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Preface

This book is intended for a course entitled Mathematical Statistics offered
at the Department of Statistics, University of Wisconsin-Madison. This
course, taught in a mathematically rigorous fashion, covers essential ma-
terials in statistical theory that a first or second vear graduate student
typically needs to learn as preparation for work on a Ph.D. degree in statis-
tics. The course is designed for two 15-week semesters, with three lecture
hours and two discussion hours in each week. Students in this course are
assumed to have a good knowledge of advanced calculus. A course in real
analysis or measure theory prior to this course is often recommended.

Chapter 1 provides a quick overview of important concepts and results
in measure-theoretic probability theory that are used as tools in the rest of
the book. Chapter 2 introduces some fundamental concepts in statistics,
including statistical models, the principle of sufficiency in data reduction,
and two statistical approaches adopted throughout the book: statistical
decision theory and statistical inference. Each of Chapters 3 through 7
provides a detailed study of an important topic in statistical decision the-
ory and inference; Chapter 3 introduces the theory of unbiased estimation:
Chapter 4 studies theory and methods in point estimation under paramet-
ric models; Chapter 5 covers point estimation in nonparametric settings:
Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses inter-
val estimation and confidence sets. The classical frequentist approach is
adopted in this book. although the Bayesian approach is also introduced
(§2.3.2, §4.1, §6.4.4, and §7.1.3). Asymptotic (large sample) theory, a cru-
cial part of statistical inference, is studied throughout the book, rather than
in a separate chapter.

About 85% of the book covers classical results in statistical theory that
are typically found in textbooks of a similar level. These materials are in the
Statistics Department’s Ph.D. qualifying examination syllabus. This part
of the book is influenced by several standard textbooks, such as Casella and
Berger (1990), Ferguson (1967), Lehmann (1983, 1986), and Rohatgi (1976).
The other 15% of the book covers some topics in modern statistical theory

vil



viil Preface

that have been developed in recent years, including robustness of the least
squares estimators, Markov chain Monte Carlo, generalized linear models,
quasi-likelihoods, empirical likelihoods, statistical functionals, generalized
estimation equations, the jackknife, and the bootstrap.

In addition to the presentation of fruitful ideas and results, this book
emphasizes the use of important tools in establishing theoretical results.
Thus, most proofs of theorems, propositions, and lemmas are provided
or left as exercises. Some proofs of theorems are omitted (especially in
Chapter 1), because the proofs are lengthy or beyond the scope of the
book (references are always provided). Each chapter contains a number of
examples. Part of them are designed as materials covered in the discussion
section of this course, which is typically taught by a teaching assistant (a
senior graduate student). The exercises in each chapter form an important
part of the book. They provide not only practice problems for students,
but also many additional results as complementary materials to the main
text.

Appendices A and B provide lists of frequently used abbreviations and
notation, respectively. Definitions, examples, theorems, propositions. corol-
laries, and lemmas are numbered according to chapters. and their page
numbers can be found in the subject index.

The book is essentially based on (1) my class notes taken in 1983-84
when I was a student in this course, (2) the notes I used when I was a
teaching assistant for this course in 1984-85, and (3) the lecture notes I
prepared during 1997-98 as the instructor of this course. I would like to
express my thanks to Dennis Cox, who taught this course when I was a
student and a teaching assistant, and undoubtfully has influence on my
teaching style and textbook for this course. I am also very grateful to
students in my class who provided helpful comments; to Mr. Yonghee Lee,
who helped me to prepare all the figures in this book:; to Springer-Verlag
Production and Copy Editors who helped to improve the presentation: and
to my family members who provided support during the writing of this
book.

Madison. Wisconsin Jun Shao
January 1999
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Chapter 1

Probability Theory

Mathematical statistics relies on probability theory, which in turn is based
on measure theory. The present chapter provides some principal concepts
and notational conventions of probability theory, and some important re-
sults that are essential tools nused in this book. A more complete account of
probability theory can be found in many standard textbooks. for example,
Billingsley (1986) and Chung (1974). The reader is assumed to be familiar
with set operations and set functions (mappings) in advanced calculus.

1.1 Probability Spaces and Random Elements

In an elementary probability course, one defines a random experiment to be
an experiment for which the outcome of the experiment cannot be predicted
with certainty, and the probability of A (a collection of possible outcomes)
to be the fraction of times that the outcome of the random experiment re-
sults in A in a large number of trials of the random experiment. A rigorous
and logically consistent definition of probability was given by A. N. Kol-
mogorov in his measure-theoretic fundamental development of probability
theory in 1933.

1.1.1 o-fields and measures

Let €1 be a set of elements of interest. For example, {1 can be a set of
numbers, a subinterval of the real line, or all possible outcomes of a random
experiment. In probability theory, {1 is often called the outcome space.
whereas in statistical theory, {1 is called the sample space. This is because
in probability and statistics, 2 is usually the set of all possible outcomes of
a random experiment under study.



9 1. Probability Theory

A measure is a natural mathematical extension of the length, area, or
volume of subsets in one-, two-, or three-dimensional Euclidean space. In
a given sample space {1, a measure is a set function defined for certain
subsets of . It will be necessary for this collection of subsets to satisfy
certain properties. which are given in the following definition.

Definition 1.1. Let F be a collection of subsets of a sample space (1. F is
called a o-field (or o-algebra) if and only if it has the following properties.
(i) The empty set ) € F.

(ii) If A € F, then the complement A° € F.

(iii) If A; € F,i=1,2,..., then their union UA; € F. 1

A pair (€2, F) consisting of a set 2 and a o-field F of subsets of € is
called a measurable space. The elements of F are called measurable sets in
measure theory or events in probability and statistics.

Since (¢ = €, it follows from (i) and (ii) in Definition 1.1 that Q € F
if F is a o-field on 2. Also, it follows from (ii) and (iii) that if A; € F,
i = 1,2,..., and F is a o-field, then the intersection NA; € F. This can be
shown using DeMorgan’s law: (NA;)" = UAS.

For any given (), there are two trivial o-fields. The first one is the
collection containing exactly two elements, () and €. This is the smallest
possible o-field on €. The second one is the collection of all subsets of {2,
which is called the power set and is the largest o-field on ().

Let us now consider some nontrivial o-fields. Let A be a nonempty

proper subset of 2 (A C (), A # Q). Then (verify)
[0, A, A° Q) (1.1)

is a og-field. In fact, this is the smallest o-field containing A in the sense that
if F is any o-field containing A, then the o-field in (1.1) is a subcollection
of F. In general, the smallest o-field containing C, a collection of subsets of
(1, is denoted by o(C) and is called the o-field generated by C. Hence, the
o-field in (1.1) is o({A}). Note that o({A, A°}), o({A,Q}), and o({A,0})
are all the same as a({A}). Of course, if C itself is a o-field, then o(C) = C.

On the real line R, there is a special o-field that will be used almost
exclusively. Let C be the collection of all finite open intervals on R. Then
B = o(C) is called the Borel o-field. The elements of B are called Borel
sets. The Borel o-field B* on the k-dimensional Euclidean space R* can
be similarly defined. It can be shown that all intervals (finite or infinite),
open sets, and closed sets are Borel sets. To illustrate, we now show that
on the real line, B = o(0), where O is the collection of all open sets.
Typically, one needs to show that o(C) C ¢(Q) and a(Q) C #(C). Since an
open interval is an open set, C C O and, hence, a(C) C a(O) (see Exercise
3 in §1.6). Let U be an open set. Then U can be expressed as a union
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of a sequence of finite open intervals (see Royden (1968, p.39)). Hence,
U € o(C) (Definition 1.1(iii)) and O C o(C). By the definition of ¢(0O),
a(Q) C ¢(C). This completes the proof.

Let C' C R* be a Borel set and let Bo = {C N B : B € B*}. Then
(C, B¢:) is a measurable space and B¢ is called the Borel o-field on C.

Now we can introduce the notion of a measure.

Definition 1.2. Let (€2, F) be a measurable space. A set function v defined
on F is called a measure if and only if it has the following properties.

(i) 0 < v(A) < oo for any A € F.

(ii) »(0) = 0.

(i) If A; € F, i = 1,2, ..., and A;’s are disjoint, i.e., A, N A; = () for any

i £ 7. then
. (U :’l.i) = ZH{A:')- i
i=1 1=1

The triple (€2, F.v) is called a measure space. If (1) = 1, then v is
called a probability measure and we usually denote it by P instead of v, in
which case (€2, F, P) is called a probability space.

Although measure is an extension of length, area, or volume. some-
times it can be quite abstract. For example, the following set function is a

measure:
x  AeF, A+
HQ*{U A=

Since a measure can take oo as its value, we must know how to do arithmetic
with oo. In this book, it suffices to know that (1) for any = € R, co+2z = oo,
rooc=ocifxr >0, r00=—ccifx <0, and 0o = 0; (2) oo + o0 = oo; and
(3) oo = oo. However, oo — oo or oo /oo is not defined.

(1.2)

The following examples provide two very important measures in proba-
bility and statistics.

Example 1.1 (Counting measure). Let 2 be a sample space, F the collec-
tion of all subsets, and »(A) the number of elements in A € F (r(A) = o
if A contains infinitely many elements). Then v is a measure on F and is
called the counting measure. I

Example 1.2 (Lebesgue measure). There is a unique measure m on (R, 5)
that satisfies
m([a,b]) =b—a (1.3)

for every finite interval [a, b], —00 < a < b < oc. This is called the Lebesgue
measure. If we restrict m to the measurable space ([0, 1], Bjp,17). then m is
a probability measure. 1§
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If €} is countable in the sense that there is a one-to-one correspondence
between (! and the set of all integers, then one can usually consider the
trivial o-field that contains all subsets of {} and a measure that assigns a
value to every subset of {2. When {2 is uncountable (e.g., @ = R or [0, 1]),
it is not possible to define a reasonable measure for every subset of (1; for
example, it is not possible to find a measure on all subsets of R and still
satisfy property (1.3). This is why it is necessary to introduce o-fields that
are smaller than the power set.

The following result provides some basic properties of measures. When-
ever we consider v(A), it is implicitly assumed that A € F.

Proposition 1.1. Let ({2, F. ) be a measure space.
(i) (Monotonicity). If A C B, then v(A) < v(B).

(ii) (Subadditivity). For any sequence Ay, A, ...,

(iii) (Continuity). If Ay € Ay € Az C --- (or A} D Ay D A3 D -+ and
v(A;) < o0), then

1 ( lim An) = lim v (A4,),

TE— D T—

where
[ ] [
lim A, = U A; or = ﬂ A; 1.
FTe— 33
=1 1=1

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Since A C B, B = AUJ(A°N B) and A and A° N B are disjoint. By
Definition 1.2(iii), v(B) = v(A) + v(A°N B), which is no smaller than 1/( A)
since ¥(A° M B) = 0 by Definition 1.2(i). #

There is a one-to-one correspondence between the set of all probability
measures on (R, B) and a set of functions on R. Let P be a probability
measure. The cumulative distribution function (c.d.f.) of P is defined to be

F(z)=P((—oc,z]), xR (1.4)

Proposition 1.2. (i) Let I’ be a c.d.f. on R. Then

(a) F(—o0) = lim,_._ F(z) = 0;

(b) F(oc) = lim, .o F(x) = 1;

(c¢) F' is nondecreasing, i.e., F\(z) < F(y) if z < y;

(d) F is right continuous, i.e.. lim, ., ,~. F(y) = F(z).
(ii) Suppose that a real-valued function F' on R satisfies (a)-(d) in part (i).
Then F is the c.d.f. of a unique probability measure on (R, B). I
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The Cartesian product of any k sets A, ..., Ap (which may be subsets
of different sample spaces) is defined as the set of all (ay,...,ax), a; € A;,
and is denoted by Ay x -+ x Ay, Let (€;, F;, 1), i = 1,..., k, be k measure
spaces. We now introduce a convenient way of constructing a o-field and a
measure on the product space {17 x - -+ x €.

First. note that F; x --- x F}. is not necessarily a o-field. We define
the o-field o(F; x --- x Fi) as the product o-field on Q1 x --- x Q. As
an example, consider (£);, F;) = (R, B) for all i. Then the product space is
R¥ and it can be shown that the product o-field is the same as the Borel
o-field on R*, which is the o-field generated by @, all open sets in R*.

In Example 1.2, the usual length of an interval [a,b] C R is the same as
the Lebesgue measure of [a, b]. Consider a rectangle [a1, b;] x [as, bs] € R=.
The usual area of [a;,bi] x [ag, bs] is

{hl - {‘ll)l[bg - {‘12) =S TH[[ﬂl,bl])ﬂE{:[ﬂg,bg]:}F {15)

i.e., the product of the Lebesgue measures of two intervals [a;,b;] and
lag, ba]. Note that [ay,b1] x |asz, bs] is a measurable set by the definition
of the product o-field. Is m([|ay,b]|)m([as, bs]) the same as the value of
a measure defined on the product o-field? To answer this, we need the
following technical definition. A measure v on (£, F) is said to be o-finite
if there exists a sequence {A;, As, ...} such that UA; = Q) and v(A;) < o
for all 7. Any finite measure (such as a probability measure) is clearly o-
finite. The Lebesgue measure in Example 1.2 is g-finite, since R = UA,
with A, = (—n,n), n = 1,2, .... The counting measure in Example 1.1 is o-
finite if and only if 2 is countable. The measure defined by (1.2), however,
is not o-finite.

Proposition 1.3 (Product measure theorem). Let (2, Fi 14), 1 =1, ..., k,
be measure spaces and 14 be o-finite measures. Then there exists a unique
g-finite measure on the product o-field o(F; x - - - x Fi), called the product
measure and denoted by 1y x -+ x v, such that

1 X X V(A X X Ay) = 11 ( A1) - v (Ay)

forall A; e Fi,i=1..... k. 1

Thus, in R? there is a unique measure, the product measure m x m, for
which m x m(|ay,b1] x [asz, bs]) is equal to the value given by (1.5). This
measure is called the Lebesgue measure on (R?,B?). Similarly, we can
define the Lebesgue measure on (R®, %), which exactly equals the usual
volume for subsets of the form [a, b] x [as, bs] x |ag, bs].

In general, the product measure space generated by (£;, F; . v;), i =

l,....k, is denoted by Hf-_-_-_-l{ﬂnf-u i ).
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The concept of c.d.f. can be extended to R*. Let P be a probability
measure on (R*, B¥). The c.d.f. (or joint c.d.f.) of P is defined by

Flxy,...,xp) = P((—oc,x] X -+ X (—00,21]), x; €R. (1.6)

Note that P is not necessarily a product measure. Again, there is a one-to-
one correspondence between probability measures and joint c.d.f.’s on R*.
Some properties of a joint c.d.f. are given in Exercise 10 in §1.6.

1.1.2 Measurable functions and distributions

Since {1 can be quite arbitrary, it is often convenient to consider a function
(mapping) f from £ to a simpler space A (often A = R*. the k-dimensional
Euclidean space). Let B C A. Then the inverse image of B under f is

fTUB)={feB}={weQ: f(w) € B}.

The inverse function f~! need not exist for f~!(B) to be defined. The
reader is asked to verify the following properties:

(a) f7H(B) = (f~1(B))° for any B C A;

(b) f~HUB;) =Uf~YB;) forany B; C A,i=1,2,....

Let C be a collection of subsets of A. We define

o)y ={f7(C):cecy.

Definition 1.3. Let (2,F) and (A.G) be measurable spaces and [ a
function from €2 to A. The function f is called a measurable function from

(2, F) to (A, G) if and only if f~1(G)C F.

I[f A =R and G = B (Borel o-field), then f is said to be Borel measurable

or is called a Borel function.

In probability theory, a measurable function is called a random element
and denoted by one of X, Y, Z,.... If X is measurable from (£, F) to
(R, B), then it is called a random variable; if X is measurable from (€}, F)
to {’R‘q’: Bk:l, then it is called a random k-vector (as a notational convention
in this book, any vector is considered to be a row vector). If Xy, ..., X} are
random variables defined on a common probability space, then the vector
(X1,..., X) is a random k-vector.

If f is measurable from (2, F) to (A, G), then f~1(G) is a sub-o-field of
F (verify). It is called the o-field generated by f and is denoted by o( f).

Now we consider some examples of measurable functions. If F is the
collection of all subsets of {2, then any function f is measurable. Let A C (0.
The indicator function for A is defined as

1 we A
T4lw) =
Aw) {u w A
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For any B C R,

. 0 B.1¢ DB
A 0&B.1eB
A€ e B.1¢€ DB

Y 0e B.1eB.

1;'(B) = {

Then o(l4) is the o-field given in (1.1). If A is a measurable set, then 4
is a Borel function.

Note that o(l4) is a much smaller o-field than the original o-field F.
This is another reason why we introduce the concept of measurable func-
tions and random wvariables, in addition to the reason that it is easy to
deal with numbers. Often the o-field F (such as the power set) contains
too many subsets and we are only interested in some of them. One can
then define a random variable X with (X)) containing subsets that are of
interest. In general, o(X) is between the trivial o-field {{), 1} and F, and
contains more subsets if X is more complicated. For the simplest function
I 4, we have shown that o(/4) contains only four elements.

The class of simple functions is obtained by taking linear combinations
of indicators of measurable sets, i.e..

k
o) = 3 aily, () (1.7)
=1
where A, ..., A, are measurable sets on £} and aq,....a; are real numbers.

One can show directly that such a function is a Borel function, but it
follows immediately from Proposition 1.4. Let A, .... A; be a partition of
(1, i.e.. A;’s are disjoint and A; U --- U Ay = (). Then the simple function
@ given by (1.7) with distinct a;’s exactly characterizes this partition and

o(¢) = o({ A1, o, A}).

Proposition 1.4. Let (€2, F) be a measurable space.

(i) If f and g are Borel, then so are fg and af + bg, where a and b are real
numbers; also, f/g is Borel provided g(w) # 0 for any w € (2.

(ii) f is Borel if and only if f~!(a, <) € F for all @ € R.

(iii) If fi1, f2,... are Borel, then so are sup,, f,, inf, f,, limsup, f,, and
liminf,, f,,. Furthermore, the set

A= {w € lim f,(w) e:{ists}

FL—+ 260

1s an event and the function

Y — lim,, o fe,.-ll[u.i‘} we A
M) { fi{w) we A
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is Borel.

(iv) Suppose that f is measurable from (€2, F) to (A, G) and g is measurable
from (A, G) to (A, H). Then the composite function go f is measurable from
(2, F) to (A, H).

(v) Let 2 be a Borel set in RP. If f is a continuous function from (2 to RY,
then f is measurable. &

Proposition 1.4 indicates that there are many Borel functions. In fact,
it is hard to find a non-Borel function.

Let (€2, F,v) be a measure space and f be a measurable function from
(2, F) to (A, G). The induced measure by f, denoted by vo f~1, is a measure
on G defined as

vof YB)=v(feB)=v(f'(B)), Beg. (1.8)

It is usually easier to deal with v o f~! than to deal with v since (A, G)
is usually simpler than (2, F). Furthermore, subsets not in ¢(f) are not
involved in the definition of v o f~!. As we discussed earlier, in some cases
we are only interested in subsets in o( f).

If v = P is a probability measure and X is a random wvariable or a
random vector, then P o X ! is called the law or the distribution of X and
is denoted by Py. The c.d.f. of Px defined by (1.4) or (1.6) is also called
the c.d.f. or joint c.d.f. of X and is denoted by F'y. On the other hand,
for any c.d.f. or joint c.d.f. F'. there exists at least one random variable
or vector (usually there are many) defined on some probability space for
which F'y = F. The following are some examples of random variables and
their c¢.d.f.’s. More examples can be found in §1.3.1.

Example 1.3 (Discrete c.d.f.’s). Let a; < as < --- be a sequence of real
numbers and let p,, n = 1,2...., be a sequence of positive numbers such

that 57" | p, = 1. Define

1.1 3 n < T Ln . — 1..2
FI{.’J‘_T:] _ ZI::‘.]_ p a _ & .{ In+1, T y <y {1(;)
() —00 < T < d7.

Then F'is a stepwise c.d.f. It has a jump of size p,, at each a,, and is flat
between a,, and a,,.,. n = 1,2..... Such a c.d.f. is called a discrete c.d 1.
and the corresponding random variable is called a discrete random variable.
We can easily obtain a random wvariable having F' in (1.9) as its c.d.f. For
example, let 2 = {a;,as,...}, F be the collection of all subsets of (2,

P(A)= > p., A€F. (1.10)
1y e A

and X{w) = w. One can show that P is a probability measure and the
c.d.f. of X is Fin (1.9). &

I
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Example 1.4 (Continuous c.d.f.’s). Opposite to the class of discrete c.d.f.’s
is the class of continuous c.d.f.’s. Without the concepts of integration and
differentiation introduced in the next section, we can only provide a few
examples of continuous c.d.f.’s. One such example is the uniform c.d.f. on
the interval [a, b] defined as

0 —00 < T < a
F(z) = i— a<x<b
1 b < x < oo.

Another example is the exponential c.d.f. defined as

F{::r:)={ﬂ —o <z <)

1 — e/ 0<x< oo,

where f is a fixed positive constant. Note that both uniform and exponential
c.d.f.’s are continuous functions. 1§

1.2 Integration and Diflferentiation

Differentiation and integration are two of the main components of calculus.
This is also true in measure theory or probability theory, except that inte-
oration is introduced first whereas in calculus, differentiation is introduced
first.

1.2.1 Integration

An important concept needed in probability and statistics is the integration
of Borel functions with respect to (w.r.t.) a measure v, which is a type of
“average”. The definition proceeds in several steps. First, we define the
integral of a nonnegative simple function, i.e., a simple function ¢ given by

(1.7) with a; = 0,1 =1, ..., k.

Definition 1.4(a). The integral of a nonnegative simple function ¢ given
by (1.7) w.r.t. i is defined as

ke
f«-,-:d.u =) aw(4;). (1.11)
1

The right-hand side of (1.11) is a weighted average of a;’s with »(A4;)’s
as weights. Since ancc = oo if a > 0 and acc = 0 if a = 0, the right-hand
side of (1.11) is always well defined, although [ @dr = oo is possible. Note
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that different a;’s and A;’s may produce the same function ¢; for example,

with 1 = R,

2191y (x) + 1)1 9)(x) = Lo 9)() + Lo,1)(2).

However, one can show that different representations of ¢ in (1.7) pro-

duce the same value for [ @dr so that the integral of a nonnegative simple
function is well defined.

Next, we consider nonnegative Borel function f.

Definition 1.4(b). Let f be a nonnegative Borel function and let Sy be
the collection of all nonnegative simple functions of the form (1.7) satisfying
plw) < f(w) for any w € €2. The integral of f w.r.t. i is defined as

/fdv=5up{/c,¢d.u: e,-::ESf}. i

Hence, for any Borel function f > 0, there exists a sequence of simple
functions @y, ©wa. ... such that 0 < ; < f for all ¢ and lim,,__kc,c,fa,aﬂd.u =

| fdv.

Finally, for a Borel function f., we first define the positive part of f by

f+(w) = max{f(w),0}

and the negative part of f by

f-(w) = max{—f(w), 0}.

Note that f. and f_ are nonnegative Borel functions, f(w) = fi(w) —

f-(w), and |F(w)| = fi(w) + f- ().

Definition 1.4(c). Let f be a Borel function. We say [ fdv exists if and
only if at least one of [ fidv and [ f_dv is finite, in which case

‘/fduz‘/ﬁrdu-—ff_du. (1.12)

Let A be a measurable set and I4 be its indicator function. The integral

of f over A is defined as
[fdv: /Iﬂqf!‘]!b’. I
J A

Note that the left-hand side of (1.12) is always well defined, although it
can be oc or —oo. When both [ fidv and [ f_dv are finite, we say that f is
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integrable (for a nonnegative Borel function f, f is integrable if [ fdv < oc).
Note that the existence of [ fdv is different from the integrability of f.

The integral of f mav be denoted differently whenever there is a need
to indicate the variable(s) to be integrated and the integration domain; for
example, [, fdv, [ f(w)dv, [ f(w)dv(w), or [ f(w)r(dw), and so on. In
probability and statistics, [ XdP is usually written as EX or E(X) and
called the expectation or expected value of X. If F' is the c.d.f. of P on
(R*,B¥), [ f(x)dP is also denoted by [ f(z)dF(z) or [ fdF.

Example 1.5. Let £ be a countable set, F be all subsets of {}, and v be
the counting measure given in Example 1.1. For any Borel function f, the

integral of f w.r.t. v is
[fdy = flw). (1.13)

This is obvious if f is a simple function. The proof for general f is left as
an exercise. §

Example 1.6. If {2 = R and v is the Lebesgue measure, then the integral
of f over an interval [a, b] agrees with the Riemann integral in calculus when

the latter is well defined, and is usually written as f[u_ b flz)dz = fj flz)dz.

However, there are functions for which the Lebesgue integrals are defined
but not the Riemann integrals. §

We now introduce some properties of integrals. The proof of the follow-
ing result is left to the reader.

Proposition 1.5 (Linearity of integrals). Let (€2, F,v) be a measure space
and f and g be Borel functions.

(i) If [ fdv exists and a € R, then [(af)dv exists and is equal to a [ fdv.
(ii) If both [ fdv and [ gdv exist and [ fdv + [ gdv is well defined, then
J(f + g)dv exists and is equal to [ fdv + [gdv. &

If a statement holds for all w in Q@—N with v(N) = 0, then the statement
is said to hold a.e. (almost every where) v (or simply a.e. if the measure v
is clear from the context). If v is a probability measure, then a.e. may be
replaced by a.s. (almost surely).

Proposition 1.6. Let (£, F.v) be a measure space and f and g be Borel.
(i) If f < g a.e., then [ fdv < [ gdv, provided that the integrals exist.
(ii) If f > 0 a.e. and [ fdv =0, then f =0 a.e. ¥

Some direct consequences of Proposition 1.6(1) are: | [ fdv| < [|f|dv:
if f >0 a.e., then [ fdv > 0; and if f = g a.e., then [ fdv = [ gdv.
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We now prove part (ii) of Proposition 1.6 as an illustration. The proof
for part (i) is left to the reader. Let A = {f > 0} and A,, = {f = n™'},
n=12,... Then A, C A for any n and lim, ... A4, = A (why?). By
Proposition 1.1(iii), lim, .. v(A4,) = v(A4). Using Proposition 1.5 and
part (i) of Proposition 1.6, we obtain that

n_ly[:‘ln) = /n_lqundu < /ff_;ludu < /fdu = ()

for any n. Hence v(A) =0 and f =0 a.e.

It is sometimes required to know whether the following interchange of
two operations is valid:

/_]im frdy = lim /fnd.u,_ (1.14)

where fi, fa.... is a sequence of Borel functions. Note that we only require
lim,, .~ fn exists a.e. Also, the limit of a sequence of Borel functions is
Borel (Proposition 1.4). The following example shows that (1.14) is not
always true.

Example 1.7. Consider (R, B) and the Lebesgue measure. Define f,,(z) =
nli,-(z), n = 1,2,.... Then lim, . fu(x) = 0 for all z but z = 0.
Since the Lebesgue measure of a single point set is 0 (see Example 1.2},
lim, .o fu(z) = 0 ae. and [lim, . fu(x)dz = 0. On the other hand,

| fu(x)dz = 1 for any n and, hence, lim,, .~ [ fo(z)de =1. 1

The following result gives some sufficient conditions under which (1.14)
holds.

Theorem 1.1. Let f;. fs.... be a sequence of Borel functions.

(i) (Dominated convergence theorem). If lim,, ... f, = f a.e. and there
exists an integrable function g such that |f,| < g a.e., then (1.14) holds.
(ii) (Fatou's lemma). If f,, = 0, then

/ liminf f,,dv < lim inf f frdu.

(iii) (Monotone convergence theorem). If 0 < f; < fo < - and lim,, .. fn
= f a.e., then (1.14) holds. @

The proof is omitted. However, it can be seen that if f in (iii) is in-
tegrable, then part (iii) is a consequence of part (i). The following is an
application of Theorem 1.1.

Example 1.8 (Interchange of differentiation and integration). Let (2, F, v)
be a measure space and for any fixed #, f(w,#) be a Borel function on
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ﬂ ?111‘11’1059 that df(w,#)/00 exists a.e. for § € (a,b) € R and that
#)/00) < g(w) a.e., where g is an integrable function on ). Then,
for Pa,n?h 0 € (ab), df(w, 6" ) /00 is integrable and

/f(w du-/%dy. i

Theorem 1.2 (Change of variables). Let f be measurable from (92, F, v)
to (A,G) and g be Borel on (A, G). Then

fgﬂfdy= /‘5,]n:]'f|[i,—‘c;f'_l}5 (1.15)
0l JA

l.e., if either integral exists, then so does the other., and the two are the
same. |

The proof is again omitted. Note that integration domains are indicated
on both sides of (1.15). This result extends the change of variable formula

for Riemann integrals, i.e., [ g(y)dy = [ g(f(x))f'(x)dz, y = f(x).

Result (1.15) is very important in probability and statistics. Let X
be a random variable on a probability space (€2, F, P). If EX = fﬂ XdP
exists, then usually it is much simpler to compute EX = fﬁ xd Py, where
Py = Po X !isthelaw of X. Let Y be a random vector from Q to R* and
¢ be Borel from R* to R. According to (1.15), Eg(Y) can be computed as
fﬂk gly)dPy or fﬁ rdPyyy, depending on which of Py and P,y is easier
to handle. As a more specific example, consider k = 2, ¥ = (X, X3), and
g(Y) = X1 4+ Xo. Using Proposition 1.5(ii), E(X; + Xs) = EX; + EXs

and, hence,

E(X] +X2:J = / .’J'.pojfl + / .T-dP}fg.
JR JR

Then we need to handle two integrals involving Py, and Py,. On the other
hand,
B(Xi +X2) = | 2Py, ix..
R
which involves one integral w.r.t. Px, . x,. Unless we have some knowledge
about the joint c.d.f. of (X, X5), it is not easy to handle Py, . x,.

The following theorem states how to evaluate an integral w.r.t. a product
measure via iterated integration.

Theorem 1.3 (Fubini’s theorem). Let 1; be a o-finite measure on (£};, ;).
i = 1,2, and let f be a Borel function on Hf___:l (£2;, F;) whose integral w.r.t.
1)1 X 9 exists. Then
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exists a.e. vo and defines a Borel function on {25 whose integral w.r.t. v
exists, and

/ flwr,wa)diy X vy = / [ f{wl,wg]dyl] dvs. 1
. ﬂl Kﬂ:& . ﬂ;_u . ﬂl

This result can be naturally extended to the integral w.r.t. the product
measure on Hf___:l (Q2;, F;) for any finite positive integer k.

Example 1.9. Let ) = Q5 = {0,1,2,...}, and v; = 15 be the counting
measure (Example 1.1). A function f on € x {25 defines a double sequence.
If [ fdin % vy exists, then

[ famx v =33 .0) = 33 £(i.d) (1.16)
) =0 j=0 g=0 i=0

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed
in either order, if it is well defined. &

1.2.2 Radon-Nikodym derivative

Let (£2,F,r) be a measure space and f be a nonnegative Borel function.
One can show that the set function

A{A):Lfdu, AeF (1.17)

is a measure on ({2, F). Note that
v(A) =0 implies A(A) = 0. (1.18)

If (1.18) holds for two measures A and v defined on the same measurable
space, then we say A is absolutely continuous w.r.t. v, and write A < v.

Formula (1.17) gives us not only a way of constructing measures, but
also a method of computing measures of measurable sets. Let v be a well-
known measure (such as the Lebesgue measure or the counting measure)
and A a relatively unknown measure. If we can find a function f such that
(1.17) holds, then computing A(A) can be done through integration. A
necessary condition for (1.17) is clearly A < . The following result shows
that A < v is also almost sufficient for (1.17).

Theorem 1.4 (Radon-Nikodym theorem). Let v and A be two measures
on (€2, F) and v be o-finite. If A < v, then there exists a nonnegative Borel
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function f on 2 such that (1.17) holds. Furthermore, f is unique a.e. v,
ie., if M(A) = [, gdv for any A € F, then f=gae v. 1

The proof of this theorem is beyond our scope. If (1.17) holds, then the
function f is called the Radon-Nikodym derivative or density of A w.r.t. v,

and is denoted by dA/dv.

A useful consequence of Theorem 1.4 is that if f is Borel on (£2, F) and

f_q fdv =0 for any A € F, then f =0 a.e.

If [ fdv=1foran f > 0 a.e. v, then A given by (1.17) is a probability
measure and f is called its probability density function (p.d.f.) w.rt. v. For
any probability measure P on RF corresponding to a c.d.f. F or a random

vector X, if P has a p.df. f w.r.t. a measure v, then f is also called the
p.d.f. of For X w.or.t. v

Example 1.10 (p.d.f. of a discrete c.d.f.). Consider the discrete c.d.f. F
in (1.9) of Example 1.3 with its probability measure given by (1.10). Let
(1 = {ay,as,...} and v be the counting measure on the power set of ). By
Example 1.5,

P(A) = / fdv =" fla;), AcCQ, (1.19)
A a;eA
where f(a;) = p;, ¢ = 1,2, .... That is, f is the p.d.f. of P or F w.r.t. v.
Hence any discrete c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f. w.r.t.
counting measure is called a discrete p.d.f. 1§

Example 1.11. Let F' be a c.d.f. Assume that F' is differentiable in the
usual sense in calculus. Let f be the derivative of F'. From calculus,

F(x) = /T fly)dy, xR, (1.20)

Let P be the probability measure corresponding to F. It can be shown
that P(A) = f o Jdm for any A € B, where m is the Lebesgue measure on
R. Hence, f is the p.d.f. of P or F' w.r.t. Lebesgue measure. In this case,
the Radon-Nikodym derivative is the same as the usual derivative of F' in
calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.
A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t.
Lebesgue measure is that F' is absolute continuous in the sense that for
any ¢ > (), there exists ¢ > 0 such that for each finite collection of disjoint
bounded open intervals (a;, b;), > (bi—a;) < § implies > [F(b;)— F(a;)] < €.
Absolute continuity is weaker than differentiability, but is stronger than
continuity. Thus, any discontinuous c.d.f. (such as a discrete c.d.f.) is not
absolute continuous. Note that every c.d.f. is differentiable a.e. Lebesgue
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measure (Chung, 1974, Chapter 1). Hence, if f is the p.d.f. of F w.r.t.
Lebesgue measure, then f = the usual derivative of F' a.e. Lebesgue mea-
sure and (1.20) holds. In such a case probabilities can be computed through
integration. It can be shown that the uniform and exponential c.d.f.’s in
Example 1.4 are absolute continuous and their p.d.f.’s are, respectively,

1
Y h—a !‘I-':_:.’]'.T'f.h

otherwise

and
0 —o0 < x < ()
flz) = { g—le—x/0 0<x < no.

A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f. 1

More examples of p.d.f.’s are given in §1.3.1.

The following result provides some basic properties of Radon-Nikodvm
derivatives.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives). Let v be a
o-finite measure on a measure space (€1, F). All other measures discussed
in (i)-(iii) are defined on (£2, F).

(i) If X is a measure, A < v, and f = 0, then

/fdk= /fﬁdy.
‘ ‘ d

(Notice how the dr’s “cancel” on the right-hand side.)
(ii) If A;, i = 1,2, are measures and A; < v, then A\ + Ay < v and
A0 +Xa) _ dhi | dho

= -+ a.e. 1/,

(i s i

(iii) (Chain rule). If 7 is a measure, A is a g-finite measure, and 7 < A < v,
then

dT B dT dA
dv  d\ dv

In particular, if A < v and v < A (in which case A and v are equivalent),

then
ﬁ = (ﬁ) - a.e. IV or A
dv L d) '

(iv) Let (£2;, Fi, ;) be a measure space and v; be g-finite, i = 1,2. Let );
be a measure on (£;, F;) and A; < 14, 1 = 1,2. Then A} x Ay € 1] X 19
and

a.e,. I,

!'i'[:.:’kl X }k:g:]
d(1 % v3)

dX d )
(wr,wa) = —l{u;l —g{wg) a.e. vy X . B

din d1so
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1.3 Distributions and Their Characteristics

We now discuss some distributions useful in statistics. and their moments
and generating functions.

1.3.1 Useful probability densities

It is often more convenient to work with p.d.f.’s than to work with c.d.f.’s.
We now introduce some p.d.f.’s useful in statistics.

Most discrete p.d.f.’'s are w.r.t. counting measure on the space of all
nonnegative integers. Table 1.1 lists all discrete p.d.f.’s in elementary prob-
ability textbooks. For any discrete p.d.f. f, its c.d.f. F'(x) can be obtained
using (1.19) with A = (oo, z]. Values of F(z) can be obtained from statis-
tical tables or software.

Two Lebesgue p.d.f.’s are introduced in Example 1.11. Some other
useful Lebesgue p.d.f.’s are listed in Table 1.2. Note that the exponential
p.d.f. in Example 1.11 is a special case of that in Table 1.2 with a = (). For
any Lebesgue p.d.f., (1.20) gives its c.d.f. A few c.d.f.’s have explicit forms,
whereas many others do not and thev have to be evaluated numerically or
computed using tables or software.

There are p.d.f.’s that are neither discrete nor Lebesgue.

Example 1.12. Let X be a random variable on (€2, F, P) whose c.d.f. Fx
has a Lebesgue p.d.f. fx and Fx(c) < 1, where ¢ is a fixed constant. Let
Y = min(X, ¢), i.e., Y is the smaller of X and ¢. Note that Y ~!((—oc,x]) =
Qifr > cand Y 1((—oc,z]) = X~ (o0, z]) if 2 < ¢. Hence Y is a random
variable and the c.d.f. of V" is

Fy(z) = {

This c.d.f. is discontinuous at ¢, since F(¢) < 1. Thus, it does not have a
Lebesgnue p.d.f. It is not discrete either. Does Py, the probability measure
corresponding to Fy . has a p.d.f. w.r.t. some measure? Define a probability
measure on (R, B), called point mass at ¢, by

1 r =
Fx(;r} Tr < C.

