration is usually nonparametric and, therefore, the
MQLE’s are studied in §5.4.

While the quasi-likelihoods are used to relax some assumptions in our
models, the conditional likelihoods discussed next are used mainly in cases
where MLE’s are difficult to compute. We consider two cases. In the first
case, θ = (θ1, θ2), θ1 is the main parameter vector of interest, and θ2 is a
nuisance parameter vector. Suppose that there is a statistic T2(X) that is
sufficient for θ2 for each fixed θ1. By the sufficiency, the conditional dis-
tribution of X given T2 does not depend on θ2. The likelihood function
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corresponding to the conditional p.d.f. of X given T2 is called the condi-
tional likelihood function. A conditional MLE of θ1 can then be obtained
by maximizing the conditional likelihood function. This method can be
applied to the case where the dimension of θ is considerably larger than
the dimension of θ1 so that computing the unconditional MLE of θ is much
more difficult than computing the conditional MLE of θ1. Note that the
conditional MLE’s are usually different from the unconditional MLE’s.

As a more specific example, suppose thatX has a p.d.f. in an exponential
family:

fθ(x) = exp{θτ1T1(x) + θτ2T2(x) − ζ(θ)}h(x).

Then T2 is sufficient for θ2 for any given θ1. Problems of this type are
from comparisons of two binomial distributions or two Poisson distributions
(Exercises 119-120).

The second case is when our sample X = (X1, ..., Xn) follows a first-
order autoregressive time series model:

Xt − µ = ρ(Xt−1 − µ) + εt, t = 2, ..., n,

where µ ∈ R and ρ ∈ (−1, 1) are unknown and εi’s are i.i.d. from N(0, σ2)
with an unknown σ2 > 0. This model is often a satisfactory representation
of the error time series in economic models, and is one of the simplest
and most heavily used models in time series analysis (Fuller, 1996). Let
θ = (µ, ρ, σ2). The log-likelihood function is

log ℓ(θ) = −n
2

log(2π) − n

2
log σ2 +

1

2
log(1 − ρ2)

− 1

2σ2

{
(x1 − µ)2(1 − ρ2) +

n∑

t=2

[xt − µ− ρ(xt−1 − µ)]2

}
.

The computation of the MLE is greatly simplified if we consider the condi-
tional likelihood given X1 = x1:

log ℓ(θ|x1) = −n− 1

2
log(2π)− n− 1

2
log σ2− 1

2σ2

n∑

t=2

[xt−µ−ρ(xt−1−µ)]2.

Let (x̄−1, x̄0) = (n− 1)−1
∑n
t=2(xt−1, xt). If

ρ̂ =
n∑

t=2

(xt − x̄0)(xt−1 − x̄−1)

/ n∑

t=2

(xt−1 − x̄−1)
2

is between −1 and 1, then it is the conditional MLE of ρ and the conditional
MLE’s of µ and σ2 are, respectively,

µ̂ = (x̄0 − ρ̂x̄−1)/(1 − ρ̂)
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and

σ̂2 =
1

n− 1

n∑

t=2

[xt − x̄0 − ρ̂(xt−1 − x̄−1)]
2.

Obviously, the result can be extended to the case where X follows a
pth-order autoregressive time series model:

Xt−µ = ρ1(Xt−1−µ)+ · · ·+ρp(Xt−p−µ)+εt, t = p+1, ..., n, (4.66)

where ρj ’s are unknown parameters satisfying the constraint that the roots
(which may be complex) of the polynomial xp − ρ1x

p−1 − · · · − ρp = 0 are
less than one in absolute value (exercise).

Some other likelihood based methods are introduced in §5.1.4. Although
they can also be applied to parametric models, the methods in §5.1.4 are
more useful in nonparametric models.

4.5 Asymptotically Efficient Estimation

In this section, we consider asymptotic optimality of point estimators in
parametric models. We use the asymptotic mean squared error (amse,
see §2.5.2) or its multivariate generalization to assess the performance of
an estimator. Reasons for considering asymptotics have been discussed in
§2.5.

We focus on estimators that are asymptotically normal, since this covers
the majority of cases. Some cases of asymptotically nonnormal estimators
are studied in Exercises 111-114 in §4.6.

4.5.1 Asymptotic optimality

Let {θ̂n} be a sequence of estimators of θ based on a sequence of samples
{X = (X1, ..., Xn) : n = 1, 2, ...} whose distributions are in a parametric
family indexed by θ. Suppose that as n→ ∞,

[Vn(θ)]−1/2(θ̂n − θ) →d Nk(0, Ik), (4.67)

where, for each n, Vn(θ) is a k × k positive definite matrix depending on
θ. If θ is one-dimensional (k = 1), then Vn(θ) is the asymptotic variance as

well as the amse of θ̂n (§2.5.2). When k > 1, Vn(θ) is called the asymptotic

covariance matrix of θ̂n and can be used as a measure of asymptotic perfor-
mance of estimators. If θ̂jn satisfies (4.67) with asymptotic covariance ma-
trix Vjn(θ), j = 1, 2, and V1n(θ) ≤ V2n(θ) (in the sense that V2n(θ)−V1n(θ)

is nonnegative definite) for all θ ∈ Θ, then θ̂1n is said to be asymptoti-

cally more efficient than θ̂2n. Of course, some sequences of estimators are
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not comparable under this criterion. Also, since the asymptotic covariance
matrices are unique only in the limiting sense, we have to make our com-
parison based on their limits. When Xi’s are i.i.d., Vn(θ) is usually of the
form n−δV (θ) for some δ > 0 (= 1 in the majority of cases) and a positive
definite matrix V (θ) that does not depend on n.

Note that (4.67) implies that θ̂n is an asymptotically unbiased estimator

of θ. If Vn(θ) = Var(θ̂n), then, under some regularity conditions, it follows
from Theorem 3.3 that

Vn(θ) ≥ [In(θ)]−1, (4.68)

where, for every n, In(θ) is the Fisher information matrix (see (3.5)) forX of
size n. (Note that (4.68) holds if and only if lτVn(θ)l ≥ lτ [In(θ)]−1l for every
l ∈ Rk.) Unfortunately, when Vn(θ) is an asymptotic covariance matrix,
(4.68) may not hold (even in the limiting sense), even if the regularity
conditions in Theorem 3.3 are satisfied.

Example 4.38 (Hodges). Let X1, ..., Xn be i.i.d. from N(θ, 1), θ ∈ R.
Then In(θ) = n. Define

θ̂n =

{
X̄ |X̄| ≥ n−1/4

tX̄ |X̄| < n−1/4,

where t is a fixed constant. By Proposition 3.2, all conditions in Theorem
3.3 are satisfied. It can be shown (exercise) that (4.67) holds with Vn(θ) =
V (θ)/n, where V (θ) = 1 if θ 6= 0 and V (θ) = t2 if θ = 0. If t2 < 1, (4.68)
does not hold when θ = 0.

However, the following result, due to Le Cam (1953), shows that (4.68)
holds for i.i.d. Xi’s except for θ in a set of Lebesgue measure 0.

Theorem 4.16. Let X1, ..., Xn be i.i.d. from a p.d.f. fθ w.r.t. a σ-finite
measure ν on (R,B), where θ ∈ Θ and Θ is an open set in Rk. Suppose that
for every x in the range of X1, fθ(x) is twice continuously differentiable in
θ and satisfies

∂

∂θ

∫
ψθ(x)dν =

∫
∂

∂θ
ψθ(x)dν

for ψθ(x) = fθ(x) and = ∂fθ(x)/∂θ; the Fisher information matrix

I1(θ) = E

{
∂

∂θ
log fθ(X1)

[
∂

∂θ
log fθ(X1)

]τ}

is positive definite; and for any given θ ∈ Θ, there exists a positive number
cθ and a positive function hθ such that E[hθ(X1)] <∞ and

sup
γ:‖γ−θ‖<cθ

∥∥∥∥
∂2 log fγ(x)

∂γ∂γτ

∥∥∥∥ ≤ hθ(x) (4.69)
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for all x in the range of X1, where ‖A‖ =
√

tr(AτA) for any matrix A.

If θ̂n is an estimator of θ (based on X1, ..., Xn) and satisfies (4.67) with
Vn(θ) = V (θ)/n, then there is a Θ0 ⊂ Θ with Lebesgue measure 0 such
that (4.68) holds if θ 6∈ Θ0.
Proof. We adopt the proof given by Bahadur (1964) and prove the case
of univariate θ. The proof for multivariate θ is similar and can be found in
Bahadur (1964). Let x = (x1, ..., xn), θn = θ + n−1/2 ∈ Θ, and

Kn(x, θ) = [log ℓ(θn) − log ℓ(θ) + I1(θ)/2]/[I1(θ)]
1/2.

Under the assumed conditions, it can be shown (exercise) that

Kn(X, θ) →d N(0, 1). (4.70)

Let Pθn (or Pθ) be the distribution of X under the assumption that X1

has the p.d.f. fθn (or fθ). Define gn(θ) = |Pθ(θ̂n ≤ θ) − 1
2 |. Let Φ denote

the standard normal c.d.f. or its probability measure. By the dominated
convergence theorem (Theorem 1.1(iii)), as n→ ∞,

∫
gn(θn)dΦ(θ) =

∫
gn(θ)e

n−1/2θ−(2n)−1

dΦ(θ) → 0,

since gn(θ) → 0 under (4.67). By Theorem 1.8(ii) and (vi), there exists a
sequence {nk} such that gnk

(θnk
) →a.s. 0 w.r.t. Φ. Since Φ is equivalent to

the Lebesgue measure, we conclude that there is a Θ0 ⊂ Θ with Lebesgue
measure 0 such that

lim
k→∞

gnk
(θnk

) = 0, θ 6∈ Θ0. (4.71)

Assume that θ 6∈ Θ0. Then, for any t > [I1(θ)]
1/2,

Pθn(Kn(X, θ) ≤ t) =

∫

Kn(x,θ)≤t
ℓ(θn)dν × · · · × dν

=

∫

Kn(x,θ)≤t

ℓ(θn)

ℓ(θ)
dPθ(x)

= e−I1(θ)/2
∫

Kn(x,θ)≤t
e[I1(θ)]

1/2Kn(x,θ)dPθ(x)

= e−I1(θ)/2
∫ t

−∞
e[I1(θ)]

1/2zdHn(z)

= e−I1(θ)/2
∫ t

−∞
e[I1(θ)]

1/2zdΦ(z) + o(1)

= Φ
(
t− [I1(θ)]

1/2
)

+ o(1),
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where Hn denotes the distribution of Kn(X, θ) and the next to last equality
follows from (4.70) and the dominated convergence theorem. This result
and result (4.71) imply that there is a sequence {nj} such that for j =
1, 2, ...,

Pθnj
(θ̂nj ≤ θnj ) < Pθnj

(Knj (X, θ) ≤ t). (4.72)

By the Neyman-Pearson lemma (Theorem 6.1 in §6.1.1), we conclude that
(4.72) implies that for j = 1, 2, ...,

Pθ(θ̂nj ≤ θnj ) < Pθ(Knj (X, θ) ≤ t). (4.73)

(The reader should come back to this after reading §6.1.1.) From (4.70)
and (4.67) with Vn(θ) = V (θ)/n, (4.73) implies

Φ
(
[V (θ)]−1/2

)
≤ Φ(t).

Hence [V (θ)]−1/2 ≤ t. Since In(θ) = nI1(θ) (Proposition 3.1(i)) and t is
arbitrary but > [I1(θ)]

1/2, we conclude that (4.68) holds.

Points at which (4.68) does not hold are called points of superefficiency.
Motivated by the fact that the set of superefficiency points is of Lebesgue
measure 0 under some regularity conditions, we have the following defini-
tion.

Definition 4.4. Assume that the Fisher information matrix In(θ) is well

defined and positive definite for every n. A sequence of estimators {θ̂n} sat-
isfying (4.67) is said to be asymptotically efficient or asymptotically optimal
if and only if Vn(θ) = [In(θ)]−1.

Suppose that we are interested in estimating ϑ = g(θ), where g is a

differentiable function from Θ to Rp, 1 ≤ p ≤ k. If θ̂n satisfies (4.67),

then, by Theorem 1.12(i), ϑ̂n = g(θ̂n) is asymptotically distributed as
Np(ϑ, [∇g(θ)]τVn(θ)∇g(θ)). Thus, inequality (4.68) becomes

[∇g(θ)]τVn(θ)∇g(θ) ≥ [Ĩn(ϑ)]−1,

where Ĩn(ϑ) is the Fisher information matrix about ϑ contained in X . If
p = k and g is one-to-one, then

[Ĩn(ϑ)]−1 = [∇g(θ)]τ [In(θ)]−1∇g(θ)

and, therefore, ϑ̂n is asymptotically efficient if and only if θ̂n is asymptoti-
cally efficient. For this reason, in the case of p < k, ϑ̂n is considered to be
asymptotically efficient if and only if θ̂n is asymptotically efficient, and we
can focus on the estimation of θ only.
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4.5.2 Asymptotic efficiency of MLE’s and RLE’s

We now show that under some regularity conditions, a root of the likeli-
hood equation (RLE), which is a candidate for an MLE, is asymptotically
efficient.

Theorem 4.17. Assume the conditions of Theorem 4.16.
(i) There is a sequence of estimators {θ̂n} such that

P
(
sn(θ̂n) = 0

)
→ 1 and θ̂n →p θ, (4.74)

where sn(γ) = ∂ log ℓ(γ)/∂γ.
(ii) Any consistent sequence θ̃n of RLE’s is asymptotically efficient.
Proof. (i) Let Bn(c) = {γ : ‖[In(θ)]1/2(γ − θ)‖ ≤ c} for c > 0. Since Θ
is open, for each c > 0, Bn(c) ⊂ Θ for sufficiently large n. Since Bn(c)

shrinks to {θ} as n→ ∞, the existence of θ̂n satisfying (4.74) is implied by
the fact that for any ǫ > 0, there exists c > 0 and n0 > 1 such that

P
(
log ℓ(γ) − log ℓ(θ) < 0 for all γ ∈ ∂Bn(c)

)
≥ 1 − ǫ, n ≥ n0, (4.75)

where ∂Bn(c) is the boundary of Bn(c). (For a proof of the measurability of

θ̂n, see Serfling (1980, pp. 147-148).) For γ ∈ ∂Bn(c), the Taylor expansion
gives

log ℓ(γ) − log ℓ(θ) = cλτ [In(θ)]−1/2sn(θ) (4.76)

+ (c2/2)λτ [In(θ)]−1/2∇sn(γ∗)[In(θ)]−1/2λ,

where λ = [In(θ)]
1/2(γ − θ)/c satisfying ‖λ‖ = 1, ∇sn(γ) = ∂sn(γ)/∂γ,

and γ∗ lies between γ and θ. Note that

E
‖∇sn(γ∗) −∇sn(θ)‖

n
≤ E max

γ∈Bn(c)

‖∇sn(γ) −∇sn(θ)‖
n

≤ E max
γ∈Bn(c)

∥∥∥∥
∂2 log fγ(X1)

∂γ∂γτ
− ∂2 log fθ(X1)

∂θ∂θτ

∥∥∥∥
→ 0, (4.77)

which follows from (a) ∂2 log fγ(x)/∂γ∂γ
τ is continuous in a neighborhood

of θ for any fixed x; (b) Bn(c) shrinks to {θ}; and (c) for sufficiently large
n,

max
γ∈Bn(c)

∥∥∥∥
∂2 log fγ(X1)

∂γ∂γτ
− ∂2 log fθ(X1)

∂θ∂θτ

∥∥∥∥ ≤ 2hθ(X1)

under condition (4.69). By the SLLN (Theorem 1.13) and Proposition 3.1,
n−1∇sn(θ) →a.s. −I1(θ) (i.e., ‖n−1∇sn(θ)+I1(θ)‖ →a.s. 0). These results,
together with (4.76), imply that

log ℓ(γ) − log ℓ(θ) = cλτ [In(θ)]−1/2sn(θ) − [1 + op(1)]c2/2. (4.78)
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Note that maxλ{λτ [In(θ)]−1/2sn(θ)} = ‖[In(θ)]−1/2sn(θ)‖. Hence, (4.75)
follows from (4.78) and

P
(
‖[In(θ)]−1/2sn(θ)‖ < c/4

)
≥ 1 − (4/c)2E‖[In(θ)]−1/2sn(θ)‖2

= 1 − k(4/c)2

≥ 1 − ǫ

by choosing c sufficiently large. This completes the proof of (i).
(ii) Let Aǫ = {γ : ‖γ − θ‖ ≤ ǫ} for ǫ > 0. Since Θ is open, Aǫ ⊂ Θ
for sufficiently small ǫ. Let {θ̃n} be a sequence of consistent RLE’s, i.e.,
P (sn(θ̃n) = 0 and θ̃n ∈ Aǫ) → 1 for any ǫ > 0. Hence, we can focus on the
set on which sn(θ̃n) = 0 and θ̃n ∈ Aǫ. Using the mean-value theorem for
vector-valued functions, we obtain that

−sn(θ) =

[∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt

]
(θ̃n − θ).

Note that

1

n

∥∥∥∥
∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt−∇sn(θ)

∥∥∥∥ ≤ max
γ∈Aǫ

‖∇sn(γ) −∇sn(θ)‖
n

.

Using the argument in proving (4.77) and the fact that P (θ̃n ∈ Aǫ) → 1
for arbitrary ǫ > 0, we obtain that

1

n

∥∥∥∥
∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt−∇sn(θ)

∥∥∥∥→p 0.

Since n−1∇sn(θ) →a.s. −I1(θ) and In(θ) = nI1(θ),

−sn(θ) = −In(θ)(θ̃n − θ) + op
(
‖In(θ)(θ̃n − θ)‖

)
.

This and Slutsky’s theorem (Theorem 1.11) imply that
√
n(θ̃n− θ) has the

same asymptotic distribution as

√
n[In(θ)]−1sn(θ) = n−1/2[I1(θ)]

−1sn(θ) →d Nk
(
0, [I1(θ)]

−1
)

by the CLT (Corollary 1.2), since Var(sn(θ)) = In(θ).

Theorem 4.17(i) shows the asymptotic existence of a sequence of con-
sistent RLE’s, and Theorem 4.17(ii) shows the asymptotic efficiency of any
sequence of consistent RLE’s. However, for a given sequence of RLE’s, its
consistency has to be checked unless the RLE’s are unique for sufficiently
large n, in which case the consistency of the RLE’s is guaranteed by The-
orem 4.17(i).
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RLE’s are not necessarily MLE’s. We still have to use the techniques
discussed in §4.4 to check whether an RLE is an MLE. However, according
to Theorem 4.17, when a sequence of RLE’s is consistent, then it is asymp-
totically efficient and, therefore, we may not need to search for MLE’s, if
asymptotic efficiency is the only criterion to select estimators. The method
of estimating θ by solving sn(γ) = 0 over γ ∈ Θ is called scoring and the
function sn(γ) is called the score function.

Example 4.39. Suppose that Xi has a distribution in a natural exponen-
tial family, i.e., the p.d.f. of Xi is

fη(xi) = exp{ητT (xi) − ζ(η)}h(xi). (4.79)

Since ∂2 log fη(xi)/∂η∂η
τ = −∂2ζ(η)/∂η∂ητ , condition (4.69) is satisfied.

From Proposition 3.2, other conditions in Theorem 4.16 are also satisfied.
For i.i.d. Xi’s,

sn(η) =

n∑

i=1

[
T (Xi) −

∂ζ(η)

∂η

]
.

If θ̂n = n−1
∑n
i=1 T (Xi) ∈ Θ, the range of θ = g(η) = ∂ζ(η)/∂η, then θ̂n is

a unique RLE of θ, which is also a unique MLE of θ since ∂2ζ(η)/∂η∂ητ =
Var(T (Xi)) is positive definite. Also, η = g−1(θ) exists and a unique RLE

(MLE) of η is η̂n = g−1(θ̂n).

However, θ̂n may not be in Θ and the previous argument fails (e.g.,
Example 4.29). What Theorem 4.17 tells us in this case is that as n→ ∞,

P (θ̂n ∈ Θ) → 1 and, therefore, θ̂n (or η̂n) is the unique asymptotically
efficient RLE (MLE) of θ (or η) in the limiting sense.

In an example like this we can directly show that P (θ̂n ∈ Θ) → 1, using

the fact that θ̂n →a.s. E[T (X1)] = g(η) (the SLLN).

The next theorem provides a similar result for the MLE or RLE in the
GLM (§4.4.2).

Theorem 4.18. Consider the GLM (4.55)-(4.58) with ti’s in a fixed in-
terval (t0, t∞), 0 < t0 ≤ t∞ < ∞. Assume that the range of the unknown
parameter β in (4.57) is an open subset of Rp; at the true parameter value
β, 0 < infi ϕ(βτZi) ≤ supi ϕ(βτZi) < ∞, where ϕ(t) = [ψ′(t)]2ζ′′(ψ(t));
as n → ∞, maxi≤n Zτi (ZτZ)−1Zi → 0 and λ−[ZτZ] → ∞, where Z is
the n× p matrix whose ith row is the vector Zi and λ−[A] is the smallest
eigenvalue of the matrix A.
(i) There is a unique sequence of estimators {β̂n} such that

P
(
sn(β̂n) = 0

)
→ 1 and β̂n →p β, (4.80)
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where sn(γ) is the score function defined to be the left-hand side of (4.59)
with γ = β.
(ii) Let In(β) = Var(sn(β)). Then

[In(β)]1/2(β̂n − β) →d Np(0, Ip). (4.81)

(iii) If φ in (4.58) is known or the p.d.f. in (4.55) indexed by θ = (β, φ)

satisfies the conditions for fθ in Theorem 4.16, then β̂n is asymptotically
efficient.
Proof. (i) The proof of the existence of β̂n satisfying (4.80) is the same as
that of Theorem 4.17(i) with θ = β, except that we need to show

max
γ∈Bn(c)

∥∥[In(β)]−1/2∇sn(γ)[In(β)]−1/2 + Ip
∥∥→p 0,

where Bn(c) = {γ : ‖[In(β)]1/2(γ − β)‖ ≤ c}. From (4.62) and (4.63),
In(β) = Mn(β)/φ and ∇sn(γ) = [Rn(γ) − Mn(γ)]/φ, where Mn(γ) and
Rn(γ) are defined by (4.60)-(4.61) with γ = β. Hence, it suffices to show
that for any c > 0,

max
γ∈Bn(c)

∥∥[Mn(β)]−1/2[Mn(γ) −Mn(β)][Mn(β)]−1/2
∥∥→ 0 (4.82)

and
max

γ∈Bn(c)

∥∥[Mn(β)]−1/2Rn(γ)[Mn(β)]−1/2
∥∥→p 0. (4.83)

The left-hand side of (4.82) is bounded by

√
p max
γ∈Bn(c),i≤n

∣∣1 − ϕ(γτZi)/ϕ(βτZi)
∣∣,

which converges to 0 since ϕ is continuous and, for γ ∈ Bn(c),

|γτZi − βτZi|2 = |(γ − β)τ [In(β)]1/2[In(β)]−1/2Zi|2
≤ ‖[In(β)]1/2(γ − β)‖2‖[In(β)]−1/2Zi‖2

≤ c2 max
i≤n

Zτi [In(β)]−1Zi

≤ c2φ
[
t0 inf

i
ϕ(βτZi)

]−1
max
i≤n

Zτi (ZτZ)−1Zi

→ 0

under the assumed conditions. This proves (4.82).

Let ei = Xi − µ(ψ(βτZi)),

Un(γ) =

n∑

i=1

[µ(ψ(βτZi)) − µ(ψ(γτZi))]ψ
′′(γτZi)tiZiZ

τ
i ,
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Vn(γ) =

n∑

i=1

ei[ψ
′′(γτZi) − ψ′′(βτZi)]tiZiZ

τ
i ,

and

Wn(β) =

n∑

i=1

eiψ
′′(βτZi)tiZiZ

τ
i .

Then Rn(γ) = Un(γ) + Vn(γ) +Wn(β). Using the same argument as that
in proving (4.82), we can show that

max
γ∈Bn(c)

∥∥[Mn(β)]−1/2Un(γ)[Mn(β)]−1/2
∥∥→ 0.

Note that
∥∥[Mn(β)]−1/2Vn(γ)[Mn(β)]−1/2

∥∥ is bounded by the product of

[Mn(β)]−1/2
n∑

i=1

|ei|tiZiZτi [Mn(β)]−1/2 = Op(1)

and
max

γ∈Bn(c),i≤n

∣∣ψ′′(γτZi) − ψ′′(βτZi)
∣∣,

which can be shown to be o(1) using the same argument as that in proving
(4.82). Hence,

max
γ∈Bn(c)

∥∥[Mn(β)]−1/2Vn(γ)[Mn(β)]−1/2
∥∥→p 0

and (4.83) follows from

∥∥[Mn(β)]−1/2Wn(β)[Mn(β)]−1/2
∥∥→p 0.

To show this result, we apply Theorem 1.14(ii). Since E(ei) = 0 and ei’s
are independent, it suffices to show that

n∑

i=1

E
∣∣eiψ′′(βτZi)tiZ

τ
i [Mn(β)]−1Zi

∣∣1+δ → 0 (4.84)

for some δ ∈ (0, 1). Note that supi E|ei|1+δ <∞. Hence, there is a constant
C > 0 such that the left-hand side of (4.84) is bounded by

C

n∑

i=1

∣∣Zτi (ZτZ)−1Zi
∣∣1+δ ≤ pCmax

i≤n
|Zτi (ZτZ)−1Zi|δ → 0.

Hence, (4.84) follows from Theorem 1.14(ii). This proves (4.80). The

uniqueness of β̂n follows from (4.83) and the fact that Mn(γ) is positive
definite in a neighborhood of β. This completes the proof of (i).
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(ii) The proof of (ii) is very similar to that of Theorem 4.17(ii). Using the
results in the proof of (i) and Taylor’s expansion, we can establish (exercise)
that

[In(β)]1/2(β̂n − β) = [In(β)]−1/2sn(β) + op(1). (4.85)

Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show
(exercise) that

[In(β)]−1/2sn(β) →d Np(0, Ip). (4.86)

Result (4.81) follows from (4.85)-(4.86) and Slutsky’s theorem.
(iii) The result is obvious if φ is known. When φ is unknown, it follows
from (4.59) that

∂

∂φ

[
∂ log ℓ(θ)

∂β

]
= −sn(β)

φ
.

Since E[sn(β)] = 0, the Fisher information about θ = (β, φ) is

In(β, φ) = −E
[
∂2 log ℓ(θ)

∂θ∂θτ

]
=

(
In(β) 0

0 Ĩn(φ)

)
,

where Ĩn(φ) is the Fisher information about φ. The result then follows
from (4.81) and the discussion in the end of §4.5.1.

4.5.3 Other asymptotically efficient estimators

To study other asymptotically efficient estimators, we start with MRIE’s in
location-scale families. Since MLE’s and RLE’s are invariant (see Exercise
109 in §4.6), MRIE’s are often asymptotically efficient; see, for example,
Stone (1974).

Assume the conditions in Theorem 4.16 and let sn(γ) be the score func-

tion. Let θ̂
(0)
n be an estimator of θ that may not be asymptotically efficient.

The estimator
θ̂(1)n = θ̂(0)n − [∇sn(θ̂(0)n )]−1sn(θ̂

(0)
n ) (4.87)

is the first iteration in computing an MLE (or RLE) using the Newton-

Raphson iteration method with θ̂
(0)
n as the initial value (see (4.53)) and,

therefore, is called the one-step MLE. Without any further iteration, θ̂
(1)
n

can be used as a numerical approximation to an MLE or RLE; and θ̂
(1)
n

is asymptotically efficient under some conditions, as the following result
shows.

Theorem 4.19. Assume that the conditions in Theorem 4.16 hold and
that θ̂

(0)
n is

√
n-consistent for θ (Definition 2.10).

(i) The one-step MLE θ̂
(1)
n is asymptotically efficient.

(ii) The one-step MLE obtained by replacing ∇sn(γ) in (4.87) with its
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expected value, −In(γ) (the Fisher-scoring method), is asymptotically effi-
cient.
Proof. Since θ̂

(0)
n is

√
n-consistent, we can focus on the event θ̂

(0)
n ∈ Aǫ =

{γ : ‖γ − θ‖ ≤ ǫ} for a sufficiently small ǫ such that Aǫ ⊂ Θ. From the
mean-value theorem,

sn(θ̂
(0)
n ) = sn(θ) +

[∫ 1

0

∇sn
(
θ + t(θ̂(0)n − θ)

)
dt

]
(θ̂(0)n − θ).

Substituting this into (4.87) we obtain that

θ̂(1)n − θ = −[∇sn(θ̂(0)n )]−1sn(θ) + [Ik −Gn(θ̂
(0)
n )](θ̂(0)n − θ),

where

Gn(θ̂(0)n ) = [∇sn(θ̂(0)n )]−1

∫ 1

0

∇sn
(
θ + t(θ̂(0)n − θ)

)
dt.

From (4.77), ‖[In(θ)]1/2[∇sn(θ̂
(0)
n )]−1[In(θ)]1/2 + Ik‖ →p 0. Using an argu-

ment similar to those in the proofs of (4.77) and (4.82), we can show that

‖Gn(θ̂(0)n )−Ik‖ →p 0. These results and the fact that
√
n(θ̂

(0)
n −θ) = Op(1)

imply √
n(θ̂(1)n − θ) =

√
n[In(θ)]−1sn(θ) + op(1).

This proves (i). The proof for (ii) is similar.

Example 4.40. Let X1, ..., Xn be i.i.d. from the Weibull distribution
W (θ, 1), where θ > 0 is unknown. Note that

sn(θ) =
n

θ
+

n∑

i=1

logXi −
n∑

i=1

Xθ
i logXi

and

∇sn(θ) = − n

θ2
−

n∑

i=1

Xθ
i (logXi)

2.

Hence, the one-step MLE of θ is

θ̂(1)n = θ̂(0)n

[
1 +

n+ θ̂
(0)
n (
∑n

i=1 logXi −
∑n

i=1X
θ̂(0)n

i logXi)

n+ (θ̂
(0)
n )2

∑n
i=1X

θ̂
(0)
n

i (logXi)2

]
.

Usually one can use a moment estimator (§3.5.2) as the initial estimator

θ̂
(0)
n . In this example, a moment estimator of θ is the solution of X̄ =

Γ(θ−1 + 1).

Results similar to that in Theorem 4.19 can be obtained in non-i.i.d.
cases, for example, the GLM discussed in §4.4.2 (exercise); see also §5.4.
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As we discussed in §4.1.3, Bayes estimators are usually consistent. The
next result, due to Bickel and Yahav (1969) and Ibragimov and Has’minskii
(1981), states that Bayes estimators are asymptotically efficient when Xi’s
are i.i.d.

Theorem 4.20. Assume the conditions of Theorem 4.16. Let π(γ) be a
prior p.d.f. (which may be improper) w.r.t. the Lebesgue measure on Θ and
pn(γ) be the posterior p.d.f., given X1, ..., Xn, n = 1, 2, .... Assume that
there exists an n0 such that pn0(γ) is continuous and positive for all γ ∈ Θ,∫
pn0(γ)dγ = 1 and

∫
‖γ‖pn0(γ)dγ < ∞. Suppose further that, for any

ǫ > 0, there exists a δ > 0 such that

lim
n→∞

P

(
sup

‖γ−θ‖≥ǫ

log ℓ(γ) − log ℓ(θ)

n
> −δ

)
= 0 (4.88)

and

lim
n→∞

P

(
sup

‖γ−θ‖≤δ

‖∇sn(γ) −∇sn(θ)‖
n

≥ ǫ

)
= 0, (4.89)

where ℓ(γ) is the likelihood function and sn(γ) is the score function.
(i) Let p∗n(γ) be the posterior p.d.f. of

√
n(γ − Tn), where Tn = θ +

[In(θ)]−1sn(θ) and θ is the true parameter value, and let ψ(γ) be the p.d.f.
of Nk(0, [I1(θ)]

−1). Then

∫
(1 + ‖γ‖)

∣∣p∗n(γ) − ψ(γ)
∣∣dγ →p 0. (4.90)

(ii) The Bayes estimator of θ under the squared error loss is asymptotically
efficient.

The proof of Theorem 4.20 is lengthy and is omitted; see Lehmann
(1983, §6.7) for a proof of the case of univariate θ.

A number of conclusions can be drawn from Theorem 4.20. First, result
(4.90) shows that the posterior p.d.f. is approximately normal with mean
θ + [In(θ)]−1sn(θ) and covariance matrix [In(θ)]−1. This result is useful
in Bayesian computation; see Berger (1985, §4.9.3). Second, (4.90) shows
that the posterior distribution and its first-order moments converge to the
degenerate distribution at θ and its first-order moments, which implies the
consistency and asymptotic unbiasedness of Bayes estimators such as the
posterior means. Third, the Bayes estimator under the squared error loss is
asymptotically efficient, which provides an additional support for the early
suggestion that the Bayesian approach is a useful method for generating
estimators. Finally, the results hold regardless of the prior being used,
indicating that the effect of the prior declines as n increases.
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In addition to the regularity conditions in Theorem 4.16, Theorem 4.20
requires two more nontrivial regularity conditions, (4.88) and (4.89). Let us
verify these conditions for natural exponential families (Example 4.39), i.e.,
Xi’s are i.i.d. with p.d.f. (4.79). Since ∇sn(η) = −n∂2ζ(η)/∂η∂ητ , (4.89)
follows from the continuity of the second-order derivatives of ζ. To show
(4.88), consider first the case of univariate η. Without loss of generality,
we assume that γ > η. Note that

log ℓ(γ) − log ℓ(η)

n
=

[
T̄ − ζ′(η) + ζ′(η) − ζ(γ) − ζ(η)

γ − η

]
(γ − η), (4.91)

where T̄ is the average of T (Xi)’s. Since ζ(γ) is strictly convex, γ > η
implies ζ′(η) < [ζ(γ) − ζ(η)]/(γ − η). Also, T̄ →a.s. ζ

′(η). Hence, with
probability tending to 1, the factor in front of (γ − η) on the right-hand
side of (4.91) is negative. Then (4.88) holds with

δ =
ǫ

2
inf

γ≥η+ǫ

[
ζ(γ) − ζ(η)

γ − η
− ζ′(η)

]
.

To show how to extend this to multivariate η, consider the case of bivariate
η. Let ηj , γj , and ξj be the jth components of η, γ, and T̄ − ∇ζ(η),
respectively. Assume γ1 > η1 and γ2 > η2. Let ζ′j be the derivative of ζ
w.r.t. the jth component of η. Then the left-hand side of (4.91) is the sum
of

(γ1 − η1)ξ1 − [ζ(η1, γ2) − ζ(η1, η2) − (γ2 − η2)ζ
′
2(η1, η2)]

and
(γ2 − η2)ξ2 − [ζ(γ1, γ2) − ζ(η1, γ2) − (γ1 − η1)ζ

′
1(η1, η2)],

where the last quantity is bounded by

(γ2 − η2)ξ2 − [ζ(γ1, γ2) − ζ(η1, γ2) − (γ1 − η1)ζ
′
1(η1, γ2)],

since ζ′1(η1, η2) ≤ ζ′1(η1, γ2). The rest of the proof is the same as the case
of univariate η.

When Bayes estimators have explicit forms under a specific prior, it
is usually easy to prove the asymptotic efficiency of the Bayes estimators
directly. For instance, in Example 4.7, the Bayes estimator of θ is

nX̄ + γ−1

n+ α− 1
= X̄ +

γ−1 − (α − 1)X̄

n+ α− 1
= X̄ +O

(
1

n

)
a.s.,

where X̄ is the MLE of θ. Hence the Bayes estimator is asymptotically
efficient by Slutsky’s theorem. A similar result can be obtained for the
Bayes estimator δt(X) in Example 4.7. Theorem 4.20, however, is useful in
cases where Bayes estimators do not have explicit forms and/or the prior
is not specified clearly. One such example is the problem in Example 4.40
(Exercises 153 and 154).
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4.6 Exercises

1. Show that the priors in the following cases are conjugate priors:
(a) X1, ..., Xn are i.i.d. from Nk(θ, Ik), θ ∈ Rk, and Π = Nk(µ0,Σ0)
(Normal family);
(b) X1, ..., Xn are i.i.d. from the binomial distribution Bi(θ, k), θ ∈
(0, 1), and Π = B(α, β) (Beta family);
(c) X1, ..., Xn are i.i.d. from the uniform distribution U(0, θ), θ > 0,
and Π = Pa(a, b) (Pareto family);
(d) X1, ..., Xn are i.i.d. from the exponential distribution E(0, θ), θ >
0, Π = the inverse gamma distribution Γ−1(α, γ) (a random variable
Y has the inverse gamma distribution Γ−1(α, γ) if and only if Y −1

has the gamma distribution Γ(α, γ)).
(e) X1, ..., Xn are i.i.d. from the exponential distribution E(θ, 1), θ ∈
R, and Π has a Lebesgue p.d.f. b−1e−a/beθ/bI(−∞,a)(θ), a ∈ R, b > 0.

2. In Exercise 1, find the posterior mean and variance for each case.

3. Let X1, ..., Xn be i.i.d. from the N(θ, 1) distribution and let the prior
be the double exponential distributionDE(0, 1). Obtain the posterior
mean.

4. Let X1, ..., Xn be i.i.d. from the uniform distribution U(0, θ), where
θ > 0 is unknown. Let the prior of θ be the log-normal distribution
LN(µ0, σ

2
0), where µ0 ∈ R and σ0 > 0 are known constants.

(a) Find the posterior p.d.f. of ϑ = log θ.
(b) Find the rth posterior moment of θ.
(c) Find a value that maximizes the posterior p.d.f. of θ.

5. Show that if T (X) is a sufficient statistic for θ ∈ Θ, then the Bayes
action δ(x) in (4.3) is a function of T (x).

6. Let X̄ be the sample mean of n i.i.d. observations from N(θ, σ2) with
a known σ > 0 and an unknown θ ∈ R. Let π(θ) be a prior p.d.f.
w.r.t. a σ-finite measure on R.
(a) Show that the posterior mean of θ, given X̄ = x, is of the form

δ(x) = x+
σ2

n

d log(p(x))

dx
,

where p(x) is the marginal p.d.f. of X̄, unconditional on θ.
(b) Express the posterior variance of θ (given X̄ = x) as a function
of the first two derivatives of log(p(x)) w.r.t. x.
(c) Find explicit expressions for p(x) and δ(x) in (a) when the prior
is N(µ0, σ

2
0) with probability 1− ǫ and a point mass at µ1 with prob-

ability ǫ, where µ0, µ1, and σ2
0 are known constants.
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7. Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) =
p ∈ (0, 1). Find the Bayes action w.r.t. the uniform prior on [0, 1] in
the problem of estimating p under the loss L(p, a) = (p−a)2/[p(1−p)].

8. Consider the estimation of θ in Exercise 41 of §2.6 under the squared
error loss. Suppose that the prior of θ is the uniform distribution
U(0, 1), the prior of j is P (j = 1) = P (j = 2) = 1

2 , and the joint prior
of (θ, j) is the product probability of the two marginal priors. Show
that the Bayes action is

δ(x) =
H(x)B(t + 1) +G(t+ 1)

H(x)B(t) +G(t)
,

where x = (x1, ..., xn) is the vector of observations, t = x1 + · · ·+ xn,

B(t) =
∫ 1

0 θ
t(1−θ)n−tdθ, G(t) =

∫ 1

0 θ
te−nθdθ, and H(x) is a function

of x with range {0, 1}.

9. Consider the estimation problem in Example 4.1 with the loss function
L(θ, a) = w(θ)[g(θ)−a]2 , where w(θ) ≥ 0 and

∫
Θ
w(θ)[g(θ)]2dΠ <∞.

Show that the Bayes action is

δ(x) =

∫
Θ w(θ)g(θ)fθ(x)dΠ∫

Θ w(θ)fθ(x)dΠ
.

10. Let X be a sample from Pθ, θ ∈ Θ ⊂ R. Consider the estimation of θ
under the loss L(|θ− a|), where L is an increasing function on [0,∞).
Let π(θ|x) be the posterior p.d.f. of θ given X = x. Suppose that
π(θ|x) is symmetric about δ(x) ∈ Θ and that π(θ|x) is nondecreasing
for θ ≤ δ(x) and nonincreasing for θ ≥ δ(x). Show that δ(x) is a
Bayes action, assuming that all integrals involved are finite.

11. Let X be a sample of size 1 from the geometric distribution G(p) with
an unknown p ∈ (0, 1]. Consider the estimation of p with A = [0, 1]
and the loss function L(p, a) = (p− a)2/p.
(a) Show that δ is a Bayes action w.r.t. Π if and only if δ(x) =
1 −

∫
(1 − p)xdΠ(p)/

∫
(1 − p)x−1dΠ(p), x = 1, 2, ....

(b) Let δ0 be a rule such that δ0(1) = 1/2 and δ0(x) = 0 for all x > 1.
Show that δ0 is a limit of Bayes actions.
(c) Let δ0 be a rule such that δ0(x) = 0 for all x > 1 and δ0(1) is
arbitrary. Show that δ0 is a generalized Bayes action.

12. Let X be a single observation from N(µ, σ2) with a known σ2 and
an unknown µ > 0. Consider the estimation of µ under the squared
error loss and the noninformative prior Π = the Lebesgue measure
on (0,∞). Show that the generalized Bayes action when X = x is
δ(x) = x + σΦ′(x/σ)/[1 − Φ(−x/σ)], where Φ is the c.d.f. of the
standard normal distribution and Φ′ is its derivative.
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13. Let X be a sample from Pθ having the p.d.f. h(x) exp{θτx − ζ(θ)}
w.r.t. ν. Let Π be the Lebesgue measure on Θ = Rp. Show that
the generalized Bayes action under the loss L(θ, a) = ‖E(X)− a‖2 is
δ(x) = x when X = x.

14. Let X1, ..., Xn be i.i.d. random variables with the Lebesgue p.d.f.√
2/πe−(x−θ)2/2I(θ,∞)(x), where θ ∈ R is unknown. Find the gen-

eralized Bayes action for estimating θ under the squared error loss,
when the (improper) prior of θ is the Lebesgue measure on R.

15. Let X1, ..., Xn be i.i.d. from N(µ, σ2) and π(µ, σ2) = σ−2I(0,∞)(σ
2)

be an improper prior for (µ, σ2) w.r.t. the Lebesgue measure on R2.
(a) Show that the posterior p.d.f. of (µ, σ2) given x = (x1, ..., xn) is
π(µ, σ2|x) = π1(µ|σ2, x)π2(σ

2|x), where π1(µ|σ2, x) is the p.d.f. of
N(x̄, σ2/n) and π2(σ

2|x) is the p.d.f. of the inverse gamma distribu-
tion Γ−1((n− 1)/2, [

∑n
i=1(xi − x̄)2/2]−1) (see Exercise 1(d)).

(b) Show that the marginal posterior p.d.f. of µ given x is f
(
µ−x̄
τ

)
,

where τ2 =
∑n

i=1(xi − x̄)2/[n(n − 1)] and f is the p.d.f. of the t-
distribution tn−1.
(c) Obtain the generalized Bayes action for estimating µ/σ under the
squared error loss.

16. Consider Example 3.13. Under the squared error loss and the prior
with the improper Lebesgue density π(µ1, ..., µm, σ

2) = σ−2, obtain
the generalized Bayes action for estimating θ = σ−2

∑m
i=1 ni(µi− µ̄)2,

where µ̄ = n−1
∑m

i=1 niµi.

17. LetX be a single observation from the Lebesgue p.d.f. e−x+θI(θ,∞)(x),
where θ > 0 is an unknown parameter. Consider the estimation of

ϑ =

{
j θ ∈ (j − 1, j], j = 1, 2, 3,

4 θ > 3

under the loss L(i, j), 1 ≤ i, j ≤ 4, given by the following matrix:



0 1 1 2

1 0 2 2

1 2 0 2

3 3 3 0


 .

When X = 4, find the Bayes action w.r.t. the prior with the Lebesgue
p.d.f. e−θI(0,∞)(θ).

18. (Bayesian hypothesis testing). Let X be a sample from Pθ, where
θ ∈ Θ. Let Θ0 ⊂ Θ and Θ1 = Θc

0, the complement of Θ0. Consider
the problem of testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 under the loss

L(θ, ai) =

{
0 θ ∈ Θi

Ci θ 6∈ Θi,



302 4. Estimation in Parametric Models

where Ci > 0 are known constants and {a0, a1} is the action space.
Let Πθ|x be the posterior distribution of θ w.r.t. a prior distribution
Π, given X = x. Show that the Bayes action δ(x) = a1 if and only if
Πθ|x(Θ1) ≥ C1/(C0 + C1).

19. In (b)-(d) of Exercise 1, assume that the parameters in priors are
unknown. Using the method of moments, find empirical Bayes actions
under the squared error loss.

20. In Example 4.5, assume that both µ0 and σ2
0 in the prior for µ are

unknown. Let the second-stage joint prior for (µ0, σ
2
0) be the prod-

uct of N(a, v2) and the Lebesgue measure on (0,∞), where a and v
are known. Under the squared error loss, obtain a formula for the
hierarchical Bayes action in terms of a one-dimensional integral.

21. Let X1, ..., Xn be i.i.d. random variables from the uniform distribu-
tion U(0, θ), where θ > 0 is unknown. Let π(θ) = babθ−(b+1)I(a,∞)(θ)
be a prior p.d.f. w.r.t. the Lebesgue measure, where b > 1 is known
but a > 0 is an unknown hyperparameter. Consider the estimation
of θ under the squared error loss.
(a) Show that the empirical Bayes method using the method of
moments produces the empirical Bayes action δ(â), where δ(a) =
b+n
b+n−1 max{a,X(n)}, â = 2(b−1)

bn

∑n
i=1Xi, and X(n) is the largest or-

der statistic.
(b) Let h(a) = a−1I(0,∞)(a) be an improper Lebesgue prior density
for a. Obtain explicitly the hierarchical generalized Bayes action.

22. Let X be a sample and δ(X) with any fixed X = x ∈ A be a Bayes
action, where δ is a measurable function and

∫
Θ
Pθ(A)dΠ = 1. Show

that δ(X) is a Bayes rule as defined in §2.3.2.

23. Let X1, ..., Xn be i.i.d. random variables with the Lebesgue p.d.f.
fθ(x) =

√
2θ/πe−θx

2/2I[0,∞)(x), where θ > 0 is unknown. Let the
prior of θ be the gamma distribution Γ(α, γ) with known α and γ.
Find the Bayes estimator of fθ(0) and its Bayes risk under the loss
function L(θ, a) = (a− θ)2/θ.

24. Let X be a single observation from N(θ, θ2) and consider a prior p.d.f.

πξ(θ) = c(α, µ, τ)|θ|−αe−(θ−1−µ)2/(2τ2) w.r.t. the Lebesgue measure,
where ξ = (α, µ, τ) is a vector of hyperparameters and c(α, µ, τ) en-
sures that πξ(θ) is a p.d.f.
(a) Identify the constraints on the hyperparameters for πξ(θ) to be a
proper prior.
(b) Show that the posterior p.d.f. is πξ∗(θ) for given X = x and iden-
tify ξ∗.
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(c) Express the Bayes estimator of |θ| and its Bayes risk in terms of
the function c and ξ∗ and state any additional constraints needed on
the hyperparameters.

25. Let X1, X2, ... be i.i.d. from the exponential distribution E(0, 1). Sup-
pose that we observe T = X1 + · · · + Xθ, where θ is an unknown
integer ≥ 1. Consider the estimation of θ under the loss function
L(θ, a) = (θ− a)2/θ and the geometric distribution G(p) as the prior
for θ, where p ∈ (0, 1) is known.
(a) Show that the posterior expected loss is

E[L(θ, a)|T = t] = 1 + ξ − 2a+ (1 − e−ξ)a2/ξ,

where ξ = (1 − p)t.
(b) Find the Bayes estimator of θ and show that its posterior expected
loss is 1 − ξ

∑∞
m=1 e

−mξ.
(c) Find the marginal distribution of (1 − p)T , unconditional on θ.
(d) Obtain an explicit expression for the Bayes risk of the Bayes
estimator in part (b).

26. Prove (ii) and (iii) of Theorem 4.2.

27. Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) =
p ∈ (0, 1).
(a) Show that X̄ is an admissible estimator of p under the loss function
(a− p)2/[p(1 − p)].
(b) Show that X̄ is an admissible estimator of p under the squared
error loss.

28. Let X be a sample (of size 1) from N(µ, 1). Consider the estimation
of µ under the loss function L(µ, a) = |µ − a|. Show that X is an
admissible estimator.

29. In Exercise 1, consider the posterior mean to be the Bayes estimator
of the corresponding parameter in each case.
(a) Show that the bias of the Bayes estimator converges to 0 if n→ ∞.
(b) Show that the Bayes estimator is consistent.
(c) Discuss whether the Bayes estimator is admissible.

30. Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) =
p ∈ (0, 1).
(a) Obtain the Bayes estimator of p(1− p) w.r.t. Π = the beta distri-
bution B(α, β) with known α and β, under the squared error loss.
(b) Compare the Bayes estimator in part (a) with the UMVUE of
p(1 − p).
(c) Discuss the bias, consistency, and admissibility of the Bayes esti-
mator in (a).
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(d) Let π(p) = [p(1 − p)]−1I(0,1)(p) be an improper Lebesgue prior
density for p. Show that the posterior of p given Xi’s is a p.d.f. pro-
vided that the sample mean X̄ ∈ (0, 1).
(e) Under the squared error loss, find the generalized Bayes estimator
of p(1 − p) w.r.t. the improper prior in (d).

31. Let X be an observation from the negative binomial distribution
NB(p, r) with a known r and an unknown p ∈ (0, 1).
(a) Under the squared error loss, find Bayes estimators of p and p−1

w.r.t. Π = the beta distribution B(α, β) with known α and β.
(b) Show that the Bayes estimators in (a) are consistent as r → ∞.

32. In Example 4.7, show that
(a) X̄ is the generalized Bayes estimator of θ w.r.t. the improper
prior dΠ

dω = I(0,∞)(ω) and is a limit of Bayes estimators (as α → 1
and γ → ∞);
(b) under the squared error loss for estimating θ, the Bayes estimator
(nX̄+γ−1)/(n+α−1) is admissible, but the limit of Bayes estimators,
nX̄/(n+ α− 1) with an α 6= 2, is inadmissible.

33. Consider Example 4.8. Show that the sample mean X̄ is a generalized
Bayes estimator of µ under the squared error loss and X̄ is admissible
using (a) Theorem 4.3 and (b) the result in Example 4.6.

34. Let X be an observation from the gamma distribution Γ(α, θ) with a
known α and an unknown θ > 0. Show that X/(α+1) is an admissible
estimator of θ under the squared error loss, using Theorem 4.3.

35. Let X1, ..., Xn be i.i.d. from the uniform distribution U(θ, θ+ 1), θ ∈
R. Consider the estimation of θ under the squared error loss.
(a) Let π(θ) be a continuous and positive Lebesgue p.d.f. on R. Derive
the Bayes estimator w.r.t. the prior π and show that it is a consistent
estimator of θ.
(b) Show that (X(1) +X(n) −1)/2 is an admissible estimator of θ and
obtain its risk, where X(j) is the jth order statistic.

36. Consider the normal linear model X = Nn(Zβ, σ
2In), where Z is an

n× p known matrix of full rank, p < n, β ∈ Rp, and σ2 > 0.
(a) Assume that σ2 is known. Derive the posterior distribution of β
when the prior distribution for β is Np(β0, σ

2V ), where β0 ∈ Rp is
known and V is a known positive definite matrix, and find the Bayes
estimator of lτβ under the squared error loss, where l ∈ Rp is known.
(b) Show that the Bayes estimator in (a) is admissible and consistent
as n→ ∞, assuming that the minimum eigenvalue of ZτZ → ∞.
(c) Repeat (a) and (b) when σ2 is unknown and has the inverse gamma
distribution Γ−1(α, γ) (see Exercise 1(d)), where α and γ are known.
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(d) In part (c), obtain Bayes estimators of σ2 and lτβ/σ under the
squared error loss and show that they are consistent under the con-
dition in (b).

37. In Example 4.9, suppose that εij has the Lebesgue p.d.f.

κ(δ)σ−1
i exp

{
−c(δ)|x/σi|2/(1+δ)

}
,

where

c(δ) =

[
Γ
(

3(1+δ)
2

)

Γ( 1+δ
2 )

] 1
1+δ

, κ(δ) =

[
Γ
(

3(1+δ)
2

)]1/2

(1+δ)[Γ( 1+δ
2 )]

3/2 ,

−1 < δ ≤ 1 and σi > 0.
(a) Assume that δ is known. Let ωi = c(δ)σ

−2/(1+δ)
i . Under the

squared error loss and the same prior in Example 4.9, show that the
Bayes estimator of σ2

i is

qi(δ)

∫ 
 1

γ
+

ni∑

j=1

|xij − βτZi|2/(1+δ)



1+δ

f(β|x, δ)dβ,

where qi(δ) = [c(δ)]1+δΓ
(

1+δ
2 ni + α− δ

) /
Γ
(

1+δ
2 ni + α+ 1

)
and

f(β|x, δ) ∝ π(β)

k∏

i=1


 1

γ
+

ni∑

j=1

|xij − βτZi|2/(1+δ)


−(α+1+ 1+δ

2 ni)

.

(b) Assume that δ has a prior p.d.f. f(δ) and that given δ, ωi still
has the same prior in (a). Derive a formula (similar to that in (a))
for the Bayes estimator of σ2

i .

38. Suppose that we have observations

Xij = µi + εij , i = 1, ..., k, j = 1, ...,m,

where εij ’s are i.i.d. from N(0, σ2
ε), µi’s are i.i.d. from N(µ, σ2

µ), and
εij ’s and µi’s are independent. Suppose that the distribution for σ2

ε

is the inverse gamma distribution Γ−1(α1, β1) (see Exercise 1(d)); the
distribution for σ2

µ is the inverse gamma distribution Γ−1(α2, β2); the
distribution for µ is N(µ0, σ

2
0); and σε, σµ, and µ are independent.

Describe a Gibbs sampler and obtain explicit forms of
(a) the distribution of µ, given Xij ’s, µi’s, σ

2
ε , and σ2

µ;
(b) the distribution of µi, given Xij ’s, µ, σ2

ε , and σ2
µ;

(c) the distribution of σ2
ε , given Xij ’s, µi’s, µ, and σ2

µ;
(d) the distribution of σ2

µ, given Xij ’s, µi’s, µ, and σ2
ε .

39. Prove (4.16).
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40. Consider a Lebesgue p.d.f. p(y) ∝ (2+y)125(1−y)38y34I(0,1)(y). Gen-
erate Markov chains of length 10,000 and compute approximations to∫
yp(y)dy, using the Metropolis kernel with q(y, z) being the p.d.f. of

N(y, r2), given y, where (a) r = 0.001; (b) r = 0.05; (c) r = 0.12.

41. Prove Proposition 4.4 for the cases of variance and risk.

42. In the proof of Theorem 4.5, show that if L is (strictly) convex and
not monotone, then E[L(T0(x) − a)|D = d] is (strictly) convex and
not monotone in a.

43. Prove part (iii) of Theorem 4.5.

44. Under the conditions of Theorem 4.5 and the loss function L(µ, a) =
|µ−a|, show that u∗(d) in Theorem 4.5 is any median (Exercise 92 in
§2.6) of T0(X) under the conditional distribution of X given D = d
when µ = 0.

45. Show that if there is a location invariant estimator T0 of µ with finite
mean, then E0[T (X)|D = d] is finite a.s. P for any location invariant
estimator T .

46. Show (4.21) under the squared error loss.

47. In Exercise 14, find the MRIE of θ under the squared error loss.

48. In Example 4.12,
(a) show that X(1) − θ log 2/n is an MRIE of µ under the absolute
error loss L(µ− a) = |µ− a|;
(b) show that X(1) − t is an MRIE under the loss function L(µ−a) =
I(t,∞)(|µ− a|).

49. In Example 4.13, show that T∗ is also an MRIE of µ if the loss function
is convex and even. (Hint: the distribution of T∗(X) given D depends
only on X(n) −X(1) and is symmetric about 0 when µ = 0.)

50. Let X1, ..., Xn be i.i.d. from the double exponential distribution
DE(µ, 1) with an unknown µ ∈ R. Under the squared error loss,
find the MRIE of µ. (Hint: for x1 < · · · < xn and xk < t < xk+1,∑n
i=1 |xi − t| =

∑n
i=k+1 xi −

∑k
i=1 xi + (2k − n)t.)

51. In Example 4.11, find the MRIE of µ under the loss function

L(µ− a) =

{ −α(µ− a) µ < a

β(µ− a) µ ≥ a,

where α and β are positive constants. (Hint: show that if Y is a
random variable with c.d.f. F , then E[L(Y −u)] is minimized for any
u satisfying F (u) = β/(α+ β).)
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52. Let T be a location invariant estimator of µ in a one-parameter lo-
cation problem. Show that T is an MRIE under the squared error
loss if and only if T is unbiased and E[T (X)U(X)] = 0 for any U(X)
satisfying U(x1 + c, ..., xn+ c) = U(x) for any c, E[U(X)] = 0 for any
µ, and Var(U) <∞.

53. Assume the conditions in Theorem 4.6. Let T be a sufficient statistic
for µ. Show that Pitman’s estimator is a function of T .

54. Prove Proposition 4.5, Theorems 4.7 and 4.8, and Corollary 4.1.

55. Under the conditions of Theorem 4.8 and the loss function (4.24) with
p = 1, show that u∗(z) is any constant c > 0 satisfying

∫ c

0

xdPx|z =

∫ ∞

c

xdPx|z,

where Px|z is the conditional distribution of X given Z = z when
σ = 1.

56. In Example 4.15, show that the MRIE is 2(n+1)−1

X(n) when the loss
is given by (4.24) with p = 1.

57. Let X1, ..., Xn be i.i.d. from the exponential distribution E(0, θ) with
an unknown θ > 0.
(a) Find the MRIE of θ under the loss (4.24) with p = 2.
(b) Find the MRIE of θ under the loss (4.24) with p = 1.
(c) Find the MRIE of θ2 under the loss (4.24) with p = 2.

58. LetX1, ..., Xn be i.i.d. with a Lebesgue p.d.f. (2/σ)[1−(x/σ)]I(0,σ)(x),
where σ > 0 is an unknown scale parameter. Find Pitman’s estimator
of σh for n = 2, 3, and 4.

59. Let X1, ..., Xn be i.i.d. from the Pareto distribution Pa(σ, α), where
σ > 0 is an unknown parameter and α > 2 is known. Find the MRIE
of σ under the loss function (4.24) with p = 2.

60. Assume that the sample X has a joint Lebesgue p.d.f. given by (4.25).
Show that a loss function for the estimation of µ is invariant under
the location-scale transformations gc,r(X) = (rX1 + c, ..., rXn + c),
r > 0, c ∈ R, if and only if it is of the form L

(
a−µ
σ

)
.

61. Prove Proposition 4.6, Theorem 4.9, and Corollary 4.2.

62. Let X1, ..., Xn be i.i.d. from the exponential distribution E(µ, σ),
where µ ∈ R and σ > 0 are unknown.
(a) Find the MRIE of σ under the loss (4.24) with p = 1 or 2.
(b) Under the loss function (a− µ)2/σ2, find the MRIE of µ.
(c) Compute the bias of the MRIE of µ in (b).
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63. Suppose that X and Y are two samples with p.d.f. given by (4.30).
(a) Suppose that µx = µy = 0 and consider the estimation of η =
(σy/σx)

h with a fixed h 6= 0 under the loss L(a/η). Show that the
problem is invariant under the transformations g(X,Y ) = (rX, r′Y ),
r > 0, r′ > 0. Generalize Proposition 4.5, Theorem 4.8, and Corollary
4.1 to the present problem.
(b) Generalize the result in (a) to the case of unknown µx and µy
under the transformations in (4.31).

64. Under the conditions of part (a) of the previous exercise and the loss
function (a− η)2/η2, determine the MRIE of η in the following cases:
(a) m = n = 1, X and Y are independent, X has the gamma dis-
tribution Γ(αx, γ) with a known αx and an unknown γ = σx > 0,
and Y has the gamma distribution Γ(αy, γ) with a known αy and an
unknown γ = σy > 0;
(b) X is Nm(0, σ2

xIm), Y is Nn(0, σ
2
yIn), and X and Y are indepen-

dent;
(c) X and Y are independent, the components of X are i.i.d. from
the uniform distribution U(0, σx), and the components of Y are i.i.d.
from the uniform distribution U(0, σy).

65. Let X1, ..., Xm and Y1, ..., Yn be two independent samples, where Xi’s

are i.i.d. having the p.d.f. σ−1
x f

(
x−µx

σx

)
with µx ∈ R and σx > 0, and

Yi’s are i.i.d. having the p.d.f. σ−1
y f

(
x−µy

σy

)
with µy ∈ R and σy > 0.

Under the loss function (a−η)2/η2 and the transformations in (4.31),
obtain the MRIE of η = σy/σx when
(a) f is the p.d.f. of N(0, 1);
(b) f is the p.d.f. of the exponential distribution E(0, 1);
(c) f is the p.d.f. of the uniform distribution U

(
− 1

2 ,
1
2

)
;

(d) In (a)-(c), find the MRIE of ∆ = µy − µx under the assumption
that σx = σy = σ and under the loss function (a− ∆)2/σ2.

66. Consider the general linear model (3.25) under the assumption that
εi’s are i.i.d. with the p.d.f. σ−1f(x/σ), where f is a known Lebesgue
p.d.f.
(a) Show that the family of populations is invariant under the trans-
formations in (4.32).
(b) Show that the estimation of lτβ with l ∈ R(Z) is invariant under

the loss function L
(
a−lτβ
σ

)
.

(c) Show that the LSE lτ β̂ is an invariant estimator of lτβ, l ∈ R(Z).
(d) Prove Theorem 4.10.

67. In Example 4.18, let T be a randomized estimator of p with probabil-
ity n/(n+ 1) being X̄ and probability 1/(n+ 1) being 1

2 . Show that
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T has a constant risk that is smaller than the maximum risk of X̄.

68. Let X be a single sample from the geometric distribution G(p) with
an unknown p ∈ (0, 1). Show that I{1}(X) is a minimax estimator of
p under the loss function (a− p)2/[p(1 − p)].

69. In Example 4.19, show that X̄ is a minimax estimator of µ under the
loss function (a− µ)2/σ2 when Θ = R× (0,∞).

70. Let T be a minimax (or admissible) estimator of ϑ under the squared
error loss. Show that c1T + c0 is a minimax (or admissible) estimator
of c1ϑ+c0 under the squared error loss, where c1 and c0 are constants.

71. Let X be a sample from Pθ with an unknown θ = (θ1, θ2), where θj ∈
Θj, j = 1, 2, and let Π2 be a probability measure on Θ2. Suppose that
an estimator T0 minimizes supθ1∈Θ1

∫
RT (θ)dΠ2(θ2) over all estima-

tors T and that supθ1∈Θ1

∫
RT0(θ)dΠ2(θ2) = supθ1∈Θ1,θ2∈Θ2

RT0(θ).
Show that T0 is a minimax estimator.

72. Let X1, ..., Xm be i.i.d. from N(µx, σ
2
x) and Y1, ..., Yn be i.i.d. from

N(µy, σ
2
y). Assume that Xi’s and Yj ’s are independent. Consider the

estimation of ∆ = µy − µx under the squared error loss.
(a) Show that Ȳ − X̄ is a minimax estimator of ∆ when σx and σy
are known, where X̄ and Ȳ are the sample means based on Xi’s and
Yi’s, respectively.
(b) Show that Ȳ − X̄ is a minimax estimator of ∆ when σx ∈ (0, cx]
and σy ∈ (0, cy], where cx and cy are constants.

73. Consider the general linear model (3.25) with assumption A1 and the
estimation of lτβ under the squared error loss, where l ∈ R(Z). Show

that the LSE lτ β̂ is minimax if σ2 ∈ (0, c] with a constant c.

74. Let X be a random variable having the hypergeometric distribution
HG(r, θ,N − θ) (Table 1.1, page 18) with known N and r but an
unknown θ. Consider the estimation of θ/N under the squared error
loss.
(a) Show that the risk function of T (X) = αX/r + β is constant,
where α = {1 +

√
(N − r)/[r(N − 1)]}−1 and β = (1 − α)/2.

(b) Show that T in (a) is the minimax estimator of θ/N and the Bayes
estimator w.r.t. the prior

Π({θ}) =
Γ(2c)

[Γ(c)]2

∫ 1

0

(
N

θ

)
tθ+c−1(1 − t)N−θ+c−1dt, θ = 1, ..., N,

where c = β/(α/r − 1/N).
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75. Let X be a single observation from N(µ, 1) and let µ have the im-
proper Lebesgue prior density π(µ) = eµ. Under the squared error
loss, show that the generalized Bayes estimator of µ is X + 1, which
is neither minimax nor admissible.

76. LetX be a random variable having the Poisson distribution P (θ) with
an unknown θ > 0. Consider the estimation of θ under the squared
error loss.
(a) Show that supθ RT (θ) = ∞ for any estimator T = T (X).
(b) Let ℑ = {aX + b : a ∈ R, b ∈ R}. Show that 0 is a ℑ-admissible
estimator of θ.

77. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
a known θ and an unknown a ∈ R. Under the squared error loss,
show that X(1) − θ/n is the unique minimax estimator of a.

78. Let X1, ..., Xn be i.i.d. from the uniform distribution U(µ− 1
2 , µ+ 1

2 )
with an unknown µ ∈ R. Under the squared error loss, show that
(X(1) +X(n))/2 is the unique minimax estimator of µ.

79. Let X1, ..., Xn be i.i.d. from the double exponential distribution
DE(µ, 1) with an unknown µ ∈ R. Under the squared error loss,
find a minimax estimator of µ.

80. Consider Example 4.7. Show that (nX̄ + b)/(n + 1) is an admissi-
ble estimator of θ under the squared error loss for any b ≥ 0 and
that nX̄/(n+ 1) is a minimax estimator of θ under the loss function
L(θ, a) = (a− θ)2/θ2.

81. Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) =
p ∈ (0, 1). Consider the estimation of p under the squared error loss.
Using Theorem 4.14, show that X̄ and (X̄ + γλ)/(1 + λ) with λ > 0
and 0 ≤ γ ≤ 1 are admissible.

82. Let X be a single observation. Using Theorem 4.14, find values of α
and β such that αX + β are admissible for estimating EX under the
squared error loss when
(a) X has the Poisson distribution P (θ) with an unknown θ > 0;
(b) X has the negative binomial distribution NB(p, r) with a known
r and an unknown p ∈ (0, 1).

83. Let X be a single observation having the Lebesgue p.d.f. 1
2c(θ)e

θx−|x|,
|θ| < 1.
(a) Show that c(θ) = 1 − θ2.
(b) Show that if 0 ≤ α ≤ 1

2 , then αX +β is admissible for estimating
E(X) under the squared error loss.
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84. Let X be a single observation from the discrete p.d.f. fθ(x)
= [x!(1 − e−θ)]−1θxe−θI{1,2,...}(x), where θ > 0 is unknown. Con-

sider the estimation of ϑ = θ/(1 − e−θ) under the squared error loss.
(a) Show that the estimator X is admissible.
(b) Show that X is not minimax unless supθ RT (θ) = ∞ for any es-
timator T = T (X).
(c) Find a loss function under which X is minimax and admissible.

85. In Example 4.23, find the UMVUE of θ = (p1, ..., pk) under the loss
function (4.37).

86. Let X be a sample from Pθ, θ ∈ Θ ⊂ Rp. Consider the estimation of
θ under the loss (θ−a)τQ(θ−a), where a ∈ A = Θ and Q is a known
positive definite matrix. Show that the Bayes action is the posterior
mean E(θ|X = x), assuming that all integrals involved are finite.

87. In Example 4.24, show thatX is the MRIE of θ under the loss function
(4.37), if
(a) f(x− θ) =

∏p
j=1 fj(xj − θj), where each fj is a known Lebesgue

p.d.f. with mean 0;
(b) f(x− θ) = f(‖x− θ‖) with

∫
xf(‖x‖)dx = 0.

88. Prove that X in Example 4.25 is a minimax estimator of θ under the
loss function (4.37).

89. Let X1, ..., Xk be independent random variables, where Xi has the
binomial distribution Bi(pi, ni) with an unknown pi ∈ (0, 1) and a
known ni. For estimating θ = (p1, ..., pk) under the loss (4.37), find a
minimax estimator of θ and determine whether it is admissible.

90. Show that the risk function in (4.42) tends to p as ‖θ‖ → ∞.

91. Suppose that X is Np(θ, Ip). Consider the estimation of θ under the
loss (a − θ)τQ(a − θ) with a positive definite p× p matrix Q. Show
that the risk of the estimator

δQc,r = X − r(p − 2)

‖Q−1/2(X − c)‖2
Q−1(X − c)

is equal to

tr(Q) − (2r − r2)(p− 2)2E(‖Q−1/2(X − c)‖−2).

92. Show that under the loss (4.37), the risk of δ̃c,r in (4.45) is given by
(4.46).
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93. Suppose that X is Np(θ, V ) with p ≥ 4. Consider the estimation of θ
under the loss function (4.37).
(a) When V = Ip, show that the risk of the estimator in (4.48) is
p− (p− 3)2E(‖X − X̄Jp‖−2).
(b) When V = σ2D with an unknown σ2 > 0 and a known matrix D,
show that the risk function of the estimator in (4.49) is smaller than
that of X for any θ and σ2.

94. Let X be a sample from a p.d.f. fθ and T (X) be a sufficient statistic
for θ. Show that if an MLE exists, it is a function of T but it may
not be sufficient for θ.

95. Let {fθ : θ ∈ Θ} be a family of p.d.f.’s w.r.t. a σ-finite measure, where
Θ ⊂ Rk; h be a Borel function from Θ onto Λ ⊂ Rp, 1 ≤ p ≤ k; and
let ℓ̃(λ) = supθ:h(θ)=λ ℓ(θ) be the induced likelihood function for the

transformed parameter λ. Show that if θ̂ ∈ Θ is an MLE of θ, then
λ̂ = h(θ̂) maximizes l̃(λ).

96. Let X1, ..., Xn be i.i.d. with a p.d.f. fθ. Find an MLE of θ in each of
the following cases.
(a) fθ(x) = θ−1I{1,...,θ}(x), θ is an integer between 1 and θ0.

(b) fθ(x) = e−(x−θ)I(θ,∞)(x), θ > 0.

(c) fθ(x) = θ(1 − x)θ−1I(0,1)(x), θ > 1.

(d) fθ(x) = θ
1−θx

(2θ−1)/(1−θ)I(0,1)(x), θ ∈ (1
2 , 1).

(e) fθ(x) = 2−1e−|x−θ|, θ ∈ R.
(f) fθ(x) = θx−2I(θ,∞)(x), θ > 0.

(g) fθ(x) = θx(1 − θ)1−xI{0,1}(x), θ ∈ [ 12 ,
3
4 ].

(h) fθ(x) is the p.d.f. of N(θ, θ2), θ ∈ R, θ 6= 0.
(i) fθ(x) is the p.d.f. of the exponential distribution E(µ, σ), θ =
(µ, σ) ∈ R× (0,∞).
(j) fθ(x) is the p.d.f. of the log-normal distribution LN(µ, σ2), θ =
(µ, σ2) ∈ R× (0,∞).
(k) fθ(x) = I(0,1)(x) if θ = 0 and fθ(x) = (2

√
x)−1I(0,1)(x) if θ = 1.

(l) fθ(x) = β−ααxα−1I(0,β)(x), θ = (α, β) ∈ (0,∞) × (0,∞).

(m) fθ(x) =
(
θ
x

)
px(1−p)θ−xI{0,1,...,θ}(x), θ = 1, 2, ..., where p ∈ (0, 1)

is known.
(n) fθ(x) = 1

2 (1 − θ2)eθx−|x|, θ ∈ (−1, 1).

97. In Exercise 14, obtain an MLE of θ when (a) θ ∈ R and (b) θ ≤ 0.

98. Suppose that n observations are taken from N(µ, 1) with an unknown
µ. Instead of recording all the observations, one records only whether
the observation is less than 0. Find an MLE of µ.

99. Find an MLE of θ in Exercise 43 of §2.6.
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100. Let (Y1, Z1), ..., (Yn, Zn) be i.i.d. random 2-vectors such that Y1 and
Z1 are independently distributed as the exponential distributions
E(0, λ) and E(0, µ), respectively, where λ > 0 and µ > 0.
(a) Find the MLE of (λ, µ).
(b) Suppose that we only observe Xi = min{Yi, Zi} and ∆i = 1 if
Xi = Yi and ∆i = 0 if Xi = Zi. Find the MLE of (λ, µ).

101. In Example 4.33, show that almost surely the likelihood equation has
a unique solution that is the MLE of θ = (α, γ). Obtain iteration
equation (4.53) for this example. Discuss how to apply the Fisher-
scoring method in this example.

102. Let X1, ..., Xn be i.i.d. from the discrete p.d.f. in Exercise 84 with an
unknown θ > 0. Show that the likelihood equation has a unique root
when the sample mean > 1. Show whether this root is an MLE of θ.

103. Let X1, ..., Xn be i.i.d. from the logistic distribution LG(µ, σ) (Table
1.2, page 20).
(a) Show how to find an MLE of µ when µ ∈ R and σ is known.
(b) Show how to find an MLE of σ when σ > 0 and µ is known.

104. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. from a two-dimensional normal dis-
tribution with E(X1) = E(Y1) = 0, Var(X1) = Var(Y1) = 1, and an
unknown correlation coefficient ρ ∈ (−1, 1). Show that the likelihood
equation is a cubic in ρ and the probability that it has a unique root
tends to 1 as n→ ∞.

105. Let X1, ..., Xn be i.i.d. from the Weibull distribution W (α, θ) (Ta-
ble 1.2, page 20) with unknown α > 0 and θ > 0. Show that
the likelihood equation is equivalent to h(α) = n−1

∑n
i=1 log xi and

θ = n−1
∑n

i=1 x
α
i , where h(α) = (

∑n
i=1 x

α
i )−1

∑n
i=1 x

α
i log xi − α−1,

and that the likelihood equation has a unique solution.

106. Consider the random effects model in Example 3.17. Assume that
µ = 0 and ni = n0 for all i. Provide a condition on Xij ’s under which
a unique MLE of (σ2

a, σ
2) exists and find this MLE.

107. Let X1, ..., Xn be i.i.d. with the p.d.f. θf(θx), where f is a Lebesgue
p.d.f. on (0,∞) or symmetric about 0, and θ > 0 is an unknown
parameter. Show that the likelihood equation has a unique root if
xf ′(x)/f(x) is continuous in x and strictly decreasing for x > 0.
Verify that this condition is satisfied if f is the p.d.f. of the Cauchy
distribution C(0, 1).

108. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. fθ(x) = θf1(x) +
(1−θ)f2(x), where fj’s are two different known Lebesgue p.d.f.’s and
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θ ∈ (0, 1) is unknown.
(a) Provide a necessary and sufficient condition for the likelihood
equation to have a unique solution and show that if there is a solution,
it is the MLE of θ.
(b) Derive the MLE of θ when the likelihood equation has no solution.

109. Consider the location family in §4.2.1 and the scale family in §4.2.2.
In each case, show that an MLE or an RLE (root of the likelihood
equation) of the parameter, if it exists, is invariant.

110. Let X be a sample from Pθ, θ ∈ R. Suppose that Pθ’s have p.d.f.’s
fθ w.r.t. a common σ-finite measure and that {x : fθ(x) > 0} does

not depend on θ. Assume further that an estimator θ̂ of θ attains
the Cramér-Rao lower bound and that the conditions in Theorem 3.3
hold for θ̂. Show that θ̂ is a unique MLE of θ.

111. Let Xij , j = 1, ..., r > 1, i = 1, ..., n, be independently distributed as
N(µi, σ

2). Find the MLE of (µ1, ..., µn, σ
2). Show that the MLE of

σ2 is not a consistent estimator (as n→ ∞).

112. Let X1, ..., Xn be i.i.d. from the uniform distribution U(0, θ), where

θ > 0 is unknown. Let θ̂ be the MLE of θ and T be the UMVUE.
(a) Obtain the ratio mseT (θ)/mseθ̂(θ) and show that the MLE is
inadmissible when n ≥ 2.
(b) Let Za,θ be a random variable having the exponential distribution

E(a, θ). Prove n(θ − θ̂) →d Z0,θ and n(θ − T ) →d Z−θ,θ. Obtain the

asymptotic relative efficiency of θ̂ w.r.t. T .

113. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a and θ. Obtain the asymptotic relative efficiency of the
MLE of a (or θ) w.r.t. the UMVUE of a (or θ).

114. Let X1, ..., Xn be i.i.d. from the Pareto distribution Pa(a, θ) with
unknown a and θ.
(a) Find the MLE of (a, θ).
(b) Find the asymptotic relative efficiency of the MLE of a w.r.t. the
UMVUE of a.

115. In Exercises 40 and 41 of §2.6,
(a) obtain an MLE of (θ, j);
(b) show whether the MLE of j in part (a) is consistent;
(c) show that the MLE of θ is consistent and derive its nondegenerated
asymptotic distribution.

116. In Example 4.36, obtain the MLE of β under the canonical link and
assumption (4.58) but ti 6≡ 1.
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117. Consider the GLM in Example 4.35 with φi ≡ 1 and the canonical
link. Assume that

∑n
i=1 ZiZ

τ
i is positive definite for n ≥ n0. Show

that the likelihood equation has at most one solution when n ≥ n0

and a solution exists with probability tending to 1.

118. Consider the linear model (3.25) with ε = Nn(0, V ), where V is an

unknown positive definite matrix. Show that the LSE β̂ defined by
(3.29) is an MQLE and that β̂ is an MLE if and only if one of (a)-(e)
in Theorem 3.10 holds.

119. Let Xj be a random variable having the binomial distribution
Bi(pj, nj) with a known nj and an unknown pj ∈ (0, 1), j = 1, 2.
Assume that Xj ’s are independent. Obtain a conditional likelihood
function of the odds ratio θ = p1

1−p1
/

p2
1−p2 , given X1 +X2.

120. Let X1 and X2 be independent from Poisson distributions P (µ1) and
P (µ2), respectively. Suppose that we are interested in θ1 = µ1/µ2.
Derive a conditional likelihood function of θ1, using (a) θ2 = µ1; (b)
θ2 = µ1 + µ2; and (c) θ2 = µ1µ2.

121. Assume model (4.66) with p = 2 and normally distributed i.i.d. εt’s.
Obtain the conditional likelihood given (X1, X2) = (x1, x2).

122. Prove the claim in Example 4.38.

123. Prove (4.70). (Hint: Show, using the argument in proving (4.77), that

n−1| ∂2

∂θ2 log ℓ(ξn) − ∂2

∂θ2 log ℓ(θ)| = op(1) for any random variable ξn
satisfying |ξn − θ| ≤ |θ − θn|.)

124. Let X1, ..., Xn be i.i.d. from N(µ, 1) truncated at two known points
α < β, i.e., the Lebesgue p.d.f. of Xi is

{
√

2π[Φ(β − µ) − Φ(α− µ)]}−1e−(x−µ)2/2I(α,β)(x).

(a) Show that the sample mean X̄ is asymptotically efficient for esti-
mating θ = EX1.
(b) Show that X̄ is the unique MLE of θ.

125. Let X1, ..., Xn be i.i.d. from the discrete p.d.f.

fθ(x) = [1 − (1 − θ)m]−1
(
m
x

)
θx(1 − θ)m−xI{1,2,...,m}(x),

where θ ∈ (0, 1) is unknown and m ≥ 2 is a known integer.
(a) When the sample mean X̄ = m, show that X̄/m is an MLE of θ.
(b) When 1 < X̄ < m, show that the likelihood equation has at least
one solution.
(c) Show that the regularity conditions of Theorem 4.16 are satisfied
and find the asymptotic variance of a consistent RLE of θ.
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126. In Exercise 96, check whether the regularity conditions of Theorem
4.16 are satisfied for cases (b), (c), (d), (e), (g), (h), (j) and (n).
Obtain nondegenerated asymptotic distributions of RLE’s for cases
in which Theorem 4.17 can be applied.

127. Let X1, ..., Xn be i.i.d. random variables such that logXi is N(θ, θ)
with an unknown θ > 0.
(a) Obtain the likelihood equation and show that one of the solutions
of the likelihood equation is the unique MLE of θ.
(b) Using Theorem 4.17, obtain the asymptotic distribution of the
MLE of θ.

128. In Exercise 107 of §3.6, find the MLE’s of α and β and obtain their
nondegenerated asymptotic joint distribution.

129. In Example 4.30, show that the MLE (or RLE) of θ is asymptotically
efficient by (a) applying Theorem 4.17 and (b) directly deriving the
asymptotic distribution of the MLE.

130. In Example 4.23, show that there is a unique asymptotically efficient
RLE of θ = (p1, ..., pk). Discuss whether this RLE is the MLE.

131. Let X1, ..., Xn be i.i.d. with P (X1 = 0) = 6θ2 − 4θ+ 1, P (X1 = 1) =
θ − 2θ2, and P (X1 = 2) = 3θ − 4θ2, where θ ∈ (0, 1

2 ) is unknown.
Apply Theorem 4.17 to obtain the asymptotic distribution of an RLE
of θ.

132. Let X1, ..., Xn be i.i.d. random variables from N(µ, 1), where µ ∈ R is
unknown. Let θ = P (X1 ≤ c), where c is a known constant. Find the
asymptotic relative efficiency of the MLE of θ w.r.t. (a) the UMVUE
of θ and (b) the estimator n−1

∑n
i=1 I(−∞,c](Xi).

133. In Exercise 19 of §3.6, find the MLE’s of θ and ϑ = P (Y1 > 1) and find
the asymptotic relative efficiency of the MLE of ϑ w.r.t. the UMVUE
of ϑ in part (b).

134. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors. Suppose that
both X1 and Y1 are binary, P (X1 = 1) = 1

2 , P (Y1 = 1|X1 = 0) =
e−aθ, and P (Y1 = 1|X1 = 0) = e−bθ, where θ > 0 is unknown and
a > 0 and b > 0 are known constants.
(a) Suppose that (Xi, Yi), i = 1, ..., n, are observed. Find the MLE
of θ and its nondegenerated asymptotic distribution.
(b) Suppose that only Y1, ..., Yn are observed. Find the MLE of θ and
its nondegenerated asymptotic distribution.
(c) Calculate the asymptotic relative efficiency of the MLE in (a)
w.r.t. the MLE in (b). How much efficiency is lost in the special case
of a = b?
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135. In Exercise 110 of §3.6, derive
(a) the MLE of (θ1, θ2);
(b) a nondegenerated asymptotic distribution of the MLE of (θ1, θ2);
(c) the asymptotic relative efficiencies of the MLE’s w.r.t. the moment
estimators in Exercise 110 of §3.6.

