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Preface to the First
Edition

This book is intended for a course entitled Mathematical Statistics offered
at the Department of Statistics, University of Wisconsin-Madison. This
course, taught in a mathematically rigorous fashion, covers essential ma-
terials in statistical theory that a first or second year graduate student
typically needs to learn as preparation for work on a Ph.D. degree in statis-
tics. The course is designed for two 15-week semesters, with three lecture
hours and two discussion hours in each week. Students in this course are
assumed to have a good knowledge of advanced calculus. A course in real
analysis or measure theory prior to this course is often recommended.

Chapter 1 provides a quick overview of important concepts and results
in measure-theoretic probability theory that are used as tools in math-
ematical statistics. Chapter 2 introduces some fundamental concepts in
statistics, including statistical models, the principle of sufficiency in data
reduction, and two statistical approaches adopted throughout the book:
statistical decision theory and statistical inference. Each of Chapters 3
through 7 provides a detailed study of an important topic in statistical de-
cision theory and inference: Chapter 3 introduces the theory of unbiased
estimation; Chapter 4 studies theory and methods in point estimation un-
der parametric models; Chapter 5 covers point estimation in nonparametric
settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses
interval estimation and confidence sets. The classical frequentist approach
is adopted in this book, although the Bayesian approach is also introduced
(§2.3.2, §4.1, §6.4.4, and §7.1.3). Asymptotic (large sample) theory, a cru-
cial part of statistical inference, is studied throughout the book, rather than
in a separate chapter.

About 85% of the book covers classical results in statistical theory that
are typically found in textbooks of a similar level. These materials are in the
Statistics Department’s Ph.D. qualifying examination syllabus. This part
of the book is influenced by several standard textbooks, such as Casella and
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viii Preface to the First Edition

Berger (1990), Ferguson (1967), Lehmann (1983, 1986), and Rohatgi (1976).
The other 15% of the book covers some topics in modern statistical theory
that have been developed in recent years, including robustness of the least
squares estimators, Markov chain Monte Carlo, generalized linear models,
quasi-likelihoods, empirical likelihoods, statistical functionals, generalized
estimation equations, the jackknife, and the bootstrap.

In addition to the presentation of fruitful ideas and results, this book
emphasizes the use of important tools in establishing theoretical results.
Thus, most proofs of theorems, propositions, and lemmas are provided
or left as exercises. Some proofs of theorems are omitted (especially in
Chapter 1), because the proofs are lengthy or beyond the scope of the
book (references are always provided). Each chapter contains a number of
examples. Some of them are designed as materials covered in the discussion
section of this course, which is typically taught by a teaching assistant (a
senior graduate student). The exercises in each chapter form an important
part of the book. They provide not only practice problems for students,
but also many additional results as complementary materials to the main
text.

The book is essentially based on (1) my class notes taken in 1983-84
when I was a student in this course, (2) the notes I used when I was a
teaching assistant for this course in 1984-85, and (3) the lecture notes I
prepared during 1997-98 as the instructor of this course. I would like to
express my thanks to Dennis Cox, who taught this course when I was
a student and a teaching assistant, and undoubtedly has influenced my
teaching style and textbook for this course. I am also very grateful to
students in my class who provided helpful comments; to Mr. Yonghee Lee,
who helped me to prepare all the figures in this book; to the Springer-Verlag
production and copy editors, who helped to improve the presentation; and
to my family members, who provided support during the writing of this
book.

Madison, Wisconsin Jun Shao
January 1999



Preface to the Second
Edition

In addition to correcting typos and errors and making a better presentation,
the main effort in preparing this new edition is adding some new material
to Chapter 1 (Probability Theory) and a number of new exercises to each
chapter. Furthermore, two new sections are created to introduce semipara-
metric models and methods (§5.1.4) and to study the asymptotic accuracy
of confidence sets (§7.3.4). The structure of the book remains the same.

In Chapter 1 of the new edition, moment generating and characteristic
functions are treated in more detail and a proof of the uniqueness theorem
is provided; some useful moment inequalities are introduced; discussions
on conditional independence, Markov chains, and martingales are added,
as a continuation of the discussion of conditional expectations; the con-
cepts of weak convergence and tightness are introduced; proofs to some key
results in asymptotic theory, such as the dominated convergence theorem
and monotone convergence theorem, the Lévy-Cramér continuity theorem,
the strong and weak laws of large numbers, and Lindeberg’s central limit
theorem, are included; and a new section (§1.5.6) is created to introduce
Edgeworth and Cornish-Fisher expansions. As a result, Chapter 1 of the
new edition is self-contained for important concepts, results, and proofs in
probability theory with emphasis in statistical applications.

Since the original book was published in 1999, I have been using it as
a textbook for a two-semester course in mathematical statistics. Exercise
problems accumulated during my teaching are added to this new edition.
Some exercises that are too trivial have been removed.

In the original book, indices on definitions, examples, theorems, propo-
sitions, corollaries, and lemmas are included in the subject index. In the
new edition, they are in a separate index given in the end of the book (prior
to the author index). A list of notation and a list of abbreviations, which
are appendices of the original book, are given after the references.
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X Preface to the Second Edition

The most significant change in notation is the notation for a vector.
In the text of the new edition, a k-dimensional vector is denoted by ¢ =
(c1, ..., ¢k ), whether it is treated as a column or a row vector (which is not
important if matrix algebra is not considered). When matrix algebra is
involved, any vector ¢ is treated as a k x 1 matrix (a column vector) and
its transpose ¢” is treated as a 1 x k matrix (a row vector). Thus, for
c=(c1,.,cx), CTe=ci4---+ci and ¢c” is the k x k matrix whose (i, j)th
element is c;c;.

I would like to thank reviewers of this book for their constructive com-
ments, the Springer-Verlag production and copy editors, students in my
classes, and two teaching assistants, Mr. Bin Cheng and Dr. Hansheng
Wang, who provided help in preparing the new edition. Any remaining
errors are of course my own responsibility, and a correction of them may
be found on my web page http://www.stat.wisc.edu/~ shao.

Madison, Wisconsin Jun Shao
April, 2003
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Chapter 1

Probability Theory

Mathematical statistics relies on probability theory, which in turn is based
on measure theory. The present chapter provides some principal concepts
and notational conventions of probability theory, and some important re-
sults that are useful tools in statistics. A more complete account of proba-
bility theory can be found in a standard textbook, for example, Billingsley
(1986), Chung (1974), or Loeve (1977). The reader is assumed to be familiar
with set operations and set functions (mappings) in advanced calculus.

1.1 Probability Spaces and Random Elements

In an elementary probability course, one defines a random experiment to
be an experiment whose outcome cannot be predicted with certainty, and
the probability of A (a collection of possible outcomes) to be the fraction
of times that the outcome of the random experiment results in A in a
large number of trials of the random experiment. A rigorous and logically
consistent definition of probability was given by A. N. Kolmogorov in his
measure-theoretic fundamental development of probability theory in 1933
(Kolmogorov, 1933).

1.1.1 o-fields and measures

Let © be a set of elements of interest. For example, €2 can be a set of
numbers, a subinterval of the real line, or all possible outcomes of a random
experiment. In probability theory, ) is often called the outcome space,
whereas in statistical theory, Q is called the sample space. This is because
in probability and statistics, €2 is usually the set of all possible outcomes of
a random experiment under study.



2 1. Probability Theory

A measure is a natural mathematical extension of the length, area, or
volume of subsets in the one-, two-, or three-dimensional Euclidean space.
In a given sample space €2, a measure is a set function defined for certain
subsets of Q. It is necessary for this collection of subsets to satisfy certain
properties, which are given in the following definition.

Definition 1.1. Let F be a collection of subsets of a sample space 2. F is
called a o-field (or o-algebra) if and only if it has the following properties.
(i) The empty set ) € F.

(ii) If A € F, then the complement A¢ € F.

(iii) If A; € F, 1= 1,2, ..., then their union UA; € F. 1

A pair (Q,F) consisting of a set Q and a o-field F of subsets of Q is
called a measurable space. The elements of F are called measurable sets in
measure theory or events in probability and statistics.

Since ¢ = Q, it follows from (i) and (ii) in Definition 1.1 that Q € F
if 7 is a o-field on . Also, it follows from (ii) and (iii) that if A; € F,
i=1,2,..., and F is a o-field, then the intersection NA; € F. This can be
shown using DeMorgan’s law: (NA4;) = UAS.

For any given €2, there are two trivial o-fields. The first one is the
collection containing exactly two elements, ) and €. This is the smallest
possible o-field on €. The second one is the collection of all subsets of 2,
which is called the power set and is the largest o-field on €.

Let us now consider some nontrivial o-fields. Let A be a nonempty
proper subset of Q (A C Q, A # Q). Then (verify)

{0, 4, A°,Q} (1.1)

is a o-field. In fact, this is the smallest o-field containing A in the sense that
if F is any o-field containing A, then the o-field in (1.1) is a subcollection
of F. In general, the smallest o-field containing C, a collection of subsets of
, is denoted by o(C) and is called the o-field generated by C. Hence, the
o-field in (1.1) is o({A}). Note that ({4, A°}), 0({4,Q}), and o ({4, 0})
are all the same as o({A}). Of course, if C itself is a o-field, then o(C) = C.

On the real line R, there is a special o-field that will be used almost
exclusively. Let C be the collection of all finite open intervals on R. Then
B = o(C) is called the Borel o-field. The elements of B are called Borel
sets. The Borel o-field B¥ on the k-dimensional Euclidean space R* can be
similarly defined. It can be shown that all intervals (finite or infinite), open
sets, and closed sets are Borel sets. To illustrate, we now show that, on the
real line, B = o(O), where O is the collection of all open sets. Typically,
one needs to show that o(C) C ¢(O) and o(O) C o(C). Since an open
interval is an open set, C C O and, hence, ¢(C) C 0(O) (why?). Let U be
an open set. Then U can be expressed as a union of a sequence of finite open
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intervals (see Royden (1968, p.39)). Hence, U € o(C) (Definition 1.1(iii))
and O C ¢(C). By the definition of ¢(0), o(O) C o(C). This completes
the proof.

Let C C R* be a Borel set and let Bc = {C N B : B € B*}. Then
(C,B¢) is a measurable space and Bc is called the Borel o-field on C.

Now we can introduce the notion of a measure.

Definition 1.2. Let (€2, F) be a measurable space. A set function v defined
on F is called a measure if and only if it has the following properties.

(i) 0 < v(A) < oo for any A € F.

(ii) v(0) = 0.

(iii) If A; € F, i =1,2,..., and A;’s are disjoint, i.e., A; N A; = 0 for any

1 # 7, then
i=1

i=1

The triple (2, F,v) is called a measure space. If v(2) = 1, then v is
called a probability measure and we usually denote it by P instead of v, in
which case (2, F, P) is called a probability space.

Although measure is an extension of length, area, or volume, some-
times it can be quite abstract. For example, the following set function is a
measure:

I/(A):{ 80 ﬁiﬁA7§@ (1.2)

Since a measure can take oo as its value, we must know how to do arithmetic
with co. In this book, it suffices to know that (1) for any x € R, co+z = oo,
zoo=o0if x>0, x00=—00if 2 <0, and 0 0o = 0; (2) 0o+ 0o = oo; and
(3) 00 = o for any a > 0. However, co — oo or 0o/oo is not defined.

The following examples provide two very important measures in proba-
bility and statistics.

Example 1.1 (Counting measure). Let Q be a sample space, F the collec-
tion of all subsets, and v(A) the number of elements in A € F (v(A) = o0
if A contains infinitely many elements). Then v is a measure on F and is
called the counting measure. 1

Example 1.2 (Lebesgue measure). There is a unique measure m on (R, BB)
that satisfies
m([a,b]) =b—a (1.3)

for every finite interval [a, b], —co < a < b < co. This is called the Lebesgue
measure. If we restrict m to the measurable space ([0, 1], Bo,1)), then m is
a probability measure. 1
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If © is countable in the sense that there is a one-to-one correspondence
between ) and the set of all integers, then one can usually consider the
trivial o-field that contains all subsets of €2 and a measure that assigns a
value to every subset of 2. When  is uncountable (e.g., =R or [0, 1]),
it is not possible to define a reasonable measure for every subset of §2; for
example, it is not possible to find a measure on all subsets of R and still
satisfy property (1.3). This is why it is necessary to introduce o-fields that
are smaller than the power set.

The following result provides some basic properties of measures. When-
ever we consider v(A), it is implicitly assumed that A € F.

Proposition 1.1. Let (Q, F,v) be a measure space.
(i) (Monotonicity). If A C B, then v(A) < v(B).
(ii) (Subadditivity). For any sequence Aj, As, ...,

y(UAl) §ZV(A)

(iii) (Continuity). If A3 C Ay C A3 C -+ (or A; D Ay D A3 D -+ and
V(A1) < 00), then

v ( lim An) = lim v (4,),

n—oo n—oo

where .
hmAn—UA (or:ﬂAi>.
i=1

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Since A C B, B = AU (A°N B) and A and A° N B are disjoint. By
Definition 1.2(iii), »(B) = v(A) +v(A°N B), which is no smaller than v(A)
since ¥(A° N B) > 0 by Definition 1.2(1). &

There is a one-to-one correspondence between the set of all probability
measures on (R,B) and a set of functions on R. Let P be a probability
measure. The cumulative distribution function (c.d.f.) of P is defined to be

F(z) =P ((—o0,z]), x€R. (1.4)

Proposition 1.2. (i) Let F' be a c.d.f. on R. Then

(a) F(—o0) =lim;—_ F(z) = 0;

(b) F(o0) =limg—00 F(z) = 1;

(c) F is nondecreasing, i.e., F'(z) < F(y) if z < y;

(d) F is right continuous, i.e., limy_; 45z F'(y) = F(x).
(ii) Suppose that a real-valued functlon F on R satisfies (a)-(d) in part (i).
Then F is the c.d.f. of a unique probability measure on (R,B). 1
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The Cartesian product of sets (or collections of sets) I';, i € Z = {1, ..., k}
(or {1,2,...}) is defined as the set of all (a1, ...,ax) (or (a1, as,...)), a; € Ty,
i € Z, and is denoted by [[,c; T =T1 x --- x T (or T'y x Ty x --+). Let
(Q4, Fi), i € Z, be measurable spaces. Since HieI F; is not necessarily a o-
field, o (HiGI .7-}) is called the product o-field on the product space HieI Q;
and ([T;cz Q.0 ([T;ez Fi)) is denoted by [],c7(24, ;). As an example,
consider (Q;,F;) = (R,B), i = 1,...,k. Then the product space is R* and
it can be shown that the product o-field is the same as the Borel o-field on
RE, which is the o-field generated by the collection of all open sets in R”.

In Example 1.2, the usual length of an interval [a, b] C R is the same as
the Lebesgue measure of [a, b]. Consider a rectangle [a1, b1] X [az, ba] C R
The usual area of [a1,b1] X [az, ba] is

(b1 — a1) (b2 — az) = m([a1, b1])m([az, b2]), (1.5)

i.e., the product of the Lebesgue measures of two intervals [aq,b;] and
[az,bo]. Note that [a1,b1] X [az, ba] is a measurable set by the definition
of the product o-field. Is m([a1,b1])m([az, b2]) the same as the value of a
measure defined on the product o-field? The following result answers this
question for any product space generated by a finite number of measurable
spaces. (Its proof can be found in Billingsley (1986, pp. 235-236).) Be-
fore introducing this result, we need the following technical definition. A
measure v on (9, F) is said to be o-finite if and only if there exists a se-
quence {Aq, Az, ...} such that UA; = Q and v(A4;) < oo for all 4. Any finite
measure (such as a probability measure) is clearly o-finite. The Lebesgue
measure in Example 1.2 is o-finite, since R = UA,, with A4, = (—n,n),
n =1,2,.... The counting measure in Example 1.1 is o-finite if and only if
Q is countable. The measure defined by (1.2), however, is not o-finite.

Proposition 1.3 (Product measure theorem). Let (;, F;,v4), i = 1,..., k,
be measure spaces with o-finite measures, where k > 2 is an integer. Then
there exists a unique o-finite measure on the product o-field o(Fy x - - - X F,),
called the product measure and denoted by v1 X - -+ X v, such that

vy X -+ X Vk(Al X - X Ak) :Vl(A1>-~-Vk(Ak>
forall A; € Fi,i=1,..,k. 1

In R?, there is a unique measure, the product measure m x m, for which
m X m([a1, b1] X [ag, b2]) is equal to the value given by (1.5). This measure
is called the Lebesgue measure on (R? B?). The Lebesgue measure on
(R3,B3) is m x m x m, which equals the usual volume for a subset of the
form [ay,b1] X [ag, bo] X [a3, b3]. The Lebesgue measure on (R*, B¥) for any
positive integer k is similarly defined.

The concept of c.d.f. can be extended to R*. Let P be a probability
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measure on (RF, B¥). The c.d.f. (or joint c.d.f.) of P is defined by
F(z1,....,xzr) = P((—00,21] X -+ X (=00, xk]), w € R. (1.6)

Again, there is a one-to-one correspondence between probability measures
and joint c.d.f’s on R¥. Some properties of a joint c.d.f. are given in
Exercise 10 in §1.6. If F(z1,...,2%) is a joint c.d.f., then
Fz(x) = mjﬁoo,jzl,l,i,?}—l,wrl,...,k F(%h ey L1y Ly L1y eeey Ik)

is a c.d.f. and is called the ith marginal c.d.f. Apparently, marginal c.d.f.’s
are determined by their joint c.d.f. But a joint c.d.f. cannot be determined
by k marginal c.d.f.’s. There is one special but important case in which a
joint c.d.f. F' is determined by its k marginal c.d.f. F;’s through

F(x1,..,x) = Fy(x1) - Fp(xr), (x1,...,2) € R, (1.7)

in which case the probability measure corresponding to F' is the product
measure P; X - -- X P, with P; being the probability measure corresponding
to f‘jZ

Proposition 1.3 can be extended to cases involving infinitely many mea-
sure spaces (Billingsley, 1986). In particular, if (R¥,B* P;), i = 1,2, ...,
are probability spaces, then there is a product probability measure P on
[152, (R*, B¥) such that for any positive integer [ and B; € B¥, i = 1,...,1,

P(By x - x By xRF x R¥ x ---) = Py(By)--- Pi(By).

1.1.2 Measurable functions and distributions

Since 2 can be quite arbitrary, it is often convenient to consider a function
(mapping) f from Q to a simpler space A (often A = R¥). Let B C A.
Then the inverse image of B under f is

B ={feB={weQ: fw) € B

The inverse function f~' need not exist for f~1(B) to be defined. The
reader is asked to verify the following properties:

(a) f~YB°) = (f~1(B))¢ for any B C A;

(b) f~YUB;) =Uf~Y(B;) forany B; C A, i=1,2,....

Let C be a collection of subsets of A. We define

ey ={f'c):cecy.
Definition 1.3. Let (2, F) and (A,G) be measurable spaces and f a

function from Q to A. The function f is called a measurable function from
(2, F) to (A,G) if and only if f~5(G) C F. &
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If A = R and G = B (Borel o-field), then f is said to be Borel measurable
or is called a Borel function on (2, F) (or with respect to F).

In probability theory, a measurable function is called a random ele-
ment and denoted by one of X, Y, Z,.... If X is measurable from (Q,F)
to (R, B), then it is called a random wvariable; if X is measurable from
(2, F) to (R*,BF), then it is called a random k-vector. If Xy, ..., X} are
random variables defined on a common probability space, then the vector
(X1, ..., Xk) is a random k-vector. (As a notational convention, any vector
c € RF is denoted by (ci, ..., cx), where ¢; is the ith component of c.)

If f is measurable from (Q, F) to (A, G), then f~1(G) is a sub-o-field of
F (verify). It is called the o-field generated by f and is denoted by o(f).

Now we consider some examples of measurable functions. If F is the

collection of all subsets of 2, then any function f is measurable. Let A C Q.
The indicator function for A is defined as

1 weA
IA(”){ 0 wgA

For any B C R,

0 0¢B,1¢B
A 0¢B,1€B
Ac 0eB,1¢B
Q 0€ B,1€ B.

Then o(14) is the o-field given in (1.1). If A is a measurable set, then I4
is a Borel function.

Note that o(I4) is a much smaller o-field than the original o-field F.
This is another reason why we introduce the concept of measurable func-
tions and random variables, in addition to the reason that it is easy to
deal with numbers. Often the o-field F (such as the power set) contains
too many subsets and we are only interested in some of them. One can
then define a random variable X with o(X) containing subsets that are of
interest. In general, o(X) is between the trivial o-field {, 2} and F, and
contains more subsets if X is more complicated. For the simplest function
14, we have shown that o(I4) contains only four elements.

The class of simple functions is obtained by taking linear combinations
of indicators of measurable sets, i.e.,

k
p(w) = Z aila, (), (1.8)

where Aq, ..., A are measurable sets on 2 and aq, ..., a; are real numbers.
One can show directly that such a function is a Borel function, but it
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follows immediately from Proposition 1.4. Let Ay, ..., Ax be a partition of
Q, i.e., A;’s are disjoint and A; U---U Ax = Q. Then the simple function
@ given by (1.8) with distinct a;’s exactly characterizes this partition and
o(p) =c({A, ..., Ax}).

Proposition 1.4. Let (£, F) be a measurable space.

(i) f is Borel if and only if f~1(a,00) € F for all a € R.

(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real
numbers; also, f/g is Borel provided g(w) # 0 for any w € Q.

(iii) If f1, f2,... are Borel, then so are sup,, fn, inf, f,, limsup,, f,, and
liminf,, f,. Furthermore, the set

A= {w €N lim f,(w) exists}

n—oo

is an event and the function

| limy oo fr(w) weA
i) = { fi(w) o A

is Borel.

(iv) Suppose that f is measurable from (£2, F) to (A, G) and g is measurable
from (A, G) to (A, H). Then the composite function go f is measurable from
(Q,F) to (A,H).

(v) Let © be a Borel set in RP. If f is a continuous function from 2 to RY,
then f is measurable. 1

Proposition 1.4 indicates that there are many Borel functions. In fact,
it is hard to find a non-Borel function.

The following result is very useful in technical proofs. Let f be a non-
negative Borel function on (€2, F). Then there exists a sequence of simple
functions {p,} satisfying 0 < ¢1 < w2 < -+ < f and lim,, 00 o, = f
(Exercise 17 in §1.6).

Let (2, F,v) be a measure space and f be a measurable function from
(Q,F) to (A, G). The induced measure by f, denoted by vo f~! is a measure
on G defined as

vof ' (B)=v(feB)=v(f'(B)), BEeG. (1.9)

It is usually easier to deal with v o f~1 than to deal with v since (A,G)
is usually simpler than (2, F). Furthermore, subsets not in o(f) are not
involved in the definition of v o f~!. As we discussed earlier, in some cases
we are only interested in subsets in o(f).

If v = P is a probability measure and X is a random variable or a
random vector, then P o X! is called the law or the distribution of X and
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is denoted by Px. The c.d.f. of Px defined by (1.4) or (1.6) is also called
the c.d.f. or joint c.d.f. of X and is denoted by Fx. On the other hand,
for any c.d.f. or joint c.d.f. F', there exists at least one random variable
or vector (usually there are many) defined on some probability space for
which F'x = F. The following are some examples of random variables and
their c.d.f.’s. More examples can be found in §1.3.1.

Example 1.3 (Discrete c.d.f.’s). Let a1 < ag < --- be a sequence of real
numbers and let p,, n = 1,2, ..., be a sequence of positive numbers such
that Y, p, = 1. Define

F(.’I}) _ 2?21 Di (£79) <z< an+1, N = 1727 (1 10)
0 —oo < T <a. '

Then F is a stepwise c.d.f. It has a jump of size p, at each a, and is flat
between a,, and a,y1, n = 1,2,.... Such a c.d.f. is called a discrete c.d.f.
and the corresponding random variable is called a discrete random variable.
We can easily obtain a random variable having F' in (1.10) as its c.d.f. For
example, let Q = {aq,aq,...}, F be the collection of all subsets of ,

P(A)= > p, A€F, (1.11)

i:a; €A

and X (w) = w. One can show that P is a probability measure and the
c.d.f. of X is F in (1.10). &

Example 1.4 (Continuous c.d.f.’s). Opposite to the class of discrete c.d.f.’s
is the class of continuous c.d.f.’s. Without the concepts of integration and
differentiation introduced in the next section, we can only provide a few
examples of continuous c.d.f.’s. One such example is the uniform c.d.f. on
the interval [a, b] defined as

0 —o<r<a
F(z)=9 -3 a<z<b
1 b<z<oo.

Another example is the exponential c.d.f. defined as

F(x>:{0 —c0 <z <0

1— e/ 0<z<o0,

where @ is a fixed positive constant. Note that both uniform and exponential
c.d.f.’s are continuous functions. 1
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1.2 Integration and Differentiation

Differentiation and integration are two of the main components of calculus.
This is also true in measure theory or probability theory, except that inte-
gration is introduced first whereas in calculus, differentiation is introduced
first.

1.2.1 Integration

An important concept needed in probability and statistics is the integration
of Borel functions with respect to (w.r.t.) a measure v, which is a type of
“average”. The definition proceeds in several steps. First, we define the
integral of a nonnegative simple function, i.e., a simple function ¢ given by
(1.8) with a; > 0,i=1,..., k.

Definition 1.4(a). The integral of a nonnegative simple function ¢ given
by (1.8) w.r.t. v is defined as

k
/apdu = ZaiV(Ai). 1 (1.12)

The right-hand side of (1.12) is a weighted average of a;’s with v(A4;)’s
as weights. Since aco = oo if @ > 0 and aco = 0 if a = 0, the right-hand
side of (1.12) is always well defined, although [ ¢dv = oo is possible. Note
that different a;’s and A;’s may produce the same function ¢; for example,
with Q@ =R,

2](0’1)(1‘) + 1[1’2] (.’I}) = I(O,2] (.’II) + 1(0,1) (.’I})

However, one can show that different representations of ¢ in (1.8) pro-
duce the same value for [ ¢dv so that the integral of a nonnegative simple
function is well defined.

Next, we consider a nonnegative Borel function f.

Definition 1.4(b). Let f be a nonnegative Borel function and let Sy be
the collection of all nonnegative simple functions of the form (1.8) satisfying
p(w) < f(w) for any w € Q. The integral of f w.r.t. v is defined as

/fduzsup{/godu: <p€8f}. |

Hence, for any Borel function f > 0, there exists a sequence of simple
functions ¢1, 2, ... such that 0 < ¢; < f for all ¢ and lim,, fgondu =

[ fdv.
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Finally, for a Borel function f, we first define the positive part of f by

f+(w) = max{f(w),0}
and the negative part of f by

f-(w) = max{—f(w), 0}.
Note that f and f_ are nonnegative Borel functions, f(w) = fi(w) —
f-(w), and [f(w)| = fr(w) + - (w).

Definition 1.4(c). Let f be a Borel function. We say that [ fdv exists if
and only if at least one of [ fidv and [ f_dv is finite, in which case

/fdu:/erduf/f,dy. (1.13)

When both [ fidv and [ f_dv are finite, we say that f is integrable. Let
A be a measurable set and I4 be its indicator function. The integral of f

over A is defined as
/fdy:/IAfdy. 1
A

Note that a Borel function f is integrable if and only if | f| is integrable.

It is convenient to define the integral of a measurable function f from
(Q, F,v) to (R, B), where R = RU {—00, ¢}, B =c(BU{{oo},{—c}}).
Let Ay ={f =00} and A_ = {f = —oo}. If v(A}) =0, we define [ fidv
to be fIAi f+dv; otherwise [ fidv = oco. [ f_dv is similarly defined. If at
least one of [ fidv and [ f_dv is finite, then [ fdv is defined by (1.13).

The integral of f may be denoted differently whenever there is a need
to indicate the variable(s) to be integrated and the integration domain; for
example, [, fdv, [ f(w)dv, [ f(w)dv(w), or [ f(w)r(dw), and so on. In
probability and statistics, [ XdP is usually ertten as EX or E(X) and

called the expectation or expected value of X. If F' is the c.d.f. of P on
(RE,B¥), [ f(x)dP is also denoted by [ f(x)dF(z) or [ fdF.

Example 1.5. Let Q be a countable set, F be all subsets of 2, and v be
the counting measure given in Example 1.1. For any Borel function f, it
can be shown (exercise) that

/fdz/ =Y flw). (1.14)

Example 1.6. If ) = R and v is the Lebesgue measure, then the Lebesgue
integral of f over an interval [a, ] is written as f[u o f(@)de = f: f(z)dz
which agrees with the Riemann integral in calculus when the latter is well
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defined. However, there are functions for which the Lebesgue integrals are
defined but not the Riemann integrals. 1

We now introduce some properties of integrals. The proof of the follow-
ing result is left to the reader.

Proposition 1.5 (Linearity of integrals). Let (€2, F,v) be a measure space
and f and g be Borel functions.

(i) If [ fdv exists and a € R, then [(af)dv exists and is equal to a [ fdv.
(ii) If both [ fdv and [ gdv exist and [ fdv + [ gdv is well defined, then
J(f + g)dv exists and is equal to [ fdv+ [gdv.

If N is an event with v(N) = 0 and a statement holds for all w in the
complement N€¢, then the statement is said to hold a.e. (almost everywhere)
v (or simply a.e. if the measure v is clear from the context). If v is a
probability measure, then a.e. may be replaced by a.s. (almost surely).

Proposition 1.6. Let (£2, F,v) be a measure space and f and g be Borel.
(i) If f < g a.e., then [ fdv < [ gdv, provided that the integrals exist.

(ii) If f > 0 a.e. and [ fdv =0, then f =0 a.e.

Proof. (i) The proof for part (i) is left to the reader.

(i) Let A={f >0} and A, = {f >n'}, n=1,2,.... Then 4, C A
for any n and lim, - A, = UA,, = A (why?). By Proposition 1.1(iii),
lim,, o ¥(A,) = v(A). Using part (i) and Proposition 1.5, we obtain that

n'v(A,) :/nflfAndV < /fIAndI/ < /fdl/:()
for any n. Hence v(A) =0and f =0ae. 1

Some direct consequences of Proposition 1.6(i) are: | [ fdv| < [ |f|dv;
if f >0 a.e., then [ fdv > 0; and if f = g a.e., then [ fdv = [ gdv.
It is sometimes required to know whether the following interchange of
two operations is valid:
/ lim f,dv= lim [ fpdv, (1.15)

n—oo n—oo

where {f, : n = 1,2,...} is a sequence of Borel functions. Note that we
only require lim,, . fn exists a.e. Also, lim, . fn is Borel (Proposition
1.4). The following example shows that (1.15) is not always true.

Example 1.7. Consider (R, B) and the Lebesgue measure. Define f,(z) =
nljon-11(x), n = 1,2,.... Then lim, .o fu(z) = 0 for all x but z = 0.
Since the Lebesgue measure of a single point set is 0 (see Example 1.2),
lim, oo fn(x) = 0 a.e. and [lim, . fn(z)dz = 0. On the other hand,
[ fu(z)dz =1 for any n and, hence, lim,, .o [ fn(z)dz =1.
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The following result gives sufficient conditions under which (1.15) holds.

Theorem 1.1. Let fi, fa,... be a sequence of Borel functions on (2, F,v).
(i) (Fatou’s lemma). If f,, > 0, then

/lim inf f,dv < lim inf/fndy.

(ii) (Dominated convergence theorem). If lim, o fn = f a.e. and there
exists an integrable function g such that |f,| < g a.e., then (1.15) holds.
(iii) (Monotone convergence theorem). If 0 < f1 < fo < --- and lim,, o fn
= f a.e., then (1.15) holds.

Proof. The results in (i) and (iii) are equivalent (exercise). Applying
Fatou’s lemma to functions g+ f,, and g — f,,, we obtain that [(g+ f)dv <
liminf, [(g + f,)dv and [(g — f)dv < liminf, [(g — f,)dv (which is the
same as [(f — g)dv > limsup,, [(fn — g)dv). Since g is integrable, these
results imply that [ fdv < liminf, [ fodv < limsup, [ fodv < [ fdv.
Hence, the result in (i) implies the result in (ii).

It remains to show part (iii). Let f, f1, f2,... be given in part (iii).
From Proposition 1.6(i), there exists lim, oo [ fodr < [ fdv. Let ¢ be
a simple function with 0 < ¢ < f and let A, = {¢ > 0}. Suppose
that v(A,) = oo. Then [ fdv = co. Let a = 27 mingea, ¢(w) and
A, = {fn>a}. Thena >0, A1 C Ay C ---, and A, C UA, (why?).
By Proposition 1.1, v(A4,) — v(UA,) > v(A,) = co and, hence, [ f,dv >
S, fndv > av(Ay) — co. Suppose now v(A,) < oo. By Egoroff’s theorem
(Exercise 20 in §1.6), for any € > 0, there is B C A, with v(B) < e such that
[ converges to f uniformly on A, N B¢. Hence, [ f,dv > wach fndv —

wach fdv > wach edv = [ @dv— [ edv > [ pdv—emax, ¢(w). Since

€ is arbitrary, lim, o [ fndv > [ @dv. Since ¢ is arbitrary, by Definition
1.4(b), lim, .o [ fndv > [ fdv. This completes the proof. &

Example 1.8 (Interchange of differentiation and integration). Let (Q, F,v)
be a measure space and, for any fixed 6 € R, let f(w, ) be a Borel function
on €. Suppose that Jf(w,d)/00 exists a.e. for § € (a,b) C R and that
|0f(w,0)/00] < g(w) a.e., where g is an integrable function on Q. Then,
for each 6 € (a,b), Of(w 9)/89 is integrable and, by Theorem 1.1(ii),

de/f /8f(52 D v,

Theorem 1.2 (Change of variables). Let f be measurable from (2, F,v)
to (A,G) and g be Borel on (A, G). Then

/ngfdy:/Agd(uoffl), (1.16)

i.e., if either integral exists, then so does the other, and the two are the
same. 1
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The reader is encouraged to provide a proof. A complete proof is in
Billingsley (1986, p. 219). This result extends the change of variable formula
for Riemann integrals, i.e., [g(y)dy = [ g(f(x))f'(z)dz, y = f(x).

Result (1.16) is very important in probability and statistics. Let X
be a random variable on a probability space (Q,F, P). If EX = fﬂ XdP
exists, then usually it is much simpler to compute EX = fR xdPx, where
Px = PoX1listhelaw of X. Let Y be a random vector from € to R* and
g be Borel from R* to R. According to (1.16), Eg(Y) can be computed as
Jrr 9(y)dPy or [, xdPyy, depending on which of Py and Py is easier
to handle. As a more specific example, consider k = 2, Y = (X1, X32), and
g(Y) = X3 + X5. Using Proposition 1.5(ii), E(X1 + X2) = EX; + EX»
and, hence, E(X; + X3) = [, dPx, + [ #dPx,. Then we need to handle
two integrals involving Px, and Px,. On the other hand, E(X; + X3) =
fR 2dPx, +x,, which involves one integral w.r.t. Px,+x,. Unless we have
some knowledge about the joint c.d.f. of (X1, X2), it is not easy to obtain
Px,1x,-

The following theorem states how to evaluate an integral w.r.t. a product
measure via iterated integration. The reader is encouraged to prove this
theorem. A complete proof can be found in Billingsley (1986, pp. 236-238).

Theorem 1.3 (Fubini’s theorem). Let v; be a o-finite measure on (£2;, F;),
1 =1,2, and let f be a Borel function on H?Zl(Qi, Fi). Suppose that either
f > 0or fis integrable w.r.t. v; X v5. Then

glwa) = [ flw1,w2)dy
o

exists a.e. vo and defines a Borel function on {23 whose integral w.r.t. vo
exists, and

/ f(wl,a)g)dul X Vg = / l: f(wl,a)g)dul] dl/g. 1
legz QQ Ql

This result can be naturally extended to the integral w.r.t. the product
measure on H§:1(in F;) for any finite positive integer k.

Example 1.9. Let Q; = Qo = {0,1,2,...}, and v; = 5 be the counting
measure (Example 1.1). A function f on 1 x 5 defines a double sequence.
If f>0o0r [|fldn X s < 0o, then

/ TZRTED D) WITIED 9 SH(X) (117)

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed
in either order, if it is summable or f > 0. 1
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1.2.2 Radon-Nikodym derivative

Let (2, F,v) be a measure space and f be a nonnegative Borel function.
One can show that the set function

)\(A):/Afdu, Ae F, (1.18)

is a measure on (9, F) (verify). Note that
v(A) =0 implies A(A) =0. (1.19)

If (1.19) holds for two measures A and v defined on the same measurable
space, then we say A is absolutely continuous w.r.t. v and write A < v.

Formula (1.18) gives us not only a way of constructing measures, but
also a method of computing measures of measurable sets. Let v be a well-
known measure (such as the Lebesgue measure or the counting measure)
and \ a relatively unknown measure. If we can find a function f such that
(1.18) holds, then computing A(A) can be done through integration. A
necessary condition for (1.18) is clearly A <« v. The following result shows
that A < v is also almost sufficient for (1.18).

Theorem 1.4 (Radon-Nikodym theorem). Let v and A be two measures
on (€2, F) and v be o-finite. If A < v, then there exists a nonnegative Borel
function f on € such that (1.18) holds. Furthermore, f is unique a.e. v,
ie,if N(A) = [, gdv for any A€ F, then f =gae v. 1

The proof of this theorem can be found in Billingsley (1986, pp. 443-
444). If (1.18) holds, then the function f is called the Radon-Nikodym
derivative or density of A w.r.t. v and is denoted by dA/dv.

A useful consequence of Theorem 1.4 is that if f is Borel on (2, F) and
J4 fdv =0 for any A € F, then f =0 a.e.

If [ fdv=1foran f >0 a.e. v, then A given by (1.18) is a probability
measure and f is called its probability density function (p.d.f.) w.r.t. v.
For any probability measure P on (R*, B¥) corresponding to a c.d.f. F or
a random vector X, if P has a p.d.f. f w.r.t. a measure v, then f is also
called the p.d.f. of F' or X w.r.t. v.

Example 1.10 (p.d.f. of a discrete c.d.f.). Consider the discrete c.d.f. F
in (1.10) of Example 1.3 with its probability measure given by (1.11). Let
Q = {a1,az,...} and v be the counting measure on the power set of Q. By
Example 1.5,

P(A) :/Afdy: > fla), Acq, (1.20)

a; €A
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where f(a;) = p;, ¢ = 1,2,.... That is, f is the p.d.f. of P or F w.r.t.
v. Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f.
w.r.t. counting measure is called a discrete p.d.f. 1

Example 1.11. Let F be a c.d.f. Assume that F' is differentiable in the
usual sense in calculus. Let f be the derivative of F'. From calculus,

F(z) = /j fly)dy, zeR. (1.21)

Let P be the probability measure corresponding to F'. It can be shown
that P(A) = fA fdm for any A € B, where m is the Lebesgue measure on
R. Hence, f is the p.d.f. of P or F w.r.t. Lebesgue measure. In this case,
the Radon-Nikodym derivative is the same as the usual derivative of F' in
calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.
A necessary and sufficient condition for a c.d.f. F' having a p.d.f. w.r.t.
Lebesgue measure is that F' is absolute continuous in the sense that for any
€ > 0, there exists a § > 0 such that for each finite collection of disjoint
bounded open intervals (a;, b;), > (b;—a;) < § implies > [F(b;)—F'(a;)] < €.
Absolute continuity is weaker than differentiability, but is stronger than
continuity. Thus, any discontinuous c.d.f. (such as a discrete c.d.f.) is not
absolute continuous. Note that every c.d.f. is differentiable a.e. Lebesgue
measure (Chung, 1974, Chapter 1). Hence, if f is the p.d.f. of F w.r.t.
Lebesgue measure, then f is the usual derivative of F' a.e. Lebesgue mea-
sure and (1.21) holds. In such a case probabilities can be computed through
integration. It can be shown that the uniform and exponential c.d.f.’s in
Example 1.4 are absolute continuous and their p.d.f.’s are, respectively,

f(x):{bla a<z<b

0 otherwise

and
0 —o<z<0

J(@) = { o~ le /0 0 <ux< oo

A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
More examples of p.d.f.’s are given in §1.3.1.

The following result provides some basic properties of Radon-Nikodym
derivatives. The proof is left to the reader.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives). Let v be a
o-finite measure on a measure space (£, F). All other measures discussed
in (i)-(iii) are defined on (2, F).
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(i) If X\ is a measure, A < v, and f > 0, then

/fd)\:/fji\du.

(Notice how the dv’s “cancel” on the right-hand side.)
(i) If A, ¢ = 1,2, are measures and A\; < v, then A\; + Ay < v and

d()q + )\2) _ dM n d)o ae b

dv dv dv

(iii) (Chain rule). If 7 is a measure, A is a o-finite measure, and 7 < A < v,

then
dr _ dr dA

dv  d\dv
In particular, if A < v and v < X (in which case A and v are equivalent),

then s
d\ <dy> B
= a.e. vV or A.

a.e. vV

dv d\

(iv) Let (€2, F;, v;) be a measure space and v; be o-finite, i = 1,2. Let A; be
a o-finite measure on (€2;, F;) and \; < v, ¢ = 1,2. Then A\ X Aoy < v1 X 19

and
d()\l X )\2) o d)\l

(w1, w2) dXo
) 1,wW2) — dVl

(W1) dyg

(we) a.e. 11 Xva. 1

1.3 Distributions and Their Characteristics

We now discuss some distributions useful in statistics, and their moments
and generating functions.

1.3.1 Distributions and probability densities

It is often more convenient to work with p.d.f.’s than to work with c.d.f.’s.
We now introduce some p.d.f.’s useful in statistics.

We first consider p.d.f.’s on R. Most discrete p.d.f.’s are w.r.t. counting
measure on the space of all nonnegative integers. Table 1.1 lists all discrete
p.d.f.’s in elementary probability textbooks. For any discrete p.d.f. f, its
c.d.f. F(z) can be obtained using (1.20) with A = (oo, z]. Values of F(x)
can be obtained from statistical tables or software.

Two Lebesgue p.d.f.’s are introduced in Example 1.11. Some other use-
ful Lebesgue p.d.f.’s are listed in Table 1.2. Note that the exponential
p.d.f. in Example 1.11 is a special case of that in Table 1.2 with a = 0.
For any Lebesgue p.d.f. f, (1.21) gives its c.d.f. A few c.d.f.’s have explicit
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Uniform

DU (a1, ..., am)

Binomial

Bi(p,n)

Poisson

P()

Geometric
G(p)

Hyper-
geometric
HG(r,n,m)
Negative
binomial
NB(p,r)

Log-
distribution

L(p)

p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter

1. Probability Theory

Table 1.1. Discrete Distributions on R

1/m,z=aq,..,an
Yoy etit/m, teR
Z?L:I a;/m

Z;'n=1(aj —a)*/m, a= ZTzl

a €ER,m=1,2,..
G)p (1 —p) ",
(pet+1—p)", teR
np

np(l —p)

pel0,1], n=1,2,..
07e=0/x!, 2=0,1,2,...
=D teR

0

0

0>0

(1 7p)m71p7 z=12,..

pe'/[1 — (1 —p)ef], t < —log(l—p)

1/p

(1-p)/p?

p € [0,1]

) () /()
x=0,1,..,min{r,n}, r—2x
No explicit form

rn/N

rnm(N —r)/[N?(N —1)]
rrmm=1,2,... N=n+m

(f:%) pr(l—p)* ", x=rr+1,..
prem/[1—(1—ple', t<—

r/p

r(1—p)/p*

pe0,1], r=1,2,..

—(logp)teT (1 -p)*, 2 =1,2,..

z=0,1,..

a;/m

,n

<m

log(1 —p)

log[l — (1 —p)e’]/logp, t€R

—(1—p)/(plogp)

—(1=p)[1+ (1 —p)/logp]/(p*logp)

p€(0,1)

All p.d.f.’s are w.r.t. counting measure.
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forms, whereas many others do not and they have to be evaluated numeri-
cally or computed using tables or software.

There are p.d.f.’s that are neither discrete nor Lebesgue.

Example 1.12. Let X be a random variable on (€, F, P) whose c.d.f. Fix
has a Lebesgue p.d.f. fx and Fx(c) < 1, where c is a fixed constant. Let
Y = min{X, ¢}, i.e., Y is the smaller of X and c. Note that Y ~!((—o0, z]) =
Qifz > cand Y1((—o0,z]) = X71((00,2]) if 2 < c. Hence Y is a random
variable and the c.d.f. of Y is

Fy(z) = {

This c.d.f. is discontinuous at ¢, since Fx(c) < 1. Thus, it does not have
a Lebesgue p.d.f. It is not discrete either. Does Py, the probability mea-
sure corresponding to Fy, have a p.d.f. w.r.t. some measure? Define a
probability measure on (R, ), called point mass at ¢, by

1 ce A

JC(A){ 0 eoa A€E (1.22)

1 r>c
Fx(x) T <c.

(which is a special case of the discrete uniform distribution in Table 1.1).
Then Py < m+ d., where m is the Lebesgue measure, and the p.d.f. of Py
is

0 T >c
dPy
o) T o O e (1.23)

A p.d.f. corresponding to a joint c.d.f. is called a joint p.d.f. The fol-
lowing is a joint Lebesgue p.d.f. on R* that is important in statistics:
fz) = (27) F/2Det(X)] Y2 - E @mm/2 g e RE (1.24)
where u € R, ¥ is a positive definite k x k matrix, Det(3) is the determi-
nant of ¥ and, when matrix algebra is involved, any k-vector c is treated as
a k x 1 matrix (column vector) and ¢” denotes its transpose (row vector).
The p.d.f. in (1.24) and its c.d.f. are called the k-dimensional multivariate
normal p.d.f. and c.d.f., and both are denoted by Ni(u,¥). Random vec-
tors distributed as Ni(u, X) are also denoted by Ny (u,X) for convenience.
The normal distribution N (u,c?) in Table 1.2 is a special case of Ny (u,X)
with & = 1. In particular, N(0,1) is called the standard normal distribu-
tion. When ¥ is a nonnegative definite but singular matrix, we define X
to be Ni (11, %) if and only if ¢"X is N(c¢u,c™Xc) for any ¢ € R* (N(a,0)
is defined to be the c.d.f. of the point mass at a), which is an important
property of Ni(u,>) with a nonsingular ¥ (Exercise 81).

Another important joint p.d.f. will be introduced in Example 2.7.
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Table 1.2. Distributions on R with Lebesgue p.d.f.’s

Uniform

Ul(a,b)

Normal

N(p,0?)

Exponential

E(a,0)

Chi-square

p-d.f.

m.g.f.
Expectation
Variance
Parameter
p-d.f.

m.g.f.

Expectation
Variance
Parameter
p.d.f.

m.g.f.
Expectation
Variance
Parameter
p-d.f.

m.g.f.
Expectation
Variance
Parameter
p-d.f.

m.g.f.
Expectation
Variance
Parameter
p-d.f.

m.g.f.
Expectation
Variance
Parameter

p-d.f.

ch.f.
Expectation
Variance
Parameter

(b —a)  (ap(x)
(€ —e!)/[(b—a)t], te R
(a + b)/2
(b—a)?/12
a, bER, a<b
1 e—(w—u)Q/?a2
\/27r0'
eHHO2 e R
"
o2
LER, 0>0
9—16—(x—a)/91(a’00) (.’1?)
w1 —0t)7t t<o!
0+ a
92
0>0, aeR

Y A (ST C)
(1—2t)7F2 t<1/2

k

2k

kE=1,2,.

F(al)va xa e I

(L—nt)=
ay

ay?
¥>0,aa>0

I'a a— —
F(L)F(@)x M1 —2)P o) (@)

No explicit form
af(a+f)

af/[(a+ B+ 1)(a+5)
a>0, >0

Ll ey
6\/71ut70|t\

(0, oo)( )

,t<71

Does not exist
Does not exist
HLER, 0>0



t-distribution

tn

F-distribution

Fn,m

Log-normal

LN (p,0?)

Weibull

W(a,0)

Double
Exponential

DE(u,0)
Pareto

Pa(a,9)

Logistic

LG(p,0)
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Table 1.2. (continued)

p.d.f.

ch.f.
Expectation
Variance
Parameter

p.d.f.

ch.f.
Expectation
Variance

Parameter
p-d.f.

ch.f.
Expectation
Variance
Parameter
p-d.f.

ch.f.
Expectation

Variance

Parameter
p-d.f.

m.g.f.
Expectation
Variance
Parameter
p-d.f.

ch.f.
Expectation
Variance
Parameter
p-d.f.

m.g.f.
Expectation
Variance
Parameter

n 2\ —(n+1)/2
et (1+ %)
No explicit form
0, (n>1)
n/(n—2), (n>2)
n=12,..

n/2m™/ 20 [(n+m)/2]z™/ 21
F(n/2)l“(m/£()(m+7)7,é:)]("+m)/2I(Ovoo) (z)
No explicit form

m/(m—2), (m>2)
2m?(n +m — 2)/[n(m — 2)%(m — 4)],
(m > 4)

n=12,..., m=1,2,...

2 2
\/217wx7167(10gz7‘u) /20 I(O,oo)(x)
No explicit form

ehto?/2
62’”“’2(6"2 -1)
LER, 0>0

3xa*16*ma/91(07w)(x)

No explicit form

0Y/°T(a=! +1)

g2/ {r(m-l +1) = [Pt + 1)]2}
>0, a>0

Lele=ul/
elt/(1—02%t%), |t| <671
o’

262

LER, 6>0

0afz= OV, ) (2)

No explicit form

fa/(6—1), (6>1)

0a?/[(0 — 1)*(0 - 2)], (6> 2)
0>0, a>0

Ufle*(fr*u)/a/[l + 6*(@*#)/0]2
eMT(1+ ot)T(1 —ot), |t| <ot
1

a’n?/3

LER,0>0
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If a random k-vector (X7, ..., Xx) has a joint p.d.f. f w.r.t. a product
measure vy X --- X vy defined on B, then X; has the following marginal
p.d.f. w.r.t. v;:

fi(z) = / J(@1, e 1,2, Ty 1, oy g )y - - Ay dvigy - - - dg.
RE-1

Let F be the joint c.d.f. of a random k-vector (X1, ..., Xx) and F; be
the marginal c.d.f. of X;, i =1,...,k. If (1.7) holds, then random variables
X1, ..., Xy are said to be independent. From the discussion in the end of
§1.1.1, this independence means that the probability measure corresponding
to F' is the product measure of the k probability measures corresponding
to Fy’s. The meaning of independence is further discussed in §1.4.2. If

(X1,...,Xk) has a joint p.d.f. f w.r.t. a product measure v X -+ X g
defined on B*, then X, ..., X} are independent if and only if
fxr,oxr) = fi(z) - fulzr), (x1,..,75) € RF, (1.25)

where f; is the p.d.f. of X; w.r.t. v, i = 1,..., k. For example, using (1.24),
one can show (exercise) that the components of Nj(u,X) are independent
if and only if ¥ is a diagonal matrix.

The following lemma is useful in considering the independence of func-
tions of independent random variables.

Lemma 1.1. Let X1, ..., X,, be independent random variables. Then ran-
dom variables g(Xj, ..., Xx) and h(Xj41,..., Xp) are independent, where g
and h are Borel functions and k is an integer between 1 and n. 1

Lemma 1.1 can be proved directly (exercise). But it is a simple conse-
quence of an equivalent definition of independence introduced in §1.4.2.

Let X1,..., Xy be random variables. If X; and X; are independent for
every pair i # j, then Xi,..., X} are said to be pairwise independent. If
X1,..., X are independent, then clearly they are pairwise independent.
However, the converse is not true. The following is an example.

Example 1.13. Let X; and X5 be independent random variables each as-
suming the values 1 and —1 with probability 0.5, and X3 = X1 X5. Let A; =
{X; =1},9=1,2,3. Then P(A4;) = 0.5 for any i and P(A;)P(Az)P(As) =
0.125. HOWGVGI‘, P(Al ﬂAgﬂAs) = P(AlﬂAg) = P(Al)P(AQ) = 0.25. This
implies that (1.7) does not hold and, hence, X1, X2, X3 are not indepen-
dent. We now show that X7, Xo, X3 are pairwise independent. It is enough
to show that X; and X3 are independent. Let B; = {X; = —1},i=1,2,3.
Note that AlﬂAd = AlﬂAg, A10B3 = AlmBg, BlﬂAd = BlmBg,
and By N B3 = By N Ay. Then the result follows from the fact that
P(A;) = P(B;) = 0.5 for any ¢ and X; and X, are independent. 1
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The random variable Y in Example 1.12 is a transformation of the
random variable X. Transformations of random variables or vectors are
frequently used in statistics. For a random variable or vector X, g(X) is
a random variable or vector as long as g is measurable (Proposition 1.4).
How do we find the c.d.f. (or p.d.f.) of g(X) when the c.d.f. (or p.d.f.) of X
is known? In many cases, the most effective method is direct computation.
Example 1.12 is one example. The following is another one.

Example 1.14. Let X be a random variable with c.d.f. Fx and Lebesgue
p.df. fx, and let Y = X2. Since Y !((—o0,7]) is empty if z < 0 and
equals Y1([0,2]) = X 1([—y/x,/z]) if > 0, the c.d.f. of YV is

Fy(z) = PoY '((—ooc,x])
=PoX '([~Vz,Vz))
= Fx(Vz) = Fx (=)

if £ >0 and Fy(z) =0 if z < 0. Clearly, the Lebesgue p.d.f. of Fy is

fr(z) = [fx (V@) + fx (=v@)L(0,00) (). (1.26)

1
2y/x
In particular, if

1 2
— —x°/2
T) = e , 1.27
fr@ =, (1.27)
which is the Lebesgue p.d.f. of the standard normal distribution N(0,1)
(Table 1.2), then

1
fy(z) = e ™21 10.00) (),

2z
which is the Lebesgue p.d.f. for the chi-square distribution x} (Table 1.2).
This is actually an important result in statistics. 1

In some cases, one may apply the following general result whose proof
is left to the reader.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. fx
and let Y = g(X), where g is a Borel function from (R*, B¥) to (R¥, BF).
Let Ay, ..., A, be disjoint sets in B¥ such that R¥ — (4; U---U A,,) has
Lebesgue measure 0 and g on A; is one-to-one with a nonvanishing Jaco-
bian, i.e., the determinant Det( (9g( )/0x) #0on Aj, j=1,...,m. Then Y
has the followmg Lebesgue p.d.f.:

m

fy(x) =Y |Det (9h;(x)/0x) | fx (hy(x)),

j=1

where h; is the inverse function of g on 4;, j =1,....m. 1
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One may apply Proposition 1.8 to obtain result (1.26) in Example 1.14,
using A; = (—00,0), A3 = (0,0), and g(z) = 2. Note that hy(z) = —/z,
hao(xz) = v/x, and |dh;(z)/dz| = 1/(2y/x). Another immediate application
of Proposition 1.8 is to show that ¥ = AX is Ni(Apu, AXA™) when X is
Ni(p, ), where X is positive definite, A is a k x k matrix of rank k, and
AT denotes the transpose of A.

Example 1.15. Let X = (X1, X2) be a random 2-vector having a joint
Lebesgue p.d.f. fx. Counsider first the transformation g(x) = (z1, 21 + z2).
Using Proposition 1.8, one can show that the joint p.d.f. of g(X) is

fg(X)(xlay) = fX(xlvyfxl)v

where y = x1 + x2 (note that the Jacobian equals 1). The marginal p.d.f.
of Y = Xy + X5 is then

fr(y) = /fx<x1,y—x1>dx1.

In particular, if X; and X5 are independent, then

Iy (y) :/fxl(ﬂfl)fxz(y*xl)dﬂfl- (1.28)

Next, consider the transformation h(z1,x2) = (x1/z2,22), assuming that
X5 # 0 a.s. Using Proposition 1.8, one can show that the joint p.d.f. of
h(X) is

I (2, 02) = |22| fx (222, 22),

where z = 21 /3. The marginal p.d.f. of Z = X; /X5 is

fa(z) = / (@3] fx (222, 72) das.

In particular, if X; and X5 are independent, then

f2(2) = / (@2l fxs (22) fx, (v2) s, B (1.29)

A number of results can be derived from (1.28) and (1.29). For example,
if X7 and X5 are independent and both have the standard normal p.d.f.
given by (1.27), then, by (1.29), the Lebesgue p.d.f. of Z = X;/X> is

1
fz(2) = / Jarpe™ (1459023 2 4
T

1 o0
= / e~ (=N gy,
™ Jo

_ 1
T o1+ 22)
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which is the p.d.f. of the Cauchy distribution C(0,1) in Table 1.2. Another
application of formula (1.29) leads to the following important result in
statistics.

Example 1.16 (t-distribution and F-distribution). Let X; and Xs be
independent random variables having the chi-square distributions X%l and
x2, (Table 1.2), respectively. By (1.29), the p.d.f. of Z = X1/X, is

an/2711(0 )(2) © (nitna)/2-1
— e 1+n =1 —(14+2)z2/2
f2(2) = 2(n1+n2)/2r(n1/2)r(n2/2> \/O Lo e dxy
Dlins +na)f2] /27
= o di0,00) (2),
D(n1 /20 (na/2) (14 2)0m+n)/2 O

where the last equality follows from the fact that

! (n14n2)/2—1 /2
9(n1+12)/2T(ng 4 ) /2] 2 e I(0,00) (2)

is the p.d.f. of the chi-square distribution x2 ,,. . Using Proposition 1.8,
one can show that the p.d.f. of Y = (X1/n1)/(X2/n2) = (n2/n1)Z is the
p.d.f. of the F-distribution F,, ,, given in Table 1.2.

Let U; be a random variable having the standard normal distribution
N(0,1) and Uz a random variable having the chi-square distribution x2.
Using the same argument, one can show that if U; and U, are independent,
then the distribution of T' = U;/ \/ Us/n is the t-distribution ¢,, given in
Table 1.2. This result can also be derived using the result given in this
example as follows. Let X; = U12 and X9 = Us. Then X; and Xy are
independent (which can be shown directly but follows from Lemma 1.1).
By Example 1.14, the distribution of X; is x3. Then Y = X;/(X2/n) has
the F-distribution F3 , and its Lebesgue p.d.f. is

n”/2F[(n—|— 1)/2].’17_1/2 ( )
VaT(n/2)(n + ) /2 O

Note that
VY U >0
T =
Y U <o.

The result follows from Proposition 1.8 and the fact that

PoT ' ((—oo,~t]) = PoT ' ([t,0)), t>0. 1 (1.30)

If a random variable T satisfies (1.30), i.e., T and —T have the same
distribution, then 7' and its c.d.f. and p.d.f. (if it exists) are said to be
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symmetric about 0. If T has a Lebesgue p.d.f. fr, then T is symmetric
about 0 if and only if fr(z) = fr(—=) for any z > 0. T and its c.d.f.
and p.d.f. are said to be symmetric about a (or symmetric for simplicity)
if and only if T' — a is symmetric about 0 for a fixed a € R. The c.d.f.’s of
t-distributions are symmetric about 0 and the normal, Cauchy, and double
exponential c.d.f.’s are symmetric.

The chi-square, t-, and F-distributions in the previous examples are
special cases of the following noncentral chi-square, t-, and F-distributions,
which are useful in some statistical problems.

Let X1, ..., X, be independent random variables and X; = N(ju;,0?),
i =1,...,n. The distribution of the random variable Y = (X2+---+X2)/0?
is called the noncentral chi-square distribution and denoted by x2(4), where
§ = (u2 + -+ + p2)/o? is the noncentrality parameter. The chi-square
distribution x? in Table 1.2 is a special case of the noncentral chi-square
distribution x%(8) with 6 = 0 and, therefore, is called a central chi-square
distribution. It can be shown (exercise) that Y has the following Lebesgue
p.d.f.:

e 02 Z (5§,2)j f2j4n(2), (1.31)

=0

where fj(z) is the Lebesgue p.d.f. of the chi-square distribution x7. It
follows from the definition of noncentral chi-square distributions that if
Y1, ..., Yy are independent random variables and Y; has the noncentral chi-
square distribution X%i (6:), i = 1,..,k, then Y = Y] + --- + Y} has the
noncentral chi-square distribution bel+...+nk (014 + 0k).

The result for the t-distribution in Example 1.16 can be extended to the
case where U; has a nonzero expectation p (Us still has the X% distribution
and is independent of Uy). The distribution of T' = Uy / \/ Us/n is called
the noncentral t-distribution and denoted by ¢,(d), where 6 = u is the
noncentrality parameter. Using the same argument as that in Example
1.15, one can show (exercise) that 7" has the following Lebesgue p.d.f.:

1 / R VT (1.32)
2(n+1)/20(n /2) /7 [

The t-distribution ¢, in Example 1.16 is called a central t-distribution, since
it is a special case of the noncentral t-distribution ¢, (§) with § = 0.

Similarly, the result for the F-distribution in Example 1.16 can be ex-
tended to the case where X; has the noncentral chi-square distribution
X2, (0), X2 has the central chi-square distribution X7 , and X; and X, are
independent. The distribution of Y = (X1 /n1)/(X2/n2) is called the non-
central F-distribution and denoted by Fi,, n, (), where § is the noncentrality
parameter. The F-distribution F3,, ,, in Example 1.16 is called a central
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F-distribution, since it is a special case of the noncentral F-distribution
Fy, n,(9) with 6 = 0. It can be shown (exercise) that the noncentral F-
distribution F,, n,(0) has the following Lebesgue p.d.f.:

o—0/2 n1(6/2)7 _ T 133
Z 12 4 ) T (g5 4 ) (1.33)

where fi, k,(x) is the Lebesgue p.d.f. of the central F-distribution Fy, k,
given in Table 1.2.

Using some results from linear algebra, we can prove the following result
useful in analysis of variance (Scheffé, 1959; Searle, 1971).

Theorem 1.5. (Cochran’s theorem). Suppose that X = N, (g, I,,) and
XX = XTAIX 4+ XTALX, (1.34)

where I, is the n X n identity matrix and A; is an n X n symmetric matrix
with rank n;, i = 1, ..., k. A necessary and sufficient condition that X7 A; X
has the noncentral chi-square distribution X%i (0;),i=1,...,k,and X" A; X’s
are independent is n = ny + -+ 4+ ng, in which case §; = p” A;u and
0p+ - 40 = pp
Proof. Suppose that X7A; X, i = 1,..., k, are independent and X7 A; X
has the xZ (8;) distribution. Then X7X has the x2 , .., (614 -+ dx)
distribution. By definition, X™ X has the noncentral chi-square distribution
X2(p"p). By (1.34), n =n1+ -+ +ng and 61 + -+ + 6 = pu" .

Suppose now that n = ny + --- + ng. From linear algebra, for each ¢
there exists ¢;; € R", j = 1,...,n;, such that

XTAX =+(c X)? £+ (], X)2. (1.35)

i

Let C; be the n x n; matrix whose jth column is ¢;;, and C™ = (C4, ..., Cy).
By (1.34) and (1.35), X™X = X"C"ACX with an n x n diagonal matrix
A whose diagonal elements are either 1 or —1. This implies CTAC = I,.
Thus, C is of full rank and, hence, A = (C7)~1C~!, which is positive
definite. This shows A = [,,, which implies C"C = I, and

nit-tni—1+n;
XTAX = Z Y7, (1.36)
j=nit+-+ni—1+1
where Y; is the jth component of ¥ = CX. Note that Y = N,(Cu, I,,)
(Exercise 43). Hence Y;’s are independent and Y; = N();,1), where \;
is the jth component of Cu. This shows that X7A;X has the x3 (6;)
distribution with &; = A2 |, 41+ + A { 4n. 4, Letting X =
p in (1.36) and (1.34), we obtain that 51 = puTA;p and 61 4+ -+ 0 =
uw"C"Cu = p"p. Finally, from (1.36) and Lemma 1.1, we conclude that
X"A; X,i=1,..., k, are independent. 1
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1.3.2 Moments and moment inequalities

We have defined the expectation of a random variable in §1.2.1. It is an
important characteristic of a random variable. In this section, we introduce
moments, which are some other important characteristics of a random vari-
able or vector.

Let X be a random variable. If EX* is finite, where k is a positive
integer, then EX* is called the kth moment of X or Px (the distribution
of X). If E|X|* < oo for some real number a, then E|X|* is called the ath
absolute moment of X or Px. If y = EX and E(X — p)* are finite for a
positive integer k, then E(X — u)* is called the kth central moment of X
or Px. If E|X|* < oo for an a > 0, then E|X|" < oo for any positive t < a
and EXP is finite for any positive integer k < a (Exercise 54).

The expectation and the second central moment (if they exist) are two
important characteristics of a random variable (or its distribution) in statis-
tics. They are listed in Tables 1.1 and 1.2 for those useful distributions.
The expectation, also called the mean in statistics, is a measure of the cen-
tral location of the distribution of a random variable. The second central
moment, also called the wariance in statistics, is a measure of dispersion
or spread of a random variable. The variance of a random variable X is
denoted by Var(X). The variance is always nonnegative. If the variance
of X is 0, then X is equal to its mean a.s. (Proposition 1.6). The squared
root of the variance is called the standard deviation, another important
characteristic of a random variable in statistics.

The concept of mean and variance can be extended to random vectors.
The expectation of a random matrix M with (¢, j)th element M;; is defined
to be the matrix whose (i, j)th element is EM,;;. Thus, for a random k-
vector X = (Xq, ..., Xx), its mean is EX = (EXy, ..., EX}). The extension
of variance is the variance-covariance matriz of X defined as

Var(X)=E(X — EX)(X — EX)7,
which is a k x k symmetric matrix whose diagonal elements are variances
of X;’s. The (7, j)th element of Var(X), i # j, is E(X; — EX;)(X; — EX}),
which is called the covariance of X; and X; and is denoted by Cov(X;, X).
Let ¢ € R¥ and X = (X1,..., Xx) be a random k-vector. Then YV =
¢™ X is a random variable and, by Proposition 1.5 (linearity of integrals),
EY = "EX if EX exists. Also, when Var(X) is finite (i.e., all elements of
Var(X) are finite),
Var(Y) = E(c"X — ¢"EX)?

= FE[c"(X —EX)(X — EX)"(]

=[E(X —EX)(X - EX)c

= ¢"Var(X)c.
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Since Var(Y) > 0 for any ¢ € R¥, the matrix Var(X) is nonnegative definite.
Consequently,

[Cov(X;, X;))? < Var(X;)Var(X;), i# j. (1.37)

An important quantity in statistics is the correlation coefficient defined to
be py, x, = Cov(X;, X;)/+/Var(X;)Var(X;), which, by inequality (1.37),
is always between —1 and 1. It is a measure of relationship between X; and
X if Px, x; is positive (or negative), then X; and X tend to be positively
(or negatively) related; if py, = 1, then P(X; = ¢1 & ¢;X;) = 1 with
some constants ¢; and ¢z > 0; if py =0 (i.e., Cov(X;, X;) = 0), then
X; and X; are said to be uncorrelated. If X; and X; are independent, then
they are uncorrelated. This follows from the following more general result.
If Xy,...,X, are independent random variables and E|X;---X,| < oo,
then, by Fubini’s theorem and the fact that the joint c.d.f. of (X1, ..., X,)
corresponds to a product measure, we obtain that

E(X1 - X,)=EX, - EX,. (1.38)

In fact, pairwise independence of X7, ..., X,, implies that X;’s are uncorre-
lated, since Cov(X;, X;) involves only a pair of random variables. However,
the converse is not necessarily true: uncorrelated random variables may not
be pairwise independent. Examples can be found in Exercises 60-61.

Let Ryy = {y € RF : y = Mx with some z € RF} for any k x k
symmetric matrix M. If a random k-vector X has a finite Var(X), then
P(X —EX € Ryar(x)) = 1. This means that if the rank of Var(X) is r < ,
then X is in a subspace of R* with dimension r. Consequently, if Py <
Lebesgue measure on R*, then the rank of Var(X) is k.

Example 1.17. Let X be a random k-vector having the Ny (u,X) distri-
bution. It can be shown (exercise) that EX = p and Var(X) = 3. Thus, u
and ¥ in (1.24) are the mean vector and the variance-covariance matrix of
X. If ¥ is a diagonal matrix (i.e., all components of X are uncorrelated),
then by (1.25), the components of X are independent. This shows an im-
portant property of random variables having normal distributions: they are
independent if and only if they are uncorrelated. &

There are many useful inequalities related to moments. The inequal-
ity in (1.37) is in fact the well-known Cauchy-Schwartz inequality whose
general form is

[E(XY)]? < EX?EY?, (1.39)

where X and Y are random variables with a well-defined E(XY"). Inequal-
ity (1.39) is a special case of the following Holder’s inequality:

EIXY]| < (BIX]?)/P(E|Y])V, (1.40)
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where p and ¢ are constants satisfying p > 1 and p~! + ¢~ ! = 1. To show
inequality (1.40), we use the following inequality (Exercise 62):

oyt Tt <tex + (1 —t)y, (1.41)

where z and y are nonnegative real numbers and ¢ € (0, 1). If either E|X|P
or E|Y|? is oo, then (1.40) holds. Hence we can assume that both E|X|P
and E|Y|? are finite. Let a = (E|X|P)Y/? and b = (E|Y[?)Y4. If either
a = 0 or b = 0, then the equality in (1.40) holds because of Proposition
1.6(ii). Assume now a # 0 and b # 0. Letting = = | X/a|?, y = |Y/b|?, and
t =p~1in (1.41), we obtain that

ab

XY‘ |X[P Y[
< + )
= paP  gbd

Taking expectations on both sides of this expression, we obtain that

E\XY| E|X|P EY®T 1 1
< + = + =1,
ab pa? qa?  p ¢
which is (1.40). In fact, the equality in (1.40) holds if and only if o| X P =
BlY'|? a.s. for some nonzero constants « and § (Exercise 62).

Using Hoélder’s inequality, we can prove Liapounov’s inequality
(E|X [V < (BIX[*)V*, (1.42)

where r and s are constants satisfying 1 < r < s, and Minkowski’s inequal-
ity

(EIX +Y[)VP < (BIX[")VP + (E|YP)V/?, (1.43)
where X and Y are random variables and p is a constant larger than or
equal to 1 (Exercise 63).

Minkowski’s inequality can be extended to the case of more than two
random variables (Exercise 63). The following inequality is a tightened
form of Minkowski’s inequality due to Esseen and von Bahr (1965). Let
X1, ..., Xp, be independent random variables with mean 0 and E|X;|P < oo,
i=1,...,n, where p is a constant in [1,2]. Then

n

>

i=1

E

P n
<G Y ElXP, (1.4
i=1

where C), is a constant depending only on p. When 1 < p < 2, inequality
(1.44) can be proved (Exercise 63) using inequality

la +blP < |a? + psgn(a)|a|P~ b+ CplbP, a€R,bER,
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where sgn(z) is 1 or —1 as z is positive or negative and

Cp= sup (1+al” 1 pa)/jalr.
z€R,x#0

For p > 2, there is a similar inequality due to Marcinkiewicz and Zygmund:

>x
i=1

where C), is a constant depending only on p. A proof of inequality (1.45)
can be found in Loeve (1977, p. 276).

Recall from calculus that a subset A of R¥ is convez if and only if z € A
and y € A imply tx + (1 — t)y € A for any t € [0, 1]; a function f from a
convex A C R¥ to R is convez if and only if

E

P C -
P
< nl-p/2 ElE‘Xi‘p7 (145)

fltz+ 1=ty <tf(x)+ 1 —8)f(y), zcAyecAtel01]; (1.46)

and f is strictly convez if and only if (1.46) holds with < replaced by the
strict inequality <. If f is twice differentiable on A, then a necessary and
sufficient condition for f to be convex (or strictly convex) is that the k x k
second-order partial derivative matrix 92 f/9z027, the so-called Hessian
matrix, is nonnegative definite (or positive definite). For a convex function
f defined on an open convex A C R¥ and a random k-vector X with finite
mean and P(X € A) = 1, a very useful inequality in probability theory and
statistics is the following Jensen’s inequality:

F(EX) < Ef(X). (1.47)

If f is strictly convex, then < in (1.47) can be replaced by < unless
P(f(X) = Ef(X)) = 1. To prove (1.47), we use without proof the fol-
lowing fact for convex f on an open convex A C RF (see, e.g., Lehmann,
1983, p. 53). For any y € A, there exists a vector a, € A such that

f@) > f(y) +ay(z—y)", z€A (1.48)

We also use the fact that EX € A (see, e.g., Ferguson, 1967, p. 74). Letting
x =X and y = EX, we obtain (1.47) by taking expectations on both sides
of (1.48). If f is strictly convex, then (1.48) holds with > replaced by >.
By Proposition 1.6(ii), Ef(X) > f(EX) unless P(f(X) = Ef(X)) = 1.

Example 1.18. A direct application of Jensen’s inequality (1.47) is that
if X is a nonconstant positive random variable with finite mean, then

(EX)"'<EBE(X™') and E(logX) < log(EX),
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since t~! and —logt are convex functions on (0,00). Another application
is to prove the following inequality related to entropy. Let f and g be
positive integrable functions on a measure space with a o-finite measure v.
If [ fdv > [ gdv >0, then one can show (exercise) that

/flog (£>duzo. ' (1.49)

The next inequality, Chebyshev’s inequality, is almost trivial but very
useful and famous. Let X be a random variable and ¢ a nonnegative and
nondecreasing function on [0, 00) satisfying ¢(—t) = ¢(t). Then, for each
constant ¢ > 0,

POP(X|20< [ pX)P<BAX).  (1L50)
{IX|=t}

where both inequalities in (1.50) follow from Proposition 1.6(i) and the first
inequality also uses the fact that on the set {|X| > t}, o(X) > @(t). The
most familiar application of (1.50) is when @(t) = [¢? for p € (0,00), in
which case inequality (1.50) is also called Markov’s inequality. Chebyshev’s
inequality, sometimes together with one of the moment inequalities intro-
duced in this section, can be used to yield a desired upper bound for the
“tail” probability P(]X| > t). For example, let Y be a random variable
with mean p and variance 0. Then X = (Y — u)/o has mean 0 and vari-
ance 1 and, by (1.50) with ¢(t) = ¢2, P(|X| > 2) < ;. This means that
the probability that the random variable |Y — u| exceeds twice its standard
deviation is bounded by 411' Similarly, we can also claim that the probabil-
ity of |Y — p| exceeding 3o is bounded by é These bounds are rough but
they can be applied to any random variable with a finite variance. Other
applications of Chebyshev’s inequality can be found in §1.5.

In some cases, we need an improvement over inequality (1.50) when
X is of some special form. Let Y7, ..., Y, be independent random variables
having finite variances. The following inequality is due to Hajek and Renyi:

l
P Y; — EY;
(m | 2,0~ )
=
where ¢;’s are positive constants satisfying ¢; > ¢co > -+ > ¢,. If ¢; =1 for
all 4, then inequality (1.51) reduces to the famous Kolmogorov’s inequality.
A proof for (1.51) is given in Sen and Singer (1993, pp. 65-66).

1 n
> t) < > eVar(;), t>0, (1.51)
i=1

1.3.3 Moment generating and characteristic functions

Moments are important characteristics of a distribution, but they do not
determine a distribution in the sense that two different distributions may
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have the same moments of all orders. Functions that determine a distribu-
tion are introduced in the following definition.

Definition 1.5. Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or Px is defined as

Yx(t) = Bet’™X, teRF
(ii) The characteristic function (ch.f.) of X or Px is defined as

ox(t) = BEeV~1X = Elcos(t” X)] + V-1 E[sin(t" X)], teRF. 1

Obviously ¢x(0) = ¢x(0) = 1 for any random vector X. The ch.f. is
complex-valued and always well defined. In fact, any ch.f. is bounded by
1 and is a uniformly continuous function on R* (exercise). The m.g.f. is
nonnegative but may be co everywhere except at ¢ = 0 (Example 1.19). If
the m.g.f. is finite in a neighborhood of 0 € R¥, then ¢x (t) can be obtained
by replacing ¢ in 1 x (t) by v/—1t. Tables 1.1 and 1.2 contain the m.g.f. (or
ch.f. when the m.g.f. is co everywhere except at 0) for distributions useful
in statistics. For a linear transformation Y = A™ X + ¢, where A isa k xm
matrix and ¢ € R™, it follows from Definition 1.5 that

Yy (u) = e “Px (Au) and ¢y (u) = e‘/_lcT"(bX(Au)7 ueR™.
(1.52)
For a random variable X, if its m.g.f. is finite at ¢t and —t for a t # 0,
then X has finite moments and absolute moments of any order. To compute
moments of X using its m.g.f., a condition stronger than the finiteness of
the m.g.f. at some t # 0 is needed. Consider a random k-vector X. If ¢x
is finite in a neighborhood of 0, then s, ..., = E(X{"--- X}*) is finite for
any nonnegative integers ri,...,7,, where X; is the jth component of X,
and ¢ x has the power series expansion

I A
px(ty= 3 freemii (1.53)

!l

for ¢ in the neighborhood of 0, where ¢; is the jth component of ¢ and
Z C RF containing vectors whose components are nonnegative integers.
Consequently, the components of X have finite moments of all orders and

rit TRy (1)

EX] - X k) =
( 1 k ) at;l ...atzk

)
t=0

which are also called moments of X. In particular,

OPx (t) O*Px (t)

iy i = B(XX7), (1.54)

t=0
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and, when k£ = 1 and p is a positive integer, wg?) (0) = EXP, where g (1)
denotes the pth order derivative of a function g(t).

If 0 < ¢¥x(t) < oo, then kx(t) = logwx(t) is called the cumulant
generating function of X or Px. If 0 < 1x(t) < oo for t in a neighborhood
of 0, then xx has a power series expansion similar to that in (1.53):

Rorpeondl' o 4
px() = D e (1.55)
(7‘1,...,T;€)EZ

where k., .. . ’s are called cumulants of X. There is a one-to-one correspon-
dence between the set of moments and the set of cumulants. An example
for the case of k = 1 is given in Exercise 68.

When 1 x is not finite, finite moments of X can be obtained by differen-
tiating its ch.f. ¢x. Suppose that E|X{" --- X;*| < oo for some nonnegative
integers rq,...,7%. Let r =11 + -+ r; and

81"6\/—1th

r/2 YT r -1t X
g(t) = ot = (=1)2X] - XV,

Then |g(t)] < |X7'--- X, *|, which is integrable. Hence, from Example 1.8,

0" px ()

— (_1)\r/2 iy TE V1T X
oo (-1) E(X1 Xke ) (1.56)

and
I"dx (t)

8t’r‘1 8tT‘k = (71)T/2E(XI1 X]::k)
1 k

t=0

In particular,

0px (t)
ot

?px(t)

=v—-1EX
v ’ atot™

t=0

= _E(XXT>7

t=0

and, if &k = 1 and p is a positive integer, then (bg?)(O) = (-1)P2EXP,
provided that all moments involved are finite. In fact, when k = 1, if ¢x
has a finite derivative of even order p at ¢ = 0, then EX? < oo (see, e.g.,
Chung, 1974, pp. 166-168).

Example 1.19. Let X = N(u,0?). From Table 1.2, ¥x (t) = eht+o’t?/2 A
direct calculation shows that EX = ¢ (0) = p, EX? = ¢%(0) = 02 + p?,
EX? = wg?)(O) =30%u+p?, and EX* = wg?)(O) =304 +602 24+t If =
0, then EX? = 0 when p is an odd integer and EX? = (p—1)(p—3)---3-10?
when p is an even integer (exercise). The cumulant generating function of
X is kx(t) = logx (t) = ut +0%t? /2. Hence, k1 = p, ke = 02, and k, =0
for r =3,4,....
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We now find a random variable having finite moments of all order but
having an m.g.f. = oo except for t = 0. Let P, be the probability mea-
sure for the N(0,02) distribution, n = 1,2,.... Then P = Y. 27"P,
is a probability measure (Exerc1se 35). Let X be a random variable hav-
ing distribution P. Since the m.g.f. of N(0,02) is 6Uit2/2, it follows from
Fubini’s theorem that the m.g.f. of X is ¢x(t) = Y.°° 27 "e%*"/2. When
02 =n? 9x(t) = oo for any t # 0 but EX* = 0 for any odd integer k and
EXk =52 27"(k—1)(k—3)---1n* < oo for any even integer k. When
02 =n, Px(t) = (2772 = 1)~ for |t| < y/log4 and, hence, the moments
of X can be obtained by differentiating ¢ x. For example, EX = ¢/x(0) =0
and EX? = ¢%(0)=2. 1

A fundamental fact about ch.f.’s is that there is a one-to-one correspon-
dence between the set of all distributions on R* and the set of all ch.f.’s
defined on R*. The same fact is true for m.g.f.’s, but we have to focus on
distributions having m.g.f.’s finite in neighborhoods of 0.

Theorem 1.6. (Uniqueness). Let X and Y be random k-vectors.

(i) If ¢x(t) = ¢y (t) for all t € R, then Px = Py.

(i) If x (t) = Yy (t) < oo for all ¢ in a neighborhood of 0, then Px = Py.
Proof. (i) The result follows from the following inversion formula whose
proof can be found, for example, in Billingsley (1986, p. 395): for any a =
(alv"'vak) € Rk? b= (bla "'abk) € Rk? and (aab] = (alabl} XKoo X (akabk]
satisfying Px (the boundary of (a,b]) =0,

t ty —V/—1tia; _ ,—/—1tib;
Py ((a,b]) = lim ¢X b ZH‘B ‘ dt;.
7T

c—00 k/2 . t;
=1

(ii) First consider the case of k& = 1. From eslel < st 4 e %%, we con-
clude that | X| has an m.g.f. that is finite in the neighborhood (—¢,¢) for
some ¢ > 0 and | X| has finite moments of all order. Using the inequality
eV~ lte[gV—lax _ dimo(V=1ax)? /5!]| < [az|**!/(n 4 1)!, we obtain that
U a
’(j)x(t +ta)— Y i E[(V—-1X)eY “X}‘ <

=0

|CL‘n+IE‘X|n+1
(n+1)! 7

which together with (1.53) and (1.56) imply that, for any ¢ € R,
¢ .
x(t+a) Z 7, la| < c. (1.57)
=0

Similarly, (1.57) holds with ¢x replaced by ¢y. Under the assumption that
Yx = 1y < oo in a neighborhood of 0, X and Y have the same moments of

all order. By (1.56), (j)( 0) = gf)(O) for all j = 1,2, ..., which and (1.57)
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with ¢ = 0 imply that ¢x and ¢y are the same on the interval (—¢, ¢) and
hence have identical derivatives there. Considering ¢ = ¢ — € and —c+ € for
an arbitrarily small € > 0 in (1.57) shows that ¢x and ¢y also agree on
(—2c+¢€,2¢—€) and hence on (—2¢, 2¢). By the same argument ¢x and ¢y
are the same on (—3¢, 3c) and so on. Hence, ¢x(t) = ¢y (t) for all ¢t and,
by part (i), Px = Py.

Consider now the general case of k > 2. If Px # Py, then by part (i)
there exists t € R* such that ¢x(t) # ¢y (t). Then ¢ x(1) # ¢y (1),
which implies that Pi-x # Piry. But ¥ x = 1y < oo in a neighborhood of
0 € R* implies that ¢~ x = 14-y < o0 in a neighborhood of 0 € R and, by
the proved result for k = 1, P;-x = Piry. This contradiction shows that
Px = Py. 1

Applying result (1.38) and Lemma 1.1, we obtain that

Uxqy () =vx Wy (t) and oxyy(t) = dx )y (t), teR", (1.58)

for independent random k-vectors X and Y. This result, together with
Theorem 1.6, provides a useful tool to obtain distributions of sums of inde-
pendent random vectors with known distributions. The following example
is an illustration.

Example 1.20. Let X;, 7 =1, ..., k, be independent random variables and
X; have the gamma distribution I'(c;,~y) (Table 1.2), i = 1,...,k. From
Table 1.2, X; has the m.g.f. x,(t) = (1 —~4t)" %, t <y~ 1 i =1,..,k.
By result (1.58), the m.g.f. of Y = X; + -+ + X} is equal to ¢y (t) =
(1 — yt)~(eatter) 4 <« =1 From Table 1.2, the gamma distribution
I'(ag + -+ + ag,y) has the m.g.f. ¢y () and, hence, is the distribution of
Y (by Theorem 1.6). 1

Similarly, result (1.52) and Theorem 1.6 can be used to determine dis-
tributions of linear transformations of random vectors with known distri-
butions. The following is another interesting application of Theorem 1.6.
Note that a random variable X is symmetric about 0 (defined according
to (1.30)) if and only if X and —X have the same distribution, which can
then be used as the definition of a random vector X symmetric about 0.
We now show that X is symmetric about 0 if and only if its ch.f. ¢ x is real-
valued. If X and —X have the same distribution, then by Theorem 1.6,
¢X(t) = ¢,X(t). From (152), ¢,X(t) = ¢X(7t). Then ¢X(t) = ¢X(7t).
Since sin(—t"X) = —sin(t"X) and cos(t"X) = cos(—t"X), this proves
E[sin(t" X)] = 0 and, thus, ¢x is real-valued. Conversely, if ¢x is real-
valued, then ¢x () = Elcos(t” X)] and ¢_x(t) = éx(—t) = ¢x(t). By
Theorem 1.6, X and —X must have the same distribution.

Other applications of ch.f.’s can be found in §1.5.
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1.4 Conditional Expectations

In elementary probability the conditional probability of an event B given
an event A is defined as P(B|A) = P(ANB)/P(A), provided that P(A) >
0. In probability and statistics, however, we sometimes need a notion of
“conditional probability” even for A’s with P(A4) = 0; for example, A =
{Y = ¢}, where c € R and Y is a random variable having a continuous c.d.f.
General definitions of conditional probability, expectation, and distribution
are introduced in this section, and they are shown to agree with those
defined in elementary probability in special cases.

1.4.1 Conditional expectations

Definition 1.6. Let X be an integrable random variable on (Q2, F, P).
(i) Let A be a sub-o-field of F. The conditional expectation of X given
A, denoted by E(X]|.A), is the a.s.-unique random variable satisfying the
following two conditions:

(a) E(X|A) is measurable from (£2,.4) to (R, B);

(b) [, E(X|A)dP = [, XdP for any A € A.
(Note that the existence of E(X|.A) follows from Theorem 1.4.)
(ii) Let B € F. The conditional probability of B given A is defined to be
P(B|A) = E(Ig|A).
(iii) Let Y be measurable from (€2, F, P) to (A,G). The conditional expec-
tation of X given Y is defined to be E(X|Y) = E[X|o(Y)]. 1

Essentially, the o-field o(Y") contains “the information in Y”. Hence,
E(X]Y) is the “expectation” of X given the information provided by o(Y).
The following useful result shows that there is a Borel function h defined
on the range of Y such that E(X|Y) =hoV.

Lemma 1.2. Let Y be measurable from (Q, F) to (A,G) and Z a function
from (€2, F) to R¥. Then Z is measurable from (,0(Y)) to (R*, B¥) if
and only if there is a measurable function h from (A, G) to (R¥, B¥) such
that Z=hoY. 1

The function h in E(X|Y) = hoY is a Borel function on (A,G). Let
y € A. We define
E(X]Y =y) = h(y)
to be the conditional expectation of X given Y = y. Note that h(y) is a
function on A, whereas hoY = E(X]Y) is a function on €.

For a random vector X, F(X|A) is defined as the vector of conditional
expectations of components of X.
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Example 1.21. Let X be an integrable random variable on (Q, F, P),
Az, Asg, ... be disjoint events on (2, F, P) such that UA; = Q and P(A4;) >0
for all 4, and let aj,asg,... be distinct real numbers. Define Y = a1l4, +
asla, +---. We now show that

i XdP
E(X|Y) = Z (1.59)

We need to verify (a) and (b) in Definition 1.6 with A = o(Y). Since
oY) =0({A1,As,...}), it is clear that the function on the right-hand side
of (1.59) is measurable on (Q,0(Y)). For any B € B, Y "}(B) = Ui.q,epA;.
Using properties of integrals, we obtain that

XdP = / XdpP
/Ylus) 2

ita; €EB

XdP
= ;fl}g(Al) P(Aimy—l(B))
= [y, XdP

This verifies (b) and thus (1.59) holds.

Let h be a Borel function on R satisfying h(a;) = fAi XdP/P(4;).
Then, by (1.59), E(X|Y) =hoY and E(X|Y =y) = h(y).

Let Ae F and X = I4. Then

Py =pxy) =y 0L

which equals P(AN A;)/P(A;) = P(A|4;) if w € A;. Hence, the definition
of conditional probability in Definition 1.6 agrees with that in elementary
probability. &

The next result generalizes the result in Example 1.21 to conditional
expectations of random variables having p.d.f.’s.

Proposition 1.9. Let X be a random n-vector and Y a random m-vector.
Suppose that (X,Y") has a joint p.d.f. f(z,y) w.r.t. v x A, where v and A
are o-finite measures on (R™, B™) and (R™, B™), respectively. Let g(z,y)
be a Borel function on R™*™ for which E|g(X,Y)| < co. Then

J 9@, Y)f(z,Y)dv(z)

Bl =2

(1.60)
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Proof. Denote the right-hand side of (1.60) by h(Y"). By Fubini’s theorem,
h is Borel. Then, by Lemma 1.2, h(Y) is Borel on (2,0(Y)). Also, by
Fubini’s theorem, fy(y) = [ f(z,y)dv(z) is the p.d.f. of Y w.r.t. A. For
Be Bm7

/Y o MNP = / h(y)dPy

[ 9(z, dv ()
/ ff oy dy( ) Ty (y)dA(y)
- / o, 9) f (&, y)dv x A
R"x B

= / 9(x, y)dPx,y)
R x B

- / §(X,Y)dP,
Y-4(B)

where the first and the last equalities follow from Theorem 1.2, the second
and the next to last equalities follow from the definition of A and p.d.f.’s,
and the third equality follows from Theorem 1.3 (Fubini’s theorem). 1

For a random vector (X,Y") with a joint p.d.f. f(x,y) w.r.t. v x A, define
the conditional p.d.f. of X given Y =y to be

fz,y)
fxy(zly) = : 1.61
where fy (y) = [ f(z,y)dv(z) is the marginal p.d.f. of Y w.r.t. \. One can

easily check that for each fixed y with fy(y) > 0, fxy(z|y) in (1.61) is a
p.d.f. w.r.t. v. Then equation (1.60) can be rewritten as

Blg(X,Y)|Y] = / 92, Y) fxpy (@Y )du(z).

Again, this agrees with the conditional expectation defined in elementary
probability (i.e., the conditional expectation of g(X,Y") given Y is equal to
the expectation of g(X,Y’) w.r.t. the conditional p.d.f. of X given Y).

Now we list some useful properties of conditional expectations. The
proof is left to the reader.

Proposition 1.10. Let X, Y, X, X5, ... be integrable random variables
n (2, F, P) and A be a sub-o-field of F.

(i) If X =cas., ceR, then E(X|A) =cas.

(ii) f X <Y as., then F(X|A) < E(Y|A) a.s.

(i) If a € R and b € R, then E(aX + bY|A) = aE(X|A) + bE(Y]A) a.s
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(iv) E[E(X|A)] = EX.

(v) E[E(X|A)|Ao] = E(X|Ap) = E[E(X]A)|A] a.s., where Ay is a sub-o-
field of A.

(vi)If o(Y) C Aand E|XY| < o0, then E(XY|A) =Y E(X|A) as.

(vii) If X and Y are independent and F|g(X,Y’)| < co for a Borel function
g, then E[g(X,Y)|Y =y] = E[g(X,y)] a.s. Py.

(viii) If EX? < oo, then [E(X]A))? < E(X?|A) a.s.

(ix) (Fatou’s lemma). If X,, > 0 for any n, then F (liminfn Xn|A) <
liminf,, E(X,|.A) a.s.

(x) (Dominated convergence theorem). Suppose that |X,,| <Y for any n
and X,, —45 X. Then E(X,|A) —qs E(X|A). 1

Although part (vii) of Proposition 1.10 can be proved directly, it is a
consequence of a more general result given in Theorem 1.7(i). Since E(X|.A)
is defined only for integrable X, a version of monotone convergence theorem
(iie,, 0 < X3 < Xo <---and X, =45 X imply E(X,|A) —as E(X]A))
becomes a special case of Proposition 1.10(x).

It can also be shown (exercise) that Holder’s inequality (1.40), Lia-
pounov’s inequality (1.42), Minkowski’s inequality (1.43), and Jensen’s in-
equality (1.47) hold a.s. with the expectation F replaced by the conditional
expectation E(-|.A).

As an application, we consider the following example.

Example 1.22. Let X be a random variable on (Q, F, P) with EX? < oo
and let Y be a measurable function from (Q, F, P) to (A, G). One may wish
to predict the value of X based on an observed value of Y. Let g(Y) be a
predictor, i.e., g € 8 = {all Borel functions g with E[g(Y)]? < co}. Each
predictor is assessed by the “mean squared prediction error” E[X —g(Y)]2.
We now show that E(X|Y) is the best predictor of X in the sense that

E[X - B(X|Y))? = r;leigE[X —g(M)]2. (1.62)

First, Proposition 1.10(viii) implies E(X]Y") € R. Next, for any g € X,
EIX —g(Y)]’ = E[X - E(X|Y) + E(X|Y) — g(Y)]?

= E[X - BE(X|Y)]* + BIE(X]Y) — g(Y)]?
+2E{[X - E(X|Y)|[E(X]Y) —g(Y)]}

= BIX - B(X|Y)]* + B[E(X[Y) — g(Y)]?
+2B{E{[X - E(X|Y)][E(X]Y) - g(Y)]|Y'}}

= E[X - BE(X|Y)]* + B[E(X|Y) — g(Y)]?
+2E{[E(X]Y) —g(YV)|E[X — E(X]Y)[Y]}

= BIX - B(X|Y)]* + BI[E(X[Y) — g(Y)]?

> BIX — B(X|Y)P,
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where the third equality follows from Proposition 1.10(iv), the fourth equal-
ity follows from Proposition 1.10(vi), and the last equality follows from
Proposition 1.10(i), (iii), and (vi). 1

1.4.2 Independence

Definition 1.7. Let (2, F, P) be a probability space.
(1) Let C be a collection of subsets in F. Events in C are said to be indepen-
dent if and only if for any positive integer n and distinct events A,...,A,
in C,

P(AiNnAsn---NA,) =P(A1)P(As)--- P(A4,).

(ii) Collections C; C F, i € Z (an index set that can be uncountable), are
said to be independent if and only if events in any collection of the form
{A4; € C; : i € T} are independent.
(iii) Random elements X;, ¢ € Z, are said to be independent if and only if
0(X;), t € Z, are independent. 1

The following result is useful for checking the independence of o-fields.

Lemma 1.3. Let C;, @ € Z, be independent collections of events. Suppose
that each C; has the property that if A € C; and B € C;, then AN B € C;.
Then o(C;), i € Z, are independent. 1

An immediate application of Lemma 1.3 is to show (exercise) that ran-
dom variables X;, i = 1, ..., k, are independent according to Definition 1.7
if and only if (1.7) holds with F being the joint c.d.f. of (X1, ..., X}) and F;
being the marginal c.d.f. of X;. Hence, Definition 1.7(iii) agrees with the
concept of independence of random variables discussed in §1.3.1.

It is easy to see from Definition 1.7 that if X and Y are independent
random vectors, then so are g(X) and h(Y) for Borel functions g and h.
Since the independence in Definition 1.7 is equivalent to the independence
discussed in §1.3.1, this provides a simple proof of Lemma 1.1.

For two events A and B with P(A) > 0, A and B are independent if
and only if P(B|A) = P(B). This means that A provides no information
about the probability of the occurrence of B. The following result is a
useful extension.

Proposition 1.11. Let X be a random variable with E|X| < oo and
let Y; be random k;-vectors, i = 1,2. Suppose that (X,Y7) and Y5 are
independent. Then

BIX|(Y1,Ya)] = E(X|Y1) as.
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Proof. First, F(X|Y7) is Borel on (Q,0(Y1,Y3)), since o(Y7) C o(Y7,Y3).
Next, we need to show that for any Borel set B € BFitkz

/ XdP = E(X|Y1)dP. (1.63)
(V1,Y2)=1(B) (Y1,Y2)~1(B)

If B = By x By, where B; € B¥, then (Y1,Y2)"'(B) = Y; *(B1)NY, (By)
and

Lo BOIAP = [ Iy Ty EXY)P
Yl (Bl)ﬂYZ (BQ)

:/I Vo E(X[V7) dP/ 1, dP

— / Iy -1, X dP / Iy -1, dP

:/I sy Iyt () X AP

_ / XdP,
Y, N (B1)NY, ' (B2)

where the second and the next to last equalities follow from result (1.38)
and the independence of (X, Y7) and Y2, and the third equality follows from
the fact that F(X|Y7) is the conditional expectation of X given Y;. This
shows that (1.63) holds for B = By x Bs. We can show that the collection
H = {B C RF1tk2 ; B satisfies (1.63)} is a o-field. Since we have already
shown that B* x B*2 C ‘H, BF+k2 = o(Bk1 x B¥2) C H and thus the result
follows. 1

Clearly, the result in Proposition 1.11 still holds if X is replaced by
h(X) for any Borel h and, hence,

P(AY1,Y2) = P(A]Y1) a.s. for any A € o(X), (1.64)

if (X,Y7) and Y, are independent. If Y7 is a constant and YV = Ya, (1.64)
reduces to P(A|Y) = P(A) a.s. for any A € o(X), if X and Y are inde-
pendent, i.e., o(Y) does not provide any additional information about the
stochastic behavior of X. This actually provides another equivalent but
more intuitive definition of the independence of X and Y (or two o-fields).

With a nonconstant Y7, we say that given Y7, X and Y3 are conditionally
independent if and only if (1.64) holds. Then the result in Proposition 1.11
can be stated as: if Y3 and (X, Y7) are independent, then given Y7, X and
Y5 are conditionally independent. It is important to know that the result in
Proposition 1.11 may not be true if Y5 is independent of X but not (X,Y7)
(Exercise 96).
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1.4.3 Conditional distributions

The conditional p.d.f. was introduced in §1.4.1 for random variables having
p.d.f.’s w.r.t. some measures. We now consider conditional distributions in
general cases where we may not have any p.d.f.

Let X and Y be two random vectors defined on a common probability
space. It is reasonable to consider P[X ~!(B)|Y = y| as a candidate for
the conditional distribution of X, given Y = y, where B is any Borel set.
However, since conditional probability is defined almost surely, for any fixed
y, P[X71(B)|]Y = y] may not be a probability measure. The first part of
the following theorem (whose proof can be found in Billingsley (1986, pp.
460-461)) shows that there exists a version of conditional probability such
that P[X~(B)|Y = y] is a probability measure for any fixed y.

Theorem 1.7. (i) (Existence of conditional distributions). Let X be a
random n-vector on a probability space (2, F, P) and A be a sub-o-field of
F. Then there exists a function P(B,w) on B™ x Q such that

(a) P(B,w) = P[X~}(B)|A] as. for any fixed B € B", and

(b) P(-,w) is a probability measure on (R", B") for any fixed w € €.
Let Y be measurable from (2, 7, P) to (A, G). Then there exists Px|y (By)
such that

(a) Px)y(Bly) = PIX~Y(B)|Y =y] a.s. Py for any fixed B € B", and

(b) Px|y (:ly) is a probability measure on (R", B") for any fixed y € A.
Furthermore, if E|g(X,Y’)| < co with a Borel function g, then

Elg(X,Y)|Y = y] = Elg(X,y)[Y = y] = / g(z.y)dPy y (z]y) as. Py.

n

(ii) Let (A, G, P1) be a probability space. Suppose that P, is a function
from B™ x A to R and satisfies
(a) P(-,y) is a probability measure on (R", B™) for any y € A, and
(b) Py(B,-) is Borel for any B € B".
Then there is a unique probability measure P on (R™ x A, o(B™ x G)) such
that, for B € B” and C € G,

P(B x C) = /C Py(B,y)dPy(y). (1.65)

Furthermore, if (A, G) = (R™,B™), and X (z,y) = x and Y (z,y) = y define
the coordinate random vectors, then Py = P, Pxy(-ly) = P(-,y), and
the probability measure in (1.65) is the joint distribution of (X,Y"), which
has the following joint c.d.f.:

F(z,y) = /( | PX‘Y((—oo,mHz)dPy(z), reR"yeR™, (1.66)
ooy

where (—o0, a] denotes (—oo, a1 X -+ X (—o0,ax] for a = (a1, ...,ar). 1
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For a fixed y, Px|y=, = Px|y(:|y) is called the conditional distribution
of X given Y = y. Under the conditions in Theorem 1.7(i), if Y is a random
m-vector and (X,Y) has a p.d.f. wr.t. v X A (v and X are o-finite measures
on (R",B") and (R™, B™), respectively), then fxy (z|y) defined in (1.61)
is the p.d.f. of Pxy—, w.r.t. v for any fixed y.

The second part of Theorem 1.7 states that given a distribution on one
space and a collection of conditional distributions (which are conditioned
on values of the first space) on another space, we can construct a joint
distribution in the product space. It is sometimes called the “two-stage
experiment theorem” for the following reason. If Y € R™ is selected in
stage 1 of an experiment according to its marginal distribution Py = P,
and X is chosen afterward according to a distribution Ps(-,y), then the
combined two-stage experiment produces a jointly distributed pair (X,Y)
with distribution Px yy given by (1.65) and Px|y—, = P»(-,y). This pro-
vides a way of generating dependent random variables. The following is an
example.

Example 1.23. A market survey is conducted to study whether a new
product is preferred over the product currently available in the market (old
product). The survey is conducted by mail. Questionnaires are sent along
with the sample products (both new and old) to N customers randomly
selected from a population, where N is a positive integer. Each customer is
asked to fill out the questionnaire and return it. Responses from customers
are either 1 (new is better than old) or 0 (otherwise). Some customers,
however, do not return the questionnaires. Let X be the number of ones in
the returned questionnaires. What is the distribution of X7

If every customer returns the questionnaire, then (from elementary
probability) X has the binomial distribution Bi(p, N) in Table 1.1 (as-
suming that the population is large enough so that customers respond in-
dependently), where p € (0,1) is the overall rate of customers who prefer
the new product. Now, let Y be the number of customers who respond.
Then Y is random. Suppose that customers respond independently with
the same probability # € (0,1). Then Py is the binomial distribution
Bi(m,N). Given Y =y (an integer between 0 and N), Px|y—, is the bi-
nomial distribution Bi(p,y) if ¥y > 1 and the point mass at 0 (see (1.22)) if
y = 0. Using (1.66) and the fact that binomial distributions have p.d.f.’s
w.r.t. counting measure, we obtain that the joint c.d.f. of (X,Y) is

ZPXW k((—00,2]) <Zz>w’f(1 _ Nk

O
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forx =0,1,...,y, y = 0,1,..., N. The marginal c.d.f. Fx(z) = F(z,00) =
F(xz,N). The p.d.f. of X w.r.t. counting measure is

fx(e) = i (’;)pm _p)ee (ka ) *(1 )Nk

- @f) (mp)* (1 — mp)N " é(f_j)(? B ;f}f)km( 11_;;)Nk
B @) (mp)* (1 — 7p)™~*

for x = 0,1,...,N. It turns out that the marginal distribution of X is the
binomial distribution Bi(7wp, N). 1

1.4.4 Markov chains and martingales

As applications of conditional expectations, we introduce here two impor-
tant types of dependent sequences of random variables.

Markov chains

A sequence of random vectors {X,, : n = 1,2,...} is said to be a Markov
chain or Markov process if and only if

P(B|X1,...Xn) = P(B|X,) as., Beo(Xns1), n=23,... (1.67)

Comparing (1.67) with (1.64), we conclude that (1.67) implies that
Xp+1 (tomorrow) is conditionally independent of (X7, ..., X,,—1) (the past),
given X,, (today). But (Xi,...,X,—1) is not necessarily independent of
(X'm X’I’L-'rl ) .

Clearly, a sequence of independent random vectors forms a Markov chain
since, by Proposition 1.11, both quantities on two sides of (1.67) are equal to
P(B) for independent X;’s. The following example describes some Markov
processes of dependent random variables.

Example 1.24 (First-order autoregressive processes). Let €1, €9, ... be in-
dependent random variables defined on a probability space, X1 = &1, and
Xn+1 = pXn + €nt1, n=1,2,..., where p is a constant in R. Then {X,,}
is called a first-order autoregressive process. We now show that for any
BeBandn=1,2,...,

P(X7L+1 € B|X17 7Xn> = Pan,+1(B - an) = P(X7L+1 € B|Xn) a.S.,
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where B —y = {x € R : 2 +y € B}, which implies that {X,} is a Markov
chain. For any y € R,

Poo(B—y) = Plenss +y€B) = / Is(z +y)dP., ., (z)

and, by Fubini’s theorem, P., (B — y) is Borel. Hence, P. . (B — pX,)
is Borel w.r.t. o(X,) and, thus, is Borel w.r.t. o(Xj, ..., X,,). Let B; € B,
j=1,...,n,and A = ﬂ?lej_l(Bj). Since ep41 + pXn = Xpt1 and €41
is independent of (X7, ..., X,,), it follows from Theorem 1.2 and Fubini’s
theorem that

[RENCRE ST dP.,..,()dPx ()
A

z;€Bj,j=1,...,n /teB—,oacn

= / dP(X,an)(CU’t)
z;€Bj,j=1,....,n,Tn41EB

=P (ANX,[(B)),
where X and z denote (X1, ..., X,,) and (21, ..., T, ), respectively, and x,41
denotes pz, + t. Using this and the argument in the end of the proof for
Proposition 1.11, we obtain P(X,1; € B|Xi,....,X,) = P., (B — pX,)

a.s. The proof for P. (B — pX,) = P(Xn4+1 € B|X,,) a.s. is similar and
simpler. 1

The following result provides some characterizations of Markov chains.

Proposition 1.12. A sequence of random vectors { X, } is a Markov chain
if and only if one of the following three conditions holds.

(a) For any n = 2,3, ... and any integrable h(X, 1) with a Borel function
hy, E[h(Xn4+1)| X1, o, Xn] = E[R(Xn41)]| X0] as.

(b) For any n = 1,2,... and B € o(X,41, Xnt2,...), P(B|X1,...,X,) =
P(B|X,) a.s.

(¢) For any n = 2,3,..., A € 0(X1,...,Xn), and B € o(Xnt1, Xnt2,---)s
P(ANB|X,) = P(A|X,)P(B|X,) a.s.

Proof. (i) It is clear that (a) implies (1.67). If h is a simple function,
then (1.67) and Proposition 1.10(iii) imply (a). If h is nonnegative, then
by Exercise 17 there are nonnegative simple functions hy < hy < --- < h
such that h; — h. Then (1.67) together with Proposition 1.10(iii) and (x)
imply (a). Since h = hy — h_, we conclude that (1.67) implies (a).

(ii) It is also clear that (b) implies (1.67). We now show that (1.67) implies
(b). Note that o(Xp4+1, Xnt2,...) =0 (Uj°°:10(Xn+17...7Xn+j)) (Exercise
19). Hence, it suffices to show that P(B|Xy,...,X,) = P(B|X,) a.s. for
B € o(Xny1, ..., Xnyj) for any j = 1,2,.... We use induction. The result
for j = 1 follows from (1.67). Suppose that the result holds for any B €
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0(Xn+1,...; Xntj). To show the result for any B € o(Xpnt1, ..., Xntjt1),
it is enough (why?) to show that for any By € o(Xp4;+1) and any By €
U(Xn+1, ---7Xn+j)7 P(Bl N B2|X1, ,Xn) = P(Bl N BQ‘Xn) a.s. From the
proof in (i), the induction assumption implies

Elh(Xni1s eoos Xt )| X1, ooos Xp] = E[(Xi1, s Xoop )| X (1.68)

for any Borel function h. The result follows from

E(Ip,Ip,|X1, ... Xp) = E[E(I, I, | X1, oo, Xy )| X1, ooy Xin]
= B[, E(Ip, | X1, o, Xni )| X1, ooy Xon]
= Ellp, E(Ip, | Xni)|X1, ..o X,
E[I (IBl‘Xn+j>|Xn]
E[I (IB1‘Xn7~-~ Xn-&-j)‘X’n]
= E[E(Ip,1B,|Xn, ... XnJrj)‘Xn]

= E(IBl IBZ |Xn) a.s.,

where the first and last equalities follow from Proposition 1.10(v), the sec-
ond and sixth equalities follow from Proposition 1.10(vi), the third and fifth
equalities follow from (1.67), and the fourth equality follows from (1.68).
(iii) Let A € 0(X1,...,Xp) and B € o(Xp41, Xnt2,...). If (b) holds, then
E(Islp|X,) = E[E(Ialp|X1,.... X0n)|Xn] = E[IaE(Ip| X1, ..., X)X =
ElLAE(I5|X,)| X0] = E(L4| X)) E(Ip| X), which is (c).

Assume that (c) holds. Let 4; € o(X,), 42 € o(X1,..., Xn-1), and
Be O'(Xn+1,Xn+2, ) Then

| Busix)ar = [ e
A1NAs Ay

:/ E[Is,E(Ip|X,)|X,])dP

Ay

:/ E(14,|X,)E(IB|X,)dP
Ay

= E(IAQIB‘Xn)dP
Ay

= P(A; N A, N B).

Since disjoint unions of events of the form A; N A, as specified above gener-
ate 0(X1, ..., Xp,), this shows that E(Ig5|X,) = E(Ip| X1, ..., X») a.s., which
is (b). 1

Note that condition (b) in Proposition 1.12 can be stated as “the past
and the future are conditionally independent given the present”, which is a
property of any Markov chain. More discussions and applications of Markov
chains can be found in §4.1.4.
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Martingales

Let {X,,} be a sequence of integrable random variables on a probability
space (Q, F, P) and F; C Fa C --- C F be a sequence of o-fields such that
o(Xpn) C Fnyn=1,2,.... The sequence {X,,, F,, : n = 1,2, ...} is said to be
a martingale if and only if

E(Xpt1|Fn) =Xn as, n=1,2,..., (1.69)

a submartingale if and only if (1.69) holds with = replaced by >, and a
supermartingale if and only if (1.69) holds with = replaced by <. {X,}
is said to be a martingale (submartingale or supermartingale) if and only
if {X,,,0(X1,...,X5)} is a martingale (submartingale or supermartingale).
From Proposition 1.10(v), if {X,,F,} is a martingale (submartingale or
supermartingale), then so is {X,,}.

A simple property of a martingale (or a submartingale) { X,,, F,, } is that
E(Xnyj|Fn) = Xp as. (or E(Xpyj|Fn) > X, as.) and EX; = EX; (or
EX; < EXy;<--:) for any j = 1,2,... (exercise).

For any probability space (2, F, P) and o-fields 7y C Fo C --- C F,
we can always construct a martingale {FE(Y|F,)} by using an integrable
random variable Y. Another way to construct a martingale is to use a
sequence of independent integrable random variables {e,,} by letting X,, =
e1+---+ep, n=12,.. Since

E(XnJrl‘Xl, ,Xn) = E(Xn + En+1|X1, ) Xn) = Xn + E5n+1 a.s.,

{X,} is a martingale if Ee,, = 0 for all n, a submartingale if Ee,, > 0 for
all n, and a supermartingale if Fe,, < 0 for all n. Note that in Example
1.24 with p =1, {X,,} is shown to be a Markov chain.

The next example provides another example of martingales.

Example 1.25 (Likelihood ratio). Let (€2, F, P) be a probability space,
Q@ be a probability measure on F, and F; C F2 C --- C F be a sequence
of o-fields. Let P, and @, be P and @ restricted to F,, respectively,
n = 1,2,.... Suppose that Q, < P, for each n. Then {X,,F,} is a
martingale, where X,, = d@,,/dP, (the Radon-Nikodym derivative of @,
w.r.t. P,), n=1,2,... (exercise). Suppose now that {Y;,} is a sequence of
random variables on (Q, F, P), F,, = (Y1, ..., Y,) and that there exists a o-
finite measure v, on F,, such that P, < v, and v,, < P,,, n =1,2,.... Let
pn(Y1,...,Y) = dP,/dv, and ¢,(Y1,....Y,) = dQ,/dv,. By Proposition
1.73ii), X, = ¢.(Y1, ..., Y3)/pn(Y1, ..., Yy,), which is called a likelihood ratio
in statistical terms. 1

The following results contain some useful properties of martingales and
submartingales.
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Proposition 1.13. Let ¢ be a convex function on R.

(i) If {X,,F,} is a martingale and ¢(X,,) is integrable for all n, then
{o(Xy), Fn} is a submartingale.

(ii) If {X,,, Fn} is a submartingale, ¢(X,,) is integrable for all n, and ¢ is
nondecreasing, then {¢(X,), F,} is a submartingale.

Proof. (i) Note that ¢(X,) = p(E(Xn4+1|Fn)) < Elp(Xn+1|Fn)] as. by
Jensen’s inequality for conditional expectations (Exercise 89(c)).

(i) Since ¢ is nondecreasing and {X,,F,} is a submartingale, ¢(X,) <
P(E(Xn+1|Fn)) < Elp(Xns1|Fn)] as. B

An application of Proposition 1.13 shows that if {X,,,F,} is a sub-
martingale, then so is {(X,)4+,Fn}; if {X,, Fn} is a martingale, then
{|Xn|, Fn} is a submartingale and so are {|X,|?, F,}, where p > 1 is a con-
stant, and {|X,|(log|Xn|)+,Fn}, provided that | X,|P and | X, |(log | X,|)+
are integrable for all n.

Proposition 1.14 (Doob’s decomposition). Let {X,,, F,} be a submartin-
gale. Then X,, =Y, + Z,, n = 1,2,..., where {Y,,,F,} is a martin-
gale, 0 = 7y < Zy < -+, and FEZ, < oo for all n. Furthermore, if
sup,, E|X,| < oo, then sup,, E|Y,| < co and sup,, EZ,, < cc.
Proof. Definen; =&1, (1 =0,n, = Xn—Xpo1— E(Xy,— Xp—1]|Fn—1), and
(o =E(Xp—Xn_1|Fp-1) forn>2. ThenY, => " ;mand Z, =Y ;"
satisfy X,, =Y,, + Z,, and the required conditions (exercise).