1 ce A
de(A) = AebB 1.21
w={ <4 (1.21)
(which is a special case of the discrete uniform distribution in Table 1.1).
Then Py < m+ é., where m is the Lebesgue measure, and the p.d.f. of Py

is
() T >c

() =4¢ 1— Fx(e) r=c 1 (1.22)
fx(x) T < c.

dPy
d(m + 4.)
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Table 1.1. Discrete Distributions on &

Uniform p.d.f. L/m, x = ay,...,0m
m.g.f. E;”l etim, teR
DUl(ay, ...,a,,) Expectation Z;le a;/m
Variance doilaj —a)?/m,a=3" aj/m
Parameter a; € R.m=1,2,...
Binomial p.d.f. (Myp*(1l —p)" ", z=0,1,...,n
m.g.f. (pet +1—p)*, teR
Bi(p,n) Expectation np
Variance np(l — p)
Parameter pel01], n=12,..
Poisson p.d.f. 0%e /2!, x=0,1.2, ...
m.g.f. P’ -1 teR
P(0) Expectation #
Variance 7
Parameter 0 =10
(Geometric p.d.f. (1—p)*~tp, z=1,2..
m.g.f. pet /[1 — (1 —p)e’], t < —log(l —p)
G(p) Expectation 1/p
Variance (1 —p)/p
Parameter  p € [0, 1]
Hyper- p.d.f. () (?.Tfm) f (:fr)
seometric r=01,...,mn(r,n), r—x<m
m.g.f. No explicit form
HG(r,n,m) Expectation rn/N
Variance rom(N —r) /[N4(N —1)]
Parameter ron.m=1.2,... N=n+m
Negative p.d.f. (f:ll) pril—p)y*", z=rr+1, ..
binomial m.g.f. pe™[/[1 —(1—p)e", t<—log(l—p)
Expectation r/p
NB(p,r) Variance r(1 —p)/p*
Parameter pel0,1], r=1,2,..
Log- p.d.f. —(logp) 'z N1 —-p)", 2 =1,2,..
distribution m.g.f. log[l — (1 — plef]/logp, t€R

Expectation —(1 — p)/(plogp)

L(p) Variance (1 =p)[L + (1 = p)/logpl/(p*logp)
Parameter  p € (0,1)

All p.d.f.’s are w.r.t. counting measure.
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The random wvariable Y in Example 1.12 is a transformation of the
random variable X. Transformations of random variables or vectors are
frequently used in probability and statistics. For a random wvariable or
vector X, f(X) is a random variable or vector as long as f is measurable
(Proposition 1.4). How do we find the c.d.f. (or p.d.f.) of f(X) when the
c.d.f. (or p.d.f.) of X is known? In many cases, the most effective method is
direct computation. Example 1.12 is one example. The following is another
one.

Example 1.13. Let X be a random variable with c.d.f. Fy and Lebesgue
p.d.f. fx., and let Y = X?. Note that Y !((—oc,z]) = 0 if x < 0 and
Y=1{(—o0,x]) = Y0, 2]) = X Y[—+/x,/x]) if z = 0. Hence
Fy(x) = PoY ™ ((—0c.z])
= Po X~ ([-Vz,Vz])
= Fx(vz) = Fx(—/)

if # = 0 and Fy(x) = 0if z < 0. Clearly, the Lebesgue p.d.f. of Fy is

f}’{ﬂf) V/_ f}f('\/ﬂ-) + f}‘.( \/M)]I (0,20 ) {123)

In particular, if

1 2 /.
fx(x) = E_:”‘a”, (1.24)
2w
which is the Lebesgue p.d.f. for the normal distribution N (0, 1) (Table 1.2},

then
1

fy(z) = Tt e 210,00 (),

which is the Lebesgue p.d.f. for the chi-square distribution y% (Table 1.2).
This is actually an important result in statistics. 1§

In some cases one may apply the following general result.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. fx
and let Y = ¢g(X), where g is a Borel function from (R¥, B¥) to (R*, B*).
Let Aq,....A,, be disjoint subsets of R¥ such that R¥ — (4, U --- U A
has Lebesgue measure 0 and g on A; is one-to-one with a nonvanishing
Jacobian, i.e., Det(dg(z)/0x) # 0 on A;, j = 1,...,m, where Det(M) is the
determinant of a square matrix M. Then Y has the following Lebesgue

p.d.f.:

T

Z \Det (0h;(x)/0z) | fx (hj(z)).

where h; is the inverse f1.111f:t1f:-11 ofgonA;, j=1,...m. 1§
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Table 1.2. Distributions on R with Lebesgue p.d.f.’s

Uniform p.d.f. (b—a) " ap(x)
m.g.f. (e’ —e)/(b—a), teR
Ula,b) Expectation (a +b)/2
Variance (b—a)?/12
Parameter a, be R, a<b
Normal p.d.f. :glf.-.:r e—(w—p)7/20”
m.g.f. ePt—" /2 4 e R
N(p,0?) Expectation
Variance o?
Parameter peR, o=10
Exponential p.d.f. 6! e_{f”'_‘l}f""}f(ﬂ!x:, (x)
m.g.f. e(1—0t)~, t<o!
E(a, ) Expectation 6+ a
Variance 6*
Parameter >0 acR
Chi-square  p.d.f. F[k;:;}:akfﬂ oF/2=1e==/2 [ oy ()
m.g.f. (1—2t)7 %2 t<1/2
Xi Expectation k
Variance 2k
Parameter E=1,2, ..
Gamma p.d.f. Wi’“_le_”:f”ffm_.m}{:r:)
m.g.f. (1—~t)~®, t <!
e, v) Expectation o~
Variance ovy?
Parameter =0, a0
Beta p.d.f. I‘I{EE;EFSQJ (1 = 2)7 i 1y(x)
m.g.f. No explicit form
B(e, 3) Expectation «o/(a + 3)
Variance af/[(e+ 8+ 1)(a+ 3)?]
Parameter a=>0 G=0
Cauchy p.d.f. 4 [1 1 (I—;E)g} 1
m.g.f. Does not exist
Clu, o) Expectation Does not exist
Variance Does not exist
ch.f. eV—1pt—alt]
Parameter pHeR, o=10
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Table 1.2. (continued)

t-distribution  p.d.f. ELE:F[ITL’E]} (1 + ‘;—f) s
m.g.f. No explicit form
tn Expectation 0, (n > 1)
Variance nf/(n—2), (n>2)
Parameter n=12, ..
F-distribution p.d.f. II‘!{T:;;?F {: Eg?;f i f ri][:'":a :3 I ) ()
m.g.f. No explicit form
Foom Expectation m/(m — 2), (m > 2)
Variance 2mi(n+m — 2)/[n(m — 2)%(m — 4)],
(m > 4)
Parameter n=12 .., m=12,..
Log-normal p.d.f. ﬁj’:_ Le— ':1”5'1_“}%2‘5’21’“,_,}3} (x)
m.g.f. Does not exist
LN(p,0?) Expectation Rt /2
Variance 20" (g7 1)
Parameter HeER, a=10
Weibull p.d.f. S le™ ™ g ooy ()
m.g.f. No explicit form
Wi, 8) Expectation #Y°T(a™! +1)
Variance 92/« I'(2a~ ' +1) = T(a™ ! + 1]1]:3
Parameter =0 a=10
Double p.d.f. ﬁﬂ_ z—nl/@
Exponential m.g.f. et /(1 4+ 6%t%), teR
Expectation pu
DE(p,0) Variance 26*
Parameter HpeR, 0=0
Pareto p.d.f. 0a’z= TV, ()
m.g.f. No explicit form
Pa(a,8) Expectation fa/(0 —1), (0 > 1)
Variance da”/[(0 — 1)%(60 — 2)], (8 > 2)
Parameter =0, a=0
Logistic p.d.f. o le T/ 1] 4 el pl/9)2
m.g.f. eMT(1 4+ ot)'(1 —at), |t| <o
LG(p, o) Expectation pu
Variance o*nt /3
Parameter HeER, =10




22 1. Probability Theory

One may apply Proposition 1.8 to obtain result (1.23) in Example 1.13,
using A; = (—00,0), A; = (0,00), and g(x) = x*. Note that h;(z) = —/x,
ho(z) =/, and |dh;(x)/dx| = 1/(2\/x).

A p.d.f. corresponding to a joint c.d.f. is called a joint p.d.f. The fol-
lowing is an important joint Lebesgue p.d.f. in statistics:

f(z) = (27) F2Det(X)]|" V2~ -mE T e-n)T2 e RE (1.25)

where ;1 € RF is a vector of parameters. ¥ is a positive definite k x k matrix
of parameters, and A™ denotes the transpose of a vector or matrix A. The
p.d.f.in (1.25) and its c.d.f. are called the k-dimensional multivariate normal
p.d.f. and c.d.f. and both are denoted by Ni(p, £). The normal distribution
N{p,0?) in Table 1.2 is a special case of Ny (u, ¥) with k = 1. The p.d.f. in
(1.24) is N(0, 1) and is called the standard normal p.d.f. Sometimes random
vectors having the Ni (g, ¥) distribution are also denoted by N (u, X) for
convenience. Useful properties of multivariate normal distributions can be
found in Exercise 51.

Let X be a random k-vector having a c.d.f. F'y. Then the ith component
of X is a random variable X; having the following c.d.f.:

Fy (x) = lim Fx(zy,...,zi—1,2, Tix1, ... Tk ),
.}':.'1.{ } I_',I_}c‘:"j.‘:l:---:'I.-—].._'!:+l“_“_k X{ l r [ ]_ y 'E+1 \ k:]

which is called the marginal c.d.f. of X;. That is, the k marginal c.d.f.’s are
determined by the joint c.d.f. If F'y has a Lebesgue p.d.f. fx, then X; has
the following Lebesgue p.d.f.:

fx () = / - / fx(xy, @i, 2, 2oy, g )dey - dey_ydeg gy - - day,.

In general, a joint c.d.f. cannot be determined by £ marginal c.d.f.’s. There
is one special but important case in which the joint c.d.f. of a random
k-vector is determined by its £ marginal c.d.f.’s, i.e.,

Fx(z1,....xr) = Fx,(z1) - Fx, (z), (21,....21) € RF. (1.26)

If (1.26) holds, then random variables X1, ..., X}, are said to be independent.
The meaning of independence is further discussed in §1.4.2. If each X; has
a Lebesgue p.d.f. fy, . then X,. ..., X} are independent if and only if the
joint p.d.f. of X satisfies

Ix(xr, . zr) = fx, (x1) - fx, (xx),  (21,...,28) € R, (1.27)

Example 1.14. Let X = (X, X3) be a random 2-vector having a joint
Lebesgue p.d.f. fx. Consider first the transformation g(x) = (x1, 21 + x2).
Using Proposition 1.8, one can show that the joint p.d.f. of ¢(X) is

foxy(z1,y) = fx(z1y — x1),
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where y = x; + 72 (note that the Jacobian equals 1). The marginal p.d.f.

of Y = X + X5 is then

fy(y) = [fX{Ilsy_Il}dTl-

In particular, if X and X- are independent, then

fyly) = /f.rl{ﬂfl)fxg{y — a1 )dx;. (1.28)

Next, consider the transformation h(x,,z2) = (x1/x2, x2), assuming that
X5 # () a.s. Using Proposition 1.8, one can show that the joint p.d.f. of
h(X) is

th}r:}{z.-.#f:a) = |@2| fx (222, 22),

where z = x1/xs. The marginal p.d.f. of Z7 = X, /X, is

fz(z) = /|I2|fﬁ'(ﬁﬂlz,i’g}dﬂfg.

In particular, if X; and X5 are independent, then

f2(2) = [ laalfx, (s22) o)z, (1.20)

A number of results can be derived from (1.28) and (1.29). For example,

it X1 and X5 are independent and both have the standard normal p.d.f.
given by (1.24), then, by (1.29), the Lebesgue p.d.f. of Z = X /X5 is

%/Mﬂe‘““zjﬁﬁdﬂrg
T

I —(14+z%)z
— 2 Tdx
T Jo

1
(14 22)’
which is the p.d.f. of the Cauchy distribution C'(0, 1) in Table 1.2. Another

application of formula (1.29) leads to the following important result in
statistics.

fz(z)

I

Example 1.15 (t-distribution and F-distribution). Let X; and X3 be
independent random variables having the chi-square distributions xil and
X;., (Table 1.2), respectively. By (1.29), the p.d.f. of Z = X; /X, is

zn“‘rﬁ—lf {3] o _ _ ‘
. (0,0¢) _ (rny4+na)/2-1 —|:]_—|—3}:J:-31.I"2d_
2) = T € 1x-
fE.'( ) EI:TL1+T.I.'.]J'."I.2]__1|['}‘1.]_/E)F(T?_.E/E) _L 2 ’
[[(ny + na)/2] zm/2-1

- I
F{ﬂl/z)r{ﬂg/Z} (1 -+ z}{fh-l—nzh'rz (0,00)

(2),
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where the last equality follows from the fact that

1 (ni+mnz)/2—1 _—x,/9
€I, el | T
2[n1+1-¢._3}f-"21"-[{n1 + Hg}/z] 2 [U.u::::-}{ E.)

is the p.d.f. of the chi-square distribution X;‘iﬁm. Using Proposition 1.8,
one can show that the p.d.f. of YV = (X, /ny)/(Xs/n2) = (ne/n,)Z is the
p.d.f. of the F-distribution F,,, ,, given in Table 1.2.

Let U/; be a random variable having the standard normal distribution
N(0,1) and Us a random variable having the chi-square distribution x2.
Using the same argument, one can show that if /; and U are independent.,
then the distribution of T" = U, /+/Us/n is the t-distribution ¢, given in
Table 1.2. This result can also be derived using the result given in this
example as follows. Let X7 = Uf and Xy = Us. Then X; and X, are
independent (which can be shown directly, but follows immediately from
Proposition 1.13 in §1.4.2). By Example 1.13, the distribution of X; is x7.
Then YV = X, /(X5/n) has the F-distribution F} , and its Lebesgue p.d.f.
18

n™T[(n +1)/2]z~ /2
vnrl(n/2)(n + x)nt1)/2 l0.00) ().

Note that -
T — { VY 7 =10
_V/l_/ U < 0.

The result follows from Proposition 1.8 and the fact that

PoT ' (-0, —t])=PoT ' ([t,ex)), t=>0. ¥ (1.30)

If a random variable T" satisfies (1.30), then 7" and its c.d.f. and p.d.f.
(if it exists) are said to be symmetric about 0. If T has a Lebesgue p.d.f.
fr, then T is symmetric about 0 if and only if fy(x) = fr(—=z) for any
r > 0. T and its c.d.f. and p.d.f. are said to be symmetric about a (or
symmetric for simplicity) if and only if T" — a is symmetric about 0 for a
fixed a € R. The c.d.f.’s of t-distributions are symmetric about 0 and the
normal, Cauchy, and double exponential c.d.f.’s are symmetric.

The chi-square, t-, and F-distributions in the previous examples are
special cases of the following noncentral chi-square, t-, and F-distributions,
which are useful in some statistical problems.

Let X1, ..., X,, be independent random variables and X; = N(p;, E],
= 1,. The distribution of the random variable ¥ = (X‘E-I- +X7)/o?
is ml]ad the noncentral fhz square distribution and denoted by x2(6), where
6 = (uf + ---+ p2)/o? is the noncentrality parameter. It can be shown
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(exercise) that Y has the following Lebesgue p.d.f.:

‘ [l 5.‘?
—b/2 E 9

where fi.(z) is the Lebesgue p.d.f. of the chi-square distribution x7. It is
easy to see that the chi-square distribution x3i in Table 1.2 is a special case
of the noncentral chi-square distribution x%(8) with & = 0 and, therefore,
is called a central chi-square distribution.

The result for the t-distribution in Example 1.15 can be extended to the
case where U} has a nonzero expectation (U still has the y2 distribution
and is independent of U;). The distribution of T' = U, /+/Us/n is called
the noncentral t-distribution and denoted by £,,(¢), where 6 = pu is the
noncentrality parameter. Using the same argument as that in Example
1.15, one can show (exercise) that 7" has the following Lebesgue p.d.f..

y[n—l]fﬁﬂ—[[mv yfTL—5)2+y]fEdy_ {1_32}

1 o0
2{n+l}fff3I‘{n/2)\/ﬁ -L

The t-distribution #,, in Example 1.15 is called a central t-distribution, since
it is a special case of the noncentral t-distribution ¢,,(é) with é = 0.

Similarly, the result for the F-distribution in Example 1.15 can be ex-
tended to the case where X; has the noncentral chi-square distribution
2 (6), X3 has the central chi-square distribution Xﬁ_z, and X; and X,
are independent. The distribution of ¥ = (X /n1)/(Xs/n2) is called the
noncentral F-distribution and denoted by Fj,, .,(6), where é is the non-
centrality parameter. It can be shown (exercise) that Y has the following
Lebesgue p.d.f.:

E_ME”TIHE”;EHE i (dnyx/2)T((ny + ng)/2 + )z /21

—— .~ ().
['(n2/2) T (ny /2 + j)(nyx + ng)matna)/2+j (0,00) (%)

j =={}
(1.33)
The F-distribution F,, ,,, in Example 1.15 is called a central F-distribution,

since it is a special case of the noncentral F-distribution F),, ,,,(¢) with
6 = 0.

1.3.2 Moments and generating functions

We have defined the expectation of a random wvariable in §1.2.1. It is an
important characteristic of a random variable. In this section we introduce
other important moments and two generating functions of a random vector.

Let X be a random variable. If EX" is finite, where k is a positive
integer, then EX" is called the kth moment of X (or the distribution of
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X). If E|X|* < o¢ for some real number a, the “ is called the ath
absolute moment of X (or the distribution of X). If 4 = EX and E(X —pu)*
are finite for a positive integer k, then E(X — p)* is called the kth central
moment of X (or the distribution of X).

The expectation and the second central moment (if they exist) are two
important characteristics of a random variable (or its distribution) in statis-
tics. They are listed in Tables 1.1 and 1.2 for those useful distributions.
The expectation, also called the mean in statistics. is a measure of the cen-
tral location of the distribution of a random variable. The second central
moment, also called the variance in statistics. is a measure of dispersion
or spread of a random variable. The variance of a random wvariable X is
denoted by Var(X). The variance is always nonnegative. If the variance
of X is 0, then X is equal to its mean a.s. (Proposition 1.6). The squared
root of the variance is called the standard deviation, another important
characteristic of a random variable in statistics.

The concept of mean and variance can be extended to random wvectors.
The expectation of a random matrix M with (i, j)th element M;; is defined
to be the matrix whose (i, j)th element is E'M;;. Thus, for a random k-

vector X = (X, ..., X}), its mean is EX = (EX,, .. EXk} the extension

of variance is the variance-covariance matric of X deﬁned as
Var(X) = E(X - EX)"(X - FX),

which is a &k x k& symmetric matrix whose diagonal elements are variances
of X;’s. The (i, j)th element of Var(X), i # j, is E(X; — EX;)(X,; - EX;),
which is called the covariance of X; and X; and is denoted by Cov(X;, X;).

Let ¢ = (e1....,c;) € R¥ and X = (X1, .... X;) be a random k-vector,
Then YV = ¢X7 = ¢ X + -+ 4 ¢, X 1s a random variable, and

EFY = EX 1+ -+ e, EXy = cEXT
and
Var(Y) = E(cX™ — cEXT)?
= Ele(X — EX)"(X — EX)c™
= c[E(X — EX)"(X — EX)]e"
= cVar(X)c™,

assuming that all expectations exist. Since Var(Y') = 0 for any ¢ € R*, the
matrix Var(X) is nonnegative definite. Consequently,

[Cov(X;, X;)]* < Var(X;)Var(X;), i+# . (1.34)

An important guantity in statistics is the correlation coefficient defined to

be py x, = Cov (Xi. X;)/\/ Var(X;) Var(X;), which is, by inequality (1.34),
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always between —1 and 1. It is a measure of relationship between X; and
Xjoif Px, x, is positive (or negative), then X; and X; tend to be positively
(or negatively) related; if Px,x; = +1, then P(X; = ¢; £ 2X;) = 1 with
some constants ¢1 and co > 0; if Px,x, =0 (i.e., Cov(X;, X;) = 0), then
X; and X, are said to be uncorrelated. One can show that if X; and X are

independent, then they are uncorrelated. But the converse is not necessarily
true. Examples can be found in Exercises 48-49.

The following result indicates that if the rank of Var(X) is r < &, then

X is in a subspace of R* with dimension r. For any k x k symmetric matrix
M, define Ryr = {y € RE :y = xM with some z € R;“}.

Proposition 1.9. Let X be a random k-vector with a finite Var(X). Then
we have the following conclusions.

(i) P(X — EX € Ry, (x)) = L

(ii) If Py < Lebesgue measure on R*, then the rank of Var(X) is k. &

Example 1.16. Let X be a random k-vector having the Ny (e, ) distri-
bution. It can be shown (exercise) that EX = p and Var(X) = X. Thus, u
and ¥ in (1.25) are the mean vector and the variance-covariance matrix of
X. If ¥ is a diagonal matrix (i.e., all components of X are uncorrelated),
then by (1.27), the components of X are independent. This shows an im-
portant property of random variables having normal distributions: they are
independent if and only if they are uncorrelated. &

Moments are important characteristics of a distribution, but they do
not determine a distribution in the sense that two different distributions
may have the same moments of all orders. Functions that determine a
distribution are introduced in the following definition.

Definition 1.5. Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X (or Px) is defined as

Ux(t) = Eet™, teRF
(ii) The characteristic function (ch.f.) of X (or Px) is defined as

ox(t) = EeV="X" = Eleos(tX™)] + V-1 E[sin(tX")], teR*

The ch.f. is complex-valued and always well defined. The m.g.f. is non-
negative but may be oo everywhere except at t = (0. If the m.g.f. is finite
at some t # 0, then ¢x(f) can be obtained by replacing t in 'x(f) by
v'—1t. Tables 1.1 and 1.2 contain the m.g.f. (or ch.f. when the m.g.f. is 0o
everywhere except at () for distributions useful in statistics. Some useful
properties of the m.g.f. and ch.f. are given in the following result.
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Proposition 1.10. Let X be a random k-vector with m.g.f. 'y (t) and

ch.f. ¢x(t).
(i) (Relation to moments). If EX is finite, then
ooxt)|  _ /TiEx.
dt t=()
If Var(X) is finite, then
0%ox (1) .
oot |, ~E(XTX).

If £ =1 and FX? is finite for a positive integer p, then

dPox (1)

o = (-1)P/2EXP,

If )x(t) < oc for t € N. = {t € R¥ : ##7 < ¢}, then the components of X
have finite moments of all orders,

Wx(t)]  _ oy
at t=0 |
Pihx (t)
— = FE(XTX),

and, when £ = 1 and p is a positive integer,

" (t)
dtP

— EX?.

(ii) (Uniqueness). If Y is a random k-vector and ¢x(t) = ¢y(f) for all
t € RE. then Py = Py. If there is an ¢ > 0 such that Yx(t) = Py (t) < oo
for allt € N, = {t € R¥ : t#7 < ¢}, then Py = Py.

(iii) (Sums of independent random vectors). Let Y be a random k-vector
independent of X. Then

Uxiy(t) = Px(Bvy(t), teRF,

and the same result holds when v is replaced by ¢.
(iv) (Linear transformations). Let ¥ = XC7 + ¢, where C' is an m x k
matrix and ¢ € R™. Then

.E!._"}}fl[’u.:] mm Euf"T'E_.!I?J\'{'HG), = Rﬂlﬁ

and
oy (u) = e V=Tue dx(uC), uweR™. 1
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Proposition 1.10(ii)-(iii) provides a useful tool to obtain distributions of
sums of independent random vectors. The following example is an illustra-
tiom.

Example 1.17. Let X;. i = 1,....k, be independent random variables and
X; have the gamma dlStI‘]l]lltlDll I‘{:ﬂ11 v) (Table 1.2), ¢« = 1,...,k. From
Table 1.2, X; has the m.g.f. ¢y, (1) = (1 —~1) ™, t <~ ', i=1,....k. By
Proposition 1.10(iii}, the m.g.f. of ¥ = X; + -+ 4+ X}, is Equa,l to my{i) =
(1 — ~t)~lortFer) ¢ <« 4~1 From Table 1.2, the gamma distribution
(e + -+ - + ap, ) has the m.g.f. ¢y () and, hence, is the distribution of
Y (by Proposition 1.10(ii)). 8

Using Proposition 1.10 and a result from linear algebra, we can prove

the following result useful in analysis of variance (Schefté, 1959:; Searle,
1971).

Theorem 1.5. (i) Suppose that Y7, ....,Y}; are independent random vari-
ables and that Y; has the noncentral chi-square distribution xﬁ_i{ﬁi), i =
I,....k. Then Y =Y, +---+ Y} has the noncentral chi-square distribution
Xoyy4ootme (61 F - -+ O).

(ii) (Cochran’s theorem). Suppose that X = N, (p, I,,) and

XX7 = XA X7 4 XALXT, (1.35)

where A; is a nonnegative definite n x n matrix with rank n;, 1 = 1, ..., k.
Then a necessary and sufficient condition that X A4; X" has the 11011r911tr511
chi-square distribution X,J.h_(éi:l, = 1,...,k, and X A; X7 ’s are independent
is = ny +---+ng, in which case &; = pA,u™ and & + - + &, = pup”.
Proof. (i) The ch.f. of Y is (1 — 2y/=1t)"i/2¢V=18:6/(1=2=18) (Fxercise
53). Then, the result follows from Proposition 1.10(ii)-(iii).

(ii) The necessity follows from (} and the fact that X X7 has the non-
central chi-square distribution y2(pp™) (by definition). We now prove the
sufficiency.

Assume that n = ny + --- + nj. We use the following fact from linear
algebra: there exists an n x n matrix C' such that ¥ = X and

Ty -y Ty
XA;XT = > Y?Z, (1.36)

J?
j=ni1+--+n;_1+1

where Y; is the jth component of Y. From (1.35) and (1.36), XX =YY,
e, CC™ = [,. Thus, Y = N, (uC, I,,) (Exercise 51); the independence of
X A; X7 follows from (1.36); and the fact that X A; X" has the noncentral
chi-square distribution follows directly from the definition of the noncentral
chi-square distribution and (1.36). 1
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1.4 Conditional Expectations

In elementary probability the conditional probability of an event B given
an event A is defined as P(B|A) = P(AN B)/P(A), provided that P(A) >
0. In probability and statistics, however. we sometimes need a notion of
“conditional probability” even for A’s with P(A) = 0; for example, A =
Y = ¢}, where Y is a random variable and ¢ € R. General definitions
of conditional probability, expectation. and distribution are introduced in
this section, and they are shown to agree with those defined in elementary
probability in special cases.

1.4.1 Conditional expectations

Definition 1.6. Let X be an integrable random variable on ({2, F. P).
(i) Let A be a sub-o-field of F. The conditional expectation of X given
A, denoted by E(X|A), is the a.s.-unique random variable satisfying the
following two conditions:

(a) E(X|A) is measurable from (2, A) to (R, B);

(b) [, E(X|A)dP = [, XdP for any A € A.
(ii) Let B € F. The conditional probability of B given A is defined to be
P(B|A) = E(Ig|A).
(iii) Let Y be measurable from (2, F, P) to (A, G). The conditional expec-
tation of X given Y is defined to be E(X|Y) = E[X|a(Y)]. &

Essentially, the o-field ¢(Y') contains “the information in Y. Hence,
E(XY) is the “expectation” of X given the information provided by a(Y').
The following useful result shows that there is a Borel function i defined

on the range of ¥ such that E(X|Y)=hoY.

Theorem 1.6. Let Y be measurable from ({2, F) to (A, G) and Z a function
from (€., F) to R¥. Then Z is measurable from (Q,o(Y)) to (R*, B¥) if
and only if there is a measurable function h from (A, G) to (R*, B¥) such
that Z =holY. I

The function h in E(X|Y) = hoY is a Borel function on (A,G). Let
y € A. Then we define

E(X|Y =) = h(y)

to be the conditional expectation of X given Y = y. Note that h(y) is a
function on A. whereas h o Y is a function on (2.

Example 1.18. Let X be an integrable random variable on (£, F, P),
Ay, As, ... be disjoint events on (£2, F, P) such that UA; = Q and P(A;) > 0
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for all 4, and let a;.as, ... be distinct real numbers. Define ¥V = a;74, +
asla, +---. We now show that

>~ [, XdP )
E(X[Y)=Y" -:‘[;{4_) 4. (1.37)

We need to verify (a) and (b) in Definition 1.6 with 4 = o(Y). Since
a(Y) =o({A;, A, ...}), it is clear that the function on the right-hand side
of (1.37) is measurable on (Q,0(Y)). Forany B € B, Y 1(B) = Uj.u,epA;.
Using properties of integrals, we obtain that

NdP = f XdP
*L_l'{ﬂ] Z A

i e B
> [, XdP .
- Z p{ﬂ) P(A:ﬂy {B])
=1
>~ [, XdP
= — I, | dP.
‘/y-l.;m Z; P(4;)
This verifies (b) and thus (1.37) holds.
Let Ae Fand X = [4. Then
= P(AnN A
PAlY)=E(X[]Y)=)_ ( )1_41..

P(A;)

=1
Note that {YV = a;} = {w e Q:Y(w) =a;} = A;. fwe A,

PUY)(w) = T 05 = P(AI4) = PALY = o).

Hence the definition of conditional probability in Definition 1.6 agrees with
that in elementary probability. More generally, let X be a discrete random
variable whose range is {¢;,¢s, ...}, where ¢;’s are distinct real numbers.

Let C; = X Y({¢;}), i =1,2..... Then, by (1.37),

E(X|Y) =) > ¢;P(Cjl4;)14,.

=1 j=1
If we A;, then
E(X|Y)@) = . ¢ P(CilA) = 3 ;PG Y = ai)).
=1 =1

which agrees with E(X|Y = a;) defined in elementary probability.
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Let h be a Borel function on R satisfying h(a;) = fq XdP/P(A;).
Then, by (1.37), E(X|Y)=hoY and E(X|Y =y) = h(y). 1

The next result generalizes the result in Example 1.18 to conditional
expectations of random variables having p.d.f's.

Proposition 1.11. Let X be arandom n-vector and Y a random m-vector.
Suppose that (X,Y') has a joint p.d.f. f(z,y) wrt. v x A, where v and A
are g-finite measures on (R™,B™) and (R™, B™), respectively. Let g(z,y)
be a Borel function on R"*™ for which E|g(X,Y )| < oc. Then

gz, Y) f(z,Y)dv(x)
[ f(z,Y)dv(x)

Proof. Denote the right-hand side of (1.38) by h(Y). ]3]_.: Fubini’s theorem,

h is Borel. Then, by Theorem 1.6, h(Y) is Borel on (2, a(Y)). Also, by

Fubini’s theorem, fy(y) = [ f(z,y)dv(z) is the p. df :::f Y wuor.t. A, For
B E BTH.

Elg(X,Y)|Y] = a.s. (1.38)

*/}’—l{ﬂjh(}f}dp / .,T.“[ )d_{‘l}/
[ gz, ).
/ ff z,y) n!u (z) fy (y)dA(y)

= / gz, y) f (2, y)dv x A
Rrwx B

= f g(X,Y)dP x y)
Rnrwx B

[ 4(X.Y)dP,
Jy-1(B)

where the first and the last equalities follow from Theorem 1.2; the second
and the next to last equalities follow from the definition of A and p.d.f.’s;
and the third equality follows from Theorem 1.3 (Fubini’s theorem). 1§

|

For a random vector (X,Y') with a joint p.d.f. f(z,y) w.r.t. ¥ x A, define
the conditional p.d.f. of X given ¥ = y to be

flz.y)
fr(y)
where fy(y) = [ f(z,y)dv(z) is the marginal p.d.f. of ¥ w.r.t. . One can
easily check that for each fixed y with fy(y) > 0, fx|y(x[y) in (1.39) is a
p.d.f. w.r.t. v. Then equation (1.38) can be rewritten as

fxpy(zly) = (1.39)

Elg(X,Y)[Y] = [ o(2.Y) fxpy (Y )dv(z).
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Again, this agrees with the conditional expectation defined in elementary
probability (i.e., the conditional expectation of g(X,Y) given Y is equal to
the expectation of g(X,Y) w.r.t. the conditional p.d.f. of X given Y).

Now we list some useful properties of conditional expectations. The
proof is left to the reader.

Proposition 1.12. Let X and Y be integrable random wvariables on
(2, F, P) and A be a sub-o-field of F.

(i) If X =cas., ce R, then E(X|A) = ¢ as.

(ii) f X <Y as., then E(X|A) < E(Y|A) as.

(iii) If @ and b are real numbers, then E(aX +bY|A) = aE(X|A)+bE(Y|A)
a.S.

(iv) E[E(X|A)] = EX.

(v) E[E(X|A)|Ay] = E(X|Ay) = E[E(X|Ay)|A] a.s., where A is a sub-o-
field of A.

(vi) If o(Y') C A and E|XY| < 0o, then E(XY|A) = YE(X|A) as.

(vii) If Elg(X,Y)| < oc, then E[g(X.Y)|Y =y| = Elg(X,y)|Y = y] as.
(viii) If EX? < oc, then [E(X|Y)]? < E(X?]Y) as. 1

As an application, we consider the following example.

Example 1.19. Let X be a random variable on (€2, F, P) with EX* <
and Y a measurable function from (2, F, P) to (A,G). One may wish to
predict the value of X based on an observed value of Y. Let g(Y) be a
predictor, i.e., g € N = {all Borel functions g with E[g(Y)]* < ~c}. Each
predictor is assessed by the “mean squared prediction error” E[X — g(Y)]*.
We now show that E(X|Y') is the best predictor of X in the sense that

E[X - E(X|Y)]? = min F[X — g(Y)]?. (1.40)

geEN

First, it follows from Proposition 1.12(viii) that E(X|Y) € N. Next, for
any g € N,
E[X — g(Y)]? = E[X — B(X|Y) + E(X[Y) - g(Y)]?
= E[X - E(X|Y)]" + E[E(X]Y) - g(Y)]*
+2EX — BE(X|Y)][E(X]Y) — g(Y)]
= E[X — E(X|Y)]* + E[E(X]|Y) — g(Y)]?
+2E{E{[X - E(X|Y)][E(X|Y) - g(Y)]|Y}}
= E[X — E(X|Y)]* + E[E(X]|Y) — g(Y)]?
F2E{[E(X]Y) - g(Y)]EIX — E(X|Y)|Y]}
~ BX - E(X|Y)? + BE(X]Y) — g(¥))
> E[X — E(X|Y))%,
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where the third equality follows from Proposition 1.12(iv); the fourth equal-
ity follows from Proposition 1.12(vi); and the last equality follows from
Proposition 1.2(iii) and (vi). 8

1.4.2 Independence

Definition 1.7. Let (2, F, P) be a probability space.
(i) Events A;, i = 1,...,n, are said to be independent if and only if for any
subset {iy,ia,...,41} of {1,...,n},

P(A;, N Ay, NN A; ) = P(A:;, )P(AL) - P(As).

Events in an infinite (countable or uncountable) collection C are said to
be independent if and only if events in each finite subcollection of C are
independent.

(ii) Collections C; C F, i € 7 (an index set that can be uncountable), are
said to be independent if and only if events in anyv collection of the form
{A; € C; :i € I} are independent.

(iii) Random vectors X;, i € Z, are said to be independent if and only if
o(X;), 1 € I, are independent. 1

It is easy to see from Definition 1.7 that if X and Y are independent
random vectors, then so are g(X) and h(Y), where g and h are Borel
functions.

The following result is useful for checking the independence of several

a-fields.

Proposition 1.13. Let ;. i € Z, be independent collections of events.
Suppose that each C; has the property that if 4 € C; and B € C;. then
AN B e ;. Then o(C;), i € Z, are independent. 1

An immediate application of Proposition 1.13 is to show (exercise) that
random variables X;, i = 1, ..., n, are independent if and only if (1.26) holds.

Hence. Definition 1.7 agrees with the concept of independence discussed in
61.3.1.

Independent random variables can be obtained using product measures
introduced in §1.1.2. Let P; be a probability measure on (R, B),i =1, ..., k.
Then any random vector whose law is the product measure P} x --- x Py
on the space (R*,B*) has independent components. If F; is the c.d.f. of
P;, then the joint c.d.f. of Py x - x Py is F(xq,...,2) = Fi(x1) - - Fr(xk).
Consequently, by Fubini's theorem, we obtain that if X, ..., X, are inde-
pendent random variables and E|X; - -+ X,| < oo, then

E(X, - X,)=EX, - EX,,. (1.41)
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When n = 2, this implies that if X,...., X,, are independent, then X, and
X; are uncorrelated, i # j.

For two events A and B with P(A) > 0, A and B are independent if
and only if P(B|A) = P(B). This means that A provides no information
about B. The following result is a useful extension.

Proposition 1.14. Let X, ¥7, and Y5 be random variables with E|X| < oc.
Suppose that (X,Y7) and Y5, are independent. Then

E[X|(Y1.Y»)] = E(X|V1) as.

Proof. First, F(X|Y7) is Borel on (£, a(Y1, Y3)), since a(Y7) C o(Y7, Y3).