136. In Exercise 104, show that the RLE of ρ is asymptotically distributed
as N

(
ρ, (1 − ρ2)2/[n(1 + ρ2)]

)
.

137. In Exercise 107, obtain a nondegenerated asymptotic distribution of
the RLE of θ when f is the p.d.f. of the Cauchy distribution C(0, 1).

138. Let X1, ..., Xn be i.i.d. from the logistic distribution LG(µ, σ) with
unknown µ ∈ R and σ > 0. Obtain a nondegenerated asymptotic
distribution of the RLE of (µ, σ).

139. In Exercise 105, show that the conditions of Theorem 4.16 are satis-
fied.

140. Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) = p,

where p ∈ (0, 1) is unknown. Let ϑ̂n be the MLE of ϑ = p(1 − p).

(a) Show that ϑ̂n is asymptotically normal when p 6= 1
2 .

(b) When p = 1
2 , derive a nondegenerated asymptotic distribution of

ϑ̂n with an appropriate normalization.

141. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors satisfying 0 ≤
X1 ≤ 1, 0 ≤ Y1 ≤ 1, and

P (X1 > x, Y1 > y) = (1 − x)(1 − y)(1 − max{x, y})θ

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, where θ ≥ 0 is unknown.
(a) Obtain the likelihood function and the likelihood equation.
(b) Show that an RLE of θ is asymptotically normal and derive its
amse.

142. Assume the conditions in Theorem 4.16. Suppose that θ = (θ1, ..., θk)
and there is a positive integer p < k such that ∂ log ℓ(θ)/∂θi and
∂ log ℓ(θ)/∂θj are uncorrelated whenever i ≤ p < j. Show that the
asymptotic distribution of the RLE of (θ1, ..., θp) is unaffected by
whether θp+1, ..., θk are known.

143. LetX1, ..., Xn be i.i.d. random p-vectors fromNp(µ,Σ) with unknown
µ and Σ. Find the MLE’s of µ and Σ and derive their nondegenerated
asymptotic distributions.

144. Let X1, ..., Xn be i.i.d. bivariate normal random vectors with mean
0 and an unknown covariance matrix whose diagonal elements are
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σ2
1 and σ2

2 and off-diagonal element is σ1σ2ρ. Let θ = (σ2
1 , σ

2
2 , ρ).

Obtain In(θ) and [In(θ)]−1 and derive a nondegenerated asymptotic
distribution of the MLE of θ.

145. Let X1, ..., Xn be i.i.d. each with probability p as N(µ, σ2) and prob-
ability 1 − p as N(η, τ2), where θ = (µ, η, σ2, τ2, p) is unknown.
(a) Show that the conditions in Theorem 4.16 are satisfied.
(b) Show that the likelihood function is unbounded.
(c) Show that an MLE may be inconsistent.

146. Let X1, ..., Xn and Y1, ..., Yn be independently distributed as N(µ, σ2)
and N(µ, τ2), respectively, with unknown θ = (µ, σ2, τ2). Find the
MLE of θ and show that it is asymptotically efficient.

147. Find a nondegenerated asymptotic distribution of the MLE of (σ2
a, σ

2)
in Exercise 106.

148. Under the conditions in Theorem 4.18, prove (4.85) and (4.86).

149. Assume linear model (3.25) with ε = Nn(0, σ
2In) and a full rank

Z. Apply Theorem 4.18 to show that the LSE β̂ is asymptotically
efficient. Compare this result with that in Theorem 3.12.

150. Apply Theorem 4.18 to obtain the asymptotic distribution of the RLE
of β in (a) Example 4.35 and (b) Example 4.37.

151. Let X1, ..., Xn be i.i.d. from the logistic distribution LG(µ, σ), µ ∈ R,
σ > 0. Using Newton-Raphson and Fisher-scoring methods, find
(a) one-step MLE’s of µ when σ is known;
(b) one-step MLE’s of σ when µ is known;
(c) one-step MLE’s of (µ, σ);
(d)

√
n-consistent initial estimators in (a)-(c).

152. Under the GLM (4.55)-(4.58),
(a) show how to obtain a one-step MLE of β, if an initial estimator

β̂
(0)
n is available;

(b) show that under the conditions in Theorem 4.18, the one-step

MLE satisfies (4.81) if ‖[In(β)]1/2(β̂
(0)
n − β)‖ = Op(1).

153. In Example 4.40, show that the conditions in Theorem 4.20 concern-
ing the likelihood function are satisfied.

154. Let X1, ..., Xn be i.i.d. from the logistic distribution LG(µ, σ) with
unknown µ ∈ R and σ > 0. Show that the conditions in Theorem
4.20 concerning the likelihood function are satisfied.



Chapter 5

Estimation in

Nonparametric Models

Estimation methods studied in this chapter are useful for nonparametric
models as well as for parametric models in which the parametric model
assumptions might be violated (so that robust estimators are required)
or the number of unknown parameters is exceptionally large. Some such
methods have been introduced in Chapter 3; for example, the methods
that produce UMVUE’s in nonparametric models, the U- and V-statistics,
the LSE’s and BLUE’s, the Horvitz-Thompson estimators, and the sample
(central) moments.

The theoretical justification for estimators in nonparametric models,
however, relies more on asymptotics than that in parametric models. This
means that applications of nonparametric methods usually require large
sample sizes. Also, estimators derived using parametric methods are asymp-
totically more efficient than those based on nonparametric methods when
the parametric models are correct. Thus, to choose between a parametric
method and a nonparametric method, we need to balance the advantage of
requiring weaker model assumptions (robustness) against the drawback of
losing efficiency, which results in requiring a larger sample size.

It is assumed in this chapter that a sample X = (X1, ..., Xn) is from a
population in a nonparametric family, where Xi’s are random vectors.

5.1 Distribution Estimators

In many applications the c.d.f.’s of Xi’s are determined by a single c.d.f.
F on Rd; for example, Xi’s are i.i.d. random d-vectors. In this section, we

319
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consider the estimation of F or F (t) for several t’s, under a nonparametric
model in which very little is assumed about F .

5.1.1 Empirical c.d.f.’s in i.i.d. cases

For i.i.d. random variables X1, ..., Xn, the empirical c.d.f. Fn is defined in
(2.28). The definition of the empirical c.d.f. based on X = (X1, ..., Xn) in
the case of Xi ∈ Rd is analogously given by

Fn(t) =
1

n

n∑

i=1

I(−∞,t](Xi), t ∈ Rd, (5.1)

where (−∞, a] denotes the set (−∞, a1] × · · · × (−∞, ad] for any a =
(a1, ..., ad) ∈ Rd. Similar to the case of d = 1 (Example 2.26), Fn(t) as
an estimator of F (t) has the following properties. For any t ∈ Rd, nFn(t)
has the binomial distribution Bi(F (t), n); Fn(t) is unbiased with variance
F (t)[1 − F (t)]/n; Fn(t) is the UMVUE under some nonparametric mod-
els; and Fn(t) is

√
n-consistent for F (t). For any m fixed distinct points

t1, ..., tm in Rd, it follows from the multivariate CLT (Corollary 1.2) and
(5.1) that as n→ ∞,

√
n
[(
Fn(t1), ..., Fn(tm)

)
−
(
F (t1), ..., F (tm)

)]
→d Nm(0,Σ), (5.2)

where Σ is the m×m matrix whose (i, j)th element is

P
(
X1 ∈ (−∞, ti] ∩ (−∞, tj]

)
− F (ti)F (tj).

Note that these results hold without any assumption on F .

Considered as a function of t, Fn is a random element taking values in
F, the collection of all c.d.f.’s on Rd. As n → ∞,

√
n(Fn − F ) converges

in some sense to a random element defined on some probability space. A
detailed discussion of such a result is beyond our scope and can be found, for
example, in Shorack and Wellner (1986). To discuss some global properties
of Fn as an estimator of F ∈ F, we need to define a closeness measure
between the elements (c.d.f.’s) in F.

Definition 5.1. Let F0 be a collection of c.d.f.’s on Rd.
(i) A function ̺ from F0 ×F0 to [0,∞) is called a distance or metric on F0

if and only if for any Gj in F0, (a) ̺(G1, G2) = 0 if and only if G1 = G2;
(b) ̺(G1, G2) = ̺(G2, G1); and (c) ̺(G1, G2) ≤ ̺(G1, G3) + ̺(G3, G2).
(ii) Let D = {c(G1 − G2) : c ∈ R, Gj ∈ F0, j = 1, 2}. A function ‖ · ‖
from D to [0,∞) is called a norm on D if and only if (a) ‖∆‖ = 0 if and
only if ∆ = 0; (b) ‖c∆‖ = |c|‖∆‖ for any ∆ ∈ D and c ∈ R; and (c)
‖∆1 + ∆2‖ ≤ ‖∆1‖ + ‖∆2‖ for any ∆j ∈ D, j = 1, 2.
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Any norm ‖·‖ on D induces a distance given by ̺(G1, G2) = ‖G1−G2‖.
The most commonly used distance is the sup-norm distance ̺∞, i.e., the
distance induced by the sup-norm

‖G1 −G2‖∞ = sup
t∈Rd

|G1(t) −G2(t)|, Gj ∈ F. (5.3)

The following result concerning the sup-norm distance between Fn and F
is due to Dvoretzky, Kiefer, and Wolfowitz (1956).

Lemma 5.1. (DKW’s inequality). Let Fn be the empirical c.d.f. based on
i.i.d. X1, ..., Xn from a c.d.f. F on Rd.
(i) When d = 1, there exists a positive constant C (not depending on F )
such that

P
(
̺∞(Fn, F ) > z

)
≤ Ce−2nz2 , z > 0, n = 1, 2, ....

(ii) When d ≥ 2, for any ǫ > 0, there exists a positive constant Cǫ,d (not
depending on F ) such that

P
(
̺∞(Fn, F ) > z

)
≤ Cǫ,de

−(2−ǫ)nz2 , z > 0, n = 1, 2, ....

The proof of this lemma is omitted. The following results useful in
statistics are direct consequences of Lemma 5.1.

Theorem 5.1. Let Fn be the empirical c.d.f. based on i.i.d. X1, ..., Xn

from a c.d.f. F on Rd. Then
(i) ̺∞(Fn, F ) →a.s. 0 as n→ ∞;
(ii) E[

√
n̺∞(Fn, F )]s = O(1) for any s > 0.

Proof. (i) From DKW’s inequality,

∞∑

n=1

P
(
̺∞(Fn, F ) > z

)
<∞.

Hence, the result follows from Theorem 1.8(v).
(ii) Using DKW’s inequality with z = y1/s/

√
n and the result in Exercise

55 of §1.6, we obtain that

E[
√
n̺∞(Fn, F )]s =

∫ ∞

0

P
(√
n̺∞(Fn, F ) > y1/s

)
dy

≤ Cǫ,d

∫ ∞

0

e−(2−ǫ)y2/s

dy

= O(1)

as long as 2 − ǫ > 0.
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Theorem 5.1(i) means that Fn(t) →a.s. F (t) uniformly in t ∈ Rd, a
result stronger than the strong consistency of Fn(t) for every t. Theorem
5.1(ii) implies that

√
n̺∞(Fn, F ) = Op(1), a result stronger than the

√
n-

consistency of Fn(t). These results hold without any condition on F .

Let p ≥ 1 and Fp = {G ∈ F :
∫
‖t‖pdG < ∞}, which is the subset of

c.d.f.’s in F having finite pth moments. Mallows’ distance between G1 and
G2 in Fp is defined to be

̺Mp
(G1, G2) = inf(E‖Y1 − Y2‖p)1/p, (5.4)

where the infimum is taken over all pairs of Y1 and Y2 having c.d.f.’s G1 and
G2, respectively. Let {Gj : j = 0, 1, 2, ...} ⊂ Fp. Then ̺Mp

(Gj , G0) → 0 as

j → ∞ if and only if
∫
‖t‖pdGj →

∫
‖t‖pdG0 and Gj(t) → G0(t) for every

t ∈ Rd at which G0 is continuous. It follows from Theorem 5.1 and the
SLLN (Theorem 1.13) that ̺Mp

(Fn, F ) →a.s. 0 if F ∈ Fp.

When d = 1, another useful distance for measuring the closeness be-
tween Fn and F is the Lp distance ̺Lp

induced by the Lp-norm (p ≥ 1)

‖G1 −G2‖Lp =

[∫
|G1(t) −G2(t)|pdt

]1/p
, Gj ∈ F1. (5.5)

A result similar to Theorem 5.1 is given as follows.

Theorem 5.2. Let Fn be the empirical c.d.f. based on i.i.d. random vari-
ables X1, ..., Xn from a c.d.f. F ∈ F1. Then
(i) ̺Lp

(Fn, F ) →a.s. 0;

(ii) E[
√
n̺Lp

(Fn, F )] = O(1) if 1 ≤ p < 2 and
∫
{F (t)[1−F (t)]}p/2dt <∞,

or p ≥ 2.
Proof. (i) Since [̺Lp

(Fn, F )]p ≤ [̺∞(Fn, F )]p−1[̺L1
(Fn, F )] and, by The-

orem 5.1, ̺∞(Fn, F ) →a.s. 0, it suffices to show the result for p = 1. Let

Yi =
∫ 0

−∞[I(−∞,t](Xi) − F (t)]dt. Then Y1, ..., Yn are i.i.d. and

E|Yi| ≤
∫
E|I(−∞,t](Xi) − F (t)|dt = 2

∫
F (t)[1 − F (t)]dt,

which is finite under the condition that F ∈ F1. By the SLLN,
∫ 0

−∞
[Fn(t) − F (t)]dt =

1

n

n∑

i=1

Yi →a.s. E(Y1) = 0. (5.6)

Since [Fn(t) − F (t)]− ≤ F (t) and
∫ 0

−∞ F (t)dt < ∞ (Exercise 55 in §1.6),
it follows from Theorem 5.1 and the dominated convergence theorem that∫ 0

−∞[Fn(t) − F (t)]−dt→a.s. 0, which with (5.6) implies

∫ 0

−∞
|Fn(t) − F (t)|dt →a.s. 0. (5.7)
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The result follows since we can similarly show that (5.7) holds with
∫ 0

−∞
replaced by

∫∞
0

.
(ii) When 1 ≤ p < 2, the result follows from

E[̺Lp
(Fn, F )] ≤

{∫
E|Fn(t) − F (t)|pdt

}1/p

≤
{∫

[E|Fn(t) − F (t)|2]p/2dt
}1/p

= n−1/2

{∫
{F (t)[1 − F (t)]}p/2dt

}1/p

= O(n−1/2),

where the two inequalities follow from Jensen’s inequality. When p ≥ 2,

E[̺Lp
(Fn, F )] ≤ E

{
[̺∞(Fn, F )]1−2/p[̺L2

(Fn, F )]2/p
}

≤
{
E[̺∞(Fn, F )](1−2/p)q

}1/q {
E[̺L2

(Fn, F )]2
}1/p

=
{
O(n−(1−2/p)q/2)

}1/q
{
E

∫
|Fn(t) − F (t)|2dt

}1/p

= O(n−(1−2/p)/2)

{
1

n

∫
F (t)[1 − F (t)]dt

}1/p

= O(n−1/2),

where 1
q + 1

p = 1, the second inequality follows from Hölder’s inequality (see

(1.40) in §1.3.2), and the first equality follows from Theorem 5.1(ii).

5.1.2 Empirical likelihoods

In §4.4 and §4.5, we have shown that the method of using likelihoods pro-
vides some asymptotically efficient estimators. We now introduce some
likelihoods in nonparametric models. This not only provides another justi-
fication for the use of the empirical c.d.f. in (5.1), but also leads to a useful
method of deriving estimators in various (possibly non-i.i.d.) cases, some
of which are discussed later in this chapter.

Let X1, ..., Xn be i.i.d. with F ∈ F and PG be the probability measure
corresponding to G ∈ F. Given X1 = x1, ..., Xn = xn, the nonparametric
likelihood function is defined to be the following functional from F to [0,∞):

ℓ(G) =

n∏

i=1

PG({xi}), G ∈ F. (5.8)
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Apparently, ℓ(G) = 0 if PG({xi}) = 0 for at least one i. The following
result, due to Kiefer and Wolfowitz (1956), shows that the empirical c.d.f.
Fn is a nonparametric maximum likelihood estimator of F .

Theorem 5.3. Let X1, ..., Xn be i.i.d. with F ∈ F and ℓ(G) be defined by
(5.8). Then Fn maximizes ℓ(G) over G ∈ F.
Proof. We only need to consider G ∈ F such that ℓ(G) > 0. Let c ∈ (0, 1]
and F(c) be the subset of F containing G’s satisfying pi = PG({xi}) > 0,
i = 1, ..., n, and

∑n
i=1 pi = c. We now apply the Lagrange multiplier

method to solve the problem of maximizing ℓ(G) over G ∈ F(c). Define

H(p1, ..., pn, λ) =

n∏

i=1

pi + λ

(
n∑

i=1

pi − c

)
,

where λ is the Lagrange multiplier. Set

∂H

∂λ
=

n∑

i=1

pi − c = 0,
∂H

∂pj
= p−1

j

n∏

i=1

pi + λ = 0, j = 1, ..., n.

The solution is pi = c/n, i = 1, ..., n, λ = −(c/n)n−1. It can be shown
(exercise) that this solution is a maximum of H(p1, ..., pn, λ) over pi > 0,
i = 1, ..., n,

∑n
i=1 pi = c. This shows that

max
G∈F(c)

ℓ(G) = (c/n)n,

which is maximized at c = 1 for any fixed n. The result follows from
PFn({xi}) = n−1 for given Xi = xi, i = 1, ..., n.

From the proof of Theorem 5.3, Fn maximizes the likelihood ℓ(G) in
(5.8) over pi > 0, i = 1, ..., n, and

∑n
i=1 pi = 1, where pi = PG({xi}). This

method of deriving an estimator of F can be extended to various situations
with some modifications of (5.8) and/or constraints on pi’s. Modifications
of the likelihood in (5.8) are called empirical likelihoods (Owen, 1988, 2001;
Qin and Lawless, 1994). An estimator obtained by maximizing an empirical
likelihood is then called a maximum empirical likelihood estimator (MELE).
We now discuss several applications of the method of empirical likelihoods.

Consider first the estimation of F with auxiliary information about F
(and i.i.d. X1, ..., Xn). For instance, suppose that there is a known Borel
function u from Rd to Rs such that

∫
u(x)dF = 0 (5.9)

(e.g., some components of the mean of F are 0). It is then reasonable to
expect that any estimate F̂ of F has property (5.9), i.e.,

∫
u(x)dF̂ = 0,
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which is not true for the empirical c.d.f. Fn in (5.1), since

∫
u(x)dFn =

1

n

n∑

i=1

u(Xi) 6= 0

even if E[u(X1)] = 0. Using the method of empirical likelihoods, a natu-
ral solution is to put another constraint in the process of maximizing the
likelihood. That is, we maximize ℓ(G) in (5.8) subject to

pi > 0, i = 1, ..., n,

n∑

i=1

pi = 1, and

n∑

i=1

piu(xi) = 0, (5.10)

where pi = PG({xi}). Using the Lagrange multiplier method and an argu-
ment similar to the proof of Theorem 5.3, it can be shown (exercise) that
an MELE of F is

F̂ (t) =

n∑

i=1

p̂iI(−∞,t](Xi), (5.11)

where the notation (−∞, t] is the same as that in (5.1),

p̂i = n−1[1 + λτnu(Xi)]
−1, i = 1, ..., n, (5.12)

and λn ∈ Rs is the Lagrange multiplier satisfying

n∑

i=1

p̂iu(Xi) =
1

n

n∑

i=1

u(Xi)

1 + λτnu(Xi)
= 0. (5.13)

Note that F̂ reduces to Fn if u ≡ 0.

To see that (5.13) has a solution asymptotically, note that

∂

∂λ

[
1

n

n∑

i=1

log
(
1 + λτu(Xi)

)
]

=
1

n

n∑

i=1

u(Xi)

1 + λτu(Xi)

and

∂2

∂λ∂λτ

[
1

n

n∑

i=1

log
(
1 + λτu(Xi)

)
]

= − 1

n

n∑

i=1

u(Xi)[u(Xi)]
τ

[1 + λτu(Xi)]2
,

which is negative definite if Var(u(X1)) is positive definite. Also,

E

{
∂

∂λ

[
1

n

n∑

i=1

log
(
1 + λτu(Xi)

)
] ∣∣∣∣

λ=0

}
= E[u(X1)] = 0.

Hence, using the same argument as in the proof of Theorem 4.18, we can
show that there exists a unique sequence {λn(X)} such that as n→ ∞,

P

(
1

n

n∑

i=1

u(Xi)

1 + λτnu(Xi)
= 0

)
→ 1 and λn →p 0. (5.14)
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Theorem 5.4. Let X1, ..., Xn be i.i.d. with F ∈ F, u be a Borel function
on Rd satisfying (5.9), and F̂ be given by (5.11)-(5.13). Suppose that
U = Var(u(X1)) is positive definite. Then, for anym fixed distinct t1, ..., tm
in Rd,

√
n[
(
F̂ (t1), ..., F̂ (tm)

)
−
(
F (t1), ..., F (tm)

)
] →d Nm(0,Σu), (5.15)

where
Σu = Σ −W τU−1W,

Σ is given in (5.2), W =
(
W (t1), ...,W (tm)

)
, W (tj)=E[u(X1)I(−∞,tj ](X1)],

and the notation (−∞, t] is the same as that in (5.1).
Proof. We prove the case of m = 1. The case of m ≥ 2 is left as an
exercise. Let ū = n−1

∑n
i=1 u(Xi). It follows from (5.13), (5.14), and

Taylor’s expansion that

ū =
1

n

n∑

i=1

u(Xi)[u(Xi)]
τλn[1 + op(1)].

By the SLLN and CLT,

U−1ū = λn + op(n
−1/2).

Using Taylor’s expansion and the SLLN again, we have

1

n

n∑

i=1

I(−∞,t](Xi)(np̂i − 1) =
1

n

n∑

i=1

I(−∞,t](Xi)

[
1

1 + λτnu(Xi)
− 1

]

= − 1

n

n∑

i=1

I(−∞,t](Xi)λ
τ
nu(Xi) + op(n

−1/2)

= −λτnW (t) + op(n
−1/2)

= −ūτU−1W (t) + op(n
−1/2).

Thus,

F̂ (t) − F (t) = Fn(t) − F (t) +
1

n

n∑

i=1

I(−∞,t](Xi)(np̂i − 1)

= Fn(t) − F (t) − ūτU−1W (t) + op(n
−1/2)

=
1

n

n∑

i=1

{
I(−∞,t](Xi)−F (t)−[u(Xi)]

τU−1W (t)
}

+ op(n
−1/2).

The result follows from the CLT and the fact that

Var
(
[W (t)]τU−1u(Xi)

)
= [W (t)]τU−1UU−1W (t)

= [W (t)]τU−1W (t)

= E{[W (t)]τU−1u(Xi)I(−∞,t](Xi)}
= Cov

(
I(−∞,t](Xi), [W (t)]τU−1u(Xi)

)
.
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Comparing (5.15) with (5.2), we conclude that F̂ is asymptotically more
efficient than Fn.

Example 5.1 (Survey problems). An example of situations in which we
have auxiliary information expressed as (5.9) is a survey problem (Example
2.3) where the population P = {y1, ..., yN} consists of two-dimensional yj ’s,

yj = (y1j , y2j), and the population mean Ȳ2 = N−1
∑N

j=1 y2j is known.
For example, suppose that y1j is the current year’s income of unit j in
the population and y2j is the last year’s income. In many applications
the population total or mean of y2j ’s is known, for example, from tax
return records. Let X1, ..., Xn be a simple random sample (see Example
2.3) selected from P with replacement. ThenXi’s are i.i.d. bivariate random
vectors whose c.d.f. is

F (t) =
1

N

N∑

j=1

I(−∞,t](yj), (5.16)

where the notation (−∞, t] is the same as that in (5.1). If Ȳ2 is known, then
it can be expressed as (5.9) with u(x1, x2) = x2 − Ȳ2. In survey problems
Xi’s are usually sampled without replacement so that X1, ..., Xn are not
i.i.d. However, for a simple random sample without replacement, (5.8) can
still be treated as an empirical likelihood, given Xi’s. Note that F in (5.16)
is the c.d.f. of Xi, regardless of whether Xi’s are sampled with replacement.

If X = (X1, ..., Xn) is not a simple random sample, then the likelihood
(5.8) has to be modified. Suppose that πi is the probability that the ith
unit is selected (see Theorem 3.15). Given X = {yi, i ∈ s}, an empirical
likelihood is

ℓ(G) =
∏

i∈s

[PG({yi})]1/πi =
∏

i∈s

p
1/πi

i , (5.17)

where pi = PG({yi}). With the auxiliary information (5.9), an MELE of F
in (5.16) can be obtained by maximizing ℓ(G) in (5.17) subject to (5.10).
In this case F may not be the c.d.f. of Xi, but the c.d.f.’s of Xi’s are
determined by F and πi’s. It can be shown (exercise) that an MELE is
given by (5.11) with

p̂i =
1

πi[1 + λτnu(yi)]

/∑

i∈s

1

πi
(5.18)

and ∑

i∈s

u(yi)

πi[1 + λτnu(yi)]
= 0. (5.19)

If πi = a constant, then the MELE reduces to that in (5.11)-(5.13). If
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u(x) = 0 (no auxiliary information), then the MELE is

F̂ (t) =
∑

i∈s

1

πi
I(−∞,t](yi)

/∑

i∈s

1

πi
,

which is a ratio of two Horvitz-Thompson estimators (§3.4.2). Some asymp-
totic properties of the MELE F̂ can be found in Chen and Qin (1993).

The second part of Example 5.1 shows how to use empirical likelihoods
in a non-i.i.d. problem. Applications of empirical likelihoods in non-i.i.d.
problems are usually straightforward extensions of those in i.i.d. cases. The
following is another example.

Example 5.2 (Biased sampling). Biased sampling is often used in applica-
tions. Suppose that n = n1 + · · ·+nk, k ≥ 2; Xi’s are independent random
variables; X1, ..., Xn1 are i.i.d. with F ; and Xn1+···+nj+1, ..., Xn1+···+nj+1

are i.i.d. with the c.d.f.

∫ t

−∞
wj+1(s)dF (s)

/∫ ∞

−∞
wj+1(s)dF (s),

j = 1, ..., k− 1, where wj ’s are some nonnegative Borel functions. A simple
example is that X1, ..., Xn1 are sampled from F and Xn1+1, ..., Xn1+n2 are
sampled from F but conditional on the fact that each sampled value exceeds
a given value x0 (i.e., w2(s) = I(x0,∞)(s)). For instance, Xi’s are blood
pressure measurements; X1, ..., Xn1 are sampled from ordinary people and
Xn1+1, ..., Xn1+n2 are sampled from patients whose blood pressures are
higher than x0. The name biased sampling comes from the fact that there
is a bias in the selection of samples.

For simplicity we consider the case of k = 2, since the extension to k ≥ 3
is straightforward. Denote w2 by w. An empirical likelihood is

ℓ(G) =

n1∏

i=1

PG({xi})
n∏

i=n1+1

w(xi)PG({xi})∫
w(s)dG(s)

=

[
n∑

i=1

piw(xi)

]−n2 n∏

i=1

pi

n∏

i=n1+1

w(xi), (5.20)

where pi = PG({xi}). An MELE of F can be obtained by maximizing the
empirical likelihood (5.20) subject to pi > 0, i = 1, ..., n, and

∑n
i=1 pi =

1. Using the Lagrange multiplier method we can show (exercise) that an
MELE F̂ is given by (5.11) with

p̂i = [n1 + n2w(Xi)/ŵ]−1, i = 1, ..., n, (5.21)
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where ŵ satisfies

ŵ =

n∑

i=1

w(Xi)

n1 + n2w(Xi)/ŵ
.

An asymptotic result similar to that in Theorem 5.4 can be established
(Vardi, 1985; Qin, 1993).

If the function w depends on an unknown parameter vector θ, then the
method of profile empirical likelihood (see §5.1.4) can be applied.

Our last example concerns an important application in survival analysis.

Example 5.3 (Censored data). Let T1, ..., Tn be survival times that are
i.i.d. nonnegative random variables from a c.d.f. F , and C1, ..., Cn be i.i.d.
nonnegative random variables independent of Ti’s. In a variety of applica-
tions in biostatistics and life-time testing, we are only able to observe the
smaller of Ti and Ci and an indicator of which variable is smaller:

Xi = min{Ti, Ci}, δi = I(0,Ci)(Ti), i = 1, ..., n.

This is called a random censorship model and Ci’s are called censoring
times. We consider the estimation of the survival distribution F ; see
Kalbfleisch and Prentice (1980) for other problems involving censored data.

An MELE of F can be derived as follows. Let x(1) ≤ · · · ≤ x(n) be
ordered values of Xi’s and δ(i) be the δ-value associated with x(i). Consider
a c.d.f. G that assigns its mass to the points x(1), ..., x(n) and the interval
(x(n),∞). Let pi = PG({x(i)}), i = 1, ..., n, and pn+1 = 1 − G(x(n)). An
MELE of F is then obtained by maximizing

ℓ(G) =

n∏

i=1

p
δ(i)
i




n+1∑

j=i+1

pj




1−δ(i)

(5.22)

subject to

pi ≥ 0, i = 1, ..., n+ 1,

n+1∑

i=1

pi = 1. (5.23)

It can be shown (exercise) that an MELE is

F̂ (t) =

n+1∑

i=1

p̂iI(0,t](X(i)), (5.24)

where X(0) = 0, X(n+1) = ∞, X(1) ≤ · · · ≤ X(n) are order statistics, and

p̂i =
δ(i)

n−i+1

i−1∏

j=1

(
1 − δ(j)

n−j+1

)
, i = 1, ..., n, p̂n+1 = 1 −

n∑

j=1

p̂j.
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The F̂ in (5.24) can also be written as (exercise)

F̂ (t) = 1 −
∏

X(i)≤t

(
1 − δ(i)

n−i+1

)
, (5.25)

which is the well-known Kaplan-Meier (1958) product-limit estimator. Some
asymptotic results for F̂ in (5.25) can be found, for example, in Shorack
and Wellner (1986).

5.1.3 Density estimation

Suppose that X1, ..., Xn are i.i.d. random variables from F and that F is
unknown but has a Lebesgue p.d.f. f . Estimation of F can be done by
estimating f , which is called density estimation. Note that estimators of F
derived in §5.1.1 and §5.1.2 do not have Lebesgue p.d.f.’s.

Since f(t) = F ′(t) a.e., a simple estimator of f(t) is the difference
quotient

fn(t) =
Fn(t+ λn) − Fn(t− λn)

2λn
, t ∈ R, (5.26)

where Fn is the empirical c.d.f. given by (2.28) or (5.1) with d = 1, and
{λn} is a sequence of positive constants. Since 2nλnfn(t) has the binomial
distribution Bi(F (t+ λn) − F (t− λn), n),

E[fn(t)] → f(t) if λn → 0 as n→ ∞

and

Var
(
fn(t)

)
→ 0 if λn → 0 and nλn → ∞.

Thus, we should choose λn converging to 0 slower than n−1. If we assume
that λn → 0, nλn → ∞, and f is continuously differentiable at t, then it
can be shown (exercise) that

msefn(t)(F ) =
f(t)

2nλn
+ o

(
1

nλn

)
+O(λ2

n) (5.27)

and, under the additional condition that nλ3
n → 0,

√
nλn[fn(t) − f(t)] →d N

(
0, 1

2f(t)
)
. (5.28)

A useful class of estimators is the class of kernel density estimators of
the form

f̂(t) =
1

nλn

n∑

i=1

w
(
t−Xi

λn

)
, (5.29)
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where w is a known Lebesgue p.d.f. on R and is called the kernel. If we
choose w(t) = 1

2I[−1,1](t), then f̂(t) in (5.29) is essentially the same as the

so-called histogram. The bias of f̂(t) in (5.29) is

E[f̂(t)] − f(t) =
1

λn

∫
w
(
t−z
λn

)
f(z)dz − f(t)

=

∫
w(y)[f(t− λny) − f(t)]dy.

If f is bounded and continuous at t, then, by the dominated convergence
theorem (Theorem 1.1(iii)), the bias of f̂(t) converges to 0 as λn → 0; if f ′

is bounded and continuous at t and
∫
|t|w(t)dt < ∞, then the bias of f̂(t)

is O(λn). The variance of f̂(t) is

Var
(
f̂(t)

)
=

1

nλ2
n

Var
(
w
(
t−X1

λn

))

=
1

nλ2
n

∫ [
w
(
t−z
λn

)]2
f(z)dz

− 1

n

[
1

λn

∫
w
(
t−z
λn

)
f(z)dz

]2

=
1

nλn

∫
[w(y)]2f(t− λny)dy +O

(
1

n

)

=
w0f(t)

nλn
+ o

(
1

nλn

)

if f is bounded and continuous at t and w0 =
∫
[w(t)]2dt < ∞. Hence, if

λn → 0, nλn → ∞, and f ′ is bounded and continuous at t, then

msef̂(t)(F ) =
w0f(t)

nλn
+O(λ2

n).

Using the CLT (Theorem 1.15), one can show (exercise) that if λn → 0,
nλn → ∞, and f is bounded and continuous at t, then

√
nλn{f̂(t) − E[f̂(t)]} →d N

(
0, w0f(t)

)
. (5.30)

Furthermore, if f ′ is bounded and continuous at t,
∫
|t|w(t)dt < ∞, and

nλ3
n → 0, then

√
nλn{E[f̂(t)] − f(t)} = O

(√
nλnλn

)
→ 0

and, therefore, (5.30) holds with E[f̂(t)] replaced by f(t).

Similar to the estimation of a c.d.f., we can also study global properties
of fn or f̂ as an estimator of the density curve f , using a suitably defined



332 5. Estimation in Nonparametric Models

t

f(
t)

-2 -1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

True p.d.f.
Estimator (5.26)
Estimator (5.29)

Figure 5.1: Density estimates in Example 5.4

distance between f and its density estimator. For example, we may study
the convergence of supt∈R |f̂(t) − f(t)| or

∫
|f̂(t) − f(t)|2dt. More details

can be found, for example, in Silverman (1986).

Example 5.4. An i.i.d. sample of size n = 200 was generated from N(0, 1).
Density curve estimates (5.26) and (5.29) are plotted in Figure 5.1 with the
curve of the true p.d.f. For the kernel density estimator (5.29), w(t) = 1

2e
−|t|

is used and λn = 0.4. From Figure 5.1, it seems that the kernel estimate
(5.29) is much better than the estimate (5.26).

There are many other density estimation methods, for example, the
nearest neighbor method (Stone, 1977), the smoothing splines (Wahba,
1990), and the method of empirical likelihoods described in §5.1.2 (see,
e.g., Jones (1991)), which produces estimators of the form

f̂(t) =
1

λn

n∑

i=1

p̂iw
(
t−Xi

λn

)
.
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5.1.4 Semi-parametric methods

Suppose that the sample X is from a population in a family indexed by
(θ, ξ), where θ is a parameter vector, i.e., θ ∈ Θ ⊂ Rk with a fixed positive
integer k, but ξ is not vector-valued, e.g., ξ is a c.d.f. Such a model is often
called a semi-parametric model, although it is nonparametric according to
our definition in §2.1.2. A semi-parametric method refers to a statistical
inference method that combines a parametric method and a nonparametric
method in making an inference about the parametric component θ and the
nonparametric component ξ. In the following, we consider two important
examples of semi-parametric methods.

Partial likelihoods and proportional hazards models

The idea of partial likelihood (Cox, 1972) is similar to that of conditional
likelihood introduced in §4.4.3. To illustrate this idea, we assume that X
has a p.d.f. fθ,ξ and ξ is also a vector-valued parameter. Suppose that X
can be transformed into a sequence of pairs (V1, U1), ..., (Vm, Um) such that

fθ,ξ(x) =

[
m∏

i=1

gθ(ui|v1, u1, ..., ui−1, vi)

][
m∏

i=1

hθ,ξ(vi|v1, u1, ..., vi−1, ui−1)

]
,

where gθ(·|v1, u1, ..., ui−1, vi) is the conditional p.d.f. of Ui given V1 =
v1, U1 = u1, ..., Ui−1 = ui−1, Vi = vi, which does not depend on ξ, and
hθ,ξ(·|v1, u1, ..., vi−1, ui−1) is the conditional p.d.f. of Vi given V1 = v1, U1 =
u1, ..., Vi−1 = vi−1, Ui−1 = ui−1. The first product in the previous expres-
sion for fθ,ξ(x) is called the partial likelihood for θ.

When ξ is a nonparametric component, the partial likelihood for θ can
be similarly defined, in which case the full likelihood fθ,ξ(x) should be re-
placed by a nonparametric likelihood or an empirical likelihood. As long as
the conditional distributions of Ui given V1, U1, ..., Ui−1, Vi, i = 1, ...,m, are
in a parametric family (indexed by θ), the partial likelihood is parametric.

A semi-parametric estimation method consists of a parametric method
(typically the maximum likelihood method in §4.4) for estimating θ and a
nonparametric method for estimating ξ.

To illustrate the application of the method of partial likelihoods, we
consider the estimation of the c.d.f. of survival data in the random censor-
ship model described in Example 5.3. Following the notation in Example
5.3, we assume that {T1, ..., Tn} (survival times) and {C1, ..., Cn} (censor-
ing times) are two sets of independent nonnegative random variables and
that Xi = min{Ti, Ci} and δi = I(0,Ci)(Ti), i = 1, ..., n, are independent
observations. In addition, we assume that there is a p-vector Zi of covariate
values associated with Xi and δi. The situation considered in Example 5.3
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can be viewed as a special homogeneous case with Zi ≡ a constant.

The survival function when the covariate vector is equal to z is defined
to be Sz(t) = 1−Fz(t), where Fz is the c.d.f. of the survival time T having
the same distribution as Ti. Assume that fz(t) = F ′

z(t) exists for all t > 0.
The function λz(t) = fz(t)/Sz(t) is called the hazard function and the

function Λz(t) =
∫ t
0 λz(s)ds is called the cumulative hazard function, when

the covariate vector is equal to z. A commonly adopted model for λz is the
following proportional hazards model:

λz(t) = λ0(t)φ(βτ z), (5.31)

where φ is a known function (typically φ(x) = ex), z is a value of the p-
vector of covariates, β ∈ Rp is an unknown parameter vector, and λ0(t) is
the unknown hazard function when the covariate vector is 0 and is referred
to as the baseline hazard function. Under model (5.31),

1 − Fz(t) = exp{−Λz(t)} = exp{−φ(βτz)Λ0(t)}.

Thus, the estimation of the c.d.f. Fz or the survival function Sz can be done
through the estimation of β, the parametric component of model (5.31), and
Λ0, the nonparametric component of model (5.31).

Consider first the estimation of β using the method of partial likelihoods.
Suppose that there are l observed failures at times T(1) < · · · < T(l), where
(i) is the label for the ith failure ordered according to the time to failure.
(Note that a failure occurs when δi = 1.) Suppose that there are mi items
censored at or after T(i) but before T(i+1) at times T(i,1), ..., T(i,mi) (setting
T(0) = 0). Let Ui = (i) and Vi = (T(i), T(i−1,1), ..., T(i−1,mi−1)), i = 1, ..., l.
Then the partial likelihood is

l∏

i=1

P (Ui = (i)|V1, U1, ..., Ui−1, Vi).

Since λz(t) = lim∆>0,∆→0 ∆−1Pz(t ≤ T < t+ ∆|T > t), where Pz denotes
the probability measure of T when the covariate is equal to z,

P (Ui = (i)|V1, U1, ..., Ui−1, Vi) =
λZ(i)

(ti)∑
j∈Ri

λZj (ti)
=

φ(βτZ(i))∑
j∈Ri

φ(βτZj)
,

where ti is the observed value of T(i), Ri = {j : Xj ≥ ti} is called the risk
set, and the last equality follows from assumption (5.31). This leads to the
partial likelihood

ℓ(β) =

l∏

i=1

φ(βτZ(i))∑
j∈Ri

φ(βτZj)
=

n∏

i=1

[
φ(βτZi)∑

j∈Ri
φ(βτZj)

]δi

,

which is a function of the parameter β, given the observed data. The
maximum likelihood method introduced for parametric models in §4.4 can
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be applied to obtain a maximum partial likelihood estimator β̂ of β. It
is shown in Tsiatis (1981) that β̂ is consistent for β and is asymptotically
normal under some regularity conditions.

We now consider the estimation of Λ0. First, assume that the covariate
vector Zi is random, (Ti, Ci, Zi) are i.i.d., and Ti and Ci are conditionally
independent given Zi. Let (T,C, Z) be the random vector having the same
distribution as (Ti, Ci, Zi), X = min{T,C}, and δ = I(0,C)(T ). Under
assumption (5.31), it can be shown (exercise) that

Q(t) = P (X > t, δ = 1) =

∫ ∫ ∞

t

λ0(s)φ(βτ z)H(s|z)dsdG(z), (5.32)

where H(s|z) = P (X > s|Z = z) and G is the c.d.f. of Z. Then

dQ(t)

dt
= −λ0(t)

∫
φ(βτz)H(t|z)dG(z) (5.33)

and

λ0(t) = −dQ(t)

dt

1

K(t)
, (5.34)

where K(t) = E[φ(βτZ)I(t,∞)(X)] (exercise). Consequently,

Λ0(t) =

∫ t

0

λ0(s)ds = −
∫ t

0

dQ(s)

K(s)
.

An estimator of Λ0 can then be obtained by substituting Q and K in the
previous expression by their estimators

Q̂(t) =
1

n

n∑

i=1

I{Xi>t,δi=1}

and

K̂(t) =
1

n

n∑

i=1

φ(β̂τZi)I(t,∞)(Xi). (5.35)

This estimator is known as Breslow’s estimator. When Z1, ..., Zn are non-
random, we can still use Breslow’s estimator. Its asymptotic properties can
be found, for example, in Fleming and Harrington (1991).

Profile likelihoods

Let ℓ(θ, ξ) be a likelihood (or empirical likelihood), where θ and ξ are not
necessarily vector-valued. It may be difficult to maximize the likelihood
ℓ(θ, ξ) simultaneously over θ and ξ. For each fixed θ, let ξ(θ) satisfy

ℓ(θ, ξ(θ)) = sup
ξ
ℓ(θ, ξ).
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The function
ℓP (θ) = ℓ(θ, ξ(θ))

is called a profile likelihood function for θ. Suppose that θ̂P maximizes
ℓP (θ). Then θ̂P is called a maximum profile likelihood estimator of θ. Note

that θ̂P may be different from an MLE of θ. Although this idea can be
applied to parametric models, it is more useful in nonparametric models,
especially when θ is a parametric component.

For example, consider the empirical likelihood in (5.8) subject to the
constraints in (5.10). Sometimes it is more convenient to allow the function
u in (5.10) to depend on an unknown parameter vector θ ∈ Rk, where k ≤ s.
This leads to the empirical likelihood ℓ(G) in (5.8) subject to (5.10) with
u(x) replaced by ψ(x, θ), where ψ is a known function from Rd×Rk to Rs.
Maximizing this empirical likelihood is equivalent to maximizing

ℓ(p1, ..., pn, ω, λ, θ) =

n∏

i=1

pi + ω

(
1 −

n∑

i=1

pi

)
+

n∑

i=1

piλ
τψ(xi, θ),

where ω and λ are Lagrange multipliers. It follows from (5.12) and (5.13)
that ω = n, p̃i(θ) = n−1{1 + [λn(θ)]τψ(xi, θ)}−1 with a λn(θ) satisfying

1

n

n∑

i=1

ψ(xi, θ)

1 + [λn(θ)]τψ(xi, θ)
= 0

maximize ℓ(p1, ...pn, ω, λ, θ) for any fixed θ. Substituting p̃i with
∑n
i=1 p̃i =

1 into ℓ(p1, ...pn, ω, λ, θ) leads to the following profile empirical likelihood
for θ:

ℓP (θ) =

n∏

i=1

1

n{1 + [λn(θ)]τψ(xi, θ)}
. (5.36)

If θ̂ is a maximum of ℓP (θ) in (5.36), then θ̂ is a maximum profile empirical

likelihood estimator of θ and the corresponding estimator of pi is p̃i(θ̂). A

result similar to Theorem 5.4 and a result on asymptotic normality of θ̂ are
established in Qin and Lawless (1994), under some conditions on ψ.

Another example is the empirical likelihood (5.20) in the problem of
biased sampling with a function w(x) = wθ(x) depending on an unknown
θ ∈ Rk. The profile empirical likelihood for θ is then

ℓP (θ) = ŵ−n2

θ

n∏

i=1

1

n1 + n2wθ(xi)/ŵθ

n∏

i=n1+1

wθ(xi),

where ŵθ satisfies

ŵθ =

n∑

i=1

wθ(xi)

n1 + n2wθ(xi)/ŵθ
.
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Finally, we consider the problem of missing data. Assume that X1, ...,Xn

are i.i.d. random variables from an unknown c.d.f. F and some Xi’s are
missing. Let δi = 1 if Xi is observed and δi = 0 if Xi is missing. Suppose
that (Xi, δi) are i.i.d. Let

π(x) = P (δi = 1|Xi = x).

If Xi and δi are independent, i.e., π(x) ≡ π does not depend on x, then the
empirical c.d.f. based on observed data, i.e., the c.d.f. putting mass r−1 to
each observed Xi, where r is the number of observed Xi’s, is an unbiased
and consistent estimator of F , provided that π > 0. On the other hand,
if π(x) depends on x, then the empirical c.d.f. based on observed data is a
biased and inconsistent estimator of F . In fact, it can be shown (exercise)
that the empirical c.d.f. based on observed data is an unbiased estimator
of P (Xi ≤ x|δi = 1), which is generally different from the unconditional
probability F (x) = P (Xi ≤ x).

If both π and F are in parametric models, then we can apply the method
of maximum likelihood. For example, if π(x) = πθ(x) and F (x) = Fϑ(x)
has a p.d.f. fϑ, where θ and ϑ are vectors of unknown parameters, then a
parametric likelihood of (θ, ϑ) is

ℓ(θ, ϑ) =

n∏

i=1

[πθ(xi)fϑ(xi)]
δi(1 − π)1−δi ,

where π =
∫
πθ(x)dF (x). Suppose now that π(x) = πθ(x) is the parametric

component and F is the nonparametric component. Then an empirical
likelihood can be defined as

ℓ(θ,G) =

n∏

i=1

[πθ(xi)PG({xi})]δi(1 − π)1−δi

subject to pi ≥ 0,
∑n
i=1 δipi = 1,

∑n
i=1 δipi[πθ(xi) − π] = 0, where pi =

PG({xi}), i = 1, ..., n.

It can be shown (exercise) that the logarithm of the profile empirical
likelihood for (θ, π) (with a Lagrange multiplier) is

n∑

i=1

{
δi log

(
πθ(xi)

)
+(1−δi) log(1−π)−δi log

(
1+λ[πθ(xi)−π]

)}
. (5.37)

Under some regularity conditions, Qin, Leung, and Shao (2002) show that

the estimators θ̂, π̂, and λ̂ obtained by maximizing the likelihood in (5.37)
are consistent and asymptotically normal and that the empirical c.d.f.
putting mass p̂i = r−1{1 + λ̂[πθ̂(Xi) − π̂]}−1 to each observed Xi is con-
sistent for F . The results are also extended to the case where a covariate
vector Zi associated with Xi is observed for all i.
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5.2 Statistical Functionals

In many nonparametric problems, we are interested in estimating some
characteristics (parameters) of the unknown population, not the entire pop-
ulation. We assume in this section that Xi’s are i.i.d. from an unknown
c.d.f. F on Rd. Most characteristics of F can be written as T(F ), where T

is a functional from F to Rs. If we estimate F by the empirical c.d.f. Fn in
(5.1), then a natural estimator of T(F ) is T(Fn), which is called a statistical
functional.

Many commonly used statistics can be written as T(Fn) for some T.
Two simple examples are given as follows. Let T(F ) =

∫
ψ(x)dF (x) with

an integrable function ψ, and T(Fn) =
∫
ψ(x)dFn(x) = n−1

∑n
i=1 ψ(Xi).

The sample moments discussed in §3.5.2 are particular examples of this kind
of statistical functional. For d = 1, let T(F ) = F−1(p) = inf{x : F (x) ≥ p},
where p ∈ (0, 1) is a fixed constant. F−1(p) is called the pth quantile of F .
The statistical functional T(Fn) = F−1

n (p) is called the pth sample quantile.
More examples of statistical functionals are provided in §5.2.1 and §5.2.2.

In this section, we study asymptotic distributions of T(Fn). We focus
on the case of real-valued T (s = 1), since the extension to the case of s ≥ 2
is straightforward.

5.2.1 Differentiability and asymptotic normality

Note that T(Fn) is a function of the “statistic” Fn. In Theorem 1.12 (and
§3.5.1) we have studied how to use Taylor’s expansion to establish asymp-
totic normality of differentiable functions of statistics that are asymptot-
ically normal. This leads to the approach of establishing asymptotic nor-
mality of T(Fn) by using some generalized Taylor expansions for functionals
and using asymptotic properties of Fn given in §5.1.1.

First, we need a suitably defined differential of T. Several versions of
differentials are given in the following definition.

Definition 5.2. Let T be a functional on F0, a collection of c.d.f.’s on Rd,
and let D = {c(G1 −G2) : c ∈ R, Gj ∈ F0, j = 1, 2}.
(i) A functional T on F0 is Gâteaux differentiable at G ∈ F0 if and only if
there is a linear functional LG on D (i.e., LG(c1∆1 + c2∆2) = c1LG(∆1) +
c2LG(∆2) for any ∆j ∈ D and cj ∈ R) such that ∆ ∈ D and G+ t∆ ∈ F0

imply

lim
t→0

[
T(G+ t∆) − T(G)

t
− LG(∆)

]
= 0.

(ii) Let ̺ be a distance on F0 induced by a norm ‖ · ‖ on D. A functional
T on F0 is ̺-Hadamard differentiable at G ∈ F0 if and only if there is a
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linear functional LG on D such that for any sequence of numbers tj → 0
and {∆,∆j , j = 1, 2, ...} ⊂ D satisfying ‖∆j −∆‖ → 0 and G+ tj∆j ∈ F0,

lim
j→∞

[
T(G+ tj∆j) − T(G)

tj
− LG(∆j)

]
= 0.

(iii) Let ̺ be a distance on F0. A functional T on F0 is ̺-Fréchet differen-
tiable at G ∈ F0 if and only if there is a linear functional LG on D such
that for any sequence {Gj} satisfying Gj ∈ F0 and ̺(Gj , G) → 0,

lim
j→∞

T(Gj) − T(G) − LG(Gj −G)

̺(Gj , G)
= 0.

The functional LG is called the differential of T at G. If we define
h(t) = T(G + t∆), then the Gâteaux differentiability is equivalent to the
differentiability of the function h(t) at t = 0, and LG(∆) is simply h′(0). Let
διx denote the d-dimensional c.d.f. degenerated at the point x and φG(x) =
LG(διx −G). Then φF (x) is called the influence function of T at F , which
is an important tool in robust statistics (see Hampel (1974)).

If T is Gâteaux differentiable at F , then we have the following expansion
(taking t = n−1/2 and ∆ =

√
n(Fn − F )):

√
n[T(Fn) − T(F )] = LF

(√
n(Fn − F )

)
+Rn. (5.38)

Since LF is linear,

LF

(√
n(Fn − F )

)
=

1√
n

n∑

i=1

φF (Xi) →d N(0, σ2
F ) (5.39)

by the CLT, provided that

E[φF (X1)] = 0 and σ2
F = E[φF (X1)]

2 <∞ (5.40)

(which is usually true when φF is bounded or when F has some finite
moments). By Slutsky’s theorem and (5.39),

√
n[T(Fn) − T(F )] →d N(0, σ2

F ) (5.41)

if Rn in (5.38) is op(1).

Unfortunately, Gâteaux differentiability is too weak to be useful in es-
tablishing Rn = op(1) (or (5.41)). This is why we need other types of
differentiability. Hadamard differentiability, which is also referred to as
compact differentiability, is clearly stronger than Gâteaux differentiability
but weaker than Fréchet differentiability (exercise). For a given functional
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T, we can first find LG by differentiating h(t) = T(G+ t∆) at t = 0 and then
check whether T is ̺-Hadamard (or ̺-Fréchet) differentiable with a given
̺. The most commonly used distances on F0 are the sup-norm distance
̺∞ and the Lp distance ̺Lp

. Their corresponding norms are given by (5.3)

and (5.5), respectively.

Theorem 5.5. Let X1, ..., Xn be i.i.d. from a c.d.f. F on Rd.
(i) If T is ̺∞-Hadamard differentiable at F , then Rn in (5.38) is op(1).
(ii) If T is ̺-Fréchet differentiable at F with a distance ̺ satisfying

√
n̺(Fn, F ) = Op(1), (5.42)

then Rn in (5.38) is op(1).
(iii) In either (i) or (ii), if (5.40) is also satisfied, then (5.41) holds.
Proof. Part (iii) follows directly from (i) or (ii). The proof of (i) involves
some high-level mathematics and is omitted; see, for example, Fernholz
(1983). We now prove (ii). From Definition 5.2(iii), for any ǫ > 0, there is
a δ > 0 such that |Rn| < ǫ

√
n̺(Fn, F ) whenever ̺(Fn, F ) < δ. Then

P (|Rn| > η) ≤ P
(√
n̺(Fn, F ) > η/ǫ

)
+ P (̺(Fn, F ) ≥ δ)

for any η > 0, which implies

lim sup
n

P (|Rn| > η) ≤ lim sup
n

P
(√
n̺(Fn, F ) > η/ǫ

)
.

The result follows from (5.42) and the fact that ǫ can be made arbitrarily
small.

Since ̺-Fréchet differentiability implies ̺-Hadamard differentiability,
Theorem 5.5(ii) is useful when ̺ is not the sup-norm distance. There
are functionals that are not ̺∞-Hadamard differentiable (and hence not
̺∞-Fréchet differentiable). For example, if d = 1 and T(G) = g(

∫
xdG)

with a differentiable function g, then T is not necessarily ̺∞-Hadamard
differentiable, but is ̺L1

-Fréchet differentiable (exercise).

From Theorem 5.2, condition (5.42) holds for ̺Lp
under the moment

conditions on F given in Theorem 5.2.

Note that if ̺ and ˜̺ are two distances on F0 satisfying ˜̺(G1, G2) ≤
c̺(G1, G2) for a constant c and all Gj ∈ F0, then ˜̺-Hadamard (Fréchet)
differentiability implies ̺-Hadamard (Fréchet) differentiability. This sug-
gests the use of the distance ̺∞+p = ̺∞ + ̺Lp

, which also satisfies (5.42)
under the moment conditions in Theorem 5.2. The distance ̺∞+p is useful
in some cases (Theorem 5.6).

A ̺∞-Hadamard differentiable T having a bounded and continuous in-
fluence function φF is robust in Hampel’s sense (see, e.g., Huber (1981)).
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This is motivated by the fact that the asymptotic behavior of T(Fn) is de-
termined by that of LF (Fn − F ), and a small change in the sample, i.e.,
small changes in all xi’s (rounding, grouping) or large changes in a few xi’s
(gross errors, blunders), will result in a small change of T(Fn) if and only
if φF is bounded and continuous.

We now consider some examples. For the sample moments related to
functionals of the form T(G) =

∫
ψ(x)dG(x), it is clear that T is a linear

functional. Any linear functional is trivially ̺-Fréchet differentiable for any
̺. Next, if F is one-dimensional and F ′(x) > 0 for all x, then the quantile
functional T(G) = G−1(p) is ̺∞-Hadamard differentiable at F (Fernholz,
1983). Hence, Theorem 5.5 applies to these functionals. But the asymptotic
normality of sample quantiles can be established under weaker conditions,
which are studied in §5.3.1.

Example 5.5 (Convolution functionals). Suppose that F is on R and for
a fixed z ∈ R,

T(G) =

∫
G(z − y)dG(y), G ∈ F.

If X1 and X2 are i.i.d. with c.d.f. G, then T(G) is the c.d.f. of X1 + X2

(Exercise 47 in §1.6), and is also called the convolution of G evaluated at
z. For tj → 0 and ‖∆j − ∆‖∞ → 0,

T(G+ tj∆j) − T(G) = 2tj

∫
∆j(z − y)dG(y) + t2j

∫
∆j(z − y)d∆j(y)

(for ∆ = c1G1 + c2G2, Gj ∈ F0, and cj ∈ R, d∆ denotes c1dG1 + c2dG2).
Using Lemma 5.2, one can show (exercise) that

∫
∆j(z − y)d∆j(y) = O(1). (5.43)

Hence T is ̺∞-Hadamard differentiable at any G ∈ F with LG(∆) =
2
∫

∆(z−y)dG(y). The influence function, φF (x) = 2
∫
(διx−F )(z−y)dF (y),

is a bounded function and clearly satisfies (5.40). Thus, (5.41) holds. If F
is continuous, then T is robust in Hampel’s sense (exercise).

Three important classes of statistical functionals, i.e., L-estimators, M-
estimators, and rank statistics and R-estimators, are considered in §5.2.2.

Lemma 5.2. Let ∆ ∈ D and h be a continuous function on R such that∫
h(x)d∆(x) is finite. Then

∣∣∣∣
∫
h(x)d∆(x)

∣∣∣∣ ≤ ‖h‖V ‖∆‖∞,
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where ‖h‖V is the variation norm defined by

‖h‖V = lim
a→−∞,b→∞


sup

m∑

j=1

|h(xj) − h(xj−1)|




with the supremum being taken over all partitions a = x0 < · · · < xm = b
of the interval [a, b].

The proof of Lemma 5.2 can be found in Natanson (1961, p. 232).

The differentials in Definition 5.2 are first-order differentials. For some
functionals, we can also consider their second-order differentials, which pro-
vides a way of defining the order of the asymptotic biases via expansion
(2.37).

Definition 5.3. Let T be a functional on F0 and ̺ be a distance on F0.
(i) T is second-order ̺-Hadamard differentiable at G ∈ F0 if and only if
there is a functional QG on D such that for any sequence of numbers tj → 0
and {∆,∆j , j = 1, 2, ...} ⊂ D satisfying ‖∆j −∆‖ → 0 and G+ tj∆j ∈ F0,

lim
j→∞

T(G+ tj∆j) − T(G) − QG(tj∆j)

t2j
= 0,

where QG(∆) =
∫ ∫

ψG(x, y)d(G + ∆)(x)d(G + ∆)(y) for a function ψG
satisfying ψG(x, y) = ψG(y, x),

∫ ∫
ψG(x, y)dG(x)dG(y) = 0, and D and

‖ · ‖ are the same as those in Definition 5.2(ii).
(ii) T is second-order ̺-Fréchet differentiable at G ∈ F0 if and only if, for
any sequence {Gj} satisfying Gj ∈ F0 and ̺(Gj , G) → 0,

lim
j→∞

T (Gj) − T (G) − QG(Gj −G)

[̺(Gj , G)]2
= 0,

where QG is the same as that in (i).

For a second-order differentiable T, we have the following expansion:

n[T(Fn) − T(F )] = nVn +Rn, (5.44)

where

Vn = QF (Fn − F ) =

∫ ∫
ψF (x, y)dFn(x)dFn(y) =

1

n2

n∑

j=1

n∑

i=1

ψF (Xi, Xj)

is a “V-statistic” (§3.5.3) whose asymptotic properties are given by The-
orem 3.16. If Rn in (5.44) is op(1), then the asymptotic behavior of
T(Fn) − T(F ) is the same as that of Vn.
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Proposition 5.1. Let X1, ..., Xn be i.i.d. from F .
(i) If T is second-order ̺∞-Hadamard differentiable at F , then Rn in (5.44)
is op(1).
(ii) If T is second-order ̺-Fréchet differentiable at F with a distance ̺
satisfying (5.42), then Rn in (5.44) is op(1).

Combining Proposition 5.1 with Theorem 3.16, we conclude that if

ζ1 = Var

(∫
ψF (X1, y)dF (y)

)
> 0,

then (5.41) holds with σ2
F = 4ζ1 and amseT (Fn)(P ) = σ2

F /n; if ζ1 = 0, then

n[T(Fn) − T(F )] →d

∞∑

j=1

λjχ
2
1j

and amseT (Fn)(P ) = {2Var(ψF (X1, X2)) + [EψF (X1, X1)]
2}/n2. In any

case, expansion (2.37) holds and the n−1 order asymptotic bias of T (Fn) is
EψF (X1, X1)/n.

If T is also first-order differentiable, then it can be shown (exercise) that

φF (x) = 2

∫
ψF (x, y)dF (y). (5.45)

Then ζ1 = 4−1Var(φF (X1)) and ζ1 = 0 corresponds to the case of φF (x) ≡
0. However, second-order ̺-Hadamard (Fréchet) differentiability does not
imply first-order ̺-Hadamard (Fréchet) differentiability (exercise).

The technique in this section can be applied to non-i.i.d. Xi’s when the
c.d.f.’s of Xi’s are determined by an unknown c.d.f. F , provided that results
similar to (5.39) and (5.42) (with Fn replaced by some other estimator F̂ )
can be established.

5.2.2 L-, M-, and R-estimators and rank statistics

Three large classes of statistical functionals based on i.i.d. Xi’s are studied
in this section.

L-estimators

Let J(t) be a Borel function on [0, 1]. An L-functional is defined as

T(G) =

∫
xJ(G(x))dG(x), G ∈ F0, (5.46)

where F0 contains all c.d.f.’s on R for which T is well defined. ForX1, ..., Xn

i.i.d. from F ∈ F0, T(Fn) is called an L-estimator of T(F ).
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Example 5.6. The following are some examples of commonly used L-
estimators.
(i) When J ≡ 1, T(Fn) = X̄, the sample mean.
(ii) When J(t) = 4t− 2, T(Fn) is proportional to Gini’s mean difference.
(iii) When J(t) = (β − α)−1I(α,β)(t) for some constants α < β, T(Fn) is
called the trimmed sample mean.

For an L-functional T, it can be shown (exercise) that

T(G) − T(F ) =

∫
φF (x)d(G − F )(x) +R(G,F ), (5.47)

where

φF (x) = −
∫

(διx − F )(y)J(F (y))dy, (5.48)

R(G,F ) = −
∫
WG(x)[G(x) − F (x)]dx,

and

WG(x) =

{
[G(x) − F (x)]−1

∫ G(x)

F (x)
J(t)dt− J(F (x)) G(x) 6= F (x)

0 G(x) = F (x).

A sufficient condition for (5.40) in this case is that J is bounded and F
has a finite variance (exercise). However, (5.40) is also satisfied if φF is
bounded. The differentiability of T can be verified under some conditions
on J .

Theorem 5.6. Let T be an L-functional defined by (5.46).
(i) Suppose that J is bounded, J(t) = 0 when t ∈ [0, α] ∪ [β, 1] for some
constants α < β, and that the set D = {x : J is discontinuous at F (x)}
has Lebesgue measure 0. Then T is ̺∞-Fréchet differentiable at F with the
influence function φF given by (5.48), and φF is bounded and continuous
and satisfies (5.40).
(ii) Suppose that J is bounded, the set D in (i) has Lebesgue measure 0,
and J is continuous on [0, α] ∪ [β, 1] for some constants α < β. Then T is
̺∞+1-Fréchet differentiable at F .
(iii) Suppose that |J(t) − J(s)| ≤ C|t− s|p−1, where C > 0 and p > 1 are
some constants. Then T is ̺Lp

-Fréchet differentiable at F .

(iv) If, in addition to the conditions in part (i), J ′ is continuous on [α, β],
then T is second-order ̺∞-Fréchet differentiable at F with

ψF (x, y) = φF (x) + φF (y) −
∫

(διx − F )(z)(διy − F )(z)J ′(F (z))dz.

(v) Suppose that J ′ is continuous on [0, 1]. Then T is second-order ̺L2
-

Fréchet differentiable at F with the same ψF given in (iv).
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Proof. We prove (i)-(iii). The proofs for (iv) and (v) are similar and are
left to the reader.
(i) Let Gj ∈ F and ̺∞(Gj , F ) → 0. Let c and d be two constants such that
F (c) > β and F (d) < α. Then, for sufficiently large j, Gj(x) ∈ [0, α]∪ [β, 1]
if x > c or x < d. Hence, for sufficiently large j,

|R(Gj , F )| =

∣∣∣∣
∫ c

d

WGj (x)(Gj − F )(x)dx

∣∣∣∣

≤ ̺∞(Gj , F )

∫ c

d

|WGj (x)|dx.

Since J is continuous at F (x) when x 6∈ D and D has Lebesgue measure
0, WGj (x) → 0 a.e. Lebesgue. By the dominated convergence theorem,∫ c
d
|WGj (x)|dx → 0. This proves that T is ̺∞-Fréchet differentiable. The

assertions on φF can be proved by noting that

φF (x) = −
∫ c

d

(διx − F )(y)J(F (y))dy.

(ii) From the proof of (i), we only need to show that
∣∣∣∣
∫

A

WGj (x)(Gj − F )(x)dx

∣∣∣∣
/
̺∞+1(Gj , F ) → 0, (5.49)

where A = {x : F (x) ≤ α or F (x) > β}. The quantity on the left-hand
side of (5.49) is bounded by supx∈A |WGj (x)|, which converges to 0 under
the continuity assumption of J on [0, α] ∪ [β, 1]. Hence (5.49) follows.
(iii) The result follows from

|R(G,F )| ≤ C

∫
|G(x) − F (x)|pdx = O

(
[̺Lp

(G,F )]p
)

and the fact that p > 1.

An L-estimator with J(t) = 0 when t ∈ [0, α]∪ [β, 1] is called a trimmed
L-estimator. Theorem 5.6(i) shows that trimmed L-estimators satisfy (5.41)
and are robust in Hampel’s sense. In cases (ii) and (iii) of Theorem 5.6,
(5.41) holds if Var(X1) < ∞, but T(Fn) may not be robust in Hampel’s
sense. It can be shown (exercise) that one or several of (i)-(v) of Theorem
5.6 can be applied to each of the L-estimators in Example 5.6.

M-estimators

Let ρ(x, t) be a Borel function on Rd ×R and Θ be an open subset of R.
An M-functional is defined to be a solution of

∫
ρ(x, T(G))dG(x) = min

t∈Θ

∫
ρ(x, t)dG(x), G ∈ F0, (5.50)
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where F0 contains all c.d.f.’s on Rd for which the integrals in (5.50) are well
defined. For X1, ..., Xn i.i.d. from F ∈ F0, T(Fn) is called an M-estimator
of T(F ). Assume that ψ(x, t) = ∂ρ(x, t)/∂t exists a.e. and

λG(t) =

∫
ψ(x, t)dG(x) =

∂

∂t

∫
ρ(x, t)dG(x). (5.51)

Then λG(T(G)) = 0.

Example 5.7. The following are some examples of M-estimators.
(i) If ρ(x, t) = (x − t)2/2, then ψ(x, t) = t − x; T(G) =

∫
xdG(x) is the

mean functional; and T(Fn) = X̄ is the sample mean.
(ii) If ρ(x, t) = |x− t|p/p, where p ∈ [1, 2), then

ψ(x, t) =

{ |x− t|p−1 x ≤ t

−|x− t|p−1 x > t.

When p = 1, T(Fn) is the sample median. When 1 < p < 2, T (Fn) is called
the pth least absolute deviations estimator or the minimum Lp distance
estimator.
(iii) Let F0 = {fθ : θ ∈ Θ} be a parametric family of p.d.f.’s with Θ ⊂ R
and ρ(x, t) = − log ft(x). Then T(Fn) is an MLE. This indicates that M-
estimators are extensions of MLE’s in parametric models.
(iv) Let C > 0 be a constant. Huber (1964) considers

ρ(x, t) =

{
1
2 (x − t)2 |x− t| ≤ C
1
2C

2 |x− t| > C

with

ψ(x, t) =

{
t− x |x− t| ≤ C

0 |x− t| > C.

The corresponding T(Fn) is a type of trimmed sample mean.
(v) Let C > 0 be a constant. Huber (1964) considers

ρ(x, t) =

{
1
2 (x− t)2 |x− t| ≤ C

C|x− t| − 1
2C

2 |x− t| > C

with

ψ(x, t) =





C t− x > C

t− x |x− t| ≤ C

−C t− x < −C.
The corresponding T(Fn) is a type of Winsorized sample mean.
(vi) Hampel (1974) considers ψ(x, t) = ψ0(t − x) with ψ0(s) = −ψ0(−s)
and

ψ0(s) =





s 0 ≤ s ≤ a

a a < s ≤ b
a(c−s)
c−b b < s ≤ c

0 s > c,
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where 0 < a < b < c are constants. A smoothed version of ψ0 is

ψ1(s) =

{
sin(as) 0 ≤ s < π/a

0 s > π/a.

For bounded and continuous ψ, the following result shows that T is ̺∞-
Hadamard differentiable with a bounded and continuous influence function
and, hence, T(Fn) satisfies (5.41) and is robust in Hampel’s sense.

Theorem 5.7. Let T be an M-functional defined by (5.50). Assume that
ψ is a bounded and continuous function on Rd × R and that λF (t) is
continuously differentiable at T(F ) and λ′F (T(F )) 6= 0. Then T is ̺∞-
Hadamard differentiable at F with

φF (x) = −ψ(x, T(F ))/λ′F (T(F )).

Proof. Let tj → 0, ∆j ∈ D, ‖∆j − ∆‖∞ → 0, and Gj = F + tj∆j ∈ F.
Since λG(T(G)) = 0,

|λF (T(Gj)) − λF (T(F ))| =

∣∣∣∣tj
∫
ψ(x, T(Gj))d∆j(x)

∣∣∣∣→ 0

by ‖∆j − ∆‖∞ → 0 and the boundedness of ψ. Note that λ′F (T(F )) 6= 0.
Hence, the inverse of λF (t) exists and is continuous in a neighborhood of
0 = λF (T(F )). Therefore,

T(Gj) − T(F ) → 0. (5.52)

Let hF (T(F )) = λ′F (T(F )), hF (t) = [λF (t) − λF (T(F ))]/[t − T(F )] if t 6=
T(F ),

R1j =

∫
ψ(x, T(F ))d∆j(x)

[
1

λ′F (T(F ))
− 1

hF (T(Gj))

]
,

R2j =
1

hF (T(Gj))

∫
[ψ(x, T(Gj)) − ψ(x, T(F ))]d∆j(x),

and

LF (∆) = − 1

λ′F (T(F ))

∫
ψ(x, T(F ))d∆(x), ∆ ∈ D.

Then
T(Gj) − T(F ) = −LF (tj∆j) + tj(R1j −R2j).

By (5.52), ‖∆j − ∆‖∞ → 0, and the boundedness of ψ, Rj1 → 0. The
result then follows from R2j → 0, which follows from ‖∆j − ∆‖∞ → 0 and
the boundedness and continuity of ψ (exercise).
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Some ψ functions in Example 5.7 satisfy the conditions in Theorem
5.7 (exercise). Under more conditions on ψ, it can be shown that an M-
functional is ̺∞-Fréchet differentiable at F (Clarke, 1986; Shao, 1993).
Some M-estimators that satisfy (5.41) but are not differentiable functionals
are studied in §5.4.

Rank statistics and R-estimators

Assume that X1, ..., Xn are i.i.d. from a c.d.f. F on R. The rank of Xi

among X1, ..., Xn, denoted by Ri, is defined to be the number of Xj ’s
satisfying Xj ≤ Xi, i = 1, ..., n. The rank of |Xi| among |X1|, ..., |Xn| is

similarly defined and denoted by R̃i. A statistic that is a function of Ri’s
or R̃i’s is called a rank statistic. For G ∈ F, let

G̃(x) = G(x) −G
(
(−x)−

)
, x > 0,

where g(x−) denotes the left limit of the function g at x. Define a functional
T by

T(G) =

∫ ∞

0

J(G̃(x))dG(x), G ∈ F, (5.53)

where J is a function on [0, 1] with a bounded derivative J ′. Then

T(Fn) =

∫ ∞

0

J(F̃n(x))dFn(x) =
1

n

n∑

i=1

J
(
R̃i

n

)
I(0,∞)(Xi)

is a (one-sample) signed rank statistic. If J(t) = t, then T(Fn) is the well-
known Wilcoxon signed rank test statistic (§6.5.1).

Statistics based on ranks (or signed ranks) are robust against changes in
values of xi’s, but may not provide efficient inference procedures, since the
values of xi’s are discarded after ranks (or signed ranks) are determined.

It can be shown (exercise) that T in (5.53) is ̺∞-Hadamard differentiable
at F with the differential

LF (∆) =

∫ ∞

0

J ′(F̃ (x))∆̃(x)dF (x) +

∫ ∞

0

J(F̃ (x))d∆(x), (5.54)

where ∆ ∈ D and ∆̃(x) = ∆(x) − ∆((−x)−).

These results can be extended to the case where X1, ..., Xn are i.i.d.
from a c.d.f. F on R2. For any c.d.f. G on R2, let J be a function on [0, 1]
with J(1 − t) = −J(t) and a bounded J ′,

Ḡ(y) = [G(y,∞) +G(∞, y)]/2, y ∈ R,
and

T(G) =

∫
J(Ḡ(y))dG(y,∞). (5.55)
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Let Xi = (Yi, Zi), Ri be the rank of Yi, and Ui be the number of Zj’s
satisfying Zj ≤ Yi, i = 1, ..., n. Then

T(Fn) =

∫
J(F̄n(y))dFn(y,∞) =

1

n

n∑

i=1

J
(
Ri+Ui

2n

)

is called a two-sample linear rank statistic. It can be shown (exercise) that
T in (5.55) is ̺∞-Hadamard differentiable at F with the differential

LF (∆) =

∫
J ′(F̄ (y))∆̄(y)dF (y,∞) +

∫
J(F̄ (y))d∆(y,∞), (5.56)

where ∆̄(y) = [∆(y,∞) + ∆(∞, y)]/2.

Rank statistics (one-sample or two-sample) are asymptotically normal
and robust in Hampel’s sense (exercise). These results are useful in testing
hypotheses (§6.5).

Let F be a continuous c.d.f. on R symmetric about an unknown pa-
rameter θ ∈ R. An estimator of θ closely related to a rank statistic can be
derived as follows. Let Xi be i.i.d. from F and Wi = (Xi, 2t−Xi) with a
fixed t ∈ R. The functional T in (5.55) evaluated at the c.d.f. of Wi is equal
to

λF (t) =

∫
J
(
F (x)+1−F (2t−x)

2

)
dF (x). (5.57)

If J is strictly increasing and F is strictly increasing in a neighborhood of
θ, then λF (t) = 0 if and only if t = θ (exercise). For G ∈ F, define T(G) to
be a solution of

∫
J
(
G(x)+1−G(2T(G)−x)

2

)
dG(x) = 0. (5.58)

T(Fn) is called an R-estimator of T(F ) = θ. When J(t) = t − 1
2 (which is

related to the Wilcoxon signed rank test), T(Fn) is the well-known Hodges-
Lehmann estimator and is equal to any value between the two middle points
of the values (Xi +Xj)/2, i = 1, ..., n, j = 1, ..., n.

Theorem 5.8. Let T be the functional defined by (5.58). Suppose that
F is continuous and symmetric about θ, the derivatives F ′ and J ′ exist,
and J ′ is bounded. Then T is ̺∞-Hadamard differentiable at F with the
influence function

φF (x) =
J(F (x))∫

J ′(F (x))F ′(x)dF (x)
.

Proof. Since F is symmetric about θ, F (x) + F (2θ − x) = 1. Under
the assumed conditions, λF (t) is continuous and

∫
J ′(F (x))F ′(x)dF (x) =

−λ′F (θ) 6= 0 (exercise). Hence, the inverse of λF exists and is continuous
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at 0 = λF (θ). Suppose that tj → 0, ∆j ∈ D, ‖∆j − ∆‖∞ → 0, and
Gj = F + tj∆j ∈ F. Then

∫
[J(Gj(x, t)) − J(F (x, t))]dGj(x) → 0

uniformly in t, where G(x, t) = [G(x) + 1 −G(2t− x)]/2, and
∫
J(F (x, t))d(Gj − F )(x) =

∫
(F −Gj)(x)J

′(F (x, t))dF (x, t) → 0

uniformly in t. Let λG(t) be defined by (5.57) with F replaced by G. Then

λGj (t) − λF (t) → 0

uniformly in t. Thus, λF (T(Gj)) → 0, which implies

T(Gj) → T(F ) = θ. (5.59)

Let ξG(t) =
∫
J(F (x, t))dG(x), hF (t) = [λF (t) − λF (θ)]/(t − θ) if t 6= θ,

and hF (θ) = λ′F (θ). Then T(Gj)− T(F )−
∫
φF (x)d(Gj −F )(x) is equal to

ξGj (θ)

[
1

λ′F (θ)
− 1

hF (T(Gj))

]
+
λF (T(Gj)) − ξGj (θ)

hF (T(Gj))
. (5.60)

Note that

ξGj (θ) =

∫
J(F (x))dGj(x) = tj

∫
J(F (x))d∆j(x).

By (5.59), Lemma 5.2, and ‖∆j−∆‖∞ → 0, the first term in (5.60) is o(tj).
The second term in (5.60) is the sum of

− tj
hF (T(Gj))

∫
[J(F (x, T(Gj))) − J(F (x))]d∆j(x) (5.61)

and

1

hF (T(Gj))

∫
[J(F (x, T(Gj))) − J(Gj(x, T(Gj)))]dGj(x). (5.62)

From the continuity of J and F , the quantity in (5.61) is o(tj). Similarly,
the quantity in (5.62) is equal to

1

hF (T(Gj))

∫
[J(F (x, T(Gj))) − J(Gj(x, T(Gj)))]dF (x) + o(tj). (5.63)

From Taylor’s expansion, (5.59), and ‖∆j − ∆‖∞ → 0, the quantity in
(5.63) is equal to

tj
hF (T(Gj))

∫
J ′(F (x))∆(x, θ)dF (x) + o(tj). (5.64)
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Since J(1 − t) = −J(t), the integral in (5.64) is 0. This proves that the
second term in (5.60) is o(tj) and thus the result.

It is clear that the influence function φF for an R-estimator is bounded
and continuous if J and F are continuous. Thus, R-estimators satisfy (5.41)
and are robust in Hampel’s sense.

Example 5.8. Let J(t) = t− 1
2 . Then T(Fn) is the Hodges-Lehmann esti-

mator. From Theorem 5.8, φF (x) = [F (x)− 1
2 ]/γ, where γ =

∫
F ′(x)dF (x).

Since F (X1) has a uniform distribution on [0, 1], φF (X1) has mean 0 and
variance (12γ2)−1. Thus,

√
n[T(Fn) − T(F )] →d N(0, (12γ2)−1).

5.3 Linear Functions of Order Statistics

In this section, we study statistics that are linear functions of order statis-
tics X(1) ≤ · · · ≤ X(n) based on independent random variables X1, ..., Xn

(in §5.3.1 and §5.3.2, X1, ..., Xn are assumed i.i.d.). Order statistics, first
introduced in Example 2.9, are usually sufficient and often complete (or
minimal sufficient) for nonparametric families (Examples 2.12 and 2.14).

L-estimators defined in §5.2.2 are in fact linear functions of order statis-
tics. If T is given by (5.46), then

T(Fn) =

∫
xJ(Fn(x))dFn(x) =

1

n

n∑

i=1

J
(
i
n

)
X(i), (5.65)

since Fn(X(i)) = i/n, i = 1, ..., n. If J is a smooth function, such as those
given in Example 5.6 or those satisfying the conditions in Theorem 5.6, the
corresponding L-estimator is often called a smooth L-estimator. Asymp-
totic properties of smooth L-estimators can be obtained using Theorem 5.6
and the results in §5.2.1. Results on L-estimators that are slightly different
from that in (5.65) can be found in Serfling (1980, Chapter 8).

In §5.3.1, we consider another useful class of linear functions of order
statistics, the sample quantiles described in the beginning of §5.2. In §5.3.2,
we study robust linear functions of order statistics (in Hampel’s sense)
and their relative efficiencies w.r.t. the sample mean X̄, an efficient but
nonrobust estimator. In §5.3.3, extensions to linear models are discussed.

5.3.1 Sample quantiles

Recall that G−1(p) is defined to be inf{x : G(x) ≥ p} for any c.d.f. G on
R, where p ∈ (0, 1) is a fixed constant. For i.i.d. X1, ..., Xn from F , let

θp = F−1(p) and θ̂p = F−1
n (p) denote the pth quantile of F and the pth
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sample quantile, respectively. Then

θ̂p = cnpX(mp) + (1 − cnp)X(mp+1), (5.66)

where mp is the integer part of np, cnp = 1 if np is an integer, and cnp = 0

if np is not an integer. Thus, θ̂p is a linear function of order statistics.

Note that F (θp−) ≤ p ≤ F (θp) and F is not flat in a neighborhood of
θp if and only if p < F (θp + ǫ) for any ǫ > 0.

Theorem 5.9. Let X1, ..., Xn be i.i.d. random variables from a c.d.f. F
satisfying p < F (θp+ǫ) for any ǫ > 0. Then, for every ǫ > 0 and n = 1, 2,...,

P
(
|θ̂p − θp| > ǫ

)
≤ 2Ce−2nδ2ǫ , (5.67)

where δǫ is the smaller of F (θp+ ǫ)−p and p−F (θp− ǫ) and C is the same
constant in Lemma 5.1(i).
Proof. Let ǫ > 0 be fixed. Note that G(x) ≥ t if and only if x ≥ G−1(t)
for any c.d.f. G on R (exercise). Hence

P
(
θ̂p > θp + ǫ

)
= P

(
p > Fn(θp + ǫ)

)

= P
(
F (θp + ǫ) − Fn(θp + ǫ) > F (θp + ǫ) − p

)

≤ P
(
̺∞(Fn, F ) > δǫ

)

≤ Ce−2nδ2ǫ ,

where the last inequality follows from DKW’s inequality (Lemma 5.1(i)).
Similarly,

P
(
θ̂p < θp − ǫ

)
≤ Ce−2nδ2ǫ .

This proves (5.67).

Result (5.67) implies that θ̂p is strongly consistent for θp (exercise) and

that θ̂p is
√
n-consistent for θp if F ′(θp−) and F ′(θp+) (the left and right

derivatives of F at θp) exist (exercise).

The exact distribution of θ̂p can be obtained as follows. Since nFn(t)
has the binomial distribution Bi(F (t), n) for any t ∈ R,

P
(
θ̂p ≤ t

)
= P

(
Fn(t) ≥ p

)

=

n∑

i=lp

(
n

i

)
[F (t)]i[1 − F (t)]n−i, (5.68)

where lp = np if np is an integer and lp = 1+ the integer part of np if np

is not an integer. If F has a Lebesgue p.d.f. f , then θ̂p has the Lebesgue
p.d.f.