Assume now that sup,, E|X,| < co. Since EY; = EY,, for any n and
Zn < |Xu| =Y, EZ, < E|X,| — EY1. Hence sup,, EZ, < oco. Also,
|Y,| < |Xn|+ Z,. Hence sup, E|Y,| < oco. 1

The following martingale convergence theorem, due to Doob, has many
applications (see, e.g., Example 1.27 in §1.5.1). Its proof can be found, for
example, in Billingsley (1986, pp. 490-491).

Proposition 1.15. Let {X,,, F,,} be a submartingale. If ¢ = sup,, E|X,| <
oo, then lim, ., X,, = X a.s., where X is a random variable satisfying
ElX|<e 1

1.5 Asymptotic Theory

Asymptotic theory studies limiting behavior of random variables (vectors)
and their distributions. It is an important tool for statistical analysis. A
more complete coverage of asymptotic theory in statistical analysis can
be found in Serfling (1980), Shorack and Wellner (1986), Sen and Singer
(1993), Barndorff-Nielsen and Cox (1994), and van der Vaart (1998).
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1.5.1 Convergence modes and stochastic orders

There are several convergence modes for random variables/vectors. Let
r > 0 be a constant. For any ¢ = (c1,...,cx) € R¥, we define |c|, =
(Zle le;|™)Y7. If r > 1, then ||c||, is the L,-distance between 0 and c.
When r = 2, the subscript r is omitted and ||c|| = ||c||2 = V/cTe.

Definition 1.8. Let X, X1, X5, ... be random k-vectors defined on a prob-
ability space.

(i) We say that the sequence {X,,} converges to X almost surely (a.s.) and
write X,, —4.5. X if and only if lim, ... X, = X a.s.

(ii) We say that {X,,} converges to X in probability and write X,, —, X
if and only if, for every fixed € > 0,

lim P (||X, — X|| > €) =0. (1.70)
n—oo

(iii) We say that {X,,} converges to X in L, (or in rth moment) and write
X, —r, X if and only if

lim E||X, — X||"=0,
n—oo

where r > 0 is a fixed constant.

(iv) Let F, F,,, n=1,2,..., be c.d.f’s on R* and P, P,, n =1, ..., be their
corresponding probability measures. We say that {F,} converges to F
weakly (or {P,} converges to P weakly) and write F,, —,, F (or P, —,, P)
if and only if, for each continuity point = of F,

lim F,(z) = F(x).

n—oo

We say that {X,,} converges to X in distribution (or in law) and write
X, —q¢ X if and only if Fx, — Fx. 1

The a.s. convergence has already been considered in previous sections.
The concept of convergence in probability, convergence in L,, or a.s. con-
vergence represents a sense in which, for n sufficiently large, X,, and X
approximate each other as functions on the original probability space. The
concept of convergence in distribution in Definition 1.8(iv), however, de-
pends only on the distributions Fx, and Fx (or probability measures Py,
and Px) and does not necessitate that X,, and X are close in any sense; in
fact, Definition 1.8(iv) still makes sense even if X and X,,’s are not defined
on the same probability space. In Definition 1.8(iv), it is not required that
lim,, o F,(z) = F(z) for every . However, if F' is a continuous function,
then we have the following stronger result.
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Proposition 1.16 (Pélya’s theorem). If F,, —,, F and F' is continuous on
RF, then
lim sup |F,(z) — F(z)|=0. 1

nT0 peRE

A useful characterization of a.s. convergence is given in the following
lemma.

Lemma 1.4. For random k-vectors X, X1, Xo,... on a probability space,
X, —a.s. X if and only if for every € > 0,

m=n

lim P ( D (11X — X| > e}) = 0. (1.71)

Proof. Let A; = U, N_, {[|Xm — X|| <j 7'}, 7 =1,2,.... By Propo-
sition 1.1(iii) and DeMorgan’s law, (1.71) holds for every e > 0 if and only
if P(A;) = 1 for every j, which is equivalent to P(N32;A;) = 1. The result

follows from N32,; A; = {w : limy 00 Xp(w) = X (w)} (exercise). 1

The following result describes the relationship among the four conver-
gence modes in Definition 1.8.

Theorem 1.8. Let X, X1, X5,... be random k-vectors.

(i) If X,, =45 X, then X,, —, X.

(ii) If X, —r, X for an r > 0, then X,, —, X.

(i) If X,, —p X, then X,, —g X.

(iv) (Skorohod’s theorem). If X,, —4 X, then there are random vectors
Y, Y1,Y5, ... defined on a common probability space such that Py = Px,
Py, =Px,,n=1,2,..,and Y, —4, Y.

(v) If, for every € > 0, >-°7 | P([| X,, — X|| > €) < oo, then X,, —4.5. X.
(vi) If X;; —, X, then there is a subsequence {X,,,,j = 1,2,...} such that
Xn; —as. X as j — oo.

(vii) If X,, —4 X and P(X = c¢) = 1, where ¢ € R is a constant vector,
then X,, —, c.

(viii) Suppose that X,, —4 X. Then, for any r > 0,

lim B[ X7 = EIX]] < o0 (1.72)
if and only if {|| X, ||"} is uniformly integrable in the sense that

tllglo sup &£ (||Xn||;I{HXnH7‘>t}) =0. 1 (173)

The proof of Theorem 1.8 is given after the following discussion and
example.
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The converse of Theorem 1.8(i), (ii), or (iii) is generally not true (see
Example 1.26 and Exercise 116). Note that part (iv) of Theorem 1.8 (Sko-
rohod’s theorem) is not a converse of part (i), but it is an important result
in probability theory. It is useful when we study convergence of quantities
related to Fx, and Fx when X,, —4 X (see, e.g., the proofs of Theorems
1.8 and 1.9). Part (v) of Theorem 1.8 indicates that the converse of part (i)
is true under the additional condition that P(]|X,, — X || > €) tends to 0 fast
enough. Part (vi) provides a partial converse of part (i) whereas part (vii) is
a partial converse of part (iii). A consequence of Theorem 1.8(viii) is that if
X, —p X and {||X,, — X||I'} is uniformly integrable, then X,, —, X; ie.,
the converse of Theorem 1.8(ii) is true under the additional condition of
uniform integrability. A useful sufficient condition for uniform integrability
of {||X,||"} is that

sup B[] X,||7° < oo (1.74)
n

for a 6 > 0. Some other sufficient conditions are given in Exercises 117-120.

Example 1.26. Let 6, = 1 +n~! and X,, be a random variable having
the exponential distribution E(0,6,,) (Table 1.2), n = 1,2,.... Let X be
a random variable having the exponential distribution E(0,1). For any
z >0,

Fx, (z) =1—e2/% 1 —¢7% = Fx(x)
as n — oo. Since Fx, () = 0 = Fx(z) for x < 0, we have shown that
Xn —d X.

Is it true that X,, —, X7 This question cannot be answered without any
further information about the random variables X and X,,. We consider
two cases in which different answers can be obtained. First, suppose that
X, = 0, X (then X, has the given c.d.f.). Note that X,,— X = (6,—1)X =
n~'X, which has the c.d.f. (1 —e™"")I}g o) (x). Hence

P(X,—-X|>e¢)=e"—0

for any € > 0. In fact, by Theorem 1.8(v), X,, —4.s. X; since F|X,, — X|P =
n~PEXP < oo for any p > 0, X;, —, X for any p > 0. Next, suppose
that X,, and X are independent random variables. Using result (1.28)
and the fact that the p.d.f.’s for X,, and —X are 9;1671/9"1(0’00) () and
e”I(_,0)(x), respectively, we obtain that

P(Xu= X2 = [ [ 6167/ T @)1y )y,

which converges to (by the dominated convergence theorem)

/ /e*zeyle(opo)(a:)I(_Oow)(y)d:cdy =1-e"
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Thus, P(|X, — X|>¢€) — e € > 0 for any ¢ > 0 and, therefore, {X,,}
does not converge to X in probability. The previous discussion, however,
indicates how to construct the random variables Y,, and Y in Theorem
1.8(iv) for this example. 1

The following famous result is used in the proof of Theorem 1.8(v). Its
proof is left to the reader.

Lemma 1.5. (Borel-Cantelli lemma). Let A,, be a sequence of events in a
probability space and limsup,, A, = NS, USS_,, Ap,.

(i) If >°0° , P(Ay) < oo, then P(limsup,, A,) = 0.

(ii) If Ay, As,... are pairwise independent and Y~ , P(A,) = oo, then
P(limsup,, 4,) =1. 1

Proof of Theorem 1.8. (i) The result follows from Lemma 1.4, since
(1.71) implies (1.70).

(ii) The result follows from Chebyshev’s inequality with () = [¢|".

(iii) For any ¢ = (c1, ..., cx) € RF, define (—o0, ] = (—00, ¢1]x- - - x (—00, cx].
Let x be a continuity point of F'x, € > 0 be given, and Ji be the k-vector
of ones. Then {X € (—oo,z —eJy], X, & (—o0, 2]} C {||Xn — X]|| > €} and

Fx(z —eJi) = P(X €(—00,x — eJi))
< P(X,€(—00,2]) + P(X €(—00,2 — €Ji), Xn & (—00, 7])
< Fx, (2) + P (| X0 — X[ > €).

Letting n — oo, we obtain that Fx(z — eJi) < liminf,, Fx, (z). Similarly,
we can show that Fx (z + eJy) > limsup,, Fx, (z). Since € is arbitrary and
Fx is continuous at z, Fx(x) = lim, . Fx, ().

(iv) The proof of this part can be found in Billingsley (1986, pp. 399-402).
(v) Let A,, = {|| X, — X|| > €}. The result follows from Lemma 1.4, Lemma
1.5(i), and Proposition 1.1(iii).

(vi) From (1.70), for every j = 1,2, ..., there is a positive integer n; such
that P(||X,, — X| > 277) <277, For any € > 0, there is a k. such that for
32> ke, P(| Xn,; — X[ > €) < P(| X, — X|| >277). Since 372,277 =1, it
follows from the result in (v) that X,,; —..s. X as j — oo.

(vii) The proof for this part is left as an exercise.

(viii) First, by part (iv), we may assume that X,, —,s X (why?). Assume
that {||X,||"} is uniformly integrable. Then sup,, E||X,|} < oo (why?)
and by Fatou’s lemma (Theorem 1.1(i)), E|| X || < liminf, E||X,|l < cc.
Hence, (1.72) follows if we can show that

limsup E|| X, ||, < E|| X]|;. (1.75)

For any € > O and ¢t > 0, let A,, = {|| X, — X || < €} and B,, = {|| Xy || > ¢}.
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Then

BIXull} = E(1Xul}Lasns,) + E(IXa [ Las e ) + E(IX0ll1La,)
< B(|XulliL5,) + " P(AS) + Bl Xola, |

re

For r <1, [[Xnla, [I7 < ([ Xn = X7+ [ X][7) 14, and

E||Xnla,

» < El([ X0 = X[[7 + 11X 14, ] < € + B[ X][7.
For r > 1, an application of Minkowski’s inequality leads to

E”XnIAn

r = Ell(Xn — X)1a, + X1a,l;
< E(l[(Xn = X)La, [lr + 1 X La, [I-]"

< {IBI(Xn = X)La, 151" + [EI X I,

7y

< {e+ Blx)7"7}

In any case, since € is arbitrary, lim sup,, E|| X, 14, |7 < E||X||7. This result
and the previously established inequality imply that

limsup E|| X, ||/ < limsup E(|| X, |[-1p,) +t" lim P(AS)
n n n—oo

r
T

+limsup E|| X, 14,
n

< sup E([| Xn |- g x, ), >e3) + EIX|7,

since P(A%) — 0. Since {|| X, |7} is uniformly integrable, letting t — oo we
obtain (1.75).

Suppose now that (1.72) holds. Let &, = || X, | Ip: — || X|;-Ip:. Then
&n —a.s. 0 and |&,| < t" 4 | X||I, which is integrable. By the dominated
convergence theorem, E, — 0; this and (1.72) imply that

E([Xnll 1B,) - E(|X]}15,) = 0.

From the definition of B, B, C {|| X, — X[, > t/2} U{||X|, > t/2}.
Since E||X||7 < oo, it follows from the dominated convergence theorem
that E(|| X |71 x,—x]|,>t/23) — 0 as n — oo. Hence,

limsup E(|| Xn:15,) < limsup E(||X|[715,) < E(IX[71gx),>t/23)-

Letting t — oo, it follows from the dominated convergence theorem that

Jim limsup E(|[Xo[l:75,) < lim E([[ X[ 1 x),>t/2)) = 0.

This proves (1.73). 1
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Example 1.27. As an application of Theorem 1.8(viii) and Proposition
1.15, we consider again the prediction problem in Example 1.22. Suppose
that we predict a random variable X by a random n-vector Y = (Y1, ..., Y},).
It is shown in Example 1.22 that X,, = E(X|Y1, ..., Yy,) is the best predictor
in terms of the mean squared prediction error, when EX? < co. We now
show that X,, —4.s X when n — oo under the assumption that o(X) C
Foo = 0(Y1,Ys,...) (i.e., X provides no more information than Y7, Y5, ...).

From the discussion in §1.4.4, { X,,} is a martingale. Also, sup,, B|X,| <
sup,, E[E(|X||Y1,...,Yn)] = E|X| < oo. Hence, by Proposition 1.15, X,
—a.s. 2 for some random variable Z. We now need to show Z = X a.s.
Since 0(X) C Foo, X = E(X|Fo) a.s. Hence, it suffices to show that Z =
E(X|Fs) a.s. Since EX? < EX? < oo (why?), condition (1.74) holds for
sequence {|X,|} and, hence, {|X,|} is uniformly integrable. By Theorem
1.8(viii), E|X,, — Z| — 0, which implies [, X,,dP — [, ZdP for any event
A. Note that if A € o(Y1,...,Ym), then A € o(Y1,...,Y,) for n > m and
J4 XndP = [, XdP. This implies that for any A € U, 0(Y1,...,Y)),
JaXdP = [, ZdP. Since UX,0(Y1,...,Y;) generates Fo,, we conclude
that [, XdP = [, ZdP for any A € Fo, and thus Z = E(X|F) a.s.

In the proof above, the condition EX? < oo is used only for showing the
uniform integrability of {|X,|}. But by Exercise 120, {|X,|} is uniformly
integrable as long as F|X| < co. Hence X,, —, X is still true if the
condition EX? < oo is replaced by E|X| < co.

We now introduce the notion of O(-), o(-), and stochastic O(-) and
o(+). In calculus, two sequences of real numbers, {a,} and {b,}, satisfy
an = O(by) if and only if |a,| < ¢|by| for all n and a constant ¢; and
ay, = o(by) if and only if a, /b, — 0 as n — oco.

Definition 1.9. Let X1, X, ... be random vectors and Y7, Y5, ... be random
variables defined on a common probability space.

(i) Xn = O(Yy) as. if and only if P(||X,| = O(|Y,])) = 1.

(ii) X, = o(Yy,) a.s. if and only if X,,/Y,, —4. 0.

(ili) X, = Op(Yy) if and only if, for any € > 0, there is a constant C, > 0
such that sup,, P(|| X,| > Cc|Y,]) < e.

(iv) Xpn = 0p(Yy) if and only if X,,/Y, —, 0. 1

Note that X, = 0,(Y,) implies X,, = Op(Yy,); X5, = Op(Yy,) and Y, =
0,(Z,,) implies X,, = O,(Z,); but X,, = O,(Y,,) does not imply Y,, =
Op(X,). The same conclusion can be obtained if O,(-) and o,(-) are
replaced by O(-) a.s. and o( - ) a.s., respectively. Some results related to O,
are given in Exercise 127. For example, if X,, —4 X for a random variable
X, then X,, = O,(1). Since a, = O(1) means that {a,} is bounded, {X,}
is said to be bounded in probability if X,, = O,(1).
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1.5.2 Weak convergence

We now discuss more about convergence in distribution or weak conver-
gence of probability measures. A sequence {P,} of probability measures
on (RF,BF) is tight if for every e > 0, there is a compact set C C RF
such that inf, P,(C) > 1 —e. If {X,} is a sequence of random k-vectors,
then the tightness of {Px, } is the same as the boundedness of {|| X, ||} in
probability. The proof of the following result can be found in Billingsley
(1986, pp. 392-395).

Proposition 1.17. Let {P,} be a sequence of probability measures on
(R*, BF).

(1) Tightness of {P,} is a necessary and sufficient condition that for every
subsequence {P,,} there exists a further subsequence {P,,} C {P,,} and
a probability measure P on (R*, B¥) such that P,, —,, P as j — co.

(ii) If {P,} is tight and if each subsequence that converges weakly at all
converges to the same probability measure P, then P, —,, P. 1

The following result gives some useful sufficient and necessary conditions
for convergence in distribution.

Theorem 1.9. Let X, X1, X5, ... be random k-vectors.
(i) X, —q X is equivalent to any one of the following conditions:

(a) E[h(X,,)] — E[h(X)] for every bounded continuous function h;

(b) limsup,, P, (C) < Px(C) for any closed set C C RF;

(¢) liminf, Px, (O) > Px(O) for any open set O C R,
(ii) (Lévy-Cramér continuity theorem). Let ¢x, ¢x,, dx,, ... be the ch.f.’s of
X, X1, Xa, ..., respectively. X,, —4 X if and only if lim,, ., ¢x, (t) = ¢x (t)
for all t € RF.
(iii) (Cramér-Wold device). X,, —4 X if and only if ¢"X,, —4 ¢"X for
every ¢ € RF.
Proof. (i) First, we show X,, —4 X implies (a). By Theorem 1.8(iv)
(Skorohod’s theorem), there exists a sequence of random vectors {Y;}
and a random vector Y such that Py, = Px, for all n, P = Px and
Y, —as Y. For bounded continuous h, h(Y,) —qs h(Y) and, by the
dominated convergence theorem, E[h(Y,, )} E[h(Y)] Then (a) follows
from E[h(X,,)] = E[h(Y,)] for all n and E[h(X)] = E[h(Y)].

Next, we show (a) implies (b). Let C be a closed set and fo(z) =
inf{|lx —y|| : y € C}. Then fc is continuous. For j = 1,2,..., define
©i(t) = I(—oo,0) + (1 = jt)L0,;-1). Then h;(z) = ¢;(fc(x)) is continuous
and bounded, h; > hj1, j =1,2,..., and h j(@) = Ic(z) as j — oo. Hence
limsup,, Px, (C) < lim, E[hj(Xn)} E[h (X)] for each j (by (a)).
By the dominated convergence theorem, E[h;(X)] — E[lc(X)] = Px(C).
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This proves (b).

For any open set O, O¢ is closed. Hence, (b) is equivalent to (c). Now, we
show (b) and (c) imply X,, —4 X. For z = (1,...,x1) € R¥, let (—o0,z] =
(=00, 1] X -+ - X (=00, zx] and (—o0,x) = (—00,x1) X + - - X (—00, x). From
(b) and (c), Px ((—00795)) < liminf,, PX”(( )) S liminf, Fx, (z) <
limsup,, Fix, (z) = limsup,, Px, ((—o0,z]) < PX(( 00,z]) = Fx(z). If
x is a continuity point of Fx, then PX((foo,x)) Fx(x). This proves
X, —4 X and completes the proof of (i).

(ii) From (a) of part (i), X,, —¢ X implies ¢x, (£) — ¢x(t), since eV 1% =
cos(t"x) ++/—1sin(t"z) and cos(t"x) and sin(t"x) are bounded continuous
functions for any fixed ¢.

Suppose now that £ = 1 and that ¢x, (t) — ¢x(t) for every t € R. By
Fubini’s theorem,

i /uu[l — ¢x, (t)]dt = /O; [i /2(1 — €¢1tz)dt} dPx. (z)
2 [ (1 )y, @)

> Px, ((—o0, —2uYHuut, 00))
for any u > 0. Since ¢x is continuous at 0 and ¢x(0) = 1, for any € > 0
there is a u > 0 such that u™! [* [1 — ¢x (t)]dt < €/2. Since ¢x, — ¢x,

by the dominated convergence theorem, sup, {u~" [* [I — ¢x, (t)]dt} < e.
Hence,

1
inf Py, ([-2u™',2u™"]) > 1— sup{ /
n n u

—u

u

[1-— ox, (t)]dt} >1—e

ie., {Px,} is tight. Let {PXn,j} be any subsequence that converges to a
probability measure P. By the first part of the proof, ¢ X, = ¢, which is
the ch.f. of P. By the convergence of ¢x,, § = ¢x. By Theorem 1.6(i),
P = Px. By Proposition 1.17(ii), X,, —4 X.

Consider now the case where k > 2 and ¢x, — ¢x. Let Yy,; be the jth
component of X,, and Y; be the jth component of X. Then ¢y,;, — ¢y,
for each j. By the proof for the case of k = 1, Y;,; —4 Y;. By Proposition
1.17(i), { Py, } is tight, j = 1, ..., k. This implies that { Px, } is tight (why?).
Then the proof for X,, —4 X is the same as that for the case of k = 1.
(i) From (1.52), ¢crx, (u) = ¢x, (uc) and ¢erx(u) = ¢x(uc) for any
u € R and any ¢ € R¥. Hence, convergence of ¢x, to ¢x is equivalent to
convergence of ¢.rx, to ¢orx for every ¢ € RF. Then the result follows
from part (ii). 1
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Example 1.28. Let Xi,..., X,, be independent random variables having
a common c.d.f. and T, = X; +---+ X,,, n = 1,2,.... Suppose that
E|Xi| < co. It follows from (1.56) and a result in calculus that the ch.f. of
X satisfies

6x:(t) = 6x,(0) + V=1t + o([t])
as [t| — 0, where 4 = EX;. From (1.52) and (1.58), the ch.f. of T,,/n is

b1, /n(t) = {Qﬁxl (Dr = {1 + ¢—nmt o (2)]

for any t € R, as n — oo. Since (1+¢,/n)™ — e for any complex sequence
{cn} satisfying ¢, — ¢, we obtain that ¢g, ,,(t) — eV=1ut which is the
ch.f. of the distribution degenerated at p (i.e., the point mass probability
measure at y; see (1.22)). By Theorem 1.9(ii), T},/n —¢ p. From Theorem
1.8(vii), this also shows that T, /n — L.

Similarly, 4 = 0 and 0? = Var(X;) < oo imply

g

2t2 t2 n
r0n) = 1= T +o ()]

for any ¢ € R, which implies that ¢r, /. (t) — e="/2 the ch.f. of
N(0,0%). Hence T, /\/n —a N(0,0%). (Recall that N(u,0?) denotes a
random variable having the N (u, 0?) distribution.) If u # 0, a transforma-
tion of Y; = X; — p leads to (T, — nu)/v/n —q N(0,0?).

Suppose now that Xy, ..., X, are random k-vectors and y = EX; and
¥ = Var(X;) are finite. For any fixed ¢ € R¥, it follows from the previous
discussion that (¢"T;, —nc™u)/v/n —q N(0,¢"Xc). From Theorem 1.9(iii)
and a property of the normal distribution (Exercise 81), we conclude that
(T, — np)/v/n —q Ni(0,2). 1

Example 1.28 shows that Theorem 1.9(ii) together with some properties
of ch.f.’s can be applied to show convergence in distribution for sums of
independent random variables (vectors). The following is another example.

Example 1.29. Let X, ..., X,, be independent random variables having a
common Lebesgue p.d.f. f(x) = (1 — cosx)/(r2?). Then the ch.f. of X7 is
max{1 — [t],0} (Exercise 73) and the ch.f. of T),/n = (X1 +---+ X,,)/n is

<max{1 t|,0}) — eIt teR.
n

Since e~ !l is the ch.f. of the Cauchy distribution C(0,1) (Table 1.2), we
conclude that T, /n —4 X, where X has the Cauchy distribution C(0,1).

Does this result contradict the first result in Example 1.287 1
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Other examples of applications of Theorem 1.9 are given in Exercises
135-140 in §1.6. The following result can be used to check whether X,, —4
X when X has a p.d.f. f and X,, has a p.d.f. f,.

Proposition 1.18 (Scheffé’s theorem). Let {f,} be a sequence of p.d.f.’s
on R¥ w.r.t. a measure v. Suppose that lim,, . f.(z) = f(z) a.e. v and
f(z)is a p.df wrt. v. Then lim, . [|fn(z) — f(z)|dv = 0.

Proof. Let g,(z) = [f(x) = fu(2)|l{f>5,1(x), n=1,2,.... Then

/\fn - \du_2/gn(x)du.

Since 0 < g, (z) < f(z) for all z and g, — 0 a.e. v, the result follows from
the dominated convergence theorem. 1

As an example, consider the Lebesgue p.d.f. f, of the t-distribution ¢,
(Table 1.2), n = 1,2,.... One can show (exercise) that f, — f, where f is
the standard normal p.d.f. This is an important result in statistics.

1.5.3 Convergence of transformations

Transformation is an important tool in statistics. For random vectors X,
converging to X in some sense, we often want to know whether g(X,)
converges to ¢g(X) in the same sense. The following result provides an
answer to this question in many problems. Its proof is left to the reader.

Theorem 1.10. Let X, X1, X5, ... be random k-vectors defined on a prob-
ability space and g be a measurable function from (R¥, B¥) to (R!,B!).
Suppose that g is continuous a.s. Px. Then

(i) Xp —a.s. X implies g(X,,) —a.s. 9(X);

(ii) X, —, X implies g(X,,) —p g(X);

(iii) X,, —q¢ X implies g(X,,) —q g(X). ¥

Example 1.30. (i) Let X3, Xo,... be random variables. If X,, —4 X,
where X has the N(0,1) distribution, then X2 —4 Y, where Y has the
chi-square distribution x3 (Example 1.14).

(ii) Let (X, Y;,) be random 2-vectors satisfying (X,,Y,) —4 (X,Y), where
X and Y are independent random variables having the N (0, 1) dlstrlbutlon
then X,,/Y,, —4 X/Y, which has the Cauchy distribution C'(0,1) (§1.3.1).
(iii) Under the conditions in part (ii), max{X,,Y,} —4 HlaX{X, Y}, which
has the c.d.f. [®(x)]? (®(x) is the c.d.f. of N(0,1)). 1

In Example 1.30(ii) and (iii), the condition that (X,,Y,) —4 (X,Y)
cannot be relaxed to X,, —4 X and Y,, —4 Y (exercise); i.e., we need the
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convergence of the joint c.d.f. of (X,,,Y,,). This is different when — 4 is re-
placed by —, or —4_ .. The following result, which plays an important role
in probability and statistics, establishes the convergence in distribution of
X, +Y, or X,,Y,, when no information regarding the joint c.d.f. of (X,,, Ys,)
is provided.

Theorem 1.11 (Slutsky’s theorem). Let X, X3, X5, ..., ¥7,Y5, ... be ran-
dom variables on a probability space. Suppose that X;,, —4 X and Y,, —, c,
where c is a fixed real number. Then

(i) Xp+Y, —a X +¢

(il) Yo X, —a cX;

(il) X,,/Y, —a X/cif ¢ #0.

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Let t € R and € > 0 be fixed constants. Then

Fx,+v,(t) = P(X,+Y, <t)
{Xn+ Y, <t}n{|Yn—c| <e})+ P(|Yn—c|>¢)

P
P(X, <t—c+e€)+P(|Y,—c|>¢)

IAIA

and, similarly,
Fx, v, () > P(X, <t —c—€) = P([Yy — | > o).

Ift—c,t—c+e, and t — c — € are continuity points of Fx, then it follows
from the previous two inequalities and the hypotheses of the theorem that

Fx(t —c—e€) <liminf Fx 4y, (t) < limsup Fx, +v, (t) < Fx(t —c+e).
Since € can be arbitrary (why?),
lim FXner” (t) = FX (t — C).
The result follows from Fxy.(t) = Fx(t—c). 1

An application of Theorem 1.11 is given in the proof of the following
important result.

Theorem 1.12. Let X1, X, ... and Y be random k-vectors satisfying
an(Xn —c) =4 Y, (1.76)

where ¢ € RF and {a,} is a sequence of positive numbers with lim,, ,~, a,, =
0o. Let g be a function from R* to R.
(i) If g is differentiable at ¢, then

an[9(Xn) = 9(¢)] —a [Vg(c)]"Y, (1.77)
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where Vg(z) denotes the k-vector of partial derivatives of g at x.

(ii) Suppose that g has continuous partial derivatives of order m > 1 in a
neighborhood of ¢, with all the partial derivatives of order j, 1 < j <m—1,
vanishing at ¢, but with the mth-order partial derivatives not all vanishing
at c. Then

1 k k amg
alo(Xn) =gl =a Do D o

i1=1 im=1

Y

im )

(1.78)

where Yj is the jth component of Y.
Proof. We prove (i) only. The proof of (ii) is similar. Let
Zn = an[g(Xn) - g(C)] - an[v.g(c)}T(Xn - C)~
If we can show that Z, = o0,(1), then by (1.76), Theorem 1.9(iii), and
Theorem 1.11(i), result (1.77) holds.

The differentiability of g at ¢ implies that for any € > 0, there is a § > 0
such that

l9(x) = g(c) = [Vg(e)]"(z = ¢) < €|z — ]| (1.79)
whenever ||z — ¢|| < d.. Let n > 0 be fixed. By (1.79),

P(|Zn| Z ) < P([|[ X5 = cf| Z dc) + Planl| Xn = cl| = n/e).

Since a, — o0, (1.76) and Theorem 1.11(ii) imply X,, —, ¢. By Theorem
1.10(iii), (1.76) implies an|| Xy, —c|| —q |[|Y]]. Without loss of generality, we
can assume that 7)/e is a continuity point of Fjjy . Then

limsup P(|Za] > n) < lim P(|X, — cl| > &)
n n—oo
+ lim P(an|Xn —cf = n/e)
= P([Y]| = n/e).

The proof is complete since € can be arbitrary. 1

In statistics, we often need a nondegenerated limiting distribution of
anlg(Xn) — g(c)] so that probabilities involving a,[g(X,) — g(c)] can be
approximated by the c.d.f. of [Vg(c)]"Y, if (1.77) holds. Hence, result

(1.77) is not useful for this purpose if Vg(c) = 0, and in such cases result
(1.78) may be applied.

A useful method in statistics, called the delta-method, is based on the
following corollary of Theorem 1.12.

Corollary 1.1. Assume the conditions of Theorem 1.12. If Y has the
N;(0,%) distribution, then

an[9(Xn) — g(c)] —a N (0,[Vg(c)]"EVyg(c)). 1
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Example 1.31. Let {X,,} be a sequence of random variables satisfying
Vn(X, —c) —4 N(0,1). Consider the function g(x) = z2. If ¢ # 0, then an
application of Corollary 1.1 gives that v/n(X2 —c?) —4 N(0,4¢?). If ¢ =0,
the first-order derivative of g at 0 is O but the second-order derivative of
g = 2. Hence, an application of result (1.78) gives that nX2 —4 [N(0,1)]?,
which has the chi-square distribution x? (Example 1.14). The last result
can also be obtained by applying Theorem 1.10(iii). 1

1.5.4 The law of large numbers

The law of large numbers concerns the limiting behavior of sums of indepen-
dent random variables. The weak law of large numbers (WLLN) refers to
convergence in probability, whereas the strong law of large numbers (SLLN)
refers to a.s. convergence.

The following lemma is useful in establishing the SLLN. Its proof is left
as an exercise.

Lemma 1.6. (Kronecker’s lemma). Let z, € R, a, € R, 0 < a, <
ant1, n=1,2,.., and a, — oco. If the series > ° | x,/a, converges, then

—-1 n )
ap ) imgzi — 0.1

Our first result gives the WLLN and SLLN for a sequence of independent
and identically distributed (i.i.d.) random variables.

Theorem 1.13. Let X7, X5, ... be i.i.d. random variables.
(i) (The WLLN). A necessary and sufficient condition for the existence of
a sequence of real numbers {a,} for which

1 n
nZXi—an —, 0 (1.80)
i=1

is that nP(|X1| > n) — 0, in which case we may take a, = E(X11{x,|<n})-
(ii) (The SLLN). A necessary and sufficient condition for the existence of a
constant ¢ for which

1 n
. > Xi—as c (1.81)
=1

is that E|X1| < oo, in which case ¢ = EX; and

> ei(Xi— EX1) —as. 0 (1.82)

=1

1
n

n
1=

for any bounded sequence of real numbers {c;}.
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Proof. (i) We prove the sufficiency. The proof of necessity can be found
in Petrov (1975). Consider a sequence of random variables obtained by
truncating X,’s at n: Y,; = XjI{\Xj\gn}- Let T,, = X1 + --- + X,, and
Zn =Y+ -+ Yy, Then

P(Ty # Zy) <Y P(Y; # X;) = nP(|X1| > n) — 0. (1.83)

j=1
For any € > 0, it follows from Chebyshev’s inequality that
_ 2
P <’Zn EZ, - 6) < Var(Z,)  Var(Yn1) < EY:

n

2p2 e2n T eé2n
where the last equality follows from the fact that Y5,;, j = 1,...,n, are i.i.d.
From integration by parts, we obtain that

€

EYY 1

2 n
/ ?dF x, (z) = / xP(|X1| > x)dz — nP(|X1] > n),
n n Jlo,n) nJo

which converges to 0 since nP(|X1| > n) — 0 (why?). This proves that
(Z, — EZy,)/n —p 0, which together with (1.83) and the fact that EY,; =
E(XII{\X1|§n}) imply the result.

(ii) For the sufficiency, let Y,, = X, I{x,,|<n}, 7 = 1,2,.... Let m > 0 be an
integer smaller than n. If we define ¢; =i~ tfori>m, Zy = = Zpp_1 =
0, Zym=Y1+--+Y,, Z; =Y, i =m+1,...,n, and apply the Hjek-Renyi
inequality (1.51) to Z;’s, then we obtain that for any e > 0,

1 « 1 & Var(y;)
P (mrg?gn &) > 6) < 202 ;Var(Yi) + i:zm;rl 2 (1.84)

where &, =n" 'Y (Z; — EZ;) (=n"'Y . (Y; — EY;) if | > m). Note
that

< EY? B - B(X P oa<ix <53
DD D) D

_ o E(X%I{j—x\xl\sj'})
=22 2

o0 oo .
JE(I X Ig-1<1x11<5y)
<> >

<AY E(Xa<ix<))
j=1

= \E|X1],

[ee}
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where the last inequality follows from the fact that 3°7 ;n=2 < \j~" for a
constant A > 0 and all j = 1,2,.... Then, letting n — oo first and m — oo
next in (1.84), we obtain that

l=m

m
< lim g Var(Y;
m—oo € m2
= ()7

where the last equality follows from Lemma 1.6. By Lemma 1.4, £, —4.5. 0.
Since EY,, — EXy, n= 'Y " | EY; — EX; and, hence, (1.81) holds with
X;’s replaced by Y;’s and ¢ = EX;. It follows from

Y P(Xp#Yn) =Y P(Xn|>n)= ZP|X1\>n
n=1 n=1 n=1

(Exercise 54) and Lemma 1.5(i) that P (N2, Us_, {Xm # Y }) =0, ie.,
there is an event A with P(A) = 1 such that if w € A, then X,,(w) =Y, (w)
for sufficiently large n. This implies

I I
. > oXi- . ;Y —a.5. 0, (1.85)

i=1
which proves the sufficiency. The proof of (1.82) is left as an exercise.

We now prove the necessity. Suppose that (1.81) holds for some ¢ € R.

Then x T T

n -1 n—

= n_C_n ( 1_C>+C_>a.s.0-
n n n n—1 n

From Exercise 114, X,,/n —4.. 0 and the i.i.d. assumption on X,,’s imply

> P(IXn| =n) =) P(X1] > n) < oo

n=1 n=1

which implies E|X1| < oo (Exercise 54). From the proved sufficiency, ¢ =
EX;. 1

If E|X1| < oo, then a, in (1.80) converges to EX; and result (1.80) is
actually established in Example 1.28 in a much simpler way. On the other
hand, if E|X;| < oo, then the stronger result (1.81) can be obtained. Some
results for the case of F|X | = co can be found in Exercise 148 in §1.6 and
Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily iden-
tically distributed random variables.
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Theorem 1.14. Let X, X5, ... be independent random variables with
finite expectations.
(i) (The SLLN). If there is a constant p € [1,2] such that

— E|X;P
> |_ "< o0, (1.86)
g
i=1
then Lo
n Z(XZ - EXZ) —a.s. 0. (187)
i=1

(ii) (The WLLN). If there is a constant p € [1,2] such that

Jim ZE\X P = (1.88)

then Lo
. > (Xi— EX;) = 0. (1.89)

=1

Proof. (i) Consider again the truncated X,: Y, = X,Ijx,|<n}, 1
1,2,.... Since Xgl{lxn\ﬁn} < ’rL27p|)(n‘p7

o0 o0
EY? E(XaTyx,<n) _ g~ ElXal?
Z:l n2 zzl 0 Z:l <o

It follows from the proof of Theorem 1.13(ii) that n=' Y | (Y;— EY;) —
0. Also,

i P(X, #Y,) ZP|XH\> ZE|nXp"‘p <
n=1 n=1 n=1

Hence, it follows from the proof of Theorem 1.13(ii) that (1.85) holds.
Finally,

(oo} oo oo

BE(X, Y, E(| Xl I x, [on BIX, P
ZI ( n>|:Z (I n\{|xn\>}>gz Xal” _ o
n=1 n n=1 n n=1 U

which together with Lemma 1.6 imply that n=! > | |E(X; —Y;)| — 0 and
thus (1.87) holds.

(ii) For any € > 0, an application of Chebyshev’s inequality and inequality
(1.44) leads to

1 Cy
P (n e> < o ZE|X EX;?,

which converges to 0 under (1.88). This proves (1.89). 1

n

Z(X,» — EX;)| >

i=1
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Note that (1.86) implies (1.88) (Lemma 1.6). The result in Theorem
1.14(i) is called Kolmogorov’s SLLN when p = 2 and is due to Marcinkiewicz
and Zygmund when 1 < p < 2. An obvious sufficient condition for (1.86)
with p € (1, 2] is sup,, E|X,|? < .

For dependent random variables, a result for Markov chains introduced
in §1.4.4 is discussed in §4.1.4. We now consider martingales studied in
§1.4.4. First, consider the WLLN. Inequality (1.44) still holds if the inde-
pendence assumption of X;’s is replaced by the martingale assumption on
the sequence {31 | (X;—EX;)} (why?). Hence, from the proof of Theorem
1.14(ii) we conclude that (1.89) still holds if the independence assumption
of X;’s in Theorem 1.14 is replaced by that {}_;" | (X; — EX;)} is a martin-
gale. A result similar to the SLLN in Theorem 1.14(i) can be established
if the independence assumption of X;’s is replaced by that the sequence
{>°" (X, — EX;)} is a martingale and if condition (1.86) is replaced by

i p

Z E(|X.,| \)ilz;...7Xn_1) <00 as.,

n=2
which is the same as (1.86) if X;’s are independent. The proof of this
martingale SLLN and many other versions of WLLN and SLLN can be
found in standard probability textbooks, for example, Chung (1974) and
Loeve (1977).

The WLLN and SLLN have many applications in probability and statis-
tics. The following is an example. Other examples can be found in later
chapters.

Example 1.32. Let f and g be continuous functions on [0, 1] satisfying
0 < f(x) < Cg(z) for all z, where C > 0 is a constant. We now show that

lim// /Z“f dzydas - dxn:foif(x)dx (1.90)

n—00 ic1 9@ Jo 9(x)da

(assuming that fo x)dx # 0). Let X1, Xs,... be i.i.d. random variables
havmg the uniform dlstrlbutlon on [O 1]. By Theorem 1.2, E[f(X;)] =

fo z)dx < oo and Elg fo x)dr < co. By the SLLN (Theorem
1. 13(11))

Z F(x Elf(X1))
and the same result holds when f is replaced by g. By Theorem 1.10(i),

oy F(X0) E[f(X})]
Sg(X) U Blg(Xh)] (1.91)
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Since the random variable on the left-hand side of (1.91) is bounded by C,
result (1.90) follows from the dominated convergence theorem and the fact
that the left-hand side of (1.90) is the expectation of the random variable
on the left-hand side of (1.91). 1

Moment inequalities introduced in §1.3.2 play important roles in prov-
ing convergence theorems. They can also be used to obtain convergence
rates of tail probabilities of the form P ([n=' Y " | (X; — EX;)| > t). For
example, an application of the Esseen-von Bahr, Marcinkiewicz-Zygmund,
and Chebyshev inequalities produces

1 O(n'~P) ifl<p<?2
- _ EX; <

for independent random variables X7, ..., X,, with sup,, E|X,[? < cc.

1.5.5 The central limit theorem

The WLLN and SLLN may not be useful in approximating the distributions
of (normalized) sums of independent random variables. We need to use the
central limit theorem (CLT), which plays a fundamental role in statistical
asymptotic theory.

Theorem 1.15 (Lindeberg’s CLT). Let {X,,;,j =1, ..., k, } be independent
random variables with 0 < 02 = Var(Zj;l Xnj) < oo, n=1,2,., and
k, — oo asn — oo. If

k’fb
Y E[(Xnj = EXj)*[{ix,,~ X, >eony] = 0(07) for any e >0, (1.92)

kn
" S (X — EXpy) —a N(O, 1), (1.93)
on
Proof. Considering (X,; — EX,,;)/0n, without loss of generality we may
assume FX,; =0 and 02 = 1 in this proof. Let t € R be given. From the
inequality [eV =1 — (1 + /—1tx — t222/2)| < min{|tz|?, |tz*}, the ch.f. of
Xnj satisfies

nj

ox,,(t) — (1—t0r;/2) ’ < E (min{[tX,; %, [tX,;°}), (1.94)

where 07, = Var(X,;). For any e > 0, the right-hand side of (1.94) is
bounded by E([tX,;[*I{ x,,1<e}) + E(|tXn;[*1{x,, >} ), which is bounded
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by elt]Por; + P E(X}I{|x,,|>c}). Summing over j and using condition
(1.92), we obtain that

kn

(1-1t%2;/2) | — (1.95)

nJ

By condition (1.92), maxj<y, 07; < € + maxj<y, E(X7I{|x,,>c}) —
for arbitrary € > 0. Hence

o
lim max "7 =0. (1.96)

n—oo j<k, 02

(Note that 02 = 1 is assumed for convenience.) This implies that 1 — tgafbj
are all between 0 and 1 for large enough n. Using the inequality

m
|CL1"'CLm7b1"'bm‘Sz‘ajfbj‘
j=1

for any complex numbers a;’s and b;’s with |a;| < 1 and [b;| < 1, j =
1,...,m, we obtain that

kn kn ’ k

He 25 gﬂ/g H(lftz 2;/2)

j=1 j=1

e t0oni/2 _ (1 2o 2;/2)

Jj=1
which is bounded by #* Z " o < ttmaxjcy, op; — 0, since |[e” —1—x] <

2?/2if |z| < § and ijl on; =0 =1. Also,

kn ‘

kn

2 2
H¢X7L] —t'o n]
i=1

J=1

is bounded by the quantity on the left-hand side of (1.95) and, hence,
converges to 0 by (1.95). Thus,

kn

le,
H¢Xn] e —t 072”/2 (1> _ e_t2/2 + 0(1>.

j=1 j=1

This shows that the ch.f. of Z’;;l Xn; converges to the ch.f. of N(0,1) for
every t. By Theorem 1.9(ii), the result follows. 1

Condition (1.92) is called Lindeberg’s condition. From the proof of

Theorem 1.15, Lindeberg’s condition implies (1.96), which is called Feller’s

condition. Feller’s condition (1.96) means that all terms in the sum o2 =
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Z?;l Uij are uniformly negligible as n — oo. If Feller’s condition is as-
sumed, then Lindeberg’s condition is not only sufficient but also necessary
for result (1.93), which is the well-known Lindeberg-Feller CLT. A proof can
be found in Billingsley (1986, pp. 373-375). Note that neither Lindeberg’s

condition nor Feller’s condition is necessary for result (1.93) (Exercise 158).

A sufficient condition for Lindeberg’s condition is the following Lia-
pounov’s condition, which is somewhat easier to verify:

k’fb
ZE\XW — EX,;*" = 0(02"°)  for some § > 0. (1.97)
j=1

Example 1.33. Let X1, X5, ... be independent random variables. Suppose
that X; has the binomial distribution Bi(p;,1), i = 1,2,..., and that 02 =
Yo Var(X;) = Y pi(l — pi)) — o as n — oo. For each i, EX; =
pi and E|X; — EX,;> = (1 — p;)®pi + p3(1 — p;) < 2p;(1 — p;). Hence
S E|lX; — EX;|® < 202, i.e., Liapounov’s condition (1.97) holds with

6 = 1. Thus, by Theorem 1.15,

n

Z(Xi —pi) —a N(0,1). (1.98)

=1

1

On

It can be shown (exercise) that the condition o,, — oo is also necessary for
result (1.98). 1

The following are useful corollaries of Theorem 1.15 (and Theorem
1.9(iii)). Corollary 1.2 is in fact proved in Example 1.28. The proof of
Corollary 1.3 is left as an exercise.

Corollary 1.2 (Multivariate CLT). Let Xj,..., X, be ii.d. random k-
vectors with a finite ¥ = Var(X;). Then

! Z(Xl — EX1) —q Nk(07§]). 1

Corollary 1.3. Let X,; € R™, i = 1,...,k,, be independent random
vectors with m; < m (a fixed integer), n = 1, 2,..., k, — 00 as n — oo, and
inf; ,, A_[Var(X,;)] > 0, where A_[A] is the smallest eigenvalue of A. Let
Cni € R™¢ be vectors such that

kn
. 12 112 ) =
Jim <m>,§ Jewi? / 2l ) =0.
i=
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(i) Suppose that sup; , E|| X:]]?*9 < oo for some § > 0. Then

kn
Z C:Li(Xni - EXm

i=1

1/2
ZVar ] —4 N(0,1). (1.99)

(ii) Suppose that whenever m;=m;, 1<i<j<k,,n=1,2,..., X,; and X,,;
have the same distribution with E||X,;||> < co. Then (1.99) holds. &

Applications of these corollaries can be found in later chapters.

An extension of Lindeberg’s CLT is the so-called martmgale CLT. In
Theorem 1.15, if the independence assumption of X,;, j = 1,...,ky, is
replaced by that {Y,,} is a martingale and

k

1 n

2 O Bl(Xnj — EXpj)?| X1, o0, Xn(j1)] —p 1,
=1

where Y,, = Z?L(an — EX,;) when n < ky, Y, =Y, whenn > k,, and
Xno is defined to be 0, then result (1.93) still holds (see, e.g., Billingsley,
1986, p. 498 and Sen and Singer 1993, p. 120).

More results on the CLT can be found, for example, in Serfling (1980)
and Shorack and Wellner (1986).

Let Y, be a sequence of random variables, {u,} and {o,} be sequences
of real numbers such that o, > 0 for all n, and (Y, — un)/0n —a N(0,1).
Then, by Proposition 1.16,

nh—>Holo sgp |F v —pn) fon () — @()] = 0, (1.100)
where ® is the c.d.f. of N(0,1). This implies that for any sequence of real
numbers {c, }, lim, oo |P(Yn < ¢p) — @(C”'_“")\ =0, ie., P(Y, <c¢,) can
be approximated by <I>(°” pn ) regardless of whether {c¢,, } has a limit. Since
<I>(t ”") is the c.d.f. ofN(um 02), Y, is said to be asymptotically distributed

as N (pin,02) or simply asymptotically normal. For example, Zl 1 CriXni
in Corollary 1.3 is asymptotically normal. This can be extended to ran-
dom vectors. For example, > ;" | X; in Corollary 1.2 is asymptotically

distributed as Ni(nEXq,nX).

1.5.6 Edgeworth and Cornish-Fisher expansions

Let {Y,,} be a sequence of random variables satisfying (1.100) and W,, =
(Y, — ptn)/0n. The convergence speed of (1.100) can be used to assess
whether ® provides a good approximation to the c.d.f. Fyy,. Also, some-
times we would like to find an approximation to Fyy, that is better than
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® in terms of convergence speed. The Edgeworth expansion is a useful tool
for these purposes.

To illustrate the idea, let W,, = n=Y/23"" (X;—p)/o, where X1, Xa, ...
are 1.i.d. random variables with EX; = p and Var(X;) = 2. Assume that
the m.g.f. of Z = (X; — u)/o is finite and positive in a neighborhood of 0.
From (1.55), the cumulant generating function of Z has the expansion

oo Py
— J J
K(t) = g i t
where k;, j = 1,2, ..., are cumulants of Z (e.g., k1 =0, ko = 1, k3 = EZ3,

and k4 = EZ* — 3), and the m.g.f. of W, is equal to
n Kt
Galt) = [expia(t/vm)}]" = exp{ n Z i }

where exp{z} denotes the exponential function e”. Using the series expan-

sion for *’/2, we obtain that
bn(t) = /2 4020 (1) 2 4o I 2 ()2 o (1.101)
where 7; is a polynomial of degree 35 depending on ks, ..., K42 but not on
n, j = 1,2,.... For example, it can be shown (exercise) that
ri(t) = grst® and  ro(t) = ), kat* + k3O (1.102)
Since 1, (t) = [e®dFyw, (z) and /2 = [e®d®(x), expansion (1.101)

suggests the inverse expansmn

Fu, (#) = B(z) 4 0™ V2Ry (o) 4+ 0 V2R ) £ -
where R;(z) is a function satisfying [ e'*dR;(z) = rj(t)et2/27 j=1,2,...
Let V/ = & be the differential operator and V = V'. Then Rj(z) =
ri(=V)®(z), j = 1,2,..., where r;(—V) is interpreted as a differential op-

erator. Thus, R;’s can be obtained once r;’s are derived. It follows from
(1.102) (exercise) that

Ri(z) = — jr3(2? — 1) (z) (1.103)
and
Ry(z) = —[ ), kax(a? — 3) + - r3x(x* — 1022 + 15)]9/ (z). (1.104)

A rigorous statement of the Edgeworth expansion for a more general W,
is given in the following theorem whose proof can be found in Hall (1992).
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Theorem 1.16 (Edgeworth expansions). Let m be a positive integer and
X1, Xa, ... be ii.d. random k-vectors having finite m+2 moments. Consider
W, = /nh(X)/op, where X = n='>" | X;, h is a Borel function on
RF that is m + 2 times continuously differentiable in a neighborhood of
p=EXi, h(n) =0, and o7 = [Vh(u)]" Var(X1)Vh(p) > 0. Assume that

limsup |¢x, (t)] < 1, (1.105)

lIt]—o0

where ¢y is the ch.f. of Xy. Then, Fy, admits the Edgeworth expansion

G 1
sup Fw, ( Z (@) =0 (n’”/2> , (1.106)

nJ/2
where p;(z) is a polynomial of degree at most 3j — 1, odd for even j and
even for odd j, with coefficients depending on the first m + 2 moments of
X1, 7 =1,...,m. In particular,

pi(z) = —ci0},' + 67 ca0;, 2 (2% — 1) (1.107)

with e = 271500 S0 aijpig and ep = D L) L, aiajani +
32?21 Z?Zl Zle Z]Z:l a;ajain i fign, where a; is the ith component of
Vh(u), a;; is the (i,7)th element of the Hessian matrix V2h(u), pi; =
E(Y}Y;), wiji = E(Y;Y;Y)), and Y; is the ith component of X7 — p. 1

Condition (1.105) is Cramér’s continuity condition. It is satisfied if one
component of X; has a Lebesgue p.d.f. The polynomial p; with j > 2
may be derived using the method in deriving (1.103) and (1.104), but the
derivation is usually complicated (see Hall (1992)).

Under the conditions of Theorem 1.16, the convergence speed of (1.100)
is O(n~1/?) and, as an approximation to Fyy, , ©+Z;”:1 n—j/ijé’ is better
than ®, since its convergence speed is o(n~"/?).

The results in Theorem 1.16 can be applied to many cases, as the fol-
lowing example indicates.

Example 1.34. Let X =n~! Z?:l X; with i.i.d. random variables X1, Xo,
satisfying condition (1.105). First, consider the normalized random
variable W,, = \/n(X — p)/o, where p = EX; and o2 Var(Xl) Then,
Theorem 1.16 can be applied with h(z) = z — p and o7 = 02, and the
Edgeworth expansion in (1.106) holds if E|X;|™*? < co. In thls case,
results (1.103) and (1.104) imply that p;(z) = R;(x)/®'(x), j = 1,2.
Next, consider the studentized random variable W,, = /n(X — u)/é,
where 62 = n~! 31" | (X; — X)?. Assuming that EX7™* < oo and apply-
ing Theorem 1.16 to random vectors (X;, X?), i = 1,2, ..., and h(z,y) =
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(z—p)/+/(y — 2?), we obtain the Edgeworth expansion (1.106) with o, = 1,
pi(z) = r3(22? + 1)
(exercise). Furthermore, it can be found in Hall (1992, p. 73) that
pa(z) = Hraw(a? —3) — Lrda(a? + 222 — 3) — Jx(2? + 3).

Consider now the random variable \/n(6% — 02). Theorem 1.16 can be
applied to random vectors (X;, X?),i = 1,2, ..., and h(z,y) = (y—a*—?).
Assume that EX2™* < oo, It can be shown (exercise) that the Edgeworth
expansion in (1.106) holds with W,, = \/n(62 —0?)/op, 02 = E(X1 —p)* —

0%, and

pi(x) = (va — 1)_1/2[1 — é(y4 — 1) (g — 3y — 612 +2)(2? — 1)],

where v; = 0T E(Xy — p)’, j =3,...,6.

Finally, consider the studentized random variable W,, = y/n(6% —0?)/7,
where 72 = n7!3° " (X; — X)* — 6%. Theorem 1.16 can be applied to
random vectors (X;, X2, X3, X#),i=1,2,..., and

h(z,y, z,w) = (y — 2% — o) [w — y? — dxz 4 8%y — 4z ~1/2.
Assume that EX ™8 < co. Tt can be shown (exercise) that the Edgeworth
expansion in (1.106) holds with o7 = 1 and

pi(z) = —(va—1) 72143 +vs—v6) + L (3U3+3va—16—2)(2® - 1)]. W

An inverse Edgeworth expansion is referred to as a Cornish-Fisher
expansion, which is useful in statistics (see §7.4). For o € (0,1), let
2o = ® (). Since the c.d.f. Fy, may not be strictly increasing and
continuous, we define w,, = inf{z : Fy, () > a}. The following result
can be found in Hall (1992).

Theorem 1.17 (Cornish-Fisher expansions). Under the conditions of The-
orem 1.16, wy, admits the Cornish-Fisher expansion

_y <n:b/2) 7 (1.108)

where € is any constant in (0, ;) and g;’s are polynomials depending on p;’s
in (1.106). &

m
sup w — Za — 4 (Za)
no « 'I’LJ/Z

e<a<l—e

The polynomials in (1.108) can be determined using results (1.106) and
(1.108). We illustrate it by deriving ¢; and go. Without loss of generality,
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assume that Fyy, (wnq) = o (why?). Using (1.106), (1.108), Taylor’s ex-
pansions at z, for ®(wna), P1(Wna )P (Wna ), and pa(wpe )P’ (Wna), and the
fact that ®”(z) = —a®’(x), we obtain that

a = ®(wnpa) + n_1/2p1 (Wna )P (Wna ) + 17 P2 (Wna )P (Wna)
= ®(zq) + {” ‘h(za) +no ‘h(za) 2 [n71/2Q1(za)PZa}©/(za)
+ 107 p1(2a) + 172 q1(20) [P (20) = 2aP1 (20)]} 9 (20)
+ 07 pa(20)® (20) + o(n™1)
= a+n"[q1(20) + P1(2a)]1® (20) + 17 {42(20) = 32ala1(2a)]?
+ q1(20) [P (20) = 2aP1(2a)] + P2(2a)} ¥’ (20) +o(n™1).

Ignoring terms of order o(n~!), we conclude that

q1(r) = —p1(z)

and

q2(7) = p1(2)p} () — y2[p1(2)]* — pa(2).

Edgeworth and Cornish-Fisher expansions for W,, in Theorem 1.16
based on non-i.i.d. X;’s or for other random variables can be found in Hall
(1992), Barndorff-Nielsen and Cox (1994), and Shao and Tu (1995).

1.6 Exercises

1. Let A and B be two nonempty proper subsets of a sample space
Q, A+# Band AN B # (. Obtain o({4, B}), the smallest o-field
containing A and B.

2. Let C be a collection of subsets of  and let T' = {F : F is a o-field
on Q and C C F}. Show that ' # () and o(C) = NgerF.

3. Let (9, ) j =1,2,..., be measurable spaces such that F; C Fj;1,
1=12..1Is UJ}' ao- ﬁeld‘7

4. Let C be the collection of intervals of the form (a,b], where —co <
a < b < oo, and let D be the collection of closed sets on R. Show
that B = o(C) = o(D), where B is the Borel o-field on R.

5. (m- and M-systems). A class C of subsets of Q is a w-system if and
only if A € C and B € C imply AN B € C. A class D of subsets of {2
is a A-system if and only if (i) Q € D, (ii) A € D implies A° € D, and
(i) A; € D, j =1,2,..., and A,’s are disjoint imply that U;A; € D.
(a) Show that if C is a w-system and D is a A-system, then C C D
implies o(C) C D.
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10.

11.

12.

13.

14.
15.

16.

17.

(b) Show that D is a A-system if and only if the following conditions
hold: (i) Qe D, (ii) A€ D, Be D, and A C B imply A°NB € D,
and (ili) A; € D and A; C Aj11, j=1,2,..., imply U;A; € D.

Prove part (ii) and part (iii) of Proposition 1.1.

Let v;, i = 1,2,..., be measures on (2, F) and a;, ¢ = 1,2,..., be
positive numbers. Show that aqv1 +agve +- - - is a measure on (2, F).

Let {A,} be a sequence of events on a probability space (2, F, P).
Define limsup,, A, = N5, UL, A; and liminf, A, = U2, N2, A;.
Show that P(liminf, A,) < liminf, P(A,) and limsup, P(4,) <
P(limsup,, A,).

Prove Proposition 1.2.

Let F(x1,...,z;) be a c.d.f. on R*. Show that

(a) F(x1,...,xp—1,2r) < F(21, .0y w1, @) if 23 < 2.

(b) limy, oo F(21,...,2) = 0 for any 1 < i < k.

(¢) F(z1,eey T—1,00) =limy, oo F(21,..., Tp—1,7x) is a c.d.f. on RF L.

Let (Q;,F) = (R,B), i« = 1,...,k. Show that the product o-field
o(Fy X -+ X Fy) is the o-field generated by all open sets in R”.

Let v and A be two measures on (€, F) such that v(A) = A(A) for
any A € C, where C C F and C is a w-system (i.e., if A and B are in
C, then so is AN B). Assume that there are 4; € C, i = 1,2, ..., such
that UA; = Q and v(A4;) < oo for all 5. Show that v(A) = A\(A) for
any A € o(C). This proves the uniqueness part of Proposition 1.3.
(Hint: show that {A € o(C) : ¥(A) = A(A)} is a o-field.)

Let f be a function from 2 to A. Show that
(a) f1(B) = (f1(B))° and f~H(UB;) = Uf~1(By);
(b) o(f~1(C)) = f~1(c(C)), where C is a collection of subsets of A.

Prove Proposition 1.4.

Show that a monotone function from R to R is Borel and a c.d.f. on
R* is Borel.

Let f be a function from (2, F) to (A,G) and Ay, Aa, ... be disjoint
events in F such that UA; = Q. Let f,, be a function from (4,, Fa,)
to (A, G) such that f,(w) = f(w) for any w € A,, n =1,2,.... Show
that f is measurable from (Q,F) to (A,G) if and only if f,, is mea-
surable from (A,,Fa4,) to (A, G) for each n.

Let f be a nonnegative Borel function on (€, F). Show that f is the
limit of a sequence of simple functions {¢,} on (2, F) with 0 < ¢1 <
P <o < f
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18.

19.

20.

21.
22.
23.

24.

25.
26.
27.
28.

29.

1. Probability Theory

Let Hle(ﬂi, Fi) be a product measurable space.

(a) Let m; be the ith projection, ie., mi(wi,....,wr) = w;, w; €
i=1,...,k. Show that 71, ..., m; are measurable.

(b) Let f be a function on Hle Q; and g;(w;) = f(Wiy ey Wiy oey WE),
where w; is a fixed point in €, j =1,...,kbut j #¢ andi=1,... k.
Show that if f is Borel on Hle(Qi,fi), then g1, ..., gr are Borel.

(c) In part (b), is it true that f is Borel if g1, ..., gx are Borel?

Let {f.} be a sequence of Borel functions on a measurable space.
Show that

(a) o(f1, fa,...) =0 (ijzla(fj)) =0 (lea(fl,. .7fj));
(b) U(Iimsupn fn) - mzozlg(fnafnJrlv )

(Egoroff’s theorem). Suppose that {f,} is a sequence of Borel func-
tions on a measure space (Q, F,v) and f,(w) — f(w) for w € A with
v(A) < co. Show that for any € > 0, there is a B C A with v(B) < e
such that f,(w) — f(w) uniformly on AN B°.

Prove (1.14) in Example 1.5.
Prove Proposition 1.5 and Proposition 1.6(i).
Let v;, ¢ = 1,2, be measures on (2, F) and f be Borel. Show that

/fd v+ 1) /fdu1+/fdy2,

i.e., if either side of the equality is well defined, then so is the other
side, and the two sides are equal.

Let f be an integrable Borel function on (€, F, v). Show that for each
€ > 0, there is a d, such that v(A) < . and A € Fimply [, |fldv <.

Prove that part (i) and part (iii) of Theorem 1.1 are equivalent.
Prove Theorem 1.2.
Prove Theorem 1.3. (Hint: first consider simple nonnegative f.)

Consider Example 1.9. Show that (1.17) does not hold for

1 1=
fl,j)=9 —1 i=j—1
0 otherwise.

Does this contradict Fubini’s theorem?

Let f be a nonnegative Borel function on (€, F,v) with a o-finite
v, A={(w,z) € xR :0 <z < f(w)}, and m be the Lebesgue
measure on (R, B). Show that A € o(F x B) and [, fdv = v xm(A).
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30.
31.

32.

33.

34.
35.

36.

37.

38.

For any c.d.f. F and any a > 0, show that [[F(z +a)— F(z)]dz = a.

(Integration by parts). Let F' and G be two c.d.f.’s on R. Show that if
F and G have no common points of discontinuity in the interval (a, b],
then f(u,b] G(z)dF(z) = F(b)G(b) — F(a)G(a) — f(u,b] F(x)dG(z).

Let f be a Borel function on R? such that f(z,y) = 0 for each z € R
and y ¢ C,, where m(C,) = 0 for each = and m is the Lebesgue
measure. Show that f(z,y) = 0 for each y ¢ C and = ¢ B,, where
m(C) =0 and m(B,) = 0 for each y ¢ C.

Consider Example 1.11. Show that if (1.21) holds, then P(A) =
J4 f(x)dx for any Borel set A. (Hint: A= {A: P(A) = [, f(x)dz}
is a o-field containing all sets of the form (—o0, x].)

Prove Proposition 1.7.

Let {a,} be a sequence of positive numbers satisfying > >~ a, =1
and let {P,} be a sequence of probability measures on a common
measurable space. Define P = ZZO=1 anPy,.

(a) Show that P is a probability measure.

(b) Show that P, < v for all n and a measure v if and only if P < v
and, when P < v and v is o-finite, flf =3  an dj;”.

(c) Derive the Lebesgue p.d.f. of P when P, is the gamma distribution

[e3

['(a,n™1) (Table 1.2) with o > 1 and a,, is proportional to n=?.

Let F; be a c.d.f. having a Lebesgue p.d.f. f;, i = 1,2. Assume that
there is a ¢ € R such that Fj(c) < Fz(c). Define

F(:c){ Fi(z) —x<z<c

Fy(z) c <z <oo.

Show that the probability measure P corresponding to F' satisfies
P < m+ é. and find dP/d(m + é.), where m + &, is given in (1.23).

Let (X,Y) be a random 2-vector with the following Lebesgue p.d.f.:
| 8xy 0<x<y<l1
f@y) = { 0 otherwise.
Find the marginal p.d.f.’s of X and Y. Are X and Y independent?
Let (X,Y, Z) be a random 3-vector with the following Lebesgue p.d.f.:

1—sinz siny sin z 0<z<2m,0<y<2m0<z<2n

flz,y,2) = { 8r®

0 otherwise.

Show that X, Y, and Z are not independent, but are pairwise inde-
pendent.
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Prove Lemma 1.1 without using Definition 1.7 for independence.

Let X be a random variable having a continuous c.d.f. F. Show that
Y = F(X) has the uniform distribution U(0,1) (Table 1.2).

Let U be a random variable having the uniform distribution U(0, 1)
and let F be a c.d.f. Show that the c.d.f. of Y = F~}(U) is F, where
F7Y(t) =inf{z € R: F(z) > t}.

Prove Proposition 1.8.

Let X = Ni(u, X) with a positive definite 3.

(a) Let Y = AX + ¢, where A is an | x k matrix of rank | < k and
c € Rl Show that Y has the N;(Au + ¢, AXAT) distribution.

(b) Show that the components of X are independent if and only if ¥
is a diagonal matrix.

(c) Let A be positive definite and Y = N,,,(n, A) be independent of
X. Show that (X,Y") has the Niym((p,n), D) distribution, where D
is a block diagonal matrix whose two diagonal blocks are ¥ and A.

Let X be a random variable having the Lebesgue p.d.f. 72;5 Io,m)(x).
Derive the p.d.f. of Y = sin X.

Let X;, i = 1,2, 3, be independent random variables having the same
Lebesgue p.d.f. f(x) = e7"1( o) (x). Obtain the joint Lebesgue p.d.f.
of (Yl,YQ,Yg), where Y1 = X1 + X2 + X3, Y2 = Xl/(Xl + XQ), and
Yg = (X1 + X2)/(X1 + X2 + Xg) Are Y;"S independent?

Let X7 and X3 be independent random variables having the stan-
dard normal distribution. Obtain the joint Lebesgue p.d.f. of (Y1, Y2),
where Y7 = \/X12 + X22 and Y2 = X1/X5. Are Y;’s independent?

Let X; and X5 be independent random variables and Y = X; + Xs.
Show that Fy (y) = [ Fx,(y — z)dFx, (z).

Show that the Lebesgue p.d.f.’s given by (1.31) and (1.33) are the
p.d.f.’s of the x2(8) and F,, ,,,(d) distributions, respectively.

Show that the Lebesgue p.d.f. given by (1.32) is the p.d.f. of the t,,(4)
distribution.

Let X = N, (11, I,) and A be an n X n symmetric matrix. Show that
if XTAX has the x2(d) distribution, then A% = A, r is the rank of A,
and § = u" Ap.

Let X = N, (u, I,). Apply Cochran’s theorem (Theorem 1.5) to show
that if A2 = A, then X7 AX has the noncentral chi-square distribution
X2(d), where A is an n x n symmetric matrix, r is the rank of A, and
0= u"Ap.
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56.
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58.

99.

60.

61.

Let Xi,..., X,, be independent and X; = N(0,0?), i = 1,...,n. Let
X =30 ,072X;/30 072 and S =31 07 %(X; — X)%. Apply
Cochran’s theorem to show that X2 and 52 are independent and that
52 has the chi-square distribution x2_;.

Let X = N, (u, I,,) and A; be an n X n symmetric matrix satisfying
A% = A;, i =1,2. Show that a necessary and sufficient condition that
X7A1 X and X" A3 X are independent is A; As = 0.

Let X be a random variable and a > 0. Show that E|X|* < oo if and
only if >>°  n* 'P(|X| > n) < occ.

Let X be a random variable. Show that
(a) if EX exists, then EX = [° P(X > z)dx — fi)oo P(X < x)dz;
(b) if X has range {0,1,2,...}, then EX =57, P(X >n).

Let T be a random variable having the noncentral t-distribution ¢,,(9).
Show that
(a) E(T) = 0T'((n — 1)/2)y/n/2/T'(n/2) when n > 1;

2
(b) Var(T) = "(71:32) - 522" [F((F’E;}Q))/Q)} when n > 2.
Let F be a random variable having the noncentral F-distribution
Fy, ny (). Show that

(a) E(F) = ™™™ when ny > 2;

ny (7’74272)

(b) Var(F) — 2n§[(TL1+5)2+(7L2—2)(?’L1+25)]

n2 (na—2)? (ny —4) when ny > 4.

Let X = Ni(u,X) with a positive definite 3.

(a) Show that EX = p and Var(X) = X.

(b) Let A be an [ x k matrix and B be an m X k matrix. Show that
AX and BX are independent if and only if AXB™ = 0.

(c) Suppose that k =2, X = (X1, X2), p =0, Var(X;) = Var(Xz) =
1, and Cov(X1, Xs) = p. Show that F(max{X;, Xo}) = /(1 — p)/=.

Let X be a random variable and g and h be nondecreasing functions
on R. Show that Cov(g(X), (X)) > 0 when E|g(X)h(X)| < co.

Let X be a random variable with EX? < oo and let Y = | X|. Suppose

that X has a Lebesgue p.d.f. symmetric about 0. Show that X and
Y are uncorrelated, but they are not independent.

Let (X,Y) be a random 2-vector with the following Lebesgue p.d.f.:
a1 22 4+y2 <1

f(:r,y){ 0 2 +y* > 1.

Show that X and Y are uncorrelated, but are not independent.
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Show that inequality (1.41) holds and that when 0 < E|X [P < co and
0 < E|Y]? < o0, the equality in (1.40) holds if and only if o|X P =
BlY |7 a.s. for some nonzero constants o and S.

Prove the following inequalities.

(a) Liapounov’s inequality (1.42).

(b) Minkowski’s inequality (1.43). (Hint: apply Hoélder’s inequality
to random variables | X + Y[P~! and | X].)

(c) (Cp-inequality). E|X+Y|" < C.(E|X|"+ E|Y|"), where X and Y’
are random variables, r is a positive constant, and C, = 1if0 <r <1
and C, =27 Lif r > 1.

(d) Let X; be a random variable with F|X;|? < oo, ¢ = 1, ..., n, where
p is a constant larger than 1. Show that

1 P 1 1 p
X;| < mi E|X;P E|lX;P)VP| b,
o] <wnd ) S | Ssree] |

i=1
(e) Inequality (1.44). (Hint: prove the case of n = 2 first and then
use induction.)

(f) Inequality (1.49).

E

Show that the following functions of x are convex and discuss whether
they are strictly convex.

(a) |z — a|?, where p > 1 and a € R.

(b) 7P, z € (0,00), where p > 0.

(c) e“®, where ¢ € R.

(d) zlogz, z € (0,00).

(e) g(p(z)), = € (a,b), where —oo < a < b < o0, @ is convex on (a, b),
and g is convex and nondecreasing on the range of .

) o(x) = Zle civi(xi), x = (x1,...,x1) € Hle X;, where ¢; is a
positive constant and ; is convex on X;, i =1,..., k.

Let X = Ni(u,X) with a positive definite 3.

(a) Show that the m.g.f. of X is et #+t 3t/2,

(b) Show that EX = u and Var(X) = X by applying (1.54).

(c) When k = 1 (X = 0?), show that EX = ¢4 (0) = p, EX? =
%(0) = 0%+ p2, EX? = ¢0(0) = 302+ 1%, and BX* = ¢ (0) =

30t + 6022 + pt.

(d) In part (c), show that if g = 0, then EX? = 0 when p is an odd

integer and EXP = (p—1)(p—3)---3-1oP when p is an even integer.

Let X be a random variable having the gamma distribution I'(a, ).
Find moments EXP, p = 1,2, ..., by differentiating the m.g.f. of X.

Let X be a random variable with finite EeX and Ee~*X for a t # 0.
Show that E|X|* < co for any a > 0.
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Let X be arandom variable having ¢ x (t) < oo for ¢t in a neighborhood
of 0. Show that the moments and cumulants of X satisfy the following
equations: 1 = K1, 2 = K2 + K3, 3 = K3 + 3k1ke + K5, and
e = Kq + 3/{% + 4dKk1K3 + 6&%1{2 + H‘ll, where p; and k; are the ith
moment and cumulant of X, respectively.

Let X be a discrete random variable taking values 0,1,2.... The proba-
bility generating function of X is defined to be px (t) = E(tX). Show
that

(a) px(t) = ¥x(logt), where ¢ x is the m.g.f. of X;

(b) dpz;,(t) |,_; = E[X(X —1)--- (X —p+1)] for any positive integer
p, if px is finite in a neighborhood of 1.

Let Y be a random variable having the noncentral chi-square distri-
bution x%(d). Show that

(a) the ch.f. of Y is (1 — 2\/—1t)_k/26‘/_15t/(1_2\/_1t);

(b) E(Y) =k + ¢ and Var(Y) = 2k + 46.

Let ¢ be a ch.f. on R¥. Show that |¢| < 1 and ¢ is uniformly contin-
uous on RF.

For a complex number z = a++/—1b, where @ and b are real numbers,
Z is defined to be a—+/—1b. Show that 321", 37| é(t; —t;)zi%; > 0,
where ¢ is a ch.f. on R¥, t1,...,t, are k-vectors, and z1,...,2, are
complex numbers.

Show that the following functions of ¢ € R are ch.f.’s, where a > 0
and b > 0 are constants:
(a) a®/(a® + 1?);
b) (1 + ab— abeV~1t)=1/b;
) max{1 — |t|/a,0};
d) 2(1 — cosat)/(a*t?);
e 11" where 0 < a < 2;
|2, where ¢ is a ch.f. on R;
g) [ ¢(ut)dG(u), where ¢ is a ch.f. on R and G is a c.d.f. on R.

NN N S N
SR
~

Let ¢, be the ch.f. of a probability measure P,, n = 1,2,.... Let {a,}
be a sequence of nonnegative numbers with 270;1 a, = 1. Show that
22021 an®n is a ch.f. and find its corresponding probability measure.

Let X be a random variable whose ch.f. ¢x satisfies [ [¢x (¢)|dt < oco.
Show that (27)~! [e~V=1t¢x (t)dt is the Lebesgue p.d.f. of X.

A random variable X or its distribution is of the lattice type if and
only if Fx(z) = Z;’;foopjl{aﬂd}(x), x € R, where a, d, p;’s are
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82.
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constants, d > 0, p; > 0, and Z;’i_oopj = 1. Show that X is of the
lattice type if and only if its ch.f. satisfies |¢x (t)| = 1 for some ¢ # 0.

Let ¢ be a ch.f. on R. Show that

(a) if |¢(t1)] = |¢(t2)] = 1 and t1/ty is an irrational number, then
#(t) = eV=19 for some constant a;

(b) if t,, — 0, ¢, # 0, and |p(t,)] = 1, then the result in (a) holds;
(c) | cost| is not a ch.f., although cost is a ch.f.

Let X1, ..., Xi be independent random variables and Y = X1+ - -4+ X}.
Prove the following statements, using Theorem 1.6 and result (1.58).
(a) If X; has the binomial distribution Bi(p,n;), i = 1,...,k, then YV’
has the binomial distribution Bi(p,n1 + - - + nyg).

(b) If X; has the Poisson distribution P(6;), ¢ = 1,..., k, then Y has
the Poisson distribution P(6; + - - - + 60%).

(c) If X; has the negative binomial distribution NB(p,r;),i =1, ..., k,
then Y has the negative binomial distribution NB(p, 1 + - -+ + 7).
(d) If X; has the exponential distribution E(0,0),i=1,...,k, then Y’
has the gamma distribution I'(k, 6).

(e) If X; has the Cauchy distribution C(0,1), i = 1,...,k, then Y/k
has the same distribution as Xj.

Find an example of two random variables X and Y such that X and
Y are not independent but their ch.f.’s satisfy ¢x (t)oy (1) = dpx 1y ()
for all t € R.

Let X1, Xo, ... be independent random variables having the exponen-
tial distribution F(0,6). For given t > 0, let Y be the maximum of n
such that T,, <t, where Tp =0and T,, = X1 +-- -+ X,,, n=1,2, ...
Show that Y has the Poisson distribution P(¢/9).

Let ¥ be a k x k nonnegative definite matrix.

(a) For a nonsingular ¥, show that X is Ni(u,X) if and only if ¢™ X
is N(c"p,c"%c) for any ¢ € RF.

(b) For a singular X, we define X to be Ny (i, X) if and only if ¢™ X is
N(c™p,c™Yc) for any ¢ € R* (N(a,0) is the c.d.f. of the point mass
at a). Show that the results in Exercise 43(a)-(c), Exercise 58(a)-(b),
and Exercise 65(a) still hold for X = Nj(u, %) with a singular 3.

Let (X1, X2) be Ni(u,X) with a k x k positive definite
Y11 Xie )
Y= ;
( Yo1 Yo
where X is a random [-vector and Y17 is an [ X [ matrix. Show that

the conditional Lebesgue p.d.f. of X5 given X; = x; is
Ni—t (p2 + Yo X (w1 — 1), Do — Z2121711212) ;
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where u; = EX;, i = 1,2. (Hint: consider Xs— o 722121_11(X1 — 1)
and X7 — p1.)

Let X be an integrable random variable with a Lebesgue p.d.f. fx
and let Y = ¢g(X), where g is a function with positive derivative on
(0,00) and g(x) = g(—x). Find an expression for E(X]Y) and verify
that it is indeed the conditional expectation.

Prove Lemma 1.2. (Hint: first consider simple functions.)

Prove Proposition 1.10. (Hint for proving (ix): first show that 0 <
X1 <Xy <--and X, —q5 X imply B(X,|A) —as E(X|A).)

Let X and Y be integrable random variables on (Q, F, P) and A C F
be a o-field. Show that E[Y E(X|A)] = E[XE(Y|A)], assuming that
both integrals exist.

Let X, X3, Xo, ... be a sequence of random variables on (2, F, P) and
A C F be a o-field. Suppose that E(X,Y) — E(XY) for every inte-
grable (or bounded) random variable Y. Show that E[E(X,|A)Y] —
E[E(X]A)Y] for every integrable (or bounded) random variable Y.

Let X be a nonnegative integrable random variable on (2, F, P) and
A C F be a o-field. Show that E(X|A) = [;° P(X > t|A)dt as.

Let X and Y be random variables on (2, F, P) and A C F be a o-
field. Prove the following inequalities for conditional expectations.
(a) If E|X|? <oo and E|Y|? < oo for constants p and g with p>1 and
p 4 gt = 1, then E(IXY]|4) < [E(X LA /7 [E(Y]1A)/7 as.
(b) If E|X|? < oo and E|Y|P < oo for a constant p > 1, then
[B(X + Y [P < [E(X[PIA)]YP + [E(Y[PA)]VP as.

(c) If f is a convex function on R, then f(E(X|A)) < E[f(X)|A] a.s.

Let X and Y be random variables on a probability space with ¥ =
E(X]Y) a.s. and let ¢ be a nondecreasing convex function on [0, 00).
(a) Show that if Ep(]X|) < oo, then Ep(|Y]) < cc.

(b) Find an example in which Ep(]Y]) < oo but Ep(|X]|) = co.

(c) Suppose that Ep(|X]) = Ep(|Y]) < oo and ¢ is strictly convex
and strictly increasing. Show that X =Y a.s.

Let X, Y, and Z be random variables on a probability space. Suppose
that F|X| < oo and Y = h(Z) with a Borel h. Show that

(a) if X and Z are independent and E|Z| < oo, then E(XZ|Y) =
E(X)E(Z|Y) as.;

(b) if E[f(X)|Z] = f(Y) for all bounded continuous functions f on
R, then X =Y a.s;

(c) if E[f(X)|Z] = f(Y) for all bounded, continuous, nondecreasing
functions f on R, then X > Y a.s.
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Prove Lemma 1.3.

Show that random variables X;, ¢ = 1, ...,n, are independent accord-
ing to Definition 1.7 if and only if (1.7) holds with F' being the joint
c.d.f. of X;’s and F; being the marginal c.d.f. of Xj.

Show that a random variable X is independent of itself if and only if
X is constant a.s. Can X and f(X) be independent for a Borel f?

Let X, Y, and Z be independent random variables on a probability
space and let U = X +Z and V =Y + Z. Show that given Z, U and
V' are conditionally independent.

Show that the result in Proposition 1.11 may not be true if Y5 is
independent of X but not (X, Y7).

Let X and Y be independent random variables on a probability space.
Show that if F|X|* < oo for some ¢ > 1 and E|Y| < oo, then
EX+Y|*>E|X + EY|".

Let Py be a discrete distribution on {0,1,2,...} and Pxy—, be the
binomial distribution Bi(p,y). Let (X,Y’) be the random vector hav-
ing the joint c.d.f. given by (1.66). Show that

(a) if Y has the Poisson distribution P(#), then the marginal distri-
bution of X is the Poisson distribution P(pf);

(b) if Y 4 r has the negative binomial distribution N B(w, ), then the
marginal distribution of X + r is the negative binomial distribution
NB(x/[1 - (1 - p)(1 — m)],1).

Let X1, Xo, ... be i.i.d. random variables and Y be a discrete random
variable taking positive integer values. Assume that Y and X;’s are
independent. Let Z = 22;1 Xi.

(a) Obtain the ch.f. of Z.

(b) Show that EZ = EY EX;.

(c) Show that Var(Z) = EY Var(X;) + Var(Y)(EX;)?.

Let X, Y, and Z be random variables having a positive joint Lebesgue
p.df. Let fx|y(z|ly) and fx|y,z(z|y,z) be respectively the condi-
tional p.d.f. of X given Y and the conditional p.d.f. of X given
(Y,Z), as defined by (1.61). Show that Var(1/fxy(X|Y)|X) <

Var(1/ fx|y,z(X|Y, Z)|X) as., where Var(¢|() = E{[¢ — E(¢[Q)]*(C}
for any random variables ¢ and ¢ with E¢? < oc.

Let {X,} be a Markov chain. Show that if g is a one-to-one Borel
function, then {g(X,)} is also a Markov chain. Give an example to
show that {g(X,)} may not be a Markov chain in general.
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A sequence of random vectors { X, } is said to be a Markov chain of or-
der r for a positive integer r if P(B|X1, ..., X)) =P(B|Xn—rt1, -, Xn)
a.s. forany B € 0(Xp41) andn=r,r+1,....

(a) Let s > r be two positive integers. Show that if {X,,} is a Markov
chain of order r, then it is a Markov chain of order s.

(b) Let {X,,} be a sequence of random variables, r be a positive inte-
ger, and Y, = (X,,, Xp41, -y Xntr—1). Show that {Y,,} is a Markov
chain if and only if {X,,} is a Markov chain of order 7.

(c) (Autoregressive process of order r). Let {e,} be a sequence of
independent random variables and 7 be a positive integer. Show that
{X,} is a Markov chain of order r, where X,, = Z;Zl PiXn—j+en
and p;’s are constants.

Show that if {X,,F,} is a martingale (or a submartingale), then
E(Xnyj|Fn) = Xy as. (or E(Xpyj|Fn) > Xy as.) and EX; = EX
(or EXq1 < EXy<-.-4)forany j=1,2,...

Show that {X,,} in Example 1.25 is a martingale.

Let {X;} and {Z;} be sequences of random variables and let f,, and
gn, denote the Lebesgue p.d.f.’s of Y,, = (X1, ..., X,,) and (74, ..., Zyp),
respectively, n = 1,2,.... Define A\, = —gn(Yn)/fn(Yn)I(s, (v, )>0
n=1,2,... Show that {\,} is a submartingale.

Let {Y,,} be a sequence of independent random variables.

(a) Suppose that EY;, = 0 for all n. Let X; = Y7 and X,,41 =
Xn + Yoi1hn (X1, ..., X0), n > 2, where {h,,} is a sequence of Borel
functions. Show that {X,} is a martingale.

(b) Suppose that EY,, = 0 and Var(Y,,) = o2 for all n. Let X,, =
(32)=1Yj)? —no?. Show that {X,} is a martingale.

(c) Suppose that ¥, > 0 and EY,, =1 for all n. Let X,, =Y;---Y,,.
Show that {X,} is a martingale.

Prove the claims in the proof of Proposition 1.14.

Show that every sequence of integrable random variables is the sum
of a supermartingale and a submartingale.

Let {X,,} be a martingale. Show that if {X,,} is bounded either above
or below, then sup,, E|X,| < cc.

Let {X,} be a martingale satisfying EX; = 0 and EX? < oo for all
n. Show that B(X, 1m— X,)? = Z;nzl E(Xntj— Xntj—1)? and that
{X,} converges a.s.

Show that {X,,} in Exercises 104, 105, and 106(c) converge a.s. to
integrable random variables.
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Prove Proposition 1.16.

In the proof of Lemma 1.4, show that {w : lim,,_,oc X, (w) = X(w)} =

N2, A;.

Let {X,,} be a sequence of independent random variables. Show that
X, —a.s. 0if and only if, for any € > 0, >-°7 | P(|X,,| > €) < 0.

Let X7, X5, ... be a sequence of identically distributed random vari-
ables with a finite F|X;| and let Y,, = n~! max;<,, | X;|. Show that
(a) Y’n — L1 07

(b) Y, —as. 0.

Let X, X3, Xo,... be random variables. Find an example for each of
the following cases:

(a) X,, —p X, but {X,,} does not converge to X a.s.

(b) X, —p X, but {X,,} does not converge to X in L,, for any p > 0.
(¢) X, —a X, but {X,,} does not converge to X in probability (do
not use Example 1.26).

(d) X, —p X, but {g(X,,)} does not converge to g(X) in probability
for some function g.

Let X1, X5, ... be random variables. Show that

(a) {|Xy|} is uniformly integrable if and only if sup,, F|X,| < co and,
for any € > 0, there is a d. > 0 such that sup,, E(| X, |I4) < € for any
event A with P(A) < d¢;

(b) sup,, E|X,|'t9 < oo for a § > 0 implies that {|X,,|} is uniformly
integrable.

Let X, X7, Xo,... be random variables satisfying P(|X,| > ¢) <
P(]X| > ¢) for all n and ¢ > 0. Show that if E|X| < oo, then
{|X|} is uniformly integrable.

Let X1, X5, ... and Y7, Y5, ... be random variables. Show that

(a) if {|X,,|} and {|Y,|} are uniformly integrable, then {|X,, + Y, |} is
uniformly integrable;

(b) if {|X,|} is uniformly integrable, then {|n~'> " | X;|} is uni-
formly integrable.

Let Y be an integrable random variable and {F,} be a sequence of
o-fields. Show that {|E(Y|F,)|} is uniformly integrable.

Let X,Y, X1, X5,... be random variables satisfying X,, —, X and
P(]X,| <|Y]) =1 for all n. Show that if E|Y|" < oo for some r > 0,
then X,, —r, X.

Let X1, X», ... be a sequence of random k-vectors. Show that X,, —, 0
if and only if E[||X,|/(1+ || X.]|)] — 0.
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123.

124.

125.

126.
127.

128.

129.

130.

131.

132.

133.

Let X, Xy, Xo,... be random variables. Show that X,, —, X if and
only if, for any subsequence {ny} of integers, there is a further sub-
sequence {n;} C {ng} such that X,,, —4, X as j — ooc.

Let X1, X, ... be a sequence of random variables satisfying | X,,| < C;
and Var(X,,) > Cs for all n, where C;’s are positive constants. Show
that X,, —, 0 does not hold.

Prove Lemma 1.5. (Hint for part (ii): use Chebyshev’s inequality
to show that P(>° -, Ia, = oo) = 1, which can be shown to be
equivalent to the result in (ii).)

Prove part (vii) of Theorem 1.8.

Let X, X1, Xo,..., Y1,Yo, ..., Z1,Z5,... be random variables. Prove
the following statements.

(a) If X,, —4 X, then X,, = O,(1).

(b) If X,, = Op(Z,) and P(Y, =0) =0, then X,,Y,, = Op(Y, Z,).

(c) If X, = O0p(Zy) and Y, = O,(Z,), then X,, +Y,, = O,(Z,).

(d) If E|X,| = O(an), then X,, = Oy(ay,), where a,, € (0,00).

(e) If X,, —4.s. X, then sup,, | X,| = O,(1).

Let {X,,} and {Y,,} be two sequences of random variables such that
Xn=0,(1)and P(X, <t,Y, >t+e)+P(X, >t+¢Y, <t)=0(1)
for any fixed t € R and € > 0. Show that X,, — Y, = 0,(1).

Let {F,} be a sequence of c.d.f.’s on R, G,,(z) = F,,(anx + ¢y), and
H,(z) = F,(bpxz+d,,), where {a,} and {b,} are sequences of positive
numbers and {c,,} and {d,} are sequences of real numbers. Suppose
that G,, = G and H,, —,, H, where G and H are nondegenerate
c.d.f’s. Show that a,/b, — a > 0, (¢, — dp)/an, — b € R, and
H(ax +b) = G(x) for all z € R.

Let {P,} be a sequence of probability measures on (R, B) and f be a
nonnegative Borel function such that sup,, [ fdP, < oo and f(z) — 0
as |z| — oo. Show that {P,} is tight.

Let P, Pi, P,,... be probability measures on (R¥,B*). Show that if
P,(O) — P(0O) for every open subset of R, then P,(B) — P(B) for
every B € BF.

Let P, Py, Pa, ... be probability measures on (R, B). Show that P, —,
P if and only if there exists a dense subset D of R such that
lim,, o0 Pp((a,b]) = P((a,b]) for any a < b, a € D and b € D.

Let F,,, n =0,1,2,..., be c.d.f.’s such that F,, —,, Fy. Let G, (U) =
sup{z : F,(x) < U}, n = 0,1,2,..., where U is a random variable
having the uniform U (0, 1) distribution. Show that G,,(U) —, Go(U).
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134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

1. Probability Theory

Let P, Py, P,,... be probability measures on (R,B). Suppose that
P,, —, P and {g,} is a sequence of bounded continuous functions on
R converging uniformly to g. Show that [ g,dP, — [ gdP.

Let X, X1, Xo, ... be random k-vectors and Y, Y7, Ys, ... be random [-
vectors. Suppose that X,, —4¢ X, Y, —4 Y, and X,, and Y,, are
independent for each n. Show that (X,,,Y,,) converges in distribution
to a random (k + [)-vector.

Let X7, X5, ... be independent random variables with P(X,, = £27")
= %, n =1,2,.... Show that Z?:l X; —q U, where U has the uniform
distribution U(—1,1).

Let {X,} and {Y,,} be two sequences of random variables. Suppose
that X;, —4 X and that Py, |x,—s, —w Py almost surely for every
sequence of numbers {z, }, where X and Y are independent random
variables. Show that X, +Y, -4 X +Y.

Let X1, Xo, ... be i.i.d. random variables having the ch.f. of the form
1—clt|*+o(]t|*) as t — 0, where 0 < a < 2. Determine the constants
b and w so that Y | X;/(bn") converges in distribution to a random
variable having ch.f. eIt

Let X, X1, X5, ... be random k-vectors and A;, As, ... be events. Sup-
pose that X,, —4X. Show that X, 74, —4 X if and only if P(A,,) — 1.

Let X, be a random variable having the N (u,,c2) distribution, n =
1,2,..., and X be a random variable having the N (i, 0?) distribution.
Show that X,, —4 X if and only if u, — p and o, — o.

Suppose that X, is a random variable having the binomial distribu-
tion Bi(pp,n). Show that if np, — 6 > 0, then X,, —4 X, where X
has the Poisson distribution P(6).

Let f, be the Lebesgue p.d.f. of the t-distribution t,, n = 1,2,....
Show that f,(x) — f(z) for any © € R, where f is the Lebesgue
p.d.f. of the standard normal distribution.

Prove Theorem 1.10.

Show by example that X,, —4 X and Y,, —4 Y does not necessarily
imply that g(X,,,Y,) —a 9(X,Y), where g is a continuous function.

Prove Theorem 1.11(ii)-(iii) and Theorem 1.12(ii). Extend Theorem
1.12(i) to the case where g is a function from R? to R? with 2 < ¢ < p.

Let Uy, Uy, ... be i.i.d. random variables having the uniform distribu-
tion on [0,1] and Y,, = (I, Ui)fl/n. Show that /n(Y, —e) —q
N(0,¢€2).
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147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Prove Lemma 1.6. (Hint: a;' 27 2 = b, —a ' S0 bilai —ai),
where b, = > | x;/a;.)

In Theorem 1.13,

(a) prove (1.82) for bounded ¢;’s when F|X;| < oc;

(b) show that if EX; = oo, then n™! 2?21 X, —a.s 00

(c) show that if E|X;| = oo, then P(limsup, {| >, Xi| > cn}) =
P(limsup,,{|Xn| > en}) = 1 for any fixed positive constant ¢, and
limsup,, [n= !> | X;| = o0 a.s.

Let Xi,...,X,, be ii.d. random variables such that for x = 3,4, ...,
P(X: = +z) = (2cz?logz)™!, where ¢ = Y o2 ;27 ?/logz. Show
that E|X;| = oo but n=* Y | X; —, 0, using Theorem 1.13(i).

Let X1, Xo, ... be i.i.d. random variables satisfying P(X; = 27) =277,
j=1,2,.... Show that the WLLN does not hold for {X,}, i.e., (1.80)
does not hold for any {a,}.

Let X3, X5, ... be independent random variables. Suppose that, as
n — oo, i P(|X;| >n) — 0and n=2Y " 1E(X I{|X|<n}) —
0. Show that (T}, — b,)/n —, 0, where T, = Y. | X; and b, =
2im1 B(Xilyx,1<n})-

Let T,, = Z?:l X;, where X,’s are independent random variables
satisfying P(X,, = #n?) = 0.5 and 6 > 0 is a constant. Show that
(a) when 0 < 0.5, T}, /n —4.s. 0;

(b) when 6 > 1, T,,/n —, 0 does not hold.

=1

Let X5, X3, ... be a sequence of independent random variables satis-
fying P(X,, = £+/n/logn) = 0.5. Show that (1.86) does not hold for
p € [1,2] but (1.88) is satisfied for p = 2 and, thus, (1.89) holds.

Let Xy, ..., X, be i.id. random variables with Var(X;) < oo. Show
that [n(n +1)]7' X7, jX; —, EX;.

Let {X,,} be a sequence of random variables and let X = Y7 | X;/n.
a) Show that if X,, —4 0, then X —, . 0.

b) Show that if X,, — . 0, then X —1,. 0, where r > 1 is a constant.
¢) Show that the result in (b) may not be true for r € (0,1).

d) Show that X,, —, 0 may not imply X —, 0.

NN S

Let X1,..., X, be random variables and {u,}, {on}, {an}, and {b,}
be sequences of real numbers with o, > 0 and a,, > 0. Suppose that
X, is asymptotically distributed as N (u,,02). Show that a, X, + by,
is asymptotically distributed as N(u,,o2) if and only if a,, — 1 and
[,un(an - 1) + bn]/o'n — 0.
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157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.
168.

1. Probability Theory

Show that Liapounov’s condition (1.97) implies Lindeberg’s condition
(1.92).

Let X7, Xo,... be a sequence of independent random variables and
on = Var(3l_, X;).

(a) Show that if X,, = N(0,27™), n = 1,2, ..., then Feller’s condition
(1.96) does not hold but 7, (X; — EX;)/0n —a N(0,1).

(b) Show that the result in (a) is still true if X; has the uniform
distribution U(—1,1) and X,, = N(0,2"71), n =2,3, ....

In Example 1.33, show that

(a) the condition 02 — oo is also necessary for (1.98);

(b) n=t 3" (Xi — pi) —1, 0 for any constant r > 0;

(c) n~t Z?:1(Xi —Pi) —as. 0.

Prove Corollary 1.3.

Suppose that X, is a random variable having the binomial distribu-
tion Bi(#,n), where 0 < 6 < 1, n = 1,2,.... Define Y,, = log(X,,/n)
when X,, > 1 and Y,, = 1 when X,, = 0. Show that Y,, —,.s logf
and \/n(Y, —logf) —q N (0,',%). Establish similar results when
X, has the Poisson distribution P(nf).

Let X1, X5, ... be independent random variables such that X; has the
uniform distribution on [—j,j], j = 1,2,.... Show that Lindeberg’s
condition is satisfied and state the resulting CLT.

Let X1, Xo,... be independent random variables such that for j =
1,2,..., P(Xj = £j%)=6"1j720"Y and P(X; = 0)=1-3"1;2(e~1)
where a > 1 is a constant. Show that Lindeberg’s condition is satisfied
if and only if a < 1.5.

Let X1, Xo, ... be independent random variables with P(X; = £j%) =
P(X; =0) =1/3, where a > 0, j = 1,2,.... Can we apply Theorem
1.15 to {X;} by checking Liapounov’s condition (1.97)?

Let {X,} be a sequence of independent random variables. Suppose
that 327 (X; — EX;)/on —a N(0,1), where o5 = Var(3_7_, X;).
Show that n=' Y°7_ | (X; — EXj;) —, 0 if and only if o, = o(n).

Consider Exercise 152. Show that 7,,/\/Var(T,,) —a N(0,1) and,
when 0.5 < 0 < 1, T,,/n —, 0 does not hold.

Prove (1.102)-(1.104).

In Example 1.34, prove o7 = 1 for \/n(X — u)/6 and \/n(6? — %) /7
and derive the expressions for p; (z) in all four cases.



Chapter 2

Fundamentals of Statistics

This chapter discusses some fundamental concepts of mathematical statis-
tics. These concepts are essential for the material in later chapters.

2.1 Populations, Samples, and Models

A typical statistical problem can be described as follows. One or a series of
random experiments is performed; some data from the experiment(s) are
collected; and our task is to extract information from the data, interpret
the results, and draw some conclusions. In this book we do not consider
the problem of planning experiments and collecting data, but concentrate
on statistical analysis of the data, assuming that the data are given.

A descriptive data analysis can be performed to obtain some summary
measures of the data, such as the mean, median, range, standard devia-
tion, etc., and some graphical displays, such as the histogram and box-
and-whisker diagram, etc. (see, e.g., Hogg and Tanis (1993)). Although
this kind of analysis is simple and requires almost no assumptions, it may
not allow us to gain enough insight into the problem. We focus on more
sophisticated methods of analyzing data: statistical inference and decision
theory.

2.1.1 Populations and samples

In statistical inference and decision theory, the data set is viewed as a real-
ization or observation of a random element defined on a probability space
(Q, F, P) related to the random experiment. The probability measure P is
called the population. The data set or the random element that produces

91



92 2. Fundamentals of Statistics

the data is called a sample from P. The size of the data set is called the
sample size. A population P is known if and only if P(A) is a known value
for every event A € F. In a statistical problem, the population P is at least
partially unknown and we would like to deduce some properties of P based
on the available sample.

Example 2.1 (Measurement problems). To measure an unknown quan-
tity 6 (for example, a distance, weight, or temperature), n measurements,
1, ..., Tn, are taken in an experiment of measuring 0. If # can be measured
without errors, then x; = 6 for all i; otherwise, each x; has a possible mea-
surement error. In descriptive data analysis, a few summary measures may
be calculated, for example, the sample mean

n
_ 1
n -
=1

and the sample variance

1 n

s? = n_lz(:cifi)z.
=1

However, what is the relationship between z and 67 Are they close (if
not equal) in some sense? The sample variance s? is clearly an average of
squared deviations of x;’s from their mean. But, what kind of information
does s2 provide? Finally, is it enough to just look at Z and s? for the purpose
of measuring 67 These questions cannot be answered in descriptive data
analysis.

In statistical inference and decision theory, the data set, (z1,...,2,), is
viewed as an outcome of the experiment whose sample space is 2 = R".
We usually assume that the n measurements are obtained in n indepen-
dent trials of the experiment. Hence, we can define a random n-vector
X = (X1,...,Xy) on [[I-, (R, B, P) whose realization is (z1,...,2,). The
population in this problem is P (note that the product probability measure
is determined by P) and is at least partially unknown. The random vector
X is a sample and n is the sample size. Define

B 1 n
X = X; 2.1
nz; (2.1)

and
n

1 )
2 _ PR
S *n—lz;(X’ X)”. (2.2)
1=
Then X and S? are random variables that produce Z and s2, respectively.
Questions raised previously can be answered if some assumptions are im-
posed on the population P, which are discussed later. &
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When the sample (X1, ..., X,,) has i.i.d. components, which is often the
case in applications, the population is determined by the marginal distri-
bution of X;.

Example 2.2 (Life-time testing problems). Let x1, ..., 2, be observed life-
times of some electronic components. Again, in statistical inference and
decision theory, 1, ..., x, are viewed as realizations of independent random
variables X7, ..., X,,. Suppose that the components are of the same type
so that it is reasonable to assume that X7, ..., X,; have a common marginal
c.d.f. F'. Then the population is F', which is often unknown. A quantity of
interest in this problem is 1 — F(t) with a ¢ > 0, which is the probability
that a component does not fail at time ¢. It is possible that all z;’s are
smaller (or larger) than ¢. Conclusions about 1 — F(t) can be drawn based
on data x1, ..., x, when certain assumptions on F' are imposed. 1

Example 2.3 (Survey problems). A survey is often conducted when one is
not able to evaluate all elements in a collection P = {y1, ..., yn} containing
N values in R*, where k and N are finite positive integers but N may be
very lar%g. Suppose that the quantity of interest is the population total
Y = >.",yi. In a survey, a subset s of n elements are selected from
{1,..., N} and values y;, i € s, are obtained. Can we draw some conclusion
about Y based on data y;, i € 8?7

How do we define some random variables that produce the survey data?
First, we need to specify how s is selected. A commonly used probability
sampling plan can be described as follows. Assume that every element in
{1,..., N} can be selected at most once, i.e., we consider sampling without
replacement. Let S be the collection of all subsets of n distinct elements
from {1, ..., N}, Fs be the collection of all subsets of S, and p be a probabil-
ity measure on (S, F;). Any s € S is selected with probability p(s). Note
that p(s) is a known value whenever s is given. Let X1, ..., X,, be random
variables such that

p(s)

P(Xlzyin"'aXn:yin): !’

s ={i1,...,in} € S. (2.3)
Then (y;,i € s) can be viewed as a realization of the sample (X1, ..., X,,).
If p(s) is constant, then the sampling plan is called the simple random
sampling (without replacement) and (X1, ..., X,,) is called a simple random
sample. Although X1, ..., X,, are identically distributed, they are not nec-
essarily independent. Thus, unlike in the previous two examples, the pop-
ulation in this problem may not be specified by the marginal distributions
of X;’s. The population is determined by P and the known selection prob-
ability measure p. For this reason, P is often treated as the population.
Conclusions about Y and other characteristics of P can be drawn based on
data y;, ¢ € s, which are discussed later. 1
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2.1.2 Parametric and nonparametric models

A statistical model (a set of assumptions) on the population P in a given
problem is often postulated to make the analysis possible or easy. Although
testing the correctness of postulated models is part of statistical inference
and decision theory, postulated models are often based on knowledge of the
problem under consideration.

Definition 2.1. A set of probability measures Py on (£, F) indexed by a
parameter 6 € O is said to be a parametric family if and only if © C R? for
some fixed positive integer d and each Py is a known probability measure
when 6 is known. The set © is called the parameter space and d is called
its dimension. 1

A parametric model refers to the assumption that the population P is
in a given parametric family. A parametric family {Py : 6 € ©} is said to
be identifiable if and only if 6; # 62 and 0; € © imply Py, # FPp,. In most
cases an identifiable parametric family can be obtained through reparame-
terization. Hence, we assume in what follows that every parametric family
is identifiable unless otherwise stated.

Let P be a family of populations and v be a o-finite measure on (2, F).
If P < vforall P € P, then P is said to be dominated by v, in which case P
can be identified by the family of densities {27 : P € P} (or {%}? : 6 € ©}
for a parametric family).

Many examples of parametric families can be obtained from Tables 1.1
and 1.2 in §1.3.1. All parametric families from Tables 1.1 and 1.2 are
dominated by the counting measure or the Lebesgue measure on R.

Example 2.4 (The k-dimensional normal family). Consider the normal
distribution Ny (i, X) given by (1.24) for a fixed positive integer k. An im-
portant parametric family in statistics is the family of normal distributions

P={Ne(11,X): peRF, T ecMl,

where My, is a collection of k x k symmetric positive definite matrices. This
family is dominated by the Lebesgue measure on RF.

In the measurement problem described in Example 2.1, X;’s are often
i.i.d. from the N(u,o?) distribution. Hence, we can impose a parametric
model on the population, i.e., P € P = {N(u,0%): peR, o> 0}.

The normal parametric model is perhaps not a good model for the life-
time testing problem described in Example 2.2, since clearly X; > 0 for
all 7. In practice, the normal family {N(u,0?) : p € R, 0% > 0} can
be used for a life-time testing problem if one puts some restrictions on p
and o so that P(X; < 0) is negligible. Common parametric models for
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life-time testing problems are the exponential model (containing the expo-
nential distributions E(0, #) with an unknown parameter 6; see Table 1.2
in §1.3.1), the gamma model (containing the gamma distributions I'(«, )
with unknown parameters a and ), the log-normal model (containing the
log-normal distributions LN (u, 0?) with unknown parameters p and o), the
Weibull model (containing the Weibull distributions W («, §) with unknown
parameters « and 6), and any subfamilies of these parametric families (e.g.,
a family containing the gamma distributions with one known parameter and
one unknown parameter).

The normal family is often not a good choice for the survey problem
discussed in Example 2.3. 1

In a given problem, a parametric model is not useful if the dimension
of © is very high. For example, the survey problem described in Example
2.3 has a natural parametric model, since the population P can be indexed
by the parameter § = (y1,...,yn). If there is no restriction on the y-values,
however, the dimension of the parameter space is kN, which is usually much
larger than the sample size n. If there are some restrictions on the y-values
(for example, y;’s are nonnegative integers no larger than a fixed integer
m), then the dimension of the parameter space is at most m + 1 and the
parametric model becomes useful.

A family of probability measures is said to be nonparametric if it is not
parametric according to Definition 2.1. A nonparametric model refers to the
assumption that the population P is in a given nonparametric family. There
may be almost no assumption on a nonparametric family, for example, the
family of all probability measures on (R*, B¥). But in many applications,
we may use one or a combination of the following assumptions to form a
nonparametric family on (R¥, B¥):

(1) The joint c.d.f.’s are continuous.

(2) The joint c.d.f.’s have finite moments of order < a fixed integer.
(3) The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).

(4) k =1 and the c.d.f.’s are symmetric.

For instance, in Example 2.1, we may assume a nonparametric model
with symmetric and continuous c.d.f.’s. The symmetry assumption may
not be suitable for the population in Example 2.2, but the continuity as-
sumption seems to be reasonable.

In statistical inference and decision theory, methods designed for para-
metric models are called parametric methods, whereas methods designed
for nonparametric models are called nonparametric methods. However,
nonparametric methods are used in a parametric model when paramet-
ric methods are not effective, such as when the dimension of the parameter
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space is too high (Example 2.3). On the other hand, parametric methods
may be applied to a semi-parametric model, which is a nonparametric model
having a parametric component. Some examples are provided in §5.1.4.

2.1.3 Exponential and location-scale families

In this section, we discuss two types of parametric families that are of
special importance in statistical inference and decision theory.

Definition 2.2 (Exponential families). A parametric family {Py : 6 € O}
dominated by a o-finite measure v on (£2, F) is called an exponential family
if and only if

dPy

gy @) =ep{O] Tw) - £0)jh(w), we, (2.4)

where exp{z} = e®, T is a random p-vector with a fixed positive integer p,
7 is a function from © to RP, h is a nonnegative Borel function on (9, F),

and £(6) = log { [, exp{[1(6)] T (@)} h(w)dn(w)}. 1

In Definition 2.2, T and h are functions of w only, whereas 1 and &
are functions of @ only.  is usually R¥. The representation (2.4) of an
exponential family is not unique. In fact, any transformation 7(0) = Dn(6)
with a p X p nonsingular matrix D gives another representation (with T
replaced by T = (D7)~'T). A change of the measure that dominates the
family also changes the representation. For example, if we define A\(A4) =
/ 4 hdv for any A € F, then we obtain an exponential family with densities

U @) = exp{ O T(w) - €0)}. (25)

In an exponential family, consider the reparameterization n = () and

fow) = exp{n"T(w) = (N }h(w), weQ, (2.6)

where ((n) = log { [, exp{n™T'(w)}h(w)dv(w)}. This is the canonical form
for the family, which is not unique for the reasons discussed previously. The
new parameter 7 is called the natural parameter. The new parameter space
Z={n(0) : 0 € O}, a subset of R?, is called the natural parameter space.
An exponential family in canonical form is called a natural exponential
family. If there is an open set contained in the natural parameter space of
an exponential family, then the family is said to be of full rank.

Example 2.5. Let Py be the binomial distribution Bi(#,n) with param-
eter 6, where n is a fixed positive integer. Then {Py : § € (0,1)} is an
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exponential family, since the p.d.f. of Py w.r.t. the counting measure is
n
fQ(x) = €xp {xlog 139 + TllOg(l - 0)} <l‘) I{O,l,.“,n}(x)

(T(x)==, n(0)=log ,’,, £(8)=—nlog(1 —0), and h(z)=(}) I {01, n}(2))-
If we let n = log 1397 then Z = R and the family with p.d.f.’s

fole) = exp fon ~ ntog(1 + ) () Iy 0

is a natural exponential family of full rank. 1

Example 2.6. The normal family {N(u,0%) : p € R,0 > 0} is an
exponential family, since the Lebesgue p.d.f. of N(u,0?) can be written as

1 I Lo,
\/Qwexp{02x202x fzazflogcr .

Hence, T(z) = (z,—2?), n(0) = (%, 502), 0 = (1, 0?), £(0) = 2";2 +logo,
and h(z) = 1/v2r. Let n = (n1,m2) = (%, ,L2). Then = =R x (0,00)
and we can obtain a natural exponential family of full rank with {(n) =
i/ (4n2) + log(1/v/2n2).

A subfamily of the previous normal family, {N(u, u?) : p € R, # 0},
is also an exponential family with the natural parameter n = (i, 2;2) and
natural parameter space = = {(z,y) : y = 22%, * € R, y > 0}. This
exponential family is not of full rank. 1

For an exponential family, (2.5) implies that there is a nonzero measure

A such that
dPy

d\

We can use this fact to show that a family of distributions is not an expo-
nential family. For example, consider the family of uniform distributions,
i.e., Py is U(0,0) with an unknown 6 € (0,00). If {Py : 6 € (0,00)} is an
exponential family, then from the previous discussion we have a nonzero
measure A such that (2.7) holds. For any ¢t > 0, there is a # < ¢ such that
Py([t,00)) = 0, which with (2.7) implies that A\([t,00)) = 0. Also, for any
t <0, Py((—o0,t]) =0, which with (2.7) implies that A((—oo,t]) = 0. Since
t is arbitrary, A = 0. This contradiction implies that {Fy : § € (0,00)}
cannot be an exponential family.

(w)>0 for all w and 6. (2.7)

The reader may verify which of the parametric families from Tables
1.1 and 1.2 are exponential families. As another example, we consider an
important exponential family containing multivariate discrete distributions.
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Example 2.7 (The multinomial family). Consider an experiment having
k + 1 possible outcomes with p; as the probability for the ith outcome,
1=0,1,...k, Zf:o p; = 1. In n independent trials of this experiment, let
X; be the number of trials resulting in the ith outcome, i = 0,1, ..., k. Then
the joint p.d.f. (w.r.t. counting measure) of (Xo, X1, ..., Xi) is

n!

fo(zo,z1, ..., xx) = .xk,pgop‘fl cpIp(zo, 1, o ),

$0!$1! .
where B = {(xg, 1, ...,x) : 2;’s are integers > 0, Zf:o z; =n}and 0 =
(po, P15 -y k). The distribution of (X, X1, ..., Xi) is called the multinomial
distribution, which is an extension of the binomial distribution. In fact,
the marginal c.d.f. of each X; is the binomial distribution Bi(p;,n). Let
O={ecR"N: 0<p < 172?:0171' = 1}. The parametric family
{fo : 6 € O} is called the multinomial family. Let x = (xo,21,...,2%),
n = (logpo,logp1, ..., log pr), and h(z) = [n!/(zelz1! - - xxD)]Ip(x). Then

fo(xo, 1, ..., x) = exp{n"x} h(zx), z e RFL (2.8)

Hence, the multinomial family is a natural exponential family with natural
parameter 7. However, representation (2.8) does not provide an exponential
family of full rank, since there is no open set of R¥*! contained in the
natural parameter space. A reparameterization leads to an exponential
family with full rank. Using the fact that Zf:o X; =n and Zf:o pi =1,
we obtain that

fo(zo, 1, ..., xx) = exp{nix. — ((ne)} h(x), xr € RF, (2.9)

where @, = (21,...,2k), 0. = (log(p1/po),-...,Jog(pe/po)), and ((n.) =
—nlogpg. The n,-parameter space is R*. Hence, the family of densities
given by (2.9) is a natural exponential family of full rank. 1

If X1, ..., X, are independent random vectors with p.d.f.’s in exponen-
tial families, then the p.d.f. of (X1, ..., X;;,) is again in an exponential family.
The following result summarizes some other useful properties of exponential
families. Its proof can be found in Lehmann (1986).

Theorem 2.1. Let P be a natural exponential family given by (2.6).
(i) Let T = (Y,U) and n = (¢, ), where Y and ¢ have the same dimension.
Then, Y has the p.d.f.

fn(y> = exp{?7y — ((n)}

w.r.t. a o-finite measure depending on ¢. In particular, T" has a p.d.f. in a
natural exponential family. Furthermore, the conditional distribution of Y
given U = u has the p.d.f. (w.r.t. a o-finite measure depending on )

fo.u(y) = exp{07y — Cu(9)},
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which is in a natural exponential family indexed by .
(ii) If o is an interior point of the natural parameter space, then the m.g.f.
Yy, Of Py, o T~ is finite in a neighborhood of 0 and is given by

Wno () = exp{C(no + 1) = ((n0)}-

Furthermore, if f is a Borel function satisfying [|f|dP,, < oo, then the
function

/[f(uﬁexp{nTTTuO}h(W)dV(w)

is infinitely often differentiable in a neighborhood of 79, and the derivatives
may be computed by differentiation under the integral sign. 1

Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that
the m.g.f. of the binomial distribution Bi(p,n) is

Unlt) = explnlog(1+e7*) — nlog(1 + ")}
~ [14emet\"
S\ 1+en
= (1—p+pe)",
since p = e"/(1 + €").