Next, we need to show that for any Borel set B C R,

/ XNdP = / E{X|Y1}dp. {1.42)
(¥1.Y5 )~ EB) (¥1.Y5) Y EB)

If B = By x By, where B;’s are Borel sets in R, then (Y1,Y3) 1 (B) =
Y, ' (By)NY, '(Bs) and

/ E(X|Y))dP = /Iy_l{ﬂl}frj_l{BEJE{X|Y1)dP
JY U (BNY,; Y (B2) ! -

_ fIFL_I{EI}E{X|Yl)dP /f},z_liﬂﬂdp
_ ff},l_l{ﬂl}xffpffyz_l{ﬂj}dp

N ./ Iyl_l[ﬂllfyz_I{BEdeP

—

/ XdP,
Y, H(B1)NY, '(Ba)

where the second and the next to last equalities follow from result (1.41)
and the independence of (X, Y]) and Ys: and the third equality follows from
the fact that E{X|Y7) is the conditional expectation of X given Y;. This
shows that (1.42) holds for B = B; x Bs. Let H be the collection of subsets
of R? for which (1.42) holds. Then we can show that H is a o-field. Since
we have shown that B x B € 'H, B® = (B x B) € H and thus the result
follows. 1

Let Xy, ..., X be random variables. If X; and X; are independent for
every pair ¢ # 7, then X,...., X are said to be pairwise independent. If
X1..... Xy are independent. then clearly they are pairwise independent.
However, the converse is not true. The following is an example.
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Example 1.20. Let X; and X5 be independent random variables each as-
suming the values 1 and —1 with probability 0.5, and X3 = X X5, Let A; =
{X; =1},i=1,23. Then P(4;) = 0.5 for any i and P(A;)P(A;)P(As) =
0.125. However, P(A; N As N Az) = P(A; N As) = P(A))P(As) = 0.25,
Hence X, X9, X4 are not independent. We now show that X,.Xs, X3 are
pairwise independent. It is enough to show that X, and X, are indepen-
dent. Let B; = {X; = —1}, i = 1,2,3. Note that A; N Ay = A; N As,
‘*’11 M B;; = 311 R Bg._. Bl R f'l;; = B]_ I B;g, and B]_ I B;; = Bl M z"lg Then
the result follows from the fact that P(A;) = P(B;) = 0.5 for any i and X;
and Xs are independent. 1

1.4.3 Conditional distributions

The conditional p.d.f. was introduced in §1.4.1 for random variables having
p.d.f.’s w.r.t. some measures. We now consider conditional distributions in
ceneral cases where we may not have any p.d.f.

Theorem 1.7 (Existence of conditional distributions). Let X be a ran-
dom n-vector on a probability space (£), F, P) and Y be measurable from
(2, F, P) to (A,G). Then there exists Pyy(Aly) such that
(a) Pxy(Aly) = PIX 1 A)|Y = y] a.s. Py for any fixed A € B", and
(b) Px|y(-|y) is a probability measure on (R", B") for any fixed y € A.
Furthermore, if E|g(X.Y)| < oc, then

Elg( X, Y)Y =y =[P glx.y)dPxy(zly) as. Py. B

For a fixed y, Pxy-, = Pxy(:|y) is called the conditional distribution
of X given ¥ = y. Under the conditions in Theorem 1.7, if ¥ is a random
m-vector and (X, Y) has a p.d.f. wr.t. v x A (v and A are o-finite measures
on (R™,B™) and (R™, B™), respectively), then fyy(z|y) defined in (1.39)

is the p.d.f. of Py|y_, w.r.t. v for any fixed y.

Given a collection of conditional distributions {Px|y—, : y € A} and a
distribution Py on A, we can construct a joint distribution, as the following
result states.

Proposition 1.15. Let B™ be the Borel o-field on R™ and (A, G, P3) be
a probability space. Suppose that P; is a function from B"™ % A to ‘R and
satisfies
(a) Pi(-,y) is a probability measure on (R", B") for any y € A, and
(b) P1(B,-) is Borel for any B € B".
Then there is a unique probability measure P on (R" x A, a(B" x G)) such
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that, for B e B and ' € G,

P(B x C) =f Py(B.y)dPy(y). (1.43)
C

Furthermore, if (A, G) = (R™,B™), X(z,y) = =, and Y (x,y) = y define

the coordinate random vectors, then Py = P, Pyxjy_, = Pi(-,y), and the

probability measure in (1.43) is the joint distribution of (X,Y’), which has
the following joint c.d.f.:

Flx,y) = [ Pxy=.((—oc, :;r:]]ﬂ!Py{z), reR" , yeR™, (1.44)
J(—ooy
where (—oc, a] denotes (—oc, aq] x -+ - x (—oc,ai] for a = (ay,...,ar). W

Proposition 1.15 is sometimes called the “two-stage experiment theo-
rem” for the following reason. If ¥ € R™ is selected in stage 1 of an
experiment according to its marginal distribution Py = P5, and X is cho-
sen afterward according to its conditional distribution Pyxy—, = Pi(-.y).
then the combined two-stage experiment produces a jointly distributed pair
(X.Y') with distribution Py y given by (1.43). The following is an exam-
ple.

Example 1.21. A market survey is conducted to study whether a new
product is preferred over the product currently available in the market (old
product). The survey is conducted by mail. Questionnaires are sent along
with the sample products (both new and old) to N customers randomly
selected from a population. where N is a positive integer. Each customer is
asked to fill out the questionnaire and return it. Responses from customers
are either 1 (new is better than old) or 0 (otherwise). Some customers,
however, do not return the questionnaires. Let X be the number of ones in
the returned questionnaires. What is the distribution of X7

If every customer returns the questionnaire, then (from elementary
probability) X has the binomial distribution Bi(p, N) in Table 1.1 (as-
suming that the population is large enough so that customers respond in-
dependently), where p € (0,1) is the overall rate of customers who prefer
the new product. Now, let ¥ be the number of customers who respond.
Then Y is random. Suppose that customers respond independently with
the same probability m € (0,1). Then Py is the binomial distribution
Bi(rw,N). Given Y = y (an integer between 0 and N), Pyy., is the bi-
nomial distribution Bi(p,y) if ¥y = 1 and the point mass at 0 if y = 0.
Using (1.44) and the fact that binomial distributions have p.d.f.’s (Table
1.1) w.r.t counting measure, we obtain that the joint c.d.f. of (X,Y) is
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- T{T (PYra o= (7)) a-m,

for v = 0,1,...,y, y = 0,1,..., N. The marginal c.d.f. Fx(z) = F(x,00) =
F(x, N). The p.d.f. of X w.r.t. counting measure is

N L N
fx(@) =) (j;)-pz(l - pﬁf—fﬂ( k)r’“’{l _ )Nk

k=x

N k—z N-k
N N—a N —z\(m—7p 1—m
( )(w‘n) (1 =) ;:(k‘-ﬂ-*)(1~ﬂp) (1-@)
N T N—x
= (V) = s

for x = 0,1,..., N. It turns out that the marginal distribution of X is the
binomial distribution Bi(mp, N).

1.5 Asymptotic Theorems

Asymptotic theory studies limiting behavior of random variables (vectors)
and their distributions. It is an important tool for statistical analysis. A
more complete coverage of asymptotic theory in statistical analysis can be
found in Serfling (1980) and Sen and Singer (1993).

1.5.1 Convergence modes and stochastic orders

There are several convergence modes for random variables/vectors. For
any k-vector ¢ € R*, ||c|| denotes the usual distance between 0 and ¢, i.e..

lell? = cc.

Definition 1.8. Let X. X, X5.... be random k-vectors defined on a prob-
ability space.

(i) We say that the sequence { X,,} converges to X almost surely (a.s.) and
write X,, —, . X if and only if

p ( lim || X, — X|| = u) ~ 1

(ii) We say that {X, } converges to X in probability and write X,, —, X
if and only if, for every fixed € = 0,

lim P(||X, - X]| =€) =0.

T —+
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(iii) We say that { X, } converges to X in L, (or in pth-moment) and write

X, —p, X it and only if

lim E|| X, — X||” =0,

—C

where p > () is a fixed constant.

(iv) Let Fx, be the c.df. of X;,, n = 1,2,..., and Fx be the c.d.f. of X.
We say that {X,,} converges to X in distribution (or in law) and write
X, —4 X if and only if, for each continuity point x of F'x,

lim Fx,(z) = Fx(x).

L — 25D

The a.s. convergence in Definition 1.8(i) is almost the same as the point-
wise convergence of functions in calculus. The concept of convergence in
probability, convergence in L,, or a.s. convergence represents a sense in
which, for n sufficiently large, X,, and X approximate each other as func-
tions on the original probability space. The concept of convergence in
distribution in Definition 1.8(iv), however, depends only on the distribu-
tions F'x, and F'y and does not necessitate that X,, and X are close in any
sense; in fact, Definition 1.8(iv) still makes sense even if X and X,,’s are
not defined on the same probability space. In Definition 1.8(iv), it is not
required that lim,, .. Fx (z) = Fx(x) for every x. However, if Fy(x) is a
continuous function, then we have the following stronger result.

Proposition 1.16 (Pélya’s theorem). If X,, —; X and Fx is continuous,
then
lim sup |Fy (x)— Fx(x)|=0. 1

—2C p

The following result describes the relationship among four convergence
modes.

Theorem 1.8. Let X, X;.X5,... be random k-vectors.

(i) If X,, —,¢ X, then X, —, X.

(ii) If X,, —, X for ap >0, then X, —, X.

(iii) If X,, —, X, then X, —; X.

(iv) If X,, —4 X, then there are random vectors Y, Y], Y5, ... defined on
a probability space such that Py Py, Py, = Px_,n = 12.. and
Y;'L .. Y.

(v) If, for every e > (0,

I

o

> P(|Xn — X =€) < o,
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then X,, —, . X.
(vi) If X, —, X, then there is a subsequence {X,,.k = 1.2, ...} such that
X, —as. X as kb — o0,

(vii) Suppose that X,, —4 X. Then, for any r > 0,

lim F

TE—+ X2

X, = E|X|I" <

if and only if {||X,,||"} is uniformly integrable in the sense that

Jlim sup £ NXu | T mey (| X0 D] = 0. 0 (1.45)

The converse of Theorem 1.8(i), (ii), or (iii) is generally not true (see
Example 1.22 and Exercise 75). Note that part (iv) of Theorem 1.8 is not
a converse of part (i), but it is an important result in probability theory.
Part (v) of Theorem 1.8 indicates that the converse of part (i) is true under
the additional condition that P(||X,, — X|| > €) tends to 0 fast enough. A
consequence of Theorem 1.8(vii) is that if X,, —, X and {||X,, — X||?} is
uniformly integrable, then X;, —; X i.e., the converse of Theorem 1.8(ii)
is true under the additional condition of uniform integrability. A useful
sufficient condition for uniform integrability of {||X,,||"} is that

X, |7 < (1.46)

sup £
T

for a & = ().

Example 1.22. Let #,, = 1 4+ n~! and X,, be a random variable having
the exponential distribution E(0,0,) (Table 1.2), n = 1,2,.... Let X be
a random variable having the exponential distribution E(0,1). For any
r = (),

Fx (z)=1—e %% 41— ¢ " = Fx(z)

as n — oo, Since Fx, (z) = 0 = Fx(z) for x < 0, we have shown that

X, —g X.

Is it true that X, —, X7 This question cannot be answered without any
further information about the random wvariables X and X,,. We consider
two cases in which different answers can be obtained. First, suppose that
X, = 0,X (then X,, has the given c.d.f.). Note that X,, - X = (0, - 1)X =
n~'X, which has the c.d.f. (1 — e " Mg c)(x). Hence

P(I Xy —X|>€) =e™™ —0

for any € > 0. In fact, by Theorem 1.8(iv), X,, —, . X; since E|X,,— X |V =
n PEXP < oo for any p > 0, X;; —, X for any p > 0. Next. suppose



1.5. Asymptotic Theorems 11

that X,, and X are independent random variables. Using result (1.28)
and the fact that the p.d.f.’s for X,, and —X are @ te=*/% I ~)(x) and
e”I(_ 0y(x), respectively, we obtain that

PHXH - X' E F‘] - / [H*;IE_EI{H“'Ey_mfli{}.cx:-}{I)‘r[—:ﬂ:.m}(y)dj:dy:

which converges to (by the dominated convergence theorem)

f [E_'Tezy_:‘"fm_.m:,(:J.T)I[_x__mj(y}dﬂ:dy =1—e"".

Thus, P (|X,, — X| =€) — e™° = 0 for any € > 0 and, therefore, {X,,} does
not converge to X in probability. 1§

The following result gives some useful sufficient and necessary conditions
for convergence in distribution.

Theorem 1.9. Let X, X;.X5,... be random k-vectors.

(i) X, —a X if and only if lim,, .., E[h(X, )] = E[h(X)] for every bounded
continuous function b from RF to R.

(ii) (Lévy-Cramér continuity theorem). Let ¢x,¢x,, ¢x,, ... be the ch.f.’s of
X, X1, X, ..., respectively. X,, —4 X ifand only iflim,, ... ¢x () = dx (1)
for all t € R*.

(iii) (Cramér-Wold device). X, —4 X if and only if X, ¢7 —,3 X7 for
every c€ R¥. 1

Examples of applications of Theorem 1.9 are given as exercises in §1.6.

The following result can be used to check whether X,, —; X when X has
a p.d.f. f and X,, has a p.d.f. f,.

Proposition 1.17 (Scheffé’s theorem). Let {f,} be a sequence of p.d.f.’s
on RF w.r.t. a measure v. Suppose that lim,, .. fn(.’r) = f{;r] a.e. ¥ and
f(z)is a p.d.f. wort. v. Then lim, .o [ |fu(z) — f(z)|dv = 0.

Proof. Let g,,(z) = [f(x) — fu(®)]l{5>¢,3(x), n = 1,2,.... Then

/|fn[3:} — flx)|dv =2 [gn{::r:]dy.

Since 0 < g,(z) < f(z) for all z and g,, — 0 a.e. v, the result follows from
the dominated convergence theorem. 1

As an example, consider the Lebesgue p.d.f. f,, of the t-distribution %,
(Table 1.2), n = 1,2,.... One can show (exercise) that f,, — f, where f is
the standard normal p.d.f. This is an important result in statistics.
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We now introduce the notion of O(-), o), and stochastic O(-) and
o( ). In calculus, two sequences of real numbers, {a,} and {b,}, satisfy
a, = O(b,) if and only if |a,| < ¢|b,| for all n and a constant c¢; and
a, = o(b,) if and only if a,, /b, — 0 as n — oc.

Definition 1.9. Let X, X5.... and Y7.Y5. ... be random variables defined
on a probability space (2, F, P).

(i) X,, = O(Y,,) as. if and only if X,,(w) = O(Y,(w)) a.s. P.

(ii) X,, = o(Y,,) as. if and only if X,,/Y,, —,.. 0.

(iii) X,, = O,(Y,,) if and only if, for any € > 0. there is a constant C, > 0
such that

sup P(|X,| > CelYal) < e
(iv) X,, = 0,(Y},) if and only if X,,/Y,, —, 0. &

Note that X,, = 0,(Y,,) implies X,, = O,(Y,,); X,, = O,(Y,,) and Y,, =
O,(Z,) implies X,, = O,(Z,): but X,, = O,(Y,,) does not imply Y, =
O,(X,,). The same conclusion can be obtained if O,(-) and o,(-) are
replaced by O(-) a.s. and of - ) a.s., respectively. Some results related to
(), are given in Exercise 88. For example, if X, —4 X for a random variable
X, then X, = O,(1). Since a,, = O(1) means that {a,,} is bounded, {X,}
is said to be bounded in probability if X,, = O,(1).

1.5.2 Convergence of transformations

Transformation is an important tool in statistics. For random wvectors X,
converging to X in some sense, we often want to know whether ¢(X,,)
converges to ¢(X) in the same sense. The following result provides an
answer to most problems.

Theorem 1.10. Let X, X, X5.... be random k-vectors defined on a prob-
ability space and g be a measurable function from (R*.B*) to (R!, B').
Suppose that g is continuous a.s. Py. Then

(1) X, —a.s X implies g( X)) —..5 g(X).

(ii) X,, —, X implies g(X,,) —, g(X).

(iii) X, —g X implies g(X,,) —4 g(X). 0

Example 1.23. (i) Let X, X5, ... be random variables. If X, —; X,
where X has the N(0,1) distribution, then Xﬁ_ —+4 Y . where Y has the
chi-square distribution y{ (Example 1.13).

(ii) Let (X,,,Y,) be random 2-vectors satisfying (X,,,Y,,) —4 (X, Y), where
X and Y are independent random variables having the N(0, 1) distribution,
then X,,/Y,, —4 X/Y, which has the Cauchy distribution C(0,1) (§1.3.1).
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(iii) Under the conditions in part (ii), max(X,,,Y,) —4 max(X,Y'), which
has the c.d.f. [®(xz)]? (®(x) is the c.d.f. of N(0,1)). &

In Example 1.23(ii) and (iii), the condition that (X,.Y,) —4 (X,Y)
cannot be relaxed to X,, —4 X and Y,, —; Y (exercise); i.e., we need the
convergence of the joint c.d.f. of (X,,,Y,,). This is different when —; is re-
placed by —, or —, ;.. The following result, which plays an important role
in probability and statistics, establishes the convergence in distribution of
X, +Y, or X,,Y,, when no information regarding the joint c¢.d.f. of (X,,,Y},)
is provided.

Theorem 1.11 (Slutsky’s theorem). Let X, Xy, X5, ..., Y1, Y5, ... be ran-
dom variables on a probability space. Suppose that X, —4 X and Y,, —, ¢,
where ¢ is a fixed real number. Then

{1} Xn+Y,—a X+ c,

{11) YoXh —4d [2_;'&:;

(iii) X, /Yy —aq X/cif ¢ #£ 0.

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.
Let t € R and € > 0 be fixed constants. Then

Fx, oy, (t) = P(Xp + Yo < 1)
< P{X, +Y, <t}n{lY, —c| <e})+ P(|Y,, — ¢| =€)
< PX,<t—c+e)+P(|Y, —c|=¢)

and, similarly.
Fy v (t)Z2P(X,<t—c—¢€)— P(|Y, —¢| = €).

Ift—e,t—c+e andt — ¢ — € are continuity points of Iy, then it follows
from the previous two inequalities and the hvpotheses of the theorem that

Fy(t —c—e¢) <liminf Fx .y, (f) < limsup Fix v, (t) < Fx(t —c+e).

Since € can be arbitrary (why?),

lim F;{"_|_}='nl[ﬂ} == FX'[:J'& - {‘}

TL— 20

The result follows from F'x..(t) = Fx(t —¢). 1

An application of Theorem 1.11 is given in the proof of the following
important result.

Theorem 1.12. Let X, X5.... and Y be random k-vectors satisfying

an( Xy —¢) —a Y, (1.47)
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where ¢ € R* and {a,} is a sequence of positive numbers with lim,, . a,, =
co. Let g be a function from R* to R.
(i) If g is differentiable at ¢, then

anlg(Xn) — gle)] —a Vg(c)YT, (1.48)

where Vg(x) denotes the k-vector of partial derivatives of g at x.

(ii) Suppose that g has continuous partial derivatives of order m > 1 in a
neighborhood of ¢, with all the partial derivatives of order j, 1 < 7 < m—1,
vanishing at ¢, but with the mth-order partial derivatives not all vanishing
at ¢. Then

k ﬁﬂlg
Z l[F:-Lr'i'l T li.Eg:i'-'r:'!:'r.rl.

T =1

l/ﬂ Co lfims {149}

L=

k
m ] 1
ay [Q{x“) - Q(E)] —* m—' Zl -
1=

where Y} is the jth component of V.
Proof. We prove (i) only. The proof of (ii) is similar. Let

Zn = anlg(Xn) — gle)] —a,Vgle)( X, — )7,

I[f we can show that Z,, = o0,(1). then by (1.47), Theorem 1.9(iii), and
Theorem 1.11(i), result (1.48) holds.

The differentiability of g at ¢ implies that for any € > 0, thereisa é. > 0
such that

g(z) — g(e) = Vgle)(z — )| < ez — ¢ (1.50)
whenever ||z — ¢|| < é.. Let 5 = 0 be fixed. By (1.50),

P{|ZT!-| :’_} T}':] E P(ﬂXﬂ - ":” :’_} 61—':] + P{ﬂﬂ”}:n - lH:” :_} T?/F]'

Since a,, — oo, (1.47) and Theorem 1.11(ii) imply X, —, ¢. By Theorem
1.10(iii), (1.47) implies a,, || X, — ¢|| —4 [|Y]|. Without loss of generality, we
can assume that 1/e is a continuity point of Fjy). Then

limsup P(|Z,| = n) < lim P({||X, —¢|| = &)

TL

+ lim P(a,|| X, —¢| = n/e)

TL— 0

= P(|[Y]| = n/e).
The proof is complete since € can be arbitrary. 1

In statistics, we often need a nondegenerated limiting distribution of
an[g(X,) — g(c)] so that probabilities involving a,[¢(X,,) — g(e)] can be
approximated by the c.d.f. of Vg(c)Y' ™, if (1.48) holds. Hence, result (1.48)
is not useful for this purpose if Vg(c¢) = 0, and in such cases result (1.49)
may be applied.
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A useful method in statistics, called the delta-method, is based on the
following corollary of Theorem 1.12. Recall that N (p, 02) denotes a random
variable having the N(u, 0?) distribution.

Corollary 1.1. Assume the conditions of Theorem 1.12. If Y has the
N (0,%) distribution, then

an|g(Xn) — glc)] —a N (0,Vg(e)Z[Vgl(c)]™). @

Example 1.24. Let X, X5, ... be random variables such that

Vvn(X, —c) —a4 N(0,1).

Consider the function g(x) = 2%, If ¢ # 0, then an application of Corollary
1.1 gives that

Vi(X: — %) —4 N(0,4¢7).

If ¢ = 0, the first-order derivative of g at 0 is (0 but the second-order
derivative of g = 2. Hence, an application of result (1.49) gives that

ant.. —*d [PJ(” 1}]3

which has the chi-square distribution yi (Example 1.13). The last result
can also be obtained by applying Theorem 1.10(iii). #

1.5.3 The law of large numbers

The law of large numbers concerns the limiting behavior of sums of in-
dependent random variables. The weak law of large numbers (WLLN)
refers to convergence in probability, whereas the strong law of large mun-
bers (SLLN) refers to a.s. convergence. Our first result gives the WLLN
and SLLN for a sequence of independent and identically distributed (i.i.d.)
random variables.

Theorem 1.13. Let X, X5, ... be i.i.d. random variables having a c.d.f.
F.

(i) (The WLLN). The existence of a sequence of real numbers {a,} for
which
1 TE
ZX'E — g _}p U

if and only if
lim z[l — F(z)+ F(—=z)] =0,

L0
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in which case we may take a, = E[X I _, ,)(X1)].
(ii) (The SLLN). The existence of a constant ¢ for which

TE

1
— E X; =46 C
mn =

for any bounded sequence of real numbers {¢;}.

(iii) (The Marcinkiewicz SLLN). If E|X;|® < oc for a § € (0,1), then

1 Ti
m Z |X.1| —as. 0.1
a=1

The proof of this theorem can be found in Billingsley (1986) or Chung
(1974). The next result is for sequences of independent but not necessarily
identically distributed random variables.

Theorem 1.14. Let X, X5, ... be independent random wvariables with
finite expectations.

(i) (The SLLN). If

then ;
l Z{:Xi - EX*.E} ~a.s. U
1=1

n <

(ii) (The WLLN). If there is a é € (0, 1) such that

1 TL
lim Y EIX;|"M =0,

n—soc p L0

then |
1 {1
H Z{:Xi - E'Xi} “-1;, (). 1
1=1

The WLLN and SLLN have many applications in probability and statis-
tics. The following is an example. Other examples can be found in later
chapters.
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Example 1.25. Let f and g be continuous functions on [0, 1] satisfying
0 < f(z) < Cg(x) for all z, where C' > 0 is a constant. We now show that

1
" r)dx
lim [ [ [ ZI SPA It dridzs - - -dx,, = 'ﬂ‘l f(z)da (1.51)
T—+0C 1 1 Q(Ii fﬂ g{I}dT

(assuming that fﬂl g(z)dx # 0). Let X, X5, ... be i.i.d. random variables
having the uniform distribution on [U 1] By Proposition 1.7(i), E[f(X;)] =

fu f(z)dz < oo and Elg(X;)] = fﬂ z)dr < oc. By the SLLN (Theorem
L13(1)).

1 7L
— > f(Xi) —as E[f(X))]
=1
and the same result holds when f is replaced by g. By Theorem 1.10(i),

S fX) | E[(X)]
> (X)) " Elg(X)]

Since thl? random variable on the left-hand side of (1.52) is bounded by C,
result (1.51) follows from the dominated convergence theorem and the fact
that thl? left-hand side of (1.51) is the expectation of the random variable
on the left-hand side of (1.52).

(1.52)

1.5.4 The central limit theorem

The WLLN and SLLN may not be useful in approximating the distributions
of (normalized) sums of independent random variables. We need to use the
Central Limit Theorem (CLT), which plays a fundamental role in statistical
asymptotic theory.

Theorem 1.15 (Lindeberg's CLT). Let {X,,;.j = 1, ..., k,} be independent

random variables with 0 < o2 = V&r(zjf_f_i_l Xnj) < oo, n=12.. and
k,, — o0 asn — oo, If

k
1 T ) ‘
Tim > B [(Xnj = EXnj)* I{1X,,,~EX | >e0,)] =0 (1.53)
T j:::l

for any € > 0, then

kn
L > (X = EXyj) —a N(0,1). 0
I!':'-‘J’J:. E

=1
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The proof of this theorem can be found in Billingsley (1986) or Chung
(1974). Condition (1.53) with an arbitrary € > 0 is called Lindeberg’s con-
dition. It is implied by the following condition, called Liapunov’s condition,
which is somewhat easier to verify:

[
ZE|XTU ~ EX,,;|?>T = o(c219%) (1.54)

TL

for some 6 = ().

Example 1.26. Let X, X5, ... be independent random variables. Suppose
that X; has the binomial distribution Bi(p;,1), i = 1,2,..., and that frfi =
Soo Var(X;) = >0 pi(l — pi) — o0 as n — oo. For each i, EX; = p;
and

E|X; - EX;|> = (1 = pi)°pi + (1 = pi) < 2pi(1 = pi).

Hence

ZE|X ~ EX;|]* < 202,

i.e., Liapunov’s condition (1.54) holds with ¢ = 1. Thus, by Theorem 1.15,

—Z 1 — ] f\-‘r(ﬂ,l). |

The following are useful corollaries of Theorem 1.15 (and Theorem

1.9(iii)).

Corollary 1.2 (Multivariate CLT). Let X;,..., X, be iid. random k-
vectors with a finite ¥ = Var(X,). Then

\/‘Z(X EX) —4 N(0,2). n

Corollary 1.3. Let X,;; € R"™. i = 1.....k,, be independent random
Wrtms with m; < m (a fixed integer), n = 1,2,..., k,, — o0 as n — o0, and
inf; , A_[Var(X,;)] = 0, where A_[A] is the smallest eigenvalue of A. Let
i € R™ be vectors such that

i ( el /Y ”w) =0
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X,:?1? < oc for some & > 0. Then

(i) Suppose that sup, , E

1,7

.
D (Xni — EXpi)e], /

g=1

(ii) Suppose that X,,;, i = 1,...,k,, n = 1,2, ..., have a common distribution

and E||X;;||* < cc. Then (1.55) holds. &

Applications of these corollaries can be found in later chapters. More
results on the CLT can be found, for example, in Serfling (1980) and Shorack
and Wellner (1986).

Let Y,, be a sequence of random variables, {p,, } and {0, } be sequences
of real numbers such that o, > 0 for all n and (Y,, — p) /o0 —q N(0,1).
Then, by Proposition 1.16,
lim sup [Fy, . /0, (z) — ®(z)| =0, (1.56)
where @ is the c.d.f. of N(0,1). This implies that for any sequence of real
numbers {¢, },

lim

TL— 0 ﬂ'ﬂ

Pmﬂan}-@(w)‘=m

{¢,} has a limit. Since & (t—_fn) is the c.d.f. of N(u,.0?), Y, is said to

be asymptotically distributed as N (ji,,.02) or simply asymptotically normal.

i.e., P(Y, < ¢,) can be approximated by ® (“”; e ), regardless of whether

T in Corollary 1.3 is asvmptotically normal. This
can be extended to random vectors. For example, > " | X; in Corollary 1.2
is asymptotically distributed as Nip(EX,X/n).

-Fﬂ're T
For example, > ", ¢,; X

1.6 Exercises

I. Let A and B be two nonempty proper subsets of a sample space
Q, A# Band ANB # (. Obtain o({A, B}), the smallest o-field

containing A and B.

2. Let C be a collection of subsets of 2 and let ' = {F : F is a o-field
on §2 and C € F}. Show that I' # ) and o(C) = N{F : F € I'}.

3. Show that if C; C Cs, then o(Cy) C a(Ca).

4. Let C be the collection of intervals of the form (a,b], where —oc <

a < b < oo, and let D be the collection of closed sets on R. Show
that B = ¢(C) = (D), where B is the Borel g-field on R.
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. Let (€2, F) be a measurable space and €' € F. Show that Fo =

{CNnA:Ae F}isa o-field on C.

Prove part (ii) and part (iii) of Proposition 1.1.

. Let v;, i = 1,2,..., be measures on ({2, .?-) and a;, i = 1,2,..., be

positive numbers. Show that a,1q 4 a2 + - - - is a measure on {ﬂ ,?- .

. Let Ay, As. ... be a sequence of measurable sets and P be a probability

measure. Define

]1111'-“,1113 A, m U A; and  liminf A, G ﬁ A;.

=1 i=m1 fi=11=n

(a) Show that
P (hm inf A) < liminf P(A,,)

TE

and

limsup P(A,,) < P (lim SUp :’ln_) .

T T

(b) (Borel-Cantelli’s lemma). Show that if > 7
P(limsup, 4,) = 0.

(¢) (Borel-Cantelli’s 19111111&,) Show that if A;, A, ... are independent
{Dpﬁmtmu 1.7) and >°7 | P(A,) = oo, then P{llm sup,, A,) = 1.

P(A,) < oo, then

. Prove part (i) of Proposition 1.2.

Let F(x1,...,2;) be a c.d.f on R%. Show that

(a) F(z1,..,2p—1.2p) < Fzy, oy zp_r,xy) if 2 < 2.

(b) limy, .~ F(xy,...,2x) =0 for any 1 <i < k.

(€) F(x1..oszp_1.00)=lim,, oc F(21.....2p_1.25) isa c.dfon RF L.

Let (1, .F] (R, B), i l,....k. Show that the product o-field
o(Fp - x F;L) is thp same as the Borel o-field generated by O, all
open sets in R¥*.

Let v and A be two measures on ({2, F) such that v(A4) = A(A) for
any A € C, where C C F is a collection having the property that if
A and B are in C, then so is A M B. Assume that there are A; € C,
i = 1,2, ..., such that UA; = Q and v(A;) < oo for all i. Show that
v(A) = AMA) for any A € o(C). This proves the uniqueness part of
Proposition 1.3. (Hint: show that {A € a(C) : v(A) = A(A)} is a
o-field.)

Show that f~1(B¢) = (f~YB))° and f~H(UB;) = Uf~1(B;).
Show that f~(G) is a o-field, if f is a function from (2, F) to (A, G).
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16.
17.

18.

19.

20).

21.
22.

23.

26.

. Prove parts (i)-(iv) of Proposition 1.4.

Show that a monotone function from R to R is Borel.

Let f be a nonnegative Borel function on (£, F). Show that f is the
limit of a sequence of simple functions {,, } satisfving 0 < ) < s <

<]

Let f be a function from (€2, F) to (A,G) and Ay, As, ... be disjoint
events in F such that UA; = €. Let f,, be a function from (A,,, Fa )
to (A, G) such that f,(w) = f(w) for any w € A,,, n = 1,2,.... Show
that f is measurable from (2, F) to (A, G) if and only if f,, is mea-
surable from (A,,, Fa ) to (A, G) for each n.

projection, i.e., m; is a function from 2y x --- x ;. to {); such that
Ti(W1s ey Wi ) = Wy, wy € 4, @ = 1,..., k. Show that 7;’s are measur-

able.

Let f be a Borel function on R?. Define a function g from R to R as
g(z) = f(x,y), where y is a fixed point in R. Show that ¢ is Borel.
Is it true that f is Borel from R? to R if f(x,y) with any fixed y or
fixed x is Borel from R to R7?

Show that the set function defined in (1.8) is a measure.
Prove (1.13) in Example 1.5.

Prove Proposition 1.5.

. Prove Proposition 1.6(i).

. (Chebyshev’s inequality). Let X be a random variable and ¢ a strictly

positive and increasing function on (0, oc) satisfving ¢(—t) = ¢(¢).
Show that for each t > 0.

E¢(X)

R0

Let v, ¢ = 1,2, be measures on ({2, ) and f be Borel. Show that

f fd(n +yg)=‘[ Fdin +‘[ Fdvs,

i.e., if either side of the equality is well defined, then so is the other
side, and the two sides are equal.

. Let f be an integrable Borel function on (€2, F, »). Show that for each

¢ > 0, there is a 8, such that v(A) < §, and A € F imply [, | fldv < e.
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Consider Example 1.9. Show that (1.16) does not hold for the follow-
ing function:

1 i =9
flig)={ -1 i=j-1
() otherwise.

Does this contradict Fubini's theorem?

Let f be a nonnegative Borel function on (£, F, ») with a o-finite .
Let m be the Lebesgue measure on (R, B) and

A={{w,x) eQxR:0<z < f(w)}.
Show that A € o(F x B) and [, fdv = v x m(A).

For any c.d.f. F' and any a > (), show that
/[FI[.‘I +a) — F(z)]dzx = a.

(Integration by parts). Let F' and GG be two c.d.f.’s on R. Show that
if I and G have no common points of discontinuity in the interval
[a, b], then

G(z)dF(z) = F(b)G(b) — F(a)G(a) — F(z)dG(x).
J(a,b J(a.b]

Let f be a Borel function on R? such that f(x.y) = 0 for each r € R
and y € C,, where m(C,) = 0 for each * and m is the Lebesgue
measure. Show that f(z,y) = 0 for each y € C' and = ¢ B,,, where
m(C) = 0 and m(B,) = 0 for each y & C.

Show that the set function defined by (1.17) is a measure.

Consider Example 1.11. Show that if (1.20) holds, then P(A) =
[ 4 f(x)dz for any Borel set A. (Hint: A = {A: P(A) = [, f(x)dz}

is a o-field containing all sets of the form (—oc, x].)

. Prove Proposition 1.7.

. Let F; be a c.d.f. having a Lebesgue p.d.f. f;, i = 1,2. Assume that

there is a ¢ € R such that Fi(c¢) < Fs(c¢). Define

Fi(x) —00 < T < C
F(z) =
(z) { Fy(x) c<x < oC.

Show that the probability measure P corresponding to F' satisfies
P < m + é6.. where m is the Lebesgue measure and 4. is the point
mass at ¢, and find the p.d.f. of F w.r.t. m+ o..
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39,
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41.

42.

43.
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46.

g |
-
L

Let X be a random wvariable having the Lebesgue p.d.f. %%I{“__W:,{:r:].

Derive the p.d.f. of ¥ = sin X,

Let X be a random variable having a continuous c.d.f. F'. Show that

Y = F(X) has the uniform distribution U(0,1) (Table 1.2).

Let U be a random variable having the uniform distribution U(0, 1)
and let F' be a c.d.f. Show that the c.d.f. of Y = F~1(U) is F, where
F~1t) =inf{x € R : F(z) = t}.

Let X;, i = 1,2, 3, be independent random variables having the same
Lebesgue p.d.f. f(z) = e™1 )(x). Obtain the joint Lebesgue p.d.f.
of (Y1,Y5.Ys), where V7 = Xy + Xo + X3, Yo = X1 /(X1 + X3), and
Yy = (X1 + Xo) /(X1 + Xo + X3). Are the Y; independent?

Let X; and X5 be independent random variables having the stan-
dard normal distribution. Obtain the joint Lebesgue p.d.f. of (Y7, Y5),
where Y7 = \/Xf + X2 and Y5 = X /X5, Are the Y; independent?

Let X7 and X3 be independent random variables and Y = X + Xs.
Show that Fy(y) = [ Fx,(y — z)dFx, ().

Let X be a random variable and a > 0. Show that F|X|* < oc if and
only if 57  n* ' P(|X]| = n) < .

Let X be a random variable with range {0,1,2,...}. Show that if
EX < o0, then

EX = ip{x > n).

. Let X be a random wvariable having a c.d.f. Fy. Show that if X = 0

a.s., then

EX = [[1 — Fx(z)]dx;

in general, if KX exists, then

>0 i
EX = / 1 — Fyx(x)]dx — Fy(z)dz.
0

—

(Jensen’s inequality). Let X be a random variable and f be a convex
function on R, i.e., f satisfies
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for every set of positive a;....,a; with Ekl a; = 1. Suppose that

ElX| < oo and E|f(X)| < oc. Show that f(EX) < Ef(X). (Hint:
consider nonnegative simple functions first and use the fact that f is
continuous. )

. Show that EX = p and Var(X) = ¥ for the Ni(pu, ) distribution.

Let X be a random variable with EX? < oc and let Y = |X|. Suppose
that X has a p.d.f. symmetric about 0. Show that X and Y are
uncorrelated, but they are not independent.

Let (X,Y) be a random 2-vector with the following Lebesgue p.d.f.:

a1 ¢ +y* <1
0 2+ > 1

f(ﬂr_-.y)={

Show that X and ¥ are uncorrelated, but are not independent.

Let X;...., X;. be independent random variables and ¥V = X| +--- +
X}.. Prove the following statements, using Proposition 1.10.

(a) If X; has the binomial distribution Bi(p,n;), i = 1,...,k, then Y
has the binomial distribution Bi(p,ny + - - + ng).

(b) If X; has the Poisson distribution P(#;), i = 1,....k, then Y has
the Poisson distribution P(#; + --- + ;).