ϕn(t) = n

(
n− 1

lp − 1

)
[F (t)]lp−1[1 − F (t)]n−lpf(t). (5.69)
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The following result provides an asymptotic distribution for
√
n(θ̂p−θp).

Theorem 5.10. Let X1, ..., Xn be i.i.d. random variables from F .
(i) If F (θp) = p, then P (

√
n(θ̂p − θp) ≤ 0) → Φ(0) = 1

2 , where Φ is the
c.d.f. of the standard normal.
(ii) If F is continuous at θp and there exists F ′(θp−) > 0, then

P
(√
n(θ̂p − θp) ≤ t

)
→ Φ(t/σ−

F ), t < 0,

where σ−
F =

√
p(1 − p)/F ′(θp−).

(iii) If F is continuous at θp and there exists F ′(θp+) > 0, then

P
(√
n(θ̂p − θp) ≤ t

)
→ Φ(t/σ+

F ), t > 0,

where σ+
F =

√
p(1 − p)/F ′(θp+).

(iv) If F ′(θp) exists and is positive, then

√
n(θ̂p − θp) →d N(0, σ2

F ), (5.70)

where σF =
√
p(1 − p)/F ′(θp).

Proof. The proof of (i) is left as an exercise. Part (iv) is a direct conse-
quence of (i)-(iii) and the proofs of (ii) and (iii) are similar. Thus, we only
give a proof for (iii).

Let t > 0, pnt = F (θp + tσ+
F n

−1/2), cnt =
√
n(pnt − p)/

√
pnt(1 − pnt),

and Znt = [Bn(pnt)−npnt]/
√
npnt(1 − pnt), where Bn(q) denotes a random

variable having the binomial distribution Bi(q, n). Then

P
(
θ̂p ≤ θp + tσ+

F n
−1/2

)
= P

(
p ≤ Fn(θp + tσ+

F n
−1/2)

)

= P
(
Znt ≥ −cnt

)
.

Under the assumed conditions on F , pnt → p and cnt → t. Hence, the
result follows from

P
(
Znt < −cnt

)
− Φ(−cnt) → 0.

But this follows from the CLT (Example 1.33) and Pólya’s theorem (Propo-
sition 1.16).

If both F ′(θp−) and F ′(θp+) exist and are positive, but F ′(θp−) 6=
F ′(θp+), then the asymptotic distribution of

√
n(θ̂p − θp) has the c.d.f.

Φ(t/σ−
F )I(−∞,0)(t) + Φ(t/σ+

F )I[0,∞)(t), a mixture of two normal distribu-

tions. An example of such a case when p = 1
2 is

F (x) = xI[0, 12 )(x) + (2x− 1
2 )I[ 12 ,

3
4 )(x) + I[ 34 ,∞)(x).
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When F ′(θp−) = F ′(θp+) = F ′(θp) > 0, (5.70) shows that the asymptotic

distribution of
√
n(θ̂p−θp) is the same as that of

√
n[Fn(θp)−F (θp)]/F

′(θp)
(see (5.2)). The following result reveals a stronger relationship between
sample quantiles and the empirical c.d.f.

Theorem 5.11 (Bahadur’s representation). LetX1, ..., Xn be i.i.d. random
variables from F . Suppose that F ′(θp) exists and is positive. Then

θ̂p = θp +
F (θp) − Fn(θp)

F ′(θp)
+ op

(
1√
n

)
. (5.71)

Proof. Let t ∈ R, θnt = θp+tn−1/2, Zn(t) =
√
n[F (θnt)−Fn(θnt)]/F ′(θp),

and Un(t) =
√
n[F (θnt) − Fn(θ̂p)]/F

′(θp). It can be shown (exercise) that

Zn(t) − Zn(0) = op(1). (5.72)

Note that |p− Fn(θ̂p)| ≤ n−1. Then

Un(t) =
√
n[F (θnt) − p+ p− Fn(θ̂p)]/F

′(θp)

=
√
n[F (θnt) − p]/F ′(θp) +O(n−1/2)

→ t. (5.73)

Let ξn =
√
n(θ̂p − θp). Then, for any t ∈ R and ǫ > 0,

P
(
ξn ≤ t, Zn(0) ≥ t+ ǫ

)
= P

(
Zn(t) ≤ Un(t), Zn(0) ≥ t+ ǫ

)

≤ P
(
|Zn(t) − Zn(0)| ≥ ǫ/2

)
(5.74)

+P
(
|Un(t) − t| ≥ ǫ/2

)

→ 0

by (5.72) and (5.73). Similarly,

P
(
ξn ≥ t+ ǫ, Zn(0) ≤ t

)
→ 0. (5.75)

It follows from the result in Exercise 128 of §1.6 that

ξn − Zn(0) = op(1),

which is the same as (5.71).

If F has a positive Lebesgue p.d.f., then θ̂p viewed as a statistical func-
tional (§5.2) is ̺∞-Hadamard differentiable at F (Fernholz, 1983) with the
influence function

φF (x) = [F (θp) − I(−∞,θp](x)]/F
′(θp).
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This implies result (5.71). Note that φF is bounded and is continuous
except when x = θp.

Corollary 5.1. Let X1, ..., Xn be i.i.d. random variables from F having
positive derivatives at θpj , where 0 < p1 < · · · < pm < 1 are fixed constants.
Then √

n[(θ̂p1 , ..., θ̂pm) − (θp1 , ..., θpm)] →d Nm(0, D),

where D is the m×m symmetric matrix whose (i, j)th element is

pi(1 − pj)/[F
′(θpi)F

′(θpj )], i ≤ j.

The proof of this corollary is left to the reader.

Example 5.9 (Interquartile range). One application of Corollary 5.1 is the

derivation of the asymptotic distribution of the interquartile range θ̂0.75 −
θ̂0.25. The interquartile range is used as a measure of the variability among
Xi’s. It can be shown (exercise) that

√
n[(θ̂0.75 − θ̂0.25) − (θ0.75 − θ0.25)] →d N(0, σ2

F )

with

σ2
F =

3

16[F ′(θ0.75)]2
+

3

16[F ′(θ0.25)]2
− 1

8F ′(θ0.75)F ′(θ0.25)
.

There are some applications of using extreme order statistics such as
X(1) andX(n). One example is given in Example 2.34. Some other examples
and references can be found in Serfling (1980, pp. 89-91).

5.3.2 Robustness and efficiency

Let F be a c.d.f. on R symmetric about θ ∈ R with F ′(θ) > 0. Then
θ = θ0.5 and is called the median of F . If F has a finite mean, then θ is also
equal to the mean. In this section, we consider the estimation of θ based
on i.i.d. Xi’s from F .

If F is normal, it has been shown in previous chapters that the sample
mean X̄ is the UMVUE, MRIE, and MLE of θ, and is asymptotically
efficient. On the other hand, if F is the c.d.f. of the Cauchy distribution
C(θ, 1), it follows from Exercise 78 in §1.6 that X̄ has the same distribution
as X1, i.e., X̄ is as variable as X1, and is inconsistent as an estimator of θ.

Why does X̄ perform so differently? An important difference between
the normal and Cauchy p.d.f.’s is that the former tends to 0 at the rate
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e−x
2/2 as |x| → ∞, whereas the latter tends to 0 at the much slower rate

x−2, which results in
∫
|x|dF (x) = ∞. The poor performance of X̄ in the

Cauchy case is due to the high probability of getting extreme observations
and the fact that X̄ is sensitive to large changes in a few of the Xi’s. (Note
that X̄ is not robust in Hampel’s sense, since the functional

∫
xdG(x) has

an unbounded influence function at F .) This suggests the use of a robust
estimator that discards some extreme observations. The sample median,
which is defined to be the 50%th sample quantile θ̂0.5 described in §5.3.1,
is insensitive to the behavior of F as |x| → ∞.

Since both the sample mean and the sample median can be used to
estimate θ, a natural question is when is one better than the other, using
a criterion such as the amse. Unfortunately, a general answer does not
exist, since the asymptotic relative efficiency between these two estimators
depends on the unknown distribution F . If F does not have a finite vari-
ance, then Var(X̄) = ∞ and X̄ may be inconsistent. In such a case the

sample median is certainly preferred, since θ̂0.5 is consistent and asymptot-
ically normal as long as F ′(θ) > 0, and may have a finite variance (Exercise
60). The following example, which compares the sample mean and me-
dian in some cases, shows that the sample median can be better even if
Var(X1) <∞.

Example 5.10. Suppose that Var(X1) <∞. Then, by the CLT,

√
n(X̄ − θ) →d N(0,Var(X1)).

By Theorem 5.10(iv),

√
n(θ̂0.5 − θ) →d N(0, [2F ′(θ)]−2).

Hence, the asymptotic relative efficiency of θ̂0.5 w.r.t. X̄ is

e(F ) = 4[F ′(θ)]2Var(X1).

(i) If F is the c.d.f. of N(θ, σ2), then Var(X1) = σ2, F ′(θ) = (
√

2πσ)−1,
and e(F ) = 2/π = 0.637.
(ii) If F is the c.d.f. of the logistic distribution LG(θ, σ), then Var(X1) =
σ2π2/3, F ′(θ) = (4σ)−1, and e(F ) = π2/12 = 0.822.
(iii) If F (x) = F0(x − θ) and F0 is the c.d.f. of the t-distribution tν with
ν ≥ 3, then Var(X1) = ν/(ν − 2), F ′(θ) = Γ(ν+1

2 )/[
√
νπΓ(ν2 )], e(F ) = 1.62

when ν = 3, e(F ) = 1.12 when ν = 4, and e(F ) = 0.96 when ν = 5.
(iv) If F is the c.d.f. of the double exponential distribution DE(θ, σ), then
F ′(θ) = (2σ)−1 and e(F ) = 2.
(v) Consider the Tukey model

F (x) = (1 − ǫ)Φ
(
x−θ
σ

)
+ ǫΦ

(
x−θ
τσ

)
, (5.76)
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where σ > 0, τ > 0, and 0 < ǫ < 1. Then Var(X1) = (1 − ǫ)σ2 + ǫτ2σ2,
F ′(θ) = (1 − ǫ+ ǫ/τ)/(

√
2πσ), and e(F ) = 2(1 − ǫ+ ǫτ2)(1 − ǫ+ ǫ/τ)2/π.

Note that limǫ→0 e(F ) = 2/π and limτ→∞ e(F ) = ∞.

Since the sample median uses at most two actual values of xi’s, it may
go too far in discarding observations, which results in a possible loss of
efficiency. The trimmed sample mean introduced in Example 5.6(iii) is a
natural compromise between the sample mean and median. Since F is
symmetric, we consider β = 1 − α in the trimmed mean, which results in
the following L-estimator:

X̄α =
1

(1 − 2α)n

n−mα∑

j=mα+1

X(j), (5.77)

where mα is the integer part of nα and α ∈ (0, 1
2 ). The estimator in (5.77)

is called the α-trimmed sample mean. It discards the mα smallest and mα

largest observations. The sample mean and median can be viewed as two
extreme cases of X̄α as α→ 0 and 1

2 , respectively.

It follows from Theorem 5.6 that if F (x) = F0(x − θ), where F0 is
symmetric about 0 and has a Lebesgue p.d.f. positive in the range of X1,
then √

n(X̄α − θ) →d N(0, σ2
α), (5.78)

where

σ2
α =

2

(1 − 2α)2

{∫ F−1
0 (1−α)

0

x2dF0(x) + α[F−1
0 (1 − α)]2

}
.

Lehmann (1983, §5.4) provides various values of the asymptotic relative
efficiency eX̄α,X̄(F ) = Var(X1)/σ

2
α. For instance, when F (x) = F0(x − θ)

and F0 is the c.d.f. of the t-distribution t3, eX̄α,X̄(F ) = 1.70, 1.91, and 1.97
for α = 0.05, 0.125, and 0.25, respectively; when F is given by (5.76) with
τ = 3 and ǫ = 0.05, eX̄α,X̄(F ) = 1.20, 1.19, and 1.09 for α = 0.05, 0.125,
and 0.25, respectively; when F is given by (5.76) with τ = 3 and ǫ = 0.01,
eX̄α,X̄(F ) = 1.04, 0.98, and 0.89 for α = 0.05, 0.125, and 0.25, respectively.

Robustness and efficiency of other L-estimators can be discussed simi-
larly. For an L-estimator T(Fn) with T given by (5.46), if the conditions in
one of (i)-(iii) of Theorem 5.6 are satisfied, then (5.41) holds with

σ2
F =

∫ ∞

−∞

∫ ∞

−∞
J(F (x))J(F (y))[F (min{x, y}) − F (x)F (y)]dxdy, (5.79)

provided that σ2
F <∞ (exercise). If F is symmetric about θ, J is symmetric

about 1
2 , and

∫ 1

0 J(t)dt = 1, then T(F ) = θ (exercise) and, therefore, the
asymptotic relative efficiency of T(Fn) w.r.t. X̄ is Var(X1)/σ

2
F .
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5.3.3 L-estimators in linear models

In this section, we extend L-estimators to the following linear model:

Xi = βτZi + εi, i = 1, ..., n, (5.80)

with i.i.d. εi’s having an unknown c.d.f. F0 and a full rank Z whose ith
row is the vector Zi. Note that the c.d.f. of Xi is F0(x− βτZi). Instead of
assuming E(εi) = 0 (as we did in Chapter 3), we assume that

∫
xJ(F0(x))dF0(x) = 0, (5.81)

where J is a Borel function on [0, 1] (the same as that in (5.46)). Note that
(5.81) may hold without any assumption on the existence of E(εi). For
instance, (5.81) holds if F0 is symmetric about 0, J is symmetric about 1

2 ,

and
∫ 1

0
J(t)dt = 1 (Exercise 69).

Since Xi’s are not identically distributed, the use of the order statistics
and the empirical c.d.f. based on X1, ..., Xn may not be appropriate. In-
stead, we consider the ordered values of residuals ri = Xi−Zτi β̂, i = 1, ..., n,

and some empirical c.d.f.’s based on residuals, where β̂ = (ZτZ)−1ZτX is
the LSE of β (§3.3.1).

To illustrate the idea, let us start with the case where β and Zi are
univariate. First, assume that Zi ≥ 0 for all i (or Zi ≤ 0 for all i). Let F̂0

be the c.d.f. putting mass Zi/
∑n
i=1 Zi at ri, i = 1, ..., n. An L-estimator of

β is defined to be

β̂L = β̂ +

∫
xJ(F̂0(x))dF̂0(x)

n∑

i=1

Zi

/ n∑

i=1

Z2
i .

When J(t) = (1 − 2α)−1I(α,1−α)(t) with an α ∈ (0, 1
2 ), β̂L is similar to the

α-trimmed sample mean in the i.i.d. case.

If not all Zi’s have the same sign, we can define L-estimators as follows.
Let Z+

i = max{Zi, 0} and Z−
i = Z+

i − Zi. Let F̂±
0 be the c.d.f. putting

mass Z±
i /
∑n
i=1 Z

±
i at ri, i = 1, ..., n. An L-estimator of β is defined to be

β̂L = β̂ +

∫
xJ(F̂+

0 (x))dF̂+
0 (x)

n∑

i=1

Z+
i

/ n∑

i=1

Z2
i

−
∫
xJ(F̂−

0 (x))dF̂−
0 (x)

n∑

i=1

Z−
i

/ n∑

i=1

Z2
i .

For a general p-vector Zi, let zij be the jth component of Zi, j = 1, ..., p.

Let z+
ij = max{zij , 0}, z−ij = z+

ij − zij , and F̂±
0j be the c.d.f. putting mass
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z±ij/
∑n
i=1 z

±
ij at ri, i = 1, ..., n. For any j, if zij ≥ 0 for all i (or zij ≤ 0 for

all i), then we set F̂+
0j ≡ 0 (or F̂−

0j ≡ 0). An L-estimator of β is defined to
be

β̂L = β̂ + (ZτZ)−1(A+ −A−), (5.82)

where

A± =

(∫
xJ(F̂±

01(x))dF̂
±
01(x)

n∑

i=1

z±i1, ...,

∫
xJ(F̂±

0p(x))dF̂
±
0p(x)

n∑

i=1

z±ip

)
.

Obviously, β̂L in (5.82) reduces to the previously defined β̂L when β and
Zi are univariate.

Theorem 5.12. Assume model (5.80) with i.i.d. εi’s from a c.d.f. F0

satisfying (5.81) for a given J . Suppose that F0 has a uniformly continuous,
positive, and bounded derivative on the range of ε1. Suppose further that
the conditions on Zi’s in Theorem 3.12 are satisfied.
(i) If the function J is continuous on (α1, α2) and equals 0 on [0, α1]∪[α2, 1],
where 0 < α1 < α2 < 1 are constants, then

σ−1
F0

(ZτZ)1/2(β̂L − β) →d Np(0, Ip), (5.83)

where σ2
F0

is given by (5.79) with F = F0.
(ii) Result (5.83) also holds if J ′ is bounded on [0, 1], E|ε1| < ∞, and σ2

F0

is finite.

The proof of this theorem can be found in Bickel (1973). Robustness

and efficiency comparisons between the LSE β̂ and L-estimators β̂L can be
made in a way similar to those in §5.3.2.

5.4 Generalized Estimating Equations

The method of generalized estimating equations (GEE) is a powerful and
general method of deriving point estimators, which includes many previ-
ously described methods as special cases. In §5.4.1, we begin with a descrip-
tion of this method and, to motivate the idea, we discuss its relationship
with other methods that have been studied. Consistency and asymptotic
normality of estimators derived from generalized estimating equations are
studied in §5.4.2 and §5.4.3.

Throughout this section, we assume that X1, ..., Xn are independent
(not necessarily identically distributed) random vectors, where the dimen-
sion of Xi is di, i = 1, ..., n (supi di < ∞), and that we are interested in
estimating θ, a k-vector of unknown parameters related to the unknown
population.
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5.4.1 The GEE method and its relationship with others

The sample mean and, more generally, the LSE in linear models are solu-
tions of equations of the form

n∑

i=1

(Xi − γτZi)Zi = 0.

Also, MLE’s (or RLE’s) in §4.4 and, more generally, M-estimators in §5.2.2
are solutions to equations of the form

n∑

i=1

ψ(Xi, γ) = 0.

This leads to the following general estimation method. Let Θ ⊂ Rk be the
range of θ, ψi be a Borel function from Rdi × Θ to Rk, i = 1, ..., n, and

sn(γ) =

n∑

i=1

ψi(Xi, γ), γ ∈ Θ. (5.84)

If θ is estimated by θ̂ ∈ Θ satisfying sn(θ̂) = 0, then θ̂ is called a GEE
estimator. The equation sn(γ) = 0 is called a GEE. Apparently, the LSE’s,
RLE’s, MQLE’s, and M-estimators are special cases of GEE estimators.

Usually GEE’s are chosen so that

E[sn(θ)] =

n∑

i=1

E[ψi(Xi, θ)] = 0, (5.85)

where the expectation E may be replaced by an asymptotic expectation
defined in §2.5.2 if the exact expectation does not exist. If this is true,
then θ̂ is motivated by the fact that sn(θ̂) = 0 is a sample analogue of
E[sn(θ)] = 0.

To motivate the idea, let us study the relationship between the GEE
method and other methods that have been introduced.

M-estimators

The M-estimators defined in §5.2.2 for univariate θ = T(F ) in the i.i.d. case
are special cases of GEE estimators. Huber (1981) also considers regression
M-estimators in the linear model (5.80). A regression M-estimator of β is
defined as a solution to the GEE

n∑

i=1

ψ(Xi − γτZi)Zi = 0,

where ψ is one of the functions given in Example 5.7.



5.4. Generalized Estimating Equations 361

LSE’s in linear and nonlinear regression models

Suppose that
Xi = f(Zi, θ) + εi, i = 1, ..., n, (5.86)

where Zi’s are the same as those in (5.80), θ is an unknown k-vector of
parameters, f is a known function, and εi’s are independent random vari-
ables. Model (5.86) is the same as model (5.80) if f is linear in θ and is
called a nonlinear regression model otherwise. Note that model (4.64) is a
special case of model (5.86). The LSE under model (5.86) is any point in
Θ minimizing

∑n
i=1[Xi − f(Zi, γ)]2 over γ ∈ Θ. If f is differentiable, then

the LSE is a solution to the GEE

n∑

i=1

[Xi − f(Zi, γ)]
∂f(Zi, γ)

∂γ
= 0.

Quasi-likelihoods

This is a continuation of the discussion of the quasi-likelihoods introduced
in §4.4.3. Assume first that Xi’s are univariate (di ≡ 1). If Xi’s follow a
GLM, i.e., Xi has the p.d.f. in (4.55) and (4.57) holds, and if (4.58) holds,
then the likelihood equation (4.59) can be written as

n∑

i=1

xi − µi(γ)

vi(γ)
Gi(γ) = 0, (5.87)

where µi(γ) = µ(ψ(γτZi)), Gi(γ) = ∂µi(γ)/∂γ, vi(γ) = Var(Xi)/φ, and
we have used the following fact:

ψ′(t) = (µ−1)′(g−1(t))(g−1)′(t) = (g−1)′(t)/ζ′′(ψ(t)).

Equation (5.87) is a quasi-likelihood equation if either Xi does not have
the p.d.f. in (4.55) or (4.58) does not hold. Note that this generalizes the
discussion in §4.4.3. If Xi does not have the p.d.f. in (4.55), then the
problem is often nonparametric. Let sn(γ) be the left-hand side of (5.87).
Then sn(γ) = 0 is a GEE and E[sn(β)] = 0 is satisfied as long as the first
condition in (4.56), E(Xi) = µi(β), is satisfied.

For general di’s, let Xi = (Xi1, ..., Xidi), i = 1, ..., n, where each Xit

satisfies (4.56) and (4.57), i.e.,

E(Xit) = µ(ηit) = g−1(βτZit) and Var(Xit) = φiµ
′(ηit),

and Zit’s are k-vector values of covariates. In biostatistics and life-time
testing problems, components of Xi are repeated measurements at different
times from subject i and are called longitudinal data. Although Xi’s are
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assumed independent, Xit’s are likely to be dependent for each i. Let Ri
be the di × di correlation matrix whose (t, l)th element is the correlation
coefficient between Xit and Xil. Then

Var(Xi) = φi[Di(β)]1/2Ri[Di(β)]1/2, (5.88)

where Di(γ) is the di × di diagonal matrix with the tth diagonal element
(g−1)′(γτZit). If Ri’s in (5.88) are known, then an extension of (5.87) to
the multivariate xi’s is

n∑

i=1

Gi(γ){[Di(γ)]1/2Ri[Di(γ)]1/2}−1[xi − µi(γ)] = 0, (5.89)

where µi(γ) = (µ(ψ(γτZi1)), ..., µ(ψ(γτZidi))) and Gi(γ) = ∂µi(γ)/∂γ. In
most applications, Ri is unknown and its form is hard to model. Let R̃i be a
known correlation matrix (called a working correlation matrix). Replacing
Ri in (5.89) by R̃i leads to the quasi-likelihood equation

n∑

i=1

Gi(γ){[Di(γ)]1/2R̃i[Di(γ)]1/2}−1[xi − µi(γ)] = 0. (5.90)

For example, we may assume that the components of Xi are independent
and take R̃i = Idi . Although the working correlation matrix R̃i may not be
the same as the true unknown correlation matrix Ri, an MQLE obtained
from (5.90) is still consistent and asymptotically normal (§5.4.2 and §5.4.3).
Of course, MQLE’s are asymptotically more efficient if R̃i is closer to Ri.
Even if R̃i = Ri and φi ≡ φ, (5.90) is still a quasi-likelihood equation, since
the covariance matrix of Xi cannot determine the distribution of Xi unless
Xi is normal.

Since an R̃i closer to Ri results in a better MQLE, sometimes it is
suggested to replace R̃i in (5.90) by R̂i, an estimator of Ri (Liang and
Zeger, 1986). The resulting equation is called a pseudo-likelihood equation.
As long as maxi≤n ‖R̂i − Ui‖ →p 0 as n→ ∞, where ‖A‖ =

√
tr(AτA) for

a matrix A and Ui is a correlation matrix (not necessarily the same as Ri),
i = 1, ..., n, MQLE’s are consistent and asymptotically normal.

Empirical likelihoods

The previous discussion shows that the GEE method coincides with the
method of deriving M-estimators, LSE’s, MLE’s, or MQLE’s. The following
discussion indicates that the GEE method is also closely related to the
method of empirical likelihoods introduced in §5.1.4.

Assume that Xi’s are i.i.d. from a c.d.f. F on Rd and ψi = ψ for all i.
Then condition (5.85) reduces to E[ψ(X1, θ)] = 0. Hence, we can consider
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the empirical likelihood

ℓ(G) =
n∏

i=1

PG({xi}), G ∈ F

subject to

pi ≥ 0,

n∑

i=1

pi = 1, and

n∑

i=1

piψ(xi, θ) = 0, (5.91)

where pi = PG({xi}). However, in this case the dimension of the function
ψ is the same as the dimension of the parameter θ and, hence, the last
equation in (5.91) does not impose any restriction on pi’s. Then, it follows
from Theorem 5.3 that (p1, ..., pn) = (n−1, ..., n−1) maximizes ℓ(G) for any
fixed θ. Substituting pi = n−1 into the last equation in (5.91) leads to

1

n

n∑

i=1

ψ(xi, θ) = 0.

That is, any MELE θ̂ of θ is a GEE estimator.

5.4.2 Consistency of GEE estimators

We now study under what conditions (besides (5.85)) GEE estimators are

consistent. For each n, let θ̂n be a GEE estimator, i.e., sn(θ̂n) = 0, where
sn(γ) is defined by (5.84).

First, Theorem 5.7 and its proof can be extended to multivariate T in a
straightforward manner. Hence, we have the following result.

Proposition 5.2. Suppose that X1, ..., Xn are i.i.d. from F and ψi ≡
ψ, a bounded and continuous function from Rd × Θ to Rk. Let Ψ(t) =∫
ψ(x, t)dF (x). Suppose that Ψ(θ) = 0 and ∂Ψ(t)/∂t exists and is of full

rank at t = θ. Then θ̂n →p θ.

For unbounded ψ in the i.i.d. case, the following result and its proof can
be found in Qin and Lawless (1994).

Proposition 5.3. Suppose that X1, ..., Xn are i.i.d. from F and ψi ≡ ψ.
Assume that ϕ(x, γ) = ∂ψ(x, γ)/∂γ exists in Nθ, a neighborhood of θ, and
is continuous at θ; there is a function h(x) such that supγ∈Nθ

‖ϕ(x, γ)‖ ≤
h(x), supγ∈Nθ

‖ψ(x, γ)‖3 ≤ h(x), and E[h(X1)] < ∞; E[ϕ(X1, θ)] is of full
rank; E{ψ(X1, θ)[ψ(X1, θ)]

τ} is positive definite; and (5.85) holds. Then,

there exists a sequence of random vectors {θ̂n} such that

P
(
sn(θ̂n) = 0

)
→ 1 and θ̂n →p θ. (5.92)
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Next, we consider non-i.i.d. Xi’s.

Proposition 5.4. Suppose that X1, ..., Xn are independent and θ is uni-
variate. Assume that ψi(x, γ) is real-valued and nonincreasing in γ for all
i; there is a δ > 0 such that supiE|ψi(Xi, γ)|1+δ < ∞ for any γ in Nθ, a
neighborhood of θ (this condition can be replaced by E|ψ(X1, γ)| <∞ for
any γ in Nθ when Xi’s are i.i.d. and ψi ≡ ψ); ψi(x, γ) are continuous in
Nθ; (5.85) holds; and

lim sup
n

E[Ψn(θ + ǫ)] < 0 < lim inf
n

E[Ψn(θ − ǫ)] (5.93)

for any ǫ > 0, where Ψn(γ) = n−1sn(γ). Then, there exists a sequence of

random variables {θ̂n} such that (5.92) holds. Furthermore, any sequence

{θ̂n} satisfying sn(θ̂n) = 0 satisfies (5.92).
Proof. Since ψi’s are nonincreasing, the functions Ψn(γ) and E[Ψn(γ)] are
nonincreasing. Let ǫ > 0 be fixed so that θ ± ǫ ∈ Nθ. Under the assumed
conditions,

Ψn(θ ± ǫ) − E[Ψn(θ ± ǫ)] →p 0

(Theorem 1.14(ii)). By condition (5.93),

P
(
Ψn(θ + ǫ) < 0 < Ψn(θ − ǫ)

)
→ 1.

The rest of the proof is left as an exercise.

To establish the next result, we need the following lemma. First, we
need the following concept. A sequence of functions {gi} from Rk to Rk

is called equicontinuous on an open set O ⊂ Rk if and only if, for any
ǫ > 0, there is a δǫ > 0 such that supi ‖gi(t) − gi(s)‖ < ǫ whenever t ∈
O, s ∈ O, and ‖t − s‖ < δǫ. Since a continuous function on a compact
set is uniformly continuous, functions such as gi(γ) = g(ti, γ) form an
equicontinuous sequence on O if ti’s vary in a compact set containing O

and g(t, γ) is a continuous function in (t, γ).

Lemma 5.3. Suppose that Θ is a compact subset of Rk. Let hi(Xi) =
supγ∈Θ ‖ψi(Xi, γ)‖, i = 1, 2,.... Suppose that supi E|hi(Xi)|1+δ < ∞ and

supiE‖Xi‖δ < ∞ for some δ > 0 (this condition can be replaced by
E|h(X1)| < ∞ when Xi’s are i.i.d. and ψi ≡ ψ). Suppose further that
for any c > 0 and sequence {xi} satisfying ‖xi‖ ≤ c, the sequence of func-
tions {gi(γ) = ψi(xi, γ)} is equicontinuous on any open subset of Θ. Then

sup
γ∈Θ

∥∥∥∥
1

n

n∑

i=1

{ψi(Xi, γ) − E[ψi(Xi, γ)]}
∥∥∥∥→p 0.
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Proof. Since we only need to consider components of ψi’s, without loss of
generality we can assume that ψi’s are functions from Rdi × Θ to R. For
any c > 0,

sup
n
E

[
1

n

n∑

i=1

hi(Xi)I(c,∞)(‖Xi‖)
]
≤ sup

i
E[hi(Xi)I(c,∞)(‖Xi‖)].

Let c0 = supiE|hi(Xi)|1+δ and c1 = supi E‖Xi‖δ. By Hölder’s inequality,

E[hi(Xi)I(c,∞)(‖Xi‖)] ≤
[
E|hi(Xi)|1+δ

]1/(1+δ)
[P (‖Xi‖ > c)]

δ/(1+δ)

≤ c
1/(1+δ)
0 c

δ/(1+δ)
1 c−δ

2/(1+δ)

for all i. For ǫ > 0 and ǫ̃ > 0, choose a c such that c
1/(1+δ)
0 c

δ/(1+δ)
1 c−δ

2/(1+δ)

< ǫǫ̃/4. Then, for any O ⊂ Θ, the probability

P

(
1

n

n∑

i=1

{
sup
γ∈O

ψi(Xi, γ) − inf
γ∈O

ψi(Xi, γ)

}
I(c,∞)(‖Xi‖) >

ǫ

2

)
(5.94)

is bounded by ǫ̃ (exercise). From the equicontinuity of {ψi(xi, γ)}, there is
a δǫ > 0 such that

1

n

n∑

i=1

{
sup
γ∈Oǫ

ψi(Xi, γ) − inf
γ∈Oǫ

ψi(Xi, γ)

}
I[0,c](‖Xi‖) <

ǫ

2

for sufficiently large n, where Oǫ denotes any open ball in Rk with radius
less than δǫ. These results, together with Theorem 1.14(ii) and the fact
that ‖ψi(Xi, γ)‖ ≤ hi(Xi), imply that

P

(
1

n

n∑

i=1

{
sup
γ∈Oǫ

ψi(Xi, γ) − E

[
inf
γ∈Oǫ

ψi(Xi, γ)

]}
> ǫ

)
→ 0. (5.95)

Let Hn(γ) = n−1
∑n
i=1{ψi(Xi, γ) − E[ψi(Xi, γ)]}. Then

sup
γ∈Oǫ

Hn(γ) ≤ 1

n

n∑

i=1

{
sup
γ∈Oǫ

ψi(Xi, γ) − E

[
inf
γ∈Oǫ

ψi(Xi, γ)

]}
,

which with (5.95) implies that

P
(
Hn(γ) > ǫ for all γ ∈ Oǫ

)
= P

(
sup
γ∈Oǫ

Hn(γ) > ǫ

)
→ 0.

Similarly we can show that

P
(
Hn(γ) < −ǫ for all γ ∈ Oǫ

)
→ 0.
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Since Θ is compact, there exists mǫ open balls Oǫ,j such that Θ ⊂ ∪Oǫ,j .
Then, the result follows from

P

(
sup
γ∈Θ

|Hn(γ)| > ǫ

)
≤

mǫ∑

j=1

P

(
sup
γ∈Oǫ,j

|Hn(γ)| > ǫ

)
→ 0.

Example 5.11. Consider the quasi-likelihood equation (5.90). Let {R̃i}
be a sequence of working correlation matrices and

ψi(xi, γ) = Gi(γ){[Di(γ)]1/2R̃i[Di(γ)]1/2}−1[xi − µi(γ)]. (5.96)

It can be shown (exercise) that ψi’s satisfy the conditions of Lemma 5.3 if
Θ is compact and supi ‖Zi‖ <∞.

Proposition 5.5. Assume (5.85) and the conditions in Lemma 5.3 (with Θ
replaced by any compact subset of the parameter space). Suppose that the
functions ∆n(γ) = E[n−1sn(γ)] have the property that limn→∞ ∆n(γ) = 0
if and only if γ = θ. (If ∆n converges to a function ∆, then this condition

and (5.85) imply that ∆ has a unique 0 at θ.) Suppose that {θ̂n} is a

sequence of GEE estimators and that θ̂n = Op(1). Then θ̂n →p θ.
Proof. First, assume that Θ is a compact subset of Rk. From Lemma 5.3
and sn(θ̂n) = 0, ∆n(θ̂n) →p 0. By Theorem 1.8(vi), there is a subsequence
{ni} such that

∆ni(θ̂ni) →a.s. 0. (5.97)

Let x1, x2, ... be a fixed sequence such that (5.97) holds and let θ0 be a

limit point of {θ̂n}. Since Θ is compact, θ0 ∈ Θ and there is a subsequence

{mj} ⊂ {ni} such that θ̂mj → θ0. Using the argument in the proof of
Lemma 5.3, it can be shown (exercise) that {∆n(γ)} is equicontinuous on
any open subset of Θ. Then

∆mj (θ̂mj ) − ∆mj (θ0) → 0,

which with (5.97) implies ∆mj (θ0) → 0. Under the assumed condition,

θ0 = θ. Since this is true for any limit point of {θ̂n}, θ̂n →p θ.

Next, consider a general Θ. For any ǫ > 0, there is an Mǫ > 0 such
that P (‖θ̂n‖ ≤Mǫ) > 1 − ǫ. The result follows from the previous proof by
considering the closure of Θ ∩ {γ : ‖γ‖ ≤Mǫ} as the parameter space.

Condition θ̂n = Op(1) in Proposition 5.5 is obviously necessary for the

consistency of θ̂n. It has to be checked in any particular problem.

If a GEE is a likelihood equation under some conditions, then we can
often show, using an argument similar to the proof of Theorem 4.17 or 4.18,
that there exists a consistent sequence of GEE estimators.
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Proposition 5.6. Suppose that sn(γ) = ∂ log ℓn(γ)/∂γ for some func-
tion ℓn; Dn(θ) = Var(sn(θ)) → 0; ϕi(x, γ) = ∂ψi(x, γ)/∂γ exists and the
sequence of functions {ϕij , i = 1, 2, ...} satisfies the conditions in Lemma
5.3 with Θ replaced by a compact neighborhood of θ, where ϕij is the jth
row of ϕi, j = 1, ..., k; − lim infn[Dn(θ)]

1/2E[∇sn(θ)][Dn(θ)]1/2 is positive
definite, where ∇sn(γ) = ∂sn(γ)/∂γ; and (5.85) holds. Then, there exists

a sequence of estimators {θ̂n} satisfying (5.92).

The proof of Proposition 5.6 is similar to that of Theorem 4.17 or The-
orem 4.18 and is left as an exercise.

Example 5.12. Consider the quasi-likelihood equation (5.90) with R̃i =
Idi for all i. Then the GEE is a likelihood equation under a GLM (§4.4.2)
assumption. It can be shown (exercise) that the conditions of Proposition
5.6 are satisfied if supi ‖Zi‖ <∞.

5.4.3 Asymptotic normality of GEE estimators

Asymptotic normality of a consistent sequence of GEE estimators can be
established under some conditions. We first consider the special case where
θ is univariate and X1, ..., Xn are i.i.d.

Theorem 5.13. Let X1, ..., Xn be i.i.d. from F , ψi ≡ ψ, and θ ∈ R.
Suppose that Ψ(γ) =

∫
ψ(x, γ)dF (x) = 0 if and only if γ = θ, Ψ′(θ) exists

and Ψ′(θ) 6= 0.
(i) Assume that ψ(x, γ) is nonincreasing in γ and that

∫
[ψ(x, γ)]2dF (x)

is finite for γ in a neighborhood of θ and is continuous at θ. Then, any
sequence of GEE estimators (M-estimators) {θ̂n} satisfies

√
n(θ̂n − θ) →d N(0, σ2

F ), (5.98)

where

σ2
F =

∫
[ψ(x, θ)]2dF (x)/[Ψ′(θ)]2.

(ii) Assume that
∫
[ψ(x, θ)]2dF (x) < ∞, ψ(x, γ) is continuous in x, and

limγ→θ ‖ψ(·, γ) − ψ(·, θ)‖V = 0, where ‖ · ‖V is the variation norm defined

in Lemma 5.2. Then, any consistent sequence of GEE estimators {θ̂n}
satisfies (5.98).
Proof. (i) Let Ψn(γ) = n−1sn(γ). Since Ψn is nonincreasing,

P (Ψn(t) < 0) ≤ P (θ̂n ≤ t) ≤ P (Ψn(t) ≤ 0)

for any t ∈ R. Then, (5.98) follows from

lim
n→∞

P
(
Ψn(tn) < 0

)
= lim

n→∞
P
(
Ψn(tn) ≤ 0

)
= Φ(t)
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for all t ∈ R, where tn = θ + tσFn
−1/2. Let s2t,n = Var(ψ(X1, tn)) and

Yni = [ψ(Xi, tn) − Ψ(tn)]/st,n. Then, it suffices to show that

lim
n→∞

P

(
1√
n

n∑

i=1

Yni ≤ −
√
nΨ(tn)

st,n

)
= Φ(t)

for all t. Under the assumed conditions,
√
nΨ(tn) → Ψ′(θ)tσF and st,n →

−Ψ′(θ)σF . Hence, it suffices to show that

1√
n

n∑

i=1

Yni →d N(0, 1).

Note that Yn1, ..., Ynn are i.i.d. random variables. Hence we can apply
Lindeberg’s CLT (Theorem 1.15). In this case, Lindeberg’s condition (1.92)
is implied by

lim
n→∞

∫

|ψ(x,tn)|>√
nǫ

[ψ(x, tn)]2dF (x) = 0

for any ǫ > 0. For any η > 0, ψ(x, θ + η) ≤ ψ(x, tn) ≤ ψ(x, θ − η) for all x
and sufficiently large n. Let u(x) = max{|ψ(x, θ− η)|, |ψ(x, θ + η)|}. Then

∫

|ψ(x,tn)|>√
nǫ

[ψ(x, tn)]2dF (x) ≤
∫

u(x)>
√
nǫ

[u(x)]2dF (x),

which converges to 0 since
∫
[ψ(x, γ)]2dF (x) is finite for γ in a neighborhood

of θ. This proves (i).
(ii) Let φF (x) = −ψ(x, θ)/Ψ′(θ). Following the proof of Theorem 5.7, we
have

√
n(θ̂n − θ) =

1√
n

n∑

i=1

φF (Xi) +R1n −R2n,

where

R1n =
1√
n

n∑

i=1

ψ(Xi, θ)

[
1

Ψ′(θ)
− 1

hF (θ̂n)

]
,

R2n =

√
n

hF (θ̂n)

∫
[ψ(x, θ̂n) − ψ(x, θ)]d(Fn − F )(x),

and hF is defined in the proof of Theorem 5.7 with Ψ = λF . By the CLT
and the consistency of θ̂n, R1n = op(1). Hence, the result follows if we can
show that R2n = op(1). By Lemma 5.2,

|R2n| ≤
√
n|hF (θ̂n)|−1̺∞(Fn, F )‖ψ(·, θ̂n) − ψ(·, θ)‖V .

The result follows from the assumed condition on ψ and the fact that√
n̺∞(Fn, F ) = Op(1) (Theorem 5.1).
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Note that the result in Theorem 5.13 coincides with the result in The-
orem 5.7 and (5.41).

Example 5.13. Consider the M-estimators given in Example 5.7 based
on i.i.d. random variables X1, ..., Xn. If ψ is bounded and continuous, then
Theorem 5.7 applies and (5.98) holds. For case (ii), ψ(x, γ) is not bounded
but is nondecreasing in γ (−ψ(x, γ) is nonincreasing in γ). Hence Theorem
5.13 can be applied to this case.

Consider Huber’s ψ given in Example 5.7(v). Assume that F is contin-
uous at θ − C and θ + C. Then

Ψ(γ) =

∫ γ+C

γ−C
(γ − x)dF (x) + CF (γ − C) − C[1 − F (γ + C)]

is differentiable at θ (exercise); Ψ(θ) = 0 if F is symmetric about θ (exer-
cise); and

∫
[ψ(x, γ)]2dF (x) =

∫ γ+C

γ−C
(γ−x)2dF (x)+C2F (γ−C)+C2[1−F (γ+C)]

is continuous at θ (exercise). Therefore, (5.98) holds with

σ2
F =

∫ θ+C
θ−C (θ − x)2dF (x) + C2F (θ − C) + C2[1 − F (θ + C)]

[F (θ + C) − F (θ − C)]2

(exercise). Note that Huber’s M-estimator is robust in Hampel’s sense.

Asymptotic relative efficiency of θ̂n w.r.t. the sample mean X̄ can be ob-
tained (exercise).

The next result is for general θ and independent Xi’s.

Theorem 5.14. Suppose that ϕi(x, γ) = ∂ψi(x, γ)/∂γ exists and the
sequence of functions {ϕij , i = 1, 2, ...} satisfies the conditions in Lemma
5.3 with Θ replaced by a compact neighborhood of θ, where ϕij is the jth
row of ϕi; supi E‖ψi(Xi, θ)‖2+δ <∞ for some δ > 0 (this condition can be
replaced by E‖ψ(X1, θ)‖2 <∞ if Xi’s are i.i.d. and ψi ≡ ψ); E[ψi(Xi, θ)] =
0; lim infn λ−[n−1Var(sn(θ))] > 0 and lim infn λ−[n−1Mn(θ)] > 0, where
Mn(θ) = −E[∇sn(θ)] and λ−[A] is the smallest eigenvalue of the matrix

A. If {θ̂n} is a consistent sequence of GEE estimators, then

V −1/2
n (θ̂n − θ) →d Nk(0, Ik), (5.99)

where
Vn = [Mn(θ)]

−1Var(sn(θ))[Mn(θ)]−1. (5.100)
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Proof. The proof is similar to that of Theorem 4.17. By the consistency
of θ̂n, we can focus on the event {θ̂n ∈ Aǫ}, where Aǫ = {γ : ‖γ − θ‖ ≤ ǫ}
with a given ǫ > 0. For sufficiently small ǫ, it can be shown (exercise) that

max
γ∈Aǫ

‖∇sn(γ) −∇sn(θ)‖
n

= op(1), (5.101)

using an argument similar to the proof of Lemma 5.3. From the mean-value
theorem and sn(θ̂n) = 0,

−sn(θ) =

[∫ 1

0

∇sn
(
θ + t(θ̂n − θ)

)
dt

]
(θ̂n − θ).

It follows from (5.101) that

1

n

∥∥∥∥
∫ 1

0

∇sn
(
θ + t(θ̂n − θ)

)
dt−∇sn(θ)

∥∥∥∥ = op(1).

Also, by Theorem 1.14(ii),

n−1‖∇sn(θ) +Mn(θ)‖ = op(1).

This and lim infn λ−[n−1Mn(θ)] > 0 imply

[Mn(θ)]
−1sn(θ) = [1 + op(1)](θ̂n − θ).

The result follows if we can show that

V −1/2
n [Mn(θ)]

−1sn(θ) →d Nk(0, Ik). (5.102)

For any nonzero l ∈ Rk,

1

(lτVnl)1+δ/2

n∑

i=1

E|lτ [Mn(θ)]
−1ψi(Xi, θ)|2+δ → 0, (5.103)

since lim infn λ−[n−1Var(sn(θ))] > 0 and supi E‖ψi(Xi, θ)‖2+δ < ∞ (ex-
ercise). Applying the CLT (Theorem 1.15) with Liapounov’s condition
(5.103), we obtain that

lτ [Mn(θ)]
−1sn(θ)/

√
lτVnl →d N(0, 1) (5.104)

for any l, which implies (5.102) (exercise).

Asymptotic normality of GEE estimators can be established under var-
ious other conditions; see, for example, Serfling (1980, Chapter 7) and He
and Shao (1996).
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If Xi’s are i.i.d. and ψi ≡ ψ, the asymptotic covariance matrix in (5.100)
reduces to

Vn = n−1{E[ϕ(X1, θ)]}−1E{ψ(X1, θ)[ψ(X1, θ)]
τ}{E[ϕ(X1, θ)]}−1,

where ϕ(x, γ) = ∂ψ(x, γ)/∂γ. When θ is univariate, Vn further reduces to

Vn = n−1E[ψ(X1, θ)]
2/{E[ϕ(X1, θ)]}2.

Under the conditions of Theorem 5.14,

E[ϕ(X1, θ)] =

∫
∂ψ(x, θ)

∂θ
dF (x) =

∂

∂θ

∫
ψ(x, θ)dF (x).

Hence, the result in Theorem 5.14 coincides with that in Theorem 5.13.

Example 5.14. Consider the quasi-likelihood equation in (5.90) and ψi in
(5.96). If supi ‖Zi‖ < ∞, then ψi satisfies the conditions in Theorem 5.14
(exercise). Let Ṽn(γ) = [Di(γ)]1/2R̃i[Di(γ)]1/2. Then

Var(sn(θ)) =

n∑

i=1

Gi(θ)[Ṽn(θ)]−1Var(Xi)[Ṽn(θ)]−1[Gi(θ)]
τ

and

Mn(θ) =
n∑

i=1

Gi(θ)[Ṽn(θ)]−1[Gi(θ)]
τ .

If R̃i = Ri (the true correlation matrix) for all i, then

Var(sn(θ)) =

n∑

i=1

φiGi(θ)[Ṽn(θ)]−1[Gi(θ)]
τ .

If, in addition, φi ≡ φ, then

Vn = [Mn(θ)]
−1Var(sn(θ))[Mn(θ)]−1 = φ[Mn(θ)]−1.

5.5 Variance Estimation

In statistical inference the accuracy of a point estimator is usually assessed
by its mse or amse. If the bias or asymptotic bias of an estimator is (asymp-
totically) negligible w.r.t. its mse or amse, then assessing the mse or amse is
equivalent to assessing variance or asymptotic variance. Since variances and
asymptotic variances usually depend on the unknown population, we have
to estimate them in order to report accuracies of point estimators. Vari-
ance estimation is an important part of statistical inference, not only for
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assessing accuracy, but also for constructing inference procedures studied
in Chapters 6 and 7. See also the discussion at the end of §2.5.1.

Let θ be a parameter of interest and θ̂n be its estimator. Suppose that,
as the sample size n→ ∞,

V −1/2
n (θ̂n − θ) →d Nk(0, Ik), (5.105)

where Vn is the covariance matrix or an asymptotic covariance matrix of
θ̂n. An essential asymptotic requirement in variance estimation is the con-
sistency of variance estimators according to the following definition. See
also (3.60) and Exercise 116 in §3.6.

Definition 5.4. Let {Vn} be a sequence of k× k positive definite matrices
and V̂n be a positive definite matrix estimator of Vn for each n. Then {V̂n}
or V̂n is said to be consistent for Vn (or strongly consistent for Vn) if and
only if

‖V −1/2
n V̂nV

−1/2
n − Ik‖ →p 0 (5.106)

(or (5.106) holds with →p replaced by →a.s.).

Note that (5.106) is different from ‖V̂n−Vn‖ →p 0, because ‖Vn‖ → 0 in
most applications. It can be shown (Exercise 93) that (5.106) holds if and
only if lτnV̂nln/l

τ
nVnln →p 1 for any sequence of nonzero vectors {ln} ⊂ Rk.

If (5.105) and (5.106) hold, then

V̂ −1/2
n (θ̂n − θ) →d Nk(0, Ik)

(exercise), a result useful for asymptotic inference discussed in Chapters 6
and 7.

If the unknown population is in a parametric family indexed by θ, then
Vn is a function of θ, say Vn = Vn(θ), and it is natural to estimate Vn(θ)

by Vn(θ̂n). Consistency of Vn(θ̂n) according to Definition 5.4 can usually
be directly established. Thus, variance estimation in parametric problems
is usually simple. In a nonparametric problem, Vn may depend on un-
known quantities other than θ and, thus, variance estimation is much more
complex.

We introduce three commonly used variance estimation methods in this
section, the substitution method, the jackknife, and the bootstrap.

5.5.1 The substitution method

Suppose that we can obtain a formula for the covariance or asymptotic
covariance matrix Vn in (5.105). Then a direct method of variance estima-
tion is to substitute unknown quantities in the variance formula by some
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estimators. To illustrate, consider the simplest case where X1, ..., Xn are
i.i.d. random d-vectors with E‖X1‖2 <∞, θ = g(µ), µ = EX1, θ̂n = g(X̄),
and g is a function from Rd to Rk. Suppose that g is differentiable at µ.
Then, by the CLT and Theorem 1.12(i), (5.105) holds with

Vn = [∇g(µ)]τVar(X1)∇g(µ)/n, (5.107)

which depends on unknown quantities µ and Var(X1). A substitution esti-
mator of Vn is

V̂n = [∇g(X̄)]τS2∇g(X̄)/n, (5.108)

where

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)τ

is the sample covariance matrix, an extension of the sample variance to the
multivariate Xi’s.

By the SLLN, X̄ →a.s. µ and S2 →a.s. Var(X1). Hence, V̂n in (5.108)
is strongly consistent for Vn in (5.107), provided that ∇g(µ) 6= 0 and ∇g is
continuous at µ.

Example 5.15. Let Y1, ..., Yn be i.i.d. random variables with finite µy =
EY1, σ

2
y = Var(Y1), γy = EY 3

1 , and κy = EY 4
1 . Consider the estimation

of θ = (µy , σ
2
y). Let θ̂n = (X̄, σ̂2

y), where σ̂2
y = n−1

∑n
i=1(Yi − Ȳ )2. If

Xi = (Yi, Y
2
i ), then θ̂n = g(X̄) with g(x) = (x1, x2 − x2

1). Hence, (5.105)
holds with

Var(X1) =

(
σ2
y γy − µy(σ

2
y + µ2

y)

γy − µy(σ
2
y + µ2

y) κy − (σ2
y + µ2

y)
2

)

and

∇g(x) =

(
1 0

−2x1 1

)
.

The estimator V̂n in (5.108) is strongly consistent, since ∇g(x) is obviously
a continuous function.

Similar results can be obtained for problems in Examples 3.21 and 3.23
and Exercises 100 and 101 in §3.6.

A key step in the previous discussion is the derivation of formula (5.107)

for the asymptotic covariance matrix of θ̂n = g(X̄) via Taylor’s expansion
(Theorem 1.12) and the CLT. Thus, the idea can be applied to the case

where θ̂n = T(Fn), a differentiable statistical functional.

We still consider i.i.d. random d-vectors X1, ..., Xn from F . Suppose
that T is a vector-valued functional whose components are ̺-Hadamard
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differentiable at F , where ̺ is either ̺∞ or a distance satisfying (5.42).
Let φF be the vector of influence functions of components of T. If the
components of φF satisfy (5.40), then (5.105) holds with θ = T(F ), θ̂n =
T(Fn), Fn = the empirical c.d.f. in (5.1), and

Vn =
Var(φF (X1))

n
=

1

n

∫
φF (x)[φF (x)]τdF (x). (5.109)

Formula (5.109) leads to a natural substitution variance estimator

V̂n =
1

n

∫
φFn(x)[φFn (x)]τdFn(x) =

1

n2

n∑

i=1

φFn(Xi)[φFn(Xi)]
τ , (5.110)

provided that φFn(x) is well defined, i.e., the components of T are Gâteaux
differentiable at Fn for sufficiently large n. Under some more conditions on
φFn we can establish the consistency of V̂n in (5.110).

Theorem 5.15. Let X1, ..., Xn be i.i.d. random d-vectors from F , T be
a vector-valued functional whose components are Gâteaux differentiable at
F and Fn, and φF be the vector of influence functions of components of
T. Suppose that sup‖x‖≤c ‖φFn(x) − φF (x)‖ = op(1) for any c > 0 and
that there exist a constant c0 > 0 and a function h(x) ≥ 0 such that
E[h(X1)] <∞ and P

(
‖φFn(x)‖2 ≤ h(x) for all ‖x‖ ≥ c0

)
→ 1. Then V̂n in

(5.110) is consistent for Vn in (5.109).
Proof. Let ζ(x) = φF (x)[φF (x)]τ and ζn(x) = φFn(x)[φFn(x)]τ . By the
SLLN,

1

n

n∑

i=1

ζ(Xi) →a.s.

∫
ζ(x)dF (x).

Hence the result follows from
∥∥∥∥∥

1

n

n∑

i=1

[ζn(Xi) − ζ(Xi)]

∥∥∥∥∥ = op(1).

Using the assumed conditions and the argument in the proof of Lemma 5.3,
we can show that for any ǫ > 0, there is a c > 0 such that

P

(
1

n

n∑

i=1

‖ζn(Xi) − ζ(Xi)‖I(c,∞)(‖Xi‖) >
ǫ

2

)
≤ ǫ

and

P

(
1

n

n∑

i=1

‖ζn(Xi) − ζ(Xi)‖I[0,c](‖Xi‖) >
ǫ

2

)
≤ ǫ

for sufficiently large n. This completes the proof.
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Example 5.16. Consider the L-functional defined in (5.46) and the L-

estimator θ̂n = T(Fn). Theorem 5.6 shows that T is Hadamard differentiable
at F under some conditions on J . It can be shown (exercise) that T is
Gâteaux differentiable at Fn with φFn(x) given by (5.48) (with F replaced
by Fn). Then the difference φFn(x) − φF (x) is equal to

∫
(Fn − F )(y)J(Fn(y))dy +

∫
(F − διx)(y)[J(Fn(y)) − J(F (y))]dy.

One can show (exercise) that the conditions in Theorem 5.15 are satisfied
if the conditions in Theorem 5.6(i) or (ii) (with E|X1| <∞) hold.

Substitution variance estimators for M-estimators and U-statistics can
also be derived (exercises).

The substitution method can clearly be applied to non-i.i.d. cases. For
example, the LSE β̂ in linear model (3.25) with a full rank Z and i.i.d. εi’s

has Var(β̂) = σ2(ZτZ)−1, where σ2 = Var(ε1). A consistent substitution

estimator of Var(β̂) can be obtained by replacing σ2 in the formula of Var(β̂)
by a consistent estimator of σ2 such as SSR/(n− p) (see (3.35)).

We now consider variance estimation for the GEE estimators described
in §5.4.1. By Theorem 5.14, the asymptotic covariance matrix of the GEE
estimator θ̂n is given by (5.100), where

Var(sn(θ)) =

n∑

i=1

E{ψi(Xi, θ)[ψi(Xi, θ)]
τ},

Mn(θ) =

n∑

i=1

E[ϕi(Xi, θ)],

and ϕi(x, γ) = ∂ψi(x, γ)/∂γ. Substituting θ by θ̂n and the expectations
by their empirical analogues, we obtain the substitution estimator V̂n =
M̂−1
n V̂ar(sn)M̂

−1
n , where

V̂ar(sn) =

n∑

i=1

ψi(Xi, θ̂n)[ψi(Xi, θ̂n)]
τ

and

M̂n =

n∑

i=1

ϕi(Xi, θ̂n).

The proof of the following result is left as an exercise.

Theorem 5.16. Let X1, ..., Xn be independent and {θ̂n} be a consistent
sequence of GEE estimators. Assume the conditions in Theorem 5.14. Sup-
pose further that the sequence of functions {hij , i = 1, 2, ...} satisfies the
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conditions in Lemma 5.3 with Θ replaced by a compact neighborhood of θ,
where hij(x, γ) is the jth row of ψi(x, γ)[ψi(x, γ)]

τ , j = 1, ..., k. Let Vn be

given by (5.100). Then V̂n = M̂−1
n V̂ar(sn)M̂

−1
n is consistent for Vn.

5.5.2 The jackknife

Applying the substitution method requires the derivation of a formula for
the covariance matrix or asymptotic covariance matrix of a point estimator.
There are variance estimation methods that can be used without actually
deriving such a formula (only the existence of the covariance matrix or
asymptotic covariance matrix is assumed), at the expense of requiring a
large number of computations. These methods are called resampling meth-
ods, replication methods, or data reuse methods. The jackknife method
introduced here and the bootstrap method in §5.5.3 are the most popular
resampling methods.

The jackknife method was proposed by Quenouille (1949) and Tukey

(1958). Let θ̂n be a vector-valued estimator based on independent Xi’s,

where each Xi is a random di-vector and supi di < ∞. Let θ̂−i be the
same estimator but based on X1, ..., Xi−1, Xi+1, ..., Xn, i = 1, ..., n. Note
that θ̂−i also depends on n but the subscript n is omitted for simplicity.
Since θ̂n and θ̂−1, ..., θ̂−n are estimators of the same quantity, the “sample
covariance matrix”

1

n− 1

n∑

i=1

(
θ̂−i − θ̄n

)(
θ̂−i − θ̄n

)τ
(5.111)

can be used as a measure of the variation of θ̂n, where θ̄n is the average of
θ̂−i’s.

There are two major differences between the quantity in (5.111) and

the sample covariance matrix S2 previously discussed. First, θ̂−i’s are not
independent. Second, θ̂−i − θ̂−j usually converges to 0 at a fast rate (such

as n−1). Hence, to estimate the asymptotic covariance matrix of θ̂n, the

quantity in (5.111) should be multiplied by a correction factor cn. If θ̂n = X̄

(di ≡ d), then θ̂−i − θ̄n = (n − 1)−1(X̄ −Xi) and the quantity in (5.111)
reduces to

1

(n− 1)3

n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)τ
=

1

(n− 1)2
S2,

where S2 is the sample covariance matrix. Thus, the correction factor cn
is (n − 1)2/n for the case of θ̂n = X̄ since, by the SLLN, S2/n is strongly
consistent for Var(X̄).
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It turns out that the same correction factor works for many other esti-
mators. This leads to the following jackknife variance estimator for θ̂n:

V̂J =
n− 1

n

n∑

i=1

(
θ̂−i − θ̄n

)(
θ̂−i − θ̄n

)τ
. (5.112)

Theorem 5.17. Let X1, ..., Xn be i.i.d. random d-vectors from F with
finite µ = E(X1) and Var(X1), and let θ̂n = g(X̄). Suppose that ∇g is
continuous at µ and ∇g(µ) 6= 0. Then the jackknife variance estimator V̂J
in (5.112) is strongly consistent for Vn in (5.107).
Proof. We prove the case where g is real-valued. The proof of the gen-
eral case is left to the reader. Let X̄−i be the sample mean based on
X1, ..., Xi−1, Xi+1, ..., Xn. From the mean-value theorem, we have

θ̂−i − θ̂n = g(X̄−i) − g(X̄)

= [∇g(ξn,i)]τ (X̄−i − X̄)

= [∇g(X̄)]τ (X̄−i − X̄) +Rn,i,

where Rn,i =
[
∇g(ξn,i) − ∇g(X̄)

]τ
(X̄−i − X̄) and ξn,i is a point on the

line segment between X̄−i and X̄. From X̄−i − X̄ = (n− 1)−1(X̄ −Xi), it
follows that

∑n
i=1(X̄−i − X̄) = 0 and

1

n

n∑

i=1

(θ̂−i − θ̂n) =
1

n

n∑

i=1

Rn,i = R̄n.

From the definition of the jackknife estimator in (5.112),

V̂J = An +Bn + 2Cn,

where

An =
n− 1

n
[∇g(X̄)]τ

n∑

i=1

(X̄−i − X̄)(X̄−i − X̄)τ∇g(X̄),

Bn =
n− 1

n

n∑

i=1

(Rn,i − R̄n)
2,

and

Cn =
n− 1

n

n∑

i=1

(Rn,i − R̄n)[∇g(X̄)]τ (X̄−i − X̄).

By X̄−i − X̄ = (n− 1)−1(X̄ −Xi), the SLLN, and the continuity of ∇g at
µ,

An/Vn →a.s. 1.



378 5. Estimation in Nonparametric Models

Also,

(n− 1)

n∑

i=1

‖X̄−i − X̄‖2 =
1

n− 1

n∑

i=1

‖Xi − X̄‖2 = O(1) a.s. (5.113)

Hence
max
i≤n

‖X̄−i − X̄‖2 →a.s. 0,

which, together with the continuity of ∇g at µ and ‖ξn,i−X̄‖ ≤ ‖X̄−i−X̄‖,
implies that

un = max
i≤n

‖∇g(ξn,i) −∇g(X̄)‖ →a.s. 0.

From (5.107) and (5.113),
∑n

i=1 ‖X̄−i − X̄‖2/Vn = O(1) a.s. Hence

Bn
Vn

≤ n− 1

Vnn

n∑

i=1

R2
n,i ≤

un
Vn

n∑

i=1

‖X̄−i − X̄‖2 →a.s. 0.

By the Cauchy-Schwarz inequality, (Cn/Vn)2 ≤ (An/Vn)(Bn/Vn) →a.s. 0.
This proves the result.

A key step in the proof of Theorem 5.17 is that θ̂−i− θ̂n can be approx-
imated by [∇g(X̄)]τ (X̄−i − X̄) and the contributions of the remainders,
Rn,1, ..., Rn,n, are sufficiently small, i.e., Bn/Vn →a.s. 0. This indicates

that the jackknife estimator (5.112) is consistent for θ̂n that can be well ap-
proximated by some linear statistic. In fact, the jackknife estimator (5.112)

has been shown to be consistent when θ̂n is a U-statistic (Arvesen, 1969)
or a statistical functional that is Hadamard differentiable and continuously
Gâteaux differentiable at F (which includes certain types of L-estimators
and M-estimators). More details can be found in Shao and Tu (1995, Chap-
ter 2).

The jackknife method can be applied to non-i.i.d. problems. A detailed
discussion of the use of the jackknife method in survey problems can be
found in Shao and Tu (1995, Chapter 6). We now consider the jackknife

variance estimator for the LSE β̂ in linear model (3.25). For simplicity,
assume that Z is of full rank. Assume also that εi’s are independent with
E(εi) = 0 and Var(εi) = σ2

i . Then

Var(β̂) = (ZτZ)−1
n∑

i=1

σ2
i ZiZ

τ
i (ZτZ)−1.

Let β̂−i be the LSE of β based on the data with the ith pair (Xi, Zi) deleted.
Using the fact that (A + ccτ )−1 = A−1 − A−1ccτA−1/(1 + cτA−1c) for a
matrix A and a vector c, we can show that (exercise)

β̂−i = β̂ − riZi/(1 − hi), (5.114)
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where ri = Xi − Zτi β̂ is the ith residual and hi = Zτi (ZτZ)−1Zi. Hence

V̂J =
n− 1

n
(ZτZ)−1

[
n∑

i=1

r2iZiZ
τ
i

(1 − hi)2
− 1

n

n∑

i=1

riZi
1 − hi

n∑

i=1

riZ
τ
i

1 − hi

]
(ZτZ)−1.

Wu (1986) proposed the following weighted jackknife variance estimator
that improves V̂J :

V̂WJ =

n∑

i=1

(1−hi)
(
β̂−i − β̂

)(
β̂−i − β̂

)τ
= (ZτZ)−1

n∑

i=1

r2iZiZ
τ
i

1 − hi
(ZτZ)−1.

Theorem 5.18. Assume the conditions in Theorem 3.12 and that εi’s are
independent. Then both V̂J and V̂WJ are consistent for Var(β̂).
Proof. Let ln ∈ Rp, n = 1, 2, ..., be nonzero vectors and li = lτn(Z

τZ)−1Zi.
Since maxi≤n hi → 0, the result for V̂WJ follows from

n∑

i=1

l2i r
2
i

/ n∑

i=1

l2i σ
2
i →p 1 (5.115)

(see Exercise 93). By the WLLN (Theorem 1.14(ii)) and maxi≤n hi → 0,

n∑

i=1

l2i ε
2
i

/ n∑

i=1

l2i σ
2
i →p 1.

Note that ri = εi + Zτi (β − β̂) and

max
i≤n

[Zτi (β − β̂)]2 ≤ ‖Z(β − β̂)‖2 max
i≤n

hi = op(1).

Hence (5.115) holds.

The consistency of V̂J follows from (5.115) and

n− 1

n2

(
n∑

i=1

liri
1 − hi

)2/ n∑

i=1

l2i σ
2
i = op(1). (5.116)

The proof of (5.116) is left as an exercise.

Finally, let us consider the jackknife estimators for GEE estimators in
§5.4.1. Under the conditions of Proposition 5.5 or 5.6, it can be shown that

max
i≤n

‖θ̂−i − θ̂‖ = op(1), (5.117)

where θ̂−i is a root of sni(γ) = 0 and

sni(γ) =
∑

j 6=i,j≤n
ψj(Xj , γ).
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Assume that ψi(x, γ) is continuously differentiable w.r.t. γ in a neighbor-

hood of θ. Using Taylor’s expansion and the fact that sni(θ̂−i) = 0 and

sn(θ̂n) = 0, we obtain that

ψi(Xi, θ̂−i) =

[∫ 1

0

∇sn
(
θ̂n + t(θ̂−i − θ̂n)

)
dt

]
(θ̂−i − θ̂n).

Following the proof of Theorem 5.14, we obtain that

V̂J = [Mn(θ)]
−1

n∑

i=1

ψi(Xi, θ̂−i)[ψi(Xi, θ̂−i)]
τ [Mn(θ)]

−1 +Rn,

where Rn satisfies ‖V −1/2
n RnV

−1/2
n ‖ = op(1) for Vn in (5.100). Under the

conditions of Theorem 5.16, it follows from (5.117) that V̂J is consistent.

If θ̂n is computed using an iteration method, then the computation of
V̂J requires n additional iteration processes. We may use the idea of a
one-step MLE to reduce the amount of computation. For each i, let

θ̂−i = θ̂n − [∇sni(θ̂n)]−1sni(θ̂n), (5.118)

which is the result from the first iteration when the Newton-Raphson
method is applied in computing a root of sni(γ) = 0 and θ̂n is used as

the initial point. Note that θ̂−i’s in (5.118) satisfy (5.117) (exercise). If the

jackknife variance estimator is based on θ̂−i’s in (5.118), then

V̂J = [Mn(θ)]
−1

n∑

i=1

ψi(Xi, θ̂n)[ψi(Xi, θ̂n)]
τ [Mn(θ)]

−1 + R̃n,

where R̃n satisfies ‖V −1/2
n R̃nV

−1/2
n ‖ = op(1). These results are summarized

in the following theorem.

Theorem 5.19. Assume the conditions in Theorems 5.14 and 5.16. As-
sume further that θ̂−i’s are given by (5.118) or GEE estimators satisfying
(5.117). Then the jackknife variance estimator V̂J is consistent for Vn given
in (5.100).

5.5.3 The bootstrap

The basic idea of the bootstrap method can be described as follows. Sup-
pose that P is a population or model that generates the sample X and that
we need to estimate Var(θ̂), where θ̂ = θ̂(X) is an estimator, a statistic
based on X . Suppose further that the unknown population P is estimated
by P̂ , based on the sample X . Let X∗ be a sample (called a bootstrap
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sample) taken from the estimated population P̂ using the same or a similar

sampling procedure used to obtain X , and let θ̂∗ = θ̂(X∗), which is the

same as θ̂ but with X replaced by X∗. If we believe that P = P̂ (i.e.,

we have a perfect estimate of the population), then Var(θ̂) = Var∗(θ̂∗),
where Var∗ is the conditional variance w.r.t. the randomness in generating
X∗, given X . In general, P 6= P̂ and, therefore, Var(θ̂) 6= Var∗(θ̂∗). But

V̂B = Var∗(θ̂∗) is an empirical analogue of Var(θ̂) and can be used as an

estimate of Var(θ̂).

In a few cases, an explicit form of V̂B = Var∗(θ̂∗) can be obtained.
First, consider i.i.d. X1, ..., Xn from a c.d.f. F on Rd. The population is
determined by F . Suppose that we estimate F by the empirical c.d.f. Fn
in (5.1) and that X∗

1 , ..., X
∗
n are i.i.d. from Fn. For θ̂ = X̄, its bootstrap

analogue is θ̂∗ = X̄∗, the average of X∗
i ’s. Then

V̂B = Var∗(X̄
∗) =

1

n2

n∑

i=1

(Xi − X̄)(Xi − X̄)τ =
n− 1

n2
S2,

where S2 is the sample covariance matrix. In this case V̂B = Var∗(X̄∗) is
a strongly consistent estimator for Var(X̄). Next, consider i.i.d. random

variables X1, ..., Xn from a c.d.f. F on R and θ̂ = F−1
n (1

2 ), the sample
median. Suppose that n = 2l − 1 for an integer l. Let X∗

1 , ..., X
∗
n be i.i.d.

from Fn and θ̂∗ be the sample median based on X∗
1 , ..., X

∗
n. Then

V̂B = Var∗(θ̂
∗) =

n∑

j=1

pj

(
X(j) −

n∑

i=1

piX(i)

)2

,

where X(1) ≤ · · · ≤ X(n) are order statistics and pj = P (θ̂∗ = X(j)|X). It
can be shown (exercise) that

pj =

l−1∑

t=0

(
n

t

)
(j − 1)t(n− j + 1)n−t − jt(n− j)n−t

nn
. (5.119)

However, in most cases V̂B does not have a simple explicit form. When
P is known, the Monte Carlo method described in §4.1.4 can be used to
approximate Var(θ̂). That is, we draw repeatedly new data sets from P and

then use the sample covariance matrix based on the values of θ̂ computed
from new data sets as a numerical approximation to Var(θ̂). This idea
can be used to approximate V̂B, since P̂ is a known population. That is,
we can draw m bootstrap data sets X∗1, ..., X∗m independently from P̂
(conditioned on X), compute θ̂∗j = θ̂(X∗j), j = 1, ...,m, and approximate
V̂B by

V̂ mB =
1

m

m∑

j=1

(
θ̂∗j − θ̄∗

)(
θ̂∗j − θ̄∗

)τ
,
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where θ̄∗ is the average of θ̂∗j ’s. Since each X∗j is a data set generated from
P̂ , V̂ mB is a resampling estimator. From the SLLN, as m → ∞, V̂ mB →a.s.

V̂B , conditioned onX . Both V̂B and its Monte Carlo approximation V̂ mB are

called bootstrap variance estimators for θ̂. V̂ mB is more useful in practical

applications, whereas in theoretical studies, we usually focus on V̂B.

The consistency of the bootstrap variance estimator V̂B is a much more
complicated problem than that of the jackknife variance estimator in §5.5.2.
Some examples can be found in Shao and Tu (1995, §3.2.2).

The bootstrap method can also be applied to estimate quantities other
than Var(θ̂). For example, let K(t) = P (θ̂ ≤ t) be the c.d.f. of a real-valued

estimator θ̂. From the previous discussion, a bootstrap estimator of K(t)

is the conditional probability P (θ̂∗ ≤ t|X), which can be approximated

by the Monte Carlo approximation m−1
∑m

j=1 I(−∞,t](θ̂
∗j). An important

application of bootstrap distribution estimators in problems of constructing
confidence sets is studied in §7.4. Here, we study the use of a bootstrap
distribution estimator to form a consistent estimator of the asymptotic
variance of a real-valued estimator θ̂.

Suppose that √
n(θ̂ − θ) →d N(0, v), (5.120)

where v is unknown. Let Hn(t) be the c.d.f. of
√
n(θ̂ − θ) and

ĤB(t) = P (
√
n(θ̂∗ − θ̂) ≤ t|X) (5.121)

be a bootstrap estimator of Hn(t). If

ĤB(t) −Hn(t) →p 0

for any t, then, by (5.120),

ĤB(t) − Φ
(
t/
√
v
)
→p 0,

which implies (Exercise 112) that

Ĥ−1
B (α) →p

√
vzα

for any α ∈ (0, 1), where zα = Φ−1(α). Then, for α 6= 1
2 ,

Ĥ−1
B (1 − α) − Ĥ−1

B (α) →p

√
v(z1−α − zα).

Therefore, a consistent estimator of v/n, the asymptotic variance of θ̂, is

ṼB =
1

n

[
Ĥ−1
B (1 − α) − Ĥ−1

B (α)

z1−α − zα

]2

.
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The following result gives some conditions under which ĤB(t)−Hn(t) →p 0.
The proof of part (i) is omitted. The proof of part (ii) is given in Exercises
113-115 in §5.6.

Theorem 5.20. Suppose that X1, ..., Xn are i.i.d. from a c.d.f. F on Rd.
Let θ̂ = T(Fn), where T is a real-valued functional, θ̂∗ = T(F ∗

n), where F ∗
n is

the empirical c.d.f. based on a bootstrap sample X∗
1 , ..., X

∗
n i.i.d. from Fn,

and let ĤB be given by (5.121).
(i) If T is ̺∞-Hadamard differentiable at F and (5.40) holds, then

̺∞(ĤB, Hn) →p 0. (5.122)

(ii) If d = 1 and T is ̺Lp
-Fréchet differentiable at F (

∫
{F (t)[1−F (t)]}p/2dt

<∞ if 1 ≤ p < 2) and (5.40) holds, then (5.122) holds.

Applications of the bootstrap method to non-i.i.d. cases can be found,
for example, in Efron and Tibshirani (1993), Hall (1992), and Shao and Tu
(1995).

5.6 Exercises

1. Let ̺∞ be the sup-norm distance. Find an example of a sequence
{Gn} of c.d.f.’s satisfying Gn →w G for a c.d.f. G, but ̺∞(Gn, G)
does not converge to 0.

2. Let X1, ..., Xn be i.i.d. random d-vectors with c.d.f. F and Fn be the
empirical c.d.f. defined by (5.1). Show that for any t > 0 and ǫ > 0,
there is a Cǫ,d such that for all n = 1, 2, ...,

P

(
sup
m≥n

̺∞(Fm, F ) > t

)
≤ Cǫ,de

−(2−ǫ)t2n

1 − e−(2−ǫ)t2 .

3. Show that ̺Mp
defined by (5.4) is a distance on Fp, p ≥ 1.

4. Show that ‖ · ‖Lp in (5.5) is a norm for any p ≥ 1.

5. Let F1 be the collection of c.d.f.’s on R with finite means.
(a) Show that ̺M1

(G1, G2) =
∫ 1

0
|G−1

1 (z)−G−1
2 (z)|dz, where G−1(z)

= inf{t : G(t) ≥ z} for any G ∈ F.
(b) Show that ̺M1

(G1, G2) = ̺L1
(G1, G2).

6. Find an example of a sequence {Gj} ⊂ F for which
(a) limj→∞ ̺∞(Gj , G0) = 0 but ̺M2

(Gj , G0) does not converge to 0;
(b) limj→∞ ̺M2

(Gj , G0) = 0 but ̺∞(Gj , G0) does not converge to 0.
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7. Repeat the previous exercise with ̺M2
replaced by ̺L2

.

8. Let X be a random variable having c.d.f. F . Show that
(a) E|X |2 <∞ implies

∫
{F (t)[1 − F (t)]}p/2dt <∞ for p ∈ (1, 2);

(b) E|X |2+δ < ∞ with some δ > 0 implies
∫
{F (t)[1 − F (t)]}1/2dt <

∞.

9. For any one-dimensional Gj ∈ F1, j = 1, 2, show that ̺L1
(G1, G2) ≥

|
∫
xdG1 −

∫
xdG2|.

10. In the proof of Theorem 5.3, show that pi = c/n, i = 1, ..., n, λ =
−(c/n)n−1 is a maximum of the function H(p1, ..., pn, λ) over pi > 0,
i = 1, ..., n,

∑n
i=1 pi = c.

11. Show that (5.11)-(5.13) is a solution to the problem of maximizing
ℓ(G) in (5.8) subject to (5.10).

12. In the proof of Theorem 5.4, prove the case of m ≥ 2.

13. Show that a maximum of ℓ(G) in (5.17) subject to (5.10) is given by
(5.11) with p̂i defined by (5.18) and (5.19).

14. In Example 5.2, show that an MELE is given by (5.11) with p̂i’s given
by (5.21).

15. In Example 5.3, show that
(a) maximizing (5.22) subject to (5.23) is equivalent to maximizing

n∏

i=1

q
δ(i)
i (1 − qi)

n−i+1−δ(i) ,

where qi = pi/
∑n+1
j=i pj, i = 1, ..., n;

(b) F̂ given by (5.24) maximizes (5.22) subject to (5.23); (Hint: use

part (a) and the fact that pi = qi
∏i−1
j=1(1 − qj).)

(c) F̂ given by (5.25) is the same as that in (5.24);
(d) if δi = 1 for all i (no censoring), then F̂ in (5.25) is the same as
the empirical c.d.f. in (5.1).

16. Let fn be given by (5.26).
(a) Show that fn is a Lebesgue p.d.f. on R.
(b) Suppose that f is continuously differentiable at t, λn → 0, and
nλn → ∞. Show that (5.27) holds.
(c) Under nλ3

n → 0 and the conditions of (b), show that (5.28) holds.
(d) Suppose that f is continuous on [a, b], −∞ < a < b <∞, λn → 0,

and nλn → ∞. Show that
∫ b
a
fn(t)dt →p

∫ b
a
f(t)dt.
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17. Let f̂ be given by (5.29).

(a) Show that f̂ is a Lebesgue p.d.f. on R.
(b) Prove (5.30) under the condition that λn → 0, nλn → ∞, and
f is bounded and continuous at t and

∫
[w(t)]2dt < ∞. (Hint: check

Lindeberg’s condition and apply Theorem 1.15.)
(c) Assume that λn → 0, nλn → ∞, w is bounded, and f is bounded

and continuous on [a, b], −∞ < a < b < ∞. Show that
∫ b
a
f̂(t)dt →p∫ b

a f(t)dt.

18. Prove (5.32)-(5.34) under the conditions described in §5.1.4.

19. Show that K̂(t) in (5.35) is a consistent estimator of K(t) in (5.34),

assuming that β̂ →p β, φ is a continuous function on R, (Xi, Zi)’s
are i.i.d., and ‖Zi‖ ≤ c for a constant c > 0.

20. Let ℓ(θ, ξ) be a likelihood. Show that a maximum profile likelihood

estimator θ̂ of θ is an MLE if ξ(θ), the maximum of supξ ℓ(θ, ξ) for a
fixed θ, does not depend on θ.

21. Let X1, ..., Xn be i.i.d. from N(µ, σ2). Derive the profile likelihood
function for µ or σ2. Discuss in each case whether the maximum
profile likelihood estimator is the same as the MLE.

22. Derive the profile empirical likelihoods in (5.36) and (5.37).

23. LetX1, ..., Xn be i.i.d. random variables from a c.d.f. F and let π(x) =
P (δi = 1|Xi = x), where δi = 1 if Xi is observed and δi = 0 if Xi is
missing. Assume that 0 < π =

∫
π(x)dF (x) < 1.

(a) Let F1(x) = P (Xi ≤ x|δi = 1). Show that F and F1 are the same
if and only if π(x) ≡ π.
(b) Let F̂ be the c.d.f. putting mass r−1 to each observed Xi, where
r is the number of observed Xi’s. Show that F̂ (x) is unbiased and
consistent for F1(x), x ∈ R.
(c) When π(x) ≡ π, show that F̂ (x) in part (b) is unbiased and
consistent for F (x), x ∈ R. When π(x) is not constant, show that
F̂ (x) is biased and inconsistent for F (x) for some x ∈ R.

24. Show that ̺-Fréchet differentiability implies ̺-Hadamard differentia-
bility.

25. Suppose that a functional T is Gâteaux differentiable at F with a
continuous differential LF in the sense that ̺∞(∆j ,∆) → 0 implies
LF (∆j) → LF (∆). Show that φF is bounded.

26. Suppose that a functional T is Gâteaux differentiable at F with a
bounded and continuous influence function φF . Show that the differ-
ential LF is continuous in the sense described in the previous exercise.
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27. Let T(G) = g(
∫
xdG) be a functional defined on F1, the collection of

one-dimensional c.d.f.’s with finite means.
(a) Find a differentiable function g for which the functional T is not
̺∞-Hadamard differentiable at F .
(b) Show that if g is a differentiable function, then T is ̺L1

-Fréchet
differentiable at F . (Hint: use the result in Exercise 9.)

28. In Example 5.5, show that (5.43) holds. (Hint: for ∆ = c(G1 −G2),
show that ‖∆‖V ≤ |c|(‖G1‖V + ‖G2‖V ) = 2|c|.)

29. In Example 5.5, show that φF is continuous if F is continuous.

30. In Example 5.5, show that T is not ̺∞-Fréchet differentiable at F .

31. Prove Proposition 5.1(ii).

32. Suppose that T is first-order and second-order ̺-Hadamard differen-
tiable at F . Prove (5.45).

33. Find an example of a second-order ̺-Fréchet differentiable functional
T that is not first-order ̺-Hadamard differentiable.

34. Prove (5.47) and that (5.40) is satisfied for an L-functional if J is
bounded and F has a finite variance.

35. Prove (iv) and (v) of Theorem 5.6.

36. Discuss which of (i)-(v) in Theorem 5.6 can be applied to each of the
L-estimators in Example 5.6.

37. Obtain explicit forms of the influence functions for L-estimators in
Example 5.6. Discuss which of them are bounded and continuous.

38. Provide an example in which the L-functional T given by (5.46) is not
̺∞-Hadamard differentiable at F . (Hint: consider an untrimmed J .)

39. Discuss which M-functionals defined in (i)-(vi) of Example 5.7 satisfy
the conditions of Theorem 5.7.

40. In the proof of Theorem 5.7, show that R2j → 0.

41. Show that the second equality in (5.51) holds when ψ is Borel and
bounded.

42. Show that the functional T in (5.53) is ̺∞-Hadamard differentiable at
F with the differential given by (5.54). Obtain the influence function
φF and show that it is bounded and continuous if F is continuous.
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43. Show that the functional T in (5.55) is ̺∞-Hadamard differentiable
at F with the differential given by (5.56). Obtain the influence func-
tion φF and show that it is bounded and continuous if F (y,∞) and
F (∞, z) are continuous.