Definition 2.3 (Location-scale families). Let P be a known probability
measure on (R¥,B¥), V C R*, and M;, be a collection of k x k symmetric
positive definite matrices. The family

{Plux): eV, B eMy} (2.10)
is called a location-scale family (on R*), where
Pus)(B) =P (2—1/2(3 - u)) , BeBk,

Y Y2(B—p) ={S"Y2(x —p) : v € B} Cc R¥, and ¥~1/2 is the inverse of
the “square root” matrix X'/2 satisfying ¥'/2%1/2 = 3. The parameters
and X/2 are called the location and scale parameters, respectively. I

The following are some important examples of location-scale families.
The family {Pq, ) : n € RF} is called a location family, where I, is
the k x k identity matrix. The family {Pyoyx) : £ € My} is called a
scale family. In some cases, we consider a location-scale family of the form
{Puo2ry : 1€ RF o >0} If Xq,..., X} are iid. with a common dis-
tribution in the location-scale family {P, ,2) : © € R,0 > 0}, then the
joint distribution of the vector (X7, ..., X)) is in the location-scale family
{Pyo2ry: p€V,0>0}withV ={(z,..,z) e R": v € R}



100 2. Fundamentals of Statistics

A location-scale family can be generated as follows. Let X be a random
k-vector having a distribution P. Then the distribution of ¥'/2X + p is
P, 5). On the other hand, if X is a random k-vector whose distribution is
in the location-scale family (2.10), then the distribution DX + ¢ is also in
the same family, provided that Dy + c € V and DXD™ € M.

Let F' be the c.d.f. of P. Then the c.d.f. of P,y is F (£7Y%(z — p)),
x € R¥. If F has a Lebesgue p.d.f. f, then the Lebesgue p.d.f. of Py is
Det(27Y2)f (£7Y2(z — p)), z € R® (Proposition 1.8).

Many families of distributions in Table 1.2 (§1.3.1) are location, scale, or
location-scale families. For example, the family of exponential distributions
E(a, ) is a location-scale family on R with location parameter a and scale
parameter 0; the family of uniform distributions U (0, 0) is a scale family on
R with a scale parameter . The k-dimensional normal family discussed in
Example 2.4 is a location-scale family on R*.

2.2 Statistics, Sufficiency, and Completeness

Let us assume now that our data set is a realization of a sample X (a
random vector) from an unknown population P on a probability space.

2.2.1 Statistics and their distributions

A measurable function of X, T'(X), is called a statistic if T'(X) is a known
value whenever X is known, i.e., the function T is a known function. Sta-
tistical analyses are based on various statistics, for various purposes. Of
course, X itself is a statistic, but it is a trivial statistic. The range of a
nontrivial statistic T(X) is usually simpler than that of X. For example,
X may be a random n-vector and T(X) may be a random p-vector with a
p much smaller than n. This is desired since T(X) simplifies the original
data.

From a probabilistic point of view, the “information” within the statistic
T(X) concerning the unknown distribution of X is contained in the o-
field o(T(X)). To see this, assume that S is any other statistic for which
0(S(X)) = o(T(X)). Then, by Lemma 1.2, S is a measurable function of
T, and T is a measurable function of S. Thus, once the value of S (or T') is
known, so is the value of T' (or S). That is, it is not the particular values
of a statistic that contain the information, but the generated o-field of the
statistic. Values of a statistic may be important for other reasons.

Note that o(T'(X)) C o(X) and the two o-fields are the same if and
only if T' is one-to-one. Usually o(T'(X)) simplifies o(X), i.e., a statistic
provides a “reduction” of the o-field.
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Any T'(X) is a random element. If the distribution of X is unknown,
then the distribution of T may also be unknown, although T is a known
function. Finding the form of the distribution of T is one of the major
problems in statistical inference and decision theory. Since T is a transfor-
mation of X, tools we learn in Chapter 1 for transformations may be useful
in finding the distribution or an approximation to the distribution of T'(X).

Example 2.8. Let X1, ..., X}, be i.i.d. random variables having a common
distribution P and X = (Xi,..., X,,). The sample mean X and sample
variance S2 defined in (2.1) and (2.2), respectively, are two commonly used
statistics. Can we find the joint or the marginal distributions of X and $%?
It depends on how much we know about P.

First, let us consider the moments of X and S?. Assume that P has a
finite mean denoted by u. Then

EX =p.

If P is in a parametric family {Py : 6 € O}, then EX = [2dPy = u(0)
for some function p(-). Even if the form of u is known, u(6) may still be
unknown when 6 is unknown. Assume now that P has a finite variance
denoted by ¢2. Then

Var(X) = o?/n,

which equals 02(6) /n for some function o2 () if P is in a parametric family.
With a finite 02 = Var(X1), we can also obtain that

ES? =52,

With a finite £|X1|?, we can obtain E(X)3 and Cov(X,S?), and with a
finite E|X;|*, we can obtain Var(S?) (exercise).

Next, consider the distribution of X. If P is in a parametric family, we
can often find the distribution of X. See Example 1.20 and some exercises
in §1.6. For example, X is N (u,02%/n) if P is N(u,02); nX has the gamma
distribution I'(n, §) if P is the exponential distribution F(0,6). If P is not
in a parametric family, then it is usually hard to find the exact form of the
distribution of X. One can, however, use the CLT (§1.5.4) to obtain an
approximation to the distribution of X. Applying Corollary 1.2 (for the
case of k = 1), we obtain that

V(X = i) =4 N(0,0%)

and, by (1.100), the distribution of X can be approximated by N (i, 02/n),
where p and o2 are the mean and variance of P, respectively, and are
assumed to be finite.

Compared to X, the distribution of S? is harder to obtain. Assuming
that P is N(u,02), one can show that (n — 1)S?/0? has the chi-square
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distribution x2_; (see Example 2.18). An approximate distribution for
52 can be obtained from the approximate joint distribution of X and S?
discussed next.

Under the assumption that P is N(u,0?), it can be shown that X
and S? are independent (Example 2.18). Hence, the joint distribution of
(X, S?) is the product of the marginal distributions of X and S? given in the
previous discussion. Without the normality assumption, an approximate
joint distribution can be obtained as follows. Assume again that p = FX;,
0% = Var(X1), and E|X;|* are finite. Let Y; = (X; — p, (X; — p)?), i =
1,...,n. Then Y7, ..., Y, arei.i.d. random 2-vectors with EY; = (0,0?) and
variance-covariance matrix

o O'2 E(Xl —/,1,)3
¥ < E(X1—p) BE(Xy—p)t-ot )

Note that Y =n=1 37" | V; = (X — 1, 5%), where S? = n~1 37" (X; — )2
Applying the CLT (Corollary 1.2) to Y;’s, we obtain that

V(X — p, 8% — 0%) —4 N»(0,%).

Since
n

§2 — [5‘2 (X — 2]

ne 1 (X — )
and X —,, p (the SLLN, Theorem 1.13), an application of Slutsky’s
theorem (Theorem 1.11) leads to

V(X — 1, 8% — %) —4 N2(0,%). 1

Example 2.9 (Order statistics). Let X = (Xy, ..., X,) with i.i.d. random
components and let X ;) be the ith smallest value of X7, ..., X;,. The statis-
tics X(1), ..., X() are called the order statistics, which is a set of very useful
statistics in addition to the sample mean and variance in the previous ex-
ample. Suppose that X; has a c.d.f. F' having a Lebesgue p.d.f. f. Then
the joint Lebesgue p.d.f. of X(qy,..., X(5,) is

_ nlf(z) f(z2) - f(zn) T <Xy < 00 < Ty
orrstz o) = { 0 otherwise.

The joint Lebesgue p.d.f. of X(;) and X, 1 <i<j <n,is

(i—))1(j—i—1)!(n—j)! r<y

0 otherwise

[P (@) [F(y) = F (@)~ 1= F(y)]" 7 £(2) £ (y)
gii(z,y) =

and the Lebesgue p.d.f. of X; is

" F@I - F@P ).

9@ = (G 1)in —
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2.2.2 Sufficiency and minimal sufficiency

Having discussed the reduction of the o-field o(X) by using a statistic
T(X), we now ask whether such a reduction results in any loss of infor-
mation concerning the unknown population. If a statistic T'(X) is fully as
informative as the original sample X, then statistical analyses can be done
using T'(X) that is simpler than X. The next concept describes what we
mean by fully informative.

Definition 2.4 (Sufficiency). Let X be a sample from an unknown pop-
ulation P € P, where P is a family of populations. A statistic T'(X) is
said to be sufficient for P € P (or for § € © when P ={Fy: § € O} isa
parametric family) if and only if the conditional distribution of X given T'
is known (does not depend on P or ). &

Definition 2.4 can be interpreted as follows. Once we observe X and
compute a sufficient statistic T'(X), the original data X do not contain any
further information concerning the unknown population P (since its con-
ditional distribution is unrelated to P) and can be discarded. A sufficient
statistic 7'(X) contains all information about P contained in X (see Ex-
ercise 36 in §3.6 for an interpretation of this from another viewpoint) and
provides a reduction of the data if T' is not one-to-one. Thus, one of the
questions raised in Example 2.1 can be answered as follows: it is enough to
just look at z and s for the problem of measuring 6 if (X, S?) is sufficient
for P (or § when 6 is the only unknown parameter).

The concept of sufficiency depends on the given family P. If T is suffi-
cient for P € P, then T is also sufficient for P € Py C P but not necessarily
sufficient for P € P; D P.

Example 2.10. Suppose that X = (X1,..., X,,) and X3, ..., X, are i.i.d.
from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

fg(Z) = 92(1 — 9)1_21{0’1}(2), z e R, 0 € (0, 1)

For any realization x of X, x is a sequence of n ones and zeros. Consider
the statistic 7(X) = > | X;, which is the number of ones in X. Before
showing that T is sufficient, we can intuitively argue that T contains all
information about 6, since # is the probability of an occurrence of a one
in . Given T =t (the number of ones in z), what is left in the data set
z is the redundant information about the positions of ¢ ones. Since the
random variables are discrete, it is not difficult to compute the conditional
distribution of X given T' = ¢. Note that

P(X =2,T =1)

PX=zx|T=t)= P(T = 1)
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and P(T =t) = (7)0"(1 — 0)""I(o1,.. 3 (t). Let z; be the ith component
of w. If t # >  a;, then P(X =2, T =¢)=0. If t =) | x;, then

n

P(X=2,T=t)= H P(X;=x;)=0'(1—0)""" HI{O,I}(@).

Let By = {(21,...,xn) : 2; =0,1, Yi | ; =t}. Then
1
(?)
is a known p.d.f. This shows that T'(X) is sufficient for 6 € (0,1), according

to Definition 2.4 with the family {fy : 6 € (0,1)}. 1

P(X =z2|T =t) =, Ip,(x)

Finding a sufficient statistic by means of the definition is not conve-
nient since it involves guessing a statistic 7' that might be sufficient and
computing the conditional distribution of X given T" = ¢t. For families of
populations having p.d.f.’s, a simple way of finding sufficient statistics is to
use the factorization theorem. We first prove the following lemma.

Lemma 2.1. If a family P is dominated by a o-finite measure, then P is
dominated by a probability measure QQ = Zfil ¢; P;, where ¢;’s are nonneg-
ative constants with > -, ¢; = 1 and P; € P.

Proof. Assume that P is dominated by a finite measure v (the case of
o-finite v is left as an exercise). Let Py be the family of all measures of the
form Y2, ¢;P;, where P; € P, ¢; > 0, and ) -, ¢; = 1. Then, it suffices
to show that there is a @ € Py such that Q(A) = 0 implies P(A) = 0 for all
P € Py. Let C be the class of events C' for which there exists P € Py such
that P(C') > 0 and dP/dv > 0 a.e. v on C. Then there exists a sequence
{C;} C C such that v(C;) — supgee v(C). Let Cy be the union of all C;’s
and QQ = Zfil ¢; P;, where P; is the probability measure corresponding to
C;. Then Cy € C (exercise). Suppose now that Q(A) = 0. Let P € Py
and B = {x : dP/dv > 0}. Since Q(ANCy) = 0, v(ANCp) = 0 and
P(ANCy) =0. Then P(A) = P(ANC{N B). If P(ANC§N B) > 0, then
v(CoU(ANCENB)) > v(Cp), which contradicts v(Coy) = supgee ¥(C) since
ANC§N B and therefore Co U(ANC§N B) is in C. Thus, P(A) = 0 for all
P e Py. 1

Theorem 2.2 (The factorization theorem). Suppose that X is a sample
from P € P and P is a family of probability measures on (R", 8") dom-
inated by a o-finite measure v. Then T'(X) is sufficient for P € P if and
only if there are nonnegative Borel functions A (which does not depend on
P) on (R™,B") and g, (which depends on P) on the range of T' such that

@) = 9, (1)) h(a) (2.11)
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Proof. (i) Suppose that T is sufficient for P € P. Then, for any A € B",
P(A|T) does not depend on P. Let @ be the probability measure in Lemma
2.1. By Fubini’s theorem and the result in Exercise 35 of §1.6,

Q(AmB):ch (AN B)
= ch/BP(A\T)dP
:/Bj;ch(AT)dP

_ /B P(A|T)dQ

for any B € o(T). Hence, P(A|T) = Eq(Ia|T) a.s. Q, where Eq(Ia|T)
denotes the conditional expectation of I4 given T w.r.t. Q. Let g, (T) be
the Radon-Nikodym derivative dP/dQ on the space (R™,c(T), Q). From
Propositions 1.7 and 1.10,

P(A) = / P(AT)dP
- [ Botalng, (1140
- / EolLag, (T)|T)dQ

_ d
_AgP(T> dydy

for any A € B™. Hence, (2.11) holds with h = dQ/dv.
(ii) Suppose that (2.11) holds. Then

dP dP/Z o /ng as. Q, (2.12)

where the second equality follows from the result in Exercise 35 of §1.6. Let
A€ o(X) and P € P. The sufficiency of T follows from
P(A|T)=Eqg(14|T) as. P, (2.13)

where Eqg(I4|T) is given in part (i) of the proof. This is because Eq(I4|T)
does not vary with P € P, and result (2.13) and Theorem 1.7 imply that
the conditional distribution of X given T is determined by Eg(I4|T), A €
o(X). By the definition of conditional probability, (2.13) follows from

/IAdP:/ Eq(I4|T)dP (2.14)
B B
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for any B € o(T). Let B € o(T). By (2.12), dP/dQ is a Borel function of
T. Then, by Proposition 1.7(i), Proposition 1.10(vi), and the definition of
the conditional expectation, the right-hand side of (2.14) is equal to

dP dP dP
[ Eattam)yaa= [ Eo (140 |r) a0~ [ 1240 de.

which equals the left-hand side of (2.14). This proves (2.14) for any B €
o(T) and completes the proof. 1

If P is an exponential family with p.d.f.’s given by (2.4) and X (w) = w,
then we can apply Theorem 2.2 with go(t) = exp{[n(0)]"t — £(0)} and
conclude that T is a sufficient statistic for # € ©. In Example 2.10 the joint
distribution of X is in an exponential family with T'(X) = " | X;. Hence,
we can conclude that T is sufficient for 6 € (0,1) without computing the
conditional distribution of X given T

Example 2.11 (Truncation families). Let ¢(x) be a positive Borel function

on (R, B) such that fab ¢(x)dxr < oo for any a and b, —00 < a < b < oo.
Let 0 = (a,b), © = {(a,b) € R?: a < b}, and

fo(x) = c(0)p(x) I (a ) (),

—1
where ¢(0) = {f: ng(a:)dx] . Then {fy : 0 € O}, called a truncation

family, is a parametric family dominated by the Lebesgue measure on R.
Let X1,..., X, be ii.d. random variables having the p.d.f. fy. Then the
joint p.d.f. of X = (X1,..., X,,) is

n n

T fo(@i) = (O T (a,00) (1) 00,y (@) [ ] &), (2.15)
i=1 i=1
where ;) is the ith smallest value of z1,...,z,. Let T(X) = (X 1y, X(»)),

gg(thtg) = [C(@)]nf(a’oo) (tl)I(—oo,b) (t2>7 and h(.’L‘) = H?:l (b(xz) By (2.15)
and Theorem 2.2, T'(X) is sufficient for 6 € ©. 1

Example 2.12 (Order statistics). Let X = (X1,..., X;,) and X1, ..., X, be
i.i.d. random variables having a distribution P € P, where P is the family
of distributions on R having Lebesgue p.d.f.’s. Let X(y),..., X(n) be the
order statistics given in Example 2.9. Note that the joint p.d.f. of X is

fl) - flan) = flz@) - f@m)-

Hence, T'(X) = (X(1), ..., X(n)) is sufficient for P € P. The order statistics
can be shown to be sufficient even when P is not dominated by any o-finite
measure, but Theorem 2.2 is not applicable (see Exercise 31 in §2.6). 1
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There are many sufficient statistics for a given family P. In fact, if
T is a sufficient statistic and T' = ¥(.S), where v is measurable and S is
another statistic, then S is sufficient. This is obvious from Theorem 2.2 if
the population has a p.d.f., but it can be proved directly from Definition
2.4 (Exercise 25). For instance, in Example 2.10, (3°1", Xi72?:m+1 Xi)
is sufficient for 6, where m is any fixed integer between 1 and n. If T
is sufficient and 7' = ¢(S) with a measurable ¢ that is not one-to-one,
then o(T) C o(S) and T is more useful than S, since T" provides a further
reduction of the data (or o-field) without loss of information. Is there a

sufficient statistic that provides “maximal” reduction of the data?

Before introducing the next concept, we need the following notation. If
a statement holds except for outcomes in an event A satisfying P(A4) =0
for all P € P, then we say that the statement holds a.s. P.

Definition 2.5 (Minimal sufficiency). Let T' be a sufficient statistic for
P e P. T is called a minimal sufficient statistic if and only if, for any other
statistic S sufficient for P € P, there is a measurable function ¢ such that
T=1¢(S)as. P. 1

If both T and S are minimal sufficient statistics, then by definition there
is a one-to-one measurable function ¢ such that "= ¥(S) a.s. P. Hence,
the minimal sufficient statistic is unique in the sense that two statistics
that are one-to-one measurable functions of each other can be treated as
one statistic.

Example 2.13. Let Xi,...,X,, be ii.d. random variables from Pp, the
uniform distribution U(#,0 + 1), # € R. Suppose that n > 1. The joint
Lebesgue p.d.f. of (X1, ..., X,,) is

f0(37) = HI(Q,Q—&-I)(xi) = I(;c(")—l,x(l))(a)a T = (xla axn) € an
=1

where z(;) denotes the ith smallest value of z1,...,z,. By Theorem 2.2,
T = (X, X(n) is sufficient for §. Note that

w1y = sup{f : fo(x) >0} and () =1+inf{0: fo(x) > 0}.

If S(X) is a statistic sufficient for 6, then by Theorem 2.2, there are Borel
functions h and gy such that fg(x) = go(S(z))h(z). For x with h(z) > 0,

x(1)y = sup{f : go(S(x)) > 0} and x(,) =1 +inf{f: go(S(x)) > 0}.

Hence, there is a measurable function ¢ such that T(z) = ¢ (S(z)) when
h(x) > 0. Since h > 0 a.s. P, we conclude that T is minimal sufficient. 1
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Minimal sufficient statistics exist under weak assumptions, e.g., P con-
tains distributions on R* dominated by a o-finite measure (Bahadur, 1957).
The next theorem provides some useful tools for finding minimal sufficient
statistics.

Theorem 2.3. Let P be a family of distributions on R”.

(i) Suppose that Py C P and a.s. Py implies a.s. P. If T is sufficient for
P € P and minimal sufficient for P € Py, then T is minimal sufficient for
Pep.

(ii) Suppose that P contains p.d.f.’s fo, f1, f2,..., w.r.t. a o-finite mea-
sure. Let foo(z) = Y 1oy cifi(z), where ¢; > 0 for all ¢ and Y oy = 1,
and let T;(X) = fi(x)/foo(x) when foo(z) > 0, i = 0,1,2,.... Then
T(X) = (T, T1,T>,...) is minimal sufficient for P € P. Furthermore, if
{z: fi(x) >0} C {z: fo(x) > 0} for all ¢, then we may replace f» by fo,
in which case T(X) = (11, %, ...) is minimal sufficient for P € P.

(iii) Suppose that P contains p.d.f.’s f, w.r.t. a o-finite measure and that
there exists a sufficient statistic T'(X) such that, for any possible values z
and y of X, f.(z) = f.(y)¢(x,y) for all P implies T'(x) = T(y), where ¢
is a measurable function. Then 7'(X) is minimal sufficient for P € P.
Proof. (i) If S is sufficient for P € P, then it is also sufficient for P € Py
and, therefore, T' = 9(S5) a.s. Py holds for a measurable function 1. The
result follows from the assumption that a.s. Py implies a.s. P.

(ii) Note that foo > 0 a.s. P. Let ¢;(T) = T;, i = 0,1,2,.... Then
fi(z) = gi(T(2)) foo(z) a.s. P. By Theorem 2.2, T is sufficient for P € P.
Suppose that S(X) is another sufficient statistic. By Theorem 2.2, there
are Borel functions h and g; such that f;(z) = §;(S(z))h(z), i =0,1,2,....
Then T;(z) = §:(S(z))/ Z;‘io ¢;§;(S(x)) for a’s satistying foo(z) > 0. By
Definition 2.5, T is minimal sufficient for P € P. The proof for the case
where f, is replaced by fj is the same.

(iii) From Bahadur (1957), there exists a minimal sufficient statistic S(X).
The result follows if we can show that T'(X) = ¥(S(X)) a.s. P for a mea-
surable function 1. By Theorem 2.2, there are Borel functions g, and h
such that f,(z) = ¢g,(S(z))h(z) for all P. Let A = {x : h(z) = 0}. Then
P(A) =0 for all P. For z and y such that S(z) = S(y), z ¢ Aand y € A,

fo(@) = g, (S(x))h(x)
= 9-(S(¥)h(x)h(y)/h(y)
= fo(y)h(x)/h(y)
for all P. Hence T'(x) = T(y). This shows that there is a function v
such that T(x) = (S(z)) except for x € A. It remains to show that
1 is measurable. Since S is minimal sufficient, g(T'(X)) = S(X) a.s. P

for a measurable function g. Hence g is one-to-one and ¢ = ¢g~!. The
measurability of ¢ follows from Theorem 3.9 in Parthasarathy (1967). 1
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Example 2.14. Let P = {fy : 6 € O} be an exponential family with
p.d.f’s fg given by (2.4) and X (w) = w. Suppose that there exists Oy =
{60,061, ...,6p} C © such that the vectors n, = n(0;) —n(6o), ¢ = 1,...,p, are
linearly independent in R?. (This is true if the family is of full rank.) We
have shown that T'(X) is sufficient for § € ©. We now show that T is in
fact minimal sufficient for § € ©. Let Py = {fp : 0 € Og}. Note that the
set {z : fo(z) > 0} does not depend on . It follows from Theorem 2.3(ii)
with foo = fo, that

S(X) = (exp{n]T(z) — &}, ...,exp{n) T(z) — &)

is minimal sufficient for § € ©g, where & = £(6;) — £(6p). Since n;’s are
linearly independent, there is a one-to-one measurable function 1 such that
T(X) = ¢¥(S(X)) a.s. Py. Hence, T is minimal sufficient for § € 0. It
is easy to see that a.s. Py implies a.s. P. Thus, by Theorem 2.3(i), T is
minimal sufficient for § € ©. 1

The results in Examples 2.13 and 2.14 can also be proved by using
Theorem 2.3(iii) (Exercise 32).

The sufficiency (and minimal sufficiency) depends on the postulated
family P of populations (statistical models). Hence, it may not be a useful
concept if the proposed statistical model is wrong or at least one has some
doubts about the correctness of the proposed model. From the examples
in this section and some exercises in §2.6, one can find that for a wide
variety of models, statistics such as X in (2.1), S% in (2.2), (X(1), X(»,)) in
Example 2.11, and the order statistics in Example 2.9 are sufficient. Thus,
using these statistics for data reduction and summarization does not lose
any information when the true model is one of those models but we do not
know exactly which model is correct.

2.2.3 Complete statistics

A statistic V(X)) is said to be ancillary if its distribution does not depend
on the population P and first-order ancillary if E[V(X)] is independent
of P. A trivial ancillary statistic is the constant statistic V(X) = ¢ €
R. If V(X) is a nontrivial ancillary statistic, then o(V (X)) C o(X) is a
nontrivial o-field that does not contain any information about P. Hence,
if S(X) is a statistic and V(S(X)) is a nontrivial ancillary statistic, it
indicates that o(S(X)) contains a nontrivial o-field that does not contain
any information about P and, hence, the “data” S(X) may be further
reduced. A sufficient statistic 1" appears to be most successful in reducing
the data if no nonconstant function of 7' is ancillary or even first-order
ancillary. This leads to the following concept of completeness.
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Definition 2.6 (Completeness). A statistic T'(X) is said to be complete
for P € P if and ounly if, for any Borel f, E[f(T)] = 0 for all P € P implies
f(T) = 0 as. P. T is said to be boundedly complete if and only if the
previous statement holds for any bounded Borel f. 1

A complete statistic is boundedly complete. If T is complete (or bound-
edly complete) and S = ¢(T) for a measurable 1), then S is complete (or
boundedly complete). Intuitively, a complete and sufficient statistic should
be minimal sufficient, which was shown by Lehmann and Scheffé (1950) and
Bahadur (1957) (see Exercise 48). However, a minimal sufficient statistic
is not necessarily complete; for example, the minimal sufficient statistic
(X(1y, X(n)) in Example 2.13 is not complete (Exercise 47).

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s
given by (2.6), then T'(X) is complete and sufficient for 5 € Z.

Proof. We have shown that T is sufficient. Suppose that there is a function
f such that E[f(T)] = 0 for all n € E. By Theorem 2.1(i),

/f(t) exp{n"t—((n)}d\ =0 forallne =,

where X is a measure on (RP?, BP). Let 7y be an interior point of Z. Then

/f+(t)e””fdA = /ff(t)e"”d)\ for all 7 € N (1), (2.16)

where N(no) = {n € RP: ||n—no|| < €} for some € > 0. In particular,
/ fr()emtdy = / f-(t)e™tdy = c.

If c =0, then f = 0 a.e. \. If ¢ > 0, then ¢~ f, (t)e"* and ¢~ f_(t)em?
are p.d.f.’s w.r.t. A and (2.16) implies that their m.g.f.’s are the same in a
neighborhood of 0. By Theorem 1.6(ii), ¢! fy (t)e™! = ¢ 1 f_(t)e™?, ie.,
f=f+—f-=0ae. A\ HenceT is complete. 1

Proposition 2.1 is useful for finding a complete and sufficient statistic
when the family of distributions is an exponential family of full rank.

Example 2.15. Suppose that X3, ..., X,, are i.i.d. random variables having
the N (u, 0?) distribution, 4 € R, o > 0. From Example 2.6, the joint p.d.f.
of X1,..., X, is (271')_”/2 exp{mT1 + n2T> — n¢(n)}, where Ty = Y1 | X;,
T, = =Y X2 and n = (q,m2) = (4, ,L2). Hence, the family of
distributions for X = (Xj,...,X,,) is a natural exponential family of full
rank (2 = R x (0,00)). By Proposition 2.1, T(X) = (T3, T») is complete
and sufficient for 1. Since there is a one-to-one correspondence between 7
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and 0 = (u,0?), T is also complete and sufficient for 6. It can be shown that
any one-to-one measurable function of a complete and sufficient statistic
is also complete and sufficient (exercise). Thus, (X,S?) is complete and
sufficient for 6, where X and S? are the sample mean and variance given
by (2.1) and (2.2), respectively. 1

The following examples show how to find a complete statistic for a non-
exponential family.

Example 2.16. Let Xq,...,X,, be ii.d. random variables from Pp, the
uniform distribution U(0,6), 6 > 0. The largest order statistic, X, is
complete and sufficient for 6 € (0, 00). The sufficiency of X, follows from
the fact that the joint Lebesgue p.d.f. of X1, ..., Xy, is 07" (g ¢)(2(n)). From
Example 2.9, X(,,y has the Lebesgue p.d.f. (nx”_l/Q”)I(o’g) () on R. Let f
be a Borel function on [0, c0) such that E[f(X(,))] = 0 for all § > 0. Then

0
f(z)z" tdx =0 for all § > 0.

0
Let G(0) be the left-hand side of the previous equation. Applying the result
of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain
that G'(0) = f(0)0"! a.e. my, where my is the Lebesgue measure on
(10,00), Bjo,o0))- Since G(6) = 0 for all § > 0, f(§)0" ' = 0 a.e. my and,
hence, f(z) = 0 a.e. my. Therefore, X,y is complete and sufficient for
6 € (0,00). 1

Example 2.17. In Example 2.12, we showed that the order statistics
T(X) = (Xay, .y X(n)) of i.i.d. random variables X1, ..., X,, is sufficient
for P € P, where P is the family of distributions on R having Lebesgue
p.d.f.’s. We now show that 7'(X) is also complete for P € P. Let Py be
the family of Lebesgue p.d.f.’s of the form

f(z) = C(by,...,0,) exp{—2* + 012 + Oo2® + - - - + 0,2},

where 0; € R and C(6, ..., 0,,) is a normalizing constant such that [ f(z)dz
= 1. Then Py C P and Py is an exponential family of full rank. Note that
the joint distribution of X = (X3, ..., X,,) is also in an exponential family of
full rank. Thus, by Proposition 2.1, U = (Uy, ...,Uy) is a complete statistic
for P € Py, where U; = > | X/. Since a.s. Py implies a.s. P, U(X) is
also complete for P € P.

The result follows if we can show that there is a one-to-one correspon-
dence between T'(X) and U(X). Let Vi = >1L, X;, Vo = 32, X; X},
V3 = Zi<j<k XiX;Xk,..., Vo, = X1+ - X,,. From the identities

Up = ViUj—1 + VaUg—z — -+ + (=) "'V Uy + (=1)*kV;, = 0,
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k = 1,..,n, there is a one-to-one correspondence between U(X) and
V(X) = (Vh ., V). From the identity

(t _ X1> . (t _ Xn) =" _ V1tn_1 4 VZtn—Z e (_1>an

there is a one-to-one correspondence between V(X) and T'(X). This com-
pletes the proof and, hence, T'(X) is sufficient and complete for P € P. In
fact, both U(X) and V(X) are sufficient and complete for P € P. 1

The relationship between an ancillary statistic and a complete and suf-
ficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from
a population P € P. If V is ancillary and T is boundedly complete and
sufficient for P € P, then V and T are independent w.r.t. any P € P.
Proof. Let B be an event on the range of V. Since V is ancillary,
P(V~Y(B)) is a constant. Since T is sufficient, E[I5(V)|T] is a func-
tion of T (independent of P). Since E{E[I5(V)|T] — P(V-1(B))} =0
for all P € P, P(V-YB)|T) = E[Iz(V)|T] = P(V-1(B)) a.s. P, by the
bounded completeness of T. Let A be an event on the range of T. Then,
P(TY(A) N V~-1(B)) = E{EILy(T)Ip(V)[T]} = E{L+(T)ElIs(V)[T]} =
E{IA(T)P(V-Y(B))} = P(T~'(A))P(V~Y(B)). Hence T and V are inde-
pendent w.r.t. any P € P. 1

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X3, ..., X,, are i.i.d. random variables having
the N(u,0?) distribution, with 4 € R and a known ¢ > 0. It can be easily
shown that the family {N(u,02) : u € R} is an exponential family of full
rank with natural parameter n = ,u/az. By Proposition 2.1, the sample
mean X in (2.1) is complete and sufficient for 7 (and w). Let S? be the
sample variance given by (2.2). Since §% = (n—1)"' 3" (Z; — Z)?, where
Z;=X;—pis N(0,0%) and Z = n=1 37" | Z;, S? is an ancillary statistic (o
is known). By Basu’s theorem, X and S? are independent w.r.t. N(u,o?)
with € R. Since o2 is arbitrary, X and S? are independent w.r.t. N(u,o?)
for any p € R and o2 > 0.

Using the independence of X and S2, we now show that (n — 1)52/0?
has the chi-square distribution x2_;. Note that

. <XU,L)2 L ;3)52 _ z:’; (XZ.UM)Q

From the properties of the normal distributions, n(X — u)?/0? has the chi-
square distribution y? with the m.g.f. (1 — 2t)~ 1/2 and S (X — p)?)o?
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has the chi-square distribution x7 with the m.g.f. (1— 2t)~"/2 t < 1/2. By
the independence of X and S?, the m.g.f. of (n —1)S?/o? is

(1—2)"2/(1 —2t)"Y2 = (1 — 2t)~(n=1)/2

for t < 1/2. This is the m.g.f. of the chi-square distribution x2 _; and,
therefore, the result follows. 1

2.3 Statistical Decision Theory

In this section, we describe some basic elements in statistical decision the-
ory. More developments are given in later chapters.

2.3.1 Decision rules, loss functions, and risks

Let X be a sample from a population P € P. A statistical decision is an
action that we take after we observe X, for example, a conclusion about P
or a characteristic of P. Throughout this section, we use A to denote the
set of allowable actions. Let F, be a o-field on A. Then the measurable
space (A, F,) is called the action space. Let X be the range of X and Fy
be a o-field on X. A decision rule is a measurable function (a statistic) T’
from (X, Fx) to (A, F.). If a decision rule T is chosen, then we take the
action T'(X) € A whence X is observed.

The construction or selection of decision rules cannot be done without
any criterion about the performance of decision rules. In statistical decision
theory, we set a criterion using a loss function L, which is a function from
P x A to [0,00) and is Borel on (A, F,) for each fixed P € P. If X =z is
observed and our decision rule is T', then our “loss” (in making a decision)
is L(P,T(x)). The average loss for the decision rule T', which is called the
risk of T, is defined to be

Rr(P) = E[L(P,T(X))] = /xL(RT(m))dPX (). (2.17)
The loss and risk functions are denoted by L(#,a) and Rp(0) if P is a
parametric family indexed by 6. A decision rule with small loss is preferred.
But it is difficult to compare L(P,T1(X)) and L(P,T>(X)) for two decision
rules, 71 and 75, since both of them are random. For this reason, the
risk function (2.17) is introduced and we compare two decision rules by
comparing their risks. A rule T} is as good as another rule T5 if and only if

Ry, (P) < Rp,(P) for any P € P, (2.18)

and is better than Ty if and only if (2.18) holds and Ry, (P) < Rp,(P) for
at least one P € P. Two decision rules 77 and T» are equivalent if and only
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if Ry, (P) = Rp,(P) for all P € P. If there is a decision rule T, that is as
good as any other rule in 3, a class of allowable decision rules, then T} is
said to be S-optimal (or optimal if & contains all possible rules).

Example 2.19. Consider the measurement problem in Example 2.1. Sup-
pose that we need a decision on the value of # € R, based on the sample
X = (Xy,...,X,). If © is all possible values of 6, then it is reasonable to
consider the action space (A, F,) = (0, Bg). An example of a decision rule
is T(X) = X, the sample mean defined by (2.1). A common loss function
in this problem is the squared error loss L(P,a) = (0 — a)?, a € A. Then
the loss for the decision rule X is the squared deviation between X and 6.
Assuming that the population has mean y and variance o2 < oo, we obtain
the following risk function for X:

Rg(P) = E(f — X)?
= (0 - EX)>+ BE(EX — X)?
= (0 — EX)? 4 Var(X) (2.19)
— (u—0)>+°, (2.20)

where result (2.20) follows from the results for the moments of X in Exam-
ple 2.8. If # is in fact the mean of the population, then the first term on
the right-hand side of (2.20) is 0 and the risk is an increasing function of
the population variance 0? and a decreasing function of the sample size n.

Consider another decision rule T1(X) = (X(1) + X(»))/2. However,
Ry, (P) does not have an explicit form if there is no further assumption on
the population P. Suppose that P € P. Then, for some P, X (or T}) is
better than Ty (or X) (exercise), whereas for some P, neither X nor Tj is
better than the other.

A different loss function may also be considered. For example, L(P, a) =
|6 — a|, which is called the absolute error loss. However, Rg (P) and Ry, (P)
do not have explicit forms unless P is of some specific form. 1§

The problem in Example 2.19 is a special case of a general problem called
estimation, in which the action space is the set of all possible values of a
population characteristic 1 to be estimated. In an estimation problem, a
decision rule T is called an estimator and result (2.19) holds with # = ¢ and
X replaced by any estimator with a finite variance. The following example
describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, Py C P, and P; =
{P€P:P¢&7Py}. Ahypothesis testing problem can be formulated as that
of deciding which of the following two statements is true:

Hy: PePy versus Hy: PePy. (2.21)
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Here, Hy is called the null hypothesis and Hy is called the alternative hy-
pothesis. The action space for this problem contains only two elements, i.e.,
A = {0,1}, where 0 is the action of accepting Hp and 1 is the action of
rejecting Hy. A decision rule is called a test. Since a test T'(X) is a function
from X to {0,1}, T(X) must have the form Ic(X), where C € Fy is called
the rejection region or critical region for testing Hy versus H;.

A simple loss function for this problem is the 0-1 loss: L(P,a) = 0
if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P,j) =0for P € P; and L(P,j) = 1 otherwise, j = 0,1. Under this loss,
the risk is

_ [ PM(X)=1)=P(XeC) PePy
R (P) = { P(I(X)=0)=P(X ¢C) PePu.

See Figure 2.2 on page 127 for an example of a graph of Rp(0) for some T
and P in a parametric family.

The 0-1 loss implies that the loss for two types of incorrect decisions
(accepting Hy when P € P; and rejecting Hy when P € Py) are the same.
In some cases, one might assume unequal losses: L(P,j) = 0 for P € P;,
L(P,0) = ¢ when P € Py, and L(P,1) = ¢; when P € Py. 1

In the following example the decision problem is neither an estimation
nor a testing problem. Another example is given in Exercise 93 in §2.6.

Example 2.21. A hazardous toxic waste site requires clean-up when the
true chemical concentration 6 in the contaminated soil is higher than a given
level 8y > 0. Because of the limitation in resources, we would like to spend
our money and efforts more in those areas that pose high risk to public
health. In a particular area where soil samples are obtained, we would
like to take one of these three actions: a complete clean-up (a1), a partial
clean-up (a2), and no clean-up (a3). Then A = {a1,as,as}. Suppose that
the cost for a complete clean-up is ¢; and for a partial clean-up is co < cq;
the risk to public health is ¢3(6 — 6y) if 6 > 6y and 0 if § < 6p; a complete
clean-up can reduce the toxic concentration to an amount < 6, whereas a
partial clean-up can only reduce a fixed amount of the toxic concentration,
i.e., the chemical concentration becomes 6 —t after a partial clean-up, where
t is a known constant. Then the loss function is given by

| L(0.a) | a1 az as |
%) S 90 C1 C2 0
Op <O <by+t| c C2 03(9—90>

0 >0+t Cc1 02+03(9—90—t) 03(9—90>

The risk function can be calculated once the decision rule is specified. We
discuss this example again in Chapter 4. 1
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Sometimes it is useful to consider randomized decision rules. Examples
are given in §2.3.2, Chapters 4 and 6. A randomized decision rule is a
function § on X x F; such that, for every A € F,, 6(+, A) is a Borel function
and, for every x € X, §(z,-) is a probability measure on (A, F,). To choose
an action in A when a randomized rule § is used, we need to simulate a
pseudorandom element of A according to §(x,-). Thus, an alternative way
to describe a randomized rule is to specify the method of simulating the
action from A for each z € X. If A is a subset of a Euclidean space, for
example, then the result in Theorem 1.7(ii) can be applied. Also, see §7.2.3.

A nonrandomized decision rule T' previously discussed can be viewed
as a special randomized decision rule with d(xz, {a}) = I1,y(T(7)), a € A,
x € X. Another example of a randomized rule is a discrete distribution
0(z,-) assigning probability p;(z) to a nonrandomized decision rule Tj(z),
j = 1,2, ..., in which case the rule § can be equivalently defined as a rule
taking value T (z) with probability p;(z). See Exercise 64 for an example.

The loss function for a randomized rule § is defined as

L(P,6,2) = / L(P, a)dd(x, a),

which reduces to the same loss function we discussed when ¢ is a nonran-
domized rule. The risk of a randomized rule ¢ is then

Rs(P) = E[L(P,5,X)] = /x / L(P,a)dd(z, a)dPx (x). (2.22)

2.3.2 Admissibility and optimality

Consider a given decision problem with a given loss L(P, a).

Definition 2.7 (Admissibility). Let & be a class of decision rules (ran-
domized or nonrandomized). A decision rule 7" € S is called S-admissible
(or admissible when & contains all possible rules) if and only if there does
not exist any S € < that is better than 7' (in terms of the risk). 1

If a decision rule T is inadmissible, then there exists a rule better than T'.
Thus, T should not be used in principle. However, an admissible decision
rule is not necessarily good. For example, in an estimation problem a silly
estimator T'(X) = a constant may be admissible (Exercise 71).

The relationship between the admissibility and the optimality defined in
§2.3.1 can be described as follows. If T is S-optimal, then it is 3-admissible;
if T, is S-optimal and Tj is $-admissible, then Tj is also S-optimal and is
equivalent to Ty; if there are two $-admissible rules that are not equivalent,
then there does not exist any $-optimal rule.
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Suppose that we have a sufficient statistic T'(X) for P € P. Intuitively,
our decision rule should be a function of T', based on the discussion in
§2.2.2. This is not true in general, but the following result indicates that
this is true if randomized decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of R¥. Let T(X) be a
sufficient statistic for P € P and let dy be a decision rule. Then
51(t7 A) = E[(SO(Xa A)|T = t]a (223)

which is a randomized decision rule depending only on T, is equivalent to
0o if Rs,(P) < oo for any P € P.

Proof. Note that d; defined by (2.23) is a decision rule since §; does not
depend on the unknown P by the sufficiency of T'. From (2.22),

Rs,(P) = E { / L(P,a)ds; (X, a)}
]}

A

- E {E [/L(P, a)ddo (X, a)

A

_F { / L(P, a)dso(X, a)}
= Rs,(P),

where the proof of the second equality is left to the reader. 1

Note that Proposition 2.2 does not imply that Jy is inadmissible. Also,
if §p is a nonrandomized rule,

S1(t, A) = E[I4(80(X)|T = t] = P(6o(X) € A|T = 1)

is still a randomized rule, unless éo(X) = h(T(X)) a.s. P for some Borel
function h (Exercise 75). Hence, Proposition 2.2 does not apply to situa-
tions where randomized rules are not allowed.

The following result tells us when nonrandomized rules are all we need
and when decision rules that are not functions of sufficient statistics are
inadmissible.

Theorem 2.5. Suppose that A is a convex subset of R* and that for any
P € P, L(P,a) is a convex function of a.

(i) Let 6 be a randomized rule satisfying [ |[lalldé(z,a) < oo for any
z € X and let Ty(x) = [ add(x,a). Then L(P,Ti(z)) < L(P,6,z) (or
L(P,Ti(x))< L(P,d,z) if L is strictly convex in a) for any z€X and P€P.
(ii) (Rao-Blackwell theorem). Let T be a sufficient statistic for P € P, Ty €
R* be a nonrandomized rule satisfying E||Ty|| < oo, and Ty = E[Tp(X)|T).
Then Ry, (P) < Rr,(P) for any P € P. If L is strictly convex in a and Tj
is not a function of T, then T is inadmissible. &



118 2. Fundamentals of Statistics

The proof of Theorem 2.5 is an application of Jensen’s inequality (1.47)
and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.
However, usually there are still too many rules left after the elimination
of some rules according to admissibility and sufficiency. Although one is
typically interested in a S-optimal rule, frequently it does not exist, if S is
either too large or too small. The following examples are illustrations.

Example 2.22. Let X1, ..., X,, be i.i.d. random variables from a population
P € P that is the family of populations having finite mean p and variance
o2, Consider the estimation of y (A = R) under the squared error loss. It
can be shown that if we let & be the class of all possible estimators, then
there is no $-optimal rule (exercise). Next, let §7 be the class of all linear
functions in X = (X1, ..., X,), e, T(X) = >, ¢;X; with known ¢; € R,
i =1,...,n. It follows from (2.19) and the discussion after Example 2.19
that

n 2 n
Rp(P) = i (Z ci — 1) +0*y cl. (2.24)
=1 =1

We now show that there does not exist Ty = " ; ¢¥ X; such that Ry, (P)

K2

< Rp(P) for any P € P and T € 3. If there is such a T, then (cf, ..., c})
is a minimum of the function of (1, ..., ¢,) on the right-hand side of (2.24).
Then ¢}, ..., ¢;; must be the same and equal to y? /(o2 +npu?), which depends
on P. Hence T, is not a statistic. This shows that there is no $7-optimal

rule.

Consider now a subclass & C &7 with ¢;’s satisfying Z?Zl ¢; = 1. From
(2.24), Rp(P) = 0?3711, ¢} if T € S2. Minimizing o2 377, ¢f subject to
2?21 ¢; = 1 leads to an optimal solution of ¢; = n~! for all 5. Thus, the

sample mean X is So-optimal.

There may not be any optimal rule if we consider a small class of decision
rules. For example, if &3 contains all the rules in &y except X, then one
can show that there is no $3-optimal rule. 1

Example 2.23. Assume that the sample X has the binomial distribution
Bi(60,n) with an unknown 6 € (0, 1) and a fixed integer n > 1. Consider the
hypothesis testing problem described in Example 2.20 with Hy : 6 € (0, 6]
versus Hy : 0 € (6p,1), where 0y € (0,1) is a fixed value. Suppose that we
are only interested in the following class of nonrandomized decision rules:
S ={Tj:5=0,1,...,n—1}, where Tj(X) = I{j41,... »n}(X). From Example
2.20, the risk function for 7; under the 0-1 loss is

R (0) = P(X > 7)10,00)(0) + P(X < 5)L(g,,1)(0)-

J
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For any integers k and j, 0 < k< j<n—1,

_ [ Pk<X<j)<0 0<60<6b

Hence, neither T; nor T}, is better than the other. This shows that every
T} is S-admissible and, thus, there is no S-optimal rule.

In view of the fact that an optimal rule often does not exist, statisticians
adopt the following two approaches to choose a decision rule. The first
approach is to define a class & of decision rules that have some desirable
properties (statistical and/or nonstatistical) and then try to find the best
rule in §. In Example 2.22, for instance, any estimator 1" in &9 has the
property that 7' is linear in X and E[T(X)] = p. In a general estimation

problem, we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an
estimator T'(X) of a real-valued parameter ¢ of the unknown population
is defined to be br(P) = E[T(X)] — ¢ (which is denoted by by () when P
is in a parametric family indexed by 6). An estimator T'(X) is said to be
unbiased for 9 if and only if bp(P) =0 for any P € P. 1

Thus, J9 in Example 2.22 is the class of unbiased estimators linear in
X. In Chapter 3, we discuss how to find a $-optimal estimator when < is
the class of unbiased estimators or unbiased estimators linear in X.

Another class of decision rules can be defined after we introduce the
concept of invariance.

Definition 2.9 Let X be a sample from P € P.

(i) A class G of one-to-one transformations of X is called a group if and
only if g; € G implies giogs € G and g[l eg.

(ii) We say that P is invariant under G if and only if g(Px) = Pyx) is a
one-to-one transformation from P onto P for each g € G.

(iii) A decision problem is said to be invariant if and only if P is invari-
ant under G and the loss L(P,a) is invariant in the sense that, for ev-
ery g € G and every a € A, there exists a unique g(a) € A such that
L(Px,a) = L (Pyx),9(a)). (Note that g(X) and g(a) are different func-
tions in general.)

(iv) A decision rule T'(z) is said to be invariant if and only if, for every
geGandevery x € X, T(g(x)) = g(T(x)). 1

Invariance means that our decision is not affected by one-to-one trans-
formations of data.

In a problem where the distribution of X is in a location-scale family
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P on R*, we often consider location-scale transformations of data X of the
form g(X) = AX + ¢, where ¢ € C C R* and A € 7, a class of invertible
k x k matrices. Assume that if A; € 7, i = 1,2, then A;l € 7 and
A1As € T, and that if ¢; € C, i = 1,2, then —¢; € C and Acy + ¢o € C for
any A € 7. Then the collection of all transformations is a group. A special
case is given in the following example.

Example 2.24. Let X have i.i.d. components from a population in a
location family P = {P, : p € R}. Consider the location transformation
9e(X) = X +c¢Ji, where ¢ € R and Jy, is the k-vector whose components are
all equal to 1. The group of transformation is G = {g. : ¢ € R}, which is a
location-scale transformation group with 7 = {I;} and C = {¢J : c € R}.
P is invariant under G with g.(P,) = P 4.. For estimating p under the loss
L(p,a) = L(u—a), where L(-) is a nonnegative Borel function, the decision
problem is invariant with g.(a) = a + ¢. A decision rule T is invariant if
and only if T(z +cJy) = T(x) +c for every x € R* and ¢ € R. An example
of an invariant decision rule is T'(x) = ["x for some [ € R* with I7.J;, = 1.
Note that T'(x) = {72 with {7 J;, = 1 is in the class So in Example 2.22. 1

In §4.2 and §6.3, we discuss the problem of finding a $-optimal rule
when S is a class of invariant decision rules.

The second approach to finding a good decision rule is to consider some
characteristic Ry of Ry (P), for a given decision rule T', and then minimize
Ry over T € . The following are two popular ways to carry out this idea.
The first one is to consider an average of Ry (P) over P € P:

v (IT) = /P R (P)dII(P),

where II is a known probability measure on (P,Fp) with an appropri-
ate o-field Fp. r,(II) is called the Bayes risk of T wrt. II. If T, € &
and 7, (II) < r, (II) for any T € S, then T, is called a S-Bayes rule
(or Bayes rule when & contains all possible rules) w.r.t. II. The second
method is to consider the worst situation, i.e., suppep Rr(P). If T, € S
and suppep Ry, (P) < suppep Rp(P) for any T' € S, then T is called a
S-minimaz rule (or minimax rule when < contains all possible rules). Bayes
and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a

parametric problem where P = Py for a # € R*. Consider the special case
of k=1 and L(#,a) = (§ — a)?, the squared error loss. Note that

o (IT) = /R B[ — T(X))2dT(6),
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which is equivalent to E[@ — T'(X)]?, where 6 is a random variable having
the distribution II and, given @ = 0, the conditional distribution of X is
Py. Then, the problem can be viewed as a prediction problem for 8 using
functions of X. Using the result in Example 1.22, the best predictor is
E(0]X), which is the $-Bayes rule w.r.t. II with & being the class of rules
T(X) satisfying E[T(X)]? < oo for any 6.

As a more specific example, let X = (X, ..., X,,) with i.i.d. components
having the N (u,0?) distribution with an unknown p = 6 € R and a known
o2, and let II be the N (po,03) distribution with known po and o2. Then
the conditional distribution of 6 given X = z is N(u«(z), c?) with

2 2 2 2
7 I and 2= 20° (2.25)

P T) = Ho
+(@) nog + o2 nog + o2 nog + o2

(exercise). The Bayes rule w.r.t. I is E(0|X) = p«(X).

In this special case we can show that the sample mean X is $-minimax
with & being the collection of all decision rules. For any decision rule T,

sup Rr(0) > /R Rr(6)d11(0)

0ER
> /R R,.. (0)dI1(6)

:E{H_/J* ]2}
= E{B{0 — n.(X)?|X}}
- B()

where 11, (X) is the Bayes rule given in (2.25) and ¢? is also given in (2.25).

Since this result is true for any o3 > 0 and ¢? — 02/n as 05 — o0,

2

sup Ry (6) > - sup R (0),
0ER n 0ER

where the equality holds because the risk of X under the squared error loss
is, by (2.20), 02/n and independent of § = . Thus, X is minimax.

A minimax rule in a general case may be difficult to obtain. It can be
seen that if both 4 and o2 are unknown in the previous discussion, then

sup Rg(0) = oo, (2.26)
0ER % (0,00)

where 0 = (u,0%). Hence X cannot be minimax unless (2.26) holds with
X replaced by any decision rule 7', in which case minimaxity becomes
meaningless. 1
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2.4 Statistical Inference

The loss function plays a crucial role in statistical decision theory. Loss
functions can be obtained from a utility analysis (Berger, 1985), but in
many problems they have to be determined subjectively. In statistical in-
ference, we make an inference about the unknown population based on
the sample X and inference procedures without using any loss function, al-
though any inference procedure can be cast in decision-theoretic terms as
a decision rule.

There are three main types of inference procedures: point estimators,
hypothesis tests, and confidence sets.

2.4.1 Point estimators

The problem of estimating an unknown parameter related to the unknown
population is introduced in Example 2.19 and the discussion after Example
2.19 as a special statistical decision problem. In statistical inference, how-
ever, estimators of parameters are derived based on some principle (such as
the unbiasedness, invariance, sufficiency, substitution principle, likelihood
principle, Bayesian principle, etc.), not based on a loss or risk function.
Since confidence sets are sometimes also called interval estimators or set
estimators, estimators of parameters are called point estimators.

In Chapters 3 through 5, we consider how to derive a “good” point esti-
mator based on some principle. Here we focus on how to assess performance
of point estimators.

Let ¥ € © C R be a parameter to be estimated, which is a function of
the unknown population P or @ if P is in a parametric family. An estimator
is a statistic with range ©. First, one has to realize that any estimator T'(X)
of ¥ is subject to an estimation error T'(z) — ¢ when we observe X = x.
This is not just because T'(X) is random. In some problems T'(x) never
equals ¢. A trivial example is when T(X) has a continuous c.d.f. so that
P(T(X)=1) =0. As a nontrivial example, let X1, ..., X;, be i.i.d. binary
random variables (also called Bernoulli variables) with P(X; = 1) = p and
P(X; =0) =1 — p. The sample mean X is shown to be a good estimator
of ¥ = p in later chapters, but Z never equals ¥ if ¥ is not one of j/n,
j =0,1,...,n. Thus, we cannot assess the performance of T'(X) by the
values of T'(z) with particular z’s and it is also not worthwhile to do so.

The bias by (P) and unbiasedness of a point estimator 7'(X) is defined
in Definition 2.8. Unbiasedness of T'(X) means that the mean of T(X) is
equal to ¥. An unbiased estimator T(X) can be viewed as an estimator
without “systematic” error, since, on the average, it does not overestimate
(i.e., bp(P) > 0) or underestimate (i.e., by(P) < 0). However, an unbiased
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estimator T'(X) may have large positive and negative errors T'(z)—9, z € X,
although these errors cancel each other in the calculation of the bias, which
is the average [[T'(z) — 9]dPx(z).

Hence, for an unbiased estimator T'(X), it is desired that the values of
T'(x) be highly concentrated around ¢. The variance of T'(X) is commonly
used as a measure of the dispersion of T'(X). The mean squared error (mse)
of T(X) as an estimator of ¥ is defined to be

mser(P) = E[T(X) — 9)? = [br(P)]? + Var(T(X)), (2.27)

which is denoted by mser() if P is in a parametric family. mser(P) is
equal to the variance Var(T'(X)) if and only if T(X) is unbiased. Note
that the mse is simply the risk of T" in statistical decision theory under the
squared error loss.

In addition to the variance and the mse, the following are other measures
of dispersion that are often used in point estimation problems. The first one
is the mean absolute error of an estimator T'(X) defined to be E|T'(X)—49|.
The second one is the probability of falling outside a stated distance of 1,
ie, P(|T(X) — 9| > €) with a fixed € > 0. Again, these two measures of
dispersion are risk functions in statistical decision theory with loss functions
|0 — a| and (¢ o) (Y — al), respectively.

For the bias, variance, mse, and mean absolute error, we have implicitly
assumed that certain moments of T'(X) exist. On the other hand, the dis-
persion measure P(|T(X)—9| > €) depends on the choice of €. It is possible
that some estimators are good in terms of one measure of dispersion, but
not in terms of other measures of dispersion. The mse, which is a function
of bias and variance according to (2.27), is mathematically easy to handle
and, hence, is used the most often in the literature. In this book, we use
the mse to assess and compare point estimators unless otherwise stated.

Examples 2.19 and 2.22 provide some examples of estimators and their
biases, variances, and mse’s. The following are two more examples.

Example 2.26. Consider the life-time testing problem in Example 2.2. Let
Xi,..., X, beiid. from an unknown c.d.f. F. Suppose that the parameter
of interest is ¥ = 1 — F(¢) for a fixed ¢ > 0. If F' is not in a parametric
family, then a nonparametric estimator of F(¢) is the empirical c.d.f.

1 n
= S Iwy(Xi),  teR. (2.28)
=1

Since I(—oo,1(X1); s [(—o0,g(Xn) are ii.d. binary random variables with
P(l(—s0)(X;) = 1) = F(t), the random variable nF},(¢) has the binomial
dlstrlbutlon Bi(F(t),n). Consequently, F,(t) is an unbiased estimator of



124 2. Fundamentals of Statistics

F(t) and Var(Fy,(t)) = msep, +)(P) = F(t)[1 — F(t)]/n. Since any linear
combination of unbiased estimators is unbiased for the same linear com-
bination of the parameters (by the linearity of expectations), an unbiased
estimator of ¥ is U(X) = 1 — F,,(¢), which has the same variance and mse
as Fi,(t).

The estimator U(X) = 1 — F,(t) can be improved in terms of the
mse if there is further information about F. Suppose that F' is the c.d.f.
of the exponential distribution F(0,6) with an unknown 6 > 0. Then
¥ = e %% From §2.2.2, the sample mean X is sufficient for # > 0. Since
the squared error loss is strictly convex, an application of Theorem 2.5(ii)
(Rao-Blackwell theorem) shows that the estimator T'(X) = E[1— F,(¢)|X],
which is also unbiased, is better than U(X) in terms of the mse. Figure
2.1 shows graphs of the mse’s of U(X) and T'(X), as functions of 4, in the
special case of n =10, t =2, and F(z) = (1 — e‘x/g)l(o’oo) (). 1

Example 2.27. Consider the sample survey problem in Example 2.3 with a
constant selection probability p(s) and univariate y;. Let ¢ = Y Zf\il Vi,
the population total. We now show that the estimator Y = n Zie s Vi is
an unbiased estimator of Y. Let a; = 1 if i € s and a; = 0 otherwise. Thus,

Y = Jr\f Zf\il a;y;. Since p(s) is constant, E(a;) = P(a; =1) = n/N and

N N N
=K (JZ Z%%) = JZZ%E(%) = Zyz =Y.
im1 i=1 i=1

Note that
Var(a;) = B(a;) - [E@)] = | (1= ¢
and for i # j,
n(n—1) n?
Cov(a;,aj) = Pla; =1,a; = 1) — E(a;)E(a;) = N(N—1) " N?

Hence, the variance or the mse of Y is

. N? N
Var(Y) = 2 Var Zaiyi

Zy2Var a;) Z y;y;Cov(a;, a;)

1<i<j<N

e 5

i=1 1<i<j<N
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Figure 2.1: mse’s of U(X) and T'(X) in Example 2.26

2.4.2 Hypothesis tests

The basic elements of a hypothesis testing problem are described in Exam-
ple 2.20. In statistical inference, tests for a hypothesis are derived based on
some principles similar to those given in an estimation problem. Chapter
6 is devoted to deriving tests for various types of hypotheses. Several key
ideas are discussed here.

To test the hypotheses Hy versus H; given in (2.21), there are only two
types of statistical errors we may commit: rejecting Hy when Hy is true
(called the type I error) and accepting Hy when Hy is wrong (called the
type II error). In statistical inference, a test T', which is a statistic from X
to {0,1}, is assessed by the probabilities of making two types of errors:

ar(P)=P(T(X)=1) P e Py (2.29)
and
1—ar(P)=P(T(X)=0) P e P, (2.30)

which are denoted by ar(f) and 1 — ar(0) if P is in a parametric family
indexed by 6. Note that these are risks of 7" under the 0-1 loss in statistical
decision theory. However, an optimal decision rule (test) does not exist even
for a very simple problem with a very simple class of tests (Example 2.23).
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That is, error probabilities in (2.29) and (2.30) cannot be minimized simul-
taneously. Furthermore, these two error probabilities cannot be bounded
simultaneously by a fixed a € (0,1) when we have a sample of a fixed size.

Therefore, a common approach to finding an “optimal” test is to assign
a small bound « to one of the error probabilities, say ar(P), P € Py, and
then to attempt to minimize the other error probability 1 —ap(P), P € Py,
subject to

sup ar(P) < a. (2.31)
PePy

The bound « is called the level of significance. The left-hand side of (2.31)
is called the size of the test T. Note that the level of significance should
be positive, otherwise no test satisfies (2.31) except the silly test T(X) =0
a.s. P.

Example 2.28. Let X1, ..., X,, be i.i.d. from the N (i, o?) distribution with
an unknown p € R and a known o2. Consider the hypotheses

Hy:p < po versus Hy oy > po,

where pg is a fixed constant. Since the sample mean X is sufficient for
i € R, it is reasonable to consider the following class of tests: T.(X) =
I (e 00) (X), i.e., Hy is rejected (accepted) if X > ¢ (X < ¢), where c € R is
a fixed constant. Let ® be the c.d.f. of N(0,1). Then, by the property of
the normal distributions,

an () = PX) =) =1-0 (VT

Figure 2.2 provides an example of a graph of two types of error probabilities,
with po = 0. Since ®(¢) is an increasing function of ¢,

V(e — uo)> .

o013
g

PePo
In fact, it is also true that

1527131[1 —ar, ()] =2 (

Vnl(e— Mo)> |

g

If we would like to use an « as the level of significance, then the most
effective way is to choose a ¢, (a test T, (X)) such that

a= sup ar, (k)
PePy

in which case ¢, must satisfy

1— & (\/”(Ca ﬂ())) .,

g
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Figure 2.2: Error probabilities in Example 2.28

ie., co = 021_a/\/n + o, where z, = ®~1(a). In Chapter 6, it is shown
that for any test 7'(X) satisfying (2.31),

l—ar(p) =21-ar, (n),  w>po. B

The choice of a level of significance « is usually somewhat subjective.
In most applications there is no precise limit to the size of T that can be
tolerated. Standard values, such as 0.10, 0.05, or 0.01, are often used for
convenience.

For most tests satisfying (2.31), a small « leads to a “small” rejection
region. It is good practice to determine not only whether Hy is rejected or
accepted for a given « and a chosen test T, but also the smallest possible
level of significance at which Hy would be rejected for the computed T, (),
ie, & =inf{a € (0,1) : To(z) = 1}. Such an &, which depends on = and
the chosen test and is a statistic, is called the p-value for the test T,.

Example 2.29. Consider the problem in Example 2.28. Let us calculate
the p-value for T, . Note that

a=1- (V"(C“”0)> o1 (\/n(i’uo)>

a (2
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if and only if Z > ¢, (or T, (z) = 1). Hence
1-® (W(x N “O)) = inf{a € (0,1): T, (z) = 1} = &(x)
o
is the p-value for T, . It turns out that T, (x) = I(g,a)(G(z)). ¥

With the additional information provided by p-values, using p-values is
typically more appropriate than using fixed-level tests in a scientific prob-
lem. However, a fixed level of significance is unavoidable when acceptance
or rejection of Hy implies an imminent concrete decision. For more discus-
sions about p-values, see Lehmann (1986) and Weerahandi (1995).

In Example 2.28, the equality in (2.31) can always be achieved by a
suitable choice of ¢. This is, however, not true in general. In Example 2.23,
for instance, it is possible to find an « such that

sup P(Tj(X)=1) #a
0<0<0o
for all T;’s. In such cases, we may consider randomized tests, which are
introduced next.

Recall that a randomized decision rule is a probability measure §(z,-)
on the action space for any fixed x. Since the action space contains only
two points, 0 and 1, for a hypothesis testing problem, any randomized test
0(X, A) is equivalent to a statistic T'(X) € [0, 1] with T'(x) = 6(z, {1}) and
1 —T(x) = §(x,{0}). A nonrandomized test is obviously a special case
where T'(x) does not take any value in (0,1).

For any randomized test T(X), we define the type I error probability
to be arp(P) = E[T(X)], P € Py, and the type II error probability to be
1—ap(P) = E[l1 -T(X)], P € P1. For a class of randomized tests, we
would like to minimize 1 — ap(P) subject to (2.31).

Example 2.30. Consider Example 2.23 and the following class of random-
ized tests:

1 X >
Tj,q(X): q X=j
0 X <7,

where j =0,1,...,n — 1 and ¢q € [0,1]. Then

ar,,(0) =P(X >j)+qP(X=j) 0<60<6

and
l—ap, (@) =P(X<j)+(1-q@P(X=j) 6<6<L1

It can be shown that for any « € (0, 1), there exist an integer j and g € (0, 1)
such that the size of T}, is o (exercise). 1
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2.4.3 Confidence sets

Let ¥ be a k-vector of unknown parameters related to the unknown pop-
ulation P € P and C(X) € Bg depending only on the sample X, where

O e B* is the range of 0. If

nf P(9 € C(X)) > 1-a, (2.33)
where « is a fixed constant in (0,1), then C(X) is called a confidence set
for ¢ with level of significance 1 — .. The left-hand side of (2.33) is called
the confidence coefficient of C'(X), which is the highest possible level of
significance for C'(X). A confidence set is a random element that covers
the unknown ¢ with certain probability. If (2.33) holds, then the coverage
probability of C'(X) is at least 1 —«, although C(z) either covers or does not
cover ¥ whence we observe X = x. The concepts of level of significance and
confidence coeflicient are very similar to the level of significance and size in
hypothesis testing. In fact, it is shown in Chapter 7 that some confidence
sets are closely related to hypothesis tests.

Consider a real-valued 9. If C(X) = [#(X),¥(X)] for a pair of real-
valued statistics ¥ and ¢, then C(X) is called a confidence interval for 9.
If C(X) = (—o00,9(X)] (or [§(X),00)), then ¥ (or ¥) is called an upper (or
a lower) confidence bound for 9.

A confidence set (or interval) is also called a set (or an interval) estimator
of 9, although it is very different from a point estimator (discussed in
§2.4.1).

Example 2.31. Consider Example 2.28. Suppose that a confidence inter-
val for ¢ = p is needed. Again, we only need to consider ¥(X) and 9(X),
since the sample mean X is sufficient. Consider confidence intervals of the

form [X — ¢, X + ¢], where ¢ € (0,00) is fixed. Note that
Ppe[X—c,X+d)=P(X —p| <c)=1-2®(—+/nc/o),

which is independent of x. Hence, the confidence coefficient of [X —¢, X +¢]
is 1 —2® (—y/nc/o), which is an increasing function of ¢ and converges to 1
as ¢ — oo or 0 as ¢ — 0. Thus, confidence coefficients are positive but less
than 1 except for silly confidence intervals [X, X] and (—oo, ). We can
choose a confidence interval with an arbitrarily large confidence coefficient,
but the chosen confidence interval may be so wide that it is practically
useless.

If 0% is also unknown, then [X — ¢, X + ¢] has confidence coefficient 0
and, therefore, is not a good inference procedure. In such a case a different
confidence interval for p with positive confidence coefficient can be derived
(Exercise 97 in §2.6). 1
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This example tells us that a reasonable approach is to choose a level of
significance 1 — « € (0,1) (just like the level of significance in hypothesis
testing) and a confidence interval or set satisfying (2.33). In Example 2.31,
when o2 is known and ¢ is chosen to be 021—a)2/V/n, where z, = d~1(a),
the confidence coefficient of the confidence interval [X — ¢, X + ] is ezactly
1 — « for any fixed o € (0,1). This is desirable since, for all confidence
intervals satisfying (2.33), the one with the shortest interval length is pre-
ferred.

For a general confidence interval [¢(X), ¥(X)], its length is (X ) —9(X),
which may be random. We may consider the expected (or average) length
E[9(X)—9(X)]. The confidence coefficient and expected length are a pair of
good measures of performance of confidence intervals. Like the two types
of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected
length) simultaneously. A common approach is to minimize the length (or
expected length) subject to (2.33).

For an unbounded confidence interval, its length is co. Hence we have
to define some other measures of performance. For an upper (or a lower)
confidence bound, we may consider the distance 9(X) — ¢ (or ¥ — (X)) or
its expectation.

To conclude this section, we discuss an example of a confidence set for
a two-dimensional parameter. General discussions about how to construct
and assess confidence sets are given in Chapter 7.

Example 2.32. Let Xi,..., X, be ii.d. from the N(u,0?) distribution
with both g € R and 02 > 0 unknown. Let § = (u,0?) and a € (0,1) be
given. Let X be the sample mean and S? be the sample variance. Since
(X, 5?) is sufficient (Example 2.15), we focus on C(X) that is a function of
(X, S5?). From Example 2.18, X and S? are independent and (n —1)5%/0?
has the chi-square distribution x2 ;. Since \/n(X — p)/c has the N(0,1)
distribution (Exercise 43 in §1.6),

X—n
a/v/n

where ¢, = &1 (1+\/217a) (verify). Since the chi-square distribution x2_,

P<—éas s5a>=¢1—a,

is a known distribution, we can always find two constants ¢, and ¢z, such

that 52
-1
2) SCZ(X):\/l_a

g

P (Cla S (n
Then

X - _1)s?
Pl —c, < Mgéavclag(n )S < c2a :17043
a/v/n o?
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variance

mean

Figure 2.3: A confidence set for 6 in Example 2.32

or

- (n(x W, (n—1)s?

2 (n—1)S?
o <07, So° <

Co C2a Cla

) =1-a. (234)

The left-hand side of (2.34) defines a set in the range of @ = (u, 02) bounded
by two straight lines, 02 = (n —1)S%/cio, i = 1,2, and a curve o2 =
n(X —pu)? /2 (see the shadowed part of Figure 2.3). This set is a confidence

set for 6 with confidence coefficient 1 — «, since (2.34) holds for any 6. 1

2.5 Asymptotic Criteria and Inference

We have seen that in statistical decision theory and inference, a key to
the success of finding a good decision rule or inference procedure is being
able to find some moments and/or distributions of various statistics. Al-
though many examples are presented (including those in the exercises in
§2.6), there are more cases in which we are not able to find exactly the
moments or distributions of given statistics, especially when the problem
is not parametric (see, e.g., the discussions in Example 2.8).

In practice, the sample size n is often large, which allows us to ap-
proximate the moments and distributions of statistics that are impossible
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to derive, using the asymptotic tools discussed in §1.5. In an asymptotic
analysis, we consider a sample X = (X,..., X,,) not for fixed n, but as a
member of a sequence corresponding to n = ng,ng + 1, ..., and obtain the
limit of the distribution of an appropriately normalized statistic or variable
T,(X) as n — oo. The limiting distribution and its moments are used as
approximations to the distribution and moments of T;,(X) in the situation
with a large but actually finite n. This leads to some asymptotic statistical
procedures and asymptotic criteria for assessing their performances, which
are introduced in this section.

The asymptotic approach is not only applied to the situation where no
exact method is available, but also used to provide an inference procedure
simpler (e.g., in terms of computation) than that produced by the exact
approach (the approach considering a fixed n). Some examples are given
in later chapters.

In addition to providing more theoretical results and/or simpler infer-
ence procedures, the asymptotic approach requires less stringent mathemat-
ical assumptions than does the exact approach. The mathematical precision
of the optimality results obtained in statistical decision theory, for example,
tends to obscure the fact that these results are approximations in view of
the approximate nature of the assumed models and loss functions. As the
sample size increases, the statistical properties become less dependent on
the loss functions and models. However, a major weakness of the asymp-
totic approach is that typically no good estimates for the precision of the
approximations are available and, therefore, we cannot determine whether
a particular n in a problem is large enough to safely apply the asymptotic
results. To overcome this difficulty, asymptotic results are frequently used
in combination with some numerical/empirical studies for selected values
of n to examine the finite sample performance of asymptotic procedures.

2.5.1 Consistency

A reasonable point estimator is expected to perform better, at least on
the average, if more information about the unknown population is avail-
able. With a fixed model assumption and sampling plan, more data (larger
sample size n) provide more information about the unknown population.
Thus, it is distasteful to use a point estimator T,, which, if sampling were
to continue indefinitely, could possibly have a nonzero estimation error, al-
though the estimation error of T,, for a fixed n may never equal 0 (see the
discussion in §2.4.1).

Definition 2.10 (Consistency of point estimators). Let X = (X,..., X},)
be a sample from P € P and T,,(X) be a point estimator of ¥ for every n.
(i) To(X) is called consistent for ¢ if and only if T,,(X) —, ¢ w.r.t. any



2.5. Asymptotic Criteria and Inference 133

PeP.

(ii) Let {a,} be a sequence of positive constants diverging to oo. Tp,(X) is
called a,-consistent for ¥ if and only if a, [T, (X) — 9] = Op(1) w.r.t. any
PeP.

(iil) T, (X) is called strongly consistent for 9 if and only if T, (X) —q4.5 ¢
w.r.t. any P € P.

(iv) T, (X) is called L,-consistent for 9 if and only if T;,(X) — ¢ w.r.t.
any P € P for some fixed r > 0. 1

Consistency is actually a concept relating to a sequence of estimators,
{Th,n = no,no + 1,...}, but we usually just say “consistency of T,,” for
simplicity. Each of the four types of consistency in Definition 2.10 describes
the convergence of T,,(X) to ¥ in some sense, as n — oco. In statistics,
consistency according to Definition 2.10(i), which is sometimes called weak
consistency since it is implied by any of the other three types of consistency,
is the most useful concept of convergence of T,, to 1. Ls-consistency is also
called consistency in mse, which is the most useful type of L,-consistency.

Example 2.33. Let Xi,...,X,, be i.i.d. from P € P. If ¢ = u, which is
the mean of P and is assumed to be finite, then by the SLLN (Theorem
1.13), the sample mean X is strongly consistent for x and, therefore, is
also consistent for p. If we further assume that the variance of P is finite,
then by (2.20), X is consistent in mse and is y/n-consistent. With the finite
variance assumption, the sample variance S? is strongly consistent for the
variance of P, according to the SLLN.

Consider estimators of the form T, = Z?:l cniXi, where {cp;} is a
double array of constants. If P has a finite variance, then by (2.24), T,
is consistent in mse if and only if Y1 | ¢,y — 1 and Y ¢, — 0. If we
only assume the existence of the mean of P, then T,, with ¢,; = ¢;/n sat-
isfying n=t>""" | ¢; — 1 and sup; |¢;| < oo is strongly consistent (Theorem
1.13(ii)).  n

One or a combination of the law of large numbers, the CLT, Slutsky’s
theorem (Theorem 1.11), and the continuous mapping theorem (Theorems
1.10 and 1.12) are typically applied to establish consistency of point estima-
tors. In particular, Theorem 1.10 implies that if T}, is (strongly) consistent
for ¢ and g is a continuous function of ¢, then ¢(T7,) is (strongly) consistent
for g(¥). For example, in Example 2.33 the point estimator X? is strongly
consistent for p2. To show that X? is y/n-consistent under the assumption
that P has a finite variance 02, we can use the identity

V(X2 = %) = (X — p)(X + p)

and the fact that X is y/n-consistent for p and X + p = O,(1). (Note that
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X2 may not be consistent in mse since we do not assume that P has a finite
fourth moment.) Alternatively, we can use the fact that v/n(X? — p?) —y4
N(0,4u%0?) (by the CLT and Theorem 1.12) to show the \/n-consistency
of X2

The following example shows another way to establish consistency of
some point estimators.

Example 2.34. Let Xq,..., X, be ii.d. from an unknown P with a con-
tinuous c.d.f. F satisfying F'(6) = 1 for some § € R and F(z) < 1 for any
x < f. Consider the largest order statistic X(,). Forany e > 0, F(f—¢) <1
and

P(|X(ny —0| > €)= P(Xn) <0—¢€) =[F(0—¢)]",
which imply (according to Theorem 1.8(v)) X(,) —as 0, ie., X, is
strongly consistent for 6. If we assume that F(i)(tﬁ)*), the ith-order left-

hand derivative of F' at 6, exists and vanishes for any i < m and that
F (7’L+1)(9—) exists and is nonzero, where m is a nonnegative integer, then

(_1>mF(m+1) (9_)

L= F&m) ="y,

(60— X(n)>m+1 +o0 (|9 — X(n)|m+1) a.s.
This result and the fact that P (n[l — F(X(,))] > s) = (1 — s/n)" imply
that (6 — X)) = Op(n™1), ie., Xy is n(m+D " _consistent. If m = 0,
then X(,,) is n-consistent, which is the most common situation. If m =1,
then X, is y/n-consistent. The limiting distribution of pm+D™! (X(my—0)
can be derived as follows. Let

(_1>m(m+1)! (m+1)"1
0= |

For ¢t < 0, by Slutsky’s theorem,

. Xy — 0 . 0— X"
lim P <t|= lim P > (=)™t
o (hnw) —) no ({ i (6) > (1)

— lim P (n[l — F(X()] > (=)™

n—oo

= lim [1 - (=t)"*!/n]"

n—o00
_(_pym+1
€ (=) .

It can be seen from the previous examples that there are many consistent
estimators. Like the admissibility in statistical decision theory, consistency
is a very essential requirement in the sense that any inconsistent estimators
should not be used, but a consistent estimator is not necessarily good.
Thus, consistency should be used together with one or a few more criteria.
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We now discuss a situation in which finding a consistent estimator is
crucial. Suppose that an estimator 7, of ¥ satisfies

n[Tn(X) — 9] —q oY, (2.35)

where Y is a random variable with a known distribution, ¢ > 0 is an
unknown parameter, and {c,} is a sequence of constants; for example, in
Example 2.33, v/n(X — pu) —4 N(0,0?); in Example 2.34, (2.35) holds
with ¢, = n™) " and ¢ = [(—1)™(m + 1)l/Fm+D(H-)]m+D"" If
consistent estimator &,, of o can be found, then, by Slutsky’s theorem,

n[Tn(X) — 9] /6 —a Y

and, thus, we may approximate the distribution of ¢, [T, (X) — 9]/6, by
the known distribution of Y.

2.5.2 Asymptotic bias, variance, and mse

Unbiasedness as a criterion for point estimators is discussed in §2.3.2 and
§2.4.1. In some cases, however, there is no unbiased estimator (Exercise 84
in §2.6). Furthermore, having a “slight” bias in some cases may not be a
bad idea (see Exercise 63 in §2.6). Let T, (X) be a point estimator of ¢
for every n. If ET,, exists for every n and lim,,_,, F(T,, — ) = 0 for any
P € P, then T, is said to be approzimately unbiased.

There are many reasonable point estimators whose expectations are
not well defined. For example, consider i.i.d. (X1,Y1),...,(Xp,Ys) from a
bivariate normal distribution with p, = EX; and uy, = EY; # 0. Let
Y = pg/py and T, = X /Y, the ratio of two sample means. Then ET,, is
not defined for any n. It is then desirable to define a concept of asymptotic
bias for point estimators whose expectations are not well defined.

Definition 2.11. (i) Let £,&1,&,... be random variables and {a,} be
a sequence of positive numbers satisfying a,, — oo or a, — a > 0. If
an&n —a € and E[€| < 0o, then E¢/ay, is called an asymptotic expectation
of &,.

(ii) Let T3, be a point estimator of ¥ for every n. An asymptotic expectation
of T, — ¥, if it exists, is called an asymptotic bias of T}, and denoted by
br, (P) (or br, (6) if P is in a parametric family). If lim,, o bz, (P) = 0 for
any P € P, then T, is said to be asymptotically unbiased. 1

Like the consistency, the asymptotic expectation (or bi~as) is a concept
relating to sequences {&,} and {F¢/a,} (or {T,,} and {br, (P)}). Note
that the exact bias by, (P) is not necessarily the same as by, (P) when both
of them exist (Exercise 115 in §2.6). The following result shows that the
asymptotic expectation defined in Definition 2.11 is essentially unique.
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Proposition 2.3. Let {£,} be a sequence of random variables. Suppose
that both F¢/a, and En/b, are asymptotic expectations of &, defined
according to Definition 2.11(i). Then, one of the following three must hold:
(a) E€E=En=0; (b) E€#0, En=0, and b,/a, — 0; or E£ =0, En # 0,
and ay, /b, — 0; (¢) E§ #0, En# 0, and (E¢/a,)/(En/b,) — 1.

Proof. According to Definition 2.11(i), an&, —a & and b€, —a 7.

(i) If both £ and n have nondegenerate c.d.f.’s, then the result follows from
Exercise 129 of §1.6.

(i) Suppose that £ has a nondegenerate c.d.f. but 7 is a constant. If n # 0,
then by Theorem 1.11(iii), a,, /b, — &/n, which is impossible since £ has a
nondegenerate c.d.f. If n = 0, then by Theorem 1.11(ii), b,,/a,, — 0.

(iii) Suppose that both £ and 7 are constants. If £ = n = 0, the result
follows. If £ # 0 and = 0, then b,/a, — 0. If £ # 0 and n # 0, then

bp/an — /& 1

If T,, is a consistent estimator of ¥, then T,, = ¥ + 0p(1) and, by Defi-
nition 2.11(ii), 77, is asymptotically unbiased, although T;, may not be ap-
proximately unbiased; in fact, g(7T},) is asymptotically unbiased for g(9) for
any continuous function g. For the example of T,, = X /Y, T, —q.s. fa/fly
by the SLLN and Theorem 1.10. Hence T,, is asymptotically unbiased, al-
though ET;, may not be defined. In Example 2.34, X, has the asymptotic

bias bx,, (P) = hn(#)EY, which is of order n=(m+D7

When a, (T, —9) —q Y with EY =0 (e.g., T, = X? and ¥ = p? in
Example 2.33), a more precise order of the asymptotic bias of T,, may be
obtained (for comparing different estimators in terms of their asymptotic
biases). Suppose that there is a sequence of random variables {n,} such
that

ATy —a Y and ai(Tn -9 —nn) —a W, (2.36)

where Y and W are random variables with finite means, £Y = 0 and
EW # 0. Then we may define a,? to be the order of br, (P) or define
EW/a?2 to be the a;,? order asymptotic bias of T},. However, n, in (2.36)
may not be unique. Some regularity conditions have to be imposed so that
the order of asymptotic bias of T}, can be uniquely defined. In the following
we focus on the case where X1, ..., X,, are i.i.d. random k-vectors. Suppose
that T}, has the following expansion:

B S C NI $) S ICOS AR () NCED

i=1 j=1

where ¢ and 1) are functions that may depend on P, E¢(X1) = 0, E[¢(X1)]?
< 00, ¢($7y) = d}(yax)a EI/J(l’,Xl) = 0 for all xz, E[w(X“XJ)P < 00, { < j7
and Ev (X1, X1) # 0. From the result for V-statistics in §3.5.3 (Theorem
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3.16 and Exercise 113 in §3.6),

S XL X T,

i=1 j=1

where W is a random variable with EW = Ey(X;,X;). Hence (2.36)
holds with a, = y/n and 1, = n= 'Y, #(X;). Consequently, we can
define E1 (X1, X1)/n to be the n~! order asymptotic bias of T},. Examples
of estimators that have expansion (2.37) are provided in §3.5.3 and §5.2.1.
In the following we consider the special case of functions of sample means.

Let X1, ..., X,, be i.i.d. random k-vectors with finite > = Var(X;), X =
n~t3 " | X;, and T, = g(X), where g is a function on R* that is second-
order differentiable at y = EX; € R¥. Consider T}, as an estimator of 9 =
g(w). Using Taylor’s expansion, we obtain expansion (2.37) with ¢(z) =
[Vg()]" (x— p) and P(z,y) = (x — u)"V2g(u)(y — p) /2, where Vg is the k-
vector of partial derivatives of g and V?2g is the k x k matrix of second-order
partial derivatives of g. By the CLT and Theorem 1.10(iii),

O _ _ ZENV2g(u) Z
LSS U ) = K — ) TR (X = ) —g Y I
i=1 j=1
where Zy, = Ni(0,%). Thus,

2n 2n

is the n~! order asymptotic bias of T}, = g(X), where tr(A) denotes the
trace of the matrix A. Note that the quantity in (2.38) is the same as the

leading term in the exact bias of T;, = g(X) obtained under a much more
stringent condition on the derivatives of g (Lehmann, 1983, Theorem 2.5.1).

Example 2.35. Let Xiq,..., X, be ii.d. binary random variables with
P(X; =1) = p, where p € (0,1) is unknown. Consider first the estimation
of ¥ = p(1—p). Since Var(X) = p(1—p)/n, the n~! order asymptotic bias of
T, = X(1—X) according to (2.38) with g(z) = z(1—=z) is —p(1 —p)/n. On
the other hand, a direct computation shows E[X(1 — X)] = EX — EX? =
p— (EX)? — Var(X) = p(1 — p) — p(1 — p)/n. Hence, the exact bias of T},
is the same as the n~! order asymptotic bias.

Consider next the estimation of ¥ = p~!. In this case, there is no

unbiased estimator of p~! (Exercise 84 in §2.6). Let T, = X ~!. Then, an
n~! order asymptotic bias of T}, according to (2.38) with g(z) = 27! is

(1 —p)/(p*n). On the other hand, ET,, = oo for every n. 1

Like the bias, the mse of an estimator T, of ¥, mser, (P) = E(T,, —9)?,
is not well defined if the second moment of T, does not exist. We now
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define a version of asymptotic mean squared error (amse) and a measure of
assessing different point estimators of a common parameter.

Definition 2.12. Let T, be an estimator of ¥ for every n and {a,} be a
sequence of positive numbers satisfying a,, — oo or a, — a > 0. Assume
that an (T, — ) —4 Y with 0 < EY? < cc.

(i) The asymptotic mean squared error of T, denoted by amser, (P) or
amser, (6) if P is in a parametric family indexed by 6, is defined to be
the asymptotic expectation of (T}, — 9)?, i.e., amser, (P) = EY?/a?. The
asymptotic variance of T}, is defined to be o7, (P) = Var(Y)/aZ,.

(ii) Let T} be another estimator of 9. The asymptotic relative efficiency of
T}, w.t.r. T, is defined to be err 1, (P) = amser, (P)/amser; (P).

(iii) T), is said to be asymptotically more efficient than T, if and only if
limsup,, er; 1, (P) < 1 for any P and < 1 for some P. 1

The amse and asymptotic variance are the same if and only if EY = 0.
By Proposition 2.3, the amse or the asymptotic variance of T;, is essen-
tially unique and, therefore, the concept of asymptotic relative efficiency in
Definition 2.12(ii)-(iii) is well defined.

In Example 2.33, amse 2 (P) = 0?—(2 (P) = 4p20%/n. In Example 2.34,
ag((n)(P) = [, (0)]*Var(Y) and amsex,, (P) = [h,(0)]*EY?.

When both mser, (P) and mser (P) exist, one may compare T}, and
T;, by evaluating the relative efficiency mser, (P)/mser: (P). However, this
comparison may be different from the one using the asymptotic relative
efficiency in Definition 2.12(ii), since the mse and amse of an estimator
may be different (Exercise 115 in §2.6). The following result shows that
when the exact mse of T, exists, it is no smaller than the amse of T,,. It
also provides a condition under which the exact mse and the amse are the
same.

Proposition 2.4. Let T}, be an estimator of ¢ for every n and {a,} be a
sequence of positive numbers satisfying a,, — oo or a,, — a > 0. Suppose
that a, (T, — ) —4 Y with 0 < EY? < co. Then

(i) EY? < liminf,, E[a2(T,, — 9¥)?] and

(i) EY? = lim, o E[a2 (T, —9)?] if and only if {a2 (T}, —9)?} is uniformly
integrable.

Proof. (i) By Theorem 1.10(iii),

min{a? (T, — 9)%,t} —4 min{Y? ¢}
for any ¢ > 0. Since min{a2(T,, — 9)?,t} is bounded by t,

lim E(min{a?(T, — )% t}) = E(min{Y? t})

n—oo
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(Theorem 1.8(viii)). Then
EY? = Jim E(min{Y?,t})
= lim lim E(min{a? (T}, —9)%t})

t—00 Nn—00

= lir?rilnf E(min{a?(T,, —9)?,t})

< liminf E[a?(T, — 9)?],

where the third equality follows from the fact that E(min{a2 (T, —9)?,t})
is nondecreasing in ¢ for any fixed n.
(ii) The result follows from Theorem 1.8(viii). 1

Example 2.36. Let X1, ..., X,, be i.i.d. from the Poisson distribution P(6)
with an unknown 6 > 0. Consider the estimation of ¥ = P(X; = 0) = e~*.
Let Ty, = F(0), where F, is the empirical c.d.f. defined in (2.28). Then
T1, is unbiased and has mser,, (6) = e~ ?(1—e~?%)/n. Also, /n(Tin—0) —4
N(0,e7%(1—e~?%) by the CLT. Thus, in this case amser,, (6) = mser,,, (6).

Next, consider Th, = e=X. Note that ET5, = 6”9(671/"_1). Hence
nbr,, (0) — Oe=?/2. Using Theorem 1.12 and the CLT, we can show that
Vn(Ton—19) —4 N(0,e=2%9). By Definition 2.12(i), amser,, (6) = e =20 /n.
Thus, the asymptotic relative efficiency of Ty, w.r.t. To, is

€Ty, Ton (9) - 0/(60 - 1)3

which is always less than 1. This shows that Ts, is asymptotically more
efficient than 74,,. 1

The result for Tb, in Example 2.36 is a special case (with U,, = X) of
the following general result.

Theorem 2.6. Let g be a function on R* that is differentiable at § € R¥
and let U, be a k-vector of statistics satisfying a,(U, — 0) —4 Y for a
random k-vector Y with 0 < E|Y||? < oo and a sequence of positive
numbers {a,} satisfying a, — oo. Let T,, = g(U,) be an estimator of
¥ = g(#). Then, the amse and asymptotic variance of T;, are, respectively,

E{[Vg(0)"Y'}?/a, and [Vg(0)]"Var(Y)Vg(0)/a7,. 1

2.5.3 Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is
called asymptotic statistical inference or simply asymptotic inference. We
have previously considered asymptotic estimation. We now focus on asymp-
totic hypothesis tests and confidence sets.
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Definition 2.13. Let X = (Xi,...,X,) be a sample from P € P and
T,.(X) be a test for Hy : P € Py versus Hy : P € Py.

(i) If limsup,, a7, (P) < a for any P € Py, then « is an asymptotic signifi-
cance level of T,,.

(ii) If limy, oo SUPpep, a1, (P) exists, then it is called the limiting size of
T,.

(iii) T, is called consistent if and only if the type II error probability con-
verges to 0, i.e., lim, ,o[1 — ar, (P)] =0, for any P € P;.

(iv) T, is called Chernoff-consistent if and only if T,, is consistent and the
type I error probability converges to 0, i.e., lim,_,o ar, (P) = 0, for any
P € Py. T, is called strongly Chernoff-consistent if and only if T, is con-
sistent and the limiting size of T,, is 0. 1

Obviously if T;, has size (or significance level) « for all n, then its limiting
size (or asymptotic significance level) is . If the limiting size of T), is
a € (0,1), then for any € > 0, T), has size « + € for all n > ng, where ng is
independent of P. Hence T,, has level of significance a + € for any n > ng.
However, if Py is not a parametric family, it is likely that the limiting size
of T, is 1 (see, e.g., Example 2.37). This is the reason why we consider the
weaker requirement in Definition 2.13(i). If 7,, has asymptotic significance
level «, then for any € > 0, ag, (P) < a + € for all n > ng(P) but ng(P)
depends on P € Py; and there is no guarantee that 7T, has significance level
a + € for any n.

The consistency in Definition 2.13(iii) only requires that the type II er-
ror probability converge to 0. We may define uniform consistency to be
lim;, 00 SUPpep, [1 — a1, (P)] = 0, but it is not satisfied in most problems.
If « € (0,1) is a pre-assigned level of significance for the problem, then a
consistent test T;, having asymptotic significance level « is called asymptot-
ically correct, and a consistent test having limiting size « is called strongly
asymptotically correct.

The Chernoff-consistency (or strong Chernoff-consistency) in Definition
2.13(iv) requires that both types of error probabilities converge to 0. Math-
ematically, Chernoff-consistency (or strong Chernoff-consistency) is better
than asymptotic correctness (or strongly asymptotic correctness). After
all, both types of error probabilities should decrease to 0 if sampling can be
continued indefinitely. However, if a is chosen to be small enough so that
error probabilities smaller than « can be practically treated as 0, then the
asymptotic correctness (or strongly asymptotic correctness) is enough, and
is probably preferred, since requiring an unnecessarily small type I error
probability usually results in an unnecessary increase in the type II error
probability, as the following example illustrates.

Example 2.37. Consider the testing problem Hy : p < pg versus Hi :
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1> po based on ii.d. Xq,..., X, with EX; = p € R. If each X; has the
N (u,0?) distribution with a known o2, then the test T, given in Example
2.28 with ¢, = 0z1-0/+v/n + 1o and « € (0,1) has size a (and, therefore,
limiting size «). It also follows from (2.32) that for any p > o,

1—ar, (u)=9o (zla + \/n(,u; a N)) —0 (2.39)

Ca

as n — oo. This shows that T, is consistent and, hence, is strongly
asymptotically correct. Note that the convergence in (2.39) is not uniform
in u > pg, but is uniform in g > py for any fixed py > po.

Since the size of T, is « for all n, T¢, is not Chernoff-consistent. A
strongly Chernoff-consistent test can be obtained as follows. Let

an =1—®(yv/nay,), (2.40)

where a,,’s are positive numbers satisfying a, — 0 and \/na,, — oo. Let
T, be T, with a = «,, for each n. Then, T}, has size a,,. Since o, — 0,
The limiting size of T, is 0. On the other hand, (2.39) still holds with «
replaced by «,,. This follows from the fact that

e + Vnlpo —p) Jn <an L Ho M) e
g g

for any p > po. Hence T, is strongly Chernoff-consistent. However, if
an < a, then, from the left-hand side of (2.39), 1 — ar, (1) <1 —ar, (1)
for any p > ppo.

We now consider the case where the population P is not in a parametric
family. We still assume that 02 = Var(X;) is known. Using the CLT, we
can show that for u > g,

n—oo n—oo

lim [1 - ar,, ()] = lm @ ( 1 Vnlko = ’”) 0,
o
i.e., T,, is still consistent. For p < po,

lim a7, (p)=1— lim & (zla + vnlpo = N)) ,

n— o0 n— 00 o

which equals « if 4 = pg and 0 if g < po. Thus, the asymptotic significance
level of T is a. Combining these two results, we know that T, is asymp-
totically correct. However, if P contains all possible populations on R with
finite second moments, then one can show that the limiting size of T, is
1 (exercise). For a, defined by (2.40), we can show that T,, = T, with
a = oy, is Chernoff-consistent (exercise). But T;, is not strongly Chernoff-
consistent if P contains all possible populations on R with finite second
moments. 1
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Definition 2.14. Let X = (X1,...,X,,) be a sample from P € P, ¥ be a
k-vector of parameters related to P, and C(X) be a confidence set for o.
(i) If liminf, P(¥ € C(X)) > 1 — « for any P € P, then 1 — « is an
asymptotic significance level of C'(X).

(ii) If lim, oo infpep P(¥ € C(X)) exists, then it is called the limiting
confidence coefficient of C(X). 1

Note that the asymptotic significance level and limiting confidence co-
efficient of a confidence set are very similar to the asymptotic significance
level and limiting size of a test, respectively. Some conclusions are also sim-
ilar. For example, in a parametric problem one can often find a confidence
set having limiting confidence coefficient 1 — « € (0, 1), which implies that
for any € > 0, the confidence coefficient of C'(X) is 1 — a— € for all n > no,
where ng is independent of P; in a nonparametric problem the limiting
confidence coefficient of C'(X) might be 0, whereas C'(X) may have asymp-
totic significance level 1 — « € (0,1), but for any fixed n, the confidence
coefficient of C'(X') might be 0.

The confidence interval in Example 2.31 with ¢ = 021_,/2/+/n and the
confidence set in Example 2.32 have confidence coefficient 1 — « for any n
and, therefore, have limiting confidence coefficient 1 — «. If we drop the
normality assumption and assume EX; < oo, then these confidence sets
have asymptotic significance level 1—q; their limiting confidence coefficients
may be 0 (exercise).

2.6 Exercises

1. Consider Example 2.3. Suppose that p(s) is constant. Show that X;
and Xj;, ¢ # j, are not uncorrelated and, hence, X, ..., X, are not
independent. Furthermore, when y;’s are either 0 or 1, show that
Z = Y ", X; has a hypergeometric distribution and compute the
mean of Z.

2. Consider Example 2.3. Suppose that we do not require that the ele-
ments in s be distinct, i.e., we consider sampling with replacement.
Define a probability measure p and a sample (X7, ..., X,,) such that
(2.3) holds. If p(s) is constant, are X7, ..., X,, independent? If p(s)
is constant and ¥;’s are either 0 or 1, what are the distribution and
mean of Z =>" | X,?

3. Show that {Py : § € ©} is an exponential family and find its canonical
form and natural parameter space, when
(a) Py is the Poisson distribution P(6), § € © = (0, 00);
(b) Py is the negative binomial distribution NB(6,r) with a fixed r,
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10.

11.

12.

13.

0c0=(01);

0,

d) Pg is the gamma distribution I'(a, ), 8 = (a,y) € © = (0,00) %
e) Pg is the beta distribution B(a, ), 0 = (o, 3) € © = (0,1) x (0, 1);
f) Py is the Weibull distribution W (a, 0) with a fixed @ > 0,6 € © =

Show that the family of exponential distributions E(a, ) with two
unknown parameters a and 6 is not an exponential family.

Show that the family of negative binomial distributions N B(p, ) with
two unknown parameters p and r is not an exponential family.

Show that the family of Cauchy distributions C(u, o) with two un-
known parameters p and o is not an exponential family.

Show that the family of Weibull distributions W («, #) with two un-
known parameters « and € is not an exponential family.

Is the family of log-normal distributions LN (p, 0?) with two unknown
parameters 1 and o2 an exponential family?

Show that the family of double exponential distributions DE(u,6)
with two unknown parameters g and 6 is not an exponential family,
but the family of double exponential distributions DE(u,6) with a
fixed p and an unknown parameter 6 is an exponential family.

Show that the k-dimensional normal family discussed in Example 2.4
is an exponential family. Identify the functions T', n, &, and h.

Obtain the variance-covariance matrix for (X1,..., X)) in Example
2.7, using (a) Theorem 2.1(ii) and (b) direct computation.

Show that the m.g.f. of the gamma distribution I'(a, ) is (1 — )%,
t <~~1, using Theorem 2.1(ii).

A discrete random variable X with
P(X =z)=~(x)0"/c(0), x=0,1,2,..,

where y(z) > 0, 6 > 0, and ¢(f) = >~ ()0, is called a random
variable with a power series distribution.

(a) Show that {v(x)0*/c(f) : § > 0} is an exponential family.

(b) Suppose that X, ..., X;, are i.i.d. with a power series distribution
v(2)0%/c(f). Show that >_" , X; has the power series distribution
Y (2)60% /[c(0)]™, where v, (x) is the coefficient of 6% in the power series

expansion of [c(0)]™.
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14.

15.

16.

17.

18.

19.

20.

21.
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Let X be a random variable with a p.d.f. fy in an exponential family
{Py : 0 € ©} and let A be a Borel set. Show that the distribution
of X truncated on A (i.e., the conditional distribution of X given
X € A) has a p.d.f. fola/Py(A) that is in an exponential family.

Let {Ps) : p € RE, X € My} be a location-scale family on R*.
Suppose that P(g 1) has a Lebesgue p.d.f. that is always positive and
that the mean and variance-covariance matrix of P 1, ) are 0 and I,
respectively. Show that the mean and variance-covariance matrix of
P, sy are p and 3, respectively.

Show that if the distribution of a positive random variable X is in a
scale family, then the distribution of log X is in a location family.

Let X be a random variable having the gamma distribution I'(c, )
with a known a and an unknown v > 0 and let ¥ = olog X.

(a) Show that if ¢ > 0 is unknown, then the distribution of Y is in a
location-scale family.

(b) Show that if o > 0 is known, then the distribution of ¥ is in an
exponential family.

Let X1, ..., X,, be i.i.d. random variables having a finite E|X;|* and
let X and S? be the sample mean and variance defined by (2.1) and
(2.2). Express E(X?), Cov(X,S?), and Var(5?) in terms of p =
EXf, k = 1,2,3,4. Find a condition under which X and S? are
uncorrelated.

Let X1,..., X, be ii.d. random variables having the gamma distri-
bution I'(e,v,) and Y71, ..., Y, be ii.d. random variables having the
gamma distribution I'(«, y,), where o > 0, 7, > 0, and ~y, > 0. As-
sume that X;’s and Y;’s are independent. Derive the distribution of
the statistic X /Y, where X and Y are the sample means based on
X;’s and Y;’s, respectively.

Let X1,..., X, be ii.d. random variables having the exponential dis-
tribution E(a,0), a € R, and § > 0. Show that the smallest order
statistic, X(1), has the exponential distribution E(a,f/n) and that
23" 1 (Xi — X(1))/0 has the chi-square distribution x3,_.

Let (X1,Y1), ..., (X»,Yy) be iid. random 2-vectors. Suppose that
X1 has the Cauchy distribution C'(0,1) and given X; = x, Y; has
the Cauchy distribution C(Bz,1), where 3 € R. Let X and Y be
the sample means based on X;’s and Y;’s, respectively. Obtain the
marginal distributions of Y, ¥ — 83X, and Y/ X.
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22.

23.

24.

25.

26.

27.

Let X; = (Y;,Z;), i =1,...,n, be i.i.d. random 2-vectors. The sample
correlation coefficient is defined to be

n

1 _ _
(0 1)y/52.52 2(1@- ~Y)(Z - 2).

where Y =n='3 " | Y;, Z=n"1Y" ) Z;, 5§ =(n—1)"1 Y (Yi—Y)?,
and 83 = (n—1) 530, (Z— 2"
(a) Assume that E|Y;|* < co and E|Z;|* < co. Show that

T(X)=

Vn[T(X) = p] —a N(0,¢%),

where p is the correlation coefficient between Y; and Z; and c is a
constant depending on some unknown parameters.

(b) Assume that Y; and Z; are independently distributed as N (u1,07)
and N (uz,03), respectively. Show that T has the Lebesgue p.d.f.

T

= \/TK’F (n;2

(¢) Assume the conditions in (b). Obtain the result in (a) using
Scheffé’s theorem (Proposition 1.18).

f(t) )(1 — )21 ().

Let X1, ..., X,, be i.i.d. random variables with EX{ < oo, T = (Y, Z),
and Ty = Y/VZ, where Y =n~1 31" | X;|and Z =n"' 3" | X2
(a) Show that \/n(T — ) —4 N2(0,%) and /n(Ty — ) —4 N(0,c?).
Identify 0, 3, 9, and ¢? in terms of moments of X;.

(b) Repeat (a) when X; has the normal distribution N (0, 0?).

(c) Repeat (a) when X; has the double exponential distribution
D(0,0).

Prove the claims in Example 2.9 for the distributions related to order
statistics.

Show that if T is a sufficient statistic and T = (S), where ¢ is
measurable and S is another statistic, then S is sufficient.

In the proof of Lemma 2.1, show that Cy € C. Also, prove Lemma
2.1 when P is dominated by a o-finite measure.

Let X1,..., X, be i.i.d. random variables from Py € {Pp : § € ©}. In
the following cases, find a sufficient statistic for § € © that has the
same dimension as 6.

(a) Py is the Poisson distribution P(6), 6 € (0, c0).

(b) Py is the negative binomial distribution NB(0,r) with a known
r,6€(0,1).
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28.

29.

30.

31.

32.

33.

2. Fundamentals of Statistics

¢) Py is the exponential distribution E(0,6), 6 € (0, c0)

d) Py is the gamma distribution T'(«, ’y) 0 = (a,7v) € (0,00) x(0,00)
e) Py is the beta distribution B(«, 3), 8 = (o, 8) € (0,1) x (0,1).

f) Py is the log-normal distribution LN (u1,0?%), 8 = (u,0%) € R X

00).

) Py is the Weibull distribution W (e, #) with a known o > 0, 6 €

00).

Let X1, ..., X, beii.d. random variables from P, gy, where (a, ) € R?
is a parameter. Find a two-dimensional sufficient statistic for (a,6)
in the following cases.

(a) P(q,p) is the exponential distribution E(a, ), a € R, 6 € (0,00).
(b) Pa,9) is the Pareto distribution Pa(a,0), a € (0,00), § € (0,00).

(
(
(
(
(A
(g
©,

In Example 2.11, show that Xy (or X(,)) is sufficient for a (or b) if
we consider a subfamily {f, ) : a < b} with a fixed b (or a).

Let X and Y be two random variables such that Y has the binomial
distribution Bi(w, N) and, given Y = y, X has the binomial distri-
bution Bi(p,y).

(a) Suppose that p € (0,1) and 7 € (0,1) are unknown and N is
known. Show that (X,Y") is minimal sufficient for (p, 7).

(b) Suppose that m and N are known and p € (0, 1) is unknown. Show
whether X is sufficient for p and whether Y is sufficient for p.

Let Xi,...,X, be ii.d. random variables having a distribution P &
P, where P is the family of distributions on R having continuous
c.d.f’s. Let T' = (X(1), ..., X()) be the vector of order statistics. Show
that, given T, the conditional distribution of X = (Xi,...,X,,) is a
discrete distribution putting probability 1/n! on each of the n! points
(Xiyy .y X5, ) € R™, where {41, ...,4,} is a permutation of {1,...,n};
hence, T is sufficient for P € P.

In Example 2.13 and Example 2.14, show that T is minimal sufficient
for 0 by using Theorem 2.3(iii).

A coin has probability p of coming up heads and 1 — p of coming
up tails, where p € (0,1). The first stage of an experiment consists
of tossing this coin a known total of M times and recording X, the
number of heads. In the second stage, the coin is tossed until a total
of X 4 1 tails have come up. The number Y of heads observed in
the second stage along the way to getting the X 4 1 tails is then
recorded. This experiment is repeated independently a total of n
times and the two counts (X, Y;) for the ith experiment are recorded,
i = 1,...,n. Obtain a statistic that is minimal sufficient for p and
derive its distribution.
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35.

36.

37.

38.

39.

40.

41.

42.

FExercises 147

. Let Xq,..., X, be ii.d. random variables having the Lebesgue p.d.f.
o 4
folw) = exp {= (") — @)},

where 6 = (u,0) € © = R x (0,00). Show that P ={Fy:0 € O} is
an exponential family, where Pj is the joint distribution of X7, ..., X,
and that the statistic T = (31| Xi, >or X2, 30 X230 X
is minimal sufficient for 6 € ©.

Let X1, ..., X, be i.i.d. random variables having the Lebesgue p.d.f.

fo(@) = (20)" [L10.0)(®) + T(20,30) ()] -
Find a minimal sufficient statistic for 6 € (0, 00).

Let Xy, ..., X, be i.i.d. random variables having the Cauchy distribu-
tion C'(p, o) with unknown 4 € R and ¢ > 0. Show that the vector
of order statistics is minimal sufficient for (u, o).

Let Xq,..., X, be ii.d. random variables having the double exponen-
tial distribution DE(u, ) with unknown g € R and 6 > 0. Show that
the vector of order statistics is minimal sufficient for (u, ).

Let X1, ..., X;, be i.i.d. random variables having the Weibull distribu-
tion W (a, #) with unknown a > 0 and 6 > 0. Show that the vector
of order statistics is minimal sufficient for (a, 6).

Let X1, ..., X;, be i.i.d. random variables having the beta distribution
B(B, ) with an unknown 8 > 0. Find a minimal sufficient statistic
for .

Let Xi,..., X, be ii.d. random variables having a population P in
a parametric family indexed by (0, j), where 8 > 0, j = 1,2, and
n > 2. When j = 1, P is the N(0,0?) distribution. When j = 2,
P is the double exponential distribution DE(0,6). Show that T =
(Cr, X257 | X;]) is minimal sufficient for (6, 7).

Let X1,..., X, be ii.d. random variables having a population P in a
parametric family indexed by (0, j), where § € (0,1), j = 1,2, and
n > 2. When j =1, P is the Poisson distribution P(6). When j = 2,
P is the binomial distribution Bi(6,1).

(a) Show that T'=>""" | X; is not sufficient for (6, 7).

(b) Find a two-dimensional minimal sufficient statistic for (6, 7).

Let X be a sample from P € P = {fq;:0 € ©,5 =1,...,k}, where
fo,;’s are p.d.f.’s w.r.t. a common o-finite measure and © is a set of
parameters. Assume that {z : fg j(x) > 0} C {z: fo.x(z) > 0} for all
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43.

44.

45.

46.

47.
48.

49.
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f and j =1,....k — 1. Suppose that for each fixed j, T =T(X) is a
statistic sufficient for 6.

(a) Obtain a k-dimensional statistic that is sufficient for (8, 7).

(b) Derive a sufficient condition under which 7" is minimal sufficient

for (0, j).

A box has an unknown odd number of balls labeled consecutively as
—-0,—(0—-1),...,—2,—-1,0,1,2,...,(0 — 1),0, where 6 is an unknown
nonnegative integer. A simple random sample X, ..., X, is taken
without replacement, where X; is the label on the ith ball selected
and n < 26 + 1.

(a) Find a statistic that is minimal sufficient for § and derive its
distribution.

(b) Show that the minimal sufficient statistic in (a) is also complete.

Let Xi,..., X, be i.i.d. random variables having the Lebesgue p.d.f.
9_16_(36_0)/9[(9’00)(1}), where 6 > 0 is an unknown parameter.

(a) Find a statistic that is minimal sufficient for 6.

(b) Show whether the minimal sufficient statistic in (a) is complete.

Let X1,..., X, (n > 2) be ii.d. random variables having the normal
distribution N(6,2) when # = 0 and the normal distribution N(6,1)
when 6 € R and 6 # 0. Show that the sample mean X is a complete
statistic for 6 but it is not a sufficient statistic for 6.

Let X be a random variable with a distribution Py in {Py : 0 € ©},
fo be the p.d.f. of Py w.r.t. a measure v, A be an event, and Py, =
{fgIA/Pg(A) 10 € @}

(a) Show that if T'(X) is sufficient for Py € P, then it is sufficient for
Py € Py.

(b) Show that if T is sufficient and complete for Py € P, then it is
complete for Py € P4.

Show that (X(1), X(5,)) in Example 2.13 is not complete.

Let T be a complete (or boundedly complete) and sufficient statistic.
Suppose that there is a minimal sufficient statistic .S. Show that T is
minimal sufficient and S is complete (or boundedly complete).

Let T and S be two statistics such that S = ¢(T") for a measurable
1. Show that

(a) if T is complete, then S is complete;

(b) if T is complete and sufficient and 1 is one-to-one, then S is
complete and sufficient;

(c) the results in (a) and (b) still hold if the completeness is replaced
by the bounded completeness.
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50.

51.
52.

93.

54.

55.

56.

o7.

Find complete and sufficient statistics for the families in Exercises 27
and 28.

Show that (X(1), X(,)) in Example 2.11 is complete.

Let (X1,Y7), ..., (X5, Y},) be i.i.d. random 2-vectors having the follow-
ing Lebesgue p.d.f.

fola,y) = 2m7) o (Ve —a)? + (y=b?2) . (2.y) € R?,

where 0 = (a,b,v) € R? x (0, 00).

(a) If a = 0 and b =0, find a complete and sufficient statistic for ~.
(b) If all parameters are unknown, show that the convex hull of the
sample points is a sufficient statistic for 6.

Let X be a discrete random variable with p.d.f.

0 z=0
fo(z) =< (1—6)26=—1 r=1,2,..
0 otherwise,

where 6 € (0,1). Show that X is boundedly complete, but not com-
plete.

Show that the sufficient statistic T in Example 2.10 is also complete
without using Proposition 2.1.

Let Y1,...,Y, be ii.d. random variables having the Lebesgue p.d.f.
Az~ (g 1y(z) with an unknown A > 0 and let Zy,..., Z, be iid.
discrete random variables having the power series distribution given
in Exercise 13 with an unknown 6 > 0. Assume that Y;’s and Z;’s
are independent. Let X; =Y; + Z;, ¢ = 1,...,n. Find a complete
and sufficient statistic for the unknown parameter (6, \) based on the
sample X = (X1,...,, X,).

Suppose that (X1,Y1),...,(X,,Y,) are ii.d. random 2-vectors and
X; and Y; are independently distributed as N (u,0%) and N(u,0%),
respectively, with 0 = (u,0%,0%) € R x (0,00) x (0,00). Let X and
S% be the sample mean and variance given by (2.1) and (2.2) for X;’s
and Y and S% be the sample mean and variance for ¥;’s. Show that
T = (X,Y,5%,52) is minimal sufficient for # but T is not boundedly
complete.

Let X1,..., X, be iid. from the N(6,6?) distribution, where § > 0
is a parameter. Find a minimal sufficient statistic for 6 and show
whether it is complete.
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Suppose that (X1,Y7), ..., (Xn,Ys) are i.i.d. random 2-vectors having
the normal distribution with £X; = EY; =0, Var(X;) = Var(Y;) =
1, and Cov(X1,Y7) =6 € (—1,1).

(a) Find a minimal sufficient statistic for 6.

(b) Show whether the minimal sufficient statistic in (a) is complete
or not.

(c) Prove that Ty = >, X? and T, = )., Y;? are both ancillary
but (73,7%) is not ancillary.

Let X1,..., X, be ii.d. random variables having the exponential dis-
tribution E(a,0).

(a) Show that > 1" | (X; — X(1)) and X(q) are independent for any
(a,0).

(b) Show that Zz = (X(n) - X(l))/(X(I’L) - X(n—l))7 1= ]., ey — 2,
are independent of (X 1y, >i; (Xi — X(1)))-

Let X1,..., X, be ii.d. random variables having the gamma distri-
bution T'(a,7). Show that Y7 | X; and Y7, [log X; — log X(1)] are
independent for any (o, 7).

Let Xi,..., X, be ii.d. random variables having the uniform distri-
bution on the interval (a,b), where —oco < a < b < oco. Show
that (X — X))/ (Xn) — X(1)), @ = 2,...,n — 1, are independent
of (X(1), X(n)) for any a and b.

Consider Example 2.19. Assume that n > 2.

(a) Show that X is better than T} if P = N(#,0?%), 0 € R, o > 0.
(b) Show that T} is better than X if P is the uniform distribution on
the interval (6 — 3,0+ 1), 0 € R.

(c¢) Find a family P for which neither X nor T} is better than the
other.