(c) If X; has the negative binomial distribution NB(p,r;),1 =1, ..., k,
then Y has the negative binomial distribution NB(p,ry + --- + ri).
(d) If X; has the exponential distribution E(0,8), 7 =1,....k, then YV
has the gamma distribution I'(k, #).

(e) If X; has the Cauchy distribution C'(0,1), i = 1,.... k, then Y/k

has the same distribution as X;.

. Show the following properties of the multivariate normal distribution

iﬁ"'r.f:{:uur- E) .

(a) The m.g.f. of Ny(p,X) is ert H217/2,

(b) Let X be a random k-vector having the Ny (g, ¥) distribution and
YV = XA+ ¢, where A is a k x | matrix of rank [ < k and ¢ € R',
Then Y has the N;(pA + ¢, ATEA) distribution.

(c) A random k-vector X has a k-dimensional normal distribution if
and only if for any ¢ € R*, X¢™ has a univariate normal distribution.
(d) Let X be a random k-vector having the Ny (u, ¥) distribution.
Let A be a k x [ matrix and B be a & x m matrix. Then XA and X B
are independent if and only if they are uncorrelated.

(e) Let (X1, X5) be a random k-vector having the Ny (p, X) distribu-

tion with
> ¥
$ ( 11 12 ) |
o1 X9
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where X 1s a random [-vector and ¥,; is an [ x [ matrix. Then the
conditional p.d.f. of X5 given X = x, is

Ny U-ﬂ:s + (21 — 1) S B2, Eos — E32121_1131:3) ;

where p; = EX;, i = 1,2, (Hint: consider Xy — pa — (X —;11)21_11212
and X7 — piy.)

. Let ¢,, be the ch.f. of a probability measure P,,, n = 1,2,.... Let {a,}

. - [ ]
be a sequence of nonnegative numbers with >~ | a,, = 1. Show that
b i . * - = -
> .1 Gnoy is a ch.f. and find its corresponding probability measure.

3. Let Y be a random variable having the noncentral chi-square distri-

bution xi(6). Show that

(a) Y has the Lebesgue p.d.f. given by (1.31);

(b) the ch.f. of Y is (1 — 2¢/—1t)*/2ev 106/ 11=2v=18),
(¢c) E(Y) =k + 6 and Var(Y') = 2k + 46.

. Let T'be a random variable having the noncentral t-distribution #,,(8).

Show that
(a) T has the Lebesgue p.d.f. given by (1.32);

(b) E(T) = éT((n —1)/2)/n/2/T(n/2) when n > 1;

2 oy 2
(¢) Var(T) = ”':Tl:g ) _ ‘ﬁ';” [F“ITE;E{‘”} when n > 2.

. Let F be a random wvariable having the noncentral F-distribution

Fo, 1, (8). Show that

(a) F has the Lebesgue p.d.f. given by (1.33);
(b) E(F) = ﬁ;:—ii% when ngy > 2;

] ETL:: (n1+8)2+(n2—2)(n1+28)
{C} Vﬂ"l{:F} — [ rt.f{ng—ﬂ};[ng—il:l |

when ns > 4.

. Let X = N,(u, I,). Apply Cochran’s theorem (Theorem 1.5) to show

that if A2 = A, then X AX" has the noncentral chi-square distribution
x2(6), where r = rank of A and § = pApu™.

. Let X,..., X,, be independent and X; = N(0,07), i = 1,....,n. Let

X =3 ,02X:/ 3 072 and 8% = 31 074X, — X)?. Apply

..... i.__ 1 _1
Cochran’s theorem to show that X? and S? are independent and that
52 has the chi-square distribution y2_,.

. Let X = N,(u,I,) and A% = A;, i = 1,2. Show that a necessary

and sufficient condition that X A; X7 and X A, X7 are independent is
A1 As = 0.

. Prove Theorem 1.6. (Hint: first consider simple functions.)

Prove Proposition 1.12.
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Let X and Y be random variables on (£, F, P) and A C F be a
o-field. Suppose that X is integrable and Y is bounded. Show that
EYE(X|A) = EIXE(Y|A)].

Let (X.Y) be a random 2-vector having a Lebesgue p.d.f. f(z,y).
Suppose that E|X| < oc and Z = X + Y. Show that

r xflx, 2 — ::r:]d-j:
.ff{ﬂl,z — ;J.r:)dj:

E(X|Z) =

without using Proposition 1.11.

(Convergence theorems for conditional expectations). Let X, Xo....
and X be integrable random variables on (€2, F, P) and A C F be a

o-field. Show that
(a) (Fatou’s lemma). If X,, = 0 for any n, then

E (]iminf X?-,,|A) < liminf E(X,|A) a.s.

(b) (Monotone convergence theorem). If 0 < X; < Xy, < -+ and
lim,, .. X, = X a.s., then

E(X|A) = lim E(X,|A) as.

(¢) (Dominated convergence theorem). Suppose that there is an
integrable random variable ¥ such that |X,| < Y for any n and

lim, .. X,, = X a.s. Then the result in (b) holds.

Let X be a nonnegative integrable random variable on (£2, F) and
A C F be a o-field. Show that

E(X|A) = /m P(X > t|A)dt.

0

. Let X be an integrable random variable on (Q2,F, P), A C F be a

o-field, and f be a convex function on R. Show that f(E(X|[A)) <
E[f(X)|A] as.

Show that two events A and B are independent if and only if two
random variables /4 and Ig are independent.

Show that random variables X;. 1 = 1, .... n, are independent accord-
ing to Definition 1.7 if and only if (1.26) holds.

Show that a random variable X is independent of itself if and only if
X is constant a.s. Can X and f(X) be independent for a Borel f7
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69. Let X and Y be independent random variables on a probability space.

70.

-
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Show that if E|X|* < oc for some a = 1 and E
EX+Y|*=E|X+ EY|~

Y| < oo, then

Let (X,Y) be a random 2-vector with the following Lebesgue p.d.f.:

81y D<xr<y<l
() otherwise.

flz,y) = {

Find the marginal p.d.f.’s of X and Y. Are X and Y independent?

. Let (X,Y, Z) be a random 3-vector with the following Lebesgue p.d.f.:

1l —sin x sin ysin 2 0 i: r E ETT_._U E Y {_-: 211'._.” {_-: P {_-: P

flz,y,2) = { S

() otherwise.

Show that X, Y, and Z are not independent, but are pairwise inde-
pendent.

binomial distribution Bi(p,y). Let (X, Y) be the random vector hav-
ing the joint c.d.f. given by (1.44). Show that
(a) if Y has the Poisson distribution P(#), then the marginal distri-
bution of X is the Poisson distribution P(pf);
(b) it Y + r has the negative binomial distribution N B(x,r), then the
marginal distribution of X + r is the negative binomial distribution

NB(w /[l = (1 —=p)(1 —=)],r).

. Let X, X;. X5, ... be random vectors on a probability space. Show

that X,, —, s X if and only if for every ¢ > (0,

lim P(|X, — X[ <e forall n>=m)=1.

T —

. Let X1, X5.... be a sequence of identically distributed random vari-

ablesand Y,, = n~! max; <, | X;|. Showthat Y, —, . OandY,, —, 0.

. Let X, X1.Xs.... be random variables. Find an example for each of

the following cases:

(a) X;, —, X. but {X,,} does not converge to X a.s.

(b) X, —, X, but {X,,} does not converge to X in L, for any p > 0.
(¢c) X,, —q X, but {X,,} does not converge to X in probability (do
not use Example 1.22).

(d) X;, —, X, but {g(X,,)} does not converge to g(X ) in probability
for some function g.

Show that (1.46) implies (1.45).
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. Let X, X1, X5, ... be random k-vectors satisfying P(||X.| = ¢) <

P(||X|| = ¢) for all n and ¢ > 0. Show that if E||X| < oo, then
X} is uniformly integrable.

. Let X, X5, ... and Y7.Y5, ... be random variables. Show that

(a) if {|X,.|} and {|Y,,|} are uniformly integrable, then {|X,, + Y, |} is
uniformly integrable;

(b) if {|X,|} is uniformly integrable, then {|n='> " | X;|} is uni-
formly integrable.

. Let X, Y, Xy, Xo,... be random k-vectors satisfying X,, —, X and

P(|X,.]| < |IY]]) = 1 for all n. Show that if E|Y|P < oc, then
-}:?L '—PL‘“ _:':.

Show that if X,, —4 X and X = ¢ a.s., where ¢ € R*, then X, —n X.

Show that if X,, —4 X, then for every ¢ > (), there exists M, = ()
such that P(|| X,.| = M,) < e.

Let X,..Y,,, n=1.2,... be random k-vectors such that

lim P(||X, —Y,.|| =€ =0

for any € > (. Show that if X,, —; X for a random vector X, then
-1/?'1 —d X.

Let Xy, X5, ..., X, Y be random k-vectors. Show that X,, —, X and
X, —, Y implies that P(X =Y ) = L.

Let X, X, X5.... be random k-vectors and Y, Y7, Y5. ... be random [-
vectors. Suppose that X, —; X, Y, —4 Y. and X,, and Y, are
independent for each n. Show that (X,,,Y,,) converges in distribution
to a random (k + I)-vector.

2

. Let X, be a random variable having the N{pu,,, ;) distribution, n =

1.2...., and X be a random variable having the N(u, o2) distribution.
Show that X,, —,; X if and only if y,, — p and a,, — o.

Suppose that X,, is a random variable having the binomial distribu-
tion Bi(p,,n). Show that if np,, — 0 > 0, then X, —; X, where X
has the Poisson distribution P(#).

Let f,, be the Lebesgue p.d.f. of the t-distribution £,,. n = 1.2.....
Show that f,(x) — f(z) for any * € R, where f is the Lebesgue
p.d.f. of the standard normal distribution.
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Let Xy, Xo...., Y1.Y5. ..., Z1.45,... be random variables. Prove the
following statements.

(a) If X,, —4 X for a random variable X, then X,, = O,(1).

(b) If X;, = 0,(Z,) and P(Y,, = 0) = 0 for all n, then X,Y,, =

OP{KIZH)'
(¢) If X;, = O,(Z,) and Y;, = O,(Z,,), then X,, + Y,, = O,(Z,,).
(d) If E|X,,| = Ol(a,) for a sequence of positive numbers a;, as, ...

then X, = O,(a,).

Let X, X;.X5.... be random variables such that X,, —, . X. Show
that sup,, | X,| = O,(1).

Prove Theorem 1.10.

Show by example that X,, —43 X and Y,, —; Y does not necessarily

imply that g(X,,.Y,) —4 g(X,Y), where g is a continuous function
on R?.

Prove Theorem 1.11(ii)-(iii) and Theorem 1.12(ii).

Let Uy, Us. ... be i.i.d. random variables having the uniform distribu-
tion on [0,1] and Y,, = (][, Ui)_l’m. Show that /n(Y, —€) —4
N(0,e?).

Let X, be a random variable having the Poisson distribution P(n#),
where 0 > 0 and n = 1,2,.... Show that X,,/n —,. #. Show that
the same conclusion can be drawn if X,, has the binomial distribution

Bi(0,n).

. Let X1,..., X,, beiid. random variables with

~1
e | 1
PlX, = 4x) = , , oo =23.4. ...
(X3 ) (Z r? log :;r:) 2z logax -

r=3"
Show that E|X;| = cobut n=! 3" | X; —, 0, using Theorem 1.13(i).

Let X;,...,X,, be iid. random variables with Var(X,) < oc. Show
that

2 T
X, —, FX.
nin + 1) JZ;“? ot :

Let {X,,} and {Y¥},} be two sequences of random variables such that
PIX,=tY,2t+e+PX,=2t+¢Y, <t)=0(1)

for any fixed t € R and ¢ > (). Show that X,, —Y,, = f}pl[l).
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Show that Liapunov’s condition (1.54) implies Lindeberg’s condition,
i.e., condition (1.53) with arbitrary e > 0.

Prove Corollaries 1.2 and 1.3.

Let X, be a random variable having the Poisson distribution P(n#),
where f > 0, n = 1,2,.... Show that (X,, — n#)/vnl —4 N(0,1).

Let Xi,..., X, be random variables and {u,}, {o.}, {a.}, and {b,}
be sequences of real numbers with ,, = 0 and a,, = (. Suppose that
X, is asymptotically distributed as N(p,,, E'Ti) Show that a,X,, + b,
is asymptotically distributed as N(u,,,o2) if and only if a,, — 1 and
[H?'.L{ﬂ?'a - 1:] + bﬂ]/]l{j'n — 0.

Let Xy, Xs, ... be independent random variables such that X; has the
uniform distribution on [—7j,j], 7 = 1,2,.... Show that Lindeberg’s
condition is satisfied and state the resulting CLT.

Let X;, Xs, ... be independent random variables with P(X; = £/ )
= (0.5, j = 1.2,.... Can we apply Theorem 1.15 to {X;} by checking
Liapunov’s condition (1.54)7

Let X1. Xg,... be independent random variables with P(X; = —j%) =
P(X; =j%) = P(X; =0) =1/3, where a > 0, 7 = 1,2,.... Can we
apply Theorem 1.15 to { X} by checking Liapunov’s condition (1.54)7

Let Xy, X5.... be independent random wvariables such that for j =
1.2.....

- 1 _ 1
P(X; = =£j5") = —ﬁjﬂiﬂ—ll and P(X;=0)=1- —3_?'53[”_13"‘

where a > 11is a constant. Show that Lindeberg’s condition is satisfied
if and only if a < 1.5.

Suppose that X,, is a random variable having the binomial distribu-
tion Bi(0,n), where 0 < # < 1, n = 1,2,.... Define

v log(X,,/n) X, >1
"1 X, = 0.

Show that Y,, —, . logf and /n(Y,, —logf) —,4 N [U, %?).



Chapter 2

Fundamentals of Statistics

This chapter discusses some fundamental concepts of mathematical statis-
tics. These concepts are essential for the material in later chapters.

2.1 Populations, Samples, and Models

A typical statistical problem can be described as follows. One or a series
of random experiments is performed that results in some data; our task is
to extract the information from the data and interpret the results. In this
book we do not consider the problem of planning experiments and collecting
data, but concentrate on statistical analysis of the data, assuming that the
data are given.

A descriptive data analysis can be performed to obtain some summary
measures of the data, such as the mean. median, range, standard devia-
tion, etc., and some graphical displays, such as the histogram and box-
and-whisker diagram, etc. (see, e.g., Hogg and Tanis (1993)). Although
this kind of analysis is simple and requires almost no assumptions. it may
not allow us to gain enough insight into the problem. We focus on more
sophisticated methods of analyzing data: statistical inference and decision
theory.

2.1.1 Populations and samples

In statistical inference and decision theory, the data set is viewed as a real-
ization or observation of a random element defined on a probability space
(2, F, P) related to the random experiment. The probability measure P is
called the population. The data set or the random element that produces

61
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the data is called a sample from P. The size of the data set is called the
sample size. A population P is known if and only if P(A) is a known value
for every event A. In a statistical problem, the population P is at least
partially unknown and we would like to deduce some properties of P based
on the available sample.

Example 2.1 (Measurement problems). To measure an unknown quan-
tity # (for example, a distance, weight, or temperature), n measurements,
Ty, .... T, are taken in an experiment of measuring #. If # can be measured
without errors, then x; = @ for all i; otherwise, each x; has a possible mea-
surement error. In descriptive data analysis, a few summary measures may
be calculated, for example, the sample mean

. Tl

- 1

T = — E €
n

=1

and the sample variance

However, what is the relationship between & and 67 Are they close (if
not equal) in some sense? The sample variance s* is clearly an average of
squared deviations of x;’s from their mean. But, what kind of information
does s° provide? Finally, is it enough to just look at # and s? for the purpose
of measuring #7 These questions cannot be answered in descriptive data
analysis.

In statistical inference and decision theory, the data set, (x1,...,2,), is
viewed as an outcome of the experiment whose sample space is 1 = R™.
We usually assume that the n measurements are obtained in n indepen-
dent trials of the experiment. Hence, we can define a random n-vector
X = (X1,....X,) on [[iL,(R, B, P) whose realization is (z1,...,2,). The
population in this problem is P (note that the product probability measure
is determined by P) and is at least partially unknown. The random vector

X is a sample and n is the sample size. Define

B 1 T
X=- Zx (2.1)
and
r 1 T .y
g2 — n_.lz{Xi_X} _ (2.2)

Then X and 5% are random variables that produce & and s2. respectively.
Questions raised previously can be answered if some assumptions are im-
posed on the population P. which are discussed later. 1
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When the sample (X, ..., X,,) has i.i.d. components, which is often the
case in applications, the population is determined by the marginal distri-
bution of X;.

Example 2.2 (Life-time testing problems). Let x4, .... z,, be observed life-
times of some electronic components. Again, in statistical inference and
decision theory, x;...., x,, are viewed as realizations of independent random
variables X, ..., X,,. Suppose that the components are of the same type
so that it is reasonable to assume that X;,.... X,, have a common marginal
c.d.f. F'. Then the population is F'. which is often unknown. A quantity of
interest in this problem is 1 — F'(t) with a t > 0, which is the probability
that a component does not fail at time f. It is possible that all x;’s are
smaller (or larger) than ¢. Conclusions about 1 — F'(f) can be drawn based
on data xq,....x, when certain assumptions on F' are imposed. |

Example 2.3 (Survey problems). A survey is often conducted when one is
not able to evaluate all elements in a collection P = {y1, ..., yx} containing
N values in R¥, where k and N are finite positive integers but N may be
Very lar%:e. Suppose that the quantity of interest is the population total
Y = > ", yi. In asurvey, a subset s of n elements are selected from P

and values y;, ¢ € 8, are obtained. Can we draw some conclusion about ¥
based on data vy;, i € 87

How do we define some random variables that produce the survey data?
First, we need to specify how s is selected. A commonly used probability
sampling plan can be described as follows. Assume that every element in P
can be selected at most once, i.e., we consider sampling without replacement.
The sample space €2 is the collection of all subsets of n distinct elements
from P. Let F be the collection of all subsets of {2 and p be a probability
measure on (£}, F). Any s € (1 is selected with probability p(s). Note
that p(s) is a known value whenever s is given. Let X, ..., X, be random
variables such that

P{X] = Yigseens Xn = yi“} = p{:S}, 5 = {.’,1 ...,'-’:ﬂ} - (1. {23}

Then (y;,i € 8) can be viewed as a realization of the sample (X5, ..., X,,).
If p(s) is constant, then the sampling plan is called the simple random
sampling (without replacement) and (X1, ..., X,,) is called a simple random
sample. Although X,...., X,, are identically distributed, they are not nec-
essarily independent. Thus, unlike in the previous two examples, the pop-
ulation in this problem may not be specified by the marginal distributions
of X;’s. The population is determined by P and the known selection prob-
ability measure p. For this reason, P is often treated as the population.
Conclusions about ¥ and other characteristics of P can be drawn based on
data vy;., ¢ € 8, which are discussed later. &
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2.1.2 Parametric and nonparametric models

A statistical model (a set of assumptions) on the population P in a given
problem is often postulated to make the analysis possible or easy. Although
testing the correctness of postulated models is part of statistical inference
and decision theory, postulated models are often based on knowledge of the
problem under consideration.

Definition 2.1. A set of probability measures Py on (2, F) indexed by a
parameter @ € O is said to be a parametric family if and only if © ¢ R? for
some fixed positive integer d and each Fy is a known probability measure
when ! is known. The set © is called the parameter space and d is called
its dimension. 1

A parametric model refers to the assumption that the population P is
in a parametric family. A parametric family {Fy : § € O} is said to be
identifiable if and only if ¢ # 0, and 6; € © imply Fy, # Fp,. In most
cases an identifiable parametric family can be obtained through reparame-
terization. Hence, we assume in what follows that every parametric family
is identifiable.

Let P be a family of populations and v be a o-finite measure on (£2, F).
If P < vforall P € P, then P is said to be dominated by v. in which case P
can be identified by the family of densities {% : P e P} (or {%‘5 0 € B}
for a parametric family).

Many examples of parametric families can be obtained from Tables 1.1
and 1.2 in §1.3.1. All parametric families from Tables 1.1 and 1.2 are
dominated by the counting measure or the Lebesgue measure on R.

Example 2.4 (The k-dimensional normal family). Consider the normal
distribution Ny (u, ¥) given by (1.25) for a fixed positive integer k. An im-
portant parametric family in statistics is the family of normal distributions

P — {i‘\'r.i:(ﬂvzj L E Rk, Y E .—Mk}ﬁ

where M, is the collection of all k »x k symmetric positive definite matrices.
This family is dominated by the Lebesgue measure on R*.

In the measurement problem described in Example 2.1, X;’s are often
i.i.d. from the N(p,o?) distribution. Hence we can impose a parametric
model on the population, i.e., P = {N(p,0%): peR, a* > 0}.

The normal parametric model is perhaps not a good model for the life-
time testing problem described in Example 2.2, since clearly X; = 0 for
all i. In practice, the normal family {N(u,0%) : p € R, ¢ > 0} can
be used for a life-time testing problem if one puts some restrictions on pu
and ¢ so that P(X; < 0) is negligible. Common parametric models for
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life-time testing problems are the exponential model (containing the expo-
nential distributions E(0,0) with an unknown parameter ¢; see Table 1.2
in §1.3.1), the gamma model (containing the gamma distributions I'(a, )
with unknown parameters o and ), the log-normal model (containing the
log-normal distributions LN (g, 02) with unknown parameters p and o), the
Weibull model (containing the Weibull distributions W {«, #) with unknown
parameters « and #), and any subfamilies of these parametric families (e.g.,
a family containing the gamma distributions with one known parameter and
one unknown parameter).

The normal family is often not a good choice for the survey problem
discussed in Example 2.3. §

In a given problem, a parametric model is not useful if the dimension
of © is very high. For example, the surveyv problem described in Example
2.3 has a natural parametric model, since the population P can be indexed
by the parameter @ = (yy,...,ynx ). If there is no restriction on the y-values,
however, the dimension of the parameter space is N, which is usually
much larger than the sample size n. If there are some restrictions on the
y-values, for example. y;’s are nonnegative integers no larger than a fixed
integer m. then the dimension of the parameter space is at most m -+ 1 and
the parametric model becomes useful.

A family of probability measures is said to be nonparametric if it is not
parametric according to Definition 2.1. A nonparametric model refers to the
assumption that the population P is in a nonparametric family. There may
be almost no assumption on a nonparametric family, for example, the family
of all probability measures on (R*, B*). But in many applications we may
use one or a combination of the following assumptions for a nonparametric
family on (R*, B¥):

(1) The joint c.d.f.’s are continuous.
2) The joint c.d.f.’s have finite moments of order < a fixed integer.

(2)
(3) The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).
(4)

k = 1 and the c.d.f.’s are symmetric.

For instance, in Example 2.1, we may assume a nonparametric model
with symmetric and continuous c.d.f.’s. The symmetry assumption may
not be suitable for the population in Example 2.2, but the continuity as-
sumption seems to be reasonable.

In statistical inference and decision theory, methods designed for para-
metric models are called parametric methods, whereas methods designed
for nonparametric models are called nonparametric methods. However, non-
parametric methods are used in a parametric model when parametric meth-
ods are not effective, such as when the dimension of the parameter space is
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too high (Example 2.3). On the other hand, parametric methods may be
applied to a nonparametric model when the quantity of interest is not the
entire population but a vector of real-valued characteristics (parameters)
of the population. Examples are provided later.

2.1.3 Exponential and location-scale families

In this section we discuss two types of parametric families that are of special
importance in statistical inference and decision theory.

Definition 2.2 (Exponential families). A parametric family {FPy : § € O}
dominated by a o-finite measure v on ({1, F) is called an exponential family
if and only if

ddi (w) = exp{T(w)[n(0)]" — £(O) }h(w), w e, (2.4)

where exp{x} = " is the exponential function, 7" is a random p-vector with
a fixed positive integer p, 1 is a function from © to R?, I is a nonnegative

Borel function on (2, F), and £(0) = log { [, eT )@ rh(m)dv{m)} i

In Definition 2.2, T" and h are functions of w only, whereas n and &
are functions of # only. €2 is usually R*. The representation (2.4) of an
exponential family is not unique. In fact, any transformation 7(6) = n(#)D
with a p x p nonsingular matrix D gives another representation (with 7'
replaced by T = T(D7)~!). A change of the measure that dominates the
family also changes the representation. For example, if we define A(A)
_[ y hdv for any A € F, then we obtain an exponential family with densities

I

@) = e {T@O) - €0}, (2.5)

In an exponential family, consider the reparameterization n = n(f) and

folw) = = exp{T(w)n™ — ¢(n) }h(w), we, (2.6)

where ((n) = log{ [, e’ h(w)dv(w)}. This is the canonical form for
the family, which is not unique for the reasons discussed previously. The
new parameter n is called the natural parameter. The new parameter space

is == {n(f):0 € O} C RP. The set

{neR?: [,el @ h(w)dv(w) < o<}

=

is called the natural parameter space and is the largest possible parameter
space (in canonical form). An exponential family in canonical form with
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the natural parameter space is called a natural exponential family. 1f there
is an open set contained in the parameter space of an exponential family,
then the family is said to be of full rank.

Example 2.5. Let Py be the binomial distribution Bi(f,n) with param-
eter f, where n is a fixed positive integer. Then {Fy : # € (0,1)} is an
exponential family, since the p.d.f. of Fy w.r.t. the counting measure is

fo(z) = exp {:rlcjg % + nlog(l — E)} ( )I{n,l__.._.n}{ﬂ?)

n

T
(T'(z) =z, n(0) = log ﬁa £(0) = nlog(1-0), and h(z) = (E)I{ﬂ.l,...,n}(x})'
If we let n = log l—f—g, then = = R and the family with p.d.f.’s

- n
fn(x) = exp {zn — nlog(l +e")} (.r) Lo,y ()
is a natural exponential family of full rank. 8

Example 2.6. The normal family {N(p.0%) : p € R0 > 0} is an
exponential family, since the Lebesgue p.d.f. of N(j, 0%) can be written as

! exp {ate — 22 ! e log o
D P12 77 202 7 252 570

Hence, T'(z) = (z, —2?%), n(0) = (L&, 555). 0 = (p.0?), £(0) = —:4;;—5; —log o,
and h(zr) = 1/v/2m. Let n = (n1,m2) = (£, 55). Then = = R x (0, )
and we can obtain a natural exponential family of full rank with ((n) =

—17/(4n2) —log(1/y/2n2). 0

For an exponential family, (2.5) implies that there is a nonzero measure

A such that

dF,
d—f(wj = () for all w and 6. (2.7)

We can use this fact to show that a family of distributions is not an expo-
nential family. For example, consider the family of uniform distributions,
e, Py is U(0,0) with an unknown ¢ € (0,00). If {Fy : @ € (0,00)} is an
exponential family, then from the previous discussion we have a nonzero
measure A such that (2.7) holds. For any t > 0, there is a @ < t such that
FPy(t,oc) = 0, which with (2.7) implies that A(t,oc) = 0. Also, for any
t <0, Pg(—o0,t) = 0, which with (2.7) implies that A(—oc,t) = (. Since
t is arbitrary, A = 0. This contradiction implies that {Fy : 0 € (0,00)}
cannot be an exponential family.

The reader may verify which of the parametric families from Tables
1.1 and 1.2 are exponential families. As another example, we consider an
important exponential family containing multivariate discrete distributions.
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Example 2.7 (The multinomial family). Consider an experiment having
k + 1 possible outcomes with p; as the probability for the ith outcome,
i =0,1,... k, E'E:__“ p; = 1. In n independent trials of this experiment, let
X; be the number of trials resulting in the ith outcome, ¢ = 0.1, ..., k. Then
the joint p.d.f. (w.r.t. counting measure) of (Xy, X1, ..., Xi) is

|
TL' oy

fﬂ(i’?[]:ila ---Jf.i:) — Py
role!---ap!

PTl ' "P?IB'[I[]JTL ---f'-??k)ﬁ

where B = {(xg, z1,...,2) 1 x;'s are integers = 0, Ef__:“ z; = n} and =
(Po. P1s -y Pic). The distribution of (Xy, X1, ..., Xi) is called the multinomial
distribution, which is an extension of the binomial distribution. In fact,
the marginal c.d.f. of each X; is the binomial distribution Bi(p;.n). Let
O ={0ecRFL: 0<p < I,Ef__:u'pi = 1}. The parametric family
{fo : 0 € O} is called the multinomial family. Let = = (x4, 21, ..., 1),
n = (log pg,logpy, ..., logpr), and h(x) = [n!/(zglzy! - 2! [ Ip(x). Then

folxo, x1,...,x) = explan™ } hiz) x € RETL (2.8)

Hence. the multinomial family is an exponential family with natural pa-
rameter 1. However, representation (2.8) does not provide an exponential
family of full rank, since there is no open set of R**! contained in the pa-
rameter space © or =. A reparameterization leads to an exponential family
with full rank. Using the fact that Z'E.: aXi = n and Ef_______“ pi = 1, we
obtain that

folzo, 21, 0 z) = exp {z.n? — C(n)Yh(z) =€ R (2.9)

where @ = (1, ...2k), . = (10g(p1/po); .-, log(pe/po)), and (1) =
—nlogpy. The n.-parameter space is R*. Hence the family of densities

given by (2.9) is a natural exponential family of full rank. 8

An important property of exponential families is that if X; and X, are
independent random vectors with p.d.f.’s in exponential families dominated
by o-finite measures vy and 5 on (21, F1) and (£, F3), respectively, then
the joint p.d.f. of (X, X3) is again in an exponential family dominated by
1 X Vg on (£ x s, 0(F; x Fz)). By induction, the result extends to the
joint distribution of any & > 2 random vectors,

The following result summarizes some other useful properties of expo-
nential families. Its proof can be found in Lehmann (1986).

Theorem 2.1. Let P be a natural exponential family given by (2.6).
(i) The random vector T has the following p.d.f. in an exponential family
dominated by some measure on (R?, BP):

exp{tn” — ((n)}g(t). teR"
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where g is a nonnegative Borel function.
(ii) If 5y is an interior point of the natural parameter space, then the m.g.f.
Wy, of Py, o T~ is finite in a neighborhood of 0 and is given by

Iu"&ﬁ'u{t:] — EKP{C(T}.{} + t) - C{ml)}

Furthermore, if f is a Borel function satisfying [ |f|dP,, < oo, then the
function

[ flw)exp{T(w)n" }h(w)dr(w)

is infinitely often differentiable in a neighborhood of ny. and the derivatives
may be computed by differentiation under the integral sign. 1

Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that
the m.g.f. of the binomial distribution Bi(p,n) is

y(t) = exp{nlog(l+ ") — nlog(l + €")}

1+ et "
B 1+ e
= (1 —p+ pe )",

since p = e”/(1 + e").

Definition 2.3 (Location-scale families). Let P be a known probability
measure on (R*,B¥) and M, be the collection of all k& x k symmetric
positive definite matrices. The family

{Px): p€RNE e M) (2.10)

is called a location-scale family (on Rk}, where
P.s)(B) =P ((B - H)E—lf?) . BeB",

(B— )22 = {(z— )X Y2 2 € B} ¢ R*, and 77 is the inverse of
the “square root” matrix X/? satisfying ¥1/2¥1/2 — 3. The parameters
and X are called the location and scale parameters. respectively. 1§

There are a number of important subfamilies of the family given by
(2.10). Let I, be the k x k identity matrix. Then {P, ., : # € RF} is called
a location family. The family {Py 5y : ¥ € My} is called a scale family. In
some cases we consider a location-scale family { P, 525,y : i € R¥ o > 0}
or {Po2r,) ¢ p € RE o > 0}, where RE = {(z,...,2) € RF: z € R}
If Xq,....X}; are i.i.d. random variables whose common distribution is in
a location-scale family on ‘R, then the joint distribution of X, ..., X is in
{Plo2ry: € RE 0> 0}
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A location-scale family can be generated as follows. Let X be a random
k-vector having a distribution P. Then the distribution of X¥X%?2 + p is
P, ). On the other hand, if X is a random k-vector whose distribution is

in the location-scale family (2.10), then the distribution XD + ¢, ¢ € R*
and DD € Mj. is also in the same family.

Let F be the c.d.f. of P. Then the c.d.f. of P, ) is F (l[::r: — ;.L)E_lfz],
r € R*. If F has a Lebesgue p.d.f. f, then the Lebesgue p.d.f. of Piuxy is
Det(S724) f ((x — p)2712), 2 € RF (Proposition 1.8).

Many families of distributions in Table 1.2 (§1.3.1) are location, scale, or
location-scale families. For example, the family of exponential distributions
E(a,#) is a location-scale family on R with location parameter a and scale
parameter f; the family of uniform distributions U(0, §) is a scale family on

R with a scale parameter . The k-dimensional normal family discussed in
Example 2.4 is a location-scale family on R”.

2.2 Statistics and Sufficiency

Let us assume now that our data set is a realization of a sample X (a
random vector) from an unknown population P on a probability space.

2.2.1 Statistics and their distributions

A measurable function of X, T(X), is called a statistic if T(X) is a known
value whenever X is known, i.e., the function T" is a known function. Sta-
tistical analyses are based on various statistics, for various purposes. Of
course, X itself is a statistic, but it is a trivial statistic. The range of a
nontrivial statistic 7'(X') is usually simpler than that of X. For example,
X may be a random n-vector and T'(X) may be a random p-vector with a
p much smaller than n. This is desired since T'(X) simplifies the original
data.

From a probabilistic point of view, the “information” within the statistic
T(X) concerning the unknown distribution of X is contained in the o-
field o(T(X)). To see this, assume that S is any other statistic for which
a(S(X)) = a(T(X)). Then by Theorem 1.6, S is a measurable function of
T and T is a measurable function of S. Thus, once the value of S (or T') is
known, so is the value of T' (or §). That is, it is not the particular values
of a statistic that contain the information, but the generated o-field of the
statistic. Values of a statistic may be important for other reasons.

Note that ¢(T(X)) C o(X) and the two o-fields are the same if and
only if 7" is one-to-one. Usually o(T(X)) simplifies a(X), i.e., a statistic
provides a “reduction” of the o-field.
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Any T(X) is a random element. If the distribution of X is unknown,
then the distribution of 7" may also be unknown, although 1" is a known
function. Finding the form of the distribution of 7" is one of the major
problems in statistical inference and decision theory. Since T is a transfor-
mation of X, tools we learn in Chapter 1 for transformations may be useful
in finding the distribution or an approximation to the distribution of T'(X).

Example 2.8. Let X,...., X,, be iid. random variables having a common
distribution P and X = (X,...,X,,). The sample mean X and sample
variance S? defined in (2.1) and (2.2), respectively, are two commonly used
statistics. Can we find the joint or the marginal distributions of X and 527
It depends on how much we know about P.

First, let us consider the moments of X and S2. Assume that P has a
finite mean denoted by p. Then

EX = .
[f P is in a parametric family {Py : 0 € O}, then EX = [xzdPy = p(f)

for some function p(-). Even if the form of g is known, (@) may still be

unknown since # is unknown. Assume now that P has a finite variance
denoted by ¢?. Then

Var(X) = o*/n,

which equals o%(#) /n for some function o?(-) if P is in a parametric family.
With a finite 0 = Var(X;), we can also obtain that

E.Sg —_— f:rg.

With a finite F
finite F|X,

Next, consider the distribution of X. If P is in a parametric family, we
can often find the distribution of X. See Example 1.17 and some exercises
in §1.6. For example, X is N{u,0?/n) if P is N(u.0%); nX has the gamma
distribution I'(n, @) if P is the exponential distribution E(0,#8). If P is not
in a parametric family, then it is usually hard to find the exact form of the
distribution of X. One can, however, use the CLT (§1.5.4) to obtain an
approximation to the distribution of X. Applying Corollary 1.2 (for the
case of k = 1), we obtain that

V(X — p) =4 N(0,0%)

and, by (1.56), the distribution of X can be approximated by N(u,o?/n),
where ;¢ and o2 are the mean and variance of P, respectively, and are
assumed to be finite.

X1|?, we can obtain E(X)? and Cov(X,S5?), and with a

4, we can obtain Var(S5?) (exercise).

Compared to X, the distribution of S is harder to obtain. Assuming
that P is N(p.0?), one can show that (n — 1)$%/0” has the chi-square
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distribution y? ; (see Example 2.18). An approximate distribution for
5% can be obtained from the approximate joint distribution of X and 52
discussed next.

Under the assumption that P is N(u,0?), it can be shown that X
and S? are independent (Example 2.18). Hence the joint distribution of
(X, S?) is the product of the marginal distributions of X and S§* given in the
previous discussion. Without the normality assumption, an approximate
joint distribution can be obtained as follows. Assume again that p = E X,
o = Var(X,), and E|X,|* are finite. Let Y; = (X; — pu, (X; — p)?), i =
1,....n. Then Y;,....Y, are i.id. random 2-vectors with EY; = (0,0%) and

variance-covariance matrix
$ ( a E(X, — p)? )
E(X,—p)»? E(X;—p)?t—-0oc* )’

Note that Y =n=! 37" | V; = (X —p, 52), where §2 = n= ! 37" (X; — ).
Applying the CLT (Corollary 1.2) to Y;'s, we obtain that

V(X — p, 8% - a%) —4 No(0, ).

Since
mn

2
Srz

n—1 [(}3 - (X - “)ﬂ

and X —a. N (the SLLN, Theorem 1.13), an application of Slutsky's
theorem (Theorem 1.11) leads to

V(X — pu, 8% —0%) —4 No(0,2).

Example 2.9 (Order statistics). Let X = (X,....,X,,) with i.i.d. random
components and let X;; be the ith ordered value of X, ..., X,,. The statis-
tics X(1y...., X(n) are called the order statistics, which is a set of very useful
statistics, in addition to the sample mean and variance in the previous ex-
ample. Suppose that X; has a c.d.f. ' having a Lebesgue p.d.f. f. Then

the joint Lebesgue p.d.f. of X(yy,..., X, is
{ n!fxy) flxe) - fla,) Ty < Tg < - < Iy

T1. L9, e, Ty ) = .
9l  Zn) 0 otherwise.