44. Let F be a continuous c.d.f. on R. Suppose that F is symmetric
about θ and is strictly increasing in a neighborhood of θ. Show that
λF (t) = 0 if and only if t = θ, where λF (t) is defined by (5.57) with
a strictly increasing J satisfying J(1 − t) = −J(t).

45. Show that λF (t) in (5.57) is differentiable at θ and λ′F (θ) is equal to
−
∫
J ′(F (x))F ′(x)dF (x).

46. Let T(Fn) be an R-estimator satisfying the conditions in Theorem 5.8.
Show that (5.41) holds with

σ2
F =

∫ 1

0

[J(t)]2dt

/[∫ ∞

−∞
J ′(F (x))F ′(x)dF (x)

]2

.

47. Calculate the asymptotic relative efficiency of the Hodges-Lehmann
estimator in Example 5.8 w.r.t. the sample mean based on an i.i.d.
sample from F when
(a) F is the c.d.f. of N(µ, σ2);
(b) F is the c.d.f. of the logistic distribution LG(µ, σ);
(c) F is the c.d.f. of the double exponential distribution DE(µ, σ);
(d) F (x) = F0(x − θ), where F0(x) is the c.d.f. of the t-distribution
tν with ν ≥ 3.

48. Let G be a c.d.f. on R. Show that G(x) ≥ t if and only if x ≥ G−1(t).

49. Show that (5.67) implies that θ̂p is strongly consistent for θp and is√
n-consistent for θp if F ′(θp−) and F ′(θp+) exist and are positive.

50. Under the condition of Theorem 5.9, show that, for ρǫ = e−2δ2ǫ ,

P

(
sup
m≥n

|θ̂p − θp| > ǫ

)
≤ 2Cρnǫ

1 − ρǫ
, n = 1, 2, ....

51. Prove that ϕn(t) in (5.69) is the Lebesgue p.d.f. of the pth sample

quantile θ̂p when F has the Lebesgue p.d.f. f by

(a) differentiating the c.d.f. of θ̂p in (5.68);
(b) using result (5.66) and the result in Example 2.9.

52. Let X1, ..., Xn be i.i.d. random variables from F with a finite mean.
Show that θ̂p has a finite jth moment for sufficiently large n, j =
1, 2,....
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53. Prove Theorem 5.10(i).

54. Suppose that a c.d.f. F has a Lebesgue p.d.f. f that is continuous
at the pth quantile of F , p ∈ (0, 1). Using the p.d.f. in (5.69) and
Scheffé’s theorem (Proposition 1.18), prove part (iv) of Theorem 5.10.

55. Let {kn} be a sequence of integers satisfying kn/n = p + o(n−1/2)
with p ∈ (0, 1), and let X1, ..., Xn be i.i.d. random variables from a
c.d.f. F with F ′(θp) > 0. Show that

√
n(X(kn) − θp) →d N(0, p(1 − p)/[F ′(θp)]

2).

56. In the proof of Theorem 5.11, prove (5.72), (5.75), and inequality
(5.74).

57. Prove Corollary 5.1.

58. Prove the claim in Example 5.9.

59. Let T (G)=G−1(p) be the pth quantile functional. Suppose that F has
a positive derivative F ′ in a neighborhood of θ=F−1(p). Show that
T is Gâteaux differentiable at F and obtain the influence function.

60. Let X1, ..., Xn be i.i.d. from the Cauchy distribution C(0, 1).
(a) Show that E(X(j))

2 <∞ if and only if 3 ≤ j ≤ n− 2.

(b) Show that E(θ̂0.5)
2 <∞ for n ≥ 5.

61. Suppose that F is the c.d.f. of the uniform distribution U(θ− 1
2 , θ+

1
2 ),

θ ∈ R. Obtain the asymptotic relative efficiency of the sample median
w.r.t. the sample mean, based on an i.i.d. sample of size n from F .

62. Suppose that F (x) = F0(x − θ) and F0 is the c.d.f. of the Cauchy
distribution C(0, 1) truncated at c and −c, i.e., F0 has the Lebesgue
p.d.f. (1 + x2)−1I(−c,c)(x)/

∫ c
−c(1 + x2)−1dt. Obtain the asymptotic

relative efficiency of the sample median w.r.t. the sample mean, based
on an i.i.d. sample of size n from F .

63. LetX1, ..., Xn be i.i.d. with the c.d.f. (1−ǫ)Φ
(
x−µ
σ

)
+ǫD

(
x−µ
σ

)
, where

ǫ ∈ (0, 1) is a known constant, Φ is the c.d.f. of the standard normal
distribution, D is the c.d.f. of the double exponential distribution
D(0, 1), and µ ∈ R and σ > 0 are unknown parameters. Consider
the estimation of µ. Obtain the asymptotic relative efficiency of the
sample mean w.r.t. the sample median.

64. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. 2−1(1 − θ2)eθx−|x|,
where θ ∈ (−1, 1) is unknown.
(a) Show that the median of the distribution of X1 is given by m(θ) =
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(1 − θ)−1 log(1 + θ) when θ ≥ 0 and m(θ) = −m(−θ) when θ < 0.
(b) Show that the mean of the distribution ofX1 is µ(θ) = 2θ/(1−θ2).
(c) Show that the inverse functions of m(θ) and µ(θ) exist. Obtain
the asymptotic relative efficiency of m−1(m̂) w.r.t. µ−1(X̄), where m̂
is the sample median and X̄ is the sample mean.
(e) Is µ−1(X̄) in (d) asymptotically efficient in estimating θ?

65. Show that X̄α in (5.77) is the L-estimator corresponding to the J
function given in Example 5.6(iii) with β = 1 − α.

66. Let X1, ..., Xn be i.i.d. random variables from F , where F is symmet-
ric about θ.
(a) Show that X(j) − θ and θ−X(n−j+1) have the same distribution.
(b) Show that

∑n
j=1 wjX(j) has a c.d.f. symmetric about θ, if wi’s are

constants satisfying
∑n

i=1 wi = 1 and wj = wn−j+1 for all j.
(c) Show that the trimmed sample mean X̄α has a c.d.f. symmetric
about θ.

67. Under the conditions in one of (i)-(iii) of Theorem 5.6, show that
(5.41) holds for T(Fn) with σ2

F given by (5.79), if σ2
F <∞.

68. Prove (5.78) under the assumed conditions.

69. For the functional T given by (5.46), show that T(F ) = θ if F is

symmetric about θ, J is symmetric about 1
2 , and

∫ 1

0 J(t)dt = 1.

70. Obtain the asymptotic relative efficiency of the trimmed sample mean
X̄α w.r.t. the sample mean, based on an i.i.d. sample of size n from the
double exponential distribution DE(θ, 1), where θ ∈ R is unknown.

71. Obtain the asymptotic relative efficiency of the trimmed sample mean
X̄α w.r.t. the sample median, based on an i.i.d. sample of size n from
the Cauchy distribution C(θ, 1), where θ ∈ R is unknown.

72. Consider the α-trimmed sample mean defined in (5.77). Show that σ2
α

in (5.78) is the same as σ2
F in (5.79) with J(t) = (1−2α)−1I(α,1−α)(t),

when F (x) = F0(x− θ) and F0 is symmetric about 0.

73. For σ2
α in (5.78), show that

(a) if F ′
0(0) exists and is positive, then limα→ 1

2
σ2
α = 1/[2F ′

0(0)]2;

(b) if σ2 =
∫
x2dF0(x) <∞, then limα→0 σ

2
α = σ2.

74. Show that if J ≡ 1, then σ2
F in (5.79) is equal to the variance of the

c.d.f. F .

75. Calculate σ2
F in (5.79) with J(t) = 4t − 2 and F being the double

exponential distribution DE(θ, 1), θ ∈ R.
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76. Consider the simple linear model in Example 3.12 with positive ti’s.
Derive the L-estimator of β defined by (5.82) with a J symmetric
about 1

2 and compare it with the LSE of β.

77. Consider the one-way ANOVA model in Example 3.13. Derive the
L-estimator of β defined by (5.82) when (a) J is symmetric about 1

2
and (b) J(t) = (1 − 2α)−1I(α,1−α)(t). Compare these L-estimators
with the LSE of β.

78. Show that the method of moments in §3.5.2 is a special case of the
GEE method.

79. Complete the proof of Proposition 5.4.

80. In the proof of Lemma 5.3, show that the probability in (5.94) is
bounded by ǫ.

81. In Example 5.11, show that ψi’s satisfy the conditions of Lemma 5.3
if Θ is compact and supi ‖Zi‖ <∞.

82. In the proof of Proposition 5.5, show that {∆n(γ)} is equicontinuous
on any open subset of Θ.

83. Prove Proposition 5.6.

84. Prove the claim in Example 5.12.

85. Prove the claims in Example 5.13.

86. For Huber’s M-estimator discussed in Example 5.13, obtain a formula
for e(F ), the asymptotic relative efficiency of θ̂n w.r.t. X̄, when F is
given by (5.76). Show that limτ→∞ e(F ) = ∞. Find the value of
e(F ) when ǫ = 0, σ = 1, and C = 1.5.

87. Consider the ψ function in Example 5.7(ii). Show that under some
conditions on F , ψ satisfies the conditions given in Theorem 5.13(i)
or (ii). Obtain σ2

F in (5.98) in this case.

88. In the proof of Theorem 5.14, show that
(a) (5.101) holds;
(b) (5.103) holds;
(c) (5.104) implies (5.102). (Hint: use Theorem 1.9(iii).)

89. Prove the claim in Example 5.14, assuming some necessary moment
conditions.

90. Derive the asymptotic distribution of the MQLE (the GEE estima-
tor based on (5.90)), assuming that Xi = (Xi1, ..., Xidi), E(Xit) =
meηi/(1 + eηi), Var(Xit) = mφie

ηi/(1 + eηi)2, and (4.57) holds with
g(t) = log t

1−t .



5.6. Exercises 391

91. Repeat the previous exercise under the assumption that E(Xit) = eηi ,
Var(Xit) = φie

ηi , and (4.57) holds with g(t) = log t or g(t) = 2
√
t.

92. In Theorem 5.14, show that result (5.99) still holds if R̃i is replaced
by an estimator R̂i satisfying maxi≤n ‖R̂i − Ui‖ = op(1), where Ui’s
are correlation matrices.

93. Show that (5.106) holds if and only if one of the following holds:
(a) λ− →p 1 and λ+ →p 1, where λ− and λ+ are respectively the

smallest and largest eigenvalues of V
−1/2
n V̂nV

−1/2
n .

(b) lτnV̂nln/l
τ
nVnln →p 1, where {ln} is any sequence of nonzero vectors

in Rk.

94. Show that (5.105) and (5.106) imply V̂
−1/2
n (θ̂n − θ) →d Nk(0, Ik).

95. Suppose that X1, ..., Xn are independent (not necessarily identically
distributed) random d-vectors with E(Xi) = µ for all i. Suppose also
that supi E‖Xi‖2+δ < ∞ for some δ > 0. Let µ = E(X1), θ = g(µ),

and θ̂n = g(X̄). Show that
(a) (5.105) holds with Vn = n−2[∇g(µ)]τ

∑n
i=1 Var(Xi)∇g(µ);

(b) V̂n in (5.108) is consistent for Vn in part (a).

96. Consider the ratio estimator in Example 3.21. Derive the estimator
V̂n given by (5.108) and show that V̂n is consistent for the asymptotic
variance of the ratio estimator.

97. Derive a consistent variance estimator for R̂(t) in Example 3.23.

98. Prove the claims in Example 5.16.

99. Let σ2
Fn

be given by (5.79) with F replaced by the empirical c.d.f. Fn.

(a) Show that σ2
Fn
/n is the same as V̂n in (5.110) for an L-estimator

with influence function φF .
(b) Show directly (without using Theorem 5.15) σ2

Fn
→a.s. σ

2
F in

(5.79), under the conditions in Theorem 5.6(i) or (ii) (with EX2
1 <

∞).

100. Derive a consistent variance estimator for a U-statistic satisfying the
conditions in Theorem 3.5(i).

101. Derive a consistent variance estimator for Huber’s M-estimator dis-
cussed in Example 5.13.

102. Assume the conditions in Theorem 5.8. Let r ∈ (0, 1
2 ).

(a) Show that nrλF (T(Fn) + n−r) →p λF (T(F )).
(b) Show that nr[λFn(T(Fn) + n−r) − λF (T(Fn) + n−r)] →p 0.
(c) Derive a consistent estimator of the asymptotic variance of T(Fn),
using the results in (a) and (b).
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103. Prove Theorem 5.16.

104. Let X1, ..., Xn be random variables and θ̂ = X̄2. Show that the

jackknife estimator in (5.112) equals 4X̄2ĉ2
n−1 − 4X̄ĉ3

(n−1)2 +
ĉ4−ĉ22
(n−1)3 , where

ĉj’s are the sample central moments defined by (3.52).

105. Prove Theorem 5.17 for the case where g is from Rd to Rk and k ≥ 2.

106. Prove (5.114).

107. In the proof of Theorem 5.18, prove (5.116).

108. Show that θ̂−i’s in (5.118) satisfy (5.117), under the conditions of
Theorem 5.14.

109. Prove Theorem 5.19.

110. Prove (5.119).

111. Let X1, ..., Xn be random variables and θ̂ = X̄2. Show that the
bootstrap variance estimator based on i.i.d. X∗

i ’s from Fn is equal to

V̂B = 4X̄2ĉ2
n + 4X̄ĉ3

n2 +
ĉ4−ĉ22
n3 , where ĉj ’s are the sample central moments

defined by (3.52).

112. Let G, G1, G2,..., be c.d.f.’s on R. Suppose that ̺∞(Gj , G) → 0 as
j → ∞ and G′(x) exists and is positive for all x ∈ R. Show that
G−1
j (p) → G−1(p) for any p ∈ (0, 1).

113. Let X1, ..., Xn be i.i.d. from a c.d.f. F on Rd with a finite Var(X1).
Let X∗

1 , ..., X
∗
n be i.i.d. from the empirical c.d.f. Fn. Show that for al-

most all given sequences X1, X2, ...,
√
n(X̄∗− X̄) →d Nd(0,Var(X1)).

(Hint: verify Lindeberg’s condition.)

114. Let X1, ..., Xn be i.i.d. from a c.d.f. F on Rd, X∗
1 , ..., X

∗
n be i.i.d. from

the empirical c.d.f. Fn, and let F ∗
n be the empirical c.d.f. based on

X∗
i ’s. Using DKW’s inequality (Lemma 5.1), show that

(a) ̺∞(F ∗
n , F ) →a.s. 0;

(b) ̺∞(F ∗
n , F ) = Op(n

−1/2);
(c) ̺Lp

(F ∗
n , F ) = Op(n

−1/2), under the condition in Theorem 5.20(ii).

115. Using the results from the previous two exercises, prove Theorem
5.20(ii).

116. Under the conditions in Theorem 5.11, establish a Bahadur’s repre-
sentation for the bootstrap sample quantile θ̂∗p.



Chapter 6

Hypothesis Tests

A general theory of testing hypotheses is presented in this chapter. Let X
be a sample from a population P in P , a family of populations. Based on
the observedX , we test a given hypothesis H0 : P ∈ P0 versusH1 : P ∈ P1,
where P0 and P1 are two disjoint subsets of P and P0∪P1 = P . Notational
conventions and basic concepts (such as two types of errors, significance
levels, and sizes) given in Example 2.20 and §2.4.2 are used in this chapter.

6.1 UMP Tests

A test for a hypothesis is a statistic T (X) taking values in [0, 1]. When
X = x is observed, we reject H0 with probability T (x) and accept H0 with
probability 1−T (x). If T (X) = 1 or 0 a.s. P , then T (X) is a nonrandomized
test. Otherwise T (X) is a randomized test. For a given test T (X), the
power function of T (X) is defined to be

βT (P ) = E[T (X)], P ∈ P , (6.1)

which is the type I error probability of T (X) when P ∈ P0 and one minus
the type II error probability of T (X) when P ∈ P1.

As we discussed in §2.4.2, with a sample of a fixed size, we are not able
to minimize two error probabilities simultaneously. Our approach involves
maximizing the power βT (P ) over all P ∈ P1 (i.e., minimizing the type II
error probability) and over all tests T satisfying

sup
P∈P0

βT (P ) ≤ α, (6.2)

where α ∈ [0, 1] is a given level of significance. Recall that the left-hand
side of (6.2) is defined to be the size of T .

393
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Definition 6.1. A test T∗ of size α is a uniformly most powerful (UMP)
test if and only if βT∗(P ) ≥ βT (P ) for all P ∈ P1 and T of level α.

If U(X) is a sufficient statistic for P ∈ P , then for any test T (X),
E(T |U) has the same power function as T and, therefore, to find a UMP
test we may consider tests that are functions of U only.

The existence and characteristics of UMP tests are studied in this sec-
tion.

6.1.1 The Neyman-Pearson lemma

A hypothesis H0 (or H1) is said to be simple if and only if P0 (or P1)
contains exactly one population. The following useful result, which has
already been used once in the proof of Theorem 4.16, provides the form of
UMP tests when both H0 and H1 are simple.

Theorem 6.1 (Neyman-Pearson lemma). Suppose that P0 = {P0} and
P1 = {P1}. Let fj be the p.d.f. of Pj w.r.t. a σ-finite measure ν (e.g.,
ν = P0 + P1), j = 0, 1.
(i) (Existence of a UMP test). For every α, there exists a UMP test of size
α, which is equal to

T∗(X) =





1 f1(X) > cf0(X)

γ f1(X) = cf0(X)

0 f1(X) < cf0(X),

(6.3)

where γ ∈ [0, 1] and c ≥ 0 are some constants chosen so that E[T∗(X)] = α
when P = P0 (c = ∞ is allowed).
(ii) (Uniqueness). If T∗∗ is a UMP test of size α, then

T∗∗(X) =

{
1 f1(X) > cf0(X)

0 f1(X) < cf0(X)
a.s. P . (6.4)

Proof. The proof for the case of α = 0 or 1 is left as an exercise. Assume
now that 0 < α < 1.
(i) We first show that there exist γ and c such that E0[T∗(X)] = α, where
Ej is the expectation w.r.t. Pj . Let γ(t) = P0(f1(X) > tf0(X)). Then
γ(t) is nonincreasing, γ(0) = 1, and γ(∞) = 0 (why?). Thus, there exists a
c ∈ (0,∞) such that γ(c) ≤ α ≤ γ(c−). Set

γ =

{
α−γ(c)

γ(c−)−γ(c) γ(c−) 6= γ(c)

0 γ(c−) = γ(c).

Note that γ(c−) − γ(c) = P (f1(X) = cf0(X)). Then

E0[T∗(X)] = P0

(
f1(X) > cf0(X)

)
+ γP0

(
f1(X) = cf0(X)

)
= α.
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Next, we show that T∗ in (6.3) is a UMP test. Suppose that T (X) is a
test satisfying E0[T (X)] ≤ α. If T∗(x) − T (x) > 0, then T∗(x) > 0 and,
therefore, f1(x) ≥ cf0(x). If T∗(x) − T (x) < 0, then T∗(x) < 1 and,
therefore, f1(x) ≤ cf0(x). In any case, [T∗(x) − T (x)][f1(x) − cf0(x)] ≥ 0
and, therefore,

∫
[T∗(x) − T (x)][f1(x) − cf0(x)]dν ≥ 0,

i.e., ∫
[T∗(x) − T (x)]f1(x)dν ≥ c

∫
[T∗(x) − T (x)]f0(x)dν. (6.5)

The left-hand side of (6.5) is E1[T∗(X)]−E1[T (X)] and the right-hand side
of (6.5) is c{E0[T∗(X)] − E0[T (X)]} = c{α − E0[T (X)]} ≥ 0. This proves
the result in (i).
(ii) Let T∗∗(X) be a UMP test of size α. Define

A = {x : T∗(x) 6= T∗∗(x), f1(x) 6= cf0(x)}.

Then [T∗(x)−T∗∗(x)][f1(x)−cf0(x)] > 0 when x ∈ A and = 0 when x ∈ Ac,
and ∫

[T∗(x) − T∗∗(x)][f1(x) − cf0(x)]dν = 0,

since both T∗ and T∗∗ are UMP tests of size α. By Proposition 1.6(ii),
ν(A) = 0. This proves (6.4).

Theorem 6.1 shows that when both H0 and H1 are simple, there exists
a UMP test that can be determined by (6.4) uniquely (a.s. P) except on
the set B = {x : f1(x) = cf0(x)}. If ν(B) = 0, then we have a unique
nonrandomized UMP test; otherwise UMP tests are randomized on the set
B and the randomization is necessary for UMP tests to have the given size
α; furthermore, we can always choose a UMP test that is constant on B.

Example 6.1. Suppose that X is a sample of size 1, P0 = {P0}, and P1 =
{P1}, where P0 is N(0, 1) and P1 is the double exponential distribution
DE(0, 2) with the p.d.f. 4−1e−|x|/2. Since P (f1(X) = cf0(X)) = 0, there is
a unique nonrandomized UMP test. From (6.3), the UMP test T∗(x) = 1

if and only if π
8 e
x2−|x| > c2 for some c > 0, which is equivalent to |x| > t

or |x| < 1 − t for some t > 1
2 . Suppose that α < 1

3 . To determine t, we use

α = E0[T∗(X)] = P0(|X | > t) + P0(|X | < 1 − t). (6.6)

If t ≤ 1, then P0(|X | > t) ≥ P0(|X | > 1) = 0.3374 > α. Hence t should be
larger than 1 and (6.6) becomes

α = P0(|X | > t) = Φ(−t) + 1 − Φ(t).
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Thus, t = Φ−1(1 − α/2) and T∗(X) = I(t,∞)(|X |). Note that it is not
necessary to find out what c is.

Intuitively, the reason why the UMP test in this example rejects H0

when |X | is large is that the probability of getting a large |X | is much
higher under H1 (i.e., P is the double exponential distribution DE(0, 2)).

The power of T∗ when P ∈ P1 is

E1[T∗(X)] = P1(|X | > t) = 1 − 1

4

∫ t

−t
e−|x|/2dx = e−t/2.

Example 6.2. Let X1, ..., Xn be i.i.d. binary random variables with p =
P (X1 = 1). Suppose that H0 : p = p0 and H1 : p = p1, where 0 < p0 <
p1 < 1. By Theorem 6.1, a UMP test of size α is

T∗(Y ) =





1 λ(Y ) > c

γ λ(Y ) = c

0 λ(Y ) < c,

where Y =
∑n

i=1Xi and

λ(Y ) =

(
p1

p0

)Y (
1 − p1

1 − p0

)n−Y
.

Since λ(Y ) is increasing in Y , there is an integer m > 0 such that

T∗(Y ) =





1 Y > m

γ Y = m

0 Y < m,

where m and γ satisfy α = E0[T∗(Y )] = P0(Y > m) + γP0(Y = m). Since
Y has the binomial distribution Bi(p, n), we can determine m and γ from

α =

n∑

j=m+1

(
n

j

)
pj0(1 − p0)

n−j + γ

(
n

m

)
pm0 (1 − p0)

n−m. (6.7)

Unless

α =

n∑

j=m+1

(
n

j

)
pj0(1 − p0)

n−j

for some integer m, in which case we can choose γ = 0, the UMP test T∗ is
a randomized test.

An interesting phenomenon in Example 6.2 is that the UMP test T∗
does not depend on p1. In such a case, T∗ is in fact a UMP test for testing
H0 : p = p0 versus H1 : p > p0.
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Lemma 6.1. Suppose that there is a test T∗ of size α such that for every
P1 ∈ P1, T∗ is UMP for testing H0 versus the hypothesis P = P1. Then T∗
is UMP for testing H0 versus H1.
Proof. For any test T of level α, T is also of level α for testing H0 versus
the hypothesis P = P1 with any P1 ∈ P1. Hence βT∗(P1) ≥ βT (P1).

We conclude this section with the following generalized Neyman-Pearson
lemma. Its proof is left to the reader. Other extensions of the Neyman-
Pearson lemma can be found in Exercises 8 and 9 in §6.6.

Proposition 6.1. Let f1, ..., fm+1 be Borel functions on Rp that are inte-
grable w.r.t. a σ-finite measure ν. For given constants t1, ..., tm, let T be
the class of Borel functions φ (from Rp to [0, 1]) satisfying

∫
φfidν ≤ ti, i = 1, ...,m, (6.8)

and T0 be the set of φ’s in T satisfying (6.8) with all inequalities replaced
by equalities. If there are constants c1, ..., cm such that

φ∗(x) =

{
1 fm+1(x) > c1f1(x) + · · · + cmfm(x)

0 fm+1(x) < c1f1(x) + · · · + cmfm(x)
(6.9)

is a member of T0, then φ∗ maximizes
∫
φfm+1dν over φ ∈ T0. If ci ≥ 0 for

all i, then φ∗ maximizes
∫
φfm+1dν over φ ∈ T .

The existence of constants ci’s in (6.9) is considered in the following
lemma whose proof can be found in Lehmann (1986, pp. 97-99).

Lemma 6.2. Let f1, ..., fm and ν be given by Proposition 6.1. Then the
set M =

{
(
∫
φf1dν, ...,

∫
φfmdν) : φ is from Rp to [0, 1]

}
is convex and

closed. If (t1, ..., tm) is an interior point of M , then there exist constants
c1, ..., cm such that the function defined by (6.9) is in T0.

6.1.2 Monotone likelihood ratio

The case where both H0 and H1 are simple is mainly of theoretical inter-
est. If a hypothesis is not simple, it is called composite. As we discussed
in §6.1.1, UMP tests for composite H1 exist in the problem discussed in
Example 6.2. We now extend this result to a class of parametric problems
in which the likelihood functions have a special property.

Definition 6.2. Suppose that the distribution of X is in P = {Pθ : θ ∈ Θ},
a parametric family indexed by a real-valued θ, and that P is dominated
by a σ-finite measure ν. Let fθ = dPθ/dν. The family P is said to have
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monotone likelihood ratio in Y (X) (a real-valued statistic) if and only if, for
any θ1 < θ2, fθ2(x)/fθ1(x) is a nondecreasing function of Y (x) for values x
at which at least one of fθ1(x) and fθ2(x) is positive.

The following lemma states a useful result for a family with monotone
likelihood ratio.

Lemma 6.3. Suppose that the distribution of X is in a parametric family
P indexed by a real-valued θ and that P has monotone likelihood ratio in
Y (X). If ψ is a nondecreasing function of Y , then g(θ) = E[ψ(Y )] is a
nondecreasing function of θ.
Proof. Let θ1 < θ2, A = {x : fθ1(x) > fθ2(x)}, a = supx∈A ψ(Y (x)),
B = {x : fθ1(x) < fθ2(x)}, and b = infx∈B ψ(Y (x)). Since P has monotone
likelihood ratio in Y (X) and ψ is nondecreasing in Y , b ≥ a. Then the
result follows from

g(θ2) − g(θ1) =

∫
ψ(Y (x))(fθ2 − fθ1)(x)dν

≥ a

∫

A

(fθ2 − fθ1)(x)dν + b

∫

B

(fθ2 − fθ1)(x)dν

= (b− a)

∫

B

(fθ2 − fθ1)(x)dν

≥ 0.

Before discussing UMP tests in families with monotone likelihood ratio,
let us consider some examples of such families.

Example 6.3. Let θ be real-valued and η(θ) be a nondecreasing function
of θ. Then the one-parameter exponential family with

fθ(x) = exp{η(θ)Y (x) − ξ(θ)}h(x) (6.10)

has monotone likelihood ratio in Y (X). From Tables 1.1-1.2 (§1.3.1), this
includes the binomial family {Bi(θ, r)}, the Poisson family {P (θ)}, the neg-
ative binomial family {NB(θ, r)}, the log-distribution family {L(θ)}, the
normal family {N(θ, c2)} or {N(c, θ)}, the exponential family {E(c, θ)}, the
gamma family {Γ(θ, c)} or {Γ(c, θ)}, the beta family {B(θ, c)} or {B(c, θ)},
and the double exponential family {DE(c, θ)}, where r or c is known.

Example 6.4. Let X1, ..., Xn be i.i.d. from the uniform distribution on
(0, θ), where θ > 0. The Lebesgue p.d.f. of X = (X1, ..., Xn) is fθ(x) =
θ−nI(0,θ)(x(n)), where x(n) is the value of the largest order statistic X(n).
For θ1 < θ2,

fθ2(x)

fθ1(x)
=
θn1
θn2

I(0,θ2)(x(n))

I(0,θ1)(x(n))
,
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which is a nondecreasing function of x(n) for x’s at which at least one of
fθ1(x) and fθ2(x) is positive, i.e., x(n) < θ2. Hence the family of distribu-
tions of X has monotone likelihood ratio in X(n).

Example 6.5. The following families have monotone likelihood ratio:
(a) the double exponential distribution family {DE(θ, c)} with a known c;
(b) the exponential distribution family {E(θ, c)} with a known c;
(c) the logistic distribution family {LG(θ, c)} with a known c;
(d) the uniform distribution family {U(θ, θ + 1)};
(e) the hypergeometric distribution family {HG(r, θ,N − θ)} with known
r and N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is
the Cauchy distribution family {C(θ, c)} with a known c.

Hypotheses of the form H0 : θ ≤ θ0 (or H0 : θ ≥ θ0) versus H1 : θ > θ0
(or H1 : θ < θ0) are called one-sided hypotheses for any given constant
θ0. The following result provides UMP tests for testing one-sided hypothe-
ses when the distribution of X is in a parametric family with monotone
likelihood ratio.

Theorem 6.2. Suppose that X has a distribution in P = {Pθ : θ ∈ Θ}
(Θ ⊂ R) that has monotone likelihood ratio in Y (X). Consider the problem
of testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is a given constant.
(i) There exists a UMP test of size α, which is given by

T∗(X) =





1 Y (X) > c

γ Y (X) = c

0 Y (X) < c,

(6.11)

where c and γ are determined by βT∗(θ0) = α, and βT (θ) = E[T (X)] is the
power function of a test T .
(ii) βT∗(θ) is strictly increasing for all θ’s for which 0 < βT∗(θ) < 1.
(iii) For any θ < θ0, T∗ minimizes βT (θ) (the type I error probability of T )
among all tests T satisfying βT (θ0) = α.
(iv) Assume that Pθ(fθ(X) = cfθ0(X)) = 0 for any θ > θ0 and c ≥ 0, where
fθ is the p.d.f. of Pθ. If T is a test with βT (θ0) = βT∗(θ0), then for any
θ > θ0, either βT (θ) < βT∗(θ) or T = T∗ a.s. Pθ.
(v) For any fixed θ1, T∗ is UMP for testing H0 : θ ≤ θ1 versus H1 : θ > θ1,
with size βT∗(θ1).
Proof. (i) Consider the hypotheses θ = θ0 versus θ = θ1 with any θ1 > θ0.
From Theorem 6.1, a UMP test is given by (6.3) with fj = the p.d.f. of Pθj ,
j = 0, 1. Since P has monotone likelihood ratio in Y (X), this UMP test
can be chosen to be the same as T∗ in (6.11) with possibly different c and
γ satisfying βT∗(θ0) = α. Since T∗ does not depend on θ1, it follows from
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Lemma 6.1 that T∗ is UMP for testing the hypothesis θ = θ0 versus H1.

Note that if T∗ is UMP for testing θ = θ0 versus H1, then it is UMP for
testing H0 versus H1, provided that βT∗(θ) ≤ α for all θ ≤ θ0, i.e., the size
of T∗ is α. But this follows from Lemma 6.3, i.e., βT∗(θ) is nondecreasing
in θ. This proves (i).
(ii) See Exercise 2 in §6.6.
(iii) The result can be proved using Theorem 6.1 with all inequalities re-
versed.
(iv) The proof for (iv) is left as an exercise.
(v) The proof for (v) is similar to that of (i).

By reversing inequalities throughout, we can obtain UMP tests for test-
ing H0 : θ ≥ θ0 versus H1 : θ < θ0.

A major application of Theorem 6.2 is to problems with one-parameter
exponential families.

Corollary 6.1. Suppose that X has the p.d.f. given by (6.10) w.r.t. a
σ-finite measure, where η is a strictly monotone function of θ. If η is
increasing, then T∗ given by (6.11) is UMP for testing H0 : θ ≤ θ0 versus
H1 : θ > θ0, where γ and c are determined by βT∗(θ0) = α. If η is decreasing
or H0 : θ ≥ θ0 (H1 : θ < θ0), the result is still valid by reversing inequalities
in (6.11).

Example 6.6. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with
an unknown µ ∈ R and a known σ2. Consider H0 : µ ≤ µ0 versus H1 :
µ > µ0, where µ0 is a fixed constant. The p.d.f. of X = (X1, ..., Xn) is of
the form (6.10) with Y (X) = X̄ and η(µ) = nµ/σ2. By Corollary 6.1 and
the fact that X̄ is N(µ, σ2/n), the UMP test is T∗(X) = I(cα,∞)(X̄), where
cα = σz1−α/

√
n+ µ0 and za = Φ−1(a) (see also Example 2.28).

To derive a UMP test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0 when
X has the p.d.f. (6.10), it is essential to know the distribution of Y (X).
Typically, a nonrandomized test can be obtained if the distribution of Y is
continuous; otherwise UMP tests are randomized.

Example 6.7. Let X1, ..., Xn be i.i.d. binary random variables with p =
P (X1 = 1). The p.d.f. of X = (X1, ..., Xn) is of the form (6.10) with Y =∑n

i=1Xi and η(p) = log p
1−p . Note that η(p) is a strictly increasing function

of p. By Corollary 6.1, a UMP test for H0 : p ≤ p0 versus H1 : p > p0 is
given by (6.11), where c and γ are determined by (6.7) with c = m.

Example 6.8. Let X1, ..., Xn be i.i.d. random variables from the Poisson
distribution P (θ) with an unknown θ > 0. The p.d.f. of X = (X1, ..., Xn)
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is of the form (6.10) with Y (X) =
∑n

i=1Xi and η(θ) = log θ. Note that
Y has the Poisson distribution P (nθ). By Corollary 6.1, a UMP test for
H0 : θ ≤ θ0 versus H1 : θ > θ0 is given by (6.11) with c and γ satisfying

α =
∞∑

j=c+1

enθ0(nθ0)
j

j!
+ γ

enθ0(nθ0)
c

c!
.

Example 6.9. Let X1, ..., Xn be i.i.d. random variables from the uniform
distribution U(0, θ), θ > 0. Consider the hypotheses H0 : θ ≤ θ0 and
H1 : θ > θ0. Since the p.d.f. of X = (X1, ..., Xn) is in a family with
monotone likelihood ratio in Y (X) = X(n) (Example 6.4), by Theorem
6.2, a UMP test is of the form (6.11). Since X(n) has the Lebesgue p.d.f.
nθ−nxn−1I(0,θ)(x), the UMP test in (6.11) is nonrandomized and

α = βT∗(θ0) =
n

θn0

∫ θ0

c

xn−1dx = 1 − cn

θn0
.

Hence c = θ0(1 − α)1/n. The power function of T∗ when θ > θ0 is

βT∗(θ) =
n

θn

∫ θ

c

xn−1dx = 1 − θn0 (1 − α)

θn
.

In this problem, however, UMP tests are not unique. (Note that the
condition Pθ(fθ(X) = cfθ0(X)) = 0 in Theorem 6.2(iv) is not satisfied.) It
can be shown (exercise) that the following test is also UMP with size α:

T (X) =

{
1 X(n) > θ0
α X(n) ≤ θ0.

6.1.3 UMP tests for two-sided hypotheses

The following hypotheses are called two-sided hypotheses:

H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2, (6.12)

H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2, (6.13)

H0 : θ = θ0 versus H1 : θ 6= θ0, (6.14)

where θ0, θ1, and θ2 are given constants and θ1 < θ2.

Theorem 6.3. Suppose that X has the p.d.f. given by (6.10) w.r.t. a σ-
finite measure, where η is a strictly increasing function of θ.
(i) For testing hypotheses (6.12), a UMP test of size α is

T∗(X) =





1 c1 < Y (X) < c2
γi Y (X) = ci, i = 1, 2

0 Y (X) < c1 or Y (X) > c2,

(6.15)
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where ci’s and γi’s are determined by

βT∗(θ1) = βT∗(θ2) = α. (6.16)

(ii) The test defined by (6.15) minimizes βT (θ) over all θ < θ1, θ > θ2, and
T satisfying βT (θ1) = βT (θ2) = α.
(iii) If T∗ and T∗∗ are two tests satisfying (6.15) and βT∗(θ1) = βT∗∗(θ1) and
if the region {T∗∗ = 1} is to the right of {T∗ = 1}, then βT∗(θ) < βT∗∗(θ)
for θ > θ1 and βT∗(θ) > βT∗∗(θ) for θ < θ1. If both T∗ and T∗∗ satisfy
(6.15) and (6.16), then T∗ = T∗∗ a.s. P .
Proof. (i) The distribution of Y has a p.d.f.

gθ(y) = exp{η(θ)y − ξ(θ)} (6.17)

(Theorem 2.1). Since Y is sufficient for θ, we only need to consider tests of
the form T (Y ). Let θ1 < θ3 < θ2. Consider the problem of testing θ = θ1
or θ = θ2 versus θ = θ3. Clearly, (α, α) is an interior point of the set of
all points (βT (θ1), βT (θ2)) as T ranges over all tests of the form T (Y ). By
(6.17) and Lemma 6.2, there are constants c̃1 and c̃2 such that

T∗(Y ) =

{
1 a1e

b1Y + a2e
b2Y < 1

0 a1e
b1Y + a2e

b2Y > 1

satisfies (6.16), where ai = c̃ie
ξ(θ3)−ξ(θi) and bi = η(θi) − η(θ3), i = 1, 2.

Clearly ai’s cannot both be ≤ 0. If one of the ai’s is ≤ 0 and the other
is > 0, then a1e

b1Y + a2e
b2Y is strictly monotone (since b1 < 0 < b2) and

T∗ or 1 − T∗ is of the form (6.11), which has a strictly monotone power
function (Theorem 6.2) and, therefore, cannot satisfy (6.16). Thus, both
ai’s are positive. Then, T∗ is of the form (6.15) (since b1 < 0 < b2) and it
follows from Proposition 6.1 that T∗ is UMP for testing θ = θ1 or θ = θ2
versus θ = θ3. Since T∗ does not depend on θ3, it follows from Lemma 6.1
that T∗ is UMP for testing θ = θ1 or θ = θ2 versus H1.

To show that T∗ is a UMP test of size α for testing H0 versus H1, it
remains to show that βT∗(θ) ≤ α for θ ≤ θ1 or θ ≥ θ2. But this follows
from part (ii) of the theorem by comparing T∗ with the test T (Y ) ≡ α.
(ii) The proof is similar to that in (i) and is left as an exercise.
(iii) The first claim in (iii) follows from Lemma 6.4, since the function
T∗∗ − T∗ has a single change of sign. The second claim in (iii) follows from
the first claim.

Lemma 6.4. Suppose that X has a p.d.f. in {fθ(x) : θ ∈ Θ}, a parametric
family of p.d.f.’s w.r.t. a single σ-finite measure ν on R, where Θ ⊂ R.
Suppose that this family has monotone likelihood ratio in X . Let ψ be a
function with a single change of sign.
(i) There exists θ0 ∈ Θ such that Eθ[ψ(X)] ≤ 0 for θ < θ0 and Eθ[ψ(X)] ≥ 0
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for θ > θ0, where Eθ is the expectation w.r.t. fθ.
(ii) Suppose that fθ(x) > 0 for all x and θ, that fθ1(x)/fθ(x) is strictly
increasing in x for θ < θ1, and that ν({x : ψ(x) 6= 0}) > 0. If Eθ0 [ψ(X)] =
0, then Eθ[ψ(X)] < 0 for θ < θ0 and Eθ[ψ(X)] > 0 for θ > θ0.
Proof. (i) Suppose that there is an x0 ∈ R such that ψ(x) ≤ 0 for x < x0

and ψ(x) ≥ 0 for x > x0. Let θ1 < θ2. We first show that Eθ1 [ψ(X)] > 0
implies Eθ2 [ψ(X)] ≥ 0. If fθ2(x0)/fθ1(x0) = ∞, then fθ1(x) = 0 for x ≥ x0

and, therefore, Eθ1 [ψ(X)] ≤ 0. Hence fθ2(x0)/fθ1(x0) = c < ∞. Then
ψ(x) ≥ 0 on the set A = {x : fθ1(x) = 0 and fθ2(x) > 0}. Thus,

Eθ2 [ψ(X)] ≥
∫

Ac

ψ
fθ2
fθ1

fθ1dν

≥
∫

x<x0

cψfθ1dν +

∫

x≥x0

cψfθ1dν (6.18)

= cEθ1 [ψ(X)].

The result follows by letting θ0 = inf{θ : Eθ[ψ(X)] > 0}.
(ii) Under the assumed conditions, fθ2(x0)/fθ1(x0) = c < ∞. The result
follows from the proof in (i) with θ1 replaced by θ0 and the fact that ≥
should be replaced by > in (6.18) under the assumed conditions.

Part (iii) of Theorem 6.3 shows that the ci’s and γi’s are uniquely de-
termined by (6.15) and (6.16). It also indicates how to select the ci’s and

γi’s. One can start with some trial values c
(0)
1 and γ

(0)
1 , find c

(0)
2 and γ

(0)
2

such that βT∗(θ1) = α, and compute βT∗(θ2). If βT∗(θ2) < α, by Theorem
6.3(iii), the correct rejection region {T∗ = 1} is to the right of the one

chosen so that one should try c
(1)
1 > c

(0)
1 or c

(1)
1 = c

(0)
1 and γ

(1)
1 < γ

(0)
1 ; the

converse holds if βT∗(θ2) > α.

Example 6.10. Let X1, ..., Xn be i.i.d. from N(θ, 1). By Theorem 6.3, a
UMP test for testing (6.12) is T∗(X) = I(c1,c2)(X̄), where ci’s are deter-
mined by

Φ
(√
n(c2 − θ1)

)
− Φ

(√
n(c1 − θ1)

)
= α

and
Φ
(√
n(c2 − θ2)

)
− Φ

(√
n(c1 − θ2)

)
= α.

When the distribution of X is not given by (6.10), UMP tests for hy-
potheses (6.12) exist in some cases (see Exercises 17 and 26). Unfortunately,
a UMP test does not exist in general for testing hypotheses (6.13) or (6.14)
(Exercises 28 and 29). A key reason for this phenomenon is that UMP tests
for testing one-sided hypotheses do not have level α for testing (6.12); but
they are of level α for testing (6.13) or (6.14) and there does not exist a
single test more powerful than all tests that are UMP for testing one-sided
hypotheses.
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6.2 UMP Unbiased Tests

When a UMP test does not exist, we may use the same approach used
in estimation problems, i.e., imposing a reasonable restriction on the tests
to be considered and finding optimal tests within the class of tests under
the restriction. Two such types of restrictions in estimation problems are
unbiasedness and invariance. We consider unbiased tests in this section.
The class of invariant tests is studied in §6.3.

6.2.1 Unbiasedness, similarity, and Neyman structure

A UMP test T of size α has the property that

βT (P ) ≤ α, P ∈ P0 and βT (P ) ≥ α, P ∈ P1. (6.19)

This means that T is at least as good as the silly test T ≡ α. Thus, we
have the following definition.

Definition 6.3. Let α be a given level of significance. A test T for H0 :
P ∈ P0 versus H1 : P ∈ P1 is said to be unbiased of level α if and only if
(6.19) holds. A test of size α is called a uniformly most powerful unbiased
(UMPU) test if and only if it is UMP within the class of unbiased tests of
level α.

Since a UMP test is UMPU, the discussion of unbiasedness of tests is
useful only when a UMP test does not exist. In a large class of problems
for which a UMP test does not exist, there do exist UMPU tests.

Suppose that U is a sufficient statistic for P ∈ P . Then, similar to the
search for a UMP test, we need to consider functions of U only in order to
find a UMPU test, since, for any unbiased test T (X), E(T |U) is unbiased
and has the same power function as T .

Throughout this section, we consider the following hypotheses:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, (6.20)

where θ = θ(P ) is a functional from P onto Θ and Θ0 and Θ1 are two
disjoint Borel sets with Θ0 ∪ Θ1 = Θ. Note that Pj = {P : θ ∈ Θj},
j = 0, 1. For instance, X1, ..., Xn are i.i.d. from F but we are interested in
testing H0 : θ ≤ 0 versus H1 : θ > 0, where θ = EX1 or the median of F .

Definition 6.4. Consider the hypotheses specified by (6.20). Let α be a
given level of significance and let Θ̄01 be the common boundary of Θ0 and
Θ1, i.e., the set of points θ that are points or limit points of both Θ0 and
Θ1. A test T is similar on Θ̄01 if and only if

βT (P ) = α, θ ∈ Θ̄01. (6.21)



6.2. UMP Unbiased Tests 405

It is more convenient to work with (6.21) than to work with (6.19) when
the hypotheses are given by (6.20). Thus, the following lemma is useful. For
a given test T , the power function βT (P ) is said to be continuous in θ if and
only if for any {θj : j = 0, 1, 2, ...} ⊂ Θ, θj → θ0 implies βT (Pj) → βT (P0),
where Pj ∈ P satisfying θ(Pj) = θj , j = 0, 1,.... Note that if βT is a function
of θ, then this continuity property is simply the continuity of βT (θ).

Lemma 6.5. Consider hypotheses (6.20). Suppose that, for every T ,
βT (P ) is continuous in θ. If T∗ is uniformly most powerful among all tests
satisfying (6.21) and has size α, then T∗ is a UMPU test.
Proof. Under the continuity assumption on βT , the class of tests satisfying
(6.21) contains the class of tests satisfying (6.19). Since T∗ is uniformly at
least as powerful as the test T ≡ α, T∗ is unbiased. Hence, T∗ is a UMPU
test.

Using Lemma 6.5, we can derive a UMPU test for testing hypotheses
given by (6.13) or (6.14), when X has the p.d.f. (6.10) in a one-parameter
exponential family. (Note that a UMP test does not exist in these cases.)
We do not provide the details here, since the results for one-parameter
exponential families are special cases of those in §6.2.2 for multiparameter
exponential families. To prepare for the discussion in §6.2.2, we introduce
the following result that simplifies (6.21) when there is a statistic sufficient
and complete for P ∈ P̄ = {P : θ(P ) ∈ Θ̄01}.

Let U(X) be a sufficient statistic for P ∈ P̄ and let P̄U be the family of
distributions of U as P ranges over P̄. If T is a test satisfying

E[T (X)|U ] = α a.s. P̄U , (6.22)

then
E[T (X)] = E{E[T (X)|U ]} = α P ∈ P̄,

i.e., T is similar on Θ̄01. A test satisfying (6.22) is said to have Neyman
structure w.r.t. U . If all tests similar on Θ̄01 have Neyman structure w.r.t.
U , then working with (6.21) is the same as working with (6.22).

Lemma 6.6. Let U(X) be a sufficient statistic for P ∈ P̄ . Then a nec-
essary and sufficient condition for all tests similar on Θ̄01 to have Neyman
structure w.r.t. U is that U is boundedly complete for P ∈ P̄ .
Proof. (i) Suppose first that U is boundedly complete for P ∈ P̄ . Let
T (X) be a test similar on Θ̄01. Then E[T (X)−α] = 0 for all P ∈ P̄ . From
the boundedness of T (X), E[T (X)|U ] is bounded (Proposition 1.10). Since
E{E[T (X)|U ]− α} = E[T (X)− α] = 0 for all P ∈ P̄ , (6.22) holds.
(ii) Suppose now that U is not boundedly complete for P ∈ P̄. Then
there is a function h such that |h(u)| ≤ C, E[h(U)] = 0 for all P ∈ P̄, and
h(U) 6= 0 with positive probability for some P ∈ P̄. Let T (X) = α+ch(U),
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where c = min{α, 1 − α}/C. The result follows from the fact that T is a
test similar on Θ̄01 but does not have Neyman structure w.r.t. U .

6.2.2 UMPU tests in exponential families

Suppose that the distribution of X is in a multiparameter natural expo-
nential family (§2.1.3) with the following p.d.f. w.r.t. a σ-finite measure:

fθ,ϕ(x) = exp {θY (x) + ϕτU(x) − ζ(θ, ϕ)} , (6.23)

where θ is a real-valued parameter, ϕ is a vector-valued parameter, and Y
(real-valued) and U (vector-valued) are statistics. It follows from Theorem
2.1(i) that the p.d.f. of (Y, U) (w.r.t. a σ-finite measure) is in a natural
exponential family of the form exp {θy + ϕτu− ζ(θ, ϕ)} and, given U = u,
the p.d.f. of the conditional distribution of Y (w.r.t. a σ-finite measure νu)
is in a natural exponential family of the form exp {θy − ζu(θ)}.

Theorem 6.4. Suppose that the distribution of X is in a multiparameter
natural exponential family given by (6.23).
(i) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0, a UMPU test of size α is

T∗(Y, U) =





1 Y > c(U)

γ(U) Y = c(U)

0 Y < c(U),

(6.24)

where c(u) and γ(u) are Borel functions determined by

Eθ0 [T∗(Y, U)|U = u] = α (6.25)

for every u, and Eθ0 is the expectation w.r.t. fθ0,ϕ.
(ii) For testing hypotheses (6.12), a UMPU test of size α is

T∗(Y, U) =





1 c1(U) < Y < c2(U)

γi(U) Y = ci(U), i = 1, 2,

0 Y < c1(U) or Y > c2(U),

(6.26)

where ci(u)’s and γi(u)’s are Borel functions determined by

Eθ1 [T∗(Y, U)|U = u] = Eθ2 [T∗(Y, U)|U = u] = α (6.27)

for every u.
(iii) For testing hypotheses (6.13), a UMPU test of size α is

T∗(Y, U) =





1 Y < c1(U) or Y > c2(U)

γi(U) Y = ci(U), i = 1, 2,

0 c1(U) < Y < c2(U),

(6.28)
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where ci(u)’s and γi(u)’s are Borel functions determined by (6.27) for every
u.
(iv) For testing hypotheses (6.14), a UMPU test of size α is given by (6.28),
where ci(u)’s and γi(u)’s are Borel functions determined by (6.25) and

Eθ0 [T∗(Y, U)Y |U = u] = αEθ0(Y |U = u) (6.29)

for every u.
Proof. Since (Y, U) is sufficient for (θ, ϕ), we only need to consider tests
that are functions of (Y, U). Hypotheses in (i)-(iv) are of the form (6.20)
with Θ̄01 = {(θ, ϕ) : θ = θ0} or = {(θ, ϕ) : θ = θi, i = 1, 2}. In case (i) or
(iv), U is sufficient and complete for P ∈ P̄ and, hence, Lemma 6.6 applies.
In case (ii) or (iii), applying Lemma 6.6 to each {(θ, ϕ) : θ = θi} also shows
that working with (6.21) is the same as working with (6.22). By Theorem
2.1, the power functions of all tests are continuous and, hence, Lemma 6.5
applies. Thus, for (i)-(iii), we only need to show that T∗ is UMP among all
tests T satisfying (6.25) (for part (i)) or (6.27) (for part (ii) or (iii)) with
T∗ replaced by T . For (iv), any unbiased T should satisfy (6.25) with T∗
replaced by T and

∂

∂θ
Eθ,ϕ[T (Y, U)] = 0, θ ∈ Θ̄01. (6.30)

By Theorem 2.1, the differentiation can be carried out under the expecta-
tion sign. Hence, one can show (exercise) that (6.30) is equivalent to

Eθ,ϕ[T (Y, U)Y − αY ] = 0, θ ∈ Θ̄01. (6.31)

Using the argument in the proof of Lemma 6.6, one can show (exercise)
that (6.31) is equivalent to (6.29) with T∗ replaced by T . Hence, to prove
(iv) we only need to show that T∗ is UMP among all tests T satisfying
(6.25) and (6.29) with T∗ replaced by T .

Note that the power function of any test T (Y, U) is

βT (θ, ϕ) =

∫ [∫
T (y, u)dPY |U=u(y)

]
dPU (u).

Thus, it suffices to show that for every fixed u and θ ∈ Θ1, T∗ maximizes

∫
T (y, u)dPY |U=u(y)

over all T subject to the given side conditions. Since PY |U=u is in a
one-parameter exponential family, the results in (i) and (ii) follow from
Corollary 6.1 and Theorem 6.3, respectively. The result in (iii) follows
from Theorem 6.3(ii) by considering 1 − T∗ with T∗ given by (6.15). To
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prove the result in (iv), it suffices to show that if Y has the p.d.f. given
by (6.10) and if U is treated as a constant in (6.25), (6.28), and (6.29), T∗
in (6.28) is UMP subject to conditions (6.25) and (6.29). We now omit
U in the following proof for (iv), which is very similar to the proof of
Theorem 6.3. First, (α, αEθ0(Y )) is an interior point of the set of points
(Eθ0 [T (Y )], Eθ0 [T (Y )Y ]) as T ranges over all tests of the form T (Y ) (exer-
cise). By Lemma 6.2 and Proposition 6.1, for testing θ = θ0 versus θ = θ1,
the UMP test is equal to 1 when

(k1 + k2y)e
θ0y < C(θ0, θ1)e

θ1y, (6.32)

where ki’s and C(θ0, θ1) are constants. Note that (6.32) is equivalent to

a1 + a2y < eby

for some constants a1, a2, and b. This region is either one-sided or the
outside of an interval. By Theorem 6.2(ii), a one-sided test has a strictly
monotone power function and therefore cannot satisfy (6.29). Thus, this
test must have the form (6.28). Since T∗ in (6.28) does not depend on
θ1, by Lemma 6.1, it is UMP over all tests satisfying (6.25) and (6.29); in
particular, the test ≡ α. Thus, T∗ is UMPU.

Finally, it can be shown that all the c- and γ-functions in (i)-(iv) are
Borel functions (see Lehmann (1986, p. 149)).

Example 6.11. A problem arising in many different contexts is the com-
parison of two treatments. If the observations are integer-valued, the prob-
lem often reduces to testing the equality of two Poisson distributions (e.g.,
a comparison of the radioactivity of two substances or the car accident rate
in two cities) or two binomial distributions (when the observation is the
number of successes in a sequence of trials for each treatment).

Consider first the Poisson problem in which X1 and X2 are indepen-
dently distributed as the Poisson distributions P (λ1) and P (λ2), respec-
tively. The p.d.f. of X = (X1, X2) is

e−(λ1+λ2)

x1!x2!
exp {x2 log(λ2/λ1) + (x1 + x2) logλ1} (6.33)

w.r.t. the counting measure on {(i, j) : i = 0, 1, 2, ..., j = 0, 1, 2, ...}. Let θ =
log(λ2/λ1). Then hypotheses such as λ1 = λ2 and λ1 ≥ λ2 are equivalent to
θ = 0 and θ ≤ 0, respectively. The p.d.f. in (6.33) is of the form (6.23) with
ϕ = log λ1, Y = X2, and U = X1 + X2. Thus, Theorem 6.4 applies. To
obtain various tests in Theorem 6.4, it is enough to derive the conditional
distribution of Y = X2 given U = X1 + X2 = u. Using the fact that
X1 +X2 has the Poisson distribution P (λ1 + λ2), one can show that

P (Y = y|U = u) =

(
u

y

)
py(1 − p)u−yI{0,1,...,u}(y), u = 0, 1, 2, ...,
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where p = λ2/(λ1 + λ2) = eθ/(1 + eθ). This is the binomial distribu-
tion Bi(p, u). On the boundary set Θ̄01, θ = θj (a known value) and the
distribution PY |U=u is known.

The previous result can obviously be extended to the case where two
independent samples, Xi1, ..., Xini , i = 1, 2, are i.i.d. from the Poisson
distributions P (λi), i = 1, 2, respectively.

Consider next the binomial problem in which Xj , j = 1, 2, are inde-
pendently distributed as the binomial distributions Bi(pj, nj), j = 1, 2,
respectively, where nj ’s are known but pj’s are unknown. The p.d.f. of
X = (X1, X2) is

(
n1

x1

)(
n2

x2

)
(1 − p1)

n1(1 − p2)
n2exp

{
x2 log p2(1−p1)

p1(1−p2) + (x1 + x2) log p1
(1−p1)

}

w.r.t. the counting measure on {(i, j) : i = 0, 1, ..., n1, j = 0, 1, ..., n2}. This

p.d.f. is of the form (6.23) with θ = log p2(1−p1)
p1(1−p2) , Y = X2, and U = X1+X2.

Thus, Theorem 6.4 applies. Note that hypotheses such as p1 = p2 and
p1 ≥ p2 are equivalent to θ = 0 and θ ≤ 0, respectively. Using the joint
distribution of (X1, X2), one can show (exercise) that

P (Y = y|U = u) = Ku(θ)

(
n1

u− y

)(
n2

y

)
eθyIA(y), u = 0, 1, ..., n1 + n2,

where A = {y : y = 0, 1, ...,min{u, n2}, u− y ≤ n1} and

Ku(θ) =


∑

y∈A

(
n1

u− y

)(
n2

y

)
eθy



−1

. (6.34)

If θ = 0, this distribution reduces to a known distribution: the hypergeo-
metric distribution HG(u, n2, n1) (Table 1.1, page 18).

Example 6.12 (2 × 2 contingency tables). Let A and B be two different
events in a probability space related to a random experiment. Suppose that
n independent trials of the experiment are carried out and that we observe
the frequencies of the occurrence of the events A∩B, A ∩Bc, Ac ∩B, and
Ac ∩Bc. The results can be summarized in the following 2× 2 contingency
table:

A Ac Total

B X11 X12 n1

Bc X21 X22 n2

Total m1 m2 n
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The distribution of X = (X11, X12, X21, X22) is multinomial (Example 2.7)
with probabilities p11, p12, p21, and p22, where pij = E(Xij)/n. Thus, the
p.d.f. of X is

n!

x11!x12!x21!x22!
pn22exp

{
x11 log p11

p22
+ x12 log p12

p22
+ x21 log p21

p22

}

w.r.t. the counting measure on the range of X . This p.d.f. is clearly of the
form (6.23). By Theorem 6.4, we can derive UMPU tests for any parameter
of the form

θ = a0log p11
p22

+ a1 log p12
p22

+ a2 log p21
p22
,

where ai’s are given constants. In particular, testing independence of A
and B is equivalent to the hypotheses H0 : θ = 0 versus H1 : θ 6= 0 when
a0 = 1 and a1 = a2 = −1 (exercise).

For hypotheses concerning θ with a0 = 1 and a1 = a2 = −1, the p.d.f. of
X can be written as (6.23) with Y = X11 and U = (X11 +X12, X11 +X21).
A direct calculation shows that P (Y = y|X11 +X12 = n1, X11 +X21 = m1)
is equal to

Km1(θ)

(
n1

y

)(
n2

m1 − y

)
eθ(m1−y)IA(y),

where A = {y : y = 0, 1, ...,min{m1, n1},m1 − y ≤ n2} and Ku(θ) is
given by (6.34). This distribution is known when θ = θj is known. In
particular, for testing independence of A and B, θ = 0 implies that PY |U=u

is the hypergeometric distribution HG(m1, n1, n2), and the UMPU test in
Theorem 6.4(iv) is also known as Fisher’s exact test.

Suppose that Xij ’s in the 2×2 contingency table are from two binomial
distributions, i.e., Xi1 is from the binomial distribution Bi(pi, ni), Xi2 =
ni −Xi1, i = 1, 2, and that Xi1’s are independent. Then the UMPU test
for independence of A and B previously derived is exactly the same as the
UMPU test for p1 = p2 given in Example 6.11. The only difference is that
ni’s are fixed for testing the equality of two binomial distributions, whereas
ni’s are random for testing independence of A and B. This is also true for
the general r × c contingency tables considered in §6.4.3.

6.2.3 UMPU tests in normal families

An important application of Theorem 6.4 to problems with continuous dis-
tributions in exponential families is the derivation of UMPU tests in normal
families. The results presented here are the basic justifications for tests in
elementary textbooks concerning parameters in normal families.

We start with the following lemma, which is useful especially when X
is from a population in a normal family.
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Lemma 6.7. Suppose that X has the p.d.f. (6.23) and that V (Y, U) is a
statistic independent of U when θ = θj , where θj ’s are known values given
in the hypotheses in (i)-(iv) of Theorem 6.4.
(i) If V (y, u) is increasing in y for each u, then the UMPU tests in (i)-(iii)
of Theorem 6.4 are equivalent to those given by (6.24)-(6.28) with Y and
(Y, U) replaced by V and with ci(U) and γi(U) replaced by constants ci
and γi, respectively.
(ii) If there are Borel functions a(u) > 0 and b(u) such that V (y, u) =
a(u)y+ b(u), then the UMPU test in Theorem 6.4(iv) is equivalent to that
given by (6.25), (6.28), and (6.29) with Y and (Y, U) replaced by V and
with ci(U) and γi(U) replaced by constants ci and γi, respectively.
Proof. (i) Since V is increasing in y, Y > ci(u) is equivalent to V > di(u)
for some di. The result follows from the fact that V is independent of U so
that di’s and γi’s do not depend on u when Y is replaced by V .
(ii) Since V = a(U)Y + b(U), the UMPU test in Theorem 6.4(iv) is the
same as

T∗(V, U) =





1 V < c1(U) or V > c2(U)

γi(U) V = ci(U), i = 1, 2,

0 c1(U) < V < c2(U),

(6.35)

subject to Eθ0 [T∗(V, U)|U = u] = α and

Eθ0

[
T∗(V, U)

V − b(U)

a(U)

∣∣∣∣U
]

= αEθ0

[
V − b(U)

a(U)

∣∣∣∣U
]
. (6.36)

Under Eθ0 [T∗(V, U)|U = u] = α, (6.36) is the same as Eθ0 [T∗(V, U)V |U ] =
αEθ0(V |U). Since V and U are independent when θ = θ0, ci(u)’s and
γi(u)’s do not depend on u and, therefore, T∗ in (6.35) does not depend on
U .

If the conditions of Lemma 6.7 are satisfied, then UMPU tests can
be derived by working with the distribution of V instead of PY |U=u. In
exponential families, a V (Y, U) independent of U can often be found by
applying Basu’s theorem (Theorem 2.4).

When we consider normal families, γi’s can be chosen to be 0 since the
c.d.f. of Y given U = u or the c.d.f. of V is continuous.

One-sample problems

Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ ∈ R and σ2 > 0,
where n ≥ 2. The joint p.d.f. of X = (X1, ..., Xn) is

1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑

i=1

x2
i +

µ

σ2

n∑

i=1

xi −
nµ2

2σ2

}
.
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Consider first hypotheses concerning σ2. The p.d.f. of X has the form
(6.23) with θ = −(2σ2)−1, ϕ = nµ/σ2, Y =

∑n
i=1X

2
i , and U = X̄. By

Basu’s theorem, V = (n − 1)S2 is independent of U = X̄ (Example 2.18),
where S2 is the sample variance. Also,

n∑

i=1

X2
i = (n− 1)S2 + nX̄2,

i.e., V = Y − nU2. Hence the conditions of Lemma 6.7 are satisfied. Since
V/σ2 has the chi-square distribution χ2

n−1 (Example 2.18), values of ci’s
for hypotheses in (i)-(iii) of Theorem 6.4 are related to quantiles of χ2

n−1.
For testing H0 : θ = θ0 versus H1 : θ 6= θ0 (which is equivalent to testing
H0 : σ2 = σ2

0 versus H1 : σ2 6= σ2
0), di = ci/σ

2
0 , i = 1, 2, are determined by

∫ d2

d1

fn−1(v)dv = 1 − α and

∫ d2

d1

vfn−1(v)dv = (n− 1)(1 − α),

where fm is the Lebesgue p.d.f. of the chi-square distribution χ2
m. Since

vfn−1(v) = (n− 1)fn+1(v), d1 and d2 are determined by
∫ d2

d1

fn−1(v)dv =

∫ d2

d1

fn+1(v)dv = 1 − α.

If n − 1 ≈ n + 1, then d1 and d2 are nearly the (α/2)th and (1 − α/2)th
quantiles of χ2

n−1, respectively, in which case the UMPU test in Theorem
6.4(iv) is the same as the “equal-tailed” chi-square test for H0 in elementary
textbooks.

Consider next hypotheses concerning µ. The p.d.f. of X has the form
(6.23) with Y = X̄ , U =

∑n
i=1(Xi − µ0)

2, θ = n(µ − µ0)/σ
2, and ϕ =

−(2σ2)−1. For testing hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0, we take
V to be t(X) =

√
n(X̄ − µ0)/S. By Basu’s theorem, t(X) is independent

of U when µ = µ0. Hence it satisfies the conditions in Lemma 6.7(i). From
Examples 1.16 and 2.18, t(X) has the t-distribution tn−1 when µ = µ0.
Thus, c(U) in Theorem 6.4(i) is the (1 − α)th quantile of tn−1. For the
two-sided hypotheses H0 : µ = µ0 versus H1 : µ 6= µ0, the statistic V =
(X̄−µ0)/

√
U satisfies the conditions in Lemma 6.7(ii) and has a distribution

symmetric about 0 when µ = µ0. Then the UMPU test in Theorem 6.4(iv)
rejects H0 when |V | > d, where d satisfies P (|V | > d) = α when µ = µ0.
Since

t(X) =
√

(n− 1)nV (X)
/√

1 − n[V (X)]2,

the UMPU test rejects H0 if and only if |t(X)| > tn−1,α/2, where tn−1,α is
the (1 − α)th quantile of the t-distribution tn−1. The UMPU tests derived
here are the so-called one-sample t-tests in elementary textbooks.

The power function of a one-sample t-test is related to the noncentral
t-distribution introduced in §1.3.1 (see Exercise 36).
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Two-sample problems

The problem of comparing the parameters of two normal distributions arises
in the comparison of two treatments, products, and so on (see also Example
6.11). Suppose that we have two independent samples, Xi1, ..., Xini , i =
1, 2, i.i.d. from N(µi, σ

2
i ), i = 1, 2, respectively, where ni ≥ 2. The joint

p.d.f. of Xij ’s is

C(µ1, µ2, σ
2
1 , σ

2
2) exp



−

2∑

i=1

1

2σ2
i

ni∑

j=1

x2
ij +

2∑

i=1

niµi
σ2
i

x̄i



 ,

where x̄i is the sample mean based on xi1, ..., xini and C(·) is a known
function.

Consider first the hypothesis H0 : σ2
2/σ

2
1 ≤ ∆0 or H0 : σ2

2/σ
2
1 = ∆0.

The p.d.f. of Xij ’s is of the form (6.23) with

θ =
1

2∆0σ2
1

− 1

2σ2
2

, ϕ =

(
− 1

2σ2
1

,
n1µ1

σ2
1

,
n2µ2

σ2
2

)
,

Y =

n2∑

j=1

X2
2j , U =




n1∑

j=1

X2
1j +

1

∆0

n2∑

j=1

X2
2j , X̄1, X̄2


 .

To apply Lemma 6.7, consider

V =
(n2 − 1)S2

2/∆0

(n1 − 1)S2
1 + (n2 − 1)S2

2/∆0
=

(Y − n2U3)/∆0

U1 − n1U2 − n2U3/∆0
,

where S2
i is the sample variance based on Xi1, ..., Xini and Uj is the jth

component of U . By Basu’s theorem, V and U are independent when
θ = 0 (σ2

2 = ∆0σ
2
1). Since V is increasing and linear in Y , the condi-

tions of Lemma 6.7 are satisfied. Thus, a UMPU test rejects H0 : θ ≤ 0
(which is equivalent to H0 : σ2

2/σ
2
1 ≤ ∆0) when V > c0, where c0 satisfies

P (V > c0) = α when θ = 0; and a UMPU test rejects H0 : θ = 0 (which is
equivalent to H0 : σ2

2/σ
2
1 = ∆0) when V < c1 or V > c2, where ci’s satisfy

P (c1 < V < c2) = 1 − α and E[V T∗(V )] = αE(V ) when θ = 0. Note that

V =
(n2 − 1)F

n1 − 1 + (n2 − 1)F
with F =

S2
2/∆0

S2
1

.

It follows from Example 1.16 that F has the F-distribution Fn2−1,n1−1 (Ta-
ble 1.2, page 20) when θ = 0. Since V is a strictly increasing function of
F, a UMPU test rejects H0 : θ ≤ 0 when F > Fn2−1,n1−1,α, where Fa,b,α
is the (1 − α)th quantile of the F-distribution Fa,b. This is the F-test in
elementary textbooks.
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When θ = 0, V has the beta distribution B((n2 − 1)/2, (n1 − 1)/2) and
E(V ) = (n2 − 1)/(n1 + n2 − 2) (Table 1.2). Then, E[V T∗(V )] = αE(V )
when θ = 0 is the same as

(1 − α)(n2 − 1)

n1 + n2 − 2
=

∫ c2

c1

vf(n2−1)/2,(n1−1)/2(v)dv,

where fa,b is the p.d.f. of the beta distribution B(a, b). Using the fact that
vf(n2−1)/2,(n1−1)/2(v) = (n1 + n2 − 2)−1(n2 − 1)f(n2+1)/2,(n1−1)/2(v), we
conclude that a UMPU test rejects H0 : θ = 0 when V < c1 or V > c2,
where c1 and c2 are determined by

1 − α =

∫ c2

c1

f(n2−1)/2,(n1−1)/2(v)dv =

∫ c2

c1

f(n2+1)/2,(n1−1)/2(v)dv.

If n2 − 1 ≈ n2 + 1 (i.e., n2 is large), then this UMPU test can be ap-
proximated by the F-test that rejects H0 : θ = 0 if and only if F <
Fn2−1,n1−1,1−α/2 or F > Fn2−1,n1−1,α/2.

Consider next the hypothesis H0 : µ1 ≥ µ2 or H0 : µ1 = µ2. If σ2
1 6= σ2

2 ,
the problem is the so-called Behrens-Fisher problem and is not accessible by
the method introduced in this section. We now assume that σ2

1 = σ2
2 = σ2

but σ2 is unknown. The p.d.f. of Xij ’s is then

C(µ1, µ2, σ
2) exp



− 1

2σ2

2∑

i=1

ni∑

j=1

x2
ij +

n1µ1

σ2
x̄1 +

n2µ2

σ2
x̄2



 ,

which is of the form (6.23) with

θ =
µ2 − µ1

(n−1
1 + n−1

2 )σ2
, ϕ =

(
n1µ1 + n2µ2

(n1 + n2)σ2
, − 1

2σ2

)
,

Y = X̄2 − X̄1, U =


n1X̄1 + n2X̄2,

2∑

i=1

ni∑

j=1

X2
ij


 .

For testing H0 : θ ≤ 0 (i.e., µ1 ≥ µ2) versus H1 : θ > 0, we consider V in
Lemma 6.7 to be

t(X) =
(X̄2 − X̄1)

/√
n−1

1 + n−1
2√

[(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n1 + n2 − 2)
. (6.37)

When θ = 0, t(X) is independent of U (Basu’s theorem) and satisfies
the conditions in Lemma 6.7(i); the numerator and the denominator of
t(X) (after division by σ) are independently distributed as N(0, 1) and
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the chi-square distribution χ2
n1+n2−2, respectively. Hence t(X) has the t-

distribution tn1+n2−2 and a UMPU test rejectsH0 when t(X) > tn1+n2−2,α,
where tn1+n2−2,α is the (1 − α)th quantile of the t-distribution tn1+n2−2.
This is the so-called (one-sided) two-sample t-test.

For testing H0 : θ = 0 (i.e., µ1 = µ2) versus H1 : θ 6= 0, it follows from a
similar argument used in the derivation of the (two-sided) one-sample t-test
that a UMPU test rejects H0 when |t(X)| > tn1+n2−2,α/2 (exercise). This
is the (two-sided) two-sample t-test.

The power function of a two-sample t-test is related to a noncentral
t-distribution.

Normal linear models

Consider linear model (3.25) with assumption A1, i.e.,

X = (X1, ..., Xn) is Nn(Zβ, σ
2In), (6.38)

where β is a p-vector of unknown parameters, Z is the n× p matrix whose
ith row is the vector Zi, Zi’s are the values of a p-vector of deterministic
covariates, and σ2 > 0 is an unknown parameter. Assume that n > p and
the rank of Z is r ≤ p. Let l ∈ R(Z) (the linear space generated by the
rows of Z) and θ0 be a fixed constant. We consider the hypotheses

H0 : lτβ ≤ θ0 versus H1 : lτβ > θ0 (6.39)

or
H0 : lτβ = θ0 versus H1 : lτβ 6= θ0. (6.40)

Since H = Z(ZτZ)−Zτ is a projection matrix of rank r, there exists an
n× n orthogonal matrix Γ such that

Γ = ( Γ1 Γ2 ) and HΓ = ( Γ1 0 ), (6.41)

where Γ1 is n×r and Γ2 is n×(n−r). Let Yj = ΓτjX , j = 1, 2. Consider the

transformation (Y1, Y2) = ΓτX . Since ΓτΓ = In and X is Nn(Zβ, σ
2In),

(Y1, Y2) is Nn(Γ
τZβ, σ2In). It follows from (6.41) that

E(Y2) = E(Γτ2X) = Γτ2Zβ = Γτ2HZβ = 0.

Let η = Γτ1Zβ = E(Y1). Then the p.d.f. of (Y1, Y2) is

1

(2πσ2)n/2
exp

{
ητY1

σ2
− ‖Y1‖2 + ‖Y2‖2

2σ2
− ‖η‖2

2σ2

}
. (6.42)

Since l in (6.39) or (6.40) is in R(Z), there exists λ ∈ Rn such that l = Zτλ.
Then

lτ β̂ = λτHX = λτΓΓτHX = λτΓ1Γ
τ
1X = λτΓ1Y1, (6.43)
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where β̂ is the LSE defined by (3.27). By (6.43) and Theorem 3.6(ii),

E(lτ β̂) = lτβ = λτΓ1E(Y1) = aτη,

where a = Γτ1λ. Let η = (η1, ..., ηr) and a = (a1, ..., ar). Without loss of
generality, we assume that a1 6= 0. Then the p.d.f. in (6.42) is of the form
(6.23) with

θ =
aτη − θ0
a1σ2

, ϕ =

(
− 1

2σ2
,
η2
σ2
, ...,

ηr
σ2

)
, Y = Y11,

U =

(
‖Y1‖2 + ‖Y2‖2 − 2θ0Y11

a1
, Y12 −

a2Y11

a1
, ..., Y1r −

arY11

a1

)
,

where Y1j is the jth component of Y1. By Basu’s theorem,

t(X) =

√
n− r(aτY1 − θ0)

‖Y2‖ ‖a‖

is independent of U when aτη = lτβ = θ0. Note that ‖Y2‖2 = SSR in
(3.35) and ‖a‖2 = λτΓ1Γ

τ
1λ = λτHλ = lτ (ZτZ)−l. Hence, by (6.43),

t(X) =
lτ β̂ − θ0√

lτ (ZτZ)−l
√
SSR/(n− r)

,

which has the t-distribution tn−r (Theorem 3.8). Using the same arguments
in deriving the one-sample or two-sample t-test, we obtain that a UMPU
test for the hypotheses in (6.39) rejects H0 when t(X) > tn−r,α, and that a
UMPU test for the hypotheses in (6.40) rejects H0 when |t(X)| > tn−r,α/2.

Testing for independence in the bivariate normal family

Suppose that X1, ..., Xn are i.i.d. from a bivariate normal distribution, i.e.,
the p.d.f. of X = (X1, ..., Xn) is

1

(2πσ1σ2

√
1−ρ2)n

exp
{
− ‖Y1−µ1‖2

2σ2
1(1−ρ2) + ρ(Y1−µ1)

τ (Y2−µ2)
σ1σ2(1−ρ2) − ‖Y2−µ2‖2

2σ2
2(1−ρ2)

}
, (6.44)

where Yj = (X1j , ..., Xnj) and Xij is the jth component of Xi, j = 1, 2.

Testing for independence of the two components of X1 (or Y1 and Y2) is
equivalent to testing H0 : ρ = 0 versus H1 : ρ 6= 0. In some cases, one may
also be interested in the one-sided hypotheses H0 : ρ ≤ 0 versus H1 : ρ > 0.
It can be shown (exercise) that the p.d.f. in (6.44) is of the form (6.23) with
θ = ρ

σ1σ2(1−ρ2) and

Y =

n∑

i=1

Xi1Xi2, U =

(
n∑

i=1

X2
i1,

n∑

i=1

X2
i2,

n∑

i=1

Xi1,

n∑

i=1

Xi2

)
.
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The hypothesis ρ ≤ 0 is equivalent to θ ≤ 0. The sample correlation
coefficient is

R =

n∑

i=1

(Xi1 − X̄1)(Xi2 − X̄2)

/[
n∑

i=1

(Xi1 − X̄1)
2

n∑

i=1

(Xi2 − X̄2)
2

]1/2

,

where X̄j is the sample mean of X1j , ..., Xnj , and is independent of U when
ρ = 0 (Basu’s theorem), j = 1, 2. To apply Lemma 6.7, we consider

V =
√
n− 2R/

√
1 −R2. (6.45)

It can be shown (exercise) that R is linear in Y and that V has the t-
distribution tn−2 when ρ = 0. Hence, a UMPU test for H0 : ρ ≤ 0 versus
H1 : ρ > 0 rejects H0 when V > tn−2,α and a UMPU test for H0 : ρ = 0
versus H1 : ρ 6= 0 rejects H0 when |V | > tn−2,α/2, where tn−2,α is the
(1 − α)th quantile of the t-distribution tn−2.

6.3 UMP Invariant Tests

In the previous section the unbiasedness principle is considered to derive
an optimal test within the class of unbiased tests when a UMP test does
not exist. In this section, we study the same problem with unbiasedness
replaced by invariance under a given group of transformations. The prin-
ciples of unbiasedness and invariance often complement each other in that
each is successful in cases where the other is not.

6.3.1 Invariance and UMPI tests

The invariance principle considered here is similar to that introduced in
§2.3.2 (Definition 2.9) and in §4.2. Although a hypothesis testing problem
can be treated as a particular statistical decision problem (see, e.g., Ex-
ample 2.20), in the following definition we define invariant tests without
using any loss function which is a basic element in statistical decision the-
ory. However, the reader is encouraged to compare Definition 2.9 with the
following definition.

Definition 6.5. Let X be a sample from P ∈ P and G be a group (Defi-
nition 2.9(i)) of one-to-one transformations of X .
(i) We say that the problem of testing H0 : P ∈ P0 versus H1 : P ∈ P1 is
invariant under G if and only if both P0 and P1 are invariant under G in
the sense of Definition 2.9(ii).
(ii) In an invariant testing problem, a test T (X) is said to be invariant
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under G if and only if

T (g(x)) = T (x) for all x and g. (6.46)

(iii) A test of size α is said to be a uniformly most powerful invariant
(UMPI) test if and only if it is UMP within the class of level α tests that
are invariant under G.
(iv) A statistic M(X) is said to be maximal invariant under G if and only
if (6.46) holds with T replaced by M and

M(x1) = M(x2) implies x1 = g(x2) for some g ∈ G. (6.47)

The following result indicates that invariance reduces the data X to a
maximal invariant statistic M(X) whose distribution may depend only on
a functional of P that shrinks P .

Proposition 6.2. Let M(X) be maximal invariant under G.
(i) A test T (X) is invariant under G if and only if there is a function h such
that T (x) = h(M(x)) for all x.
(ii) Suppose that there is a functional θ(P ) on P satisfying θ(ḡ(P )) = θ(P )
for all g ∈ G and P ∈ P and

θ(P1) = θ(P2) implies P1 = ḡ(P2) for some g ∈ G

(i.e., θ(P ) is “maximal invariant”), where ḡ(PX) = Pg(X) is given in Defi-
nition 2.9(ii). Then the distribution of M(X) depends only on θ(P ).
Proof. (i) If T (x) = h(M(x)) for all x, then T (g(x)) = h(M(g(x))) =
h(M(x)) = T (x) so that T is invariant. If T is invariant and if M(x1) =
M(x2), then x1 = g(x2) for some g and T (x1) = T (g(x2)) = T (x2). Hence
T is a function of M .
(ii) Suppose that θ(P1) = θ(P2). Then P2 = ḡ(P1) for some g ∈ G and for
any event B in the range of M(X),

P2

(
M(X) ∈ B

)
= ḡ(P1)

(
M(X) ∈ B

)

= P1

(
M(g(X)) ∈ B

)

= P1

(
M(X) ∈ B

)
.

Hence the distribution of M(X) depends only on θ(P ).

In applications, maximal invariants M(X) and θ = θ(P ) are frequently
real-valued. If the hypotheses of interest can be expressed in terms of θ, then
there may exist a test UMP among those depending only on M(X) (e.g.,
when the distribution of M(X) is in a parametric family having monotone
likelihood ratio). Such a test is then a UMPI test.
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Example 6.13 (Location-scale families). Suppose thatX has the Lebesgue
p.d.f. fi,µ(x) = fi(x1 − µ, ..., xn − µ), where n ≥ 2, µ ∈ R is unknown, and
fi, i = 0, 1, are known Lebesgue p.d.f.’s. We consider the problem of testing

H0 : X is from f0,µ versus H1 : X is from f1,µ. (6.48)

Consider G = {gc : c ∈ R} with gc(x) = (x1 + c, ..., xn+ c). For any gc ∈ G,
it induces a transformation ḡc(fi,µ) = fi,µ+c and the problem of testing H0

versus H1 in (6.48) is invariant under G.

We now show that a maximal invariant under G isD(X)=(D1, ..., Dn−1)
= (X1 −Xn, ..., Xn−1 −Xn). First, it is easy to see that D(X) is invariant
under G. Let x = (x1, ..., xn) and y = (y1, ..., yn) be two points in the
range of X . Suppose that xi − xn = yi − yn for i = 1, ..., n − 1. Putting
c = yn−xn, we have yi = xi+c for all i. Hence, D(X) is maximal invariant
under G.

By Proposition 1.8, D has the p.d.f.
∫
fi(d1 + t, ..., dn−1 + t, t)dt under

Hi, i = 0, 1, which does not depend on µ. In fact, in this case Proposition
6.2 applies with M(X) = D(X) and θ(fi,µ) = i. If we consider tests that
are functions of D(X), then the problem of testing the hypotheses in (6.48)
becomes one of testing a simple hypothesis versus a simple hypothesis. By
Theorem 6.1, the test UMP among functions of D(X), which is then the
UMPI test, rejects H0 in (6.48) when

∫
f1(d1 + t, ..., dn−1 + t, t)dt∫
f0(d1 + t, ..., dn−1 + t, t)dt

=

∫
f1(x1 + t, ..., xn + t)dt∫
f0(x1 + t, ..., xn + t)dt

> c,

where c is determined by the size of the UMPI test.