Let Xi,..., X,, be i.i.d. from the N(u,o?) distribution, where u € R
and o > 0. Consider the estimation of o2 with the squared error loss.
Show that ”;152 is better than 52, the sample variance. Can you
find an estimator of the form ¢S? with a nonrandom c such that it is
better than " 1527

Let X, ..., X,, be i.i.d. binary random variables with P(X; = 1) =60 €
(0,1). Consider estimating 6 with the squared error loss. Calculate
the risks of the following estimators:

(a) the nonrandomized estimators X (the sample mean) and

if more than half of X;’s are 0
if more than half of X;’s are 1
if exactly half of X;’s are 0;

To(X) =

o = O
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65.

66.

67.

68.

69.

(b) the randomized estimators

X with probability ;
To with probability ;

Ti(X) = {

and

X with probability X
1
2

T(X) = _
2(X) { with probability 1 — X.

Let X1,..., X, be ii.d. random variables having the exponential dis-
tribution E(0, ), § € (0,00). Consider estimating 6 with the squared
error loss. Calculate the risks of the sample mean X and cX (1), where
c is a positive constant. Is X better than cX(;) for some c?

Consider the estimation of an unknown parameter § > 0 under the
squared error loss. Show that if T' and U are two estimators such that
T < U and Ry(P) < Ry(P), then Ry, (P) < Ry, (P), where Ry(P)
is the risk of an estimator 7" and T denotes the positive part of T'.

Let X1,..., X, be ii.d. random variables having the exponential dis-
tribution E(0,0), 6 € (0,00). Consider the hypotheses

Hy:0<6y versus Hp:0 > 6,

where ¢ > 0 is a fixed constant. Obtain the risk function (in terms
of 0) of the test rule Te(X) = I(¢,00)(X), under the 0-1 loss.

Let Xy, ..., X, be i.i.d. random variables having the Cauchy distribu-
tion C'(u, o) with unknown p € R and o > 0. Counsider the hypotheses

Ho:p<pg versus Hi:pu> po,

where i is a fixed constant. Obtain the risk function of the test rule
Te(X) = I(¢,00)(X), under the 0-1 loss.

Let X1, ..., X, be i.i.d. binary random variables with P(X; = 1) =4,
where 6 € (0,1) is unknown and n is an even integer. Consider the
problem of testing Hy : 8 < 0.5 versus H; : 0 > 0.5 with action space
{0,1} (0 means Hy is accepted and 1 means H; is accepted). Let
the loss function be L(A,a) = 0 if H; is true and a = j, j = 0,1;
L(6,0) = Cp when 6 > 0.5; and L(6,1) = C;1 when 6 < 0.5, where
Co > C7 > 0 are some constants. Calculate the risk function of the
following randomized test (decision rule):

if more than half of X;’s are 0
if more than half of X;’s are 1
if exactly half of X;’s are 0.

T =

o= = O
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Consider Example 2.21. Suppose that our decision rule, based on
a sample X = (Xi,...,X,,) with i.i.d. components from the N(6,1)
distribution with an unknown 6 > 0, is

ay b < X
T(X) = ao by < X <b
as X < bo.

Express the risk of 7" in terms of 6.

Consider an estimation problem with P = {Fy : § € ©} (a parametric
family), A = O, and the squared error loss. If ; € O satisfies that
Py < Py, for any 6 € ©, show that the estimator T = 6y is admissible.

Let S be a class of decision rules. A subclass Sg C & is called 3-
complete if and only if, for any T € & and T & Sy, there is a Ty € S
that is better than T, and S is called S-minimal complete if and
only if &g is S-complete and no proper subclass of J¢ is S-complete.
Show that if a S-minimal complete class exists, then it is exactly the
class of $-admissible rules.

Let X1, ..., X,, be i.i.d. random variables having a distribution P € P.
Assume that EX? < oo. Consider estimating 4 = EX; under the
squared error loss.

(a) Show that any estimator of the form a X +b is inadmissible, where
X is the sample mean, a and b are constants, and a > 1.

(b) Show that any estimator of the form X + b is inadmissible, where
b # 0 is a constant.

Consider an estimation problem with ¢ € [¢,d] C R, where ¢ and d
are known. Suppose that the action space is A D [¢,d] and the loss
function is L(]9 — al), where L(-) is an increasing function on [0, c0).
Show that any decision rule T' with P(T'(X) ¢ [c,d]) > 0 for some
P € P is inadmissible.

Suppose that the action space is (2, B5), where Q € BF. Let X
be a sample from P € P, dp(X) be a nonrandomized rule, and T
be a sufficient statistic for P € P. Show that if E[14(do(X))|T] is a
nonrandomized rule, i.e., E[I4(50(X))|T] = La(h(T)) for any A € BE,
where h is a Borel function, then §o(X) = h(T(X)) a.s. P.

Let T, dp, and §; be as given in the statement of Proposition 2.2.
Show that

/ L(P,a)d0:(X,a) = E { / L(P,a)dsy(X, a)

A A

T} a.s. P.
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Prove Theorem 2.5.

In Exercise 64, use Theorem 2.5 to find decision rules that are better
than T3, j =0,1,2.

In Exercise 65, use Theorem 2.5 to find a decision rule better than
CX(l).

Consider Example 2.22.

(a) Show that there is no optimal rule if & contains all possible esti-
mators. (Hint: consider constant estimators.)

(b) Find a Sg-optimal rule if X7, ..., X,, are independent random vari-
ables having a common mean y and Var(X;) = 02 /a; with known a;,
1=1,..,n

(c) Find a $s-optimal rule if Xy, ..., X,, are identically distributed but
are correlated with a common correlation coefficient p.

Let Xoj =p+a;+e5,i=1,...,m, j =1, ...,n where a;’s and €;;’s
are independent random variables, a; is N(0,07), €;; is N(0,07), and
i, 02, and o2 are unknown parameters. Define X; = n~! Z 1 Xij,
X=m1y" 1X“ MSA = n(m —1)"1 37" (X; — X)?, and MSE
=mt(n-1)"tY" 12] (X — X;)?. Assume that m(n —1) > 4.

Consider the following class of estimators of § = o2 /02:

- 1 MSA

{0(5) = {(15)MSE 1] .5672}.
(a) Show that MSA and MSE are independent.
(b) Obtain a § € R such that 6(J) is unbiased for 6.
(c) Show that the risk of #(§) under the squared error loss is a func-
tion of (4, 6).
(d) Show that there is a constant §* such that for any fixed 6, the risk
of 0(9) is strictly decreasing in ¢ for § < 6* and strictly increasing for
0> 6%
(e) Show that the unbiased estimator of § derived in (b) is inadmis-
sible.

Let To(X) be an unbiased estimator of ¢ in an estimation problem.
Show that any unbiased estimator of ¥ is of the form T'(X) = To(X)—
U(X), where U(X) is an “unbiased estimator” of 0.

Let X be a discrete random variable with
PX=-1)=p, PX=k)=010-p?* k=012 ..,

where p € (0,1) is unknown.
(a) Show that U(X) is an unbiased estimator of 0 if and only if U (k) =
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ak for all k = —1,0,1,2,... and some a.

(b) Show that Ty(X) = I{y(X) is unbiased for ¥ = (1—p)? and that,
under the squared error loss, Ty is a $-optimal rule, where < is the
class of all unbiased estimators of .

(c) Show that Tp(X) = I;_11(X) is unbiased for ¥ = p and that,
under the squared error loss, there is no S-optimal rule, where & is
the class of all unbiased estimators of ¢.

(Nonexistence of an unbiased estimator). Let X be a random variable
having the binomial distribution Bi(p,n) with an unknown p € (0, 1)
and a known n. Consider the problem of estimating ¥ = p~!. Show
that there is no unbiased estimator of ¥.

Let Xi,..., X, beii.d. random variables having the normal distribu-
tion N(6,1), where § = 0 or 1. Consider the estimation of 6.

(a) Let S be the class of nonrandomized rules (estimators), i.e., esti-
mators that take values 0 and 1 only. Show that there does not exist
any unbiased estimator of 8 in .

(b) Find an estimator in & that is approximately unbiased.

Let Xi,..., X, be ii.d. from the Poisson distribution P(f) with an
unknown 6 > 0. Find the bias and mse of T}, = (1 — a/n)"¥ as an
estimator of ¥ = =%, where a # 0 is a known constant.

Let X1, ..., X,, be i.i.d. (n > 3) from N(u,0?), where y > 0 and o > 0
are unknown parameters. Let T) = X /S be an estimator of ;/o and
Ty = X? be an estimator of 2, where X and S? are the sample mean
and variance, respectively. Calculate the mse’s of 77 and T5.

Consider a location family {P, : p € R¥} on R¥, where P, = P, 1)
is given in (2.10). Let Iy € R* be a fixed vector and L(P,a) =
L(|| — a||), where a € A = RF and L(-) is a nonnegative Borel
function on [0, 00). Show that the family is invariant and the decision
problem is invariant under the transformation g(X) = X +¢lg, ¢ € R.
Find an invariant decision rule.

Let X1,..., X,, be ii.d. from the N(u,0?) distribution with unknown
i € R and 02 > 0. Consider the scale transformation a X, a € (0, o).
(a) For estimating o under the loss function L(P,a) = (1 — a/d?)?,
show that the problem is invariant and that the sample variance S?2
is invariant.

(b) For testing Hop : pn < 0 versus Hy : > 0 under the loss

Kl

I
LP.O) = "o y() and D(P,1) = " 1),

show that the problem is invariant and any test that is a function of
X/\/Sg/n is invariant.
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Let Xy, ..., X, be ii.d. random variables having the c.d.f. F(z — 6),
where F' is symmetric about 0 and 6 € R is unknown.

(a) Show that the c.d.f. of 3 ; w; X(;) — 6 is symmetric about 0,
where X ;) is the ith order statistic and w;’s are constants satisfying
w; = Wp—ip1 and Y. w; = 1.

(b) Show that >, w; X(;) in (a) is unbiased for 6 if the mean of F
exists.

(c) Show that Y7 ; w; X ;) is location invariant when ;" ; w; = 1.

In Example 2.25, show that the conditional distribution of 8 given
X = is N(p«(2),c?) with p.(x) and ¢? given by (2.25).

A median of a random variable Y (or its distribution) is any value m
such that P(Y <m) >} and P(Y >m) > }.

(a) Show that the set of medians is a closed interval [mg, m1].

(b) Suppose that E|Y| < co. If ¢ is not a median of Y, show that
E|lY —¢| > E|Y —m| for any median m of Y.

(c) Let X be a sample from Py, where § € © C R. Counsider the
estimation of 6 under the absolute error loss function |a — |. Let II
be a given distribution on © with finite mean. Find the $-Bayes rule
w.r.t. I, where & is the class of all rules.

(Classification). Let X be a sample having a p.d.f. f;(z) w.r.t. a o-
finite measure v, where j is unknown and j € {1,..., J} with a known
integer J > 2. Consider a decision problem in which the action space
A ={1,...,J} and the loss function is

.y _J O ifa=yj
L(]’a){ 1 ifaj.

(a) Let & be the class of all nonrandomized decision rules. Obtain
the risk of a § € 3.

(b) Let II be a probability measure on {1, ..., J} with II({j}) = =;,
j=1,...,J. Obtain the Bayes risk of § € & w.r.t. II.

(c) Obtain a 3-Bayes rule w.r.t. I in (b).

(d) Assume that J =2, my = m2 = 0.5, and f;(z) = ¢(x — p ), where
¢(x) is the p.d.f. of the standard normal distribution and u;, j = 1,2,
are known constants. Obtain the Bayes rule in (c) and compute the
Bayes risk.

(e) Obtain the risk and the Bayes risk (w.r.t. Il in (b)) of a randomized
decision rule.

(f) Obtain a Bayes rule w.r.t. II.

(g) Obtain a minimax rule.

Let 6 be an unbiased estimator of an unknown 6 € R. R
(a) Under the squared error loss, show that the estimator 6 + ¢ is not
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minimax unless supg Ry (6) = oo for any estimator T', where ¢ # 0 is
a known constant.

(b) Under the squared error loss, show that the estimator cf is not
minimax unless sup, Rr(#) = oo for any estimator T', where ¢ € (0,1)
is a known constant.

(c) Consider the loss function L(6,a) = (a—0)?/6? (assuming 6 # 0).
Show that 6 is not minimax unless supy Rz (6) = oo for any 7.

Let X be a binary observation with P(X = 1) = 61 or 6, where
0 < 07 < 6 < 1 are known values. Consider the estimation of
with action space {a1,a2} and loss function L(6;,a;) = I;;, where
log > lia > l11 = laa = 0. For a decision rule §(X), the vector
(Rs(01), Rs(02)) is defined to be its risk point.

(a) Show that the set of risk points of all decision rules is the convex
hull of the set of risk points of all nonrandomized rules.

(b) Find a minimax rule.

(c) Let II be a distribution on {61, 602}. Obtain the class of all Bayes
rules w.r.t. II. Discuss when there is a unique Bayes rule.

Consider the decision problem in Example 2.23.

(a) Let II be the uniform distribution on (0, 1). Show that a 3-Bayes
rule w.r.t. ITis T- (X), where j* is the largest integer in {0, 1, ...,n—1}
such that Bj1,n,—j41(60) > 5 and Bq(-) denotes the c.d.f. of the beta
distribution B(a,b).

(b) Derive a S-minimax rule.

Let X1,..., X,, be i.i.d. from the N(u,0?) distribution with unknown
1 € R and 02 > 0. To test the hypotheses

Hy:p<pp versus Hy:p > po,

where 1o is a fixed constant, consider a test of the form T.(X) =
I(e,00)(Tyuo)s where Ty = (X — p19)/+/S?/n and c is a fixed constant.
(a) Find the size of T,. (Hint: T},, has the t-distribution ¢,_1.)

(b) If v is a given level of significance, find a ¢, such that T, has
size .

(c¢) Compute the p-value for T, derived in (b).

(d) Find a ¢, such that [X —cq+/S2/n, X +cav/S2/n] is a confidence
interval for p with confidence coefficient 1 — a. What is the expected
interval length?

In Exercise 67, calculate the size of T.(X); find a ¢, such that T,
has size «, a given level of significance; and find the p-value for T¢_ .

In Exercise 68, assume that o is known. Calculate the size of T.(X);
find a ¢, such that T has size «, a given level of significance; and
find the p-value for T, .
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Let o € (0,1) be given and T} 4(X) be the test given in Example 2.30.
Show that there exist integer j and ¢ € (0,1) such that the size of
T;q1s a.

Let X1, ..., X,, be i.i.d. from the exponential distribution E(a, 6) with
unknown @ € R and 6 > 0. Let o € (0,1) be given.

(a) Using T1(X) = >;=, (Xi — X(1)), construct a confidence interval
for # with confidence coefficient 1 — o and find the expected interval
length.

(b) Using T1(X) and T>(X) = X(1), construct a confidence interval
for a with confidence coefficient 1 — o and find the expected interval
length.

(¢) Using the method in Example 2.32, construct a confidence set for
the two-dimensional parameter (a, §) with confidence coefficient 1—a.

Suppose that X is a sample and a statistic T(X) has a distribution
in a location family {P, : 4 € R}. Using T(X), derive a confidence
interval for p with level of significance 1 — o and obtain the expected
interval length. Show that if the c.d.f. of T'(X) is continuous, then we
can always find a confidence interval for p with confidence coefficient
1 — « for any a € (0,1).

Let X = (X1,...,X,) be a sample from Py, where 8 € {01,...,0x}
with a fixed integer k. Let T,,(X) be an estimator of § with range
{917 ey Qk}

(a) Show that T,,(X) is consistent if and only if Py(T,,(X) =0) — 1.
(b) Show that if T,,(X) is consistent, then it is a,-consistent for any

{an}.

Let X1, ..., X, be i.i.d. from the uniform distribution on (6 — §,0+ ;),
where 6 € R is unknown. Show that (X + X(,))/2 is strongly
consistent for # and also consistent in mse.

Let X1,..., X, be ii.d. from a population with the Lebesgue p.d.f.
fo(z) = 271 (1 + 0x)[(_1,1)(x), where § € (—1,1) is an unknown pa-
rameter. Find a consistent estimator of 6. Is your estimator /n-
consistent?

Let X4,..., X, be i.i.d. observations. Suppose that T}, is an unbiased
estimator of ¥ based on X1, ..., X,, such that for any n, Var(T,) < co
and Var(T,,) < Var(U,) for any other unbiased estimator U, of 9
based on X1, ..., X,,. Show that T,, is consistent in mse.

Consider the Bayes rule u,(X) in Example 2.25. Show that p.(X) is
a strongly consistent, /n-consistent, and Lo-consistent estimator of
p. What is the order of the bias of p.(X) as an estimator of p?



158

108.

109.
110.

111.

112.

113.

114.

115.

2. Fundamentals of Statistics

In Exercise 21, show that

(a) Y/X is an inconsistent estimator of (3;

(b) B = Z(m) 1s a consistent estimator of 3, where m = n/2 when n
is even, m = (n + 1)/2 when n is odd, and Z;y is the ith smallest
value of Y;/X;, i =1,...,n.

Show that the estimator Ty of 6 in Exercise 64 is inconsistent.

Let g1, g2,... be continuous functions on (a,b) C R such that g, (z) —
g(z) uniformly for = in any closed subinterval of (a,b). Let T}, be a
consistent estimator of 6 € (a,b). Show that g,(7T},) is consistent for

9= g(0).

Let Xq,..., X, beiid. from P with unknown mean y € R and vari-
ance o2 > 0, and let g(u) = 0 if u # 0 and g(0) = 1. Find a consistent
estimator of ¥ = g(u).

Establish results for the smallest order statistic X(;) (based on i.i.d.
random variables X, ..., X;,) similar to those in Example 2.34.

(Consistency for finite population). In Example 2.27, show that Y —p
Y as n — N for any fixed N and population. Is Y still consistent if
sampling is with replacement?

Assume that X; = 0t; +e;,i = 1,...,n, where 6 € © is an unknown
parameter, © is a closed subset of R, e;’s are i.i.d. on the interval
[—7,7] with some unknown 7 > 0 and Fe; = 0, and ¢;’s are fixed
constants. Let B

T, = S’rz(en) = };%18 Sn('y)a

where
Sn(y) = 2m<aX|XZ- — ’yti|/\/1 + 2.
i<n

(a) Assume that sup; [t;| < oo and sup, t; — inf; ; > 27. Show that
the sequence {6,,n =1,2,...} is bounded a.s.
(b) Let 0, € ©,n=1,2,.... If ,, — 0, show that

Sp(0) — Sn(0) = O(|0n — 0]) aus.

(c) Under the conditions in (a), show that T;, is a strongly consistent
estimator of ¥ = min,cg S(7), where S(v) = lim, o Sn(7) a.s.

Let X1,..., X,, be i.i.d. random variables with EX? < oo and X be
the sample mean. Consider the estimation of y = EX;.

(a) Let T, = X + &,/+/n, where &, is a random variable satisfying
&, = 0 with probability 1 —n~! and &, = n?/? with probability n~'.
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Show that b, (P) # by, (P) for any P.

(b) Let T, = X + n,/\/n, where 7, is a random variable that is
independent of X7, ..., X,, and equals 0 with probability 1 —2n~! and
+y/n with probability n=!. Show that amser, (P) = amseg(P) =
mse g (P) and mser, (P) > amser, (P) for any P.

Let X3,..., X, be ii.d. random variables with finite 6 = EX; and
Var(X;) = 6, where § > 0 is unknown. Consider the estimation of
9 =+0. Let Ty, = VX and Ty, = )Z'/S7 where X and S? are the
sample mean and sample variance.

(a) Obtain the n~! order asymptotic biases of T},, and T5,, according
to (2.38).

(b) Obtain the asymptotic relative efficiency of Ty, w.r.t. Ta,.

Let X1, ..., X, be i.i.d. according to N(u, 1) with an unknown p € R.
Let ¥ = P(X; < ¢) for a fixed constant ¢. Consider the following
estimators of ¥: Ty, = Fy,(¢), where F,, is the empirical c.d.f. defined
in (2.28), and Ty, = ®(c — X), where ® is the c.d.f. of N(0,1).

(a) Find the n~! order asymptotic bias of T, according to (2.38).

(b) Find the asymptotic relative efficiency of T1,, w.r.t. To,.

Let X1,..., X, be iid. from the N(0,0?) distribution with an un-
known ¢ > 0. Consider the estimation of 1 = ¢. Find the asymptotic
relative efficiency of \/7/23° " | |Xi|/n w.rt. (30, X2 /n)/2.

Let Xi,..., X, be i.i.d. from P with EX{ < co and unknown mean
p € R and variance 02 > 0. Consider the estimation of ¥ = p? and
the following three estimators: Ty, = X2, Ty, = X2 — S?/n, T3, =
max{0, T, }, where X and 52 are the sample mean and variance.
Show that the amse’s of T}, j = 1,2, 3, are the same when u # 0 but
may be different when p = 0. Which estimator is the best in terms
of the asymptotic relative efficiency when g = 07

Prove Theorem 2.6.

Let X1, ..., X;, be i.i.d. with EX; = p, Var(X;) = 1, and EX} < oo.
Let Ty, = n~ 'Y X2 — 1 and Tb,, = X2 —n~! be estimators of
9 = p?.

(a) Find the asymptotic relative efficiency of Ty, w.r.t. Tay,.

(b) Show that e, 1,,(P) < 1 if the c.d.f. of X; — p is symmetric
about 0 and p # 0.

(¢) Find a distribution P for which e, 1,, (P) > 1.

Let X4,..., X, be ii.d. binary random variables with unknown p =
P(X; =1) € (0,1). Consider the estimation of p. Let a and b be
two positive constants. Find the asymptotic relative efficiency of the
estimator (a +nX)/(a+b+n) wr.t. X.
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Let Xi,..., X,, be i.i.d. from N(u,0?) with an unknown p € R and a
known o2. Let Ty = X be the sample mean and T = p.(X) be the
Bayes estimator given in (2.25). Assume that EX{ < cc.

(a) Calculate the exact mse of both estimators. Can you conclude
that one estimator is better than the other in terms of the mse?

(b) Find the asymptotic relative efficiency of Ty w.r.t. Ts.

In Example 2.37, show that

(a) the limiting size of T, is 1 if P contains all possible populations
on R with finite second moments;

(b) T), = T, with o = oy, (given by (2.40)) is Chernoff-consistent;
(¢) T, in (b) is not strongly Chernoff-consistent if P contains all
possible populations on R with finite second moments.

Let Xi,...,X,, be ii.d. with unknown mean p € R and variance
0? > 0. For testing Hy : u < po versus Hy : pu > fi, consider
the test T, obtained in Exercise 97(b).

(a) Show that T, has asymptotic significance level o and is consis-
tent.

(b) Find a test that is Chernoff-consistent.

Consider the test 7} in Example 2.23. For each n, find a j = j, such
that T}, has asymptotic significance level o € (0, 1).

Show that the test T in Exercise 98 is consistent, but T¢,, in Exercise
99 is not consistent.

In Example 2.31, suppose that we drop the normality assumption but
assume that © = EX; and 02 = Var(X;) are finite.

(a) Show that when o2 is known, the asymptotic significance level
of the confidence interval [X — cq, X + cq] is 1 — «, where ¢, =
0Z1_a/2/v/n and zq = ®a).

(b) Show that when o? is known, the limiting confidence coefficient
of the interval in (a) might be 0 if P contains all possible populations
on R.

(¢) Show that the confidence interval in Exercise 97(d) has asymptotic
significance level 1 — a.

Let X1, ..., X,, be ii.d. with unknown mean p € R and variance o2 >
0. Assume that EX{ < co. Using the sample variance S?, construct a
confidence interval for o2 that has asymptotic significance level 1 — .

Consider the sample correlation coefficient T defined in Exercise 22.
Construct a confidence interval for p that has asymptotic significance
level 1 — «, assuming that (Y7, Z;) is normally distributed. (Hint:
show that the asymptotic variance of 7" is (1 — p?)?2.)



Chapter 3

Unbiased Estimation

Unbiased or asymptotically unbiased estimation plays an important role
in point estimation theory. Unbiasedness of point estimators is defined in
§2.3.2. In this chapter, we discuss in detail how to derive unbiased esti-
mators and, more importantly, how to find the best unbiased estimators in
various situations. Although an unbiased estimator (even the best unbiased
estimator if it exists) is not necessarily better than a slightly biased esti-
mator in terms of their mse’s (see Exercise 63 in §2.6), unbiased estimators
can be used as “building blocks” for the construction of better estimators.
Furthermore, one may give up the exact unbiasedness, but cannot give up
asymptotic unbiasedness since it is necessary for consistency (see §2.5.2).
Properties and the construction of asymptotically unbiased estimators are
studied in the last part of this chapter.

3.1 The UMVUE

Let X be a sample from an unknown population P € P and 9 be a real-
valued parameter related to P. Recall that an estimator T(X) of ¥ is
unbiased if and only if E[T(X)] = ¢ for any P € P. If there exists an
unbiased estimator of ¥, then 1 is called an estimable parameter.

Definition 3.1. An unbiased estimator T'(X) of 9 is called the wuni-
formly minimum variance unbiased estimator (UMVUE) if and only if
Var(T'(X)) < Var(U(X)) for any P € P and any other unbiased estimator
U(X)ofd. 1

Since the mse of any unbiased estimator is its variance, a UMVUE is
S-optimal in mse with & being the class of all unbiased estimators. One
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can similarly define the uniformly minimum risk unbiased estimator in sta-
tistical decision theory when we use an arbitrary loss instead of the squared
error loss that corresponds to the mse.

3.1.1 Sufficient and complete statistics

The derivation of a UMVUE is relatively simple if there exists a sufficient
and complete statistic for P € P.

Theorem 3.1 (Lehmann-Scheffé theorem). Suppose that there exists a
sufficient and complete statistic T'(X) for P € P. If 9 is estimable, then
there is a unique unbiased estimator of ¢ that is of the form h(T") with a
Borel function h. (Two estimators that are equal a.s. P are treated as one
estimator.) Furthermore, h(T') is the unique UMVUE of 4. 1

This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell the-
orem). One can easily extend this theorem to the case of the uniformly
minimum risk unbiased estimator under any loss function L(P,a) that is
strictly convex in a. The uniqueness of the UMVUE follows from the com-
pleteness of T'(X).

There are two typical ways to derive a UMVUE when a sufficient and
complete statistic 1" is available. The first one is solving for A when the
distribution of T is available. The following are two typical examples.

Example 3.1. Let X4,..., X,, be i.i.d. from the uniform distribution on
(0,6), 6 > 0. Let ¥ = g(0), where g is a differentiable function on (0, c0).
Since the sufficient and complete statistic X(,) has the Lebesgue p.d.f.
n@‘"m"‘ll(o,g)(x), an unbiased estimator h(X () of ¥ must satisfy

0
0"g(0) = n/ h(z)x™ 'dx for all 6 > 0.
0

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral (Royden (1968, §5.3)) lead to

nd" 1g(0) +0"g'(0) = nh(9)6™ .

Hence, the UMVUE of ¥ is h(X(,)) = 9(X(n) + n ' X9 (X)) In
particular, if 9 = 0, then the UMVUE of 6 is (1 +n"')X(,). 1

Example 3.2. Let X1,..., X,, be i.i.d. from the Poisson distribution P(6)
with an unknown 6 > 0. Then T'(X) = "7 | X; is sufficient and complete
for § > 0 and has the Poisson distribution P(nf). Suppose that ¥ = g(6),
where ¢ is a smooth function such that g(z) = Z;io ajz?, z > 0. An
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unbiased estimator A(T') of ¥ must satisfy

t!
t=0
— k .07
LI
k=0 j=0
(oo}
>y e
|
t=0 \jkij+k=t
for any 6 > 0. Thus, a comparison of coefficients in front of §* leads to
t! nFa;
hit) =, Z El

Jykj+k=t

i.e., h(T) is the UMVUE of . In particular, if ¢ = 6" for some fixed integer
r > 1, then a,, =1 and ay =0 if k # r and

0 t<r
h(t>:{ 13 t>r. !

n”(t—r)!

The second method of deriving a UMVUE when there is a sufficient and
complete statistic T'(X) is conditioning on T', i.e., if U(X) is any unbiased
estimator of ¢, then E[U(X)|T] is the UMVUE of ¥). To apply this method,
we do not need the distribution of T, but need to work out the conditional
expectation E[U(X)|T]. From the uniqueness of the UMVUE, it does not
matter which U(X) is used and, thus, we should choose U(X) so as to make
the calculation of E[U(X)|T] as easy as possible.

Example 3.3. Consider the estimation problem in Example 2.26, where
¥ =1—Fp(t) and Fy(z) = (1 — e 2/%)I (g o) (z). Since X is sufficient and
complete for 6 > 0 and I(; )(X1) is unbiased for 4,

T(X) = Ell(1,00)(X1)|X] = P(X1 > t|X)

is the UMVUE of 9. If the conditional distribution of X; given X is avail-
able, then we can calculate P(X; > t|X) directly. But the following tech-
nique can be applied to avoid the derivation of conditional distributions.
By Basu’s theorem (Theorem 2.4), X;/X and X are independent. By
Proposition 1.10(vii),

P(X: >t X =72)=P(X1/X >t/X|X =7) = P(X1/X > t/7).
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To compute this unconditional probability, we need the distribution of

n n
Xl/ZX,» :Xl/ <X1+ZX1> .
i=1 i=2

Using the transformation technique discussed in §1.3.1 and the fact that
2?22 X; is independent of X; and has a gamma distribution, we obtain
that X1/ > ; X; has the Lebesgue p.d.f. (n—1)(1—x)" Iy 1)(z). Hence

t/(nz) nz

and the UMVUE of ¢ is

T(X) = <1 _ ni()nl I

We now show more examples of applying these two methods to find
UMVUE’s.

Example 3.4. Let X1,..., X,, be i.i.d. from N(u,0?) with unknown p € R
and 02 > 0. From Example 2.18, T = (X, S?) is sufficient and com-
plete for 6 = (y1,0?) and X and (n — 1)S?/0? are independent and have
the N(u,0%/n) and chi-square distribution x2_,, respectively. Using the
method of solving for A directly, we find that the UMVUE for p is X; the
UMVUE of 2 is X2~ 52 /n; the UMVUE for 0" with r > 1—nis k,,_1 57,
where
n"/?T(n/2)

"= ypr ()

(exercise); and the UMVUE of u/o is ky—1,-1X/S, if n > 2.

Suppose that ¥ satisfies P(X; < ) = p with a fixed p € (0,1). Let ®
be the c.d.f. of the standard normal distribution. Then ¥ = pu + c®~(p)
and its UMVUE is X + k,,—115® (p).

Let ¢ be a fixed constant and ¥ = P(X; < ¢) = ® (C;“). We can
find the UMVUE of ¥ using the method of conditioning and the technique
used in Example 3.3. Since I(_ ) (X1) is an unbiased estimator of ¥, the
UMVUE of ¥ is E[I(_o ) (X1)|T] = P(X1 < ¢[T). By Basu’s theorem,
the ancillary statistic Z(X) = (X; — X)/S is independent of T = (X, 5?).
Then, by Proposition 1.10(vii),

IN

P(X1<c|T=(z,5%) =P (Z
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It can be shown that Z has the Lebesgue p.d.f.
r(n-1 2 q(n/2)-2
= O L]
Vr(n—=1)r (",?) (n—1)2
(exercise). Hence the UMVUE of 9 is

Tio,(n-1)/ym(12])  (3.1)

(c=X)/8
P(X, < o|T) = / F(x)dz (3.2)
—(n—=1)/+v/n
with f given by (3.1).

Suppose that we would like to estimate ¥ = ;<I>’ (C;“), the Lebesgue
p.d.f. of X; evaluated at a fixed ¢, where @’ is the first-order derivative
of ®. By (3.2), the conditional p.d.f. of X; given X = Z and S* = s* is
s71f(*,"). Let fr be the joint p.d.f. of T = (X, 5?). Then

o] (e e i ()]

Hence the UMVUE of ¢ is
1 c—X
. |
S(750)

Example 3.5. Let X1, ..., X, be i.i.d. from a power series distribution (see
Exercise 13 in §2.6), i.e.,

P(X; =z) =~(x)0%/c(6), r=0,1,2,..,

with a known function v(z) > 0 and an unknown parameter § > 0. It turns
out that the joint distribution of X = (X7, ..., X;,) is in an exponential fam-
ily with a sufficient and complete statistic 7'(X) = Y., X;. Furthermore,
the distribution of T is also in a power series family, i.e.,
P(T =t) = v,(1)0"/[c(0)]", t=0,1,2,..,

where 7, (t) is the coefficient of 6% in the power series expansion of [c()]™
(Exercise 13 in §2.6). This result can help us to find the UMVUE of ¢ =
g(0). For example, by comparing both sides of

D (D)8 = [e(6)" 7,

t=0

we conclude that the UMVUE of 6" /[c(0)]” is

W) {0 T<r
=9 Vnp(T—1)
(T Tz
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where r and p are nonnegative integers. In particular, the case of p = 1
produces the UMVUE ~(r)h(T") of the probability P(X; = r) = v(r)8" /c(0)
for any nonnegative integer . 1

Example 3.6. Let X1, ..., X,, be ii.d. from an unknown population P in a
nonparametric family P. We have discussed in §2.2 that in many cases the
vector of order statistics, T' = (X(y), ..., X(»)), is sufficient and complete for
P € P. Note that an estimator p(X1, ..., X,,) is a function of T' if and only if
the function ¢ is symmetric in its n arguments. Hence, if T is sufficient and
complete, then a symmetric unbiased estimator of any estimable ¥ is the
UMVUE. For example, X is the UMVUE of ¢ = EX;; §? is the UMVUE
of Var(Xy); n= 1 Y% | X2 — S? is the UMVUE of (EX1)?; and F,(t) is the
UMVUE of P(X; < t) for any fixed t.

Note that these conclusions are not true if 7' is not sufficient and com-
plete for P € P. For example, if P contains all symmetric distributions
having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for
9 = EX; (exercise). 1

More discussions of UMV UE’s in nonparametric problems are provided
in §3.2.

3.1.2 A necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very
difficult to derive a UMVUE. In some cases, the following result can be
applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2. Let U be the set of all unbiased estimators of 0 with finite
variances and T be an unbiased estimator of ¥ with E(T?) < cc.

(i) A necessary and sufficient condition for T'(X) to be a UMVUE of ¥ is
that E[T(X)U(X)] =0 for any U € Y and any P € P.

(ii) Suppose that T = h(T), where T is a sufficient statistic for P € P and h
is a Borel function. Let U be the subset of ¢/ consisting of Borel functions
of T. Then a necessary and sufficient condition for 7' to be a UMVUE of ¢
is that E[T'(X)U(X)] =0 for any U € Uz and any P € P.

Proof. (i) Suppose that T' is a UMVUE of ¢. Then T. = T + cU, where
U € U and c is a fixed constant, is also unbiased for ¥ and, thus,

Var(T,) > Var(T), ceR, PeP,
which is the same as
*Var(U) + 2¢Cov(T,U) > 0, ceR, PeP.
This is impossible unless Cov(T,U) = E(TU) = 0 for any P € P.
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Suppose now E(TU) =0 for any U € Y and P € P. Let T be another
unbiased estimator of ¥ with Var(Ty) < oo. Then T'— T € U and, hence,

EI(T-Ty)]=0 PeP,
which with the fact that ET = ETj implies that
Var(T) = Cov(T, Tp) PeP.

By inequality (1.37), [Cov(T,Ty)]? < Var(T)Var(Tp). Hence Var(T) <
Var(Ty) for any P € P.

(ii) It suffices to show that E(TU) = 0 for any U € Uz and P € P implies
that E(TU) = 0 for any U € U and P € P. Let U € U. Then E(U|T) € Uz
and the result follows from the fact that 7' = h(T) and

E(TU) = E[E(TU|T)] = E[E(WT)U|T)] = E[R(T)E(U|T)].

Theorem 3.2 can be used to find a UMVUE, to check whether a partic-
ular estimator is a UMVUE, and to show the nonexistence of any UMVUE.
If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only
need to focus on functions of the sufficient statistic and, hence, Theorem
3.2(ii) is more convenient to use.

Example 3.7. Let Xi,..., X,, be i.i.d. from the uniform distribution on
the interval (0,6). In Example 3.1, (1 + n=*)X(,) is shown to be the
UMVUE for § when the parameter space is © = (0, 00). Suppose now that
© = [1,00). Then X, is not complete, although it is still sufficient for 6.
Thus, Theorem 3.1 does not apply. We now illustrate how to use Theorem
3.2(ii) to find a UMVUE of 6. Let U(X(,)) be an unbiased estimator of 0.
Since X ;) has the Lebesgue p.d.f. nf="a" 11 (o o) (x),

1 0
0:/ U(:r:)x”fldx—l—/ U(x)z" 'dx

0 1

for all > 1. This implies that U(z) = 0 a.e. Lebesgue measure on [1, c0)
and

1
/ U(x)z" tdr = 0.
0

Consider T' = h(X(y)). To have E(TU) = 0, we must have

/1 h(z)U(z)z™ dx = 0.
0

Thus, we may consider the following function:

c 0<z<1
hz) — Sz <
(z) {bx z>1,
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where ¢ and b are some constants. From the previous discussion,
E[h(X(n))U(X(”))] =0, 0=1.
Since E[h(X(,))] = 0, we obtain that
0 = cP(X(n) < 1)+ bE[X(n)L(1,00) (X(n))]
=c0 " +[bn/(n+ 1))@ —07").
Thus, ¢ =1 and b = (n + 1)/n. The UMVUE of 6 is then

T_ { 1 0< X <1
1+ Tlil)X(n) X(n) > 1.

This estimator is better than (1 +n~')X(,), which is the UMVUE when
© = (0,00) and does not make use of the information about § > 1. 1

Example 3.8. Let X be a sample (of size 1) from the uniform distribution
U6 — ;,9 + %), 0 € R. We now apply Theorem 3.2 to show that there
is no UMVUE of ¢ = g(6) for any nonconstant function g. Note that an
unbiased estimator U(X) of 0 must satisfy

0+5
/ U(z)dx =0 for all 8 € R.
0

1

2

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral lead to U(z) = U(x + 1) a.e. m, where m is
the Lebesgue measure on R. If T' is a UMVUE of g(6), then T(X)U(X) is
unbiased for 0 and, hence, T'(2)U(z) = T'(z+1)U(z+1) a.e. m, where U(X)
is any unbiased estimator of 0. Since this is true for all U, T'(z) = T'(z + 1)
a.e. m. Since T is unbiased for g(9),

0+3
9(0) :/ T(z)dz  forall 0 € R,
[

1

2

Differentiating both sizes of the previous equation and applying the result
of differentiation of an integral, we obtain that

gO =T O+ -T(@O—-3)=0 ae m. 8

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let T; be a UMVUE of ¥;, j = 1, ..., k, where k is a
fixed positive integer. Then Z?ﬂ ¢;T; is a UMVUE of ¢ = ijl ¢;0; for
any constants cy, ..., k.

(ii) Let Ty and Ty be two UMVUE’s of ¢. Then T7; = T3 a.s. P for any
PeP. [ |
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3.1.3 Information inequality

Suppose that we have a lower bound for the variances of all unbiased esti-
mators of ¥ and that there is an unbiased estimator 7" of ¥ whose variance
is always the same as the lower bound. Then T is a UMVUE of 9. Al-
though this is not an effective way to find UMVUE’s (compared with the
methods introduced in §3.1.1 and §3.1.2), it provides a way of assessing
the performance of UMVUE’s. The following result provides such a lower
bound in some cases.

Theorem 3.3 (Cramér-Rao lower bound). Let X = (X1, ..., X,,) be a sam-
ple from P € P = {Py : § € O}, where O is an open set in R*. Suppose
that T'(X) is an estimator with E[T(X)] = g(0) being a differentiable func-
tion of #; Py has a p.d.f. fy w.r.t. a measure v for all # € ©; and fy is
differentiable as a function of  and satisfies

7
00

/h(x)fg(x)du = /h(x)aaefg(x)du, 0 €0, (3.3)
for h(z) =1 and h(z) = T'(z). Then

Var(T(X)) > [ 5,9(0)] " [L(0)] " 59(6), (3-4)
where

10) = 5 { 106 5o | 3 10w o0)] | 5)

is assumed to be positive definite for any 6 € ©.
Proof. We prove the univariate case (k = 1) only. The proof for the
multivariate case (k > 1) is left to the reader. When k = 1, (3.4) reduces

to
Var(T(X)) Z a[g/(9>] 9
E [39 IOg fQ(X)]

From inequality (1.37), we only need to show that

(3.6)

E 0 log fo(X) 2*Vaur 0 log fo(X)
90 g e = 90 gJo
and 5
3/0) = Cov (T(X), gyl (X))
These two results are consequences of condition (3.3). 1

The k x k matrix I(0) in (3.5) is called the Fisher information matriz.
The greater I(0) is, the easier it is to distinguish € from neighboring values
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and, therefore, the more accurately 6 can be estimated. In fact, if the
equality in (3.6) holds for an unbiased estimator T'(X) of g(#) (which is
then a UMVUE), then the greater I(0) is, the smaller Var(7'(X)) is. Thus,
1(0) is a measure of the information that X contains about the unknown
6. The inequalities in (3.4) and (3.6) are called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1. (i) Let X and Y be independent with the Fisher informa-
tion matrices Ix (f) and Iy (@), respectively. Then, the Fisher information
about 6 contained in (X,Y) is Ix(0) + Iy (). In particular, if X,..., X,
are 1.i.d. and I () is the Fisher information about 6 contained in a single
X, then the Fisher information about € contained in X7, ..., X, is nl;(0).
(ii) Suppose that X has the p.d.f. fy that is twice differentiable in 6 and
that (3.3) holds with h(xz) =1 and fp replaced by dfy/06. Then

2

I(0)=—-FE {55@97 log fg(X)] . (3.7)

Proof. Result (i) follows from the independence of X and Y and the
definition of the Fisher information. Result (ii) follows from the equality

op aeaafef fo(X) 0

a T
oange 8500 = 22 8 o ) | ool

The following example provides a formula for the Fisher information
matrix for many parametric families with a two-dimensional parameter 6.

Example 3.9. Let X1, ..., X,, be i.i.d. with the Lebesgue p.d.f. ;f (x_“),

g

where f(z) > 0 and f'(z) exists for all z € R, p € R, and ¢ > 0 (a
location-scale family). Let = (u, o). Then, the Fisher information about
6 contained in Xy, ..., X,, is (exercise)

@) @t @)+ (@)
N J Ve de J U e

JI@EL @@l gy [ @@ g

Note that I(#) depends on the particular parameterization. If § = ¢ (n)
and 1 is differentiable, then the Fisher information that X contains about
n is

0 B} T
2emIwm) [ & vm)]

However, it is easy to see that the Cramér-Rao lower bound in (3.4) or (3.6)
is not affected by any one-to-one reparameterization.
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If we use inequality (3.4) or (3.6) to find a UMVUE T'(X), then we
obtain a formula for Var(7T'(X)) at the same time. On the other hand, the
Cramér-Rao lower bound in (3.4) or (3.6) is typically not sharp. Under
some regularity conditions, the Cramér-Rao lower bound is attained if and
only if fy is in an exponential family; see Propositions 3.2 and 3.3 and
the discussion in Lehmann (1983, p. 123). Some improved information
inequalities are available (see, e.g., Lehmann (1983, Sections 2.6 and 2.7)).

Proposition 3.2. Suppose that the distribution of X is from an expo-
nential family {fs : 8 € O}, i.e., the p.d.f. of X w.r.t. a o-finite measure
is

Jo(x) = exp{[n(0)]"T(x) — £(6) }e(w) (3-8)

(see §2.1.3), where © is an open subset of R”.

(i) The regularity condition (3.3) is satisfied for any h with E|h(X)| < oo
and (3.7) holds.

(ii) If I(n) is the Fisher information matrix for the natural parameter 7,
then the variance-covariance matrix Var(T') = I(n).

(iii) If I(¥9) is the Fisher information matrix for the parameter ¢ = E[T(X)],
then Var(T) = [I(9)]~ 1.

Proof. (i) This is a direct consequence of Theorem 2.1.

(ii) From (2.6), the p.d.f. under the natural parameter 7 is

fo(@) = exp {n"T(x) = ¢(n)} c(x).

From Theorem 2.1 and result (1.54) in §1.3.3, E[T(X)] = 6671 (n). The
result follows from

2 1og fy(x) = T(2) — 2 ().

(iii) Since ¥ = E[T(X)] = 2 ¢(n),
1) = 3210) (32)" = 520 C) 1) [, <]

By Theorem 2.1, result (1.54), and the result in (ii), Bnac’:nf ¢(n) = Var(T) =
I(n). Hence

1) = (L))~ )L ()]~ = ()] = [Var(T)] 7" u

A direct consequence of Proposition 3.2(ii) is that the variance of any
linear function of 7" in (3.8) attains the Cramér-Rao lower bound. The
following result gives a necessary condition for Var(U (X)) of an estimator
U(X) to attain the Cramér-Rao lower bound.
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Proposition 3.3. Assume that the conditions in Theorem 3.3 hold with
T(X) replaced by U(X) and that © C R.
(i) If Var(U(X)) attains the Cramér-Rao lower bound in (3.6), then

aOU(X) — ()] =g'0) °

0 log fo(X) a.s. Py

for some function a(d), 6 € ©.
(ii) Let fy and T be given by (3.8). If Var(U(X)) attains the Cramér-Rao
lower bound, then U(X) is a linear function of T'(X) a.s. Py, 6 € ©. 1

Example 3.10. Let X1, ..., X, be i.i.d. from the N(u,o?) distribution with
an unknown p € R and a known o2. Let f, be the joint distribution of
X =(Xi,...,X,). Then

n

2 10 f,(X) = 3 (Xi — p)/o>

i=1

Thus, I(11) = n/o?. It is obvious that Var(X) attains the Cramér-Rao lower
bound in (3.6). Consider now the estimation of ¢ = p?. Since FX? =
u? + % /n, the UMVUE of ¥ is h(X) = X2 — 02/n. A straightforward
calculation shows that

- 4p’c?  20°
Var(h(X)) = " + 2

On the other hand, the Cramér-Rao lower bound in this case is 4p20? /n.

Hence Var(h(X)) does not attain the Cramér-Rao lower bound. The dif-
ference is 20%/n2. 1

Condition (3.3) is a key regularity condition for the results in Theorem
3.3 and Proposition 3.3. If fy is not in an exponential family, then (3.3) has
to be checked. Typically, it does not hold if the set {z : fg(x) > 0} depends
on 6 (Exercise 37). More discussions can be found in Pitman (1979).

3.1.4 Asymptotic properties of UMVUE’s

UMVUE’s are typically consistent (see Exercise 106 in §2.6). If there is
an unbiased estimator of ¥ whose mse is of the order a2, where {a,} is
a sequence of positive numbers diverging to oo, then the UMVUE of ¢ (if
it exists) has an mse of order a2 and is a,-consistent. For instance, in
Example 3.3, the mse of U(X) =1 — F,(t) is Fp(¢)[1 — Fy(t)]/n; hence the
UMVUE T(X) is y/n-consistent and its mse is of the order n~!.
UMVUE’s are exactly unbiased so that there is no need to discuss their
asymptotic biases. Their variances (or mse’s) are finite, but amse’s can be
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used to assess their performance if the exact forms of mse’s are difficult
to obtain. In many cases, although the variance of a UMVUE T,, does
not attain the Cramér-Rao lower bound, the limit of the ratio of the amse
(or mse) of T, over the Cramér-Rao lower bound (if it is not 0) is 1. For
instance, in Example 3.10,
Var(X? — o2 /n) B o?

the Cramér-Rao lower bound 212%n
if 4 # 0. In general, under the conditions in Theorem 3.3, if T,,(X) is
unbiased for g() and if, for any 6 € O,

T, (X) = g(0) = [ 59(0)] [1(6)] " 5y log fo(X) [1+ 0p(1)] as. P, (3.9)
then

— 1

amser, (6) = the Cramér-Rao lower bound (3.10)

whenever the Cramér-Rao lower bound is not 0. Note that the case of zero
Cramér-Rao lower bound is not of interest since a zero lower bound does
not provide any information on the performance of estimators.

Consider the UMVUE T,, = (1— nt)—()nfl of e=/? in Example 3.3.

Using the fact that

©

log(1 — ) Z lz| <1,

j=1

we obtain that ~
T, — e t/X = Op (nil) .
Using Taylor’s expansion, we obtain that
e X — e = g (0)(X ~O)[L +0p(1)),
where g(f) = e~*/?. On the other hand,
O] 2 log fo(X) = X — 6.

Hence (3.9) and (3.10) hold. Note that the exact variance of T, is not

easy to obtain. In this example, it can be shown that {n[T,, — g()]?} is
uniformly integrable and, therefore,

lim nVar(T,,) = lim nlamser, (6)]

= lim n[g'(9)]*[1(0)]*

n—oo
t2672t/9
02
It is shown in Chapter 4 that if (3.10) holds, then T;, is asymptotically
optimal in some sense. Hence UMVUE’s satisfying (3.9), which is often

true, are asymptotically optimal, although they may be improved in terms
of the exact mse’s.
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3.2 U-Statistics

Let X1,..., X, beii.d. from an unknown population P in a nonparametric
family P. In Example 3.6 we argued that if the vector of order statistic is
sufficient and complete for P € P, then a symmetric unbiased estimator
of any estimable ¢ is the UMVUE of ¥. In a large class of problems,
parameters to be estimated are of the form

with a positive integer m and a Borel function h that is symmetric and
satisfies E|h(X1,...,Xm)| < oo for any P € P. It is easy to see that a
symmetric unbiased estimator of ¥ is

1
n
Un = <m> Zc:h(Xilw'inm)a (3.11)

where >°_ denotes the summation over the () combinations of m distinct
elements {i1, ..., iy, } from {1,...,n}.

Definition 3.2. The statistic U, in (3.11) is called a U-statistic with kernel
h of order m. 1

3.2.1 Some examples

The use of U-statistics is an effective way of obtaining unbiased estimators.
In nonparametric problems, U-statistics are often UMVUE’s, whereas in
parametric problems, U-statistics can be used as initial estimators to derive
more efficient estimators.

If m =1, U, in (3.11) is simply a type of sample mean. Examples
include the empirical c.d.f. (2.28) evaluated at a particular ¢ and the sample
moments n~! Z?:l XF for a positive integer k. We now consider some
examples with m > 1.

Consider the estimation of ¢ = p™, where u = FX; and m is a positive
integer. Using h(z1,...,Zm) = &1 - - - T, we obtain the following U-statistic
unbiased for ¥ = p™:

—1
n
U, = (m) ZX X (3.12)

Consider next the estimation of ¥ = 02 = Var(X;). Since

o? = [Var(X;) + Var(X»)]/2 = E[(X; — X2)?/2],
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we obtain the following U-statistic with kernel h(z1,z2) = (z1 — 22)%/2:

2 (Xi - Xj>2 1 = 2 2 2
Un n(n—1) Z 2 n—1 ; i n 5%

1<i<j<n

which is the sample variance in (2.2).

In some cases, we would like to estimate ¢ = F|X; — X3/, a measure of
concentration. Using kernel h(z1,x2) = |z1 — 2|, we obtain the following
U-statistic unbiased for ¥ = E|X; — Xs|:

2
Up = > IXi - Xy,
n(n —1) 1<i<j<n

which is known as Gini’s mean difference.

Let ¥ = P(X1 + X2 <0). Using kernel h(z1,22) = [(_o0)(z1 +72), We
obtain the following U-statistic unbiased for ¥:

2
n(n—1) 1§i§<j:§n (—00,0] J

which is known as the one-sample Wilcoxon statistic.

Let T, = Tn(X1,...,Xn) be a given statistic and let r and d be two
positive integers such that r + d = n. For any s = {iy,...,i,} C {1,....,n},
define

T’I",S = TT(Xi17"'7Xi7')?

which is the statistic T,, computed after X;, i ¢ s, are deleted from the
original sample. Let

Un = (:) - 3 W (Trs — To) (3.13)

C
Then U, is a U-statistic with kernel

hn(xla (a3} xr) = Z[Tr(xla (a3} xr) - Tn(xla HAS) In)}Z
Unlike the kernels in the previous examples, the kernel in this example
depends on n. The order of the kernel, r, may also depend on n. The
statistic U,, in (3.13) is known as the delete-d jackknife variance estimator
for T,, (see, e.g., Shao and Tu (1995)), since it is often true that

E[h,(X1,...,X,)] = Var(T,).

It can be shown that if 7,, = X, then nU,, in (3.13) is exactly the same as
the sample variance S? (exercise).
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3.2.2 Variances of U-statistics

If E[h(X1,..., Xm)]? < oo, then the variance of U, in (3.11) with kernel
h has an explicit form. To derive Var(U,), we need some notation. For
k=1,..,m,let
hk(:cl, ,Ik) = E[h(Xl, ...,Xm)‘Xl =, ...,Xk = ij}
= E[h(xl, ceny (L‘k7Xk+1, ,Xm)]

Note that h,, = h. It can be shown that

hk(ml, ceey (L‘k> = E[hk+1(x17 ...,xk,Xk+1)]. (314)
Define ~
hi = hi — E[A(X1, ..., Xm)], (3.15)
k=1,...,m, and h = h,,. Then, for any U, defined by (3.11),
-1
n ~
U, — E(U,) = (m) > (X, Xiy)- (3.16)
(&

Theorem 3.4 (Hoeffding’s theorem). For a U-statistic U,, given by (3.11)
with E[h(X1, ..., Xm)]? < 00,

vt = (1) 32 (1) (7)o

k=

where
Ck = Var(hk(Xl, ...,Xk>>.

Proof. Counsider two sets {i1,...,im} and {j1, ..., jm } of m distinct integers
from {1,...,n} with exactly k integers in common. The number of distinct
choices of two such sets is (:;L) (T,':) (z:z) By the symmetry of h,, and
independence of X1, ..., X,,

Eh( Xy, ooy Xi, YW Xy ooy X5,)] = Ci (3.17)

im

for k =1,...,m (exercise). Then, by (3.16),

Var ) = (1) 50 Bl (Ko X JHCX e X )

-(2) ECIC e

This proves the result. 1§
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Corollary 3.2. Under the condition of Theorem 3.4,

() ™ G < Var(Un) < 7

(ii) (n + 1)Var(Up41) < nVar(U,) for any n > m;

(iii) For any fixed m and k =1,...,m, if (; = 0 for j < k and ( > 0, then

Var(U,) = BTG +0 ( ! ) o

nk nk+1

It follows from Corollary 3.2 that a U-statistic U,, as an estimator of its
mean is consistent in mse (under the finite second moment assumption on
h). In fact, for any fixed m, if (; = 0 for j < k and ¢ > 0, then the mse of
U, is of the order n=* and, therefore, U,, is n*/?-consistent.

Example 3.11. Consider first h(z1,72) = 2122, which leads to a U-
statistic unbiased for u?, 1= EX;. Note that hi(z1) = pxy, hi(z1) =
plar = p), G = Bl (X1)]? = p?Var(Xy) = p?0?, h(xy,22) = x122 — 42,
and (» = Var(X1X2) = E(X1X2)? — u* = (u? + 02)? — pu*. By Theorem

n -1
3.4, for Un = (2) ZlSL<JSI’L XZXJ7

() (D) G

2(n = 2)u*0® + (1* + 0°)? — ']

Var(Up,)

n(n—1)
_ ApPo? 20*
oo n(n—1)

Comparing U,, with X2 — ¢2/n in Example 3.10, which is the UMVUE
under the normality and known o? assumption, we find that

Var(Uy) — Var(X2 — 0%/n) = 20°
" n?(n—1)

Next, consider h(z1,22) = I(_oo)(®1 + 22), which leads to the one-
sample Wilcoxon statistic. Note that hy(z1) = P(z1 + X2 <0) = F(—x21),
where F is the c.d.f. of P. Then ¢; = Var(F(—X31)). Let ¢ = E[h(X1, X2)].
Then ¢; = Var(h(X;, X2)) = 9(1 —9). Hence, for U,, being the one-sample
Wilcoxon statistic,

2

Var(Uy,) = n(n—1)

2(n —2)C1 +9(1 - 9)].
If F' is continuous and symmetric about 0, then (; can be simplified as

¢ = Var(F(—X1)) = Var(1 — F(X;)) = Var(F(X3)) = |

122
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since F'(X1) has the uniform distribution on [0, 1].

Finally, consider h(z1,z2) = |x1 — x2|, which leads to Gini’s mean dif-
ference. Note that

m(e1) = Eloy — Xa| = [ Jor = yldP(w)
and )
G =Var(n(x) = [ | [1e = viap)] ar) - o2
where 9 = E|X1 — Xa|. 1

3.2.3 The projection method

Since P is nonparametric, the exact distribution of any U-statistic is hard
to derive. In this section, we study asymptotic distributions of U-statistics
by using the method of projection.

Definition 3.3. Let T, be a given statistic based on Xi,...,X,,. The
projection of T}, on k, random elements Y7, ...,Y}, is defined to be

kn,

T = E(T,) + Y_[E(T,|Y;) — E(T,)].

i=1

Let ¢, (X;) = E(T,|X;). If T), is symmetric (as a function of Xy, ..., Xy, ),
then ¥, (X1), ..., ¥Un(X,) are i.i.d. with mean E[¢,(X;)] = E[E(T,|X;)] =
E(T,). If E(T?) < oo and Var(¢,,(X;)) > 0, then

n

1
V/nVar(¥,(X1)) ; "
by the CLT. Let T}, be the projection of T, on X1, ..., X,,. Then
n

T =T = Tp — E(T,) = Y _[n(X;) — E(Ty)). (3.19)
i=1
If we can show that T}, — T}, has a negligible order of magnitude, then
we can derive the asymptotic distribution of T}, by using (3.18)-(3.19) and
Slutsky’s theorem. The order of magnitude of T,, — T}, can be obtained with
the help of the following lemma.

Lemma 3.1. Let T, be a symmetric statistic with Var(T,,) < oo for every
n and T,, be the projection of T}, on X1, ..., X,,. Then E(T,) = E(T},,) and

E(Tn - Tn)2 = Var(Tn) — Var(Tn).
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Proof. Since E(T,) = E(T,),
E(T,, — T)* = Var(T,,) 4 Var(T},) — 2Cov(T,, T;,).
From Definition 3.3 with Y; = X; and k,, = n,
Var(T,,) = nVar(E(T, | X,)).
The result follows from

COV(Tan) = E(TnTn> - [E(Tn)]Q
nE[TuE(T,|X)] — nlE(T,))

— nE{E[T, E(T, X)X} - nlE(T,)]
WB{[B(T, X)) — n[E(T,)P
nVar(E(T,|X;))

= Var(T,). 1

This method of deriving the asymptotic distribution of T}, is known as
the method of projection and is particularly effective for U-statistics. For
a U-statistic U, given by (3.11), one can show (exercise) that

U, = E(U,) + Zl ; R (X5), (3.20)

where U, is the projection of U, on X1, ..., X,, and hy is defined by (3.15).
Hence 5
Var(U,) = m?¢1 /n

and, by Corollary 3.2 and Lemma 3.1,
E(U, —U,)* = 0(n™?).

If ¢ > 0, then (3.18) holds with ¢, (X;) = mhi(X;), which leads to the
result in Theorem 3.5(i) stated later.

If ¢4 = 0, then hi = 0 and we have to use another projection of U,.
Suppose that (; = -+ = (4—1 = 0 and ¢ > O for an integer £k > 1.
Consider the projection Uy, of U, on (Z) random vectors {X;,, ..., X;, },
1 <7 <--- < i <n. We can establish a result similar to that in Lemma
3.1 (exercise) and show that

E(U, —U,)? = O(n~k+1),

Also, see Serfling (1980, §5.3.4).

With these results, we obtain the following theorem.
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Theorem 3.5. Let U,, be given by (3.11) with E[h(X1, ..., X;)]? < cc.
(i) If ¢4 > 0, then

VU, — E(Uy,)] —q N(0,m?¢1).
(ii) If ¢ = 0 but ¢ > 0, then

v = B ="V 0 -0, @

where x? ;'s are L.i.d. random variables having the chi-square distribution X3
and A;’s are some constants (which may depend on P) satisfying Z(;il )\3 =

CHE

We have actually proved Theorem 3.5(i). A proof for Theorem 3.5(ii) is
given in Serfling (1980, §5.5.2). One may derive results for the cases where
(2 = 0, but the case of either (; > 0 or (2 > 0 is the most interesting case
in applications.

If 1 > 0, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that
amsey, (P) = m?¢/n = Var(U,) + O(n™?). By Proposition 2.4(ii),
{n[U,, — E(U,)]?} is uniformly integrable.

If ¢ = 0 but { > 0, it follows from Theorem 3.5(ii) that amsey, (P) =
EY?/n?, where Y denotes the random variable on the right-hand side of
(3.21). The following result provides the value of EY?2.

Lemma 3.2. Let Y be the random variable on the right-hand side of
m2 2

(3.21). Then EY2 =" (7;—1) G

Proof. Define

k
m(m —1
Y, = (2 >ZAJ-(X§J.—1), k=1,2, ...
=1

It can be shown (exercise) that {¥;?} is uniformly integrable. Since Y, —4 Y
as k — 00, limg .o EY? = EY? (Theorem 1.8(viii)). Since x3;’s are
independent chi-square random variables with Ex? ;=1land Var(x? i) =2,
EYy =0 for any k and

2 _1)2 k
EY? = mn (m4 ) ZA?Var(X%j)
j=1
_omim =12 [
- A Zl ;
j:
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It follows from Corollary 3.2(iii) and Lemma 3.2 that amsey, (P) =
2 2
m (7;_1) Go/n? = Var(U,) + O(n=3) if ¢; = 0. Again, by Proposition
2.4(ii), the sequence {n*[U,, — E(U,)]?} is uniformly integrable.

We now apply Theorem 3.5 to the U-statistics in Example 3.11. For
U, = n(n2_1) Doi<icjen XiXj, G = pPo?®. Thus, if u # 0, the result in
Theorem 3.5(i) holds with ¢; = p?0?. If u = 0, then (; = 0, (2 = o* > 0,
and Theorem 3.5(ii) applies. However, it is not convenient to use Theorem
3.5(ii) to find the limiting distribution of U,,. We may derive this limiting
distribution using the following technique, which is further discussed in
§3.5. By the CLT and Theorem 1.10,

”)_(2/02 —d X%

when p = 0, where X7 is a random variable having the chi-square distribu-
tion x?. Note that

nX? 1 oy (m=1U,
o2 o2n ZXi + o2 :
i=1

By the SLLN, i > 7"  X? —,. 1. An application of Slutsky’s theorem
leads to
nU, /0% —q x3 — 1.
Since p = 0, this implies that the right-hand side of (3.21) is o?(x% — 1),
ie, A\ =0% and \; = 0 when j > 1.
For the one-sample Wilcoxon statistic, (; = Var(F(—X7)) > 0 unless

F' is degenerate. Similarly, for Gini’s mean difference, {(; > 0 unless F is
degenerate. Hence Theorem 3.5(i) applies to these two cases.

Theorem 3.5 does not apply to U, defined by (3.13) if r, the order of
the kernel, depends on n and diverges to oo as n — oco. We consider the
simple case where

T, = i ;1/1()(2-) + R, (3.22)

for some R, satisfying F(R2) = o(n™!). Note that (3.22) is satisfied for
T, being a U-statistic (exercise). Assume that r/d is bounded. Let S7 =

(n—1)"' 0 [b(Xi) —n P 9(X;)]%. Then
nU, = S}, + 0p(1) (3.23)

(exercise). Under (3.22), if 0 < E[¢(X;)]? < oo, then amser, (P) =
E[¥(X;)]?/n. Hence, the jackknife estimator U, in (3.13) provides a con-
sistent estimator of amser, (P), i.e., U, /amser, (P) —, 1.
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3.3 The LSE in Linear Models

One of the most useful statistical models for non-i.i.d. data in applications
is the general linear model

Xi = ﬂTZZ + Eiy 1= ]., N, (324)

where X; is the ith observation and is often called the ith response; [
is a p-vector of unknown parameters, p < n; Z; is the ¢th value of a p-
vector of explanatory variables (or covariates); and &1, ..., &, are random
errors. Our data in this case are (Xi,21),...,(Xn,Zn) (&’s are not ob-
served). Throughout this book Z;’s are considered to be nonrandom or
given values of a random p-vector, in which case our analysis is conditioned
on Zy,...,Z,. Each g; can be viewed as a random measurement error in
measuring the unknown mean of X; when the covariate vector is equal to
Z;. The main parameter of interest is 3. More specific examples of model
(3.24) are provided in this section. Other examples and examples of data
from model (3.24) can be found in many standard books for linear models,
for example, Draper and Smith (1981) and Searle (1971).

3.3.1 The LSE and estimability

Let X = (X1,...,Xn), e = (€1, ...,6n), and Z be the n X p matrix whose ith
row is the vector Z;, i = 1,...,n. Then, a matrix form of model (3.24) is

X=ZF+e. (3.25)
Definition 3.4. Suppose that the range of 8 in model (3.25) is B C RP.
A least squares estimator (LSE) of 8 is defined to be any § € B such that

1 — 25| = min |1 X — Zb). (3.26)

For any [ € RP, I3 is called an LSE of I"3. 1

Throughout this book, we consider B = R? unless otherwise stated.
Differentiating || X — Zb||? w.r.t. b, we obtain that any solution of

77Zb=7"X (3.27)

is an LSE of 8. If the rank of the matrix Z is p, in which case (Z7Z)~!
exists and Z is said to be of full rank, then there is a unique LSE, which is

B=(272)"'Z"X. (3.28)
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If Z is not of full rank, then there are infinitely many LSE’s of 3. It can
be shown (exercise) that any LSE of § is of the form

B=(Z"2)"7Z"X, (3.29)
where (Z7Z)~ is called a generalized inverse of Z™Z and satisfies
VAPAVANARVAVAE AN

Generalized inverse matrices are not unique unless Z is of full rank, in which
case (Z7Z)” = (Z7Z)~! and (3.29) reduces to (3.28).

To study properties of LSE’s of 3, we need some assumptions on the
distribution of X. Since Z;’s are nonrandom, assumptions on the distribu-
tion of X can be expressed in terms of assumptions on the distribution of
€. Several commonly adopted assumptions are stated as follows.

Assumption Al: ¢ is distributed as N, (0,021,,) with an unknown o2 > 0.
Assumption A2: E(g) = 0 and Var(g) = 021, with an unknown o2 > 0.

Assumption A3: E(e) = 0 and Var(e) is an unknown matrix.

Assumption A1l is the strongest and implies a parametric model. We
may assume a slightly more general assumption that e has the N, (0,0%D)
distribution with unknown o2 but a known positive definite matrix D. Let
D~1/2 be the inverse of the square root matrix of D. Then model (3.25)
with assumption A1l holds if we replace X, Z, and € by the transformed
variables X = D"V2X, Z = D Y27, and § = D~1/2¢, respectively. A
similar conclusion can be made for assumption A2.

Under assumption Al, the distribution of X is N, (Z3,0%1,), which
is in an exponential family P with parameter § = (3,0%) € RP x (0,00).
However, if the matrix Z is not of full rank, then P is not identifiable (see
§2.1.2), since Z(31 = Z[B2 does not imply 51 = (s.

Suppose that the rank of Z is r < p. Then there is an n X r submatrix
Z, of Z such that

Z =27.Q (3.30)
and Z, is of rank r, where @ is a fixed r X p matrix. Then
ZB=2.Qp

and P is identifiable if we consider the reparameterization B = Q0. Note
that the new parameter [ is in a subspace of R? with dimension r.

In many applications, we are interested in estimating some linear func-
tions of 3, i.e., ¥ = I3 for some | € RP. From the previous discussion,
however, estimation of "3 is meaningless unless [ = Q"¢ for some ¢ € R"
so that

I'B=cQB=cp.
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The following result shows that [7( is estimable if | = "¢, which is also
necessary for [”3 to be estimable under assumption Al.

Theorem 3.6. Assume model (3.25) with assumption A3.

(i) A necessary and sufficient condition for [ € RP being Q"¢ for some
ceR"isl € R(Z)=R(Z"Z), where Q is given by (3.30) and R(A) is the
smallest linear subspace containing all rows of A.

(ii) If I € R(Z), then the LSE I7 3 is unique and unbiased for " 3.

(iii) If | ¢ R(Z) and assumption A1l holds, then {7 is not estimable.
Proof. (i) Note that a € R(A) if and only if a = A7b for some vector b. If
Il =Q7c, then

1=Qc=Q ZIZ(ZIZ) e =2Z7[Z.(ZIZ.) " (].
Hence | € R(Z). If | € R(Z), then | = Z7(¢ for some ¢ and
1=(Z.Q)(=Q¢
with ¢ = Z7¢.
(i) If l e R(Z) = R(Z"Z), then | = Z7Z( for some ¢ and by (3.29),
E(I"3) = E(I"(Z"2)~ Z" X]

=(Z7Z(Z7Z)"Z7Z5
— 178

If 3 is any other LSE of 3, then, by (3.27),

Up-UB=C(Z72)B-P)=C(Z7X - Z7X)=0.
(iii) Under assumption Al, if there is an estimator h(X, Z) unbiased for
[73, then
'B= | h(z,2)2r) 20 "exp{-,L ||lx — ZB|} da.
R

Differentiating w.r.t. § and applying Theorem 2.1 lead to

= ZT/ Wz, Z)(2m) " 20" 2 (x — ZB) exp {— Lz |z — ZB||*} da,
which implies | € R(Z). 1

Theorem 3.6 shows that LSE’s are unbiased for estimable parameters

I76. If Z is of full rank, then R(Z) = RP and, therefore, [ is estimable
for any | € RP.
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Example 3.12 (Simple linear regression). Let 3 = (8o,/1) € R? and
Z; = (1,t;), t; € R, i = 1,...,n. Then model (3.24) or (3.25) is called a
simple linear regression model. It turns out that

ZTZ=< K Y )
Zi:l ti Zi:l t;

This matrix is invertible if and only if some t;’s are different. Thus, if some
t;’s are different, then the unique unbiased LSE of {73 for any | € R? is
I"(Z™Z)~1Z7 X, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression
of order p in which 3 = (8o, A1, ..., Bp_1) and Z; = (1, t;, ... t"""). n

Example 3.13 (One-way ANOVA). Suppose that n = Z;nzl n; with m
positive integers nq, ..., n,, and that

X = pj + ¢4, t=kj1+1,.. Kk j=1,...,m,

where ko =0, k; = > 7_,n, 5 =1,...,m, and (p1, ..., ) = 3. Let Jp, be
the m-vector of ones. Then the matrix Z in this case is a block diagonal
matrix with J,; as the jth diagonal column. Consequently, Z"Z is an
m X m diagonal matrix whose jth diagonal element is n;. Thus, Z7Z is
invertible and the unique LSE of 3 is the m-vector whose jth component

. —1 kj .
is n; ik 141 Xi,7=1,....,m.

Sometimes it is more convenient to use the following notation:
XU = Xk?i71+j7 €ij = €ki_1+j> .] =1,.,n,i=1,...,m,

and
Wi = p+ oy, 1=1,..,m.

Then our model becomes
Xij =M + Q5 + 5ij7 ] = 17 ...7ni7i = 1, ey, (331)

which is called a one-way analysis of variance (ANOVA) model. Under
model (3.31), B = (u,a1,...,q,) € R™L. The matrix Z under model
(3.31) is not of full rank (exercise). An LSE of § under model (3.31) is

A= (X, X0 - X, X — X)),

where X is still the sample mean of X;j's and X;. is the sample mean of the
ith group {X;;,j = 1,...,n;}. The problem of finding the form of I € R(Z)
under model (3.31) is left as an exercise. 1

The notation used in model (3.31) allows us to generalize the one-way
ANOVA model to any s-way ANOVA model with a positive integer s under



186 3. Unbiased Estimation

the so-called factorial experiments. The following example is for the two-
way ANOVA model.

Example 3.14 (Two-way balanced ANOVA). Suppose that
Xijk = [L+OéZ +ﬂj +")/” +5ijk7 1= ]., ) a,j = 1, ceey b, k= 1, ceey Cy (332)
where a, b, and ¢ are some positive integers. Model (3.32) is called a two-
way balanced ANOVA model. If we view model (3.32) as a special case of
model (3.25), then the parameter vector f is
ﬁ = (/’[/a a1, ..., Qg, ﬁh ceey ﬁb7 Y11y ooy V1by ooy Yals oey ,Yab>- (333)

One can obtain the matrix Z and show that it is n x p, where n = abc and
p=1+a+b+ ab, and is of rank ab < p (exercise). It can also be shown
(exercise) that an LSE of 3 is given by the right-hand side of (3.33) with p,
oy, B4, and y;; replaced by fi, d&;, ﬁj, and 4;;, respectively, where i = X..,
d,’ = Xz — X, Bj = XJ — X, ’Ay” = X” — Xl — XJ + X, and a dot
is used to denote averaging over the indicated subscript, e.g.,

B 1 a C
Xjo= 2> X
1=1 k=1
with a fixed 5. 1

3.3.2 The UMVUE and BLUE

We now study UMVUE’s in model (3.25) with assumption Al.

Theorem 3.7. Consider model (3.25) with assumption Al.
(i) The LSE "5 is the UMVUE of {" 3 for any estimable {7 3.
(ii) The UMVUE of 02 is 62 = (n — r)7'||X — Zp||?, where r is the rank
of Z.
Proof. (i) Let 3 be an LSE of 3. By (3.27),
(X =23 2(B~H)=(X"2-X"2)(F~p)=0
and, hence,
I1X = ZB)1° = | X — 23+ 25 - Zp)?
= |X - Zp|* + 125 - ZB|?
= |X = ZBI” 26727 X + || Z8|* + | 25]*.

Using this result and assumption A1, we obtain the following joint Lebesgue
p.d.f. of X:

— T z—Z B2+ 23|12 ZB||?
(27r02) I’L/QeXp{ﬁUZQ z _ |z BQU;HI Ble _ Hzf’ll }
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By Proposition 2.1 and the fact that Z3 = Z(Z™Z)~Z" X is a function of
Z7X, (Z7X,| X — Z3||?) is complete and sufficient for § = (8, 02). Note
that B is a function of Z7 X and, hence, a function of the complete sufficient
statistic. If [73 is estimable, then {73 is unbiased for I"3 (Theorem 3.6)
and, hence, I3 is the UMVUE of [73.

(ii) From ||X — ZB|* = |IX — ZB|* + 125 — ZB|* and E(ZB) = 2
(Theorem 3.6),

E|X — Zp|* = B(X - Zp)"(X — Z8) = E(8 — B)"27Z(5 - B)
= tr (Var(X) — Var(ZB))
=o’ln—tr(2(272)"Z272(Z27Z)" Z7)]
=o’ln—tr((272)" 27 Z)).

Since each row of Z € R(Z), Z3 does not depend on the choice of (Z7Z)~ in

8= (Z7Z)"Z"X (Theorem 3.6). Hence, we can evaluate tr((Z72)"Z7Z)
using a particular (Z7Z)~. From the theory of linear algebra, there exists
a p X p matrix C' such that CC™ = I, and

cizze=(4 ),

where A is an r x r diagonal matrix whose diagonal elements are positive.
Then, a particular choice of (Z72) is

(z272) = c( A; 8 > o (3.34)

and

L. 0
VAN ARVAN A " o
(27 2) 0(0 0)0

whose trace is 7. Hence 62 is the UMVUE of o2, since it is a function of

the complete sufficient statistic and

E6*=(n—r)'EB|X - Z3||> =02 1

In general,
Var(I"3) =17 (27 Z)~ Z"Var(e)Z(Z7 Z) . (3.35)

If | € R(Z) and Var(e) = 021, (assumption A2), then the use of the gen-
eralized inverse matrix in (3.34) leads to Var(I"3) = 02" (Z7Z)~l, which
attains the Cramér-Rao lower bound under assumption Al (Proposition
3.2).
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The vector X — Z3 is called the residual vector and || X — Z3||2 is called
the sum of squared residuals and is denoted by SSR. The estimator 62 is
then equal to SSR/(n —r).

Since X — Zf3 = [I,, — Z(Z27Z)"Z7|X and "3 = I"(272)~Z"X are
linear in X, they are normally distributed under assumption Al. Also,
using the generalized inverse matrix in (3.34), we obtain that

L~ 2(272) 2V 2(Z72)" = 2(Z72)" ~ 2(Z72) 27227 Z)" =0,

which implies that 62 and [™ 3 are independent (Exercise 58 in §1.6) for any
estimable {" 3. Furthermore,

(Z(272)" 272 = Z2(272)" 27
(i.e., Z(Z7Z)~Z7 is a projection matrix) and
SSR = X"[I, — Z(Z"Z)~Z"]X.
The rank of Z(Z7Z)~Z7 is tr(Z(Z7Z)~ Z7) = r. Similarly, the rank of the
projection matrix I,, — Z(Z7Z)~Z" is n — r. From
XX =XT2(Z72) Z7|X + X"|I, — Z(Z°Z)" 27X
and Theorem 1.5 (Cochran’s theorem), SSR/o? has the chi-square distri-
bution x?2_,.(§) with
§=0 2372l — Z(Z7Z)"Z7)Zp = 0.

Thus, we have proved the following result.

Theorem 3.8. Consider model (3.25) with assumption Al. For any es-
timable parameter [73, the UMVUE’s ZTB and 62 are independent; the
distribution of 173 is N(I" 8,021 (Z7Z)~1); and (n — )62 /0?2 has the chi-
square distribution x2_,.. 1

Example 3.15. In Examples 3.12-3.14, UMVUE'’s of estimable I” 3 are the
LSE’s I7 3, under assumption Al. In Example 3.13,

m  n;

i=1 j=1
in Example 3.14, if ¢ > 1,

a b c

SSR= 3" (Xijk — Xij.)% 0

i=1 j=1 k=1
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We now study properties of ZTB and &2 under assumption A2, i.e., with-
out the normality assumption on €. From Theorem 3.6 and the proof of
Theorem 3.7(ii), I73 (with an [ € R(Z)) and 62 are still unbiased without
the normality assumption. In what sense are ZTB and &2 optimal beyond
being unbiased? We have the following result for the LSE ZTB. Some dis-
cussion about 62 can be found, for example, in Rao (1973, p. 228).

Theorem 3.9. Consider model (3.25) with assumption A2.
(1) A necessary and sufficient condition for the existence of a linear unbiased
estimator of I"4 (i.e., an unbiased estimator that is linear in X) is | € R(Z).
(ii) (Gauss-Markov theorem). If [ € R(Z), then the LSE {7 is the best
linear unbiased estimator (BLUE) of I3 in the sense that it has the mini-
mum variance in the class of linear unbiased estimators of [” 3.
Proof. (i) The sufficiency has been established in Theorem 3.6. Suppose
now a linear function of X, ¢™ X with ¢ € R"™, is unbiased for [”3. Then
I"B=E("X)=c"EX =c"Zg.
Since this equality holds for all 8, | = Z7¢, i.e., l € R(Z).
(ii) Let | € R(Z) = R(Z7Z). Then | = (Z7Z)¢ for some ¢ and I"3 =
C"(Z7Z)5 =(¢"Z7X by (3.27). Let ¢" X be any linear unbiased estimator
of I"3. From the proof of (i), Z7¢ = 1. Then
Cov(("Z™X, "X —("Z2"X)=E(X"Z("X) - E(X"Z¢("Z" X)
= o*t1(Z(c™) + BTZTZ(CTZB
— c*r(ZCTZT) - BTZTZCTZTZB
— O'ZCTl + (lTﬁ)Q _ O'ZCTl _ (lTﬁ)2
=0.
Hence
Var(¢c"X) = Var(c" X —("Z"X + (" 2" X)
=Var(c"X —("Z"X)+ Var(("Z7 X)
+2Cov(CTZ7X, X — (T Z7X)
= Var(¢"X — ("Z7X) + Var(I" )
> Var(I"f). 1

3.3.3 Robustness of LSE’s

Consider now model (3.25) under assumption A3. An interesting ques-
tion is under what conditions on Var(e) is the LSE of I3 with | € R(Z)
still the BLUE. If {73 is still the BLUE, then we say that [, considered
as a BLUE, is robust against violation of assumption A2. In general, a
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statistical procedure having certain properties under an assumption is said
to be robust against violation of the assumption if and only if the statistical
procedure still has the same properties when the assumption is (slightly)
violated. For example, the LSE of {73 with [ € R(Z), as an unbiased esti-
mator, is robust against violation of assumption Al or A2, since the LSE
is unbiased as long as E(e) = 0, which can be always assumed without loss
of generality. On the other hand, the LSE as a UMVUE may not be robust
against violation of assumption Al (see §3.5).

Theorem 3.10. Consider model (3.25) with assumption A3. The following
are equivalent.
(a) 173 is the BLUE of I" for any | € R(Z).
(b) E(I"Bn™X) = 0 for any | € R(Z) and any 7 such that E(n”X) = 0.
(¢) Z™Var(e)U = 0, where U is a matrix such that Z7U =0 and R(U") +
(Z27) =R"
(d) Var(e) = ZA1Z™ + UALU™ for some Aq and As.
(e) The matrix Z(Z7Z)~ Z"Var(e) is symmetric.
Proof. We first show that (a) and (b) are equivalent, which is an analogue
of Theorem 3.2(i). Suppose that (b) holds. Let I € R(Z). If ¢"X is
unbiased for I7§, then E(n™X) =0 with n =c— Z(Z"Z)~l. Hence
Var(¢"X) = Var(¢™ X — "3+ 170)

= Var(¢"X —17(Z72)"Z"X +17f3)

= Var(n” X +1"f)

= Var(n™ X) + Var(I"3) + 2Cov(n™ X, 17 3)

= Var(n™X) + Var(I" §) + 2E(I" 3" X)

= Var(n™X) + Var(I" §)

> Var(lTB).
Suppose now that there are | € R(Z) and 5 such that E(n™X) = 0 but
0=E(l"Bn"X)#0. Let ¢, =tn+ Z(Z™Z)~l. From the previous proof,

Var(cf X)) = t*Var(n™ X) + Var(I"3) + 26t.

As long as § # 0, there exists a t such that Var(c] X) < Var(I"j3). This
shows that {73 cannot be a BLUE and, therefore, (a) implies (b).

We next show that (b) implies (c¢). Suppose that (b) holds. Since
le R(Z),1l= Z" for some 7. Let n € R(UT). Then E(n"X)=n"Z3=0
and, hence,

= BB X)=EN Z(Z72)"Z"XX™n| =~ Z(Z7Z)~ Z"Var(e)n.
Since this equality holds for all I € R(Z), it holds for all 4. Thus,
Z(Z7Z)~ Z"Var(e)U = 0,
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which implies
Z"Z(Z7Z)” Z™Var(e)U = Z™Var(e)U = 0,

since ZTZ(Z"Z)~Z™ = Z7. Thus, (c) holds.

To show that (c) implies (d), we need to use the following facts from
the theory of linear algebra: there exists a nonsingular matrix C' such
that Var(e) = CC™ and C = ZC; + UC; for some matrices C; (since
R(UT) + R(ZT) = Rn) Let A1 = Clc{, A2 = CQC%—, and Ad = C’lCQT
Then

Var(e) = ZMZ7 + UNU™ + ZAsU™ + UNSZ™ (3.36)

and Z™Var(e)U = Z7ZA3U™U, which is 0 if (c) holds. Hence, (c) implies
0=2(272)"Z"ZAUTU(U™U) U™ = ZAsU”,

which with (3.36) implies (d).

If (d) holds, then Z(Z7Z)~Z"Var(e) = ZA1Z", which is symmetric.
Hence (d) implies (e). To complete the proof, we need to show that (e)
implies (b), which is left as an exercise. 1

As a corollary of this theorem, the following result shows when the
UMVUE’s in model (3.25) with assumption Al are robust against the vio-
lation of Var(e) = o21,.

Corollary 3.3. Consider model (3.25) with a full rank Z, ¢ = N, (0, %),
and an unknown positive definite matrix . Then "3 is a UMVUE of "3
for any [ € R? if and only if one of (b)-(e) in Theorem 3.10 holds. 1

Example 3.16. Consider model (3.25) with 3 replaced by a random vector
B that is independent of €. Such a model is called a linear model with
random coefficients. Suppose that Var(e) = 021, and E(8) = 3. Then

X=ZB+Z(B—B)+ec=23+e, (3.37)
where e = Z(8 — (3) + ¢ satisfies E(e) = 0 and
Var(e) = ZVar(B)Z™ + °1,.

Since
Z(Z7Z)" Z™Var(e) = ZVar(B)Z" + 02 Z(Z7Z)" Z"

is symmetric, by Theorem 3.10, the LSE 173 under model (3.37) is the
BLUE for any "3, l € R(Z). If Z is of full rank and ¢ is normal, then, by
Corollary 3.3, I7 3 is the UMVUE of "3 for any [ € RP. 1
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Example 3.17 (Random effects models). Suppose that
Xij :,u,—‘y—141—‘y-€l_/7 j=1 .. n,t=1...m, (338)

where ;1 € R is an unknown parameter, A;’s are i.i.d. random variables
having mean 0 and variance o2, e;;’s are i.i.d. random errors with mean 0
and variance o2, and A;’s and ei;'s are independent. Model (3.38) is called
a one-way random effects model and A;’s are unobserved random effects.
Let €;; = A; +e;;. Then (3.38) is a special case of the general model (3.25)
with
Var(e) = 02% + 01,

where X is a block diagonal matrix whose ith block is Jy, J;, and Jj is the k-
vector of ones. Under this model, Z = J,,,n = >.", n;,and Z(Z72)~ 27 =
n~1J,J7. Note that

T T T
mdn, Iy, nednJn, oo n,,LJnlJnm
T T T
JnJ;E _ nlJnQ Jn1 annQ an ’IlmJn2 Jnm ,
T T T
Mdn,In, Mednndn, 0 nmdn,, I
which is symmetric if and only if n; = ng = -+ = n,,. Since J,,J] Var(e)

is symmetric if and only if J,J 3 is symmetric, a necessary and sufficient
condition for the LSE of x4 to be the BLUE is that all n;’s are the same.
This condition is also necessary and sufficient for the LSE of u to be the
UMVUE when ¢;;’s are normal. 1

In some cases, we are interested in some (not all) linear functions of 3.
For example, consider [” 3 with [ € R(H), where H is an n X p matrix such
that R(H) C R(Z). We have the following result.

Proposition 3.4. Counsider model (3.25) with assumption A3. Suppose
that H is a matrix such that R(H) C R(Z). A necessary and sufficient
condition for the LSE ITB to be the BLUE of {7 for any | € R(H) is
H(Z7Z)~Z"Var(e)U = 0, where U is the same as that in (c¢) of Theorem
3.10. 1

Example 3.18. Consider model (3.25) with assumption A3 and Z =
(Hy Hs), where Hf H, = 0. Suppose that under the reduced model

X:Hlﬂl +e,

lTﬁl is the BLUE for any ", | € R(H;), and that under the reduced
model
X = HZBZ +e€,
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1”35 is not a BLUE for some 173, | € R(Hy), where 3 = (01, 82) and Bj’s
are LSE’s under the reduced models. Let H = (H; 0) be n x p. Note that

H(Z7Z)~Z"Var(e)U = H,(H{ H1)~ H{ Var(e)U,
which is 0 by Theorem 3.10 for the U given in (c¢) of Theorem 3.10, and
Z(Z7Z)~ Z™Var(e)U = Ho(Hy Hy)™ Hy Var(e)U,

which is not 0 by Theorem 3.10. This implies that some LSE ZTB is not a
BLUE of {73 but [ is the BLUE of "3 if l € R(H). 1

Finally, we consider model (3.25) with Var(e) being a diagonal matrix
whose ith diagonal element is 02, i.e., £;’s are uncorrelated but have unequal
variances. A straightforward calculation shows that condition (e) in Theo-
rem 3.10 holds if and only if, for all i # j, 07 # o7 only when h;; = 0, where
hi; is the (4, j)th element of the projection matrix Z(Z7Z)~Z7. Thus, an
LSE is not a BLUE in general, although it is still unbiased for estimable
5.

Suppose that the unequal variances of ¢;’s are caused by some small
perturbations, i.e., &; = e; + u;, where Var(e;) = o2, Var(u;) = d;, and e;
and u; are independent so that o = 0% + ;. From (3.35),

Var(I"8) =17(Z72)" Y 07 2,Z](Z7Z)" L.

i=1

If §; = 0 for all i (no perturbations), then assumption A2 holds and ZTB
is the BLUE of any estimable ™3 with Var(I"3) = 021" (Z7Z)~l. Suppose
that 0 < §; < 026. Then

Var(I"3) < (1+6)0?17 (27 Z)71.

This indicates that the LSE is robust in the sense that its variance increases
slightly when there is a slight violation of the equal variance assumption
(small ).

3.3.4 Asymptotic properties of LSE’s

We consider first the consistency of the LSE I”3 with | € R(Z) for every
n.

Theorem 3.11. Consider model (3.25) with assumption A3. Suppose that
sup,, A+ [Var(g)] < oo, where A [A] is the largest eigenvalue of the matrix
A, and that lim, oo A+[(Z7Z)] = 0. Then I"§ is consistent in mse for
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any | € R(2).
Proof. The result follows from the fact that [”3 is unbiased and

Var(I"3) = 17(272)~ Z"Var(e) Z(Z7Z) "
< M [Var(@))l™(Z7Z2)71. 1

Without the normality assumption on ¢, the exact distribution of ZTB
is very hard to obtain. The asymptotic distribution of [ is derived in the
following result.

Theorem 3.12. Consider model (3.25) with assumption A3. Suppose that
0 < inf, A_[Var(e)], where A_[A4] is the smallest eigenvalue of the matrix
A, and that

lim max Z7(Z7Z)"Z; = 0. (3.39)

n—oo 1<i<n

Suppose further that n = Z?Zl m; for some integers k, m;, j = 1,..., k,
with m;’s bounded by a fixed integer m, € = (&1, ...,&k), & € R™, and ;s
are independent.

(i) If sup; Ele;|?>T? < oo, then for any | € R(Z),

(3 — ﬂ)/\/Var(ZTB) —q N(0,1). (3.40)

(i) Suppose that when m; = m;, 1 <i < j <k, & and {; have the same
distribution. Then result (3.40) holds for any I € R(Z).
Proof. Let | € R(Z). Then

(Z72)"Z"Zp—-1U"3=0
and

k
T(B=B)=1(272)Z7e = c;&,
j=1

where ¢,,; is the mj-vector whose components are ["(Z7Z)~ Z;, i = k;j—1 +
1,..,kj, ko=0,and kj =3 ]_;my, j =1,..., k. Note that

k
S llensI*=17(272)"272(Z272) 1 =1 (27 Z)"L. (3.41)
j=1

Also,

12 < (7T - 712
jpax flenll™ < m max [I7(272)" 2]

<ml™(Z"2Z)"1 max Z7(Z72)" Z;
1<i<n
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which, together with (3.41) and condition (3.39), implies that

k
. 12 2] =
i { ms ensl? /3 ews1? | =0

j=1

The results then follow from Corollary 1.3. 1

Under the conditions of Theorem 3.12, Var(e) is a diagonal block matrix
with Var(¢;) as the jth diagonal block, which includes the case of indepen-
dent €;’s as a special case.

The following lemma tells us how to check condition (3.39).

Lemma 3.3. The following are sufficient conditions for (3.39).
(a) \p[(Z7Z) | —=0and Z(Z"Z)" Z, — 0, as n — o0.
(b) There is an increasing sequence {a,} such that a,, — 00, an/an41 — 1,
and Z7Z/a,, converges to a positive definite matrix. 1
IEn 'Y " 2 —candn )" ¢ — d in the simple linear regression
model (Example 3.12), where c is positive and ¢ > d?, then condition (b) in
Lemma 3.3 is satisfied with a,, = n and, therefore, Theorem 3.12 applies.
In the one-way ANOVA model (Example 3.13),
T T -7 T -1 — ._1
max ZI(Z72)" Z; = A\ [(Z7Z)7] 1%‘2}%”3 .
Hence conditions related to Z in Theorem 3.12 are satisfied if and only

if min;n; — oo. Some similar conclusions can be drawn in the two-way
ANOVA model (Example 3.14).

3.4 Unbiased Estimators in Survey Problems

In this section, we consider unbiased estimation for another type of non-
i.i.d. data often encountered in applications: survey data from finite pop-
ulations. A description of the problem is given in Example 2.3 of §2.1.1.
Examples and a fuller account of theoretical aspects of survey sampling
can be found, for example, in Cochran (1977) and Séarndal, Swensson, and
Wretman (1992).

3.4.1 UMVUE'’s of population totals

We use the same notation as in Example 2.3. Let X = (Xy,...,X,,) be a
sample from a finite population P = {y1, ..., yn } with

P(Xl = Yiy>» "'7Xn = yin) :p(s)/n',
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where s = {i1,...,i,} is a subset of distinct elements of {1,..., N} and p is
a selection probability measure. We consider univariate y;, although most
of our conclusions are valid for the case of multivariate y;. In many survey
problems the parameter to be estimated is Y = Zfil y;, the population
total.

In Example 2.27, it is shown that Y =NX = JT\L’ > ics Vi is unbiased for
Y if p(s) is constant (simple random sampling); a formula of Var(Y") is also
given. We now show that Y is in fact the UMVUE of Y under simple ran-
dom sampling. Let ) be the range of y;, 8 = (y1,...,yn) and © = Hfil V.
Under simple random sampling, the population under consideration is a
parametric family indexed by 6 € ©.

Theorem 3.13 (Watson-Royall theorem). (i) If p(s) > 0 for all s, then
the vector of order statistics X1y <+ < X() is complete for 6 € ©.

(ii) Under simple random sampling, the vector of order statistics is suffi-
cient for 0 € ©.

(iii) Under simple random sampling, for any estimable function of 6, its
unique UMVUE is the unbiased estimator g(Xj, ..., X;,), where g is sym-
metric in its n arguments.

Proof. (i) Let h(X) be a function of the order statistics. Then A is sym-
metric in its n arguments. We need to show that if

S={i1,...,in}C{1,...,N}

for all § € O, then h(yi,,...,y:,) = 0 for all y;,,...,y; . First, suppose that
all N elements of 6 are equal to a € Y. Then (3.42) implies h(a,...,a) = 0.
Next, suppose that N — 1 elements in 6 are equal to a and one is b > a.
Then (3.42) reduces to

@1h(a,...,a) + g2h(a, ..., a,b),

where ¢; and ¢y are some known numbers in (0,1). Since h(a,...,a) =0
and ¢z # 0, h(a,...,a,b) = 0. Using the same argument, we can show
that h(a,...,a,b,...,b) = 0 for any k a’s and n — k b’s. Suppose next that
elements of 6 are equal to a, b, or ¢, a < b < ¢. Then we can show that
h(a,...,a,b,....;b,¢c,....,c) =0for any k a’s, [ b’s, and n—k—1 ¢’s. Continuing
inductively, we see that h(yi,...,y,) = 0 for all possible y1,...,y,. This
completes the proof of (i).

(ii) The result follows from the factorization theorem (Theorem 2.2), the
fact that p(s) is constant under simple random sampling, and

P(Xl = yi17"'7Xn = yin) = P(X(l) = y(i1)7"'7X(7z) = y(in))/nla

where y;,) < -+ <y, are the ordered values of y;, , ..., yi, -
(iii) The result follows directly from (i) and (ii). 1
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It is interesting to note the following two issues. (1) Although we have
a parametric problem under simple random sampling, the sufficient and
complete statistic is the same as that in a nonparametric problem (Example
2.17). (2) For the completeness of the order statistics, we do not need the
assumption of simple random sampling.

Example 3.19. From Example 2.27, Y = NX is unbiased for Y. Since Y
is symmetric in its arguments, it is the UMVUE of Y. We now derive the
UMVUE for Var(Y'). From Example 2.27,

Var(V) = N? (1 " ) o2, (3.43)

N ( )2

=1
It can be shown (exercise) that F (52) 0%, where S? is the usual sample
variance

where

n

s 1 o1 v\
s _nflz(Xi_X) _nlz<yi_N> '

i=1 €8

SinceA 52 is symmetric in its arguments, JXLQ (1— )52 is the UMVUE of
Var(Y). 1

Simple random sampling is simple and easy to use, but it is inefficient
unless the population is fairly homogeneous w.r.t. the y;’s. A sampling
plan often used in practice is the stratified sampling plan, which can be
described as follows. The population P is divided into nonoverlapping sub-
populations P4y, ..., Py called strata; a sample is drawn from each stratum
Pr, independently across the strata. There are many reasons for strati-
fication: (1) it may produce a gain in precision in parameter estimation
when a heterogeneous population is divided into strata, each of which is
internally homogeneous; (2) sampling problems may differ markedly in dif-
ferent parts of the population; and (3) administrative considerations may
also lead to stratification. More discussions can be found, for example, in
Cochran (1977).

In stratified sampling, if a simple random sample (without replacement),
Xn = (Xn1, e, Xnn, ), is drawn from each stratum, where ny, is the sample
size in stratum h, then the joint distribution of X = (X3,...,Xpy) isin a
parametric family indexed by 6 = (01, ...,0y), where 0, = (y;,i € Pp), h =

., H. Let Y} be the range of y;’s in stratum h and O, = Hfi"l YV, where
Ny, is the size of Pp. We assume that the parameter space is © = Hfil Op.
The following result is similar to Theorem 3.13.



198 3. Unbiased Estimation

Theorem 3.14. Let X be a sample obtained using the stratified simple
random sampling plan described previously.

(i) For each h, let Z;, be the vector of the ordered values of the sample in
stratum h. Then (Z1, ..., Zy) is sufficient and complete for § € ©.

(ii) For any estimable function of 6, its unique UMVUE is the unbiased
estimator g(X) that is symmetric in its first ny arguments, symmetric in
its second ny arguments,..., and symmetric in its last ny arguments. 1

Example 3.20. Consider the estimation of the population total Y based on
a sample X = (Xp;,i =1,...,np,h = 1,..., H) obtained by stratified simple
random sampling. Let Y} be the population total of the Ath stratum and
let Yh = N, X, where X, is the sample mean of the sample from stratum
h, h =1,...,H. From Example 2.27, each Yh is an unbiased estimator of
Yh. Let

) H ) H np N
Ya=) V=) > th
h=1 h=1i=1

Then, by Theorem 3.14, Yst is the UMVUE of Y. Since )71, ,YH are
independent, it follows from (3.43) that

Var(Vy) = EH: N (1 - ”h> o2, (3.44)

n N
h=1 h h

where 0j = (N, —1)7" Y, cp, (i — Yu/Ni)?. An argument similar to that
in Example 3.19 shows that the UMVUE of Var(Yy,) is

H N2 n
h
Sh=3 (1 - ) s2, (3.45)

where S7 is the usual sample variance based on Xp1, ..., Xpn,, -

It is interesAting to compare the mse of the UMVUE Yst with the mse of
the UMVUE Y under simple random sampling (Example 3.19). Let o2 be
given in (3.43). Then

H H

(N - 1>02 = Z(Nh - 1>0'}21 + ZNh(,U/h - /1')27

h=1 h=1

where pp, = Y3 /Ny, is the population mean of the hth stratum and p = AY/N
is the overall population mean. By (3.43), (3.44), and (3.45), Var(Y) >
Var(Ys;) if and only if

H

H
2 - n
Z 752[1311%) (1 ,U/h Z |:nh < - ) - Nn((JIVVil)l) (1 - N)]UEL'

h=1
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This means that stratified simple random sampling is better than simple
random sampling if the deviations uj; — p are sufficiently large. If ]’(]’; =0

(proportional allocation), then this condition simplifies to

H " N
> Nulpn —p)* = <1 - J\?) or, (3.46)
h=1

h=1

which is usually true when uy’s are different and some N},’s are large.

Note that the variances Var@/) and Var(Yy) are w.r.t. different sam-
pling plans under which Y and Y,; are obtained. 1

3.4.2 Horvitz-Thompson estimators

If some elements of the finite population P are groups (called clusters) of
subunits, then sampling from P is cluster sampling. Cluster sampling is
used often because of administrative convenience or economic considera-
tions. Although sometimes the first intention may be to use the subunits
as sampling units, it is found that no reliable list of the subunits in the
population is available. For example, in many countries there are no com-
plete lists of the people or houses in a region. From the maps of the region,
however, it can be divided into units such as cities or blocks in the cities.

In cluster sampling, one may greatly increase the precision of estima-
tion by using sampling with probability proportional to cluster size. Thus,
unequal probability sampling is often used.

Suppose that a sample of clusters is obtained. If subunits within a
selected cluster give similar results, then it may be uneconomical to measure
them all. A sample of the subunits in any chosen cluster may be selected.
This is called two-stage sampling. One can continue this process to have a
multistage sampling (e.g., cities — blocks — houses — people). Of course,
at each stage one may use stratified sampling and/or unequal probability
sampling.

When the sampling plan is complex, so is the structure of the observa-
tions. We now introduce a general method of deriving unbiased estimators
of population totals, which are called Horvitz- Thompson estimators.

Theorem 3.15. Let X = {y;,i € s} denote a sample from P = {y1,...,yn}
that is selected, without replacement, by some method. Define

m; = probability that i € s, +=1,...,N.

(i) (Horvitz-Thompson). If m; > 0 for i = 1,..., N and 7; is known when
i € s, then Yy, = Zie s Yi /i is an unbiased estimator of the population
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total Y.
(ii) Define

m;; = probability that i € sand j€s, i=1,..,N,j=1,..,N.

Then
N NN
Var(Vi,) — i 2 ij — i .
ar(Yp:) Z o Y +2 Z Z - Y (3.47)
i=1 i=1 j=i+1
N N v ui\?
- T (V=Y 3.48
>3 tmmy =) (U= ) (349

Proof. (i) Let a; = 1ifi € sanda; =0if i € s, ¢ =1,...,N. Then
E(a;) = m; and

N N
E(Yi) = E (Z aﬁ‘”) =Y yi=Y.

i=1 ! i=1

(ii) Since a? = a;,
Var(a;) = E(a;) — [E(a;)]? = mi(1 — ;).
For i # j,
Cov(a;,aj) = E(a;aj) — E(a;)E(a;) = myj — mimj.

Then

N o N N

= Z %2 Var(a;) + QZ Z Yids Cov(a;,aj)
i=1 "¢ i=1 j=it1 T
N 1—m N I T

DR 3 DT
i=1 i=1 j=i+1 v

Hence (3.47) follows. To show (3.48), note that

N
Zﬂ'i =n and Z i = (n — )y,
i=1 =

which implies

Z (mij —mimy) = (n—1)m —mi(n —m) = —mi(1 — m;).
=1, N it
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Hence
N 2
1—m 5 _ ;
E o Y= E E (mimj — 7ij) %
i=1 v i=1 j=1,...,N,j#i v
N N 2
B DY
= (Wlﬂj—ﬂij> 2 +7T2
=1 j=i+1 ?

T W
i=1 j=i+1 i J iTj
N N N

i j
=Y > (mmy—my) I
, T T
=1 j=i+1

Using the same idea, we can obtain unbiased estimators of Var(ffht).
Suppose that m;; > 0 for all 7 and j and 7;; is known when ¢ € s and j € s.
By (3.47), an unbiased estimator of Var(Y,;) is

1—7m Tii — TUaTTs
w=) L wr2d, D, U T (349)

€S 4 €S JES,j>i

By (3.48), an unbiased estimator of Var(Yj) is

2

Ty~ T (Yi Y
= — . 3.50
e S A G (350

i€S jES,j>i

Variance estimators v; and vy may not be the same in general, but they
are the same in some special cases (Exercise 92). A more serious problem
is that they may take negative values. Some discussions about deriving
better estimators of Var(Yy;) are provided in Cochran (1977, Chapter 9A).

Some special cases of Theorem 3.15 are considered as follows.

Under simple random sampling, m; = n/N. Thus, Y in Example 3.19 is
the Horvitz-Thompson estimator.

Under stratified simple random sampling, m; = ny, /N}, if unit ¢ is in stra-
tum h. Hence, the estimator Yy, in Example 3.20 is the Horvitz-Thompson
estimator.

Suppose now each y; € P is a cluster, i.e., ¥; = (Y1, ..., Yin; ), Where
M is the size of the ith cluster, i = 1,..., N. The total number of units in
P is then M = Zf\il M;. Consider a single-stage sampling plan, i.e., if y;
is selected, then every y;; is observed. If simple random sampling is used,
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then 7m; = k/N, where k is the first-stage sample size (the total sample size
isn= Zle M;), and the Horvitz-Thompson estimator is

. N & N
Y, = k Zzyij: k ZYz‘,

i€8y j=1 €8

where s7 is the index set of first-stage sampled clusters and Y; is the total
of the ith cluster. In this case,

vati = 'y (1) i (1)

If the selection probability is proportional to the cluster size, then m; =
kEM;/M and the Horvitz-Thompson estimator is

. M 1 M Y,
Yore = ZMZ-Z;‘”“: IR
p

€81 €81

whose variance is given by (3.47) or (3.48). Usually Var(Y,,.) is smaller
than Var(Y); see the discussions in Cochran (1977, Chapter 9A).

Consider next a two-stage sampling in which & first-stage clusters are se-
lected and a simple random sample of size m; is selected from each sampled
cluster y;, where sampling is independent across clusters. If the first-stage
sampling plan is simple random sampling, then 7; = km;/(NM;) and the
Horvitz-Thompson estimator is

~ N M;
Yo= o Z - Z Yij»
1€81 v JES2;

where so; denotes the second-stage sample from cluster i. If the first-stage
selection probability is proportional to the cluster size, then m; = km; /M
and the Horvitz-Thompson estimator is

- M 1
Y, s = Yij -

Finally, let us consider another popular sampling method called sys-
tematic sampling. Suppose that P = {y1,...,yn} and the population size
N = nk for two integers n and k. To select a sample of size n, we first draw
a j randomly from {1,...,k}. Our sample is then

{yj7 Yj+ks Yj+2ks s ijr(nfl)k}-
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Systematic sampling is used mainly because it is easier to draw a systematic
sample and often easier to execute without mistakes. It is also likely that
systematic sampling provides more efficient point estimators than simple
random sampling or even stratified sampling, since the sample units are
spread more evenly over the population. Under systematic sampling, m; =
k! for every i and the Horvitz-Thompson estimator of the population total

is .
Ysy =k Z Yi+t—1k-
t=1

The unbiasedness of this estimator is a direct consequence of Theorem 3.15,
but it can be easily shown as follows. Since j takes value ¢ € {1, ..., k} with
probability k=1,

B, ( S i ) zyz_

=1 t=1

The variance of Ysy is simply
N N2 9
Vax(Fa) = ¥ 30—
where p1; = n~ ' 300 yip—1k and po= k7! Zle w; = Y/N. Let o2 be

given in (3.43) and

kK n

aiy = k(n — 1) ZZ Yit(t—1)k — i)’
i=1 t=1
Then
k k n
(N—1)0* = nZ(ui — )+ Z Z Yit -1k — M)
i=1 i=1 t=1
Thus, R
(N —1)o? = N~ 'WVar(Yy,) + k(n — 1)0§y
and

Var(Ya,) = N(N —1)o% = N(N — k)o?

Since the variance of the Horvitz-Thompson estimator of the population
total under simple random sampling is, by (3.43),

PR

the Horvitz-Thompson estimator under systematic sampling has a smaller
variance if and only if agy > o2

" )02:N(k—1)02
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3.5 Asymptotically Unbiased Estimators

As we discussed in §2.5, we often need to consider biased but asymptoti-
cally unbiased estimators. A large and useful class of such estimators are
smooth functions of some exactly unbiased estimators such as UMVUE’s,
U-statistics, LSE’s, and Horvitz-Thompson estimators. Some other meth-
ods of constructing asymptotically unbiased estimators are also introduced
in this section.

3.5.1 Functions of unbiased estimators

If the parameter to be estimated is ¥ = g(#) with a vector-valued parameter
0 and U, is a vector of unbiased estimators of components of 8 (i.e., EU,, =
), then T,, = g(U,,) is often asymptotically unbiased for . Assume that g
is differentiable and ¢, (U, — 0) —4 Y. Then

amser, (P) = E{[Vg(0)]"Y}?/c;
(Theorem 2.6). Hence, T), has a good performance in terms of amse if U,

is optimal in terms of mse (such as the UMVUE).

The following are some examples.

Example 3.21 (Ratio estimators). Let (X1,Y7),...,(Xn,Y,) be i.i.d. ran-
dom 2-vectors with EX; = u, and EY; = p,. Consider the estimation of
the ratio of two population means: ¥ = yu,, /1 (i # 0). Note that (Y, X),
the vector of sample means, is unbiased for (ty, pt2). The sample means are
UMVUE’s under some statistical models (§3.1 and §3.2) and are BLUE’s
in general (Example 2.22). The ratio estimator is T,, = Y /X. Assume
that o2 = Var(X,), op = Var(Y1), and o,y = Cov(X1,Y7) exist. A direct
calculation shows that the n~! order asymptotic bias of T}, according to
(2.38) is

. Jo? — o,
b, (P) =",

(verify). Using the CLT and the delta-method (Corollary 1.1), we obtain
that

2 _ 200, + 0202
\/n(Tn 719) oy N (07 O'y Ozy (o

It
(verify), which implies

05 — 200,y + 19205
pzn

In some problems, we are not interested in the ratio, but the use of a
ratio estimator to improve an estimator of a marginal mean. For example,

amser, (P) =
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suppose that p, is known and we are interested in estimating p,,. Consider
the following estimator: o
fiy = (Y/X)pa.

Note that i, is not unbiased; its n~! order asymptotic bias according to
(2.38) is

. 902 —

b (P) =72 7

T

and
o) — 200,y + 9?02

amse,, (P) = n

Comparing /i, with the unbiased estimator Y, we find that fly is asymp-
totically more efficient if and only if

2 2
200,y > V905,

which means that fi, is a better estimator if and only if the correlation
between X; and Y is large enough to pay off the extra variability caused
by using u,/X. 1

Another example related to a bivariate sample is the sample correlation
coefficient defined in Exercise 22 in §2.6.

Example 3.22. Consider a polynomial regression of order p:
Xi :ﬂTZi+€i, iil,...,n,

where 8 = (Bo, 81, Bp-1), Zi = (1,ti,...,t7" "), and &;’s are iid. with
mean 0 and variance o > 0. Suppose that the parameter to be estimated
istg € 7 C R such that

p—1 p—1
= At
2 ity = a2 P
7=0 =0

Note that tg = g(3) for some function g. Let /3 be the LSE of 3. Then the
estimator fg = g(0) is asymptotically unbiased and its amse can be derived
under some conditions (Exercise 98). 1

Example 3.23. In the study of the reliability of a system component, we
assume that

Xij = HZz(tj) + €ij, 1= 1, ...,k, j = 1, e, .

Here X;; is the measurement of the ith sample component at time ¢;; z(t)
is a g-vector whose components are known functions of the time ¢; 6;’s
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are unobservable random g-vectors that are i.i.d. from N, (6, %), where 6
and X are unknown; ;;’s are i.i.d. measurement errors with mean zero
and variance o?; and 0,’s and ¢;;’s are independent. As a function of ¢,
07 z(t) is the degradation curve for a particular component and 67z(¢) is
the mean degradation curve. Suppose that a component will fail to work if
07 z(t) < n, a given critical value. Assume that 87 z(¢) is always a decreasing
function of t. Then the reliability function of a component is

T QTZ(t> -n
(o) = P70 > =0 (77T,

where s(t) = /[2(t)]"X2(t) and ® is the standard normal distribution
function. For a fixed ¢, estimators of R(t) can be obtained by estimating
6 and ¥, since ® is a known function. It can be shown (exercise) that the
BLUE of 0 is the LSE

0=(272)""'7"X,
where Z is the m x ¢ matrix whose jth row is the vector z(t;), X; =
(Xi1, ..., Xim), and X is the sample mean of X;’s. The estimation of ¥ is
more difficult. It can be shown (exercise) that a consistent (as k — 00)
estimator of X is

k
Z V27X - X)X - X)Z2(Z272) 6227 2) 7!

where

k
1
~2 T T T 171
0% = gXX -X/Z(Z"Z)"" 727X,
k(m — ql=1 ( ) il

Hence an estimator of R(t) is

where

5() = /[0 S5(0).

If we define Yy = X7Z(Z7Z)7'2(t), Yie = [X7Z(Z7Z) 2(t)]?, Yis =
(X7TX; — X7Z(Z72)"'Z"X;]/(m — q), and Y; = (Yi1,Yi2,Yis), then it is
apparent that R(t) can be written as g(Y') for a function

9(y1,2,y5) = ( no B > .
Vi =y —ys[z ()] (27 2) 1 2(b)

Suppose that ¢;; has a finite fourth moment, which implies the existence of
Var(Y;). The amse of R(t) can be derived (exercise). 1
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3.5.2 The method of moments

The method of moments is the oldest method of deriving point estima-
tors. It almost always produces some asymptotically unbiased estimators,
although they may not be the best estimators.

Consider a parametric problem where X1, ..., X, are i.i.d. random vari-
ables from Py, § € © C RF, and E|X;|* < co. Let u; = EX{ be the jth
moment of P and let

1 n p

_ J

Ly
i=1

be the jth sample moment, which is an unbiased estimator of y;, j = 1, ..., k.
Typically,
wi = h;(0), ji=1,..k, (3.51)

for some functions h; on RFE. By substituting ;s on the left-hand side of

(3.51) by the sample moments fi;, we obtain a moment estimator 0 ie., 6
satisfies X
Qi = h;(9), i=1,..,k,

which is a sample analogue of (3.51). This method of deriving estimators is
called the method of moments. Note that an important statistical principle,
the substitution principle, is applied in this method.

Let i = (fi1, ..., i) and h = (hq,..., hy). Then j = h(f). If the inverse
function A exists, then the unique moment estimator of 6 is 6 = h=L().
When k! does not exist (i.e., h is not one-to-one), any solution of i = h(6)
is a moment estimator of 8; if possible, we always choose a solution 0 in the
parameter space ©. In some cases, however, a moment estimator does not
exist (see Exercise 111).