The joint Lebesgue p.d.f. of Xy and X;), 1 <1 < j < n, is
nl[F ()] F(y)=F () " 1-F(y)]" 7 fz) f(y)

: A _ z <y
i g\t ) = (i—1)Hj—i—1){n—7)!
J( | { 0 otherwise

and the Lebesgue p.d.f. of X;) is

7!

0) = i F@I T - P@ @),
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2.2.2 Sufficiency and minimal sufficiency

Having discussed the reduction of the o-field o(X) by using a statistic
T(X), we now ask whether such a reduction results in any loss of infor-
mation concerning the unknown population. If a statistic T(X) is fully as
informative as the original sample X, then statistical analyses can be done
using T'(X') which is simpler than X. The next concept describes what we
mean by fully informative.

Definition 2.4 (Sufficiency). Let X be a sample from an unknown pop-
ulation P € P, where P is a family of populations. A statistic T(X) is
said to be sufficient for P € P (or for # € © when P = {Fy: 0 € O} is a
parametric family) if and only if the conditional distribution of X given T
is known (does not depend on P or ¢#). 1

Definition 2.4 can be interpreted as follows. Whence we observe X and
compute a sufficient statistic T'(X), the original data X do not contain
any further information concerning the unknown population P (since its
conditional distribution is unrelated to P) and can be discarded. A suffi-
cient statistic T'(X) contains all information about P contained in X and
provides a reduction of the data if 7" is not one-to-one. Thus, one of the
questions raised in Example 2.1 can be answered as follows: it is enough to
just look at & and s* for the problem of measuring @ if (X, S?) is sufficient
for P (or 0).

The concept of sufficiency depends on the given family P. If T is sufhi-
cient for P € P, then T is also sufficient for P € Py, C P but not necessarily
sufficient for P € P, O P.

Example 2.10. Suppose that X = (Xy,...,X,,) and X;, ..., X, are i.i.d.
from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

fﬂ{z) — E;{l - Hjl_zf{[]__l}(:’f): z e R, f - {:” ].)

For any realization x of X, x is a sequence of n ones and zeros. Consider
the statistic T(X) = 3., X;, which is the number of ones in X. Before
showing that 7' is sufficient. we can intuitively argue that 7" contains all
information about #, since ¢ is the probability of an occurrence of a one
in x. Given T' = t (the number of ones in x), what is left in the data set
r i1s the redundant information about the positions of ¢ ones. Since the
random variables are discrete, it is not difficult to compute the conditional
distribution of X given 1" = t. Note that

P(X =z,T=t)
P(T = 1)

P(X =z|T =t) =
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and P(T =t) = (7)0(1 = 0)""I1o1. ny(t). Let z; be the ith component
of x. Ift # 5 7" @i, then P(X =2, T =1t)=0. If t =3 | x;, then

P(X =z, T=t)= ][ P(Xi = z)
1=1

= JJo= (1 —0) Loy (i)
=1

Let By = {(x1,...,zp) s a; = 0,1, >0 a; = t}. Then

1
()
is a known p.d.f. This shows that T'(X') is sufficient for # € (0, 1), according
to Definition 2.4 with the family {fy : # € (0,1)}. 1

P(X =x|T =t) =

Jrgr '[:.I’}

Finding a sufficient statistic by means of the definition is not conve-
nient since it involves guessing a statistic 7' that might be sufficient and
computing the conditional distribution of X given T" = {. For families of
populations having p.d.f.’s. there is a simple way to find a sufficient statistic.

Theorem 2.2 (The factorization theorem). Suppose that X is a sample
from P € P and P is a family of probability measures on (R", B") dom-
inated by a o-finite measure ». Then T(X) is sufficient for P € P if and
only if there are nonnegative Borel functions i (which does not depend on
P)on (R™,B™) and g, (which depends on P) on the range of 7" such that

() = 9, (T(@) h(a). 2.11)

Proof. (i) We first show that P is dominated by a probability measure
Q = >0, ¢ P, where ¢;'s are nonnegative constants with ", ¢; = 1
and P, € P. Assume that v is a finite measure (the case of o-finite v
is left as an exercise). Let Py be the family of all measures of the form
S oo, eP;, where P, € P, e; 2 0, and .7 ¢; = 1. Then, it suffices to
show that there is a @@ € Py such that QQ(A) = 0 implies P(A) = 0 for all
P £ P,. Let C be the class of events (' for which there exists P € P, such
that P(C') > 0 and dP/dv > 0 a.e. ¥ on C. Then there exists a sequence
{C;} € C such that v(C;) — supeee ¥(C). Let Cy be the union of all C;’s
and @ = >_.°, ¢;P;, where P; is the probability measure corresponding to
(';. Then Cy € C (exercise). Suppose now that Q(A) = 0. Let P € Py
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and B = {x : dP/dv > 0}. Since Q(ANCy) = 0, (AN Cy) = 0 and
P(ANCy) =0. Then P(A) = P(ANC{N B). If PLANC§N B) > 0, then
v(CoU(ANCENB)) > v(Cy), which contradicts v(Cy) = supgee v(C) since
ANCEN B and therefore Cy U (ANCEN B) isin C. Thus, P(A) = 0 for all
P e P,.

(ii) Suppose that T is sufficient for P € P. Then, for any A € B", P(A|T)
does not depend on P. For any B € o(T),

f P(AIT)dP = P(AN B)
B
and, by Fubini’s theorem.,

fﬂ P(A|IT)dQ = Q(AN B),

where () is the probability measure obtained in part (i) of the proof. This
shows that P(A|T") = Eg(14|T), the conditional expectation of 14 given
T wrt. Q. Let g.(T) be the Radon-Nikodym derivative dP/d() on the

space (R™,a(T'), Q). Since P(A|T) is measurable w.r.t. o(7"), we obtain
that (using Propositions 1.7 and 1.12)

I

P(A) [ P(A|T)dP

{

[ Eo(I4|T)dP

[ Eo(taln)g. (1)@

|

I

[ Eqlo, (11T

RypRTRE

dQ
/;l 9p {T) Edv

for any A € B™. Hence, (2.11) holds with A = dQ /dv.
(iii) Suppose that (2.11) holds. Then

dP dP [dQ
dQ  dv/ dv

=, dP
Z & d

g=

- dP
- dy

1
0,0 [ Y0, (1) as. @ 2.12)

=1



76 2. Fundamentals of Statistics

where the second equality can be proved using the same argument in the
proof of Proposition 1.7(ii). Let g,.(7") denote the right-hand side of (2.12).

Then
dP

dQ
Let A be a fixed event and P € P. The sufficiency of T" follows from

= g.(T) as. Q. (2.13)

P(A|T) = Eq(I4|T) as. P, (2.14)

where Eg(I4|T") is given in part (ii) of the proof. This is because Eq({4|T')
does not vary with P € P. Since g.(T') = 0 a.s. Q and P is dominated by
(), (2.14) is the same as

9o (T)P(AT) = g (T)EQ(1a|T) as. Q. (2.15)
Since all functions in (2.15) are Borel functions of T', (2.15) follows from
[ a.P@ITIQ = [ 5,(1)EqUATQ (2.16)

for any B € o(T'). Let B € o(T"). By Proposition 1.12(vi) and the definition
of the conditional expectation, the right-hand side of (2.16) is equal to

[ Ealg.(14I714Q = [ g,(T)1adC
B J B

By (2.13), Proposition 1.7(i), and the definition of the conditional expecta-
tion, the left-hand side of (2.16) is equal to

/E A|T) nIQ / (A|T)dP
=1/EI_4dP
- [, g

- / Ié@P{T)dQ
J B

This proves (2.16) for any B € o(T") and completes the proof. 1

If P is an exponential family with p.d.f.’s given by (2.4) and X (w) = w,
then we can apply Theorem 2.2 with gy(t) = exp{t[n(0)]” — &£(0)} and
conclude that T is a sufficient statistic for # € ©. In Example 2.10 the joint
distribution of X is in an exponential family with 7(X) = 37" | X;. Hence,
we can conclude that T is sufficient for # € (0,1) without mmputmg the
conditional distribution of X given T
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Example 2.11 (Truncation families). Let ¢(x) be a positive Borel function

on (R, B) such that ff d(x)dr < oo for any @ and b, —0c0 < a < b < oc.
Let @ = (a,b), ©® = {(a,b) € R?: a < b}, and

fo(z) = c(0)o(z) L (a,p) (),
—1
where c(f) = [ff {;;'r{:ﬂ.?)djr} . Then {fs : 0 € O}, called a truncation
family, is a parametric family dominated by the Lebesgue measure on R.
Let X,,....X,, be ii.d. random wvariables having the p.d.f. fy. Then the
joint p.d.f. of X = (X4,...,X,,) is

[ 7o(z:) = [e(O)] Ia.o0) (@) T~ sey (2y) ] | 0(0). (2.17)
j =1

where x(; is the ith ordered value of z,,...,x,. Let T(X) = (X (1), X(n)),
)

gﬂ{tltj) — [ﬂ{:g)]nf[u,:c]{tl)j[—:ﬂ:.};){:tﬂl)s and hl[.I.') - H:‘_-;-_-l q'fj{;r'i .
and Theorem 2.2, T'(X) is sufficient for # € ©. 1

Example 2.12 (Order statistics). Let X = (X,..., X,,) and Xy, ..., X,, be
1.i.d. random variables having a distribution P € P, where P is the family
of distributions on R having Lebesgue p.d.t.’s. Let X(y,..., X(,,, be the
order statistics given in Example 2.9. Note that the joint p.d.f. of X is

flay) - flzn) = flzqy) - flem).
Hence T(X) = (X(1y,.... X(5,)) is sufficient for P € P. The order statistics

can be shown to be sufficient even when P is not dominated by any o-finite
measure, but Theorem 2.2 is not applicable (see Exercise 27 in §2.6).

There are many sufficient statistics for a given family P. In fact, if
T is a sufficient statistic and T' = h(S), where h is measurable and 5 is
another statistic, then S is sufficient. This is obvious from Theorem 2.2 if

the population has a p.d.f., but it can be proved directly from Definition

2.4 (Exercise 22). For instance, in Example 2.10, (3.7, X3, >0 X;)

is sufficient for #, where m is any fixed integer between 1 and n. If T is
sufficient and T' = h(S) with a measurable h, then o(7) C o(S) and T
is more useful than S, since T provides a further reduction of the data
(or o-field) without loss of information. Is there a sufficient statistic that
provides “maximal” reduction of the data?

Before introducing the next concept., we need the following notation. If
a statement holds except for outcomes in an event A satisfying P(A) = 0
for all P € P. then we say that the statement holds a.s. P.

Definition 2.5 (Minimal sufficiency). Let T be a sufficient statistic for
P € P. T is called a minimal sufficient statistic if and only if, for any other
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statistic .S sufficient for P € P, there is a measurable function i such that

T=h(8)as. P. 1

If both T" and S are minimal sufficient statistics, then by definition there
is a one-to-one function h such that 7' = h(S) a.s. P. Hence the minimal
sufficient statistic is unique in the sense that two statistics that are one-
to-one functions of each other can be treated as one statistic. Minimal
sufficient statistics exist under weak assumptions. e.g.. the range of X is
R* and P is dominated by a o-finite measure (Bahadur, 1957).

Example 2.13. Let X,.....,X, be iid. random variables from Fjy, the

uniform distribution U(#,0 + 1), # € R. Suppose that n > 1. The joint
Lebesgue p.d.f. of (Xq,...,X,,) is

fo(z) = HIEH..HHJ(#EJ = I{:r:{ﬂ]—l,m,:nj(g); r=(x1,....,0) € R,
i=1

where ;) denotes the ith ordered value of xy,...,2,. By Theorem 2.2,

T = (X(1), X()) is sufficient for §. Note that
xy =sup{f : fo(x) >0} and mz,, =1+ inf{f: fo(z) > 0}.

If 5(X) is a statistic sufficient for #, then by Theorem 2.2, there are Borel
functions h and gy such that fa(z) = ge(S(z))h(x). For x with h(z) = 0,

zy =sup{l : go(S(z)) >0} and =z, = 1+inf{f: go(S(x)) > 0}.

Hence, there is a measurable function 1 such that T'(xz) = ¥(S(x)) when
h(x) = 0. Since h > 0 a.s. P, we conclude that T" is minimal sufficient. 8

The next result provides a useful method to find minimal sufficient
statistics.

Theorem 2.3. (i) Let P be a family of distributions and Py C P such that
a.s. Py implies a.s. P. If T is sufficient for P € P and minimal sufficient
for P € Py, then T is minimal sufficient for P € P.

(ii) Let P be a family of k+1 p.d.f.’s, fo, f1, ..., fr, w.r.t. a o-finite measure
on the range of X. Suppose that {z : fi(x) > 0} C {x : fo(x) > 0} and
that T;(X) is a statistic satisfying T;(x) = fi(z)/fo(x) when fo(z) > 0,
i=1,...k. Then T'(X) = (11,...,Tx) is minimal sufficient for P € P.
Proof. (i) If S is sufficient for P € P, then it is also sufficient for P € P,
and, therefore, T' = h(S) a.s. Py holds for a measurable function h. The
result follows from the assumption that a.s. Py implies a.s. P.

(ii) Note that fy > 0 as. P. Let go(T) = 1 and ¢;(T) = T3, i = 1, .... k.
Then fi(z) = ¢;(T(x))fo(z) as. P. By Theorem 2.2, T is sufficient for
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P € P. Suppose that S(X) is another sufficient statistic. By Theorem
2.2, there are Borel functions h and g; such that f;(x) = g:(S(x))h(x),
i =0,1,....,k. Then Ti(x) = g:(S(x))/go(S(x)) for x’s satisfying fo(z) > 0.
By Definition 2.5, T" is minimal sufficient for P € P. 1

Example 2.14. Let P = {fy; : 0 € O} be an exponential family with
p.d.f.’s fy given by (2.4) and X(w) = w. Ciuppnsg that there exists Oy =
{0g, 01, ....0,} C O such that the vectors n; = n(0;) — n(fy), i = 1, ....p, are
linearly 11111»9]3!‘311(1?111: in R?. (This is true if the family is of full rank.) We
have shown that T'(X) is sufficient for # € ©. We now show that T' is in
fact minimal sufficient. Let Py = {fy : 0 € Oy}. By Theorem 2.3(ii),

S(X) = (exp{T'(z)n] — &1 }. o exp{T'(x)n; — nt)

is minimal sufficient for 8 € O, where & = £(0;) — &£(fy). Since 5;’s are
linearly independent, there is a one-to-one measurable function 1 such that

X) = (S(X)) as. Py. Hence, T is minimal sufficient for § € 0. It
is easy to see that a.s. Py implies a.s. P. Thus, by Theorem 2.3(i), T is
minimal sufficient for # € ©. 1

The sufficiency (and minimal sufficiency) depends on the postulated
family P of populations (statistical models). Hence, it may not be a useful
concept if the proposed statistical model is wrong or at least one has some
doubts about the correctness of the proposed model. From the examples
in this section and some exercises in §2.6, one can find that for a wide
variety of models, statistics such as X in (2.1), 5% in (2.2), (X1, X{,,)) in
Example 2.11, and the order statistics in Example 2.9 are sufficient. Thus,
using these statistics for data reduction and summarization does not lose
any information when the true model is one of those models but we do not
know exactly which model is correct.

2.2.3 Complete statistics

A statistic V(X)) is said to be ancillary if its distribution does not depend
on the population P and first-order ancillary if E[V(X)] is independent
of P. A trivial ancillary statistic is the constant statistic V(X) = ¢ €
R. If V(X) is a nontrivial ancillary statistic, then o(V(X)) C o(X) is a
nontrivial o-field that does not contain any information about FP. Hence,
if S(X) is a statistic and V(S(X)) is a nontrivial ancillary statistic, it
indicates that o(S5(X)) contains a nontrivial o-field that does not contain
any information about P and, hence, the “data” S(X) may be further
reduced. A sufficient statistic 7" appears to be most successful in reducing
the data if no nonconstant function of T is ancillary or even first-order
ancillary. This leads to the following concept of completeness.
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Definition 2.6 (Completeness). A statistic T(X) is said to be complete
for P € P if and only if, for any Borel f, E[f(T")] = 0 for all P € P implies
f=10a.s.P. T is said to be boundedly complete if and only if the previous
statement holds for any bounded Borel f. #

A complete statistic is boundedly complete. If T' is complete and S =
h(T'), then S is complete. Intuitively, a complete and sufficient statistic
should be minimal sufficient, which was shown by Lehmann and Scheffé
(1950) and Bahadur (1957) (see Exercise 37). However, a minimal sufficient
statistic 1s not necessarily complete; for example, the minimal sufficient
statistic (X1, X(,,)) in Example 2.13 is not complete (Exercise 36).

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s
given by (2.6), then T(X) is complete and sufficient for n € =.

Proof. We have shown that 7' is sufficient. Suppose that there is a function
f such that E[f(T)] = 0 for all n € =Z. By Theorem 2.1(i),

/f[t} exp{tn”™ — {(n)}dA =0 for all n € =,

where A is a measure on (RP,B¥). Let 1y be an interior point of Z. Then

/ fo(t)et dX = [ f_(t)e!" dx for all n € N(nq), (2.18)

where N(ny) = {n € R? : || — ny| < €} for some € > 0. In particular,

/f+(rt)e*”5dk - ff_[t}ﬂ“?ﬁdh = c.

I[f c =0, then f =0a.e. A If ¢ >0, then ¢ f.(t)e™ and ¢~ 1 f_(t)etn
are p.d.f.’s w.r.t. A and (2.18) implies that their m.g.f.’s are the same in a
neighborhood of 0. By Proposition 1.10(ii), ¢ fy(t)etm = c=1f_(t)etm0,
Le., f=f.— f_ =0a.e. A Hence T is complete. 1

Proposition 2.1 is useful for finding a complete and sufficient statistic
when the family of distributions is an exponential family of full rank.

Example 2.15. Suppose that X, ..., X, are i.i.d. random variables having
the N(pu, o) distribution, g € R, ¢ > 0. From Example 2.6, the joint p.d.f.
of X1, ..., X, is (2m)7 "/ 2exp {T1m + Tomz — n(n)}, where Ty = 51" | X;,
Ty =~->" X2 and n = (n1,1m2) = (%, 525). Hence the family of dis-
tributions for X = (X, ..., X)) is a natural exponential family of full rank
(2 = R x (0,0¢)). By Proposition 2.1, T(X) = (11,75) is complete and
sufficient for 1. Since there is a one-to-one correspondence between n and
0 = (p.o?), T is also complete and sufficient for #. It is easy to show that
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any one-to-one measurable function of a complete and sufficient statistic is
also complete and sufficient. Thus, (X, S?) is complete and sufficient for
f, where X and S? are the sample mean and variance given by (2.1) and
(2.2), respectively.

The following examples show how to find a complete statistic for a non-
exponential family.

Example 2.16. Let X,.....,X, be iid. random variables from Fjy, the
uniform distribution U(0,6), & > 0. The largest order statistic, X, is
complete and sufficient for 6 € (0, oc). The sufficiency of X,,, follows from
the fact that the joint Lebesgue p.d.f. of Xy,..., X, is 07" g)(2(,,). From
Example 2.9, X, has the Lebesgue p.d.f. (na"~1/0")1 . (z) on R. Let

f be a Borel function such that E[f(X(,))] = 0 for all # > 0. Then

e
[ f(z)x"tdx =0 forall @ >0,
Jo
which implies

[ flx)z"'dx =0 forall Ac Bio.5)
J A

(exercise). This implies that f(z)z™ ! = 0 a.e. Lebesgue measure and,
hence, f(x) = 0 a.e. Lebesgue measure. Therefore, X, is complete and
sufficient for # € (0,00). B

Example 2.17. In Example 2.12, we showed that the order statistics
T(X) = (X, .... X(ny) of Li.d. random variables X,. ..., X, is sufficient
for P € P, where P is the family of distributions on R having Lebesgue
p.d.f.’s. We now show that T(X') is also complete for P € P. Let Py be
the family of Lebesgue p.d.f.’s of the form

flz) = C(0y,....0,) exp{—z°" + Oz + O2° + - - - + 0, 2"},

where f; € R and C(f, ..., #,,) is a normalizing constant such that [ f(x)dx
= 1. Then Py C P and Py is an exponential family of full rank. Note that
the joint distribution of X = (X,,.... X,) is also in an exponential family of
full rank. Thus, by Proposition 2.1, U = (Uy, ..., U, ) is a complete statistic
for P € Py, where U; = E?___:l Xf Since a.s. Py implies a.s. P, U(X) is
also complete for P € P.

The result follows if we can show that there is a one-to-one correspon-
dence between T(X) and U(X). Let Vi = 370 | X;, Vo = >, Xi X,
Vi = Ei{j{k XXX, Vi, = Xy -+ X, From the identities

Up — ViUp_1 + VaUg_o — -+ (=1)* Wi Uy + (-1)*kVi., k=1,...n,
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there is a one-to-one correspondence between U (X ) and V(X )= (Vi,..., V,,).
From the identity

(t=X1) - (t = Xp) = t" = Vit" L4 Vot™ 2 — oo 4 (=1)"V,,

there is a one-to-one correspondence between V(X) and T'(X). This com-
pletes the proof and, hence, T'(X) is sufficient and complete for P € P. In
fact, both U(X) and V(X) are sufficient and complete for P € P. 1

The relationship between an ancillary statistic and a complete and suf-
ficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V' and T be two statistics of X from
a population P € P. If V is ancillary and 7" is boundedly complete and
sufficient for P € P, then V' and T are independent w.r.t. any P € P.
Proof. Let B be an event on the range of V. Since V is ancillary,
P(V~Y(B)) is a constant. Since T is sufficient, E[I(V)|T] is a func-
tion of T' (independent of P). Since E{E[Ip(V)|T] — P(V~(B))} = 0
for all P € P, P(V Y(B)|T) = E[Ig(V)|T] = P(V~Y(B)) a.s. P, by the
l]D‘llllde completeness of 7. Let A be an event on the range of T Then.,
P(T~HA)NV~(B)) = E{EILA(T)Ip(V)[T]} = E{L.(T)E[Ip(V)|T]} =
E{IA(TYP(V-YB))} = P(T Y A)P(V~1(B)). Hence T and V are inde-
pendent w.r.t. :-111]; PeP. 1

Basu's theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X, ..., X, are i.i.d. random variables having
the Ny, o?) distribution, with u € R and a known o > (). It can be easily
shown that the family {f‘s (pt,0%) 1 p € R} is an exponential family of full
rank with natural parameter 5 = pu/o?. By Proposition 2.1, the sample
mean X in (2.1) is complete and '-;ufﬁment for n (and p). Let S? be the
sample variance given by (2.2). Since §? = (n—1)"1 3" | (Z; — Z)?, where
Z;=X;—pisN(0,0%)and Z = n= 'Y | Z;, S% is an ancillary statistic (o2
is known). By Basu’s theorem, X and S? are independent w.r.t. N(u, o?)
with 1 € R. Since o2 is arbitrary, X and S? are independent w.r.t. N (. o?)
for any g € R and a2 > 0.

Using the independence of X and S?. we now show that (n — 1)S%/o?
has the chi-square distribution y2_,. Note that

X —p\° (n—1)82 NS A%
n( - )4— = _Z - .

From the properties of the normal distributions, n(X — ;1}2_/:72 has the chi-
square distribution y% with the m.g.f. (1 —2¢)7%2 and Y1 (X; — u)?/o?
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has the chi-square distribution x> with the m.g.f. (1 -2t)""/2 ¢t < 1/2. By
the independence of X and S2, the m.g.f. of (n —1)5% /07 is

(1—2t) ™2 /(1 —2t)" 12 = (1 —2¢t)"(n /2

for t < 1/2. This is the m.g.f. of the chi-square distribution y2_; and,
therefore, the result follows. 1§

2.3 Statistical Decision Theory

In this section we describe some basic elements in statistical decision theory.
More developments are given in later chapters.

2.3.1 Decision rules, loss functions, and risks

Let X be a sample from a population P € P. A statistical decision is an
action that we take after we observe X, for example. a conclusion about P
or a characteristic of P. Throughout this section we use A to denote the
set of allowable actions. Let JF, be a o-field on A. Then the measurable
space (A, F,) is called the action space. Let X be the range of X and Fy
be a o-field on X. A decision rule is a measurable function (a statistic) T
from (X, Fx) to (A, F,). If a decision rule 7" is chosen, then we take the
action T'(X) € A whence X is observed.

The construction or selection of decision rules cannot be done without
any criterion about the performance of decision rules. In statistical decison
theory, we set a criterion using a loss function L, which is a function from
P x A to [0,00) and is Borel on (A, F,) for each fixed P € P. If X = x is
observed and our decision rule is 7', then our “loss” (in making a decision)
is L(P,T(x)). The average loss for the decision rule T', which is called the
risk of using T, is defined to be

Ry (P) = E[L(P,T(X))] = /l L(P,T(x))dP(z). (2.19)

The loss and risk functions are denoted by L(#,a) and Rp(8) if P is a
parametric family indexed by #. A decision rule with small loss is preferred.

But it is difficult to compare L(P,T(X)) and L(P,T5(X)) for two decision

riules 77 and 7%, since both of them are random. For this reason, the
risk function (2.19) is introduced and we compare two decision rules by
comparing their risks. A rule T3 is as good as another rule 75 if and only if

Ry (P) < Ry, (P) forany Pe P, (2.20)

and is better than 75 if and only if (2.20) holds and Ry (P) < Ry, (P) for
at least one P € P. Two decision rules 17 and 15 are equivalent if and only
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if Ry (P) = Ry, (P) for all P € P. If there is a decision rule T\, which is as
cood as any other rule in 3. a class of allowable decision rules, then T is
said to be S-optimal (or optimal if 3 contains all possible rules).

Example 2.19. Consider the measurement problem in Example 2.1. Sup-
pose that we need a decision on the value of # € R, based on the sample
X = (X1,...,X,). If © is all possible values of 8, then it is reasonable to
consider the action space (&, F,) = (0©,Bg). An example of a decision rule
is T(X) = X. the sample mean defined by (2.1). A common loss function
in this problem is the squared error loss L(P,a) = (@ — a)?, a € A. Then
the loss for the decision rule X is the squared deviation between X and 6.
Assuming that the population has mean i and variance o2 < oo, we obtain
the following risk function for X:

Ry (P) = E(f — X)*

= (0 - EX)*+ E(EX — X)*
= (0 — EX)* + Var(X) (2.21)
= (pu—0)*+ % (2.22)

where result (2.22) follows from the results for the moments of X in Exam-
ple 2.8. If # is in fact the mean of the population, then the first term on
the right-hand side of (2.22) is 0 and the risk is an increasing function of
the population variance o2 and a decreasing function of the sample size n.

Consider another decision rule T7(X) = (X, + X,))/2. However,
Ry, (P) does not have an explicit form if there is no further assumption on
the population P. Suppose that P € P. Then, for some P, X (or 1)) is
better than T (or X) (exercise), whereas for some P, neither X nor T is
better than the other.

A different loss function may also be considered. For example, L( P, a) =
|0 — al|, which is called the absolute error loss. However, R (P) and Ry, (P)
do not have explicit forms unless P is of some specific form.

The problem in Example 2.19 is a special case of a general problem called
estimation, in which the action space is the set of all possible values of a
population characteristic ¥ to be estimated. In an estimation problem, a
decision rule T is called an estimator and result (2.21) holds with § = ¢ and
X replaced by any estimator with a finite variance. The following example
describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, Py € P, and P; =
{PeP:P &Py} Ahypothesis testing problem can be formulated as that
of deciding which of these two statements is true:

Hy: P e Py Versis Hy: PeP. (2.23)
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Here, Hy is called the null hypothesis and H, is called the alternative hy-
pothesis. The action space for this problem contains only two elements. i.e..
A = {0,1}, where 0 is the action of accepting H, and 1 is the action of
rejecting Hy. A decision rule is called a test. Since a test T'(X) is a function

from X to {0, 1}, T(X) must have the form I~(X), where C € Fy is called
the rejection region or critical region for testing H,.

A simple loss function for this problem is the 0-1 loss: L(P,a) = 0
if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P,j) =0 for P € P; and L(P, j) = 1 otherwise, j = 0. 1. Under this loss,
the risk is

P(I(X)=1)=P(Xe€C) PecP

RT(P}={ P(T{X)=[])=P{X EG) PePr.

See Figure 2.2 on page 97 for examples of graphs of Ry (0) for some T and
P in a parametric family.
The 0-1 loss implies that the loss for two types of incorrect decisions

(accepting Hy when P € P; and rejecting Hy when P € Py) are the same.
In some cases one might assume unequal losses: L(P,j) = 0 for P € P;,

L(P,0) = ¢y when P € P, and L(P,1) = ¢; when P € Py. &

In the following example the decision problem is neither an estimation
nor a testing problem.

Example 2.21. A hazardous toxic waste site requires clean-up when the
true chemical concentration # in the contaminated soil is higher than a given
level @y = 0. Because of the limitation in resources, we would like to spend
our money and efforts more in those areas that pose high risk to public
health. In a particular area where soil samples are obtained, we would
like to take one of these three actions: a complete clean-up (a,), a partial
clean-up (as), and no clean-up (az). Then A = {ay,as,a3}. Suppose that
the cost for a complete clean-up is ¢; and for a partial clean-up is cs < ¢y
the risk to public health is e3(0 — 0y) if 0 > 0y and 0 if § < 0y; a complete
clean-up can reduce the toxic concentration to a amount < @, whereas a
partial clean-up can only reduce a fixed amount of the toxic concentration,
i.e., the chemical concentration becomes # —t after a partial clean-up, where
t is a known constant. Then the loss function is given by

L(#,a) 5] e (L3
< by 1 & 0
Oy <0 <0+t | & ca3 (60 — Op)
0 =0+t c1 cotes(f—0—t) e3(0 — )

The risk function can be calculated once the decision rule is specified. We
discuss this example again in Chapter 4. 1



26 2. Fundamentals of Statistics

Sometimes it is useful to use another tyvpe of decision rules, called the
randomized decision rules. A randomized decision rule is a function & on
X x F, such that, for every x € X, 8(x, -) is a probability measure on (A, F,)
and, for every A € F,, §(-, A) is a Borel function. A nonrandomized deci-
sion rule T'(X) previously discussed can be viewed as a special randomized
decision rule with é(x, A) = I4(T(z)). If a randomized rule ¢ is used, then
we obtain a probability measure é(z, -) on the action space when X = x is
observed. If one wants to choose an action in A, then one needs to simulate
a pseudorandom element of A according to 6(x,-). Thus, an alternative
way to describe a randomized rule is to specify the method of simulating
the action from A for each x € X.

The loss function for a randomized rule é is defined as

L(P, 6 x) = [LI[P, a)dd(x,a), (2.24)

*u}n

which reduces to the same loss function we discussed when & is a nonran-
domized rule. The risk of a randomized rule & is then

Rﬂﬂ:ﬁ[L{PﬁJ}]:fx[L(P,ﬂ)dé(m,a)dp{x).

Examples of using randomized rules are given in §2.3.2, Chapters 4 and 6.

2.3.2 Admissibility and optimality

Consider a given decision problem with a given loss L( P, a).

Definition 2.7 (Admissibility). Let § be a class of decision rules (ran-
domized or nonrandomized). A decision rule 7' € 3 is called S-admissible

(or admissible if & contains all possible rules) if there does not exist any
S € 3 that is better than 7' (in terms of the risk). &

If a decision rule T' is inadmissible. then there exists a rule better than 7'.
Thus, 1" should not be used in principle. However, an admissible decision
rile is not necessarily good. For example, in an estimation problem a silly
estimator T'(X') = a constant may be admissible (Exercise 58).

The relationship between the admissibility and optimality defined in
62.3.1 can be described as follows. If T', is S-optimal, then it is S-admissible;
it T, is G-optimal and Ty is S-admissible, then Tj is also S-optimal and is
equivalent to T.; if there are two G-admissible rules that are not equivalent.
then there does not exist any S-optimal rule.

Suppose that we have a sufficient statistic T'(X) for P € P. Intuitively,
our decision rule should be a function of 7', based on the discussion in
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52.2.2. This is not true in general, but the following result indicates that
this is true if randomized decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of R*. Let T(X) be a
sufficient statistic for P € P and let &, be a decision rule. Then

81(t, A) = E[5o(X, A)|T = 1], (2.25)

which is a randomized decision rule depending only on T, is equivalent to
oo if Rs,(P) < oo for any P € P.

Proof. Note that 8; defined by (2.25) is a decision rule since 8; does not
depend on the unknown P by the sufficiency of 7. From (2.24) and (2.25),

Rs,(P) = E[L(P,é1, X))]
- E{/L(P,a}dél{x,a}}

i)

- E {E [ [ L(P.a)déy(X. a)

Ja

= E { / L(P, a)dé[]{}f,a}}
= Rs,(P). 0

7}

Note that Proposition 2.2 does not imply that &, is inadmissible. Also.
if &y is a nonrandomized rule,

b1(t, A) = E[I4(80(X))[T = t] = P(éo(X) € A|T = 1)

is still a randomized rule. Hence, Proposition 2.2 does not apply to situa-
tions where randomized rules are not allowed.

The following result tells nus when nonrandomized rules are all we need
and when decision rules that are not functions of sufficient statistics are
inadmissible. Recall from calculus that a subset A of R* is convez if and
only iftx + (1 —t)y € Aforany x € A, y € A, and t € [0, 1]; a function f
from a convex A C R*¥ to R is convex if and only if

fllz+ (1 —t)y) <tf(z)+(1—-t)fly), € Aye A tel01]; (2.26)

and f is strictly convez if and only if (2.26) holds with < replaced by the
strictly inequality <.

Theorem 2.5. Suppose that A is a convex subset of R¥ and that for any
P e P, L(FP, a) is a convex function of a.

(i) Let & be a randomized rule satisfying [ ||al|dé(z.a) < oo for any
r € X and let Ty (z) = [ adé(x.a). Then L(P,Ti(z)) < L(P,é,z) (or
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L(P,T\(xz)) < L(P,é x) if L is strictly convex in a) for any x € X and
PeP.

(ii) (Rao-Blackwell’s theorem). Let T' be a sufficient statistic for P € P,
T, € R* be a nonrandomized rule satisfying FE \Ts|| < oo, and Ty =
E[Ty(X)|T = (E[To(X)|T], ..., E[Tor(X)|T]), where Tj; is the ith com-
ponent of 7. Then Ry (P) < Rp,(P) for any P € P. If L is strictly

convex in a and T} is not sufficient for P, then Tj is inadmissible. 1

The proof of Theorem 2.5 is an application of Jensen’s inequality (Ex-
ercise 46 in §1.6) and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.
However, usually there are still too many rules left after the elimination
of some rules according to admissibility and sufficiency. Although one is
typically interested in a G-optimal rule, frequently it does not exist, if 3§ is
either too large or too small. The following examples are illustrations.

Example 2.22. Let X, ..., X, beii.d. random variables from a population
P € P which is the family of populations having finite mean ;¢ and variance
a?. Consider the estimation of u (A = R) under the squared error loss. It
can be shown that if we let 3 be the class of all possible estimators, then
there is no S-optimal rule (exercise). Next, let 37 be the class of all linear
functions in X = (X,.... X,,), Le, T(X) = > | ¢; X; with known ¢; € R,

i = 1,...,n. It follows from (2.21) and the discussion after Example 2.19

that )
Ry(P) = u? (Z C; — 1) + o° er (2.27)

We now show that there does not exist T, = >_"" | ¢fX; such that Ry (P)
< Ry(P) for any P € P and T € Gy. If there is such a 7, then (c],..., ),
is a minimum of the function of (¢y, ..., ¢, ) on the right-hand side of (2.27).
Then ¢, ..., ¢& must be the same and equal to p2 /(0% +np?), which depends
on P. Hence T, is not a statistic. This shows that there is no $3;-optimal
rile.

Consider now a subclass 335 C 3 with ¢;'s satistving Z?_ﬂ c¢; = 1. From
(2.27), Rp(P) = 02> i if T' € J9. Minimizing 023" | ¢F subject to
S" ¢ = 1 leads to an optimal solution of ¢; = n~! for all i. Thus, the

sample mean X is g-optimal.

There may not be any optimal rule if we consider a small class of decision
riules. For example, if 33 contains all the rules in 35 except X. then one
can show that there is no Gy-optimal rule. B

Example 2.23. Assume that the sample X has the binomial distribution
Bi(0.n) with an unknown # € (0, 1) and a fixed integer n > 1. Consider the
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hypothesis testing problem described in Example 2.20 with Hy : 0 € (0, ]
versus Hy : 0 € (0y,1), where 8 € (0,1) is a fixed value. Suppose that we
are only interested in the following class of nonrandomized decision rules:
S={T;:7=0,1,....,n—1}, where T;(X) = I;;,, 3 (X). From Example
2.20, the risk function for 7% under the 0-1 loss is

Ry, (0) = P(X > j)(g,0,)(0) + P(X < j)L9,1)(0).
For any integers K and j, 0 <k <j <n—1,

—Plk<X<j)<0 0<d<d,

RTj[gj—RTktg)z{ Plk<X<j)=0 Oy < 0 < 1.

Hence, neither 7% nor T} is better than the other. This shows that every
T is $-admissible and, thus, there is no 3-optimal rule. 8

In view of the fact that an optimal rule often does not exist, statisticians
adopt the following two approaches to choose a decision rule. The first
approach is to define a class 3 of decision rules that have some desirable
properties (statistical and/or nonstatistical) and then try to find the best
riule in 3. In Example 2.22, for instance. any estimator 7' in 35 has the
property that 7" is linear in X and E[T(X)] = p. In a general estimation
problem. we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an
estimator T'(X) of a real-valued parameter ¢ of the unknown population is
defined to be byp(P) = E[T(X)] — ¢ (which is denoted by br(#) if P is in a
parametric family indexed by #). An estimator T'(X) is said to be unbiased

for ¢ if and only if by(P) = 0 for any P P. 1

Thus, 35 in Example 2.22 is the class of unbiased estimators linear in
X. In Chapter 3. we discuss how to find a $3-optimal estimator when 3 is
the class of unbiased estimators or unbiased estimators linear in X.