The previous result can be extended to the case of a location-scale family
where the p.d.f. of X is one of fi,µ,σ = 1

σn fi
(
x1−µ
σ , ..., xn−µ

σ

)
, i = 0, 1,

fi,µ,σ is symmetric about µ, the hypotheses of interest are given by (6.48)
with fi,µ replaced by fi,µ,σ, and G = {gc,r : c ∈ R, r 6= 0} with gc,r(x) =
(rx1+c, ..., rxn+c). When n ≥ 3, it can be shown that a maximal invariant
under G is W (X) = (W1, ...,Wn−2), where Wi = (Xi −Xn)/(Xn−1 −Xn),
and that the p.d.f. of W does not depend on (µ, σ). A UMPI test can then
be derived (exercise).

The next example considers finding a maximal invariant in a problem
that is not a location-scale family problem.

Example 6.14. Let G be the set of n! permutations of the components of
x ∈ Rn. Then a maximal invariant is the vector of order statistics. This is
because a permutation of the components of x does not change the values
of these components and two x’s with the same set of ordered components
can be obtained from each other through a permutation of coordinates.
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Suppose that P contains continuous c.d.f.’s on Rn. Let G be the class of
all transformations of the form g(x) = (ψ(x1), ..., ψ(xn)), where ψ is contin-
uous and strictly increasing. For x = (x1, ..., xn), let R(x) = (R1, ..., Rn) be
the vector of ranks (§5.2.2), i.e., xi = x(Ri), where x(j) is the jth smallest
value of xi’s. Clearly, R(g(x)) = R(x) for any g ∈ G. For any x and y
in Rn with R(x) = R(y), define ψ(t) to be linear between x(j) and x(j+1),
j = 1, ..., n−1, ψ(t) = t+(y(1)−x(1)) for t ≤ x(1), and ψ(t) = t+(y(n)−x(n))
for t ≥ x(n). Then ψ(xi) = ψ(yi), i = 1, ..., n. This shows that the vector
of rank statistics is maximal invariant.

When there is a sufficient statistic U(X), it is convenient first to reduce
the data to U(X) before applying invariance. If there is a test T (U) UMP
among all invariant tests depending only on U , one would like to conclude
that T (U) is a UMPI test. Unfortunately, this may not be true in general,
since it is not clear that for any invariant test based on X there is an
equivalent invariant test based only on U(X). The following result provides
a sufficient condition under which it is enough to consider invariant tests
depending only on U(X). Its proof is omitted and can be found in Lehmann
(1986, pp. 297-302).

Proposition 6.3. Let G be a group of transformations on X (the range of
X) and (G,BG , λ) be a measure space with a σ-finite λ. Suppose that the
testing problem under consideration is invariant under G, that for any set
A ∈ BX, the set of points (x, g) for which g(x) ∈ A is in σ(BX × BG), and
that λ(B) = 0 implies λ({h ◦ g : h ∈ B}) = 0 for all g ∈ G. Suppose further
that there is a statistic U(X) sufficient for P ∈ P and that U(x1) = U(x2)
implies U(g(x1)) = U(g(x2)) for all g ∈ G so that G induces a group GU of
transformations on the range of U through gU (U(x)) = U(g(x)). Then, for
any test T (X) invariant under G, there exists a test based on U(X) that is
invariant under G (and GU ) and has the same power function as T (X).

In many problems g(x) = ψ(x, g), where g ranges over a set G in Rm

and ψ is a Borel function on Rn+m. Then the measurability condition in
Proposition 6.3 is satisfied by choosing BG to be the Borel σ-field on G.
In such cases it is usually not difficult to find a measure λ satisfying the
condition in Proposition 6.3.

Example 6.15. LetX1, ..., Xn be i.i.d. fromN(µ, σ2) with unknown µ ∈ R
and σ2 > 0. The problem of testing H0 : σ2 ≥ σ2

0 versus H1 : σ2 < σ2
0

is invariant under G = {gc : c ∈ R} with gc(x) = (x1 + c, ..., xn + c). It
can be shown (exercise) that G and the sufficient statistic U = (X̄, S2)
satisfy the conditions in Proposition 6.3 with GU = {hc : c ∈ R} and
hc(u1, u2) = (u1 + c, u2), and that S2 is maximal invariant under GU . It
follows from Proposition 6.3, Corollary 6.1, and the fact that (n− 1)S2/σ2

0
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has the chi-square distribution χ2
n−1 when σ2 = σ2

0 that a UMPI test of size
α rejects H0 when (n− 1)S2/σ2

0 ≤ χ2
n−1,1−α, where χ2

n−1,α is the (1−α)th
quantile of the chi-square distribution χ2

n−1. This test coincides with the
UMPU test given in §6.2.3.

Example 6.16. Let Xi1, ..., Xini , i = 1, 2, be two independent samples
i.i.d. from N(µi, σ

2
i ), i = 1, 2, respectively. The problem of testing H0 :

σ2
2/σ

2
1 ≤ ∆0 versus H1 : σ2

2/σ
2
1 > ∆0 is invariant under

G = {gc1,c2,r : ci ∈ R, i = 1, 2, r > 0}

with

gc1,c2,r(x1, x2) = (rx11 + c1, ..., rx1n1 + c1, rx21 + c2, ..., rx2n2 + c2).

It can be shown (exercise) that the sufficient statistic U = (X̄1, X̄2, S
2
1 , S

2
2)

and G satisfy the conditions in Proposition 6.3 with

GU = {hc1,c2,r : ci ∈ R, i = 1, 2, r > 0}

and

hc1,c2,r(u1, u2, u3, u4) = (ru1 + c1, ru2 + c2, ru3, ru4).

A maximal invariant under GU is S2/S1. Let ∆ = σ2
2/σ

2
1 . Then (S2

2/S
2
1)/∆

has an F-distribution and, therefore, V = S2
2/S

2
1 has a Lebesgue p.d.f. of

the form

f∆(v) = C(∆)v(n2−3)/2[∆ + (n2 − 1)v/(n1 − 1)]−(n1+n2−2)/2I(0,∞)(v),

where C(∆) is a known function of ∆. It can be shown (exercise) that the
family {f∆ : ∆ > 0} has monotone likelihood ratio in V so that a UMPI test
of size α rejects H0 when V > Fn2−1,n1−1,α, where Fa,b,α is the (1 − α)th
quantile of the F-distribution Fa,b. Again, this UMPI test coincides with
the UMPU test given in §6.2.3.

The following result shows that, in Examples 6.15 and 6.16, the fact that
UMPI tests are the same as the UMPU tests is not a simple coincidence.

Proposition 6.4. Consider a testing problem invariant under G. If there
exists a UMPI test of size α, then it is unbiased. If there also exists a
UMPU test of size α that is invariant under G, then the two tests have the
same power function on P ∈ P1. If either the UMPI test or the UMPU test
is unique a.s. P , then the two tests are equal a.s. P .
Proof. We only need to prove that a UMPI test of size α is unbiased. This
follows from the fact that the test T ≡ α is invariant under G.
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The next example shows an application of invariance in a situation
where a UMPU test may not exist.

Example 6.17. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ
and σ2. Let θ = (µ − u)/σ, where u is a known constant. Consider the
problem of testing H0 : θ ≤ θ0 versus H1 : θ > θ0. Note that H0 is the
same as P (X1 ≤ u) ≥ p0 for a known constant p0 = Φ(−θ0). Without loss
of generality, we consider the case of u = 0.

The problem is invariant under G = {gr : r > 0} with gr(x) = rx. By
Proposition 6.3, we can consider tests that are functions of the sufficient
statistic (X̄, S2) only. A maximal invariant under G is t(X) =

√
nX̄/S. To

find a UMPI test, it remains to find a test UMP among all tests that are
functions of t(X).

From the discussion in §1.3.1, t(X) has the noncentral t-distribution
tn−1(

√
nθ). Let fθ(t) be the Lebesgue p.d.f. of t(X), i.e., fθ is given by

(1.32) with n replaced by n − 1 and δ =
√
nθ. It can be shown (exercise)

that the family of p.d.f.’s, {fθ(t) : θ ∈ R}, has monotone likelihood ratio in
t. Hence, by Theorem 6.2, a UMPI test of size α rejects H0 when t(X) > c,
where c is the (1 − α)th quantile of tn−1(

√
nθ0).

In some problems, we may have to apply both unbiasedness and invari-
ance principles. For instance, suppose that in the current problem we would
like to test H0 : θ = θ0 versus H1 : θ 6= θ0. The problem is still invariant
under G. Following the previous discussion, we only need to consider tests
that are functions of t(X). But a test UMP among functions of t(X) does
not exist in this case. A test UMP among all unbiased tests of level α that
are functions of t(X) rejects H0 when t(X) < c1 or t(X) > c2, where c1
and c2 are determined by

∫ c2

c1

fθ0(t)dt = 1 − α and
d

dθ

[∫ c2

c1

fθ(t)dt

] ∣∣∣∣
θ=θ0

= 0

(see Exercise 26). This test is then UMP among all tests that are invariant
and unbiased of level α. Whether it is also UMPU without the restriction
to invariant tests is an open problem.

6.3.2 UMPI tests in normal linear models

Consider normal linear model (6.38):

X = Nn(Zβ, σ
2In),

where β is a p-vector of unknown parameters, σ2 > 0 is unknown, and Z is
a fixed n× p matrix of rank r ≤ p < n. In §6.2.3, UMPU tests for testing
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(6.39) or (6.40) are derived. A frequently encountered problem in practice
is to test

H0 : Lβ = 0 versus H1 : Lβ 6= 0, (6.49)

where L is an s × p matrix of rank s ≤ r and all rows of L are in R(Z).
However, a UMPU test for (6.49) does not exist if s > 1. We now derive
a UMPI test for testing (6.49). We use without proof the following result
from linear algebra: there exists an orthogonal matrix Γ such that (6.49)
is equivalent to

H0 : η1 = 0 versus H1 : η1 6= 0, (6.50)

where η1 is the s-vector containing the first s components of η, η is the
r-vector containing the first r components of ΓZβ, and the last n− r com-
ponents of ΓZβ are 0’s. Let Y = ΓX . Then Y = Nn((η, 0), σ2In) with the
p.d.f. given by (6.42). Let Y = (Y1, Y2), where Y1 is an r-vector, and let
Y1 = (Y11, Y12), where Y11 is an s-vector. Define

G = {gΛ,c,γ : c ∈ Rr−s, γ > 0, Λ is an s× s orthogonal matrix}

with
gΛ,c,γ(Y ) = γ(ΛY11, Y12 + c, Y2).

Testing (6.50) is invariant under G. By Proposition 6.3, we can restrict our
attention to the sufficient statistic U = (Y1, ‖Y2‖2). The statistic

M(U) = ‖Y11‖2/‖Y2‖2 (6.51)

is invariant under GU , the group of transformations on the range of U
defined by g̃Λ,c,γ(U(Y )) = U(gΛ,c,γ(Y )). We now show that M(U) is max-
imal invariant under GU . Let li ∈ Rs, li 6= 0, and ti ∈ (0,∞), i = 1, 2.
If ‖l1‖2/t21 = ‖l2‖2/t22, then t1 = γt2 with γ = ‖l1‖/‖l2‖. Since l1/‖l1‖
and l2/‖l2‖ are two points having the same distance from the origin, there
exists an orthogonal matrix Λ such that l1/‖l1‖ = Λl2/‖l2‖, i.e., l1 = γΛl2.

This proves that if M(u(1)) = M(u(2)) with u(j) = (y
(j)
11 , y

(j)
12 , t

2
j), then

y
(1)
11 = γΛy

(2)
11 and t1 = γt2 for some γ > 0 and orthogonal matrix Λ and,

therefore, u(1) = g̃Λ,c,γ(u
(2)) with c = γ−1y

(1)
12 − y

(2)
12 . Thus, M(U) is maxi-

mal invariant under GU .

It can be shown (exercise) that W = M(U)(n− r)/s has the noncentral
F-distribution Fs,n−r(θ) with θ = ‖η1‖2/σ2 (see §1.3.1). Let fθ(w) be the
Lebesgue p.d.f. of W , i.e., fθ is given by (1.33) with n1 = s, n2 = n − r,
and δ = θ. Note that under H0, θ = 0 and fθ reduces to the p.d.f. of the
central F-distribution Fs,n−r (Table 1.2, page 20). Also, it can be shown
(exercise) that the ratio fθ1(w)/f0(w) is an increasing function of w for any
given θ1 > 0. By Theorem 6.1, a UMPI test of size α for testing H0 : θ = 0
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versus H1 : θ = θ1 rejects H0 when W > Fs,n−r,α, where Fs,n−r,α is the
(1 − α)th quantile of the F-distribution Fs,n−r. Since this test does not
depend on θ1, by Lemma 6.1, it is also a UMPI test of size α for testing
H0 : θ = 0 versus H1 : θ > 0, which is equivalent to testing (6.50).

In applications it is not convenient to carry out the test by finding
explicitly the orthogonal matrix Γ. Hence, we now express the statistic W
in terms of X . Since Y = ΓX and E(Y ) = ΓE(X) = ΓZβ,

‖Y1 − η‖2 + ‖Y2‖2 = ‖X − Zβ‖2

and, therefore,

min
η

‖Y1 − η‖2 + ‖Y2‖2 = min
β

‖X − Zβ‖2,

which is the same as

‖Y2‖2 = ‖X − Zβ̂‖2 = SSR,

where β̂ is the LSE defined by (3.27). Similarly,

‖Y11‖2 + ‖Y2‖2 = min
β:Lβ=0

‖X − Zβ‖2.

If we define β̂H0 to be a solution of

‖X − Zβ̂H0‖2 = min
β:Lβ=0

‖X − Zβ‖2,

which is called the LSE of β under H0 or the LSE of β subject to Lβ = 0,
then

W =
(‖X − Zβ̂H0‖2 − ‖X − Zβ̂‖2)/s

‖X − Zβ̂‖2/(n− r)
. (6.52)

Thus, the UMPI test for (6.49) can be used without finding Γ.

When s = 1, the UMPI test derived here is the same as the UMPU test
for (6.40) given in §6.2.3.

Example 6.18. Consider the one-way ANOVA model in Example 3.13:

Xij = N(µi, σ
2), j = 1, ..., ni, i = 1, ...,m,

and Xij ’s are independent. A common testing problem in applications is
the test for homogeneity of means, i.e.,

H0 : µ1 = · · · = µm versus H1 : µi 6= µk for some i 6= k. (6.53)

One can easily find a matrix L for which (6.53) is equivalent to (6.49).
But it is not necessary to find such a matrix in order to compute the
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statistic W that defines the UMPI test. Note that the LSE of (µ1, ..., µm)
is (X̄1·, ..., X̄m·), where X̄i· is the sample mean based on Xi1, ..., Xini , and
the LSE under H0 is simply X̄, the sample mean based on all Xij ’s. Thus,

SSR = ‖X − Zβ̂‖2 =
m∑

i=1

ni∑

j=1

(Xij − X̄i·)
2,

SST = ‖X − Zβ̂H0‖2 =

m∑

i=1

ni∑

j=1

(Xij − X̄)2,

and

SSA = SST − SSR =
m∑

i=1

ni(X̄i· − X̄)2.

Then

W =
SSA/(m− 1)

SSR/(n−m)
,

where n =
∑m

i=1 ni. The name ANOVA comes from the fact that the UMPI
test is carried out by comparing two sources of variation: the variation
within each group of observations (measured by SSR) and the variation
among m groups (measured by SSA), and that SSA+ SSR = SST is the
total variation in the data set.

In this case, the distribution of W can also be derived using Cochran’s
theorem (Theorem 1.5). See Exercise 75.

Example 6.19. Consider the two-way balanced ANOVA model in Exam-
ple 3.14:

Xijk = N(µij , σ
2), i = 1, ..., a, j = 1, ..., b, k = 1, ..., c,

where µij = µ+αi+βj+γij,
∑a

i=1 αi =
∑b

j=1 βj =
∑a

i=1 γij =
∑b

j=1 γij =
0, and Xijk’s are independent. Typically the following hypotheses are of
interest:

H0 : αi = 0 for all i versus H1 : αi 6= 0 for some i, (6.54)

H0 : βj = 0 for all j versus H1 : βj 6= 0 for some j, (6.55)

and

H0 : γij = 0 for all i, j versus H1 : γij 6= 0 for some i, j. (6.56)

In applications, αi’s are effects of a factor A (a variable taking finitely many
values), βj ’s are effects of a factor B, and γij ’s are effects of the interaction
of factors A and B. Hence, testing hypotheses in (6.54), (6.55), and (6.56)
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are the same as testing effects of factor A, of factor B, and of the interaction
between A and B, respectively.

The LSE’s of µ, αi, βj , and γij are given by (Example 3.14) µ̂ = X̄···,

α̂i = X̄i·· − X̄···, β̂j = X̄·j· − X̄···, γ̂ij = X̄ij· − X̄i·· − X̄·j· + X̄···, and a dot
is used to denote averaging over the indicated subscript. Let

SSR =

a∑

i=1

b∑

j=1

c∑

k=1

(Xijk − X̄ij·)
2,

SSA = bc

a∑

i=1

(X̄i·· − X̄···)
2,

SSB = ac

b∑

j=1

(X̄·j· − X̄···)
2,

and

SSC = c

a∑

i=1

b∑

j=1

(X̄ij· − X̄i·· − X̄·j· + X̄···)
2.

Then, one can show (exercise) that for testing (6.54), (6.55), and (6.56),
the statistics W in (6.52) (for the UMPI tests) are, respectively,

SSA/(a− 1)

SSR/[(c− 1)ab]
,

SSB/(b− 1)

SSR/[(c− 1)ab]
, and

SSC/[(a− 1)(b− 1)]

SSR/[(c− 1)ab]
.

We end this section with a discussion of testing for random effects in
the following balanced one-way random effects model (Example 3.17):

Xij = µ+Ai + eij , i = 1, ..., a, j = 1, ..., b, (6.57)

where µ is an unknown parameter, Ai’s are i.i.d. random effects from
N(0, σ2

a), eij ’s are i.i.d. measurement errors from N(0, σ2), and Ai’s and
eij ’s are independent. Consider the problem of testing

H0 : σ2
a/σ

2 ≤ ∆0 versus H1 : σ2
a/σ

2 > ∆0 (6.58)

for a given ∆0. When ∆0 is small, hypothesis H0 in (6.58) means that the
random effects are negligible relative to the measurement variation.

Let (Yi1, ..., Yib) = Γ(Xi1, ..., Xib), where Γ is a b× b orthogonal matrix
whose elements in the first row are all equal to 1/

√
b. Then

Yi1 =
√
bX̄i· =

√
b(µ+Ai + ēi·), i = 1, ..., a,
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are i.i.d. from N(
√
bµ, σ2 + bσ2

a), Yij , i = 1, ..., a, j = 2, ..., b, are i.i.d. from
N(0, σ2), and Yij ’s are independent. The reason why E(Yij) = 0 when
j > 1 is because row j of Γ is orthogonal to the first row of Γ.

Let Λ be an a×a orthogonal matrix whose elements in the first row are
all equal to 1/

√
a and (U11, ..., Ua1) = Λ(Y11, ..., Ya1). Then U11 =

√
aȲ·1 is

N(
√
abµ, σ2 + bσ2

a), Ui1, i = 2, ..., a, are from N(0, σ2 + bσ2
a), and Ui1’s are

independent. Let Uij = Yij for j = 2, ..., b, i = 1, ..., a.

The problem of testing (6.58) is invariant under the group of transfor-
mations that transform U11 to rU11+c and Uij to rUij , (i, j) 6= (1, 1), where
r > 0 and c ∈ R. It can be shown (exercise) that the maximal invariant
under this group of transformations is SSA/SSR, where

SSA =

a∑

i=2

U2
i1 and SSR =

a∑

i=1

b∑

j=2

U2
ij .

Note that H0 in (6.58) is equivalent to (σ2 + bσ2
a)/σ

2 ≤ 1 + b∆0. Also,
SSA/(σ2 + bσ2

a) has the chi-square distribution χ2
a−1 and SSR/σ2 has the

chi-square distribution χ2
a(b−1). Hence, the p.d.f. of the statistic

W =
1

1 + b∆0

SSA/(a− 1)

SSR/[a(b− 1)]

is in a parametric family (indexed by the parameter (σ2 + bσ2
a)/σ

2) with
monotone likelihood ratio in W . Thus, a UMPI test of size α for test-
ing (6.58) rejects H0 when W > Fa−1,a(b−1),α, where Fa−1,a(b−1),α is the
(1 − α)th quantile of the F-distribution Fa−1,a(b−1).

It remains to express W in terms of Xij ’s. Note that

SSR =

a∑

i=1

b∑

j=2

Y 2
ij =

a∑

i=1




b∑

j=1

e2ij − bē2i·


 =

a∑

i=1

b∑

j=1

(Xij − X̄i·)
2

and

SSA =

a∑

i=1

U2
i1 − U2

11 =

a∑

i=1

Y 2
i1 − aȲ 2

·1 = b

a∑

i=1

(X̄i· − X̄··)
2.

The SSR and SSA derived here are the same as those in Example 6.18
when ni = b for all i and m = a. It can also be seen that if ∆0 = 0,
then testing (6.58) is equivalent to testing H0 : σ2

a = 0 versus H1 : σ2
a > 0

and the derived UMPI test is exactly the same as that in Example 6.18,
although the testing problems are different in these two cases.

Extensions to balanced two-way random effects models can be found in
Lehmann (1986, §7.12).
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6.4 Tests in Parametric Models

A UMP, UMPU, or UMPI test often does not exist in a particular prob-
lem. In the rest of this chapter, we study some methods for constructing
tests that have intuitive appeal and frequently coincide with optimal tests
(UMP or UMPU tests) when optimal tests do exist. We consider tests in
parametric models in this section, whereas tests in nonparametric models
are studied in §6.5.

When the hypothesis H0 is not simple, it is often difficult or even im-
possible to obtain a test that has exactly a given size α, since it is hard to
find a population P that maximizes the power function of the test over all
P ∈ P0. In such cases a common approach is to find tests having asymp-
totic significance level α (Definition 2.13). This involves finding the limit
of the power of a test at P ∈ P0, which is studied in this section and §6.5.

Throughout this section, we assume that a sample X is from P ∈ P =
{Pθ : θ ∈ Θ}, Θ ⊂ Rk, fθ = dPθ

dν exists w.r.t. a σ-finite measure ν for all θ,
and the testing problem is

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, (6.59)

where Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ∅.

6.4.1 Likelihood ratio tests

When both H0 and H1 are simple (i.e., both Θ0 = {θ0} and Θ1 = {θ1} are
single-point sets), Theorem 6.1 applies and a UMP test rejects H0 when

fθ1(X)

fθ0(X)
> c0 (6.60)

for some c0 > 0. When c0 ≥ 1, (6.60) is equivalent to (exercise)

fθ0(X)

max{fθ0(X), fθ1(X)} < c (6.61)

for some c ∈ (0, 1]. The following definition is a natural extension of this
idea.

Definition 6.6. Let ℓ(θ) = fθ(X) be the likelihood function. For testing
(6.59), a likelihood ratio (LR) test is any test that rejects H0 if and only if
λ(X) < c, where c ∈ [0, 1] and λ(X) is the likelihood ratio defined by

λ(X) =

sup
θ∈Θ0

ℓ(θ)

sup
θ∈Θ

ℓ(θ)
.
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If λ(X) is well defined, then λ(X) ≤ 1. The rationale behind LR tests is
that when H0 is true, λ(X) tends to be close to 1, whereas when H1 is true,
λ(X) tends to be away from 1. If there is a sufficient statistic, then λ(X)
depends only on the sufficient statistic. LR tests are as widely applicable
as MLE’s in §4.4 and, in fact, they are closely related to MLE’s. If θ̂ is an
MLE of θ and θ̂0 is an MLE of θ subject to θ ∈ Θ0 (i.e., Θ0 is treated as
the parameter space), then

λ(X) = ℓ(θ̂0)
/
ℓ(θ̂).

For a given α ∈ (0, 1), if there exists a cα ∈ [0, 1] such that

sup
θ∈Θ0

Pθ(λ(X) < cα) = α, (6.62)

then an LR test of size α can be obtained. Even when the c.d.f. of λ(X) is
continuous or randomized LR tests are introduced, it is still possible that
a cα satisfying (6.62) does not exist.

When a UMP or UMPU test exists, an LR test is often the same as this
optimal test. For a real-valued θ, we have the following result.

Proposition 6.5. Suppose that X has the p.d.f. given by (6.10) w.r.t. a σ-
finite measure ν, where η is a strictly increasing and differentaible function
of θ.
(i) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0, there is an LR test whose
rejection region is the same as that of the UMP test T∗ given by (6.11).
(ii) For testing the hypotheses in (6.12), there is an LR test whose rejection
region is the same as that of the UMP test T∗ given by (6.15).
(iii) For testing the hypotheses in (6.13) or (6.14), there is an LR test
whose rejection region is equivalent to Y (X) < c1 or Y (X) > c2 for some
constants c1 and c2.
Proof. (i) Let θ̂ be the MLE of θ. Note that ℓ(θ) is increasing when θ ≤ θ̂

and decreasing when θ > θ̂. Thus,

λ(X) =

{
1 θ̂ ≤ θ0
ℓ(θ0)

ℓ(θ̂)
θ̂ > θ0.

Then λ(X) < c is the same as θ̂ > θ0 and ℓ(θ0)/ℓ(θ̂) < c. From the

discussion in §4.4.2, θ̂ is a strictly increasing function of Y . It can be
shown that log ℓ(θ̂) − log ℓ(θ0) is strictly increasing in Y when θ̂ > θ0 and

strictly decreasing in Y when θ̂ < θ0 (exercise). Hence, for any d ∈ R,

θ̂ > θ0 and ℓ(θ0)/ℓ(θ̂) < c is equivalent to Y > d for some c ∈ (0, 1).
(ii) The proof is similar to that in (i). Note that

λ(X) =

{
1 θ̂ < θ1 or θ̂ > θ2
max{ℓ(θ1),ℓ(θ2)}

ℓ(θ̂)
θ1 ≤ θ̂ ≤ θ2.
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Hence λ(X) < c is equivalent to c1 < Y < c2.
(iii) The proof for (iii) is left as an exercise.

Proposition 6.5 can be applied to problems concerning one-parameter
exponential families such as the binomial, Poisson, negative binomial, and
normal (with one parameter known) families. The following example shows
that the same result holds in a situation where Proposition 6.5 is not ap-
plicable.

Example 6.20. Consider the testing problem H0 : θ = θ0 versus H1 : θ 6=
θ0 based on i.i.d. X1, ..., Xn from the uniform distribution U(0, θ). We now
show that the UMP test with rejection region X(n) > θ0 or X(n) ≤ θ0α

1/n

given in Exercise 19(c) is an LR test. Note that ℓ(θ) = θ−nI(X(n),∞)(θ).
Hence

λ(X) =

{
(X(n)/θ0)

n X(n) ≤ θ0
0 X(n) > θ0

and λ(X) < c is equivalent to X(n) > θ0 or X(n)/θ0 < c1/n. Taking c = α
ensures that the LR test has size α.

More examples of this kind can be found in §6.6. The next example
considers multivariate θ.

Example 6.21. Consider normal linear model (6.38) and the hypotheses
in (6.49). The likelihood function in this problem is

ℓ(θ) =
(

1
2πσ2

)n/2
exp

{
− 1

2σ2 ‖X − Zβ‖2
}
,

where θ = (β, σ2). Let β̂ be the LSE defined by (3.27). Since ‖X−Zβ‖2 ≥
‖X − Zβ̂‖2 for any β,

ℓ(θ) ≤
(

1
2πσ2

)n/2
exp

{
− 1

2σ2 ‖X − Zβ̂‖2
}
.

Treating the right-hand side of the previous expression as a function of σ2,
it is easy to show that it has a maximum at σ2 = σ̂2 = ‖X − Zβ̂‖2/n and,
therefore,

sup
θ∈Θ

ℓ(θ) = (2πσ̂2)−n/2e−n/2.

Similarly, let β̂H0 be the LSE under H0 and σ̂2
H0

= ‖X − Zβ̂H0‖2/n. Then

sup
θ∈Θ0

ℓ(θ) = (2πσ̂2
H0

)−n/2e−n/2.

Thus,

λ(X) = (σ̂2/σ̂2
H0

)n/2 =

(
‖X − Zβ̂‖2

‖X − Zβ̂H0‖2

)n/2
=

(
sW

n− r
+ 1

)−n/2
,
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where W is given in (6.52). This shows that LR tests are the same as the
UMPI tests derived in §6.3.2.

The one-sample or two-sample two-sided t-tests derived in §6.2.3 are
special cases of LR tests. For a one-sample problem, we define β = µ and
Z = Jn, the n-vector of ones. Note that β̂ = X̄ , σ̂2 = (n−1)S2/n, β̂2

H0
= 0

(H0 : β = 0), and σ̂2
H0

= ‖X‖2/n = (n− 1)S2/n+ X̄2. Hence

λ(X) =

[
1 +

nX̄2

(n− 1)S2

]−n/2
=

(
1 +

[t(X)]2

n− 1

)−n/2
,

where t(X) =
√
nX̄/S has the t-distribution tn−1 under H0. Thus, λ(X) <

c is equivalent to |t(X)| > c0, which is the rejection region of a one-sample
two-sided t-test.

For a two-sample problem, we let n = n1 + n2, β = (µ1, µ2), and

Z =

(
Jn1 0

0 Jn2

)
.

Testing H0 : µ1 = µ2 versus H1 : µ1 6= µ2 is the same as testing (6.49) with

L = ( 1 −1 ). Since β̂H0 = X̄ and β̂ = (X̄1, X̄2), where X̄1 and X̄2 are
the sample means based on X1, ..., Xn1 and Xn1+1, ..., Xn, respectively, we
have

nσ̂2 =

n1∑

i=1

(Xi − X̄1)
2 +

n∑

i=n1+1

(Xi − X̄2)
2 = (n1 − 1)S2

1 + (n2 − 1)S2
2

and

nσ̂2
H0

= (n− 1)S2 = n−1n1n2(X̄1 − X̄2)
2 + (n1 − 1)S2

1 + (n2 − 1)S2
2 .

Therefore, λ(X) < c is equivalent to |t(X)| > c0, where t(X) is given by
(6.37), and LR tests are the same as the two-sample two-sided t-tests in
§6.2.3.

6.4.2 Asymptotic tests based on likelihoods

As we can see from Proposition 6.5 and the previous examples, an LR test
is often equivalent to a test based on a statistic Y (X) whose distribution
under H0 can be used to determine the rejection region of the LR test
with size α. When this technique fails, it is difficult or even impossible to
find an LR test with size α, even if the c.d.f. of λ(X) is continuous. The
following result shows that in the i.i.d. case we can obtain the asymptotic
distribution (under H0) of the likelihood ratio λ(X) so that an LR test
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having asymptotic significance level α can be obtained. Assume that Θ0 is
determined by

H0 : θ = g(ϑ), (6.63)

where ϑ is a (k − r)-vector of unknown parameters and g is a continuously
differentiable function from Rk−r to Rk with a full rank ∂g(ϑ)/∂ϑ. For
example, if Θ = R2 and Θ0 = {(θ1, θ2) ∈ Θ : θ1 = 0}, then ϑ = θ2,
g1(ϑ) = 0, and g2(ϑ) = ϑ.

Theorem 6.5. Assume the conditions in Theorem 4.16. Suppose that H0

is determined by (6.63). Under H0, −2 logλn →d χ
2
r, where λn = λ(X)

and χ2
r is a random variable having the chi-square distribution χ2

r. Con-

sequently, the LR test with rejection region λn < e−χ
2
r,α/2 has asymptotic

significance level α, where χ2
r,α is the (1 − α)th quantile of the chi-square

distribution χ2
r.

Proof. Without loss of generality, we assume that there exist an MLE θ̂
and an MLE ϑ̂ under H0 such that

λn =
supθ∈Θ0

ℓ(θ)

supθ∈Θ ℓ(θ)
=
ℓ(g(ϑ̂))

ℓ(θ̂)
.

Following the proof of Theorem 4.17 in §4.5.2, we can obtain that
√
nI1(θ)(θ̂ − θ) = n−1/2sn(θ) + op(1),

where sn(θ) = ∂ log ℓ(θ)/∂θ and I1(θ) is the Fisher information about θ
contained in X1, and that

2[log ℓ(θ̂) − log ℓ(θ)] = n(θ̂ − θ)τ I1(θ)(θ̂ − θ) + op(1).

Then

2[log ℓ(θ̂) − log ℓ(θ)] = n−1[sn(θ)]
τ [I1(θ)]

−1sn(θ) + op(1).

Similarly, under H0,

2[log ℓ(g(ϑ̂)) − log ℓ(g(ϑ))] = n−1[s̃n(ϑ)]τ [Ĩ1(ϑ)]−1s̃n(ϑ) + op(1),

where s̃n(ϑ) = ∂ log ℓ(g(ϑ))/∂ϑ = D(ϑ)sn(g(ϑ)), D(ϑ) = ∂g(ϑ)/∂ϑ, and
Ĩ1(ϑ) is the Fisher information about ϑ (under H0) contained in X1. Com-
bining these results, we obtain that

−2 logλn = 2[log ℓ(θ̂) − log ℓ(g(ϑ̂))]

= n−1[sn(g(ϑ))]τB(ϑ)sn(g(ϑ)) + op(1)

under H0, where

B(ϑ) = [I1(g(ϑ))]−1 − [D(ϑ)]τ [Ĩ1(ϑ)]−1D(ϑ).
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By the CLT, n−1/2[I1(θ)]
−1/2sn(θ) →d Z, where Z = Nk(0, Ik). Then, it

follows from Theorem 1.10(iii) that, under H0,

−2 logλn →d Z
τ [I1(g(ϑ))]1/2B(ϑ)[I1(g(ϑ))]1/2Z.

Let D = D(ϑ), B = B(ϑ), A = I1(g(ϑ)), and C = Ĩ1(ϑ). Then

(A1/2BA1/2)2 = A1/2BABA1/2

= A1/2(A−1 −DτC−1D)A(A−1 −DτC−1D)A1/2

= (Ik −A1/2DτC−1DA1/2)(Ik −A1/2DτC−1DA1/2)

= Ik − 2A1/2DτC−1DA1/2 +A1/2DτC−1DADτC−1DA1/2

= Ik −A1/2DτC−1DA1/2

= A1/2BA1/2,

where the fourth equality follows from the fact that C = DADτ . This
shows that A1/2BA1/2 is a projection matrix. The rank of A1/2BA1/2 is

tr(A1/2BA1/2) = tr(Ik −DτC−1DA)

= k − tr(C−1DADτ )

= k − tr(C−1C)

= k − (k − r)

= r.

Thus, by Exercise 51 in §1.6, Zτ [I1(g(ϑ))]1/2B(ϑ)[I1(g(ϑ))]1/2Z = χ2
r.

As an example, Theorem 6.5 can be applied to testing problems in
Example 4.33 where the exact rejection region of the LR test of size α is
difficult to obtain but the likelihood ratio λn can be calculated numerically.

Tests whose rejection regions are constructed using asymptotic theory
(so that these tests have asymptotic significance level α) are called asymp-
totic tests, which are useful when a test of exact size α is difficult to find.
There are two popular asymptotic tests based on likelihoods that are asymp-
totically equivalent to LR tests. Note that the hypothesis in (6.63) is equiv-
alent to a set of r ≤ k equations:

H0 : R(θ) = 0, (6.64)

where R(θ) is a continuously differentiable function from Rk to Rr. Wald
(1943) introduced a test that rejects H0 when the value of

Wn = [R(θ̂)]τ{[C(θ̂)]τ [In(θ̂)]−1C(θ̂)}−1R(θ̂)

is large, where C(θ) = ∂R(θ)/∂θ, In(θ) is the Fisher information matrix

based on X1, ..., Xn, and θ̂ is an MLE or RLE of θ. For testing H0 : θ = θ0
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with a known θ0, R(θ) = θ − θ0 and Wn simplifies to

Wn = (θ̂ − θ0)
τ In(θ̂)(θ̂ − θ0).

Rao (1947) introduced a score test that rejects H0 when the value of

Rn = [sn(θ̃)]
τ [In(θ̃)]−1sn(θ̃)

is large, where sn(θ) = ∂ log ℓ(θ)/∂θ is the score function and θ̃ is an MLE
or RLE of θ under H0 in (6.64).

Theorem 6.6. Assume the conditions in Theorem 4.16.
(i) Under H0 given by (6.64), Wn →d χ

2
r and, therefore, the test rejects H0

if and only if Wn > χ2
r,α has asymptotic significance level α, where χ2

r,α is
the (1 − α)th quantile of the chi-square distribution χ2

r.
(ii) The result in (i) still holds if Wn is replaced by Rn.
Proof. (i) Using Theorems 1.12 and 4.17,

√
n[R(θ̂) −R(θ)] →d Nr

(
0, [C(θ)]τ [I1(θ)]

−1C(θ)
)
,

where I1(θ) is the Fisher information about θ contained in X1. Under H0,
R(θ) = 0 and, therefore,

n[R(θ̂)]τ{[C(θ)]τ [I1(θ)]
−1C(θ)}−1R(θ̂) →d χ

2
r

(Theorem 1.10). Then the result follows from Slutsky’s theorem (Theorem

1.11) and the fact that θ̂ →p θ and I1(θ) and C(θ) are continuous at θ.

(ii) From the Lagrange multiplier, θ̃ satisfies

sn(θ̃) + C(θ̃)λn = 0 and R(θ̃) = 0.

Using Taylor’s expansion, one can show (exercise) that under H0,

[C(θ)]τ (θ̃ − θ) = op(n
−1/2) (6.65)

and
sn(θ) − In(θ)(θ̃ − θ) + C(θ)λn = op(n

1/2), (6.66)

where In(θ) = nI1(θ). Multiplying [C(θ)]τ [In(θ)]−1 to the left-hand side of
(6.66) and using (6.65), we obtain that

[C(θ)]τ [In(θ)]−1C(θ)λn = −[C(θ)]τ [In(θ)]−1sn(θ) + op(n
−1/2), (6.67)

which implies
λτn[C(θ)]τ [In(θ)]−1C(θ)λn →d χ

2
r (6.68)

(exercise). Then the result follows from (6.68) and the fact that C(θ̃)λn =
−sn(θ̃), In(θ) = nI1(θ), and I1(θ) is continuous at θ.
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Thus, Wald’s tests, Rao’s score tests, and LR tests are asymptotically
equivalent. Note that Wald’s test requires computing θ̂, not θ̃ = g(ϑ̂),

whereas Rao’s score test requires computing θ̃, not θ̂. On the other hand,
an LR test requires computing both θ̂ and θ̃ (or solving two maximization
problems). Hence, one may choose one of these tests that is easy to compute
in a particular application.

The results in Theorems 6.5 and 6.6 can be extended to non-i.i.d. sit-
uations (e.g., the GLM in §4.4.2). We state without proof the following
result.

Theorem 6.7. Assume the conditions in Theorem 4.18. Consider the
problem of testing H0 in (6.64) (or equivalently, (6.63)) with θ = (β, φ).
Then the results in Theorems 6.5 and 6.6 still hold.

Example 6.22. Consider the GLM (4.55)-(4.58) with ti’s in a fixed interval
(t0, t∞), 0 < t0 ≤ t∞ <∞. Then the Fisher information matrix

In(θ) =

(
φ−1Mn(β) 0

0 Ĩn(β, φ)

)
,

where Mn(β) is given by (4.60) and Ĩn(β, φ) is the Fisher information about
φ.

Consider the problem of testing H0 : β = β0 versus H1 : β 6= β0, where
β0 is a fixed vector. Then R(β, φ) = β − β0. Let (β̂, φ̂) be the MLE (or
RLE) of (β, φ). Then, Wald’s test is based on

Wn = φ̂−1(β̂ − β0)
τMn(β̂)(β̂ − β0)

and Rao’s score test is based on

Rn = φ̃[s̃n(β0)]
τ [Mn(β0)]

−1s̃n(β0),

where s̃n(β) is given by (4.65) and φ̃ is a solution of ∂ log ℓ(β0, φ)/∂φ = 0.
It follows from Theorem 4.18 that both Wn and Rn are asymptotically
distributed as χ2

p under H0. By Slutsky’s theorem, we may replace φ̂ or φ̃
by any consistent estimator of φ.

Wald’s tests, Rao’s score tests, and LR tests are typically consistent ac-
cording to Definition 2.13(iii). They are also Chernoff-consistent (Definition
2.13(iv)) if α is chosen to be αn → 0 and χ2

r,αn
= o(n) as n→ ∞ (exercise).

Other asymptotic optimality properties of these tests are discussed in Wald
(1943); see also Serfling (1980, Chapter 10).
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6.4.3 χ
2-tests

A test that is related to the asymptotic tests described in §6.4.2 is the
so-called χ2-test for testing cell probabilities in a multinomial distribu-
tion. Consider a sequence of n independent trials with k possible out-
comes for each trial. Let pj > 0 be the cell probability of occurrence of
the jth outcome in any given trial and Xj be the number of occurrences
of the jth outcome in n trials. Then X = (X1, ..., Xk) has the multino-
mial distribution (Example 2.7) with the parameter p = (p1, ..., pk). Let
ξi = (0, ..., 0, 1, 0, ..., 0), where the single nonzero component 1 is located in
the jth position if the ith trial yields the jth outcome. Then ξ1, ..., ξn are
i.i.d. and X/n = ξ̄ =

∑n
i=1 ξi/n. By the CLT,

Zn(p) =
√
n
(
X
n − p

)
=

√
n(ξ̄ − p) →d Nk(0,Σ), (6.69)

where Σ = Var(X/
√
n) is a symmetric k × k matrix whose ith diagonal

element is pi(1 − pi) and (i, j)th off-diagonal element is −pipj.
Consider the problem of testing

H0 : p = p0 versus H1 : p 6= p0, (6.70)

where p0 = (p01, ..., p0k) is a known vector of cell probabilities. A popular
test for (6.70) is based on the following χ2-statistic:

χ2 =

k∑

j=1

(Xj − np0j)
2

np0j
= ‖D(p0)Zn(p0)‖2, (6.71)

where Zn(p) is given by (6.69) and D(c) with c = (c1, ..., ck) is the k × k

diagonal matrix whose jth diagonal element is c
−1/2
j . Another popular test

is based on the following modified χ2-statistic:

χ̃2 =

k∑

j=1

(Xj − np0j)
2

Xj
= ‖D(X/n)Zn(p0)‖2. (6.72)

Note that X/n is an unbiased estimator of p.

Theorem 6.8. Let φ = (
√
p1, ...,

√
pk) and Λ be a k×k projection matrix.

(i) If Λφ = aφ, then

[Zn(p)]τD(p)ΛD(p)Zn(p) →d χ
2
r,

where χ2
r has the chi-square distribution χ2

r with r = tr(Λ) − a.
(ii) The same result holds if D(p) in (i) is replaced by D(X/n).
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Proof. (i) Let D = D(p), Zn = Zn(p), and Z = Nk(0, Ik). From (6.69)
and Theorem 1.10,

ZτnDΛDZn →d Z
τAZ with A = Σ1/2DΛDΣ1/2.

From Exercise 51 in §1.6, the result in (i) follows if we can show that A2 = A
(i.e., A is a projection matrix) and r = tr(A). Since Λ is a projection matrix
and Λφ = aφ, a must be either 0 or 1. Note that DΣD = Ik − φφτ . Then

A3 = Σ1/2DΛDΣDΛDΣDΛDΣ1/2

= Σ1/2D(Λ − aφφτ )(Λ − aφφτ )ΛDΣ1/2

= Σ1/2D(Λ − 2aφφτ + a2φφτ )ΛDΣ1/2

= Σ1/2D(Λ − aφφτ )ΛDΣ1/2

= Σ1/2DΛDΣDΛDΣ1/2

= A2,

which implies that the eigenvalues of A must be 0 or 1. Therefore, A2 = A.
Also,

tr(A) = tr[Λ(DΣD)] = tr(Λ − aφφτ ) = tr(Λ) − a.

(ii) The result in (ii) follows from the result in (i) and X/n→p p.

Note that the χ2-statistic in (6.71) and the modified χ2-statistic in (6.72)
are special cases of the statistics in Theorem 6.8(i) and (ii), respectively,
with Λ = Ik satisfying Λφ = φ. Hence, a test of asymptotic significance
level α for testing (6.70) rejects H0 when χ2 > χ2

k−1,α (or χ̃2 > χ2
k−1,α),

where χ2
k−1,α is the (1 − α)th quantile of χ2

k−1. These tests are called

(asymptotic) χ2-tests.

Example 6.23 (Goodness of fit tests). Let Y1, ..., Yn be i.i.d. from F .
Consider the problem of testing

H0 : F = F0 versus H1 : F 6= F0, (6.73)

where F0 is a known c.d.f. For instance, F0 = N(0, 1). One way to test
(6.73) is to partition the range of Y1 into k disjoint events A1, ..., Ak and
test (6.70) with pj = PF (Aj) and p0j = PF0(Aj), j = 1, ..., k. Let Xj be
the number of Yi’s in Aj , j = 1, ..., k. Based on Xj ’s, the χ2-tests discussed
previously can be applied to this problem and they are called goodness of
fit tests.

In the goodness of fit tests discussed in Example 6.23, F0 in H0 is known
so that p0j ’s can be computed. In some cases, we need to test the following
hypotheses that are slightly different from those in (6.73):

H0 : F = Fθ versus H1 : F 6= Fθ, (6.74)
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where θ is an unknown parameter in Θ ⊂ Rs. For example, Fθ = N(µ, σ2),
θ = (µ, σ2). If we still try to test (6.70) with pj = PFθ

(Aj), j = 1, ..., k, the
result in Example 6.23 is not applicable since p is unknown under H0. A
generalized χ2-test for (6.74) can be obtained using the following result. Let
p(θ) = (p1(θ), ..., pk(θ)) be a k-vector of known functions of θ ∈ Θ ⊂ Rs,
where s < k. Consider the testing problem

H0 : p = p(θ) versus H1 : p 6= p(θ). (6.75)

Note that (6.70) is the special case of (6.75) with s = 0, i.e., θ is known.

Let θ̂ be an MLE of θ under H0. Then, by Theorem 6.5, the LR test that
rejects H0 when −2 logλn > χ2

k−s−1,α has asymptotic significance level α,

where χ2
k−s−1,α is the (1 − α)th quantile of χ2

k−s−1 and

λn =

k∏

j=1

[pj(θ̂)]
Xj

/
(Xj/n)Xj .

Using the fact that pj(θ̂)/(Xj/n) →p 1 under H0 and

log(1 + x) = x− x2/2 + o(|x|2) as |x| → 0,

we obtain that

−2 logλn = −2
k∑

j=1

Xj log

(
1 +

pj(θ̂)

Xj/n
− 1

)

= −2
k∑

j=1

Xj

(
pj(θ̂)

Xj/n
− 1

)
+

k∑

j=1

Xj

(
pj(θ̂)

Xj/n
− 1

)2

+ op(1)

=

k∑

j=1

[Xj − npj(θ̂)]
2

Xj
+ op(1)

=

k∑

j=1

[Xj − npj(θ̂)]
2

npj(θ̂)
+ op(1),

where the third equality follows from
∑k
j=1 pj(θ̂) =

∑k
j=1Xj/n = 1. De-

fine the generalized χ2-statistics χ2 and χ̃2 to be the χ2 and χ̃2 in (6.71)

and (6.72), respectively, with p0j ’s replaced by pj(θ̂)’s. We then have the
following result.

Theorem 6.9. Under H0 given by (6.75), the generalized χ2-statistics
converge in distribution to χ2

k−s−1. The χ2-test with rejection region χ2 >
χ2
k−s−1,α (or χ̃2 > χ2

k−s−1,α) has asymptotic significance level α, where

χ2
k−s−1,α is the (1 − α)th quantile of χ2

k−s−1.
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Theorem 6.9 can be applied to derive a goodness of fit test for hypotheses
(6.74). However, one has to formulate (6.75) and compute an MLE of θ
under H0 : p = p(θ), which is different from an MLE under H0 : F = Fθ
unless (6.74) and (6.75) are the same; see Moore and Spruill (1975). The
next example is the main application of Theorem 6.9.

Example 6.24 (r× c contingency tables). The following r× c contingency
table is a natural extension of the 2 × 2 contingency table considered in
Example 6.12:

A1 A2 · · · Ac Total

B1 X11 X12 · · · X1c n1

B2 X21 X22 · · · X2c n2

· · · · · · · · · · · · · · · · · ·
Br Xr1 Xr2 · · · Xrc nr

Total m1 m2 · · · mc n

where Ai’s are disjoint events with A1 ∪ · · · ∪ Ac = Ω (the sample space
of a random experiment), Bi’s are disjoint events with B1 ∪ · · · ∪ Br = Ω,
and Xij is the observed frequency of the outcomes in Aj ∩ Bi. Similar to
the case of the 2 × 2 contingency table discussed in Example 6.12, there
are two important applications in this problem. We first consider testing
independence of {Aj : j = 1, ..., c} and {Bi : i = 1, ..., r} with hypotheses

H0 : pij = pi·p·j for all i, j versus H1 : pij 6= pi·p·j for some i, j,

where pij = P (Aj ∩ Bi) = E(Xij)/n, pi· = P (Bi), and p·j = P (Aj),
i = 1, ..., r, j = 1, ..., c. In this case, X = (Xij , i = 1, ..., r, j = 1, ..., c)
has the multinomial distribution with parameters pij , i = 1, ..., r, j =
1, ..., c. Under H0, MLE’s of pi· and p·j are X̄i· = ni/n and X̄·j = mj/n,
respectively, i = 1, ..., r, j = 1, ..., c (exercise). By Theorem 6.9, the χ2-test
rejects H0 when χ2 > χ2

(r−1)(c−1),α, where

χ2 =
r∑

i=1

c∑

j=1

(Xij − nX̄i·X̄·j)2

nX̄i·X̄·j
(6.76)

and χ2
(r−1)(c−1),α is the (1 − α)th quantile of the chi-square distribution

χ2
(r−1)(c−1) (exercise). One can also obtain the modified χ2-test by replacing

nX̄i·X̄·j by Xij in the denominator of each term of the sum in (6.76).

Next, suppose that (X1j , ..., Xrj), j = 1, ..., c, are c independent random
vectors having the multinomial distributions with parameters (p1j , ..., prj),
j = 1, ..., c, respectively. Consider the problem of testing whether c multi-
nomial distributions are the same, i.e.,

H0 : pij = pi1 for all i, j versus H1 : pij 6= pi1 for some i, j.
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It turns out that the rejection region of the χ2-test given in Theorem 6.9 is
still χ2 > χ2

(r−1)(c−1),α with χ2 given by (6.76) (exercise).

One can also obtain the LR test in this problem. When r = c = 2, the
LR test is equivalent to Fisher’s exact test given in Example 6.12, which is
a UMPU test. When r > 2 or c > 2, however, a UMPU test does not exist
in this problem.

6.4.4 Bayes tests

An LR test actually compares supθ∈Θ0
ℓ(θ) with supθ∈Θ1

ℓ(θ) for testing
(6.59). Instead of comparing two maximum values, one may compare two
averages such as π̂j =

∫
Θj
ℓ(θ)dΠ(θ)/

∫
Θ ℓ(θ)dΠ(θ), j = 0, 1, where Π(θ) is

a c.d.f. on Θ, and reject H0 when π̂1 > π̂0. If Π is treated as a prior c.d.f.,
then π̂j is the posterior probability of Θj , and this test is a particular Bayes
action (see Exercise 18 in §4.6) and is called a Bayes test.

In Bayesian analysis, one often considers the Bayes factor defined to be

β =
posterior odds ratio

prior odds ratio
=
π̂0/π̂1

π0/π1
,

where πj = Π(Θj) is the prior probability of Θj .

Clearly, if there is a statistic sufficient for θ, then the Bayes test and
Bayes factor depend only on the sufficient statistic.

Consider the special case where Θ0 = {θ0} and Θ1 = {θ1} are simple
hypotheses. For given X = x,

π̂j =
πjfθj (x)

π0fθ0(x) + π1fθ1(x)
.

Rejecting H0 when π̂1 > π̂0 is the same as rejecting H0 when

fθ1(x)

fθ0(x)
>
π0

π1
. (6.77)

This is equivalent to the UMP test T∗ in (6.3) (Theorem 6.1) with c = π0/π1

and γ = 0. The Bayes factor in this case is

β =
π̂0π1

π̂1π0
=
fθ0(x)

fθ1(x)
.

Thus, the UMP test T∗ in (6.3) is equivalent to the test that rejects H0

when the Bayes factor is small. Note that the rejection region given by
(6.77) depends on prior probabilities, whereas the Bayes factor does not.

When either Θ0 or Θ1 is not simple, however, Bayes factors also depend
on the prior Π.
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If Π is an improper prior, the Bayes test is still defined as long as the
posterior probabilities π̂j are finite. However, the Bayes factor may not be
well defined when Π is improper.

Example 6.25. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown
µ ∈ R and a known σ2 > 0. Let the prior of µ be N(ξ, τ2). Then the
posterior of µ is N(µ∗(x), c2), where

µ∗(x) =
σ2

nτ2 + σ2
ξ +

nτ2

nτ2 + σ2
x̄ and c2 =

τ2σ2

nτ2 + σ2

(see Example 2.25). Consider first the problem of testing H0 : µ ≤ µ0

versus H1 : µ > µ0. Let Φ be the c.d.f. of the standard normal. Then the
posterior probability of Θ0 and the Bayes factor are, respectively,

π̂0 = Φ
(
µ0−µ∗(x)

c

)
and β =

Φ
(

µ0−µ∗(x)

c

)
Φ
(

ξ−µ0
τ

)

Φ
(

µ∗(x)−µ0
c

)
Φ
(

µ0−ξ

τ

) .

It is interesting to see that if we let τ → ∞, which is the same as considering
the improper prior Π = the Lebesgue measure on R, then

π̂0 → Φ
(
µ0−x̄
σ/

√
n

)
,

which is exactly the p-value α̂(x) derived in Example 2.29.

Consider next the problem of testing H0 : µ = µ0 versus H1 : µ 6= µ0.
In this case the prior c.d.f. cannot be continuous at µ0. We consider Π(µ) =
π0I[µ0,∞)(µ) + (1 − π0)Φ

(
µ−ξ
τ

)
. Let ℓ(µ) be the likelihood function based

on x̄. Then

m1(x) =

∫

µ6=µ0

ℓ(µ)dΦ
(
µ−ξ
τ

)
= 1√

τ2+σ2/n
Φ′
(

x̄−ξ√
τ2+σ2/n

)
,

where Φ′(t) is the p.d.f. of the standard normal distribution, and

π̂0 =
π0ℓ(µ0)

π0ℓ(µ0) + (1 − π0)m1(x)
=

(
1 +

1 − π0

π0β

)−1

,

where

β =
ℓ(µ0)

m1(x)
=

√
nτ2 + σ2Φ′

(
x̄−µ0

σ/
√
n

)

σΦ′
(

x̄−ξ√
τ2+σ2/n

)

is the Bayes factor.

More discussions about Bayesian hypothesis tests can be found in Berger
(1985, §4.3.3).
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6.5 Tests in Nonparametric Models

In a nonparametric problem, a UMP, UMPU, or UMPI test usually does not
exist. In this section we study some nonparametric tests that have size α,
limiting size α, or asymptotic significance level α. Consistency (Definition
2.13) of these nonparametric tests is also discussed.

Nonparametric tests are derived using some intuitively appealing ideas.
They are commonly referred to as distribution-free tests, since almost no
assumption is imposed on the population under consideration. But a non-
parametric test may not be as good as a parametric test (in terms of its
power) when the parametric model is correct. This is very similar to the
case where we consider parametric estimation methods versus nonparamet-
ric estimation methods.

6.5.1 Sign, permutation, and rank tests

Three popular classes of nonparametric tests are introduced here. The first
one is the class of sign tests. Let X1, ..., Xn be i.i.d. random variables from
F , u be a fixed constant, and p = F (u). Consider the problem of testing
H0 : p ≤ p0 versus H1 : p > p0, or testing H0 : p = p0 versus H1 : p 6= p0,
where p0 is a fixed constant in (0, 1). Let

∆i =

{
1 Xi − u ≤ 0

0 Xi − u > 0,
i = 1, ..., n.

Then ∆1, ...,∆n are i.i.d. binary random variables with p = P (∆i = 1).
For testing H0 : p ≤ p0 versus H1 : p > p0, it follows from Corollary 6.1
that the test

T∗(Y ) =





1 Y > m

γ Y = m

0 Y < m

(6.78)

is of size α and UMP among tests based on ∆i’s, where Y =
∑n

i=1 ∆i

and m and γ satisfy (6.7). Although T∗ is of size α, we cannot conclude
immediately that T∗ is a UMP test, since ∆1, ...,∆n may not be sufficient
for F . However, it can be shown that T∗ is in fact a UMP test (Lehmann,
1986, pp. 106-107) in this particular case. Note that no assumption is
imposed on F .

For testing H0 : p = p0 versus H1 : p 6= p0, it follows from Theorem 6.4
that the test

T∗(Y ) =





1 Y < c1 or Y > c2
γi Y = ci, i = 1, 2,

0 c1 < Y < c2

(6.79)
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is of size α and UMP among unbiased tests based on ∆i’s, where γ and ci’s
are chosen so that E(T∗) = α and E(T∗Y ) = αnp0 when p = p0. This test
is in fact a UMPU test (Lehmann, 1986, p. 166).

Since Y is equal to the number of nonnegative signs of (u−Xi)’s, tests
based on T∗ in (6.78) or (6.79) are called sign tests. One can easily extend
the sign tests to the case where p = P (X1 ∈ B) with any fixed event B.
Another extension is to the case where we observe i.i.d. (X1, Y1), ..., (Xn, Yn)
(matched pairs). By using ∆i = Xi − Yi − u, one can obtain sign tests for
hypotheses concerning P (X1 − Y1 ≤ u).

Next, we introduce the class of permutation tests. Let Xi1, ..., Xini ,
i = 1, 2, be two independent samples i.i.d. from Fi, i = 1, 2, respectively,
where Fi’s are c.d.f.’s on R. In §6.2.3, we showed that the two-sample
t-tests are UMPU tests for testing hypotheses concerning the means of
Fi’s, under the assumption that Fi’s are normal with the same variance.
Such types of testing problems arise from the comparison of two treatments.
Suppose now we remove the normality assumption and replace it by a much
weaker assumption that Fi’s are in the nonparametric family F containing
all continuous c.d.f.’s on R. Consider the problem of testing

H0 : F1 = F2 versus H1 : F1 6= F2, (6.80)

which is the same as testing the equality of the means of Fi’s when Fi’s are
normal with the same variance.

Let X = (Xij , j = 1, ..., ni, i = 1, 2), n = n1 + n2, and α be a given
significance level. A test T (X) satisfying

1

n!

∑

z∈π(x)

T (z) = α (6.81)

is called a permutation test, where π(x) is the set of n! points obtained
from x ∈ Rn by permuting the components of x. Permutation tests are
of size α (exercise). Under the assumption that F1(x) = F2(x − θ) and
F1 ∈ F containing all c.d.f.’s having Lebesgue p.d.f.’s that are continuous
a.e., which is still much weaker than the assumption that Fi’s are normal
with the same variance, the class of permutation tests of size α is exactly
the same as the class of unbiased tests of size α; see, for example, Lehmann
(1986, p. 231).

Unfortunately, a test UMP among all permutation tests of size α does
not exist. In applications, we usually choose a Lebesgue p.d.f. h and define
a permutation test

T (X) =





1 h(X) > hm
γ h(X) = hm
0 h(X) < hm,

(6.82)



444 6. Hypothesis Tests

where hm is the (m + 1)th largest value of the set {h(z) : z ∈ π(x)}, m is
the integer part of αn!, and γ = αn!−m. This permutation test is optimal
in some sense (Lehmann, 1986, §5.11).

While the class of permutation tests is motivated by the unbiasedness
principle, the third class of tests introduced here is motivated by the in-
variance principle.

Consider first the one-sample problem in which X1, ..., Xn are i.i.d. ran-
dom variables from a continuous c.d.f. F and we would like to test

H0 : F is symmetric about 0 versus H1 : F is not symmetric about 0.

Let G be the class of transformations g(x) = (ψ(x1), ..., ψ(xn)), where ψ is
continuous, odd, and strictly increasing. Let R̃(X) be the vector of ranks of
|Xi|’s and R+(X) (or R−(X)) be the subvector of R̃(X) containing ranks
corresponding to positive (or negative)Xi’s. It can be shown (exercise) that
(R+, R−) is maximal invariant under G. Furthermore, sufficiency permits
a reduction from R+ and R− to Ro+, the vector of ordered components of
R+. A test based on Ro+ is called a (one-sample) signed rank test.

Similar to the case of permutation tests, there is no UMP test within
the class of signed rank tests. A common choice is the signed rank test that
rejects H0 when W (Ro+) is too large or too small, where

W (Ro+) = J(Ro+1/n) + · · · + J(Ro+n∗
/n), (6.83)

J is a continuous and strictly increasing function on [0, 1], Ro+i is the ith
component of Ro+, and n∗ is the number of positive Xi’s. This is motivated
by the fact that H0 is unlikely to be true if W in (6.83) is too large or too
small. Note that W/n is equal to T(Fn) with T given by (5.53) and J(t) = t,
and the test based on W in (6.83) is the well-known one-sample Wilcoxon
signed rank test.

Under H0, P (Ro+ = y) = 2−n for each y ∈ Y containing 2n n∗-tuples
y = (y1, ..., yn∗) satisfying 1 ≤ y1 < · · · < yn∗ ≤ n. Then, the following
signed rank test is of size α:

T (X) =





1 W (Ro+) < c1 or W (Ro+) > c2
γ W (Ro+) = ci, i = 1, 2

0 c1 < W (Ro+) < c2,

(6.84)

where c1 and c2 are the (m + 1)th smallest and largest values of the set
{W (y) : y ∈ Y}, m is the integer part of α2n/2, and γ = α2n/2 −m.

Consider next the two-sample problem of testing (6.80) based on two
independent samples, Xi1, ..., Xini , i = 1, 2, i.i.d. from Fi, i = 1, 2, respec-
tively. Let G be the class of transformations g(x) = (ψ(xij), j = 1, ..., ni, i =
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1, 2), where ψ is continuous and strictly increasing. Let R(X) be the vec-
tor of ranks of all Xij ’s. In Example 6.14, we showed that R is maximal
invariant under G. Again, sufficiency permits a reduction from R to Ro1,
the vector of ordered values of the ranks of X11, ..., X1n1 . A test for (6.80)
based on Ro1 is called a two-sample rank test. Under H0, P (Ro1 = y) =(
n
n1

)−1
for each y ∈ Y containing

(
n
n1

)
n1-tuples y = (y1, ..., yn1) satisfying

1 ≤ y1 < · · · < yn1 ≤ n. Let Ro1 = (Ro11, ..., R
o
1n1

). Then a commonly
used two-sample rank test is given by (6.83)-(6.84) with Ro+i, n∗, and 2n

replaced by Ro1i, n1, and
(
n
n1

)
, respectively. When n1 = n2, the statistic

W/n is equal to T(Fn) with T given by (5.55). When J(t) = t − 1
2 , this

reduces to the well-known two-sample Wilcoxon rank test.

A common feature of the permutation and rank tests previously intro-
duced is that tests of size α can be obtained for each fixed sample size n, but
the computation involved in determining the rejection regions {T (X) = 1}
may be cumbersome if n is large. Thus, one may consider approximations
to permutation and rank tests when n is large. Permutation tests can of-
ten be approximated by the two-sample t-tests derived in §6.2.3 (Lehmann,
1986, §5.13). Using the results in §5.2.2, we now derive one-sample signed
rank tests having limiting size α (Definition 2.13(ii)), which can be viewed
as signed rank tests of size approximately α when n is large.

From the discussion in §5.2.2, W/n = T(Fn) with a ̺∞-Hadamard dif-
ferentiable functional T given by (5.53) and, by Theorem 5.5,

√
n[W/n− T(F )] →d N(0, σ2

F ),

where σ2
F = E[φF (X1)]

2,

φF (x) =

∫ ∞

0

J ′(F̃ (y))(δ̃ιx − F̃ )(y)dF (y) + J(F̃ (x)) − T(F )

(see (5.54)), and διx denotes the c.d.f. degenerated at x. Since F is contin-
uous, F̃ (x) = F (x) − F (−x). Under H0, F (x) = 1 − F (−x). Hence, σ2

F

under H0 is equal to v1 + v2 + 2v12, where

v1 = Var
(
J(F̃ (X1))

)
=

1

2

∫ ∞

0

[J(F̃ (x))]2dF̃ (x),

v2 = Var

(∫ ∞

0

J ′(F̃ (y))(δ̃ιX1 − F̃ )(y)dF (y)

)

= E

∫ ∞

0

∫ ∞

0

J ′(F̃ (y))J ′(F̃ (z))(δ̃ιX1 − F̃ )(y)(δ̃ιX1 − F̃ )(z)dF (y)dF (z)

=
1

4

∫ ∞

0

∫ ∞

0

J ′(F̃ (y))J ′(F̃ (z))[F̃ (min{y, z})− F̃ (y)F̃ (z)]dF̃ (y)dF̃ (z)

=
1

2

∫

0<z<y<∞
J ′(F̃ (y))J ′(F̃ (z))F̃ (z)[1 − F̃ (y)]dF̃ (y)dF̃ (z),
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and

v12 = Cov

(
J(F̃ (X1)),

∫ ∞

0

J ′(F̃ (y))(δ̃ιX1 − F̃ )(y)dF (y)

)

= E

∫ ∞

0

J(F̃ (X1))J
′(F̃ (y))(δ̃ιX1 − F̃ )(y)dF (y)

=

∫ ∞

−∞

∫ ∞

0

J(F̃ (x))J ′(F̃ (y))(δι|x| − F̃ )(y)dF (y)dF (x)

=
1

2

∫ ∞

0

∫ ∞

0

J(F̃ (x))J ′(F̃ (y))(διx − F̃ )(y)dF̃ (y)dF̃ (x).

Note that under H0, the distribution ofW is completely known. Indeed,
letting s = F̃ (y) and t = F̃ (z), we conclude that σ2

F = v1 + v2 + 2v12 and

T(F ) =

∫ ∞

0

J(F̃ (x))dF (x) =
1

2

∫ 1

0

J(s)ds

do not depend on F . Hence, a signed rank test T that rejects H0 when
√
n|W/n− t0| > σ0z1−α/2, (6.85)

where za = Φ−1(a) and t0 = T(F ) and σ2
0 = σ2

F under H0 are known
constants, has the property that

sup
P∈P0

βT (P ) = sup
P∈P0

P
(√
n|W/n− t0| > σ0z1−α/2

)

= PW
(√
n|W/n− t0| > σ0z1−α/2

)

→ α,

i.e., T has limiting size α.

Two-sample rank tests having limiting size α can be similarly derived
(exercise).

6.5.2 Kolmogorov-Smirnov and Cramér-von Mises tests

In this section we introduce two types of tests for hypotheses concerning
continuous c.d.f.’s on R. Let X1, ..., Xn be i.i.d. random variables from a
continuous c.d.f. F . Suppose that we would like to test hypotheses (6.73),
i.e., H0 : F = F0 versus H1 : F 6= F0 with a fixed F0. Let Fn be the
empirical c.d.f. and

Dn(F ) = sup
x∈R

|Fn(x) − F (x)|, (6.86)

which is in fact the distance ̺∞(Fn, F ). Intuitively, Dn(F0) should be small
if H0 is true. From the results in §5.1.1, we know that Dn(F0) →a.s. 0 if and
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only if H0 is true. The statistic Dn(F0) is called the Kolmogorov-Smirnov
statistic. Tests with rejection region Dn(F0) > c are called Kolmogorov-
Smirnov tests.

In some cases we would like to test “one-sided” hypotheses H0 : F = F0

versus H1 : F ≥ F0, F 6= F0, or H0 : F = F0 versus H1 : F ≤ F0, F 6= F0.
The corresponding Kolmogorov-Smirnov statistic is D+

n (F0) or D−
n (F0),

where
D+
n (F ) = sup

x∈R
[Fn(x) − F (x)] (6.87)

and
D−
n (F ) = sup

x∈R
[F (x) − Fn(x)].

The rejection regions of one-sided Kolmogorov-Smirnov tests are, respec-
tively, D+

n (F0) > c and D−
n (F0) > c.

Let X(1) < · · · < X(n) be the order statistics and define X(0) = −∞ and
X(n+1) = ∞. Since Fn(x) = i/n when X(i) ≤ x < X(i+1), i = 0, 1, ..., n,

D+
n (F ) = max

0≤i≤n
sup

X(i)≤x<X(i+1)

[
i

n
− F (x)

]

= max
0≤i≤n

[
i

n
− inf
X(i)≤x<X(i+1)

F (x)

]

= max
0≤i≤n

[
i

n
− F (X(i))

]
.

When F is continuous, F (X(i)) is the ith order statistic of a sample of size n
from the uniform distribution U(0, 1) irrespective of what F is. Therefore,
the distribution ofD+

n (F ) does not depend on F , if we restrict our attention
to continuous c.d.f.’s on R. The distribution of D−

n (F ) is the same as that
of D+

n (F ) because of symmetry (exercise). Since

Dn(F ) = max{D+
n (F ), D−

n (F )},

the distribution of Dn(F ) does not depend on F . This means that the
distributions of Kolmogorov-Smirnov statistics are known under H0.

Theorem 6.10. Let Dn(F ) and D+
n (F ) be defined by (6.86) and (6.87),

respectively, for a continuous c.d.f. F on R.
(i) For any fixed n,

P
(
D+
n (F ) ≤ t

)
=





0 t≤0

n!

n∏

i=1

∫ un−i+2

max{0,n−i+1
n −t}

du1 · · · dun 0<t<1

1 t≥1
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and

P
(
Dn(F ) ≤ t

)
=





0 t≤ 1
2n

n!

n∏

i=1

∫ min{un−i+2,
n−i

n +t}

max{0,n−i+1
n −t}

du1 · · · dun 1
2n<t<1

1 t≥1,

where un+1 = 1.
(ii) For t > 0,

lim
n→∞

P
(√
nD+

n (F ) ≤ t
)

= 1 − e−2t2

and

lim
n→∞

P
(√
nDn(F ) ≤ t

)
= 1 − 2

∞∑

j=1

(−1)j−1e−2j2t2 .

The proof of Theorem 6.10(i) is left as an exercise. The proof of Theorem
6.10(ii) can be found in Kolmogorov (1933) and Smirnov (1944).

When n is not large, Kolmogorov-Smirnov tests of size α can be obtained
using the results in Theorem 6.10(i). When n is large, using the results in
Theorem 6.10(i) is not convenient. We can obtain Kolmogorov-Smirnov
tests of limiting size α using the results in Theorem 6.10(ii).

Another test for H0 : F = F0 versus H1 : F 6= F0 is the Cramér-von
Mises test, which rejects H0 when Cn(F0) > c, where

Cn(F ) =

∫
[Fn(x) − F (x)]2dF (x) (6.88)

is another measure of disparity between Fn and F . Similar to Dn(F ), the
distribution of Cn(F ) does not depend on F (exercise). Hence, a Cramér-
von Mises test of size α can be obtained. When n is large, it is more
convenient to use a Cramér-von Mises test of limiting size α. Note that
Cn(F0) is actually a V-statistic (§3.5.3) with kernel

h(x1, x2) =

∫
[διx1(y) − F0(y)][διx2(y) − F0(y)]dF0(y)

and

h1(x1) = E[h(x1, X2)] =

∫
[διx1(y) − F0(y)][F (y) − F0(y)]dF0(y),

where διx denotes the c.d.f. degenerated at x. It follows from Theorem 3.16
that if H1 is true, Cn(F0) is asymptotically normal, whereas if H0 is true,
h1(x1) ≡ 0 and

nCn(F0) →d

∞∑

j=1

λjχ
2
1j ,
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where χ2
1j ’s are i.i.d. from the chi-square distribution χ2

1 and λj ’s are con-

stants. In this case, Durbin (1973) showed that λj = j−2π−2.

For testing (6.73), it is worthwhile to compare the goodness of fit test
introduced in Example 6.23 with the Kolmogorov-Smirnov test (or Cramér-
von Mises test). The former requires a partition of the range of observations
and may lose information through partitioning, whereas the latter requires
that F be continuous and univariate; the latter is of size α (or limiting size
α), whereas the former is only of asymptotic significance level α; and the
former can be modified to allow estimation of unknown parameters under
H0 (i.e., hypotheses (6.74)), whereas the latter does not have this flexibility.
Note that goodness of fit tests are nonparametric in nature, although χ2-
tests are derived from a parametric model.

Kolmogorov-Smirnov tests can be extended to two-sample problems to
test hypotheses in (6.80). Let Xi1, ..., Xini , i = 1, 2, be two indepen-
dent samples i.i.d. from Fi on R, i = 1, 2, and let Fini be the empirical
c.d.f. based on Xi1, ..., Xini . A Kolmogorov-Smirnov test rejects H0 when
Dn1,n2 > c, where

Dn1,n2 = sup
x∈R

|F1n1(x) − F2n2(x)|.

A Kolmogorov-Smirnov test of limiting size α can be obtained using

lim
n1,n2→∞

P
(√

n1n2/(n1 + n2)Dn1,n2 ≤ t
)

=

∞∑

j=−∞
(−1)j−1e−2j2t2 , t > 0.

6.5.3 Empirical likelihood ratio tests

The method of likelihood ratio is useful in deriving tests under parametric
models. In nonparametric problems, we now introduce a similar method
based on the empirical likelihoods introduced in §5.1.2 and §5.1.4.

Suppose that a sample X is from a population determined by a c.d.f.
F ∈ F, where F is a class of c.d.f.’s on Rd. Consider the problem of testing

H0 : T(F ) = t0 versus H1 : T(F ) 6= t0, (6.89)

where T is a functional from F to Rk and t0 is a fixed vector in Rk. Let
ℓ(G), G ∈ F, be a given empirical likelihood, F̂ be an MELE of F , and
F̂H0 be an MELE of F under H0, i.e., F̂H0 is an MELE of F subject to
T(F ) = t0. Then the empirical likelihood ratio is defined as

λn(X) = ℓ(F̂H0)/ℓ(F̂ ).

A test with rejection region λn(X) < c is called an empirical likelihood ratio
test.
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As a specific example, consider the following empirical likelihood (or
nonparametric likelihood) when X = (X1, ..., Xn) with i.i.d. Xi’s:

ℓ(G) =

n∏

i=1

pi subject to pi ≥ 0,

n∑

i=1

pi = 1,

where pi = PG({xi}), i = 1, ..., n. Suppose that T(G) =
∫
u(x)dG(x) with

a known function u(x) from Rd to Rr. Then F̂ = Fn; H0 in (6.89) with
t0 = 0 is the same as the case where assumption (5.9) holds; F̂H0 is the
MELE given by (5.11); and the empirical likelihood ratio is

λn(X) = nn
n∏

i=1

p̂i, (6.90)

where p̂i is given by (5.12). An empirical likelihood ratio test with asymp-
totic significance level α can be obtained using the following result.

Theorem 6.11. Assume the conditions in Theorem 5.4. Under the hy-
pothesis H0 in (6.89) with t0 = 0 (i.e., (5.9) holds),

−2 logλn →d χ
2
r,

where λn = λn(X) is given by (6.90) and χ2
r has the chi-square distribution

χ2
r.

The proof of this result can be found in Owen (1988, 1990). In fact,
the result in Theorem 6.11 holds for some other functionals T such as the
median functional.

We can also derive tests based on the profile empirical likelihoods dis-
cussed in §5.4.1. Consider an empirical likelihood

ℓ(G) =

n∏

i=1

pi subject to pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piψ(xi, θ) = 0,

where θ is a k-vector of unknown parameters and ψ is a known function.
Let θ = (ϑ, ϕ), where ϑ is an r-vector and ϕ is a (k − r)-vector. Suppose
that we would like to test

H0 : ϑ = ϑ0 versus H1 : ϑ 6= ϑ0,

where ϑ0 is a fixed r-vector. Let θ̂ be a maximum of the profile empiri-
cal likelihood ℓP (θ) given by (5.36) and let ϕ̂ be a maximum of ℓP (ϕ) =
ℓP (ϑ0, ϕ). Then a profile empirical likelihood ratio test rejects H0 when
λn(X) < c, where

λn(X) =

n∏

i=1

1 + [ξn(θ̂)]
τψ(xi, θ̂)

1 + [ζn(ϑ0, ϕ̂)]τψ(xi, ϑ0, ϕ̂)
, (6.91)
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θ̂ and ϕ̂ are maximum profile empirical likelihood estimators, ξn(θ̂) satisfies

n∑

i=1

ψ(xi, θ̂)

1 + [ξn(θ̂)]τψ(xi, θ̂)
= 0,

and ζn(ϑ0, ϕ̂) satisfies

n∑

i=1

ψ(xi, ϑ0, ϕ̂)

1 + [ζn(ϑ0, ϕ̂)]τψ(xi, ϑ0, ϕ̂)
= 0.

From the discussion in §5.4.1, θ̂ is a solution of the GEE
∑n

i=1 ψ(Xi, θ) = 0
when the dimension of ψ is k. Under some regularity conditions (e.g., the
conditions in Proposition 5.3), Qin and Lawless (1994) showed that the
result in Theorem 6.11 holds with λn(X) given by (6.91). Thus, a profile
empirical likelihood ratio test with asymptotic significance level α can be
obtained.

Example 6.26. Let Y1, ..., Yn be i.i.d. random 2-vectors from F . Consider
the problem of testing H0 : µ1 = µ2 versus H1 : µ1 6= µ2, where (µ1, µ2) =
E(Y1). Let Yi = (Yi1, Yi2), Xi1 = Yi1 − Yi2, Xi2 = Yi1 + Yi2, and Xi =
(Xi1, Xi2), i = 1, ..., n. Then X1, ..., Xn are i.i.d. with E(X1) = θ = (ϑ, ϕ),
where ϑ = µ1 − µ2 and ϕ = µ1 + µ2. The hypotheses of interest becomes
H0 : ϑ = 0 versus H1 : ϑ 6= 0.

To apply the profile empirical likelihood method, we define ψ(x, θ) =
x − θ, x ∈ R2. Note that a solution of the GEE

∑n
i=1(Xi − θ) = 0 is the

sample mean θ̂ = X̄. The profile empirical likelihood ratio is then given by

λn(X) =

n∏

i=1

1 + [ξn(X̄)]τ (Xi − X̄)

1 + [ζn(0, ϕ̂)]τ [Xi − (0, ϕ̂)]
,

where ξn(X̄), ζn(0, ϕ̂), and ϕ̂ satisfy

n∑

i=1

Xi − X̄

1 + [ξn(X̄)]τ (Xi − X̄)
= 0,

n∑

i=1

Xi − (0, ϕ̂)

1 + [ζn(0, ϕ̂)]τ [Xi − (0, ϕ̂)]
= 0,

and ℓP (0, ϕ̂) = maxϕ ℓP (0, ϕ) with

ℓP (0, ϕ) =

n∏

i=1

1

n{1 + [ξn(0, ϕ)]τ [Xi − (0, ϕ)]} .

Empirical likelihood ratio tests or profile empirical likelihood ratio tests
in various other problems can be found, for example, in Owen (1988, 1990,
2001), Chen and Qin (1993), Qin (1993), and Qin and Lawless (1994).
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6.5.4 Asymptotic tests

We now introduce a simple method of constructing asymptotic tests (i.e.,
tests with asymptotic significance level α). This method works for almost
all problems (parametric or nonparametric) in which the hypotheses being
tested are H0 : θ = θ0 versus H1 : θ 6= θ0, where θ is a vector of parameters,
and an asymptotically normally distributed estimator of θ can be found.
However, this simple method may not provide the best or even nearly best
solution to the problem, especially when there are different asymptotically
normally distributed estimators of θ.

Let X be a sample of size n from a population P and θ̂n be an estimator
of θ, a k-vector of parameters related to P . Suppose that under H0,

V −1/2
n (θ̂n − θ) →d Nk(0, Ik), (6.92)

where Vn is the asymptotic covariance matrix of θ̂n. If Vn is known when
θ = θ0, then a test with rejection region

(θ̂n − θ0)
τV −1

n (θ̂n − θ0) > χ2
k,α (6.93)

has asymptotic significance level α, where χ2
k,α is the (1 − α)th quantile of

the chi-squared distribution χ2
k. If the distribution of θ̂n does not depend

on the unknown population P under H0 and (6.92) holds, then a test with
rejection region (6.93) has limiting size α.

If Vn in (6.93) depends on the unknown population P even if H0 is true
(θ = θ0), then we have to replace Vn in (6.93) by an estimator V̂n. If,
under H0, V̂n is consistent according to Definition 5.4, then the test having
rejection region (6.93) with Vn replaced by V̂n has asymptotic significance
level α. Variance estimation methods introduced in §5.5 can be used to
construct a consistent estimator V̂n.

In some cases result (6.92) holds for any P . Then, the following result
shows that the test having rejection region (6.93) is asymptotically correct
(§2.5.3), i.e., it is a consistent asymptotic test (Definition 2.13).

Theorem 6.12. Assume that (6.92) holds for any P and that λ+[Vn] → 0,
where λ+[Vn] is the largest eigenvalue of Vn.
(i) The test having rejection region (6.93) (with a known Vn or Vn replaced
by an estimator V̂n that is consistent for any P ) is consistent.
(ii) If we choose α = αn → 0 as n → ∞ and χ2

k,1−αn
λ+[Vn] = o(1), then

the test in (i) is Chernoff-consistent.
Proof. The proof of (ii) is left as an exercise. We only prove (i) for the

case where Vn is known. Let Zn = V
−1/2
n (θ̂n − θ) and ln = V

−1/2
n (θ − θ0).

Then ‖Zn‖ = Op(1) and ‖ln‖ = ‖V −1/2
n (θ − θ0)‖ → ∞ when θ 6= θ0. The
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result follows from the fact that when θ 6= θ0,

(θ̂n − θ0)
τV −1

n (θ̂n − θ0) = ‖Zn‖2 + ‖ln‖2 + 2lτnZn

≥ ‖Zn‖2 + ‖ln‖2 − 2‖ln‖‖Zn‖
= Op(1) + ‖ln‖2[1 − op(1)]

and, therefore,

P
(
(θ̂n − θ0)

τV −1
n (θ̂n − θ0) > χ2

k,α

)
→ 1.