Assume that 6 = g(ji) for a function g- It h™ 1 exists, then g = b=t If
g is continuous at g = (p1, ..., ik ), then 6 is strongly consistent for 6, since
fi; —a.s. ij by the SLLN. If g is differentiable at u and E|X;|?* < oo, then
6 is asymptotically normal, by the CLT and Theorem 1.12, and

amse; (6) = ' [Vg(u)] V. Vg(1),

where V, is a k x k matrix whose (¢,7)th element is p;y; — pip;. Fur-
thermore, it follows from (2.38) that the n~! order asymptotic bias of 6

is
(2n) "'t (V2g(u)V,)
Example 3.24. Let Xq,..., X,, be i.i.d. from a population Py indexed by

the parameter § = (u,0?), where p = EX; € R and 02 = Var(X;) €
(0,00). This includes cases such as the family of normal distributions,
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double exponential distributions, or logistic distributions (Table 1.2, page
20). Since EX; = p and EX? = Var(X;) + (EX1)? = 02 + p?, setting
fi1 = p and fio = 0% + p? we obtain the moment estimator

. I - = n—1
=X X, —-X)?|=(X 52 .
Note that X is unbiased, but ";152 is not. If X; is normal, then 6 is suffi-
cient and is nearly the same as an optimal estimator such as the UMVUE.

On the other hand, if X; is from a double exponential or logistic distribu-
tion, then 6 is not sufficient and can often be improved.

Consider now the estimation of o2 when we know that 1 = 0. Obviously
we cannot use the equation fi; = p to solve the problem. Using fig = p2 =
o?, we obtain the moment estimator 6% = fip = n~'> " | X?. This is
still a good estimator when X is normal, but is not a function of sufficient
statistic when X; is from a double exponential distribution. For the double
exponential case one can argue that we should first make a transformation
Y; = | X;| and then obtain the moment estimator based on the transformed
data. The moment estimator of o based on the transformed data is Y2 =
(=t 3" |X;:])?, which is sufficient for o®. Note that this estimator can

also be obtained based on absolute moment equations. 1

Example 3.25. Let Xi,..., X,, be i.i.d. from the uniform distribution on
(01,02), —00 < 01 < 03 < co. Note that

EXy = (01+02)/2

and
EX? = (07405 +0102)/3.

Setting 11 = EX; and jis = EX12 and substituting #; in the second equa-
tion by 2/i; — 02 (the first equation), we obtain that

(201 — 02)° + 605 + (2011 — 62)02 = 3fia,
which is the same as
(62 — n)* = 3(fiz — 7).
Since 05 > EX;, we obtain that
o = s + 3 — ) = X + /% V52

and
0, = i — \/3012 _ ﬂ%) - X _ \/S(nnfl) S2.
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These estimators are not functions of the sufficient and complete statistic
(X)), X)) ¥

Example 3.26. Let Xi,...,X,, be i.i.d. from the binomial distribution
Bi(p, k) with unknown parameters k € {1,2,...} and p € (0,1). Since

EX1 = k‘p
and
EX? =kp(1—p)+ k*p?,
we obtain the moment estimators
p=(f+p—pe)/fin=1-"7"8*/X
and R - -
k=pi/(in + i — o) = X/(1 = "1 S?/X).
The estimator p is in the range of (0,1). But k may not be an integer. It

can be improved by an estimator that is k rounded to the nearest positive
integer. 1

Example 3.27. Suppose that X1, ..., X,, are i.i.d. from the Pareto distri-
bution Pa(a, ) with unknown a > 0 and 6 > 2 (Table 1.2, page 20). Note
that

EX;=06a/(0-1)

and
EX? =0ad*/(6 —2).

From the moment equation,

0—1)2 A ga
1(9(9,)2) = /L2/:u%-

(6-1)°

_ 1
Note that 0(0—2) 1= 0(6—2)" Hence

0(0 —2) = i/ (fi2 — ji})-
Since 6 > 2, there is a unique solution in the parameter space:
6=14 /(i — i) =1+ /1+ " X2/
and

. (@—-1)

a = ~

0
X\/1+ nﬁl)_(Z/S?/ (1+ \/1+ n’jl)_(z/s2). 1
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The method of moments can also be applied to nonparametric problems.
Consider, for example, the estimation of the central moments

Cj:E(lelufl)ja j:2,,k

Since

the moment estimator of ¢; is

50w

t=0

where fig = 1. It can be shown (exercise) that

¢ = Z(Xi - Xy, j=2,..k, (3.52)

i=1

which are sample central moments. From the SLLN, ¢;’s are strongly con-
sistent. If F|X1|?* < oo, then

Vn(éa — ¢y .oy & — ) —a Nk—1(0, D) (3.53)
(exercise), where the (i, j)th element of the (k — 1) x (k — 1) matrix D is

Civj+2 = Cit1Ci41 — (i + 1)cicjpe — (J + D)cirac; + (i + 1)(J + D)eicjea.

3.5.3 V-statistics

Let X1, ..., X, be ii.d. from P. For every U-statistic U,, defined in (3.11) as
an estimator of ¥ = E[h(X1, ..., X,,)], there is a closely related V-statistic

defined by
Vo= Z Z Xiys ooy Xiy)- (3.54)

11=1 Im=1
As an estimator of ¢, V,, is biased; but the bias is small asymptotically as
the following results show. For a fixed sample size n, V,, may be better than
U, in terms of their mse’s. Consider, for example, the kernel h(xy, z2) =
(r1 — 22)?/2 in §3.2.1, which leads to ¥ = 02 = Var(X;) and U,, = S?, the
sample variance. The corresponding V-statistic is

]l = (X, — X2 1 -1
nzzz( 9 2 T2 Z (Xi*Xj)2:nn s?,

i=1 j=1 1<i<j<n
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which is the moment estimator of o2 discussed in Example 3.24. In Exercise
63 in §2.6, " 'S? is shown to have a smaller mse than S? when X; is
normally distributed. Of course, there are situations where U-statistics are
better than their corresponding V-statistics.

The following result provides orders of magnitude of the bias and vari-
ance of a V-statistic as an estimator of 9.

Proposition 3.5. Let V,, be defined by (3.54).
(i) Assume that E|h(X;,....X;,,)| < oo forall 1 <i3 < --- < iy
Then the bias of V,, satisﬁes

by, (P) = O(n™1).

(ii) Assume that E[h(X;,, ..., X;,)]? < oo forall 1 <iy < -+ <y, <
Then the variance of V,, satisfies

Var(V,,) = Var(U,) + O(n™2),

where U, is given by (3.11).
Proof. (i) Note that

IA
3

A
3

Uy — V= [1 - } (U — W), (3.55)

nm(n—m)

where W, is the average of all terms h(X;,, ..., X;,,) with at least one equal-
ity im = i1, m # l. The result follows from E(U, — W,) = O(1).

(ii) The result follows from E(U,, —W,)? = O(1), E[W, (U, —9)] = O(n™!)
(exercise), and (3.55). 1

To study the asymptotic behavior of a V-statistic, we consider the fol-
lowing representation of V;, in (3.54):

e (7

where

is a “V-statistic” with

gi(z1,...,z5) = hj(z1,...,x Z/hﬂ x1, ...,z )dP(z;)
+ > //hj T,y ;)P (2, ) AP (24,) —

1<i1<i2<7

/ /h 1y 2;)dP (1) - - - dP(z;)
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and hj(z1,...,z;) = E[h(x1, ..., 25, Xj41, ..., Xin)]. Using an argument sim-
ilar to the proof of Theorem 3.4, we can show (exercise) that

EV?2 =0(n™), j=1,...,m, (3.56)

nj

provided that E[h(X;,,...,X;, )] < oo for all 1 < i3 < -+ < 4y <
Thus,
Vi =0 =mVpi + "0 Vs + 0, (n7), (3.57)

which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let V,, be given by (3.54) with E[h(X;,, ..., X;,,)]? < o0
forall 1 <41 <+ <14y, <.
(i) If ¢, = Var(h1(X7)) > 0, then

Vn(Vy —9) —a N(0,m?¢).

(ii) If C1 =0 but Cg = Val"(hg(Xl,X2>> > 0, then
m(m — 1) e
’Il(Vn - 19) —d ( 9 ) Z)\jX%j,
j=1

where x3;’s and \;’s are the same as those in (3.21). 8

Result (3.57) and Theorem 3.16 imply that V,, has expansion (2.37)
and, therefore, the n=! order asymptotic bias of V,, is E[g2(X1, X1)]/n =
nEVus =m(m —1) 377 A;/(2n) (exercise).

Theorem 3.16 shows that if (; > 0, then the amse’s of U,, and V,, are
the same. If (; = 0 but (o > 0, then an argument similar to that in the
proof of Lemma 3.2 leads to

m?(m — 126 m?(m—1)? [ &
amsey, (P) = o2 + A2 g Aj
2
m2(m —1)? [ &
= amsey, (P) + An? gﬁ

(see Lemma 3.2). Hence U, is asymptotically more efficient than V;,, unless
Zoo A; = 0. Technically, the proof of the asymptotic results for V;, also
requires moment conditions stronger than those for U,.

Example 3.28. Consider the estimation of p?, where = EX;. From the
results in §3.2, the U-statistic U,, = n(n 1 ZKKK” X; X is unbiased for
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p?. The corresponding V-statistic is simply V,, = X2. If 4 # 0, then {; # 0
and the asymptotic relative efficiency of V,, w.r.t. U, is 1. If u = 0, then

Vi, —q 02X3 and nU, —q az(xf - 1),

where x? is a random variable having the chi-square distribution x%. Hence
the asymptotic relative efficiency of V,, w.r.t. U, is

E(X; - 1)%/E(x})*=2/3. 1

3.5.4 The weighted LSE

In linear model (3.25), the unbiased LSE of [”3 may be improved by a
slightly biased estimator when Var(e) is not o1, and the LSE is not BLUE.

Assume that Z in (3.25) is of full rank so that every [”3 is estimable.
For simplicity, let us denote Var(e) by V. If V is known, then the BLUE
of [73 is lTﬁ, where

B=(zVv1z)"tz7vix (3.58)

(see the discussion after the statement of assumption A3 in §3.3.1). If V' is
unknown and V' is an estimator of V', then an application of the substitution
principle leads to a weighted least squares estimator

Bu=(ZTV'2) 2TV X, (3.59)

The weighted LSE is not linear in X and not necessarily unbiased for 3. If
the distribution of € is symmetric about 0 and V remains unchanged when
e changes to —e (Examples 3.29 and 3.30), then the distribution of 3, — 3
is symmetric about 0 and, if Eﬁw is well defined, Bw is unbiased for 3. In
such a case the LSE ZTB may not be a UMVUE (when ¢ is normal), since
Var(I” 3,,) may be smaller than Var(i™ ).

Asymptotic properties of the weighted LSE depend on the asymptotic
behavior of V. We say that V is consistent for V if and only if

V=V = Lo lmax — O, (3.60)
where || A|lmax = max; j |a;;| for a matrix A whose (7, j)th element is a;;.

Theorem 3.17. Consider model (3.25) with a full rank Z. Let B and Sy,
be defined by (3.58) and (3.59), respectively, with a V' consistent in the
sense of (3.60). Assume the conditions in Theorem 3.12. Then

ZT(BUJ - ﬁ)/an —d N(07 1),
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where | € RP, [ # 0, and
a2 =Var(I"B) =1"(Z"V~2)7 .

Proof. Using the same argument as in the proof of Theorem 3.12; we
obtain that

I(8 = B)/an —a N(0,1).
By Slutsky’s theorem, the result follows from

ZTB’LU - ZTB == Op(an)~ (3.61)
Define ) R
gn — ZT(ZTV71Z)71ZT(V71 o V71)€
and R
Cn — l‘r[(erflz)fl _ (erflz)fl}zfvfl
Then

"B =170 = &u + Ga-
Let B, = (ZV'2)"'Z"V-'Z — I, and C,, = V'/2y-1V1/2 _ [, By
(3.60), ||Crllmax = 0p(1). For any matrix A, denote /tr(A7A) by [|A]|.
Then

1BJI12 = (270" 2) " 270120, 02
= tr ((ZvalZ) (ZT 1/20n 1/2Z) (ZTV71Z)71>

IN

|Calld tr ((Z7V22) 27V 2)2( 27V 2) )

= 0,(1)tr(I,).
This proves that || By |lmax = 0p(1). Let A, = VY/2V-1V1/2 _ [, Using
inequality (1.37) and the previous results, we obtain that
6727, — [ZT(ZTV_lZ)_1ZTV_1/2AnV_1/2€]2

< eVTeTIN(ZTVTIZ) T VYA Y2 (27 Z) T

< Op(D||An |2 (Z27V 7 2) 27V (27 2) 7N

= o,()I" (B, + I,)*(Z7"V'2)" 1

= op(an).
Since E||(ZTV12)" 227V e||2 = p, |(Z7V1Z) 7227V || = O,(1).
Define By, = (Z"V~'12)'/2B,(Z"V~'Z)"'/2. Then

By, = (erflz)fl/ZZTV 1/2C
I1Cullmax(27V "1 2) 71227
= 0,(1) 1.

1/ZZ(ZTV lz)fl/Q

o
V(T )

IN
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Let By, = (Z7V12)V/2(Z7V~12)~1/2. Since
|Banll? =t ((27V 1 2) 2270 2) 27V 1 7))
= tr <(ZTV_1Z)_1ZTV_1Z)

= tr(B, + I,)
=p+ OP(1>7

we obtain that
| Ban B1n Bg,, || = 0p(1).

Then
:[ ( Z) lvafl ]2
:[ ( 1z) 1/ZB2nBlnB2n(Z'rv—lz)—l/Zz'rv—l ]2
< U(ZTV 7 2) | Ben Bin B3, |P1(27V 1 2) 227V e P
= op(ay,).

This proves (3.61) and thus completes the proof. 1

Theorem 3.17 shows that as long as V' is consistent in the sense of (3.60),
the weighted LSE Bw is asymptotically as efficient as B, which is the BLUE
if V' is known. If V is known and € is normal, then Var(lTB) attains the
Cramér-Rao lower bound (Proposition 3.2) and, thus, (3.10) holds with

n = lTBw
By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the
LSE lTﬁ w.r.t. the weighted LSE lTﬁu, is

I"(Zz7v-1z)=1
I"(Z72) 127V Z(Z7Z) 1’
which is always less than 1 and equals 1 if ZTB is a BLUE (in which case
B=0).
Finding a consistent Vis possible when V' has a certain type of structure.
We consider three examples.

Example 3.29. Consider model (3.25). Suppose that V' = Var(e) is a
block diagonal matrix with the ith diagonal block

oI, +U;XUT, i=1,..k, (3.62)

where m;’s are integers bounded by a fixed integer m, 02 > 0 is an unknown
parameter, ¥ is a ¢ X ¢ unknown nonnegative definite matrix, U; is an m; X q
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full rank matrix whose columns are in R(W;), ¢ < inf; m;, and W; is the
p X m; matrix such that Z7 = ( Wy Wy ... Wy ). Under (3.62), a consistent
V can be obtained if we can obtain consistent estimators of 2 and X.

Let X = (Y1, ..., Y%), where Y; is an m;-vector, and let R; be the matrix
whose columns are linearly independent rows of W;. Then

k
1
52 = Y7 [, — Ri(R] R:) ' R]Y; :
7= o= g 25 ¥ I~ RARTR) R (3.63)

is an unbiased estimator of o2. Assume that Y;’s are independent and that
sup; El|e;|?>T? < oo for some § > 0. Then 62 is consistent for o2 (exercise).
Let 7, =Y; — W/ 3 and

k
~ 1
L= Z (UTU) U rr T U (UTU) ™ = 62(UTU;) (3.64)
=1

It can be shown (exercise) that ) is consistent for X in the sense that
|2 — X|lmax —p 0 or, equivalently, || X — 2| —, 0 (see Exercise 116). 1

Example 3.30. Suppose that V is a block diagonal matrix with the ith
diagonal block matrix V,,,,, i = 1, ..., k, where V; is an unknown ¢ x £ matrix
and m; € {1,...,m} with a fixed positive integer m. Thus, we need to
obtain consistent estimators of at most m different matrices Vp,...,V,,. It
can be shown (exercise) that the following estimator is consistent for V;
when k; — oo as k — oo:

N 1
Vi = ky Z riri, t=1,...,m,
i€ By

where 7; is the same as that in Example 3.29, By is the set of ¢’s such that
m; = t, and k; is the number of i’s in B;. 1|

Example 3.31. Suppose that V is diagonal with the ith diagonal element
0?2 = 1(Z;), where 9 is an unknown function. The simplest case is 1 (t) =
0o+ 61v(Z;) for a known function v and some unknown 6y and #;. One can
then obtain a consistent estimator V' by using the LSE of 6y and 6; under
the “model”

Er? =00 +60v(Z), i=1,..n, (3.65)

where r; = X; — Z7 B (exercise). If ¢ is nonlinear or nonparametric, some
results are given in Carroll (1982) and Miiller and Stadrmdiiller (1987). 1

Finally, if V is not consistent (i.e., (3.60) does not hold), then the
weighted LSE {73, can still be consistent and asymptotically normal, but
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its asymptotic variance is not I"(Z7V~1Z)~!; in fact, I"3, may not be
asymptotically as efficient as the LSE [73 (Carroll and Cline, 1988; Chen
and Shao, 1993). For example, if

HVﬁlU - InHmax _>p 07

where U is positive definite, 0 < inf, A_[U] < sup,, A+ [U] < o0, and U # V
(i.e., V is inconsistent for V'), then, using the same argument as that in the
proof of Theorem 3.17, we can show (exercise) that

I (Buw = B)/bn —a N(0,1) (3.66)

for any [ # 0, where b2 = ["(Z7U~'2)"1Z7U- VU 1Z(Z"U~1Z)7 .
Hence, the asymptotic relative efficiency of the LSE I"§ w.r.t. ["§,, can be
less than 1 or larger than 1.

3.6 Exercises

1. Let Xy,..., X, be iid. binary random variables with P(X; = 1) =
p € (0,1).
(a) Find the UMVUE of p™, m <n.
(b) Find the UMVUE of P(X; + --- + X,,, = k), where m and k are
positive integers < n.
(¢) Find the UMVUE of P(X; + -+ 4+ X,,-1 > X,,).

2. Let X1, ..., X;, be i.i.d. having the N(u,0?) distribution with an un-
known p € R and a known o2 > 0.
(a) Find the UMVUE’s of 1% and p*.
(b) Find the UMVUE’s of P(X; < t) and jtP(Xl < t) with a fixed
teR.

3. In Example 3.4,
(a) show that the UMVUE of 0" is k,,—1 5", where r > 1 —n;
(b) prove that (X; — X)/S has the p.d.f. given by (3.1);
(c) show that (X1 — X)/S —4 N(0,1) by using (i) the SLLN and (ii)
Scheffé’s theorem (Proposition 1.18).

4. Let Xi,...,X,, be ii.d. having the N(u,,o02) distribution and let
Y1,...,Y, be iid. having the N(,uwaz) distribution. Assume that
X;’s and Y;’s are independent.

(a) Assume that p, € R, u, € R, 02 > 0, and 05 > 0. Find the
UMVUE’s of piz — pty and (o5 /0y)", where r > 0 and r < n.
(b) Assume that p, € R, uy € R, and 02 = 02 > 0. Find the

y
UMVUE’s of 2 and (pg — py) /0.
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(c) Assume that p, = p, € R, 02 > 0, o,
known. Find the UMVUE of p,.

(d) Assume that p, = p, € R, 02 > 0, and o, > 0. Show that a
UMVUE of u, does not exist.

(e) Assume that u, € R, pu, € R, 02 > 0, and 0,3 > 0. Find the
UMVUE of P(X; < Y7).

(f) Repeat (e) under the assumption that o, = o,.

> 0, and 02 /0 = 7 is

Let X4, ..., X, be i.i.d. having the uniform distribution on the interval
(01—03,01+63), where 61 € R, 63 > 0, and n > 2. Find the UMVUE’s
of Qj, j = 1,27 and 91/92.

Let Xi,..., X, be ii.d. having the exponential distribution E(a,)
with parameters 8 > 0 and a € R.

(a) Find the UMVUE of a when 6 is known.

(b) Find the UMVUE of § when a is known.

(¢) Find the UMVUE’s of 0 and a.

(d) Assume that € is known. Find the UMVUE of P(X; > t) and
L P(Xy > t) for a fixed t > a.

(e) Find the UMVUE of P(X; > t) for a fixed t > a.

Let X1,..., X, be ii.d. having the Pareto distribution Pa(a, ) with
f# >0 anda > 0.

(a) Find the UMVUE of 6 when «a is known.

(b) Find the UMVUE of a when 6 is known.

(¢) Find the UMVUE’s of a and 6.

Consider Exercise 52(a) of §2.6. Find the UMVUE of .

Let X, ..., X;,, be i.i.d. having the exponential distribution E(ay, 6,)
with 6, > 0 and a, € R and Y7, ..., Y, be i.i.d. having the exponential
distribution E(a,,0,) with §, > 0 and a, € R. Assume that X;’s
and Y;’s are independent.

(a) Find the UMVUE’s of a; — a, and 6,/6,.

(b) Suppose that 8, = 6, but it is unknown. Find the UMVUE’s of
0, and (ay — ay)/0y.

(c) Suppose that a,; = a, but it is unknown. Show that a UMVUE
of a, does not exist.

(d) Suppose that n = m and a; = ay = 0 and that our sample is
(Z1,A1), .oy (Zn, Ay), where Z; = min{X;,Y;} and A; = 1if X; > Y;
and O otherwise, i = 1,...,n. Find the UMVUE of 0, — 6,.

Let X1, ..., X;n be i.i.d. having the uniform distribution U(0,6,) and
Yi,..., Y, be iid. having the uniform distribution U(0, 6,). Suppose
that X;’s and Y;’s are independent and that 6, > 0 and 6, > 0. Find
the UMVUE of 6,/6, when n > 1.
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. Let X be arandom variable having the negative binomial distribution
NB(p,r) with an unknown p € (0,1) and a known r.
(a) Find the UMVUE of p*, ¢t < r.
(b) Find the UMVUE of Var(X).
(¢) Find the UMVUE of log p.

Let X1,..., X, be ii.d. random variables having the Poisson distri-
bution P(#) truncated at 0, i.e., P(X; = x) = (e — 1)7167 /!,
r=1,2,...,0 > 0. Find the UMVUE of § when n =1, 2.

Let X be a random variable having the negative binomial distribution
N B(p,r) truncated at r, where r is known and p € (0, 1) is unknown.
Let k be a fixed positive integer > r. For r = 1,2, 3, find the UMVUE
of p*.

Let Xq,..., X, be ii.d. having the log-distribution L(p) with an un-
known p € (0,1). Let k be a fixed positive integer.

(a) For n = 1,2,3, find the UMVUE of p*.

(b) For n =1,2,3, find the UMVUE of P(X = k).

Consider Exercise 43 of §2.6.

(a) Show that the estimator U = 2(|X1| — })I{x,xo} is unbiased for
0.

(b) Derive the UMVUE of 6.

Derive the UMVUE of p in Exercise 33 of §2.6.

Derive the UMVUE’s of # and A in Exercise 55 of §2.6, based on data
X, Xn.

Suppose that (X, X1, ..., X) has the multinomial distribution in Ex-
ample 2.7 with p; € (0,1), 5_op; = 1. Find the UMVUE of
P’ - - Pt where r;’s are nonnegative integers with 7 +-- -+ 17, < n.

Let Y3,...,Y, be iid. from the uniform distribution U(0,6) with an
unknown 6 € (1, c0).
(a) Suppose that we only observe

Y,  ifYi>1
X, = v ' = i =1,..,n.
: {1 ify, <1, = on
Derive a UMVUE of 6.
(b) Suppose that we only observe
Y; HYy; <1
X, = v ' = i =1,..,n.
: {1 ify,>1, | on

Derive a UMVUE of the probability P(Y; > 1).
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Let (X1,Y1), ..., (X,,Ys) be ii.d. random 2-vectors distributed as bi-
variate normal with EX; = EY; = 8z;, Var(X;) = Var(¥;) = 02, and
Cov(X;,Y;) = po?,i=1,...n, where B € R, 0 >0, and p € (—1,1)
are unknown parameters, and z;’s are known constants.

(a) Obtain a UMVUE of 8 and calculate its variance.

(b) Obtain a UMVUE of 02 and calculate its variance.

Let (X1,Y7),..., (X5, Y,,) be i.id. random 2-vectors from a population
P € P that is the family of all bivariate populations with Lebesgue
p.d.f.’s.

(a) Show that the set of n pairs (X;, Y;) ordered according to the value
of their first coordinate constitutes a sufficient and complete statistic
for P € P.

(b) A statistic T is a function of the complete and sufficient statistic
if and only if T is invariant under permutation of the n pairs.

(¢) Show that (n — 1)~1>"" (X; — X)(Y; — Y) is the UMVUE of
COV(Xl, Yl)

(d) Find the UMVUE’s of P(X; <Y;) and P(X; < X; and Y; <Yj),
1],

Let Xi,..., X, be ii.d. from P € P containing all symmetric c.d.f.’s

with finite means and with Lebesgue p.d.f.’s on R. Show that there
is no UMVUE of p = EX; when n > 1.

Prove Corollary 3.1.

Suppose that T is a UMVUE of an unknown parameter 9. Show that
T* is a UMVUE of E(T*), where k is any positive integer for which
E(T?) < .

Consider the problem in Exercise 83 of §2.6. Use Theorem 3.2 to show
that I;oy(X) is a UMVUE of (1 — p)? and that there is no UMVUE
of p.

Let Xq,..., X, beii.d. from a discrete distribution with
PX;,=0-1)=P(X;,=0)=P(X;=0+1) = ;’,

where 6 is an unknown integer. Show that no nonconstant function
of 6 has a UMVUE.

Let X be a random variable having the Lebesgue p.d.f.
[(1=0) +6/(2v2)]L(0,1) (),

where 6 € [0,1]. Show that there is no UMVUE of 6.
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28.

29.

30.

31.

32.

33.

34.

35.

Let X be a discrete random variable with P(X = —1) = 2p(1 — p)
and P(X = k) =p*(1 —p)3~*, k=0,1,2,3, where p € (0,1).

(a) Determine whether there is a UMVUE of p.

(b) Determine whether there is a UMVUE of p(1 — p).

Let Xi,..., X, be i.i.d. observations. Obtain a UMVUE of a in the
following cases.

(a) X; has the exponential distribution F(a,6) with a known 6 and
an unknown a < 0.

(b) X; has the Pareto distribution Pa(a, ) with a known 6 > 1 and
an unknown a € (0, 1].

In Exercise 41 of §2.6, find a UMVUE of 6 and show that it is unique
a.s.

Prove Theorem 3.3 for the multivariate case (k > 1).

Let X be a single sample from Py. Find the Fisher information I(9)
in the following cases.

(a) Py is the N(p,0?) distribution with § = u € R.

(b) Py is the N(u,0?) distribution with § = o2 > 0.

(c) Py is the N(u,0?) distribution with 6 = o > 0.

(d) Py is the N (o, 2) distribution with § = o > 0.

(e) Py is the N(u, 2) distribution with 8 = (u1,0%) € R x (0, c0).

(f) Py is the negative binomial distribution NB(9 r) with 6 € (0,1).
(g) Py is the gamma distribution I'(«, v) with 6 = («, ) € (0,00) X
(0, 00).

(h) Py is the beta distribution B(«, 3) with 0 = («, 3) € (0,1) x(0,1).

Find a function of 6 for which the amount of information is indepen-
dent of 6, when P is

(a) the Poisson distribution P(#) with 6 > 0;

(b) the binomial distribution Bi(6,r) with 6 € (0,1);

(c) the gamma distribution I'(a, §) with 6 > 0.

Prove the result in Example 3.9.

Obtain the Fisher information matrix for a random variable with
(a) the Cauchy distribution C(u,0), p € R, 0 > 0;

(b) the double exponential distribution DE(u,6), p € R, 8 > 0;

(¢) the logistic distribution LG(u,0), p € R, o > 0;

(d) the c.d.f. F,. (3”;“)7 where F,. is the c.d.f. of the t-distribution ¢,
with a known r, p € R, o > 0;

(e) the Lebesgue p.d.f. fo(z) = (1 — e)p(x — p) + S (1), 6 =
(u,0,€) € R x (0,00) x (0,1), where ¢ is the standard normal p.d.f.
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38.

39.

40.

41.

42.

43.
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Let X be a sample having a p.d.f. satisfying the conditions in Theorem
3.3, where 6 is a k-vector of unknown parameters, and let T'(X) be
a statistic. If T has a p.d.f. gy satisfying the conditions in Theorem
3.3, then we define I7(0) = E{ 2, log go(T)[ 5, log go(T)]"} to be the
Fisher information about 6 contained in T'.

(a) Show that Ix(0) — I7(6) is nonnegative definite, where Ix(f) is
the Fisher information about € contained in X.

(b) Show that Ix(6) = Ir(0) if T is sufficient for 6.

Let Xi,...,X, be iid. from the uniform distribution U(0,6) with
0> 0.

(a) Show that condition (3.3) does not hold for h(X) = X(,.

(b) Show that the inequality in (3.6) does not hold for the UMVUE
of 6.

Prove Proposition 3.3.

Let X be a single sample from the double exponential distribution
DE(u,0) with 4 =0 and 6 > 0. Find the UMVUE’s of the following
parameters and, in each case, determine whether the variance of the
UMVUE attains the Cramér-Rao lower bound.

(a) U =0;

(b) ¥ = 0", where r > 1;

()9 =(1+6)"1

Let X1,...,X,, be ii.d. binary random variables with P(X; = 1) =
p € (0,1).

(a) Show that the UMVUE of p(1 — p) is T,, = nX (1 — X)/(n — 1).
(b) Show that Var(T},) does not attain the Cramér-Rao lower bound.
(c) Show that (3.10) holds.

Let X1, ..., X, be i.i.d. having the Poisson distribution P(6) with 6 >
0. Find the amse of the UMVUE of e~ * with a fixed ¢ > 0 and show
that (3.10) holds.

Let X1, ..., X;, be i.i.d. having the N(u,0?) distribution with an un-
known p € R and a known o2 > 0.

(a) Find the UMVUE of ¢ = e** with a fixed t # 0.

(b) Determine whether the variance of the UMVUE in (a) attains the
Cramér-Rao lower bound.

(¢) Show that (3.10) holds.

Show that if X, ..., X,, are i.i.d. binary random variables, U, in (3.12)
equals T(T — 1)--- (T —m+1)/[n(n — 1)---(n — m + 1)], where
T=31%X
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44.

45.

46.

47.

48.

49.

50.

51.

52.

93.

o4.

55.
56.

o7.

58.

Show that if T}, = X, then U, in (3.13) is the same as the sample
variance S? in (2.2). Show that (3.23) holds for T;, given by (3.22)
with E(R2) = o(n™1).

Prove (3.14), (3.16), and (3.17).

Let (i be given in Theorem 3.4. Show that (1 < (o < -+ < (.
Prove Corollary 3.2.

Prove (3.20) and show that U,, — U, is also a U-statistic.

Let T;, be a symmetric statistic with Var(7},) < oo for every n and T,

be the projection of T}, on (Z) random vectors {X;,, ..., X;, }, 1 < i1 <

-+ < iy < n. Show that E(T,) = E(T,) and calculate E(T, — T»)?.

Let Y), be defined in Lemma 3.2. Show that {Y;?} is uniformly inte-
grable.

Show that (3.22) with E(R2) = o(n~!) is satisfied for T, being a
U-statistic with E[h(X1, ..., X;n)]? < oc.

Let S? be the sample variance given by (2.2), which is also a U-
statistic (§3.2.1). Find the corresponding hi, ho, (1, and (3. Discuss
how to apply Theorem 3.5 to this case.

Let h(x1,22,23) = I(_oo,0)(21 + 22 +23). Define the U-statistic with
this kernel and find hy and (;, k = 1,2, 3.

Let X4, ..., X, be ii.d. random variables having finite uy = EX; and
o= EXfl. Find a U-statistic that is an unbiased estimator of um
and derive its variance and asymptotic distribution.

Show that (3 is an LSE of § if and only if it is given by (3.29).

Obtain explicit forms for the LSE’s of 3;, j = 0,1, and SSR, under
the simple linear regression model in Example 3.11, assuming that
some t;’s are different.

Consider the polynomial model
X;=Bo+Biti+ Bot] +&;, i=1,..,n

Find explicit forms for the LSE’s of 3;, j = 0, 1,2, and SSR, assuming
that some t;’s are different.

Suppose that
Xij=o;+ Pty +¢e45, i=1,...,a,7=1,...,b.
Find explicit forms for the LSE’s of 3, «;, i =1, ...,a, and SSR.
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Consider the polynomial model
Xi = Bo + Biti + ot + st +ei, i=1,..,n,

where ¢;’s are i.i.d. from N(0,0%). Suppose that n = 12, t; = —1,
i=1,.,4,4,=0,i=5,...8 and t; =1,i =9, ..., 12.

(a) Obtain the matrix Z™Z when this polynomial model is considered
as a special case of model (3.24).

(b) Show whether the following parameters are estimable: [y + (a2,

B1, Bo — B1, B1 + B3, and By + B1 + B2 + Bs.

Find the matrix Z, Z7Z, and the form of I € R(Z) under the one-way
ANOVA model (3.31).

Obtain the matrix Z under the two-way balanced ANOVA model
(3.32). Show that the rank of Z is ab. Verify the form of the LSE of
0 given in Example 3.14. Find the form of [ € R(Z).

Consider the following model as a special case of model (3.25):
Xije = p+ o + ﬁj +eijk, t=1,..,a,7=1,..,0b, k=1,...,c.

Obtain the matrix Z, the parameter vector 3, and the form of LSE’s
of . Discuss conditions under which [ € R(Z).

Under model (3.25) and assumption A1, find the UMVUE’s of (I"3)?,
I3/, and (I"3/c)? for an estimable 7 3.

Verify the formulas for SSR’s in Example 3.15.

Consider the one-way random effects model in Example 3.17. Assume
that n; = n for all ¢ and that A;’s and e;;’s are normally distributed.
Show that the family of populations is an exponential family with
sufficient and complete statistics X.., Sa = ny (X — X.)?% and
Sp =3, >y (Xij — Xi.)?. Find the UMVUE’s of p, o, and o”.

1=

Consider model (3.25). Suppose that ¢;’s are i.i.d. with Ee; = 0 and
a Lebesgue p.d.f. o~ f(z/0), where f is a known Lebesgue p.d.f. and
o > 0 is unknown.

(a) Show that X is from a location-scale family given by (2.10).

(b) Find the Fisher information about (3, 0) contained in Xj.

(c) Find the Fisher information about (3, o) contained in X.

Consider model (3.25) with assumption A2. Let ¢ € RP. Show that if
the equation ¢ = Z7y has a solution, then there is a unique solution
Yo € R(Z7) such that Var(yJX) < Var(y™X) for any other solution
of c=Z7y.
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70.

71.
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74.

75.

Consider model (3.25). Show that the number of independent linear
functions of X with mean 0 is n — r, where r is the rank of Z.

Consider model (3.25) with assumption A2. Let X; = Z7 3, which
is called the least squares prediction of X;. Let h;; be the (¢,j)th
element of Z(Z7Z)~Z7 and h; = h;;. Show that

(X3) = 02hy;

(b) Var(X; — X;) = 0%(1 — hy);

(€) Cov( X1, X,) = o*hiy:

(d) COV(X X“X —- X, ;) = —0c%hij, i # j;

(e) Cov(X;, X; — X;) = 0.

Q

o

<
—

Consider model (3.25) with assumption A2. Let Z = (Z1, Z;) and
B = (f1,02), where Z; is n x p; and §; is a pj;-vector, j = 1,2.
Assume that (Z7Z1)~ Y and [Z] Zy — Z5 Z1(Z7 Z1) =1 Z] Z5] 7 exist.
(a) Derive the LSE of 3 in terms of Z;, Zs, and X.

(b) Let 3 = (31,052) be the LSE in (a). Calculate the covariance
between ffl and Bg.

(¢) Suppose that it is known that 82 = 0. Let 1 be the LSE of £
under the reduced model X = Z;3; + €. Show that, for any [ € RP1,
lTﬁl is better than lTﬁl in terms of their mse’s.

Prove that (e) implies (b) in Theorem 3.10.

Show that (a) in Theorem 3.10 is equivalent to either

(f) Var(e)Z = ZB for some matrix B, or

(g) R(Z7) is generated by r eigenvectors of Var(e), where r is the
rank of Z.

Prove Corollary 3.3.
Suppose that
X =upJ,+HE+e,

where 4 € R is an unknown parameter, J,, is the n-vector of 1’s, H
is an n X p known matrix of full rank, £ is a random p-vector with
E(§) = 0 and Var(§) = 0¢I,, e is a random n-vector with E(e) = 0
and Var(e) = 021, and £ and e are independent. Show that the LSE
of 1 is the BLUE if and only if the row totals of HH™ are the same.

Consider a special case of model (3.25):
Xij=p+oa;+Bj+¢€i, 1=1,...,a,7=1,...,b,
where 1, a;’s, and ;’s are unknown parameters, E(e;;) = 0, Var(e;;)

=02, Cov(ej,epjy) = 0if i # i/, and Cov(e;j,g;5) = o?p if j # j'.
Show that the LSE of [”3 is the BLUE for any | € R(Z).
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3. Unbiased Estimation

Consider model (3.25) under assumption A3 with Var(e) = a block
diagonal matrix whose ith block diagonal V; is n; x n; and has a single
eigenvalue \; with eigenvector J,,, (the n;-vector of 1’s) and a repeated
eigenvalue p; with multiplicity n; —1,i =1, ..., k, Zle n; =n. Let U
be the n x k matrix whose ith column is U;, where Uy = (J] ,0,...,0),
Uz =(0,J7,,..,0),0., Up = (0,0,..., J] ).

(a) If R(Z7) € R(UT) and A; = A, show that I73 is the BLUE of I"3
for any I € R(Z).

(b) If Z7U; = 0 for all i and p; = p, show that I73 is the BLUE of
I8 for any | € R(Z).

Prove Proposition 3.4.

Show that the condition sup,, A [Var(e)] < oo is equivalent to the
condition sup, Var(g;) < oo.

Find a condition under which the mse of ZTB is of the order n~1.

Apply it to problems in Exercises 56, 58, and 60-62.

Consider model (3.25) with i.i.d. ey,...,e, having E(g;) = 0 and
Var(e;) = 0%, Let X; = Z73 and h; = Z7 (27 Z)™ Z;.
(a) Show that for any € > 0,

P(|X; — EX;| > €) > min{P(e; > ¢/h;), P(e; < —€¢/hi)}.

(Hint: for independent random variables X and Y, P(|X +Y| > ¢€) >
P(X > e)P(Y > 0) + P(X < —e)P(Y < 0).)
(b) Show that X; — EX; —, 0 if and only if h; — 0.

Prove Lemma 3.3 and show that condition (a) is implied by {||Z;||}
being bounded and A (Z7Z)~ — 0.

Consider the problem in Exercise 58. Suppose that {t;;} is bounded.
Find a condition under which (3.39) holds.

Under the two-way ANOVA models in Example 3.14 and Exercise 62,
find sufficient conditions for (3.39).

Consider the one-way random effects model in Example 3.17. Assume
that {n;} is bounded and Ele;;|**° < oo for some § > 0. Show that
the LSE [i of p is asymptotically normal and derive an explicit form
of Var(j).

Suppose that
Xi=pti+e, i=1,...,n,

where p € R is an unknown parameter, ¢;’s are known and in (a, b), a
and b are known positive constants, and ¢;’s are independent random
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variables satisfying E(g;) = 0, Ele;|**® < oo for some § > 0, and
Var(e;) = o%t; with an unknown o2 > 0.

(a) Obtain the LSE of p.

(b) Obtain the BLUE of p.

(¢) Show that both the LSE and BLUE are asymptotically normal
and obtain the asymptotic relative efficiency of the BLUE w.r.t. the
LSE.

In Example 3.19, show that F(S?) = o2 given in (3.43).

Suppose that X = (X7, ..., X,,) is a simple random sample (without
replacement) from a finite population P = {y1, ..., yn } with univariate
(a) Show that a necessary condition for h(f) to be estimable is that
h is symmetric in its N arguments.

(b) Find the UMVUE of Y™, where m is a fixed positive integer < n
and Y is the population total.

(c) Find the UMVUE of P(X; < X;), i # j.

(d) Find the UMVUE of Cov(X;, X,), i # j.

Prove Theorem 3.14.

Under stratified simple random sampling described in §3.4.1, show
that the vector of ordered values of all X},;’s is neither sufficient nor
complete for § € ©.

Let P = {y1,...,yn} be a population with univariate y;. Define the
population c.d.f. by F(t) = N1 Zfi1 I(_,4(yi). Find the UMVUE
of F(t) under (a) simple random sampling and (b) stratified simple
random sampling.

Consider the estimation of F'(t) in the previous exercise. Suppose that
a sample of size n is selected with 7; > 0. Find the Horvitz-Thompson
estimator of F'(¢). Is it a c.d.f.?

Show that v; in (3.49) and v in (3.50) are unbiased estimators of
Var(Yp:). Prove that v; = vo under (a) simple random sampling and
(b) stratified simple random sampling.

Consider the following two-stage stratified sampling plan. In the first
stage, the population is stratified into H strata and kj clusters are
selected from stratum h with probability proportional to cluster size,
where sampling is independent across strata. In the second stage, a
sample of my; units is selected from sampled cluster ¢ in stratum h,
and sampling is independent across clusters. Find 7; and the Horvitz-
Thompson estimator Ve of the population total.
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3. Unbiased Estimation

In the previous exercise, prove the unbiasedness of Vi directly (with-
out using Theorem 3.15).

Under systematic sampling, show that Var( éy) is equal to

1\o2 2 <& Y Y
(1 N> n +nNZ Z (yi+(t—1)k N> (yi+(u—1)k N)'

i=1 1<t<u<n

In Exercise 91, discuss how to obtain a consistent (as n — N) esti-
mator F(t) of F(t) such that F' is a c.d.f.

Derive the n~! order asymptotic bias of the sample correlation coef-
ficient defined in Exercise 22 in §2.6.

Derive the n~! order asymptotic bias and amse of fﬁ in Example 3.22,
assuming that 25’;3 B;t7 is convex in t € 7.

Consider Example 3.23.

(a) Show that 6 is the BLUE of 6.

(b) Show that &2 is unbiased for o2.

(c) Show that ¥ is consistent for ¥ as k — occ.
(d) Derive the amse of R(t) as k — co.

Let X1,..., X, be iid. from N(u,0?), where p € R and o2 > 0.
Consider the estimation of ¥ = E®(a+bX;), where ® is the standard
normal c.d.f. and a and b are known constants. Obtain an explicit
form of a function g(u,02) = 9 and the amse of J = g(X, S2).

Let X1, ..., X,, be i.i.d. with mean u, variance o, and finite = EX{-7
j = 2,3,4. The sample coefficient of variation is defined to be S/X,
where S is the squared root of the sample variance S2.

(a) If u # 0, show that \/n(S/X — o/u) —4 N(0,7) and obtain an
explicit formula of 7 in terms of u, 02, and p;.

(b) If = 0, show that n=1/25/X —4 [N(0,1)]"

Prove (3.52) and (3.53).

Let X1, ..., X, beii.d. from P in a parametric family. Obtain moment
estimators of parameters in the following cases.

(a) P is the gamma distribution I'(a, ), a > 0, v > 0.

(b) P is the exponential distribution E(a,#), a € R, § > 0.

(¢) P is the beta distribution B(«, ), a >0, 8 > 0.

(d) P is the log-normal distribution LN (u, o ) weER,o>0.

(e) P is the uniform distribution U(6 — },6 + 1), 6 € R.

(f) P is the negative binomial dlstrlbutlon NB(p, r),p€(0,1),r=
1

b

2

)
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(g) P is the log-distribution L(p), p € (0, 1).
(h) P is the log-normal distribution LN (u,0?), p € R, o = 1.
(i) P is the chi-square distribution x7 with an unknown k = 1,2, ....

Obtain moment estimators of A and p in Exercise 55 of §2.6, based
on data X1, ..., X,,.

Obtain the asymptotic distributions of the moment estimators in Ex-
ercise 103(a), (c), (e), and (g), and the asymptotic relative efficiencies
of moment estimators w.r.t. UMVUE’s in Exercise 103(b) and (h).

In Exercise 19(a), find a moment estimator of § and derive its asymp-
totic distribution. In Exercise 19(b), obtain a moment estimator of
6~! and its asymptotic relative efficiency w.r.t. the UMVUE of 1.

Let Xi,..., X, be i.i.d. random variables having the Lebesgue p.d.f.
faplz) = aﬁfo‘mafll(owg) (x), where & > 0 and 3 > 0 are unknown.
(a) Obtain moment estimators of o and .

(b) Obtain the asymptotic distribution of the moment estimators of
a and f derived in (a).

Let X1,..., X, be i.i.d. from the following discrete distribution:

2(1 - 0) 0

P(X;=1)= 9_g " P(X1:2):2_93

where 6 € (0,1) is unknown.
(a) Obtain an estimator of  using the method of moments.
(b) Obtain the amse of the moment estimator in (a).

Let X1, ..., Xp (n > 1) be ii.d. from a population having the Lebesgue
p.d.f.

o) = (1= ota =+ Lo (71,

where ¢ is the standard normal p.d.f., § = (u,0) € R x (0,00) is
unknown, and € € (0,1) is a known constant.

(a) Obtain an estimator of  using the method of moments.

(b) Obtain the asymptotic distribution of the moment estimator in

part (a).
Let X1,..., X, be i.i.d. random variables having the Lebesgue p.d.f.

_ [ OO0 w0
f91,92(x> - { (91 +92)—1e$/92 x < 0,

where #; > 0 and #3 > 0 are unknown.
(a) Obtain an estimator of (61,62) using the method of moments.
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3. Unbiased Estimation

b) Obtain the asymptotic distribution of the moment estimator in
p
part (a).

(Nonexistence of a moment estimator). Consider Xy, ..., X, and the
parametric family indexed by (6, j) € (0,1) x {1,2} in Exercise 41 of
§2.6. Let h;(0,j) = EX{, i = 1,2. Show that

P(fi; = hi(0, j) has a solution) — 0
as n — 0o, when X;’s are from the Poisson distribution P(6).
In the proof of Proposition 3.5, show that E[W,, (U, —9)] = O(n™1).

Assume the conditions of Theorem 3.16.
(a) Prove (3.56).
(b) Show that Elga(X1, X1)]/n = nEVue = m(m —1) 372, A;/(2n).

Let X1q,..., X, beii.d. with a c.d.f. F and U,, and V;, be the U- and V-
statistics with kernel [[I(_ o y(21) = Fo(¥)][L(—oo,y) (z2) — Fo(y)]dFp,
where Fj is a known c.d.f.

(a) Obtain the asymptotic distributions of U,, and V,, when F' # Fj.
(b) Obtain the asymptotic relative efficiency of U, w.r.t. V,, when
F=F,

Let Xq,..., X, be ii.d. with a c.d.f. F' having a finite sixth moment.
Consider the estimation of p3, where p = EX;. When pu = 0, find
amse s (P)/amsey, (P), where U, = (g)fl Picicicken XiXj X

Let A,, n = 1,2,..., be a sequence of k X k matrices, where k is a
fixed integer.

(a) Show that ||A,|max — 0 if and only if ||4,| — 0, where || Ay ||max
is defined in (3.60) and ||A,||*> = tr(A7 A,).

(b) Show that if A,’s are nonnegative definite, then ||A,| — 0 if and
only if A{[A,] — 0, where A [A,] is the largest eigenvalue of A,,.

(¢) Show that the result in (a) is not always true if k varies with n.

Prove that 62 in (3.63) is unbiased and consistent for o2 under model
(3.25) with (3.62) and sup; E|e;|**% < oo for some § > 0. Under the
same conditions, show that 3 in (3.64) is consistent for X in the sense
that || — 2| max —p 0.

In Example 3.30, show that ‘A/} is consistent for V; when k; — oo as
k — oo.

Show how to use equation (3.65) to obtain consistent estimators of 6y
and 6.

Prove (3.66) under the assumed conditions in §3.5.4.



Chapter 4

Estimation in Parametric
Models

In this chapter, we consider point estimation methods in parametric models.
One such method, the moment method, has been introduced in §3.5.2. It
is assumed in this chapter that the sample X is from a population in a
parametric family P={Py: § € O}, where © C R for a fixed integer k > 1.

4.1 Bayes Decisions and Estimators

Bayes rules are introduced in §2.3.2 as decision rules minimizing the average
risk w.r.t. a given probability measure II on ©. Bayes rules, however, are
optimal rules in the Bayesian approach, which is fundamentally different
from the classical frequentist approach that we have been adopting.

4.1.1 Bayes actions

In the Bayesian approach, 6 is viewed as a realization of a random vector @
whose prior distribution is II. The prior distribution is based on past expe-
rience, past data, or a statistician’s belief and thus may be very subjective.
A sample X is drawn from Py = P9, which is viewed as the conditional
distribution of X given @ = #. The sample X = x is then used to obtain an
updated prior distribution, which is called the posterior distribution and
can be derived as follows. By Theorem 1.7, the joint distribution of X and
0 is a probability measure on X x © determined by

P(A X B) = / PI|9(A)dH(9), A€ By, B € Bgo,
B

231
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where X is the range of X. The posterior distribution of 8, given X = x, is
the conditional distribution Fp|, whose existence is guaranteed by Theorem
1.7 for almost all z € X. When P,y has a p.d.f., the following result
provides a formula for the p.d.f. of the posterior distribution Py,

Theorem 4.1 (Bayes formula). Assume that P = {P,y : 0 € O} is

dominated by a o-finite measure v and fyo(z) = dl;fj"g (x) is a Borel function

on (DC X ©,0(Bx x Bg)). Let II be a prior distribution on ©. Suppose that

f@ fo(x)dI > 0.
( ) The posterlor distribution Py, < II and
dPpje_ fo(x)
dIl m(z)’
(i) If Il < A and 4% = 7(6) for a o-finite measure A, then
dPy),,
e _ Jol@)m(®) W
d\ m(x)

Proof. Result (ii) follows from result (i) and Proposition 1.7(iii). To show
(1), we first show that m(z) < oo a.e. v. Note that

/m du*//fg deV—//fg )dvdIl =1, (4.2)

where the second equality follows from Fubini’s theorem. Thus, m(x) is
integrable w.r.t. v and m(z) < oo a.e. v.

For x € X with m(z) < oo, define
1
P(B = 11 B .
(B,2) m(x)/Bfg(x)d . Bebe

Then P(-,z) is a probability measure on © a.e. v. By Theorem 1.7, it
remains to show that

P(B,z) = P(6 € B|X = x).

By Fubini’s theorem, P(B,-) is a measurable function of z. Let P, ¢ denote
the “joint” distribution of (X, 8). For any A € o(X),

/A Ip)dP. = /A /B Jol)dLTdy
:/ U fgmdn] U fg(x)dl_[} dv
// U fol@ dH} fo(x)dvdIl

7/ P(B,z)dP,,
AxX©O
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where the third equality follows from Fubini’s theorem. This completes the
proof. 1

Because of (4.2), m(z) is called the marginal p.d.f. of X w.r.t. v. If
m(z) = 0 for an x € X, then fyp(xz) = 0 a.s. II. Thus, either 2 should be
eliminated from X or the prior II is incorrect and a new prior should be
specified. Therefore, without loss of generality we may assume that the
assumption of m(z) > 0 in Theorem 4.1 is always satisfied.

If both X and @ are discrete and v and A are the counting measures,
then (4.1) becomes

P(X = |0 = 0)P(6 = 0)

PO=IX =)= p(x = si0 = )P0

0)’
which is the Bayes formula that appears in elementary probability.

In the Bayesian approach, the posterior distribution Py, contains all
the information we have about 6 and, therefore, statistical decisions and
inference should be made based on P, conditional on the observed X = z.
In the problem of estimating 6, Py, can be viewed as a randomized decision
rule under the approach discussed in §2.3.

Definition 4.1. Let A be an action space in a decision problem and
L(f,a) > 0 be a loss function. For any © € X, a Bayes action w.r.t. II
is any d(z) € A such that

E[L(6,6(x)|X =z] = meinE[L(H,a)\X =z], (4.3)
ach
where the expectation is w.r.t. the posterior distribution Py,. 1

The existence and uniqueness of Bayes actions can be discussed under
some conditions on the loss function and the action space.

Proposition 4.1. Assume that the conditions in Theorem 4.1 hold; L(0, a)
is convex in a for each fixed ; and for each z € X, E[L(0,a)|X = z] < 0o
for some a.

(i) If A is a compact subset of RP for some integer p > 1, then a Bayes
action d(x) exists for each x € X.

(i) If A = RP? and L(#, a) tends to oo as ||a|| — oo uniformly in § € ©g C ©
with TI(6g) > 0, then a Bayes action §(z) exists for each z € X.

(iti) In (i) or (ii), if L(6, a) is strictly convex in a for each fixed 6, then the
Bayes action is unique.

Proof. The convexity of the loss function implies the convexity and con-
tinuity of E[L(0,a)|X = z] as a function of a with any fixed x. Then, the
result in (i) follows from the fact that any continuous function on a compact
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set attains its minimum. The result in (ii) follows from the fact that

| lﬁm E[L(0,a)|X =2] > | 1H1m L(0,a)dPp), = oo

al|—0oo al|—0oo (._)0

under the assumed condition in (ii). Finally, the result in (iii) follows from
the fact that E[L(0,a)|X = z] is strictly convex in a for any fixed « under
the assumed conditions. 1

Other conditions on L under which a Bayes action exists can be found,
for example, in Lehmann (1983, §1.6 and §4.1).

Example 4.1. Consider the estimation of ¥ = g(6) for some real-valued
function g such that [g[g()]*dII < co. Suppose that A = the range of g(6)
and L(0,a) = [g(#) — a]? (squared error loss). Using the same argument as
in Example 1.22, we obtain the Bayes action

_ Jo 9(0) fo(x)dIl [ g(0)fo(x)dIT

o(z) m(z) =1, fo(a)ai (4.4)

which is the posterior expectation of ¢(0), given X = .

More specifically, let us consider the case where g(f) = 67 for some
integer j > 1, fo(z) = €7 %0"I9 15 y(x)/x! (the Poisson distribution) with
9 > 0, and II has a Lebesgue p.d.f. m() = 0°"1e=% 71y ) (0)/[[(a)7"]
(the gamma distribution I'(a,7) with known o > 0 and v > 0). Then, for
r=0,1,2, ..,

f "fizge) = c(x)grto e 00N/, 5 (0), (4.5)

where ¢(x) is some function of x. By using Theorem 4.1 and matching the
right-hand side of (4.5) with that of the p.d.f. of the gamma distribution,
we know that the posterior is the gamma distribution I'(z 4+ a, v/ (v + 1)).
Hence, without actually working out the integral m(z), we know that ¢(x) =
(1+~~1)=+2/T(x + ). Then

i(z) = c(z) / T gtera=1 =061 /g,
0

Note that the integrand is proportional to the p.d.f. of the gamma distri-
bution I'(j + = + a, /(v + 1)). Hence

5(z) = c(x)T(j + o +a)/(1 +1)yiTete
= (j+x+a—1)...(x+a)/(1+,y—1)j.

In particular, 6(z) = (z + a)y/(y+1) when j =1. 1
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An interesting phenomenon in Example 4.1 is that the prior and the
posterior are in the same parametric family of distributions. Such a prior is
called a conjugate prior. Under a conjugate prior, Bayes actions often have
explicit forms (in ) when the loss function is simple. Whether a prior is
conjugate involves a pair of families; one is the family P = {fp : § € O}
and the other is the family from which II is chosen. Example 4.1 shows
that the Poisson family and the gamma family produce conjugate priors.
It can be shown (exercise) that many pairs of families in Table 1.1 (page
18) and Table 1.2 (pages 20-21) produce conjugate priors.

In general, numerical methods have to be used in evaluating the inte-
grals in (4.4) or Bayes actions under general loss functions. Even under a
conjugate prior, the integral in (4.4) involving a general g may not have an
explicit form. More discussions on the computation of Bayes actions are
given in §4.1.4.

As an example of deriving a Bayes action in a general decision problem,
we consider Example 2.21.

Example 4.2. Consider the decision problem in Example 2.21. Let Py,
be the posterior distribution of 8, given X = z. In this problem, A =
{a1, as,as}, which is compact in R. By Proposition 4.1, we know that there
is a Bayes action if the mean of P, is finite. Let Ey|, be the expectation
w.r.t. Pp,. Since A contains only three elements, a Bayes action can be
obtained by comparing

C1 j =
By [L(0,a;)] = § ca+c3Bp.[1(0,1)]  j=2
c3 L2 [1(0,0)] j=3,

where 1,[)(9, t) = (0 — 90 — t)I(Ho-‘rt,oo) (9) 1

The minimization problem (4.3) is the same as the minimization prob-
lem

/ L(0,5(2)) fo(x)dI1 = min / L(6, a) fo )dIL. (4.6)
e +JO

The minimization problem (4.6) is still defined even if II is not a probability
measure but a o-finite measure on ©, in which case m(z) may not be finite.
IfTI(®) # 1, IL is called an improper prior. A prior with II(0©) = 1 is then
called a proper prior. An action §(z) that satisfies (4.6) with an improper
prior is called a generalized Bayes action.

The following is a reason why we need to discuss improper priors and
generalized Bayes actions. In many cases, one has no past information
and has to choose a prior subjectively. In such cases, one would like to
select a noninformative prior that tries to treat all parameter values in ©
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equitably. A noninformative prior is often improper. We only provide one
example here. For more detailed discussions of the use of improper priors,
see Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Example 4.3. Suppose that X = (Xi,...,X,,) and X;’s are i.i.d. from
N(u,0?), where p € © C R is unknown and o? is known. Consider the
estimation of ¢ = p under the squared error loss. If © = [a, b] with —co <
a < b < oo, then a noninformative prior that treats all parameter values
equitably is the uniform distribution on [a,b]. If © = R, however, the
corresponding “uniform distribution” is the Lebesgue measure on R, which
is an improper prior. If IT is the Lebesgue measure on R, then

n

—n *° Ty — 2
(2mo?) /2/ /fexp{—z( 202M) }d,u<oo.

- i=1

By differentiating a in

(27T0_2)—n/2 /_Oo (1 — a)%exp {Z ($¢2;2M) }d,u

=1

n

and using the fact that > 1 | (z; —p)? = >_i | (zi — Z)? + n(T — p)?, where
T is the sample mean of the observations x1, ..., z,, we obtain that

) = oo mexp {=n(E = /o)) du
[ oxp {=n(@ = p)2/ (o)} dp

Thus, the sample mean is a generalized Bayes action under the squared
error loss. From Example 2.25 and Exercise 91 in §2.6, if II is N (uo,03),
then the Bayes action is p.(x) in (2.25). Note that in this case Z is a limit
of p(z) as 02 — c0. 11

4.1.2 Empirical and hierarchical Bayes methods

A Bayes action depends on the chosen prior that may depend on some pa-
rameters called hyperparameters. In §4.1.1, hyperparameters are assumed
to be known. If hyperparameters are unknown, one way to solve the prob-
lem is to estimate them using data z1, ..., z,; the resulting Bayes action is
called an empirical Bayes action.

The simplest empirical Bayes method is to estimate prior parameters
by viewing x = (1, ..., ) as a “sample” from the marginal distribution

Ppe(A) = /@Pm\e(A)de@ A€ By,
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where Ilg|¢ is a prior depending on an unknown vector & of hyperparameters,
or from the marginal p.d.f. m(z) in (4.2), if P,|g has a p.d.f. fs. The method
of moments introduced in §3.5.3, for example, can be applied to estimate
&¢. We consider an example.

Example 4.4. Let X = (X1,..., X,,) and X;’s be i.i.d. from N(u,0?) with
an unknown £ € R and a known o2. Consider the prior II,,¢ = N(uo,03)
with £ = (uo,08). To obtain a moment estimate of £, we need to calculate

/ xym(z)dx and / w2m(x)dz,

where z = (x1, ..., ,). These two integrals can be obtained without calcu-
lating m(z). Note that

/ Jilm(x)dx:// 1 fu(z)dzdll e :/ pdll, e = po
o o Jrn R

and
/ w2m(z)dr = / / x%fu(a:)da:dﬂmg = 02+/ pzdl_[mg = o pd+op.
Rn e JRn R

Thus, by viewing 21, ..., as a sample from m(x), we obtain the moment

estimates
n

fo =17 and 68 = 1 Z(a:ifj)Qfoz,
[t
where 7 is the sample mean of z;’s. Replacing o and o3 in formula (2.25)
(Example 2.25) by fip and 63, respectively, we find that the empirical Bayes
action under the squared error loss is simply the sample mean Z (which is
a generalized Bayes action; see Example 4.3). I

Note that 63 in Example 4.4 can be negative. Better empirical Bayes
methods can be found, for example, in Berger (1985, §4.5). The follow-
ing method, called the hierarchical Bayes method, is generally better than
empirical Bayes methods.

Instead of estimating hyperparameters, in the hierarchical Bayes ap-
proach we put a prior on hyperparameters. Let Ily|¢ be a (first-stage) prior
with a hyperparameter vector £ and let A be a prior on Z, the range of &.
Then the “marginal” prior for @ is defined by

(B) = [ My e(B)AA(E), B € Bo. (4.7)

If the second-stage prior A also depends on some unknown hyperparameters,
then one can go on to consider a third-stage prior. In most applications,
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however, two-stage priors are sufficient, since misspecifying a second-stage
prior is much less serious than misspecifying a first-stage prior (Berger,
1985, §4.6). In addition, the second-stage prior can be chosen to be nonin-
formative (improper).

Bayes actions can be obtained in the same way as before using the prior
n (4.7). Thus, the hierarchical Bayes method is simply a Bayes method
with a hierarchical prior. Empirical Bayes methods, however, deviate from
the Bayes method since 1, ..., z, are used to estimate hyperparameters.

Suppose that X has a p.d.f. fo(z) w.r.t. a o-finite measure v and ITy¢
has a p.d.f. my¢(f) w.r.t. a o-finite measure x. Then the prior II in (4.7)
has a p.d.f.

7(6) = / To1e (O)dA(€)

w.r.t. k and

m(x) :/@ :fe(l')ﬂg‘&(e)dAdﬂ.

Let Py, ¢ be the posterior distribution of € given x and £ (or £ is assumed

known) and
Male( / folx)moe (0

which is the marginal of X given £ (or £ is assumed known). Then the
posterior distribution Py, has a p.d.f.

dPe\x ( )7?(9)

= )

/ i ”"'5 dA(€)

fo(x 7T9|g mx|g($)
/ ey )

APy, ¢
= = dP,
Lt arae

where P, is the posterior distribution of § given x. Thus, under the
estimation problem considered in Example 4.1, the (hierarchical) Bayes
action is

5(x) = / 5z, )dPey, (48)

where §(z, §) is the Bayes action when £ is known. A result similar to (4.8)
is given in Lemma 4.1.

Example 4.5. Consider Example 4.4 again. Suppose that one of the
parameters in the first-stage prior N(ug,03), po, is unknown and o3 is
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known. Let the second-stage prior for £ = pg be the Lebesgue measure on
R (improper prior). From Example 2.25,

2 2
o nog

6(z,8) = £+

nod + 02> nog+o2"

To obtain the Bayes action ¢(x), it suffices to calculate F¢|;({), where the
expectation is w.r.t. P¢,. Note that the p.d.f. of P, is proportional to

* n(z—p)? —£)?
w@):/ exp { "G 10" = 049" hap,

Using the properties of normal distributions, one can show that

1\ ne e\ e
1/J(5> = CleXp { (222 + 20[2)) (2”;52 + 20[2)) - 20[2)}
2

_ n§ nzé

- CZeXp {_ 2(no2+o0?) + nol+o? }
_ n(¢-z)?

- C3€Xp {7 2(noZ+o?) }’

where C, C2, and Cs are quantities not depending on §. Hence E¢|,(§) = 7.
The (hierarchical) generalized Bayes action is then

2 2
g nog

Eﬂw(f) + R |

81

o(x) = T =

nog + o2 nog + o2

4.1.3 Bayes rules and estimators

The discussion in §4.1.1 and §4.1.2 is more general than point estimation
and adopts an approach that is different from the frequentist approach used
in the rest of this book. In the frequentist approach, if a Bayes action ()
is a measurable function of x, then §(X) is a nonrandomized decision rule.
It can be shown (exercise) that 6(X) defined in Definition 4.1 (if it exists
for X =z € A with [y Py(A)dII = 1) also minimizes the Bayes risk

. (IT) = /@ R (6)dIl

over all decision rules T' (randomized or nonrandomized), where Ry () is
the risk function of T defined in (2.22). Thus, §(X) is a Bayes rule (§2.3.2).
In an estimation problem, a Bayes rule is called a Bayes estimator.
Generalized Bayes risks, generalized Bayes rules (or estimators), and
empirical Bayes rules (or estimators) can be defined similarly.
In view of the discussion in §2.3.2, even if we do not adopt the Bayesian
approach, the method described in §4.1.1 can be used as a way of generating
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decision rules. In this section, we study a Bayes rule or estimator in terms
of its risk (and bias and consistency for a Bayes estimator).

Bayes rules are typically admissible since, if there is a rule better than
a Bayes rule, then that rule has the same Bayes risk as the Bayes rule
and, therefore, is itself a Bayes rule. This actually proves part (i) of the
following result. The proof of the other parts of the following result is left
as an exercise.

Theorem 4.2. In a decision problem, let §(X) be a Bayes rule w.r.t. a
prior II.

(i) If 6(X) is a unique Bayes rule, then §(X) is admissible.

(ii) If © is a countable set, the Bayes risk r, (IT) < oo, and II gives positive
probability to each 6 € O, then 6(X) is admissible.

(iii) Let < be the class of decision rules having continuous risk functions. If
§(X) €S, r,(II) < oo, and IT gives positive probability to any open subset
of ©, then 6(X) is S-admissible.

Generalized Bayes rules or estimators are not necessarily admissible.
Many generalized Bayes rules are limits of Bayes rules (see Examples 4.3
and 4.7). Limits of Bayes rules are often admissible (Farrell, 1968a,b). The
following result shows a technique of proving admissibility using limits of
generalized Bayes risks.

Theorem 4.3. Suppose that O is an open set of R*. In a decision problem,
let & be the class of decision rules having continuous risk functions. A
decision rule 7' € ¥ is S-admissible if there exists a sequence {II;} of
(possibly improper) priors such that (a) the generalized Bayes risks r,.(II;)
are finite for all j; (b) for any 6y € © and n > 0,

T (IL;) — 5 (1)
i=oe T1i(Ogo )

where 1} (Il;) = inf eg 7, (II;) and Og,,,, = {0 € © : [|§ — 6o < n} with
I1;(O¢y ) < oo for all j.

Proof. Suppose that T' is not $-admissible. Then there exists Ty € & such
that Ry, (6) < Rr(0) for all 6 and Ryp,(6p) < Rr(6p) for a g € ©. From
the continuity of the risk functions, we conclude that Rrp,(0) < Rr(0) — e

for all & € Og,,, and some constants € > 0 and > 0. Then, for any j,
rp (M) = rj () = rp (1) — 7y (I15)
> [ (Re®) - Ra,(©)arL;(6)
o

60,7

€Il (Ogg ),

:07

Y

which contradicts condition (b). Hence, T' is S-admissible. I
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Example 4.6. Consider Example 4.3 and the estimation of p under the
squared error loss. From Theorem 2.1, the risk function of any decision rule
is continuous in y if the risk is finite. We now apply Theorem 4.3 to show
that the sample mean X is admissible. Let II; = N(0, 7). Since Rg(u) =
o?/n, r¢(Il;) = o%/n for any j. Hence, condition (a) in Theorem 4.3 is
satisﬁegi. From Example 2.25, the Bayes estimator w.r.t. II; is §,;(X) =
njto2 X (see formula (2.25)). Thus,

o2nj% + otp?

= gt o2y

and
2 .

* o°J
) = [ RoGodn = 77

For any O, = {p: [ — po| < n},

fio +1 po—mnY _ 2n®'(&;)
w0 =2 (") =0 (") =",

for some &; satisfying (uo — 1)/vJj < & < (uo + n)/v/j, where @ is the

standard normal c.d.f. and @’ is its derivative. Since ®'(§;) — @'(0) =
(2m) =12,
re () — (1) o/

I;(Opo)  20%'(&)n(nj + 0?)

as j — oo. Thus, condition (b) in Theorem 4.3 is satisfied and, hence, the

sample mean X is admissible. 1

— 0

More results in admissibility can be found in §4.2 and §4.3.

The following result concerns the bias of a Bayes estimator.

Proposition 4.2. Let 6(X) be a Bayes estimator of ¥ = ¢(f) under
the squared error loss. Then 6(X) is not unbiased unless the Bayes risk
r, (II) = 0.

Proof. Suppose that §(X) is unbiased, i.e., E[6(X)|0] = g(#). Condition-
ing on 0 and using Proposition 1.10, we obtain that

Elg(0)d(X)] = E{g(0)E[6(X)|6]} = E[g(6)]*.

Since 6(X) = E[g(0)|X], conditioning on X and using Proposition 1.10, we
obtain that

Elg(0)5(X)] = E{3(X)E[g(0)|X]} = E[6(X)]*.

ﬁ
=2
=
N—
I
S|
=
S
!
<
—
=2
=
Il

B[3(X)]* + E[g(0)]* — 2E[g(0)3(X)] = 0. 1



242 4. Estimation in Parametric Models

Since 7, (IT) = 0 occurs usually in some trivial cases, a Bayes estimator
is typically not unbiased. Hence, Proposition 4.2 can be used to check
whether an estimator can be a Bayes estimator w.r.t. some prior under
the squared error loss. However, a generalized Bayes estimator may be
unbiased; see, for instance, Examples 4.3 and 4.7.

Bayes estimators are usually consistent and approximately unbiased. In
a particular problem, it is usually easy to check directly whether Bayes
estimators are consistent and approximately unbiased (Examples 4.7-4.9),
especially when Bayes estimators have explicit forms. Bayes estimators also
have some other good asymptotic properties, which are studied in §4.5.3.

Let us consider some examples.

Example 4.7. Let X = (X, ..., X,,) and X,’s be i.i.d. from the exponential
distribution F(0, §) with an unknown 6 > 0. Let the prior be such that §~!
has the gamma distribution I'(,~y) with known o > 0 and v > 0. Then
the posterior of w = 61 is the gamma distribution I'(n + o, (nX +~~1)71)
(verify), where X is the sample mean.

Consider first the estimation of § = w™1!.

under the squared error loss is

5(X) = (nX +~1)nte /oo a2, Sy e g nX +~t
['(n+ ) 0 n+a-—1"

The bias of §(X) is
—1 1
nf + 97 (a 1)90<1).

The Bayes estimator of 6

n+a-—1 n+a—1

It is also easy to see that §(X) is consistent. The UMVUE of 4 is X.
Since Var(X) = 62/n, r _(II) > 0 for any II and, hence, X is not a Bayes
estimator. In this case, X is the generalized Bayes estimator w.r.t. the
improper prior 313 = I(0,00)(w) and is a limit of Bayes estimators 0(X) as
a — 1 and v — oo (exercise). The admissibility of §(X) is considered in
Exercises 32 and 80.

Consider next the estimation of e */¢ = ¢~ (see Examples 2.26 and
3.3). The Bayes estimator under the squared error loss is

(nX +A7h)nte /OO el —(X+y Htw g
I'(n+a) 0

t —(nt+a)
=14+ - .
( nX + 7‘1>

Again, this estimator is biased and it is easy to show that d,(X) is consistent
as n — oo. In this case, the UMVUE given in Example 3.3 is neither a
Bayes estimator nor a limit of 6,(X). 1

n

0 tw(

5t(X) =
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Example 4.8. Let X = (Xi,...,X,) and X;’s be i.i.d. from N(u,0?)
with unknown g € R and 02 > 0. Let the prior for w = (20%)~! be the
gamma distribution I'(«, ) with known « and v and let the prior for
be N(po,08/w) (conditional on w). Then the posterior p.d.f. of (u,w) is
proportional to

wntD/24a=1 gy {_ [7—1 FY +n(X - p)?+ (M;;%o)z] w},
where Y = Y"1 (X; — X)? and X is the sample mean. Note that
(X =)+ U = (L ) =2 (X 4 g0 ) e X2
0 0 0 0
Hence, the posterior p.d.f. of (u,w) is proportional to

w0/t Lo L[yt 4 W (n+ L) (0= cC0)] )

where
nX + 55 i 1 2
X) = 0 d W=Y X — X)1“.
=" et 6 (s ) o)
0

Thus, the posterior of w is the gamma distribution I'(n/2+«, (v~ 1 +W)~1)
and the posterior of 4 (given w and X) is N ({(X), [(2n+0g *)w]1). Under
the squared error loss, the Bayes estimator of p is ((X) and the Bayes
estimator of 02 = (2w) ™1 is (y '+ W)/(n+2a—2), provided that n+2a > 2.
Apparently, these Bayes estimators are biased but the biases are of the order
n~'; and they are consistent as n — co. 1

To consider the last example, we need the following useful lemma whose
proof is similar to the proof of result (4.8).

Lemma 4.1. Suppose that X has a p.d.f. fy(z) w.r.t. a o-finite measure
v. Suppose that 6 = (61, 62), ; € ©;, and that the prior has a p.d.f.

m(0) = 7o, 0,(01) 70, (02),

where 7y, (02) is a p.d.f. w.r.t. a o-finite measure o on ©9 and for any
given 0o, 7,10, (01) is a p.d.f. w.r.t. a o-finite measure v, on ©;. Suppose
further that if 65 is given, the Bayes estimator of h(61) = g(1,62) under
the squared error loss is 6(X,63). Then the Bayes estimator of g(61,62)
under the squared error loss is 6(X) with

o(z) = 3(x,02)pa, |2 (02)dve,
O2

where pg, |,(62) is the posterior p.d.f. of 8 given X = 2.
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Example 4.9. Consider a linear model
Xij :ﬁTZi+Eij7 ]: 17...,71,'7 i:17...7k‘,

where 3 € RP is unknown, Z;’s are known vectors, €;;’s are independent,
and ¢;; is N(0,02), j = 1,..,n;, % = 1,...,k. Let X be the sample vector
containing all X;;’s. The parameter vector is then § = (5,w), where w =
(w1, ...,wr) and w; = (202)~!. Assume that the prior for § has the Lebesgue

p.d.f.
k

em(B) [Jwse /7, (4.9)

i=1
where o > 0, v > 0, and ¢ > 0 are known constants and 7(3) is a known
Lebesgue p.d.f. on RP. The posterior p.d.f. of 8 is then proportional to

k
h(X,0) = m(@) [Jw/* el Holler,

i=1

where v;(3) = Z?’ZI(XU — B7Z;)%. If 3 is known, the Bayes estimator of

o2 under the squared error loss is

/ X6 v ()
2w; [h(X,0)dw ~  2a+n;

By Lemma 4.1, the Bayes estimator of Uf is

52 — / 7+ vi(B)

i % + 1 Jaix(B8)dp, (4.10)

where

Faix(8) ox / h(X, 0)d

k
o r(B) ] [ it
=1
‘ (at14ni/2)
_ —(« n;
(@) [T [+ wi(B)] (4.11)
=1

is the posterior p.d.f. of 3. The Bayes estimator of {73 for any [ € RP? is
then the posterior mean of I73 w.r.t. the p.d.f. f3x(6).
In this problem, Bayes estimators do not have explicit forms. A nu-

merical method (such as one of those in §4.1.4) has to be used to evaluate
Bayes estimators (see Example 4.10).
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Let X;. and S? be the sample mean and variance of Xij, j=1,..,n4
2 is defined to be 0 if n; = 1), and let 62 = (2a-y) ™! (the prior mean of
). Then the Bayes estimator 62 in (4.10) can be written as

2a 9  mn;—1 4 n; - 9
S X — 077, dg. 4.12
2a+n100+20¢—|—n,’ Z—|—204—|—n,'/( B >f'6‘X(ﬁ>ﬁ ( )

(S
a;

The Bayes estimator in (4.12) is a weighted average of prior information,
“within group” variation, and averaged squared “residuals”.

If n; — oo, then the first term in (4.12) converges to 0 and the second
term in (4.12) is consistent and approximately unbiased for oZ. Hence,
the Bayes estimator 62 is consistent and approximately unbiased for o? if
the mean of the last term in (4.12) tends to 0, which is true under some
conditions (see, e.g., Exercise 36). It is easy to see that 62 is consistent and
approximately unbiased for o7 w.r.t. the joint distribution of (X, ), since
the mean of the last term in (4.12) w.r.t. the joint distribution of (X, 0) is

bounded by o2 /n;. 1

4.1.4 Markov chain Monte Carlo

As we discussed previously, Bayes actions or estimators have to be com-
puted numerically in many applications. Typically we need to compute an
integral of the form

B, (g) = /@ 9(0)p(0)dv

with some function g, where p(d) is a p.d.f. w.r.t. a o-finite measure v on
(©,Be) and © C R*. For example, if g is an indicator function of A € Bg
and p(6) is the posterior p.d.f. of § given X = x, then E,(g) is the posterior
probability of A; under the squared error loss, E,(g) is the Bayes action
(4.4) if p(0) is the posterior p.d.f.

There are many numerical methods for computing integrals E,(g); see,
for example, §4.5.3 and Berger (1985, §4.9). In this section, we discuss
the Markov chain Monte Carlo (MCMC) methods, which are powerful nu-
merical methods not only for Bayesian computations, but also for general
statistical computing (see, e.g., §4.4.1).

We start with the simple Monte Carlo method, which can be viewed as a
special case of the MCMC. Suppose that we can generate i.i.d. §1), ..., (™)
from a p.d.f. h(f) > 0 w.r.t. v. By the SLLN (Theorem 1.13(ii)), as m — oo,

9(09)p(6) 9(6)p(6) _
Z w0 = B

Hence F,(g) can be used as a numerical approximation to E,(g). The
process of generating 6\7) according to h is called importance sampling and
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h(0) is called the importance function. More discussions on importance
sampling can be found, for example, in Berger (1985), Geweke (1989), Shao
(1989), and Tanner (1996). When p(6) is intractable or complex, it is
often difficult to choose a function h that is simple enough for importance
sampling and results in a fast convergence of E,(g) as well.

The simple Monte Carlo method, however, may not work well when k,
the dimension of O, is large. This is because, when k is large, the conver-
gence of Ep(g) requires a very large m; generating a random vector from
a k-dimensional distribution is usually expensive, if not impossible. More
sophisticated MCMC methods are different from the simple Monte Carlo
in two aspects: generating random vectors can be done using distributions
whose dimensions are much lower than k; and 6V, ...,0(™) are not inde-
pendent, but form a Markov chain.

Let {Y® : ¢ =0,1,..} be a Markov chain (§1.4.4) taking values in
Y c R*. {Y®1 is homogeneous if and only if

PY®D) e Aly®)y = p(y® ¢ Ay ©)
for any t. For a homogeneous Markov chain {Y ()}, define
P(y,A)=P(YW e Ay —y),  yeY, AeBy,

which is called the transition kernel of the Markov chain. Note that P(y,-)
is a probability measure for every y € Y; P(-, A) is a Borel function for every
A € By; and the distribution of a homogeneous Markov chain is determined
by P(y, A) and the distribution of Y(©) (initial distribution). MCMC ap-
proximates an integral of the form [, g(y)p(y)dv by m=t 3" g(Y®) with
a Markov chain {Y®) : ¢t =0,1,...}. The basic justification of the MCMC
approximation is given in the following result.

Theorem 4.4. Let p(y) be a p.d.f. on Y w.r.t. a o-finite measure v and g be
a Borel function on Y with fy l9(y)|p(y)dv < co. Let {Y®) : ¢t =0,1,...} be
a homogeneous Markov chain taking values on Y C RF with the transition
kernel P(y, A). Then

m

1

o) e [ gt (4.13)
t=1 Y

and, as t — oo,

P!y, A) = P(Y" e AY® =) -, / py)dv, (4.14)
A

provided that
(a) the Markov chain is aperiodic in the sense that there does not exist d > 2
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nonempty disjoint events Ay, ..., Ag—1 in By such that for alli =0,...,d —1
and all y € A;, P(y,A;) =1for j =i+ 1 (mod d);

(b) the Markov chain is p-invariant in the sense that [ P(y, A)p(y)dv =
J4p(y)dv for all A € By;

(c) the Markov chain is p-irreducible in the sense that for any y € Y and any
A with pr )dv > 0, there exists a positive integer ¢ such that P'(y, A)
in (4.14) is positive; and

(d) the Markov chain is Harris recurrent in the sense that for any A with
[ap(y)dv >0, P (32 L Ta(Y®) = 00|V (@ =y)=1forally.

The proof of these results is beyond the scope of this book and, hence, is
omitted. It can be found, for example, in Nummelin (1984), Chan (1993),
and Tierney (1994). A homogeneous Markov chain satisfying conditions
(a)-(d) in Theorem 4.4 is called ergodic with equilibrium distribution p.
Result (4.13) means that the MCMC approximation is consistent and result
(4.14) indicates that p is the limiting p.d.f. of the Markov chain.

One of the key issues in MCMC is the choice of the kernel P(y, A). The
first requirement on P(y, A) is that conditions (a)-(d) in Theorem 4.4 be
satisfied. Condition (a) is usually easy to check for any given P(y, A). In the
following, we consider two popular MCMC methods satisfying conditions

(a)-(d)-

Gibbs sampler

One way to construct a p-invariant homogeneous Markov chain is to use
conditioning. Suppose that Y has the p.d.f. p(y). Let Y; (or y;) be the ith
component of Y (or y) and let Y_; (or y_;) be the (k — 1)-vector containing
all components of Y (or y) except Y; (or y;). Then

Pi(y_i,A) = P(Y € AlY_; = y_;)

is a transition kernel for any i. The MCMC method using this kernel is
called the single-site Gibbs sampler. Note that

[ Pl Aptayiv = BIP(Y € A-0) = PO € 4) = [ ptayar

and, therefore, the chain with kernel P;(y_;, A) is p-invariant. However,
this chain is not p-irreducible since P;(y_;,-) puts all its mass on the set
¥ (y_s), where 9;(y) = y_;. Gelfand and Smith (1990) considered a sys-

K2
tematic scan Gibbs sampler whose kernel P(y, A) is a composite of k kernels

Pi(y—i, A),i =1, ..., k. More precisely, the chain is defined as follows. Given

(t—1) (t—1) I,

Y =1 = (=1 we generate ygt) from Pi(yy 7, ...y . yj(t) from

Pyt oy )y from Pty ). Tecan
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be shown that this Markov chain is still p-invariant. We illustrate this with
the case of & = 2. Note that Yl(l) is generated from Pg(ygo), -), the con-
ditional distribution of ¥ given Y> = ygo). Hence (Yl(l),Yz(O)) has p.d.f. p.
Similarly, we can show that Y (1) = (Yl(l), Yz(l)) has p.d.f. p. Thus,

/P(y7A)p(y>dV = /P(Y(” € AlY© = y)p(y)dv

= E[P(YW € Ay ()]
= P(Y®W e A)

= /A p(y)dv.

This Markov chain is also p-irreducible and aperiodic if p(y) > 0 for all
y € Y; see, for example, Chan (1993). Finally, if p(y) > 0 for all y € Y,
then P(y, A) < the distribution with p.d.f. p for all y and, by Corollary 1
of Tierney (1994), the Markov chain is Harris recurrent. Thus, Theorem
4.4 applies and (4.13) and (4.14) hold.

The previous Gibbs sampler can obviously be extended to the case where
y;’s are subvectors (of possibly different dimensions) of y.

Let us now return to Bayesian computation and consider the following
example.

Example 4.10. Consider Example 4.9. Under the given prior for 6§ =
(B,w), it is difficult to generate random vectors directly from the posterior
p.d.f., given X = 2 (which does not have a familiar form). To apply a
Gibbs sampler with y = 6, y; = 3, and y2 = w, we need to generate random
vectors from the posterior of 3, given & and w, and the posterior of w, given
x and 8. From (4.9) and (4.11), the posterior of w = (w1, ...,wk), given x
and 3, is a product of marginals of w;’s that are the gamma distributions
T(a+1+n/2, [y +v(B)]1), i =1,...,k. Assume now that 7(3) = 1
(noninformative prior for 8). It follows from (4.9) that the posterior p.d.f.
of B, given x and w, is proportional to

k
He—wi’ui(ﬁ) - 6—HW1/ZZB—W1/2X|\27

i=1

where W is the diagonal block matrix whose ¢th block on the diagonal
is wil,,. Let n = Zle n;. Then, the posterior of W'/2Z8, given X
and w, is N,,(W'/2X,271I,,) and the posterior of 3, given X and w, is
N,(ZTW2Z)'ZTWX, 27 Y (Z™WZ)™) (Z7W Z is assumed of full rank for
simplicity), since g = [(ZTWZ)~'Z"WY2]W'/2Z3. Note that random
generation using these two posterior distributions is fairly easy. 1
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The Metropolis algorithm

A large class of MCMC methods are obtained using the Metropolis al-
gorithm (Metropolis et al., 1953). We introduce Hastings’ version of the
algorithm. Let Q(y, A) be a transition kernel of a homogeneous Markov
chain satisfying

Q. A) = /A 4(y, 2)du(z)

for a measurable function ¢(y, z) > 0 on 'Y x Y and a o-finite measure v on
(Y, By). Without loss of generality, assume that fy p(y)dv = 1 and that p
is not concentrated on a single point. Define

I p(2)a(zy) 1}
aly,z) = { Ilnm {p(y)q(y’z)a p(y)q(y, z) > 8

and

p(y,2) { q(y, z)aly, z) y#z

0 Yy =z.
The Metropolis kernel P(y, A) is defined by

P(y,A) = /A Py, 2)dv (=) + r(1)d,(A), (4.15)

where r(y) = 1 — [p(y, 2)dv(z) and é, is the point mass at y defined in
(1.22). The corresponding Markov chain can be described as follows. If the
chain is currently at a point Y(¥) = g, then it generates a candidate value
z for the next location Y **1) from Q(y,-). With probability a(y, z), the
chain moves to Y**1) = 2. Otherwise, the chain remains at Y ¢+1) = ¢

Note that this algorithm only depends on p(y) through p(y)/p(z). Thus,
it can be used when p(y) is known up to a normalizing constant, which often
occurs in Bayesian analysis.

We now show that a Markov chain with a Metropolis kernel P(y, A) is
p-invariant. First, by the definition of p(y, z) and a(y, z),

p(y)p(y, z) = p(2)p(2,9)

for any y and z. Then, for any A € By,

[ 2w = [| [ vt st + [ rm)a,ni)
= [ | st mitn)| av)+ [ i)
= [ || a6+ [ i)
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- / 11— r(2)]p(=)dv(z) + / F(@)p(2)dv(2)
A A

= /Ap(z)du(z).

If a Markov chain with a Metropolis kernel defined by (4.15) is p-
irreducible and f )>0p y)dv > 0, then, by the results of Nummelin (1984,
§2.4), the chain is aperlodlc; by Corollary 2 of Tierney (1994), the chain is
Harris recurrent. Hence, to apply Theorem 4.4 to a Markov chain with a
Metropolis kernel, it suffices to show that the chain is p-irreducible.

Lemma 4.2. Suppose that Q(y, A) is the transition kernel of a p-irreducible
Markov chain and that either ¢(y, z) > 0 for all y and z or ¢(y, z) = q(z,y)
for all y and z. Then the chain with the Metropolis kernel p(y, A) in (4.15)
is p-irreducible.

Proof. It can be shown (exercise) that if @ is any transition kernel of a
homogeneous Markov chain, then

- /A [+ ﬁq<zn_j+1,zn_j>du<zn_j>, (4.16)

where z, =y, y €Y, and A € By. Letye‘d A € By with [, p(z)dv > 0,
and By, = {z:a(y,z) =1}. If fAch z)dv > 0, then

PuA)z [ e = [ T ) 0

which follows from either ¢(z,y) > 0 or ¢(z,y) = q(y,2) > 0 on By. If
Janpe P(z)dv = 0, then [, » p(z)dv > 0. From the irreducibility of
v y

Q(y, A), there exists a t > 1 such that Q'(y,AN By) > 0. Then, by
(4.15) and (4.16),

P'(y,A) > P'(y, AN B,) > Q'(y,ANB,) >0. 1

Two examples of ¢(y, z) given by Tierney (1994) are q(y, z) = f(z — y)
with a Lebesgue p.d.f. f on R¥, which corresponds to a random walk chain,
and ¢(y, z) = f(z) with a p.d.f. f, which corresponds to an independence
chain and is closely related to the importance sampling discussed earlier.

Although the MCMC methods have been used over the last 50 years,
the research on the theory of MCMC is still very active. Important top-
ics include the choice of the transition kernel for MCMC; the rate of the
convergence in (4.13); the choice of the Monte Carlo size m; and the esti-
mation of the errors due to Monte Carlo. See more results and discussions
in Tierney (1994), Basag et al. (1995), Tanner (1996), and the references
therein.
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4.2 Invariance

The concept of invariance is introduced in §2.3.2 (Definition 2.9). In this
section, we study the best invariant estimators and their properties in
one-parameter location families (§4.2.1), in one-parameter scale families
(§4.2.2), and in general location-scale families (§4.2.3). Note that invariant
estimators are also called equivariant estimators.

4.2.1 One-parameter location families

Assume that the sample X = (X7, ..., X,,) has a joint distribution P, with
a Lebesgue p.d.f.

f(xl 7/143"'3‘%77,7/1‘)7 (417)

where f is known and p € R is an unknown location parameter. The family
P ={P,: u € R} is called a one-parameter location family, a special case of
the general location-scale family described in Definition 2.3. It is invariant
under the location transformations g.(X) = (X1 + ¢,..., X, +¢), c€ R.

We consider the estimation of i as a statistical decision problem with
action space A = R and loss function L(p,a). It is natural to consider
the same transformation in the action space, i.e., if X; is transformed to
X;+c, then our action a is transformed to a+c. Consequently, the decision
problem is invariant under location transformation if and only if

L(p,a) =L+ c,a+c) for all c € R,
which is equivalent to
Lija) = Lia — ) (4.18)

for a Borel function L(-) on R.

According to Definition 2.9 (see also Example 2.24), an estimator T
(decision rule) of u is location invariant if and only if

T(X14+¢.nXn+c)=T(Xy,...Xn) +ec (4.19)

Many estimators of u, such as the sample mean and weighted average of
the order statistics, are location invariant. The following result provides a
characterization of location invariant estimators.

Proposition 4.3. Let Ty be a location invariant estimator of u. Let
di =2, —xp,i=1,...,n—1 and d = (d1,...,dn—1). A necessary and
sufficient condition for an estimator 7" to be location invariant is that there
exists a Borel function u on R"~! (u = a constant if n = 1) such that

T(x) =To(z) — u(d) for all x € R". (4.20)



252 4. Estimation in Parametric Models

Proof. It is easy to see that T given by (4.20) satisfies (4.19) and, therefore,
is location invariant. Suppose that T is location invariant. Let a(x) =
T(z) — To(x) for any z € R™. Then
(xr+ ¢ yxnt+c) =T(x1+ ¢ coyxn+¢) —To(z1+ ¢ .y n + €)
- T(xlv (X3} l’n) - TO(I'lv (X3} l’n)

for all c € R and z; € R. Putting ¢ = —x,, leads to
(1 — Ty, oy Tpe1 — Tn, 0) = T(x) — To(z), x=€R™

The result follows with w(ds, ...,dn—1) = @(z1 — Tpn, ooy, Tn—1 — Tpn,0). 1

Therefore, once we have a location invariant estimator Tj of p, any
other location invariant estimator of p can be constructed by taking the
difference between Ty and a Borel function of the ancillary statistic D =
(X1 —Xn, ooy Xn—1— Xp)-

The next result states an important property of location invariant esti-
mators.

Proposition 4.4. Let X be distributed with the p.d.f. given by (4.17) and
let T' be a location invariant estimator of u under the loss function given
by (4.18). If the bias, variance, and risk of T are well defined, then they
are all constant (do not depend on ).

Proof. The result for the bias follows from

br(p) = [ 7@ 01 = sy = ) g
_ /T(:cl bty @ + ) f(@)da — o
— (@) + W - n
- /T(x)f(a:)d:r.

The proof of the result for variance or risk is left as an exercise. 1

An important consequence of this result is that the problem of finding
the best location invariant estimator reduces to comparing constants in-
stead of risk functions. The following definition can be used not only for
location invariant estimators, but also for general invariant estimators.

Definition 4.2. Consider an invariant estimation problem in which all
invariant estimators have constant risks. An invariant estimator T is called
the minimum risk invariant estimator (MRIE) if and only if T has the
smallest risk among all invariant estimators. 1
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Theorem 4.5. Let X be distributed with the p.d.f. given by (4.17) and
consider the estimation of x under the loss function given by (4.18). Sup-
pose that there is a location invariant estimator Tj of p with finite risk.
Let D= (X1 — Xp, oo, Xno1 — Xn).

(i) Assume that for each d there exists a u.(d) that minimizes

h(d) = Eo[L(To(X) — u(d))| D = d]

over all functions u, where the expectation Ey is calculated under the as-
sumption that X has p.d.f. f(z1,...,2,). Then an MRIE exists and is given
by

T.(X) = To(X) — u«(D).

(ii) The function w, in (i) exists if L(t) is convex and not monotone; it is
unique if L is strictly convex.

(iii) If Ty and D are independent, then u. is a constant that minimizes
Eo[L(To(X) —w)]. If, in addition, the distribution of T is symmetric about
w and L is convex and even, then u, = 0.

Proof. By Theorem 1.7 and Propositions 4.3 and 4.4,

Ry (n) = Eolh(D)],

where T'(X) = Ty(X) —u(D). This proves part (i). If L is (strictly) convex
and not monotone, then Eo[L(To(x)—a)|D = d] is (strictly) convex and not
monotone in a (exercise). Hence limq o Eo[L(To(x) — a)|D = d] = oo.
This proves part (ii). The proof of part (iii) is left as an exercise. 1

Theorem 4.6. Assume the conditions of Theorem 4.5 and that the loss is
the squared error loss.
(i) The unique MRIE of  is

O (X =t X, — t)dt

B = F X = e X —

which is known as the Pitman estimator of u.
(if) The MRIE of 4 is unbiased.
Proof. (i) Under the squared error loss,

u(d) = Eo[Ty(X)|D = d] (4.21)

(exercise). Let Tp(X) = X,, (the nth observation). Then X, is location
invariant. If there exists a location invariant estimator of y with finite risk,
then Eo(X,|D = d) is finite a.s. P (exercise). By Proposition 1.8, when
= 0, the joint Lebesgue p.d.f. of (D, X,,) is f(d1 + Zpn, ..., dn—1 + Tn, Tn),
d = (dy,...,dn—1). The conditional p.d.f. of X,, given D = d is then

f(dl + xy, ~-~adn71 + wnaxn)
S fldi 4t ey + t, t)dE
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(see (1.61)). By Proposition 1.9,

JZ tf(di 4t dpoy + ¢, t)dt

o0
Jooo fldy+t o dny + t,t)dE
O tf(rr =+t Ty — my + £, )dt
N f_oooo flxr —on+t, @y — Ty +t,)dt
[ uf(zr — w2y — w)du

B 75 flar—u, @y — u)du

Ey(X,|D=d) =

n

by letting u = x,, —t. The result in (i) follows from T} (X) = X,, — E(X,|D)
(Theorem 4.5).

ii) Let b be the constant bias of T, (Proposition 4.4). Then T1(X) =
T.(X) — b is a location invariant estimator of p and

Ry, = E[T.(X) — b— p)? = Var(T.) < Var(T,) + b* = Ry,.
Since T is the MRIE, b = 0, i.e., T, is unbiased. 1

Theorem 4.6(ii) indicates that we only need to consider unbiased lo-
cation invariant estimators in order to find the MRIE, if the loss is the
squared error loss. In particular, a location invariant UMVUE is an MRIE.

Example 4.11. Let Xi,..., X,, be i.i.d. from N(u,0?) with an unknown
p € R and a known o2. Note that X is location invariant. Since X is the
UMVUE of i (§2.1), it is the MRIE under the squared error loss. Since the
distribution of X is symmetric about u and X is independent of D (Basu’s
theorem), it follows from Theorem 4.5(iii) that X is an MRIE if L is convex
and even. 1

Example 4.12. Let X4,..., X, be i.i.d. from the exponential distribution
E(u,0), where 0 is known and p € R is unknown. Since X(1) — 6/n is
location invariant and is the UMVUE of y, it is the MRIE under the squared
error loss. Note that X(y is independent of D (Basu’s theorem). By
Theorem 4.5(iii), an MRIE is of the form X(;) — u. with a constant ..
For the absolute error loss, X1y — 6log2/n is an MRIE (exercise). 1

Example 4.13. Let Xi,..., X, be ii.d. from the uniform distribution on
(1w — é,u + ;) with an unknown g € R. Consider the squared error loss.
Note that

1 p—s<way Sam Spty,
@y = py ooy xn — 1) { 0 otherwise.
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By Theorem 4.6(i), the MRIE of p is

X(1>+2

T.(X)= tdt /

X(n) -

X“)*% gt — X+ X

Xmy=3 2

We end this section with a brief discussion of the admissibility of MRIE’s
in a one-parameter location problem. Under the squared error loss, the
MRIE (Pitman’s estimator) is admissible if there exists a location invariant
estimator Ty with E|Ty(X)[?> < oo (Stein, 1959). Under a general loss
function, an MRIE is admissible when it is a unique MRIE (under some
other minor conditions). See Farrell (1964), Brown (1966), and Brown and
Fox (1974) for further discussions.

4.2.2 One-parameter scale families

Assume that the sample X = (X1, ..., X,,) has a joint distribution P, with
a Lebesgue p.d.f.

(T ), (4.22)
where f is known and o > 0 is an unknown scale parameter. The family
P ={P, : 0 > 0} is called a one-parameter scale family and is a special
case of the general location-scale family in Definition 2.3. This family is
invariant under the scale transformations g.(X) =rX, r > 0.

We consider the estimation of " with A = [0, 00), where h is a nonzero

constant. The transformation g, induces the transformation g,.(¢" )= rhol.
Hence, a loss function L is scale invariant if and only if
L(ro,"a) = L(o,a) for all » > 0,
which is equivalent to
L(o,a) =L (%) (4.23)

for a Borel function L(-) on [0,00). An example of a loss function satisfying
(4.23) is

p _ h|p
_la—atP (4.24)

oph

L(o,a) = -1

oh

where p > 1 is a constant. However, the squared error loss does not satisfy
(4.23).

An estimator T of o” is scale invariant if and only if
TrXy,...,rX,) =r"T(X1,...., X,).

Examples of scale invariant estimators are the sample variance S? (for h =
2), the sample standard deviation S = v/S2 (for h = 1), the sample range
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X(ny — X(1) (for h = 1), and the sample mean deviation n=* > | [ X; — X|
(for h =1).

The following result is an analogue of Proposition 4.3. Its proof is left
as an exercise.

Proposition 4.5. Let Tj be a scale invariant estimator of o*. A necessary
and sufficient condition for an estimator T" to be scale invariant is that there
exists a positive Borel function v on R™ such that

T(z) = To(x)/u(z) for all x € R™,
where z = (21,...,2n), 2i = xi/Tp, i =1,...,n— 1, and 2z, =z, /|zp|. 1

The next result is similar to Proposition 4.4. It applies to any invariant
problem defined in Definition 2.9. We use the notation in Definition 2.9.

Theorem 4.7. Let P be a family invariant under G (a group of transfor-
mations). Suppose that the loss function is invariant and 7T is an invariant
decision rule. Then the risk function of T" is a constant. 1

The proof is left as an exercise. Note that a special case of Theorem 4.7
is that any scale invariant estimator of ¢” has a constant risk and, therefore,
an MRIE (Definition 4.2) of o usually exists. However, Proposition 4.4
is not a special case of Theorem 4.7, since the bias of a scale invariant
estimator may not be a constant in general. For example, the bias of the
sample standard deviation is a function of o.

The next result and its proof are analogues of those of Theorem 4.5.

Theorem 4.8. Let X be distributed with the p.d.f. given by (4.22) and
consider the estimation of o” under the loss function given by (4.23). Sup-
pose that there is a scale invariant estimator Ty of o” with finite risk. Let
Z=(Zy,...2Z,) with Z; = X;/X,,i=1,...n—1, and Z,, = X,,/|X.|.

(i) Assume that for each z there exists a u.(z) that minimizes

Er[L(To(X)/u(2))|Z = 2]

over all positive Borel functions u, where the conditional expectation F; is
calculated under the assumption that X has p.d.f. f(x1,...,x,). Then, an
MRIE exists and is given by

Tu(X) = To(X) Jur(Z).

(ii) The function u, in (i) exists if y(t) = L(e!) is convex and not monotone;
it is unique if y(t) is strictly convex. 1
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The loss function given by (4.24) satisfies the condition in Theorem
4.8(ii). A loss function corresponding to the squared error loss in this
problem is the loss function (4.24) with p = 2. We have the following result
similar to Theorem 4.6 (its proof is left as an exercise).

Corollary 4.1. Under the conditions of Theorem 4.8 and the loss function
(4.24) with p = 2, the unique MRIE of ¢" is

Ty(X) = To(X)E\[To(X)|Z2]  [o T (¢ X, o t X)) dt
-  B{[(X)?zy f0°°t”+2h—1f(tX17...7tXn)dt’

which is known as the Pitman estimator of o”. 1

Example 4.14. Let X, ..., X,, be i.i.d. from N(0,0?) and consider the es-
timation of 2. Then Ty = >, X7 is scale invariant. By Basu’s theorem,
Ty is independent of Z. Hence u, in Theorem 4.8 is a constant minimizing
E7[L(To/u)] over u > 0. When the loss is given by (4.24) with p = 2, by
Corollary 4.1, the MRIE (Pitman’s estimator) is

To(X)Er[To (X)) IS
T.(X) = = X7,

(X) Eq[To(X)]? n+2; !
since Ty has the chi-square distribution 2 when o = 1. Note that the
UMVUE of o2 is Ty /n, which is different from the MRIE. 1

Example 4.15. Let X3, ..., X, be i.i.d. from the uniform distribution on
(0,0) and consider the estimation of o. By Basu’s theorem, the scale in-
variant estimator X, is independent of Z. Hence u. in Theorem 4.8 is a
constant minimizing E1[L(X,)/u)] over v > 0. When the loss is given by
(4.24) with p = 2, by Corollary 4.1, the MRIE (Pitman’s estimator) is

. X(n)ElX(n) _ (’Il+ Q)X(n)

ElX(Zn) n —+ 1

T.(X)

4.2.3 General location-scale families

Assume that X = (X7, ..., X,,) has a joint distribution Py with a Lebesgue
p.d.f.
V(T L T, (4.25)

where f is known, 6 = (u,0) € O, and ©® = R x (0,00). The family
P ={Py:0 € O} is a location-scale family defined by Definition 2.3 and
is invariant under the location-scale transformations of the form g. ,(X) =
(rX1i+c¢ ...,rX, +¢), c € R, r >0, which induce similar transformations
on ©: g.,(0) = (ru+ecro),ceR, r>0.
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Consider the estimation of 0" with a fixed h # 0 under the loss function
(4.23), which is invariant under the location-scale transformations g. ,. An
estimator T of o” is location-scale invariant if and only if

T(rX)+c Xy +¢) =r"T(Xy, ..., X,). (4.26)

By Theorem 4.7, any location-scale invariant 7" has a constant risk. Letting
r=11in (4.26), we obtain that

T(X1+ ¢y Xn+¢) = T(X1, ., Xp)

for all ¢ € R. Therefore, T is a function of D = (Dy,...,Dy—1), D; =
X;— Xpn,i=1,...,n— 1. From (4.25), the joint Lebesgue p.d.f. of D is

o [ (ff; .., b +t,t) dt, (4.27)

which is of the form (4.22) with n replaced by n—1 and z;’s replaced by d;’s.
It follows from Theorem 4.8 that if Ty(D) is any finite risk scale invariant
estimator of o” based on D, then an MRIE of ¢” is

T.(D) = To(D) /u(W), (4.28)

where W = (Wl,...,anl), Wz = Di/anla i = 1,...,77, - 27 Wn,1 =
Dy—1/|Dn-1|, u«(w) is any number minimizing Fy [L(To(D)/u(w)|W = w]
over all positive Borel functions u, and F; is the conditional expectation
calculated under the assumption that D has p.d.f. (4.27) with o = 1.

Consider next the estimation of . Under the location-scale transfor-
mation g, it can be shown (exercise) that a loss function is invariant if
and only if it is of the form

L(*"). (4.29)

o

An estimator T of u is location-scale invariant if and only if
TrX1+c¢...rX,+c¢)=rT(Xy,..,Xn) +ec

Again, by Theorem 4.7, the risk of an invariant T is a constant.

The following result is an analogue of Proposition 4.3 or 4.5.

Proposition 4.6. Let T be any estimator of y invariant under location-
scale transformation and let 77 be any estimator of o satisfying (4.26) with
h =1 and 771 > 0. Then an estimator T of y is location-scale invariant if
and only if there is a Borel function u on R™"~! such that

T(X) = Ty(X) — u(W)T3(X),

where W is given in (4.28). 1
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The proofs of Proposition 4.6 and the next result, an analogue of The-
orem 4.5 or 4.8, are left as exercises.

Theorem 4.9. Let X be distributed with p.d.f. given by (4.25) and con-
sider the estimation of p under the loss function given by (4.29). Suppose
that there is a location-scale invariant estimator Ty of p with finite risk.
Let T7 be given in Proposition 4.6. Then an MRIE of u is

To(X) = To(X) — u(W)T1 (X),
where W is given in (4.28), u.(w) is any number minimizing
Eo [L(To(X) — u(w)Th (X)W = w]

over all Borel functions u, and Ey ; is computed under the assumption that
X has the p.d.f. (4.25) withp=0and o =1. 1

Corollary 4.2. Under the conditions of Theorem 4.9 and the loss function
(a — p)?/0?, us(w) in Theorem 4.9 is equal to

s (w) = Eo1[To(X)T1(X)|W = w)
* EO,l{[Tl(X)]Z‘W _ w} .

Example 4.16. Let Xi, ..., X,, be i.i.d. from N(u,0?), where y € R and
02 > 0 are unknown. Consider first the estimation of o2 under loss function
(4.23). The sample variance S? is location-scale invariant and is indepen-
dent of W in (4.28) (Basu’s theorem). Thus, by (4.28), S?/u, is an MRIE,
where wu, is a constant minimizing E;[L(S?/u)] over all > 0. If the loss
function is given by (4.24) with p = 2, then by Corollary 4.1, the MRIE of

0'2 18

S2E(S?) 52 1 & _
LX) = & ae = (2 _12 Z(Xi_X>2’
E1(52) (n 1)/(n—1) n+1 P
since (n — 1)S? has a chi-square distribution x2_; when o = 1.
~ Next, consider the estimation of 1 under the loss function (4.29). Since
X is a location-scale invariant estimator of 1 and is independent of W in
(4.28) (Basu’s theorem), by Theorem 4.9, an MRIE of y is

T.(X)=X — 1,52,

where wu, is a constant. If L in (4.29) is convex and even, then u. = 0 (see
Theorem 4.5(iii)) and, hence, X is an MRIE of p. 1

Example 4.17. Let Xi,..., X, be ii.d. from the uniform distribution on
(u— yo,pu+ o), where p € R and o > 0 are unknown. Consider first the
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estimation of o under the loss function (4.24) with p = 2. The sample range
X(n) — X(1) is a location-scale invariant estimator of o and is independent
of W in (4.28) (Basu’s theorem). By (4.28) and Corollary 4.1, the MRIE
of o is

T.(x) = Ko — X)Er(X() = X)) _ (0 +2)(Xm) = X))
El(X(n) 7X(1))2 n

Consider now the estimation of p under the loss function (4.29). Since
(X@a) + X(ny)/2 is a location-scale invariant estimator of y and is inde-
pendent of W in (4.28) (Basu’s theorem), by Theorem 4.9, an MRIE of
is
_ Xy +Xm

T.(X) )

us(X ) = Xy),
where u, is a constant. If L in (4.29) is convex and even, then u, = 0 (see
Theorem 4.5(iii)) and, hence, (X (1) + X(;,))/2 is an MRIE of p. &

Finding MRIE’s in various location-scale families under transformations
AX+c,where A € T and ¢ € C with given 7 and C, can be done in a similar
way. We only provide some brief discussions for two important cases. The
first case is the two-sample location-scale problem in which two samples,
X =(X1,...,.Xn) and Y = (Y1, ..., Y,,), are taken from a distribution with
Lebesgue p.d.f.

1 T1— g T — e Y1I—H Yn —H

U;nagf( b S Y ) (4.30)
where f is known, p, € R and p,, € R are unknown location parameters,
and o, > 0 and o, > 0 are unknown scale parameters. The family of
distributions is invariant under the transformations

g X, Y)=(0X1+ ¢, r X+, 7'Y1+ 7Y, + ), (4.31)

where 7 > 0,7 > 0, c € R, and ¢ € R. The parameters to be estimated
in this problem are usually A = u, — y, and n = (0, /0,)" with a fixed
h#0. If X and Y are from two populations, A and n are measures of the
difference between the two populations. For estimating 7, results similar to
those in this section can be established. For estimating A, MRIE’s can be
obtained under some conditions. See Exercises 63-65.

The second case is the general linear model (3.25) under the assumption
that ¢;’s are i.i.d. with the p.d.f. o= f(z/0), where f is a known Lebesgue
p-d.f. The family of populations is invariant under the transformations

9(X) =rX + Zc, re (0,00), ce RP (4.32)
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(exercise). The estimation of {73 with | € R(Z) is invariant under the
loss function L <a75’6) and the LSE ZTB is an invariant estimator of [7(3

(exercise). When f is normal, the following result can be established using
an argument similar to that in Example 4.16.

Theorem 4.10. Consider model (3.25) with assumption Al.
(i) Under transformations (4.32) and the loss function L (a_gﬁ ), where L

is convex and even, the LSE ZTB is an MRIE of " for any | € R(Z).

(ii) Under transformations (4.32) and the loss function (a — 02)?/0%, the
MRIE of 02 is SSR/(n —r +2), where SSR is given by (3.35) and 7 is the
rank of Z. 1

MRIE’s in a parametric family with a multi-dimensional 6 are often
inadmissible. See Lehmann (1983, p. 285) for more discussions.

4.3 Minimaxity and Admissibility

Consider the estimation of a real-valued ¥ = g(6) based on a sample X from
Py, 6 € O, under a given loss function. A minimaz estimator minimizes the
maximum risk supycg Rr(0) over all estimators T' (see §2.3.2).

A unique minimax estimator is admissible, since any estimator better
than a minimax estimator is also minimax. This indicates that we should
consider minimaxity and admissibility together. The situation is different
for a UMVUE (or an MRIE), since if a UMVUE (or an MRIE) is inadmis-
sible, it is dominated by an estimator that is not unbiased (or invariant).

4.3.1 Estimators with constant risks

By minimizing the maximum risk, a minimax estimator tries to do as well
as possible in the worst case. Such an estimator can be very unsatisfactory.
However, if a minimax estimator has some other good properties (e.g., it is
a Bayes estimator), then it is often a reasonable estimator. Here we study
when estimators having constant risks (e.g., MRIE’s) are minimax.

Theorem 4.11. Let II be a proper prior on © and § be a Bayes estimator
of ¥ wr.t. II. Let O = {0 : Rs(0) = supgce R5(6)}. If II(O) = 1, then §
is minimax. If, in addition, J is the unique Bayes estimator w.r.t. II, then
it is the unique minimax estimator.

Proof. Let T be any other estimator of ¥). Then

sup Ry (60) > / R (6)dIT > / Rs(0)dIT = sup Ry (0).
0co O O 0co
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If 0 is the unique Bayes estimator, then the second inequality in the previous
expression should be replaced by > and, therefore, § is the unique minimax
estimator. 1

The condition of Theorem 4.11 essentially means that § has a constant
risk. Thus, a Bayes estimator having constant risk is minimax.

Example 4.18. Let Xiq,...,X,, be ii.d. binary random variables with
P(X1=1)=pe (0,1). Consider the estimation of p under the squared er-
ror loss. The UMVUE X has risk p(1 — p)/n which is not constant. In fact,
X is not minimax (Exercise 67). To find a minimax estimator by applying
Theorem 4.11, we consider the Bayes estimator w.r.t. the beta distribution
B(a, 8) with known «a and § (Exercise 1):

§(X) = (a+nX)/(a+B+n).
A straightforward calculation shows that

Rs(p) = [np(1 — p) + (o — ap — Bp)*] /(e + B+ n)>.

To apply Theorem 4.11, we need to find values of « > 0 and 8 > 0 such
that Rs(p) is constant. It can be shown that Rs(p) is constant if and only
if « = 8 = +/n/2, which leads to the unique minimax estimator

T(X)= (nX ++/n/2)/(n+/n).
The risk of T is Ry = 1/[4(1 + v/n)?].

Note that 7" is a Bayes estimator and has some good properties. Com-
paring the risk of T with that of X, we find that T has smaller risk if and

only if
1 1 7 1 1 ’
pe(g—g\/l—(1+$n)27 2+2\/1—(1+$n)2>. (4.33)

Thus, for a small n, T is better (and can be much better) than X for most
of the range of p (Figure 4.1). When n — oo, the interval in (4.33) shrinks
toward ; Hence, for a large (and even moderate) n, X is better than T
for most of the range of p (Figure 4.1). The limit of the asymptotic relative
efficiency of 7" w.r.t. X is 4p(1 — p), which is always smaller than 1 when
p# ; and equals 1 when p = é

The minimax estimator depends strongly on the loss function. To see
this, let us consider the loss function L(p,a) = (a—p)?/[p(1—p)]. Under this
loss function, X has constant risk and is the unique Bayes estimator w.r.t.
the uniform prior on (0,1). By Theorem 4.11, X is the unique minimax
estimator. On the other hand, the risk of T'is equal to 1/[4(1++/n)?p(1—p)],
which is unbounded. &
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n=1 n=4
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Figure 4.1: mse’s of X (curve) and T(X) (straight line) in Example 4.18

In many cases a constant risk estimator is not a Bayes estimator (e.g.,
an unbiased estimator under the squared error loss), but a limit of Bayes
estimators w.r.t. a sequence of priors. Then the following result may be
used to find a minimax estimator.