Another class of decision rules can be defined after we introduce the
concept of invariance. In a problem where the distribution of X is in a
location-scale family P on R*, we often consider location-scale transfor-
mations of data X of the form XA + ¢, where ¢ € C € RF and A € T,
a class of invertible £ x £ matrices. We assume that if A; € T, i = 1,2,
then A;l c 7T and A1As € T, and that if ¢; € C, 1 = 1.2, then —¢; € C
and c; A + co € C for any A € 7. The location-scale family P is said to be
invariant if Px 44.. the distribution of XA + ¢, is in P for any ¢ € C and

AeT.

Definition 2.9 (Location-scale invariance). Let P be a location-scale fam-
ily invariant for given C and 7.
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(i) A decision problem is said to be invariant if and only if the loss L( P, a)
is invariant in the sense that, for every A € T, every ¢ € C, and every a € A,
there exists a unique g. _4(a) € A such that L(Px,a) = L (Px A+c, geala)).
(ii) A decision rule T'(x) is said to be invariant if and only if, for every
AeT, every ceC, and every x € X, T'(zA + ¢) = g a(T(x)). W

Invariance means that our decision is not affected by location-scale
transformations of data. In Chapters 4 and 6, we discuss the problem
of finding a S-optimal rule when 3 is a class of invariant decision rules.

Example 2.24. Let X = (X, ..., X,,) with i.i.d. components from a pop-
ulation in a location family P = {P, : ¢ € R}. Consider the location
transformation g(X) = X + ¢Ji, where ¢ € R and .J; is the k-vector whose
components are all equal to 1. P is invariant under the transformation g
with 7 = {I;} and C = {e¢Jy : ¢ € R}. For estimating p under the loss
L, a) = L(p—a), where L(-) is a nonnegative Borel function, the decision
problem is invariant with g. a(a) = g.(a) = a + ¢. A decision rule T is
invariant if and only if T(x + ¢.J},) = T'(x) + ¢ for every x € R¥ and ¢ € R.
An example of an invariant decision rule is T'(x) = 27 for some | € R* with
Jil™ = 1. Note that T'(x) = xzI™ with J,I™ = 1 is in the class 39 defined in
Example 2.22. 1

The second approach to finding a good decision rule is to consider some
characteristic Ry of Ryp(P), for a given decision rule T, and then minimize
Ry over T' € 3. The following are two popular ways to carry out this idea.
The first one is to consider an average of Ry (P) over P € P:

o (IT) = /ﬂ Ry (P)dII(P),

where I is a known probability measure on (P, Fp) with an appropriate
o-field Fp. r.(II) is called the Bayes risk of T wr.t. I[I. If T, € 3 and

ro (II) < r (L) for any T € B, then T}, is called a 3-Bayes rule w.r.t. II.
The second method is to consider the worst situation: if T, € 5% and

sup Ry (P) < sup Ry(P)
PeP PeP

for any T' € 3, then T. is called a S-minimaz rule. Bayes and minimax
rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayves rule or a minimax rule in a
parametric problem where P = Py for a # € R*. Consider the special case
of k =1 and L(#,a) = (6 — a)?, the squared error loss. Note that

o (I1) = L E[0 — T(X)J2dI1(0),
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which is equivalent to E[@ — T'(X)]*., where 8 is a random variable having
the distribution Il and given @ = ), the conditional distribution of X is
FPy. Then, the problem can be viewed as a prediction problem for € using
functions of X. Using the result in Example 1.19, the best predictor is
E(0|X), which is the 3-Bayes rule w.r.t. Il with 3 being the class of rules
T(X) satisfying E[T(X)]? < oc for any 6.

As a more specific example, let X = (X, ..., X)) with i.i.d. components
having the N(pu, 0%) distribution with an unknown g = # € R and a known
a?, and let II be the N(ug, of) distribution with known gy and ¢7. Then
the conditional distribution of 8 given X = x is N(p.(x), ¢?) with
o° nog  _ 5 oo’

pelr) = — — o + — — T and = , , (2.28)
nog + o2 nog + o2 nog + o2

(exercise). Then E(8|X) = p.(X) is the Bayes rule w.r.t. Il = N(uq,03).

In this special case we can show that the sample mean X is 3-minimax
with & being the collection of all decision rules. For any decision rule T,

sup Ry (0) Ef Ry (0)dII(#)
HER "

> fﬁ R,.. (6)dI1()
= E{[0 — u.(X)]?}

= E{E{[0 - n.(X)]’|X}}
= Ej(ff"")

2
=.f1"

where . (X) is the Bayes rule given in (2.28) and ¢? is also given in (2.28).

Since this result is true for any o3 > 0 and ¢* — 0%/n as g7 — oo,

2

sup Ry (0) > 7 = sup Ry ().

=R n HeR

where the equality holds because the risk of X under the squared error loss
is, by (2.22), 0*/n and independent of # = p. Thus, X is minimax.

A minimax rule in a general case may be difficult to obtain. It can be
seen that if both ;1 and ¢? are unknown in the previous discussion, then

sup Ry (0) = oo, (2.29)
HER % (0,00)

where 6 = (i, 0?). Hence X cannot be minimax unless (2.29) holds with
X replaced by any decision rule T, in which case minimaxity becomes
meaningless. |
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2.4 Statistical Inference

The loss function plays a crucial role in statistical decision theory. Loss
functions can be obtained from a utility analysis (Berger, 1985), but in
many problems they have to be determined subjectively. In statistical in-
ference, we make an inference about the unknown population based on
the sample X and inference procedures without using any loss function, al-
though any inference procedure can be cast in decision-theoretic terms as
a decision rule.

There are three main types of inference procedures: point estimators,
hypothesis tests, and confidence sets.

2.4.1 Point estimators

The problem of estimating an unknown parameter related to the unknown
population is introduced in Example 2.19 and the discussion after Example
2.19 as a special statistical decision problem. In statistical inference, how-
ever, estimators of parameters are derived based on some principle (such as
the unbiasedness, invariance, sufficiency, substitution principle, likelihood
principle, Bayesian principle, etc.), not based on a loss or risk function.
Since confidence sets are sometimes also called inferval estimators or set
estimators, estimators of parameters are called point estimators.

In Chapters 3 through 5. we consider how to derive a “good”™ point esti-
mator based on some principle. Here we focus on how to assess performance
of point estimators.

Let ¥ € © € R be a parameter to be estimated, which is a function of
the unknown population P or # if P is in a parametric family. An estimator
is a statistic with range ©. First, one has to realize that any estimator T(X)
of ¥ is subject to an estimation error T'(x) — ¢ when we observe X = z.
This is not just because T'(X) is random. In some problems T'(x) never
equals ¥. A trivial example is when T'(X) has a continuous c.d.f. so that
P(T(X) =) = 0. As a nontrivial example, let X;. ..., X, be i.i.d. binary
random variables (also called Bernoulli variables) with P(X; = 1) = p and
P(X; = 0) = 1 — p. The sample mean X is shown to be a good estimator
of ¥ = p in later chapters, but # never equals ¥ if ¢ is not one of j/n,
7 = 0,1,....,n. Thus, we cannot assess the performance of T(X) by the
values of T'(x) with particular z's and it is also not worthwhile to do so.

The bias by(P) and unbiasedness of a point estimator 7'(X) is defined
in Definition 2.8. Unbiasedness of T'(X') means that the mean of T(X) is
equal to ¥. An unbiased estimator T'(X) can be viewed as an estimator
without “systematic” error, since, on the average, it does not overestimate
(i.e., by (P) > 0) or underestimate (i.e., by (FP) < 0). However, an unbiased
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estimator T'(X') may have large positive and negative errors T'(z) -, z € X,
although these errors cancel each other in the calculation of the bias, which
is the average [[T'(x) — J]dPx(x).

Hence, for an unbiased estimator 7(X), it is desired that the values of
T'(x) be highly concentrated around ¥/. The variance of T'(X) is commonly

used as a measure of the dispersion of T(X). The mean squared error (mse)
of T'(X) as an estimator of ¢ is defined to be

msey(P) = E[T(X) — ¥]? = [bp(P)]* + Var(T(X)). (2.30)

which is denoted by msep(#) if P is in a parametric family. msep(P) is
equal to the variance Var(T'(X)) if and only if T'(X) is unbiased. Note
that the mse is simply the risk of T' in statistical decision theory under the
squared error loss.

In addition to the variance and the mse, the following are other measures
of dispersion that are often used in point estimation problems. The first one
is the mean absolute error of an estimator T'(X') defined to be E|T(X) — /.
The second one is the probability of falling outside a stated distance of v/,
e, P(|T(X) — 9| = €) with a fixed € > 0. Again, these two measures of
dispersion are risk functions in statistical decision theory with loss functions
[V — a| and [ ~)(|? — al). respectively.

For the bias, variance, mse, and mean absolute error, we have implicitly
assumed that certain moments of T'(X') exist. On the other hand, the dis-
persion measure P(|T(X)—¢| = ¢) depends on the choice of €. It is possible
that some estimators are good in terms of one measure of dispersion, but
not in terms of other measures of dispersion. The mse, which is a function
of bias and variance according to (2.30), is mathematically easy to handle
and, hence, is used the most often in the literature. In this book, we use
the mse to assess and compare point estimators unless otherwise stated.

Examples 2.19 and 2.22 provide some examples of estimators and their
biases, variances, and mse’s. The following are two more examples.

Example 2.26. Consider the life-time testing problem in Example 2.2. Let
Xi.....X,, beiid. from an unknown c.d.f. F'. Suppose that the parameter
of interest is ¥ = 1 — F(t) for a fixed ¢ = 0. If F'is not in a parametric
family, then a nonparametric estimator of F(t) is the empirical c.d.f.

TL

Fo(t) = ~ Z I_wy(Xi) teR. (2.31)

Since Ii_oc 4)(X1)...o; {(—oc,#)(X;) are ii.d. binary random variables with
P(I(—x.4(X;) = 1) = F(t), the random variable nF,,(f) has the binomial
distribution Bi(F(t),n). Consequently, F},(f) is an unbiased estimator of
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F(t) and Var(F,(t)) = msep ) (P) = F(t)[1 — F(t)]/n. Since any linear
combination of unbiased estimators is unbiased for the same linear com-
bination of the parameters (by the linearity of expectations), an unbiased
estimator of ¢ is U(X) = 1 — F},(t), which has the same variance and mse

F,.(t).

The estimator U(X) = 1 — F,(t) can be improved in terms of the
mse if there is further information about F. Suppose that F' is the c.d.f.
of the exponential distribution E(0.f) with an unknown # > 0. Then
) = e~ */% From §2.2.2. the sample mean X is sufficient for > 0. Since the
squared error loss is strictly convex, an application of Theorem 2.5(ii) (Rao-
Blackwell’s theorem) shows that the estimator T(X) = E[1 — F,(t)|X].
which is also unbiased, is better than U(X) in terms of the mse. Figure
2.1 shows graphs of the mse’s of U(X) and T'(X), as functions of #, in the
special case of n = 10, t = 2, and F(x) = (1 — ﬂ_IfE}Im__mj{ﬂ:). i

Example 2.27. Consider the sample survey problem in Example 2.3 wﬂ:h a
constant selection probability p(s) and univariate ;. Let ¢ =Y = ZE 4 Yis

the population total. We now show that the estimator Y = :: D ics Vi is

an unbiased estimator of Y. Let a; = 1 if ¢ € s and a; = 0 otherwise. Since
p(s) is constant, E(a;) = P(a; = 1) = n/N and

- N & N & al
E(Y:] = K (ﬂ, Zﬂlyi) = EZ?.EE(!'IT::] = Zyl =Y.

1=1
Note that

Var(a;) = E(a;) — [E(a;)]* = . (1 - E)
and for i # j,

nin—-1) n?
N(N-1) Nz

Cov(a;,a;) = Pla; = 1,a; = 1) — E(a;)E(a;) =

Hence, the variance or the mse of YV is

- N? ol
V&I‘{:Y:l = n—jl[e’r Z (L; 15
=1

N*®
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Figure 2.1: mse’s of U(X) and T(X) in Example 2.26

2.4.2 Hypothesis tests

The basic elements of a hvpothesis testing problem are described in Exam-
ple 2.20. In statistical inference, tests for a hypothesis are derived based on
some principles similar to those given in an estimation problem. Chapter
6 is devoted to deriving tests for various tvpes of hyvpotheses. Several key
ideas are discussed here.

To test the hypotheses Hy versus H; given in (2.23), there are only two
types of statistical errors we may commit: rejecting Hy when Hj is true
(called the type I error) and accepting Hy when Hj is wrong (called the
type II error). In statistical inference, a test T', which is a statistic from X
to {0, 1}, is assessed by the probabilities of making two types of errors:

ap(P)=P(T(X)=1) PeP (2.32)
and
1 —ap(P) = P(T(X)=0) PeP, (2.33)

which are denoted by ar(f) and 1 — ap(#) if P is in a parametric family
indexed by #. Note that these are risks of T" under the 0-1 loss in statistical
decision theory. However, an optimal decision rule (test) does not exist even
for a very simple problem with a very simple class of tests (Example 2.23).
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That is, error probabilities in (2.32) and (2.33) cannot be minimized simul-
taneously. Furthermore, these two error probabilities cannot be controlled
simultaneously when we only have a sample of a fixed size.

Therefore, a common approach to finding an “optimal” test is to assign
a small bound a to one of the error probabilities, say ar(P), P € Py, and
then to attempt to minimize the other error probability 1 —ap(P), P € Py,

subject to
sup ap(P) < a. (2.34)
PePy
The bound « is called the level of significance. The left-hand side of (2.34)
is called the size of the test T. Note that the level of significance should
be positive, otherwise no test satisfies (2.34) except the silly test T(X) = 0

a.s. P.

Example 2.28. Let X, ..., X, be i.i.d. from the N(u, 02) distribution with
an unknown g € R and a known o°. Consider the hypotheses

Hy o< g Versus Hy e > pg.

where pi is a fixed constant. Since the sample mean X is sufficient for
i € R, it is reasonable to consider the following class of tests: T.(X) =
I(.00y(X), ie., Hy is rejected (accepted) if X > ¢ (X < ¢), where ¢ € R is
a fixed constant. Let ® be the c.d.f. of N(0,1). Then, by the property of
the normal distributions.

(2.35)
a

ar, (1) = P(T(X) = 1) =1 - & (‘/ﬁ(ﬁ - “)) -

Figure 2.2 provides an example of a graph of two types of error probabilities,
with pg = 0. Since ®(t) is an increasing function of ¢,

(v/ﬁ{c - nu)) |

sup ar (pu) =1—@

PeP, a

In fact. it is also true that

sup [1 —agp ()] = ®
PePy

(\/ﬁ{ﬂ — Hu)) |

a

If we would like to use an « as the level of significance, then the most
effective way is to choose a ¢, (a test T,. (X)) such that

a = sup ag, (u),
PePy

in which case ¢, must satisfy

1_ & («\/ﬁ(:zﬂ — ;.Lﬂ)) o

o
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Figure 2.2: Error probabilities in Example 2.28

e, ¢, = o® 1 —a)/y/n+ py. In Chapter 6, it is shown that for any test
T(X) satisfying (2.34),

1 —ap(p) = 1—ar, (u), po= pg.

The choice of a level of significance « is usually somewhat subjective.
In most applications there is no precise limit to the size of T" that can be
tolerated. Standard values, such as (.10, 0.05. or 0.01 are often used for
convenience.

For most tests satisfving (2.34), a small « leads to a “small” rejection
region {x : T'(z) = 1}. It is good practice to determine not only whether
Hy is rejected or accepted for a given o and a given test 1", but also the
smallest possible level of significance & at which Hy would be rejected for
the computed T'(x). Such an ¢, which depends on x only and is a statistic,
is called the p-value for T.

Example 2.29. Consider the problem in Example 2.28. Let us calculate
the p-value for 7. . Note that

=1 (\/ﬁ(ﬂr.;— Hn}) 1@ (\/ﬁ'{f “'Hu))

o
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if and only if £ > ¢, (or T (x) = 1). Hence

a

| — @ (ﬁ{s: - ““)) —inf{la € (0,1): T, (z) = 1} = &(x)
is the p-value for T, . It turns out that T, (x) = I o (&(xz)). 8

With the additional information provided by p-values, using p-values is
typically more appropriate than using fixed-level tests in a scientific prob-
lem. However, a fixed level of significance is unavoidable when acceptance
or rejection of H; implies an imminent concrete decision. For more discus-
sions about p-values, see Lehmann (1986) and Weerahandi (1995).

In Example 2.28, the equality in (2.34) can always be achieved by a
suitable choice of ¢. This is, however, not true in general. In Example 2.23,
for instance, it is possible to find an « such that

sup P(T;(X) =1)# «a
0<8<fg

for all 75’s. In such cases we may consider randomized tests, which are
introduced next.

Recall that a randomized decision rule is a probability measure é(z, -)
on the action space for any fixed x. Since the action space contains only
two points, 0 and 1, for a hypothesis testing problem, any randomized test
6(X, A) is equivalent to a statistic T(X) € [0, 1] with T'(z) = 6(z,{1}) and
1 — T(x) = 6(z,{0}). A nonrandomized test is obviously a special case
where T'(x) does not take any value in (0, 1).

For any randomized test T(X), we define the type I error probability
to be ap(P) = E[T(X)]|, P € Py, and the type II error probability to be
l —ap(P) = E[1 - T(X)], P € P;. For a class of randomized tests, we
would like to minimize 1 — ag(P) subject to (2.34).

Example 2.30. Consider Example 2.23 and the following class of random-
ized tests:

1 X >
0 X <7,

where 7 = 0.1,....n — 1 and ¢ € [0,1]. Then

ML

and
l—ap (0)=PX <j)+(1-qP(X =) 0y < 0 < 1.

[t can be shown that for any « € (0, 1), there exist integer j and ¢ € (0, 1)
such that the size of T, is a (exercise). 1
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2.4.3 Confidence sets

Let ¥ be a real-valued unknown parameter related to the unknown popula-
tion P € P and C(X) € Bg depending only on the sample X, where © € B
is the range of . If

inf Plvve C(X))=>1-—a, 2.36
Jnf (e (X)) =1-a, (2.36)

where a is a fixed constant in (0, 1), then C(X) is called a confidence set
for  with level of significance 1 — . The left-hand side of (2.36) is called
the confidence coefficient of C(X), which is the highest possible level of
significance for C'(X). A confidence set is a random element that covers
the unknown ¢ with certain probability. If (2.36) holds, then the coverage
probability of C(X) is at least 1 — «, although C(z) either covers or does
not cover ¥ whence we observe X = r. The concept of confidence sets can
be extended to the case where ¥ is a vector of k real-valued parameters and
C(X) e B“é in an obvious manner.

If C(X) = [0(X),9(X)] for a pair of statistics 1 and ¥, then C(X) is
called a confidence interval for 9. If C(X) = (—oc,9(X)] (or [#(X), <)),
then ¥ (or ¥) is called an upper (or a lower) confidence bound for 9. A
confidence interval is also called an interval estimator of ¢/, although it is
very different from a point estimator (discussed in §2.4.1). The concepts of
level of significance and confidence coefficient are very similar to the level
of significance and size in hypothesis testing. In fact, it is shown in Chapter
7 that some confidence sets are closely related to hypothesis tests.

Example 2.31. Consider Example 2.28. Suppose that a confidence inter-
val for ¢ = 1 is needed. Again, we only need to consider J(X ) and (X )
since the sample mean X is sufficient. Consider confidence intervals of the
form [X — ¢, X + ¢], where ¢ € (0, 00) is fixed. Note that

Plpe[X —c, X+d)=P(|X —p|<c)=1-20(—nc/o),

which is independent of . Hence the confidence coefficient of [X — ¢, X +¢]
is 1 —2® (—/nc/o), which is an increasing function of ¢ and converges to 1
as ¢ — oo or 0 as ¢ — 0. Thus, confidence coeflicients are positive but less
than 1 except for silly confidence intervals [X, X] and (—oc.oc). We can
choose a confidence interval with an arbitrarily small confidence coefficient,
but the chosen confidence interval may be so wide that it is practically
useless.

If o2 is also unknown, then [X — ¢, X + ¢| has confidence coefficient 0
and, therefore. is not a good inference procedure. In such a case a different
confidence interval for g with positive confidence coefficient can be derived
(Exercise 79 in §2.6). 1
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This example tells us that a reasonable approach is to choose a level of
significance 1 — a € (0,1) (just like the level of significance in hypothesis
testing) and a confidence interval or set satisfying (2.36). In Example 2.31,
we may choose a confidence interval whose confidence coefficient is exactly
1 — a for any fixed a € (0,1), using ¢, = e® (1 — a/2)/\/n. This is
desirable since, for all confidence intervals satisfying (2.36), the one with
the shortest interval length is preferred.

For a general confidence interval [¢(X), J(X)]. its length is ¥(X ) — (X)),
which may be random. We may consider the expected (or average) length
E[¥(X)—9¥(X)]. The confidence coefficient and expected length are a pair of
cood measures of performance of confidence intervals. Like the two types
of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected
length) simultaneously. A common approach is to minimize the length (or
expected length) subject to (2.36).

For a general confidence set C'(X), the length of C'( X)) may be oc. Hence
we have to define some other measures of performance. For an upper (or
a lower) confidence bound, we may consider the distance ¥#(X) — ¥ (or
U — (X)) or its expectation.

To conclude this section. we discuss an example of a confidence set for
a two-dimensional parameter. General discussions about how to construct
and assess confidence sets are given in Chapter 7.

Example 2.32. Let X;.....X, be iid. from the N(u,o?) distribution
with both ¢ € R and ¢2 > 0 unknown. Let § = (u,0?) and a € (0,1) be
given. Let X be the sample mean and S? be the sample variance. Since
(X.S?) is sufficient (Example 2.15), we focus on C'(X) which is a function of
(X, S?%). From Example 2.18, X and S? are independent and (n — 1)S52%/0?
has the chi-square distribution x> _,. Since \/n(X — u)/o has the N(0,1)
distribution (Exercise 51 in §1.6),

X —

a/vn

P (—E{.‘E < < Efx) =1 o,

- - = — —1 l+ ]._l:'.\! . 3 . - . - ¥ N . 2
where ¢, = @ ( 5 ) (verify). Since the chi-square distribution y:

is a known distribution, we can always find two constants ¢, and 3, such

that ,
- 1 .l._q
P (Elﬂ: < {n - :J < EE&) — I — a.

ﬂ..&

Then
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Figure 2.3: A confidence set for #/ in Example 2.32

ar

v 2 . 2 . 2
P (”{X - a?, (n=1)5" _ ol < (n—1)5 ) =1—a. (2.37)

':-r;ri B Cony B B Clex
The left-hand side of (2.37) defines a set in the range of # = (1, 62) bounded
by two straight lines, 0° = (n — 1)S%/cin. i = 1,2, and a curve o° =
n(X —pu)?/é2 (see the shadowed part of Figure 2.3). This set is a confidence
set for @ with confidence coefficient 1 — o, since (2.37) holds for any 6. 8

2.5 Asymptotic Criteria and Inference

We have seen that in statistical decision theory and inference, a key to
the success of finding a good decision rule or inference procedure is being
able to find some moments and/or distributions of various statistics. Al-
though many examples are presented (including those in the exercises in
§2.6), there are more cases in which we are not able to find exactly the
moments or distributions of given statistics, especially when the problem
is not parametric (see, e.g., the discussions in Example 2.8).

In practice the sample size n is often large, which allows us to ap-
proximate the moments and distributions of statistics that are impossible
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to derive, using the asymptotic tools discussed in §1.5. In an asymptotic
analysis, we consider a sample X = (X;,..., X,,) not for fixed n, but as a
member of a sequence corresponding to n = ng,ng + 1, .... and obtain the
limit of the distribution of an appropriately normalized statistic or variable
T,.(X) as n — oc. The limiting distribution and their moments are used as
approximations to the distribution and moments of 7;,(X) in the situation
with a large but actually finite n. This leads to some asymptotic statistical
procedures and asymptotic criteria for assessing their performances, which
are introduced in this section.

The asymptotic approach is not only applied to the situation where no
exact method is available, but also used to provide an inference procedure
simpler (e.g., in terms of computation) than that produced by the exact
approach (the approach considering a fixed n). Some examples are given
in later chapters.

In addition to providing more theoretical results and/or simpler infer-
ence procedures, the asymptotic approach requires less stringent mathe-
matical assumptions than does the exact approach. The mathematical pre-
cision of the optimality results obtained in statistical decision theory, for
example, tends to obscure the fact that these results are approximations in
view of the approximate nature of the assumed models and loss functions.
As the sample size increases, the statistical properties become less depen-
dent on the loss functions and models. However, a major weakness of the
asymptotic approach is that typically no good estimates are available for
the precision of the approximations so that we cannot determine whether
a particular n in a problem is large enough to safely apply the asymptotic
results. To overcome this difficulty, asymptotic results are frequently used
in combination with some numerical /empirical studies for selected values
of n to examine the finite sample performance of asymptotic procedures.

2.5.1 Consistency

A reasonable point estimator is expected to perform better, at least on
the average. if more information about the unknown population is avail-
able. With a fixed model assumption and sampling plan, more data (larger
sample size n) provide more information about the unknown population.
Thus, it is distasteful to use a point estimator 7,, which. if sampling were
to continue indefinitely, could possibly have a nonzero estimation error, al-
though the estimation error of T,, for a fixed n may never equal () (see the
discussion in §2.4.1).

Definition 2.10 (Consistency of point estimators). Let X = (X;,..., X,,)
be a sample from P € P and T,,(X ) be a point estimator of ¥ for every n.
(i) T0(X) is called consistent for ¢ if and only if T,,(X) —, ¢ w.r.t. any
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PeP.

(ii) Let {a,} be a sequence of positive constants diverging to oc. T, (X) is
called a,,-consistent for ¥ if and only if a,[T,(X) — ] = O,(1) w.r.t. any
PeP.

(iii) T3, (X)) is called strongly consistent for ¢ if and only if T,,(X) —, . ¢
w.r.t. any P € P.

(iv) T,,(X) is called L,-consistent for ¢ if and only if T,,(X) —p, ¥ w.r.t.
any P € P for some fixed r > 0. 1

Consistency is actually a concept relating to a sequence of estimators,
{T,,,n = ng,ng + 1,...}, but we usually just say “consistency of T,,” for
simplicity. Each of the four types of consistency in Definition 2.10 describes
the convergence of T7,(X) to ¥ in some sense, as n — oo. In statistics,
consistency according to Definition 2.10(i), which is sometimes called weak
consistency since it is implied by any of the other three types of consistency.,
is the most useful concept of convergence of T}, to ©). Ls-consistency is also
called consistency in mse, which is the most useful type of L,-consistency.

Example 2.33. Let X,....,X,, be iid. from P € P. If ¥ = u. which
is the mean of P (assumed to be finite), then by the SLLN (Theorem
1.13), the sample mean X is strongly consistent for p and, therefore, is
also consistent for p. If we further assume that the variance of P is finite,
then by (2.22), X is consistent in mse and is \/n-consistent. With the finite
variance assumption, the sample variance S* is strongly consistent for the
variance of P, according to the SLLN.

Consider estimators of the form 7,, = > " ¢;,X;, where {¢;,} is a
double array of constants. If P has a finite variance, then by (2.27), T,
is consistent in mse if and only if > "  ¢; — 1and >0 ¢, — 0. If we
only assume the existence of the mean of P, then T, with ¢;, = ¢;/n sat-
isfying n=! > " | ¢; — 1 and sup, |¢;| < oo is strongly consistent (Theorem

1.13(ii)). ®

One or a combination of the law of large numbers, the CLT. Slutsky’s
theorem (Theorem 1.11), and the continuous mapping theorem (Theorems
1.10 and 1.12) are typically applied to establish consistency of point estima-
tors. In particular, Theorem 1.10 implies that if 7}, is (strongly) consistent
for © and g is a continuous function of 4, then g(7),) is (strongly) consistent
for g(17). For example, in Example 2.33 the point estimator X? is strongly
consistent for p?. To show that X? is \/n-consistent under the assumption
that P has a finite variance o2, we can use the identity

V(X? = p?) = V(X — p)(X + p)

and the fact that X is \/n-consistent for g and X + p = 0O,(1). (Note that
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X? may not be consistent in mse since we do not assume that P has a finite

fourth moment.) Alternatively, we can use the fact that n(X? — u?) —4
N(0,4p?c?) (by the CLT and Theorem 1.12) to show the \/n-consistency
of X2,

The following example shows another way to establish consistency of
some polnt estimators.

Example 2.34. Let X,,....X,, be iid. from an unknown P with a con-
tinuous c.d.f. F' satisfving F(0) = 1 for some § € R and F(z) < 1 for any
r < 6. Consider the largest order statistic X ,,). For any € > 0, F'(# —¢) < 1
and

P(|[Xm) = 0] 2 €) = P(X(n) <0 —€) = [F(0 —€)]",

which imply (according to Theorem 1.8(v)). X,y —a.. 0. ie., X, is
strongly consistent for 6. Let F'Y(6—) be the ith order left-hand derivative

of F' at #. If we assume that F{“{Q—-:}, i = 1....,m. exist and vanish, and
that F*1)(f—) exists and is nonzero, then

F{ri1+1]|{g__:]
(m + 1)!

1 - F(X ) = (0 — X)) +0(]0— Xy as.

Let

(0} — (m + 1) (m+1)™
'L:rt{ ) '_ HFEHI_'_]_:I(H“)

For any t < (), by Slatsky’s theorem,

X, —0 0— X, 1m!
. [“]‘ . ':’”f] 1m—+1
lim P <t| = lim P > (—f
i P (S50 <) = i ([ o] 20 )

= lim P (”[1 - F(Xn))] = {_tjmﬂ)

TL—+ X0

= lim [1—(=t)™"!/n]"

FL— 250

Y 41
— o—(=t)

This shows that (X,) — 0)/hn(f) —a Y, where Y is a random variable

having the c.d.f. E_':_“THII{_DC__H}(J'&). Thus, X, is nm+1"" consistent. If
m = 0, then X, is n-consistent, which is the most common situation. If
m = 1, then X, is V/n-consistent. 1§

It can be seen from the previous examples that there are many consistent
estimators. Like the admissibility in statistical decision theory, consistency
is a very essential requirement in the sense that any inconsistent estimators
should not be used. but a consistent estimator is not necessarily good.
Thus, consistency should be used together with one or a few more criteria.
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We now discuss a situation in which finding a consistent estimator is
crucial. Suppose that an estimator T, of ¢/ satisfies

cn|Tn(X) — U] —4 0y, (2.38)

where Y is a random variable with a known distribution, ¢ = 0 is an
unknown parameter, and {c,} is a sequence of constants; for example, in
Example 2.33, (X — p) —4 N(0,02):; in Example 2.34, (2.38) holds
with ¢, = ™7 and ¢ = [(=1)™(m + D)I/FmH gm0 If 4
consistent estimator a,, of ¢ can be found. then, by Slutsky’s theorem.

Cn [TTF{-X:J "' 19]/'&?1 —d Y

and, thus, we may approximate the distribution of ¢,[T,,(X) — J]/a, by
the known distribution of Y.

2.5.2 Asymptotic bias, variance, and mse

Unbiasedness as a criterion for point estimators is discussed in §2.3.2 and
62.4.1. In some cases, however, there is no unbiased estimator (Exercise 69
in §2.6). Furthermore, having a “slight” bias in some cases may not be a
bad idea (see Exercise 52 in §2.6). Let T;,(X) be a point estimator of ¢ for
every n and {a,} be a sequence of positive numbers satisfving a,, — oc or
a, — a > 0. If ET,, exists for every n and lim,, ... a,E(T,, — ) = 0 for
any P € P, then T}, is called a,-approrimately unbiased or approximately
unbiased if a,, = 1.

There are many reasonable point estimators whose expectations are
not well defined. For example, consider i.i.d. (X1,Y7),...,(X,,Y,) from a
bivariate normal distribution with p, = EX; and p, = EY; # 0. Let
) = py/py and T, = }_f;"?, the ratio of two sample means. Then ET,, is
not defined for any n. It is then desirable to define a concept of asymptotic
bias for point estimators whose expectations are not well defined.

Definition 2.11. Let {&,}, {7.}, and {z,,} be sequences of random vari-

ables such that P:, = P, .., for any n; E~, exists for any n; £,, = o0,(1):
and
lim P(|s,| = €|yn|.m #0) =0 for any € > 0. (2.39)

Then E-,, is called an asymptotic expectation of £,. 1

Note that asymptotic expectations of £,,. in most cases. are not unique.
The following results can be used to find asymptotic expectations.

Proposition 2.3. Let {£,.}, {7v.}, and {2, } be sequences of random vari-
ables given in Definition 2.11.
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(i) If &, = 4, + £,, then E«,, is an asymptotic expectation of &,.

(ii) Let {a,} be a sequence of positive numbers satisfying a, — oc or
a, — a > 0. If a,&, —4 Y, where Y is a random variable with E|Y| < oc,
then EY/a, is an asymptotic expectation of &,,.

Proof. (i) is obvious. We now show (ii). According to Theorem 1.8(iv),
anén —q Y implies that there are ¢, and Z such that P, = P, ¢ .
n=12.. Pz = Py, and (,, = Z + 0,(1). Letting v, = Z/a, and

Ep = {Cn -7 )/, the result follows from Definition 2.11 and the fact that
EZ=FEY. 1

Let T,,(X) be a point estimator of ¥ for every n and by (P) be an
asymptotic expectation of T, — 1. Then BT” (P) is called an asymptotic bias
of T}, and is denoted by BTH (@) if P is in a parametric family. Note that if
the exact bias by (P) exists, then it is an asymptotic bias of T,,. Let {a,}
be a sequence of positive numbers satisfving a,, — o0 or a,, — a > 0. If
lim,, . a”_E)T”(P} = () for any P € P, then T, is called a,-asymptotically
unbtased or asymptotically unbiased if a, = 1.

If T,, is a consistent estimator of ¢/, then T,, = 1/ + ﬂp{l) and, by Propo-
sition 2.3, T}, is asymptotically unbiased, although 7,, may not be approxi-
mately unbiased; in fact, ¢(7},) is asymptotically unbiased for g(¢) for any
continuous function ¢g. For the example of T, = X / YV, Ty —as fio /1ty by
the SLLN. Hence T, is asymptotically unbiased, although ET,, may not be
defined.

It follows from Proposition 2.3 that in Example 2.34, X,,, has an asymp-

totic bias by (P) = h,,(0)EY , which is of order n=(m+17" in Example 2.33,
X? is \/n-asymptotically unbiased. A more precise result about the asymp-
totic bias of X? can be obtained using the following result for functions of
unbiased estimators.

Theorem 2.6. Let g be a function on R* which is second-order differen-
tiable at # € R*. Suppose that Uj, 1s an unbiased estimator of the jth
component of #, Var(U;,) < oo, 7 = 1,....k, and U,, — # = o,(1), where
U, = (U, ... Ugyn ). Then an asymptotic bias of T,, = g(U,,) as an esti-
mator of ¥ = g(@) is tr(VZg(8)Var(U,))/2, where tr(M) is the trace of a
matrix M and VZg(f) is the matrix of second-order partial derivatives of g
at 0.

Proof. Using Taylor’s expansion and the fact that U,, — ¢ = o,(1),

T;'L - = “fn T Ens

where

Y = Vg0 (U, — 0)" + %{Uﬂ — )V43g(0)(U, — 0)7,

Vg(#) denotes the k-vector of partial derivatives of g at @, and &,, satisfies
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(2.39). The result follows from EU,, = # and

E[(U, - 0)Vg(0)(U, —0)7] = tr (V2g(O)E(U,, — )" (U, — ). ¥

Theorem 2.6 can be applied to the case where U, is the k-vector of
sample means, ie., U, = X = n~! E” X; with 1.1.d. random Ek-vectors
X1, X, A '-?111111&1‘ result for the exact h]a,s of g{}f) is given in Lehmann
(1983, Theorem 2.5.1), which requires a much more stringent condition on
the derivatives of g.

Example 2.35. Let Xi,....X, be ii.d. binary random variables with
P(X; = 1) = p, where p € (0,1) is unknown. Consider first the esti-
mation of 1 = p(1 — p). Since the sample mean X is unbiased for p with
Var(X) = p(1 — p)/n. an asymptotic bias of T,, = X (1 — X) according to
Theorem 2.6 with g(z) = z(1 —z) is —p(1—p)/n. On the other hand, a di-
rect computation shows E[X(1-X)] = EX-EX? = p—(EX)*—Var(X) =
p(l —p) — p(1 — p)/n. Hence the exact bias of T}, is —p(1 — p)/n, which is
the same as the asymptotic bias obtained previously.

Consider next the estimation of ¥ = p~!. In this case there is no
unbiased estimator of p~! (Exercise 69 in §2.6). Let T,, = X~!. Then
an asymptotic bias of T}, according to Theorem 2.6 with g(z) = =~! is

(1 —p)/(pn). On the other hand, ET,, = oc for every n.

Like the bias, the mse of an estimator T}, of ¥/ is not well defined if the
second moment of 7}, does not exist. Thus, an asymptotic expectation of
(T}, — )% is defined to be an asymptotic mean squared error (amse) of T,,,
which is denoted by amser (P) or amser (8) if P is in a parametric family
indexed by #. An asymptotic variance of T, is defined to be

ﬁ%(P) = amser, (P) — [ET”(P)]E.