Example 6.27. Let X1, ..., Xn be i.i.d. random variables from a symmetric
c.d.f. F having finite variance and positive F ′. Consider the problem of
testing H0 : F is symmetric about 0 versus H1 : F is not symmetric about
0. Under H0, there are many estimators satisfying (6.92). We consider the
following five estimators:
(1) θ̂n = X̄ and θ = E(X1);

(2) θ̂n = θ̂0.5 (the sample median) and θ = F−1(1
2 ) (the median of F );

(3) θ̂n = X̄a (the a-trimmed sample mean defined by (5.77)) and θ = T(F ),
where T is given by (5.46) with J(t) = (1 − 2a)−1I(a,1−a)(t), a ∈ (0, 1

2 );

(4) θ̂n = the Hodges-Lehmann estimator (Example 5.8) and θ = F−1(1
2 );

(5) θ̂n = W/n − 1
2 , where W is given by (6.83) with J(t) = t, and θ =

T(F ) − 1
2 with T given by (5.53).

Although the θ’s in (1)-(5) are different in general, in all cases θ = 0 is
equivalent to that H0 holds.

For X̄ , it follows from the CLT that (6.92) holds with Vn = σ2/n for any
F , where σ2 = Var(X1). From the SLLN, S2/n is a consistent estimator of

Vn for any F . Thus, the test having rejection region (6.93) with θ̂n = X̄ and
Vn replaced by S2/n is asymptotically correct. This test is asymptotically
equivalent to the one-sample t-test derived in §6.2.3.

From Theorem 5.10, θ̂0.5 satisfies (6.92) with Vn = 4−1[F ′(θ)]−2n−1 for
any F . A consistent estimator of Vn can be obtained using the bootstrap
method considered in §5.5.3. Another consistent estimator of Vn can be
obtained using Woodruff’s interval introduced in §7.4 (see Exercise 86 in

§7.6). The test having rejection region (6.93) with θ̂n = θ̂0.5 and Vn replaced
by a consistent estimator is asymptotically correct.

It follows from the discussion in §5.3.2 that X̄a satisfies (6.92) for any
F . A consistent estimator of Vn can be obtained using formula (5.110)
or the jackknife method in §5.5.2. The test having rejection region (6.93)

with θ̂n = X̄a and Vn replaced by a consistent estimator is asymptotically
correct.

From Example 5.8, the Hodges-Lehmann estimator satisfies (6.92) for
any F and Vn = 12−1γ−2n−1 under H0, where γ =

∫
F ′(x)dF (x). A
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consistent estimator of Vn under H0 can be obtained using the result in
Exercise 102 in §5.6. The test having rejection region (6.93) with θ̂n = the
Hodges-Lehmann estimator and Vn replaced by a consistent estimator is
asymptotically correct.

Note that all tests discussed so far are not of limiting size α, since the
distributions of θ̂n are still unknown under H0.

The test having rejection region (6.93) with θ̂n = W/n − 1
2 and Vn =

(12n)−1 is equivalent to the one-sample Wilcoxon signed rank test and is
shown to have limiting size α (§6.5.1). Also, (6.92) is satisfied for any F
(§5.2.2). Although Theorem 6.12 is not applicable, a modified proof of
Theorem 6.12 can be used to show the consistency of this test (exercise).

It is not clear which one of the five tests discussed here is to be preferred
in general.

The results for θ̂n in (1)-(3) and (5) still hold for testing H0 : θ = 0
versus H1 : θ 6= 0 without the assumption that F is symmetric.

An example of asymptotic tests for one-sided hypotheses is given in
Exercise 123. Most tests in §6.1-§6.4 derived under parametric models are
asymptotically correct even when the parametric model assumptions are
removed. Some examples are given in Exercises 121-123.

Finally, a study of asymptotic efficiencies of various tests can be found,
for example, in Serfling (1980, Chapter 10).

6.6 Exercises

1. Prove Theorem 6.1 for the case of α = 0 or 1.

2. Assume the conditions in Theorem 6.1. Let β(P ) be the power func-
tion of a UMP test of size α ∈ (0, 1). Show that α < β(P1) unless
P0 = P1.

3. Let T∗ be given by (6.3) with c = c(α) for an α > 0.
(a) Show that if α1 < α2, then c(α1) ≥ c(α2).
(b) Show that if α1 < α2, then the type II error probability of T∗ of
size α1 is larger than that of T∗ of size α2.

4. Let H0 and H1 be simple and let α ∈ (0, 1). Suppose that T∗ is a
UMP test of size α for testing H0 versus H1 and that β < 1, where β
is the power of T∗ when H1 is true. Show that 1 − T∗ is a UMP test
of size 1 − β for testing H1 versus H0.

5. Let X be a sample of size 1 from a Lebesgue p.d.f. fθ. Find a UMP
test of size α ∈ (0, 1

2 ) for H0 : θ = θ0 versus H1 : θ = θ1 when
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(a) fθ(x) = 2θ−2(θ − x)I(0,θ)(x), θ0 < θ1;
(b) fθ(x) = 2[θx+ (1 − θ)(1 − x)]I(0,1)(x), 0 ≤ θ1 < θ0 ≤ 1;
(c) fθ0 is the p.d.f. of N(0, 1) and fθ1 is the p.d.f. of the Cauchy
distribution C(0, 1);
(d) fθ0(x) = 4xI(0, 12 )(x) + 4(1 − x)I( 1

2 ,1)
(x) and fθ1(x) = I(0,1)(x);

(e) fθ is the p.d.f. of the Cauchy distribution C(θ, 1) and θi = i;
(f) fθ0(x) = e−xI(0,∞)(x) and fθ1(x) = 2−1x2e−xI(0,∞)(x).

6. Let X1, ..., Xn be i.i.d. from a Lebesgue p.d.f. fθ. Find a UMP test
of size α for H0 : θ = θ0 versus H1 : θ = θ1 in the following cases:
(a) fθ(x) = e−(x−θ)I(θ,∞)(x), θ0 < θ1;
(b) fθ(x) = θx−2I(θ,∞)(x), θ0 6= θ1.

7. Prove Proposition 6.1.

8. Let X ∈ Rn be a sample with a p.d.f. f w.r.t. a σ-finite measure ν.
Consider the problem of testing H0 : f = fθ versus H1 : f = g, where
θ ∈ Θ, fθ(x) is Borel on (Rn × Θ, σ(Bn × F)), and (Θ,F ,Λ) is a
probability space. Let c > 0 be a constant and

φ∗(x) =

{
1 g(x) ≥ c

∫
Θ
fθ(x)dΛ

0 g(x) < c
∫
Θ fθ(x)dΛ.

Suppose that
∫
φ∗(x)fθ(x)dν = supθ∈Θ

∫
φ∗(x)fθ(x)dν = α for any

θ ∈ Θ′ with Λ(Θ′) = 1. Show that φ∗ is a UMP test of size α.

9. Let f0 and f1 be Lebesgue integrable functions on R and φ∗ be the
indicator function of the set {x : f0(x)<0}∪ {x : f0(x)=0, f1(x)≥0}.
Show that φ∗ maximizes

∫
φ(x)f1(x)dx over all Borel functions φ on

R satisfying 0 ≤ φ(x) ≤ 1 and
∫
φ(x)f0(x)dx =

∫
φ∗(x)f0(x)dx.

10. Let F1 and F2 be two c.d.f.’s on R. Show that F1(x) ≤ F2(x) for all
x if and only if

∫
g(x)dF2(x) ≤

∫
g(x)dF1(x) for any nondecreasing

function g.

11. Prove the claims in Example 6.5.

12. Show that the family {fθ : θ ∈ R} has monotone likelihood ratio,
where fθ(x) = c(θ)h(x)I(a(θ),b(θ))(x), h is a positive Lebesgue inte-
grable function, and a and b are nondecreasing functions of θ.

13. Prove part (iv) and part (v) of Theorem 6.2.

14. Let X1, ..., Xn be i.i.d. from a Lebesgue p.d.f. fθ, θ ∈ Θ ⊂ R. Find a
UMP test of size α for testing H0 : θ ≤ θ0 versus H1 : θ > θ0 when
(a) fθ(x) = θ−1e−x/θI(0,∞)(x), θ > 0;

(b) fθ(x) = θ−1xθ−1I(0,1)(x), θ > 0;
(c) fθ(x) is the p.d.f. of N(1, θ);
(d) fθ(x) = θ−ccxc−1e−(x/θ)c

I(0,∞)(x), θ > 0, where c > 0 is known.
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15. Suppose that the distribution of X is in a family with monotone
likelihood ratio in Y (X), where Y (X) has a continuous distribution.
Consider the hypotheses H0 : θ ≤ θ0 versus H1 : θ > θ0. Show that
the p-value (§2.4.2) of the UMP test is given by Pθ0(Y ≥ y), where y
is the observed value of Y .

16. Let X1, ..., Xm be i.i.d. from N(µx, σ
2
x) and Y1, ..., Yn be i.i.d. from

N(µy, σ
2
y). Suppose that Xi’s and Yj ’s are independent.

(a) When σx = σy = 1, find a UMP test of size α for testing H0 :
µx ≤ µy versus H1 : µx > µy. (Hint: see Lehmann (1986, §3.9).)
(b) When µx and µy are known, find a UMP test of size α for testing
H0 : σx ≤ σy versus H1 : σx > σy. (Hint: see Lehmann (1986, §3.9).)

17. Let F and G be two known c.d.f.’s on R andX be a single observation
from the c.d.f. θF (x) + (1 − θ)G(x), where θ ∈ [0, 1] is unknown.
(a) Find a UMP test of size α for testingH0 : θ ≤ θ0 versusH1 : θ > θ0.
(b) Show that the test T∗(X) ≡ α is a UMP test of size α for testing
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2.

18. Let X1, ..., Xn be i.i.d. from the uniform distribution U(θ, θ+ 1), θ ∈
R. Suppose that n ≥ 2.
(a) Find the joint distribution of X(1) and X(n).
(b) Show that a UMP test of size α for testing H0 : θ ≤ 0 versus
H1 : θ > 0 is of the form

T∗(X(1), X(n)) =

{
0 X(1) < 1 − α1/n, X(n) < 1

1 otherwise.

(c) Does the family of all possible distributions of (X(1), X(n)) have
monotone likelihood ratio? (Hint: see Lehmann (1986, p. 115).)

19. Suppose that X1, ..., Xn are i.i.d. from the discrete uniform distribu-
tion DU(1, ..., θ) (Table 1.1, page 18) with an unknown θ = 1, 2, ....
(a) Consider H0 : θ ≤ θ0 versus H1 : θ > θ0. Show that

T∗(X) =

{
1 X(n) > θ0
α X(n) ≤ θ0

is a UMP test of size α.
(b) Consider H0 : θ = θ0 versus H1 : θ 6= θ0. Show that

T∗(X) =

{
1 X(n) > θ0 or X(n) ≤ θ0α

1/n

0 otherwise

is a UMP test of size α.
(c) Show that the results in (a) and (b) still hold if the discrete uniform
distribution is replaced by the uniform distribution U(0, θ), θ > 0.
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20. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ), a ∈
R, θ > 0.
(a) Derive a UMP test of size α for testing H0 : a = a0 versus H1 :
a 6= a0, when θ is known.
(b) For testing H0 : a = a0 versus H1 : a = a1 < a0, show that any
UMP test T∗ of size α satisfies βT∗(a1) = 1 − (1 − α)e−n(a0−a1)/θ.
(c) For testing H0 : a = a0 versus H1 : a = a1 < a0, show that the
power of any size α test that rejects H0 when Y ≤ c1 or Y ≥ c2 is the
same as that in part (b), where Y = (X(1) − a0)/

∑n
i=1(Xi −X(1)).

(d) Derive a UMP test of size α for testing H0 : a = a0 versus
H1 : a 6= a0.
(e) Derive a UMP test of size α for testing H0 : θ = θ0, a = a0 versus
H1 : θ < θ0, a < a0.

21. Let X1, ..., Xn be i.i.d. from the Pareto distribution Pa(a, θ), θ > 0,
a > 0.
(a) Derive a UMP test of size α for testing H0 : a = a0 versus H1 :
a 6= a0 when θ is known.
(b) Derive a UMP test of size α for testing H0 : a = a0, θ = θ0 versus
H1 : θ > θ0, a < a0.

22. In Exercise 19(a) of §3.6, derive a UMP test of size α ∈ (0, 1) for
testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is known and
θ0 > (1 − α)−1/n.

23. In Exercise 55 of §2.6, derive a UMP test of size α for testing
H0 : θ ≥ θ0 versus H1 : θ < θ0 based on data X1, ..., Xn, where
θ0 > 0 is a fixed value.

24. Prove part (ii) of Theorem 6.3.

25. Consider Example 6.10. Suppose that θ2 = −θ1. Show that c2 = −c1
and discuss how to find the value of c2.

26. Suppose that the distribution of X is in a family of p.d.f.’s indexed
by a real-valued parameter θ; there is a real-valued sufficient statistic
U(X) such that fθ2(u)/fθ1(u) is strictly increasing in u for θ1 < θ2,
where fθ(u) is the Lebesgue p.d.f. of U(X) and is continuous in u for
each θ; and that for all θ1 < θ2 < θ3 and u1 < u2 < u3,

∣∣∣∣∣∣

fθ1(u1) fθ1(u2) fθ1(u3)

fθ2(u1) fθ2(u2) fθ2(u3)

fθ3(u1) fθ3(u2) fθ3(u3)

∣∣∣∣∣∣
> 0.

Show that the conclusions of Theorem 6.3 remain valid.
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27. (p-values). Suppose that X has a distribution Pθ, where θ ∈ R is
unknown. Consider a family of nonrandomized level α tests for H0 :
θ = θ0 (or θ ≤ θ0) with rejection region Cα such that Pθ0(X ∈ Cα) =
α for all 0 < α < 1 and Cα1 = ∩α>α1Cα for all 0 < α1 < 1.
(a) Show that the p-value is α̂(x) = inf{α : x ∈ Cα}.
(b) Show that when θ = θ0, α̂(X) has the uniform distribution U(0, 1).
(c) If the tests with rejection regions Cα are unbiased of level α, show
that under H1, Pθ(α̂(X) ≤ α) ≥ α.

28. Suppose that X has the p.d.f. (6.10). Consider hypotheses (6.13) or
(6.14). Show that a UMP test does not exist. (Hint: this follows
from a consideration of the UMP tests for the one-sided hypotheses
H0 : θ ≥ θ1 and H0 : θ ≤ θ2.)

29. Consider Exercise 17 with H0 : θ ∈ [θ1, θ2] versus H1 : θ 6∈ [θ1, θ2],
where 0 < θ1 ≤ θ2 < 1.
(a) Show that a UMP test does not exist.
(b) Obtain a UMPU test of size α.

30. In the proof of Theorem 6.4, show that
(a) (6.30) is equivalent to (6.31);
(b) (6.31) is equivalent to (6.29) with T∗ replaced by T ;
(c) when 0 < α < 1, (α, αEθ0 (Y )) is an interior point of the set
of points (Eθ0(T ), Eθ0(TY )) as T ranges over all tests of the form
T = T (Y );
(d) the UMPU tests are unique a.s. P if attention is restricted to tests
depending on (Y, U) and (Y, U) has a continuous c.d.f.

31. Consider the decision problem in Example 2.20 with the 0-1 loss.
Show that if a UMPU test of size α exists and is unique (in the sense
that decision rules that are equivalent in terms of the risk are treated
the same), then it is admissible.

32. Let X1, ..., Xn be i.i.d. binary random variables with p = P (X1 = 1).
(a) Determine the ci’s and γi’s in (6.15) and (6.16) for testing
H0 : p ≤ 0.2 or p ≥ 0.7 when α = 0.1 and n = 15. Find the
power of the UMP test (6.15) when p = 0.4.
(b) Derive a UMPU test of size α for H0 : p = p0 versus H1 : p 6= p0

when n = 10, α = 0.05, and p0 = 0.4.

33. Suppose that X has the Poisson distribution P (θ) with an unknown
θ > 0. Show that (6.29) reduces to

c2−1∑

x=c1+1

θx−1
0 e−θ0

(x− 1)!
+

2∑

i=1

(1 − γi)
θci−1
0 e−θ0

(ci − 1)!
= 1 − α,

provided that c1 > 1.
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34. Let X be a random variable from the geometric distribution G(p).
Find a UMPU test of size α for H0 : p = p0 versus H1 : p 6= p0.

35. In Exercise 33 of §2.6, derive a UMPU test of size α ∈ (0, 1) for testing
H0 : p ≤ 1

2 versus H1 : p > 1
2 .

36. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ and σ2.
(a) Show how the power of the one-sample t-test depends on a non-
central t-distribution.
(b) Show that the power of the one-sample t-test is an increasing
function of (µ − µ0)/σ for testing H0 : µ ≤ µ0 versus H1 : µ > µ0,
and of |µ− µ0|/σ for testing H0 : µ = µ0 versus H1 : µ 6= µ0.

37. Let X1, ..., Xn be i.i.d. from the gamma distribution Γ(θ, γ) with un-
known θ and γ.
(a) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0 and H0 : θ = θ0 ver-
sus H1 : θ 6= θ0, show that there exist UMPU tests whose rejection
regions are based on V =

∏n
i=1(Xi/X̄).

(b) For testing H0 : γ ≤ γ0 versus H1 : γ > γ0, show that a UMPU
test rejects H0 when

∑n
i=1Xi > C(

∏n
i=1Xi) for some function C.

38. Let X1 and X2 be independently distributed as the Poisson distribu-
tions P (λ1) and P (λ2), respectively.
(a) Find a UMPU test of size α for testing H0 : λ1 ≥ λ2 versus
H1 : λ1 < λ2.
(b) Calculate the power of the UMPU test in (a) when α = 0.1,
(λ1, λ2) = (0.1, 0.2), (1,2), (10,20), and (0.1,0.4).

39. Consider the binomial problem in Example 6.11.
(a) Prove the claim about P (Y = y|U = u).
(b) Find a UMPU test of size α for testing H0 : p1 ≥ p2 versus
H1 : p1 < p2.
(c) Repeat (b) for H0 : p1 = p2 versus H1 : p1 6= p2.

40. Let X1 and X2 be independently distributed as the negative binomial
distributions NB(p1, n1) and NB(p2, n2), respectively, where ni’s are
known and pi’s are unknown.
(a) Show that there exists a UMPU test of size α for testing H0 :
p1 ≤ p2 versus H1 : p1 > p2.
(b) Determine the conditional distribution PY |U=u in Theorem 6.4
when n1 = n2 = 1.

41. Let (X0, X1, X2) be a random vector having a multinomial distri-
bution (Example 2.7) with k = 2, p0 = 1 − p1 − p2, and unknown
p1 ∈ (0, 1) and p2 ∈ (0, 1). Derive a UMPU test of size α for testing
H0 : p0 = p2, p1 = 2p(1− p), p2 = (1 − p)2 versus H1 : H0 is not true,
where p ∈ (0, 1) is unknown.
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42. Consider Example 6.12.
(a) Show that A and B are independent if and only if log p11

p22
=

log p12
p22

+ log p21
p22

.

(b) Derive a UMPU test of size α for testing H0 : P (A) = P (B)
versus H1 : P (A) 6= P (B).

43. Let X1 and X2 be independently distributed according to p.d.f.’s
given by (6.10) with ξ, η, θ, Y , and h replaced by ξi, ηi, θi, Yi, and
hi, i = 1, 2, respectively. Show that there exists a UMPU test of size
α for testing
(a) H0 : η2(θ2) − η1(θ1) ≤ η0 versus H1 : η2(θ2) − η1(θ1) > η0;
(b) H0 : η2(θ2) + η1(θ1) ≤ η0 versus H1 : η2(θ2) + η1(θ1) > η0.

44. Let Xj, j = 1, 2, 3, be independent from the Poisson distributions
P (λj), j = 1, 2, 3, respectively. Show that there exists a UMPU test
of size α for testing H0 : λ1λ2 ≤ λ2

3 versus H1 : λ1λ2 > λ2
3.

45. Let Xij , i = 1, 2, j = 1, 2, be independent from the Poisson distribu-
tions P (λipij), where λi > 0, 0 < pij < 1, and pi1 + pi2 = 0. Derive a
UMPU test of size α for testing H0 : p11 ≤ p21 versus H1 : p11 > p21.

46. Let Xij be independent random variables satisfying P (Xij = 0) = θi,
P (Xij = k) = (1− θi)(1− pi)

j−1pi, k = 1, 2, ..., where 0 < θi < 1 and
0 < pi < 1, j = 1, ..., ni and i = 1, 2. Derive a UMPU test of size α
for testing H0 : p1 ≤ p2 versus H1 : p1 > p2.

47. Let X11, ..., X1n1 and X21, ..., X2n2 be two independent samples i.i.d.
from the gamma distributions Γ(θ1, γ1) and Γ(θ2, γ2), respectively.
(a) Assume that θ1 and θ2 are known. For testing H0 : γ1 ≤ γ2 versus
H1 : γ1 > γ2 and H0 : γ1 = γ2 versus H1 : γ1 6= γ2, show that there
exist UMPU tests and that the rejection regions can be determined
by using beta distributions.
(b) If θi’s are unknown in (a), show that there exist UMPU tests and
describe their general forms.
(c) Assume that γ1 = γ2 (unknown). For testing H0 : θ1 ≤ θ2 versus
H1 : θ1 > θ2 and H0 : θ1 = θ2 versus H1 : θ1 6= θ2, show that there
exist UMPU tests and describe their general forms.

48. Let N be a random variable with the following discrete p.d.f.:

P (N = n) = C(λ)a(n)λnI{0,1,2,...}(n),

where λ > 0 is unknown and a and C are known functions. Suppose
that given N = n, X1, ..., Xn are i.i.d. from the p.d.f. given in (6.10).
Show that, based on (N,X1, ..., XN ), there exists a UMPU test of size
α for H0 : η(θ) ≤ η0 versus H1 : η(θ) > η0.
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49. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from
N(µi, σ

2), respectively, ni ≥ 2. Show that a UMPU test of size α
for H0 : µ1 = µ2 versus H1 : µ1 6= µ2 rejects H0 when |t(X)| >
tn1+n2−1,α/2, where t(X) is given by (6.37) and tn1+n2−1,α is the
(1 − α)th quantile of the t-distribution tn1+n2−1. Derive the power
function of this test.

50. In the two-sample problem discussed in §6.2.3, show that when n1 =
n2, a UMPU test of size α for testing H0 : σ2

2 = ∆0σ
2
1 versus H1 :

σ2
2 6= ∆0σ

2
1 rejects H0 when

max

{
S2

2

∆0S2
1

,
∆0S

2
1

S2
2

}
>

1 − c

c
,

where
∫ c
0 f(n1−1)/2,(n1−1)/2(v)dv = α/2 and fa,b is the p.d.f. of the

beta distribution B(a, b).

51. Suppose that Xi = β0 + β1ti + εi, where ti’s are fixed constants that
are not all the same, εi’s are i.i.d. from N(0, σ2), and β0, β1, and σ2

are unknown parameters. Derive a UMPU test of size α for testing
(a) H0 : β0 ≤ θ0 versus H1 : β0 > θ0;
(b) H0 : β0 = θ0 versus H1 : β0 6= θ0;
(c) H0 : β1 ≤ θ0 versus H1 : β1 > θ0;
(d) H0 : β1 = θ0 versus H1 : β1 6= θ0.

52. In the previous exercise, derive the power function in each of (a)-(d)
in terms of a noncentral t-distribution.

53. Consider the normal linear model in §6.2.3 (i.e., model (3.25) with
ε = Nn(0, σ

2In)). For testing H0 : σ2 ≤ σ2
0 versus H1 : σ2 > σ2

0 and
H0 : σ2 = σ2

0 versus H1 : σ2 6= σ2
0 , show that UMPU tests of size α

are functions of SSR and their rejection regions can be determined
using chi-square distributions.

54. In the problem of testing for independence in the bivariate normal
family, show that
(a) the p.d.f. in (6.44) is of the form (6.23) and identify ϕ;
(b) the sample correlation coefficient R is independent of U when
ρ = 0;
(c) R is linear in Y , and V in (6.45) has the t-distribution tn−2 when
ρ = 0.

55. Let X1, ..., Xn be i.i.d. bivariate normal with the p.d.f. in (6.44) and
let S2

j =
∑n

i=1(Xij − X̄j)
2 and S12 =

∑n
i=1(Xi1 − X̄1)(Xi2 − X̄2).

(a) Show that a UMPU test for testing H0 : σ2/σ1 = ∆0 versus
H1 : σ2/σ1 6= ∆0 rejects H0 when
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R = |∆2
0S

2
1 − S2

2 |
/√

(∆2
0S

2
1 + S2

2)2 − 4∆2
0S

2
12 > c.

(b) Find the p.d.f. of R in (a) when σ2/σ1 = ∆0.
(c) Assume that σ1 = σ2. Show that a UMPU test for H0 : µ1 = µ2

versus H1 : µ1 6= µ2 rejects H0 when

V = |X̄2 − X̄1|
/√

S2
1 + S2

2 − 2S12 > c.

(d) Find the p.d.f. of V in (c) when µ1 = µ2.

56. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random 2-vectors having the bi-
variate normal distribution with EX1 = EY1 = 0, Var(X1) = σ2

x,
Var(Y1) = σ2

y , and Cov(X1, Y1) = ρσxσy, where σx > 0, σy > 0, and
ρ ∈ [0, 1) are unknown. Derive the form and exact distribution of a
UMPU test of size α for testing H0 : ρ = 0 versus H1 : ρ > 0.

57. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a and θ. Let V = 2

∑n
i=1(Xi − X(1)), where X(1) is the

smallest order statistic.
(a) For testing H0 : θ = 1 versus H1 : θ 6= 1, show that a UMPU test
of size α rejects H0 when V < c1 or V > c2, where ci’s are determined
by ∫ c2

c1

f2n−2(v)dv =

∫ c2

c1

f2n(v)dv = 1 − α,

and fm(v) is the p.d.f. of the chi-square distribution χ2
m.

(b) For testing H0 : a = 0 versus H1 : a 6= 0, show that a UMPU
test of size α rejects H0 when X(1) < 0 or 2nX(1)/V > c, where c is
determined by

(n− 1)

∫ c

0

(1 + v)−ndv = 1 − α.

58. LetX1, ..., Xn be i.i.d. random variables from the uniform distribution
U(θ, ϑ), −∞ < θ < ϑ <∞.
(a) Show that the conditional distribution of X(1) given X(n) = x is
the distribution of the minimum of a sample of size n − 1 from the
uniform distribution U(θ, x).
(b) Find a UMPU test of size α for testing H0 : θ ≤ 0 versus H1 : θ >
0.

59. Let X1, ..., Xn be independent random variables having the bino-
mial distributions Bi(pi, ki), i = 1, ..., n, respectively, where pi =
ea+bti/(1+ea+bti), (a, b) ∈ R2 is unknown, and ti’s are known covari-
ate values that are not all the same. Derive the UMPU test of size
α for testing (a) H0 : a ≥ 0 versus H1 : a < 0; (b) H0 : b ≥ 0 versus
H1 : b < 0.
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60. In the previous exercise, derive approximations to the UMPU tests
by considering the limiting distributions of the test statistics.

61. Let X = {x ∈ Rn : all components of x are nonzero} and G be the
group of transformations g(x) = (cx1, ..., cxn), c > 0. Show that
a maximal invariant under G is (sgn(xn), x1/xn, ..., xn−1/xn), where
sgn(x) is 1 or −1 as x is positive or negative.

62. Let X1, ..., Xn be i.i.d. with a Lebesgue p.d.f. σ−1f(x/σ) and fi, i =
0, 1, be two known Lebesgue p.d.f.’s on R that are either 0 for x < 0
or symmetric about 0. Consider H0 : f = f0 versus H1 : f = f1 and
G = {gr : r > 0} with gr(x) = rx.
(a) Show that a UMPI test rejects H0 when

∫∞
0
vn−1f1(vX1) · · · f1(vXn)dv∫∞

0 vn−1f0(vX1) · · · f0(vXn)dv
> c.

(b) Show that if f0 = N(0, 1) and f1(x) = e−|x|/2, then the UMPI
test in (a) rejects H0 when (

∑n
i=1X

2
i )

1/2/
∑n
i=1 |Xi| > c.

(c) Show that if f0(x) = I(0,1)(x) and f1(x) = 2xI(0,1)(x), then the

UMPI test in (a) rejects H0 when X(n)/(
∏n
i=1Xi)

1/n < c.
(d) Find the value of c in part (c) when the UMPI test is of size α.

63. Consider the location-scale family problem (with unknown parame-
ters µ and σ) in Example 6.13.
(a) Show that W is maximal invariant under the given G.
(b) Show that Proposition 6.2 applies and find the form of the func-
tional θ(fi,µ,σ).
(c) Derive the p.d.f. of W (X) under Hi, i = 0, 1.
(d) Obtain a UMPI test.

64. In Example 6.13, find the rejection region of the UMPI test when
X1, ..., Xn are i.i.d. and
(a) f0,µ,σ is N(µ, σ2) and f1,µ,σ is the p.d.f. of the uniform distribu-
tion U(µ− 1

2σ, µ+ 1
2σ);

(b) f0,µ,σ is N(µ, σ2) and f1,µ,σ is the p.d.f. of the exponential distri-
bution E(µ, σ);
(c) f0,µ,σ is the p.d.f. of U(µ− 1

2σ, µ+ 1
2σ) and f1,µ,σ is the p.d.f. of

E(µ, σ);
(d) f0,µ is N(µ, 1) and f1,µ(x) = exp{−ex−µ + x− µ}.

65. Prove the claims in Example 6.15.

66. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ and σ2. Con-
sider the problem of testing H0 : µ = 0 versus H1 : µ 6= 0 and the
group of transformations gc(Xi) = cXi, c 6= 0.
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(a) Show that the testing problem is invariant under G.
(b) Show that the one-sample two-sided t-test in §6.2.3 is a UMPI
test.

67. Prove the claims in Example 6.16.

68. Consider Example 6.16 with H0 and H1 replaced by H0 : µ1 = µ2 and
H1 : µ1 6= µ2, and with G changed to {gc1,c2,r : c1 = c2 ∈ R, r 6= 0}.
(a) Show that the testing problem is invariant under G.
(b) Show that the two-sample two-sided t-test in §6.2.3 is a UMPI
test.

69. Show that the UMPU tests in Exercise 37(a) and Exercise 47(a) are
also UMPI tests under G = {gr : r > 0} with gr(x) = rx.

70. In Example 6.17, show that t(X) has the noncentral t-distribution
tn−1(

√
nθ); the family {fθ(t) : θ ∈ R} has monotone likelihood ratio

in t; and that for testing H0 : θ = θ0 versus H1 : θ 6= θ0, a test that is
UMP among all level α unbiased tests based on t(X) rejects H0 when
t(X) < c1 or t(X) > c2. (Hint: consider Exercise 26.)

71. Let X1 and X2 be independently distributed as the exponential dis-
tributions E(0, θi), i = 1, 2, respectively. Define θ = θ1/θ2.
(a) For testing H0 : θ ≤ 1 versus θ > 1, show that the problem is
invariant under the group of transformations gc(x1, x2) = (cx1, cx2),
c > 0, and that a UMPI test of size α rejects H0 when X2/X1 >
(1 − α)/α.
(b) For testing H0 : θ = 1 versus θ 6= 1, show that the problem is
invariant under the group of transformations in (a) and g(x1, x2) =
(x2, x1), and that a UMPI test of size α rejects H0 when X1/X2 >
(2 − α)/α and X2/X1 > (2 − α)/α.

72. Let X1, ..., Xm and Y1, ..., Yn be two independent samples i.i.d. from
the exponential distributions E(a1, θ1) and E(a2, θ2), respectively.
Let gr,c,d(x, y) = (rx1 + c, ..., rxm + c, ry1 + d, ..., ryn + d) and let
G = {gr,c,d : r > 0, c ∈ R, d ∈ R}.
(a) Show that a UMPI test of size α for testingH0 : θ1/θ2 ≥ ∆0 versus
H1 : θ1/θ2 < ∆0 rejectsH0 when

∑n
i=1(Yi−Y(1)) > c

∑m
i=1(Xi−X(1))

for some constant c.
(b) Find the value of c in (a).
(c) Show that the UMPI test in (a) is also a UMPU test.

73. Let M(U) be given by (6.51) and W = M(U)(n− r)/s.
(a) Show that W has the noncentral F-distribution Fs,n−r(θ).
(b) Show that fθ1(w)/f0(w) is an increasing function of w for any
given θ1 > 0.



6.6. Exercises 465

74. Consider normal linear model (6.38). Show that
(a) the UMPI test derived in §6.3.2 for testing (6.49) is the same as
the UMPU test for (6.40) given in §6.2.3 when s = 1 and θ0 = 0;
(b) the test with the rejection region W > Fs,n−r,α is a UMPI test
of size α for testing H0 : Lβ = θ0 versus H1 : Lβ 6= θ0, where W is
given by (6.52), θ0 is a fixed constant, L is the same as that in (6.49),
and Fs,n−r,α is the (1 − α)th quantile of the F-distribution Fs,n−r.

75. In Examples 6.18-6.19,
(a) prove the claim in Example 6.19;
(b) derive the distribution of W by applying Cochran’s theorem.

76. (Two-way additive model). Assume that Xij ’s are independent and

Xij = N(µij , σ
2), i = 1, ..., a, j = 1, ..., b,

where µij = µ + αi + βj and
∑a

i=1 αi =
∑b

j=1 βj = 0. Derive the
forms of the UMPI tests in §6.3.2 for testing (6.54) and (6.55).

77. (Three-way additive model). Assume thatXijk’s are independent and

Xijk = N(µijk , σ
2), i = 1, ..., a, j = 1, ..., b, k = 1, ..., c,

where µijk = µ+αi+βj+γk and
∑a
i=1 αi =

∑b
j=1 βj =

∑c
k=1 γk = 0.

Derive the UMPI test based on the W in (6.52) for testing H0 : αi = 0
for all i versus H1 : αi 6= 0 for some i.

78. Let X1, ..., Xm and Y1, ..., Yn be independently normally distributed
with a common unknown variance σ2 and means

E(Xi) = µx + βx(ui − ū), E(Yj) = µy + βy(vj − v̄),

where ui’s and vj ’s are known constants, ū = m−1
∑m
i=1 ui, v̄ =

n−1
∑n

i=1 vi, and µx, µy, βx, and βy are unknown. Derive the UMPI
test based on the W in (6.52) for testing
(a) H0 : βx = βy versus H1 : βx 6= βy;
(b) H0 : βx = βy and µx = µy versus H1 : βx 6= βy or µx 6= µy.

79. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. from a bivariate normal distribution
with unknown means, variances, and correlation coefficient ρ.
(a) Show that the problem of testing H0 : ρ ≤ ρ0 versus H1 : ρ > ρ0

is invariant under G containing transformations rXi + c, sYi + d,
i = 1, ..., n, where r > 0, s > 0, c ∈ R, and d ∈ R. Show that a
UMPI test rejects H0 when R > c, where R is the sample correlation
coefficient given in (6.45). (Hint: see Lehmann (1986, p. 340).)
(b) Show that the problem of testing H0 : ρ = 0 versus H1 : ρ 6=
0 is invariant in addition (to the transformations in (a)) under the
transformation g(Xi, Yi) = (Xi,−Yi), i = 1, ..., n. Show that a UMPI
test rejects H0 when |R| > c.
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80. Under the random effects model (6.57), show that
(a) SSA/SSR is maximal invariant under the group of transforma-
tions described in §6.3.2;
(b) the UMPI test for (6.58) derived in §6.3.2 is also a UMPU test.

81. Show that (6.60) is equivalent to (6.61) when c0 ≥ 1.

82. In Proposition 6.5,
(a) show that log ℓ(θ̂)− log ℓ(θ0) is strictly increasing (or decreasing)

in Y when θ̂ > θ0 (or θ̂ < θ0);
(b) prove part (iii).

83. In Exercises 40 and 41 of §2.6, consider H0 : j = 1 versus H1 : j = 2.
(a) Derive the likelihood ratio λ(X).
(b) Obtain an LR test of size α in Exercise 40 of §2.6.

84. In Exercise 17, derive the likelihood ratio λ(X) when (a) H0 : θ ≤ θ0;
(b) H0 : θ1 ≤ θ ≤ θ2; and (c) H0 : θ ≤ θ1 or θ ≥ θ2.

85. Let X1, ..., Xn be i.i.d. from the discrete uniform distribution on
{1, ..., θ}, where θ is an integer ≥ 2. Find a level α LR test for
(a) H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is a known integer ≥ 2;
(b) H0 : θ = θ0 versus H1 : θ 6= θ0.

86. Let X be a sample of size 1 from the p.d.f. 2θ−2(θ−x)I(0,θ)(x), where
θ > 0 is unknown. Find an LR test of size α for testing H0 : θ = θ0
versus H1 : θ 6= θ0.

87. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ).
(a) Suppose that θ is known. Find an LR test of size α for testing
H0 : a ≤ a0 versus H1 : a > a0.
(b) Suppose that θ is known. Find an LR test of size α for testing
H0 : a = a0 versus H1 : a 6= a0.
(c) Repeat part (a) for the case where θ is also unknown.
(d) When both θ and a are unknown, find an LR test of size α for
testing H0 : θ = θ0 versus H1 : θ 6= θ0.
(e) When a > 0 and θ > 0 are unknown, find an LR test of size α for
testing H0 : a = θ versus H1 : a 6= θ.

88. Let X1, ..., Xn be i.i.d. from the Pareto distribution Pa(γ, θ), where
θ > 0 and γ > 0 are unknown. Show that an LR test for H0 : θ = 1
versus H1 : θ 6= 1 rejects H0 when Y < c1 or Y > c2, where Y =
log
(∏n

i=1Xi/X
n
(1)

)
and c1 and c2 are positive constants. Find values

of c1 and c2 so that this LR test has size α.

89. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from the
uniform distributions U(0, θi), i = 1, 2, respectively, where θ1 > 0
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and θ2 > 0 are unknown.
(a) Find an LR test of size α for testing H0 :θ1 =θ2 versus H1 :θ1 6=θ2.
(b) Derive the limit distribution of −2 logλ, where λ is the likelihood
ratio in part (a).

90. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from
N(µi, σ

2
i ), i = 1, 2, respectively, where µi’s and σ2

i ’s are unknown.
For testing H0 : σ2

2/σ
2
1 = ∆0 versus H1 : σ2

2/σ
2
1 6= ∆0, derive an LR

test of size α and compare it with the UMPU test derived in §6.2.3.

91. Let (X11, X12), ..., (Xn1, Xn2) be i.i.d. from a bivariate normal dis-
tribution with unknown mean and covariance matrix. For testing
H0 : ρ = 0 versus H1 : ρ 6= 0, where ρ is the correlation coefficient,
show that the test rejecting H0 when |W | > c is an LR test, where

W =

n∑

i=1

(Xi1− X̄1)(Xi2− X̄2)

/[ n∑

i=1

(Xi1 − X̄1)
2 +

n∑

i=1

(Xi2 − X̄2)
2

]
.

Find the distribution of W .

92. Let X1 and X2 be independently distributed as the Poisson distribu-
tions P (λ1) and P (λ2), respectively. Find an LR test of significance
level α for testing
(a) H0 : λ1 = λ2 versus H1 : λ1 6= λ2;
(b) H0 : λ1 ≥ λ2 versus H1 : λ1 < λ2. (Is this test a UMPU test?)

93. Let X1 and X2 be independently distributed as the binomial distri-
butions Bi(p1, n1) and Bi(p2, n2), respectively, where ni’s are known
and pi’s are unknown. Find an LR test of significance level α for
testing
(a) H0 : p1 = p2 versus H1 : p1 6= p2;
(b) H0 : p1 ≥ p2 versus H1 : p1 < p2. (Is this test a UMPU test?)

94. Let X1 and X2 be independently distributed as the negative binomial
distributions NB(p1, n1) and NB(p2, n2), respectively, where ni’s are
known and pi’s are unknown. Find an LR test of significance level α
for testing
(a) H0 : p1 = p2 versus H1 : p1 6= p2;
(b) H0 : p1 ≤ p2 versus H1 : p1 > p2.

95. Let X1 and X2 be independently distributed as the exponential dis-
tributions E(0, θi), i = 1, 2, respectively. Define θ = θ1/θ2. Find an
LR test of size α for testing
(a) H0 : θ = 1 versus H1 : θ 6= 1;
(b) H0 : θ ≤ 1 versus H1 : θ > 1.
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96. Let Xi1, ..., Xini , i = 1, 2, be independently distributed as the beta
distributions with p.d.f.’s θix

θi−1I(0,1)(x), i = 1, 2, respectively. For
testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2, find the forms of the LR
test, Wald’s test, and Rao’s score test.

97. In the proof of Theorem 6.6(ii), show that (6.65) and (6.66) hold and
that (6.67) implies (6.68).

98. Let X1, ..., Xn be i.i.d. from N(µ, σ2).
(a) Suppose that σ2 = γµ2 with unknown γ > 0 and µ ∈ R. Find an
LR test for testing H0 : γ = 1 versus H1 : γ 6= 1.
(b) In the testing problem in (a), find the forms of Wn for Wald’s test
and Rn for Rao’s score test, and discuss whether Theorems 6.5 and
6.6 can be applied.
(c) Repeat (a) and (b) when σ2 = γµ with unknown γ > 0 and µ > 0.

99. Suppose that X1, ..., Xn are i.i.d. from the Weibull distribution with
p.d.f. θ−1γxγ−1e−x

γ/θI(0,∞)(x), where γ > 0 and θ > 0 are unknown.
Consider the problem of testing H0 : γ = 1 versus H1 : γ 6= 1.
(a) Find an LR test and discuss whether Theorem 6.5 can be applied.
(b) Find the forms of Wn for Wald’s test and Rn for Rao’s score test.

100. Suppose that X = (X1, ..., Xk) has the multinomial distribution with
the parameter p = (p1, ..., pk). Consider the problem of testing (6.70).
Find the forms of Wn for Wald’s test and Rn for Rao’s score test.

101. In Example 6.12, consider testing H0 : P (A) = P (B) versus H1 :
P (A) 6= P (B).
(a) Derive the likelihood ratio λn and the limiting distribution of
−2 logλn under H0.
(b) Find the forms of Wn for Wald’s test and Rn for Rao’s score test.

102. Prove the claims in Example 6.24.

103. Consider testing independence in the r× c contingency table problem
in Example 6.24. Find the forms of Wn for Wald’s test and Rn for
Rao’s score test.

104. Under the conditions of Theorems 6.5 and 6.6, show that Wald’s tests
are Chernoff-consistent (Definition 2.13) if α is chosen to be αn → 0
and χ2

r,αn
= o(n) as n → ∞, where χ2

r,α is the (1 − α)th quantile of
χ2
r.

105. Let X1, ..., Xn be i.i.d. binary random variables with θ = P (X1 = 1).
(a) Let the prior Π(θ) be the c.d.f. of the beta distribution B(a, b).
Find the Bayes factor and the Bayes test for H0 : θ ≤ θ0 versus
H1 : θ > θ0.
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(b) Let the prior c.d.f. be π0I[θ0,∞)(θ) + (1− π0)Π(θ), where Π is the
same as that in (a). Find the Bayes factor and the Bayes test for
H0 : θ = θ0 versus H1 : θ 6= θ0.

106. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ).
(a) Let the prior c.d.f. be Π(θ) = (1 − e−θ)I(0,∞)(θ). Find the Bayes
factor and the Bayes test for H0 : θ ≤ θ0 versus H1 : θ > θ0.
(b) Let the prior c.d.f. be π0I[θ0,∞)(θ) + (1− π0)Π(θ), where Π is the
same as that in (a). Find the Bayes factor and the Bayes test for
H0 : θ = θ0 versus H1 : θ 6= θ0.

107. Let Xi, i = 1, 2, be independent observations from the gamma dis-
tributions Γ(a, γ1) and Γ(a, γ2), respectively, where a > 0 is known
and γi > 0, i = 1, 2, are unknown. Find the Bayes factor and the
Bayes test for H0 : γ1 = γ2 versus H1 : γ1 6= γ2 under the prior
c.d.f. Π = π0Π0 + (1 − π0)Π1, where Π0(x1, x2) = G(min{x1, x2}),
Π1(x1, x2) = G(x1)G(x2), G(x) is the c.d.f. of a known gamma dis-
tribution, and π0 is a known constant.

108. Find a condition under which the UMPI test given in Example 6.17
is better than the sign test given by (6.78) in terms of their power
functions under H1.

109. For testing (6.80), show that a test T satisfying (6.81) is of size α and
that the test in (6.82) satisfies (6.81).

110. Let G be the class of transformations g(x) = (ψ(x1), ..., ψ(xn)), where
ψ is continuous, odd, and strictly increasing. Let R̃ be the vector of
ranks of |x1|, ..., |xn| and R+ (or R−) be the subvector of R̃ contain-
ing ranks corresponding to positive (or negative) xi’s. Show that
(R+, R−) is maximal invariant under G. (Hint: see Example 6.14.)

111. Under H0, obtain the distribution of W in (6.83) for the one-sample
Wilcoxon signed rank test when n = 3 or 4.

112. For the one-sample Wilcoxon signed rank test, show that t0 and σ2
0

in (6.85) are equal to 1
4 and 1

12 , respectively.

113. Using the results in §5.2.2, derive a two-sample rank test for testing
(6.80) that has limiting size α.

114. Prove Theorem 6.10(i) and show that D−
n (F ) and D+

n (F ) have the
same distribution.

115. Show that the one-sided and two-sided Kolmogorov-Smirnov tests are
consistent according to Definition 2.13.
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116. Let Cn(F ) be given by (6.88) for any continuous c.d.f. F on R. Show
that the distribution of Cn(F ) does not vary with F .

117. Show that the Cramér-von Mises tests are consistent.

118. In Example 6.27, show that the one-sample Wilcoxon signed rank test
is consistent.

119. Let X1, ..., Xn be i.i.d. from a c.d.f. F on Rd and θ = E(X1).
(a) Derive the empirical likelihood ratio for testing H0 : θ = θ0 versus
H1 : θ 6= θ0.
(b) Let θ = (ϑ, ϕ). Derive the profile empirical likelihood ratio for
testing H0 : ϑ = ϑ0 versus H1 : ϑ 6= ϑ0.

120. Prove Theorem 6.12(ii).

121. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from Fi
on R, i = 1, 2, respectively, and let µi = E(Xi).
(a) Show that the two-sample t-test derived in §6.2.3 for testing H0 :
µ1 = µ2 versus H1 : µ1 6= µ2 has asymptotic significance level α and
is consistent, if n1 → ∞, n1/n2 → c ∈ (0, 1), and σ2

1 = σ2
2 .

(b) Derive a consistent asymptotic test for testing H0 : µ1/µ2 = ∆0

versus H1 : µ1/µ2 6= ∆0, assuming that µ2 6= 0.

122. Consider the general linear model (3.25) with i.i.d. εi’s havingE(εi) =
0 and E(ε2i ) = σ2.
(a) Under the conditions of Theorem 3.12, derive a consistent asymp-

totic test based on the LSE lτ β̂ for testing H0 : lτβ = θ0 versus
H1 : lτβ 6= θ0, where l ∈ R(Z).
(b) Show that the LR test in Example 6.21 has asymptotic significance
level α and is consistent.

123. Let θ̂n be an estimator of a real-valued parameter θ such that (6.92)
holds for any θ and let V̂n be a consistent estimator of Vn. Suppose
that Vn → 0.
(a) Show that the test with rejection region V̂

−1/2
n (θ̂n−θ0) > z1−α is a

consistent asymptotic test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0.
(b) Apply the result in (a) to show that the one-sample one-sided
t-test in §6.2.3 is a consistent asymptotic test.

124. Let X1, ..., Xn be i.i.d. from the gamma distribution Γ(θ, γ), where
θ > 0 and γ > 0 are unknown. Let Tn = n

∑n
i=1X

2
i /(
∑n
i=1Xi)

2.
Show how to use Tn to obtain an asymptotically correct test for H0 :
θ = 1 versus H1 : θ 6= 1.



Chapter 7

Confidence Sets

Various methods of constructing confidence sets are introduced in this chap-
ter, along with studies of properties of confidence sets. Throughout this
chapter X = (X1, ..., Xn) denotes a sample from a population P ∈ P ;
θ = θ(P ) denotes a functional from P to Θ ⊂ Rk for a fixed integer k; and
C(X) denotes a confidence set for θ, a set in BΘ (the class of Borel sets on
Θ) depending only on X . We adopt the basic concepts of confidence sets
introduced in §2.4.3. In particular, infP∈P P (θ ∈ C(X)) is the confidence
coefficient of C(X) and, if the confidence coefficient of C(X) is ≥ 1−α for
fixed α ∈ (0, 1), then we say that C(X) has significance level 1−α or C(X)
is a level 1 − α confidence set.

7.1 Construction of Confidence Sets

In this section, we introduce some basic methods for constructing confidence
sets that have a given significance level (or confidence coefficient) for any
fixed n. Properties and comparisons of confidence sets are given in §7.2.

7.1.1 Pivotal quantities

Perhaps the most popular method of constructing confidence sets is the use
of pivotal quantities defined as follows.

Definition 7.1. A known Borel function ℜ of (X, θ) is called a pivotal
quantity if and only if the distribution of ℜ(X, θ) does not depend on P .

Note that a pivotal quantity depends on P through θ = θ(P ). A pivotal
quantity is usually not a statistic, although its distribution is known.

471
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With a pivotal quantity ℜ(X, θ), a level 1 − α confidence set for any
given α ∈ (0, 1) can be obtained as follows. First, find two constants c1 and
c2 such that

P (c1 ≤ ℜ(X, θ) ≤ c2) ≥ 1 − α. (7.1)

Next, define

C(X) = {θ ∈ Θ : c1 ≤ ℜ(X, θ) ≤ c2}. (7.2)

Then C(X) is a level 1 − α confidence set, since

inf
P∈P

P
(
θ ∈ C(X)

)
= inf

P∈P
P
(
c1 ≤ ℜ(X, θ) ≤ c2

)

= P
(
c1 ≤ ℜ(X, θ) ≤ c2

)

≥ 1 − α.

Note that the confidence coefficient of C(X) may not be 1 − α. If ℜ(X, θ)
has a continuous c.d.f., then we can choose ci’s such that the equality in
(7.1) holds and, therefore, the confidence setC(X) has confidence coefficient
1 − α.

In a given problem, there may not exist any pivotal quantity, or there
may be many different pivotal quantities. When there are many pivotal
quantities, one has to choose one based on some principles or criteria, which
are discussed in §7.2. For example, pivotal quantities based on sufficient
statistics are certainly preferred. In many cases we also have to choose ci’s
in (7.1) based on some criteria.

When ℜ(X, θ) and ci’s are chosen, we need to compute the confidence
set C(X) in (7.2). This can be done by inverting c1 ≤ ℜ(X, θ) ≤ c2. For
example, if θ is real-valued and ℜ(X, θ) is monotone in θ when X is fixed,
then C(X) = {θ : θ(X) ≤ θ ≤ θ(X)} for some θ(X) < θ(X), i.e., C(X)
is an interval (finite or infinite); if ℜ(X, θ) is not monotone, then C(X)
may be a union of several intervals. For real-valued θ, a confidence interval
rather than a complex set such as a union of several intervals is generally
preferred since it is simple and the result is easy to interpret. When θ is
multivariate, inverting c1 ≤ ℜ(X, θ) ≤ c2 may be complicated. In most
cases where explicit forms of C(X) do not exist, C(X) can still be obtained
numerically.

Example 7.1 (Location-scale families). Suppose that X1, ..., Xn are i.i.d.
with a Lebesgue p.d.f. 1

σ f
(
x−µ
σ

)
, where µ ∈ R, σ > 0, and f is a known

Lebesgue p.d.f.

Consider first the case where σ is known and θ = µ. For any fixed i,
Xi − µ is a pivotal quantity. Also, X̄ − µ is a pivotal quantity, since any
function of independent pivotal quantities is pivotal. In many cases X̄−µ is
preferred. Let c1 and c2 be constants such that P (c1 ≤ X̄−µ ≤ c2) = 1−α.
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Then C(X) in (7.2) is

C(X) = {µ : c1 ≤ X̄ − µ ≤ c2} = {µ : X̄ − c2 ≤ µ ≤ X̄ − c1},

i.e., C(X) is the interval [X̄− c2, X̄− c1] ⊂ R = Θ. This interval has confi-
dence coefficient 1 − α. The choice of ci’s is not unique. Some criteria dis-
cussed in §7.2 can be applied to choose ci’s. One particular choice (not nec-
essarily the best choice) frequently used by practitioners is c1 = −c2. The
resulting C(X) is symmetric about X̄ and is also an equal-tail confidence
interval (a confidence interval [θ, θ] is equal-tail if P (θ < θ) = P (θ > θ))
if the distribution of X̄ is symmetric about µ. Note that the confidence
interval in Example 2.31 is a special case of the intervals considered here.

Consider next the case where µ is known and θ = σ. The following
quantities are pivotal: (Xi−µ)/σ, i = 1, ..., n,

∏n
i=1(Xi−µ)/σ, (X̄−µ)/σ,

and S/σ, where S2 is the sample variance. Consider the confidence set (7.2)
with ℜ = S/σ. Let c1 and c2 be chosen such that P (c1 ≤ S/σ ≤ c2) = 1−α.
If both ci’s are positive, then

C(X) = {σ : S/c2 ≤ σ ≤ S/c1} = [S/c2, S/c1]

is a finite interval. Similarly, if c1 = 0 (0 < c2 < ∞) or c2 = ∞ (0 < c1 <
∞), then C(X) = [S/c2,∞) or (0, S/c1].

When θ = σ and µ is also unknown, S/σ is still a pivotal quantity
and, hence, confidence intervals of σ based on S are still valid. Note that
(X̄ − µ)/σ and

∏n
i=1(Xi − µ)/σ are not pivotal when µ is unknown.

Finally, we consider the case where both µ and σ are unknown and
θ = µ. There are still many different pivotal quantities, but the most
commonly used pivotal quantity is t(X) =

√
n(X̄ −µ)/S. The distribution

of t(X) does not depend on (µ, σ). When f is normal, t(X) has the t-
distribution tn−1. The pivotal quantity t(X) is often called a studentized
statistic or t-statistic, although t(X) is not a statistic and t(X) does not
have a t-distribution when f is not normal. A confidence interval for µ
based on t(X) is of the form

{µ : c1 ≤ √
n(X̄ − µ)/S ≤ c2} = [X̄ − c2S/

√
n, X̄ − c1S/

√
n],

where ci’s are chosen so that P (c1 ≤ t(X) ≤ c2) = 1 − α.

Example 7.2. Let X1, ..., Xn be i.i.d. random variables from the uniform
distribution U(0, θ). Consider the problem of finding a confidence set for θ.
Note that the family P in this case is a scale family so that the results in
Example 7.1 can be used. But a better confidence interval can be obtained
based on the sufficient and complete statistic X(n) for which X(n)/θ is a
pivotal quantity (Example 7.13). Note that X(n)/θ has the Lebesgue p.d.f.
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nxn−1I(0,1)(x). Hence ci’s in (7.1) should satisfy cn2 − cn1 = 1 − α. The

resulting confidence interval for θ is [c−1
2 X(n), c

−1
1 X(n)]. Choices of ci’s are

discussed in Example 7.13.

Example 7.3 (Fieller’s interval). Let (Xi1, Xi2), i = 1, ..., n, be i.i.d.
bivariate normal with unknown µj = E(X1j), σ

2
j = Var(X1j), j = 1, 2,

and σ12 = Cov(X11, X12). Let θ = µ2/µ1 be the parameter of interest
(µ1 6= 0). Define Yi(θ) = Xi2 − θXi1. Then Y1(θ), ..., Yn(θ) are i.i.d. from
N(0, σ2

2 − 2θσ12 + θ2σ2
1). Let

S2(θ) =
1

n− 1

n∑

i=1

[Yi(θ) − Ȳ (θ)]2 = S2
2 − 2θS12 + θ2S2

1 ,

where Ȳ (θ) is the average of Yi(θ)’s and S2
i and S12 are sample variances

and covariance based on Xij ’s. It follows from Examples 1.16 and 2.18
that

√
nȲ (θ)/S(θ) has the t-distribution tn−1 and, therefore, is a pivotal

quantity. Let tn−1,α be the (1 − α)th quantile of the t-distribution tn−1.
Then

C(X) = {θ : n[Ȳ (θ)]2/S2(θ) ≤ t2n−1,α/2}
is a confidence set for θ with confidence coefficient 1 − α. Note that
n[Ȳ (θ)]2 = t2n−1,α/2S

2(θ) defines a parabola in θ. Depending on the roots

of the parabola, C(X) can be a finite interval, the complement of a finite
interval, or the whole real line (exercise).

Example 7.4. Consider the normal linear model X = Nn(Zβ, σ
2In),

where θ = β is a p-vector of unknown parameters and Z is a known n× p
matrix of full rank. A pivotal quantity is

ℜ(X, β) =
(β̂ − β)τZτZ(β̂ − β)/p

‖X − Zβ̂‖2/(n− p)
,

where β̂ is the LSE of β. By Theorem 3.8 and Example 1.16, ℜ(X, β) has
the F-distribution Fp,n−p. We can then obtain a confidence set

C(X) = {β : c1 ≤ ℜ(X, β) ≤ c2}.

Note that {β : ℜ(X, β) < c} is the interior of an ellipsoid in Rp.

The following result indicates that in many problems, there exist pivotal
quantities.

Proposition 7.1. Let T (X) = (T1(X), ..., Ts(X)) and T1, ..., Ts be in-
dependent statistics. Suppose that each Ti has a continuous c.d.f. FTi,θ

indexed by θ. Then ℜ(X, θ) =
∏s
i=1 FTi,θ(Ti(X)) is a pivotal quantity.
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Proof. The result follows from the fact that FTi,θ(Ti)’s are i.i.d. from the
uniform distribution U(0, 1).

When X1, ..., Xn are i.i.d. from a parametric family indexed by θ, the
simplest way to apply Proposition 7.1 is to take T (X) = X . However,
the resulting pivotal quantity may not be the best pivotal quantity. For
instance, the pivotal quantity in Example 7.2 is a function of the one ob-
tained by applying Proposition 7.1 with T (X) = X(n) (s = 1), which is
better than the one obtained by using T (X) = X (Example 7.13).

The result in Proposition 7.1 holds even when P is in a nonparametric
family, but in a nonparametric problem, it may be difficult to find a statistic
T whose c.d.f. is indexed by θ, the parameter vector of interest.

When θ and T in Proposition 7.1 are real-valued, we can use the follow-
ing result to construct confidence intervals for θ even when the c.d.f. of T
is not continuous.

Theorem 7.1. Suppose that P is in a parametric family indexed by a
real-valued θ. Let T (X) be a real-valued statistic with c.d.f. FT,θ(t) and let
α1 and α2 be fixed positive constants such that α1 + α2 = α < 1

2 .
(i) Suppose that FT,θ(t) and FT,θ(t−) are nonincreasing in θ for each fixed
t. Define

θ = sup{θ : FT,θ(T ) ≥ α1} and θ = inf{θ : FT,θ(T−) ≤ 1 − α2}.

Then [θ(T ), θ(T )] is a level 1 − α confidence interval for θ.
(ii) If FT,θ(t) and FT,θ(t−) are nondecreasing in θ for each t, then the same
result holds with

θ = inf{θ : FT,θ(T ) ≥ α1} and θ = sup{θ : FT,θ(T−) ≤ 1 − α2}.

(iii) If FT,θ is a continuous c.d.f. for any θ, then FT,θ(T ) is a pivotal quantity
and the confidence interval in (i) or (ii) has confidence coefficient 1 − α.
Proof. We only need to prove (i). Under the given condition, θ > θ implies
FT,θ(T ) < α1 and θ < θ implies FT,θ(T−) > 1 − α2. Hence,

P
(
θ ≤ θ ≤ θ

)
≥ 1 − P

(
FT,θ(T ) < α1

)
− P

(
FT,θ(T−) > 1 − α2

)
.

The result follows from

P
(
FT,θ(T ) < α1

)
≤ α1 and P

(
FT,θ(T−) > 1 − α2

)
≤ α2. (7.3)

The proof of (7.3) is left as an exercise.

When the parametric family in Theorem 7.1 has monotone likelihood
ratio in T (X), it follows from Lemma 6.3 that the condition in Theorem
7.1(i) holds; in fact, it follows from Exercise 2 in §6.6 that FT,θ(t) is strictly
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decreasing for any t at which 0 < FT,θ(t) < 1. If FT,θ(t) is also continuous
in θ, limθ→θ− FT,θ(t) > α1, and limθ→θ+ FT,θ(t) < α1, where θ− and θ+
are the two ends of the parameter space, then θ is the unique solution of
FT,θ(t) = α1. A similar conclusion can be drawn for θ.

Theorem 7.1 can be applied to obtain the confidence interval for θ in
Example 7.2 (exercise). The following example concerns a discrete FT,θ.

Example 7.5. Let X1, ..., Xn be i.i.d. random variables from the Poisson
distribution P (θ) with an unknown θ > 0 and T (X) =

∑n
i=1Xi. Note that

T is sufficient and complete for θ and has the Poisson distribution P (nθ).
Thus,

FT,θ(t) =

t∑

j=0

e−nθ(nθ)j

j!
, t = 0, 1, 2, ....

Since the Poisson family has monotone likelihood ratio in T and 0 <
FT,θ(t) < 1 for any t, FT,θ(t) is strictly decreasing in θ. Also, FT,θ(t)
is continuous in θ and FT,θ(t) tends to 1 and 0 as θ tends to 0 and ∞,
respectively. Thus, Theorem 7.1 applies and θ is the unique solution of
FT,θ(T ) = α1. Since FT,θ(t−) = FT,θ(t − 1) for t > 0, θ is the unique
solution of FT,θ(t− 1) = 1− α2 when T = t > 0 and θ = 0 when T = 0. In
fact, in this case explicit forms of θ and θ can be obtained from

1

Γ(t)

∫ ∞

λ

xt−1e−xdx =
t−1∑

j=0

e−λλj

j!
, t = 1, 2, ....

Using this equality, it can be shown (exercise) that

θ = (2n)−1χ2
2(T+1),α1

and θ = (2n)−1χ2
2T,1−α2

, (7.4)

where χ2
r,α is the (1 − α)th quantile of the chi-square distribution χ2

r and
χ2

0,a is defined to be 0.

So far we have considered examples for parametric problems. In a non-
parametric problem, a pivotal quantity may not exist and we have to con-
sider approximate pivotal quantities (§7.3 and §7.4). The following is an
example of a nonparametric problem in which there exist pivotal quantities.

Example 7.6. Let X1, ..., Xn be i.i.d. random variables from F ∈ F con-
taining all continuous and symmetric distributions on R. Suppose that
F is symmetric about θ. Let R̃(θ) be the vector of ranks of |Xi − θ|’s
and R+(θ) be the subvector of R̃(θ) containing ranks corresponding to
positive (Xi − θ)’s. Then, any real-valued Borel function of R+(θ) is a
pivotal quantity (see the discussion in §6.5.1). Various confidence sets can
be constructed using these pivotal quantities. More details can be found in
Example 7.10.
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7.1.2 Inverting acceptance regions of tests

Another popular method of constructing confidence sets is to use a close
relationship between confidence sets and hypothesis tests. For any test T ,
the set {x : T (x) 6= 1} is called the acceptance region. Note that this
terminology is not precise when T is a randomized test.

Theorem 7.2. For each θ0 ∈ Θ, let Tθ0 be a test for H0 : θ = θ0 (versus
some H1) with significance level α and acceptance region A(θ0). For each
x in the range of X , define

C(x) = {θ : x ∈ A(θ)}.

Then C(X) is a level 1 − α confidence set for θ. If Tθ0 is nonrandomized
and has size α for every θ0, then C(X) has confidence coefficient 1 − α.
Proof. We prove the first assertion only. The proof for the second assertion
is similar. Under the given condition,

sup
θ=θ0

P
(
X 6∈ A(θ0)

)
= sup

θ=θ0

P (Tθ0 = 1) ≤ α,

which is the same as

1 − α ≤ inf
θ=θ0

P
(
X ∈ A(θ0)

)
= inf

θ=θ0
P
(
θ0 ∈ C(X)

)
.

Since this holds for all θ0, the result follows from

inf
P∈P

P
(
θ ∈ C(X)

)
= inf
θ0∈Θ

inf
θ=θ0

P
(
θ0 ∈ C(X)

)
≥ 1 − α.

The converse of Theorem 7.2 is partially true, which is stated in the
next result whose proof is left as an exercise.

Proposition 7.2. Let C(X) be a confidence set for θ with significance level
(or confidence coefficient) 1 − α. For any θ0 ∈ Θ, define a region A(θ0) =
{x : θ0 ∈ C(x)}. Then the test T (X) = 1− IA(θ0)(X) has significance level
α for testing H0 : θ = θ0 versus some H1.

In general, C(X) in Theorem 7.2 can be determined numerically, if it
does not have an explicit form. Theorem 7.2 can be best illustrated in
the case where θ is real-valued and A(θ) = {Y : a(θ) ≤ Y ≤ b(θ)} for
a real-valued statistic Y (X) and some nondecreasing functions a(θ) and
b(θ). When we observe Y = y, C(X) is an interval with limits θ and θ,
which are the θ-values at which the horizontal line Y = y intersects the
curves Y = b(θ) and Y = a(θ) (Figure 7.1), respectively. If y = b(θ) (or
y = a(θ)) has no solution or more than one solution, θ = inf{θ : y ≤ b(θ)}
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Y

q

C(x) Y=y

Y=a

Y=b

(q)

(q)

Figure 7.1: A confidence interval obtained by inverting A(θ) = [a(θ), b(θ)]

(or θ = sup{θ : a(θ) ≤ y}). C(X) does not include θ (or θ) if and only if at
θ (or θ), b(θ) (or a(θ)) is only left-continuous (or right-continuous).

Example 7.7. Suppose that X has the following p.d.f. in a one-parameter
exponential family: fθ(x) = exp{η(θ)Y (x) − ξ(θ)}h(x), where θ is real-
valued and η(θ) is nondecreasing in θ. First, we apply Theorem 7.2 with
H0 : θ = θ0 and H1 : θ > θ0. By Theorem 6.2, the acceptance region of the
UMP test of size α given by (6.11) is A(θ0) = {x : Y (x) ≤ c(θ0)}, where
c(θ0) = c in (6.11). It can be shown (exercise) that c(θ) is nondecreasing in
θ. Inverting A(θ) according to Figure 7.1 with b(θ) = c(θ) and a(θ) ignored,
we obtain C(X) = [θ(X),∞) or (θ(X),∞), a one-sided confidence interval
for θ with significance level 1 − α. (θ(X) is a called a lower confidence
bound for θ in §2.4.3.) When the c.d.f. of Y (X) is continuous, C(X) has
confidence coefficient 1 − α.

In the previous derivation, if H0 : θ = θ0 and H1 : θ < θ0 are consid-
ered, then C(X) = {θ : Y (X) ≥ c(θ)} and is of the form (−∞, θ(X)] or
(−∞, θ(X)). (θ(X) is called an upper confidence bound for θ.)

Consider next H0 : θ = θ0 and H1 : θ 6= θ0. By Theorem 6.4, the
acceptance region of the UMPU test of size α defined in (6.28) is given by
A(θ0) = {x : c1(θ0) ≤ Y (x) ≤ c2(θ0)}, where ci(θ) are nondecreasing (ex-
ercise). A confidence interval can be obtained by inverting A(θ) according
to Figure 7.1 with a(θ) = c1(θ) and b(θ) = c2(θ).
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Let us consider a specific example in which X1, ..., Xn are i.i.d. binary
random variables with p = P (Xi = 1). Note that Y (X) =

∑n
i=1Xi.

Suppose that we need a lower confidence bound for p so that we consider
H0 : p = p0 and H1 : p > p0. From Example 6.2, the acceptance region of
a UMP test of size α ∈ (0, 1) is A(p0) = {y : y ≤ m(p0)}, where m(p0) is
an integer between 0 and n such that

n∑

j=m(p0)+1

(
n

j

)
pj0(1 − p0)

n−j ≤ α <
n∑

j=m(p0)

(
n

j

)
pj0(1 − p0)

n−j .

Thus, m(p) is an integer-valued, nondecreasing step-function of p. Define

p = inf{p : m(p) ≥ y} = inf



p :

n∑

j=y

(
n

j

)
pj(1 − p)n−j ≥ α



 . (7.5)

Then a level 1−α confidence interval for p is (p, 1] (exercise). One can com-
pare this confidence interval with the one obtained by applying Theorem
7.1 (exercise). See also Example 7.16.

Example 7.8. Suppose that X has the following p.d.f. in a multiparam-
eter exponential family: fθ,ϕ(x) = exp {θY (x) + ϕτU(x) − ζ(θ, ϕ)}. By
Theorem 6.4, the acceptance region of a UMPU test of size α for testing
H0 : θ = θ0 versus H1 : θ > θ0 or H0 : θ = θ0 versus H1 : θ 6= θ0 is

A(θ0) = {(y, u) : y ≤ c2(u, θ0)}

or
A(θ0) = {(y, u) : c1(u, θ0) ≤ y ≤ c2(u, θ0)},

where ci(u, θ), i = 1, 2, are nondecreasing functions of θ. Confidence inter-
vals for θ can then be obtained by inverting A(θ) according to Figure 7.1
with b(θ) = c2(u, θ) and a(θ) = c1(u, θ) or a(θ) ≡ −∞, for any observed u.

Consider more specifically the case where X1 and X2 are independently
distributed as the Poisson distributions P (λ1) and P (λ2), respectively, and
we need a lower confidence bound for the ratio ρ = λ2/λ1. From Example
6.11, a UMPU test of size α for testing H0 : ρ = ρ0 versus H1 : ρ > ρ0

has the acceptance region A(ρ0) = {(y, u) : y ≤ c(u, ρ0)}, where c(u, ρ0) is
determined by the conditional distribution of Y = X2 given U = X1+X2 =
u. Since the conditional distribution of Y given U = u is the binomial
distribution Bi(ρ/(1 + ρ), u), we can use the result in Example 7.7, i.e.,
c(u, ρ) is the same as m(p) in Example 7.7 with n = u and p = ρ/(1 + ρ).
Then a level 1 − α lower confidence bound for p is p given by (7.5) with
n = u. Since ρ = p/(1 − p) is a strictly increasing function of p, a level
1 − α lower confidence bound for ρ is p/(1 − p).
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Example 7.9. Consider the normal linear model X = Nn(Zβ, σ
2In) and

the problem of constructing a confidence set for θ = Lβ, where L is an
s × p matrix of rank s and all rows of L are in R(Z). It follows from the
discussion in §6.3.2 and Exercise 74 in §6.6 that a nonrandomized UMPI
test of size α for H0 : θ = θ0 versus H1 : θ 6= θ0 has the acceptance region

A(θ0) = {X : W (X, θ0) ≤ cα},

where cα is the (1 − α)th quantile of the F-distribution Fs,n−r,

W (X, θ) =
[‖X − Zβ̂(θ)‖2 − ‖X − Zβ̂‖2]/s

‖X − Zβ̂‖2/(n− r)
,

r is the rank of Z, r ≥ s, β̂ is the LSE of β and, for each fixed θ, β̂(θ) is a
solution of

‖X − Zβ̂(θ)‖2 = min
β:Lβ=θ

‖X − Zβ‖2.

Inverting A(θ), we obtain the following confidence set for θ with confidence
coefficient 1−α: C(X) = {θ : W (X, θ) ≤ cα}, which forms a closed ellipsoid
in Rs.

The last example concerns inverting the acceptance regions of tests in
a nonparametric problem.

Example 7.10. Consider the problem in Example 7.6. We now derive a
confidence interval for θ by inverting the acceptance regions of the signed
rank tests given by (6.84). Note that testing whether the c.d.f. of Xi is
symmetric about θ is equivalent to testing whether the c.d.f. of Xi − θ is
symmetric about 0. Let ci’s be given by (6.84), W be given by (6.83),
and, for each θ, let Ro+(θ) be the vector of ordered components of R+(θ)
described in Example 7.6. A level 1 − α confidence set for θ is

C(X) = {θ : c1 ≤W (Ro+(θ)) ≤ c2}.

The region C(X) can be computed numerically for any observed X . From
the discussion in Example 7.6, W (Ro+(θ)) is a pivotal quantity and, there-
fore, C(X) is the same as the confidence set obtained by using a pivotal
quantity.

7.1.3 The Bayesian approach

In Bayesian analysis, analogues to confidence sets are called credible sets.
Consider a sample X from a population in a parametric family indexed by
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θ ∈ Θ ⊂ Rk and dominated by a σ-finite measure. Let fθ(x) be the p.d.f.
of X and π(θ) be a prior p.d.f. w.r.t. a σ-finite measure λ on (Θ,BΘ). Let

px(θ) = fθ(x)π(θ)/m(x)

be the posterior p.d.f. w.r.t. λ, where x is the observed X and m(x) =∫
Θ fθ(x)π(θ)dλ. For any α ∈ (0, 1), a level 1 − α credible set for θ is any
C ∈ BΘ with

Pθ|x(θ ∈ C) =

∫

C

px(θ)dλ ≥ 1 − α. (7.6)

A level 1 − α highest posterior density (HPD) credible set for θ is defined
to be the event

C(x) = {θ : px(θ) ≥ cα}, (7.7)

where cα is chosen so that
∫
C(x) px(θ)dλ ≥ 1 − α. When px(θ) has a

continuous c.d.f., we can replace ≥ in (7.6) and (7.7) by =. An HPD
credible set is often an interval with the shortest length among all credible
intervals of the same level (Exercise 40).

The Bayesian credible sets and the confidence sets we have discussed
so far are very different in terms of their meanings and interpretations,
although sometimes they look similar. In a credible set, x is fixed and
θ is considered random and the probability statement in (7.6) is w.r.t.
the posterior probability Pθ|x. On the other hand, in a confidence set
θ is nonrandom (although unknown) but X is considered random, and
the significance level is w.r.t. P (θ ∈ C(X)), the probability related to the
distribution of X . The set C(X) in (7.7) is not necessarily a confidence set
with significance level 1 − α.

When π(θ) is constant, which is usually an improper prior, the HPD
credible set C(x) in (7.7) is related to the idea of maximizing likelihood (a
non-Bayesian approach introduced in §4.4; see also §7.3.2), since px(θ) =
fθ(x)/m(x) is proportional to fθ(x) = ℓ(θ), the likelihood function. In such
a case C(X) may be a confidence set with significance level 1 − α.

Example 7.11. Let X1, ..., Xn be i.i.d. as N(θ, σ2) with an unknown θ ∈ R
and a known σ2. Let π(θ) be the p.d.f. of N(µ0, σ

2
0) with known µ0 and

σ2
0 . Then, px(θ) is the p.d.f. of N(µ∗(x), c2) (Example 2.25), where µ∗(x)

and c2 are given by (2.25), and the HPD credible set in (7.7) is

C(x) =
{
θ : e−[θ−µ∗(x)]

2/(2c2) ≥ cα
√

2πc
}

=
{
θ : |θ − µ∗(x)| ≤

√
2c[− log(cα

√
2πc)]1/2

}
.

Let Φ be the standard normal c.d.f. The quantity
√

2c[− log(cα
√

2πc)]1/2

must be cz1−α/2, where za = Φ−1(a), since it is chosen so that Pθ|x(C(x)) =
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1 − α and Pθ|x = N(µ∗(x), c2). Therefore,

C(x) = [µ∗(x) − cz1−α/2, µ∗(x) + cz1−α/2].

If we let σ2
0 → ∞, which is equivalent to taking the Lebesgue measure as

the (improper) prior, then µ∗(x) = x̄, c2 = σ2/n, and

C(x) = [ x̄− σz1−α/2/
√
n, x̄+ σz1−α/2/

√
n ],

which is the same as the confidence interval in Example 2.31 for θ with
confidence coefficient 1 − α. Although the Bayesian credible set coincides
with the classical confidence interval, which is frequently the case when a
noninformative prior is used, their interpretations are still different.

More details about Bayesian credible sets can be found, for example, in
Berger (1985, §4.3).

7.1.4 Prediction sets

In some problems the quantity of interest is the future (or unobserved) value
of a random variable ξ. An inference procedure about a random quantity
instead of an unknown nonrandom parameter is called prediction. If the
distribution of ξ is known, then a level 1−α prediction set for ξ is any event
C satisfying Pξ(ξ ∈ C) ≥ 1 − α. In applications, however, the distribution
of ξ is usually unknown.

Suppose that the distribution of ξ is related to the distribution of
a sample X from which prediction will be made. For instance, X =
(X1, ..., Xn) is the observed sample and ξ = Xn+1 is to be predicted, where
X1, ..., Xn, Xn+1 are i.i.d. random variables. A set C(X) depending only
on the sample X is said to be a level 1 − α prediction set for ξ if

inf
P∈P

P
(
ξ ∈ C(X)

)
≥ 1 − α,

where P is the joint distribution of (ξ,X) and P contains all possible P .

Note that prediction sets are very similar and closely related to confi-
dence sets. Hence, some methods for constructing confidence sets can be
applied to obtained prediction sets. For example, if ℜ(X, ξ) is a pivotal
quantity in the sense that its distribution does not depend on P , then a
prediction set can be obtained by inverting c1 ≤ ℜ(X, ξ) ≤ c2. The follow-
ing example illustrates this idea.

Example 7.12. Many prediction problems encountered in practice can
be formulated as follows. The variable ξ to be predicted is related to a
vector-valued covariate ζ (called predictor) according to E(ξ|ζ) = ζτβ,
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where β is a p-vector of unknown parameters. Suppose that at ζ = Zi,
we observe ξ = Xi, i = 1, ..., n, and Xi’s are independent. Based on
(X1, Z1), ..., (Xn, Zn), we would like to construct a prediction set for the
value of ξ = X0 when ζ = Z0 ∈ R(Z), where Z is the n× p matrix whose
ith row is the vector Zi. The Zi’s are either fixed or random observations
(in the latter case all probabilities and expectations given in the following
discussion are conditional on Z0, Z1, ..., Zn).

Assume further that X = (X1, ..., Xn) = Nn(Zβ, σ
2In) follows a normal

linear model and is independent of X0 = N(Zτ0 β, σ
2). Let β̂ be the LSE

of β, σ̂2 = ‖X − Zβ̂‖2/(n− r), and ‖Z0‖2
Z = Zτ0 (ZτZ)−Z0, where r is the

rank of Z. Then

ℜ(X,X0) =
X0 − Zτ0 β̂

σ̂
√

1 + ‖Z0‖2
Z

has the t-distribution tn−r and, therefore, is a pivotal quantity. This is
because X0 and Zτ0 β̂ are independently normal,

E(X0 − Zτ0 β̂) = 0, Var(X0 − Zτ0 β̂) = σ2(1 + ‖Z0‖2
Z),

(n − r)σ̂2 has the chi-square distribution χ2
n−r, and X0, Z

τ
0 β̂, and σ̂2 are

independent (Theorem 3.8). A level 1−α prediction interval for X0 is then
[
Zτ0 β̂ − tn−r,α/2σ̂

√
1 + ‖Z0‖2

Z , Z
τ
0 β̂ + tn−r,α/2σ̂

√
1 + ‖Z0‖2

Z

]
, (7.8)

where tn−r,α is the (1 − α)th quantile of the t-distribution tn−r.

To compare prediction sets with confidence sets, let us consider a con-
fidence interval for E(X0) = Zτ0β. Using the pivotal quantity

ℜ(X,Zτ0β) =
Zτ0 β − Zτ0 β̂

σ̂‖Z0‖Z
,

we obtain the following confidence interval for Zτ0β with confidence coeffi-
cient 1 − α:

[
Zτ0 β̂ − tn−r,α/2σ̂‖Z0‖Z , Zτ0 β̂ + tn−r,α/2σ̂‖Z0‖Z

]
. (7.9)

Since a random variable is more variable than its average (an unknown pa-
rameter), the prediction interval (7.8) is always longer than the confidence
interval (7.9), although each of them covers the quantity of interest with
probability 1 − α. In fact, when ‖Z0‖2

Z → 0 as n → ∞, the length of the
confidence interval (7.9) tends to 0 a.s., whereas the length of the prediction
interval (7.8) tends to a positive constant a.s.

Because of the similarity between confidence sets and prediction sets,
in the rest of this chapter we do not discuss prediction sets in detail. Some
examples are given in Exercises 30 and 31.
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7.2 Properties of Confidence Sets

In this section, we study some properties of confidence sets and introduce
several criteria for comparing them.

7.2.1 Lengths of confidence intervals

For confidence intervals of a real-valued θ with the same confidence coef-
ficient, an apparent measure of their performance is the interval length.
Shorter confidence intervals are preferred, since they are more informative.
In most problems, however, shortest-length confidence intervals do not ex-
ist. A common approach is to consider a reasonable class of confidence
intervals (with the same confidence coefficient) and then find a confidence
interval with the shortest length within the class.

When confidence intervals are constructed by using pivotal quantities
or by inverting acceptance regions of tests, choosing a reasonable class of
confidence intervals amounts to selecting good pivotal quantities or tests.
Functions of sufficient statistics should be used, when sufficient statistics
exist. In many problems pivotal quantities or tests are related to some
point estimators of θ. For example, in a location family problem (Example

7.1), a confidence interval for θ = µ is often of the form [θ̂− c, θ̂+ c], where

θ̂ is an estimator of θ and c is a constant. In such a case a more accurate
estimator of θ should intuitively result in a better confidence interval. For
instance, when X1, ..., Xn are i.i.d. N(µ, 1), it can be shown (exercise) that
the interval [X̄ − c1, X̄ + c1] is better than the interval [X1 − c2, X1 + c2] in
terms of their lengths, where ci’s are chosen so that these confidence inter-
vals have confidence coefficient 1 − α. However, we cannot have the same
conclusion when Xi’s are from the Cauchy distribution C(µ, 1) (Exercise
32). The following is another example.

Example 7.13. Let X1, ..., Xn be i.i.d. from the uniform distribution
U(0, θ) with an unknown θ > 0. A confidence interval for θ of the form
[b−1X(n), a

−1X(n)] is derived in Example 7.2, where a and b are constants
chosen so that this confidence interval has confidence coefficient 1−α. An-
other confidence interval obtained by applying Proposition 7.1 with T = X
is of the form [b−1

1 X̃, a−1
1 X̃], where X̃ = e(

∏n
i=1Xi)

1/n. We now argue that
when n is large enough, the former has a shorter length than the latter.
Note that

√
n(X̃ − θ)/θ →d N(0, 1). Thus,

P

((
1 + d√

n

)−1

X̃ ≤θ≤
(
1 + c√

n

)−1

X̃

)
= P

(
c√
n
≤ X̃−θ

θ ≤ d√
n

)
→ 1−α

for some constants c and d. This means that a1 ≈ 1+c/
√
n, b1 ≈ 1+d/

√
n,

and the length of [b−1
1 X̃, a−1

1 X̃] converges to 0 a.s. at the rate n−1/2. On
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the other hand,

P
((

1 + d
n

)−1
X(n) ≤θ≤

(
1 + c

n

)−1
X(n)

)
= P

(
c
n ≤ X(n)−θ

θ ≤ d
n

)
→ 1 − α

for some constants c and d, since n(X(n)−θ)/θ has a known limiting distri-
bution (Example 2.34). This means that the length of [b−1X(n), a

−1X(n)]
converges to 0 a.s. at the rate n−1 and, therefore, [b−1X(n), a

−1X(n)] is

shorter than [b−1
1 X̃, a−1

1 X̃] for sufficiently large n a.s.

Similarly, one can show that the confidence interval based on the pivotal
quantity X̄/θ is not as good as [b−1X(n), a

−1X(n)] in terms of their lengths.