Theorem 4.12. Let II;, j = 1,2, ..., be a sequence of priors and r; be the
Bayes risk of a Bayes estimator of ¥ w.r.t. II;. Let T be a constant risk
estimator of ¥. If liminf; r; > Ry, then T is minimax. 1

The proof of this theorem is similar to that of Theorem 4.11. Although
Theorem 4.12 is more general than Theorem 4.11 in finding minimax esti-
mators, it does not provide uniqueness of the minimax estimator even when
there is a unique Bayes estimator w.r.t. each II;.

In Example 2.25, we actually applied the result in Theorem 4.12 to show
the minimaxity of X as an estimator of 4 = EX; when X1, ..., X,, are i.i.d.
from a normal distribution with a known o2 = Var(X;), under the squared
error loss. To discuss the minimaxity of X in the case where o2 is unknown,
we need the following lemma.
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Lemma 4.3. Let ©g be a subset of ©® and T be a minimax estimator of 1
when O is the parameter space. Then 7T is a minimax estimator if

sup Rr(0) = sup Rr(0).
[2SIC) €0,
Proof. If there is an estimator Ty with supgeg Ry, (0) < supyeg Rr(0),
then
sup R, (0) < sup Rr, (6) < sup Rr(0) = sup Rr(6),
IEEN ) ) 00,
which contradicts the minimaxity of T when ©g is the parameter space.
Hence, T' is minimax when © is the parameter space. 1

Example 4.19. Let Xi,..., X,, be i.i.d. from N(u,o?) with unknown 6 =
(u, 02). Consider the estimation of g under the squared error loss. Suppose
first that © = R x (0, ¢] with a constant ¢ > 0. Let ©9 = R x {c}. From
Example 2.25, X is a minimax estimator of ; when the parameter space
is ©g. An application of Lemma 4.3 shows that X is also minimax when
the parameter space is ©. Although o2 is assumed to be bounded by ¢, the
minimax estimator X does not depend on c.

2 is unbounded.

Consider next the case where © = R x (0,00), i.e., o
Let T be any estimator of p. For any fixed o2,
2

< sup Rr(6),
n HER
since 02 /n is the risk of X that is minimax when o? is known (Example
2.25). Letting 02 — oo, we obtain that supy Rr(f) = oo for any estimator
T. Thus, minimaxity is meaningless (any estimator is minimax). 1

Theorem 4.13. Suppose that T as an estimator of ¥ has constant risk and
is admissible. Then T is minimax. If the loss function is strictly convex,
then T is the unique minimax estimator.

Proof. By the admissibility of T, if there is another estimator Ty with
supg R, (0) < Ryr, then Ry () = Rp for all . This proves that T is
minimax. If the loss function is strictly convex and Tp is another minimax
estimator, then

Riri1,)/2(0) < (Rr, + Rr)/2 = Rr

for all 6 and, therefore, T is inadmissible. This shows that T is unique if
the loss is strictly convex. &

Combined with Theorem 4.7, Theorem 4.13 tells us that if an MRIE is
admissible, then it is minimax. From the discussion at the end of §4.2.1,
MRIE’s in one-parameter location families (such as Pitman’s estimators)
are usually minimax.
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4.3.2 Results in one-parameter exponential families

The following result provides a sufficient condition for the admissibility of
a class of estimators when the population Pp is in a one-parameter expo-
nential family. Using this result and Theorem 4.13, we can obtain a class
of minimax estimators. The proof of this result is an application of the
information inequality introduced in §3.1.3.

Theorem 4.14. Suppose that X has the p.d.f. ¢(0)e?”®) w.r.t. a o-finite
measure v, where T'(x) is real-valued and 6 € (0_,6,) C R. Consider the
estimation of ¢ = E[T(X)] under the squared error loss. Let A > 0 and ~
be known constants and let Ty (X) = (T'+~A)/(1 4+ A). Then a sufficient
condition for the admissibility of T) - is that

O+ o—yA6 00 o720
/eo [C(H)Pde/e EOR df = oo (4.34)

where 6 € (6—,6,).

Proof. From Theorem 2.1, 9 = E[T(X)] = —/(#)/c(f) and % = Var(T)=
1(0), the Fisher mformatlon defined in (3.5). Suppose that there is an
estimator § of ¥ such that for all 6,

Rs(0) < R, (0) = [1(0) + N (0 —7)°]/(1 + A)>.
Let bs(0) be the bias of 4. From the information inequality (3.6),
R5(0) > [b5(0)]* + [1(6) + b5(6)]*/1(6).
Let h(f) = bs(0) — A(y —9)/(1 + A). Then

20R(0)(0 =) + 20 (0) W (O

(@) - 1+ A 60) — 7

which implies
2AR(0) (Y — ) + 2R/ (0)

[n(0)]* — LA <0 (4.35)
Let a(0) = h(0)[c(0)]* . Differentiation of a(f) reduces (4.35) to
la(®)FFe ™ | 200) _ (4.36)

[c(60)]> 1+ X =

Suppose that a(6y) < 0 for some 6y € (6_,04). From (4.36), a/(§) < 0 for
all 6. Hence a(f) < 0 for all 6 > 6y and, for § > 6y, (4.36) can be written

. d[ 1 (14 N)e=7M
o L«e)} = aLe(o)
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Integrating both sides from 6y to 6 gives

14X [9 e 1 1 1
2 /9 @ = a0) ~ al6o) = " alty)

Letting 8 — 6, the left-hand side of the previous expression diverges to oo
by condition (4.34), which is impossible. This shows that a(f) > 0 for all 6.
Similarly, we can show that a(f) < 0 for all §. Thus, a(f) = 0 for all §. This
means that h(0) = 0 for all § and b5(0) = =\ /(1 +X) = —-AI(0)/(1+)N),
which implies Rs(¢) = Rr, (). This proves the admissibility of T . &

The reason why T} , is considered is that it is often a Bayes estimator
w.r.t. some prior; see, for example, Examples 2.25, 4.1, 4.7, and 4.8. To
find minimax estimators, we may use the following result.

Corollary 4.3. Assume that X has the p.d.f. as described in Theorem
4.14 with §_ = —o0 and 04 = cc.

(i) As an estimator of ¥ = E(T), T(X) is admissible under the squared
error loss and the loss (a — )2 /Var(T).

(ii) T is the unique minimax estimator of ¥ under the loss (a —9)?/Var(T).
Proof. (i) With A = 0, condition (4.34) is clearly satisfied. Hence, Theorem
4.14 applies under the squared error loss. The admissibility of T" under the
loss (a — ¥9)?/Var(T) follows from the fact that T" is admissible under the
squared error loss and Var(T') # 0.

(ii) This is a consequence of part (i) and Theorem 4.13.

Example 4.20. Let X7, ..., X,, be i.i.d. from N(0,0?) with an unknown
02 >0. LetY =31 | X?. From Example 4.14, Y/(n+2) is the MRIE of o2
and has constant risk under the loss (a — %)% /o*. We now apply Theorem
4.14 to show that Y/(n+ 2) is admissible. Note that the joint p.d.f. of X;’s
is of the form ¢(0)e?”®) with § = —n/(40?), ¢(0) = (—=20/n)"/?, T(X) =
2Y/n, 0_ = —o0, and 6, = 0. By Theorem 4.14, Th , = (T'+~v\)/(1 + A)
is admissible under the squared error loss if

O e (20 T2 Ry —n)/2
e N df = e’’o df = oo
—0o0 0

for some ¢ > 0. This means that T} 5 is admissible if v = 0 and A = 2/n, or
if ¥ > 0 and A > 2/n. In particular, 2Y/(n+ 2) is admissible for estimating
E(T) =2E(Y)/n = 202, under the squared error loss. It is easy to see that
Y/(n + 2) is then an admissible estimator of o under the squared error
loss and the loss (a — 02)?/0*. Hence Y/(n + 2) is minimax under the loss
(a —a?)?/o*.

Note that we cannot apply Corollary 4.3 directly since 64 =0. 1
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Example 4.21. Let Xy, ..., X,, be i.i.d. from the Poisson distribution P(6)
with an unknown 6 > 0. The joint p.d.f. of X;’s w.r.t. the counting measure
is (z1!---x,!) " te ™en®logd  For 5 = nlogf, the conditions of Corollary
4.3 are satisfied with T(X) = X. Since E(T) = 0 and Var(T) = 6/n,
by Corollary 4.3, X is the unique minimax estimator of  under the loss
function (a — 60)2/0. 1

4.3.3 Simultaneous estimation and shrinkage estimators

In this chapter (and most of Chapter 3) we have focused on the estimation
of a real-valued 9. The problem of estimating a vector-valued ¢ under the
decision theory approach is called simultaneous estimation. Many results
for the case of a real-valued ¥ can be extended to simultaneous estimation
in a straightforward manner.

Let ¥ be a p-vector of parameters (functions of #) with range 6. A
vector-valued estimator T'(X) can be viewed as a decision rule taking values
in the action space A = ©. Let L(6,a) be a given nonnegative loss function
on ©® x A. A natural generalization of the squared error loss is

L(0,a) = a= 9 =Y (a; — 9;)?, (4.37)

i=1

where a; and 9; are the ith components of a and 1, respectively.

A vector-valued estimator T is called unbiased if and only if F(T') = o
for all & € ©. If there is an unbiased estimator of ¥, then 1 is called
estimable. It can be seen that the result in Theorem 3.1 extends to the
case of vector-valued ¥ with any L strictly convex in a. If the loss function
is given by (4.37) and T; is a UMVUE of ¥; for each ¢, then T = (11, ..., T))
is a UMVUE of 9. If there is a sufficient and complete statistic U(X) for
6, then by Theorem 2.5 (Rao-Blackwell theorem), T" must be a function of
U(X) and is the unique best unbiased estimator of .

Example 4.22. Consider the general linear model (3.25) with assumption
Al and a full rank Z. Let ¥ = 8. An unbiased estimator of 3 is then the
LSE B From the proof of Theorem 3.7, ﬁ is a function of the sufficient and
complete statistic for § = (3,02). Hence, B is the unique best unbiased

estimator of ¥ under any strictly convex loss function. In particular, B is
the UMVUE of § under the loss function (4.37). 1

Next, we consider Bayes estimators of 19, which is still defined to be
Bayes actions considered as functions of X. Under the loss function (4.37),
the Bayes estimator is still given by (4.4) with vector-valued g(6) = ¥.
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Example 4.23. Let X = (X, Xy,...,Xr) have the multinomial dis-
tribution given in Example 2.7. Consider the estimation of the vector
0 = (po,p1,-...,px) under the loss function (4.37), and the Dirichlet prior
for 6 that has the Lebesgue p.d.f.

D(ao+ -+ k) oy s

Ilag)---T(ag) 70 T LA(D), (4.38)

where «;’s are known positive constants and A = {6 : 0 < p;, Z?:o pj =1}
It turns out that the Dirichlet prior is conjugate so that the posterior of 8
given X = z is also a Dirichlet distribution having the p.d.f. given by (4.38)
with «a; replaced by a; + x5, 7 =0,1,..., k. Thus, the Bayes estimator of 6
isd = ((5(),(51, ,5k) with

a; + Xj

0;(X) = j=0,1,....k 1
j( ) ao+a1+~-~+ak—|—n’ j Ly )

After a suitable class of transformations is defined, the results in §4.2
for invariant estimators and MRIE’s are still valid. This is illustrated by
the following example.

Example 4.24. Let X be a sample with the Lebesgue p.d.f. f(z — 6),
where f is a known Lebesgue p.d.f. on R? with a finite second moment and
0 € RP is an unknown parameter. Consider the estimation of # under the
loss function (4.37). This problem is invariant under the location transfor-
mations g(X) = X + ¢, where ¢ € RP. Invariant estimators of 6 are of the
form X + 1,1 € RP. It is easy to show that any invariant estimator has
constant bias and risk (a generalization of Proposition 4.4) and the MRIE
of 0 is the unbiased invariant estimator. In particular, if f is the p.d.f. of
Ny(0,1,), then the MRIE is X. 1

The definition of minimax estimators applies without changes.

Example 4.25. Let X be a sample from N,(0,1I,) with an unknown
6 € RP. Consider the estimation of  under the loss function (4.37). A
modification of the proof of Theorem 4.12 with independent priors for 6;’s
shows that X is a minimax estimator of 6 (exercise). 1

Example 4.26. Consider Example 4.23. If we choose ag = +-- = ap, =
v/n/(k + 1), then the Bayes estimator of ¢ in Example 4.23 has constant
risk. Using the same argument in the proof of Theorem 4.11, we can show
that this Bayes estimator is minimax. 1

The previous results for simultaneous estimation are fairly straightfor-
ward generalizations of those for the case of a real-valued ¥. Results for



4.3. Minimaxity and Admissibility 269

admissibility in simultaneous estimation, however, are quite different. A
surprising result, due to Stein (1956), is that in estimating the vector mean
f = EX of a normally distributed p-vector X (Example 4.25), X is in-
admissible under the loss function (4.37) when p > 3, although X is the
UMVUE, MRIE (Example 4.24), and minimax estimator (Example 4.25).
Since any estimator better than a minimax estimator is also minimax, there
exist many (in fact, infinitely many) minimax estimators in Example 4.25
when p > 3, which is different from the case of p = 1 in which X is the
unique admissible minimax estimator (Example 4.6 and Theorem 4.13).

We start with the simple case where X is from N, (0, I,) with an un-
known 6 € RP. James and Stein (1961) proposed the following class of
estimators of 9 = 0 having smaller risks than X when the loss is given by
(4.37) and p > 3: )

p—
b =X X — |2 (X —o), (4.39)
where ¢ € RP? is fixed. The choice of ¢ is discussed next and at the end of
this section.

Before we prove that . in (4.39) is better than X, we try to motivate
dc from two viewpoints. First, suppose that it were thought a priori likely,
though not certain, that &6 = ¢. Then we might first test a hypothesis
Hj : 6 = c and estimate 0 by c if Hy is accepted and by X otherwise. The
best rejection region has the form || X — ¢||? > t for some constant ¢ > 0
(see Chapter 6) so that we might estimate 6 by

Tir,00) (I1X = €)X + [1 = g,00) (1 X = €l|*)]e.

It can be seen that . in (4.39) is a smoothed version of this estimator,
since

b = Y(|IX — )X + [1 =9 (|X )] (4.40)

for some function ¥. Any estimator having the form of the right-hand side
of (4.40) shrinks the observations toward a given point ¢ and, therefore, is
called a shrinkage estimator.

Next, d. in (4.40) can be viewed as an empirical Bayes estimator (§4.1.2).
In view of (2.25) in Example 2.25, a Bayes estimator of 6 is of the form

§=(1-B)X + Be,

where c¢ is the prior mean of § and B involves prior variances. If 1 — B is
“estimated” by (|| X — ¢||?), then &, is an empirical Bayes estimator.

Theorem 4.15. Suppose that X is from N,(6,1I,) with p > 3. Then,
under the loss function (4.37), the risks of the following estimators of 6,

r(p—2)

Sor =X —
“ [ X —cf]?

(X — o), (4.41)
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are given by
Rs,. (0) =p— (2r —1*)(p — 2)*E(| X — || 72), (4.42)

where ¢ € RP and r € R are known.
Proof. Let Z = X — ¢. Then

r(p—2) ?

Rs, . (0) = E||d.» — E(X)|]> = EH {1 RAE

]ZE(Z)

Hence, we only need to show the case of ¢ = 0. Let h() = Rs, . (6), g(6) be
the right-hand side of (4.42) with ¢ = 0, and 74 (0) = (2ma)~P/2e= 1017/
which is the p.d.f. of N,(0,al,). Note that the distribution of X can be

viewed as the conditional distribution of X given 8 = 6, where 8 has the
Lebesgue p.d.f. 7, (0). Then

/Rp 9(0)ma(0)d0 = p — (2r —r*)(p — 2)° E[E(]| X]|7*|0)]

p—(2r—r*)(p-2)’E(|X|7?)
p—(2r—r*)(p—2)/(a+1),

where the expectation in the second line of the previous expression is w.r.t.
the joint distribution of (X, 0) and the last equality follows from the fact
that the marginal distribution of X is N, (0, (a+1)I,), || X||*/(a+1) has the
chi-square distribution 7 and, therefore, E(||X[7%) = 1/[(p — 2)(a + 1)].
Let B=1/(a+1) and B = r(p — 2)/|| X||2. Then

/Rp h(0)7a(0)d0 = E||(1 — B)X — 0|2

= E{E[|(1- B)X - 0| X]}
= B{E[|6 - E(61X)|?|X]
+B01X) - (1 - B)X|*}
= E{p(1 - B) + (B - B)*| X|I*}
= B{p(1 - B) + B*| X||*
—2Br(p —2) +7°(p - 2)?|| X 7%}
=p—(2r—r*)(p - 2)B,
where the fourth equality follows from the fact that the conditional distri-

bution of @ given X is N, ((1— B)X, (1— B)I,) and the last equality follows
from E||X| 72 = B/(p — 2) and E||X||? = p/B. This proves

/ 9(0)70 (0)d0 = / h(O)7a(0)d6, > 0. (4.43)
RP

RP
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Note that h(f) and g(#) are expectations of functions of | X||?, 67X,
and ||0]|2. Make an orthogonal transformation from X to Y such that
Yi =07X/|0||, EY; =0 for j > 1, and Var(Y) = I,. Then h(§) and ¢(0)
are expectations of functions of Y1, >30_, Y7, and [|6]|*. Thus, both / and
g are functions of ||6]|2.

For the family of p.d.f’s {ms(0) : a > 0}, ||0]|? is a complete and
sufficient “statistic”. Hence, (4.43) and the fact that h and g are functions
of ||0]|? imply that h(f) = g(f) a.e. w.r.t. the Lebesgue measure. From
Theorem 2.1, both h and g are continuous functions of ||6]|? and, therefore,
h(0) = g(0) for all & € RP. This completes the proof. 1

It follows from Theorem 4.15 that the risk of d., is smaller than that
of X (for every value of §) when p > 3 and 0 < r < 2, since the risk of X is
p under the loss function (4.37). From Example 4.6, X is admissible when
p=1. When p = 2, X is still admissible (Stein, 1956). But we have just
shown that X is inadmissible when p > 3.

The James-Stein estimator ¢, in (4.39), which is a special case of (4.41)
with » = 1, is better than any d., in (4.41) with r # 1, since the factor
2r — 2 takes on its maximum value 1 if and only if » = 1. To see that &,
may have a substantial improvement over X in terms of risks, consider the
special case where § = ¢. Since || X — ¢||* has the chi-square distribution x?
when 0 = ¢, E|| X —c|[|72 = (p—2)~! and the right-hand side of (4.42) equals
2. Thus, the ratio Rx(6)/Rs,(0) equals p/2 when 6 = ¢ and, therefore, can
be substantially larger than 1 near 8 = ¢ when p is large.

Since X is minimax (Example 4.25), any shrinkage estimator of the form
(4.41) is minimax provided that p > 3 and 0 < r < 2.

Unfortunately, the James-Stein estimator with any ¢ is also inadmissible.
It is dominated by

+_ : p—2 .

0y =X mm{l, |X—c||2}(X c); (4.44)
see, for example, Lehmann (1983, Theorem 4.6.2). This estimator, however,
is still inadmissible. An example of an admissible estimator of the form
(4.40) is provided by Strawderman (1971); see also Lehmann (1983, p.
304). Although neither the James-Stein estimator d. nor 6 in (4.44) is
admissible, it is found that no substantial improvements over 6 are possible
(Efron and Morris, 1973).

To extend Theorem 4.15 to general Var(X), we consider the case where
Var(X) = 02D with an unknown o2 > 0 and a known positive definite
matrix D. If 02 is known, then an extended James-Stein estimator is

~ _ 2
5o x r(p—2)o

r=X = oy L p P X o, (4.45)
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One can show (exercise) that under the loss (4.37), the risk of d,. is
o? [tr(D) — (2r — r*)(p — 2)*0*E(|D~H(X — )| 7?)] - (4.46)

When o2 is unknown, we assume that there exists a statistic S5 such
that SZ is independent of X and SZ/0? has the chi-square distribution x2,
(see Example 4.27). Replacing ro? in (4.45) by 62 = tS§ with a constant
t > 0 leads to the following extended James-Stein estimator:

(p—2)o?

be=X —
[D=HX —¢)|]?

DYX —¢). (4.47)

By (4.46) and the independence of 2 and X, the risk of d, (as an estimator
of 9y =FEX)is

R; (6) = B [E(15. - 9]%/6%)]
= B [B(I3e52/02) — 91%16%)|
= o?E {tr(D) — [2(6?/0?) — (67 /0®)](p — 2)°0°k(0) }
= o* {tr(D) - [2E(6?/0?) — E(6°/o®)*](p - 2)°0°k(0) }
= o {tr(D) — [2tm — *m(m + 2)](p — 2)*0°k(0) } ,

where § = (9, 0%) and x(0) = E(||D~1(X —¢)||~2). Since 2tm —t>m(m+2)
is maximized at ¢ = 1/(m + 2), replacing ¢t by 1/(m + 2) leads to

R;,(0) = o [tr(D) —m(m +2)" (p = 2)*c*E(|D~H(X = o) 7*)] .

Hence, the risk of the extended James-Stein estimator in (4.47) is smaller
than that of X for any fixed 6, when p > 3.

Example 4.27. Consider the general linear model (3.25) with assumption
Al, p > 3, and a full rank Z, and the estimation of ¢ = [ under the loss
function (4.37). From Theorem 3.8, the LSE 3 is from N(B,0%D) with a
known matrix D = (Z7Z)"'; 2 = SSR is independent of 3; and S3/o>
has the chi-square distribution X%ﬂr Hence, from the previous discussion,
the risk of the shrinkage estimator

5 (p—2)5°

_ ; VARA IR
P zrzg-opp? PO

is smaller than that of B for any 8 and o2, where ¢ € RP is fixed and
62=S8SR/(n—p+2). 1

From the previous discussion, the James-Stein estimators improve X
substantially when we shrink the observations toward a vector ¢ that is near
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¥ = EX. Of course, this cannot be done since ¢ is unknown. One may
consider shrinking the observations toward the mean of the observations
rather than a given point; that is, one may obtain a shrinkage estimator by
replacing c in (4.39) or (4.47) by XJ,,, where X = p~1>°?_ X, and J, is
the p-vector of ones. However, we have to replace the factor p — 2 in (4.39)
or (4.47) by p — 3. This leads to shrinkage estimators

p—3 o
o g X) (4.48)
p
and Y
P=3)"  poyx_x). (4.49)

DX - X )2

These estimators are better than X (and, hence, are minimax) when p > 4,
under the loss function (4.37) (exercise).

The results discussed in this section for the simultaneous estimation
of a vector of normal means can be extended to a wide variety of cases
where the loss functions are not given by (4.37) (Brown, 1966). The results
have also been extended to exponential families and to general location pa-
rameter families. For example, Berger (1976) studied the inadmissibility
of generalized Bayes estimators of a location vector; Berger (1980) consid-
ered simultaneous estimation of gamma scale parameters; and Tsui (1981)
investigated simultaneous estimation of several Poisson parameters. See
Lehmann (1983, pp. 320-330) for some further references.

4.4 The Method of Maximum Likelihood

So far we have studied estimation methods in parametric families using the
decision theory approach. The mazimum likelihood method introduced next
is the most popular method for deriving estimators in statistical inference
that does not use any loss function.

4.4.1 The likelihood function and MLE’s

To introduce the idea, let us consider an example.

Example 4.28. Let X be a single observation taking values from {0, 1,2}
according to Py, where § = 6 or 6; and the values of Py, ({i}) are given by
the following table:

| r=0 z=1 x=2
0 =0y 0.8 0.1 0.1
0 =0, 0.2 0.3 0.5
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If X = 0 is observed, it is more plausible that it came from Py, since
Py, ({0}) is much larger than Py, ({0}). We then estimate 6 by ¢p. On
the other hand, if X =1 or 2, it is more plausible that it came from Fy,,
although in this case the difference between the probabilities is not as large
as that in the case of X = 0. This suggests the following estimator of 6:

b X =0
T(X):{el X#0. "

The idea in Example 4.28 can be easily extended to the case where P
is a discrete distribution and # € © € R¥. If X = z is observed, 6; is more
plausible than 65 if and only if Py, ({z}) > Py, ({z}). We then estimate
0 by a 0 that maximizes Pp({x}) over § € O, if such a 6 exists. The
word plausible rather than probable is used because 6 is considered to be
nonrandom and Py is not a distribution of . Under the Bayesian approach
with a prior that is the discrete uniform distribution on {61, ..., 0., }, Po({z})
is proportional to the posterior probability and we can say that € is more
probable than 05 if Py, ({z}) > Py, ({z}).

Note that Py({z}) in the previous discussion is the p.d.f. w.r.t. the
counting measure. Hence, it is natural to extend the idea to the case of
continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some o-finite
measure on the range X of X. This leads to the following definition.

Definition 4.3. Let X € X be a sample with a p.d.f. fy w.r.t. a o-finite
measure v, where § € © C RF.

(i) For each z € X, fp(z) considered as a function of 6 is called the likelihood
function and denoted by £(6).

(ii) Let © be the closure of ©. A 8 € © satisfying £(f) = max,cg £(0) is
called a mazimum likelihood estimate (MLE) of 6. If 6 is a Borel function
of X a.e. v, then 0 is called a mazimum likelihood estimator (MLE) of 6.
(iii) Let g be a Borel function from © to R?, p < k. If 6 is an MLE of 6,
then J = g(0) is defined to be an MLE of ¥ = g(f). &

Note that © instead of © is used in the definition of an MLE. This is
because a maximum of £(6) may not exist when © is an open set (Examples
4.29 and 4.30). As an estimator, an MLE is defined a.e. v. Part (iii) of
Definition 4.3 is motivated by a fact given in Exercise 95 of §4.6.

If the parameter space © contains finitely many points, then @ = ©
and an MLE can always be obtained by comparing finitely many values
0(0), 0 € ©. If £(0) is differentiable on ©°, the interior of O, then possible
candidates for MLE’s are the values of § € ©° satisfying

aL(0)

= 4.
90 0, (4.50)
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which is called the likelihood equation. Note that 0’s satisfying (4.50) may
be local or global minima, local or global maxima, or simply stationary
points. Also, extrema may occur at the boundary of © or when ||6]| — .
Furthermore, if £(0) is not always differentiable, then extrema may occur
at nondifferentiable or discontinuity points of £(6). Hence, it is important
to analyze the entire likelihood function to find its maxima.

Since logz is a strictly increasing function and ¢(f) can be assumed
to be positive without loss of generality, § is an MLE if and only if it
maximizes the log-likelihood function log ¢(6). It is often more convenient
to work with log ¢(#) and the following analogue of (4.50) (which is called
the log-likelihood equation or likelihood equation for simplicity):

0log £(0)

0y =0 (4.51)

Example 4.29. Let Xq,...,X,, be ii.d. binary random variables with
P(X;=1)=pe O =(0,1). When (X1,..., X)) = (1, ..., ) is observed,
the likelihood function is

n

Up) = [[p7 (1 =p)' =" = p™* (1 = p)" =7,

i=1

where = n~' Y7 | ;. Note that © = [0,1] and ©° = ©. The likelihood
equation (4.51) reduces to

niin(lff)io
p l-p '

If 0 < & < 1, then this equation has a unique solution . The second-order
derivative of log ¢(p) is

nZ n(l—2)

P (1-p)?’
which is always negative. Also, when p tends to 0 or 1 (the boundary of
©), £(p) — 0. Thus, Z is the unique MLE of p.

When z =0, {(p) = (1 — p)" is a strictly decreasing function of p and,
therefore, its unique maximum is 0. Similarly, the MLE is 1 when & = 1.
Combining these results with the previous result, we conclude that the MLE
of pis Z.

When Z = 0 or 1, a maximum of ¢(p) does not exist on © = (0, 1),
although sup,c (o 1) £(p) = 1; the MLE takes a value outside of © and,
hence, is not a reasonable estimator. However, if p € (0, 1), the probability
that £ =0 or 1 tends to 0 quickly as n — co. 1
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Example 4.29 indicates that, for small n, a maximum of ¢(f) may not
exist on © and an MLE may be an unreasonable estimator; however, this
is unlikely to occur when n is large. A rigorous result of this sort is given
in §4.5.2, where we study asymptotic properties of MLE’s.

Example 4.30. Let X1,...,X,, be i.i.d. from N(u,0?) with an unknown
0 = (u,0?), where n > 2. Consider first the case where © = R x (0, c0).
When (X1,...,X,) = (9517 ..., Tn) is Observed, the log-likelihood function is

n 5 N
log ¢(6 " 9p? Z ot log o 5 log(2m).

The likelihood equation (4.51) becomes

1 n 1 n n
52 Z(ml —n)=0 and ” Z(xl —p)? — b2 = 0. (4.52)
i=1 i=1
Solving the first equation in (4.52) for u, we obtain a unique solution Z =

n! Zl 1 T, and substituting Z for g in the second equation in (4. 52)
we obtain a unique solution 62 = n=! 3" (x; — 7)%. To show that 6 =
(z,6?) is an MLE, first note that © is an open set and £(6) is differentiable
everywhere; as 6 tends to the boundary of © or ||8]| — oo, £(0) tends to O;

and
*log () _ _ ( o Tia (@i = 1) )
06067 L i) (- ) =

is negative definite when y = Z and 02 = 62. Hence 6 is the unique MLE.
Sometimes we can avoid the calculation of the second-order derivatives.
For instance, in this example we know that ¢(0) is bounded and ¢(6) — 0
as ||0]] — oo or 6 tends to the boundary of ©; hence the unique solution
to (4.52) must be the MLE. Another way to show that 0 is the MLE is
indicated by the following discussion.

Consider next the case where © = (0,00) x (0,00), i.e., p is known
to be positive. The likelihood function is differentiable on ©° = © and
© = [0,00) x [0,00). If Z > 0, then the same argument for the previous
case can be used to show that (z,52) is the MLE. If < 0, then the first
equation in (4.52) does not have a solution in ©. However, the function
log (0) = log ¢(u, 0?) is strictly decreasing in u for any fixed o2. Hence, a
maximum of log ¢(u, 0?) is u = 0, which does not depend on o2. Then, the
MLE is (0,52), where 62 is the value maximizing log £(0, o) over o2 > 0.
Applying (4.51) to the function log/(0,0?) leads to 62 = n~tY " | 7.
Thus, the MLE is

b_ { (z,6%)

(0,62)

8 8
IN V

0
0.

Qz
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Again, the MLE in this case is not in © if £ < 0. One can show that a
maximum of £(f) does not exist on © when z < 0. 1

Example 4.31. Let X1, ..., X,, bei.i.d. from the uniform distribution on an
interval Zy with an unknown 6. First, consider the case where Zy = (0, 0)
and ¢ > 0. The likelihood function is £(0) = 07"I(,, o)(0), which is
not always differentiable. In this case ©° = (0, 2(,)) U (2(,), 00). But, on
(0,2(n), £ =0 and on (z(,),00), £'(0) = —nf" 1 < 0 for all §. Hence, the
method of using the likelihood equation is not applicable to this problem.
Since £(0) is strictly decreasing on (z(,),00) and is 0 on (0, z(,)), a unique
maximum of £(0) is x(,), which is a discontinuity point of £(f). This shows
that the MLE of ¢ is the largest order statistic X ;).

Next, consider the case where Zy = (6 — 5,0 + ) with § € R. The
likelihood function is £(6) = I(xm)—;,x(l)-&-;)(a)' Again, the method of
using the likelihood equation is not applicable. However, it follows from
Definition 4.3 that any statistic 7'(X) satisfying x(,,) — % <T(x) <z + ;
is an MLE of 8. This example indicates that MLE’s may not be unique and
can be unreasonable. 1

Example 4.32. Let X be an observation from the hypergeometric dis-
tribution HG(r,n,0 — n) (Table 1.1, page 18) with known r, n, and an
unknown # = n+1,n+2,.... In this case, the likelihood function is defined
on integers and the method of using the likelihood equation is certainly not
applicable. Note that

£(0) @—r)0—n)

O—-1) 00@-n—r+uz)

which is larger than 1 if and only if # < rn/z and is smaller than 1 if and
only if 8 > rn/xz. Thus, £(0) has a maximum 6 = the integer part of rn/z,
which is the MLE of 6. 1

Example 4.33. Let Xi,...,X, be ii.d. from the gamma distribution
I'(e,y) with unknown o > 0 and v > 0. The log-likelihood function is

n n
1
log4(8) = —nalogy —nlog'(a) + (o — 1) g log z; — N g T;
i=1 i=1
and the likelihood equation (4.51) becomes
nl(a) <
—nlog~y — () + ;Zl logx; =0

and
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The second equation yields v = Z/a. Substituting v = Z/« into the first
equation we obtain that

') 1w
I — I i —logz =0.
og o +nz ogx ogx

o) 0 2
In this case, the likelihood equation does not have an explicit solution,
although it can be shown (exercise) that a solution exists almost surely and
it is the unique MLE. A numerical method has to be applied to compute
the MLE for any given observations z1, ..., Z,. 1

These examples indicate that we need to use various methods to derive
MLE’s. In applications, MLE’s typically do not have analytic forms and
some numerical methods have to be used to compute MLE’s. A commonly
used numerical method is the Newton-Raphson iteration method, which
repeatedly computes

9?log £(0)

2090 , (4.53)

mwman{
6=6

}”amyw)
6=6 o0

t=0,1,..., where 0 is an initial value and 92 log £(6) /8090 is assumed of
full rank for every # € ©. If, at each iteration, we replace 92 log £(6)/0000™
in (4.53) by its expected value E[0?log ¢(0)/00007], where the expectation
is taken under Py, then the method is known as the Fisher-scoring method.
If the iteration converges, then 6> or §) with a sufficiently large ¢ is a
numerical approximation to a solution of the likelihood equation (4.51).

The following example shows that the MCMC methods discussed in
§4.1.4 can also be useful in computing MLE’s.

Example 4.34. Let X be a random k-vector from Py with the following
p.d.f. w.r.t. a o-finite measure v:

fol) = / fo(z,y)du(y),

where fg(z,y) is a joint p.d.f. w.r.t. v x v. This type of distribution is
called a mizture distribution. Thus, the likelihood ¢(0) = fo(z) involves a
k-dimensional integral. In many cases this integral has to be computed in
order to compute an MLE of 6.

Let £,,(0) be the MCMC approximation to £(6) based on one of the
MCMC methods described in §4.1.4 and a Markov chain of length m. Under
the conditions of Theorem 4.4, Zm(é)) —a.s. £(0) for every fixed 6 and z.
Suppose that, for each m, there exists O,, that maximizes gm(ﬂ) over § € ©.
Geyer (1994) studies the convergence of 6,, to an MLE. 1
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In terms of their mse’s, MLE’s are not necessarily better than UMV UE’s
or Bayes estimators. Also, MLE’s are frequently inadmissible. This is
not surprising, since MLE’s are not derived under any given loss function.
The main theoretical justification for MLE’s is provided in the theory of
asymptotic efficiency considered in §4.5.

4.4.2 MLE’s in generalized linear models

Suppose that X has a distribution from a natural exponential family so
that the likelihood function is

t(n) = exp{n"T'(x) — {(n)}h(x),

where 1 € = is a vector of unknown parameters. The likelihood equation
(4.51) is then
dlog/t 0
ogl(n) _ () — <) _
an an

which has a unique solution T'(z) = 9((n)/0n, assuming that T'(z) is in the
range of d((n)/dn. Note that

d*logl(n)  9*¢(n)

- =— T 4.54
onon™ onon™ Var(T) (4.54)

(see the proof of Proposition 3.2). Since Var(7T) is positive definite,
—log#(n) is convex in 1 and T'(z) is the unique MLE of the parameter
wu(n) = 0¢(n)/0n. By (4.54) again, the function p(n) is one-to-one so that
p~ ! exists. By Definition 4.3, the MLE of n is § = u=1(T'(2)).

If the distribution of X is in a general exponential family and the like-
lihood function is

(0) = exp{[n(O)]"T(x) — £(0) }h(x),

then the MLE of 0 is 0 = 5~(#), if n~* exists and 7} is in the range of 7(f).
Of course, 6 is also the solution of the likelihood equation

dlogL(6) _ On(0) 9¢(0)

oo~ op LW gy =0

The results for exponential families lead to an estimation method in a
class of models that have very wide applications. These models are gener-
alizations of the normal linear model (model (3.25) with assumption Al)
discussed in §3.3.1-§3.3.2 and, therefore, are named generalized linear mod-
els (GLM).
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A GLM has the following structure. The sample X = (X,...,X,,) € R"
has independent components and X; has the p.d.f.

exp { mmi;f(m) } h(z;, ¢i), i=1,..,n, (4.55)
w.r.t. a o-finite measure v, where 7; and ¢; are unknown, ¢; > 0,
ni€=E={n: 0< [h(z,¢)e"™/?dv(z) <oo} CR

for all 4, ¢ and h are known functions, and ¢’(n) > 0 is assumed for all
7 € E°, the interior of Z. Note that the p.d.f. in (4.55) belongs to an
exponential family if ¢; is known. As a consequence,

E(X;)=C("(p) and Var(X;) = ¢:¢" (), i1=1,..,n. (4.56)

Define p(n) = ¢'(n). It is assumed that n; is related to Z;, the ith value of
a p-vector of covariates (see (3.24)), through

g(u(m)) =6"Zi,  i=1,.,m, (4.57)

where [ is a p-vector of unknown parameters and g, called a link function,
is a known one-to-one, third-order continuously differentiable function on
{u(n) :n € Z°}. If p= g1, then n; = B7Z,; and g is called the canonical or
?atu;“lal link function. If g is not canonical, we assume that ddn (gou)(n) #0
or all 7.

In a GLM, the parameter of interest is 3. We assume that the range
of Bis B={B: (gou)1(B72) € Z° forall 2 € Z}, where Z is the
range of Z;’s. ¢;’s are called dispersion parameters and are considered to
be nuisance parameters. It is often assumed that

¢i=¢/t;,  i=1,..n, (4.58)

with an unknown ¢ > 0 and known positive ¢;’s.

As we discussed earlier, the linear model (3.24) with ¢, = N(0,¢) is a
special GLM. One can verify this by taking (1) = p and () = n?/2. The
usefulness of the GLM is that it covers situations where the relationship
between F(X;) and Z; is nonlinear and/or X;’s are discrete (in which case
the linear model (3.24) is clearly not appropriate). The following is an
example.

Example 4.35. Let X;’s be independent discrete random variables taking
values in {0, 1,...,m}, where m is a known positive integer. First, suppose
that X; has the binomial distribution Bi(p;, m) with an unknown p; €
(0,1),i=1,....,n. Let n; = log 13;1_ and ¢(n;) = mlog(l+ e"). Then the
p.d.f. of X; (w.r.t. the counting measure) is given by (4.55) with ¢; = 1,
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h(z;,¢;) = (I'), and 2 = R. Under (4.57) and the logit link (canonical

Tj
link) ¢(t) = log mt_t,
me'l mel" Zi

E(Xl) :’I’I’Lpl: 1+eni = 1+6,6TZ1‘.

Another popular link in this problem is the probit link g(t) = ®~1(t/m),
where @ is the c.d.f. of the standard normal. Under the probit link, E(X;) =
m®(67Z;).

The variance of X; is mp;(1 — p;) under the binomial distribution as-
sumption. This assumption is often violated in applications, which results
in an over-dispersion, i.e., the variance of X; exceeds the nominal vari-
ance mp;(1 — p;). Over-dispersion can arise in a number of ways, but the
most common one is clustering in the population. Families, households,
and litters are common instances of clustering. For example, suppose that
X; =371, Xij, where X;; are binary random variables having a common
distribution. If X;;’s are independent, then X; has a binomial distribution.
However, if X;;’s are from the same cluster (family or household), then
they are often positively correlated. Suppose that the correlation coeffi-
cient (§1.3.2) between X;; and X, j # I, is p; > 0. Then

Var(X;) = mpi(1 = pi) + m(m — 1)pipi(1 — pi) = ¢impi(1 — pi),
where ¢; = 1 + (m — 1)p; is the dispersion parameter. Of course, over-

dispersion can occur only if m > 1 in this case.
This motivates the consideration of GLM (4.55)-(4.57) with dispersion
parameters ¢;. If X; has the p.d.f. (4.55) with ((n;) = mlog(1l + €"), then

me'l me'

E(X;) = | 4 em and Var(X;) = ¢; (14 em)?

which is exactly (4.56). Of course, the distribution of X; is not binomial
unless ¢p; = 1. 1

We now derive an MLE of 8 in a GLM under assumption (4.58). Let
0 = (B3,¢) and ¥ = (go p)~L. Then the log-likelihood function is

n

log () = Z [log h(zi, ¢/ti) +

i=1

V(BT Zi)xi — C(V(B7 Zi))
o/t;

and the likelihood equation is

0log (0

. ) _ ;Z{m — (BT ZOW (B2 62 =0 (4.59)
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and

dlogL(0) _ Zn: {810g h(zi, ¢/ti)  t:[W(B" Zi)xs — C(W(B7 Zy))] } —0

90 ¢ ¢
From the first equation, an MLE of j3, if it exists, can be obtained without
estimating ¢. The second equation, however, is usually difficult to solve.
Some other estimators of ¢ are suggested by various researchers; see, for

example, McCullagh and Nelder (1989).

Suppose that there is a solution 3 € B to equation (4.59). (The exis-
tence of § is studied in §4.5.2.) We now study whether /3 is an MLE of §.
Let

n

M (B) = [0/ (5" Z)1*C" (W87 Z0) i Z: 2] (4.60)
and .
R (B) = 3 s = n( (67 Z0) 0" (57 Zi)ti 225 (4.61)
Then Olos (6
Var ( e )) — Mo (8)/9 (4.62)
and 9% log £(6)
og .
oo = Fn(B) = Ma(B)/9. (4.63)

Consider first the simple case of canonical g. Then ¢ = 0 and R, = 0.
If M, (3) is positive definite for all 3, then —log¢() is strictly convex in
0 for any fixed ¢ and, therefore, (3 is the unique MLE of 3. For the case
of noncanonical g, R, (8) # 0 and f is not necessarily an MLE. If R,.(0)
is dominated by M, (3) (i.e., [M.(8)]"?R,.(8)[M,(B)]"/? — 0 in some
sense), then —log¢(0) is convex and (3 is an MLE for large n; see more
details in the proof of Theorem 4.18 in §4.5.2.

Example 4.36. Consider the GLM (4.55) with ((n) = n?/2,n € R. If g
in (4.57) is the canonical link, then the model is the same as (3.24) with
independent ¢;’s distributed as N (0, ¢;). If (4.58) holds with ¢; = 1, then
(4.59) is exactly the same as equation (3.27). If Z is of full rank, then
M, (8) = Z7Z is positive definite. Thus, we have shown that the LSE B
given by (3.28) is actually the unique MLE of 3.

Suppose now that g is noncanonical but (4.58) still holds with ¢; = 1.
Then the model reduces to the one with independent X;’s and

X; =N (g8 Z), ¢), i=1,..,n. (4.64)
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This type of model is called a nonlinear regression model (with normal
errors) and an MLE of § under this model is also called a nonlinear LSE,
since maximizing the log-likelihood is equivalent to minimizing the sum of
squares >+, [X;—g~ (87 Z;)]?. Under certain conditions the matrix R, (3)
is dominated by M, () and an MLE of § exists. More details can be found
in §4.5.2. 1

Example 4.37 (The Poisson model). Consider the GLM (4.55) with ((n) =
e, neR. If ¢, =1, then X; has the Poisson distribution with mean e™.
Assume that (4.58) holds. Under the canonical link g(¢) = logt,

n
Mn(ﬁ) = ZGBTZ%-LZLZ;-7
i=1

which is positive definite if inf; ¢ Z¢ > 0 and the matrix (Vt1Z1, Nt Zn)
is of full rank.

There is one noncanonical link that deserves attention. Suppose that
we choose a link function so that [¢'(¢)]?¢”(¥(t)) = 1. Then M,(8) =
Z?:l t;2;Z] does not depend on 3. In §4.5.2 it is shown that the asymp-
totic variance of the MLE 3 is ¢[M,,(8)]~!. The fact that M, (8) does not
depend on (3 makes the estimation of the asymptotic variance (and, thus,
statistical inference) easy. Under the Poisson model, ¢”(t) = e and, there-
fore, we need to solve the differential equation [¢)/(t)]?e*® = 1. A solution
is 1 (t) = 2log(t/2), which gives the link function g(u) = 2\/p. 1

In a GLM, an MLE B usually does not have an analytic form. A numer-
ical method such as the Newton-Raphson or the Fisher-scoring method has
to be applied. Using the Newton-Raphson method, we have the following
iteration procedure:

FUHD = B0 — [R,(BY) = Ma(BD)] " 'sa(8Y),  £=0,1,..,
where s,(3) = ¢0logl(8)/05. Note that E[R,(8)] = 0 if § is the true

parameter value and z; is replaced by X;. This means that the Fisher-
scoring method uses the following iteration procedure:

B = 5O £ ML (B sn(BY),  £=0,1,..

If the canonical link is used, then the two methods are identical.

4.4.3 Quasi-likelihoods and conditional likelihoods

We now introduce two variations of the method of using likelihoods.
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Consider a GLM (4.55)-(4.57). Assumption (4.58) is often unrealistic in
applications. If there is no restriction on ¢;’s, however, there are too many
parameters and an MLE of $ may not exist. (Note that assumption (4.58)
reduces n nuisance parameters to one.) One way to solve this problem
is to assume that ¢; = h(Z;,§) for some known function % and unknown
parameter vector £ (which may include 8 as a subvector). Let 6 = (8, ¢).
Then we can try to solve the likelihood equation dlog £(0)/06 = 0 to obtain
an MLE of 8 and/or £&. We omit the details, which can be found, for
example, in Smyth (1989).

Suppose that we do not impose any assumptions on ¢;’s but still esti-
mate ( by solving

5.(8) = Z {lwi — n(b(B7Z:)) W (8™ Zi)t: Z:} = . (4.65)

Note that (4.65) is not a likelihood equation unless (4.58) holds. In the
special case of Example 4.36 where X; = N(87Z;, ¢;), i =1, ...,n, a solution
to (4.65) is simply an LSE of 8 whose properties are discussed at the end
of §3.3.3. Estimating 3 by solving equation (4.65) is motivated by the
following facts. First, if (4.58) does hold, then our estimate is an MLE.
Second, if (4.58) is slightly violated, the performance of our estimate is
still nearly the same as that of an MLE under assumption (4.58) (see the
discussion of robustness at the end of §3.3.3). Finally, estimators obtained
by solving (4.65) usually have good asymptotic properties. As a special
case of a general result in §5.4, a solution to (4.65) is asymptotically normal
under some regularity conditions.

In general, an equation such as (4.65) is called a quasi-likelihood equation
if and only if it is a likelihood equation when certain assumptions hold. The
“likelihood” corresponding to a quasi-likelihood equation is called quasi-
likelihood and a maximum of the quasi-likelihood is then called a maximum
quasi-likelihood estimate (MQLE). Thus, a solution to (4.65) is an MQLE.

Note that (4.65) is a likelihood equation if and only if both (4.55) and
(4.58) hold. The LSE (§3.3) without normality assumption on X,’s is a
simple example of an MQLE without (4.55). Without assumption (4.55),
the model under consideration is usually nonparametric and, therefore, the
MQLE’s are studied in §5.4.

While the quasi-likelihoods are used to relax some assumptions in our
models, the conditional likelihoods discussed next are used mainly in cases
where MLE’s are difficult to compute. We consider two cases. In the first
case, 0 = (61,03), 61 is the main parameter vector of interest, and 6, is a
nuisance parameter vector. Suppose that there is a statistic T>(X) that is
sufficient for 05 for each fixed 6;. By the sufficiency, the conditional dis-
tribution of X given T, does not depend on 65. The likelihood function
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corresponding to the conditional p.d.f. of X given T5 is called the condi-
tional likelihood function. A conditional MLE of 6#; can then be obtained
by maximizing the conditional likelihood function. This method can be
applied to the case where the dimension of € is considerably larger than
the dimension of #; so that computing the unconditional MLE of # is much
more difficult than computing the conditional MLE of #;. Note that the
conditional MLE’s are usually different from the unconditional MLE’s.

As a more specific example, suppose that X has a p.d.f. in an exponential
family:
fo(z) = exp{0]T1(z) + 05T5(x) — C(0) }h(x).
Then T3 is sufficient for #; for any given 6;. Problems of this type are

from comparisons of two binomial distributions or two Poisson distributions
(Exercises 119-120).

The second case is when our sample X = (X1,...,X,,) follows a first-
order autoregressive time series model:

Xt_:u:p(Xt—l _M)+€t7 t:27"'7n7

where g € R and p € (—1,1) are unknown and ¢;’s are i.i.d. from N(0,0?)
with an unknown o2 > 0. This model is often a satisfactory representation
of the error time series in economic models, and is one of the simplest
and most heavily used models in time series analysis (Fuller, 1996). Let
0 = (u, p,0?). The log-likelihood function is

1
log £(6) = —Z log(27) — Z log o + 5 log(1 — p?)
1 n
T 202 {(xl =)’ =p") + ;m —p—plwr = u)]Q} :

The computation of the MLE is greatly simplified if we consider the condi-
tional likelihood given X7 = x7:

n—1 n—1 s 1 )
log(flz1) = =", " log(2m)— ", " logo®—, , ;[xru*p(xtfrﬂ)] :
Let (Z_1,Z0) = (n— 1)1 Y0 (@1, 2¢). If

p= Zwt—xo Ti—1 — T 1/Z($t—1—9€—1)2
=2

t=2

is between —1 and 1, then it is the conditional MLE of p and the conditional
MLE’s of u and o? are, respectively,

fi = (2o — pz—-1)/(1 = p)
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and .
.9 1

6% = > o — 30 — plar— — 1))

n—1
t=2

Obviously, the result can be extended to the case where X follows a
pth-order autoregressive time series model:

Xi—p=p1 (X1 —p)+-+pp(Xe—p—p)+er,  t=p+1,..,n, (4.66)

where p;’s are unknown parameters satisfying the constraint that the roots
(which may be complex) of the polynomial 2 — pjzP~! — .- — p, = 0 are
less than one in absolute value (exercise).

Some other likelihood based methods are introduced in §5.1.4. Although
they can also be applied to parametric models, the methods in §5.1.4 are
more useful in nonparametric models.

4.5 Asymptotically Efficient Estimation

In this section, we consider asymptotic optimality of point estimators in
parametric models. We use the asymptotic mean squared error (amse,
see §2.5.2) or its multivariate generalization to assess the performance of
an estimator. Reasons for considering asymptotics have been discussed in
§2.5.

We focus on estimators that are asymptotically normal, since this covers

the majority of cases. Some cases of asymptotically nonnormal estimators
are studied in Exercises 111-114 in §4.6.

4.5.1 Asymptotic optimality

Let {én} be a sequence of estimators of # based on a sequence of samples
{X = (X1,...,X,) : n = 1,2,...} whose distributions are in a parametric
family indexed by 6. Suppose that as n — oo,

[V ()] 72 (0 — 0) —a Nk (0, 1), (4.67)

where, for each n, V,, () is a k x k positive definite matrix depending on
6. If 6 is one-dimensional (k = 1), then V,(0) is the asymptotic variance as
well as the amse of 0, (§2.5.2). When k > 1, V,,(0) is called the asymptotic
covariance matriz of 6, and can be used as a measure of asymptotic perfor-
mance of estimators. If éjn satisfies (4.67) with asymptotic covariance ma-
trix Vin(6), 7 = 1,2, and V1,(0) < Va,,(6) (in the sense that Va, (6) — Vi, (0)
is nonnegative definite) for all # € ©, then 01, is said to be asymptoti-
cally more efficient than O, Of course, some sequences of estimators are
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not comparable under this criterion. Also, since the asymptotic covariance
matrices are unique only in the limiting sense, we have to make our com-
parison based on their limits. When X;’s are i.i.d., V,,(0) is usually of the
form n=°V(6) for some § > 0 (= 1 in the majority of cases) and a positive
definite matrix V' (6) that does not depend on n.

Note that (4.67) implies that 0, is an asymptotically unbiased estimator
of 0. If V,,(6) = Var(én), then, under some regularity conditions, it follows
from Theorem 3.3 that

Va(0) > [1,(0) 7, (4.68)
where, for every n, I, () is the Fisher information matrix (see (3.5)) for X of
size n. (Note that (4.68) holds if and only if {7 V,,(0)l > I"[1,,(0)] 11 for every
| € R*.) Unfortunately, when V;,(#) is an asymptotic covariance matrix,
(4.68) may not hold (even in the limiting sense), even if the regularity
conditions in Theorem 3.3 are satisfied.

Example 4.38 (Hodges). Let Xi,...,X, be i.id. from N(4,1), 6 € R.
Then I,,(6) = n. Define

. (X |X|znV
"ElX X <n A

where ¢ is a fixed constant. By Proposition 3.2, all conditions in Theorem
3.3 are satisfied. It can be shown (exercise) that (4.67) holds with V,,(0) =
V(0)/n, where V(0) = 1if @ £ 0 and V(0) = t? if 6 = 0. If t* < 1, (4.68)
does not hold when # =0. 1

However, the following result, due to Le Cam (1953), shows that (4.68)
holds for i.i.d. X;’s except for 6 in a set of Lebesgue measure 0.

Theorem 4.16. Let Xi,..., X, be i.i.d. from a p.d.f. fy w.r.t. a o-finite
measure v on (R, B), where § € © and © is an open set in R*. Suppose that
for every z in the range of Xy, fo(z) is twice continuously differentiable in
0 and satisfies

0 0
20 /wg(x)du = &ng(m‘)du
for 1g(x) = fo(x) and = dfg(x)/06; the Fisher information matrix

L(0) = E{aae log fo(X1) [6?9 logfa(Xl)]T}

is positive definite; and for any given 6 € O, there exists a positive number
cp and a positive function hy such that E[hg(X1)] < oo and

9% log f+(z)

sup P

Yilly—0ll<co

‘ < ho(x) (4.69)



288 4. Estimation in Parametric Models

for all # in the range of X1, where ||A|| = \/tr(ATA) for any matrix A.

If f,, is an estimator of 0 (based on X1, ..., X,,) and satisfies (4.67) with
Vo (6) = V(6)/n, then there is a ©g C O with Lebesgue measure 0 such
that (4.68) holds if 6 & O.

Proof. We adopt the proof given by Bahadur (1964) and prove the case
of univariate #. The proof for multivariate 6 is similar and can be found in
Bahadur (1964). Let 2 = (21, ..., 2,), 0, = 0 +n~ /2 € ©, and

K(2,0) = [log £(6,) — log £(0) + I1(6) /2] /[11(6)] /2.

Under the assumed conditions, it can be shown (exercise) that
K,(X,0) —4 N(0,1). (4.70)

Let Py, (or Pp) be the distribution of X under the assumption that X3
has the p.d.f. fg, (or fs). Define g,(0) = |Ps(6,, < 0) — 5|. Let @ denote
the standard normal c.d.f. or its probability measure. By the dominated
convergence theorem (Theorem 1.1(iii)), as n — oo,

/ n(0,)dD(0) = / (@) -Cn ™ () — 0,

since g, (6) — 0 under (4.67). By Theorem 1.8(ii) and (vi), there exists a
sequence {ny} such that g, (0n,) —a.s. 0 w.r.t. ®. Since ® is equivalent to
the Lebesgue measure, we conclude that there is a ©p C © with Lebesgue
measure 0 such that

klim 9n,, (On,) =0, 0 & Q. (4.71)

Assume that 6 ¢ ©g. Then, for any t > [I;(6)]'/?,
Py, (Kn(X,0) <1) = / (B)dv -+ X dv
(z,0)<t

)
B /Kn(x 0)<t E( ) dpe( )

_ o e)/z/ RO Ko@) gy ()
K, (z,0)<

t

e~ 11(0)/2 [h(e)]”"‘de (2)

t
e~ 11(0)/2

/.
[ a1 o)

o0

=@ (t— [LO]2) +o(1),
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where H,, denotes the distribution of K, (X, 6) and the next to last equality
follows from (4.70) and the dominated convergence theorem. This result
and result (4.71) imply that there is a sequence {n;} such that for j =
1,2, ..., A

Py, (O, < On;) < by, (K, (X,0) <t). (4.72)

By the Neyman-Pearson lemma (Theorem 6.1 in §6.1.1), we conclude that
(4.72) implies that for j = 1,2, ...,

Po(Bn, < 0,,) < Py(K,,(X,0) <t). (4.73)

(The reader should come back to this after reading §6.1.1.) From (4.70)
and (4.67) with V,,(8) = V(6)/n, (4.73) implies

o(IV(O)~2) < 0(1).

Hence [V (0)]~/2 < t. Since I,,(8) = nI;(#) (Proposition 3.1(i)) and ¢ is
arbitrary but > [I1(0)]'/2, we conclude that (4.68) holds. &

Points at which (4.68) does not hold are called points of superefficiency.
Motivated by the fact that the set of superefficiency points is of Lebesgue
measure 0 under some regularity conditions, we have the following defini-
tion.

Definition 4.4. Assume that the Fisher information matrix I,,(0) is well
defined and positive definite for every n. A sequence of estimators {6,,} sat-
isfying (4.67) is said to be asymptotically efficient or asymptotically optimal
if and only if V,,(0) = [I,(0)]"!.

Suppose that we are interested in estimating ¢ = g(6), where g is a
differentiable function from © to R?, 1 < p < k. If 6,, satisfies (4.67),

then, by Theorem 1.12(i), ¥, = ¢(0,) is asymptotically distributed as
N, (9, [Vg(0)]"V,,(0)Vg(0)). Thus, inequality (4.68) becomes

[Vg(O))Va(0)Vg(0) > [L(9)]

where I,,(9) is the Fisher information matrix about 9 contained in X. If
p =k and g is one-to-one, then

L (9] = [Vg(0)][1.(0)] ' Vg(6)

and, therefore, O, is asymptotically efficient if and only if 0, is asymptoti-
cally efficient. For this reason, in the case of p < k, U, is considered to be
asymptotically efficient if and only if 0, is asymptotically efficient, and we
can focus on the estimation of 6 only.
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4.5.2 Asymptotic efficiency of MLE’s and RLE’s

We now show that under some regularity conditions, a root of the likeli-
hood equation (RLE), which is a candidate for an MLE, is asymptotically
efficient.

Theorem 4.17. Assume the conditions of Theorem 4.16.
(i) There is a sequence of estimators {6,,} such that

P(sn(én) - 0) — 1 and an —p 9, (474)

where s,,(7) = dlog(vy)/0v.

(ii) Any consistent sequence 6,, of RLE’s is asymptotically efficient.
Proof. (i) Let B,(c) = {7 : [|[I.(0)]*/?(y — )| < ¢} for ¢ > 0. Since ©
is open, for each ¢ > 0, B, (c) C O for sufficiently large n. Since By(c)
shrinks to {6} as n — oo, the existence of 6, satisfying (4.74) is implied by
the fact that for any € > 0, there exists ¢ > 0 and ng > 1 such that

P(logt(y) —log(f) <0 forall y € dBy(c)) >1—€,  n>mng, (4.75)

where 0By, (c) is the boundary of B,,(c). (For a proof of the measurability of
0., see Serfling (1980, pp. 147-148).) For v € dB,,(c), the Taylor expansion
gives
log £(7) — log £(8) = cAT[1,(0)]"/*5,(0) (4.76)
+ (/2N [In(e)}_lﬂvsn ('7*)[In(9)}_1/2)‘7

where A = [L,(0)]"/?(y — 0)/c satistying A = 1, Vsa(7) = 9sa(7)/07,
and ~* lies between v and 6. Note that

plVsn(r?) = Vsn(9)] [Visn(y) = Vsn(0)||

< EF max
n YEBn(c) n
2 2
< E max 0% log f,(X1) _ 9% log fo(X1)
VEBn(e) 0voy™ 9000™
=0 (4.77)

which follows from (a) 8% log f. (z)/8v0~7 is continuous in a neighborhood
of 0 for any fixed z; (b) B, (c) shrinks to {6}; and (c) for sufficiently large
n’

9log f1(X1) _ 0%log fo(X1)

max -
YEBn(c) OyovT 00007

under condition (4.69). By the SLLN (Theorem 1.13) and Proposition 3.1,
n Vs, (0) —as —11(0) (ie., |[n7 Vs, (0)+11(0)]| —as. 0). These results,
together with (4.76), imply that

log £(7y) — log £(6) = A" [1,(8)] Y25, (0) — [1 + 0,(1)]c? /2. (4.78)

< th(Xl)
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Note that maxy{\"[[,(0)]""%5,(0)} = ||[I.(0)]"/%5,()|. Hence, (4.75)
follows from (4.78) and

P(ILa(@)] 250 (0)ll < c/4) = 1= (4/¢)*E|[1n(6)] 725 (6)]?
=1-k(4/c)?
>1—c¢

by choosing ¢ sufficiently large. This completes the proof of (i).

(ii) Let Ac = {v : [|[y = 0|| < €} for € > 0. Since © is open, A C ©
for sufficiently small e. Let {6,} be a sequence of consistent RLE’s, i.e.,
P(sp(0,) =0 and 6, € A.) — 1 for any € > 0. Hence, we can focus on the
set on which sn(én) =0 and én € A.. Using the mean-value theorem for

vector-valued functions, we obtain that

—sn(0) = Uol Vs (0 + (0, — 9))dt] (0, —6).

Note that

1 1

n

Vs (0 + (0, — 0))dt — vsn(g)H < max [Vsn(7) = Vsn(0)]] |

0 YEA, n

Using the argument in proving (4.77) and the fact that P(f, € A.) — 1
for arbitrary € > 0, we obtain that

1 1

n

Vsn (0 +t(0, — 0))dt — wn(e)H —p 0.
0

Since n™'Vs,(0) —q.s. —11(0) and I,,(0) = nl(0),
—5u(0) = ~1u(8) (8 — 0) + 0y (Il (0) (6 — O)]]).-

This and Slutsky’s theorem (Theorem 1.11) imply that \/n(f,, — 6) has the
same asymptotic distribution as

\/n[fn(9)]*18n(9) = n71/2[11 (9>]7lsn(9> —da N (07 [11(9)}71)
by the CLT (Corollary 1.2), since Var(s, (0)) = I,(6). 1

Theorem 4.17(i) shows the asymptotic existence of a sequence of con-
sistent RLE’s, and Theorem 4.17(ii) shows the asymptotic efficiency of any
sequence of consistent RLE’s. However, for a given sequence of RLE’s, its
consistency has to be checked unless the RLE’s are unique for sufficiently
large n, in which case the consistency of the RLE’s is guaranteed by The-
orem 4.17(i).
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RLE’s are not necessarily MLE’s. We still have to use the techniques
discussed in §4.4 to check whether an RLE is an MLE. However, according
to Theorem 4.17, when a sequence of RLE’s is consistent, then it is asymp-
totically efficient and, therefore, we may not need to search for MLE’s, if
asymptotic efficiency is the only criterion to select estimators. The method
of estimating 6 by solving s, (y) = 0 over v € © is called scoring and the
function s, (7) is called the score function.

Example 4.39. Suppose that X; has a distribution in a natural exponen-
tial family, i.e., the p.d.f. of X is

fo(@i) = exp{n"T(z:) = ¢(n) (i) (4.79)

Since 8% log f,,(x:)/OnOn™ = —0%C(n)/Ondn™, condition (4.69) is satisfied.
From Proposition 3.2, other conditions in Theorem 4.16 are also satisfied.
For i.i.d. X;’s,

n

s =30 [rx = 757,

i=1

If 6, =n~' 3" T(X;) € O, the range of 6 = g(n) = d¢(n)/dn, then b, is
a unique RLE of @, which is also a unique MLE of 6 since 9 (n)/dnon™ =
Var(T'(X;)) is positive definite. Also, n = g~1(0) exists and a unique RLE
(MLE) of 7 is 7, = g~ *(6,,).

However, 0, may not be in © and the previous argument fails (e.g.,
Example 4.29). What Theorem 4.17 tells us in this case is that as n — oo,
P(én € ©) — 1 and, therefore, 0, (or 7)) is the unique asymptotically
efficient RLE (MLE) of 6 (or 1) in the limiting sense.

In an example like this we can directly show that P(f, € ©) — 1, using
the fact that 0, —,. E[T(X1)] = g(n) (the SLLN). &

The next theorem provides a similar result for the MLE or RLE in the
GLM (§4.4.2).

Theorem 4.18. Consider the GLM (4.55)-(4.58) with ¢;’s in a fixed in-
terval (to,ts0), 0 < to < too < 00. Assume that the range of the unknown
parameter 3 in (4.57) is an open subset of R?; at the true parameter value
8,0 < infi p(872:) < sup; (87 Z;) < o0, where (t) = [V/()2¢" ((1));
as n — 00, MaxX;<, 27 (Z7Z)"'Z; — 0 and A\_[Z7Z] — oo, where Z is
the n x p matrix whose ith row is the vector Z; and A_[A] is the smallest
eigenvalue of the matrix A.

(i) There is a unique sequence of estimators {Bn} such that
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where s, (7) is the score function defined to be the left-hand side of (4.59)
with v = 3.
(ii) Let I,(8) = Var(s,(8)). Then

[In(ﬁ)]lm(én —B) —a Np(07lp)~ (4.81)

(iii) If ¢ in (4.58) is known or the p.d.f. in (4.55) indexed by 6 = (0, ¢)
satisfies the conditions for fy in Theorem 4.16, then Bn is asymptotically
efficient.

Proof. (i) The proof of the existence of 3, satisfying (4.80) is the same as
that of Theorem 4.17(i) with 8 = /3, except that we need to show

e ([, (B)] 7PV B) 2 + L] = 0,
where B, (c) = {7 : [|[I.(8)]'?(y — B)|| < ¢}. From (4.62) and (4.63),

I.(B) = Myn(B)/¢ and Vsn(y) = [Rn(v) — My(7)]/¢, where My(y) and
R, (v) are defined by (4.60)-(4.61) with v = 3. Hence, it suffices to show
that for any ¢ > 0,

max (M (8)] 2 [My () = M (B)][Ma(8)] 2| =0 (4.82)

and

o [[Ma (@) R () M (8)] 72| = 0 (4.83)

The left-hand side of (4.82) is bounded by

VP max  |1—(yZ) /(87 Zi)|,

YEB,(c),i<n

which converges to 0 since ¢ is continuous and, for v € B,,(c),

W7 Zi = B7Zil* = |(v = B) L (B)] 2 1n(B)] /2 Zi?
.32 (v = B)IP N (B)) 2 241
c? I}lgaicZﬂIn(ﬁ)]_lZi

IA A

IN

A[toinf p(872:)] " max 27 (272) 71 2,
[ 1>

<n

— 0

under the assumed conditions. This proves (4.82).
Let e; = X; — (¢ (87 Zi)),

n

Un(y) = Y (87 Z:)) = b (V" Zi)) " (" Zi)ti Z: 27

i=1
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n

Va() =Y el (v Zi) =" (BT 2ot Z: 27

i=1

and
n

Wa(B) =Y e (8" Zi)ti Zi 2.

i=1
Then R, () = Un(y) + Vo (y) + Wi (5). Using the same argument as that
in proving (4.82), we can show that

max -1/2 -1/2| L, 0.
max [[[M(8)] 20 (B)] ] 0

Note that ||[M,(3)] ="V, (y)[M(3)] /2| is bounded by the product of

[Ma(B)] 2 lealtsZi 2T [Ma(B)] % = Oy (1)

i=1
and

MNTZ) — (BT
WGB{I}(&C%SRW (V" Zi) =" (67 Zi)

b

which can be shown to be o(1) using the same argument as that in proving
(4.82). Hence,

max (M (8)] 12V, (1) [Ma(8)] 72| = 0
YE€BR(c)

and (4.83) follows from

1Mo (8)] 2 W (8) [Ma (B)] 12| =5 0.
To show this result, we apply Theorem 1.14(ii). Since E(e;) = 0 and e;’s
are independent, it suffices to show that

N Blea (67 Zi)t: Z M (8)) 1 Zi) T — 0 (4.84)
=1

for some & € (0,1). Note that sup; Ele;|**° < co. Hence, there is a constant
C > 0 such that the left-hand side of (4.84) is bounded by

o \zizr 2y z)'
=1

< anLax\Z[(ZTZ)_lZi\é — 0.
i<n
Hence, (4.84) follows from Theorem 1.14(ii). This proves (4.80). The

uniqueness of (3, follows from (4.83) and the fact that M, (y) is positive
definite in a neighborhood of 3. This completes the proof of (i).
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(ii) The proof of (ii) is very similar to that of Theorem 4.17(ii). Using the
results in the proof of (i) and Taylor’s expansion, we can establish (exercise)
that

L2 (B2 (B = B) = 1 (B)] 2 5n(8) + 0,(1). (4.85)

Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show
(exercise) that
[ (B)] 7 250(8) —a Np(0, I)- (4.86)

Result (4.81) follows from (4.85)-(4.86) and Slutsky’s theorem.
(iii) The result is obvious if ¢ is known. When ¢ is unknown, it follows

from (4.59) that
a{m%am]%W)
|l a9 | o
Since E[s,(8)] = 0, the Fisher information about 6 = (5, ¢) is

(1)

where I,,(¢) is the Fisher information about ¢. The result then follows
from (4.81) and the discussion in the end of §4.5.1. 1

(8.0 = |

4.5.3 Other asymptotically efficient estimators

To study other asymptotically efficient estimators, we start with MRIE’s in
location-scale families. Since MLE’s and RLE’s are invariant (see Exercise
109 in §4.6), MRIE’s are often asymptotically efficient; see, for example,
Stone (1974).

Assume the conditions in Theorem 4.16 and let s, () be the score func-
tion. Let HA%O) be an estimator of # that may not be asymptotically efficient.
The estimator

00 =00 — Vs (6] 5u(6) (4.87)
is the first iteration in computing an MLE (or RLE) using the Newton-
Raphson iteration method with " as the initial value (see (4.53)) and,
therefore, is called the one-step MLE. Without any further iteration, HAS)
can be used as a numerical approximation to an MLE or RLE; and é,(Ll)

is asymptotically efficient under some conditions, as the following result
shows.

Theorem 4.19. Assume that the conditions in Theorem 4.16 hold and
that % is v/n-consistent for § (Definition 2.10).

(i) The one-step MLE oY s asymptotically efficient.

(ii) The one-step MLE obtained by replacing Vs, (y) in (4.87) with its
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expected value, —I,,(vy) (the Fisher-scoring method), is asymptotically effi-
cient.

Proof. Since égo) is y/n-consistent, we can focus on the event é%o) €A =
{7 : ||y = 0| < ¢} for a sufficiently small e such that A. C ©. From the
mean-value theorem,

1
50 (0) = 5, (0) + [/ Vsn (0 + £ — 9))dt] (6© — gy,
0
Substituting this into (4.87) we obtain that

0 — 0 = ~[Ts, (6] 50(6) + 1 — GalO)](0 ~ )

n n

where

1
Gn(0)) = [V, (0] / Vsn (0 + (0 — 0))adt.
0
From (4.77), ||[Ln(8)]/2[V 5, (0]~ [1,,(6)]/2 + I1,|| — 0. Using an argu-
ment similar to those in the proofs of (4.77) and (4.82), we can show that
||Gn(é£f))) — I;|| —p 0. These results and the fact that \/n(é%o) —0) =0,(1)
imply
V(O —6) = Vn[L(8)] " 5u(6) + 0p(1).

This proves (i). The proof for (ii) is similar.

Example 4.40. Let Xi,...,X, be ii.d. from the Weibull distribution
W(6,1), where § > 0 is unknown. Note that

n n
n
$n(0) = ot D log X — > X/ log X;
i=1 =1

and .
Vsa(0) = — o — > X! (log X;)*.

02
i=1

Hence, the one-step MLE of 0 is

A 5(0)
n+ 97(;))(2?:1 log X; — 2?21 Xieno log X;)

év(zl) = éT(LO) 1+ (0 5(0)
n+ (082 00, X (log X,)?

Usually one can use a moment estimator (§3.5.2) as the initial estimator

92(10). In this example, a moment estimator of 6 is the solution of X =
re-1t+1). u

Results similar to that in Theorem 4.19 can be obtained in non-i.i.d.
cases, for example, the GLM discussed in §4.4.2 (exercise); see also §5.4.
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As we discussed in §4.1.3, Bayes estimators are usually consistent. The
next result, due to Bickel and Yahav (1969) and Ibragimov and Has’minskii
(1981), states that Bayes estimators are asymptotically efficient when X;’s
are i.i.d.

Theorem 4.20. Assume the conditions of Theorem 4.16. Let 7(y) be a
prior p.d.f. (which may be improper) w.r.t. the Lebesgue measure on © and
pn(7y) be the posterior p.d.f., given Xi,..., Xp,, n = 1,2,.... Assume that
there exists an ng such that p,,(v) is continuous and positive for all v € O,
[ Pno(v)dy = 1 and [ ||7][pne(7)dy < co. Suppose further that, for any
€ > 0, there exists a § > 0 such that

1 1
im P sup 080 loslO) ) (4.88)
e ly—6l>e n
and
im P sup Vo) =VeOI S ) (4.89)
n=oe \ ly-)l<s n

where £(v) is the likelihood function and s, () is the score function.

(i) Let pi(v) be the posterior p.d.f. of \/n(y — Ty,), where T,, = 0 +
[1,,(0)] s, (0) and @ is the true parameter value, and let ¢(v) be the p.d.f.
of Ni(0,[I1(6)]71). Then

/ 1+ 1)

(ii) The Bayes estimator of # under the squared error loss is asymptotically
efficient. 1

ph(y) —¥()|dy —p 0. (4.90)

The proof of Theorem 4.20 is lengthy and is omitted; see Lehmann
(1983, §6.7) for a proof of the case of univariate 6.

A number of conclusions can be drawn from Theorem 4.20. First, result
(4.90) shows that the posterior p.d.f. is approximately normal with mean
0 + [I,,(0)] s, (0) and covariance matrix [I,,(6)]7!. This result is useful
in Bayesian computation; see Berger (1985, §4.9.3). Second, (4.90) shows
that the posterior distribution and its first-order moments converge to the
degenerate distribution at 6 and its first-order moments, which implies the
consistency and asymptotic unbiasedness of Bayes estimators such as the
posterior means. Third, the Bayes estimator under the squared error loss is
asymptotically efficient, which provides an additional support for the early
suggestion that the Bayesian approach is a useful method for generating
estimators. Finally, the results hold regardless of the prior being used,
indicating that the effect of the prior declines as n increases.
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In addition to the regularity conditions in Theorem 4.16, Theorem 4.20
requires two more nontrivial regularity conditions, (4.88) and (4.89). Let us
verify these conditions for natural exponential families (Example 4.39), i.e.,
X;’s are i.i.d. with p.d.f. (4.79). Since Vs, (n) = —nd*¢(n)/ondn™, (4.89)
follows from the continuity of the second-order derivatives of . To show
(4.88), consider first the case of univariate 7. Without loss of generality,
we assume that v > 7. Note that

log £(7y) —log £(n)

¢(v) = <)

= [T—C’(n)JrC’(n)— S

GRS
where T is the average of T'(X;)’s. Since C(v) is strictly convex, v > n
implies ¢'(n) < [C(v) — ¢(m)]/(y —n). Also, T —4.s. ¢'(n). Hence, with
probability tending to 1, the factor in front of (v — 1) on the right-hand
side of (4.91) is negative. Then (4.88) holds with

2 y>nte Y=

To show how to extend this to multivariate 7, consider the case of bivariate
n. Let n;, v;, and & be the jth components of 1, v, and T — V{(n),
respectively. Assume v, > 71 and y2 > 12. Let Cj’- be the derivative of (
w.r.t. the jth component of 7. Then the left-hand side of (4.91) is the sum
of

(1 =m)& = [C(n1,72) = COmsm2) — (2 = n2) G (1, m2)]
and

(72 = m2)2 — [C(71,72) — €Oy 72) — (1 = m)CL (s m2)],

where the last quantity is bounded by

(2 = m2)€2 — [C(71,72) = C(m.72) — (v = m)¢L (1, 72)]s

since (1 (m,n2) < ¢{(n1,72). The rest of the proof is the same as the case
of univariate 7.

When Bayes estimators have explicit forms under a specific prior, it
is usually easy to prove the asymptotic efficiency of the Bayes estimators
directly. For instance, in Example 4.7, the Bayes estimator of 0 is

X+t T (a-1X - 1
nd 4+ :X+’y (o= 1) =X+0 a.s.,
n+a—1 n+a-—1 n

where X is the MLE of #. Hence the Bayes estimator is asymptotically
efficient by Slutsky’s theorem. A similar result can be obtained for the
Bayes estimator d;(X) in Example 4.7. Theorem 4.20, however, is useful in
cases where Bayes estimators do not have explicit forms and/or the prior
is not specified clearly. One such example is the problem in Example 4.40
(Exercises 153 and 154).
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4.6 Exercises

1. Show that the priors in the following cases are conjugate priors:
(a) X1, ..., X, are i.i.d. from Ni(0,1x), 0 € R*, and II = N (o, Xo)
(Normal family);
(b) X1,..., X, are i.i.d. from the binomial distribution Bi(6,k), 6 €
(0,1), and I = B(«, ) (Beta family);
(¢) X1,..., Xp are i.i.d. from the uniform distribution U(0, ), § > 0,
and II = Pa(a, b) (Pareto family);

d) X1, ..., X, are i.i.d. from the exponential distribution E(0, ), 6 >
0, IT = the inverse gamma distribution I'"!(c, ) (a random variable
Y has the inverse gamma distribution I'"(a,~) if and only if Y1
has the gamma distribution I'(c, 7)).

(e) Xq,..., X, are i.i.d. from the exponential distribution E(6,1), 6 €
R, and II has a Lebesgue p.d.f. b_le_a/beg/bl(,oo,a) (0),aeR,b>0.

2. In Exercise 1, find the posterior mean and variance for each case.

3. Let X, ..., X,, be i.i.d. from the N (0, 1) distribution and let the prior
be the double exponential distribution DE(0, 1). Obtain the posterior
mean.

4. Let Xi,..., X, be ii.d. from the uniform distribution U(0, ), where
6 > 0 is unknown. Let the prior of 6 be the log-normal distribution
LN (po,02), where pg € R and o > 0 are known constants.

(a) Find the posterior p.d.f. of ¥ = log6.
(b) Find the rth posterior moment of 6.
(c) Find a value that maximizes the posterior p.d.f. of 6.

5. Show that if T'(X) is a sufficient statistic for § € ©, then the Bayes
action d(z) in (4.3) is a function of T'(z).

6. Let X be the sample mean of n i.i.d. observations from N (6, 0?) with
a known ¢ > 0 and an unknown 6 € R. Let w(d) be a prior p.d.f.
w.r.t. a o-finite measure on R.

(a) Show that the posterior mean of 6, given X = x, is of the form

o2 dlog(p(z))
Jr
n dx

5(z) = 7
where p(z) is the marginal p.d.f. of X, unconditional on 6.

(b) Express the posterior variance of § (given X = ) as a function
of the first two derivatives of log(p(z)) w.r.t. .

(¢) Find explicit expressions for p(x) and §(z) in (a) when the prior
is N (o, 02) with probability 1 — e and a point mass at p; with prob-
ability €, where pg, p11, and 02 are known constants.
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7.

10.

11.

12.
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Let X1, ..., X, be ii.d. binary random variables with P(X; = 1) =
p € (0,1). Find the Bayes action w.r.t. the uniform prior on [0,1] in
the problem of estimating p under the loss L(p, a) = (p—a)?/[p(1—p)].

Consider the estimation of # in Exercise 41 of §2.6 under the squared
error loss. Suppose that the prior of # is the uniform distribution
U(0,1), the priorof jis P(j =1) = P(j =2) = ;, and the joint prior
of (0,4) is the product probability of the two marginal priors. Show

that the Bayes action is
5(z) = H(x)Bt+1)+G(t+1)
H(z)B(t) + G(t)
where = (z1, ..., x,) is the vector of observations, t = x1 + - - + xp,
B(t) = fol 0t(1—0)"tdf, G(t) = fol 0te=m9df, and H(z) is a function
of « with range {0, 1}.

Consider the estimation problem in Example 4.1 with the loss function
L(0,a) = w(0)[g(0) — a]?, where w(0) > 0 and [g w(0)[g(#)]*dIl < co.
Show that the Bayes action is

5(z) = Jo w(6)g(6) fo(w)dIl
Jo w(0) fo(x)dIl

Let X be a sample from Py, § € © C R. Consider the estimation of #
under the loss L(|0 — a|), where L is an increasing function on [0, c0).
Let 7(6]z) be the posterior p.d.f. of 6 given X = z. Suppose that
7(0)z) is symmetric about é(x) € © and that m(0|z) is nondecreasing
for # < §(r) and nonincreasing for § > d(z). Show that d(x) is a
Bayes action, assuming that all integrals involved are finite.

Let X be a sample of size 1 from the geometric distribution G(p) with
an unknown p € (0,1]. Consider the estimation of p with A = [0, 1]
and the loss function L(p,a) = (p — a)?/p.

(a) Show that 0 is a Bayes action w.r.t. II if and only if 6(z) =
1 - f(l —p)de(p)/f(l —p)x_ldﬂ(p>7 r=12,..

(b) Let dp be a rule such that (1) = 1/2 and dp(x) = 0 for all z > 1.
Show that dg is a limit of Bayes actions.

(¢) Let do be a rule such that do(xz) = 0 for all x > 1 and dp(1) is
arbitrary. Show that &g is a generalized Bayes action.

Let X be a single observation from N(p,0?) with a known o2 and
an unknown g > 0. Consider the estimation of p under the squared
error loss and the noninformative prior II = the Lebesgue measure
on (0,00). Show that the generalized Bayes action when X = z is
0(z) = o+ 0@ (x/0)/[1 — ®(—z/0)], where ® is the c.d.f. of the
standard normal distribution and ®’ is its derivative.
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13.

14.

15.

16.

17.

18.

Let X be a sample from Py having the p.d.f. h(z)exp{07z — {(0)}
w.r.t. v. Let II be the Lebesgue measure on ©® = RP. Show that
the generalized Bayes action under the loss L(0,a) = ||E(X) — a||? is
0(z) = x when X = x.

Let Xi,...,X, be ii.d. random variables with the Lebesgue p.d.f.
\/2/7r6*(1*9)2/2f(9700)(x), where § € R is unknown. Find the gen-
eralized Bayes action for estimating € under the squared error loss,
when the (improper) prior of 6 is the Lebesgue measure on R.

Let Xy, ..., X, be iid. from N(u,0?) and 7(p,0°%) = 072 ) (0?)
be an improper prior for (i1, 0?) w.r.t. the Lebesgue measure on R2.
(a) Show that the posterior p.d.f. of (u,0?) given z = (z1,...,z,) is
m(u,0%|x) = m(u|o?, z)m2(0?|z), where m(u|o?,z) is the p.d.f. of
N(z,0%/n) and ma(0?|z) is the p.d.f. of the inverse gamma distribu-
tion T~ ((n —1)/2, >, (zi — 2)?/2]7!) (see Exercise 1(d)).

(b) Show that the marginal posterior p.d.f. of y given z is f(“;i),
where 72 = " | (z; — 7)?/[n(n — 1)] and f is the p.d.f. of the t-
distribution t,,_1.

(c) Obtain the generalized Bayes action for estimating p/o under the
squared error loss.

Consider Example 3.13. Under the squared error loss and the prior
with the improper Lebesgue density (i1, ..., ttm,02) = o2, obtain
the generalized Bayes action for estimating 0 = o=2 37" | n;(u; — ii)?,
where g =n"1>"" niu;.

Let X be a single observation from the Lebesgue p.d.f. e*”eIwm) (z),
where 6 > 0 is an unknown parameter. Consider the estimation of

19{‘7 He(jflaj]aj:]-a273a

4 0>3
under the loss L(i,7), 1 <14,j <4, given by the following matrix:
01 1 2
1 0 2 2
1 2 0 2
33 3 0
When X = 4, find the Bayes action w.r.t. the prior with the Lebesgue

p.d.f. 670](0700)(9).

(Bayesian hypothesis testing). Let X be a sample from Py, where
0 € 0O. Let ©g C © and ©; = Of, the complement of ©y. Consider
the problem of testing Hy : 0 € ©¢ versus Hi : 0 € ©1 under the loss

0 0 eo;
o) ={ ¢ el
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20.
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22.

23.

24.
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where C; > 0 are known constants and {ag, a1} is the action space.
Let TIp|, be the posterior distribution of § w.r.t. a prior distribution
I1, given X = z. Show that the Bayes action §(x) = a; if and only if
yz(©1) > C1/(Co + Ch).

In (b)-(d) of Exercise 1, assume that the parameters in priors are
unknown. Using the method of moments, find empirical Bayes actions
under the squared error loss.

In Example 4.5, assume that both uo and o3 in the prior for u are
unknown. Let the second-stage joint prior for (ug,o3) be the prod-
uct of N(a,v?) and the Lebesgue measure on (0, 0), where a and v
are known. Under the squared error loss, obtain a formula for the
hierarchical Bayes action in terms of a one-dimensional integral.

Let Xq,..., X, be ii.d. random variables from the uniform distribu-
tion U (0, 8), where 6 > 0 is unknown. Let 7(6) = bab9_(b+1)l(a’oo) (9)
be a prior p.d.f. w.r.t. the Lebesgue measure, where b > 1 is known
but @ > 0 is an unknown hyperparameter. Consider the estimation
of 6 under the squared error loss.

(a) Show that the empirical Bayes method using the method of
moments produces the empirical Bayes action d(a), where d(a) =
biﬁ’jl max{a, X, }, @ = 2(?);1) Yorq X, and X () is the largest or-
der statistic.

(b) Let h(a) = a~'I(o,50)(a) be an improper Lebesgue prior density
for a. Obtain explicitly the hierarchical generalized Bayes action.

Let X be a sample and §(X) with any fixed X = 2 € A be a Bayes
action, where § is a measurable function and [g Pp(A)dIl = 1. Show
that §(X) is a Bayes rule as defined in §2.3.2.

Let Xq,...,X, be ii.d. random variables with the Lebesgue p.d.f.
folx) = \/29/71'6_9362/2][0’00)(1‘), where 6 > 0 is unknown. Let the
prior of # be the gamma distribution I'(«,y) with known « and 7.
Find the Bayes estimator of fp(0) and its Bayes risk under the loss
function L(6,a) = (a — 6)?/0.

Let X be a single observation from N (6, #?) and consider a prior p.d.f.
me(0) = c(o, i, 7)]0] e~ =M/ 2) wrt. the Lebesgue measure,
where & = (a, i, 7) is a vector of hyperparameters and ¢(«, p1, 7) en-
sures that m¢ () is a p.d.f.

(a) Identify the constraints on the hyperparameters for m¢(6) to be a
proper prior.

(b) Show that the posterior p.d.f. is m¢, (6) for given X = x and iden-
tify &..
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25.

26.
27.

28.

29.

30.

(c) Express the Bayes estimator of |0| and its Bayes risk in terms of
the function ¢ and &, and state any additional constraints needed on
the hyperparameters.

Let X7, Xo, ... be i.i.d. from the exponential distribution E(0,1). Sup-
pose that we observe T' = X1 + --- 4+ Xy, where 6 is an unknown
integer > 1. Consider the estimation of # under the loss function
L(6,a) = (0 — a)?/6 and the geometric distribution G(p) as the prior
for 0, where p € (0, 1) is known.

(a) Show that the posterior expected loss is

E[L(O,a)T =t =1+¢&—2a+ (1 — e %)a?/¢,

where £ = (1 — p)t.

(b) Find the Bayes estimator of § and show that its posterior expected
lossis 1 — &Y 00 e ™.

(c) Find the marginal distribution of (1 — p)T', unconditional on 6.
(d) Obtain an explicit expression for the Bayes risk of the Bayes
estimator in part (b).

Prove (ii) and (iii) of Theorem 4.2.

Let X1, ..., X, be ii.d. binary random variables with P(X; = 1) =
p € (0,1).

(a) Show that X is an admissible estimator of p under the loss function
(a—p)*/[p(1 = p)].

(b) Show that X is an admissible estimator of p under the squared
error loss.

Let X be a sample (of size 1) from N(u,1). Consider the estimation
of p under the loss function L(y,a) = |p — al. Show that X is an
admissible estimator.

In Exercise 1, consider the posterior mean to be the Bayes estimator
of the corresponding parameter in each case.

(a) Show that the bias of the Bayes estimator converges to 0 if n — oo.
(b) Show that the Bayes estimator is consistent.

(c) Discuss whether the Bayes estimator is admissible.

Let X1, ..., X, be ii.d. binary random variables with P(X; = 1) =
p€(0,1).

(a) Obtain the Bayes estimator of p(1 —p) w.r.t. IT = the beta distri-
bution B(«, #) with known « and 3, under the squared error loss.
(b) Compare the Bayes estimator in part (a) with the UMVUE of
p(1 —p).

(c) Discuss the bias, consistency, and admissibility of the Bayes esti-
mator in (a).
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(d) Let w(p) = [p(1 — p)]"*I(0,1)(p) be an improper Lebesgue prior
density for p. Show that the posterior of p given X;’s is a p.d.f. pro-
vided that the sample mean X € (0, 1).

(e) Under the squared error loss, find the generalized Bayes estimator
of p(1 — p) w.r.t. the improper prior in (d).

Let X be an observation from the negative binomial distribution
NB(p,r) with a known r and an unknown p € (0,1).

(a) Under the squared error loss, find Bayes estimators of p and p~
w.r.t. II = the beta distribution B(«, 8) with known o« and .

(b) Show that the Bayes estimators in (a) are consistent as r — oo.

1

In Example 4.7, show that

(a) X is the generalized Bayes estimator of § w.r.t. the improper
prior gg = I(0,00)(w) and is a limit of Bayes estimators (as o — 1
and 7 — 00);

(b) under the squared error loss for estimating 0, the Bayes estimator
(nX++v71)/(n+a—1) is admissible, but the limit of Bayes estimators,
nX/(n+a—1) with an a # 2, is inadmissible.

Consider Example 4.8. Show that the sample mean X is a generalized
Bayes estimator of u under the squared error loss and X is admissible
using (a) Theorem 4.3 and (b) the result in Example 4.6.

Let X be an observation from the gamma distribution I'(«, §) with a
known « and an unknown 6 > 0. Show that X/(a+1) is an admissible
estimator of # under the squared error loss, using Theorem 4.3.

Let X1, ..., X;, be i.i.d. from the uniform distribution U(0,0 + 1), 6 €
R. Consider the estimation of § under the squared error loss.

(a) Let m(0) be a continuous and positive Lebesgue p.d.f. on R. Derive
the Bayes estimator w.r.t. the prior 7 and show that it is a consistent
estimator of 6.

(b) Show that (X 1)+ X(,) —1)/2 is an admissible estimator of  and
obtain its risk, where X ;) is the jth order statistic.

Consider the normal linear model X = N,,(Zf3,0%1,,), where Z is an
n x p known matrix of full rank, p < n, 3 € R?, and 2 > 0.

(a) Assume that o2 is known. Derive the posterior distribution of 3
when the prior distribution for 8 is N,(Bo,0%V), where 3y € RP is
known and V is a known positive definite matrix, and find the Bayes
estimator of [” 3 under the squared error loss, where [ € R? is known.
(b) Show that the Bayes estimator in (a) is admissible and consistent
as n — 00, assuming that the minimum eigenvalue of 2772 — oc.

(c) Repeat (a) and (b) when 02 is unknown and has the inverse gamma
distribution I'"*(a,y) (see Exercise 1(d)), where a and ~ are known.
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38.

39.

(d) In part (c), obtain Bayes estimators of 02 and I"3/c under the
squared error loss and show that they are consistent under the con-
dition in (b).

In Example 4.9, suppose that ¢;; has the Lebesgue p.d.f.

H((S)o';l exp {_0(5)‘:5/0.”2/(14-5)} :

where

r(30+s 141r5 o(30+s 1/2
0(5){1(‘(2))} , K(6) = ()]

(1) (o [(5)

—-1<d6d<1ando; >0.
(a) Assume that J is known. Let w; = 0(5)0;2/(1+6). Under the
squared error loss and the same prior in Example 4.9, show that the
Bayes estimator of o2 is

1+6

IR
qz’(5)/ - + Y iy — BT Z ) f(Blx,8)dp,
j=1

where ¢;(6) = [e(8)]* T (*T°n; + o — ) /T (*3°n; + a + 1) and

X —(a+1+ lgéni)

2
FB1.8) =] |- +Z\xijfﬂfzz—|2/““>

i=1 j=1

(b) Assume that ¢ has a prior p.d.f. f(J) and that given ¢, w; still
has the same prior in (a). Derive a formula (similar to that in (a))
for the Bayes estimator of o2.

Suppose that we have observations
Xij :Mi+5ij7 i:17...7]{57 j:L...,m

where €;;s are i.i.d. from N(0,02), p;’s are i.i.d. from N(u,07), and
€s;’s and p;’s are independent. Suppose that the distribution for o2
is the inverse gamma distribution I'"* (v, 31) (see Exercise 1(d)); the
distribution for O'Z is the inverse gamma distribution I'"!(ag, 32); the
distribution for y is N(uo,03); and o, 0, and p are independent.
Describe a Gibbs sampler and obtain explicit forms of

(a) the distribution of u, given X;;’s, u;’s, 0 , and 0’

(b) the distribution of [LZ, given X;;’s, u, o2 and cr

(c) the distribution of o2, given X;;’s, p;’s, M7 and 0'

(d) the distribution of 0' , given X;;’s, pi’s, p, and 0'

Prove (4.16).
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Consider a Lebesgue p.d.f. p(y) o< (2+y)*2°(1—y)*y3*1 (9 1)(y). Gen-
erate Markov chains of length 10,000 and compute approximations to
[ yp(y)dy, using the Metropolis kernel with ¢(y, z) being the p.d.f. of
N(y,r?), given y, where (a) r = 0.001; (b) 7 = 0.05; (c) r = 0.12.

Prove Proposition 4.4 for the cases of variance and risk.

In the proof of Theorem 4.5, show that if L is (strictly) convex and
not monotone, then E[L(Ty(z) — a)|D = d] is (strictly) convex and
not monotone in a.

Prove part (iii) of Theorem 4.5.

Under the conditions of Theorem 4.5 and the loss function L(u, a) =
| — al, show that u.(d) in Theorem 4.5 is any median (Exercise 92 in
§2.6) of To(X) under the conditional distribution of X given D = d
when p = 0.

Show that if there is a location invariant estimator Ty of p with finite
mean, then Fy[T(X)|D = d] is finite a.s. P for any location invariant
estimator T'.

Show (4.21) under the squared error loss.
In Exercise 14, find the MRIE of 6 under the squared error loss.

In Example 4.12,

(a) show that X1y — #log2/n is an MRIE of y under the absolute
error loss L(pu — a) = | — al;

(b) show that X (1) —t is an MRIE under the loss function L(p—a) =
I(t,00) (I = al).

In Example 4.13, show that T is also an MRIE of y if the loss function

is convex and even. (Hint: the distribution of T, (X) given D depends
only on X,y — X(qy and is symmetric about 0 when p = 0.)

Let Xi,...,X, be iid. from the double exponential distribution
DE(u,1) with an unknown p € R. Under the squared error loss,
find the MRIE of p. (Hint: for 1 < -+ < @, and zx < t < Tgy1,

n n k
Zi:l |£17Z — t‘ = Zi=k+1 Tr; — Zi:l xX; —+ (2]{3 — Tl)t)
In Example 4.11, find the MRIE of p under the loss function

oo elp—a) p<a
Lu—a) {ﬁ(ua) ©>a,

where o and (3 are positive constants. (Hint: show that if YV is a
random variable with c.d.f. F', then E[L(Y — u)] is minimized for any

u satisfying F(u) = 8/(a+ 3).)
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Let T be a location invariant estimator of y in a one-parameter lo-
cation problem. Show that 7' is an MRIE under the squared error
loss if and only if T" is unbiased and E[T(X)U(X)] = 0 for any U(X)
satisfying U(z1 + ¢, ..., +¢) = U(x) for any ¢, E[U(X)] = 0 for any
u, and Var(U) < oo.

Assume the conditions in Theorem 4.6. Let T be a sufficient statistic
for u. Show that Pitman’s estimator is a function of T

Prove Proposition 4.5, Theorems 4.7 and 4.8, and Corollary 4.1.

Under the conditions of Theorem 4.8 and the loss function (4.24) with
p =1, show that wu.(z) is any constant ¢ > 0 satisfying

/ (L‘dPI‘ZZ/ (I}dpm‘z,
0 c

where P, is the conditional distribution of X given Z = z when
o=1.

In Example 4.15, show that the MRIE is 2(**1) " X, when the loss
is given by (4.24) with p = 1.

Let X1, ..., X,, be i.i.d. from the exponential distribution F(0,6) with
an unknown 6 > 0.

(a) Find the MRIE of § under the loss (4.24) with p = 2.

(b) Find the MRIE of 6 under the loss (4.24) with p = 1.

(c) Find the MRIE of 2 under the loss (4.24) with p = 2.

Let X1, ..., X, be i.i.d. with a Lebesgue p.d.f. (2/0)[1—(x/0)] (9, (),
where o > 0 is an unknown scale parameter. Find Pitman’s estimator
of o" for n = 2,3, and 4.

Let Xq,..., X, be iid. from the Pareto distribution Pa(c,«), where
o > 0 is an unknown parameter and o > 2 is known. Find the MRIE
of o under the loss function (4.24) with p = 2.

Assume that the sample X has a joint Lebesgue p.d.f. given by (4.25).
Show that a loss function for the estimation of u is invariant under
the location-scale transformations g..(X) = (rX1 + ¢, ...,7 X, + ¢),
r >0, c€ R, if and only if it is of the form L (a;”).

Prove Proposition 4.6, Theorem 4.9, and Corollary 4.2.

Let Xi,...,X, be iid. from the exponential distribution E(u,o),
where p € R and o > 0 are unknown.

(a) Find the MRIE of ¢ under the loss (4.24) with p =1 or 2.

(b) Under the loss function (a — p)?/0?, find the MRIE of p.

(c¢) Compute the bias of the MRIE of p in (b).
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Suppose that X and Y are two samples with p.d.f. given by (4.30).
(a) Suppose that pu; = g, = 0 and consider the estimation of n =
(0y/0o)" with a fixed h # 0 under the loss L(a/n). Show that the
problem is invariant under the transformations ¢(X,Y) = (rX,r'Y),
r > 0, 7" > 0. Generalize Proposition 4.5, Theorem 4.8, and Corollary
4.1 to the present problem.

(b) Generalize the result in (a) to the case of unknown g, and g,
under the transformations in (4.31).

Under the conditions of part (a) of the previous exercise and the loss
function (a —n)?/n?, determine the MRIE of 7 in the following cases:
(a) m =n =1, X and Y are independent, X has the gamma dis-
tribution I'(a,7y) with a known a, and an unknown v = g, > 0,
and Y has the gamma distribution I'(a, v) with a known «, and an
unknown vy = o, > 0;

(b) X is Npu(0,021), Y is Ny(0,0.1,), and X and Y are indepen-
dent;

(¢) X and Y are independent, the components of X are i.i.d. from
the uniform distribution U (0, o), and the components of ¥ are i.i.d.
from the uniform distribution U (0, oy).

Let X1, ..., X and Y7, ..., Y}, be two independent samples, where X;’s
are i.i.d. having the p.d.f. o1 f (““’“) with p, € R and o, > 0, and

Ox

Y’s are i.i.d. having the p.d.f. o' f (z;5y> with g, € R and o, > 0.

Under the loss function (a —n)?/n? and the transformations in (4.31),
obtain the MRIE of n = 0, /0, when

(a) f is the p.d.f. of N(0,1);

(b) f is the p.d.f. of the exponential distribution E(0, 1);

(c) f is the p.d.f. of the uniform distribution U (fé, é),

(d) In (a)-(c), find the MRIE of A = p,, — p, under the assumption
that o, = 0, = 0 and under the loss function (a — A)? /o2

Consider the general linear model (3.25) under the assumption that
g;’s are i.i.d. with the p.d.f. o' f(z/0), where f is a known Lebesgue
p.d.f.

(a) Show that the family of populations is invariant under the trans-
formations in (4.32).

(b) Show that the estimation of [”3 with [ € R(Z) is invariant under

the loss function L (‘klm).

o

(c) Show that the LSE I7§ is an invariant estimator of I7 3, | € R(Z).
(d) Prove Theorem 4.10.

In Example 4.18, let T" be a randomized estimator of p with probabil-
ity n/(n + 1) being X and probability 1/(n + 1) being 5. Show that
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T has a constant risk that is smaller than the maximum risk of X.

Let X be a single sample from the geometric distribution G(p) with
an unknown p € (0,1). Show that I;;3(X) is a minimax estimator of
p under the loss function (a —p)?/[p(1 — p)].

In Example 4.19, show that X is a minimax estimator of y under the
loss function (a@ — p)?/0? when © = R x (0, 00).

Let T be a minimax (or admissible) estimator of ¢ under the squared
error loss. Show that ¢1T + ¢ is a minimax (or admissible) estimator
of ¢19+ ¢p under the squared error loss, where ¢; and ¢y are constants.

Let X be a sample from Py with an unknown 6 = (61, 6), where 6; €
0O;, j = 1,2, and let Il be a probability measure on ©3. Suppose that
an estimator Ty minimizes supy, co, | Rr(0)dIz(02) over all estima-
tors T' and that supy, ce, | Rr,(0)dII2(02) = supy, co, g,co, B1y(6).
Show that Tj is a minimax estimator.

Let X1, ..., X,, be iid. from N(u,,02) and Yi,...,Y, be ii.d. from
N (phy, 05). Assume that X;’s and Y}’s are independent. Consider the
estimation of A =y, — i, under the squared error loss.

(a) Show that Y — X is a minimax estimator of A when o, and o,
are known, where X and Y are the sample means based on X;’s and
Y,’s, respectively.

(b) Show that Y — X is a minimax estimator of A when o, € (0, c,]
and o, € (0, ¢y], where ¢, and ¢, are constants.

Consider the general linear model (3.25) with assumption Al and the
estimation of {7 under the squared error loss, where [ € R(Z). Show
that the LSE ["3 is minimax if 02 € (0, ] with a constant c.

Let X be a random variable having the hypergeometric distribution
HG(r,0, N — 6) (Table 1.1, page 18) with known N and r but an
unknown 6. Consider the estimation of §/N under the squared error
loss.

(a) Show that the risk function of T(X) = aX/r + (3 is constant,
where o = {1+ /(N —7)/[r(N —1)]}"! and 8 = (1 — @) /2.

(b) Show that T in (a) is the minimax estimator of /N and the Bayes
estimator w.r.t. the prior

({6}) = ;E;C]L Al ({Z)t‘”clu —)N=0re=lgt 9 =1,...,N,

where ¢ = §/(a/r — 1/N).
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Let X be a single observation from N(u,1) and let p have the im-
proper Lebesgue prior density 7(u) = e#. Under the squared error
loss, show that the generalized Bayes estimator of y is X + 1, which
is neither minimax nor admissible.

Let X be a random variable having the Poisson distribution P(6) with
an unknown € > 0. Consider the estimation of # under the squared
error loss.

(a) Show that sup, Rr(#) = oo for any estimator T' = T'(X).

(b) Let S ={aX +b:a€R,be R} Show that 0 is a S-admissible
estimator of 6.

Let X1, ..., X,, be i.i.d. from the exponential distribution F(a, 6) with
a known 6 and an unknown a € R. Under the squared error loss,
show that Xy — 0 /m is the unique minimax estimator of a.

Let X1, ..., X, be ii.d. from the uniform distribution U(pu— 5, p+ 3)
with an unknown g € R. Under the squared error loss, show that
(X)) + X(n))/2 is the unique minimax estimator of .

Let Xi,...,X, be iid. from the double exponential distribution
DE(u,1) with an unknown p € R. Under the squared error loss,
find a minimax estimator of .

Consider Example 4.7. Show that (nX + b)/(n + 1) is an admissi-
ble estimator of # under the squared error loss for any b > 0 and

that nX /(n + 1) is a minimax estimator of # under the loss function
L(#,a) = (a — 0)%/62.

Let Xi,..., X, be ii.d. binary random variables with P(X; = 1) =
p € (0,1). Consider the estimation of p under the squared error loss.
Using Theorem 4.14, show that X and (X +~))/(1 + \) with A > 0
and 0 <~ <1 are admissible.

Let X be a single observation. Using Theorem 4.14, find values of «
and ( such that aX + § are admissible for estimating £X under the
squared error loss when

(a) X has the Poisson distribution P(#) with an unknown 6 > 0;

(b) X has the negative binomial distribution N B(p,r) with a known
r and an unknown p € (0, 1).

Let X be a single observation having the Lebesgue p.d.f. ;0(9)69‘1”_‘“”‘7
6] < 1.

(a) Show that c(f) = 1 — 6.

(b) Show that if 0 < a < %, then aX + (3 is admissible for estimating
E(X) under the squared error loss.
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. Let X be a single observation from the discrete p.d.f. fo(z)
= [2!(1 — e )] 716" 11 5,y (x), where 6 > 0 is unknown. Con-
sider the estimation of ¥ = 6/(1 — e~%) under the squared error loss.
(a) Show that the estimator X is admissible.

(b) Show that X is not minimax unless supy Ry (f) = oo for any es-
timator T' = T'(X).
(¢) Find a loss function under which X is minimax and admissible.

In Example 4.23, find the UMVUE of 6 = (p1, ..., px) under the loss
function (4.37).

Let X be a sample from Py, § € © C R?. Consider the estimation of
6 under the loss (0 —a)"Q(0 — a), where a € A = © and @ is a known
positive definite matrix. Show that the Bayes action is the posterior
mean F(0|X = z), assuming that all integrals involved are finite.

In Example 4.24, show that X is the MRIE of # under the loss function
(4.37), if

(a) f(x—0) = ’j’:l fj(z; — 0;), where each f; is a known Lebesgue
p-d.f. with mean 0O;

(b) f(z—0) = f(llz = 0) with [z f([|z])dz = 0.

Prove that X in Example 4.25 is a minimax estimator of # under the
loss function (4.37).

Let Xi,..., X} be independent random variables, where X; has the
binomial distribution Bi(p;,n;) with an unknown p; € (0,1) and a
known n;. For estimating 6 = (p1, ..., pr) under the loss (4.37), find a
minimax estimator of § and determine whether it is admissible.

Show that the risk function in (4.42) tends to p as ||6]| — oc.
Suppose that X is Np(6, I,). Consider the estimation of § under the

loss (a — 0)"Q(a — 0) with a positive definite p x p matrix Q. Show
that the risk of the estimator

Q _ y _ r(p—2) 1y
ber =X gex — @ XY

is equal to

t(Q) — (2r —r?)(p — 2’ E(|Q7*(X — o))

Show that under the loss (4.37), the risk of 4., in (4.45) is given by
(4.46).
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Suppose that X is N,(0, V) with p > 4. Consider the estimation of 6
under the loss function (4.37).

(a) When V' = I,, show that the risk of the estimator in (4.48) is
p—(p— PE(IX - X, 2).

(b) When V' = 02D with an unknown o2 > 0 and a known matrix D,
show that the risk function of the estimator in (4.49) is smaller than
that of X for any 6 and o2.

Let X be a sample from a p.d.f. fyp and T(X) be a sufficient statistic
for #. Show that if an MLE exists, it is a function of T but it may
not be sufficient for 6.

Let {fp : 0 € ©} be a family of p.d.f.’s w.r.t. a o-finite measure, where
(C] C~Rk; h be a Borel function from © onto A C RP, 1 < p < k; and
let £(\) = supg.p,(g)=» £(0) be the induced likelihood function for the

transformed parameter A. Show that if 6 € © is an MLE of 0, then
A = h(f) maximizes I()).

Let Xq,..., X, be ii.d. with a p.d.f. fy. Find an MLE of 6 in each of
the following cases.
(a) fo(z) = 9_11{1’.“’9}(95), 0 is an integer between 1 and 6.

(b) fg(.’L‘) = e_(x_g)f(g’oo) (.’L‘>7 6 > 0.

() folw) = 0(1 — )" g1y (x), 0> 1.

(d) fg(ﬂ]) = 139‘%(2671)/(176)1(0,1)(x)a o€ (éa 1)

(e) fo(z) =2"te l==0% g c R.

(f) fo(z) = 027 21(g,00)(x), 6 > 0.

(8) fole) = 00— 0) ~*T1o.1y 0, 0 € [3, ]

(h) fo(x) is the p.d.f. of N(0,60%),0 € R, 0 # 0.

(i) fo(x) is the p.d.f. of the exponential distribution E(u,0), 8 =
(u,0) € R x (0,00).

(i) fo(x) is the p.d.f. of the log-normal distribution LN (u,0?), 6 =
(1,02) € R x (0, 00).

(k) fo(z) = I(O,l)( z) if § =0 and fy(z) = (2y/z)"~ 1I(o y(z) if 6 =1.
) Jle) = Sy ()0 = )  (0,) (0,0).

( oy (), 0 ., where p € (0,1)

m) fo(z) = (°)p*(1—p)?*I(o,1,..

fo(z) = 2(1—6%)ef"" 17l g € (—1,1).

—-

In Exercise 14, obtain an MLE of § when (a) 8 € R and (b) § < 0.

Suppose that n observations are taken from N (u, 1) with an unknown
w. Instead of recording all the observations, one records only whether
the observation is less than 0. Find an MLE of p.

Find an MLE of 0 in Exercise 43 of §2.6.
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Let (Y1, Z1),...,(Y,, Z,) be iid. random 2-vectors such that Y; and
71 are independently distributed as the exponential distributions
E(0,)) and E(0, ), respectively, where A > 0 and pu > 0.

(a) Find the MLE of (A, u).

(b) Suppose that we only observe X; = min{Y;, Z;} and A; = 1 if
X;=Y;and A, =0if X; = Z;. Find the MLE of (A, u).

In Example 4.33, show that almost surely the likelihood equation has
a unique solution that is the MLE of § = («,7). Obtain iteration
equation (4.53) for this example. Discuss how to apply the Fisher-
scoring method in this example.

Let X1, ..., X,, be ii.d. from the discrete p.d.f. in Exercise 84 with an
unknown 6 > 0. Show that the likelihood equation has a unique root
when the sample mean > 1. Show whether this root is an MLE of 6.

Let Xy, ..., X, be i.i.d. from the logistic distribution LG(u, o) (Table
1.2, page 20).

(a) Show how to find an MLE of x4 when p € R and o is known.

(b) Show how to find an MLE of ¢ when ¢ > 0 and g is known.

Let (X1,Y1), ..., (X5, Y,) be i.i.d. from a two-dimensional normal dis-
tribution with E(X;) = E(Y1) = 0, Var(X;) = Var(Y;) = 1, and an
unknown correlation coefficient p € (—1,1). Show that the likelihood
equation is a cubic in p and the probability that it has a unique root
tends to 1 as n — oo.

Let Xi,..., X, be iid. from the Weibull distribution W(«,8) (Ta-
ble 1.2, page 20) with unknown o« > 0 and # > 0. Show that
the likelihood equation is equivalent to h(a) = n=' Y "  logx; and
6 =n"tY" a2 where h(a) = (>, z2) >0 2 logz; — a7t
and that the likelihood equation has a unique solution.

Consider the random effects model in Example 3.17. Assume that
i = 0and n; = ng for all . Provide a condition on X;;’s under which
a unique MLE of (02, 0?) exists and find this MLE.

Let X1,..., X, be i.i.d. with the p.d.f. 8f(0x), where f is a Lebesgue
p.d.f. on (0,00) or symmetric about 0, and 6§ > 0 is an unknown
parameter. Show that the likelihood equation has a unique root if
xf'(x)/f(z) is continuous in z and strictly decreasing for x > 0.
Verify that this condition is satisfied if f is the p.d.f. of the Cauchy
distribution C(0, 1).

Let Xi,..., X, be iid. with the Lebesgue p.d.f. fo(x) = 0f1(x) +
(1—0) f2(x), where f;’s are two different known Lebesgue p.d.f.’s and
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6 € (0,1) is unknown.

(a) Provide a necessary and sufficient condition for the likelihood
equation to have a unique solution and show that if there is a solution,
it is the MLE of 6.

(b) Derive the MLE of § when the likelihood equation has no solution.

Consider the location family in §4.2.1 and the scale family in §4.2.2.
In each case, show that an MLE or an RLE (root of the likelihood
equation) of the parameter, if it exists, is invariant.

Let X be a sample from Py, # € R. Suppose that Py’s have p.d.f.’s
fo w.r.t. a common o-finite measure and that {z : fy(z) > 0} does
not depend on #. Assume further that an estimator 0 of 6 attains
the Cramér-Rao lower bound and that the conditions in Theorem 3.3

hold for §. Show that 6 is a unique MLE of 6.

Let X5, 7=1,...,r>1,1=1,...,n, be independently distributed as
N(ui,0?). Find the MLE of (1, ..., ttn,0?). Show that the MLE of
o? is not a consistent estimator (as n — o0).

Let X1,..., X, be iid. from the uniform distribution U(0,6), where
0 > 0 is unknown. Let 0 be the MLE of # and T be the UMVUE.
(a) Obtain the ratio mser(f)/mse,(f) and show that the MLE is
inadmissible when n > 2.

(b) Let Z, ¢ be a random variable having the exponential distribution
E(a,0). Prove n(6 — é) —a Zop and n(0 —T) —q Z_g 9. Obtain the
asymptotic relative efficiency of 0 wrt. T.

Let X1, ..., X,, be i.i.d. from the exponential distribution E(a, ) with
unknown a and . Obtain the asymptotic relative efficiency of the
MLE of a (or 6) w.r.t. the UMVUE of a (or 6).

Let Xq,...,X, be iid. from the Pareto distribution Pa(a,f) with
unknown a and 6.

(a) Find the MLE of (a, 6).

(b) Find the asymptotic relative efficiency of the MLE of a w.r.t. the
UMVUE of a.