In many problems [by (P)]?/amser (P) = o(1), in which case asymptotic
variances are the same as amse’s.

If ap,(T, — ) —4 Y with 0 < EY? < oo, then by Proposition 2.3,
amser, (P) = EY?/a;,, and o7 (P) = Var(Y)/a;. For instance, in Exam-
ple 2.34, J:‘%{ (P) = [hn(0)]*Var(Y) and amsex,, (P) = [hn(0)]?EY?; in

Example 2. H “amse g2 (P) = 0%, (P) = 4pPa? [n.

Since amse’s of an estimator are not unique, it is not suitable to use
them to assess and compare different estimators. Two estimators 17, and
15, may satisfy lim,, ... [amser, (P)/amser, (P)] < 1 for one version of
amse's, whereas lim,, ... [amser, (FP)/amser, (P)] > 1 for another version
of amse’s (Exercise 97 in §2.6). Thus, we need the following definition.
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Definition 2.12. Let 7}, be an estimator of ¥ for every n and E+2 be an
amse of T),.
(i) Suppose that there is a sequence of positive numbers {a, } such that
i, — oo and

lim lim E[min(aZ+2.t)] = lim a?Ev- € (0, 00). (2.40)

TL
f— o0 n— oo FhE— 30

Then E«; is called a regular amse of T,, and is denoted by amse, (P).
(ii) Let TV be another estimator of ©/. The asymptotic relative efficiency of

T w.t.r. T, is defined to be

er: 1, (P) = amseq (P)/amseq, (P).

(iii) T}, is said to be asymptotically more efficient than T) if and only if
limsup,, er: 7, (P) < 1for any P. 1§

The following result shows that the regular amse is unique in the limiting
sense so that the concepts of asymptotic relative efficiency in Definition
2.12(ii)-(iii) are well defined. It also shows how to find regular amse’s and
asymptotic relative efficiencies.

Proposition 2.4. Let T, be an estimator of ¢ for everyv n and r, =
amseq (P) with lim, .. aZr, € (0,00).

(i) If ! is another amse of T},, then liminf, (v /r,) = 1.

(ii) If both r,, and r!, are regular amse’s of T}, then lim,, ... (r,/r]) = 1.
(iii) If ¢, (T}, — ) —4 Y for a random variable Y with 0 < EY* < oc and
a sequence {c,} of positive numbers satisfying ¢, — oc, then EY?/c2 =
amse, (P).

Proof. The result in (ii) follows from (i) and the result in (iii) follows
directly from Definition 2.12. We only need to prove (i). By definition,
there exist {7, } and {7}, } such that r, = Ev;, r], = E(7},)%, and P,/ )2 =
FP2(14,,(1)- Since

min{(a,v,)?[1 + 0,(1)],t} — min{(an,v,)% t} = 0,(1)
for any ¢ > 0 and min[(a,~/,)*,t] and min[(a,~,,)?, t] are bounded by t,
E{min[(a,v.)".t]} = E{min[(a,7.)", t]} + o(1),
which with (2.40) implies that

lim lim E{min[(a,v, )% t]} = lim a?Eq2.

t— oo n—oa L — 0

The result follows from

lim lim E{min[(a,7,)% t]} <liminf E(a,~,)*. 8

f— o0 m— 00
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It follows from Proposition 2.4 that if msey (FP) exists, then

lim inf[mseq, (P)/amses (P)] = 1,

since msep (FP) is a particular amse of T},. It is often true that msep (P) =
amse, (P), which is implied by the uniform integrability of {a} (T}, — )%}
for a,, in Definition 2.12 (exercise).

Example 2.36. Let X, ..., X, be i.i.d. from the Poisson distribution P(#)
with an unknown @ > 0. Consider the estimation of ¥ = P(X; = 0) = e~".
Let Ty, = F,,(0), where F,, is the empirical c.d.f. defined in (2.31). Then
Ty, is unbiased and has msep, (#) = e %(1 — e ?)/n. It can be shown
that n?E[Ty,, — F(0)]* is bounded. Hence {n[Ty,, — F(0)]*} is uniformly
integrable and, therefore, amse, (#) = msep, (f).

Next, consider T5,, = e~~. Note that ET,, = enf(e™ " =1) " Hepee
nbp, () — 0e=?/2. Using Theorem 1.12 and the CLT, we can show that

Vi(Ta, — 1) —4 N(0,e729).

. e . __—20p e el
By Proposition 2.4(iii), amse;, (#) = e~ “"6/n. Thus, the asymptotic rela-
tive efficiency of T, w.r.t. 15, is

er,, 1., (0) = 0/(e’ — 1),

which is always less than 1. This shows that 75, is asymptotically more
efficient than 73,,. 0

The result for T%,, in Example 2.36 is a special case (with U,, = X ) of
the following general result.

Theorem 2.7. Let g be a function on R* which is differentiable at § € RF
and let U,, be a k-vector of statistics satisfying that U,, — # = o,(1) and
E||U,, — 0] < 0. Let T,, = g(T,,) be an estimator of 7 = g(f). Then

(i) 0%, (P) = Vg(0)Var(U,)[Vg(0)]™ and amser, (P) = E[Vg(0)(U,—0)7]*:
(ii) amse, (P) = E[Vg(0)Y7]*/c; if €,(Un—0) —4 Y for arandom k-vector
Y with 0 < E||Y|]* <0c.

2.5.3 Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is
called asymptotic statistical inference or simply asymptotic inference. We
have previously considered asymptotic estimation. We now focus on asymp-
totic hypothesis tests and confidence sets.
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Definition 2.13. Let X = (Xy,...,X,,) be a sample from P € P and
T, (X) be a test for Hy: P € Py versus H; : P € Py.

(i) If limsup,, ap, (P) < « for any P € Py, then « is an asymptotic signifi-
cance level of T),.

(ii) If lim,, o suppop, 1, () exists, then it is called the limiting size of
T,.

(iii) T}, is called consistent if and only if the type II error probability con-
verges to 0, i.e., lim,, [l — ap (P)] = 0, for any P € P;.

(iv) 17, is called Chernoff-consistent if and only if T, is consistent and the
type I error probability converges to 0, i.e., lim,, . ar (P) = 0, for any
P € Py. T, is called uniformly Chernoff-consistent if and only it T}, is
consistent and the limiting size of T}, is 0. 1

Obviously if T}, has size (or significance level) o for all n, then its limiting
size (or asymptotic significance level) is . If the limiting size of T), is
a € (0,1), then for any € > 0, T}, has size a + ¢ for all n = ng, where ng is
independent of P. Hence T}, has level of significance a + € for any n > ny.
However, if Py is not a parametric family, it is likely that the limiting size
of T,, is 1 (see, e.g., Example 2.37). This is the reason why we consider the
weaker requirement in Definition 2.13(i). If 7}, has asymptotic significance
level e, then for any € > 0, ar (P) < a + ¢ for all n = ng(P) but ng(P)
depends on P € Py; and there is no guarantee that 7), has significance level
a + ¢ for any n.

The consistency in Definition 2.13(iii) only requires that the type II er-
ror probability converge to 0. We may define uniform consistency to be
lim,, .o SUPpep, [1 — ar, (P)] = 0, but it is not satisfied in most problems.
If « € (0,1) is a pre-assigned level of significance for the problem, then a
consistent test 7}, having asymptotic significance level « is called asymptot-
ically correct, and a consistent test having limiting size o is called strongly
asymptotically correct.

The Chernoff-consistency (or uniformly Chernoff-consistency) in Defi-
nition 2.13(iv) requires that both types of error probabilities converge to
0. Mathematically, Chernoff-consistency (or uniform Chernoff-consistency)
is better than asymptotic correctness {:31‘ strongly asymptotic cc::rrer:tnegsj.
After all, both types of error probabilities should decrease to 0 if sampling
can be continued indefinitely. However, if a is chosen to be small enough so
that error probabilities smaller than o can be practically treated as (), then
the asymptotic correctness (or strongly asymptotic correctness) is enough,
and is probably preferred, since requiring an unnecessarily small type 1|
error probability usually results in an unnecessary increase in the type II
error probability as the following example illustrates.

Example 2.37. Consider the testing problem Hy @ u < pg versus Hy :
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[t > pp based on iid. X,...., X,, with FX, = u € R. If each X; has the
N(p,0?) distribution with a known o2, then the test T, given in Example
2.28 with ¢, = o7'® 11 — a)/\/n + pp and a € (0,1) has size a (and,
therefore, limiting size «). It also follows from (2.35) that for any p > pqg,

n(pg — p
1—ar {;¢)=¢>(¢J_l{1-—m]+ V(s ”) — () (2.41)
- {T
as n — oco. This shows that 7, is consistent and, hence, is strongly
asymptotically correct. Note that the convergence in (2.41) is not uniform
in p > ftg, but is uniform in g > gy for any fixed p; > .

Since the size of T, is «a for all n, T, is not Chernoff-consistent. A
uniformly Chernoff-consistent test can be obtained as follows. Let {«(n)} C
(0,1) be a sequence satisfying a(n) — 0 and \/na(n) — oc. Then T¢. |
has size a(n) for each n and, therefore, its limiting size is 0. On the other
hand, (2.41) still holds with a replaced by a(n) (exercise). Hence T,
is uniformly Chernoff-consistent. However, if a(n) < «, then, from the
left-hand side of (2.41), 1 —ar, () <1 - ar, }l[,u) for any p > .

e T
We now consider the case where the population P is not in a parametric

family. We still assume that ¢% = Var(X;) is known. Using the CLT, we
can show that for pu > py,

lim [1 —ap, ()] = lim & ('I*_l{l —a) + ﬁ{;;{: — '“J)) = 0,

TE—+ 0 FL—+ 50

i.e., T, 1s still consistent. For pu < pp,

lim ar, (p)=1- lim & (@_1(1 — ) + Vo - H}) :

n— oo — oo )

which equals o if ¢ = pp and 0 if ¢ < py. Thus, the asymptotic signifi-
cance level of T,. is «. Combining these two results, we know that 7, is
asymptotically correct. However, if P contains all possible populations on
R, then one can show that the limiting size of T, is 1 (exercise). Using
the same argument that is used for the normal case, we can also show that
T, is Chernoff-consistent if a(n) — 0 and /na(n) — oc. But T, is

Cein) ran)

not uniformly Chernoff-consistent if P contains all possible populations on

R. 1

Definition 2.14. Let ¢ be a k-vector of parameters related to the unknown
population P € P and C'(X) be a confidence set for 4.

(i) If liminf,, P(? € C(X)) = 1 — « for any P € P, then 1 — o is an
asymptotic significance level of C(X).

(i) If lim, .~ infpep P(¥ € C(X)) exists, then it is called the limiting
confidence coefficient of C'(X). 1
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Note that the asymptotic significance level and limiting confidence co-
efficient of a confidence set are very similar to the asyvmptotic significance
level and limiting size of a test, respectively. Some conclusions are also sim-
ilar. For example, in a parametric problem one can often find a confidence
set having limiting confidence coefficient 1 — « € (0, 1), which implies that
for any € > 0, the confidence coefficient of C(X) is 1 — a — € for all n = ng,
where ng is independent of P; in a nonparametric problem the limiting
confidence coefficient of C'( X') might be 0, whereas C'(X') may have asymp-
totic significance level 1 — « € (0,1), but for any fixed n, the confidence

coefficient of C'(X) might be 0.

The confidence interval in Example 2.31 with ¢ = e®~ (1 — «/2)/\/n
and the confidence set in Example 2.32 have confidence coefficient 1 — o for
any n and, therefore, have limiting confidence coefficient 1 — . If we drop
the normality assumption and assume FX? < oo, then these confidence sets
have asymptotic significance level 1 —a: their limiting confidence coeflicients
may be 0 (exercise).

2.6 Exercises

1. Consider Example 2.3. Suppose that p(s) is constant. Show that
X; and X;, ¢ # j, are not uncorrelated and, hence, X, .... X,, are
not independent. Furthermore, if y;’s are either (0 or 1, show that
Z = 3" X; has a hypergeometric distribution and compute the
mean of .

2. Consider Example 2.3. Suppose that we do not require that the ele-
ments in s be distinct, i.e., we consider sampling with replacement.
Define a suitable sample space {1, a o-field on {1, a probability measure
pon (€2, F), and a sample (X, ..., X,,) such that (2.3) holds. If p(s) is
constant, are X1, ..., X, independent? If p(s) is constant and y;’s are
either 0 or 1, what are the distribution and mean of Z = """ | X7

3. Show that {Fy : # € ©} is an exponential family and find its canonical
form, =, and natural parameter space, when
(a) Py is the Poisson distribution P(8), 0 € © = (0,00);
(b) Py is the negative binomial distribution N B(#,r) with a fixed r,

0eco=I(01);

(c) Py is the exponential distribution E(a,#) with a fixed a, § € © =
(0, 00);

(d) Py is the gamma distribution (e, ), @ = (a,y) € © = (0,00) x
(0, 00);

(e) Py is the beta distribution B(«, 3), 0 = (a, 3) € © = (0,1) x(0,1);
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6.

:-J

10.

11.

12.

13,

14.

(f) Py is the Weibull distribution W{a, 0) with a fixed o > 0,0 € © =
(0, 00).

. Show that the family of exponential distributions E(a,f) with two

unknown parameters a and # is not an exponential family.

. Show that the family of negative binomial distributions N B(p, r) with

two unknown parameters p and r is not an exponential family.

Show that the family of Cauchy distributions C'(p, o) with two un-
known parameters g and o is not an exponential family.

Show that the family of Weibull distributions W (e, #) with two un-
known parameters o and ¢ is not an exponential family.

. Is the family of log-normal distributions LN (y, o) with two unknown

parameters p and o2 an exponential family?

. Show that the family of double exponential distributions DE(p, @)

with two unknown parameters g and € is not an exponential family.,
but the family of double exponential distributions DE(u, #) with a
fixed g and an unknown parameter @ is an exponential family.

Show that the A-dimensional normal family discussed in Example 2.4
is an exponential family. Identify the functions T', n, &, and h.

Obtain the variance-covariance matrix for (Xy,..., X}) in Example
2.7, using (a) Theorem 2.1(ii) and (b) direct computation.

Show that the m.g.f. of the gamma distribution I'(a, ~) is (1 —~vt) ™7,
t < 41, using Theorem 2.1(ii).

A discrete random variable X with
P(X =x)=~(x)0"/c(0), x=0,1,2,..,

where v(z) = 0, 8 > 0, and ¢(0) = >_° , v(x)0%, is called a random

variable with a power series distribution. Show that power series
distributions with # > 0 form an exponential family and obtain the

m.g.f. of X.

Let X be a random variable with a p.d.f. fy in an exponential family
{Py : 0 € O} and let A be an event. Show that the distribution of
X truncated on A has a p.d.f. fgla/Py(A) which is in an exponential
family.
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16.

17.

8.

19.

20).

21.
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Let {FP s € RE Y € M) be a location-scale family on RF.
(X « ¥

Suppose that F, 7,4 has a Lebesgue p.d.f. which is alwavs positive
PI (0,1) gue p VEN!

and that the mean and variance-covariance matrix of Fy ;) are 0

and [, respectively. Show that the mean and variance-covariance

matrix of P, s are g and X, respectively.

Show that if the distribution of a positive random variable X is in a
scale family, then the distribution of log X is in a location family.

Let X be a random variable having the gamma distribution I'(e, )
with a known « and an unknown + > 0 and let Y = g log X.

(a) Show that if & > 0 is unknown, then the distribution of ¥ is in a
location-scale family.

(b) Show that if ¢ > 0 is known, then the distribution of ¥ is in an
exponential family.

__ 14 and
let X and S? be the sample mean and variance defined by (2.1) and
(2.2). Express E(X?), Cov(X,S?), and Var(S?) in terms of o) =
FX f“ .k = 1,2.3.4. Find a condition under which X and §? are
uncorrelated.

Let X;...., X,, be i.i.d. random variables having a finite E|X;

Let X; = (Y;. Z;), i = 1, ....n, be i.i.d. random 2-vectors. The statistic
T(X)=(n-1)"">" (Yi-Y)Zi— Z)/\/S% 5% is called the sample
correlation coefficient, where Y = n='>"" V,and Z =n"13" | Z,
are two sample means, and SZ = (n—1)"1 3" (Y —Y)? and S2 =
(n—1)"13" [(Z; — Z)? are two sample variances.

(a) Assume that E|Y;|* < oo and E|Z;|* < oc. Show that

VI[T(X) = p] —a N(0, ).

where p is the correlation coefficient between Y; and Z; and ¢ is a
constant.
(b) Assume that Y; and Z; are independently distributed as N (1. 07)
and N(pg, 03), respectively. Show that 7" has the following Lebesgue
p.d.f.:
—1
_ I(%5)

VAT (75)
(c) Assume the conditions in (b). Obtain the result in (a) using
Scheffé’s theorem.

f(t) (1= )OI ().

Prove the claims in Example 2.9 for the distributions related to order
statistics.

Let X4, .... X, be iid. random variables having the exponential dis-
tribution E(a,d), a € R, and @ > 0. Show that the smallest order
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22.

23.

24.

26.

28.

statistic, X(;), has the exponential distribution K(a.f#/n) and that
2> (Xi — X(1))/0 has the chi-square distribution x3, _,.

Show that if T is a sufficient statistic and T = h(S), where h is
measurable and S is another statistic, then S is sufficient.

In the proof of Theorem 2.2,

(a) show that Cj € C;

(b) show that P is dominated by () when v is o-finite;
(c¢) show that (2.12) holds.

Let Xi,..., X, be ii.d. random variables from Py € {Fy : § € O}.
Find a sufficient statistic for # € © in the following cases.

(a) Py is the Poisson distribution P(f), 6 € (0, 00).

(b) Py is the negative binomial distribution NB(#,r) with a known
r, @€ (0,1).

(¢) Py is the exponential distribution E(0,#), # € (0, o).

(d) Py is the gamma distribution I'(ar, v), @ = (o, ) € (0, 00) x (0, o).
(e) Py is the beta distribution B(e, 3), # = (e, 3) € (0,1) x (0, 1).
(f) Py is the log-normal distribution LN (p,02), 0 = (p,0°) € R x
(0,00).

(g) Py is the Weibull distribution W{(a, ) with a known a > 0, § €
(0, 00).

. Let X, ..., X, beliid. random variables from F, gy, where (a,f) € R*?

is a parameter. Find a sufficient statistic for (a,#) in the following
cases.

(a) Pyq.gy is the exponential distribution E(a,f). a € R, 0 € (0, 00).
(b) P,y is the Pareto distribution Pa(a.0), a € (0,00), # € (0. 00).

In Example 2.11, show that Xy (or X(,,) is sufficient for a (or b) if
we consider a subfamily {f.4) @ a < b} with a fixed b (or a).

. Let X,....,X,, be iid. random variables having a distribution P €

P, where P is the family of distributions on R having continuous
c.df’s. Let T = (X(y)...., X(;,;) be the vector of order statistics.
Show that given T', the conditional distribution of X = (X;,..., X,,) is
a discrete distribution putting probability 1/n! on each of the n! points
(Xi,,....X; ) € R™, where {iy,...,i,} is a permutation of {1,...,n};

hence, T is sufficient for P € P.

Let X be a sample from P € P containing p.d.f.’s f. w.r.t. a o-finite
measure. Suppose that there is a statistic T'(X') such that, for any
two sample points x and y, f.(x) = f.(y)(z,y) for all P and some
measurable function v if and only if T'(x) = T'(y). Show that if S(X)

is a statistic sufficient for P € P, then T(X) = h(S(X)) a.s. P for
some function h.
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29.

S0,
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52,

33,

54
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Let Xq,..., X,, be ii.d. random variables having the Lebesgue p.d.f.

fole) = exp{~ (534)" - €0 }.

where 0 = (p,0) € © = R x (0,0¢). Show that P = {Fy : 0 € O} is
an exponential family, where Fy is the joint distribution of X, ..., X,,.
and that the statistic T = (31 | X, 300 X250 X2 570 | X

is minimal suthcient for @ € 9.,

Let X,..., X,, be i.i.d. random variables having the Lebesgue p.d.f.

fo(z) = (20)7" [Li0,0)(%) + L(20.30)(2)] -
Find a minimal sufficient statistic for 8 € (0, o).

Let X;....., X, be iid. random variables having the Cauchy distribu-
tion C'(p, o) with unknown g € R and ¢ > 0. Show that the vector
of order statistics is minimal sufficient for (., ).

Let Xy, ..., X,, be ii.d. random variables having the double exponen-
tial distribution DE(gu, #) with unknown g € R and # > (. Show that
the vector of order statistics is minimal sufficient for (p, 8).

Let X, ....X,, beii.d. random variables having the beta distribution

B(3,/3) with an unknown 3 > 0. Find a minimal sufficient statistic
for 3.

Let X4, ....X,, be ii.d. random variables having a population P in a
parametric family indexed by (#, j), where § > 0, j = 1,2. When j =
1, P is the N(0,6?) distribution and when j = 2, P is the double expo-
nential distribution DE(0,0). Show that 7" = (>, X7, > " | | X))

is minimal sufficient for (#, j). Is T' complete? R

. Let X be a random variable with a distribution Py in {Fy : 0 € O},

fo be the p.d.f. of Py w.r.t. a measure . A be an event, and Py =
{fgf_qugl[}l) € @}

(a) Show that if T'(X) is sufficient for Fy € P, then it is sufficient for
Py € Pa.

(b) Show that if T is sufficient and complete for Fy € P, then it is
complete for Py € P4.

. Show that (X ), X{,,;) in Example 2.13 is not complete.

. Let T be a complete (or boundedly complete) and sufficient statistic

with E|T'| < oc. Suppose that there is a minimal sufficient statistic
5. Show that 7" is minimal sufficient and S is complete (or boundedly
complete).



2.6. Exercises 117

38.

39.

40).

41.

42.

4.3.

44,

Let g be a Borel function on R*. Show that if, for all rectangles
{ﬂ'l.'-bl} Koo X {fl;;,h,i;),

'il-'-'l E*'u.
/ e / glry.....xy)dry - - de, =0,
Lq LT T

then g = 0 a.e. Lebesgue.

Find complete and sufficient statistics for the families in Exercises 24
and 25,

Show that (X(1), X(,)) in Example 2.11 is complete.

Let (X1,Y1),...,(X,, Y,) be iid. random 2-vectors having the follow-
ing Lebesgue p.d.f.

fo(x,y) = 2m9%) " g ) (\/(-T —a)* + (y - h]E) . (zy) € R?,

where # = (a,b,v) € R? x (0, 0c).

(a) If a = 0 and b = 0, find a complete and sufficient statistic for .
(b) If all parameters are unknown, show that the convex hull of the
sample points is a sufficient statistic for 6.

Let X be a discrete random variable with p.d.f.

Z r =10
fo(z) =< (1-—8)*0"1 r=1,2...
0 otherwise,

where # € (0,1). Show that X is boundedly complete, but not com-
plete.

Show that the sufficient statistic T' in Example 2.10 is also complete
without using Proposition 2.1,

Let Y7.....Y,, be ii.d. random variables having the Lebesgue p.d.f.
JL;I:’:"_II(H__U{:}:) and let Z,. ..., Z,, be i.i.d. random variables having the
geometric distribution G/(p) with an unknown p. Assume that Y;’s and
Z;'s are independent. Let X; = Y} + Z;, which has a distribution in a
parametric family indexed by 8 = (A, p) € (0,00) x (0,1), 71 =1, ..., n.
Find a complete and sufficient statistic for ¢ based on the sample

X = (X1, X).

. Suppose that (X1,Y7), ..., (X,,Y,) are iid. random 2-vectors and

X; and Y; are independently distributed as N (u. 0% ) and N(p, oy ),
respectively, with 6 = (u, 0%, 0% ) € R x (0,00) x (0,00). Let X and
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46.

47.

4R.

49.
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S% be the sample mean and variance given by (2.1) and (2.2) for X;’s
and Y and Sy be the sample mean and variance for Y;’s. Show that
1 = {jf Y, Si-, 9;’;) is minimal sufficient for # but 7' is not boundedly
complete.

Let Xy, ....X,, be ii.d. from the N{Q,SE] distribution, where € = ()
is a parameter. Find a minimal sufficient statistic for ¢ and show

whether it is complete.

Suppose that (X, Y1), ..., (X,,Y,) are i.i.d. random 2-vectors having
the normal distribution with EX; = EY, =0, Var(X,) = Var(Y7) =
1, and CG?{X]_,YI:] =€ {"‘1._. 1)

(a) Find a minimal sufficient statistic for 0.

(b) Show whether the minimal sufficient statistic in (a) is complete
or not.

(c) Prove that 77 = Y7 | X? and Ty = > | Y# are both ancillary

. - M

but that (77, 75) is not ancillary.

Let X4, ....X,, be iid. random variables having the exponential dis-
tribution E(a, #).

(a) Show that > " (X; — X(;)) and X(;) are independent for any
(a,d).

(b) Show that Z; = (X, — X))/ (X)) — Xm-1)); 1 = 1,...,n — 2,
are independent of (X, > (X — X(13)).

1=

Let X;.....X,, be iLid. random variables having the gamma distri-
bution I'(c,¥). Show that >0 | X; and 7., [log X; — log X(4,] are
independent for any (o, 7).

. Let X4...., X, be iid. random variables having the uniform distri-

bution on the interval (a,b), where —oc < a < b < oo. Show
that (X — X))/ (X — Xy), i = 2....,n — 1, are independent
of (X(1), X(n)) for any a and b.

. Consider Example 2.19.

(a) Show that X is better than Ty if P = N(f.0%), 0 € R, o > 0.
(b) Show that T} is better than X if P is the uniform distribution on
the interval (0 — %,E’+%),E’ER. )

(c) Find a family P for which neither X nor 77 is better than the
other.

. Let X,.....,X,, beiid. from the N, {TE:I distribution, where yt € R

and o > (. Consider the estimation of ¢2 with the squared error loss.

Show that ";15‘3 is better than S, the sample variance. Can you

find an estimator of the form ¢S? with a nonrandom ¢ such that it is
better than EﬁiS‘a?
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. Let X1, ..., X, beii.d. binary random variables with P(X; = 1) =0 €

(0,1). Consider estimating ¢ with the squared error loss. Calculate
the risks of the following estimators:
(a) the nonrandomized estimators X (the sample mean) and

0 if more than half of X,’s are 0
To(X) = 1 if more than half of X,;’s are 1
% if exactly half of X;’s are 0;

(b) the randomized estimators

Ty (X) = { X with probability

14 with probability

B [ B =

and ~ ~
X with probability X
with probability 1 — X.

. Let Xy.....X,, be ii.d. random variables having the exponential dis-

tribution E(0,8), # € (0,o¢). Consider estimating @ with the squared
error loss. Calculate the risks of the sample mean X and cX(), where
¢ is a positive constant. Is X better than ¢X;) for some c?

. Let X4,....X,, be ii.d. random variables having the exponential dis-

tribution E(0,6), ¢ € (0,0c). Consider the hypotheses
Hy:0 <8y, wversus Hy:0 >=0,.

where 0, > 0 is a fixed constant. Oht_ain the risk function (in terms
of @) of the test rule T,.(X) = (. ~)(X), under the 0-1 loss.

. Let X;.....,X,, be iid. random variables having the Cauchy distribu-

tion C'(p, o) with unknown ¢ € R and o > (. Consider the hypotheses
Hy:p < pg versus  Hy:op > g,

where jiy is a fixed constant. Obtain the risk function of the test rule

To(X) = I{¢,00)(X), under the 0-1 loss.

. Consider Example 2.21. Suppose that our decision rule. based on

a sample X = (Xy,..., X,,) with i.i.d. components from the N(#,1)
distribution with an unknown ¢ > 0, is

(L h] < j
T(X}:— Ly h[]{jibl
g X < by.

Express the risk of T' in terms of .
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. Consider an estimation problem with P = {Fy : § € ©} (a parametric

family), A = ©, and the squared error loss. If #y € © satisfies that
Py < By, for any 0 € ©, show that the estimator T' = #, is admissible.

. Let & be a class of decision rules. A subcelass Sy € 9 i1s called G-

complete if, for any T € 3 and T" & Gy, there is a Ty € Gy that is
better than T', and is called 3-minimal complete if 3y is S-complete
and no proper subclass of 3y is 3-complete. Show that if a G-minimal
complete class exists, then it is exactly the class of 3-admissible rules.

Let X;..... X,, be 1id. random variables having a distribution P € P.
Assume that EX? < oo. Consider estimating g = EX; under the
squared error loss.

(a) Show that any estimator of the form aX +b is inadmissible, where
X is the sample mean, a > 1 and b are constants.

(b) Show that any estimator of the form X + b is inadmissible, where

b # 0 is a constant.

Consider an estimation problem with ¢ € [a,b] C R, where a and b
are known constants. Suppose that the action space is A D [a, b] and
the loss function is L(| — al), where L(-) is an increasing function on

0, 00). Show that any decision rule 7" with P(T(X) & [a,b]) > 0 for

some P € P is inadmissible.

Show that the following functions of x are convex and discuss whether
they are strictly convex.

(a) |z — alP, where p = 1 and a € R.

(b) =P, x € (0,o¢), where p = 0.

(c) e, where ¢ € R.

(d) —logz, x € (0,00).

(e) Y(@(x)), x € (a,b), where —oc < a < b < o¢, ¢ is convex on (a, b),
and 7 is convex and nondecreasing on the range of ¢.

(f) ¢o(z) = Zf_:__:l ci¢i(x:), © = (21, ..., 28) € Hi:__lxi, where ¢; is a

positive constant and ¢; is convex on X;. i = 1, ..., k.
Prove Theorem 2.5.

In Exercise 53, use Theorem 2.5 to find decision rules that are better
than 7%, j = 0,1, 2.

. In Exercise 54, use Theorem 2.5 to find a decision rule better than

Consider Example 2.22.
(a) Show that there is no optimal rule if 3 contains all possible esti-
mators. (Hint: consider constant estimators.)
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(b) Find a Sg-optimal rule if X, ..., X, are independent random vari-
ables having a common mean g and Var(X;) = o2 /a; with known a;.
t=1,....n.

(c) Find a So-optimal rule if X, ..., X, are identically distributed but
are correlated with a common correlation coeflicient p.

Let Ti(X) be an unbiased estimator of ¥ in an estimation problem.
Show that any unbiased estimator of ¢ is of the form T'(X) = T( X)) —
U(X), where U(X) is an “unbiased estimator” of 0.

Let X be a discrete random variable with
P(X=-1)=p, PX=k=00-p%" k=012 .,

where p € (0,1) is unknown.

(a) Show that U(X) is an unbiased estimator of 0 if and only if U (k) =
ak for all £ = —1,0,1.2, ... and some a.

(b) Show that To(X) = I;gy(X) is unbiased for ¢ = (1 —p)* and that,
under the squared error loss, T is a S-optimal rule, where & is the
class of all unbiased estimators of .

(c) Show that Ty(X) = I;_11(X) is unbiased for ¢/ = p and that,
under the squared error loss, there is no S-optimal rule, where 3 is
the class of all unbiased estimators of .

(Nonexistence of an unbiased estimator). Let X be a random variable
having the binomial distribution Bi(p,n) with an unknown p € (0, 1)
and a known n. Consider the problem of estimating ¢ = p~—!. Show
that there is no unbiased estimator of /.

Let X,..., X, be ii.d. from the Poisson distribution P(#) with an
unknown # > 0. Find the bias and mse of T), = (1 — a/n)™"* as an
estimator of ¥ = ¢~%? where a # 0 is a known constant.

. Consider a location family {P, : p € R‘r"‘} on R*, where P, = P1

given in (2.10). Let 7 = {I.}, C = {clp : ¢ € R}, where [; € RF is
fixed, and L(P,a) = L(||it — al|), where L(-) is a nonnegative Borel
function on [0, oc). Show that the family is invariant and the decision
problem is invariant with g. 4(a) = g.(a) = a+ ¢ly. Find an invariant
decision rule.

. Let X1,..., X, be i.i.d. from the N(u,o?) distribution with unknown

it € R and o > 0. Consider the scale transformation a X, a € (0, oc).
(a) For estimating ¢ under the loss function L(P,a) = (1 — a/c?),
show that the problem is invariant and that the sample variance S*
1s Invariant.
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(b) For testing Hy : p < 0 versus Hy : p > 0 under the loss
L(P,0) =1 and L(P1) = Mg
(P,0) = pu (0.00)(p) an (P.1) = - {—m.[]](.ﬂ}:

show that the problem is invariant and any test that is a function of

X/+/82/n is invariant.

. Let X;,..., X, be ii.d. random variables having the c.d.f. F(z — ),

where F'is symmetric about 0 and # € R is unknown.
(a) Show that the c.d.f. of 3" | w;X;, — 0 is symmetric about 0,

where X ;) is the ith order statistic and w;’s are constants satisfying
) T
Wi = Wy—ijy1 and Y . w; =
exists.
TE - = - * Tl
(c) Show that . , w; X(;) is location invariant when }

L = 1.

. In Example 2.25, show that the conditional distribution of 8 given

X = xis N(p(x),c?) with p.(x) and ¢® given by (2.28).

. A median of a random variable Y (or its distribution) is any value m

such that P(Y < m) = % and P(Y = m) = %

(a) Show that the set of medians is a closed interval [mg, m,].

(b) Suppose that E|Y| < oc. If ¢ is not a median of YV, show that
ElY — ¢| = E|Y — m| for any median m of Y.

(c) Let X be a sample from Py, where § € © C R. Consider the
estimation of # under the absolute error loss function |a — #|. Let II
be a given distribution on © with finite mean. Find the 3-Bayves rule
w.r.t. II, where & is the class of all rules.

In Example 2.27, show that Y is still unbiased if sampling is with
replacement (see Exercise 2}, and find the variance of Y.

. Let X, .... X, be i.i.d. random variables having the uniform distribu-

tion U(0,8), where # > 0 is unknown. Calculate the bias and mse of
cX(,) as an estimator of ¢, where ¢ is a positive constant. Find a ¢
such that X, is unbiased for 6.

. Let X1, ..., X, be i.i.d. from the N(u,o?) distribution with unknown

it € R and ¢? > 0. Consider estimating ¥ = p?. Calculate the bias
and the mse of X? as an estimator of 7. Find an unbiased estimator of
) based on the complete and sufficient statistic (X, S?) and compare
its mse with that of X?2.

. Let Xq,..., X,, be i.i.d. from the N{u, %) distribution with unknown

it € R and o2 > 0. To test the hypotheses

Hy o p < g Versus Hy e > pp,
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where p is a fixed constant, consider a test of the form T.(X) =
Iieney(Th,), where T,y = (X — po)/+/S?/n and ¢ is a fixed constant.
(a) Find the size of T... (Hint: (X —pug)/\/S?/n has the t-distribution
tn_]_.:]

(b) If «v is a given level of significance, find a ¢, such that T,. has
S1Ze (.

(c) Compute the p-value for T,. derived in (b).

(d) Find a ¢, such that [X —c, /52 /n, X + c,+/S?%/n] is a confidence
interval for g with confidence coefficient 1 — a. What is the expected
interval length?

In Exercise 55, calculate the size of T.(X); find a ¢, such that T,
has size a, a given level of significance; and find the p-value for 7. .

In Exercise 56, assume that ¢ is known. Calculate the size of T,.(X);
find a ¢, such that 7. has size «a, a given level of significance; and
find the p-value for 7. .

Let a € (0,1) be given and T} ,(X) be the test given in Example 2.30.
Show that there exist integer j and ¢ € (0,1) such that the size of
15418 .

Let Xy, ..., X}, be ii.d. from the exponential distribution E(a,#) with
unknown a € R and # > 0. Let o € (0,1) be given.

(a) Using T1(X) = >, (X; — X(1)), construct a confidence interval
for 6 with confidence coefficient 1 — o and find the expected interval
length.

(b) Using T1(X) and T5(X) = X{1), construct a confidence interval
for a with confidence coefficient 1 — o and find the expected interval
length.

(c¢) Using the method in Example 2.32, construct a confidence set for

the two-dimensional parameter (a, #) with confidence coefficient 1—a.

Suppose that X is a sample and a statistic T'(X) has a distribution
in a location family {P, : p € R}. Using T'(X), derive a confidence
interval for g with level of significance 1 — a and obtain the expected
interval length. Show that if the c.d.f. of T'(X) is continuous, then we
can always find a confidence interval for g with confidence coefficient
1 — « for any a € (0,1).

. Let X = (X1,...,X,,) be a sample from Py, where 0 € {#,,...,0;}

with a fixed integer k. Let T, (X) be an estimator of # with range
{01,....,01}.

(a) Show that T,,(X) is consistent if and only if FPy(7T,,(X) = 8) — 1.
(b) Show that if T},(X') is consistent, then it is a,-consistent for any

{an}-
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Let Xy, ..., X, beii.d. from the uniform distribution on (# — % & + %]
where § € R is unknown. Show that (X + X(,,))/2 is strongly
consistent for # and also consistent in mse.

Let X4,....X,, be iid. from a population with the Lebesgue p.d.f.
fo(x) = 2711 + 0x)I_y 1)(x), where § € (—1,1) is an unknown pa-
rameter. Find a consistent estimator of #. Is vour estimator /n-
consistent?

Suppose that 7, is an unbiased estimator of ¥ such that for any
n, Var(T,) < oo and Var(T,,) < Var(U,) for any other unbiased
estimator of ¥7. Show that T, is consistent in mse.

Consider the Bayes rule p.(X) in Example 2.25. Show that p.(X) is
a strongly consistent, \/n-consistent, and Ly-consistent estimator of
tt. What is the order of the bias of ., (X) as an estimator of p?

Show that the estimator 7§ of # in Exercise 53 is inconsistent.

Let g1, g2,... be continuous functions on (a, b) C R such that g,,(x) —
¢(z) uniformly for x in any closed subinterval of (a,b). Let T}, be a
consistent estimator of # € (a,b). Show that g,(7},) is consistent for

o= g(0).