Thus, it is reasonable to consider the class of confidence intervals of the
form [b−1X(n), a

−1X(n)] subject to P (b−1X(n) ≤ θ ≤ a−1X(n)) = 1 − α.
The shortest-length interval within this class can be derived as follows.
Note that X(n)/θ has the Lebesgue p.d.f. nxn−1I(0,1)(x). Hence

1 − α = P (b−1X(n) ≤ θ ≤ a−1X(n)) =

∫ b

a

nxn−1dx = bn − an.

This implies that 1 ≥ b > a ≥ 0 and da
db = ( ba )n−1. Since the length of the

interval [b−1X(n), a
−1X(n)] is ψ(a, b) = X(n)(a

−1 − b−1),

dψ

db
= X(n)

(
1

b2
− 1

a2

da

db

)
= X(n)

an+1 − bn+1

b2an+1
< 0.

Hence the minimum occurs at b = 1 (a = α1/n). This shows that the
shortest-length interval is [X(n), α

−1/nX(n)].

As Example 7.13 indicates, once a reasonable class of confidence inter-
vals is chosen (using some good estimators, pivotal quantities, or tests), we
may find the shortest-length confidence interval within the class by directly
analyzing the lengths of the intervals. For a large class of problems, the
following result can be used.

Theorem 7.3. Let θ be a real-valued parameter and T (X) be a real-valued
statistic.
(i) Let U(X) be a positive statistic. Suppose that (T − θ)/U is a pivotal
quantity having a Lebesgue p.d.f. f that is unimodal at x0 ∈ R in the sense
that f(x) is nondecreasing for x ≤ x0 and f(x) is nonincreasing for x ≥ x0.
Consider the following class of confidence intervals for θ:

C =

{
[T − bU, T − aU ] : a ∈ R, b ∈ R,

∫ b

a

f(x)dx = 1 − α

}
. (7.10)

If [T − b∗U, T − a∗U ] ∈ C, f(a∗) = f(b∗) > 0, and a∗ ≤ x0 ≤ b∗, then the
interval [T − b∗U, T − a∗U ] has the shortest length within C.
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(ii) Suppose that T > 0, θ > 0, T/θ is a pivotal quantity having a Lebesgue
p.d.f. f , and that x2f(x) is unimodal at x0. Consider the following class of
confidence intervals for θ:

C =

{
[b−1T, a−1T ] : a > 0, b > 0,

∫ b

a

f(x)dx = 1 − α

}
. (7.11)

If [b−1
∗ T, a−1

∗ T ] ∈ C, a2
∗f(a∗) = b2∗f(b∗) > 0, and a∗ ≤ x0 ≤ b∗, then the

interval [b−1
∗ T, a−1

∗ T ] has the shortest length within C.
Proof. We prove (i) only. The proof of (ii) is left as an exercise. Note that
the length of an interval in C is (b− a)U . Thus, it suffices to show that if

a < b and b − a < b∗ − a∗, then
∫ b
a
f(x)dx < 1 − α. Assume that a < b,

b− a < b∗ − a∗, and a ≤ a∗ (the proof for a > a∗ is similar).

If b ≤ a∗, then a ≤ b ≤ a∗ ≤ x0 and
∫ b

a

f(x)dx ≤ f(a∗)(b− a) < f(a∗)(b∗ − a∗) ≤
∫ b∗

a∗

f(x)dx = 1 − α,

where the first inequality follows from the unimodality of f , the strict in-
equality follows from b− a < b∗ − a∗ and f(a∗) > 0, and the last inequality
follows from the unimodality of f and the fact that f(a∗) = f(b∗).

If b > a∗, then a ≤ a∗ < b < b∗. By the unimodality of f ,
∫ a∗

a

f(x)dx ≤ f(a∗)(a∗ − a) and

∫ b∗

b

f(x)dx ≥ f(b∗)(b∗ − b).

Then
∫ b

a

f(x)dx =

∫ b∗

a∗

f(x)dx +

∫ a∗

a

f(x)dx −
∫ b∗

b

f(x)dx

= 1 − α+

∫ a∗

a

f(x)dx −
∫ b∗

b

f(x)dx

≤ 1 − α+ f(a∗)(a∗ − a) − f(b∗)(b∗ − b)

= 1 − α+ f(a∗)[(a∗ − a) − (b∗ − b)]

= 1 − α+ f(a∗)[(b− a) − (b∗ − a∗)]

< 1 − α.

Example 7.14. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ and
σ2. Confidence intervals for θ = µ using the pivotal quantity

√
n(X̄−µ)/S

form the class C in (7.10) with f being the p.d.f. of the t-distribution tn−1,
which is unimodal at x0 = 0. Hence, we can apply Theorem 7.3(i). Since f
is symmetric about 0, f(a∗) = f(b∗) implies a∗ = −b∗ (exercise). Therefore,
the equal-tail confidence interval

[
X̄ − tn−1,α/2S/

√
n, X̄ + tn−1,α/2S/

√
n
]

(7.12)
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has the shortest length within C.

If θ = µ and σ2 is known, then we can replace S by σ and f by the
standard normal p.d.f. (i.e., use the pivotal quantity

√
n(X̄ − µ)/σ instead

of
√
n(X̄ − µ)/S). The resulting confidence interval is
[
X̄ − Φ−1(1 − α/2)σ/

√
n, X̄ + Φ−1(1 − α/2)σ/

√
n
]
, (7.13)

which is the shortest interval of the form [X̄ − b, X̄ − a] with confidence
coefficient 1−α. The difference in length of the intervals in (7.12) and (7.13)
is a random variable so that we cannot tell which one is better in general.
But the expected length of the interval (7.13) is always shorter than that of
the interval (7.12) (exercise). This again shows the importance of picking
the right pivotal quantity.

Consider next confidence intervals for θ = σ2 using the pivotal quantity
(n − 1)S2/σ2, which form the class C in (7.11) with f being the p.d.f. of
the chi-square distribution χ2

n−1. Note that x2f(x) is unimodal, but not
symmetric. By Theorem 7.3(ii), the shortest-length interval within C is

[ b−1
∗ (n− 1)S2, a−1

∗ (n− 1)S2 ], (7.14)

where a∗ and b∗ are solutions of a2
∗f(a∗) = b2∗f(b∗) and

∫ b∗
a∗
f(x)dx = 1−α.

Numerical values of a∗ and b∗ can be obtained (Tate and Klett, 1959). Note
that this interval is not equal-tail.

If θ = σ2 and µ is known, then a better pivotal quantity is T/σ2, where
T =

∑n
i=1(Xi−µ)2. One can show (exercise) that if we replace (n−1)S2 by

T and f by the p.d.f. of the chi-square distribution χ2
n, then the resulting

interval has shorter expected length than that of the interval in (7.14).

Suppose that we need a confidence interval for θ = σ when µ is unknown.
Consider the class of confidence intervals

[
b−1/2

√
n− 1S, a−1/2

√
n− 1S

]

with
∫ b
a
f(x)dx = 1−α and f being the p.d.f. of χ2

n−1. The shortest-length
interval, however, is not the one with the endpoints equal to the square
roots of the endpoints of the interval (7.14) (Exercise 36(c)).

Note that Theorem 7.3(ii) cannot be applied to obtain the result in
Example 7.13 unless n = 1, since the p.d.f. of X(n)/θ is strictly increasing
when n > 1. A result similar to Theorem 7.3, which can be applied to
Example 7.13, is given in Exercise 38.

The result in Theorem 7.3 can also be applied to justify the idea of HPD
credible sets in Bayesian analysis (Exercise 40).

If a confidence interval has the shortest length within a class of con-
fidence intervals, then its expected length is also the shortest within the
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same class, provided that its expected length is finite. In a problem where
a shortest-length confidence interval does not exist, we may have to use
the expected length as the criterion in comparing confidence intervals. For
instance, the expected length of the interval in (7.13) is always shorter than
that of the interval in (7.12), whereas the probability that the interval in
(7.12) is shorter than the interval in (7.13) is positive for any fixed n. An-
other example is the interval [X(n), α

−1/nX(n)] in Example 7.13. Although
we are not able to say that this interval has the shortest length among all
confidence intervals for θ with confidence coefficient 1 − α, we can show
that it has the shortest expected length, using the results in Theorems 7.4
and 7.6 (§7.2.2).

For one-sided confidence intervals (confidence bounds) of a real-valued
θ, their lengths may be infinity. We can use the distance between the
confidence bound and θ as a criterion in comparing confidence bounds,
which is equivalent to comparing the tightness of confidence bounds. Let
θj , j = 1, 2, be two lower confidence bounds for θ with the same confidence
coefficient. If θ1 − θ ≥ θ2 − θ is always true, then θ1 ≥ θ2 and θ1 is tighter
(more informative) than θ2. Again, since θj are random, we may have to
consider E(θj − θ) and choose θ1 if E(θ1) ≥ E(θ2). As a specific example,

consider i.i.d. X1, ..., Xn from N(θ, 1). If we use the pivotal quantity X̄−µ,
then θ1 = X̄−Φ−1(1−α)/

√
n. If we use the pivotal quantity X1 −µ, then

θ2 = X1 − Φ−1(1 − α). Clearly E(θ1) ≥ E(θ2). Although θ1 is intuitively
preferred, θ1 < θ2 with a positive probability for any fixed n > 1.

Some ideas discussed previously can be extended to the comparison of
confidence sets for multivariate θ. For bounded confidence sets in Rk, for
example, we may consider their volumes (Lebesgue measures). However, in
multivariate cases it is difficult to compare the volumes of confidence sets
with different shapes. Some results about expected volumes of confidence
sets are given in Theorem 7.6.

7.2.2 UMA and UMAU confidence sets

For a confidence set obtained by inverting the acceptance regions of some
UMP or UMPU tests, it is expected that the confidence set inherits some
optimality property.

Definition 7.2. Let θ ∈ Θ be an unknown parameter and Θ′ be a subset
of Θ that does not contain the true parameter value θ. A confidence set
C(X) for θ with confidence coefficient 1−α is said to be Θ′-uniformly most
accurate (UMA) if and only if for any other confidence set C1(X) with
significance level 1 − α,

P
(
θ′ ∈ C(X)

)
≤ P

(
θ′ ∈ C1(X)

)
for all θ′ ∈ Θ′. (7.15)
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C(X) is UMA if and only if it is Θ′-UMA with Θ′ = {θ}c.

The probabilities in (7.15) are probabilities of covering false values. In-
tuitively, confidence sets with small probabilities of covering wrong param-
eter values are preferred. The reason why we sometimes need to consider a
Θ′ different from {θ}c (the set containing all false values) is that for some
confidence sets, such as one-sided confidence intervals, we do not need to
worry about the probabilities of covering some false values. For example,
if we consider a lower confidence bound for a real-valued θ, we are assert-
ing that θ is larger than a certain value and we only need to worry about
covering values of θ that are too small. Thus, Θ′ = {θ′ ∈ Θ : θ′ < θ}. A
similar discussion leads to the consideration of Θ′ = {θ′ ∈ Θ : θ′ > θ} for
upper confidence bounds.

Theorem 7.4. Let C(X) be a confidence set for θ obtained by inverting the
acceptance regions of nonrandomized tests Tθ0 for testingH0 : θ = θ0 versus
H1 : θ ∈ Θθ0. Suppose that for each θ0, Tθ0 is UMP of size α. Then C(X)
is Θ′-UMA with confidence coefficient 1 − α, where Θ′ = {θ′ : θ ∈ Θθ′}.
Proof. The fact that C(X) has confidence coefficient 1 − α follows from
Theorem 7.2. Let C1(X) be another confidence set with significance level
1−α. By Proposition 7.2, the test T1θ0(X) = 1−IA1(θ0)(X) with A1(θ0) =
{x : θ0 ∈ C1(x)} has significance level α for testing H0 : θ = θ0 versus
H1 : θ ∈ Θθ0 . For any θ′ ∈ Θ′, θ ∈ Θθ′ and, hence, the population P is in
the family defined by H1 : θ ∈ Θθ′ . Thus,

P
(
θ′ ∈ C(X)

)
= 1 − P

(
Tθ′(X) = 1

)

≤ 1 − P
(
T1θ′(X) = 1

)

= P
(
θ′ ∈ C1(X)

)
,

where the first equality follows from the fact that Tθ′ is nonrandomized and
the inequality follows from the fact that Tθ′ is UMP.

Theorem 7.4 can be applied to construct UMA confidence bounds in
problems where the population is in a one-parameter parametric family
with monotone likelihood ratio so that UMP tests exist (Theorem 6.2).
It can also be applied to a few cases to construct two-sided UMA confi-
dence intervals. For example, the confidence interval [X(n), α

−1/nX(n)] in
Example 7.13 is UMA (exercise).

As we discussed in §6.2, in many problems there are UMPU tests but
not UMP tests. This leads to the following definition.

Definition 7.3. Let θ ∈ Θ be an unknown parameter, Θ′ be a subset of
Θ that does not contain the true parameter value θ, and 1 − α be a given
significance level.
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(i) A level 1 − α confidence set C(X) is said to be Θ′-unbiased (unbiased
when Θ′ = {θ}c) if and only if P (θ′ ∈ C(X)) ≤ 1 − α for all θ′ ∈ Θ′.
(ii) Let C(X) be a Θ′-unbiased confidence set with confidence coefficient
1 − α. If (7.15) holds for any other Θ′-unbiased confidence set C1(X)
with significance level 1 − α, then C(X) is Θ′-uniformly most accurate
unbiased (UMAU). C(X) is UMAU if and only if it is Θ′-UMAU with
Θ′ = {θ}c.

Theorem 7.5. Let C(X) be a confidence set for θ obtained by inverting
the acceptance regions of nonrandomized tests Tθ0 for testing H0 : θ = θ0
versus H1 : θ ∈ Θθ0 . If Tθ0 is unbiased of size α for each θ0, then C(X) is
Θ′-unbiased with confidence coefficient 1 − α, where Θ′ = {θ′ : θ ∈ Θθ′}; if
Tθ0 is also UMPU for each θ0, then C(X) is Θ′-UMAU.

The proof of Theorem 7.5 is very similar to that of Theorem 7.4.

It follows from Theorem 7.5 and the results in §6.2 that the confidence
intervals in (7.12), (7.13), and (7.14) are UMAU, since they can be obtained
by inverting acceptance regions of UMPU tests (Exercise 23).

Example 7.15. Consider the normal linear model in Example 7.9 and the
parameter θ = lτβ, where l ∈ R(Z). From §6.2.3, the nonrandomized test
with acceptance region

A(θ0) =
{
X : lτ β̂ − θ0 > tn−r,α

√
lτ (ZτZ)−lSSR/(n− r)

}

is UMPU with size α for testing H0 : θ = θ0 versus H1 : θ < θ0, where β̂ is
the LSE of β and tn−r,α is the (1−α)th quantile of the t-distribution tn−r.
Inverting A(θ) we obtain the following Θ′-UMAU upper confidence bound
with confidence coefficient 1 − α and Θ′ = (θ,∞):

θ = lτ β̂ − tn−r,α
√
lτ (ZτZ)−lSSR/(n− r).

A UMAU confidence interval for θ can be similarly obtained.

If θ = Lβ with L described in Example 7.9 and s > 1, then θ is multi-
variate. It can be shown that the confidence set derived in Example 7.9 is
unbiased (exercise), but it may not be UMAU.

The volume of a confidence set C(X) for θ ∈ Rk when X = x is defined
to be vol(C(x)) =

∫
C(x)

dθ′, which is the Lebesgue measure of the set

C(x) and may be infinite. In particular, if θ is real-valued and C(X) =
[θ(X), θ(X)] is a confidence interval, then vol(C(x)) is simply the length of
C(x). The next result reveals a relationship between the expected volume
(length) and the probability of covering a false value of a confidence set
(interval).
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Theorem 7.6 (Pratt’s theorem). Let X be a sample from P and C(X) be
a confidence set for θ ∈ Rk. Suppose that vol(C(x)) =

∫
C(x)

dθ′ is finite

a.s. P . Then the expected volume of C(X) is

E[vol(C(X))] =

∫

θ 6=θ′
P
(
θ′ ∈ C(X)

)
dθ′. (7.16)

Proof. By Fubini’s theorem,

E[vol(C(X))] =

∫
vol(C(X))dP

=

∫ [∫

C(x)

dθ′
]
dP (x)

=

∫ ∫

θ′∈C(x)

dθ′dP (x)

=

∫ [∫

θ′∈C(x)

dP (x)

]
dθ′

=

∫
P
(
θ′ ∈ C(X)

)
dθ′

=

∫

θ 6=θ′
P
(
θ′ ∈ C(X)

)
dθ′.

This proves the result.

It follows from Theorem 7.6 that if C(X) is UMA (or UMAU) with
confidence coefficient 1−α, then it has the smallest expected volume among
all confidence sets (or all unbiased confidence sets) with significance level
1−α. For example, the confidence interval (7.13) in Example 7.14 (when σ2

is known) or [X(n), α
−1/nX(n)] in Example 7.13 has the shortest expected

length among all confidence intervals with significance level 1 − α; the
confidence interval (7.12) or (7.14) has the shortest expected length among
all unbiased confidence intervals with significance level 1 − α.

7.2.3 Randomized confidence sets

Applications of Theorems 7.4 and 7.5 require that C(X) be obtained by
inverting acceptance regions of nonrandomized tests. Thus, these results
cannot be directly applied to discrete problems. In fact, in discrete prob-
lems inverting acceptance regions of randomized tests may not lead to a
confidence set with a given confidence coefficient. Note that randomization
is used in hypothesis testing to obtain tests with a given size. Thus, the
same idea can be applied to confidence sets, i.e., we may consider random-
ized confidence sets.
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Suppose that we invert acceptance regions of randomized tests Tθ0 that
reject H0 : θ = θ0 with probability Tθ0(x) when X = x. Let U be a random
variable that is independent of X and has the uniform distribution U(0, 1).
Then the test T̃θ0(X,U) = I(U,1](Tθ0) has the same power function as Tθ0
and is “nonrandomized” if U is viewed as part of the sample. Let

AU (θ0) = {(x, U) : U ≥ Tθ0(x)}

be the acceptance region of T̃θ0(X,U). If Tθ0 has size α for all θ0, then
inverting AU (θ) we obtain a confidence set

C(X,U) = {θ : (X,U) ∈ AU (θ)}

having confidence coefficient 1 − α, since

P
(
θ ∈ C(X,U)

)
= E

[
P
(
U ≥ Tθ(X)|X

)]
= E

[
1 − Tθ(X)

]
.

If Tθ0 is UMP (or UMPU) for each θ0, then C(X,U) is UMA (or UMAU).
However, C(X,U) is a randomized confidence set since it is still random
when we observe X = x.

When Tθ0 is a function of an integer-valued statistic, we can use the
method in the following example to derive C(X,U).

Example 7.16. Let X1, ..., Xn be i.i.d. binary random variables with p =
P (Xi = 1). The confidence coefficient of (p, 1] may not be 1 − α, where p
is given by (7.5).

From Example 6.2 and the previous discussion, a randomized UMP test
for testing H0 : p = p0 versus H1 : p > p0 can be constructed based on
Y =

∑n
i=1Xi and U , a random variable that is independent of Y and has

the uniform distribution U(0, 1). Since Y is integer-valued and U ∈ (0, 1),
W = Y +U is equivalent to (Y, U). It can be shown (exercise) that W has
the following Lebesgue p.d.f.:

fp(w) =

(
n

[w]

)
p[w](1 − p)n−[w]I(0,n+1)(w), (7.17)

where [w] is the integer part of w, and that the family {fp : p ∈ (0, 1)} has
monotone likelihood ratio in W . It follows from Theorem 6.2 that the test
T̃p0(Y, U) = I(c(p0),n+1)(W ) is UMP of size α for testing H0 : p = p0 versus

H1 : p > p0, where α =
∫ n+1

c(p0) fp0(w)dw. Since
∫ n+1

W fp(w)dw is increasing

in p (Lemma 6.3), inverting the acceptance regions of T̃p(Y, U) leads to

C(X,U) =
{
p :
∫ n+1

W
fp(w)dw ≥ α

}
= [p

1
, 1], where p

1
is the solution of

∫ n+1

Y+U

(
n

[w]

)
p[w](1 − p)n−[w]dw = α
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(p
1

= 0 if Y = 0 and U < 1 − α; p
1

= 1 if Y = n and U > 1 − α). The
lower confidence bound p

1
has confidence coefficient 1 − α and is Θ′-UMA

with Θ′ = (0, p).

Using a randomized confidence set, we can achieve the purpose of ob-
taining a confidence set with a given confidence coefficient as well as some
optimality properties such as UMA, UMAU, or shortest expected length.
On the other hand, randomization may not be desired in practical problems.

7.2.4 Invariant confidence sets

Let C(X) be a confidence set for θ and g be a one-to-one transformation of
X . The invariance principle requires that C(x) change in a specified way
when x is transformed to g(x), where x ∈ X and X is the range of X .

Definition 7.4. Let G be a group of one-to-one transformations of X such
that P is invariant under G (Definition 2.9). Let θ = θ(P ) be a parameter
with range Θ. Assume that g̃(θ) = θ(Pg(X)) is well defined for any g ∈ G,
i.e., g̃ is a transformation on Θ induced by g (g̃ = ḡ given in Definition 2.9
if P is indexed by θ).
(i) A confidence set C(X) is invariant under G if and only if θ ∈ C(x) is
equivalent to g̃(θ) ∈ C(g(x)) for every x ∈ X, θ ∈ Θ, and g ∈ G.
(ii) C(X) is Θ′-uniformly most accurate invariant (UMAI) with confidence
coefficient 1−α if and only if C(X) is invariant with confidence coefficient
1 − α and (7.15) holds for any other invariant confidence set C1(X) with
significance level 1 − α. C(X) is UMAI if and only if it is Θ′-UMAI with
Θ′ = {θ}c.

Example 7.17. Consider the confidence intervals in Example 7.14. Let
G = {gr,c : r > 0, c ∈ R} with gr,c(x) = (rx1 + c, ..., rxn + c). Let θ = µ.
Then ḡr,c(µ, σ

2) = (rµ + c, r2σ2) and g̃(µ) = rµ + c. Clearly, confidence
interval (7.12) is invariant under G.

When σ2 is known, the family P is not invariant under G and we consider
G1 = {g1,c : c ∈ R}. Then both confidence intervals (7.12) and (7.13) are
invariant under G1.

Suppose now that θ = σ2. For gr,c ∈ G, g̃(σ2) = r2σ2. Hence confidence
interval (7.14) is invariant under G.

If a confidence set C(X) is UMA and invariant, then it is UMAI. If
C(X) is UMAU and invariant, it is not so obvious whether it is UMAI,
since a UMAI confidence set (if it exists) is not necessarily unbiased. The
following result may be used to construct a UMAI confidence set.

Theorem 7.7. Suppose that for each θ0 ∈ Θ, A(θ0) is the acceptance
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region of a nonrandomized UMPI test of size α for H0 : θ = θ0 versus H1 :
θ ∈ Θθ0 under Gθ0 and that for any θ0 and g ∈ Gθ0 , g̃, the transformation
on Θ induced by g, is well defined. If C(X) = {θ : x ∈ A(θ)} is invariant
under G, the smallest group containing ∪θ∈ΘGθ, then it is Θ′-UMAI with
confidence coefficient 1 − α, where Θ′ = {θ′ : θ ∈ Θθ′}.

The proofs of Theorem 7.7 and the following result are given as exercises.

Proposition 7.3. Let P be a parametric family indexed by θ and G be
a group of transformations such that g̃ is well defined by Pg̃(θ) = Pg(X).
Suppose that, for any θ, θ′ ∈ Θ, there is a g ∈ G such that g̃(θ) = θ′. Then,
for any invariant confidence set C(X), P (θ ∈ C(X)) is a constant.

Example 7.18. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ
and σ2. Consider the problem of setting a lower confidence bound for
θ = µ/σ and G = {gr : r > 0} with gr(x) = rx. From Example 6.17, a
nonrandomized UMPI test of size α for H0 : θ = θ0 versus H1 : θ > θ0 has
the acceptance region A(θ0) = {x : t(x) ≤ c(θ0)}, where t(X) =

√
nX̄/S

and c(θ) is the (1−α)th quantile of the noncentral t-distribution tn−1(
√
nθ).

Applying Theorem 7.7 with Gθ0 = G for all θ0, one can show (exercise) that
the solution of

∫∞
t(x) fθ(u)du = α is a Θ′-UMAI lower confidence bound for

θ with confidence coefficient 1 − α, where fθ is the Lebesgue p.d.f. of the
noncentral t-distribution tn−1(

√
nθ) and Θ′ = (−∞, θ).

Example 7.19. Consider again the confidence intervals in Example 7.14.
In Example 7.17, confidence interval (7.12) is shown to be invariant under
G = {gr,c : r > 0, c ∈ R} with gr,c(x) = (rx1 +c, ..., rxn+c). Although con-
fidence interval (7.12) is UMAU, it is not obvious whether it is UMAI. This
interval can be obtained by inverting A(µ0)={x : |X̄−µ0|≤ tn−1,α/2S/

√
n},

which is the acceptance region of a nonrandomized test UMP among unbi-
ased and invariant tests of size α for H0 : µ = µ0 versus H1 : µ 6= µ0, under
Gµ0 = {hr,µ0 : r > 0} with hr,µ0(x) = (r(x1 − µ0) + µ0, ..., r(xn − µ0) + µ0)
(exercise). Note that the testing problem H0 : µ = µ0 versus H1 : µ 6= µ0 is
not invariant under G. Since G is the smallest group containing ∪µ0∈RGµ0

(exercise), by Theorem 7.7, interval (7.12) is UMA among unbiased and
invariant confidence intervals with confidence coefficient 1 − α, under G.

Using similar arguments one can show (exercise) that confidence inter-
vals (7.13) and (7.14) are UMA among unbiased and invariant confidence
intervals with confidence coefficient 1−α, under G1 (in Example 7.17) and
G, respectively.

When UMPI tests are randomized, one can construct randomized UMAI
confidence sets, using the techniques introduced in Theorem 7.7 and §7.2.3.
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7.3 Asymptotic Confidence Sets

In some problems, especially in nonparametric problems, it is difficult to
find a reasonable confidence set with a given confidence coefficient or sig-
nificance level 1−α. A common approach is to find a confidence set whose
confidence coefficient or significance level is nearly 1 − α when the sample
size n is large. A confidence set C(X) for θ has asymptotic significance level
1 − α if lim infn P (θ ∈ C(X)) ≥ 1 − α for any P ∈ P (Definition 2.14). If
limn→∞ P (θ ∈ C(X)) = 1−α for any P ∈ P , then C(X) is a 1−α asymp-
totically correct confidence set. Note that asymptotic correctness is not the
same as having limiting confidence coefficient 1 − α (Definition 2.14).

7.3.1 Asymptotically pivotal quantities

A known Borel function of (X, θ), ℜn(X, θ), is said to be asymptotically
pivotal if and only if the limiting distribution of ℜn(X, θ) does not depend
on P . Like a pivotal quantity in constructing confidence sets (§7.1.1) with
a given confidence coefficient or significance level, an asymptotically pivotal
quantity can be used in constructing asymptotically correct confidence sets.

Most asymptotically pivotal quantities are of the form V̂
−1/2
n (θ̂n − θ),

where θ̂n is an estimator of θ that is asymptotically normal, i.e.,

V −1/2
n (θ̂n − θ) →d Nk(0, Ik), (7.18)

and V̂n is an estimator of the asymptotic covariance matrix Vn and is consis-
tent according to Definition 5.4. The resulting 1−α asymptotically correct
confidence sets are of the form

C(X) = {θ : ‖V̂ −1/2
n (θ̂n − θ)‖2 ≤ χ2

k,α}, (7.19)

where χ2
k,α is the (1 − α)th quantile of the chi-square distribution χ2

k. If θ
is real-valued (k = 1), then C(X) in (7.19) is a 1−α asymptotically correct
confidence interval. When k > 1, C(X) in (7.19) is an ellipsoid.

Example 7.20 (Functions of means). Suppose that X1, ..., Xn are i.i.d.
random vectors having a c.d.f. F on Rd and that the unknown parameter
of interest is θ = g(µ), where µ = E(X1) and g is a known differentiable
function from Rd to Rk, k ≤ d. From the CLT, Theorem 1.12, and the
result in §5.5.1, (7.18) holds with θ̂n = g(X̄) and V̂n given by (5.108). Thus,
C(X) in (7.19) is a 1 − α asymptotically correct confidence set for θ.

Example 7.21 (Statistical functionals). Suppose that X1, ..., Xn are i.i.d.
random vectors having a c.d.f. F on Rd and that the unknown parameter
of interest is θ = T(F ), where T is a k-vector-valued functional. Let Fn be
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the empirical c.d.f. defined by (5.1) and θ̂n = T(Fn). Suppose that each
component of T is ̺∞-Hadamard differentiable with an influence function
satisfying (5.40) and that the conditions in Theorem 5.15 hold. Then, by
Theorems 5.5 and 5.15 and the discussions in §5.2.1, (7.18) holds with
V̂n given by (5.110) and C(X) in (7.19) is a 1 − α asymptotically correct
confidence set for θ.

Example 7.22 (Linear models). Consider linear model (3.25): X = Zβ+ε,
where ε has i.i.d. components with mean 0 and variance σ2. Assume that
Z is of full rank and that the conditions in Theorem 3.12 hold. It follows
from Theorem 1.9(iii) and Theorem 3.12 that (7.18) holds with θ̂n = β̂ and
V̂n = (n − p)−1SSR(ZτZ)−1 (see §5.5.1). Thus, a 1 − α asymptotically
correct confidence set for β is

C(X) = {β : (β̂ − β)τ (ZτZ)(β̂ − β) ≤ χ2
p,αSSR/(n− p)}.

Note that this confidence set is different from the one in Example 7.9 derived
under the normality assumption on ε.

The problems in the previous three examples are nonparametric. The
method of using asymptotically pivotal quantities can also be applied to
parametric problems. Note that in a parametric problem where the un-
known parameter θ is multivariate, a confidence set for θ with a given
confidence coefficient may be difficult or impossible to obtain.

Typically, in a given problem there exist many different asymptotically
pivotal quantities that lead to different 1 − α asymptotically correct con-
fidence sets for θ. Intuitively, if two asymptotic confidence sets are con-
structed using (7.18) with two different estimators, θ̂1n and θ̂2n, and if θ̂1n
is asymptotically more efficient than θ̂2n (§4.5.1), then the confidence set

based on θ̂1n should be better than the one based on θ̂2n in some sense.
This is formally stated in the following result.

Proposition 7.4. Let Cj(X), j = 1, 2, be the confidence sets given in

(7.19) with θ̂n = θ̂jn and V̂n = V̂jn, j = 1, 2, respectively. Suppose that for

each j, (7.18) holds for θ̂jn and V̂jn is consistent for Vjn, the asymptotic

covariance matrix of θ̂jn. If Det(V1n) < Det(V2n) for sufficiently large n,
where Det(A) is the determinant of A, then

P
(
vol(C1(X)) < vol(C2(X))

)
→ 1.

Proof. The result follows from the consistency of V̂jn and the fact that
the volume of the ellipsoid C(X) defined by (7.19) is equal to

vol(C(X)) =
πk/2(χ2

k,α)k/2[Det(V̂n)]1/2

Γ(1 + k/2)
.
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If θ̂1n is asymptotically more efficient than θ̂2n (§4.5.1), then Det(V1n) ≤
Det(V2n). Hence, Proposition 7.4 indicates that a more efficient estimator
of θ results in a better confidence set of the form (7.19) in terms of volume.

If θ̂n is asymptotically efficient (optimal in the sense of having the smallest
asymptotic covariance matrix; see Definition 4.4), then the confidence set
C(X) in (7.19) is asymptotically optimal (in terms of volume) among the
confidence sets of the form (7.19).

Asymptotically correct confidence sets for θ can also be constructed by
inverting acceptance regions of asymptotic tests for testing H0 : θ = θ0
versus some H1. If asymptotic tests are constructed using asymptotically
pivotal quantities (see §6.4.2, §6.4.3, and §6.5.4), the resulting confidence
sets are almost the same as those based on asymptotically pivotal quantities.

7.3.2 Confidence sets based on likelihoods

As we discussed in §7.3.1, a 1 − α asymptotically correct confidence set is
asymptotically optimal in some sense if it is based on an asymptotically
efficient point estimator. In parametric problems, it is shown in §4.5 that
MLE’s or RLE’s are asymptotically efficient. Thus, in this section we study
more closely the asymptotic confidence sets based on MLE’s and RLE’s or,
more generally, based on likelihoods.

Consider the case where P = {Pθ : θ ∈ Θ} is a parametric family
dominated by a σ-finite measure, where Θ ⊂ Rk. For convenience, we
consider θ = (ϑ, ϕ) and confidence sets for ϑ with dimension r. Let ℓ(θ) be
the likelihood function based on the observation X = x. The acceptance
region of the LR test defined in §6.4.1 with Θ0 = {θ : ϑ = ϑ0} is

A(ϑ0) = {x : ℓ(ϑ0, ϕ̂ϑ0) ≥ e−cα/2ℓ(θ̂)},

where ℓ(θ̂) = supθ∈Θ ℓ(θ), ℓ(ϑ, ϕ̂ϑ) = supϕ ℓ(ϑ, ϕ), and cα is a constant
related to the significance level α. Under the conditions of Theorem 6.5, if
cα is chosen to be χ2

r,α, the (1−α)th quantile of the chi-square distribution
χ2
r, then

C(X) = {ϑ : ℓ(ϑ, ϕ̂ϑ) ≥ e−cα/2ℓ(θ̂)} (7.20)

is a 1 − α asymptotically correct confidence set. Note that this confidence
set and the one given by (7.19) are generally different.

In many cases −ℓ(ϑ, ϕ) is a convex function of ϑ and, therefore, the set
defined by (7.20) is a bounded set in Rk; in particular, C(X) in (7.20) is a
bounded interval when k = 1.

In §6.4.2 we discussed two asymptotic tests closely related to the LR
test: Wald’s test and Rao’s score test. When Θ0 = {θ : ϑ = ϑ0}, Wald’s
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test has acceptance region

A(ϑ0) = {x : (ϑ̂− ϑ0)
τ{Cτ [In(θ̂)]−1C}−1(ϑ̂− ϑ0) ≤ χ2

r,α}, (7.21)

where θ̂ = (ϑ̂, ϕ̂) is an MLE or RLE of θ = (ϑ, ϕ), In(θ) is the Fisher
information matrix based on X , Cτ = ( Ir 0 ), and 0 is an r × (k − r)
matrix of 0’s. By Theorem 4.17 or 4.18, the confidence set obtained by
inverting A(ϑ) in (7.21) is the same as that in (7.19) with θ = ϑ and

V̂n = Cτ [In(θ̂)]−1C.

When Θ0 = {θ : ϑ = ϑ0}, Rao’s score test has acceptance region

A(ϑ0) = {x : [sn(ϑ0, ϕ̂ϑ0)]
τ [In(ϑ0, ϕ̂ϑ0)]

−1sn(ϑ0, ϕ̂ϑ0) ≤ χ2
r,α}, (7.22)

where sn(θ) = ∂ log ℓ(θ)/∂θ and ϕ̂ϑ is defined in (7.20). The confidence set
obtained by inverting A(ϑ) in (7.22) is also 1 − α asymptotically correct.
To illustrate these likelihood-based confidence sets and their differences, we
consider the following two examples.

Example 7.23. Let X1, ..., Xn be i.i.d. binary random variables with p =
P (Xi = 1). Since confidence sets for p with a given confidence coefficient
are usually randomized (§7.2.3), asymptotically correct confidence sets may
be considered when n is large.

The likelihood ratio for testing H0 : p = p0 versus H1 : p 6= p0 is

λ(Y ) = pY0 (1 − p0)
n−Y /p̂Y (1 − p̂)n−Y ,

where Y =
∑n
i=1Xi and p̂ = Y/n is the MLE of p. The confidence set

(7.20) is then equal to

C1(X) = {p : pY (1 − p)n−Y ≥ e−cα/2p̂Y (1 − p̂)n−Y }.

When 0 < Y < n, −pY (1−p)n−Y is strictly convex and equals 0 if p = 0 or
1 and, hence, C1(X) = [p, p] with 0 < p < p < 1. When Y = 0, (1 − p)n is
strictly decreasing and, therefore, C1(X) = (0, p] with 0 < p < 1. Similarly,
when Y = n, C1(X) = [p, 1) with 0 < p < 1.

The confidence set obtained by inverting acceptance regions of Wald’s
tests is simply

C2(X) = [ p̂− z1−α/2
√
p̂(1 − p̂)/n, p̂+ z1−α/2

√
p̂(1 − p̂)/n ],

since In(p) = n/[p(1− p)] and (χ2
1,α)1/2 = z1−α/2, the (1−α/2)th quantile

of N(0, 1). Note that

sn(p) =
Y

p
− n− Y

1 − p
=

Y − pn

p(1 − p)
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and

[sn(p)]
2[In(p)]−1 =

(Y − pn)2

p2(1 − p)2
p(1 − p)

n
=
n(p̂− p)2

p(1 − p)
.

Hence, the confidence set obtained by inverting acceptance regions of Rao’s
score tests is

C3(X) = {p : n(p̂− p)2 ≤ p(1 − p)χ2
1,α}.

It can be shown (exercise) that C3(X) = [p−, p+] with

p± =
2Y + χ2

1,α ±
√
χ2

1,α[4np̂(1 − p̂) + χ2
1,α]

2(n+ χ2
1,α)

.

Example 7.24. Let X1, ..., Xn be i.i.d. from N(µ, ϕ) with unknown θ =
(µ, ϕ). Consider the problem of constructing a 1−α asymptotically correct
confidence set for θ. The log-likelihood function is

log ℓ(θ) = − 1

2ϕ

n∑

i=1

(Xi − µ)2 − n

2
logϕ− n

2
log(2π).

Since (X̄, ϕ̂) is the MLE of θ, where ϕ̂ = (n − 1)S2/n, the confidence set
based on LR tests is

C1(X) =

{
θ :

1

ϕ

n∑

i=1

(Xi − µ)2 + n logϕ ≤ χ2
2,α + n+ n log ϕ̂

}
.

Note that

sn(θ) =

(
n(X̄ − µ)

ϕ
,

1

2ϕ2

n∑

i=1

(Xi − µ)2 − n

2ϕ

)

and

In(θ) =

(
n
ϕ 0

0 n
2ϕ2

)
.

Hence, the confidence set based on Wald’s tests is

C2(X) =

{
θ :

(X̄ − µ)2

ϕ̂
+

(ϕ̂− ϕ)2

2ϕ̂2
≤ χ2

2,α

n

}
,

which is an ellipsoid in R2, and the confidence set based on Rao’s score
tests is

C3(X) =



θ :

(X̄ − µ)2

ϕ
+

1

2

[
1

nϕ

n∑

i=1

(Xi − µ)2 − 1

]2

≤ χ2
2,α

n



 .
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Figure 7.2: Confidence sets obtained by inverting LR, Wald’s, and Rao’s
score tests in Example 7.24

In general, Cj(X), j = 1, 2, 3, are different. An example of these three
confidence sets is given in Figure 7.2, where n=100, µ=0, and ϕ=1.

Consider now the construction of a confidence set for µ. It can be shown
(exercise) that the confidence set based on Wald’s tests is defined by C2(X)
with ϕ replaced by ϕ̂, whereas the confidence sets based on LR tests and
Rao’s score tests are defined by C1(X) and C3(X), respectively, with ϕ
replaced by n−1

∑n
i=1(Xi − µ)2.

In nonparametric problems, asymptotic confidence sets can be obtained
by inverting acceptance regions of empirical likelihood ratio tests or profile
empirical likelihood ratio tests (§6.5.3). We consider the following problem
as an example. Let X1, ..., Xn be i.i.d. from F and θ = (ϑ, ϕ) be a k-vector
of unknown parameters defined by E[ψ(X1, θ)] = 0, where ψ is a known
function. Using the empirical likelihood

ℓ(G) =

n∏

i=1

pi subject to pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piψ(xi, θ) = 0,
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we can obtain a confidence set for ϑ by inverting acceptance regions of the
profile empirical likelihood ratio tests based on the ratio λn(X) in (6.91).
This leads to the confidence set defined by

C(X) =

{
ϑ :

n∏

i=1

1 + [ξn(θ̂)]τψ(xi, θ̂)

1 + [ζn(ϑ, ϕ̂)]τψ(xi, ϑ, ϕ̂)
≥ e−χ

2
r,α/2

}
, (7.23)

where the notation is the same as that in (6.91) and χ2
r,α is the (1 − α)th

quantile of the chi-square distribution χ2
r with r = the dimension of ϑ. By

Theorem 6.11, this confidence set is 1−α asymptotically correct. Inverting
the function of ϑ in (7.23) may be complicated, but C(X) can usually
be obtained numerically. More discussions about confidence sets based on
empirical likelihoods can be found in Owen (1988, 1990, 2001), Chen and
Qin (1993), Qin (1993), and Qin and Lawless (1994).

7.3.3 Confidence intervals for quantiles

Let X1, ..., Xn be i.i.d. from a continuous c.d.f. F on R and let θ = F−1(p)
be the pth quantile of F , 0 < p < 1. The general methods we previously
discussed can be applied to obtain a confidence set for θ, but we introduce
here a method that works especially for quantile problems.

In fact, for any given α, it is possible to derive a confidence interval
(or bound) for θ with confidence coefficient 1 − α (Exercise 84), but the
numerical computation of such a confidence interval may be cumbersome.
We focus on asymptotic confidence intervals for θ. Our result is based on
the following result due to Bahadur (1966). Its proof is omitted.

Theorem 7.8. Let X1, ..., Xn be i.i.d. from a continuous c.d.f. F on R
that is twice differentiable at θ = F−1(p), 0 < p < 1, with F ′(θ) > 0.
Let {kn} be a sequence of integers satisfying 1 ≤ kn ≤ n and kn/n =
p + o

(
(logn)δ/

√
n
)

for some δ > 0. Let Fn be the empirical c.d.f. defined
in (5.1). Then

X(kn) = θ +
(kn/n) − Fn(θ)

F ′(θ)
+O

(
(logn)(1+δ)/2

n3/4

)
a.s.

The result in Theorem 7.8 is a refinement of the Bahadur representa-
tion in Theorem 5.11. The following corollary of Theorem 7.8 is useful in
statistics. Let θ̂n = F−1

n (p) be the sample pth quantile.

Corollary 7.1. Assume the conditions in Theorem 7.8 and kn/n = p +
cn−1/2 + o(n−1/2) with a constant c. Then

√
n(X(kn) − θ̂n) →a.s. c/F

′(θ).
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The proof of Corollary 7.1 is left as an exercise. Using Corollary 7.1, we
can obtain a confidence interval for θ with limiting confidence coefficient
1 − α (Definition 2.14) for any given α ∈ (0, 1

2 ).

Corollary 7.2. Assume the conditions in Theorem 7.8. Let {k1n} and
{k2n} be two sequences of integers satisfying 1 ≤ k1n < k2n ≤ n,

k1n/n = p− z1−α/2
√
p(1 − p)/n+ o(n−1/2),

and
k2n/n = p+ z1−α/2

√
p(1 − p)/n+ o(n−1/2),

where za = Φ−1(a). Then the confidence interval C(X) = [X(k1n), X(k2n)]
has the property that P (θ ∈ C(X)) does not depend on P and

lim
n→∞

inf
P∈P

P
(
θ ∈ C(X)

)
= lim

n→∞
P
(
θ ∈ C(X)

)
= 1 − α. (7.24)

Furthermore,

the length of C(X) =
2z1−α/2

√
p(1 − p)

F ′(θ)
√
n

+ o

(
1√
n

)
a.s.

Proof. Note that P (X(k1n) ≤ θ ≤ X(k2n)) = P (U(k1n) ≤ p ≤ U(k2n)),
where U(k) is the kth order statistic based on a sample U1, ..., Un i.i.d. from
the uniform distribution U(0, 1) (Exercise 84). Hence, P (θ ∈ C(X)) does
not depend on P and the first equality in (7.24) holds.

By Corollary 7.1, Theorem 5.10, and Slutsky’s theorem,

P (X(k1n) > θ) = P

(
θ̂n − z1−α/2

√
p(1 − p)

F ′(θ)
√
n

+ op(n
−1/2) > θ

)

= P

( √
n(θ̂n − θ)√

p(1 − p)/F ′(θ)
+ op(1) > z1−α/2

)

→ 1 − Φ(z1−α/2)

= α/2.

Similarly, P (X(k2n) < θ) → α/2. Hence the second equality in (7.24) holds.
The result for the length of C(X) follows directly from Corollary 7.1.

The confidence interval [X(k1n), X(k2n)] given in Corollary 7.2 is called
Woodruff’s (1952) interval. It has limiting confidence coefficient 1 − α, a
property that is stronger than the 1 − α asymptotic correctness.

From Theorem 5.10, if F ′(θ) exists and is positive, then

√
n(θ̂n − θ) →d N

(
0, p(1−p)[F ′(θ)]2

)
.
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If the derivative F ′(θ) has a consistent estimator d̂n obtained using some
method such as one of those introduced in §5.1.3, then (7.18) holds with

V̂n = p(1 − p)/d̂2
n and the method introduced in §7.3.1 can be applied to

derive the following 1 − α asymptotically correct confidence interval:

C1(X) =

[
θ̂n − z1−α/2

√
p(1−p)
d̂n

√
n
, θ̂n + z1−α/2

√
p(1−p)
d̂n

√
n

]
.

The length of C1(X) is asymptotically almost the same as Woodruff’s in-

terval. However, C1(X) depends on the estimated derivative d̂n and it is

usually difficult to obtain a precise estimator d̂n.

7.3.4 Accuracy of asymptotic confidence sets

In §7.3.1 (Proposition 7.4) we evaluate a 1− α asymptotically correct con-
fidence set C(X) by its volume. We now study another way of assessing
C(X) by considering the convergence speed of P (θ ∈ C(X)).

Definition 7.5. A 1− α asymptotically correct confidence set C(X) for θ
is said to be lth-order (asymptotically) accurate if and only if

P
(
θ ∈ C(X)

)
= 1 − α+O(n−l/2),

where l is a positive integer.

We focus on the case where θ is real-valued. For θ ∈ R, the confidence
set given by (7.19) is the two-sided interval [ θα/2, θα/2 ], where θα = θ̂n −
z1−αV̂

1/2
n , θα = θ̂n+z1−αV̂

1/2
n , and za = Φ−1(a). Suppose that the c.d.f. of

V̂
−1/2
n (θ̂n − θ) admits the Edgeworth expansion (1.106) with m = 1. Then

P ( θ ≥ θα ) = P
(
V̂ −1/2
n (θ̂n − θ) ≤ z1−α

)

= Φ(z1−α) + n−1/2p1(z1−α)Φ′(z1−α) + o(n−1/2)

= 1 − α+O(n−1/2),

i.e., the lower confidence bound θα or the one-sided confidence interval
[ θα,∞) is first-order accurate. Similarly,

P ( θ ≤ θα ) = 1 − P
(
V̂ −1/2
n (θ̂n − θ) < −z1−α

)

= 1 − Φ(−z1−α) − n−1/2p1(−z1−α)Φ′(−z1−α) + o(n−1/2)

= 1 − α+O(n−1/2),

i.e., the upper confidence bound θα is first-order accurate. Combining these
results and using the fact that Φ′(x) and p1(x) are even functions (Theorem
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1.16), we obtain that

P ( θα/2 ≤ θ ≤ θα/2 ) = 1 − α+ o(n−1/2),

which indicates that the coverage probability of [ θα/2, θα/2 ] converges to

1 − α at a rate faster than n−1/2. In fact, if we assume that the c.d.f. of

V̂
−1/2
n (θ̂n − θ) admits the Edgeworth expansion (1.106) with m = 2, then

P ( θα/2 ≤ θ ≤ θα/2 ) = 1−α+2n−1p2(z1−α/2)Φ
′(z1−α/2)+o(n−1), (7.25)

i.e., the equal-tail two-sided confidence interval [ θα/2, θα/2 ] is second-order
accurate.

Can we obtain a confidence bound that is more accurate than θα (or θα)
or a two-sided confidence interval that is more accurate than [ θα/2, θα/2 ]?
The answer is affirmative if a higher order Edgeworth expansion is available.
Assume that the conditions in Theorem 1.16 are satisfied for an integer
m ≥ 2. Using the arguments in deriving the polynomial qj in (1.108), we
can show (exercise) that

P


V̂ −1/2

n (θ̂n − θ) ≤ z1−α +

m−1∑

j=1

qj(z1−α)

nj/2


 = 1 − α+O(n−m/2). (7.26)

If the coefficients of polynomials q1, ..., qm−1 are known, then

θ̂n − V̂ −1/2
n

[
z1−α +

m−1∑

j=1

qj(z1−α)

nj/2

]

is an mth-order accurate lower confidence bound for θ. In general, however,
some coefficients of qj ’s are unknown. Let q̂j be the same as qj with all
unknown coefficients in the polynomial qj replaced by their estimators, j =
1, ...,m− 1. Assume that q̂1(z1−α) − q1(z1−α) = Op(n

−1/2), i.e., q̂1(z1−α)
is

√
n-consistent. Then, the lower confidence bound

θ(2)α = θ̂n − V̂ 1/2
n [z1−α + n−1/2q̂1(z1−α)]

is second-order accurate (Hall, 1992). A second-order accurate upper con-

fidence bound θ
(2)

α/2 can be similarly defined. However, the two-sided confi-

dence interval [ θ
(2)
α/2, θ

(2)

α/2 ] is only second-order accurate, i.e., in terms of the

convergence speed, it does not improve the confidence interval [ θα/2, θα/2 ].

Higher order accurate confidence bounds and two-sided confidence in-
tervals can be obtained using Edgeworth and Cornish-Fisher expansions.
See Hall (1992).
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Example 7.25. Let X1, ..., Xn be i.i.d. random d-vectors. Consider the
problem of setting a lower confidence bound for θ = g(µ), where µ = EX1

and g is five times continuously differentiable from Rd to R with ∇g(µ) 6= 0.

Let X̄ be the sample mean and θ̂n = g(X̄). Then, V̂n in (7.19) can be cho-
sen to be n−2(n− 1)[∇g(X̄)]τS2∇g(X̄), where S2 is the sample covariance
matrix. Let Xij be the jth component of Xi and Yi be a vector containing
components of the form Xij and XijXij′ , j = 1, ..., d, j′ ≥ j. It can be

shown (exercise) that V̂
−1/2
n (θ̂n − θ) can be written as

√
nh(Ȳ )/σh, where

Ȳ is the sample mean of Yi’s, h is a five times continuously differentiable
function, h(EY1) = 0, and σ2

h = [∇h(EY1)]
τVar(Y1)∇h(EY1). Assume

that E‖Y1‖4 < ∞ and that Cramér’s continuity condition (1.105) is sat-

isfied. By Theorem 1.16, the distribution of V̂
−1/2
n (θ̂n − θ) admits the

Edgeworth expansion (1.106) with m = 2 and p1(x) given by (1.107). Since
q1(x) = −p1(x) (§1.5.6), we obtain the following second-order accurate
lower confidence bound for θ:

θ(2)α = θ̂n − V̂ 1/2
n {z1−α + n−1/2[ĉ1σ̂

−1
h − 6−1ĉ2σ̂

−3
h (z2

1−α − 1)]},

where σ̂2
h = [∇h(Ȳ )]τS2

Y∇h(Ȳ ), S2
Y is the sample covariance matrix based

on Yi’s, and ĉj is the estimator of cj in (1.107) obtained by replacing the
moments of Y1 with the corresponding sample moments.

In particular, if d = 1 and g(x) = x, then it follows from Example 1.34
that

θ(2)α = X̄ − n−1/2σ̂[z1−α − 6−1n−1/2κ̂3(2z
2
1−α + 1)],

where σ̂2 = n−1
∑n

i=1(Xi − X̄)2 and κ̂3 = n−1
∑n

i=1(X1 − X̄)3/σ̂3 is
√
n-

consistent for κ3 = E(X1 − µ)3/σ3 with σ2 = Var(X1). A second-order
accurate lower confidence bound for σ2 can be similarly derived (Exercise
89).

7.4 Bootstrap Confidence Sets

In this section, we study how to use the bootstrap method introduced in
§5.5.3 to construct asymptotically correct confidence sets. There are two
main advantages of using the bootstrap method. First, as we can see from
previous sections, constructing confidence sets having a given confidence
coefficient or being asymptotically correct requires some theoretical deriva-
tions. The bootstrap method replaces these derivations by some routine
computations. Second, confidence intervals (especially one-sided confidence
intervals) constructed using the bootstrap method may be asymptotically
second-order accurate (§7.3.4).

We use the notation in §5.5.3. LetX = (X1, ..., Xn) be a sample from P .
We focus on the case where Xi’s are i.i.d. so that P is specified by a c.d.f. F
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on Rd, although some results discussed here can be extended to non-i.i.d.
cases. Also, we assume that F is estimated by the empirical c.d.f. Fn defined
in (5.1) (which means that no assumption is imposed on F and the problem
is nonparametric) so that P̂ in §5.5.3 is the population corresponding to Fn.
A bootstrap sample X∗ = (X∗

1 , ..., X
∗
n) is obtained from P̂ , i.e., X∗

i ’s are
i.i.d. from Fn. Some other bootstrap sampling procedures are described in
Exercises 92 and 95-97. Let θ be a parameter of interest, θ̂n be an estimator
of θ, and θ̂∗n be the bootstrap analogue of θ̂n, i.e., θ̂∗n is the same as θ̂n except
that X is replaced by the bootstrap sample X∗.

7.4.1 Construction of bootstrap confidence intervals

We now introduce several different ways of constructing bootstrap confi-
dence intervals for a real-valued θ. Some ideas can be extended to the
construction of bootstrap confidence sets for multivariate θ. We mainly
consider lower confidence bounds. Upper confidence bounds can be simi-
larly obtained and equal-tail two-sided confidence intervals can be obtained
using confidence bounds.

The bootstrap percentile

Define
KB(x) = P∗(θ̂

∗
n ≤ x), (7.27)

where P∗ denotes the distribution of X∗ conditional on X . For a given
α ∈ (0, 1

2 ), the bootstrap percentile method (Efron, 1981) gives the following
lower confidence bound for θ:

θBP = K−1
B (α). (7.28)

The name percentile comes from the fact that K−1
B (α) is a percentile of the

bootstrap distribution KB in (7.27).

For most cases, the computation of θBP requires numerical approxi-
mations such as the Monte Carlo approximation described in §5.5.3. A
description of the Monte Carlo approximation to bootstrap confidence sets
can be found in §7.4.3 (when bootstrap prepivoting is discussed).

We now provide a justification of the bootstrap percentile method that
allows us to see what assumptions are required for a good performance of a
bootstrap percentile confidence set. Suppose that there exists an increasing
transformation φn(x) such that

P
(
φ̂n − φn(θ) ≤ x

)
= Ψ(x) (7.29)

holds for all possible F (including F = Fn), where φ̂n = φn(θ̂n) and Ψ
is a c.d.f. that is continuous, strictly increasing, and symmetric about 0.
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When Ψ = Φ, the standard normal distribution, the function φn is called
the normalizing and variance stabilizing transformation. If φn and Ψ in
(7.29) can be derived, then the following lower confidence bound for θ has
confidence coefficient 1 − α:

θE = φ−1
n (φ̂n + zα),

where zα = Ψ−1(α).

We now show that θBP = θE and, therefore, we can still use this lower

confidence bound without deriving φn and Ψ. Let wn = φn(θBP ) − φ̂n.
From the fact that assumption (7.29) holds when F is replaced by Fn,

Ψ(wn) = P∗(φ̂
∗
n − φ̂n ≤ wn) = P∗(θ̂

∗
n ≤ θBP ) = α,

where φ̂∗n = φn(θ̂
∗
n) and the last equality follows from the definition of θBP

and the assumption on Ψ. Hence wn = zα = Ψ−1(α) and

θBP = φ−1
n (φ̂n + zα) = θE .

Thus, the bootstrap percentile lower confidence bound θBP has confi-
dence coefficient 1 − α for all n if assumption (7.29) holds exactly for all
n. If assumption (7.29) holds approximately for large n, then θBP is 1− α
asymptotically correct (see Theorem 7.9 in §7.4.2) and its performance de-
pends on how good the approximation is.

The bootstrap bias-corrected percentile

Efron (1981) considered the following assumption that is more general than
assumption (7.29):

P
(
φ̂n − φn(θ) + z0 ≤ x

)
= Ψ(x), (7.30)

where φn and Ψ are the same as those in (7.29) and z0 is a constant that
may depend on F and n. When z0 = 0, (7.30) reduces to (7.29). Since

Ψ(0) = 1
2 , z0 is a kind of “bias” of φ̂n. If φn, z0, and Ψ in (7.30) can

be derived, then a lower confidence bound for θ with confidence coefficient
1 − α is

θE = φ−1
n (φ̂n + zα + z0).

Applying assumption (7.30) to F = Fn, we obtain that

KB(θ̂n) = P∗(φ̂
∗
n − φ̂n + z0 ≤ z0) = Ψ(z0),

where KB is given in (7.27). This implies

z0 = Ψ−1
(
KB(θ̂n)

)
. (7.31)



508 7. Confidence Sets

Also from (7.30),

1 − α = Ψ(−zα)

= P∗
(
φ̂∗n − φ̂n + z0 ≤ −zα

)

= P∗
(
θ̂∗n ≤ φ−1

n (φ̂n − zα − z0)
)
,

which implies
φ−1
n (φ̂n − zα − z0) = K−1

B (1 − α).

Since this equation holds for any α, it implies that for 0 < x < 1,

K−1
B (x) = φ−1

n

(
φ̂n + Ψ−1(x) − z0

)
. (7.32)

By the definition of θE and (7.32),

θE = K−1
B

(
Ψ(zα + 2z0)

)
.

Assuming that Ψ is known (e.g., Ψ = Φ) and using (7.31), Efron (1981) ob-
tained the bootstrap bias-corrected (BC) percentile lower confidence bound
for θ:

θBC = K−1
B

(
Ψ
(
zα + 2Ψ−1(KB(θ̂n))

))
, (7.33)

which is a percentile of the bootstrap distribution KB. Note that θBC
reduces to θBP if KB(θ̂n) = 1

2 , i.e., θ̂n is the median of the bootstrap
distribution KB. Hence, the bootstrap BC percentile method is a bias-
corrected version of the bootstrap percentile method and the bias-correction
is represented by 2Ψ−1(KB(θ̂n)). If (7.30) holds exactly, then θBC has
confidence coefficient 1 − α for all n. If (7.30) holds approximately, then
θBC is 1 − α asymptotically correct.

The bootstrap BC percentile method improves the bootstrap percentile
method by taking a bias into account. This is supported by the theoretical
result in §7.4.2. However, there are still many cases where assumption (7.30)
cannot be fulfilled nicely and the bootstrap BC percentile method does not
work well. Efron (1987) proposed a bootstrap accelerated bias-corrected
(BCa) percentile method (see Exercise 93) that improves the bootstrap BC
percentile method. However, applications of the bootstrap BCa percentile
method involve some derivations that may be very complicated. See Efron
(1987) and Efron and Tibshirani (1993) for details.

The hybrid bootstrap

Suppose that θ̂n is asymptotically normal, i.e., (7.18) holds with Vn = σ2
F /n.

Let Hn be the c.d.f. of
√
n(θ̂n − θ) and

ĤB(x) = P∗
(√
n(θ̂∗n − θ̂n) ≤ x

)
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be its bootstrap estimator defined in (5.121). From the results in Theorem
5.20, for any t ∈ (0, 1), Ĥ−1

B (t) − H−1
n (t) →p 0. Treating the quantile of

ĤB as the quantile of Hn, we obtain the following hybrid bootstrap lower
confidence bound for θ:

θHB = θ̂n − n−1/2Ĥ−1
B (1 − α). (7.34)

The bootstrap-t

Suppose that (7.18) holds with Vn = σ2
F /n and σ̂2

F is a consistent estimator

of σ2
F . The bootstrap-t method is based on t(X, θ) =

√
n(θ̂n − θ)/σ̂F ,

which is often called a studentized “statistic”. If the distribution Gn of
t(X, θ) is known (i.e., t(X, θ) is pivotal), then a confidence interval for θ
with confidence coefficient 1−α can be obtained (§7.1.1). If Gn is unknown,
it can be estimated by the bootstrap estimator

ĜB(x) = P∗
(
t(X∗, θ̂n) ≤ x

)
,

where t(X∗, θ̂n) =
√
n(θ̂∗n− θ̂n)/σ̂∗

F and σ̂∗
F is the bootstrap analogue of σ̂F .

Treating the quantile of ĜB as the quantile of Gn, we obtain the following
bootstrap-t lower confidence bound for θ:

θBT = θ̂n − n−1/2σ̂F Ĝ
−1
B (1 − α). (7.35)

Although it is shown in §7.4.2 that θBT in (7.35) is more accurate than
θBP in (7.28), θBC in (7.33), and θHB in (7.34), the use of the bootstrap-t
method requires a consistent variance estimator σ̂2

F .

7.4.2 Asymptotic correctness and accuracy

From the construction of the hybrid bootstrap and bootstrap-t confidence
bounds, θHB is 1−α asymptotically correct if ̺∞(ĤB, Hn) →p 0, and θBT
is 1 − α asymptotically correct if ̺∞(ĜB , Gn) →p 0. On the other hand,
the asymptotic correctness of the bootstrap percentile (with or without
bias-correction or acceleration) confidence bounds requires slightly more.

Theorem 7.9. Suppose that ̺∞(ĤB, Hn) →p 0 and

lim
n→∞

ρ∞(Hn, H) = 0, (7.36)

whereH is a c.d.f. on R that is continuous, strictly increasing, and symmet-
ric about 0. Then θBP in (7.28) and θBC in (7.33) are 1−α asymptotically
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correct.
Proof. The result for θBP follows from

P
(
θBP ≤ θ

)
= P

(
α ≤ KB(θ)

)

= P
(
α ≤ HB

(√
n(θ − θ̂n)

))

= P
(√
n(θ̂n − θ) ≤ −Ĥ−1

B (α)
)

= P
(√
n(θ̂n − θ) ≤ −H−1(α)

)
+ o(1)

= H
(
−H−1(α)

)
+ o(1)

= 1 − α+ o(1).

The result for θBC follows from the previous result and

z0 = Ψ−1
(
KB(θ̂n)

)
= Ψ−1

(
ĤB(0)

)
→p Ψ−1

(
H(0)

)
= 0.

Theorem 7.9 can be obviously extended to the case of upper confidence
bounds or two-sided confidence intervals. The result also holds for the
bootstrap BCa percentile confidence intervals.

Note thatH in (7.36) is not the same as Ψ in assumption (7.30). Usually
H(x) = Φ(x/σF ) for some σF > 0, whereas Ψ = Φ. Also, condition (7.36)
is much weaker than assumption (7.30), since the latter requires variance
stabilizing.

It is not surprising that all bootstrap methods introduced in §7.3.1 pro-
duce asymptotically correct confidence sets. To compare various bootstrap
confidence intervals and other asymptotic confidence intervals, we now con-
sider their asymptotic accuracy (Definition 7.5).

Consider the case of θ = g(µ), µ = EX1, and θ̂n = g(X̄), where X̄ is the
sample mean and g is five times continuously differentiable from Rd to R
with ∇g(µ) 6= 0. The asymptotic variance of

√
n(θ̂n − θ) can be estimated

by σ̂2
F = n−1

n [∇g(X̄)]τS2∇g(X̄), where S2 is the sample covariance matrix.

Let Gn be the distribution of
√
n(θ̂n− θ)/σ̂F . If Gn is known, then a lower

confidence bound for θ with confidence coefficient 1 − α is

θE = θ̂n − n−1/2σ̂FG
−1
n (1 − α), (7.37)

which is not useful if Gn is unknown.

Assume that E‖X1‖8 <∞ and condition (1.105) is satisfied. Then Gn
admits the Edgeworth expansion (1.106) with m = 2 and, by Theorem 1.17,
G−1
n (t) admits the Cornish-Fisher expansion

G−1
n (t) = zt +

q1(zt, F )√
n

+
q2(zt, F )

n
+ o

(
1

n

)
, (7.38)
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where qj(·, F ) is the same as qj(·) in Theorem 1.17 but the notation qj(·, F )
is used to emphasize that the coefficients of the polynomial qj depend on F ,

the c.d.f. of X1. Let ĜB be the bootstrap estimator of Gn defined in §7.4.1.
Under some conditions (Hall, 1992), Ĝ−1

B admits expansion (7.38) with
F replaced by the empirical c.d.f. Fn for almost all sequences X1, X2, ....
Hence the bootstrap-t lower confidence bound in (7.35) can be written as

θBT = θ̂n − σ̂F√
n

[
z1−α +

2∑

j=1

qj(z1−α, Fn)

nj/2
+ o

(
1

n

)]
a.s. (7.39)

Under some moment conditions, qj(x, Fn) − qj(x, F ) = Op(n
−1/2) for each

x, j = 1, 2. Then, comparing (7.37), (7.38), and (7.39), we obtain that

θBT − θE = Op(n
−3/2). (7.40)

Furthermore,

P (θBT ≤ θ) = P

(
θ̂n − θ

σ̂F /
√
n

≤ Ĝ−1
B (1 − α)

)

= P

(
θ̂n − θ

σ̂F /
√
n

≤ z1−α +

2∑

j=1

qj(z1−α, Fn)

nj/2

)
+ o

(
1

n

)

= 1 − α+
ψ(z1−α)Φ′(z1−α)

n
+ o

(
1

n

)
, (7.41)

where ψ(x) is a polynomial whose coefficients are functions of moments of F
and the last equality can be justified by a somewhat complicated argument
(Hall, 1992).

Result (7.41) implies that θBT is second-order accurate according to
Definition 7.5. The same can be concluded for the bootstrap-t upper con-
fidence bound and the equal-tail two-sided bootstrap-t confidence interval
for θ.

Next, we consider the hybrid bootstrap lower confidence bound θHB
given by (7.34). Let H̃B be the bootstrap estimator of H̃n, the distribution

of
√
n(θ̂n − θ)/σF . Then Ĥ−1

B (1 − α) = σ̂F H̃
−1
B (1 − α) and

θHB = θ̂n − n−1/2σ̂F H̃
−1
B (1 − α),

which can be viewed as a bootstrap approximation to

θH = θ̂n − n−1/2σ̂F H̃
−1
n (1 − α).

Note that θH does not have confidence coefficient 1−α, since it is obtained
by muddling up G−1

n (1−α) and H̃−1
n (1−α). Similar to G−1

n , H̃−1
n admits
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the Cornish-Fisher expansion

H̃−1
n (t) = zt +

q̃1
(
zt, F

)
√
n

+
q̃2
(
zt, F

)

n
+ o

(
1

n

)
(7.42)

and H̃−1
B admits the same expansion (7.42) with F replaced by Fn for

almost all X1, X2, .... Then

θHB = θ̂n − σ̂F√
n

[
z1−α +

2∑

j=1

q̃j(z1−α, Fn)

nj/2
+ o

(
1

n

)]
a.s. (7.43)

and, by (7.37),
θHB − θE = Op(n

−1), (7.44)

since q1(x, F ) and q̃1(x, F ) are usually different. Results (7.40) and (7.44)
imply that θHB is not as close to θE as θBT . Similarly to (7.41), we can
show that (Hall, 1992)

P (θHB ≤ θ) = P

(
θ̂n − θ

σ̂F /
√
n

≤ H̃−1
B (1 − α)

)

= P

(
θ̂n − θ

σ̂F /
√
n

≤ z1−α +
2∑

j=1

q̃j(z1−α, Fn)

nj/2

)
+ o

(
1

n

)

= P

(
θ̂n − θ

σ̂F /
√
n

≤ z1−α +

2∑

j=1

q̃j(z1−α, F )

nj/2

)
+O

(
1

n

)

= 1 − α+
ψ̃(z1−α)Φ′(z1−α)√

n
+O

(
1

n

)
, (7.45)

where ψ̃(x) is an even polynomial. This implies that when ψ̃ 6≡ 0, θHB is
only first-order accurate according to Definition 7.5.

The same conclusion can be drawn for the hybrid bootstrap upper con-
fidence bounds. However, the equal-tail two-sided hybrid bootstrap confi-
dence interval

[ θHB , θHB ] = [ θ̂n − n−1/2Ĥ−1
B (1 − α), θ̂n − n−1/2Ĥ−1

B (α) ]

is second-order accurate (and 1−2α asymptotically correct), as is the equal-
tail two-sided bootstrap-t confidence interval, since

P (θHB ≤ θ ≤ θHB) = P (θ ≤ θHB) − P (θ < θHB)

= 1 − α+ n−1/2ψ̃(z1−α)Φ′(z1−α)

− α− n−1/2ψ̃(zα)Φ′(zα) +O(n−1)

= 1 − 2α+O(n−1)
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by the fact that ψ̃ and Φ′ are even functions and z1−α = −zα.

For the bootstrap percentile lower confidence bound in (7.28),

θBP = K−1
B (α) = θ̂n + n−1/2Ĥ−1

B (α).

Comparing θBP with θBT and θHB , we find that the bootstrap percentile
method muddles up not only H̃−1

B (1−α) and Ĝ−1
B (1−α), but also Ĥ−1

B (α)

and −Ĥ−1
B (1 − α). If ĤB is asymptotically symmetric about 0, then the

bootstrap percentile method is equivalent to the hybrid bootstrap method
and, therefore, one-sided bootstrap percentile confidence intervals are only
first-order accurate and the equal-tail two-sided bootstrap percentile confi-
dence interval is second-order accurate.

Since θ̂n is asymptotically normal, we can use Ψ = Φ for the bootstrap
BC percentile method. Let α̃n = Φ(zα + 2z0). Then the bootstrap BC
percentile lower confidence bound given by (7.33) is just the α̃nth quantile
of KB in (7.27). Using the Edgeworth expansion, we obtain that

KB(θ̂n) = H̃B(0) = Φ(0) +
q̃(0, Fn)Φ

′(0)√
n

+Op

(
1

n

)

with some function q̃ and, therefore,

α̃n = α+
2q̃(0, Fn)Φ

′(zα)√
n

+Op

(
1

n

)
.

This result and the Cornish-Fisher expansion for H̃−1
B imply

H̃−1
B (α̃n) = zα +

2q̃(0, Fn) + q̃1(zα, Fn)√
n

+Op

(
1

n

)
.

Then from (7.33) and K−1
B (α̃n) = θ̂n + n−1/2σ̂F H̃

−1
B (α̃n),

θBC = θ̂n +
σ̂F√
n

[
zα +

2q̃(0, Fn) + q̃1(zα, Fn)√
n

+Op

(
1

n

)]
. (7.46)

Comparing (7.37) with (7.46), we conclude that

θBC − θE = Op(n
−1).

It also follows from (7.46) that

P (θBC ≤ θ) = 1 − α+
ψ̄(z1−α)Φ′(z1−α)√

n
+O

(
1

n

)
(7.47)

with an even polynomial ψ̄(x). Hence θBC is first-order accurate in general.
In fact,

θBC − θBP = 2q̃(0, Fn)σ̂Fn
−1 +Op(n

−3/2)
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and, therefore, the bootstrap BC percentile and the bootstrap percentile
confidence intervals have the same order of accuracy. The bootstrap BC
percentile method, however, is a partial improvement over the bootstrap
percentile method in the sense that the absolute value of ψ̄(z1−α) in (7.47)
is smaller than that of ψ̃(z1−α) in (7.45) (see Example 7.26).

While the bootstrap BC percentile method does not improve the boot-
strap percentile method in terms of accuracy order, Hall (1988) showed that
the bootstrap BCa percentile method in Efron (1987) produces second-order
accurate one-sided and two-sided confidence intervals and that (7.40) holds
with θBT replaced by the bootstrap BCa percentile lower confidence bound.

We have considered the order of asymptotic accuracy for all bootstrap
confidence intervals introduced in §7.4.1. In summary, all two-sided con-
fidence intervals are second-order accurate; the one-sided bootstrap-t and
bootstrap BCa percentile confidence intervals are second-order accurate,
whereas the one-sided bootstrap percentile, bootstrap BC percentile, and
hybrid bootstrap confidence intervals are first-order accurate; however, the
latter three are simpler than the former two.

Note that the results in §7.3.4 show that asymptotic confidence intervals
obtained using the method in §7.3.1 have the same order of accuracy as the
hybrid bootstrap confidence intervals.

Example 7.26. Suppose that d = 1 and g(x) = x. It follows from the
results in §1.5.6 that expansions (7.38) and (7.42) hold with q1(x, F ) =
−γ(2x2 + 1)/6, q2(x, F ) = x[(x2 + 3)/4− κ(x2 − 3)/12 + 5γ2(4x2 − 1)/72],
q̃1(x, F ) = γ(x2 − 1)/6, and q̃2(x, F ) = x[κ(x2 − 3)/24 − γ2(2x2 − 5)/36],
where γ = κ3 = E(X1 − µ)3/σ3 (skewness), κ = E(X1 − µ)4/σ4 − 3
(kurtosis), and σ2 = Var(X1).

The function ψ in (7.41) is equal to x(1+2x2)(κ−3γ2/2)/6; the function
ψ̃ in (7.45) is equal to γx2/2; and the function ψ̄(x) in (7.47) is equal to
γ(x2 + 2)/6 (see Liu and Singh (1987)). If γ 6= 0, then θHB , θBC , and the

asymptotic lower confidence bound θN = θ̂n − n−1/2σ̂F z1−α are first-order
accurate. In this example, we can still compare their relative performances
in terms of the convergence speed of the coverage probability. Let

e(θ) = P (θ ≤ θ) − (1 − α)

be the error in coverage probability for the lower confidence bound θ. It
can be shown (exercise) that

|e(θHB)| = |e(θN )| + Cn(zα, F ) + o(n−1/2) (7.48)

and

|e(θN )| = |e(θBC)| + Cn(zα, F ) + o(n−1/2), (7.49)



7.4. Bootstrap Confidence Sets 515

where Cn(x, F ) = |γ|(x2 − 1)Φ′(x)/(6
√
n). Assume γ 6= 0. When z2

α > 1,
which is usually the case in practice, Cn(zα, F ) > 0 and, therefore, θBC is
better than θN , which is better than θHB . The use of θN requires a variance
estimator σ̂2

F , which is not required by the bootstrap BC percentile and
hybrid bootstrap methods. When a variance estimator is available, we can
use the bootstrap-t lower confidence bound, which is second-order accurate
even when γ 6= 0.

7.4.3 High-order accurate bootstrap confidence sets

The discussion in §7.3.4 shows how to derive second-order accurate confi-
dence bounds. Hall (1992) showed how to obtain higher order accurate con-
fidence sets using higher order Edgeworth and Cornish-Fisher expansions.
However, the theoretical derivation of these high order accurate confidence
sets may be very complicated (see Example 7.25). The bootstrap method
can be used to obtain second-order or higher order accurate confidence sets
without requiring any theoretical derivation but requiring some extensive
computations.

The bootstrap prepivoting and bootstrap inverting

The hybrid bootstrap and the bootstrap-t are based on the bootstrap dis-
tribution estimators for

√
n(θ̂n−θ) and

√
n(θ̂n−θ)/σ̂F , respectively. Beran

(1987) argued that the reason why the bootstrap-t is better than the hybrid

bootstrap is that
√
n(θ̂n − θ)/σ̂F is more pivotal than

√
n(θ̂n − θ) in the

sense that the distribution of
√
n(θ̂n − θ)/σ̂F is less dependent on the un-

known F . The bootstrap-t method, however, requires a variance estimator
σ̂2
F . Beran (1987) suggested the following method called bootstrap prepivot-

ing. Let ℜ(0)
n be a random function (such as

√
n(θ̂n− θ) or

√
n(θ̂n− θ)/σ̂F )

used to construct a confidence set for θ ∈ Rk, H
(0)
n be the distribution of

ℜ(0)
n , and let Ĥ

(0)
B be the bootstrap estimator of H

(0)
n . Define

ℜ(1)
n = Ĥ

(0)
B (ℜ(0)

n ). (7.50)

If H
(0)
n is continuous and if we replace Ĥ

(0)
B in (7.50) by H

(0)
n , then ℜ(1)

n

has the uniform distribution U(0, 1). Hence, it is expected that ℜ(1)
n is

more pivotal than ℜ(0)
n . Let Ĥ

(1)
B be the bootstrap estimator of H

(1)
n , the

distribution of ℜ(1)
n . Then ℜ(2)

n = Ĥ
(1)
B (ℜ(1)

n ) is more pivotal than ℜ(1)
n .

In general, let H
(j)
n be the distribution of ℜ(j)

n and Ĥ
(j)
B be the bootstrap

estimator of H
(j)
n , j = 0, 1, 2, .... Then we can use the following confidence

sets for θ:

C
(j)
PREB(X) = {θ : ℜ(j)

n ≤ (Ĥ
(j)
B )−1(1 − α)}, j = 0, 1, 2, .... (7.51)
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Note that for each j, C
(j)
PREB(X) is a hybrid bootstrap confidence set based

on ℜ(j)
n . Since ℜ(j+1)

n is more pivotal than ℜ(j)
n , we obtain a sequence of

confidence sets with increasing accuracies. Beran (1987) showed that if

the distribution of
√
n(θ̂n − θ) has a two-term Edgeworth expansion, then

the one-sided confidence interval C
(1)
PREB(X) based on ℜ(0)

n =
√
n(θ̂n − θ)

is second-order accurate, and the two-sided confidence interval C
(1)
PREB(X)

based on ℜ(0)
n =

√
n|θ̂n − θ| is third-order accurate. Hence, bootstrap

prepivoting with one iteration improves the hybrid bootstrap method. It is

expected that the one-sided confidence interval C
(2)
PREB(X) based on ℜ(0)

n =√
n(θ̂n − θ) is third-order accurate, i.e., it is better than the one-sided

bootstrap-t or bootstrap BCa percentile confidence interval. More detailed
discussion can be found in Beran (1987).

It seems that, using this iterative method, we can start with a ℜ(0)
n

and obtain a bootstrap confidence set that is as accurate as we want it
to be. However, more computations are required for higher stage boot-
strapping and, therefore, the practical implementation of this method is
very hard, or even impossible, with current computational ability. We ex-

plain this with the computation of C
(1)
PREB(X) based on ℜ(0)

n = ℜ(X,F ).
Suppose that we use the Monte Carlo approximation. Let {X∗

1b, ..., X
∗
nb}

be i.i.d. samples from Fn, b = 1, ..., B1. Then Ĥ
(0)
B is approximated by

Ĥ
(0,B1)
B , the empirical distribution of {ℜ(0)∗

nb : b = 1, ..., B1}, where ℜ(0)∗
nb =

ℜ(X∗
1b, ..., X

∗
nb, Fn). For each b, let F ∗

nb be the empirical distribution of
X∗

1b, ..., X
∗
nb, {X∗∗

1bj , ..., X
∗∗
nbj} be i.i.d. samples from F ∗

nb, j = 1, ..., B2, H
∗
b

be the empirical c.d.f. of {ℜn(X∗∗
1bj , ..., X

∗∗
nbj , F

∗
nb), j = 1, ..., B2}, and z∗b =

H∗
b (ℜ

(0)∗
nb ). Then Ĥ

(1)
B can be approximated by Ĥ

(1,B1B2)
B , the empirical

distribution of {z∗b , b = 1, ..., B1}, and the confidence set C
(1)
PREB(X) can

be approximated by

{
θ : ℜ(X,F ) ≤ (Ĥ

(0,B1)
B )−1

(
(Ĥ

(1,B1B2)
B )−1(1 − α)

)}
.

The second-stage bootstrap sampling is nested in the first-stage bootstrap
sampling. Thus the total number of bootstrap data sets we need is B1B2,
which is why this method is also called the double bootstrap. If each
stage requires 1,000 bootstrap replicates, then the total number of boot-

strap replicates is 1,000,000! Similarly, to compute C
(j)
PREB(X) we need

(1, 000)j+1 bootstrap replicates, j = 2, 3, ..., which limits the application of
the bootstrap prepivoting method.

A very similar method, bootstrap inverting, is given in Hall (1992). In-
stead of using (7.51), we define

C
(j)
INV B(X) = {θ : ℜ(j)

n ≤ (Ĥ
(j)
B )−1(1 − α)}, j = 0, 1, 2, ...,
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where
ℜ(j)
n = ℜ(j−1)

n − (Ĥ
(j−1)
B )−1(1 − α), j = 1, 2, ...,

and Ĥ
(j)
B is the bootstrap estimator of the distribution of ℜ(j)

n . For each

j ≥ 1, C
(j)
INV B(X) and C

(j)
PREB(X) in (7.51) have the same order of accu-

racy and require the same amount of computation. They are special cases
of a general iterative bootstrap introduced by Hall and Martin (1988). Hall
(1992) showed that confidence sets having the same order of accuracy as

C
(j)
PREB(X) can also be obtained using Edgeworth and Cornish-Fisher ex-

pansions. Thus, the bootstrap method replaces the analytic derivation of
Edgeworth and Cornish-Fisher expansions by extensive computations.

Bootstrap calibrating

Suppose that we want a confidence set C(X) with confidence coefficient
1 − α, which is called the nominal level. The basic idea of bootstrap cali-
brating is to improve C(X) by adjusting its nominal level. Let πn be the
actual coverage probability of C(X). The value of πn can be estimated by
a bootstrap estimator π̂n. If we find that π̂n is far from 1 − α, then we
construct a confidence set C1(X) with nominal level 1− α̃ so that the cov-
erage probability of C1(X) is closer to 1−α than πn. Bootstrap calibrating
can be used iteratively as follows. Estimate the true coverage probability
of C1(X); if the difference between 1−α and the estimated coverage prob-
ability of C1(X) is still large, we can adjust the nominal level again and
construct a new calibrated confidence set C2(X).

The key for bootstrap calibrating is how to determine the new nominal
level 1 − α̃ in each step. We now discuss the method suggested by Loh
(1987, 1991) in the case where the initial confidence sets are obtained by
using the method in §7.3.1. Consider first the asymptotic lower confidence
bound θN = θ̂n − n−1/2σ̂F z1−α considered in Example 7.26. The coverage
probability πn = P (θN ≤ θ) can be estimated by the bootstrap estimator
(approximated by Monte Carlo if necessary)

π̂n = ĜB(z1−α) = P∗
(√
n(θ̂∗n − θ̂n)/σ̂∗

F ≤ z1−α
)
.