In Exercises 40 and 41 of §2.6,

(a) obtain an MLE of (6, j);

(b) show whether the MLE of j in part (a) is consistent;

(¢) show that the MLE of 6 is consistent and derive its nondegenerated
asymptotic distribution.

In Example 4.36, obtain the MLE of 5 under the canonical link and
assumption (4.58) but ¢; # 1.
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Consider the GLM in Example 4.35 with ¢; = 1 and the canonical
link. Assume that Z?Zl Z;Z] is positive definite for n > ng. Show
that the likelihood equation has at most one solution when n > ng
and a solution exists with probability tending to 1.

Consider the linear model (3.25) with ¢ = N,,(0,V), where V is an
unknown positive definite matrix. Show that the LSE 3 defined by
(3.29) is an MQLE and that § is an MLE if and only if one of (a)-(e)
in Theorem 3.10 holds.

Let X; be a random variable having the binomial distribution
Bi(pj,n;) with a known n; and an unknown p; € (0,1), j = 1,2.
Assume that X;’s are independent. Obtain a conditional likelihood

function of the odds ratio 6 = lflpl 1522, given X1 + Xo.

Let X7 and X5 be independent from Poisson distributions P(u1) and
P(u2), respectively. Suppose that we are interested in 61 = 1/ pe.
Derive a conditional likelihood function of 8y, using (a) 62 = u1; (b)
02 = p11 + po; and (c) 02 = g po.

Assume model (4.66) with p = 2 and normally distributed i.i.d. e;’s.
Obtain the conditional likelihood given (X1, X2) = (21, x2).

Prove the claim in Example 4.38.

Prove (4.70). (Hint: Show, using the argument in proving (4.77), that
n*1|§;2 log (&) — g;z log £(0)| = o0,(1) for any random variable &,
satisfying |£, — 6] < |0 — 0,,].)

Let X1,..., X, be iid. from N(u,1) truncated at two known points
a < f3,i.e., the Lebesgue p.d.f. of X is

(V2r[®(8 — p) — ®(a — )]} e @21, o ().

(a) Show that the sample mean X is asymptotically efficient for esti-
mating 6 = EX;.
(b) Show that X is the unique MLE of 6.

Let Xq,..., X, beii.d. from the discrete p.d.f.
fg(IE) = [1 - (1 - g)m}fl(z‘)gm(l - a)mizI{l,Z,...,m}(w)a

where 6 € (0,1) is unknown and m > 2 is a known integer.

(a) When the sample mean X = m, show that X /m is an MLE of 6.
(b) When 1 < X < m, show that the likelihood equation has at least
one solution.

(c) Show that the regularity conditions of Theorem 4.16 are satisfied
and find the asymptotic variance of a consistent RLE of 6.
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In Exercise 96, check whether the regularity conditions of Theorem
4.16 are satisfied for cases (b), (c), (d), (e), (g), (h), (j) and (n).
Obtain nondegenerated asymptotic distributions of RLE’s for cases
in which Theorem 4.17 can be applied.

Let X1,..., X, be i.i.d. random variables such that log X; is N(6,0)
with an unknown 6 > 0.

(a) Obtain the likelihood equation and show that one of the solutions
of the likelihood equation is the unique MLE of 6.

(b) Using Theorem 4.17, obtain the asymptotic distribution of the
MLE of 6.

In Exercise 107 of §3.6, find the MLE’s of a and 8 and obtain their
nondegenerated asymptotic joint distribution.

In Example 4.30, show that the MLE (or RLE) of 6 is asymptotically
efficient by (a) applying Theorem 4.17 and (b) directly deriving the
asymptotic distribution of the MLE.

In Example 4.23, show that there is a unique asymptotically efficient
RLE of 8 = (p1,...,px). Discuss whether this RLE is the MLE.

Let X1, ..., X,, be i.i.d. with P(X; =0)=60>—-40+1, P(X; =1) =
6 — 262, and P(X; = 2) = 30 — 462, where 6 € (0, }) is unknown.
Apply Theorem 4.17 to obtain the asymptotic distribution of an RLE
of 6.

Let X1, ..., X, be i.i.d. random variables from N (g, 1), where 1 € R is
unknown. Let § = P(X; < ¢), where ¢ is a known constant. Find the
asymptotic relative efficiency of the MLE of 6 w.r.t. (a) the UMVUE
of 6 and (b) the estimator n™' Y 1" | I\_ o (X).

In Exercise 19 of §3.6, find the MLE’s of # and ¥ = P(Y; > 1) and find
the asymptotic relative efficiency of the MLE of ¢ w.r.t. the UMVUE
of ¥ in part (b).

Let (X1,Y1), ..., (X5, Yy) be iid. random 2-vectors. Suppose that
both X; and Y; are binary, P(X; = 1) = , P(Y; = 1|X; = 0) =
e~ and P(Y; = 1|X; = 0) = e % where 6 > 0 is unknown and
a > 0 and b > 0 are known constants.

(a) Suppose that (X;,Y;), i = 1,...,n, are observed. Find the MLE
of 6 and its nondegenerated asymptotic distribution.

(b) Suppose that only Y1, ..., Y,, are observed. Find the MLE of 6 and
its nondegenerated asymptotic distribution.

(c) Calculate the asymptotic relative efficiency of the MLE in (a)
w.r.t. the MLE in (b). How much efficiency is lost in the special case
of a = b?
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In Exercise 110 of §3.6, derive

(a) the MLE of (61, 62);

(b) a nondegenerated asymptotic distribution of the MLE of (61, 62);
(c) the asymptotic relative efficiencies of the MLE’s w.r.t. the moment
estimators in Exercise 110 of §3.6.

In Exercise 104, show that the RLE of p is asymptotically distributed
as N(p. (1 - p2)2/[n(1 + p?)).

In Exercise 107, obtain a nondegenerated asymptotic distribution of
the RLE of § when f is the p.d.f. of the Cauchy distribution C(0, 1).

Let X1,...,X,, be ii.d. from the logistic distribution LG(u, o) with
unknown g € R and ¢ > 0. Obtain a nondegenerated asymptotic
distribution of the RLE of (u,0).

In Exercise 105, show that the conditions of Theorem 4.16 are satis-
fied.

Let X, ..., X,, be i.i.d. binary random variables with P(X; = 1) = p,
where p € (0,1) is unknown. Let ¥, be the MLE of ¥ = p(1 — p).

(a) Show that ¥,, is asymptotically normal when p # é
(b) When p = %, derive a nondegenerated asymptotic distribution of

¥, with an appropriate normalization.

Let (X1,Y1),...,(Xpn,Ys) be iid. random 2-vectors satisfying 0 <
X1 <1,0<Y <1, and

P(X1>2,Y1 >y) = (1-2)(1 - y)(1 - max{z,y})’

for0<z<1,0<y<1, where § > 0 is unknown.

(a) Obtain the likelihood function and the likelihood equation.

(b) Show that an RLE of 6 is asymptotically normal and derive its
amse.

Assume the conditions in Theorem 4.16. Suppose that 8 = (64, ..., 6)
and there is a positive integer p < k such that 9log¥(0)/06; and
0log((0)/08; are uncorrelated whenever ¢ < p < j. Show that the
asymptotic distribution of the RLE of (64, ...,0,) is unaffected by
whether 0,11, ..., 05 are known.

Let X3, ..., X, be i.i.d. random p-vectors from Np(p, £) with unknown
@ and X. Find the MLE’s of ¢4 and ¥ and derive their nondegenerated
asymptotic distributions.

Let Xq,..., X, be ii.d. bivariate normal random vectors with mean
0 and an unknown covariance matrix whose diagonal elements are
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o7 and o3 and off-diagonal element is oi02p. Let 0 = (02,03, p).
Obtain I,,(0) and [I,,(f)]~! and derive a nondegenerated asymptotic
distribution of the MLE of 6.

Let X1, ..., X,, be i.i.d. each with probability p as N(u,o?) and prob-
ability 1 — p as N(n,72), where 6 = (u,n, 02,72, p) is unknown.

(a) Show that the conditions in Theorem 4.16 are satisfied.

(b) Show that the likelihood function is unbounded.

(¢) Show that an MLE may be inconsistent.

Let X1, ..., X,, and Y7, ..., Y, be independently distributed as N (u, 02)
and N (u,7?), respectively, with unknown 6 = (u,o?,72). Find the
MLE of 6 and show that it is asymptotically efficient.

Find a nondegenerated asymptotic distribution of the MLE of (02, 02)
in Exercise 106.

Under the conditions in Theorem 4.18, prove (4.85) and (4.86).

Assume linear model (3.25) with e = N,(0,0%I,) and a full rank
Z. Apply Theorem 4.18 to show that the LSE 3 is asymptotically
efficient. Compare this result with that in Theorem 3.12.

Apply Theorem 4.18 to obtain the asymptotic distribution of the RLE
of 8 in (a) Example 4.35 and (b) Example 4.37.

Let X1, ..., X, be i.i.d. from the logistic distribution LG (p, o), p € R,
o > 0. Using Newton-Raphson and Fisher-scoring methods, find

(a) one-step MLE’s of ;1 when o is known;

(b) one-step MLE’s of o when p is known;

(c) one-step MLE’s of (u,0);

(d) y/n-consistent initial estimators in (a)-(c).

Under the GLM (4.55)-(4.58),

(a) show how to obtain a one-step MLE of §, if an initial estimator
BS)) is available;

(b) show that under the conditions in Theorem 4.18, the one-step
MLE satisfies (4.81) if ||[I,(8)]/2(8Y — B)| = 0, (1).

In Example 4.40, show that the conditions in Theorem 4.20 concern-
ing the likelihood function are satisfied.

Let X1,...,X,, be ii.d. from the logistic distribution LG(u, o) with
unknown ¢ € R and o > 0. Show that the conditions in Theorem
4.20 concerning the likelihood function are satisfied.



Chapter 5

Estimation in
Nonparametric Models

Estimation methods studied in this chapter are useful for nonparametric
models as well as for parametric models in which the parametric model
assumptions might be violated (so that robust estimators are required)
or the number of unknown parameters is exceptionally large. Some such
methods have been introduced in Chapter 3; for example, the methods
that produce UMVUE’s in nonparametric models, the U- and V-statistics,
the LSE’s and BLUE’s, the Horvitz-Thompson estimators, and the sample
(central) moments.

The theoretical justification for estimators in nonparametric models,
however, relies more on asymptotics than that in parametric models. This
means that applications of nonparametric methods usually require large
sample sizes. Also, estimators derived using parametric methods are asymp-
totically more efficient than those based on nonparametric methods when
the parametric models are correct. Thus, to choose between a parametric
method and a nonparametric method, we need to balance the advantage of
requiring weaker model assumptions (robustness) against the drawback of
losing efficiency, which results in requiring a larger sample size.

It is assumed in this chapter that a sample X = (X1, ..., X,,) is from a
population in a nonparametric family, where X;’s are random vectors.

5.1 Distribution Estimators

In many applications the c.d.f.’s of X;’s are determined by a single c.d.f.
F on R%; for example, X;’s are i.i.d. random d-vectors. In this section, we

319
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consider the estimation of F' or F'(t) for several ¢’s, under a nonparametric
model in which very little is assumed about F'.

5.1.1 Empirical c.d.f.’s in i.i.d. cases

For i.i.d. random variables Xj, ..., X,,, the empirical c.d.f. F,, is defined in
(2.28). The definition of the empirical c.d.f. based on X = (Xy,...,X,) in
the case of X; € R is analogously given by

1 n
Folt) = Z;I(,oo,t] (Xi), teR% (5.1)
where (—o0o,a] denotes the set (—oo,a;] X -+ X (—00,a4] for any a =

(a1,...,aq) € R Similar to the case of d = 1 (Example 2.26), F,(t) as
an estimator of F'(t) has the following properties. For any t € R%, nF,(t)
has the binomial distribution Bi(F'(t),n); F,(t) is unbiased with variance
F(t)[1 — F(t)]/n; Fo(t) is the UMVUE under some nonparametric mod-
els; and F,(t) is y/n-consistent for F(t). For any m fixed distinct points
1,y ty in RY, it follows from the multivariate CLT (Corollary 1.2) and
(5.1) that as n — oo,

\/n[(Fn(tl)a ey Fn(tm)) - (F(tl)v "'7F(tm))] —d Nm(07 Z)a (52)
where ¥ is the m x m matrix whose (¢, j)th element is
P(X1 € (7OO,tZ} n (7OO,tj]) — F(tZ)F(tj)

Note that these results hold without any assumption on F'.

Considered as a function of ¢, F}, is a random element taking values in
F, the collection of all c.d.f.’s on R%. As n — oo, \/n(F, — F) converges
in some sense to a random element defined on some probability space. A
detailed discussion of such a result is beyond our scope and can be found, for
example, in Shorack and Wellner (1986). To discuss some global properties
of F,, as an estimator of F' € F, we need to define a closeness measure
between the elements (c.d.f.’s) in F.

Definition 5.1. Let Fy be a collection of c.d.f.’s on R%.

(i) A function ¢ from Fy x Fy to [0, 00) is called a distance or metric on Fy
if and only if for any G; in Fy, (a) o(G1,G2) = 0 if and only if G1 = Gs;
(b) 0(G1,G2) = 0(Ga,Gh); and (c) o(G1,G2) < o(G1,Gs) + 0(G3, G2).
(ii) Let D = {c(G1 — G2) : c € R, G; € Fo, j = 1,2}. A function | - ||
from D to [0,00) is called a norm on D if and only if (a) |Al| = 0 if and
only if A = 0; (b) ||cAl = |¢|||A| for any A € D and ¢ € R; and (c)
A1 + Azl < ||A1]| + ||Az]| for any A; € D, j=1,2. 1
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Any norm ||-|| on D induces a distance given by o(G1,G2) = ||G1 —G2||.
The most commonly used distance is the sup-norm distance 0, i.e., the
distance induced by the sup-norm

||G1 — Gg”oo = Ssup ‘Gl(t) — Gg(t>|, Gj e F. (53)
teRd

The following result concerning the sup-norm distance between F,, and F
is due to Dvoretzky, Kiefer, and Wolfowitz (1956).

Lemma 5.1. (DKW’s inequality). Let F,, be the empirical c.d.f. based on
iid. Xi,..., X, from a c.d.f. F on R%.

(i) When d = 1, there exists a positive constant C' (not depending on F')
such that

P(0so(Fo, F)>2) <Ce™ ) 2>0,n=1,2,...

(ii) When d > 2, for any € > 0, there exists a positive constant C. 4 (not
depending on F') such that

P(00c(Fn, F) > 2) < Coge™ @797 25 0,n=1,2,.... 1

The proof of this lemma is omitted. The following results useful in
statistics are direct consequences of Lemma 5.1.

Theorem 5.1. Let F,, be the empirical c.d.f. based on i.i.d. Xq,..., X,
from a c.d.f. F on R%. Then

(1) Qoo(FnaF) —a.s. Oasn— 0]

(ii) E[v/nooo(Fn, F)]* = O(1) for any s > 0.

Proof. (i) From DKW’s inequality,

oo

Z Oco Fn,F >z)<oo.

Hence, the result follows from Theorem 1.8(v).
(ii) Using DKW’s inequality with z = y/*/y/n and the result in Exercise
55 of §1.6, we obtain that

EWnow(Fa )P = [ P(ng(FucF) > 9*%)dy

< Ce,d/ e dy
0
— 0(1)

aslongas2—¢e¢>0. 1
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Theorem 5.1(i) means that F,,(t) —.s F(t) uniformly in ¢ € R?, a
result stronger than the strong consistency of F,(t) for every ¢t. Theorem
5.1(ii) implies that /nos(Fn, F) = Op(1), a result stronger than the \/n-
consistency of F,,(t). These results hold without any condition on F'.

Let p > 1 and F, = {G € F: [||[t||’dG < oo}, which is the subset of
c.d.f’s in F having finite pth moments. Mallows’ distance between G; and
G in F), is defined to be

o, (G1, G2) = inf(E|| Yy — Ya||?)"/?, (5.4)
where the infimum is taken over all pairs of Y7 and Y5 having c.d.f.’s G; and
G, respectively. Let {G;:j=0,1,2,...} C F,. Then O, (Gj,Go) — 0 as
j — oo if and only if [ [|t[|PdG,; — [ [|t|[PdGo and G;(t) — Go(t) for every
t € R% at which Gy is continuous. It follows from Theorem 5.1 and the
SLLN (Theorem 1.13) that O, (Fn, F) —a.s 0if F € F,.

When d = 1, another useful distance for measuring the closeness be-
tween Fj, and F'is the L, distance or, induced by the Ly-norm (p > 1)

1/p

HGlfGQHLp = |:/G1(t)G2(t)pdt R Gj c F. (55)
A result similar to Theorem 5.1 is given as follows.

Theorem 5.2. Let F}, be the empirical c.d.f. based on i.i.d. random vari-
ables X1,..., X, from a c.d.f. F' € F;. Then

() oz, (Fos F) —as. 0

(i) Ely/ney, (Fn, F)] =0(1)if 1 <p < 2and [{F(t)[1-F)]}*/?dt < oo,
or p > 2.

Proof. (i) Since [o;, (Fy, F)]P < (000 (Fry F)|[P~ oy, (Fy, F)] and, by The-
orem 5.1, 9o (Fn, F') —a.s. 0, it suffices to show the result for p = 1. Let
Y; = [° [ ooy(X;) — F(t)|dt. Then Y1, ..., Y, are i.id. and

BYi| < /E\I(,m,t] (X;) — F(8)|dt = 2/F(t)[1 — P()dt,

which is finite under the condition that F' € F;. By the SLLN,

0 n
1
/ [Fo(t) = F(O)ldt = > Y; =4 E(Y1) =0. (5.6)
o n
Since [F,(t) — F(t)]- < F(t) and ffoo F(t)dt < oo (Exercise 55 in §1.6),
it follows from Theorem 5.1 and the dominated convergence theorem that
[ [Fu(t) — F(t)]—dt —q.. 0, which with (5.6) implies

/0 |Fo(t) — F(t)|dt —a.s. 0. (5.7)

— 00
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The result follows since we can similarly show that (5.7) holds with fi)oo

(oo}
replaced by [
(ii) When 1 < p < 2, the result follows from

Elor, (Fn, F)] < {/E|Fn(t) F(t)pdt}l/p

< {/[EFn(t) - F(t>|2}p/2dt}1/p
= {/{F )1 — ]}p/2dt}1/p

_ O( -1/ 2
where the two inequalities follow from Jensen’s inequality. When p > 2,

Elog, (Fa, F)] < E {los(Fu, )% (0, (Fa, F)P/7 |

. {E[@w<FmF>}“—2/”‘Z}1/q {Blov, (P )P

1/p
= {0( —(1- 2/11)11/2 { /|F )| dt}

— O(n~(1-2/P)/2) {711 /F(t)[l - F(t)}dt}l/p
= 0(n~1/?),

where ; + 11) = 1, the second inequality follows from Hélder’s inequality (see
(1.40) in §1.3.2), and the first equality follows from Theorem 5.1(ii). 1

5.1.2 Empirical likelihoods

In §4.4 and §4.5, we have shown that the method of using likelihoods pro-
vides some asymptotically efficient estimators. We now introduce some
likelihoods in nonparametric models. This not only provides another justi-
fication for the use of the empirical c.d.f. in (5.1), but also leads to a useful
method of deriving estimators in various (possibly non-i.i.d.) cases, some
of which are discussed later in this chapter.

Let Xq,..., X, be ii.d. with F' € F and Pg be the probability measure
corresponding to G € F. Given X; = z1,..., X, = x,, the nonparametric
likelihood function is defined to be the following functional from F to [0, 00):

- ﬁpg({xm, Ged. (5.8)
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Apparently, ¢(G) = 0 if Ps({z;}) = 0 for at least one i. The following
result, due to Kiefer and Wolfowitz (1956), shows that the empirical c.d.f.
F}, is a nonparametric maximum likelihood estimator of F'.

Theorem 5.3. Let X1, ..., X, be i.i.d. with F' € F and ¢(G) be defined by
(5.8). Then F,, maximizes ¢{(G) over G € F.

Proof. We only need to consider G € F such that /(G) > 0. Let ¢ € (0,1]
and F(c) be the subset of F containing G’s satisfying p; = Pg({x;}) > 0,
i =1,..,n, and >.I" ; p; = ¢. We now apply the Lagrange multiplier
method to solve the problem of maximizing ¢(G) over G € F(c). Define

n n
Hp1, oo pn, N) = [ [ i + A (Zpi - C> ;
i=1 i=1

where A is the Lagrange multiplier. Set

n

OH OH 2
— ; —c=0, =p1 i +A=0, =1,...,n.
oA ;p c op; = gp + j n

The solution is p; = ¢/n, i = 1,...,n, A = —(¢/n)" 1. It can be shown

(exercise) that this solution is a maximum of H(p1,...,pn, A) over p; > 0,
i=1,..,n, > p; = c. This shows that
LG) = "
Jnax H(G) = (¢/n)
which is maximized at ¢ = 1 for any fixed n. The result follows from
Pr, ({z;}) =n~1 for given X; =25, i=1,....,n. 1

From the proof of Theorem 5.3, F,, maximizes the likelihood ¢(G) in
(5.8) over p; >0,i=1,...,n, and Y .., p; = 1, where p; = P({x;}). This
method of deriving an estimator of F' can be extended to various situations
with some modifications of (5.8) and/or constraints on p;’s. Modifications
of the likelihood in (5.8) are called empirical likelihoods (Owen, 1988, 2001;
Qin and Lawless, 1994). An estimator obtained by maximizing an empirical
likelihood is then called a mazimum empirical likelihood estimator (MELE).
We now discuss several applications of the method of empirical likelihoods.

Consider first the estimation of F' with auxiliary information about F
(and i.i.d. X3,...,X,,). For instance, suppose that there is a known Borel
function u from R¢ to R* such that

/ w(@)dF =0 (5.9)

(e.g., some components of the mean of F' are 0). It is then reasonable to
expect that any estimate F' of F has property (5.9), ie., [u(z)dF = 0,
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which is not true for the empirical c.d.f. F}, in (5.1), since

/ u(z)dF, = 711 ZU(XZ-) #0

even if E[u(X1)] = 0. Using the method of empirical likelihoods, a natu-
ral solution is to put another constraint in the process of maximizing the
likelihood. That is, we maximize £(G) in (5.8) subject to

pi>0, i=1,..,n, Y pi=1, and Y pu(z;)=0, (5.10)
=1 =1

where p; = Pg({z;}). Using the Lagrange multiplier method and an argu-
ment similar to the proof of Theorem 5.3, it can be shown (exercise) that
an MELE of F is

F(t) = Zﬁil(foo,t] (Xi), (5.11)
i=1
where the notation (—oo, ] is the same as that in (5.1),
i =n 1+ A u(X)] Y i=1,..,n, (5.12)
and A\, € R? is the Lagrange multiplier satisfying
piu(X;) = =0. 5.13
;pu( ) n; 14+ A\Tu(X;) (5.13)

Note that £ reduces to F,ifu=0.
To see that (5.13) has a solution asymptotically, note that
0|1 I~ u(Xy)
log(1 4+ \u(X;)) | =
P3 [”; og( + ATu( ))] n; 14+ Amu(X;)
and

* |l . L u(X)[u(X))
ONOAT [n ;log(l A U(X»)} T ; 1+ ATu(X;)]2’

which is negative definite if Var(u(X7)) is positive definite. Also,

E { aa)\ [i ;log(l + )\Tu(Xi))l

Hence, using the same argument as in the proof of Theorem 4.18, we can
show that there exists a unique sequence {\,(X)} such that as n — oo,

I~ u(Xy)
P = — 1 n —p 0. .14
(n 21 (X 0) and  An = 0 (5.14)

i=1

} = Elu(X,)] = 0.

A=0
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Theorem 5.4. Let X, ..., X;, be i.id. with F' € F, u be a Borel function
on RY satisfying (5.9), and F be given by (5.11)-(5.13). Suppose that
U = Var(u(X1)) is positive definite. Then, for any m fixed distinct ¢1, ..., &,
in R4,

V[(E(t1)s ooy F(tm)) = (F(t1), s F(tm))] —a Nin(0,y,), (5.15)

where

S.=S-WU'W,
Y is given in (5.2), W= (W (t1), ..., W(tm)), W(tj)=Eu(X1)](— oo, (X1)],
and the notation (—oo,t] is the same as that in (5.1).
Proof. We prove the case of m = 1. The case of m > 2 is left as an
exercise. Let & = n™'> "  u(X;). It follows from (5.13), (5.14), and
Taylor’s expansion that
1 ,
= D ulXa)[w(Xa)] AL + 0, (1)].

=1

By the SLLN and CLT,
U=t = Ay + 0p(n~1/?).
Using Taylor’s expansion and the SLLN again, we have

1 & . 1
, D T—ooy(Xi) (nps — 1)
i=1

1 n
I (X —1
n & T ﬂlﬂm()@-)

1 « _
= D Tcoo g (XA u(X5) + 0p(n71/?)
=1

= —AW(t) +op(n~1/?)
= —aTUTW(t) + o, (n1/?).
Thus,

F(t) = F#) = Falt) = F(O) + | " I ae(X) (s = 1)
= Fn(t> — F(t) — *‘FU*lw(t) + Op(n71/2>
- 711 Z {T(—oo (X)) = F(t) = [u(X)"U "W ()} + 0p(n~ /7).

The result follows from the CLT and the fact that
Var([W(t)}TUflu(Xi)) =W U tvU W (t)
=[W@)UTtW(t)
= E{WO]"U ™ u(Xi) [~ (Xi)}
= Cov(I(— oo (Xs), WH]U u(X5)).
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Comparing (5.15) with (5.2), we conclude that F is asymptotically more
efficient than F,,.

Example 5.1 (Survey problems). An example of situations in which we
have auxiliary information expressed as (5.9) is a survey problem (Example
2.3) where the population P = {y1, ..., yn } consists of two-dimensional y;’s,
y; = (y1;,92;), and the population mean Yo = N~! Zjvzl y2; is known.
For example, suppose that y;; is the current year’s income of unit j in
the population and y9; is the last year’s income. In many applications
the population total or mean of y,;’s is known, for example, from tax
return records. Let Xi,..., X, be a simple random sample (see Example
2.3) selected from P with replacement. Then X;’s are i.i.d. bivariate random
vectors whose c.d.f. is

1 N
= N D Iso(w), (5.16)
j=1

where the notation (—oo, t] is the same as that in (5.1). If Y3 is known, then
it can be expressed as (5.9) with u(x1,22) = z2 — Y2. In survey problems
X,;’s are usually sampled without replacement so that Xi,..., X,, are not
ii.d. However, for a simple random sample without replacement, (5.8) can
still be treated as an empirical likelihood, given X;’s. Note that F in (5.16)
is the c.d.f. of X, regardless of whether X;’s are sampled with replacement.

If X = (X1,..., X,) is not a simple random sample, then the likelihood
(5.8) has to be modified. Suppose that m; is the probability that the ith
unit is selected (see Theorem 3.15). Given X = {y;,i € s}, an empirical

likelihood is

06 = [TPe{wp1 = T '™, (5.17)

€S 1€ES

where p; = Pg({y;}). With the auxiliary information (5.9), an MELE of F’
in (5.16) can be obtained by maximizing ¢(G) in (5.17) subject to (5.10).
In this case F' may not be the c.d.f. of X;, but the c.d.f.’s of X;’s are
determined by F' and m;’s. It can be shown (exercise) that an MELE is
given by (5.11) with

. 1 1
P = i gt/ 2 (>15)

and
u(yi) _
2t At~ (519

If m; = a constant, then the MELE reduces to that in (5.11)-(5.13). If
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u(z) = 0 (no auxiliary information), then the MELE is

Py =Y f(myz/zm

€S i€ES

which is a ratio of two Horvitz-Thompson estimators (§3.4.2). Some asymp-
totic properties of the MELE F' can be found in Chen and Qin (1993). 1

The second part of Example 5.1 shows how to use empirical likelihoods
in a non-i.i.d. problem. Applications of empirical likelihoods in non-i.i.d.
problems are usually straightforward extensions of those in i.i.d. cases. The
following is another example.

Example 5.2 (Biased sampling). Biased sampling is often used in applica-
tions. Suppose that n = nj +---+ng, k > 2; X;’s are independent random
variables; X7i,..., Xp, are iid. with F; and Xy, 4o qn; 41,50 Xngtoodny
are i.i.d. with the c.d.f.

/ ; wys1 (5)AF (s) / | wiar),

j=1,..,k—1, where w;’s are some nonnegative Borel functions. A simple
example is that X, ..., X, are sampled from F and X, 41,..., Xp,4n, are
sampled from F' but conditional on the fact that each sampled value exceeds
a given value xq (i.e., w2(s) = I(z,,00)(8)). For instance, X;’s are blood
pressure measurements; Xy, ..., X, are sampled from ordinary people and
Xny41y s Xn,+n, are sampled from patients whose blood pressures are
higher than zy. The name biased sampling comes from the fact that there
is a bias in the selection of samples.

For simplicity we consider the case of k£ = 2, since the extension to k > 3
is straightforward. Denote ws by w. An empirical likelihood is

TERS ) LT ) g

i=ni-+1 (S)

-n2 o,

szw(xz)] II»: H w(x;), (5.20)

i=1 i=ni+1

where p;, = Pa({z;}). An MELE of F can be obtained by maximizing the
empirical likelihood (5.20) subject to p; > 0, i = 1,...,n, and Y ;" p; =
1. Using the Lagrange multiplier method we can show (exercise) that an
MELE F is given by (5.11) with

pi = [n1 +now(Xy) /W)™, i=1,..m, (5.21)
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where w satisfies
n

; n1 + npw( ) i
An asymptotic result similar to that in Theorem 5.4 can be established
(Vardi, 1985; Qin, 1993).

If the function w depends on an unknown parameter vector 6, then the
method of profile empirical likelihood (see §5.1.4) can be applied.

Our last example concerns an important application in survival analysis.

Example 5.3 (Censored data). Let Ti,...,T,, be survival times that are
i.i.d. nonnegative random variables from a c.d.f. F', and C1,...,C}, be i.i.d.
nonnegative random variables independent of T;’s. In a variety of applica-
tions in biostatistics and life-time testing, we are only able to observe the
smaller of T; and C; and an indicator of which variable is smaller:

Xi = 1’Ilil’l{T‘i7 01}7 55 = I(O,Ci)(Ti>7 1= 1, ey N

This is called a random censorship model and C;’s are called censoring
times. We consider the estimation of the survival distribution F'; see
Kalbfleisch and Prentice (1980) for other problems involving censored data.

An MELE of F' can be derived as follows. Let z(;) < --- < x(,) be
ordered values of X;’s and d;) be the J-value associated with z ;). Consider
a c.d.f. G that assigns its mass to the points z(y), ..., x(,) and the interval
(%(n),00). Let p; = Pa({z;)}), i = 1,...,n, and ppy1 = 1 — G(2¢,)). An
MELE of F is then obtained by maximizing

1—6“)

n 5 n+1
G) = Hpi(l) Z Dj (5.22)
i=1 j=it1
subject to
n+1
pi >0, i=1,...,n+1, > pi=1. (5.23)
It can be shown (exercise) that an MELE is
n+1
()= pilio.g(X(), (5.24)
i=1

where X (g) =0, X(,,41) = 00, X(1) < --- < X, are order statistics, and

i—1

n
A~ 5() 6() . A~ A
bi = n,;+1 (1 - n7;+1 , t=1,...m, Pn+1 = 1- E pj-

j=1 j=
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The F in (5.24) can also be written as (exercise)

Py =1- T (1-.%%), (5.25)

X(i) <t

which is the well-known Kaplan-Meier (1958) product-limit estimator. Some
asymptotic results for F' in (5.25) can be found, for example, in Shorack
and Wellner (1986). 1

5.1.3 Density estimation

Suppose that X1, ..., X,, are i.i.d. random variables from F' and that F' is
unknown but has a Lebesgue p.d.f. f. Estimation of F' can be done by
estimating f, which is called density estimation. Note that estimators of F’
derived in §5.1.1 and §5.1.2 do not have Lebesgue p.d.f.’s.

Since f(t) = F'(t) a.e., a simple estimator of f(¢) is the difference

quotient

Fn n _Fn - \n
fulty = IO I e (5.26)

where F, is the empirical c.d.f. given by (2.28) or (5.1) with d = 1, and
{An} is a sequence of positive constants. Since 2n\, f,,(t) has the binomial
distribution Bi(F(t + A,) — F(t — An), n),

E[f.(®)] — f(t) if A, = 0asn— oo

and
Var(fn(t)) —0 if A, = 0 and n\, — .

Thus, we should choose ), converging to 0 slower than n~!. If we assume
that A\, — 0, n\, — oo, and f is continuously differentiable at ¢, then it
can be shown (exercise) that

msey, 1) (F) = 2{5\)” +o0 <nin> +0(\2) (5.27)

and, under the additional condition that nA3 — 0,
VIA[fu(t) = F(O)] —a N (0, 3 1(1)). (5.28)

A useful class of estimators is the class of kernel density estimators of
the form

=) Z:w (5X). (5.29)
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where w is a known Lebesgue p.d.f. on R and is called the kernel. If we
choose w(t) = 5Ij_1,1)(t), then f(t) in (5.29) is essentially the same as the
so-called histogram. The bias of f(t) in (5.29) is

B - 70 =, [w(57) fe)s - 50
= [wllite =) - @y

If f is bounded and continuous at ¢, then, by the dominated convergence
theorem (Theorem 1.1(iii)), the bias of f(t) converges to 0 as A, — 0; if f’
is bounded and continuous at ¢t and [ [t|w(t)dt < oo, then the bias of f(t)
is O(A,). The variance of f(t) is

Var(f(t)) = ni%Var (w <tj\f1>)
= g [ [0 ()] e
7711 HL /w (t,\nz)f(z)dz}

= o, e s o))

nA\p,

_wof(t) 1
o, +0(n)\n>

if f is bounded and continuous at ¢ and wy = [[w(t)]*dt < co. Hence, if
An — 0, nA, — oo, and f’ is bounded and continuous at ¢, then

wof(t)

A2).

mse ;) (F) =

Using the CLT (Theorem 1.15), one can show (exercise) that if A, — 0,
nA, — 00, and f is bounded and continuous at ¢, then

Vil f(t) = BIf (O]} —a N (0,wof(1)). (5.30)
Furthermore, if f’ is bounded and continuous at ¢, [ |t|w(t)dt < oo, and
nA3 — 0, then

VIAAELF(0)] = F0)} = O (Vndadn ) = 0

and, therefore, (5.30) holds with E[f(t)] replaced by f(¢).

Similar to the estimation of a c.d.f., we can also study global properties
of f, or f as an estimator of the density curve f, using a suitably defined
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Figure 5.1: Density estimates in Example 5.4

distance between f and its density estimator. For example, we may study
the convergence of sup,cx |f(t) — f(t)| or [|f(t) — f(t)|*dt. More details
can be found, for example, in Silverman (1986).

Example 5.4. An i.i.d. sample of size n = 200 was generated from N (0, 1).
Density curve estimates (5.26) and (5.29) are plotted in Figure 5.1 with the
curve of the true p.d.f. For the kernel density estimator (5.29), w(t) = e~
is used and A, = 0.4. From Figure 5.1, it seems that the kernel estimate
(5.29) is much better than the estimate (5.26). 1

There are many other density estimation methods, for example, the
nearest neighbor method (Stone, 1977), the smoothing splines (Wahba,
1990), and the method of empirical likelihoods described in §5.1.2 (see,
e.g., Jones (1991)), which produces estimators of the form

foy= Yo (5.
=1
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5.1.4 Semi-parametric methods

Suppose that the sample X is from a population in a family indexed by
(6,€), where 6 is a parameter vector, i.e., § € © C R¥ with a fixed positive
integer k, but £ is not vector-valued, e.g., £ is a c¢.d.f. Such a model is often
called a semi-parametric model, although it is nonparametric according to
our definition in §2.1.2. A semi-parametric method refers to a statistical
inference method that combines a parametric method and a nonparametric
method in making an inference about the parametric component 6 and the
nonparametric component £. In the following, we consider two important
examples of semi-parametric methods.

Partial likelihoods and proportional hazards models

The idea of partial likelihood (Cox, 1972) is similar to that of conditional
likelihood introduced in §4.4.3. To illustrate this idea, we assume that X
has a p.d.f. fy¢ and £ is also a vector-valued parameter. Suppose that X
can be transformed into a sequence of pairs (V1,Uy), ..., (Vin, Uyn) such that

m m
foe(x) = HgG(ui|U17U17~-~7ui—lyvi>] [HhQ,f(Ui|U17U17-~-7Ui—17ui—1> )
i=1 i=1

where gg(-|v1,u1,...,u;i—1,v;) is the conditional p.d.f. of U; given V; =
v, Uy = uy,...,Ui—1 = u;—1,V; = v;, which does not depend on ¢, and
ho.e(-|v1,u1, ..., Vi—1,ui—1) is the conditional p.d.f. of V; given V4 = v, Uy =
Uly ey Vim1 = v5-1,U;—1 = u;_1. The first product in the previous expres-
sion for fg ¢(x) is called the partial likelihood for 6.

When € is a nonparametric component, the partial likelihood for 8 can
be similarly defined, in which case the full likelihood fg ¢(z) should be re-
placed by a nonparametric likelihood or an empirical likelihood. As long as
the conditional distributions of U; given V;,Uq,...,U;—1,V;, i = 1,...,m, are
in a parametric family (indexed by #), the partial likelihood is parametric.

A semi-parametric estimation method consists of a parametric method
(typically the maximum likelihood method in §4.4) for estimating 6 and a
nonparametric method for estimating &.

To illustrate the application of the method of partial likelihoods, we
consider the estimation of the c.d.f. of survival data in the random censor-
ship model described in Example 5.3. Following the notation in Example
5.3, we assume that {71, ..., T} (survival times) and {C1,...,Cy} (censor-
ing times) are two sets of independent nonnegative random variables and
that X; = min{T;,C;} and §; = Io,c,)(13), i = 1,...,n, are independent
observations. In addition, we assume that there is a p-vector Z; of covariate
values associated with X; and §;. The situation considered in Example 5.3
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can be viewed as a special homogeneous case with Z; = a constant.

The survival function when the covariate vector is equal to z is defined
to be S,(t) = 1 — F.(t), where F} is the c.d.f. of the survival time T having
the same distribution as T;. Assume that f,(t) = F.(t) exists for all ¢t > 0.
The function At ) = fz( )/S.(t) is called the hazard function and the
function A, ( fo s)ds is called the cumulative hazard function, when
the covarlate Vector is equal to z. A commonly adopted model for A, is the
following proportional hazards model:

Az (t) = Ao (t)o(872), (5.31)

where ¢ is a known function (typically ¢(z) = e*), z is a value of the p-
vector of covariates, 3 € RP is an unknown parameter vector, and Ag(t) is
the unknown hazard function when the covariate vector is 0 and is referred
to as the baseline hazard function. Under model (5.31),

1= F.(t) = exp{=A. (1)} = exp{—¢(872)Ao(t)}.

Thus, the estimation of the c.d.f. F, or the survival function S, can be done
through the estimation of 3, the parametric component of model (5.31), and
Ag, the nonparametric component of model (5.31).

Consider first the estimation of 3 using the method of partial likelihoods.
Suppose that there are [ observed failures at times 71y < --- < T{;), where
(¢) is the label for the ith failure ordered according to the time to failure.
(Note that a failure occurs when §; = 1.) Suppose that there are m; items
censored at or after T(;) but before T(;; 1) at times T(; 1), ..., T, m:) (setting
T(O) = O) Let U; = (Z) and V; = (T(i)aT(i—l,l)a-- T(l 1,mi 1)) i=1,..,1
Then the partial 1ikelihood is

HP (0)|V1,Un, ..., Ui—1, Vi).

Since A, (t) = limA>07A_,0 A7IP,(t <T <t+ A|T > t), where P, denotes
the probability measure of T when the covariate is equal to z,
A (1) O Z(o)
PU; = ())|V1,U1, ..., Ui—1, Vi) = @ = :
ZjeR,; Az, (t:) ZjeRi (BT Z;)

where ¢; is the observed value of T(;), R; = {j : X; > t;} is called the risk
set, and the last equality follows from assumption (5.31). This leads to the
partial likelihood
l T n - i
0B = H (67 2w) &(B7 Z;)

i=1 ZjeRi (b(ﬁTZj) i=1 ZjeRi (b(ﬁTZj)

which is a function of the parameter [, given the observed data. The
maximum likelihood method introduced for parametric models in §4.4 can

)
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be applied to obtain a maximum partial likelihood estimator B of 5. It
is shown in Tsiatis (1981) that [ is consistent for § and is asymptotically
normal under some regularity conditions.

We now consider the estimation of Ag. First, assume that the covariate
vector Z; is random, (T3, C;, Z;) are i.i.d., and T; and C; are conditionally
independent given Z;. Let (T, C, Z) be the random vector having the same
distribution as (73, C;, Z;), X = min{T,C}, and § = I,c)(T). Under
assumption (5.31), it can be shown (exercise) that

Qty=PX >t,0=1)= //too Ao (8)p(87 2)H (s]2)dsdG(z), (5.32)

where H(s|z) = P(X > s|Z = z) and G is the c.d.f. of Z. Then

O~ o) [ o571 216() (53
and
No(t) = — 190 1 (5.34)
0 dt K(t)' '
where K (t) = E[¢(87Z)I1,5)(X)] (exercise). Consequently,

Ao(t>=/0 Xo(s)ds = — O i?((j;'

An estimator of Ag can then be obtained by substituting ¢ and K in the
previous expression by their estimators

1 n
= ;I{Xi>t,6i=1}

and

1l e -
= Z (37 Zi) 1100y (X)- (5.35)
1=1

This estimator is known as Breslow’s estimator. When Zi, ..., Z, are non-
random, we can still use Breslow’s estimator. Its asymptotic properties can
be found, for example, in Fleming and Harrington (1991).

Profile likelihoods

Let £(0,&) be a likelihood (or empirical likelihood), where 6 and £ are not
necessarily vector-valued. It may be difficult to maximize the likelihood
£(0, &) simultaneously over @ and £. For each fixed 6, let £(0) satisfy
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The function
Lp(0) = £(0,£(0))

is called a profile likelihood function for . Suppose that 6p maximizes
£p(6). Then 0p is called a maximum profile likelihood estimator of §. Note
that 6p may be different from an MLE of 6. Although this idea can be
applied to parametric models, it is more useful in nonparametric models,
especially when 6 is a parametric component.

For example, consider the empirical likelihood in (5.8) subject to the
constraints in (5.10). Sometimes it is more convenient to allow the function
u in (5.10) to depend on an unknown parameter vector § € R¥, where k < s.
This leads to the empirical likelihood 4(G) in (5.8) subject to (5.10) with
u(z) replaced by 9 (z,6), where 1 is a known function from R? x R* to R*.
Maximizing this empirical likelihood is equivalent to maximizing

Up1y oo prsws A, 0) = [ [ i+ w (1 - Zm) + ) PN (i, 0)
=1 =1 =1

where w and A are Lagrange multipliers. It follows from (5.12) and (5.13)
that w = n, p;(0) = n= 1 + [N\ (0)] ¢(x;,0)} ! with a A, (0) satisfying

02 11 D0 0(in0)

maximize £(p1, ...pn,w, A, 0) for any fixed 6. Substituting p; with > | p; =
1 into £(p1,...pn,w, A, 8) leads to the following profile empirical likelihood
for 6:

n

1

O =110 4 poroe.o (536)

If 0 is a maximum of £p (@) in (5.36), then  is a maximum profile empirical
likelihood estimator of # and the corresponding estimator of p; is p}(é) A
result similar to Theorem 5.4 and a result on asymptotic normality of 6 are
established in Qin and Lawless (1994), under some conditions on .

Another example is the empirical likelihood (5.20) in the problem of
biased sampling with a function w(z) = ws(x) depending on an unknown
6 € R*. The profile empirical likelihood for 6 is then

1
we (x;
n1 + nowg () /e H o(s),

1=ni1+1

0p(0) = w;’”?

n::jz

where wy satisfies

Z o
“— n1 + nawe(;) /e
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Finally, we consider the problem of missing data. Assume that X3, ..., X,
are i.i.d. random variables from an unknown c.d.f. F' and some X;’s are
missing. Let §; = 1 if X; is observed and §; = 0 if X; is missing. Suppose
that (X;,d;) are i.i.d. Let

If X; and 0; are independent, i.e., 7(z) = m does not depend on x, then the
empirical c.d.f. based on observed data, i.e., the c.d.f. putting mass r—! to
each observed X;, where r is the number of observed X;’s, is an unbiased
and consistent estimator of F', provided that = > 0. On the other hand,
if m(x) depends on z, then the empirical c.d.f. based on observed data is a
biased and inconsistent estimator of F. In fact, it can be shown (exercise)
that the empirical c.d.f. based on observed data is an unbiased estimator
of P(X; < z|6; = 1), which is generally different from the unconditional
probability F'(z) = P(X; < z).

If both 7 and F are in parametric models, then we can apply the method
of maximum likelihood. For example, if m(x) = mp(z) and F(z) = Fy(x)
has a p.d.f. fy, where 6 and 9 are vectors of unknown parameters, then a
parametric likelihood of (8, 4) is

0(0,9) = [ Tlmo (i) fo(x)) (1 —m)' =%,
i=1
where m = [ my(z)dF (). Suppose now that 7(z) = m(x) is the parametric
component and F' is the nonparametric component. Then an empirical
likelihood can be defined as

n

00,G) = [ [mo(@:) Pe({z: 1)) (1 =)' ="
i=1
subject to p; > 0, Y1, &ipi = 1, D1, dipi[me(xi) — ) = 0, where p; =
Po({zi}),i=1,...,n.
It can be shown (exercise) that the logarithm of the profile empirical
likelihood for (6, 7) (with a Lagrange multiplier) is

Z {6;1og (mo(z:)) +(1—6;) log(1—7)—d; log (1+A[mg(x;)—7]) } . (5.37)

Under some regularity conditions, Qin, Leung, and Shao (2002) show that
the estimators 6, #, and \ obtained by maximizing the likelihood in (5.37)
are consistent and asymptotically normal and that the empirical c.d.f.
putting mass p; = 7~ {1 + A[m;(X;) — 7]} " to each observed X; is con-
sistent for F'. The results are also extended to the case where a covariate
vector Z; associated with X; is observed for all 3.
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5.2 Statistical Functionals

In many nonparametric problems, we are interested in estimating some
characteristics (parameters) of the unknown population, not the entire pop-
ulation. We assume in this section that X;’s are i.i.d. from an unknown
c.d.f. F on R%. Most characteristics of F' can be written as T(F), where T
is a functional from F to R*®. If we estimate F' by the empirical c¢.d.f. F}, in
(5.1), then a natural estimator of T(F') is T(F,,), which is called a statistical
functional.

Many commonly used statistics can be written as T(F),) for some T.
Two simple examples are given as follows. Let T(F) = [ ¢(x)dF (z) with
an integrable function ¢, and T(F,) = [¢(z)dF,(z) = n ' Y1 ¥ (X;).
The sample moments discussed in §3.5.2 are particular examples of this kind
of statistical functional. For d =1, let T(F) = F~1(p) = inf{x : F(x) > p},
where p € (0,1) is a fixed constant. F~!(p) is called the pth quantile of F.
The statistical functional T(F},,) = F,, 1(p) is called the pth sample quantile.
More examples of statistical functionals are provided in §5.2.1 and §5.2.2.

In this section, we study asymptotic distributions of T(F,,). We focus
on the case of real-valued T (s = 1), since the extension to the case of s > 2
is straightforward.

5.2.1 Differentiability and asymptotic normality

Note that T(F},) is a function of the “statistic” F,,. In Theorem 1.12 (and
§3.5.1) we have studied how to use Taylor’s expansion to establish asymp-
totic normality of differentiable functions of statistics that are asymptot-
ically normal. This leads to the approach of establishing asymptotic nor-
mality of T(F},) by using some generalized Taylor expansions for functionals
and using asymptotic properties of F,, given in §5.1.1.

First, we need a suitably defined differential of T. Several versions of
differentials are given in the following definition.

Definition 5.2. Let T be a functional on Fy, a collection of c.d.f.’s on R¢,
and let D = {c¢(G1 — G2) :c€R, G; € Fp, j=1,2}.

(i) A functional T on Fy is Gateaux differentiable at G € Fy if and only if
there is a linear functional Lg on D (i.e., Lg(c1 A1 + c2Az2) = e1Lg(Ar) +
coLg(Ag) for any A; € D and ¢; € R) such that A € D and G +tA € Fy
imply

T(G +tA) — T(G)

}LH(I) . — LG'(A) =0.
(ii) Let o be a distance on Fy induced by a norm || - || on D. A functional

T on Fy is p-Hadamard differentiable at G € Fy if and only if there is a
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linear functional Lg on D such that for any sequence of numbers ¢; — 0
and {A,A;,j =1,2,...} C D satistying ||A; — A|| — 0 and G+t;A; € Fo,

L CERNES (e}

Jj—00 t;

— Lg(Aj) =0.

(iii) Let o be a distance on Fy. A functional T on Fy is g-Fréchet differen-
tiable at G € Fy if and only if there is a linear functional Lg on D such
that for any sequence {G;} satisfying G; € Fy and o(G;,G) — 0,

i TG = T(G) = Lf(Gj —G) _ 4 o

Jj—o0 Q(GJaG

The functional Lg is called the differential of T at G. If we define
h(t) = T(G 4 tA), then the Gateaux differentiability is equivalent to the
differentiability of the function h(t) at t = 0, and Lg(A) is simply A'(0). Let
d, denote the d-dimensional c.d.f. degenerated at the point z and ¢¢(x) =
Lg(d; — G). Then ¢p(x) is called the influence function of T at F', which
is an important tool in robust statistics (see Hampel (1974)).

If T is Gateaux differentiable at F, then we have the following expansion
(taking t = n~1/2 and A = \/n(F,, — F)):

Vn[T(Fy) = T(F)] = Lp (vn(Fy — F)) + R. (5.38)

Since L is linear,
1 n
Lr(Vn(F, — F)) = Jn > ¢r(Xi) —a N(0,0%) (5.39)
i=1

by the CLT, provided that
Elpr(X1)]=0 and 0% = E[¢pr(X1)]* < o0 (5.40)

(which is usually true when ¢p is bounded or when F' has some finite
moments). By Slutsky’s theorem and (5.39),

V[T(F,) — T(F)] —4 N(0,0%) (5.41)

if Ry, in (5.38) is 0p(1).

Unfortunately, Gateaux differentiability is too weak to be useful in es-
tablishing R,, = o0p(1) (or (5.41)). This is why we need other types of
differentiability. Hadamard differentiability, which is also referred to as
compact differentiability, is clearly stronger than Gateaux differentiability
but weaker than Fréchet differentiability (exercise). For a given functional
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T, we can first find L by differentiating h(t) = T(G+tA) at ¢ = 0 and then
check whether T is p-Hadamard (or g-Fréchet) differentiable with a given
0. The most commonly used distances on F( are the sup-norm distance
0~ and the L, distance o L, Their corresponding norms are given by (5.3)
and (5.5), respectively.

Theorem 5.5. Let X1, ..., X,, be i.i.d. from a c.d.f. F on R%.
(i) If T is poo-Hadamard differentiable at F', then R,, in (5.38) is 0,(1).
(i) If T is o-Fréchet differentiable at F' with a distance p satisfying

Vno(Fa, F) = 0,(1), (5.42)

then R, in (5.38) is 0p(1).

(iii) In either (i) or (i), if (5.40) is also satisfied, then (5.41) holds.
Proof. Part (iii) follows directly from (i) or (ii). The proof of (i) involves
some high-level mathematics and is omitted; see, for example, Fernholz
(1983). We now prove (ii). From Definition 5.2(iii), for any € > 0, there is
a 0 > 0 such that |R,| < ey/no(F,, F) whenever o(F,, F) < . Then

P (|Rn| > n) < P (Vno(Fn, F) > n/e) + P (e(Fo, F) = )
for any n > 0, which implies

limsup P (|R,| > n) < limsup P (vno(F,, F) > n/e).

The result follows from (5.42) and the fact that € can be made arbitrarily
small. 1

Since p-Fréchet differentiability implies p-Hadamard differentiability,
Theorem 5.5(ii) is useful when ¢ is not the sup-norm distance. There
are functionals that are not g.-Hadamard differentiable (and hence not
0co-Fréchet differentiable). For example, if d = 1 and T(G) = g([ zdG)
with a differentiable function g, then T is not necessarily o.,-Hadamard
differentiable, but is o, -Fréchet differentiable (exercise).

From Theorem 5.2, condition (5.42) holds for or, under the moment
conditions on F' given in Theorem 5.2.

Note that if p and ¢ are two distances on Fy satisfying 9(G1,G2) <
co(G1,G2) for a constant ¢ and all G; € Fy, then p-Hadamard (Fréchet)
differentiability implies p-Hadamard (Fréchet) differentiability. This sug-
gests the use of the distance gootp = 0o + oL, which also satisfies (5.42)
under the moment conditions in Theorem 5.2. The distance goo+p is useful
in some cases (Theorem 5.6).

A ps-Hadamard differentiable T having a bounded and continuous in-
fluence function ¢p is robust in Hampel’s sense (see, e.g., Huber (1981)).
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This is motivated by the fact that the asymptotic behavior of T(F},) is de-
termined by that of Ly (F, — F), and a small change in the sample, i.e.,
small changes in all z;’s (rounding, grouping) or large changes in a few z;’s
(gross errors, blunders), will result in a small change of T(F},) if and only
if ¢ is bounded and continuous.

We now consider some examples. For the sample moments related to
functionals of the form T(G) = [ (x)dG(z), it is clear that T is a linear
functional. Any linear functional is trivially p-Fréchet differentiable for any
0. Next, if F' is one-dimensional and F'(z) > 0 for all x, then the quantile
functional T(G) = G~Y(p) is 0eo-Hadamard differentiable at F' (Fernholz,
1983). Hence, Theorem 5.5 applies to these functionals. But the asymptotic
normality of sample quantiles can be established under weaker conditions,
which are studied in §5.3.1.

Example 5.5 (Convolution functionals). Suppose that F' is on R and for
a fixed z € R,

(@) = / G(z —y)dG(y), GeF.
If X; and X, are i.i.d. with c.d.f. G, then T(G) is the c.d.f. of X1 + Xo

(Exercise 47 in §1.6), and is also called the convolution of G evaluated at
z. Fort; — 0 and ||A; — Al — 0,

NG+ 1585) ~TC) =2 [ Ayl = dGly) + £ [ Ay~ 9)dds ()

(for A = c1G1 + 2Ga, Gj € Fy, and ¢; € R, dA denotes c1dG + c2dGa).
Using Lemma 5.2, one can show (exercise) that

[ Ait = nan ) = oq). (5.43)

Hence T is poo-Hadamard differentiable at any G € F with Lg(A) =
2 [ A(z—y)dG(y). The influence function, ¢p(z) =2 [(6,—F)(2—y)dF(y),
is a bounded function and clearly satisfies (5.40). Thus, (5.41) holds. If F
is continuous, then T is robust in Hampel’s sense (exercise). 1

Three important classes of statistical functionals, i.e., L-estimators, M-
estimators, and rank statistics and R-estimators, are considered in §5.2.2.

Lemma 5.2. Let A € D and h be a continuous function on R such that
J h(x)dA(z) is finite. Then

’ / h(z)dA ()| < ]y ]| Ao,
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where ||h||v is the variation norm defined by

Ially = lim SUPZ |h(z5) = h(zj-1)]

with the supremum being taken over all partitions a =z < --- < z,,, = b
of the interval [a,b]. 1

The proof of Lemma 5.2 can be found in Natanson (1961, p. 232).

The differentials in Definition 5.2 are first-order differentials. For some
functionals, we can also consider their second-order differentials, which pro-
vides a way of defining the order of the asymptotic biases via expansion
(2.37).

Definition 5.3. Let T be a functional on Fy and o be a distance on Fj.

(i) T is second-order p-Hadamard differentiable at G € Fy if and only if
there is a functional Qg on D such that for any sequence of numbers t; — 0
and {A,A;,j =1,2,...} C D satisfying ||A; — A|| — 0 and G+ t;A; € Fy,

T(G +t;45) — T(G) — Qa(t;A;)

lim =0,
o0 t?
where Qe (A) = [ [Ya(z,y)d(G + A)(z)d(G + A)(y) for a function ¢

)
satisfying ﬂzg( y) = Ya(y, ), [ [va(zy dG(x) dG(y) = 0, and D and
|| - || are the same as those in Deﬁmtlon 5.2(i).
(ii) T is second-order p-Fréchet differentiable at G € Fy if and only if, for
any sequence {G;} satisfying G, € Fy and o(G;,G) — 0,

T(G;) —T(G) — G; -G
lim ( J) (G) Q(;( J ) =0,
i—oo [0(G5,G)]
where Q¢ is the same as that in (i). 1
For a second-order differentiable T, we have the following expansion:

n[T(F,) — T(F)] = nV;, + Ry, (5.44)

where

Vo =Qr(F, — F) //wp x,y)dE, (x)dF,( ii (Xi, X;)

is a “V-statistic” (§3.5.3) whose asymptotic properties are given by The-
orem 3.16. If R, in (5.44) is o,(1), then the asymptotic behavior of
T(F,) — T(F) is the same as that of V,.
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Proposition 5.1. Let X, ..., X,, be i.i.d. from F.

(i) If T is second-order goo-Hadamard differentiable at F', then R,, in (5.44)
is op(1).

(ii) If T is second-order p-Fréchet differentiable at F' with a distance g
satisfying (5.42), then R, in (5.44) is 0,(1). 1

Combining Proposition 5.1 with Theorem 3.16, we conclude that if

6= var ([ wr(xinarm) > o

then (5.41) holds with o7 = 4¢; and amser(p, )(P) = 0%/n; if (; = 0, then
(o)
n[T(Fy) — T(F)] —a Z )‘J'X%j
j=1

and amser(p,)(P) = {2Var(Yp(X1, X2)) + [EYr (X1, X1)])?}/n?. In any
case, expansion (2.37) holds and the n=! order asymptotic bias of T'(F},) is
E’(/JF(Xth)/’I’L.

If T is also first-order differentiable, then it can be shown (exercise) that
o) =2 [ vr(e)dF (). (5.45)

Then (3 = 4~ 'Var(¢r(X1)) and ¢; = 0 corresponds to the case of ¢p(z) =
0. However, second-order p-Hadamard (Fréchet) differentiability does not
imply first-order p-Hadamard (Fréchet) differentiability (exercise).

The technique in this section can be applied to non-i.i.d. X;’s when the
c.d.f.’s of X;’s are determined by an unknown c.d.f. F, provided that results
similar to (5.39) and (5.42) (with F), replaced by some other estimator F')
can be established.

5.2.2 L-, M-, and R-estimators and rank statistics

Three large classes of statistical functionals based on i.i.d. X;’s are studied
in this section.

L-estimators

Let J(t) be a Borel function on [0, 1]. An L-functional is defined as
(G) = / 2I(G@)dGE), G eFo, (5.46)

where Fy contains all c.d.f.’s on R for which T is well defined. For X1, ..., X,
iid. from F € Fy, T(F,) is called an L-estimator of T(F).
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Example 5.6. The following are some examples of commonly used L-
estimators.

(i) When J =1, T(F,,) = X, the sample mean.

(ii) When J(t) = 4t — 2, T(F,,) is proportional to Gini’s mean difference.
(iii) When J(t) = (8 — &) '1(q,5)(t) for some constants a < 3, T(F,) is
called the trimmed sample mean. 1

For an L-functional T, it can be shown (exercise) that

T(G) - T(F) = / op(2)d(G — F)(z) + R(G.F),  (5.47)
where
or(z) = — / (6, — F)(9)J (F(y))dy, (5.48)
R(G,F) = - / We(2)[G(z) — F(x))dz,
and

[G(2) = F(2)] 7 [ J@dt = J(F(z))  Glx) # F(x)
0 G(z) = F(x).

A sufficient condition for (5.40) in this case is that J is bounded and F
has a finite variance (exercise). However, (5.40) is also satisfied if ¢p is
bounded. The differentiability of T can be verified under some conditions
on J.

Theorem 5.6. Let T be an L-functional defined by (5.46).

(i) Suppose that J is bounded, J(t) = 0 when ¢ € [0,a] U [3,1] for some
constants a < 3, and that the set D = {x : J is discontinuous at F(z)}
has Lebesgue measure 0. Then T is poo-Fréchet differentiable at F' with the
influence function ¢ given by (5.48), and ¢ is bounded and continuous
and satisfies (5.40).

(ii) Suppose that J is bounded, the set D in (i) has Lebesgue measure 0,
and J is continuous on [0, a] U [B, 1] for some constants aw < $. Then T is
Oco+1-Fréchet differentiable at F'.

(iii) Suppose that |J(t) — J(s)| < C|t — s[P~!, where C > 0 and p > 1 are
some constants. Then T is o Lp—Fréchet differentiable at F'.

(iv) If, in addition to the conditions in part (i), J’ is continuous on [a, 3],
then T is second-order g..-Fréchet differentiable at F' with

(e, y) = 6p(z) + dr(y) — / (62 — F)(2)(8y — F)(2)J' (F(2))de.

(v) Suppose that J’ is continuous on [0,1]. Then T is second-order o, -
Fréchet differentiable at F' with the same ¢p given in (iv).
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Proof. We prove (i)-(iii). The proofs for (iv) and (v) are similar and are
left to the reader.

(i) Let G; € F and poo(Gj, F') — 0. Let ¢ and d be two constants such that
F(c) > f and F(d) < a. Then, for sufficiently large j, G;(z) € [0,a]U[B,1]
if x > ¢ or z < d. Hence, for sufficiently large 7,

7(Gs.F) = | [ Wo a6 - P w)as

< 0(Gyo ) [ We (@)l
d

Since J is continuous at F'(x) when x ¢ D and D has Lebesgue measure
0, Wg,;(z) — 0 a.e. Lebesgue. By the dominated convergence theorem,
[ IWa, (z)|dz — 0. This proves that T is goo-Fréchet differentiable. The
assertions on ¢ can be proved by noting that

or () = - /d (6, — F)(y)J(F(y))dy.

(ii) From the proof of (i), we only need to show that

‘/AWG,-(CC)(G]‘—F)(Q;‘)dx /le(Gj,F)—m, (5.49)

where A = {z : F(z) < a or F(z) > f}. The quantity on the left-hand
side of (5.49) is bounded by sup,¢ 4 [Wg, ()|, which converges to 0 under
the continuity assumption of J on [0, U [3, 1]. Hence (5.49) follows.

(iii) The result follows from

IR(G.F)| £ C [16() - F@)Pds = O (jor, (G.F)P)
and the fact that p > 1. 1

An L-estimator with J(¢) = 0 when ¢ € [0,a]U[3, 1] is called a trimmed
L-estimator. Theorem 5.6(i) shows that trimmed L-estimators satisfy (5.41)
and are robust in Hampel’s sense. In cases (ii) and (iii) of Theorem 5.6,
(5.41) holds if Var(X;) < oo, but T(F,) may not be robust in Hampel’s
sense. It can be shown (exercise) that one or several of (i)-(v) of Theorem
5.6 can be applied to each of the L-estimators in Example 5.6.

M-estimators

Let p(z,t) be a Borel function on R% x R and © be an open subset of R.
An M-functional is defined to be a solution of

/ o, T(G))dCi () = min / p(2,0)dG(z), G e Fo, (5.50)
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where F contains all ¢.d.f.’s on R? for which the integrals in (5.50) are well
defined. For Xq,..., X, i.i.d. from F € Fy, T(F,,) is called an M-estimator
of T(F'). Assume that ¢ (z,t) = dp(x,t)/0t exists a.e. and

/w z,t)dG(z 86 /p(x,t)dG(x). (5.51)
Then A¢(T(G)) =

Example 5.7. The following are some examples of M-estimators.

(i) If p(z,t) = (z — t)?/2, then Y(z,t) = t — z; T(G) = [2dG(z) is the
mean functional; and T(F,,) = X is the sample mean.

(ii) If p(z,t) = |x — t|?/p, where p € [1,2), then

v ={

When p = 1, T(F,,) is the sample median. When 1 < p < 2, T(F},) is called
the pth least absolute deviations estimator or the minimum L, distance
estimator.

(iii) Let Fo = {fo : 0 € O} be a parametric family of p.d.f.’s with © C R
and p(x,t) = —log fi(x). Then T(F,) is an MLE. This indicates that M-
estimators are extensions of MLE’s in parametric models.

(iv) Let C > 0 be a constant. Huber (1964) considers

=12  |z—t|<C
p(z,t) =
5C? |z —t| > C

|z —t|P~! r<t
—|z =ttt x>t

with
t—x |z —t| < C

M%ﬂ:{o lz—t| > C.

The corresponding T(F},) is a type of trimmed sample mean.
(v) Let C > 0 be a constant. Huber (1964) considers

Yo —1)? |z —t| <C
pWJ*:{éx—t—;CZ e —1|>C
with
C t—ax>C
Yz, t) =< t—=x |z —t| <C
-C t—x < —C.
The corresponding T(F,) is a type of Winsorized sample mean.
(vi) Hampel (1974) considers 9(x,t) = 1o(t — x) with ¢o(s) = —tho(—s)
and
S 0<s<a

a a<s<b
Vol8) =9 el g <
0 s> c,
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where 0 < a < b < ¢ are constants. A smoothed version of v is

sin(as) 0<s<m/a

Yuls) = { 0 s> 7/a.

For bounded and continuous 1, the following result shows that T is 0o-
Hadamard differentiable with a bounded and continuous influence function
and, hence, T(F},) satisfies (5.41) and is robust in Hampel’s sense.

Theorem 5.7. Let T be an M-functional defined by (5.50). Assume that
1 is a bounded and continuous function on RY x R and that Ap(t) is
continuously differentiable at T(F) and N (T(F)) # 0. Then T iS goo-
Hadamard differentiable at F' with

¢r(z) = —¢(z, T(F))/Np(T(F)).

Proof. Let t; — 0, Aj e D, HAJ - A”oo — 0, and Gj =F+ tjAj eF.
Since A\q(T(G)) =0,

IAR(T(G5)) = Ar(T(F))| =

. / (e, T(G))dA ()| — 0

by ||A; — Al — 0 and the boundedness of 1. Note that N (T(F)) # 0.
Hence, the inverse of Ap(t) exists and is continuous in a neighborhood of
0 = Ap(T(F)). Therefore,

T(G;) — T(F) — 0. (5.52)

L?;>hF(T(F>> = Ap(T(F), he(t) = Pr(t) = Ar(T(E)]/[E = TUE)] if ¢ #
T )
1 1

Ry = / (@, T(F))dA; () { Ne(T(F))  he(T(G))]”

1
Roy= ) iy B TG:) = (e (), o)
and
Lp(A) = XF(;(F)) /w(x,T(F))dA(w), AeD.
Then

T(Gj) — T(F) = —Lp(t;A;) + t;(R1j — Rj).

By (5.52), ||]Aj; — A]lec — 0, and the boundedness of ¢, Rj1 — 0. The
result then follows from Rs; — 0, which follows from [|A; — Aljoc — 0 and
the boundedness and continuity of ¢ (exercise). 1
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Some 1 functions in Example 5.7 satisfy the conditions in Theorem
5.7 (exercise). Under more conditions on 1, it can be shown that an M-
functional is goo-Fréchet differentiable at F' (Clarke, 1986; Shao, 1993).
Some M-estimators that satisfy (5.41) but are not differentiable functionals
are studied in §5.4.

Rank statistics and R-estimators

Assume that X1,...,X,, are i.i.d. from a c.d.f. F' on R. The rank of X;
among Xi,...,X,, denoted by R;, is defined to be the number of X;’s
satisfying X; < X;, i = 1,...,n. The rank of | X;| among |X1], ..., |X,| is
similarly defined and denoted by R;. A statistic that is a function of R;’s
or R;’s is called a rank statistic. For G € F, let

G(z) = G(z) — G((-2)-), x>0,
where g(x—) denotes the left limit of the function g at . Define a functional
T by
(G) = / J(G@)dG(), GedF, (5.53)
0

where J is a function on [0, 1] with a bounded derivative J’. Then

T(F,) = /O " J(F (@) dFu (@) = 711 Z T (%) To.o0) (X2)

is a (one-sample) signed rank statistic. If J(t) = ¢, then T(F,,) is the well-
known Wilcoxon signed rank test statistic (§6.5.1).

Statistics based on ranks (or signed ranks) are robust against changes in
values of x;’s, but may not provide efficient inference procedures, since the
values of x;’s are discarded after ranks (or signed ranks) are determined.

It can be shown (exercise) that T in (5.53) is goo-Hadamard differentiable
at F' with the differential

Lp(A) = / T (B (@) A@)dF(z) + / J(E@)dA(D),  (5.54)
0 0
where A € D and A(z) = A(z) — A((—z)—).

These results can be extended to the case where Xi,..., X, are i.i.d.
from a c.d.f. F on R?. For any c.d.f. G on R?, let J be a function on [0, 1]
with J(1 —t) = —J(t) and a bounded J’,

G(y) = [G(y,0) + G(c0,)]/2,  yER,
and

(G) = / J(G(y))dG (y, o). (5.55)
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Let X; = (Y;,Z;), R; be the rank of Y;, and U; be the number of Z;’s
satisfying Z; <Y;, i =1,...,n. Then
_ 1 & LU
w5 = [ IEW)E ) = 5 ()

=1

is called a two-sample linear rank statistic. It can be shown (exercise) that
T in (5.55) is poo-Hadamard differentiable at F' with the differential

Li(A) = / J'(F(y))A(y)dF (y, 00) + / JE@)dA(y. ), (5.56)

where A(y) = [A(y, 0) + A(oo, )]/2.

Rank statistics (one-sample or two-sample) are asymptotically normal
and robust in Hampel’s sense (exercise). These results are useful in testing
hypotheses (§6.5).

Let F be a continuous c.d.f. on R symmetric about an unknown pa-
rameter 6§ € R. An estimator of 8 closely related to a rank statistic can be
derived as follows. Let X; be i.i.d. from F and W; = (X;, 2t — X;) with a
fixed t € R. The functional T in (5.55) evaluated at the c.d.f. of W; is equal

to
Ap(t) = / J (F”)“;F(?t‘“) dF (z). (5.57)

If J is strictly increasing and F is strictly increasing in a neighborhood of
6, then Ap(t) = 0 if and only if ¢t = 6 (exercise). For G € F, define T(G) to
be a solution of

/J (G(x)+1—G2(2T(G)—$)) dG(z) = 0. (5.58)

T(F,) is called an R-estimator of T(F) = 6. When J(t) =t — ) (which is
related to the Wilcoxon signed rank test), T(F,,) is the well-known Hodges-
Lehmann estimator and is equal to any value between the two middle points
of the values (X; + X;)/2,i=1,..,n,j=1,..,n

Theorem 5.8. Let T be the functional defined by (5.58). Suppose that
F is continuous and symmetric about 6, the derivatives F’ and J’ exist,
and J’ is bounded. Then T is go-Hadamard differentiable at F with the
influence function

J (F (x))
= [ e @) P @ar )
Proof. Since F is symmetric about 0, F(z) + F(20 — z) = 1. Under

the assumed conditions, Ap(t) is continuous and [ J'(F(z))F'(z)dF(z) =
—Nz(0) # 0 (exercise). Hence, the inverse of A\p exists and is continuous
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at 0 = Ap(0). Suppose that t; — 0, A; € D, ||A; — Al — 0, and
Gj = F+tjAj € F. Then
1165, = I(F . 0))dCs () — 0
uniformly in ¢, where G(x,t) = [G(z) + 1 — G(2t — x)]/2, and
[ @6, - ) = [(F - 6)@) T (Fla0)iF .0 - 0
uniformly in t. Let Ag(t) be defined by (5.57) with F replaced by G. Then

Aa, (t) = Ap(t) = 0

uniformly in ¢. Thus, Ap(T(G;)) — 0, which implies

T(G;) — T(F) = 6. (5.59)
Let {a(t) = [ J(F(x,1))dG(x), hp(t) = [Ar(t) - /\F(e)]/(t —0)if t # 0,
and hp(0) = Np(0). Then T(G;) — T(F) fqbp d(Gj — F)(z) is equal to

1 F Gj (0)
¢6,(0) [A'Fw) - hF<T<Gj>>] * - (560

Note that
£,(0) = [ JF@)IG; (@) = t; [ J(P(2)dd ).

By (5.59), Lemma 5.2, and ||Aj; — Al|oc — 0, the first term in (5.60) is o(t;).
The second term in (5.60) is the sum of

_hp(;zaj)) /[J(F(f"‘aT(Gj))) — J(F(2))]dA; (x) (5.61)
and
1
hie(1(G,)) / [J(F(2,T(G)) = J (G2, T(G)dG; (). (5.62)

From the continuity of J and F, the quantity in (5.61) is o(¢;). Similarly,
the quantity in (5.62) is equal to

1
hr(T(G5))

From Taylor’s expansion, (5.59), and ||A; — Aljoc — 0, the quantity in
(5.63) is equal to

/[J(F(x,T(Gj))) — J(G(2,T(G;)))|dF (x) + o(t;).  (5.63)

tj

hr(T(G))) / J'(F(@)A(z, 0)dF () + olt;)- (5.64)
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Since J(1 —t) = —J(t), the integral in (5.64) is 0. This proves that the
second term in (5.60) is o(¢;) and thus the result. 1

It is clear that the influence function ¢ for an R-estimator is bounded
and continuous if J and F are continuous. Thus, R-estimators satisfy (5.41)
and are robust in Hampel’s sense.

Example 5.8. Let J(t) =t — . Then T(F,) is the Hodges-Lehmann esti-
mator. From Theorem 5.8, ¢r(z) = [F(z)— 3]/7, where v = [ F/(z)dF ().
Since F(X;) has a uniform distribution on [0, 1], ¢#(X1) has mean 0 and
variance (1272)~1. Thus, /n[T(F,) — T(F)] —a N(0,(124*)71).

5.3 Linear Functions of Order Statistics

In this section, we study statistics that are linear functions of order statis-
tics X (1) < --- < X(5) based on independent random variables Xj, ..., X,
(in §5.3.1 and §5.3.2, X1, ..., X,, are assumed i.i.d.). Order statistics, first
introduced in Example 2.9, are usually sufficient and often complete (or
minimal sufficient) for nonparametric families (Examples 2.12 and 2.14).

L-estimators defined in §5.2.2 are in fact linear functions of order statis-
tics. If T is given by (5.46), then

(F,) = / 2 (F(2))d ZJ ) X, (5.65)

since Fy,(X(;)) = i/n, i =1,...,n. If J is a smooth function, such as those
given in Example 5.6 or those satisfying the conditions in Theorem 5.6, the
corresponding L-estimator is often called a smooth L-estimator. Asymp-
totic properties of smooth L-estimators can be obtained using Theorem 5.6
and the results in §5.2.1. Results on L-estimators that are slightly different
from that in (5.65) can be found in Serfling (1980, Chapter 8).

In §5.3.1, we consider another useful class of linear functions of order
statistics, the sample quantiles described in the beginning of §5.2. In §5.3.2,
we study robust linear functions of order statistics (in Hampel’s sense)
and their relative efficiencies w.r.t. the sample mean X, an efficient but
nonrobust estimator. In §5.3.3, extensions to linear models are discussed.

5.3.1 Sample quantiles

Recall that G=1(p) is defined to be inf{z : G(z) > p} for any c.d.f. G on
R, where p € (0,1) is a fixed constant. For ii.d. Xi,..., X, from F, let
0, = F~1(p) and 6, = F,, 1(p) denote the pth quantile of F' and the pth

n
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sample quantile, respectively. Then

Hp = Can(mp) -+ (1 — Cnp)X(mp+1)7 (566)

where m,, is the integer part of np, ¢, = 1 if np is an integer, and c¢,p = 0
if np is not an integer. Thus, 6, is a linear function of order statistics.

Note that F'(6,—) < p < F(,) and F is not flat in a neighborhood of
0, if and only if p < F(6, + ¢€) for any € > 0.

Theorem 5.9. Let Xi,..., X, be ii.d. random variables from a c.d.f. F'
satisfying p < F(0,+¢) for any € > 0. Then, for everye > 0andn =1,2,...,

P(|6, — 6,] > €) < 2Ce 2%, (5.67)

where J, is the smaller of F'(6, +¢) —p and p — F'(6,, —€) and C' is the same

constant in Lemma 5.1(i).
Proof. Let € > 0 be fixed. Note that G(z) > t if and only if z > G~1(¢t)
for any c.d.f. G on R (exercise). Hence

P(0,>0,+¢) =P(p> F(0,+¢))

= P(F(0p+¢€) — Fa(0,+€) > F(6, +¢€) —p)

< P(Qoo(Fn7F) > 56)

< CB_QWSS
where the last inequality follows from DKW’s inequality (Lemma 5.1(3)).
Similarly,

P(ép <Op,—¢) < Ce2n0.

This proves (5.67). 1

Result (5.67) implies that 0, is strongly consistent for 6, (exercise) and
that 6, is y/n-consistent for 0, if F'(0,—) and F'(6,+) (the left and right
derivatives of F' at 6),) exist (exercise).

The exact distribution of ép can be obtained as follows. Since nF),(t)
has the binomial distribution Bi(F'(t),n) for any t € R,

P(0y <t) = P(Fa(t) > p)
- (1w -ror 5.68)
i=l,,

where [, = np if np is an integer and I, = 1+ the integer part of np if np
is not an integer. If I’ has a Lebesgue p.d.f. f, then ép has the Lebesgue
p.d.f.

n—1
l,—1

oult) = n( ) FO - PO f. (5.69)
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The following result provides an asymptotic distribution for \/n(ép —0,).

Theorem 5.10. Let X4,..., X,, be i.i.d. random Variables from F.

(i) If F(6,) = p, then P(y/n(d, — 6,) < 0) — ®(0) = 1, where ® is the
c.d.f. of the standard normal.

(ii) If F is continuous at 6, and there exists F’(6,—) > 0, then

P(Vn(b, —6,) <t) — ®(t/oy), t<0,

where 0, = /p(1 — p)/F'(6,-).
(iii) If F' is continuous at 6, and there exists F’(6,4) > 0, then

P(Vn(y —0,) <t) — ®(t/o}), >0,

where o = \/p(1 — p)/F'(0,+).
(iv) If F'(6,) exists and is positive, then

\/n(ép - 911) —d N(O’ 0%‘)7 (570)

where op = \/p(1 — p)/F'(6)).
Proof. The proof of (i) is left as an exercise. Part (iv) is a direct conse-
quence of (i)-(iii) and the proofs of (ii) and (iii) are similar. Thus, we only
give a proof for (iii).

Let t > O> pnt = F(gp + tg;n71/2)7 Cnt = \/Tl pnt - /\/pnt pnt
and Z,; = [By, (pnt)—npnt]/\/npnt(l — pnt), where By, (q ) denotes a random
variable having the binomial distribution Bi(g,n). Then

P(0, <0, +tofn ) = P(p < F(0, + tofpn~/?))
= P(Znt > *Cnt)-

Under the assumed conditions on F, p,; — p and ¢,y — t. Hence, the
result follows from

P(Znt < _Cnt) — (I)(—Cnt) — 0.

But this follows from the CLT (Example 1.33) and Pdlya’s theorem (Propo-
sition 1.16). 1

If both F'(6,—) and F’(6,+) exist and are positive, but F'(6,—) #
F'(6,+), then the asymptotic distribution of /n(6, — 6,) has the c.d.f.
(/05 (—00,0)(t) + ®(t/07)][0,00)(t), a mixture of two normal distribu-
tions. An example of such a case when p = % is

Fa) = alpg 1) (2) + 22 — )11 3)(2) + I3 o) (@)
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When F'(8,—) = F'(6p+) = F'(6,) > 0, (5.70) shows that the asymptotic
distribution of /n(f, —6,) is the same as that of \/n[F,,(6,)— F(8,)]/F’(6,)
(see (5.2)). The following result reveals a stronger relationship between
sample quantiles and the empirical c.d.f.

Theorem 5.11 (Bahadur’s representation). Let X7, ..., X, be i.i.d. random
variables from F. Suppose that F’(6,) exists and is positive. Then

0, =0, + F(epl)w—(ag(ep) +0p (;n) (5.71)

Proof. Let t € R, Oy = 0, +tn"Y2, Z,(t) = /n[F (Ont) — Fn(00t)]/ F'(6,),
and Uy, (t) = /n[F(0n) — F(0,)]/F'(8,). Tt can be shown (exercise) that

Zn(t) = Zn(0) = op(1). (5.72)
Note that |p — F},(6,)] < n~'. Then

Un(t) = \/n[F(ent) —p+p— Fn(ép)]/F/(ep>
= Vn[F(6n1) — pl/F'(6,) + O(n~"/?)
— . (5.73)

Let &, = \/n(ép —0,). Then, for any t € R and € > 0,

P(6 < 1.24(0) > t+€) = P(Za(t) < Un(t), Za(0) > £+ ¢)

+P(|Un(t) — t] > €/2)
— 0
by (5.72) and (5.73). Similarly,
P(& > t+e€ Zy(0) < t) — 0. (5.75)

It follows from the result in Exercise 128 of §1.6 that

fn - Zn(o) = Op(1)7

which is the same as (5.71). 1

If F' has a positive Lebesgue p.d.f., then ép viewed as a statistical func-
tional (§5.2) is pso-Hadamard differentiable at F' (Fernholz, 1983) with the
influence function

¢r () = [F(bp) = I—oc,0,)(2)]/F(0p)-
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This implies result (5.71). Note that ¢ is bounded and is continuous
except when x = 0,.

Corollary 5.1. Let Xi,..., X,, be i.i.d. random variables from F' having
positive derivatives at 8, where 0 < p; < --- < p, < 1 are fixed constants.
Then

V(Opys s 0p) = Bpys s 0p.)] —a Non(0, D),

where D is the m x m symmetric matrix whose (i, j)th element is

pi(l =)/ [F'(6p ) F'(0p,)], i< W

The proof of this corollary is left to the reader.

Example 5.9 (Interquartile range). One application of Corollary 5.1 is the
derivation of the asymptotic distribution of the interquartile range 9A0.75 —
fo.25. The interquartile range is used as a measure of the variability among
X,’s. It can be shown (exercise) that

Vn[(Bo.75 — 00.25) — (Bo.75 — 0o.25)] —a N(0,0%)
with

3 3 1

16[F" (0o.75)]? * 16[F'(A.25))2  8F'(Bo.75)F"(60.25) '

2 _
Op =

There are some applications of using extreme order statistics such as
X1y and X (). One example is given in Example 2.34. Some other examples
and references can be found in Serfling (1980, pp. 89-91).

5.3.2 Robustness and efficiency

Let F' be a c.d.f. on R symmetric about § € R with F’(6) > 0. Then
0 = 6y.5 and is called the median of F. If F' has a finite mean, then 6 is also
equal to the mean. In this section, we consider the estimation of 6 based
on i.i.d. X;’s from F.

If F' is normal, it has been shown in previous chapters that the sample
mean X is the UMVUE, MRIE, and MLE of 6, and is asymptotically
efficient. On the other hand, if F' is the c.d.f. of the Cauchy distribution
C(0,1), it follows from Exercise 78 in §1.6 that X has the same distribution
as X1, i.e., X is as variable as X, and is inconsistent as an estimator of 6.

Why does X perform so differently? An important difference between
the normal and Cauchy p.d.f.’s is that the former tends to 0 at the rate
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e=7"/2 ag |z| — oo, whereas the latter tends to 0 at the much slower rate
x~2, which results in [ |z|dF(z) = co. The poor performance of X in the
Cauchy case is due to the high probability of getting extreme observations
and the fact that X is sensitive to large changes in a few of the X;’s. (Note
that X is not robust in Hampel’s sense, since the functional J xdG(x) has
an unbounded influence function at F.) This suggests the use of a robust
estimator that discards some extreme observations. The sample median,
which is defined to be the 50%th sample quantile fo.5 described in §5.3.1,

is insensitive to the behavior of F as |z| — oo.

Since both the sample mean and the sample median can be used to
estimate , a natural question is when is one better than the other, using
a criterion such as the amse. Unfortunately, a general answer does not
exist, since the asymptotic relative efficiency between these two estimators
depends on the unknown distribution F'. If F' does not have a finite vari-
ance, then Var(X) = oo and X may be inconsistent. In such a case the
sample median is certainly preferred, since fo.5 is consistent and asymptot-
ically normal as long as F’(0) > 0, and may have a finite variance (Exercise
60). The following example, which compares the sample mean and me-
dian in some cases, shows that the sample median can be better even if
Var(X;) < oo.

Example 5.10. Suppose that Var(X;) < co. Then, by the CLT,
Vn(X —6) —q N(0, Var(X1)).
By Theorem 5.10(iv),
Vn(fos —0) —a N(0,[2F'(0)]72).
Hence, the asymptotic relative efficiency of o5 wr.t. X is
e(F) = A[F'(9))*Var(X,).

(i) If F is the c.d.f. of N(#,0?), then Var(X;) = o2, F'(f) = (v/270)™ ",
and e(F) =2/m = 0.637.

(i) If F is the c.d.f. of the logistic distribution LG(#, o), then Var(X;) =
o?7?/3, F'(0) = (40)71, and e(F) = 7?/12 = 0.822.

(ii) If F(z) = Fo(x — 0) and Fj is the c.d.f. of the t-distribution ¢, with
v > 3, then Var(X;) =v/(v —2), F'(0) = F(”;l)/[\/mrlj(g)}7 e(F) =1.62
when v = 3, ¢(F) = 1.12 when v = 4, and e(F') = 0.96 when v = 5.

(iv) If F is the c.d.f. of the double exponential distribution DE(8, o), then
F'(9) = (20)7! and e(F) = 2.

(v) Consider the Tukey model

Flz)=1-e® (".%) +e@ (*7), (5.76)
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where 0 > 0, 7 > 0, and 0 < € < 1. Then Var(X;) = (1 — €)o? + er20?,
F'(0) = (1 —e+e/1)/(vV2r0), and e(F) = 2(1 — e + e72)(1 — € + ¢/7)? /7r.
Note that lim._,g e(F) = 2/7 and lim, o e(F) = c0. 1

Since the sample median uses at most two actual values of z;’s, it may
go too far in discarding observations, which results in a possible loss of
efficiency. The trimmed sample mean introduced in Example 5.6(iii) is a
natural compromise between the sample mean and median. Since F' is
symmetric, we consider § = 1 — « in the trimmed mean, which results in
the following L-estimator:

n—meg

Xa= 1 9o > Xy, (5.77)

j=ma+1

where m,, is the integer part of na and a € (0, }). The estimator in (5.77)
is called the a-trimmed sample mean. It discards the m, smallest and m,,
largest observations. The sample mean and median can be viewed as two
extreme cases of X, as a — 0 and ;, respectively.

It follows from Theorem 5.6 that if F(x) = Fo(z — ), where Fy is
symmetric about 0 and has a Lebesgue p.d.f. positive in the range of Xi,
then

Vn(Xa —0) =4 N(0,02), (5.78)

Fyl(1-a)
%= _22a)2 {/0 v*dFy(w) + o[Fy (1 - a)]Q} '

Lehmann (1983, §5.4) provides various values of the asymptotic relative
efficiency ex ¢ (F) = Var(X;)/o2. For instance, when F(z) = Fyo(x — 0)
and Fp is the c.d.f. of the t-distribution 3, ex_ ¢ (F) = 1.70, 1.91, and 1.97
for o = 0.05, 0.125, and 0.25, respectively; when F' is given by (5.76) with
7=3and e = 0.05, ex, ¢(F) = 1.20, 1.19, and 1.09 for a = 0.05, 0.125,
and 0.25, respectively; when F' is given by (5.76) with 7 = 3 and € = 0.01,
ex, x(F)=1.04,0.98, and 0.89 for a = 0.05, 0.125, and 0.25, respectively.

Robustness and efficiency of other L-estimators can be discussed simi-
larly. For an L-estimator T(F,) with T given by (5.46), if the conditions in
one of (i)-(iii) of Theorem 5.6 are satisfied, then (5.41) holds with

/ / (F(y))[F(min{z, y}) — F()F(y)dady, (5.79)

where

provided that o F < oo (exercise). If F' is symmetric about 6, .J is symmetric

about j, and fo t)dt = 1, then T(F) = 0 (exercise) and, therefore, the
asymptotic relative efﬁmency of T(F,) w.r.t. X is Var(Xl)/aF
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5.3.3 L-estimators in linear models

In this section, we extend L-estimators to the following linear model:
Xi = ﬂTZZ + Eiy 1= ]., Ny (580)

with i.i.d. €;’s having an unknown c.d.f. Fy and a full rank Z whose ith
row is the vector Z;. Note that the c.d.f. of X; is Fy(x — 87 Z;). Instead of
assuming E(g;) = 0 (as we did in Chapter 3), we assume that

/a:J(FO(x))de(x) =0, (5.81)

where J is a Borel function on [0, 1] (the same as that in (5.46)). Note that
(5.81) may hold without any assumption on the existence of E(e;). For
instance, (5 81) holds if Fy is symmetric about 0, J is symmetric about ;
and fo t)dt = 1 (Exercise 69).

Since XZ s are not identically distributed, the use of the order statistics
and the empirical c.d.f. based on Xj, ..., X;, may not be appropriate. In-
stead, we consider the ordered values of residuals r; = X; —Z73,i=1,...,n
and some empirical c.d.f.’s based on residuals, where 3 = (Z7Z)"1Z7X is
the LSE of 5 (§3.3.1).

To illustrate the idea, let us start with the case where 8 and Z; are
univariate. First, assume that Z; > 0 for all ¢ (or Z; < 0 for all ¢). Let Fy
be the c.d.f. putting mass Z;/ Y . | Z; at r;, i = 1, ...,n. An L-estimator of
[ is defined to be

bu=b+ [ ar(Eaa)abo(s Zz/zzg.
=1

When J(t) = (1 = 2a) " (4,1-a)(t) with an o € (0, }), (3, is similar to the
a-trimmed sample mean in the i.i.d. case.

If not all Z;’s have the same sign, we can define L-estimators as follows.
Let Z; = max{Z;,0} and Z; = Z;" — Z;. Let FOjE be the c.d.f. putting
mass Z /S0 ZE at vy, i =1,...,n. An L-estimator of 3 is defined to be

B =B+/xJ(F+ )dES (x ZZ+/ZZ2
- / cJ(Ey (2))dEy (z) g zZ; / Z:: Z2.

For a general p-vector Z;, let z;; be the jth component of Z;, j = 1,...,p
Let z$ = max{z;;,0}, z; = z$ — 25, and Foj; be the c.d.f. putting mass
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/Zl 1 %5 tatr,i=1,..n. Forany j,if zi; > 0 for all ¢ (or z;; <0 for
all i), then we set FOJ; =0 (or ]3'0; = 0). An L-estimator of § is defined to
be

BL=0+(Z"2)"" (AT — A7), (5.82)

where
A* = (/xJ(Fgg NAFE () Zzﬂ,...,/w (F3(x ))dﬁi(x)zzifD).

Obviously, Az, in (5.82) reduces to the previously defined B when 3 and
Z; are univariate.

Theorem 5.12. Assume model (5.80) with i.i.d. &;’s from a c.d.f. Fp
satisfying (5.81) for a given J. Suppose that Fy has a uniformly continuous,
positive, and bounded derivative on the range of ;. Suppose further that
the conditions on Z;’s in Theorem 3.12 are satisfied.

(1) If the function J is continuous on (o, ) and equals 0 on [0, a1]U[az, 1],
where 0 < a1 < ap < 1 are constants, then

o (Z7Z)Y2(Br, — B) —a Np(0,1,), (5.83)

where 07, is given by (5.79) with F' = Fy.
(ii) Result (5.83) also holds if J" is bounded on [0, 1], Ele;| < oo, and o,
is finite. &

The proof of this theorem can be found in Bickel (1973). Robustness
and efficiency comparisons between the LSE ﬁ and L-estimators ﬁ 1, can be
made in a way similar to those in §5.3.2.

5.4 Generalized Estimating Equations

The method of generalized estimating equations (GEE) is a powerful and
general method of deriving point estimators, which includes many previ-
ously described methods as special cases. In §5.4.1, we begin with a descrip-
tion of this method and, to motivate the idea, we discuss its relationship
with other methods that have been studied. Consistency and asymptotic
normality of estimators derived from generalized estimating equations are
studied in §5.4.2 and §5.4.3.

Throughout this section, we assume that Xi,..., X, are independent
(not necessarily identically distributed) random vectors, where the dimen-
sion of X; is d;, i = 1,...,n (sup,d; < o), and that we are interested in
estimating 6, a k-vector of unknown parameters related to the unknown
population.
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5.4.1 The GEE method and its relationship with others

The sample mean and, more generally, the LSE in linear models are solu-
tions of equations of the form
n

i=1

Also, MLE’s (or RLE’s) in §4.4 and, more generally, M-estimators in §5.2.2
are solutions to equations of the form

n

=1

This leads to the following general estimation method. Let © C R* be the
range of 6, v; be a Borel function from R% x © to R*, i =1,...,n, and

i=1

If 0 is estimated by § € © satisfying sn(é) = 0, then @ is called a GEE
estimator. The equation s, () = 0 is called a GEE. Apparently, the LSE’s,
RLE’s, MQLE’s, and M-estimators are special cases of GEE estimators.

Usually GEE’s are chosen so that

Elsn(0)] =Y Elhi(X:,0)] =0, (5.85)
i=1
where the expectation F may be replaced by an asymptotic expectation
defined in §2.5.2 if the exact expectation does not exist. If this is true,
then 6 is motivated by the fact that s,(6) = 0 is a sample analogue of
Els,(9)] = 0.
To motivate the idea, let us study the relationship between the GEE
method and other methods that have been introduced.

M-estimators

The M-estimators defined in §5.2.2 for univariate § = T(F) in the i.i.d. case
are special cases of GEE estimators. Huber (1981) also considers regression
M-estimators in the linear model (5.80). A regression M-estimator of  is
defined as a solution to the GEE

n
> (X —y7Z:)Zi =0,
i=1

where 1 is one of the functions given in Example 5.7.
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LSE’s in linear and nonlinear regression models

Suppose that

where Z;’s are the same as those in (5.80), 6 is an unknown k-vector of
parameters, f is a known function, and ¢;’s are independent random vari-
ables. Model (5.86) is the same as model (5.80) if f is linear in 6 and is
called a nonlinear regression model otherwise. Note that model (4.64) is a
special case of model (5.86). The LSE under model (5.86) is any point in
© minimizing Y, [X; — f(Z;,7)]* over v € ©. If f is differentiable, then
the LSE is a solution to the GEE

n

Z[Xi = [(Zi,7)]

i=1

oy =0.

Quasi-likelihoods

This is a continuation of the discussion of the quasi-likelihoods introduced
in §4.4.3. Assume first that X;’s are univariate (d; = 1). If X;’s follow a
GLM, i.e., X; has the p.d.f. in (4.55) and (4.57) holds, and if (4.58) holds,
then the likelihood equation (4.59) can be written as

> (‘j;” Gi(y) =0, (5.87)

where 1;(7) = w(¥(v"Zi)), Gi(v) = 9pi(7)/97, vi(y) = Var(X;)/¢, and
we have used the following fact:

W) =) (T O™ @) = (7)) (/¢ (W (D).

Equation (5.87) is a quasi-likelihood equation if either X; does not have
the p.d.f. in (4.55) or (4.58) does not hold. Note that this generalizes the
discussion in §4.4.3. If X; does not have the p.d.f. in (4.55), then the
problem is often nonparametric. Let s, () be the left-hand side of (5.87).
Then s,(v) = 0is a GEE and E[s,(8)] = 0 is satisfied as long as the first
condition in (4.56), E(X;) = pi(65), is satisfied.

For general d;’s, let X; = (X, ..., Xia,), ¢ = 1,...,n, where each X;;
satisfies (4.56) and (4.57), i.e.,

E(Xi) = pni) =g ' (67Zy) and Var(Xi) = ¢ipt/ (i),

and Z;;’s are k-vector values of covariates. In biostatistics and life-time
testing problems, components of X; are repeated measurements at different
times from subject i and are called longitudinal data. Although X;’s are
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assumed independent, X;;’s are likely to be dependent for each i. Let R;
be the d; x d; correlation matrix whose (¢,{)th element is the correlation
coefficient between X,;; and X;;. Then

Var(X;) = ¢;[Di(8)]'/* Ri[Di(8)]"/?, (5.88)

where D;(v) is the d; x d; diagonal matrix with the tth diagonal element
(7Y (v Zit). If R;’s in (5.88) are known, then an extension of (5.87) to
the multivariate x;’s is

ZG (D2 RADi()2} s = a()] = 0, (5.89)

where 11:(v) = (0(¥(v" Zi1)), -, p(¥ (Y7 Zia,))) and Gi(v) = Opas(7y)/0y. In

most applications, R; is unknown and its form is hard to model. Let R; be a
known correlation matrix (called a working correlation matriz). Replacing
R; in (5.89) by R; leads to the quasi-likelihood equation

ZG (DIV2RADi(3)]"2} i — i(7)] = 0. (5.90)

For example, we may assume that the components of X; are independent
and take R; = 14,. Although the working correlation matrix R; may not be
the same as the true unknown correlation matrix R;, an MQLE obtained
from (5.90) is still consistent and asymptotically normal (§5.4.2 and §5.4.3).
Of course, MQLE’s are asymptotically more efficient if R; is closer to R;.
Even if R; = R; and ¢; = ¢, (5.90) is still a quasi-likelihood equation, since
the covariance matrix of X; cannot determine the distribution of X; unless
X; is normal.

Since an R; closer to R; results in a better MQLE, sometimes it is
suggested to replace R; in (5.90) by R;, an estimator of R; (Liang and
Zeger, 1986). The resulting equation is called a pseudo-likelihood equation.
As long as max;<,, | R; — Uj|| —, 0 as n — oo, where ||A| = /tr(ATA) for
a matrix A and Uj; is a correlation matrix (not necessarily the same as R;),
i=1,...,n, MQLE’s are consistent and asymptotically normal.

Empirical likelihoods

The previous discussion shows that the GEE method coincides with the
method of deriving M-estimators, LSE’s, MLE’s, or MQLE’s. The following
discussion indicates that the GEE method is also closely related to the
method of empirical likelihoods introduced in §5.1.4.

Assume that X;’s are i.i.d. from a c.d.f. F on R?% and v; = ¢ for all i.
Then condition (5.85) reduces to E[)(X1,80)] = 0. Hence, we can consider
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the empirical likelihood

subject to
n n
pi=0, Y pi=1, and Y pab(x;,0) =0, (5.91)
=1 i=1

where p; = P ({z;}). However, in this case the dimension of the function
1) is the same as the dimension of the parameter # and, hence, the last
equation in (5.91) does not impose any restriction on p;’s. Then, it follows
from Theorem 5.3 that (p1,...,pn) = (n7 %, ...,n~!) maximizes ¢(G) for any

fixed 6. Substituting p; = n~! into the last equation in (5.91) leads to

1 n
. ;w(xi, 0) = 0.

That is, any MELE 6 of 6 is a GEE estimator.

5.4.2 Consistency of GEE estimators

We now study under what conditions (besides (5.85)) GEE estimators are
consistent. For each n, let 8,, be a GEE estimator, i.e., s,,(6,) = 0, where
$n () is defined by (5.84).

First, Theorem 5.7 and its proof can be extended to multivariate T in a
straightforward manner. Hence, we have the following result.

Proposition 5.2. Suppose that Xi,...,X,, are ii.d. from F and v¢; =
1, a bounded and continuous function from R? x © to R*. Let W(t) =
[ (x,t)dF (x). Suppose that ¥(§) = 0 and d¥(t)/0t exists and is of full
rank at t = #. Then én —p 0. 1

For unbounded % in the i.i.d. case, the following result and its proof can
be found in Qin and Lawless (1994).

Proposition 5.3. Suppose that Xi,..., X, are i.i.d. from F and ¢; = .
Assume that ¢(x,v) = 0¢(x,7)/07 exists in Ny, a neighborhood of §, and
is continuous at 6; there is a function h(z) such that sup. ¢y, [l¢(x, )| <
h(w), supsen, (2, )[P < hx), and E[h(X1)] < o0; Elp(X1,0)] is of full
rank; E{(X1,0)[¢(X1,0)]"} is positive definite; and (5.85) holds. Then,
there exists a sequence of random vectors {én} such that

P (sn(én) = 0) —1 and 6, —p 6. 1 (5.92)
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Next, we consider non-i.i.d. X;’s.

Proposition 5.4. Suppose that X, ..., X, are independent and 6 is uni-
variate. Assume that v;(z,7) is real-valued and nonincreasing in + for all
i; there is a § > 0 such that sup; E|1;(X;,v)|'T® < oo for any 7 in Ny, a
neighborhood of # (this condition can be replaced by E|(X7,7)| < oo for
any v in Np when X;’s are i.i.d. and t; = v); 1;(x,7) are continuous in
Np; (5.85) holds; and

limsup E[¥, (0 +¢)] < 0 < liminf E[¥, (6 — €)] (5.93)

for any € > 0, where ¥,,(v) = n"!s,(7). Then, there exists a sequence of

random variables {én} such that (5.92) holds. Furthermore, any sequence
{0,,} satisfying s,,(0,,) = 0 satisfies (5.92).

Proof. Since 9;’s are nonincreasing, the functions ¥, (y) and E[V,(v)] are
nonincreasing. Let € > 0 be fixed so that § + € € Ny. Under the assumed
conditions,

U, (0te)—E[V,(0+e€)] —,0
(Theorem 1.14(ii)). By condition (5.93),
P(Un(0+€) <0< ,(0—¢) — 1.
The rest of the proof is left as an exercise. 1§

To establish the next result, we need the following lemma. First, we
need the following concept. A sequence of functions {g;} from R* to R¥
is called equicontinuous on an open set O C R if and only if, for any
e > 0, there is a 6. > 0 such that sup; ||g;(t) — gi(s)|| < € whenever t €
0, s € O, and |t — s|| < é.. Since a continuous function on a compact
set is uniformly continuous, functions such as g;(y) = g¢(t;,y) form an
equicontinuous sequence on O if ¢;’s vary in a compact set containing O
and g¢(t, ) is a continuous function in (¢,7).

Lemma 5.3. Suppose that © is a compact subset of R¥. Let h;(X;) =
sup, e 19 (Xs, )|, i = 1,2,.... Suppose that sup; E|h;(X;)|'*t® < oo and
sup; B||X;||° < oo for some § > 0 (this condition can be replaced by
E|h(X1)] < oo when X;’s are i.i.d. and ¢; = v). Suppose further that
for any ¢ > 0 and sequence {z;} satisfying ||z;|| < ¢, the sequence of func-
tions {gi(v) = v:(xi,v)} is equicontinuous on any open subset of ©. Then

sup
YEO

711 Z{wi(Xixy) — E[wi(xi,fy)]}H —, 0.
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Proof. Since we only need to consider components of v;’s, without loss of
generality we can assume that 1;’s are functions from R% x © to R. For
any ¢ > 0,

sup £ Zh iM(c,00) (1 Xill) | < sup Elhi(Xi) (e 00) (| Xi])]-

Let co = sup; E|hi(X;)|'T and ¢; = sup; E||X;||°. By Holder’s inequality,
1/(1+9) §/(148
Blhs(Xi) (e.o0) (1X:l)] < [BlRs(X0)[F] 7 [PIXG] > )

Cl/(1+6) 3/(1+96) —52/(1+5)

for all i. For e > 0 and € > 0, choose a ¢ such that cl/(1+6) i/(1+5)c—52/(1+5)
< €€/4. Then, for any O C O, the probability

v€O

1< .
P (n ; {sup i (Xs,7) — ;Ielg zbi(Xi,v)} Teoo) (1 X)) > ;) (5.94)

is bounded by € (exercise). From the equicontinuity of {v;(x;,~)}, there is
a d, > 0 such that

"= \eoe

1 n
> { sup (X, y) — nf lffi(Xi,’Y)} Tjo,) (1 X5]) <

for sufficiently large n, where O, denotes any open ball in R* with radius
less than d.. These results, together with Theorem 1.14(ii) and the fact
that || (X:,v)|| < hi(X;), imply that

P (Tll ; {5;‘3 Vi(Xi,y) — E Lien(gewi(Xm)} } > 6) — 0. (5.95)
Let Hy(v) = n~' 3201 {vi(Xi,7) — B[Yi(Xi,7)]}. Then
)< 5 g i -2 g v
which with (5.95) implies that
P(Hn(y) > € forally€O.) =P (sué) H,(vy) > e) — 0.
v€0.
Similarly we can show that

P(Hn(v) < —€ forally € O.) — 0
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Since © is compact, there exists m. open balls O, ; such that © C UO, ;.
Then, the result follows from

P (sugH )| > 6) ZP ( sup |H,(v)| > e> —0. 1

oS YEQe,;

Example 5.11. Consider the quasi-likelihood equation (5.90). Let {R;}
be a sequence of working correlation matrices and

Vilwi,y) = Gi(VD:M2 R Di(N]*} e — ()] (5.96)

It can be shown (exercise) that ;s satisfy the conditions of Lemma 5.3 if
© is compact and sup, || Z;|| < co. 1

Proposition 5.5. Assume (5.85) and the conditions in Lemma 5.3 (with ©
replaced by any compact subset of the parameter space). Suppose that the
functions A, (y) = E[n"1s,(v)] have the property that lim, ., A, (y) =0
if and only if v = 6. (If A,, converges to a function A, then this condition
and (5.85) imply that A has a unique 0 at 0.) Suppose that {,} is a
sequence of GEE estimators and that 6,, = Op(1). Then 0, —p 0.
Proof. First, assume that © is a compact subset of R*. From Lemma 5.3
and sn(én) =0, An(én) —p 0. By Theorem 1.8(vi), there is a subsequence
{n;} such that

An,y (én,y> —a.s. 0. (597)
Let x1,x2,... be a fixed sequence such that (5.97) holds and let 8y be a
limit point of {én}. Since O is compact, 6y € © and there is a subsequence
{m;} C {n;} such that émj — 6y. Using the argument in the proof of
Lemma 5.3, it can be shown (exercise) that {A,(y)} is equicontinuous on
any open subset of ©. Then

Amj (émJ) - Amj (90) - 07

which with (5.97) implies Ap,;(fo) — 0. Under the assumed condition,
0y = 6. Since this is true for any limit point of {én}, 0, —p 0.
Next, consider a general ©. For any € > 0, there is an M, > 0 such

that P(||0,]| < M.) > 1 — e. The result follows from the previous proof by
considering the closure of © N {7 : ||y]| < M¢} as the parameter space. 1

Condition 0,, = O,(1) in Proposition 5.5 is obviously necessary for the
consistency of 6,. It has to be checked in any particular problem.
If a GEE is a likelihood equation under some conditions, then we can

often show, using an argument similar to the proof of Theorem 4.17 or 4.18,
that there exists a consistent sequence of GEE estimators.
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Proposition 5.6. Suppose that s,(y) = 9logl,(y)/0v for some func-
tion £p,; D, (0) = Var(s,(0)) — 0; pi(z,y) = 0 (x,7y)/0v exists and the
sequence of functions {¢;;,7 = 1,2,...} satisfies the conditions in Lemma
5.3 with © replaced by a compact neighborhood of 8, where (;; is the jth
row of ¢;, j = 1,...,k; —liminf,[D,(0)]*/2E[Vs,(0)][D,(#)]'/? is positive
definite, where Vs, (v) = 9s,(7)/07; and (5.85) holds. Then, there exists
a sequence of estimators {f,} satisfying (5.92). &

The proof of Proposition 5.6 is similar to that of Theorem 4.17 or The-
orem 4.18 and is left as an exercise.

Example 5.12. Consider the quasi-likelihood equation (5.90) with R, =
I, for all . Then the GEE is a likelihood equation under a GLM (§4.4.2)
assumption. It can be shown (exercise) that the conditions of Proposition
5.6 are satisfied if sup, || Z;|| < c0. 1

5.4.3 Asymptotic normality of GEE estimators

Asymptotic normality of a consistent sequence of GEE estimators can be
established under some conditions. We first consider the special case where
0 is univariate and Xy, ..., X,, are i.i.d.

Theorem 5.13. Let Xi,...,X, be iid. from F, ¢; = 1, and 0 € R.
Suppose that ¥(y) = [4(z,v)dF(z) = 0 if and only if v = 0, U'(f) exists
and ¥/ (0) # 0.

(i) Assume that 9 (z,v) is nonincreasing in v and that [[¢(x,v)]*dF ()
is finite for v in a neighborhood of § and is continuous at 6. Then, any
sequence of GEE estimators (M-estimators) {6, } satisfies

Vb, —0) =4 N(0,0%), (5.98)
where
ot = [wle, O dF @)/ 10,

(ii) Assume that [[¢(z,0)]?dF(x) < oo, ¥(z,7) is continuous in x, and
limy g ||¢(-,v) — ¥ (-, 0)|lv =0, where || - ||v is the variation norm defined

in Lemma 5.2. Then, any consistent sequence of GEE estimators {f,}
satisfies (5.98).
Proof. (i) Let ¥, (v) = n~!s,(7). Since ¥,, is nonincreasing,

P(U,,(t) < 0) < P(0, < t) < P(¥,(t) < 0)
for any ¢t € R. Then, (5.98) follows from
lim P(¥,(t,) <0) = lim P(¥,(t,) <0) = ®(¢)
n—oo n—oo
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for all t € R, where t,, = 0 + topn~ /2. Let 53, = Var(y(Xy,t,)) and
Yoi = [W(Xi, tn) — Y(tn)]/St.n- Then, it suffices to show that

nh—>HoloP ( ZYm > _\/n\II( >> = ®(t)

for all ¢. Under the assumed conditions, \/n¥(¢,) — ¥/ (0)to, and s;, —
—U'(§)o . Hence, it suffices to show that

Jn2 ZYM —4 N(0,1).

Note that Y,1,...,Yn, are i.i.d. random variables. Hence we can apply
Lindeberg’s CLT (Theorem 1.15). In this case, Lindeberg’s condition (1.92)
is implied by

lim [ (2, tn))]2dF (x) =0

0 S (a,tn) | > /e

for any € > 0. For any n > 0, ¢¥(z,0 + 1) < (x,t,) < ¢(z,6 —n) for all =
and sufficiently large n. Let u(z) = max{|¢(x,0 — )|, | (z,0 +n)|}. Then

/ (e, 1) PdF (x) < / ()P dF (x),
[ (@,tn)|>v/ne u(x)>+/ne

which converges to 0 since [[¢(z,~)]?dF(z) is finite for v in a neighborhood
of 6. This proves (i).

(ii) Let ¢p(x) = —p(z,0)/T'(0). Following the proof of Theorem 5.7, we
have

\/n( n - \/n Z ¢F + Rln - R2n7

where
1 — 1
Rln:m;w(xi,a) WO " hpd |
= \/’I’L X ) — X — xr
R Vo [ 1@ 6.) ~ v(a.0)d(F, - F)o)

and hp is defined in the proof of Theorem 5.7 with ¥ = Ap. By the CLT
and the consistency of 6,,, R1, = 0,(1). Hence, the result follows if we can
show that Ra, = 0,(1). By Lemma 5.2,

|Ran| < Vnlhe(0n)] ™ 0o (Fuy ) [, 60) = (-, 0) |-

The result follows from the assumed condition on v and the fact that
VN0oo(Fry, F) = Op(1) (Theorem 5.1). 1
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Note that the result in Theorem 5.13 coincides with the result in The-
orem 5.7 and (5.41).

Example 5.13. Consider the M-estimators given in Example 5.7 based
on i.i.d. random variables X7, ..., X,;. If ¥ is bounded and continuous, then
Theorem 5.7 applies and (5.98) holds. For case (ii), ¥ (z, ) is not bounded
but is nondecreasing in v (—(z, ) is nonincreasing in ). Hence Theorem
5.13 can be applied to this case.

Consider Huber’s ¢ given in Example 5.7(v). Assume that F' is contin-
uous at # — C and 6 + C. Then

y+C
¥0) = [ (= a)dPla) + CF(y =€) = Cll = F(y +)
Y
is differentiable at 6 (exercise); ¥(6) = 0 if F' is symmetric about 6 (exer-
cise); and

y+C
JwePare = [ (-apdr@+C* PG -C)+ - Fly+C)

is continuous at 6 (exercise). Therefore, (5.98) holds with

)50 — x)?dF(x) + C°F(0 — C) + C*[1 — F(0 + C))]

oF = [F(0+C) — F(0— C)]2

(exercise). Note that Huber’s M-estimator is robust in Hampel’s sense.
Asymptotic relative efficiency of 6,, w.r.t. the sample mean X can be ob-
tained (exercise). 1

The next result is for general 6 and independent X;’s.

Theorem 5.14. Suppose that o;(z,y) = 0;(x,7)/0v exists and the
sequence of functions {y;;,7 = 1,2,...} satisfies the conditions in Lemma
5.3 with © replaced by a compact neighborhood of 6, where ;; is the jth
row of o;; sup; E||:(X;,0)]|*9 < oo for some § > 0 (this condition can be
replaced by E||¢(X1,0)||? < oo if X;’s are i.i.d. and ¢; = ¢); E[v;(X;,0)] =
0; liminf,, A_[n"'Var(s,(6))] > 0 and liminf, A_[n"*M,(0)] > 0, where
M, (0) = —E[Vs,(0)] and A_[A] is the smallest eigenvalue of the matrix
A If {én} is a consistent sequence of GEE estimators, then

VY26, — 0) —q Ni(0, 1), (5.99)

where
Vi = [My(0)] ' Var(s, (6))[Mn ()] (5.100)
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Proof. The proof is similar to that of Theorem 4.17. By the consistency
of 0,,, we can focus on the event {0, € A.}, where Ac = {v: ||y — || < ¢}
with a given e > 0. For sufficiently small €, it can be shown (exercise) that

max HVSn(W) - VSH(Q)H

= 1 5.101
maye . op(1), (5.101)

using an argument similar to the proof of Lemma 5.3. From the mean-value
theorem and s, (6,) =0,

1
—s,(0) = {/ Vsnp (9 + t(én — 9))dt] (én —0).
0
It follows from (5.101) that

1
n

/01 Vsn (04 t(0, — 0))dt — Vsn(g)H — (1),

Also, by Theorem 1.14(ii),
n=H[Visn(6) + M, (0)] = 0,(1).
This and liminf,, A_[n~1M,,(0)] > 0 imply
(M (0)] " 5(0) = [1+ 0p(1)] (6 — 6).
The result follows if we can show that

V.2 M, (0)] " sn(0) —a Ni(0, I). (5.102)

n

For any nonzero | € R¥,

1 ~ . B
(I7V, 1)1 +0/2 D BT [M(0)] i (Xi, )P — 0, (5.103)
" i=1

since liminf,, A\_[n~!Var(s,(6))] > 0 and sup, E||¢;(X;,0)[|>T° < oo (ex-
ercise). Applying the CLT (Theorem 1.15) with Liapounov’s condition
(5.103), we obtain that

[ My (0)]50(0)/\/17Vil — 4 N(0,1) (5.104)
for any [, which implies (5.102) (exercise). 1
Asymptotic normality of GEE estimators can be established under var-

ious other conditions; see, for example, Serfling (1980, Chapter 7) and He
and Shao (1996).
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If X;’s are i.i.d. and ¢; = v, the asymptotic covariance matrix in (5.100)
reduces to

Vo =" HEp(X1,0)]}  E{¢(X1,0)[(X1,0)] " HE[p(X1,0)]} 1,
where p(x,v) = 0Y(x,7)/0y. When @ is univariate, V;, further reduces to
Vo =0 Bl (X0, )2 /{Blp(X1,0)]}%.

Under the conditions of Theorem 5.14,

oY(x,0)
Elp(X1,0)] = dF(z 0)dF
) = [P arw = 5 [ e oirw).
Hence, the result in Theorem 5.14 coincides with that in Theorem 5.13.

Example 5.14. Consider the quasi-likelihood equation in (5.90) and v; in
(5.96). If sup; [| Zi]| < oo, then 1; satisfies the conditions in Theorem 5.14
(exercise). Let V,(v) = [D (V]2 R;[Di(7)]*/?. Then

Var(sn (6 ZG )]~ Var (X) [V (0)] G (0))

and
n

M, (0) =Y Gi(0)[Va(0)] ' [Gi(0)]"-

i=1

If R, = R; (the true correlation matrix) for all 4, then
Var(s,, (0 Z d:Gi( (0)] G (0)].

If, in addition, ¢; = ¢, then
Vi = [M,(0)] ™ Var(s, (0)) [Mn (0)] 7" = ¢[M(0)] 1.

5.5 Variance Estimation

In statistical inference the accuracy of a point estimator is usually assessed
by its mse or amse. If the bias or asymptotic bias of an estimator is (asymp-
totically) negligible w.r.t. its mse or amse, then assessing the mse or amse is
equivalent to assessing variance or asymptotic variance. Since variances and
asymptotic variances usually depend on the unknown population, we have
to estimate them in order to report accuracies of point estimators. Vari-
ance estimation is an important part of statistical inference, not only for
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assessing accuracy, but also for constructing inference procedures studied
in Chapters 6 and 7. See also the discussion at the end of §2.5.1.

Let 6 be a parameter of interest and 0,, be its estimator. Suppose that,
as the sample size n — oo,

V20 — 0) —a Nk(0, It), (5.105)

n

where V,, is the covariance matrix or an asymptotic covariance matrix of
én. An essential asymptotic requirement in variance estimation is the con-
sistency of variance estimators according to the following definition. See
also (3.60) and Exercise 116 in §3.6.

Definition 5.4. Let {V,,} be a sequence of k x k positive definite matrices
and V,, be a positive definite matrix estimator of V;, for each n. Then {V }
or Vj, is said to be consistent for V;, (or strongly consistent for V,,) if and
only if

WV 20,72 = L =, 0 (5.106)

(or (5.106) holds with —,, replaced by —4.s.). 1

Note that (5.106) is different from ||V, — V,,|| —, 0, because || V;,|| — 0 in
most applications. It can be shown (Exercise 93) that (5.106) holds if and
only if I], V In /17 Valy —p 1 for any sequence of nonzero vectors {l,} C R*.
If (5.105) and (5.106) hold then

"\/7

n

12(6,, — 0) —4 Ni(0, I,

(exercise), a result useful for asymptotic inference discussed in Chapters 6
and 7.

If the unknown population is in a parametric family indexed by 6, then
V., is a function of 0, say V,, = V,,(#), and it is natural to estimate V;,(6)
by Vn(én) Consistency of Vn(én) according to Definition 5.4 can usually
be directly established. Thus, variance estimation in parametric problems
is usually simple. In a nonparametric problem, V,, may depend on un-
known quantities other than 6 and, thus, variance estimation is much more
complex.

We introduce three commonly used variance estimation methods in this
section, the substitution method, the jackknife, and the bootstrap.

5.5.1 The substitution method

Suppose that we can obtain a formula for the covariance or asymptotic
covariance matrix V,, in (5.105). Then a direct method of variance estima-
tion is to substitute unknown quantities in the variance formula by some
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estimators. To illustrate, consider the simplest case where X1, ..., X,, are
i.i.d. random d-vectors with E||X;]|2 < oo, 0 = g(u), p = EXy, 0, = g(X),
and ¢ is a function from R? to R¥. Suppose that g is differentiable at su.
Then, by the CLT and Theorem 1.12(i), (5.105) holds with

Vi = [Vg()]" Var(X1)Vg(p)/n, (5.107)

which depends on unknown quantities p and Var(X;). A substitution esti-
mator of V,, is R ) )
Vo = [Vg(X)]7S*Vg(X)/n, (5.108)

where
LY - X - Xy

i=1

S? =
n—1
is the sample covariance matriz, an extension of the sample variance to the
multivariate X;’s.
By the SLLN, X —, . u and S? —, . Var(X;). Hence, V,, in (5.108)
is strongly consistent for V;, in (5.107), provided that Vg(u) # 0 and Vg is
continuous at p.

Example 5.15. Let Y7,...,Y, be ii.d. random variables with finite p, =
EY1, of = Var(Y1), vy = EY?, and k, = EY{*. Consider the estimation
of 0 = (11y,02). Let 0, = (X,62), where 62 = n=' 3" (V; — V)2 If
X; = (Y;,Y?), then 6,, = g(X) with g(z) = (x1, 22 — 2?). Hence, (5.105)
holds with

o — (02 + 1
Var(X;) = < B (y2 L Yy 7/Jy(2 Yy 2:“y2) )
’Yy Ny Uy p“y) Hy (Uy + lu’y)

Vy(z) = < 7211,1 2 )

The estimator V,, in (5.108) is strongly consistent, since Vg(z) is obviously
a continuous function. 1

and

Similar results can be obtained for problems in Examples 3.21 and 3.23
and Exercises 100 and 101 in §3.6.

A key step in the previous discussion is the derivation of formula (5.107)
for the asymptotic covariance matrix of 6,, = g(X) via Taylor’s expansion
(Theorem 1.12) and the CLT. Thus, the idea can be applied to the case
where 0,, = T(F,), a differentiable statistical functional.

We still consider i.i.d. random d-vectors X, ..., X,, from F. Suppose
that T is a vector-valued functional whose components are g-Hadamard
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differentiable at F', where p is either g, or a distance satisfying (5.42).
Let ¢r be the vector of influence functions of components of T. If the
components of ¢p satisfy (5.40), then (5.105) holds with 6 = T(F), 6,, =
T(F,), F,, = the empirical c.d.f. in (5.1), and

Var(¢r(X1))

V= — . [or@ler@Var). (5.109)

Formula (5.109) leads to a natural substitution variance estimator

= Tll/(bFn(x)[(bF o) dEa(z) =, quF X)), (5.110)

provided that ¢p, (x) is well defined, i.e., the components of T are Gateaux
differentiable at F, for sufficiently large n. Under some more conditions on
¢r, we can establish the consistency of V,, in (5.110).

Theorem 5.15. Let Xq,..., X,, be ii.d. random d-vectors from F, T be
a vector-valued functional whose components are Gateaux differentiable at
F and F,,, and ¢ be the vector of influence functions of components of
T. Suppose that sup|, <. |, (z) — ¢r(2)|| = 0,(1) for any ¢ > 0 and
that there exist a constant ¢y > 0 and a function h(z) > 0 such that
E[h(X1)] < 0o and P([|¢p, (2)||* < h(z) for all ||z|| > ¢o) — 1. Then V,, in
(5.110) is consistent for V,, in (5.109).

Proof. Let ((z) = ¢r(z)[¢r(z)]” and (u(z) = o5, (2)[dF, (x)]". By the

SLLN,
iZC(Xi) —a.s. /C(a:)dF(x)

Hence the result follows from

n

LSl — ¢x)

i=1

| = o0,(1).

Using the assumed conditions and the argument in the proof of Lemma 5.3,
we can show that for any € > 0, there is a ¢ > 0 such that

( Z”Cn i) = C(Xa) M (e 00) (1 X [1) > 6)36

and
( ZIICn i) = C(Xi) [0, (11 X3 1) > 6) <e

for sufficiently large n. This completes the proof. 1
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Example 5.16. Consider the L-functional defined in (5.46) and the L-
estimator én = T(F,). Theorem 5.6 shows that T is Hadamard differentiable
at F' under some conditions on J. It can be shown (exercise) that T is
Gateaux differentiable at F,, with ¢, (z) given by (5.48) (with F' replaced
by F,). Then the difference ¢, (z) — ¢ () is equal to

/(Fn — F)(y)J(Fu(y))dy + /(F = 82)(y)[J (Fu(y)) — J(F(y))]dy.

One can show (exercise) that the conditions in Theorem 5.15 are satisfied
if the conditions in Theorem 5.6(i) or (ii) (with F|X;| < co) hold. 1

Substitution variance estimators for M-estimators and U-statistics can
also be derived (exercises).

The substitution method can clearly be applied to non-i.i.d. cases. For
example, the LSE 3 in linear model (3.25) with a full rank Z and i.i.d. ;s
has Var(3) = 02(Z7Z)~", where 02 = Var(e;). A consistent substitution
estimator of Var( B) can be obtained by replacing o2 in the formula of Var( B)
by a consistent estimator of o such as SSR/(n — p) (see (3.35)).

We now consider variance estimation for the GEE estimators described
in §5.4.1. By Theorem 5.14, the asymptotic covariance matrix of the GEE
estimator 6,, is given by (5.100), where

Var(s, () = > E{ti( Xy, 0)[thi(X;,0)]"},

i=1

M, () = Z Elpi(X;,0)],

i=1

and o;(x,7) = Oi(x,~)/dy. Substituting 6 by 6,, and the expectations
by their empirical analogues, we obtain the substitution estimator V,, =
M, *Var(s, )M, !, where

Var(sn) = Y i(Xi, ) [ (X4, 0,)]7
i=1
and .
i=1
The proof of the following result is left as an exercise.

Theorem 5.16. Let X1, ..., X,, be independent and {én} be a consistent
sequence of GEE estimators. Assume the conditions in Theorem 5.14. Sup-
pose further that the sequence of functions {h;;,7 = 1,2,...} satisfies the
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conditions in Lemma 5.3 with © replaced by a compact neighborhood of 6,
where h;;(z,v) is the jth row of ¥;(x,v)[Wi(z,¥)]", j = 1,...,k. Let V,, be
given by (5.100). Then v, = Z\Zn_l\/ar(sn)Z\Al_1 is consistent for V,,. I

n

5.5.2 The jackknife

Applying the substitution method requires the derivation of a formula for
the covariance matrix or asymptotic covariance matrix of a point estimator.
There are variance estimation methods that can be used without actually
deriving such a formula (only the existence of the covariance matrix or
asymptotic covariance matrix is assumed), at the expense of requiring a
large number of computations. These methods are called resampling meth-
ods, replication methods, or data reuse methods. The jackknife method
introduced here and the bootstrap method in §5.5.3 are the most popular
resampling methods.

The jackknife method was proposed by Quenouille (1949) and Tukey
(1958). Let 0,, be a vector-valued estimator based on independent X;’s,
where each X; is a random d;-vector and sup,; d; < oco. Let 9:2- be the
same estimator but based on Xi,..., X;_1, X;+1,..., Xn, ¢ = 1,...,n. Note
that é_i also depends on n but the subscript n is omitted for simplicity.
Since 6,, and é,l, e 6_,, are estimators of the same quantity, the “sample
covariance matrix”

ni | Z (0= 0) (9- fén)T (5.111)

i=1

can be used as a measure of the variation of én, where 6,, is the average of
é_i7S.

There are two major differences between the quantity in (5.111) and
the sample covariance matrix 52 previously discussed. First, 6_;’s are not
independent. Second, 6_; — _; usually converges to 0 at a fast rate (such
as n~1). Hence, to estimate the asymptotic covariance matrix of én, the
quantity in (5.111) should be multiplied by a correction factor ¢,,. If én =X
(d; = d), then 6_;— 06, = (n —1)71(X — X;) and the quantity in (5.111)
reduces to

n

1 - T 1 9
(n71)3Z(Xi_X) (Xl_X) - (n71)25’

i=1

where S? is the sample covariance matrix. Thus, the correction factor ¢,
is (n —1)?/n for the case of 6, = X since, by the SLLN, S?/n is strongly
consistent for Var(X).
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It turns out that the same correction factor works for many other esti-
mators. This leads to the following jackknife variance estimator for 0,:

T

V= n; ! zn: (0-i-0.) (0--02) . (5.112)

=1

Theorem 5.17. Let Xq,..., X, be ii.d. random d-vectors from F with
finite = E(X;) and Var(X,), and let ,, = g(X). Suppose that Vg is
continuous at p and Vg(u) # 0. Then the jackknife variance estimator vy
in (5.112) is strongly consistent for V,, in (5.107).

Proof. We prove the case where g is real-valued. The proof of the gen-
eral case is left to the reader. Let X_; be the sample mean based on
X, ., Xic1, Xi41, -y Xy From the mean-value theorem, we have

[Vg( m)] (X_i—X)
= [Vg(X)]"(X- —X) + Rois
where Ry ; = [Vg(&n,i) — Vg(X )] (X_i — X) and &, is a pomt on the

line segment between X _; and X. From X _; — X = (n—1)"}(X — X;), i
follows that > (X_; — X) = 0 and

n

1 . 1 _
nz("*i*"n):nZRnai:Rn-

i=1 i=1
From the definition of the jackknife estimator in (5.112),
Vj = A+ B, +2C,,

where

and

n—1 _ o _
Co=" > (R — Rn)[Vg(X)]" (X i — X).
i=1
By X ;— X =(n—1)"}(X — X;), the SLLN, and the continuity of Vg at

1,
AI’L/VI’L —a.s. 1.
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Also,
n B B 1 n B
2 _ w2
(n—1) ;:1 IX-; — X|* = ne1 ;:1 |X; — X]|*=0(1) as. (5.113)

Hence - -
max || X_; — X||2 —a.s. 0,
i<n

which, together with the continuity of Vg at p and ||&,; — X || < || X_; — X,
implies that -
un = max [Vg(&n,i) = Vg(X)[| =a.s. 0.

From (5.107) and (5.113), >0, | X—; — X||?/V,, = O(1) a.s. Hence

B n—1< Uy o _
"< RZ.< " X, — X|? =4 0.

By the Cauchy-Schwarz inequality, (Cr,/Vi)? < (An/Vi)(Bn/Vi) —a.s. 0.
This proves the result. I

A key step in the proof of Theorem 5.17 is that 6_; — 0, can be approx-
imated by [Vg(X)]"(X_; — X) and the contributions of the remainders,
Ry, Ry p, are sufficiently small, ie., B,/V,, —q45 0. This indicates
that the jackknife estimator (5.112) is consistent for 0,, that can be well ap-
proximated by some linear statistic. In fact, the jackknife estimator (5.112)
has been shown to be consistent when 6, is a U-statistic (Arvesen, 1969)
or a statistical functional that is Hadamard differentiable and continuously
Gateaux differentiable at F' (which includes certain types of L-estimators
and M-estimators). More details can be found in Shao and Tu (1995, Chap-
ter 2).

The jackknife method can be applied to non-i.i.d. problems. A detailed
discussion of the use of the jackknife method in survey problems can be
found in Shao and Tu (1995, Chapter 6). We now consider the jackknife
variance estimator for the LSE B in linear model (3.25). For simplicity,
assume that Z is of full rank. Assume also that €;’s are independent with
E(g;) = 0 and Var(g;) = 02. Then

Var(8) = (272)""> ot Z:Z] (27 Z) 7"

i=1

Let 3_; be the LSE of 8 based on the data with the ith pair (X, Z;) deleted.
Using the fact that (A +cc™)™t = A1 — A7 lec A7 /(1 + ¢ A7 Le) for a
matrix A and a vector ¢, we can show that (exercise)

Bi=B—r:iZ)(1—hy), (5.114)
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where r; = X; — ZZTB is the ith residual and h; = Z7(Z7Z)~1Z;. Hence

Z”:(r ZZ Z Z "7yt

i=1

. 1
v, =" "(z7z)"!
n

Wu (1986) proposed the following weighted jackknife variance estimator
that improves V:

n n

Viws =3 (1=hi) (Boi = B) (Boi - B)T — 2y rfzi (z7 2y

i=1 i=1

Theorem 5.18. Assume the conditions in Theorem 3.12 and that &;’s are
independent. Then both VJ and VW J are consistent for Var(B).

Proof. Let [, € RP, n = 1,2, ..., be nonzero vectors and l; = 7 (Z™Z) ™1 Z,.
Since max;<y h; — 0, the result for VW 7 follows from

Zl?rf/Zz?af —p 1 (5.115)
=1 =1

(see Exercise 93). By the WLLN (Theorem 1.14(ii)) and max;<, h; — 0,

St )3 o
i=1 =1
Note that r; = ; + Z7 (3 — 3) and
max(27 (5 = B)* < | 2(8 = B)|1* maxhi = o,(1).

Hence (5.115) holds.
The consistency of V; follows from (5.115) and

”n;l (Z ) /Zl 2 _ 0,(1 (5.116)

The proof of (5.116) is left as an exercise.

Finally, let us consider the jackknife estimators for GEE estimators in
§5.4.1. Under the conditions of Proposition 5.5 or 5.6, it can be shown that

max |0 — 0] = 0,(1), (5.117)

where 0_; is a root of sy; (v) =0 and

sni(V) = Y $(X5,7)

J#L,j<n
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Assume that v;(z,~) is continuously differentiable w.r.t. 7 in a neighbor-
hood of 8. Using Taylor’s expansion and the fact that s,;(6_;) = 0 and

sn(6n) = 0, we obtain that

1
0i(Xi,0_;) = { Vsn (O +t(0-; — 6,))dt| (0—; — 6,,).
0

Following the proof of Theorem 5.14, we obtain that

Vi = [Mu(0)]" ) (X, 0-0)[1hi (X4, 0-0))" [Mn(6)] " + R,

i=1

where R,, satisfies ||Vn71/2RnVn71/2|| = 0p(1) for V, in (5.100). Under the
conditions of Theorem 5.16, it follows from (5.117) that V is consistent.

If 6, is computed using an iteration method, then the computation of
Vs requires n additional iteration processes. We may use the idea of a
one-step MLE to reduce the amount of computation. For each i, let

O_; = 0n — [Vni(0)] sni(6y), (5.118)

which is the result from the first iteration when the Newton-Raphson
method is applied in computing a root of s,;(y) = 0 and 0, is used as
the initial point. Note that 6_;’s in (5.118) satisfy (5.117) (exercise). If the
jackknife variance estimator is based on 6_;’s in (5.118), then

Vi = (M (0)] ") (X, 00) [0 (Xs, )] [Mn ()] F + R,

i=1

where R, satisfies HVn_l/ 2RV M2 || = 0p(1). These results are summarized
in the following theorem.

Theorem 5.19. Assume the conditions in Theorems 5.14 and 5.16. As-
sume further that 6_;’s are given by (5.118) or GEE estimators satisfying
(5.117). Then the jackknife variance estimator VJ is consistent for V,, given
in (5.100). ®

5.5.3 The bootstrap

The basic idea of the bootstrap method can be described as follows. Sup-
pose that P is a population or model that generates the sample X and that
we need to estimate Var(f), where § = 6(X) is an estimator, a statistic
based on X. Suppose further that the unknown population P is estimated
by P, based on the sample X. Let X* be a sample (called a bootstrap
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sample) taken from the estimated population P using the same or a similar
sampling procedure used to obtain X, and let §* = é(X *), which is the
same as § but with X replaced by X*. If we believe that P = P (i.e.,
we have a perfect estimate of the population), then Var(d) = Var, (%),
where Var, is the conditional variance w.r.t. the randomness in generating
X*, given X. In general, P # P and, therefore, Var(f) # Var,(6*). But
Vg = Var,(0*) is an empirical analogue of Var(f) and can be used as an
estimate of Var(f).

In a few cases, an explicit form of Vz = Var,(#*) can be obtained.
First, consider i.i.d. Xi,..., X, from a c.d.f. ' on R%. The population is
determined by F'. Suppose that we estimate F' by the empirical c.d.f. F),
in (5.1) and that X}, ..., X are iid. from F,. For § = X, its bootstrap

analogue is 8% = X*, the average of X’s. Then

Ve = Var.(X") = , Z (X — X)(X;i - X)" = ”7;152,
where S2 is the sample covariance matrix. In this case Vi = Var,(X*) is
a strongly consistent estimator for Var(X). Next, consider i.i.d. random
variables X1, ..., X, from a c.df. F on R and 6 = Fn_l(;)7 the sample
median. Suppose that n = 2] — 1 for an integer [. Let X7,..., X be ii.d.
from F,, and 0* be the sample median based on X7, ..., X*. Then

Vi = Var,(6*) ij (X(j) - szX( )> )

where X1y < --- < X,y are order statistics and p; = P(6* = Xyl X). It
can be shown (exercise) that

-1 . ty— i net _ it(n _ syt
pjzz<zl)(3—1)( j+1) jtn—=jmt (5.119)

nn
t=0

However, in most cases Vi does not have a simple explicit form. When
P is known, the Monte Carlo method described in §4.1.4 can be used to
approximate Var(é). That is, we draw repeatedly new data sets from P and
then use the sample covariance matrix based on the values of 0 computed
from new data sets as a numerical approximation to Var(é). This idea
can be used to approximate VB, since P is a known population. That is,
we can draw m bootstrap data sets X*!, ..., X*™ independently from p
(conditioned on X), compute 6+ = é(X*j), j=1,...,m, and approximate

Vi by .
L) o0y
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where 0* is the average of 6*3°s. Since each X*J is a data set generated from
]5, Vg,” is a resampling estimator. From the SLLN, as m — oo, Vé” —a.s.
VB, conditioned on X. Both Vz and its Monte Carlo approximation Vg,” are
called bootstrap variance estimators for 6. Vﬁ” is more useful in practical
applications, whereas in theoretical studies, we usually focus on Va.

The consistency of the bootstrap variance estimator Vj is a much more

complicated problem than that of the jackknife variance estimator in §5.5.2.
Some examples can be found in Shao and Tu (1995, §3.2.2).

The bootstrap method can also be applied to estimate quantities other
than Var(d). For example, let K (t) = P(0 < t) be the c.d.f. of a real-valued
estimator 0. From the previous discussion, a bootstrap estimator of K (t)
is the conditional probability P(é* < t|X), which can be approximated
by the Monte Carlo approximation m™" 32" I(_ 4 (6*7). An important
application of bootstrap distribution estimators in problems of constructing
confidence sets is studied in §7.4. Here, we study the use of a bootstrap
distribution estimator to form a consistent estimator of the asymptotic
variance of a real-valued estimator 6.

Suppose that X
Vn(f —0) —4 N(0,v), (5.120)

where v is unknown. Let H,(t) be the c.d.f. of v/n(0 — ) and
Hp(t) = P(v/n(0* — ) < t|X) (5.121)
be a bootstrap estimator of H, (t). If
Hp(t) = Ha(t) — 0
for any ¢, then, by (5.120),
Hp(t) = @ (t/v/v) =, 0,

which implies (Exercise 112) that

HJ§1 (a) =p Vv2a

for any o € (0,1), where z, = ®~!(c). Then, for o # 3,
H5'(1-a) = Hp'(0) —p Vo(z1-a — Za)-

Therefore, a consistent estimator of v/n, the asymptotic variance of é, is

~ £ 2
-1 [HG' (- ) - Hy'(a)
Vi =

n Zl—a — Ra
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The following result gives some conditions under which Hg(t)— H,(t) —, 0.

The proof of part (i) is omitted. The proof of part (ii) is given in Exercises
113-115 in §5.6.

Theorem 5.20. Suppose that X1, ..., X,, are i.i.d. from a c.d.f. F on R%.
Let 6 = T(F,), where T is a real-valued functional, §* = T(F*), where F* is
the empirical c.d.f. based on a bootstrap sample X7, ..., X)s i.i.d. from F,,
and let Hp be given by (5.121).

(i) If T is peo-Hadamard differentiable at F' and (5.40) holds, then

0o (Hp, Hy) =5 0. (5.122)

(i) If d = 1 and T is g, -Fréchet differentiable at F' ([ {F(¢)[1 — F(¢)]}?/2dt
< oo if 1 <p < 2) and (5.40) holds, then (5.122) holds. &

Applications of the bootstrap method to non-i.i.d. cases can be found,
for example, in Efron and Tibshirani (1993), Hall (1992), and Shao and Tu
(1995).

5.6 Exercises

1. Let oo be the sup-norm distance. Find an example of a sequence
{Gn} of c.d.f’s satisfying G,, —,, G for a c.d.f. G, but 9oo(Gp,G)
does not converge to 0.

2. Let X1,..., X,, be ii.d. random d-vectors with c.d.f. F' and F;, be the
empirical c.d.f. defined by (5.1). Show that for any ¢ > 0 and € > 0,
there is a C¢ 4 such that for alln =1,2, ...,

Ce de—(2—e)t2n
< ’ .
) = 1 — e (2—e)t?

P(sup Oco(Frm, F) > t

m>n

3. Show that ), defined by (5.4) is a distance on Fp, p > 1.
4. Show that || - ||z, in (5.5) is a norm for any p > 1.

5. Let F; be the collection of ¢.d.f.’s on R with finite means.
(a) Show that oy, (G1,Gs) = [ |GT(2) — G5 (2)|dz, where G~1(2)
=inf{t: G(t) > z} for any G € F.
(b) Show that O, (G1,G2) = 0r, (G1,Ga).

6. Find an example of a sequence {G;} C F for which
(a) limj o0 000 (G, Go) = 0 but 0,,,(G;,Go) does not converge to 0;
(b) lim; o0 04, (G, Go) = 0 but 000 (G, Go) does not converge to 0.
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10.

11.

12.

13.

14.

15.

16.

. For any one-dimensional G; € &1, j = 1,2, show that o, (G1,G2)

5. Estimation in Nonparametric Models

. Repeat the previous exercise with g, replaced by o .

. Let X be a random variable having c.d.f. F. Show that

(a) B|X|? < oo implies [{F(t)[1 — F()]}?/2dt < oo for p € (1,2);
(b) E|X [>T < oo with some § > 0 implies [{F(t)[1 — F(¢)]}'/2dt <
.

Y

\fxdG1 — f(L‘dG2|

In the proof of Theorem 5.3, show that p; = ¢/n, i = 1,...,n, A =
—(¢/n)"~1 is a maximum of the function H(p1, ..., pn, A) over p; > 0,

. n
i=1,..,n,> . | pi=c

Show that (5.11)-(5.13) is a solution to the problem of maximizing
¢(@) in (5.8) subject to (5.10).

In the proof of Theorem 5.4, prove the case of m > 2.

Show that a maximum of £(G) in (5.17) subject to (5.10) is given by
(5.11) with p; defined by (5.18) and (5.19).

In Example 5.2, show that an MELE is given by (5.11) with p;’s given
by (5.21).

In Example 5.3, show that
(a) maximizing (5.22) subject to (5.23) is equivalent to maximizing

n

O —it1—6,,
qu‘()(lfch)n i+1 5(1)7

i=1

where ¢; = p;/ Z;L;l P, i =1,..,n;

(b) F' given by (5.24) maximizes (5.22) subject to (5.23); (Hint: use
part (a) and the fact that p; = ¢; H;;ll(l —q;).)

(c) F given by (5.25) is the same as that in (5.24);

(d) if §; = 1 for all 4 (no censoring), then F in (5.25) is the same as
the empirical c.d.f. in (5.1).

Let f, be given by (5.26).

(a) Show that f, is a Lebesgue p.d.f. on R.

(b) Suppose that f is continuously differentiable at ¢, A, — 0, and
nA, — 0o. Show that (5.27) holds.

(c) Under nA3 — 0 and the conditions of (b), show that (5.28) holds.
(d) Suppose that f is continuous on [a, b], —0c0 < a < b < 00, A, — 0,

and n)\, — co. Show that f: fn(t)dt —, fab f(t)dt.
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17. Let f be given by (5.29).

18.
19.

20.

21.

22.
23.

24.

25.

26.

(a) Show that f is a Lebesgue p.d.f. on R.

(b) Prove (5.30) under the condition that A, — 0, nA, — oo, and
/ is bounded and continuous at ¢ and [|w(t)]?dt < co. (Hint: check
Lindeberg’s condition and apply Theorem 1.15.)

(¢) Assume that A\, — 0, nA,, — 0o, w is bounded, and f is bounded

and continuous on [a,b], —0o < a < b < co. Show that f: fydt —,
b

[, f(t)dt.

Prove (5.32)-(5.34) under the conditions described in §5.1.4.

Show that K (t) in (5.35) is a consistent estimator of K (t) in (5.34),
assuming that § —, B3, ¢ is a continuous function on R, (X;, Z;)’s
are 1.i.d., and || Z;|| < ¢ for a constant ¢ > 0.

Let ¢(0,¢) be a likelihood. Show that a maximum profile likelihood
estimator 6 of ¢ is an MLE if £(¢), the maximum of sup, £(6, £) for a
fixed 6, does not depend on 6.

Let Xi,..., X, be iid. from N(u,o?). Derive the profile likelihood
function for p or o?. Discuss in each case whether the maximum

profile likelihood estimator is the same as the MLE.
Derive the profile empirical likelihoods in (5.36) and (5.37).

Let X1, ..., X, be i.i.d. random variables from a c.d.f. F' and let w(x) =
P(6; = 11X; = z), where §; = 1 if X; is observed and §; = 0 if X is
missing. Assume that 0 < 7 = [ 7(z)dF(z) < 1.

(a) Let Fy(x) = P(X; < z|0; = 1). Show that F' and F} are the same
if and only if 7(z) = .

(b) Let F Dbe the c.d.f. putting mass 7~ ! to each observed X;, where
7 is the number of observed X;’s. Show that F'(z) is unbiased and
consistent for Fy(z), x € R.

(¢c) When 7(z) = =, show that F(z) in part (b) is unbiased and
consistent for F'(z), x € R. When w(z) is not constant, show that
F(z) is biased and inconsistent for F(x) for some z € R.

Show that o-Fréchet differentiability implies p-Hadamard differentia-
bility.

Suppose that a functional T is Gateaux differentiable at F' with a
continuous differential Ly in the sense that 0.(Aj, A) — 0 implies
Lr(A;) — Lr(A). Show that ¢ is bounded.

Suppose that a functional T is Gateaux differentiable at F' with a
bounded and continuous influence function ¢r. Show that the differ-
ential Lg is continuous in the sense described in the previous exercise.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
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Let T(G) = g([ #dG) be a functional defined on Fy, the collection of
one-dimensional c.d.f.’s with finite means.

(a) Find a differentiable function g for which the functional T is not
0so-Hadamard differentiable at F'.

(b) Show that if g is a differentiable function, then T is o, -Fréchet
differentiable at F'. (Hint: use the result in Exercise 9.)

In Example 5.5, show that (5.43) holds. (Hint: for A = ¢(G1 — G2),
show that [[Ally < [e[([|Ghllv + [|G2]lv) = 2]¢[.)

In Example 5.5, show that ¢p is continuous if F' is continuous.
In Example 5.5, show that T is not g..-Fréchet differentiable at F'.
Prove Proposition 5.1(ii).

Suppose that T is first-order and second-order o-Hadamard differen-
tiable at F'. Prove (5.45).

Find an example of a second-order g-Fréchet differentiable functional
T that is not first-order p-Hadamard differentiable.

Prove (5.47) and that (5.40) is satisfied for an L-functional if J is
bounded and F' has a finite variance.

Prove (iv) and (v) of Theorem 5.6.

Discuss which of (i)-(v) in Theorem 5.6 can be applied to each of the
L-estimators in Example 5.6.

Obtain explicit forms of the influence functions for L-estimators in
Example 5.6. Discuss which of them are bounded and continuous.

Provide an example in which the L-functional T given by (5.46) is not
0co-Hadamard differentiable at F'. (Hint: consider an untrimmed J.)

Discuss which M-functionals defined in (i)-(vi) of Example 5.7 satisfy
the conditions of Theorem 5.7.

In the proof of Theorem 5.7, show that Ry; — 0.

Show that the second equality in (5.51) holds when ¢ is Borel and
bounded.

Show that the functional T in (5.53) is pso-Hadamard differentiable at
F with the differential given by (5.54). Obtain the influence function
¢r and show that it is bounded and continuous if F' is continuous.
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43.

44.

45.

46.

47.

48.
49.

50.

51.

92.

Show that the functional T in (5.55) is goo-Hadamard differentiable
at F' with the differential given by (5.56). Obtain the influence func-
tion ¢ and show that it is bounded and continuous if F'(y, co) and
F(00, z) are continuous.

Let F be a continuous c.d.f. on R. Suppose that F' is symmetric
about 0 and is strictly increasing in a neighborhood of . Show that
Ap(t) =0 if and only if ¢t = 0, where Ap(¢) is defined by (5.57) with
a strictly increasing J satisfying J(1 —t) = —J(¢).

Show that )\F( ) in (5.57) is differentiable at 6 and Nz (0) is equal to
- JIE (z)dF ().

Let T(Fn) be an R-estimator satisfying the conditions in Theorem 5.8.
Show that (5.41) holds with

g,%/olu(t)]?dt/ U: J'(F(z))F' (¢)dF (z) N

Calculate the asymptotic relative efficiency of the Hodges-Lehmann
estimator in Example 5.8 w.r.t. the sample mean based on an i.i.d.
sample from F when

(a) F is the c.d.f. of N(p,0?);

(b) F is the c.d.f. of the logistic distribution LG(u, o);

(c) F is the c.d.f. of the double exponential distribution DE(u, 0);
(d) F(z) = Fo(x — 0), where Fy(z) is the c.d.f. of the t-distribution
t, with v > 3.

Let G be a c.d.f. on R. Show that G(x) >t if and only if z > G~1(¢).

Show that (5.67) implies that ép is strongly consistent for 6, and is
v/n-consistent for 6, if F'(6,—) and F'(6,+) exist and are positive.

Under the condition of Theorem 5.9, show that, for p. = e 202 ,

A 2Cp7
P<sup 16y — 6p] >e> < 1 Pe , n=12,...

m>n — Pe

Prove that ¢, (t) in (5.69) is the Lebesgue p.d.f. of the pth sample
quantile ép when F' has the Lebesgue p.d.f. f by

(a) differentiating the c.d.f. of 6, in (5.68);

(b) using result (5.66) and the result in Example 2.9.

Let X1, ..., X}, be i.i.d. random variables from F' with a finite mean.
Show that 6, has a finite jth moment for sufficiently large n, j =
1,2,....
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93.
o4.

95.

56.

o7.
58.
99.

60.

61.

62.

63.

64.
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Prove Theorem 5.10(i).

Suppose that a c.d.f. F' has a Lebesgue p.d.f. f that is continuous
at the pth quantile of F, p € (0,1). Using the p.d.f. in (5.69) and
Scheffé’s theorem (Proposition 1.18), prove part (iv) of Theorem 5.10.

Let {k,} be a sequence of integers satisfying k,/n = p + o(n=1/?)
with p € (0,1), and let X1, ..., X,, be i.i.d. random variables from a
c.d.f. F with F’(0,) > 0. Show that

Vi X,y = 0p) —a N(0,p(1 = p)/[F'(6,)]%).

In the proof of Theorem 5.11, prove (5.72), (5.75), and inequality
(5.74).

Prove Corollary 5.1.
Prove the claim in Example 5.9.

Let T(G) =G~1(p) be the pth quantile functional. Suppose that F has
a positive derivative F’ in a neighborhood of #= F~!(p). Show that
T is Gateaux differentiable at F' and obtain the influence function.

Let Xy, ..., X, be i.i.d. from the Cauchy distribution C'(0,1).
(a) Show that E(X(j))2 < ooifand only if 3 <j <n—2.
(b) Show that E(fy5)2 < oo for n > 5.

Suppose that F is the c.d.f. of the uniform distribution U(§— 3,6+ ),
0 € R. Obtain the asymptotic relative efficiency of the sample median
w.r.t. the sample mean, based on an i.i.d. sample of size n from F.

Suppose that F(z) = Fo(x — 0) and Fp is the c.d.f. of the Cauchy
distribution C(0, 1) truncated at ¢ and —c, i.e., Fj has the Lebesgue
p.df (14 22) " _.n(z)/ [ (14 2?)"1dt. Obtain the asymptotic
relative efficiency of the sample median w.r.t. the sample mean, based
on an i.i.d. sample of size n from F.

Let X1, ..., X, beiid. with the c.d.f. (1—e)® (*_*)+eD (*"), where
e € (0,1) is a known constant, ® is the c.d.f. of the standard normal
distribution, D is the c.d.f. of the double exponential distribution
D(0,1), and ¢+ € R and 0 > 0 are unknown parameters. Consider
the estimation of . Obtain the asymptotic relative efficiency of the
sample mean w.r.t. the sample median.

Let Xi,..., X, be i.id. with the Lebesgue p.d.f. 271(1 — §2)ef=—l=l,
where 6 € (—1,1) is unknown.
(a) Show that the median of the distribution of X7 is given by m(0) =
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65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

(1 —0)"'log(1+ 6) when 6 > 0 and m(f) = —m(—60) when 6 < 0.
(b) Show that the mean of the distribution of X; is u(6) = 26/(1—6%).
(c¢) Show that the inverse functions of m(#) and u(f) exist. Obtain
the asymptotic relative efficiency of m=1 (1) w.r.t. u=1(X), where 1
is the sample median and X is the sample mean.

(e) Is p~1(X) in (d) asymptotically efficient in estimating 67

Show that X, in (5.77) is the L-estimator corresponding to the J
function given in Example 5.6(iii) with =1 — .

Let X1, ..., X, be ii.d. random variables from F', where F' is symmet-
ric about 6.

(a) Show that X(;y —6 and 6 — X(,,_; 1) have the same distribution.
(b) Show that Y7, w; X(;) has a c.d.f. symmetric about 6, if w;’s are
constants satisfying Z?Zl w; = 1 and w; = wp_j41 for all 5.

(c) Show that the trimmed sample mean X, has a c.d.f. symmetric
about 6.

Under the conditions in one of (i)-(iii) of Theorem 5.6, show that
(5.41) holds for T(F},,) with 0% given by (5.79), if 0% < cc.

Prove (5.78) under the assumed conditions.

For the functional T given by (5.46), show that T(F) = 6 if F is
symmetric about 6, J is symmetric about %, and fol J(t)dt = 1.

Obtain the asymptotic relative efficiency of the trimmed sample mean
X, w.r.t. the sample mean, based on an i.i.d. sample of size n from the
double exponential distribution DE(6,1), where 6 € R is unknown.

Obtain the asymptotic relative efficiency of the trimmed sample mean
X, w.r.t. the sample median, based on an i.i.d. sample of size n from
the Cauchy distribution C(6,1), where 6§ € R is unknown.

Consider the a-trimmed sample mean defined in (5.77). Show that o2
in (5.78) is the same as 0% in (5.79) with J(t) = (1—2a) " I(41-a)(t),
when F(z) = Fy(z — 0) and Fp is symmetric about 0.

For 02 in (5.78), show that

(a) if F3(0) exists and is positive, then lim,_,1 03 = 1/[2F5(0)]*;

(b) if 02 = [ 22dFy(x) < oo, then lim,_.g o2 = o2.

Show that if J = 1, then o% in (5.79) is equal to the variance of the
c.d.f. F.

Calculate 0% in (5.79) with J(t) = 4t — 2 and F being the double
exponential distribution DE(6,1), § € R.
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Consider the simple linear model in Example 3.12 with positive t;’s.
Derive the L-estimator of 3 defined by (5.82) with a J symmetric
about ; and compare it with the LSE of 3.

Consider the one-way ANOVA model in Example 3.13. Derive the
L-estimator of 3 defined by (5.82) when (a) J is symmetric about
and (b) J(t) = (1 — 2a) '(4,1-q)(t). Compare these L-estimators
with the LSE of 4.

Show that the method of moments in §3.5.2 is a special case of the
GEE method.

Complete the proof of Proposition 5.4.

In the proof of Lemma 5.3, show that the probability in (5.94) is
bounded by e.

In Example 5.11, show that v;’s satisfy the conditions of Lemma 5.3
if © is compact and sup;, || Z;|| < oo.

In the proof of Proposition 5.5, show that {A,(y)} is equicontinuous
on any open subset of ©.

Prove Proposition 5.6.
Prove the claim in Example 5.12.
Prove the claims in Example 5.13.

For Huber’s M-estimator discussed in Example 5.13, obtain a formula
for e(F), the asymptotic relative efficiency of 8,, w.r.t. X, when F is
given by (5.76). Show that lim, .. e(F) = oco. Find the value of

e(F) when e =0,0 =1, and C = 1.5.

Consider the ¢ function in Example 5.7(ii). Show that under some
conditions on F', ¢ satisfies the conditions given in Theorem 5.13(i)
or (ii). Obtain 0% in (5.98) in this case.

In the proof of Theorem 5.14, show that

(a) (5.101) holds;

(b) (5.103) holds;

(c) (5.104) implies (5.102). (Hint: use Theorem 1.9(iii).)

Prove the claim in Example 5.14, assuming some necessary moment
conditions.

Derive the asymptotic distribution of the MQLE (the GEE estima-
tor based on (5.90)), assuming that X; = (X1, ..., Xigq,), E(Xit) =
me™i /(1 + e"), Var(X;;) = map;e" /(1 + e7)?, and (4.57) holds with
g(t) = log . .
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Repeat the previous exercise under the assumption that E(X;;) = e™,
Var(X;;) = ¢;e”, and (4.57) holds with g(t) = logt or g(t) = 2/t.

In Theorem 5.14, show that result (5.99) still holds if R; is replaced
by an estimator R; satisfying max;<y ||[R; — U;|| = 0p(1), where U;’s
are correlation matrices.

Show that (5.106) holds if and only if one of the following holds:

(a) Ao —, 1 and A —, 1, where A_ and A} are respectively the
smallest and largest eigenvalues of Vn_l/ 2Vn Vn_l/ 2

(b) 17Vl /17 Vil —p 1, where {I,,} is any sequence of nonzero vectors
in R*.

Show that (5.105) and (5.106) imply Vi, */*(6,, — 6) —4 Ni(0, I,).

Suppose that X1, ..., X,, are independent (not necessarily identically
distributed) random d-vectors with E(X;) = p for all i. Suppose also
that sup; E|| X;||**° < oo for some § > 0. Let u = E(X;), 6 = g(u),
and 6, = g(X). Show that

(a) (5.105) holds with V,, = n=2[Vg(u)]™ >, Var(X;)Vg(u);

(b) V,, in (5.108) is consistent for V,, in part (a).

Consider the ratio estimator in Example 3.21. Derive the estimator
V., given by (5.108) and show that V;, is consistent for the asymptotic
variance of the ratio estimator.

Derive a consistent variance estimator for R(t) in Example 3.23.
Prove the claims in Example 5.16.

Let 02 be given by (5.79) with F replaced by the empirical c.d.f. F},.
F’IL

(a) Show that o7 /n is the same as V,, in (5.110) for an L-estimator
with influence function ¢p.

(b) Show directly (without using Theorem 5.15) 0% —a.s 0f in
(5.79), under the conditions in Theorem 5.6(i) or (i) (with EX? <
00).

Derive a consistent variance estimator for a U-statistic satisfying the
conditions in Theorem 3.5(i).

Derive a consistent variance estimator for Huber’s M-estimator dis-
cussed in Example 5.13.

Assume the conditions in Theorem 5.8. Let r € (0, }).

(a) Show that n" Ap(T(F,,) +n~") —, Ar(T(F)).

(b) Show that n"[Ag, (T(F,) +n~") = Ar(T(Fn) +n~")] —5 0.

(c) Derive a consistent estimator of the asymptotic variance of T(F,),
using the results in (a) and (b).
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Prove Theorem 5.16.

Let Xi,...,X,, be random variables and 6 = X2 Show that the

4X%¢, _ 4Xes ea—&3
n1 T (ne12 T (n—1)s» Where

¢;’s are the sample central moments defined by (3.52).

jackknife estimator in (5.112) equals

Prove Theorem 5.17 for the case where ¢ is from R? to R* and k > 2.
Prove (5.114).
In the proof of Theorem 5.18, prove (5.116).

Show that 6_;’s in (5.118) satisfy (5.117), under the conditions of
Theorem 5.14.

Prove Theorem 5.19.
Prove (5.119).

Let Xi,...,X, be random variables and 6 = X2. Show that the
bootstrap variance estimator based on i.i.d. X’s from F}, is equal to

Vp = X% 4 4XC‘°’ 46 C"‘ , where ¢;’s are the sample central moments
defined by (3. 52)

Let G, G1, Ga,..., be c.d.f’s on R. Suppose that 9o (Gj,G) — 0 as
j — oo and G'(x) exists and is positive for all z € R. Show that
Gy (p) — G (p) for any p € (0,1).

Let X1,..., X, be iid. from a c.d.f. F on R% with a finite Var(X7).
Let X7, ..., X} beii.d. from the empirical c.d.f. F},. Show that for al-
most all given sequences X1, Xo, ..., v/n(X* — X) —4 Ng(0, Var(X1)).
(Hint: verify Lindeberg’s condition.)

Let X1, ..., X,, be i.id. from a c.d.f. F on RY, X7, ..., X be i.i.d. from

the empirical c.d.f. F,,, and let F,; be the empirical c.d.f. based on
Xs. Usmg DKW’s inequality (Lemma 5.1), show that

(8) 000 (F5, F) —as. 0;

( ) ( n’ ):Op(n71/2);

(c) or, (Fy, F) = Op(n~'/2), under the condition in Theorem 5.20(ii).

Using the results from the previous two exercises, prove Theorem
5.20(ii).

Under the conditions in Theorem 5.11, establish a Bahadur’s repre-
sentation for the bootstrap sample quantile 6},.



Chapter 6

Hypothesis Tests

A general theory of testing hypotheses is presented in this chapter. Let X
be a sample from a population P in P, a family of populations. Based on
the observed X, we test a given hypothesis Hy : P € Py versus Hy : P € P,
where Py and P; are two disjoint subsets of P and Py UP; = P. Notational
conventions and basic concepts (such as two types of errors, significance
levels, and sizes) given in Example 2.20 and §2.4.2 are used in this chapter.

6.1 UMP Tests

A test for a hypothesis is a statistic 7'(X) taking values in [0,1]. When
X = z is observed, we reject Hy with probability T'(z) and accept Hy with
probability 1-T'(z). IT(X) = 1or0a.s. P, then T'(X) is a nonrandomized
test. Otherwise T'(X) is a randomized test. For a given test T(X), the
power function of T'(X) is defined to be

Br(P)=E[T(X)], PeP, (6.1)
which is the type I error probability of T'(X) when P € Py and one minus
the type II error probability of T(X) when P € P;.

As we discussed in §2.4.2, with a sample of a fixed size, we are not able
to minimize two error probabilities simultaneously. Our approach involves
maximizing the power OGr(P) over all P € P; (i.e., minimizing the type II
error probability) and over all tests T satisfying

sup fr(P) < a, (6.2)
PePy

where a € [0,1] is a given level of significance. Recall that the left-hand
side of (6.2) is defined to be the size of T

393
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Definition 6.1. A test T of size « is a uniformly most powerful (UMP)
test if and only if Bz, (P) > Gp(P) for all P € P; and T of level a. 11

If U(X) is a sufficient statistic for P € P, then for any test T'(X),
E(T|U) has the same power function as T" and, therefore, to find a UMP
test we may consider tests that are functions of U only.

The existence and characteristics of UMP tests are studied in this sec-
tion.

6.1.1 The Neyman-Pearson lemma

A hypothesis Hy (or Hi) is said to be simple if and only if Py (or Py)
contains exactly one population. The following useful result, which has
already been used once in the proof of Theorem 4.16, provides the form of
UMP tests when both Hy and Hy are simple.

Theorem 6.1 (Neyman-Pearson lemma). Suppose that Py = {Py} and
P1 = {P1}. Let f; be the p.df. of P; wr.t. a o-finite measure v (e.g.,
I/:P0+P1),j:0,1.

(i) (Existence of a UMP test). For every a, there exists a UMP test of size
«, which is equal to

1 fl(X) > Cfo(X)
T.(X) = Y f1(X) = cfo(X) (6.3)
0 filX) <cfo(X),

where v € [0,1] and ¢ > 0 are some constants chosen so that E[T,(X)] = «
when P = Py (¢ = oo is allowed).
(ii) (Uniqueness). If T, is a UMP test of size «, then
1 f1(X) > cfo(X)
Ti(X) = a.s. P. 6.4
D={0 i enix) o)

Proof. The proof for the case of @« = 0 or 1 is left as an exercise. Assume
now that 0 < o < 1.
(i) We first show that there exist v and ¢ such that Ey[T«(X)] = «, where
E; is the expectation w.r.t. P;. Let v(t) = Py(fi(X) > tfo(X)). Then
~(t) is nonincreasing, v(0) = 1, and y(oc0) = 0 (why?). Thus, there exists a
¢ € (0,00) such that y(c) < a < y(c—). Set

y= { 7(?—7;—(?(0) v(c=) # (c)
0 Y(e=) =(c).
Note that v(c—) — v(c) = P(f1(X) = ¢fo(X)). Then
Eo[To(X)] = Py (f1(X) > cfo(X)) + vPo(f1(X) = cfo(X)) = o
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Next, we show that T, in (6.3) is a UMP test. Suppose that T(X) is a
test satisfying Fo[T'(X)] < a. If Ti(z) — T(z) > 0, then Ti(z) > 0 and,
therefore, fi(z) > cfo(x). If Ti(z) — T(z) < 0, then Ti(x) < 1 and,
therefore, fi(x) < cfo(z). In any case, [Tu(x) — T'(2)][f1(z) — cfo(x)] > 0
and, therefore,

/ T.(2) — T@)[f1() — cho(@)dv >0,

[1z) - @) h@r = ¢ [11.@) - Tah@d. (©5)

The left-hand side of (6.5) is F1 [Tk (X)] — E1[T(X)] and the right-hand side
of (6.5) is c{ Ep|T«(X)] — Eo[T(X)]} = ¢c{a — Eo[T(X)]} > 0. This proves
the result in (i).

(ii) Let Tyi(X) be a UMP test of size . Define

A={2: Tu(@) # Tuua), filw) # cfolw)}.

Then [T () —Twx ()] [f1(z) —cfo(z)] > 0 when x € A and = 0 when x € A°,
and

/ T () — Tor @)1 (2) — cfo(z)]dv = 0,

since both T, and T.. are UMP tests of size . By Proposition 1.6(ii),
v(A) = 0. This proves (6.4). 1

Theorem 6.1 shows that when both Hy and H; are simple, there exists
a UMP test that can be determined by (6.4) uniquely (a.s. P) except on
the set B = {x : fi(x) = cfo(x)}. If v(B) = 0, then we have a unique
nonrandomized UMP test; otherwise UMP tests are randomized on the set
B and the randomization is necessary for UMP tests to have the given size
«; furthermore, we can always choose a UMP test that is constant on B.

Example 6.1. Suppose that X is a sample of size 1, Py = {P}, and P; =
{P1}, where Py is N(0,1) and P; is the double exponential distribution
DE(0,2) with the p.d.f. 47te~1#l/2, Since P(f1(X) = cfo(X)) = 0, there is
a unique nonrandomized UMP test. From (6.3), the UMP test T.(z) = 1
if and only if gezrz*'z' > ¢? for some ¢ > 0, which is equivalent to |z| > ¢
or |z| < 1—t for some t > ; Suppose that a < é To determine ¢, we use

If t <1, then Py(|X]| > t) > Py(|X]| > 1) = 0.3374 > . Hence ¢ should be
larger than 1 and (6.6) becomes

a=Po(|X| > t) = B(—t) + 1 — D(t).
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Thus, t = & 1(1 — a/2) and Tu(X) = I;00)(|X]). Note that it is not
necessary to find out what c is.

Intuitively, the reason why the UMP test in this example rejects Hy
when |X| is large is that the probability of getting a large |X| is much
higher under H; (i.e., P is the double exponential distribution DE(0, 2)).

The power of T, when P € Py is

t
E\[T.(X)] =P (|X|>t)=1~- i/ e lel/2g0 — o—t/2 g

—t

Example 6.2. Let X1, ..., X,, be i.i.d. binary random variables with p =
P(X; = 1). Suppose that Hy : p = pg and Hy : p = p1, where 0 < pg <
p1 < 1. By Theorem 6.1, a UMP test of size « is

1 AY) >e¢
T.Y)={ v AY)=c
0 AY) <e,

where Y = 3" | X; and

Y 1_ n—Y
Po 1 —po
Since A(Y') is increasing in Y, there is an integer m > 0 such that

1 Y>m
T.Y)=< ~ Y=m
0 Y <m,
where m and v satisfy o = Ey[Tx(Y)] = Po(Y > m) +vFPy(Y = m). Since
Y has the binomial distribution Bi(p,n), we can determine m and ~ from
- n j n—j n m n—m
a= 3 (D) -pr (D )mpa =m0
Jj=m+1
Unless .
n h .
o= 3 (G
Jj=m-+1 J
for some integer m, in which case we can choose v = 0, the UMP test T} is
a randomized test. 1

An interesting phenomenon in Example 6.2 is that the UMP test T
does not depend on p;. In such a case, T is in fact a UMP test for testing
Hy :p=pg versus Hy : p > po.
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Lemma 6.1. Suppose that there is a test T of size « such that for every
P, € Py, T, is UMP for testing Hy versus the hypothesis P = P;. Then T,
is UMP for testing Hy versus Hi.

Proof. For any test T of level «, T is also of level « for testing Hy versus
the hypothesis P = P; with any P, € Py. Hence Br+(Py) > Or(P1). 1

We conclude this section with the following generalized Neyman-Pearson
lemma. Its proof is left to the reader. Other extensions of the Neyman-
Pearson lemma can be found in Exercises 8 and 9 in §6.6.

Proposition 6.1. Let fi1, ..., f;nr1 be Borel functions on RP that are inte-
grable w.r.t. a o-finite measure v. For given constants t1,...,tm, let 7 be
the class of Borel functions ¢ (from R? to [0, 1]) satisfying

/¢f2dV S ti, 1= ]., ey m, (68)

and 7y be the set of ¢’s in 7 satisfying (6.8) with all inequalities replaced
by equalities. If there are constants cy, ..., ¢;, such that

) = 1 f’m+1(x) > lel(x)+"'+cmfm(x)
¢-(@) = { 0 fmr1(x) <cifi(@) + -+ emfm() (6.9)

is a member of 7y, then ¢, maximizes f G fma1dv over ¢ € Ty. If ¢; > 0 for
all 4, then ¢, maximizes [ @fmi1dv over p € T.

The existence of constants ¢;’s in (6.9) is considered in the following
lemma whose proof can be found in Lehmann (1986, pp. 97-99).

Lemma 6.2. Let fi,..., f;, and v be given by Proposition 6.1. Then the
set M = {([¢frdv, ..., [ ¢fmdv) : ¢ is from RP to [0,1]} is convex and
closed. If (t,...,t,) is an interior point of M, then there exist constants
€1, ..., ¢ such that the function defined by (6.9) is in 7g. 1

6.1.2 Monotone likelihood ratio

The case where both Hy and H; are simple is mainly of theoretical inter-
est. If a hypothesis is not simple, it is called composite. As we discussed
in §6.1.1, UMP tests for composite H; exist in the problem discussed in
Example 6.2. We now extend this result to a class of parametric problems
in which the likelihood functions have a special property.

Definition 6.2. Suppose that the distribution of X isin P = {Py : § € 0},
a parametric family indexed by a real-valued 6, and that P is dominated
by a o-finite measure v. Let fg = dPy/dv. The family P is said to have
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monotone likelihood ratio in Y (X) (a real-valued statistic) if and only if, for
any 61 < 02, fo,(x)/fo, () is a nondecreasing function of Y'(x) for values z
at which at least one of fy, (z) and fg, () is positive. 1

The following lemma states a useful result for a family with monotone
likelihood ratio.

Lemma 6.3. Suppose that the distribution of X is in a parametric family
P indexed by a real-valued # and that P has monotone likelihood ratio in
Y(X). If ¢ is a nondecreasing function of Y, then ¢g(f) = E[¢(Y)] is a
nondecreasing function of 6.

Proof. Let 6, < 0y, A = {z : fo,(x) > fo,(2)}, a = supyec V(Y (2)),
B ={x: fo,(x) < fo,(x)}, and b = inf e p (Y (x)). Since P has monotone
likelihood ratio in Y (X) and ¢ is nondecreasing in Y, b > a. Then the
result follows from

9(62) — g(61) = / SOV (@)(fon — fo)(@)dw

a’/(f92 —fgl)(Q?)dU—i-b/ (f92 —ng(ﬂ?)dU
A B

— (b—a) /B (fon — for)(@)d

>0. 1

Y

Before discussing UMP tests in families with monotone likelihood ratio,
let us consider some examples of such families.

Example 6.3. Let 6 be real-valued and 7(#) be a nondecreasing function
of . Then the one-parameter exponential family with

fo(z) = exp{n(0)Y (x) — £(0)}h(x) (6.10)

has monotone likelihood ratio in Y(X). From Tables 1.1-1.2 (§1.3.1), this
includes the binomial family {Bi(6, )}, the Poisson family { P(6)}, the neg-
ative binomial family {NB(6,r)}, the log-distribution family {L(6)}, the
normal family {N (6, c?)} or {N(c,#)}, the exponential family { E(c, )}, the
gamma family {I'(6,¢)} or {T'(c, 6)}, the beta family {B(6,c)} or {B(c, )},
and the double exponential family {DE(c, 8)}, where r or ¢ is known. 1

Example 6.4. Let Xi,...,X,, be i.i.d. from the uniform distribution on
(0,0), where # > 0. The Lebesgue p.d.f. of X = (X1,...,X,) is fo(x) =
07" 10,0)(2(n)), Where x(,) is the value of the largest order statistic X,).
For 0, < 92,

fo,(x) 07 L10,0,)(T(n))

for(®) 05 Lo0)(w(m)’
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which is a nondecreasing function of x(,) for z’s at which at least one of
Jo,(x) and fg,(z) is positive, i.e., 2(,) < 2. Hence the family of distribu-
tions of X has monotone likelihood ratio in X(,). 1

Example 6.5. The following families have monotone likelihood ratio:

(a) the double exponential distribution family { DE(0, ¢)} with a known ¢;
(b) the exponential distribution family {E(0, ¢)} with a known c¢;

(c) the logistic distribution family {LG(0, ¢)} with a known c¢;

(d) the uniform distribution family {U (6,0 + 1)};

e) the hypergeometric distribution family {HG(r,0, N — 0)} with known
r and N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is
the Cauchy distribution family {C'(6,¢)} with a known c¢. 1

Hypotheses of the form Hy : § < 6y (or Hy : 6 > ) versus Hy : 0 > 6y
(or Hy : 6 < 0y) are called one-sided hypotheses for any given constant
0y. The following result provides UMP tests for testing one-sided hypothe-
ses when the distribution of X is in a parametric family with monotone
likelihood ratio.

Theorem 6.2. Suppose that X has a distribution in P = {Fy : § € 6}
(© C R) that has monotone likelihood ratio in Y'(X). Consider the problem
of testing Hy : 0 < 0y versus H; : 6 > 0y, where 6 is a given constant.

(i) There exists a UMP test of size «, which is given by

1 Y(X)>c
T.(X)=<X v YX)=c¢ (6.11)
0 YX)<e

where ¢ and «y are determined by S, (6p) = a, and Sr(0) = E[T(X)] is the
power function of a test T'.

(ii) Br, (0) is strictly increasing for all §’s for which 0 < gz, (6) < 1.

(iii) For any 6 < 6y, T\ minimizes G (0) (the type I error probability of T')
among all tests T satisfying Br(6y) = .

(iv) Assume that Py(fp(X) = cfo, (X)) = 0 for any 6 > 6y and ¢ > 0, where
fo is the p.d.f. of Py. If T is a test with Sr(6p) = Br. (60), then for any
0 > 0y, either Br(0) < Br,(0) or T =T, a.s. Py.

(v) For any fixed 60, Ty is UMP for testing Hy : 6 < 67 versus Hy : 0 > 01,
with size BT* (91)

Proof. (i) Consider the hypotheses § = 6, versus 6 = 6, with any 61 > 6.
From Theorem 6.1, a UMP test is given by (6.3) with f; = the p.d.f. of Py,
j = 0,1. Since P has monotone likelihood ratio in Y (X), this UMP test
can be chosen to be the same as T in (6.11) with possibly different ¢ and
~ satisfying Or, (6p) = . Since T\ does not depend on 61, it follows from
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Lemma 6.1 that T is UMP for testing the hypothesis 8 = 6y versus H;.

Note that if T} is UMP for testing 6§ = 6y versus Hy, then it is UMP for
testing Hy versus Hy, provided that Sz, (6) < « for all § < 6y, i.e., the size
of T, is a. But this follows from Lemma 6.3, i.e., S, (#) is nondecreasing
in 6. This proves (i).

(ii) See Exercise 2 in §6.6.

(iii) The result can be proved using Theorem 6.1 with all inequalities re-
versed.

(iv) The proof for (iv) is left as an exercise.

(v) The proof for (v) is similar to that of (i).

By reversing inequalities throughout, we can obtain UMP tests for test-
ing Hy: 0 > 6y versus Hy : 0 < 6.

A major application of Theorem 6.2 is to problems with one-parameter
exponential families.

Corollary 6.1. Suppose that X has the p.d.f. given by (6.10) w.r.t. a
o-finite measure, where 7 is a strictly monotone function of 6. If 7 is
increasing, then T given by (6.11) is UMP for testing Hy : 6 < 6y versus
Hi : 0 > 0y, where v and ¢ are determined by S, (6p) = «. If 5 is decreasing
or Hy:60 >0y (Hy : 0 < 8g), the result is still valid by reversing inequalities
in (6.11). &

Example 6.6. Let X1,..., X,, be i.i.d. from the N(u,o?) distribution with
an unknown g € R and a known o2. Consider Hy : p < po versus Hy :
W > o, where g is a fixed constant. The p.d.f. of X = (X, ..., X},) is of
the form (6.10) with Y(X) = X and n(u) = nu/o?. By Corollary 6.1 and
the fact that X is N(p,0?/n), the UMP test is T%(X) = I(c, 00)(X), where
Co = 021-a/\/n+ po and z, = ®71(a) (see also Example 2.28). 1

To derive a UMP test for testing Hy : 6 < 6y versus Hy : 0 > 0y when
X has the p.d.f. (6.10), it is essential to know the distribution of Y (X).
Typically, a nonrandomized test can be obtained if the distribution of Y is
continuous; otherwise UMP tests are randomized.

Example 6.7. Let X, ..., X,, be i.i.d. binary random variables with p =
P(X; =1). The p.d.f. of X = (X3,..., X;,) is of the form (6.10) with Y =
iy Xiand n(p) = log 1fp. Note that 7n(p) is a strictly increasing function
of p. By Corollary 6.1, a UMP test for Hy : p < pg versus Hy : p > pg is
given by (6.11), where ¢ and ~ are determined by (6.7) with c=m. 1

Example 6.8. Let X1, ..., X, be i.i.d. random variables from the Poisson
distribution P(#) with an unknown 6 > 0. The p.d.f. of X = (X1,..., X,,)
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is of the form (6.10) with Y'(X) = >, X; and n(#) = logf. Note that
Y has the Poisson distribution P(nf). By Corollary 6.1, a UMP test for
Hy : 6 <8y versus Hy : 0 > 0 is given by (6.11) with ¢ and v satisfying
o0 nbo ) K nbg 0)¢
as 3 Y o)
. 4! c!
Jj=c+1

Example 6.9. Let X1, ..., X,, be i.i.d. random variables from the uniform
distribution U(0,6), § > 0. Consider the hypotheses Hy : 6 < 6y and
Hy : 0 > 6y. Since the p.d.f. of X = (Xq,...,X,) is in a family with
monotone likelihood ratio in Y(X) = X,y (Example 6.4), by Theorem
6.2, a UMP test is of the form (6.11). Since X(,,) has the Lebesgue p.d.f.
nf~"z" 11 (g,9)(z), the UMP test in (6.11) is nonrandomized and

0o n

n _ C
OézﬁT*(eo)Zen/ z" 1dx:l—gn.
0 Je 0

Hence ¢ = 6y(1 — a)'/™. The power function of T, when 6 > 6 is

0
_ n n—1 1 _ 98(1 - a)
Br. (0) = 0”/6 2" de =1 o

In this problem, however, UMP tests are not unique. (Note that the
condition Py(fp(X) = c¢fo,(X)) =0 in Theorem 6.2(iv) is not satisfied.) It
can be shown (exercise) that the following test is also UMP with size a:

1 X > by
T(X)= (n)
) { o Xy < bo.

6.1.3 UMP tests for two-sided hypotheses

The following hypotheses are called two-sided hypotheses:

Hy: 06 <6i0or0 >0, versus Hp: 01 <0 <0y, (6.12)
Hy: 01 <0<0, versus Hi: 0 <60 or8 >0y, (6.13)
Hy: 0 =06y versus Hj: 0 # 6y, (6.14)

where 6y, 01, and 05 are given constants and 61 < 65.

Theorem 6.3. Suppose that X has the p.d.f. given by (6.10) w.r.t. a o-
finite measure, where 7 is a strictly increasing function of 6.
(i) For testing hypotheses (6.12), a UMP test of size « is

1 1 <Y(X)<eo
T.(X)={ v Y(X)=¢, i=12 (6.15)
0 Y(X) <eporY(X) > co,
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where ¢;’s and ~;’s are determined by

Br. (61) = Br.(02) = c. (6.16)

(ii) The test defined by (6.15) minimizes 87 (6) over all § < 61, 6 > 2, and
T satisfying ﬁT(91> = BT(QQ) = Q.

(iil) If T, and T are two tests satisfying (6.15) and Sz, (61) = B, (61) and
if the region {T. = 1} is to the right of {T\ = 1}, then Sr,(0) < fr,,(0)
for 8 > 6, and Br,(0) > Br..(0) for 6 < 0;. If both T, and T, satisfy
(6.15) and (6.16), then T, = Ty a.s. P.

Proof. (i) The distribution of Y has a p.d.f.

go(y) = exp{n(0)y — £(0)} (6.17)

(Theorem 2.1). Since Y is sufficient for 6, we only need to consider tests of
the form T'(Y'). Let 6; < 65 < 05. Consider the problem of testing 6 = 6
or = 63 versus § = 5. Clearly, (a, @) is an interior point of the set of
all points (87 (61), Br(02)) as T ranges over all tests of the form T'(Y). By
(6.17) and Lemma 6.2, there are constants ¢; and ¢é; such that

TV — 1 a1 + aqse?Y < 1
-(Y) = 0 a1 + age?Y > 1

satisfies (6.16), where a; = ¢e8(%3)=¢) and b; = n(6;) — n(hs), i = 1,2.
Clearly a;’s cannot both be < 0. If one of the a;’s is < 0 and the other
is > 0, then a;e®Y + ageb?Y is strictly monotone (since by < 0 < by) and
T, or 1 — T, is of the form (6.11), which has a strictly monotone power
function (Theorem 6.2) and, therefore, cannot satisfy (6.16). Thus, both
a;’s are positive. Then, T, is of the form (6.15) (since b; < 0 < by) and it
follows from Proposition 6.1 that T, is UMP for testing § = 61 or 8 = 65
versus 6 = 3. Since T, does not depend on 03, it follows from Lemma 6.1
that Ty is UMP for testing 8 = 0, or 6 = 65 versus H;.

To show that T, is a UMP test of size a for testing Hy versus Hi, it
remains to show that fr, () < « for < 6; or § > 6. But this follows
from part (ii) of the theorem by comparing T, with the test T(Y) = a.
(ii) The proof is similar to that in (i) and is left as an exercise.

(iii) The first claim in (iii) follows from Lemma 6.4, since the function
T.. — T has a single change of sign. The second claim in (iii) follows from
the first claim. &

Lemma 6.4. Suppose that X has a p.d.f. in {fy(z) : 0 € ©}, a parametric
family of p.d.f.’s w.r.t. a single o-finite measure v on R, where © C R.
Suppose that this family has monotone likelihood ratio in X. Let 9 be a
function with a single change of sign.

(i) There exists p € O such that Ep[tp(X)] < 0for 6 < 6y and Ep[p(X)] >0
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for 6 > 6y, where Ey is the expectation w.r.t. fp.

(ii) Suppose that fy(z) > 0 for all x and 6, that fy, (x)/fo(z) is strictly
increasing in z for 6 < 0y, and that v({z : ¢¥(x) # 0}) > 0. If Ep,[v(X)] =
0, then Eg[w(X)} < 0 for 6 < 6y and Eg[w(X)} > 0 for 6 > 6.

Proof. (i) Suppose that there is an 2o € R such that ¢(x) < 0 for z < g
and ¢(z) > 0 for z > xo. Let 61 < 6. We first show that Ep, [¢»(X)] > 0
implies Fy, [(X)] > 0. If fo,(x0)/ fo,(x0) = 00, then fo, (x) = 0 for z >
and, therefore, Ep, [¢(X)] < 0. Hence fg,(x0)/fo,(x0) = ¢ < co. Then
¥(z) > 0 on the set A= {x: fp,(z) =0 and fp,(z) > 0}. Thus,

Eal(X) = [ 7% fo,dv
Ac f91
> /x<xo ) fo, dv + /xzxo e fo, dv (6.18)
= cEp, [(X)].

The result follows by letting 6y = inf{6 : Ey[t)(X)] > 0}.

(ii) Under the assumed conditions, fy,(zo)/fo, (o) = ¢ < oo. The result
follows from the proof in (i) with 8; replaced by 6y and the fact that >
should be replaced by > in (6.18) under the assumed conditions. 1

Part (iii) of Theorem 6.3 shows that the ¢;’s and +;’s are uniquely de-
termined by (6.15) and (6.16). It also indicates how to select the ¢;’s and
v;’s. One can start with some trial values c§°> and 7§O)7 find c§°> and 'ygo)
such that Or, (61) = «, and compute B, (62). If O, (02) < a, by Theorem
6.3(iii), the correct rejection region {7 = 1} is to the right of the one
chosen so that one should try 0(11) > c(lo) or cgl) = c(lo) and 79) < 7%0); the
converse holds if Oz, (62) > a.

Example 6.10. Let X1, ..., X,, be i.i.d. from N(0,1). By Theorem 6.3, a
(X), where ¢;’s are deter-

UMP test for testing (6.12) is T%(X) = I(¢, cp)
mined by

®(vn(cz —61)) — @(vVn(cr —61)) =«
and

®(v/n(ca — 62)) — ©(Vnlcy —62)) = a.

When the distribution of X is not given by (6.10), UMP tests for hy-
potheses (6.12) exist in some cases (see Exercises 17 and 26). Unfortunately,
a UMP test does not exist in general for testing hypotheses (6.13) or (6.14)
(Exercises 28 and 29). A key reason for this phenomenon is that UMP tests
for testing one-sided hypotheses do not have level « for testing (6.12); but
they are of level a for testing (6.13) or (6.14) and there does not exist a
single test more powerful than all tests that are UMP for testing one-sided
hypotheses.
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6.2 UMP Unbiased Tests

When a UMP test does not exist, we may use the same approach used
in estimation problems, i.e., imposing a reasonable restriction on the tests
to be considered and finding optimal tests within the class of tests under
the restriction. Two such types of restrictions in estimation problems are
unbiasedness and invariance. We consider unbiased tests in this section.
The class of invariant tests is studied in §6.3.

6.2.1 Unbiasedness, similarity, and Neyman structure

A UMP test T of size o has the property that
Br(P)<a, PePy and Br(P)>a, PP (6.19)

This means that T is at least as good as the silly test T' = «. Thus, we
have the following definition.

Definition 6.3. Let « be a given level of significance. A test T for Hy :
P € Py versus Hy : P € P is said to be unbiased of level « if and only if
(6.19) holds. A test of size « is called a uniformly most powerful unbiased
(UMPU) test if and only if it is UMP within the class of unbiased tests of
level . 1

Since a UMP test is UMPU, the discussion of unbiasedness of tests is
useful only when a UMP test does not exist. In a large class of problems
for which a UMP test does not exist, there do exist UMPU tests.

Suppose that U is a sufficient statistic for P € P. Then, similar to the

search for a UMP test, we need to consider functions of U only in order to
find a UMPU test, since, for any unbiased test T'(X), E(T|U) is unbiased
and has the same power function as T

Throughout this section, we consider the following hypotheses:
Hy:0€ 0 versus Hy:0€ 0, (6.20)

where § = 6(P) is a functional from P onto © and ©y and ©; are two
disjoint Borel sets with ©9 U ©; = O. Note that P, = {P : § € 0,},
j =0,1. For instance, X1, ..., X,, are i.i.d. from F' but we are interested in
testing Hg : 0 < 0 versus Hy : 0 > 0, where § = FX; or the median of F.

Definition 6.4. Counsider the hypotheses specified by (6.20). Let a be a
given level of significance and let ©g; be the common boundary of @y and
O1, i.e., the set of points # that are points or limit points of both ©g and
©1. A test T is similar on ©g; if and only if

fr(P)=a,  0€6p. 1 (6.21)
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It is more convenient to work with (6.21) than to work with (6.19) when
the hypotheses are given by (6.20). Thus, the following lemma is useful. For
a given test T', the power function 8 (P) is said to be continuous in 6 if and
only if for any {6; : j =0,1,2,...} C ©, §; — 6y implies Br(P;) — Br(Fo),
where P; € P satisfying 0(P;) = 0;, j = 0,1,.... Note that if §r is a function
of 6, then this continuity property is simply the continuity of 8 (6).

Lemma 6.5. Consider hypotheses (6.20). Suppose that, for every T,
Br(P) is continuous in §. If T is uniformly most powerful among all tests
satisfying (6.21) and has size a, then T is a UMPU test.

Proof. Under the continuity assumption on B, the class of tests satisfying
(6.21) contains the class of tests satisfying (6.19). Since T is uniformly at
least as powerful as the test T = «, T is unbiased. Hence, T is a UMPU
test. 1

Using Lemma 6.5, we can derive a UMPU test for testing hypotheses
given by (6.13) or (6.14), when X has the p.d.f. (6.10) in a one-parameter
exponential family. (Note that a UMP test does not exist in these cases.)
We do not provide the details here, since the results for one-parameter
exponential families are special cases of those in §6.2.2 for multiparameter
exponential families. To prepare for the discussion in §6.2.2, we introduce
the following result that simplifies (6.21) when there is a statistic sufficient
and complete for P € P = {P : §(P) € O¢1 }.

Let U(X) be a sufficient statistic for P € P and let Py be the family of
distributions of U as P ranges over P. If T is a test satisfying

ET(X)|U] =« a.s. Pu, (6.22)

then
E[T(X)] = E{E[T(X)|U]} = a PeP,

i.e., T is similar on ©g;. A test satisfying (6.22) is said to have Neyman
structure w.r.t. U. If all tests similar on ©y; have Neyman structure w.r.t.
U, then working with (6.21) is the same as working with (6.22).

Lemma 6.6. Let U(X) be a sufficient statistic for P € P. Then a nec-
essary and sufficient condition for all tests similar on ©g; to have Neyman
structure w.r.t. U is that U is boundedly complete for P € P.

Proof. (i) Suppose first that U is boundedly complete for P € P. Let
T(X) be a test similar on ©g;. Then E[T(X)—a] = 0 for all P € P. From
the boundedness of T'(X), E[T(X)|U] is bounded (Proposition 1.10). Since
E{E[T(X)|U] - a} = E[T(X)—a] =0 for all P € P, (6.22) holds.

(ii) Suppose now that U is not boundedly complete for P € P. Then
there is a function h such that |h(u)| < C, E[h(U)] = 0 for all P € P, and
h(U) # 0 with positive probability for some P € P. Let T(X) = a+ch(U),
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where ¢ = min{a, 1 — a}/C. The result follows from the fact that 7" is a
test similar on Og; but does not have Neyman structure w.r.t. U. 1§

6.2.2 UMPU tests in exponential families

Suppose that the distribution of X is in a multiparameter natural expo-
nential family (§2.1.3) with the following p.d.f. w.r.t. a o-finite measure:

fo.p(x) = exp{0Y (x) + ¢"U(z) - ((0,0)}, (6.23)

where 6 is a real-valued parameter, ¢ is a vector-valued parameter, and Y
(real-valued) and U (vector-valued) are statistics. It follows from Theorem
2.1(i) that the p.d.f. of (Y,U) (w.r.t. a o-finite measure) is in a natural
exponential family of the form exp {0y + ¢"u — ((0, @)} and, given U = u,
the p.d.f. of the conditional distribution of ¥ (w.r.t. a o-finite measure v,,)
is in a natural exponential family of the form exp {8y — (.(9)}.

Theorem 6.4. Suppose that the distribution of X is in a multiparameter
natural exponential family given by (6.23).
(i) For testing Hy : 6 < 6y versus H; : 8 > 6y, a UMPU test of size « is

1 Y > ¢(U)
YU = AU) Y =) (6.24)
0 Y < ¢(U),

where c¢(u) and (u) are Borel functions determined by
Ep, [T (Y, U)|lU =u] =« (6.25)

for every u, and Ejy, is the expectation w.r.t. fo, ..
(ii) For testing hypotheses (6.12), a UMPU test of size « is

1 Cl(U)<Y<02(U)
T.(Y,U)={ v%U) Y=a),i=1,2 (6.26)
0 Y <c1(U)orY > ea(U),

where ¢;(u)’s and ~;(u)’s are Borel functions determined by
Eo, [T.(Y, U)|U = u] = Eg,[T.(Y,U)|U = u] = a (6.27)

for every u.
(iii) For testing hypotheses (6.13), a UMPU test of size « is

1 Y <ci(U)orY > e(U)
T ={ wU) Y=a),i=12 (6.28)
)
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where ¢;(u)’s and 7;(u)’s are Borel functions determined by (6.27) for every
u.
(iv) For testing hypotheses (6.14), a UMPU test of size « is given by (6.28),
where ¢;(u)’s and ~;(u)’s are Borel functions determined by (6.25) and

Eo [T (Y, )Y |U = u] = aEg, (Y|U = u) (6.29)

for every u.

Proof. Since (Y,U) is sufficient for (6, ¢), we only need to consider tests
that are functions of (Y,U). Hypotheses in (i)-(iv) are of the form (6.20)
with Og1 = {(0,¢) : 0 =6y} or = {(0,) : 0 = 0;, i = 1,2}. In case (i) or
(iv), U is sufficient and complete for P € P and, hence, Lemma 6.6 applies.
In case (ii) or (iii), applying Lemma 6.6 to each {(6, ¢) : 6 = 6;} also shows
that working with (6.21) is the same as working with (6.22). By Theorem
2.1, the power functions of all tests are continuous and, hence, Lemma 6.5
applies. Thus, for (i)-(iii), we only need to show that T} is UMP among all
tests T satisfying (6.25) (for part (i)) or (6.27) (for part (ii) or (iii)) with
T, replaced by T. For (iv), any unbiased T should satisfy (6.25) with T
replaced by T and

0

39E9’90[T(Ya U)l =0, 0 € . (6.30)

By Theorem 2.1, the differentiation can be carried out under the expecta-
tion sign. Hence, one can show (exercise) that (6.30) is equivalent to

Ep o [T(Y,U)Y —aY] =0, 0 € Op. (6.31)

Using the argument in the proof of Lemma 6.6, one can show (exercise)
that (6.31) is equivalent to (6.29) with T\ replaced by T'. Hence, to prove
(iv) we only need to show that T, is UMP among all tests T satisfying
(6.25) and (6.29) with T, replaced by T.

Note that the power function of any test T'(Y,U) is

5r6.9) = [ | [ T0.0dPrp- )] aruw),

Thus, it suffices to show that for every fixed u and 6 € O, T, maximizes

/ T(y,u)dPy|u=u(y)

over all T' subject to the given side conditions. Since Py |y—, is in a
one-parameter exponential family, the results in (i) and (ii) follow from
Corollary 6.1 and Theorem 6.3, respectively. The result in (iii) follows
from Theorem 6.3(ii) by considering 1 — T}, with T} given by (6.15). To
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prove the result in (iv), it suffices to show that if Y has the p.d.f. given
by (6.10) and if U is treated as a constant in (6.25), (6.28), and (6.29), T
in (6.28) is UMP subject to conditions (6.25) and (6.29). We now omit
U in the following proof for (iv), which is very similar to the proof of
Theorem 6.3. First, (o, aFy,(Y)) is an interior point of the set of points
(Eg [T(Y)], Eg, [T(Y)Y]) as T ranges over all tests of the form T'(Y) (exer-
cise). By Lemma 6.2 and Proposition 6.1, for testing § = 6y versus 6 = 61,
the UMP test is equal to 1 when

(k1 + kay)e®¥ < C(6o, 61)eY, (6.32)
where k;’s and C(6, 01) are constants. Note that (6.32) is equivalent to
a1 + agy < e

for some constants aj, as, and b. This region is either one-sided or the
outside of an interval. By Theorem 6.2(ii), a one-sided test has a strictly
monotone power function and therefore cannot satisfy (6.29). Thus, this
test must have the form (6.28). Since T in (6.28) does not depend on
01, by Lemma 6.1, it is UMP over all tests satisfying (6.25) and (6.29); in
particular, the test = a. Thus, T, is UMPU.

Finally, it can be shown that all the ¢- and ~-functions in (i)-(iv) are
Borel functions (see Lehmann (1986, p. 149)). 1

Example 6.11. A problem arising in many different contexts is the com-
parison of two treatments. If the observations are integer-valued, the prob-
lem often reduces to testing the equality of two Poisson distributions (e.g.,
a comparison of the radioactivity of two substances or the car accident rate
in two cities) or two binomial distributions (when the observation is the
number of successes in a sequence of trials for each treatment).

Consider first the Poisson problem in which X; and X5 are indepen-
dently distributed as the Poisson distributions P(A;) and P()\z), respec-
tively. The p.d.f. of X = (X1, X2) is

e~ (A1+A2)
oy exp{zzlog(Az/A1) + (21 + 22)log A1} (6.33)
T1:X9:
w.r.t. the counting measure on {(¢,5) : ¢ =0,1,2,...,7 =0,1,2,...}. Let 6 =
log(A2/A1). Then hypotheses such as A\; = A and A1 > Ay are equivalent to
6 =0 and 6 < 0, respectively. The p.d.f. in (6.33) is of the form (6.23) with
o =logA, Y = X5, and U = X; + Xo. Thus, Theorem 6.4 applies. To
obtain various tests in Theorem 6.4, it is enough to derive the conditional
distribution of ¥ = X5 given U = X; + X5 = u. Using the fact that
X1 + X5 has the Poisson distribution P(A1 + A2), one can show that

U _
P(Y = y|U = U) = <y>py(]_ - p)u yI{O,l,...,u}(y)v U= Oa 17 23 )
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where p = Xy/(A + X2) = €?/(1 + €”). This is the binomial distribu-
tion Bi(p,u). On the boundary set O¢1, 6 = 6; (a known value) and the
distribution Py |y—, is known.

The previous result can obviously be extended to the case where two
independent samples, X;i,..., Xn,, ¢ = 1,2, are i.i.d. from the Poisson
distributions P()\;), ¢ = 1,2, respectively.

Consider next the binomial problem in which X;, j = 1,2, are inde-
pendently distributed as the binomial distributions Bi(p;,n;), j = 1,2,

respectively, where n;’s are known but p;’s are unknown. The p.d.f. of
X = (Xl,Xg) is

ny n2 _ n _ 7 p2(1—p1) P

w.r.t. the counting measure on {(i,5) : ¢ =0,1,...,n1, =0, 1,...,n2}. This
p.d.f. is of the form (6.23) with § = log 5?8:557 Y =X5,and U = X3+ Xo.
Thus, Theorem 6.4 applies. Note that hypotheses such as p; = p2 and
p1 > po are equivalent to § = 0 and 0 < 0, respectively. Using the joint

distribution of (X7, X3), one can show (exercise) that

P(Y = y|U = u) = K, (9) (un_l y) (";)ef’m(y), w=0,1,..,n1 +na,

where A ={y:y=0,1,..,min{u,no},u —y <ny} and

-1

K.(0) = Z(u”ly) (”;)&y . (6.34)

yeA

If & = 0, this distribution reduces to a known distribution: the hypergeo-
metric distribution HG(u, ne,nq) (Table 1.1, page 18). 1

Example 6.12 (2 x 2 contingency tables). Let A and B be two different
events in a probability space related to a random experiment. Suppose that
n independent trials of the experiment are carried out and that we observe
the frequencies of the occurrence of the events AN B, AN B¢, A°N B, and
A¢N B€. The results can be summarized in the following 2 x 2 contingency
table:

| A A° | Total
B X1 X1
B¢ | Xa1 Xoo
Tota1| mi Mo | n

ni

UP)
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The distribution of X = (X171, X12, X21, X22) is multinomial (Example 2.7)
with probabilities pi1, pi2, p21, and pao, where p;; = E(X;;)/n. Thus, the
p.d.f. of X is

n' n P11 P12 P21
x11!x12!x21!x22!p22eXp {J;n log oy T T12 log oy T T21 log o }
w.r.t. the counting measure on the range of X. This p.d.f. is clearly of the
form (6.23). By Theorem 6.4, we can derive UMPU tests for any parameter

of the form

P21
p22’

0 = aplog g;; + ay log g;z + as log

where a;’s are given constants. In particular, testing independence of A

and B is equivalent to the hypotheses Hy : § = 0 versus H; : 0 # 0 when
ap =1 and a1 = as = —1 (exercise).

For hypotheses concerning 6 with ag = 1 and a1 = as = —1, the p.d.f. of

X can be written as (6.23) with Y = X1; and U = (X11 + X192, X11 + X21).

A direct calculation shows that P(Y = y| X114+ X12 = n1, X11 + X21 = my)

is equal to
e n2 6(m1—y)
K., (0 e\mMTY T ,
o) (") )

where A = {y : y = 0,1,...,min{my,n1},m — y < no} and K,(0) is
given by (6.34). This distribution is known when 6 = 6, is known. In
particular, for testing independence of A and B, ¢ = 0 implies that Py y—,
is the hypergeometric distribution HG(m1,n1,n2), and the UMPU test in
Theorem 6.4(iv) is also known as Fisher’s exact test.

Suppose that X;;’s in the 2 x 2 contingency table are from two binomial
distributions, i.e., X;1 is from the binomial distribution Bi(p;,n;), Xz =
n; — X;1, ¢ = 1,2, and that X;;’s are independent. Then the UMPU test
for independence of A and B previously derived is exactly the same as the
UMPU test for p; = po given in Example 6.11. The only difference is that
n;’s are fixed for testing the equality of two binomial distributions, whereas
n;’s are random for testing independence of A and B. This is also true for
the general r x ¢ contingency tables considered in §6.4.3. 1

6.2.3 UMPU tests in normal families

An important application of Theorem 6.4 to problems with continuous dis-
tributions in exponential families is the derivation of UMPU tests in normal
families. The results presented here are the basic justifications for tests in
elementary textbooks concerning parameters in normal families.

We start with the following lemma, which is useful especially when X
is from a population in a normal family.
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Lemma 6.7. Suppose that X has the p.d.f. (6.23) and that V(Y,U) is a
statistic independent of U when 6 = 0;, where 6;’s are known values given
in the hypotheses in (i)-(iv) of Theorem 6.4.

(i) If V(y,u) is increasing in y for each u, then the UMPU tests in (i)-(iii)
of Theorem 6.4 are equivalent to those given by (6.24)-(6.28) with Y and
(Y,U) replaced by V and with ¢;(U) and ~;(U) replaced by constants ¢;
and y;, respectively.

(ii) If there are Borel functions a(u) > 0 and b(u) such that V(y,u) =
a(u)y + b(u), then the UMPU test in Theorem 6.4(iv) is equivalent to that
given by (6.25), (6.28), and (6.29) with Y and (Y,U) replaced by V and
with ¢;(U) and ~;(U) replaced by constants ¢; and ~;, respectively.
Proof. (i) Since V is increasing in y, Y > ¢;(u) is equivalent to V' > d;(u)
for some d;. The result follows from the fact that V is independent of U so
that d;’s and ~;’s do not depend on v when Y is replaced by V.

(ii) Since V' = a(U)Y + b(U), the UMPU test in Theorem 6.4(iv) is the

same as

1 V<eaU)or V> c(U)
T.(V,U) =< v(U) V=cU), =12, (6.35)
0 a(U) <V < ea(U),
subject to Eg, [T:(V,U)|U = u] = « and
V —b(U) W V —b(U)
By, |T.V0) ’U] = B, { o) M . (6.36)

Under Ey,[T(V,U)|U = u] = «, (6.36) is the same as Ey, [T:(V,U)V|U] =
aFEy,(V|U). Since V and U are independent when 6 = 6, ¢;(u)’s and
~i(u)’s do not depend on « and, therefore, T in (6.35) does not depend on
U. 1

If the conditions of Lemma 6.7 are satisfied, then UMPU tests can
be derived by working with the distribution of V' instead of Py|y—,. In
exponential families, a V(Y,U) independent of U can often be found by
applying Basu’s theorem (Theorem 2.4).

When we consider normal families, 7y;’s can be chosen to be 0 since the
c.d.f. of Y given U = w or the c.d.f. of V is continuous.

One-sample problems

Let Xi,..., X, be i.i.d. from N(u,0?) with unknown p € R and o2 > 0,
where n > 2. The joint p.d.f. of X = (X1,..., X,,) is

1 1 n ) M n nﬂ2
(2m02)n/? exp {—202 ;xl + e ;xl o2 [
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Consider first hypotheses concerning o2. The p.d.f. of X has the form
(6.23) with § = —(202)7, ¢ = nu/o?, Y =Y | X?, and U = X. By
Basu’s theorem, V = (n — 1)S5? is independent of U = X (Example 2.18),
where S? is the sample variance. Also,

Z X% = 1)8% + nX?,

i.e., V=Y —nU?. Hence the conditions of Lemma 6.7 are satisfied. Since
V/o? has the chi-square distribution y2_; (Example 2.18), values of ¢;’s
for hypotheses in (i)-(iii) of Theorem 6.4 are related to quantiles of x2_;.
For testing Hy : 8 = 0y versus H; : 6 # 6y (which is equivalent to testing
Hy : 0% =0 versus Hy : 02 # 03), d; = ¢; /02, i = 1,2, are determined by

d2 d2
fno1(v)dv=1—« and / vfp—1(v)dv = (n —1)(1 — ),
d1 dl
where f,, is the Lebesgue p.d.f. of the chi-square distribution x?2,. Since
Vfn—1(v) = (n—1)fny1(v), d1 and dy are determined by

da da
/ fr—1(v)dv = / frnr1(v)dv=1— a.
d1 d1

If n — 1~ n+1, then d; and ds are nearly the (a/2)th and (1 — «/2)th
quantiles of x2_;, respectively, in which case the UMPU test in Theorem
6.4(iv) is the same as the “equal-tailed” chi-square test for Hy in elementary
textbooks.

Consider next hypotheses concerning p. The p.d.f. of X has the form
(6.23) with ¥ = X, U = >0, (Xi — 110)?, 0 = n(u — o) /0%, and ¢ =
—(202)7L. For testing hypotheses Hy : pu < po versus Hy : pu > g, we take
V to be t(X) = y/n(X — pp)/S. By Basu’s theorem, #(X) is independent
of U when p = pg. Hence it satisfies the conditions in Lemma 6.7(i). From
Examples 1.16 and 2.18, #(X) has the t-distribution ¢,_; when u = po.
Thus, ¢(U) in Theorem 6.4(i) is the (1 — «a)th quantile of ¢,_;. For the
two-sided hypotheses Hy : p = po versus Hy : pu # pg, the statistic V =
(X —p0)/V/U satisfies the conditions in Lemma 6.7(ii) and has a distribution
symmetric about 0 when p = p19. Then the UMPU test in Theorem 6.4(iv)
rejects Hy when |V| > d, where d satisfies P(|V| > d) = « when u = po.

Since
tHX) =+/(n—1)nV(X /\/1771
the UMPU test rejects Hy if and only if |[t(X)| > tn,l,a/g, where t,—1 ¢ is

the (1 — a)th quantile of the t-distribution ¢,,_1. The UMPU tests derived
here are the so-called one-sample t-tests in elementary textbooks.

The power function of a one-sample t-test is related to the noncentral
t-distribution introduced in §1.3.1 (see Exercise 36).
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Two-sample problems

The problem of comparing the parameters of two normal distributions arises
in the comparison of two treatments, products, and so on (see also Example
6.11). Suppose that we have two independent samples, X1, ..., Xipn,, ¢ =
1,2, iid. from N(pi,02), i = 1,2, respectively, where n; > 2. The joint
p.d.f. of X;;’s is

2
1 Nifli _
C(/’[’h M2, 01 ) UZ) €xXp Z 20_2 l’gj + Z 071-25 T
i=1 "7t j=1 i=1 @
where Z; is the sample mean based on i, ..., Zin, and C(-) is a known
function.
Consider first the hypothesis Hy : 03/037 < Ag or Hy : 02/0} = Ay.
The p.d.f. of X;;’s is of the form (6.23) with

0 — 1 _ 1 _(_ 1 nipr nal2
20A¢0? 203’ 14 202" o2 7 o3 )’

na

n2
Y:Zng, ZX ZXQJ, X1, X5
j=1

To apply Lemma 6.7, consider

(n2 —1)S5/A0 (Y =neUs) /Ao

V= - ,
(n1 —1)S% 4 (ng —1)S3 /Ay Ur —n1Uz — naUs /Ay

where S? is the sample variance based on Xji,..., X;,, and Uj is the jth
component of U. By Basu’s theorem, V and U are independent when
6 = 0 (03 = Ago?). Since V is increasing and linear in Y, the condi-
tions of Lemma 6.7 are satisfied. Thus, a UMPU test rejects Hy : 6 < 0
(which is equivalent to Hy : 03/0? < Ag) when V > ¢g, where ¢ satisfies
P(V > ¢p) = a when 6 = 0; and a UMPU test rejects Hy : 6 = 0 (which is
equivalent to Hy : 03 /0% = Ag) when V < ¢; or V > ¢y, where ¢;’s satisfy
Plcy <V <e)=1—aand E[VT.(V)] = aE(V) when § = 0. Note that
y— (- LF with £ 2/80
n1—1+(n2—1)F 512

It follows from Example 1.16 that F has the F-distribution F3,, 1 5, -1 (Ta-
ble 1.2, page 20) when 6 = 0. Since V is a strictly increasing function of
F, a UMPU test rejects Hy : 0 < 0 when F > F,,, 1 n,—1,0, Where Fp o
is the (1 — a)th quantile of the F-distribution Fj . This is the F-test in
elementary textbooks.
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When 6 = 0, V has the beta distribution B((nz —1)/2, (n1 —1)/2) and
E(V) = (n2 —1)/(n1 + ng — 2) (Table 1.2). Then, E[VT.(V)] = aE(V)
when 0 = 0 is the same as

(1 —a)(nz —1)
ni + no -2

ca
Z/ Vf(ny—1)/2,(ny—1)/2(V)dV,
c1
where fq 5 is the p.d.f. of the beta distribution B(a,b). Using the fact that

0 fna—1)/2,(n—1)72(0) = (n1 + nz — 2)"Hna — 1) fnat1) /2,000 —1)/2(V), We
conclude that a UMPU test rejects Hyp : € = 0 when V < ¢; or V' > ¢g,
where ¢; and ¢ are determined by

c2 Cc2
l-a= / fna—1)/2,(n1—1)/2(v)dv = / Jnat1)/2,(n1—1)/2(v)dv.
Cc1 (&)

If no — 1 =~ ng +1 (ie., no is large), then this UMPU test can be ap-
proximated by the F-test that rejects Hy : & = 0 if and only if F <
Fryini—11-a/2 0T F > Fpy 10 —1,a/2-

Consider next the hypothesis Hy : j11 > pg or Hq : g = po. If 03 # 03,
the problem is the so-called Behrens-Fisher problem and is not accessible by
the method introduced in this section. We now assume that o = 03 = o

but 02 is unknown. The p.d.f. of X;;’s is then

2 ng

1 nipy _ nap2 _
C(p1, pa, 0*) exp o2 Zfoj S A
i=1 j=1
which is of the form (6.23) with
g MM _ (mm—I—ngug ! >
(ny!t 4+ nyt)o?’ (n1 +ng)o?’  202)°

2 Uz
Y=X- X1, U= |mX+nX, Y Y X2

i=1 j=1

For testing Hy : 0 < 0 (i.e., p1 > p2) versus Hy : 0 > 0, we consider V' in
Lemma 6.7 to be

(Xz — X0)/y/ni" 4y
VI = 1)82 + (np — 1)S2]/(n1 +ny — 2)

When 6 = 0, t(X) is independent of U (Basu’s theorem) and satisfies
the conditions in Lemma 6.7(i); the numerator and the denominator of
t(X) (after division by o) are independently distributed as N(0,1) and

HX) = (6.37)
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the chi-square distribution x?2 +n,_2, Tespectively. Hence ¢(X) has the t-
distribution ¢, 1n,—2 and a UMPU test rejects Hp when ¢(X) > €py 4ns—2.a5
where €, 4n,—2.q is the (1 — a)th quantile of the t-distribution t,, 15,—2.
This is the so-called (one-sided) two-sample t-test.

For testing Hy : 6 = 0 (i.e., u1 = po) versus Hy : 0 # 0, it follows from a
similar argument used in the derivation of the (two-sided) one-sample t-test
that a UMPU test rejects Hy when [t(X)| > t,, 1n,—2,q/2 (exercise). This
is the (two-sided) two-sample t-test.

The power function of a two-sample t-test is related to a noncentral
t-distribution.

Normal linear models

Consider linear model (3.25) with assumption Al, i.e.,
X = (X1,..,X,) is N,(Z3,0%I,), (6.38)

where 3 is a p-vector of unknown parameters, Z is the n X p matrix whose
ith row is the vector Z;, Z;’s are the values of a p-vector of deterministic
covariates, and ¢2 > 0 is an unknown parameter. Assume that n > p and
the rank of Z is r < p. Let | € R(Z) (the linear space generated by the
rows of Z) and 6y be a fixed constant. We consider the hypotheses

Hy:1"3 <6 versus H,:1"3> 6 (6.39)

or

H() : lTﬂ = 00 versus H1 : lTﬂ 7é 00. (640)

Since H = Z(Z™Z)~Z" is a projection matrix of rank r, there exists an
n x n orthogonal matrix I" such that

I'=(Iy I'y) and HI=(T; 0), (6.41)

where I'y is n xr and I'y is n X (n—7). Let Y; =7 X, j = 1,2. Consider the
transformation (Y1,Ys2) = I'"X. Since I'"'TI' = I,, and X is N,(Z83,0%1,),
(Y1,Y2) is Np(I7Z3,0%1,). Tt follows from (6.41) that

EY:)=EI}X)=T7Z8=T7HZ3=0.
Let n =T7Z03 = E(Y1). Then the p.d.f. of (Y1,Y>) is

O i (O L RS C
(2mo2)n/2 o2 202 202 |~

Since [ in (6.39) or (6.40) is in R(Z), there exists A € R" such that [ = Z7\.
Then

(6.42)

FB=NHX =XNTI"HX = NT1[]X = AT, Y;, (6.43)
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where [ is the LSE defined by (3.27). By (6.43) and Theorem 3.6(ii),
E(I"B)=1"3=NT1E(Y1) =a"n,

where a = T'TA. Let n = (m,...,nr) and a = (ay, ..., a,). Without loss of
generality, we assume that a; # 0. Then the p.d.f. in (6.42) is of the form
(6.23) with

a™n — b 1 N
0 — = (- Y=Y
CL10'2 ) 2 20_27 0_27 ) 0_2 ) 11,
260Y; asY arY
U= (IY1||2+|Y2||2 S TR )
ay al al

where Yy; is the jth component of Y;. By Basu’s theorem,

_Vn—r(a"Yy — )
= 1%l al

is independent of U when a™n = I3 = 6. Note that ||Y2]|> = SSR in
(3.35) and ||al|> = A1 ['TA = A\"HX = 1"(Z7 Z)~ 1. Hence, by (6.43),

_ 1" — 6o
(27 2)1\/SSR/(n— 1)’

which has the t-distribution ¢,,_, (Theorem 3.8). Using the same arguments
in deriving the one-sample or two-sample t-test, we obtain that a UMPU
test for the hypotheses in (6.39) rejects Hy when ¢(X) > t,_, o, and that a
UMPU test for the hypotheses in (6.40) rejects Ho when [t(X)| > t,,_, /2.

H(X)

Testing for independence in the bivariate normal family

Suppose that X1, ..., X,, are i.i.d. from a bivariate normal distribution, i.e.,
the p.d.f. of X = (X1,..,X,,) is

1 _Ivi—pl? P(Y1*/»¢1)T(Y2*H2)7HYQ*HZHQ}
(2mo103y/1—p2)" exp { =i + U = DAk | (649)

where Y; = (X4, ..., Xy;) and X;; is the jth component of X;, j = 1,2.

Testing for independence of the two components of X; (or Y7 and Y3) is
equivalent to testing Hp : p = 0 versus Hj : p # 0. In some cases, one may
also be interested in the one-sided hypotheses Hy : p < 0 versus H;y : p > 0.
It can be shown (exercise) that the p.d.f. in (6.44) is of the form (6.23) with
0= and

p
og102(1—p?)

Y=Y XaXp, U= (ZXEI, > X5, > X, ZX,Q) :
i=1 i=1 i=1 i=1

i=1
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The hypothesis p < 0 is equivalent to § < 0. The sample correlation
coefficient is
n n 1/2

(Xa — X1)(Xaz — Xo) / [Z(xﬂ SXY (K- %

=1 i=1

R=

n
1=

1

where X'j is the sample mean of X, ..., X,,;, and is independent of U when
p =0 (Basu’s theorem), j = 1,2. To apply Lemma 6.7, we consider

V =+vn-2R/\1-R2. (6.45)

It can be shown (exercise) that R is linear in Y and that V has the t-
distribution t,_o when p = 0. Hence, a UMPU test for Hy : p < 0 versus
Hy : p > 0 rejects Hy when V' > t,,_5 o and a UMPU test for Hy : p =0
versus Hy : p # 0 rejects Hy when |V| > t,_5 4/9, where t, 5, is the
(1 — a)th quantile of the t-distribution ¢,,_s.

6.3 UMP Invariant Tests

In the previous section the unbiasedness principle is considered to derive
an optimal test within the class of unbiased tests when a UMP test does
not exist. In this section, we study the same problem with unbiasedness
replaced by invariance under a given group of transformations. The prin-
ciples of unbiasedness and invariance often complement each other in that
each is successful in cases where the other is not.

6.3.1 Invariance and UMPI tests

The invariance principle considered here is similar to that introduced in
§2.3.2 (Definition 2.9) and in §4.2. Although a hypothesis testing problem
can be treated as a particular statistical decision problem (see, e.g., Ex-
ample 2.20), in the following definition we define invariant tests without
using any loss function which is a basic element in statistical decision the-
ory. However, the reader is encouraged to compare Definition 2.9 with the
following definition.

Definition 6.5. Let X be a sample from P € P and G be a group (Defi-
nition 2.9(i)) of one-to-one transformations of X.

(i) We say that the problem of testing Hy : P € Py versus Hy : P € Py is
invariant under G if and only if both Py and P; are invariant under G in
the sense of Definition 2.9(ii).

(ii) In an invariant testing problem, a test T/(X) is said to be invariant
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under G if and only if
T(g(x)) =T(x) for all z and g. (6.46)

(iii) A test of size « is said to be a uniformly most powerful invariant
(UMPI) test if and only if it is UMP within the class of level « tests that
are invariant under G.

(iv) A statistic M (X) is said to be mazimal invariant under G if and only
if (6.46) holds with T replaced by M and

M(z1) = M (22) implies ¢1 = g(x2) for some g € G. 1 (6.47)

The following result indicates that invariance reduces the data X to a
maximal invariant statistic M (X) whose distribution may depend only on
a functional of P that shrinks P.

Proposition 6.2. Let M (X) be maximal invariant under G.

(i) A test T'(X) is invariant under G if and only if there is a function h such
that T'(x) = h(M(x)) for all .

(ii) Suppose that there is a functional (P) on P satisfying 0(g(P)) = 6(P)
for all g € G and P € P and

0(Py) =6(Ps) implies P = g(P») for some g € G

(i.e., 0(P) is “maximal invariant”), where g(Px) = Py(x) is given in Defi-
nition 2.9(ii). Then the distribution of M (X) depends only on §(P).
Proof. (i) If T(x) = h(M(z)) for all z, then T(g(x)) = h(M(g(z))) =
h(M(z)) = T'(z) so that T is invariant. If T is invariant and if M (z1) =
M (z2), then z1 = g(z2) for some g and T'(z1) = T'(g(z2)) = T(x2). Hence
T is a function of M.

(ii) Suppose that 6(Py) = 0(P2). Then P, = g(P;) for some g € G and for
any event B in the range of M (X),

Py(M(X) € B) = g(P1)(M(X) € B)
= P1(M(g(X)) € B)
— P (M(X) € B).

Hence the distribution of M (X) depends only on §(P). 1

In applications, maximal invariants M (X) and 6 = §(P) are frequently
real-valued. If the hypotheses of interest can be expressed in terms of 6, then
there may exist a test UMP among those depending only on M (X) (e.g.,
when the distribution of M (X) is in a parametric family having monotone
likelihood ratio). Such a test is then a UMPT test.
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Example 6.13 (Location-scale families). Suppose that X has the Lebesgue
p.df. fiu(x) = filxr — p, ..., xn — p), where n > 2, pp € R is unknown, and
fi, 2 =0,1, are known Lebesgue p.d.f.’s. We consider the problem of testing

Hy : X is from fp Versus Hy : X is from fy . (6.48)

Consider G = {g. : ¢ € R} with g.(z) = (z1+¢,...,2, +¢). For any g. € G,
it induces a transformation g.(fi ) = fi,u+c and the problem of testing Ho
versus H; in (6.48) is invariant under G.

We now show that a maximal invariant under G is D(X) = (D1, ..., Dy—1)
= (X7 — Xy, ..., X1 — X,,). First, it is easy to see that D(X) is invariant
under G. Let z = (21,...,2,) and y = (y1,...,Yn) be two points in the
range of X. Suppose that z; — x, = y; — y, for i = 1,....n — 1. Putting
¢ = Yn —Tp, we have y; = x; + ¢ for all i. Hence, D(X) is maximal invariant
under G.

By Proposition 1.8, D has the p.d.f. [ fi(di +¢,...,dn—1 +t,¢)dt under
H;, i = 0,1, which does not depend on p. In fact, in this case Proposition
6.2 applies with M (X) = D(X) and 0(f; ) = i. If we consider tests that
are functions of D(X), then the problem of testing the hypotheses in (6.48)
becomes one of testing a simple hypothesis versus a simple hypothesis. By
Theorem 6.1, the test UMP among functions of D(X), which is then the
UMPI test, rejects Ho in (6.48) when

J A+t doy +tt)dt [ fi(zy 4+t ..z, +t)dt

— > c,
[ foldy + ¢, .ydp_q +t,0)dt [ fo(z1 +1t,..yzn +T)dt

where c is determined by the size of the UMPI test.

The previous result can be extended to the case of a location-scale family
where the p.d.f. of X is one of f;,, = Uln fi(11;“7...7 m";“)7 1= 0,1,
fin,o is symmetric about g, the hypotheses of interest are given by (6.48)
with f; , replaced by fi 0, and G = {gcr : ¢ € R,7 # 0} with g.,(z) =
(ra14c,...,rxy+c). When n > 3, it can be shown that a maximal invariant
under G is W(X) = (W1, ..., Wy_2), where W; = (X; — X,,)/(Xpn—1 — Xin),
and that the p.d.f. of W does not depend on (i, o). A UMPI test can then
be derived (exercise). 1

The next example considers finding a maximal invariant in a problem
that is not a location-scale family problem.

Example 6.14. Let G be the set of n! permutations of the components of
x € R™. Then a maximal invariant is the vector of order statistics. This is
because a permutation of the components of x does not change the values
of these components and two x’s with the same set of ordered components
can be obtained from each other through a permutation of coordinates.
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Suppose that P contains continuous c.d.f.’s on R™. Let G be the class of
all transformations of the form g(x) = (¢¥(z1), ..., ¥ (xy)), where ¥ is contin-
uous and strictly increasing. For « = (x4, ..., z,,), let R(z) = (R1, ..., Ry,) be
the vector of ranks (§5.2.2), i.e., x; = x(g,), where x(;) is the jth smallest
value of x;’s. Clearly, R(g(z)) = R(x) for any g € G. For any = and y
in R™ with R(z) = R(y), define ¢(t) to be linear between x(;) and x(; 1),
J=1.un=19() =t+(yo) —z@)) for t <z, and Y(t) = t4(Y(n) —T(n))
for t > x(,). Then 1 (x;) = ¥(y;), i = 1,...,n. This shows that the vector
of rank statistics is maximal invariant. 1

When there is a sufficient statistic U(X), it is convenient first to reduce
the data to U(X) before applying invariance. If there is a test T'(U) UMP
among all invariant tests depending only on U, one would like to conclude
that T'(U) is a UMPI test. Unfortunately, this may not be true in general,
since it is not clear that for any invariant test based on X there is an
equivalent invariant test based only on U(X). The following result provides
a sufficient condition under which it is enough to consider invariant tests
depending only on U(X). Its proof is omitted and can be found in Lehmann
(1986, pp. 297-302).

Proposition 6.3. Let G be a group of transformations on X (the range of
X) and (G,Bg,A) be a measure space with a o-finite X\. Suppose that the
testing problem under consideration is invariant under G, that for any set
A € By, the set of points (z,g) for which g(z) € A is in o(By x Bg), and
that A(B) = 0 implies A({hog: h € B}) =0 for all g € G. Suppose further
that there is a statistic U(X) sufficient for P € P and that U(z1) = U(x2)
implies U(g(z1)) = U(g(z2)) for all g € G so that G induces a group Gy of
transformations on the range of U through gy (U(z)) = U(g(x)). Then, for
any test 7'(X) invariant under G, there exists a test based on U(X) that is
invariant under G (and Gy7) and has the same power function as T(X). 1

In many problems g(x) = 9 (x,g), where g ranges over a set G in R™
and v is a Borel function on R™*™. Then the measurability condition in
Proposition 6.3 is satisfied by choosing Bg to be the Borel o-field on G.
In such cases it is usually not difficult to find a measure \ satisfying the
condition in Proposition 6.3.

Example 6.15. Let X1, ..., X,, bei.i.d. from N(u,o?) with unknown u € R
and 02 > 0. The problem of testing Hy : 02 > 03 versus Hy : 0% < 03
is invariant under G = {g. : ¢ € R} with g.(x) = (1 + ¢,...,xn + ¢). Tt
can be shown (exercise) that G and the sufficient statistic U = (X, S?)
satisfy the conditions in Proposition 6.3 with Gy = {h. : ¢ € R} and
he(u,ug) = (ug + ¢, uz), and that S? is maximal invariant under Gy. It
follows from Proposition 6.3, Corollary 6.1, and the fact that (n —1)5%/03
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has the chi-square distribution x%_; when 0% = o7 that a UMPI test of size
a rejects Hy when (n—1)S%/08 < x7_,,_,, where x7_, ,, is the (1 —a)th
quantile of the chi-square distribution x2_;. This test coincides with the
UMPU test given in §6.2.3. 1

Example 6.16. Let X1, ..., Xin,, ¢ = 1,2, be two independent samples
iid. from N(u;,0?), i = 1,2, respectively. The problem of testing Hy :
03/0? < Ag versus Hy : 03 /03 > Ay is invariant under

G=A{9cr,cor i €ER,i=1,2,7> 0}
with
Ger,ear(X1,22) = (P11 + €14 ooy TT1p, + €1, 7T21 + C2, .oy TT2p, + C2).

It can be shown (exercise) that the sufficient statistic U = (X1, Xa, 5%, S3)
and G satisfy the conditions in Proposition 6.3 with

Gu = {Pey.enr i € €ERyi=1,2,7> 0}

and
hey,eor (U1, U2, us, ua) = (ruq + c1,TuU2 + €2, U3, TU4).

A maximal invariant under Gy is So/S1. Let A = 03 /0%. Then (53/5%)/A
has an F-distribution and, therefore, V = S3/5% has a Lebesgue p.d.f. of
the form

fa(v) = C(AW™"D2[A + (ny — 1)v/(ny — 1))~ Fm=D210 o (v),

where C'(A) is a known function of A. It can be shown (exercise) that the
family { fa : A > 0} has monotone likelihood ratio in V' so that a UMPI test
of size av rejects Hy when V' > F,,_1 p,—1,a, Where Fy p o is the (1 — a)th
quantile of the F-distribution F, ;. Again, this UMPI test coincides with
the UMPU test given in §6.2.3. 1

The following result shows that, in Examples 6.15 and 6.16, the fact that
UMPI tests are the same as the UMPU tests is not a simple coincidence.

Proposition 6.4. Consider a testing problem invariant under G. If there
exists a UMPI test of size «, then it is unbiased. If there also exists a
UMPU test of size a that is invariant under G, then the two tests have the
same power