When the bootstrap distribution admits the Edgeworth expansion (1.106)
with m = 3, we have

π̂n = 1 − α+

[
q1(z1−α, Fn)√

n
+
q2(z1−α, Fn)

n

]
Φ′(z1−α) +Op

(
1

n3/2

)
.

Let h be any increasing, unbounded, and twice differentiable function on
the interval (0, 1) and

α̃ = 1 − h−1
(
h(1 − α) − δ

)
,
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where

δ = h(π̂n) − h(1 − α)

=

[
q1(z1−α, Fn)√

n
+
q2(z1−α, Fn)

n

]
Φ′(z1−α)h′(1 − α)

+
[q1(z1−α, Fn)Φ

′(z1−α)]2

2n
h′′(1 − α) +Op

(
1

n3/2

)
. (7.52)

The bootstrap calibration lower confidence bound is

θCLB = θ̂n − n−1/2σ̂F z1−α̃.

By (7.52),

1 − α̃ = 1 − α+
q1(z1−α, Fn)Φ′(z1−α)√

n
+Op

(
1

n

)
(7.53)

and

z1−α̃ = z1−α +
q1(z1−α, Fn)√

n
+Op

(
1

n

)
(7.54)

(exercise). Thus,

θCLB = θ̂n − σ̂F√
n

[
z1−α +

q1(z1−α, Fn)√
n

+Op

(
1

n

)]
. (7.55)

Comparing (7.55) with (7.39), we find that

θCLB − θBT = Op(n
−3/2).

Thus, θCLB is second-order accurate.

We can take [ θCLB, θCLB ] as a two-sided confidence interval; it is still
second-order accurate. By calibrating directly the equal-tail two-sided con-
fidence interval

[ θN , θN ] = [ θ̂n − n−1/2σ̂F z1−α, θ̂n + n−1/2σ̂F z1−α ], (7.56)

we can obtain a higher order accurate confidence interval. Let π̂n be the
bootstrap estimator of the coverage probability P (θN ≤ θ ≤ θN ), δ =
h(π̂n)−h(1− 2α), and α̃ = [1−h−1

(
h(1− 2α)− δ

)
]/2. Then the two-sided

bootstrap calibration confidence interval is the interval given by (7.56) with
α replaced by α̃. Loh (1991) showed that this confidence interval is fourth-
order accurate. The length of this interval exceeds the length of the interval
in (7.56) by an amount of order Op(n

−3/2).
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7.5 Simultaneous Confidence Intervals

So far we have studied confidence sets for a real-valued θ or a vector-valued
θ with a finite dimension k. In some applications, we need a confidence set
for real-valued θt with t ∈ T , where T is an index set that may contain
infinitely many elements, for example, T = [0, 1] or T = R.

Definition 7.6. Let X be a sample from P ∈ P , let θt, t ∈ T , be real-
valued parameters related to P , and let Ct(X), t ∈ T , be a class of (one-
sided or two-sided) confidence intervals.
(i) Intervals Ct(X), t ∈ T , are level 1−α simultaneous confidence intervals
for θt, t ∈ T , if and only if

inf
P∈P

P
(
θt ∈ Ct(X) for all t ∈ T

)
≥ 1 − α. (7.57)

The left-hand side of (7.57) is the confidence coefficient of Ct(X), t ∈ T .
(ii) Intervals Ct(X), t ∈ T , are simultaneous confidence intervals for θt,
t ∈ T , with asymptotic significance level 1 − α if and only if

lim
n→∞

P
(
θt ∈ Ct(X) for all t ∈ T

)
≥ 1 − α. (7.58)

Intervals Ct(X), t ∈ T , are 1 − α asymptotically correct if and only if the
equality in (7.58) holds.

If the index set T contains k < ∞ elements, then θ = (θt, t ∈ T ) is a
k-vector and the methods studied in the previous sections can be applied
to construct a level 1 − α confidence set C(X) for θ. If C(X) can be
expressed as

∏
t∈T Ct(X) for some intervals Ct(X), then Ct(X), t ∈ T , are

level 1−α simultaneous confidence intervals. This simple method, however,
does not always work. In this section, we introduce some other commonly
used methods for constructing simultaneous confidence intervals.

7.5.1 Bonferroni’s method

Bonferroni’s method, which works when T contains k < ∞ elements, is
based on the following simple inequality for k events A1, ..., Ak:

P

(
k⋃

i=1

Ai

)
≤

k∑

i=1

P (Ai) (7.59)

(see Proposition 1.1). For each t ∈ T , let Ct(X) be a level 1−αt confidence
interval for θt. If αt’s are chosen so that

∑
t∈T αt = α (e.g., αt = α/k

for all t), then Bonferroni’s simultaneous confidence intervals are Ct(X),
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t ∈ T . It can be shown (exercise) that Bonferroni’s intervals are of level
1 − α, but they are not of confidence coefficient 1 − α even if Ct(X) has
confidence coefficient 1−αt for any fixed t. Note that Bonferroni’s method
does not require that Ct(X), t ∈ T , be independent.

Example 7.27 (Multiple comparison in one-way ANOVA models). Con-
sider the one-way ANOVA model in Example 6.18. If the hypothesis H0

in (6.53) is rejected, one typically would like to compare µi’s. One way to
compare µi’s is to consider simultaneous confidence intervals for µi − µj ,
1 ≤ i < j ≤ m. Since Xij ’s are independently normal, the sample means
X̄i· are independently normal N(µi, σ

2/ni), i = 1, ...,m, respectively, and
they are independent of SSR =

∑m
i=1

∑ni

j=1(Xij − X̄i·)2. Consequently,

(X̄i· − X̄j·)/
√
vij has the t-distribution tn−m, 1 ≤ i < j ≤ m, where

vij = (n−1
i + n−1

j )SSR/(n −m). For each (i, j), a confidence interval for
µi − µj with confidence coefficient 1 − α is

Cij,α(X) = [ X̄i· − X̄j· − tn−m,α/2
√
vij , X̄i· − X̄j· + tn−m,α/2

√
vij ], (7.60)

where tn−m,α is the (1−α)th quantile of the t-distribution tn−m. One can
show that Cij,α(X) is actually UMAU (exercise). Bonferroni’s level 1 − α
simultaneous confidence intervals for µi−µj , 1 ≤ i < j ≤ m, are Cij,α∗(X),
1 ≤ i < j ≤ m, where α∗ = 2α/[m(m − 1)]. When m is large, these
confidence intervals are very conservative in the sense that the confidence
coefficient of these intervals may be much larger than the nominal level
1 − α and these intervals may be too wide to be useful.

If the normality assumption is removed, then Cij,α(X) is 1−α asymptot-
ically correct as min{n1, ..., nm}→∞ and max{n1, ..., nm}/min{n1, ..., nm}
→ c < ∞. Therefore, Cij,α∗(X), 1 ≤ i < j ≤ m, are simultaneous confi-
dence intervals with asymptotic significance level 1 − α.

One can establish similar results for the two-way balanced ANOVA mod-
els in Example 6.19 (exercise).

7.5.2 Scheffé’s method in linear models

Since multiple comparison in ANOVA models (or, more generally, linear
models) is one of the most important applications of simultaneous confi-
dence intervals, we now introduce Scheffé’s method for problems in linear
models. Consider the normal linear model

X = Nn(Zβ, σ
2In), (7.61)

where β is a p-vector of unknown parameters, σ2 > 0 is unknown, and Z
is an n × p known matrix of rank r ≤ p. Let L be an s × p matrix of
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rank s ≤ r. Suppose that R(L) ⊂ R(Z) and we would like to construct
simultaneous confidence intervals for tτLβ, where t ∈ T = Rs − {0}.

Let β̂ be the LSE of β. Using the argument in Example 7.15, for each t ∈
T , we can obtain the following confidence interval for tτLβ with confidence
coefficient 1 − α:

[
tτLβ̂ − tn−r,α/2σ̂

√
tτDt, tτLβ̂ + tn−r,α/2σ̂

√
tτDt

]
,

where σ̂2 = ‖X−Zβ̂‖2/(n−r), D = L(ZτZ)−Lτ , and tn−r,α is the (1−α)th
quantile of the t-distribution tn−r. However, these intervals are not level
1 − α simultaneous confidence intervals for tτLβ, t ∈ T .

Scheffé’s (1959) method of constructing simultaneous confidence inter-
vals for tτLβ is based on the following equality (exercise):

xτA−1x = max
y∈Rk,y 6=0

(yτx)2

yτAy
, (7.62)

where x ∈ Rk and A is a k × k positive definite matrix.

Theorem 7.10. Assume normal linear model (7.61). Let L be an s × p
matrix of rank s ≤ r. Assume that R(L) ⊂ R(Z) and D = L(ZτZ)−Lτ is
of full rank. Then

Ct(X) =
[
tτLβ̂ − σ̂

√
scαtτDt, t

τLβ̂ + σ̂
√
scαtτDt

]
, t ∈ T ,

are simultaneous confidence intervals for tτLβ, t ∈ T , with confidence
coefficient 1− α, where σ̂2 = ‖X −Zβ̂‖2/(n− r), T = Rs − {0}, and cα is
the (1 − α)th quantile of the F-distribution Fs,n−r .
Proof. Note that tτLβ ∈ Ct(X) for all t ∈ T is equivalent to

(Lβ̂ − Lβ)τD−1(Lβ̂ − Lβ)

sσ̂2
= max

t∈T

(tτLβ̂ − tτLβ)2

sσ̂2tτDt
≤ cα. (7.63)

Then the result follows from the fact that the quantity on the left-hand
side of (7.63) has the F-distribution Fs,n−r.

If the normality assumption is removed but conditions in Theorem 3.12
are assumed, then Scheffé’s intervals in Theorem 7.10 are 1 − α asymptot-
ically correct (exercise).

The choice of the matrix L depends on the purpose of the analysis. One
particular choice is L = Z, in which case tτLβ is the mean of tτX . When
Z is of full rank, we can choose L = Ip, in which case {tτLβ : t ∈ T } is the
class of all linear functions of β. Another L commonly used when Z is of
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full rank is the following (p− 1) × p matrix:

L =




1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1


 . (7.64)

It can be shown (exercise) that when L is given by (7.64),

{
tτLβ : t ∈ Rp−1 − {0}

}
= {cτβ : c ∈ Rp − {0}, cτJ = 0} , (7.65)

where J is the p-vector of ones. Functions cτβ satisfying cτJ = 0 are
called contrasts. Therefore, setting simultaneous confidence intervals for
tτLβ, t ∈ T , with L given by (7.64) is the same as setting simultaneous
confidence intervals for all nonzero contrasts.

Although Scheffé’s intervals have confidence coefficient 1 − α, they are
too conservative if we are only interested in tτLβ for t in a subset of T . In a
one-way ANOVA model (Example 7.27), for instance, multiple comparison
can be carried out using Scheffé’s intervals with β = (µ1, ..., µm), L given
by (7.64), and t ∈ T0 that contains exactly m(m − 1)/2 vectors (Exercise
110). The resulting Scheffé’s intervals are (Exercise 110)

[ X̄i· − X̄j· −√
scαvij , X̄i· − X̄j· +

√
scαvij ], t ∈ T0, (7.66)

where X̄i· and vij are given in (7.60). Since T0 contains a much smaller
number of elements than T , the simultaneous confidence intervals in (7.66)
are very conservative. In fact, they are often more conservative than Bonfer-
roni’s intervals derived in Example 7.27 (see Example 7.29). In the follow-
ing example, however, Scheffé’s intervals have confidence coefficient 1 − α,
although we consider t ∈ T0 ⊂ T .

Example 7.28 (Simple linear regression). Consider the special case of
model (7.61) where

Xi = N(β0 + β1zi, σ
2), i = 1, ..., n,

and zi ∈ R satisfying Sz =
∑n
i=1(zi − z̄)2 > 0, z̄ = n−1

∑n
i=1 zi. In this

case, we are usually interested in simultaneous confidence intervals for the
regression function β0 + β1z, z ∈ R. Note that the result in Theorem 7.10
(with L = I2) can be applied to obtain simultaneous confidence intervals
for β0y+ β1z, t ∈ T = R2 −{0}, where t = (y, z). If we let y ≡ 1, Scheffé’s
intervals in Theorem 7.10 are

[
β̂0 + β̂1z − σ̂

√
2cαD(z), β̂0 + β̂1z + σ̂

√
2cαD(z)

]
, z ∈ R (7.67)
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(exercise), where D(z) = n−1 + (z − z̄)2/Sz. Unless

max
z∈R

(β̂0 + β̂1z − β0 − β1z)
2

D(z)
= max
t=(y,z)∈T

(β̂0y + β̂1z − β0y − β1z)
2

tτ (ZτZ)−1t
(7.68)

holds with probability 1, where Z is the n× 2 matrix whose ith row is the
vector (1, zi), the confidence coefficient of the intervals in (7.67) is larger
than 1 − α. We now show that (7.68) actually holds with probability 1 so
that the intervals in (7.67) have confidence coefficient 1 − α. First,

P
(
n(β̂0 − β0) + n(β̂1 − β1)z̄ 6= 0

)
= 1.

Second, it can be shown (exercise) that the maximum on the right-hand
side of (7.68) is achieved at

t =

(
y

z

)
=

ZτZ

n(β̂0 − β0) + n(β̂1 − β1)z̄

(
β̂0 − β0

β̂1 − β1

)
. (7.69)

Finally, (7.68) holds since y in (7.69) is equal to 1 (exercise).

7.5.3 Tukey’s method in one-way ANOVA models

Consider the one-way ANOVA model in Example 6.18 (and Example 7.27).
Note that both Bonferroni’s and Scheffé’s simultaneous confidence intervals
for µi−µj , 1 ≤ i < j ≤ m, are not of confidence coefficient 1−α and often
too conservative. Tukey’s method introduced next produces simultaneous
confidence intervals for all nonzero contrasts (including the differences µi−
µj , 1 ≤ i < j ≤ m) with confidence coefficient 1 − α.

Let σ̂2 = SSR/(n − m), where SSR is given in Example 7.27. The
studentized range is defined to be

Rst = max
1≤i<j≤m

|(X̄i· − µi) − (X̄j· − µj)|
σ̂

. (7.70)

Note that the distribution of Rst does not depend on any unknown param-
eter (exercise).

Theorem 7.11. Assume the one-way ANOVA model in Example 6.18.
Let qα be the (1 − α)th quantile of Rst in (7.70). Then Tukey’s intervals

[ cτ β̂ − qασ̂c+, c
τ β̂ + qασ̂c+ ], c ∈ Rm − {0}, cτJ = 0,

are simultaneous confidence intervals for cτβ, c ∈ Rm−{0}, cτJ = 0, with
confidence coefficient 1−α, where c+ is the sum of all positive components
of c, β = (µ1, ..., µm), β̂ = (X̄1·, ..., X̄m·), and J is the m-vector of ones.
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Proof. Let Yi = (X̄i·−µi)/σ̂ and Y = (Y1, ..., Ym). Then the result follows
if we can show that

max
1≤i<j≤m

|Yi − Yj | ≤ qα (7.71)

is equivalent to

|cτY | ≤ qαc+ for all c ∈ Rm satisfying cτJ = 0, c 6= 0. (7.72)

Let c(i, j) = (c1, ..., cm) with ci = 1, cj = −1, and cl = 0 for l 6= i or l 6= j.
Then c(i, j)+ = 1 and |[c(i, j)]τY | = |Yi −Yj | and, therefore, (7.72) implies
(7.71). Let c = (c1, ..., cm) be a vector satisfying the conditions in (7.72).
Define −c− to be the sum of negative components of c. Then

|cτY | =
1

c+

∣∣∣∣c+
∑

j:cj<0

cjYj + c−
∑

i:ci>0

ciYi

∣∣∣∣

=
1

c+

∣∣∣∣
∑

i:ci>0

∑

j:cj<0

cicjYj −
∑

j:cj<0

∑

i:ci>0

cicjYi

∣∣∣∣

=
1

c+

∣∣∣∣
∑

i:ci>0

∑

j:cj<0

cicj(Yj − Yi)

∣∣∣∣

≤ 1

c+

∑

i:ci>0

∑

j:cj<0

|cicj ||Yj − Yi|

≤ max
1≤i<j≤m

|Yj − Yi|


 1

c+

∑

i:ci>0

∑

j:cj<0

|ci||cj |




= max
1≤i<j≤m

|Yj − Yi|c+,

where the first and the last equalities follow from the fact that c− = c+ 6= 0.
Hence (7.71) implies (7.72).

Tukey’s method works well when ni’s are all equal to n0, in which case
values of

√
n0qα can be found using tables or statistical software. When

ni’s are unequal, some modifications are suggested; see Tukey (1977) and
Milliken and Johnson (1992).

Example 7.29. We compare the t-type confidence intervals in (7.60),
Bonferroni’s, Scheffé’s, and Tukey’s simultaneous confidence intervals for
µi−µj , 1 ≤ i < j ≤ 3, based on the following data Xij given in Mendenhall
and Sincich (1995):

j = 1 2 3 4 5 6 7 8 9 10

i = 1 148 76 393 520 236 134 55 166 415 153

2 513 264 433 94 535 327 214 135 280 304

3 335 643 216 536 128 723 258 380 594 465
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In this example, m = 3, ni ≡ n0 = 10, X̄1· = 229.6, X̄2· = 309.8, X̄3· =
427.8, and σ̂ = 168.95. Let α = 0.05. For the t-type intervals in (7.60),
t27,0.975 = 2.05. For Bonferroni’s method, α∗ = α/3 = 0.017 and t27,0.983 =
2.55. For Scheffé’s method, c0.05 = 3.35 and

√
2c0.05 = 2.59. From Table

13 in Mendenhall and Sincich (1995, Appendix II),
√
n0q0.05 = 3.49. The

resulting confidence intervals are given as follows.

Parameter

Method µ1 − µ2 µ1 − µ3 µ2 − µ3 Length

t-type [−235.2, 74.6] [−353.1,−43.3] [−272.8, 37.0] 309.8

Bonferroni [−273.0, 112.4] [−390.9,−5.5] [−310.6, 74.8] 385.4

Scheffé [−276.0, 115.4] [−393.9,−2.5] [−313.6, 77.8] 391.4

Tukey [−267.3, 106.7] [−385.2,−11.2] [−304.9, 69.1] 374.0

Apparently, t-type intervals have the shortest length, but they are not si-
multaneous confidence intervals. Tukey’s intervals in this example have the
shortest length among simultaneous confidence intervals. Scheffé’s intervals
have the longest length.

7.5.4 Confidence bands for c.d.f.’s

Let X1, ..., Xn be i.i.d. from a continuous c.d.f. F on R. Consider the
problem of setting simultaneous confidence intervals for F (t), t ∈ R. A class
of simultaneous confidence intervals indexed by t ∈ R is called a confidence
band. For example, the class of intervals in (7.67) is a confidence band with
confidence coefficient 1 − α.

First, consider the case where F is in a parametric family, i.e., F = Fθ,
θ ∈ Θ ⊂ Rk. If θ is real-valued and Fθ(t) is nonincreasing in θ for every t
(e.g., when the parametric family has monotone likelihood ratio; see Lemma
6.3) and if [θ, θ] is a confidence interval for θ with confidence coefficient (or
significance level) 1 − α, then

[Fθ(t), Fθ(t)], t ∈ R,

are simultaneous confidence intervals for F (t), t ∈ R, with confidence co-
efficient (or significance level) 1 − α. One-sided simultaneous confidence
intervals can be similarly obtained.

When F = Fθ with a multivariate θ, there is no simple and general way
of constructing a confidence band for F (t), t ∈ R. We consider an example.

Example 7.30. Let X1, ..., Xn be i.i.d. from N(µ, σ2). Note that F (t) =
Φ
(
t−µ
σ

)
. If µ is unknown and σ2 is known, then, from the results in Ex-

ample 7.14, a confidence band for F (t), t ∈ R, with confidence coefficient
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1 − α is
[
Φ
(
t−X̄
σ − z1−α/2√

n

)
, Φ
(
t−X̄
σ +

z1−α/2√
n

)]
, t ∈ R.

A confidence band can be similarly obtained if σ2 is unknown and µ is
known.

Suppose now that both µ and σ2 are unknown. In Example 7.18, we
discussed how to obtain a lower confidence bound θ for θ = µ/σ. An upper
confidence bound θ for θ can be similarly obtained. Suppose that both θ
and θ have confidence coefficient 1 − α/4. Using inequality (7.59), we can
obtain the following level 1 − α confidence band for F (t), t ∈ R:

[
Φ
(
an,αt
S − θ

)
, Φ
(
bn,αt
S − θ

)]
, t ∈ R,

where an,α = [χ2
n−1,1−α/4/(n − 1)]1/2, bn,α = [χ2

n−1,α/4/(n − 1)]1/2, and

χ2
n−1,α is the (1 − α)th quantile of the chi-square distribution χ2

n−1.

Consider now the case where F is in a nonparametric family. Let
Dn(F ) = supt∈R |Fn(t)−F (t)|, which is related to the Kolmogorov-Smirnov
test statistics introduced in §6.5.2, where Fn is the empirical c.d.f. given by
(5.1). From Theorem 6.10(i), there exists a cα such that

P
(
Dn(F ) ≤ cα

)
= 1 − α. (7.73)

Then a confidence band for F (t), t ∈ R, with confidence coefficient 1 − α
is given by

[Fn(t) − cα, Fn(t) + cα ] t ∈ R. (7.74)

When n is large, we may approximate cα using the asymptotic result in
Theorem 6.10(ii), i.e., we can replace (7.73) by

∞∑

j=1

(−1)j−1e−2j2c2α =
α

2
. (7.75)

The resulting intervals in (7.74) have limiting confidence coefficient 1 − α.

Using D+
n (F ) = supt∈R[Fn(t) − F (t)] and the results in Theorem 6.10,

we can also obtain one-sided simultaneous confidence intervals for F (t),
t ∈ R, with confidence coefficient 1 − α or limiting confidence coefficient
1 − α.

When n is small, it is possible that some intervals in (7.74) are not within
the interval [0, 1]. This is undesirable since F (t) ∈ [0, 1] for all t. One way
to solve this problem is replacing Fn(t)−cα and Fn(t)+cα by, respectively,
max{Fn(t)−cα, 0} and min{Fn(t)+cα, 1}. But the resulting intervals have
a confidence coefficient larger than 1−α. The limiting confidence coefficient
of these intervals is still 1 − α (exercise).
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7.6 Exercises

1. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from
N(µi, σ

2
i ), i = 1, 2, respectively, where all parameters are unknown.

Let X̄i and S2
i be the sample mean and sample variance of the ith

sample, i = 1, 2.
(a) Let θ = µ1 − µ2. Assume that σ1 = σ2. Show that

t(X, θ) =
(X̄1 − X̄2 − θ)

/√
n−1

1 + n−1
2√

[(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n1 + n2 − 2)

is a pivotal quantity and construct a confidence interval for θ with
confidence coefficient 1 − α, using t(X, θ).
(b) Let θ = σ2

2/σ
2
1 . Show that ℜ(X, θ) = S2

2/(θS
2
1) is a pivotal

quantity and construct a confidence interval for θ with confidence
coefficient 1 − α, using ℜ(X, θ).

2. Let Xi, i = 1, 2, be independent with the p.d.f.’s λie
−λixI(0,∞)(x),

i = 1, 2, respectively.
(a) Let θ = λ1/λ2. Show that θX1/X2 is a pivotal quantity and
construct a confidence interval for θ with confidence coefficient 1−α,
using this pivotal quantity.
(b) Let θ = (λ1, λ2). Show that λ1X1 + λ2X2 is a pivotal quantity
and construct a confidence set for θ with confidence coefficient 1−α,
using this pivotal quantity.

3. In Example 7.1,
(a) obtain a pivotal quantity when θ = (µ, σ) and discuss how to use
it to construct a confidence set for θ with confidence coefficient 1−α;
(b) obtain the confidence set in part (a) when f is the p.d.f. of the
exponential distribution E(0, 1).

4. In Example 7.3, show that the equation n[Ȳ (θ)]2 = t2n−1,α/2S
2(θ)

defines a parabola in θ and discuss when C(X) is a finite interval, the
complement of a finite interval, or the whole real line.

5. Let X be a sample from P in a parametric family indexed by θ.
Suppose that T (X) is a real-valued statistic with p.d.f. fθ(t) and that
ℜ(t, θ) is a monotone function of t for each θ. Show that if

fθ(t) = g(ℜ(t, θ))

∣∣∣∣
∂

∂t
ℜ(t, θ)

∣∣∣∣

for some function g, then ℜ(T (X), θ) is a pivotal quantity.

6. Let X1, ..., Xn be i.i.d. from N(θ, θ) with an unknown θ > 0. Find a
pivotal quantity and use it to construct a confidence interval for θ.
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7. Prove (7.3).

8. Let X1, ..., Xn be i.i.d. from the exponential distribution E(0, θ) with
an unknown θ > 0.
(a) Using the pivotal quantity X̄/θ, construct a confidence interval
for θ with confidence coefficient 1 − α.
(b) Apply Theorem 7.1 with T = X̄ to construct a confidence interval
for θ with confidence coefficient 1 − α.

9. Let X1, ..., Xn be i.i.d. random variables with the Lebesgue p.d.f.
a
θ

(
x
θ

)a−1
I(0,θ)(x), where a ≥ 1 is known and θ > 0 is unknown.

(a) Apply Theorem 7.1 with T = X(n) to construct a confidence
interval for θ with confidence coefficient 1 − α. Compare the result
with that in Example 7.2 when a = 1.
(b) Show that the confidence interval in (a) can also be obtained using
a pivotal quantity.

10. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, 1) with
an unknown a.
(a) Construct a confidence interval for a with confidence coefficient
1 − α by using Theorem 7.1 with T = X(1).
(b) Show that the confidence interval in (a) can also be obtained using
a pivotal quantity.

11. Let X be a single observation from the uniform distribution
U(θ − 1

2 , θ + 1
2 ), where θ ∈ R.

(a) Show that X− θ is a pivotal quantity and that a confidence inter-
val of the form [X + c,X + d] with some constants − 1

2 < c < d < 1
2

has confidence coefficient 1 − α if and only if its length is 1 − α.
(b) Show that the c.d.f. Fθ(x) of X is nonincreasing in θ for any x
and apply Theorem 7.1 to construct a confidence interval for θ with
confidence coefficient 1 − α.

12. Let X1, ..., Xn be i.i.d. from the Pareto distribution Pa(a, θ), θ > 0,
a > 0.
(a) When θ is known, derive a confidence interval for a with confidence
coefficient 1−α by applying Theorem 7.1 with T = X(1), the smallest
order statistic.
(b) When both a and θ are unknown and n ≥ 2, derive a confidence
interval for θ with confidence coefficient 1 − α by applying Theorem
7.1 with T =

∏n
i=1(Xi/X(1)).

(c) Show that the confidence intervals in (a) and (b) can be obtained
using pivotal quantities.
(d) When both a and θ are unknown, construct a confidence set for
(a, θ) with confidence coefficient 1 − α by using a pivotal quantity.



7.6. Exercises 529

13. Let X1, ..., Xn be i.i.d. from the Weibull distribution W (a, θ), where
a > 0 and θ > 0 are unknown. Show that ℜ(X, a, θ) =

∏n
i=1(X

a
i /θ)

is pivotal. Construct a confidence set for (a, θ) with confidence coef-
ficient 1 − α by using ℜ(X, a, θ).

14. Consider Exercise 17 in §6.6. Construct a level 1−α confidence inter-
val for θ based on the observation X . Find a condition under which
the derived confidence interval has confidence coefficient 1 − α.

15. Prove (7.4).

16. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) =
p. Using Theorem 7.1 with T =

∑n
i=1Xi, show that a level 1 − α

confidence interval for p is
[

1

1 + n−T+1
T F2(n−T+1),2T,α2

,
T+1
n−T F2(T+1),2(n−T ),α1

1 + T+1
n−T F2(T+1),2(n−T ),α1

]
,

where α1+α2 = α, Fa,b,α is the (1−α)th quantile of the F-distribution
Fa,b, and Fa,0,α is defined to be ∞. (Hint: show that P (T ≥ t) =
P (Y ≤ p), where Y has the beta distribution B(t, n− t+ 1).)

17. Let X be a sample of size 1 from the negative binomial distribution
NB(p, r) with a known r and an unknown p ∈ (0, 1). Using Theorem
7.1 with T = X − r, show that a level 1 − α confidence interval for p
is [

1

1 + T+1
r F2(T+1),2r,α2

,
r
T F2r,2T,α1

1 + r
T F2r,2T,α1

]
,

where α1 + α2 = α and Fa,b,α is the same as that in the previous
exercise.

18. Let T be a statistic having the noncentral chi-square distribution
χ2
r(θ) (see §1.3.1), where θ > 0 is unknown and r is a known positive

integer. Show that the c.d.f. FT,θ(t) of T is nonincreasing in θ for
each fixed t and use this result to construct a confidence interval for
θ with confidence coefficient 1 − α.

19. Repeat the previous exercise when χ2
r(θ) is replaced by the noncentral

F-distribution Fr1,r2(θ) (see §1.3.1) with unknown θ > 0 and known
positive integers r1 and r2.

20. Consider the one-way ANOVA model in Example 6.18. Let µ̄ =
n−1

∑m
i=1 niµi and θ = σ−2

∑m
i=1 ni(µi − µ̄)2. Construct an upper

confidence bound for θ that has confidence coefficient 1 − α and is a
function of T = (n−m)(m− 1)−1SST/SSR.
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21. Prove Proposition 7.2 and provide a sufficient condition under which
the test T (X) = 1 − IA(θ0)(X) has size α.

22. In Example 7.7,
(a) show that c(θ) and ci(θ)’s are nondecreasing in θ;
(b) show that (p, 1] with p given by (7.5) is a level 1 − α confidence
interval for p;
(c) compare the interval in (b) with the interval obtained using the
result in Exercise 16 with α1 = 0.

23. Show that the confidence intervals in Example 7.14 and Exercise 1
can also be obtained by inverting the acceptance regions of the tests
for one-sample and two-sample problems in §6.2.3.

24. Let Xi, i = 1, 2, be independently distributed as the binomial distri-
butions Bi(pi, ni), i = 1, 2, respectively, where ni’s are known and
pi’s are unknown. Show how to invert the acceptance regions of the
UMPU tests in Example 6.11 to obtain a level 1−α confidence interval

for the odds ratio p2(1−p1)
p1(1−p2) .

25. Let X1, ..., Xn be i.i.d. from N(µ, σ2).
(a) Suppose that σ2 = γµ2 with unknown γ > 0 and µ ∈ R. Obtain
a confidence set for γ with confidence coefficient 1 − α by inverting
the acceptance regions of LR tests for H0 : γ = γ0 versus H1 : γ 6= γ0.
(b) Repeat (a) when σ2 = γµ with unknown γ > 0 and µ > 0.

26. Consider the problem in Example 6.17. Discuss how to construct a
confidence interval for θ with confidence coefficient 1 − α by
(a) inverting the acceptance regions of the tests derived in Example
6.17;
(b) applying Theorem 7.1.

27. Let X1, ..., Xn be i.i.d. from the uniform distribution U(θ− 1
2 , θ+ 1

2 ),
where θ ∈ R. Construct a confidence interval for θ with confidence
coefficient 1 − α.

28. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = p.
Using the p.d.f. of the beta distribution B(a, b) as the prior p.d.f.,
construct a level 1 − α HPD credible set for p.

29. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with an unknown θ = (µ, σ2).
Consider the prior Lebesgue p.d.f. π(θ) = π1(µ|σ2)π2(σ

2), where
π1(µ|σ2) is the p.d.f. of N(µ0, σ

2
0σ

2),

π2(σ
2) =

1

Γ(a)ba

(
1

σ2

)a+1

e−1/(bσ2)I(0,∞)(σ
2),
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and µ0, σ
2
0 , a, and b are known.

(a) Find the posterior of µ and construct a level 1 − α HPD credible
set for µ.
(b) Show that the credible set in (a) converges to the confidence
interval obtained in Example 7.14 as σ2

0 , a, and b converge to some
limits.

30. Let X1, ..., Xn be i.i.d. with a Lebesgue p.d.f. 1
σ f
(
x−µ
σ

)
, where f is

a known p.d.f. and µ and σ > 0 are unknown. Let X0 be a future
observation that is independent of Xi’s and has the same distribution
as Xi. Find a pivotal quantity ℜ(X,X0) and construct a level 1 − α
prediction set for X0.

31. Let X1, ..., Xn be i.i.d. from a continuous c.d.f. F on R and X0

be a future observation that is independent of Xi’s and has the
c.d.f. F . Suppose that F is strictly increasing in a neighborhood
of F−1(α/2) and a neighborhood of F−1(1 − α/2). Let Fn be the
empirical c.d.f. defined by (5.1). Show that the prediction interval
C(X) = [F−1

n (α/2), F−1
n (1 − α/2)] for X0 satisfies P (X0 ∈ C(X)) →

1 − α, where P is the joint distribution of (X0, X1, ..., Xn).

32. Let X1, ..., Xn be i.i.d. with a Lebesgue p.d.f. f(x − µ), where f is
known and µ is unknown.
(a) If f is the p.d.f. of the standard normal distribution, show that the
confidence interval [X̄− c1, X̄+ c1] is better than [X1− c2, X1 + c2] in
terms of their lengths, where ci’s are chosen so that these confidence
intervals have confidence coefficient 1 − α.
(b) If f is the p.d.f. of the Cauchy distribution C(0, 1), show that the
two confidence intervals in (a) have the same length.

33. Let X1, ..., Xn (n > 1) be i.i.d. from the exponential distribution
E(θ, θ), where θ > 0 is unknown.
(a) Show that both X̄/θ and X(1)/θ are pivotal quantities, where X̄
is the sample mean and X(1) is the smallest order statistic.
(b) Obtain confidence intervals (with confidence coefficient 1−α) for
θ based on the two pivotal quantities in (a).
(c) Discuss which confidence interval in (b) is better in terms of the
length.

34. Prove Theorem 7.3(ii).

35. Show that the expected length of the interval in (7.13) is shorter than
the expected length of the interval in (7.12).

36. Consider Example 7.14.
(a) Suppose that θ = σ2 and µ is known. Let a∗ and b∗ be constants
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satisfying a2
∗g(a∗) = b2∗g(b∗) > 0 and

∫ b∗
a∗
g(x)dx = 1 − α, where g is

the p.d.f. of the chi-square distribution χ2
n. Show that the interval

[b−1
∗ T, a−1

∗ T ] has the shortest length within the class of intervals of

the form [b−1T, a−1T ],
∫ b
a
g(x)dx = 1−α, where T =

∑n
i=1(Xi−µ)2.

(b) Show that the expected length of the interval in (a) is shorter
than the expected length of the interval in (7.14).
(c) Find the shortest-length interval for θ = σ within the class of
confidence intervals of the form [b−1/2

√
n− 1S, a−1/2

√
n− 1S], where

0 < a < b <∞,
∫ b
a
f(x)dx = 1−α, and f is the p.d.f. of the chi-square

distribution χ2
n−1.

37. Assume the conditions in Theorem 7.3(i). Assume further that f
is symmetric. Show that a∗ and b∗ in Theorem 7.3(i) must satisfy
a∗ = −b∗.

38. Let f be a Lebesgue p.d.f. that is nonzero in [x−, x+] and is 0 outside
[x−, x+], −∞ ≤ x− < x+ ≤ ∞.
(a) Suppose that f is strictly decreasing. Show that, among all in-

tervals [a, b] satisfying
∫ b
a
f(x)dx = 1 − α, the shortest interval is

obtained by choosing a = x− and b so that
∫ b
x−
f(x)dx = 1 − α.

(b) Obtain a result similar to that in (a) when f is strictly increasing.
(c) Show that the interval [X(n), α

−1/nX(n)] in Example 7.13 has the
shortest length among all intervals [b−1X(n), a

−1X(n)].

39. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, 1) with
an unknown a. Find a confidence interval for a having the shortest
length within the class of confidence intervals [X(1) + c,X(1) +d] with
confidence coefficient 1 − α.

40. Consider the HPD credible set C(x) in (7.7) for a real-valued θ. Sup-
pose that px(θ) is a unimodal Lebesgue p.d.f. and is not monotone.
Show that C(x) is an interval having the shortest length within the

class of intervals [a, b] satisfying
∫ b
a
px(θ)dθ = 1 − α.

41. Let X be a single observation from the gamma distribution Γ(α, γ)
with a known α and an unknown γ. Find the shortest-length confi-
dence interval within the class of confidence intervals [b−1X, a−1X ]
with a given confidence coefficient.

42. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. θxθ−1I(0,1)(x), where
θ > 0 is unknown.
(a) Construct a confidence interval for θ with confidence coefficient
1 − α, using a sufficient statistic.
(b) Discuss whether the confidence interval obtained in (a) has the
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shortest length within a class of confidence intervals.
(c) Discuss whether the confidence interval obtained in (a) is UMAU.

43. Let X be a single observation from the logistic distribution LG(µ, 1)
with an unknown µ ∈ R. Find a Θ′-UMA upper confidence bound
for µ with confidence coefficient 1 − α, where Θ′ = (µ,∞).

44. Let X1, ..., Xn be i.i.d. from the exponential distribution E(0, θ) with
an unknown θ > 0. Find a Θ′-UMA lower confidence bound for θ
with confidence coefficient 1 − α, where Θ′ = (0, θ).

45. Let X be a single observation from N(θ − 1, 1) if θ < 0, N(0, 1) if
θ = 0, and N(θ + 1, 1) if θ > 0.
(a) Show that the distribution of X is in a family with monotone
likelihood ratio.
(b) Construct a Θ′-UMA lower confidence bound for θ with confidence
coefficient 1 − α, where Θ′ = (−∞, θ).

46. Show that the confidence set in Example 7.9 is unbiased.

47. In Example 7.13, show that the confidence interval [X(n), α
−1/nX(n)]

is UMA and has the shortest expected length among all confidence
intervals for θ with confidence coefficient 1 − α.

48. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a and θ. Find a UMA confidence interval for a with confi-
dence coefficient 1 − α.

49. Let Y and U be independent random variables having the binomial
distribution Bi(p, n) and the uniform distribution U(0, 1), respec-
tively.
(a) Show that W = Y + U has the Lebesgue p.d.f. fp(w) given by
(7.17).
(b) Show that the family {fp : p ∈ (0, 1)} has monotone likelihood
ratio in W .

50. Extend the results in the previous exercise to the case where the
distribution of Y is the power series distribution defined in Exercise
13 of §2.6.

51. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an
unknown θ > 0. Find a randomized UMA upper confidence bound
for θ with confidence coefficient 1 − α.

52. Let X be a nonnegative integer-valued random variable from a pop-
ulation P ∈ P . Suppose that P is parametric and indexed by a
real-valued θ and has monotone likelihood ratio in X . Let U be a
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random variable from the uniform distribution U(0, 1) that is inde-
pendent of X . Show that a UMA lower confidence bound for θ with
confidence coefficient 1 − α is the solution of the equation

UFθ(X) + (1 − U)Fθ(X − 1) = 1 − α

(assuming that a solution exists), where Fθ(x) is the c.d.f. of X .

53. Let X be a single observation from the hypergeometric distribution
HG(r, n, θ − n) (Table 1.1) with known r, n, and an unknown θ =
n + 1, n + 2, .... Derive a randomized UMA upper confidence bound
for θ with confidence coefficient 1 − α.

54. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ and σ2.
(a) Show that θ = X̄ + tn−1,αS/

√
n is a UMAU upper confidence

bound for µ with confidence coefficient 1 − α, where tn−1,α is the
(1 − α)th quantile of the t-distribution tn−1.
(b) Show that the confidence bound in (a) can be derived by inverting
acceptance regions of LR tests.

55. Prove Theorem 7.7 and Proposition 7.3.

56. Let X1, ..., Xn be i.i.d. with p.d.f. f(x − θ), where f is a known
Lebesgue p.d.f. Show that the confidence interval [X̄ − c1, X̄ + c2]
has constant coverage probability, where c1 and c2 are constants.

57. Prove the claim in Example 7.18.

58. In Example 7.19, show that
(a) the testing problem is invariant under Gµ0 , but not G;
(b) the nonrandomized test with acceptance region A(µ0) is UMP
among unbiased and invariant tests of size α, under Gµ0 ;
(c) G is the smallest group containing ∪µ0∈RGµ0 .

59. In Example 7.17, show that intervals (7.13) and (7.14) are UMA
among unbiased and invariant confidence intervals with confidence
coefficient 1 − α, under G1 and G, respectively.

60. Let Xi, i = 1, 2, be independent with the exponential distributions
E(0, θi), i = 1, 2, respectively.
(a) Show that [αY/(2−α), (2−α)Y/α] is a UMAU confidence interval
for θ2/θ1 with confidence coefficient 1 − α, where Y = X2/X1.
(b) Show that the confidence interval in (a) is also UMAI.

61. Let X1, ..., Xn be i.i.d. from a bivariate normal distribution with un-
known mean and covariance matrix and let R(X) be the sample corre-
lation coefficient. Define ρ = C−1(R(X)), where C(ρ) is determined
by

P
(
R(X) ≤ C(ρ)

)
= 1 − α
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and ρ is the unknown correlation coefficient. Show that ρ is a Θ′-
UMAI lower confidence bound for ρ with confidence coefficient 1−α,
where Θ′ = (−1, ρ).

62. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from
N(µi, σ

2), i = 1, 2, respectively, where µi’s are unknown. Find a
UMAI confidence interval for µ2−µ1 with confidence coefficient 1−α
when (a) σ2 is known; (b) σ2 is unknown.

63. Consider Exercise 1. Let θ = µ1 − µ2.

(a) Show that ℜ(X, θ) = (X̄1 − X̄2 − θ)/
√
n−1

1 S2
1 + n−1

2 S2
2 is asymp-

totically pivotal, assuming that n1/n2 → c ∈ (0,∞). Construct a
1 − α asymptotically correct confidence interval for θ using ℜ(X, θ).
(b) Show that t(X, θ) defined in Exercise 1(a) is asymptotically piv-
otal if either n1/n2 → 1 or σ1 = σ2 holds.

64. In Example 7.23, show that C3(X) = [p−, p+] with the given p±.
Compare the lengths of the confidence intervals C2(X) and C3(X).

65. Show that the confidence intervals in Example 7.14 can be derived by
inverting acceptance regions of LR tests.

66. Let X1, ..., Xn be i.i.d. from the exponential distribution E(0, θ) with
an unknown θ > 0.
(a) Show that ℜ(X, θ) =

√
n(X̄−θ)/θ is asymptotically pivotal. Con-

struct a 1 − α asymptotically correct confidence interval for θ, using
ℜ(X, θ).
(b) Show that ℜ1(X, θ) =

√
n(X̄ − θ)/X̄ is asymptotically pivotal.

Construct a 1 − α asymptotically correct confidence interval for θ,
using ℜ1(X, θ).
(c) Obtain 1 − α asymptotically correct confidence intervals for θ by
inverting acceptance regions of LR tests, Wald’s tests, and Rao’s score
tests.

67. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an
unknown θ > 0.
(a) Show that ℜ(X, θ) = (X̄ − θ)/

√
θ/n is asymptotically pivotal.

Construct a 1 − α asymptotically correct confidence interval for θ,
using ℜ(X, θ).

(b) Show that ℜ1(X, θ) = (X̄ − θ)/
√
X̄/n is asymptotically pivotal.

Construct a 1 − α asymptotically correct confidence interval for θ,
using ℜ1(X, θ).
(c) Obtain 1 − α asymptotically correct confidence intervals for θ by
inverting acceptance regions of LR tests, Wald’s tests, and Rao’s score
tests.
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68. Suppose that X1, ..., Xn are i.i.d. from the negative binomial distri-
bution NB(p, r) with a known r and an unknown p. Obtain 1 − α
asymptotically correct confidence intervals for p by inverting accep-
tance regions of LR tests, Wald’s tests, and Rao’s score tests.

69. Suppose that X1, ..., Xn are i.i.d. from the log-distribution L(p) with
an unknown p. Obtain 1−α asymptotically correct confidence inter-
vals for p by inverting acceptance regions of LR tests, Wald’s tests,
and Rao’s score tests.

70. In Example 7.24, obtain 1− α asymptotically correct confidence sets
for µ by inverting acceptance regions of LR tests, Wald’s tests, and
Rao’s score tests. Are these sets always intervals?

71. Let X1, ..., Xn be i.i.d. from the gamma distribution Γ(θ, γ) with un-
known θ and γ. Obtain 1 − α asymptotically correct confidence sets
for θ by inverting acceptance regions of LR tests, Wald’s tests, and
Rao’s score tests. Discuss whether these confidence sets are intervals
or not.

72. Consider the problem in Example 3.21. Construct an asymptotically
pivotal quantity and a 1−α asymptotically correct confidence set for
µy/µx.

73. Consider the problem in Example 3.23. Construct an asymptotically
pivotal quantity and a 1−α asymptotically correct confidence set for
R(t) with a fixed t.

74. Let Un be a U-statistic based on i.i.d. X1, ..., Xn and the kernel
h(x1, ..., xm), and let θ = E(Un). Construct an asymptotically pivotal
quantity based on Un and a 1 − α asymptotically correct confidence
set for θ.

75. Let X1, ..., Xn be i.i.d. from a c.d.f. F on R that is continuous and
symmetric about θ. Let θ̂ = W/n− 1

2 and T(F ) = θ+ 1
2 , where W and

T are given by (6.83) and (5.53), respectively. Construct a confidence
interval for θ that has limiting confidence coefficient 1 − α.

76. Consider the problem in Example 5.15. Construct an asymptotically
pivotal quantity and a 1−α asymptotically correct confidence set for
θ. Compare this confidence set with those in Example 7.24.

77. Consider the linear model X = Zβ + ε, where ε has independent
components with mean 0 and Z is of full rank. Assume the conditions
in Theorem 3.12.
(a) Suppose that Var(ε) = σ2D, where D is a known diagonal matrix
and σ2 is unknown. Find an asymptotically pivotal quantity and
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construct a 1 − α asymptotically correct confidence set for β.
(b) Suppose that Var(ε) is an unknown diagonal matrix. Find an
asymptotically pivotal quantity and construct a 1−α asymptotically
correct confidence set for β.

78. In part (a) of the previous exercise, obtain a 1 − α asymptotically
correct confidence set for β/σ.

79. Consider a GEE estimator θ̂ of θ described in §5.4.1. Discuss how to
construct an asymptotically pivotal quantity and a 1 − α asymptoti-
cally correct confidence set for θ. (Hint: see §5.5.2.)

80. Let X1, ..., Xn be i.i.d. from the exponential distribution E(a, θ) with
unknown a and θ. Find a 1−α asymptotically correct confidence set
for (a, θ) by inverting acceptance regions of LR tests.

81. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from
N(µi, σ

2
i ), i = 1, 2, respectively, where all parameters are unknown.

(a) Find 1 − α asymptotically correct confidence sets for (µ1, µ2) by
inverting acceptance regions of LR tests, Wald’s tests, and Rao’s score
tests.
(b) Repeat (a) for the parameter (µ1, µ2, σ

2
1 , σ

2
2).

(c) Repeat (a) under the assumption that σ2
1 = σ2

2 = σ2.
(d) Repeat (c) for the parameter (µ1, µ2, σ

2).

82. Let Xi1, ..., Xini , i = 1, 2, be two independent samples i.i.d. from the
exponential distributions E(0, θi), i = 1, 2, respectively, where θi’s
are unknown. Find 1 − α asymptotically correct confidence sets for
(θ1, θ2) by inverting acceptance regions of LR tests, Wald’s tests, and
Rao’s score tests.

83. Consider the problem in Example 7.9. Find 1 − α asymptotically
correct confidence sets for θ by inverting acceptance regions of LR
tests, Wald’s tests, and Rao’s score tests. Which one is the same as
that derived in Example 7.9?

84. Let X1, ..., Xn be i.i.d. from a continuous c.d.f. F on R and let θ =
F−1(p), p ∈ (0, 1).
(a) Show that P (X(k1) ≤ θ ≤ X(k2)) = P (U(k1) ≤ p ≤ U(k2)), where
X(k) is the kth order statistic and U(k) is the kth order statistic based
on a sample U1, ..., Un i.i.d. from the uniform distribution U(0, 1).
(b) Show that

P (U(k1) ≤ p ≤ U(k2)) = Bp(k1, n− k1 + 1) −Bp(k2, n− k2 + 1),

where

Bp(i, j) =
Γ(i+ j)

Γ(i)Γ(j)

∫ p

0

ti−1(1 − t)j−1dt.
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(c) Discuss how to obtain a confidence interval for θ with confidence
coefficient 1 − α.

85. Prove Corollary 7.1.

86. Assume the conditions in Corollary 7.1.
(a) Show that

√
n(X(kn) − θ)F ′(θ) →d N(c, p(1 − p)).

(b) Prove result (7.24) using the result in part (a).
(c) Construct a consistent estimator of the asymptotic variance of the
sample median (see Example 6.27), using Woodruff’s interval.

87. Prove (7.25) and (7.26).

88. In Example 7.25, prove that V̂
−1/2
n (θ̂n − θ) can be written as√

nh(Ȳ )/σh and find the explicit form of the function h.

89. Let X1, ..., Xn be i.i.d. from an unknown c.d.f. F with E|X1|8 < ∞.
Suppose that condition (1.105) is satisfied. Derive a second-order
accurate lower confidence bound for σ2 = Var(X1).

90. Using the Edgeworth expansion given in Example 7.26, construct a
third-order accurate lower confidence bound for µ.

91. Show that θHB in (7.34) is equal to 2θ̂n −K−1
B (1 − α), where KB is

defined in (7.27).

92. (Parametric bootstrapping in location-scale families). Let X1, ..., Xn

be i.i.d. random variables with p.d.f. 1
σ f
(
x−µ
σ

)
, where f is a known

Lebesgue p.d.f. and µ and σ > 0 are unknown. Let X∗
1 , ..., X

∗
n be

i.i.d. bootstrap data from the p.d.f. 1
sf
(
x−x̄
s

)
, where x̄ and s2 are the

observed sample mean and sample variance, respectively.
(a) Suppose that we construct the bootstrap-t lower confidence bound
(7.35) for µ using the parametric bootstrap data. Show that θBT has
confidence coefficient 1 − α.
(b) Suppose that we construct the hybrid bootstrap lower confidence
bound (7.34) for µ using the parametric bootstrap data. Show that
θHB does not necessarily have confidence coefficient 1 − α.
(c) Suppose that f has mean 0 and variance 1. Show that θHB in (b)
is 1 − α asymptotically correct.

93. (The bootstrap BCa percentile method). Suppose that we change
assumption (7.30) to

P

(
φ̂n − φn(θ)

1 + aφn(θ)
+ z0 ≤ x

)
= Φ(x),
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where a is an extra parameter called the acceleration constant and Φ
is the c.d.f. of the standard normal distribution.
(a) If φn, z0, and a are known, show that the following lower confi-
dence bound for θ has confidence coefficient 1 − α:

θE = φ−1
n

(
φ̂n + (zα + z0)(1 + aφ̂n)/[1 − a(zα + z0)]

)
.

(b) Show that K−1
B (x) = φ−1

n

(
φ̂n + [Φ−1(x) − z0](1 + aφ̂n)

)
, where

KB is defined in (7.27).
(c) Let θBC(a) = K−1

B

(
Φ(z0 + (zα + z0)/[1 − a(zα + z0)])

)
. Show

that θBC(a) = θE in part (a). (The bootstrap BCa percentile lower
confidence bound for θ is θBC(â), where â is an estimator of a.)

94. (Automatic bootstrap percentile). Let P = {Pθ : θ ∈ R} be a para-

metric family. Define Kθ(x) = Pθ(θ̂n ≤ x), where θ̂n is an estimator
of θ. Let θ0 be a given value of θ and θ1 = K−1

θ0
(1−α). The automatic

bootstrap percentile lower confidence bound for θ is defined to be

θABP = K−1

θ̂n
(Kθ1(θ0)).

Assume the assumption in the previous exercise. Show that θABP
has confidence coefficient 1 − α.

95. (Bootstrapping residuals). Consider linear model (3.25): X = Zβ+ε,
where Z is of full rank and ε is a vector of i.i.d. random variables hav-
ing mean 0 and variance σ2. Let ri = Xi − Zτi β̂ be the ith residual,

where β̂ is the LSE of β. Assume that the average of ri’s is always 0.
Let ε∗1, ..., ε

∗
n be i.i.d. bootstrap data from the empirical c.d.f. putting

mass n−1 on each ri. Define X∗
i = Zτi β̂ + ε∗i , i = 1, ..., n.

(a) Find an expression for β̂∗, the bootstrap analogue of β̂. Calculate

E(β̂∗|X) and Var(β̂∗|X).

(b) Using lτ (β̂ − β) and the idea in §7.4.1, construct a hybrid boot-
strap lower confidence bound for lτβ, where l ∈ Rp.
(c) Discuss when the lower confidence bound in (b) is 1 − α asymp-
totically correct.
(d) Describe how to construct a bootstrap-t lower confidence bound
for lτβ.
(e) Describe how to construct a hybrid bootstrap confidence set for
β, using the idea in §7.4.1.

96. (Bootstrapping pairs). Consider linear model (3.25): X = Zβ + ε,
where Z is of full rank and ε is a vector of independent random vari-
ables having mean 0 and finite variances. Let (X∗

1 , Z
∗
1 ), ..., (X∗

n, Z
∗
n)

be i.i.d. bootstrap data from the empirical c.d.f. putting mass n−1 on
each (Xi, Zi). Define β̂∗ = (ZτZ)−1

∑n
i=1 Z

∗
iX

∗
i . Repeat (a)-(e) of

the previous exercise.
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97. (External bootstrapping or wild bootstrapping). Assume the model
in the previous exercise. Let ε∗1, ..., ε

∗
n be i.i.d. random variables with

mean 0 and variance 1. Define the bootstrap data as X∗
i = Zτi β̂ +

|ti|ε∗i , i = 1, ..., n, where β̂ is the LSE of β, ti = (Xi−Zτi β̂)/
√

1 − hi,
and hi = Zτi (ZτZ)−1Zi. Repeat (a)-(e) of Exercise 95.

98. Prove (7.48) and (7.49).

99. Describe how to approximate C
(3)
PREB(X) in (7.51), using the Monte

Carlo method.

100. Prove (7.53) and (7.54).

101. Show that Bonferroni’s simultaneous confidence intervals are of level
1 − α.

102. Let Ct,α(X) be a confidence interval for θt with confidence coefficient
1−α, t = 1, ..., k. Suppose that C1,α(X), ..., Ck,α(X) are independent
for any α. Show how to construct simultaneous confidence intervals
for θt, t = 1, ..., k, with confidence coefficient 1 − α.

103. Show that Cij,α(X) in (7.60) is UMAU for µi − µj .

104. Consider the two-way balanced ANOVA model in Example 6.19. Us-
ing Bonferroni’s method, obtain level 1 − α simultaneous confidence
intervals for
(a) αi, i = 1, ..., a− 1;
(b) µij , i = 1, ..., a, j = 1, ..., b.

105. Prove (7.62). (Hint: use the Cauchy-Schwarz inequality.)

106. Let x ∈ Rk, y ∈ Rk, and A be a k × k positive definite matrix.
(a) Suppose that yτA−1x = 0. Show that

xτA−1x = max
c∈Rk,c6=0,cτy=0

(cτx)2

cτAc
.

(b) Assume model (7.61) with a full rank Z. Using the result in (a),
construct simultaneous confidence intervals (with confidence coeffi-
cient 1 − α) for cτβ, c ∈ Rp, c 6= 0, cτy = 0, where y ∈ Rp satisfies
ZτZy = 0.

107. Assume the conditions in Theorem 3.12. Show that Scheffé’s intervals
in Theorem 7.10 are 1 − α asymptotically correct.

108. Assume the conditions in Theorem 3.12 and Theorem 7.10. Derive
1 − α asymptotically correct simultaneous confidence intervals for
tτLβ/σ.
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109. Prove (7.65).

110. Find explicitly the m(m − 1)/2 vectors in the set T0 in (7.66) so
that {tτLβ : t ∈ T0} is exactly the same as µi − µj , 1 ≤ i < j ≤ m.
Show that the intervals in (7.66) are Scheffé’s simultaneous confidence
intervals.

111. In Example 7.28, show that
(a) Scheffé’s intervals in Theorem 7.10 with t = (1, z) and L = I2 are
of the form (7.67);
(b) the maximum on the right-hand side of (7.68) is achieved at t
given by (7.69);
(c) y in (7.69) is equal to 1 and (7.68) holds.

112. Consider the two-way balanced ANOVA model in Example 6.19. Us-
ing Scheffé’s method, obtain level 1 − α simultaneous confidence in-
tervals for αi’s, βj ’s, and γij ’s.

113. Let Xij = N(µ+αi+βj , σ
2), i = 1, ..., a, j = 1, ..., b, be independent,

where
∑a

i=1 αi = 0 and
∑b
j=1 βj = 0. Construct level 1 − α simulta-

neous confidence intervals for all linear combinations of αi’s and βj ’s,
using
(a) Bonferroni’s method;
(b) Scheffé’s method.

114. Assume model (7.61) with β = (β0, β1, β2) and Zi = (1, ti, t
2
i ), where

ti ∈ R,
∑n
i=1 ti = 0,

∑n
i=1 t

2
i = 1, and

∑n
i=1 t

3
i = 0.

(a) Construct a confidence ellipsoid for (β1, β2) with confidence coef-
ficient 1 − α;
(b) Construct simultaneous confidence intervals for all linear combi-
nations of β1 and β2, with confidence coefficient 1 − α.

115. Show that the distribution of Rst in (7.70) does not depend on any
unknown parameter.

116. For α = 0.05, obtain numerically the t-type confidence intervals in
(7.60), Bonferroni’s, Scheffé’s, and Tukey’s simultaneous confidence
intervals for µi − µj , 1 ≤ i < j ≤ 4, based on the following data Xij

from a one-way ANOVA model (q0.05 = 4.45):

j = 1 2 3 4 5 6

i = 1 0.08 0.10 0.09 0.07 0.09 0.06

2 0.15 0.09 0.11 0.10 0.08 0.13

3 0.13 0.10 0.15 0.09 0.09 0.17

4 0.05 0.11 0.07 0.09 0.11 0.08
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117. (Dunnett’s simultaneous confidence intervals). Let X0j (j = 1, ..., n0)
and Xij (i = 1, ...,m, j = 1, ..., n0) represent independent measure-
ments on a standard and m competing new treatments. Suppose
that Xij = N(µi, σ

2) with unknown µi and σ2 > 0, i = 0, 1, ...,m.
Let X̄i· be the sample mean based on Xij , j = 1, ..., n0, and σ̂2 =
[(m+ 1)(n0 − 1)]−1

∑m
i=0

∑n0

j=1(Xij − X̄i·)2.
(a) Show that the distribution of

Rst = max
i=1,...,m

|(X̄i· − µi) − (X̄0· − µ0)|/σ̂

does not depend on any unknown parameter.
(b) Show that

[
m∑

i=0

ciX̄i· − qασ̂

m∑

i=1

|ci|,
m∑

i=0

ciX̄i· + qασ̂

m∑

i=1

|ci|
]

for all c0, c1, ..., cm satisfying
∑m
i=0 ci = 0 are simultaneous confidence

intervals for
∑m
i=0 ciµi with confidence coefficient 1 − α, where qα is

the (1 − α)th quantile of Rst.

118. Let X1, ..., Xn be i.i.d. from the uniform distribution U(0, θ), where
θ > 0 is unknown. Construct a confidence band for the c.d.f. of X1

with confidence coefficient 1 − α.

119. Let X1, ..., Xn be i.i.d. with the p.d.f. 1
σf
(
t−µ
σ

)
, where f is a known

Lebesgue p.d.f. (a location-scale family). Let F be the c.d.f. of X1.
(a) Suppose that µ ∈ R is unknown and σ is known. Construct
simultaneous confidence intervals for F (t), t ∈ R, with confidence
coefficient 1 − α.
(b) Suppose that µ is known and σ > 0 is unknown. Construct
simultaneous confidence intervals for F (t), t ∈ R, with confidence
coefficient 1 − α.
(c) Suppose that µ ∈ R and σ > 0 are unknown. Construct level
1 − α simultaneous confidence intervals for F (t), t ∈ R.

120. Let X1, ..., Xn be i.i.d. from F on R and Fn be the empirical c.d.f.
Show that the intervals

[
max{Fn(t) − cα, 0}, min{Fn(t) + cα, 1}

]
, t ∈ R,

form a confidence band for F (t), t ∈ R, with limiting confidence
coefficient 1 − α, where cα is given by (7.75).
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Rohatgi (1976), Bickel and Doksum (1977), Lehmann (1986), Casella and
Berger (1990), and Barndorff-Nielsen and Cox (1994). Discussions and
proofs for results related to sufficiency and completeness can be found in
Rao (1945), Blackwell (1947), Hodges and Lehmann (1950), Lehmann and
Scheffé (1950), and Basu (1955). More results for exponential families are
given in Barndorff-Nielsen (1978).

The theory of UMVUE in §3.1.1 and §3.1.2 is mainly based on Chapter
2 of Lehmann (1983). More results on information inequalities can be
found in Cramér (1946), Rao (1973), Lehmann (1983), and Pitman (1979).
The theory of U-statistics and the method of projection can be found in
Hoeffding (1948), Randles and Wolfe (1979), and Serfling (1980). The
related theory for V-statistics is given in von Mises (1947), Serfling (1980),
and Sen (1981). Three excellent textbooks for the theory of LSE are Scheffé
(1959), Searle (1971), and Rao (1973). Additional materials for sample
surveys can be found in Basu (1958), Godambe (1958), Cochran (1977),
Särndal, Swensson, and Wretman (1992), and Ghosh and Meeden (1997).

Excellent textbooks for the Bayesian theory include Lindley (1965), Box
and Tiao (1973), Berger (1985), and Schervish (1995). For Bayesian com-
putation and Markov chain Monte Carlo, more discussions can be found in
references cited in §4.1.4. More general results on invariance in estimation
and testing problems are provided by Ferguson (1967) and Lehmann (1983,

543



544 References

1986). The theory of shrinkage estimation was established by Stein (1956)
and James and Stein (1961); Lehmann (1983) and Berger (1985) provide
excellent discussions on this topic. The method of likelihood has more than
200 years of history (Edwards, 1974). An excellent textbook on the MLE
in generalized linear models is McCullagh and Nelder (1989). Asymptotic
properties for MLE can be found in Cramér (1946), Serfling (1980), and Sen
and Singer (1993). Asymptotic results for the MLE in generalized linear
models are provided by Fahrmeir and Kaufmann (1985).

An excellent book containing results for empirical c.d.f.’s and their prop-
erties is Shorack and Wellner (1986). References for empirical likelihoods
are provided in §5.1.2 and §6.5.3. More results in density estimation can
be found, for example, in Rosenblatt (1971) and Silverman (1986). Dis-
cussions of partial likelihoods and proportional hazards models are given in
Cox (1972) and Fleming and Harrington (1991). More discussions on statis-
tical functionals can be found in von Mises (1947), Serfling (1980), Fernholz
(1983), Sen and Singer (1993), and Shao and Tu (1995). Two textbooks
for robust statistics are Huber (1981) and Hampel et al. (1986). A general
discussion of L-estimators and sample quantiles can be found in Serfling
(1980) and Sen (1981). L-estimators in linear models are covered by Bickel
(1973), Puri and Sen (1985), Welsh (1987), and He and Shao (1996). Some
references on generalized estimation equations and quasi-likelihoods are Go-
dambe and Heyde (1987), Godambe and Thompson (1989), McCullagh and
Nelder (1989), and Diggle, Liang, and Zeger (1994). Two textbooks con-
taining materials on variance estimation are Efron and Tibshirani (1993)
and Shao and Tu (1995).

The theory of UMP, UMPU, and UMPI tests in Chapter 6 is mainly
based on Lehmann (1986) and Chapter 5 of Ferguson (1967). Berger (1985)
contains a discussion on Bayesian tests. Results on large sample tests and
chi-square tests can be found in Serfling (1980) and Sen and Singer (1993).
Two textbooks on nonparametric tests are Lehmann (1975) and Randles
and Wolfe (1979).

Further materials on confidence sets can be found in Ferguson (1967),
Bickel and Doksum (1977), Lehmann (1986), and Casella and Berger (1990).
More results on asymptotic confidence sets based on likelihoods can be
found in Serfling (1980). The results on high order accurate confidence
sets (§7.4.3) are based on Hall (1992). The theory of bootstrap confidence
sets is covered by Hall (1992), Efron and Tibshirani (1993), and Shao and
Tu (1995). Further discussions on simultaneous confidence intervals can be
found in Scheffé (1959), Lehmann (1986), and Tukey (1977).
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references can be found in Lehmann (1983, 1986).
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List of Notation

R: the real line.

Rk: the k-dimensional Euclidean
space.

c = (c1, ..., ck): a vector (element)
in Rk, which is considered as
a k × 1 matrix (column vec-
tor) when matrix algebra is in-
volved.

cτ : the transpose of a vector c,
which is considered as a 1 × k
matrix (row vector) when ma-
trix algebra is involved.

‖c‖: the Euclidean norm of a vector
c ∈ Rk, ‖c‖2 = cτc.

B: the Borel σ-field on R.

Bk: the Borel σ-field on Rk.

(a, b) and [a, b]: the open and closed
intervals from a to b.

{a, b}: the set consisting of the ele-
ments a and b.

Ik: the k × k identity matrix.

Aτ : the transpose of a matrix A.

Det(A): the determinant of a ma-
trix A.

tr(A): the trace of a matrix A.

‖A‖: the norm of a matrix A de-
fined as ‖A‖2 = tr(AτA).

A−1: the inverse of a matrix A.

A−: the generalized inverse of a
matrix A.

A1/2: the square root of a nonneg-
ative definite matrix A defined
by A1/2A1/2 = A.

A−1/2: the inverse of A1/2.

Ac: the complement of the set A.

P (A): the probability of the set A.

IA: the indicator function of the set
A.

διx: the point mass at x or the c.d.f.
degenerated at x.

{an}: a sequence of vectors or ran-
dom vectors a1, a2, ....

an → a: {an} converges to a as n
increases to ∞.

→a.s.: convergence almost surely.

→p: convergence in probability.
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→d: convergence in distribution.

g′, g′′, and g(k): the first-, second-,
and kth-order derivatives of a
function g on R.

g(x+) or g(x−): the right or left
limit of the function g at x.

∂g/∂x or ∇g: the partial derivative
of the function g on Rk.

∂2g/∂x∂xτ or ∇2g: the second-
order partial derivative of the
function g on Rk.

F−1(p): the pth quantile of a c.d.f.
F , F−1(t)=inf{x : F (x) ≥ t}.

E(X) or EX : the expectation of
a random variable (vector or
matrix) X .

Var(X): the variance (covariance
matrix) of a random variable
(vector) X .

Cov(X, Y ): the covariance between
random variables X and Y .

P : a family containing the popula-
tion P that generates data

bT (P ): the bias of an estimator T
under population P .

b̃T (P ): an asymptotic bias of an es-
timator T under population P .

mseT (P ): the mse of an estimator
T under population P .

RT (P ): the risk of an estimator T
under population P .

amseT (P ): an asymptotic mse of
an estimator T under popula-
tion P .

eT ′
n,Tn(P ): the asymptotic relative

efficiency of T ′
n w.r.t. Tn.

αT (P ): probability of type I error
for a test T .

βT (P ): power function for a test T .

X(i): the ith order statistic of X1,
..., Xn.

X̄: the sample mean of X1, ..., Xn,

X̄ =

∑
n

i=1
Xi

n .

S2 : the sample variance (covari-
ance matrix) of X1, ..., Xn,

S2 =

∑n

i=1
(Xi−X̄)(Xi−X̄)τ

n−1 .

Fn: the empirical c.d.f. based on
X1, ..., Xn.

N(µ, σ2): the one-dimensional nor-
mal distribution or random
variable with mean µ and vari-
ance σ2.

Nk(µ, Σ): the k-dimensional nor-
mal distribution or random
vector with mean vector µ and
covariance matrix Σ.

Φ(x): the standard normal c.d.f.

zα: the αth quantile of the stan-
dard normal distribution.

χ2
r: a random variable having the

chi-square distribution χ2
r.

χ2
r,α: the (1 − α)th quantile of the

chi-square distribution χ2
r.

tr,α: the (1 − α)th quantile of the
t-distribution tr.

Fa,b,α: the (1−α)th quantile of the

F-distribution Fa,b.
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Cramér continuity theorem,
and Cramér-Wold device) 56

1.10 (continuous mapping) 59

1.11 (Slutsky’s theorem) 60

1.12 (delta-method) 60

1.13 (WLLN and SLLN) 62

1.14 (WLLN and SLLN) 65

1.15 (Lindeberg’s CLT) 67

1.16 (Edgeworth expansion) 72

1.17 (Cornish-Fisher expansion) 73

2.1 (properties of exponential fam-
ilies) 98-99

2.2 (factorization theorem) 104

2.3 (minimal sufficiency) 108

2.4 (Basu’s theorem) 112

2.5 (Rao-Blackwell theorem) 117

2.6 (amse) 139

3.1 (Lehmann-Scheffé theorem) 162
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tests in, 422-427; UMPU tests
in, 415-416; UMVUE’s in, 186,
191; variance estimation in,
375, 378-379; with random co-
efficients, 191, 205

Link function, 280

Location family, 99, 251; confidence
intervals in, 472-473; MRIE’s
in, 252-255; invariance in, 120,
251-252

Location-scale family, 99, 257;
Fisher information in, 170;
MRIE’s in, 259-261; invariance
in, 120, 258; UMPI tests in,
491

Log-distribution, 18

Log-likelihood equation, see likeli-
hood equation

Log-normal distribution, 21

Logistic distribution, 21
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Longitudinal data, 361

Loss function, 113, 116; convexity
of, 117, 233, 253, 256, 260, 264,
267; invariance of, 119, 251,
255, 258; see also absolute er-
ror loss, squared error loss, and
0-1 loss

M

M-functional, 345

M-estimator, 346-348; asymptotic
normality of, 367-369; consis-
tency of, 363; in linear models,
360

Marcinkiewicz and Zygmund’s in-
equality, 31

Marginal c.d.f. or distribution, 6

Marginal p.d.f., 22

Markov chain, 45; properties of, 46-
47, 246-247

Markov chain Monte Carlo
(MCMC), 245-250, 278

Markov’s inequality, 32

Martingale, 48; properties of, 49

Maximal invariant, 418

Maximum empirical likelihood esti-
mator (MELE), 324

Maximum likelihood estimator
(MLE), 274; asymptotic effi-
ciency of, 290-293; in confi-
dence sets, 497-498; in GLM,
281-282; in LR tests, 429

Maximum profile likelihood estima-
tor, 336

Maximum quasi-likelihood estima-
tor (MQLE), 284, 362

Maximum likelihood method, 273-
274

Mean, 28; see also expectation and
expected value

Mean absolute error, 123

Mean squared error (mse), 123;
consistency in, 133

Measurable function, 6

Measurable space, 2

Measure, 3; continuity of, 4; mono-
tonicity of, 4; subadditivity of,
4

Measure space, 3

Measurement problem, 92, 114

Median, 91, 155

Metric, see distance

Metropolis algorithm, 249-250

Minimal completeness, 152

Minimal sufficiency, 107-108; in ex-
ponential families, 109

Minimax estimator, 261-264, 266,
271

Minimaxity, 120-121

Minimum Lp distance estimator,
346

Minimum risk invariant estimator
(MRIE), 252

Minkowski’s inequality, 30

Missing data, 337
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Mixture distribution, 278, 353

Moment, 28; method of, 207, 237

Moment estimator, 207-210

Moment generating function
(m.g.f.), 18, 20-21, 33; proper-
ties of, 33-36

Monotone convergence theorem,
13, 40

Monotone likelihood ratio, 397-398;
in exponential families, 298

Monte Carlo, 245-246, 381, 506,
516

Multinomial distribution, 98; in χ2-
tests, 436, 438; in contingency
tables, 410, 439

Multiple comparison, 520, 523

Multivariate CLT, 69

Multivariate normal distribution or
p.d.f., 19, 29, 79, 82; see
also asymptotic normality,
bivariate normal distribution,
and normal distribution

N

Nearest neighbor method, 332

Negative binomial distribution, 18

Negative part of a function, 11

Newton-Raphson method, 278,
283, 295

Neyman structure, 405

Neyman-Pearson lemma, 289, 394,
397

Nominal level, 517

Noncentral chi-square distribution,
26-27, 81; see also chi-square
distribution

Noncentral F-distribution, 26-27,
79; see also F-distribution

Noncentral t-distribution, 26, 79;
see also t-distribution

Noncentrality parameter, 26

Noninformative prior, 235

Nonlinear regression, 283, 361

Nonparametric family, 95

Nonparametric likelihood function,
323

Nonparametric maximum likeli-
hood estimator, 324

Nonparametric method, 95

Nonparametric model, 95

Nonparametric test, 442

Norm, 320

Normal distribution or p.d.f., 19-
20, 29, 79, 82; see also asymp-
totic normality, bivariate nor-
mal distribution, multivariate
normal distribution, and stan-
dard normal distribution

Normalizing and variance stabiliz-
ing transformation, 507

Nuisance parameter, 280

Null hypothesis, 115

O

One-sample problem, 411, 444
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One-sample t-test, 412

One-sample Wilcoxon statistic,
175

One-sided confidence interval, see
confidence bound

One-sided hypothesis, 399

One-step MLE, 295

One-way ANOVA, 185

Optimality in risk, 114

Order statistics, 102; completeness
of, 111-112; p.d.f. of, 102; suf-
ficiency of, 106

Outcome, 1

Over-dispersion, 281

P

p-value, 127-128, 441

Pairwise independence, 22

Parameter, 94

Parameter space, 94

Parametric bootstrapping, 538

Parametric family, 94; identifiabil-
ity of, 94, 183

Parametric method, 95

Parametric model, 94, 231

Pareto distribution, 21, 209

Partial likelihoods, 333-334

Partition, 8

Permutation test, 443-444

Pitman’s estimator, 253, 257; min-
imaxity of, 264

Pivotal quantity, 471, 483

Point estimator, 122

Point mass, 19

Poisson distribution, 18

Pólya’s theorem, 51

Polynomial regression, 185, 205

Population, 91

Positive part of a function, 11

Posterior distribution or p.d.f., 231-
232; approximate normality of,
297; computation of, 245

Power function, 393

Power series distribution, 143, 165

Power set, 2

Pratt’s theorem, 491

Prediction, 40, 225, 482

Prediction interval or set, 482-483

Predictor, 40, 482

Prior distribution or p.d.f., 231

Probability density function
(p.d.f.), 15

Probability measure, 3

Probability space, 3

Product-limit estimator, 330

Product measure, 5

Product σ-field, 5
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Product space, 5

Profile likelihood, 336

Profile empirical likelihood, 336

Profile empirical likelihood ratio
test, 449-451

Projection: on lower dimension
spaces, 76; on random ele-
ments, 178

Projection matrix, 188, 415, 433,
436-437

Projection method, 178-180

Proportional allocation, 199

Proportional hazards model, 334

Pseudo-likelihood equation, 362

Q

Quantile, 338, 351, 501

Quasi-likelihood, 284, 361-362

R

R-estimator, 349-351

Radon-Nikodym derivative or den-
sity, 15; properties of, 16-17

Radon-Nikodym theorem, 15

Random censorship model, 329,
333-334

Random effects model, 192, 426-
427

Random element, 7

Random experiment, 1

Random variable or vector, 7

Random walk chain, 250

Randomized confidence set, 491-
493

Randomized decision rule, 116-117,
233; risk of, 116

Randomized estimator, 150-151

Randomized test, 128, 393, 429,
477, 491

Rank, 348

Rank statistics, 348, 444-445, 476

Rank test, 396-397

Rao’s score test, see score test

Rao-Blackwell theorem, 117

Ratio estimator, 204-205

Regression M-estimator, 360

Rejection region, 115

Repeated measurements, 361

Replication method, see resampling
method

Resampling method, 376

Residual, 188; in L-estimators, 358

Riemann integral, 11-12

Risk, 113, 116

Risk set, 334

Robustness: in Hampel’s sense,
340-341; of L-estimators, 345,
359; of LSE’s, 189-190; of M-
estimators, 347, 369; of R-
estimators, 351; of rank statis-
tics, 349; of sample mean, me-
dian, and trimmed mean, 355-
357
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Root of the likelihood equation
(RLE), 290, 360; asymptotic
efficiency of, 290-293

S

Sample, 92

Sample central moment, 210

Sample correlation coefficient, 145,
417

Sample covariance matrix, 373

Sample mean, 92; admissibility of,
241; asymptotic distribution
of, 101-102; consistency of,
133-134; efficiency of, 355-356;
distribution of, 101, 112-113;
minimaxity of, 121; moments
of, 101; mse of, 114; optimality
of, 118; robustness of, 355-356

Sample median, 356

Sample moment, 174, 207

Sample quantile, 338; asymptotic
distribution of, 353-355, 501;
Bahadur’s representation for,
354; consistency of, 352; distri-
bution of, 352; see also sample
median

Sample size, 92

Sample space, 1

Sample standard deviation, 255

Sample variance, 92, asymptotic
distribution of, 101-102; con-
sistency of, 133; distribution
of, 101-102, 112-113; moments
of, 101; see also sample covari-
ance matrix

Scale family, 99, 255-257

Scheffé’s method or intervals, 520-
522, 525

Scheffé’s theorem, 59

Score function, 292

Score test, 434, 498; asymptotic
distribution of, 434

Scoring, 292

Second-stage sampling, 202

Semi-parametric method or model,
333

Shortest-length confidence interval,
484-488

Shrinkage estimator, 269, 271-273

Sign test, 442-443

Signed rank statistic, 348, 480; one-
sample Wilcoxon’s, 348, 454

Signed rank test, 444-446, 480;
Wilcoxon’s, 444

Significance level, see level of signif-
icance

Similar test, 404-405

Simple function, 7

Simple hypothesis, 394

Simple linear regression, 185

Simple random sampling, 93

Simultaneous confidence intervals,
519

Simultaneous estimation, 267

Single-stage sampling, 201
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Size, 126, 393; see also limiting size

Skewness, 514

Skorohod’s theorem, 51

Slutsky’s theorem, 60

Smoothing splines, 332

Squared error loss, 114, 267

Standard deviation, 28

Standard normal distribution or
p.d.f., 19; see also asymptotic
normality and normal distribu-
tion

Statistic, 100; distribution of, 101-
102

Statistical computing, 245

Statistical decision theory, see deci-
sion theory

Statistical functional, 338

Statistical inference, see inference

Statistical model, 94

Stepwise c.d.f., 9

Stochastic order, 55

Stratified sampling, 197

Strong law of large numbers, 62, 65

Studentized random variable, 72

Studentized range, 523

Submartingale, see martingale

Substitution, 207; in variance esti-
mation, 372-376

Sufficiency, 93; see also minimal
sufficiency

Sup-norm, 321

Sup-norm or sup-norm distance,
321

Superefficiency, 289

Supermartingale, see martingale

Survey, 44, 93, 195, 327

Survival analysis, 329, 333

Survival data or times, 329, 333

Survival distribution, 329

Survival function, 334

Symmetry: of c.d.f. or p.d.f., 25-26;
of random variables, 25-26; of
random vectors, 36

Systematic sampling, 202-203

T

t-distribution, 21, 25; see also non-
central t-distribution

t-type confidence interval, 525

Test, 115, 125, 393

Testing independence, 410, 416,
439

Tightness, 56

Transformation, 23, 59-61

Trimmed sample mean, 344, 357,
453

Truncation family, 106

Tukey’s method or intervals, 523-
525

Tukey’s model, 356
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Two-sample linear rank statistic,
349

Two-sample problem, 260, 413,
444, 449

Two-sample rank test, 445-446;
Wilcoxon’s, 445

Two-sample t-test, 415, 443, 445

Two-sided hypothesis, 401

Two-stage sampling, 199, 202

Two-way additive model, 465

Two-way ANOVA, 186

Type I error, 125, 393

Type II error, 125, 393

U

U-statistic, 174; asymptotic distri-
bution of, 180; variance of, 176

Unbiased confidence set, 490

Unbiased estimator, 119, 161

Unbiased test, 404

Uncorrelated random variables, 29

Uniform distribution, 9, 20

Uniform integrability, 51; proper-
ties of, 52, 86

Uniformly minimum risk unbiased
estimator, 162

Uniformly minimum variance unbi-
ased estimator (UMVUE), 161

Uniformly most accurate (UMA)
confidence set, 488-489

Uniformly most accurate invariant
(UMAI) confidence set, 493

Uniformly most accurate unbiased
(UMAU) confidence set, 490

Uniformly most powerful invariant
(UMPI) test, 417-418; in
location-scale families, 419; in
normal linear models, 422-427

Uniformly most powerful (UMP)
test, 394; in testing one-sided
hypotheses in families with
monotone likelihood ratio,
399-401; in testing simple hy-
potheses, 394; in testing two-
sided hypotheses in exponen-
tial families, 401-403

Uniformly most powerful unbiased
(UMPU) test, 404; in compari-
son of two treatments with dis-
crete data, 408-409; in contin-
gency tables, 409-410; in ex-
ponential families, 406-408; in
normal families, 410-417; in
normal linear models, 415-416;
in one-sample problems, 411-
412; in testing for indepen-
dence in normal families, 416-
417; in two-sample problems,
413-415

Unimodality, 485

Uniqueness, of Bayes action or
estimator, 233, 240; of distri-
bution with a given ch.f., 35; of
measure, 75; of minimax esti-
mator, 261; of MRIE, 253, 256;
of product measure, 5; of
Radon-Nikodym derivative,
15; of UMP test, 394; of
UMVUE, 162
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V

V-statistic, 210, 342, 448; asymp-
totic distribution of, 212; bias
of, 211; variance of, 211

Variance, 18, 20-21, 28

Variance estimation, 371-372

Variance estimator, 175, 201, 215-
217, 373-376; see also boot-
strap variance estimator and
jackknife

Vector, 7

Volume of a confidence set, 490-491

W

Wald’s test, 433-434, 497-498; asy-
mptotic distribution of, 434

Watson-Royall theorem, 196

Weak convergence, see convergence
in distribution

Weak law of large numbers
(WLLN), 62, 65

Weibull distribution, 21

Weighted jackknife variance esti-
mator, 379

Weighted least squares estimator,
213-215

Wild bootstrapping, 540

Winsorized sample mean, 346

With replacement, 142, 327

Without replacement, 93, 197, 199,
327

Working correlation matrix, 362

Woodruff’s interval, 502
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