Let Xq,....X,, be iid. from P with unknown mean gy € R and wvari-
ance o© > 0, and let g(p) = 0if  # 0 and g(0) = 1. Find a consistent
estimator of ¥ = g(pu).

Establish results for the smallest order statistic X, (based on i.i.d.
random variables X, ..., X, ) similar to those in Example 2.34.

(Consistency for finite population). In Example 2.27, show that Y —

-

Y as n — N for any fixed N and population. Is Y still consistent if
sampling is with replacement?

. Assume that X, = 0t; + e;. i = 1.....,n, where #/ € © is an unknown

parameter, © is a closed subset of R, €;’s are ii.d. on the interval
[—7, 7] with some unknown 7 > 0, and #;’s are fixed constants. Let

(I;l - Sn(éﬂ) — EIEI'F% Sﬂ{ﬁf )'r
where

SH_("}’) = 211];:613{ |Xi — "‘Ir‘ti|/‘l.,a" 1+ ":r'g.

(a) Assume that sup; |[t;| < oo and sup, t; — inf; {; > 27. Show that
the sequence {f,,,n = 1,2, ...} is bounded.

(b) Let 0,, € ©, n=1,2,.... If ,, — 0, show that
S0 (0) — 5(0) = O(16, — 0)).
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(c) Under the conditions in (a), show that T}, is a strongly consistent
estimator of ¥ = min. g S(v), where S(v) = lim,, .. S(7v) a.s.

Let X;.....X,, beii.d. from P with EXf < oo and unknown mean
it € R and variance o2 > (. Consider the estimation of ¥ = p? and
the following three estimators: 13, = J_(E, Ty, = X2 — 52/1'1, Ts, =
max(0, 75, ), where X and S? are the sample mean and variance.

(a) Obtain n~! order asymptotic biases for T}, j = 1,2, 3.

(b) Show that the regular amse’s of T},, j = 1,2,3, are the same
when p # 0 but may be different when g = (0. Which estimator has
the smallest limiting regular amse when p = 07

. Let T, be an estimator of ¢ satisfying /n(T,, — ) —4 N(0,¢?) for

some o2 and lim,, .. nmser, (P) > o2, Let T., = T, + &.(c)//n.
where £,(¢) is a random variable independent of T},, &,(¢) = ¢ with
probability 1 — n~! and &,(¢) = Z with probability n=!, ¢ is a fixed
constant, and Z is a random variable having a Cauchy distribution.

(a) Show that amseq (P)/amser (P) — o2/(c* + 02).

(b) Show that mser_(P) is not defined for any ¢ and n.

(c) Show that msey (P)/amser (P) converges to a constant larger
than 1 for some c.

Let Xy, ..., X}, be ii.d. according to N (g, 1) with an unknown g € R.
Let ¥ = P(X; < ¢) for a fixed constant ¢. Consider the following
estimators of ¥: Ty, = F,,(¢), where F), is the empirical c.d.f. defined
in (2.31), and T3, = ®(c — X), where ® is the c.d.f. of N(0,1).

(a) Find an n~! order asymptotic bias of Ty,,.

(b) Find the asymptotic relative efficiency of Ty, w.r.t. Ts,.

Let Xq,.... X, be iid. from the N(0,0?) distribution with an un-
known o > 0. Consider the estimation of 7 = . Find the asymptotic

Show that if Ev2 = amser, (P), lim;, o a? B2 exists, and {a2~2}
is uniformly integrable, then E~; = amse, (P).

Prove Theorem 2.7.

Let Xi,.... X, be iid. with FX; = u, Var(X;) = 1, and EX} < oc.
Let Ty, = n= 1" X2 — 1 and Ty, = X2 — n~! be estimators of
U= u?.

(a) Find the asymptotic relative efficiency of T1,, w.r.t. Ts,.

(b) Show that ep, 7, (P) < 1 if the c.d.f. of X; — p is symmetric
about (.

(¢) Find a distribution P for which e, 7., (FP) > 1.
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Let X,....,X, be iid. binarv random wvariables with unknown p =
P(X; = 1) € (0,1). Consider the estimation of p. Let a and b be
two positive constants. Find the asymptotic relative efficiency of the
estimator (a +nX)/(a+ b+ n) wrt. X.

Let X1, ..., Xy be iid. from the uniform distribution U(0,#). Con-
sider the following estimators of 0: Ty, = (n + 1)X I:ﬂ:,/n and T5,, =
X (). Find the biases by, (), j = 1,2, and e, 1,,(0).

In Example 2.37, show that

(a) (2.41) holds with « replaced by a(n) satisfying a(n) — 0 and
Ve (n) — oo

(b) the limiting size of T, is 1 if P contains all possible populations

on K.

Let X;,....X,, be iid. with unknown mean g € R and variance
g? > 0. For testing Hy : p < pg versus H; : p > jig, consider
the test 1. obtained in Exercise 79(b).

(a) Show that 7. has asymptotic significance level o and is consis-
tent.

(b) Find a test that is Chernoff-consistent.

Consider the test T in Example 2.23. For each n, find a j = j» such
that T;, has asymptotic significance level a € (0, 1).

Show that the test 7. in Exercise 80 is consistent, but 7. in Exercise
81 1s not consistent.

In Example 2.31, suppose that we drop the normality assumption but
assume that p = EX; and o° = Var(X;) is known.

(a) Show that the asymptotic significance level of the confidence in-
terval [X —c,. X +co]. ca =071 —a/2)/\/nis 1 —a.

(b) Show that the limiting confidence coefficient of the interval in (a)
might be () if P contains all possible populations on R.

Let X4, .... X,, be iid. with unknown mean g € R and variance o? >
0. Show that the confidence interval in Exercise 79(d) has asymptotic
significance level 1 — .

Let X4, .... X,, be iid. with unknown mean g € R and variance ¢* >
0. Assume that EX7 < oc. Using the sample variance S#, construct a
confidence interval for o2 that has asymptotic significance level 1 — a.

Consider the sample correlation coefficient T defined in Exercise 19.
Construct a confidence interval for p that has asymptotic significance
level 1 — «v, assuming that (Y}, Z;) are normally distributed. (Hint:
show that the asymptotic variance of T is (1 — p?)2.)



Chapter 3

Unbiased Estimation

Unbiased or asymptotically unbiased estimation plays an important role in
point estimation theory. Unbiasedness of point estimators is defined in §2.3.
In this chapter we discuss in detail how to derive unbiased estimators and,
more importantly, how to find the best unbiased estimators in various situ-
ations. Although an unbiased estimator (even the best unbiased estimator
if it exists) is not necessarily better than a slightly biased estimator in terms
of their mse’s (see Exercise 52 in §2.6), unbiased estimators can be used as
“huilding blocks”™ for the construction of better estimators. Furthermore.
one may give up the exact unbiasedness. but cannot give up asymptotic
unbiasedness since it is necessary for consistency (see §2.5). Properties and
the construction of asymptotically unbiased estimators are studied in the
last part of this chapter.

3.1 The UMVUE

Let X be a sample from an unknown population P € P and ¢ be a real-
valued parameter related to P. Recall that an estimator 7(X) of ¢ is

unbiased if E[T(X)] = ¢ for any P € P. If there exists an unbiased
estimator of ¥, then 1 is called an estimable parameter.

Definition 3.1. An unbiased estimator T'(X) of ¥ is called the wuni-
formly minimum wvariance unbiased estimator (UMVUE) if and only if
Var(T(X)) < Var(U(X)) for any P € P and any other unbiased estimator
UX)ofd. 1

Since the mse of any unbiased estimator is its variance, a UMVUE is
S-optimal in mse with 3 being the class of all unbiased estimators. One

127
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can similarly define the uniformly minimum risk unbiased estimator in sta-
tistical decision theory when we use an arbitrary loss instead of the squared
error loss that corresponds to the mse.

3.1.1 Sufficient and complete statistics

The derivation of a UMVUE is relatively simple if there exists a sufficient
and complete statistic for P € P.

Theorem 3.1. Suppose that there exists a sufficient and complete statistic
T(X) for P € P. If ¥ is estimable, then there is a unique unbiased estimator
of ©# that is of the form A(T') with a Borel function h. (Two estimators that

are equal a.s. P are treated as one estimator.) Furthermore, h(7') is the

unique UMVUE of ¢/. &

This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell’s theo-
rem). One can easily extend this theorem to the case of uniformly minimum
risk unbiased estimator under any loss function L{ P, a) which is strictly con-
vex in a. The uniqueness of the UMVUE follows from the completeness of
T(X).

There are two typical ways to derive a UMVUE when a sufficient and
complete statistic 71" is available. The first one is solving for A when the
distribution of T' is available. The following are two tvpical examples.

Example 3.1. Let X,,....X,, be iid. from the uniform distribution on
(0,8), # > 0. Let ¥ = g(0), where g is a differentiable function on (0, oc).
Since the sufficient and complete statistic X, has the Lebesgue p.d.f.
nf— "] (0.0)(x), an unbiased estimator h(X,,) of ¥ must satisfy

0
0" g(0) = nf hix)z™ 'dx for all & > 0.

.

Assuming that h is continuous and differentiating both sizes of the previous
equation lead to

nd" ' g(@) + 6"g'(0) = nh(0)0"".

Hence, the UMVUE of ¢ is (X)) = (X)) + n7 ' X,)¢ (X)) In
particular, if ¢ = #, then the UMVUE of # is (1 +n=")X,,. 8

Example 3.2. Let X, ..., X, be i.i.d. from the Poisson distribution P(#)
with an unknown € > 0. Then T'(X) = >_" | X; is sufficient and complete
for # > 0 and has the Poisson distribution P(n#). Suppose that @ = g(f),
where g is a smooth function such that g(z) = >~ a;2’, z > 0. An
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unbiased estimator A(T') of ¥ must satisfy

= h(t)n! .
> (J 0" = ¢"'9(0)

for any # > 0. Thus. a comparison of coefficients in front of #* leads to

t! nkaj
)= 2. T

d.kig4 k=t

i.e., h(T') is the UMVUE of ¥J. In particular, if ¢ = " for some fixed integer
r =1, thena, =1 and ap = 0if k& # r and

() t
h(t) = { =7

n*{t—r)! t E .

The second method of deriving a UMVUE when there is a sufficient and
complete statistic T'(X) is conditioning on T, i.e., if U(X) is any unbiased
estimator of ¥/, then E[U(X)|T] is the UMVUE of ¢. To apply this method,
we do not need the distribution of 7', but need to work out the conditional
expectation E[U(X)|T]. From the uniqueness of the UMVUE, it does not
matter which U{X) is used and, thus, we should choose U (X'} so as to make
the calculation of E[U(X)|T| as easy as possible.

Example 3.3. Consider the estimation problem in Example 2.26, where
= 1~ Fy(t) and Fy(z) = (1 — e ") Ig.oy(z). Since X is sufficient
and complete for @ > 0 and U(X) = 1 — F,,(t) is unbiased for ¥, T(X) =
E[U(X)|X] = E[1 — F,,(1)|X] is the UMVUE of 9. Since X;’s are i.i.d.,

E[l - F,(t)|X] = ZP{X >t X) = P(X; > t|X).

If the conditional distribution of X; given X is available, then we can cal-
culate P( X, > t|X) directly. But the following technique can be applied to
avoid the derivation of conditional distributions. By Proposition 1.12(vii),

z).

=I|

PX,>tX=2)=P(X, /X >t/X|X =) = P(X,/X > t/7|X
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By Basu's theorem (Theorem 2.4), X;/X and X are independent. Hence
P(X, >t X =7) = P(X,/X >1/7).

To compute this probability, we need the distribution of

xl/;xﬁxl/ (X1+;Xi).

T - . * - . .
> ., X; is independent of X; and has a gamma distribution, we obtain

that X,/ " | X; has the Lebesgue p.d.f. (n—1)(1—x)" 21 1)(z). Hence

_ 1 r ' n—1
PO > X =)= (-1) [ -2y ~2dr= (1- )
Jtf(nx)

nT

and the UMVUE of ¥ is T(X) = E[1 — F,(t)]X] = (1 - )", a

We now show more examples of applying these two methods to find

UMVUE's.

Example 3.4. Let X;,...., X, be i.i.d. from N(u. %) with unknown g € R
and ¢2 > 0. From Example 2.18, T" = (X, S5?) is sufficient and com-
plete for = (u,0?) and X and (n — 1)S8%?/0? are independent and have
the N (g, o?/n) and chi-square distribution x?_,, respectively. Using the
method of solving for h directly, we find that the UMVUE for p is X; the
UMVUE of p# is X*—5%/n: the UMVUE for 0" withr > 1—nis k,_,,.5".
where

n"/20(n/2)
= g/ (a)

(exercise); and the UMVUE of p/o is k,_, 1 X /S, if n > 2.

Suppose that o satisfies P(X; < 9) = p with a fixed p € (0,1). Let ®
be the c.d.f. of the standard normal distribution. Then ¥ = p 4 o®~*(p)
and its UMVUE is X + k,_11,5® 7 (p).

Let ¢ be a fixed constant and ¢ = P(X; < ¢) = & (=£). We can
find the UMVUE of ¢/ using the method of conditioning and the technique
used in Example 3.3. Since I{_ ) (X1) is an unbiased estimator of ¥, the
UMVUE of ¥ is E[l(_o )(X1)|T] = P(X; < ¢|T'). By Basu’s theorem,
the ancillary statistic Z(X) = (X; — X)/S is independent of 7" = (X, 5%).
Then

k

X, - X - c—1T
S - 5

P (X, <dT = (z,5%)) = P(
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It can be shown that Z has the Lebesgue p.d.f.

I nrl 2 (n/2)—2
1= ey [ G

Vr(n — 1) (25
(exercise). Hence the UMVUE of 4 is

I(u__(n—ljjﬁ}“zn (3.1)

(e—X)/8
P(X, < o|T) = [ F(2)dz (3.2)
J—(n-1)/y/n
with f given by (3.1).
Suppose that we would like to estimate ¥ = #'I*’ (5-:-'55) the Lebesgue

p.d.f. of X| evaluated at a fixed ¢, where &' is the first-order derivative
of ®. By (3.2), the conditional p.d.f. of X given X = T and §% = s? is

s71f (£=%). Let fr be the joint p.d.f. of T = (X.S?). Then

_ 1 c—1T L1 c— X
o= [ [ (57 ) o= e 5 (557) )

Hence the UMVUE of 7 1s

Example 3.5. Let Xy, ..., X, be ii.d. from a power series distribution (see
Exercise 13 in §2.6), i.e.,

P(X; =x) = ~(x)0% /c(0), r=~01,2, ..

with a known function v(z) = 0 and an unknown parameter ¢ > 0. It turns
out that the joint distribution of X = (X1, ..., X},) is in an exponential fam-
ily with a sufficient and complete statistic T'(X) = > " | X;. Furthermore,
the distribution of 1" is also in a power series family, i.e.,

P(T =t) = v, ()8"/[c(@)]", t=0,1,2,..,

where ~,,(t) is the coefficient of 8% in the power series expansion of [¢(#)]™
(exercise). This result can help us to find the UMVUE of ¥ = g(#). For

example, by comparing both sides of

S (v (8)6" = [c(0)]" 70"
==}

t .....

we conclude that the UMVUE of 87 /[e(0)]7 is

h(T) 0 T <r
- ":"n—;p(T_T)
Tl 1) T 2 T
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where r and p are nonnegative integers. In particular, the case of p = 1
produces the UMVUE ~(r)h(T') of the probability P(X, = r) = 5(r)0" /c(0)

for anv nonnegative integer r. I

Example 3.6. Let X, .... X, be i.i.d. from an unknown population P in a
nonparametric family P. We have discussed in §2.2 that in many cases the
vector of order statistics, T = (X1, .... X)), is sufficient and complete for
P € P. Note that an estimator ¢( X, ..., X},) is a function of T' if and only if
the function  is symmetric in its n arguments. Hence, if T' is sufficient and
complete, then a symmetric unbiased estimator of any estimable # is the
UMVUE. For example, X is the UMVUE of ¢ = EX,; 52 is the UMVUE
of Var(X1); n=1 >0 | X7 — 5% is the UMVUE of (EX,)? and F,(t) is the
UMVUE of P(X, <t) for any fixed {.

Note that these conclusions are not true if T is not sufficient and com-
plete for P € P. For example, if P contains all symmetric distributions
having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for
U = EX; (exercise). 1

More discussions of UMVUE’s in nonparametric problems are provided
in §3.2.

3.1.2 A necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very
difficult to derive a UMVUE. In some cases, the following result can be
applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2. Let U/ be the set of all unbiased estimators of () with finite
variances and 7" be an unbiased estimator of ¥ with E(7T%) < ~c.

(i) A necessary and sufficient condition for T'(X) to be a UMVUE of ¥ is
that E[T(X)U(X)] =0 for any U € Y and any P € P.

(ii) Suppose that T = h(T'), where T is a sufficient statistic for P € P and
h is a Borel function. Let U{; be the subset of I containing Borel functions
of T'. Then a necessary and sufficient condition for 7" to be a UMVUE of 4
is that E[T(X)U(X)] = 0 for any U € Uy and any P € P.

Proof. (i) Suppose that T is a UMVUE of /. Then T, = T + ¢U, where

U €U and ¢ is a fixed constant. is also unbiased for ¢ and, thus,
Var(T,.) = Var(T) ceR. Pe P,
which is the same as
*Var(U) + 2¢cCov(T.U) =2 0 ceR, PeP.
This is impossible unless Cov(7T,U) = E(TU) = 0 for any P € P.
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Suppose now E(TU) =0 for any U € Y and P € P. Let T;; be another
unbiased estimator of ¥ with Var(7,) < oc. Then T' — T,y € U and, hence,

ET(T —-Ty)] =0 PeP,
which with the fact that ET = ET} implies that
Var(T') = Cov(T,T}) PeP.

By inequality (1.34), [Cov(T,T})]* < Var(T)Var(1y). Hence Var(T) <
Var(T,) for any P € P.

(i) It suffices to show that E(TU) = 0 for any U € U; and P € P implies
that E(TU) = 0forany U € Y and P € P. Let U € 4. Then E(U|T) € Us

“r

and the result follows from the fact that T'= h(T") and
E(TU) = E[E(TU|T)] = E[E(R(T)YU|T)] = E[R(TYE(U|T)].

Theorem 3.2 can be used to find a UMVUE, to check whether a partic-
ular estimator is a UMVUE, and to show the nonexistence of any UMV UE.
If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only
need to focus on functions of the sufficient statistic and, hence, Theorem
3.2(ii) is more convenient to use.

Example 3.7. Let X,.....X, be iid. from the uniform distribution on
the interval (0,0). In Example 3.1, (1 + n‘l]X{nj is shown to be the
UMVUE for # when the parameter space is © = (0, o¢). Suppose now that
© = [1,00). Then X, is not complete, although it is still sufficient for 6.
Thus, Theorem 3.1 does not apply. We now illustrate how to use Theorem

3.2(ii) to find a UMVUE of #. Let U(X,,)) be an unbiased estimator of 0.
Since X(,) has the Lebesgue p.d.f. nf="a" 1y g (2),

1 o
[]=f U{J:)-J:“_ld;r-+-/ U(x)x™ tdz

0 1

for all @ = 1. This implies that U(z) = 0 a.e. Lebesgue measure on [1, oo)
and

1
/ U(x)z" tdx = 0.

J1

Consider T' = h(X,,). To have E(T'U) = 0, we must have

1
[ h(z)U(x)z™ 'dx = 0.

L] []

Thus, we may consider the following function:

r 0<<x=<1
hix) = - =
() {br}: r>1,
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where ¢ and b are some constants. From the previous discussion,
E[h(x[“}){j{x[“})] = [] f E 1.
Since E[h(X(,,)] = 0, we obtain that

0 = cP(X(n) < 1) + bE[X (o) I (1,00) (X ()]
=cf™" + [bn/(n+1)[(0 —07").

Thus, e =1 and b = (n+ 1)/n. The UMVUE of # is then

- {1 + H_I)Xiﬂj }f{”} = 1.

This estimator is better than (1 + n‘l]X[H} which is the UMVUE when
© = (0,00) and does not make use of the information about ¢ = 1. 1§

Example 3.8. Let X be a sample (of size 1) from the uniform distribution
U(d — % 0 + %) # € R. We now apply Theorem 3.2 to show that there is
no UMVUE of ¢ = g(f) for any nonconstant continuous g. Note that an
unbiased estimator U(X) of 0 must satisfy

043
/ Ulz)dr =0 8eR
Jo—1

]

and, hence, U(z) = U(xz + 1) a.e. m, where m is the Lebesgue measure
on R. If T'is a UMVUE, then T'(X)U(X) is unbiased for 0 and, hence,
T(x)U(z) =T(x+ 1)U(x + 1) a.e. m, which implies that T'(z) = T(z + 1)
a.e. m. If T'is unbiased for g(f), then

A+ 1

glf) = /H 1 T(z)dx 0eR,

-3

which implies that

gO)=TO0+3)-T(O—-3)=0 aem

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let T} be a UMVUE of ¢;, j = 1.....,k, where k is a

fixed positive integer. Then Zj
any constants ¢y, ..., cp.

(ii) Let T and 75 be two UMVUE’s of ¢#. Then T} = T4 a.s. P for any
PeP. 1

...........
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3.1.3 Information inequality

Suppose that we have a lower bound for the variances of all unbiased esti-
mators of ¥ and that there is an unbiased estimator T" of ¥ whose variance
is always the same as the lower bound. Then T is a UMVUE of «. Al-
though this is not an effective way to find UMVUE’s (compared with the
methods introduced in §3.1.1 and §3.1.2), it provides a way of assessing
the performance of UMV UE’s. The following result provides such a lower
bound in some cases.

Theorem 3.3 (The Cramér-Rao lower bound). Let X = (X;,....X,)
be a sample from P € P = {F; : § € O}, where © is an open set in
R¥. Suppose that T(X) is an estimator with E[T(X)] = ¢(#) being a
differentiable function of #; the joint distribution of X has a p.d.f. fy w.r.t.
a measure v for all @ € ©: and fy is differentiable as a function of # and
satisfies

:.9 h(z)fo(z)dy = /h{g; %fg{m)dv, 0 e 0, (3.3)

for h(z) = 1 and h(x) = T(x). Then

Var(T(X)) > Zg(0)[1(0)] "' [Zg(0)]" . (3.4)
where _
10) = B | gplow foX)| | 35108 fu(X)] (3.5)

is assumed to be positive definite for any 6 € ©.

Proof. We prove the univariate case (kK = 1) only. The proof for the
multivariate case (k > 1) is left to the reader. When k = 1, (3.4) reduces
to

g'(0))° -
Var(T'(X)) = 5 (3.6
(T'(X)) B2 log fo(X) )

From inequality (1.34), we only need to show that

0 c (0
E[dglﬂgfg X}] = Vai (dglﬂgﬁ;(){})
and 3
3/(0) = Cov (T(X), 75108 fo(X) )
These two results are consequences of condition (3.3). 1

The k x k matrix I(#) in (3.5) is called the Fisher information matriz.
The greater I(#) is, the easier it is to distinguish # from neighboring values
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and, therefore, the more accurately ¢ can be estimated. In fact, if the
equality in (3.6) holds for an unbiased estimator T'(X) of g(f) (which is
then a UMVUE), then the greater I(#) is, the smaller Var(T(X)) is. Thus,
I(#) is the information that X contains about the unknown parameter 6.
The inequalities in (3.4) and (3.6) are called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1. (i) Let X and Y be independent with the Fisher informa-
tion matrices Ix(f) and Iy (#), respectively. Then the Fisher information
about # contained in (X,Y) is Ix(0) + Iy (#). In particular, if X,.... X,
are i.i.d. and I(f) is the Fisher information about @ contained in a single
X;, then the Fisher information about 6 contained in X, ..., X, is nl(#).

(ii) Suppose that X has the p.d.f. fy which is twice differentiable in # and

that (3.3) holds with h(z) = 1 and fy replaced by dfy/00. Then

C;E
1(6) = —E [dﬁdﬁ log fg(}f)] . (3.7)

Proof. Result (i) follows from the independence of X and Y and the
definition of the Fisher information. Result (ii) follows from the equality

5’ _ aherJo(X) [0
goae- 08 10X = T [dr}?

lﬂgfe(X)] [%lﬂgﬁé{ )] '

The following example provides a formula for the Fisher information
matrix for many parametric families with a two-dimensional parameter @.

Example 3.9. Let X4, .... X, be i.i.d. with the Lebesgue p.d.f. lf (T_ ]
where f(z) > 0 and f'( .r} exists for all x € R, p € R, and ¢ > 0 (a

location-scale family). Let § = (pu, o). Then the Fisher information about
¢ contained in X, ..., X,, is (exercise)
[ LJ_d? fﬂ:wid;r
n S f=) - fiz)
1(0) = = [
T ‘
f? dz JpEdate: j| LACI

Note that I({#) depends on the particular parameterization. If 6 = ()
and 1 is differentiable, then the Fisher information that X contains about
n 18

ZwemIWm) | o]

However, it is easy to see that the Cramér-Rao lower bound in (3.4) or (3.6)
is not affected by anyv one-to-one reparameterization.
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If we use inequality (3.4) or (3.6) to find a UMVUE T(X), then we
obtain a formula for Var(7'(X)) at the same time. On the other hand, the
Cramér-Rao lower bound in (3.4) or (3.6) is typically not sharp. Under
some regularity conditions, the Cramér-Rao lower bound is attained if and
only if fy is in an exponential family; see Propositions 3.2 and 3.3 and
the discussion in Lehmann (1983, p. 123). Some improved information
inequalities are available (see, e.g., Lehmann (1983, Sections 2.6 and 2.7)).

Proposition 3.2. Suppose that the distribution of X is from an exponen-
tial family {fy : @ € O}, i.e., the p.d.f. of X w.r.t. a measure v is

o(x) = exp{T(z)[n(0)]" — &(0) }e(z) (3.8)

(see §2.1.3), where © is an open subset of RE.

(i) The regularity condition (3.3) is satisfied for any h with Eh(X)| < o
and (3.7) holds.

(ii) If I(n) is the Fisher information matrix for the natural parameter 7,
then the variance-covariance matrix Var(T') = I(n).

(iii) If 1(1) is the Fisher information matrix for the parameter o = E[T'(X)],
then Var(T') = [I(¥)] 1.

Proof. (i) This is a direct consequence of Theorem 2.1.

(ii) From (2.6), the p.d.f. under the natural parameter 7 is

fol@) = exp {T(z)™ — ()} ().

From Proposition 1.10 and Theorem 2.1, E[T(X}] = %Q{n} The result
follows from

f?’.'_,l lﬂg f’-".’(? ) - "‘) &.-;‘:(TF}

(iii) Since ¥ = E[T(X)] = £-¢(n),

_ - 3 — 2 T
I(n) = BTN % = 55-CNTW) | 55-¢m)| -

By Proposition 1.10, Theorem 2.1, and the result in (ii), ﬁg(ﬂ) =
Var(T) = I(n). Hence

I(9) = [Lm)] " Lm[L(m)] " = [L(n)] " = [Var(T)] 7.

A direct consequence of Proposition 3.2(ii) is that the variance of any
linear function of 7' in (3.8) attains the Cramér-Rao lower bound. The
following result gives a necessary condition for Var(U(X)) of an estimator
U(X) to attain the Cramér-Rao lower bound.
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Proposition 3.3. Let U(X) be an estimator of g(f) = E[U(X)]. Assume
that the conditions in Theorem 3.3 hold for U(z) and that @ C R.
(i) If Var(U (X)) attains the Cramér-Rao lower bound in (3.6), then
d

a(O)U(X) - 9(0)] = o/ (0) o 1og fo(X) as.
for some function a(d), 6 € ©.
(ii) Let fy and T be given by (3.8). If Var(U(X)) attains the Cramér-Rao
lower bound, then U(X) is a linear function of T(X) a.s. fy, 0 € ©. 1

Example 3.10. Let X, ..., X, beii.d. from the N(pu, {:rg] distribution with

an unknown g € R and a known o?. Let f, be the joint distribution of
X = (X1,...,X,). Then

%lﬂgfﬁ{}{) = Z{Xi — ) /o*.

Thus, I(p) = n/o”. It is obvious that Var(X) attains the Cramér-Rao lower
bound in (3.6). Consider now the estimation of 1 = p?. Since EX* =
1? + 0% /n, the UMVUE of 9 is h(X) = X? — ¢*/n. A straightforward
calculation shows that
- Ap*o® 20"
Var(h(X)) = -7+ =2

T T

On the other hand, the Cramér-Rao lower bound in this case is 4puo?/n.
Hence Var(h(X)) does not attain the Cramér-Rao lower bound. The dif-
ference is 20% /n*. 1

Condition (3.3) is a key regularity condition for the results in Theorem
3.3 and Proposition 3.3. If fp is not in an exponential family, then (3.3) has
to be checked. Typically, it does not hold if the set {z : fo(z) > 0} depends
on @ (Exercise 32). More discussions can be found in Pitman (1979).

3.1.4 Asymptotic properties of UMVUE’s

UMVUE'’s are typically consistent (see Exercise 88 in §2.6). If there is an
unbiased estimator of ¥/ whose mse is of the order a;?, where {a,} is a
sequence of positive numbers diverging to oo, then the UMVUE of ¢ (if

it exists) has a mse of order a2 and is a,-consistent. For instance, in

Example 3.3, the mse of U(X) =1 — F,(t) is Fy(t)[1 — Fy(t)]/n; hence the
UMVUE T'(X) is y/n-consistent and its mse is of the order n=!.

UMVUE's are exactly unbiased so that there is no need to discuss their
asymptotic biases. Their variances (or mse’s) are finite, but amse’s can
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be used to approximate their mse’s if the exact forms of these mse’s are
difficult to obtain. In many cases, although the variance of a UMVUE T,
does not attain the Cramér-Rao lower bound, the limit of the ratio of the
amse (or mse) of T}, over the Cramér-Rao lower bound (if it is not 0) is 1.
For instance, in Example 3.10,

Var(X? — 0% /n) 14 o? {
the Cramér-Rao lower bound 20%n

if ¢ # 0. In general, under the conditions in Theorem 3.3, if T,,(X) is
unbiased for g(#) and if for any ¢ € ©,

To(X) = g(0) = Zg@)[I(0)] 7" [Zlog fo(X)] [L+0,(1)] as. fo. (3.9)
then
amser (f) = the Cramér-Rao lower bound (3.10)

whenever the Cramér-Rao lower bound is not (). Note that the case of zero
Cramér-Rao lower bound is not of interest since a zero lower bound does
not provide any information on the performance of estimators.

Consider the UMVUE T, = (1 - ﬁ)n_l of e %Y in Example 3.3.
Using the fact that

log(l — z) = Z I? x| < 1,
=1

we obtain that

T, —e tX = 0, [:n_l) .
Using Taylor’s expansion, we obtain that
e A eV = g(0)(X — 0)[1 + 0,(1)],
where g(f) = e=%%. On the other hand,

[1(6)] 7" % log fo(X) = X — 0.

Hence (3.9) and (3.10) hold. :"iDtE that the exact variance of T}, is not
easy to obtain. In this example, it can be shown that {n[T,, — g(0)]*} is
uniformly integrable and. therefore.

lim nVar(7,) = lim n[amse; ()]

L —+ 250 n— 0

lim n[g (0)]*[1(0)] "

42 ,—2t/0

02

It is shown in Chapter 4 that if (3.10) holds, then T}, is asymptotically
optimal in some sense. Hence UMVUE'’s satisfying (3.9), which is often

true, are asyvmptotically optimal, although they may be improved in terms
of the exact mse’s.
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3.2 U-Statistics

Let X4....., X,, beiid. from an unknown population P in a nonparametric
family P. In Example 3.6 we argued that if the vector of order statistic is
sufficient and complete for P € P, then a symmetric unbiased estimator of
any estimable ¢/ is the UMVUE of +/. In a large class of problems parameters
to be estimated are of the form

= Eh(X,,..., X))

with a positive integer m and a Borel function h which is symmetric and
satisfies E|h(X1,...,X,)| < oc for any P € P. It is easy to see that a

symmetric unbiased estimator of ¥ is

~1
U, = (”) S h(Xi e X)), (3.11)

T

where 3 denotes the summation over the (") combinations of m distinct
elements {iy, ..., %, } from {1,....,n}.

Definition 3.2. The statistic U, in (3.11) is called a U-statistic with kernel
h of order m. 1

3.2.1 Some examples

The use of U-statistics is an effective way of obtaining unbiased estimators.
In nonparametric problems, U-statistics are often UMVUE’s, whereas in
parametric problems, U-statistics can be used as initial estimators to derive
more efficient estimators.

If m =1, U, in (3.11) is simply a type of sample mean. Examples
include the empirical c.d.f. (2.31) evaluated at a particular t and the sample
moments n=' Y1 XF for a positive integer k. We now consider some
examples with m > 1.

Consider the estimation of ¥ = p™, where p = E' X, and m is a positive
integer. Using h(zy,..., 2 ) = 21 - - - Ty, we obtain the following U-statistic
unhbiased for ¥ = p':

~1
n ‘
Un = (m) Zf: Xiy o X, (3.12)

Consider next the estimation of ¥ = ¢* = Var(X,). Since

o? = [Var(Xy) + Var(X2)]/2 = E[(X1 — X3)*/2],
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we obtain the following U-statistic with kernel h(xzy.29) = (27 — 22)%/2:

2 (Xi — X;)* 1 — -2 2
U”_n{ﬂ;-—l:l Z 2 T n-1 ;Xi-—n}f =57

1<i<j<n

which is the sample variance in (2.2).

In some cases we would like to estimate @ = E|X; — X5|, a measure of
concentration. Using kernel h{xy,x5) = |27 — 23|, we obtain the following

U-statistic unbiased for ¥ = E|X; — X,|:
2
U, = X — X,
n(n—1) ligiﬂ !

which is known as Gini’s mean difference.

Let ¥ = P(X; + Xy < 0). Using kernel h(xy,z2) = I(_ (21 + x2).
we obtain the following U-statistic unbiased for ¥:

2
Un = Z I{—c::,{]]{xi + XJ)!

ﬂ{:ﬂ - 1) l<i<ji<n

which is known as the one-sample Wilcoxon statistic.

Let T, = T,(X1....,X,) be a given statistic and let r and d be two
positive integers such that r + d = n. For any s = {iy,....4,.} C {1,...,n},
define

TT'._S - TT{X“, Xh)

which is the statistic 7, computed after X;, ¢ € s. are deleted from the
original sample. Let

—1
T ‘
U, = (?) Y L(Ts —Tn)”. (3.13)

L

Then U,, 18 a U-statistic with kernel
ho(zy, .y zy) = 5[0 (21, 2p) = T2y, oo )]

Unlike the kernels in the previous examples, the kernel in this example
depends on n. The order of the kernel, r, may also depend on n. The
statistic Uy, in (3.13) is known as the delete-d jackknife variance estimator
for T, (see, e.g., Shao and Tu (1995)), since it is often true that

E[hn(X1,.... X,)] = Var(T},).

[t can be shown that if T,, = X, then nU,, in (3.13) is exactly the same as
the sample variance S (exercise).
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3.2.2 Variances of U-statistics

If E[h(X1,...,X,)]* < oo, then the variance of U, in (3.11) with kernel
h has an explicit form. To derive Var(U, ), we need some notation. For
kE=1....,m, let

hi(zy, ..., x1) = ER( X1, ... Xn)| X1 = 21, ... Xi, = 2]

= E[h(zy, ., Xig1, -, Xon) -
It can be shown that
hy (1, ---,Ik]' - E[hkﬂ{-’rl: ---ﬁi‘kﬁxkﬂ)]- '[3-14)

Define i
hi = hi — E[h( X1, ..., X0 (3.15)

Then, for any U,, defined by (3.11),

1
U, — E(U,) = (”) N hen(Xiy s s X)), (3.16)

1T

Theorem 3.4 (Hoeffding’s theorem). For a U-statistic U,, given by (3.11)
with E[h(X,, ..., X,,)]* < oo,

] n\ SN Sm\ fn—m
Var(U,,) = (m) > (L) (m B k)c;;,.

k=1
where
G = Var(hy (X1, .... X)),
Proof. Consider two sets {i1,...,4,, } and {j1,.... 7, } of m distinct integers
from {1,....n} with exactly %k integers in common. The number of distinct

choices of two such sets is (;) (T;:] [::;f) By the symmetry of h,, and
independence of X;,..., X,,,

Elhm(Xiy oo Xy Y (X, oo, X5,)] = G (3.17)

TR Jrr ey

for k = 1,....m (exercise). Then, by (3.16),

mn

—2
Vﬂ,]‘{ffﬂ) = (?n) Z Z E[hq-n,(Xil: Xim)hm{Xh AL ij :J]

() G«

This proves the result. 1
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Corollary 3.2. Under the condition of Theorem 3.4,
(i) =¢1 < Var(Un) < Zm;

T

(ii) (n+ 1)Var(U,+1) < nVar(U,,) for any n > m;
(iii) For any fixed m and k = 1,...,m, if (; = 0 for j < k and (; > 0, then

'?'J"LE
Var{'{'fn)=u(’“)€k+0( ! ) I

It follows from Corollary 3.2 that a U-statistic [J,, as an estimator of its
mean is consistent in mse (under the finite second moment assumption on
h). In fact, for any fixed m, if (; = 0 for j < k and (3 > 0, then the mse of
U,, is of the order n=* and, therefore, U,, is n*/?-consistent.

Example 3.11. Consider first h(z;,z9) = x125 which leads to a U-statistic
unbiased for 1?, o = EX,. Note that hyi(zy1) = pxy, hy(xy) = plxy — p),
G1 = L‘j[hl'[Xﬂ']lr = Hgvt"\f{Xl) = HE”E, ho(xy,x3) = 2129 — ﬁ-ﬂze and (o =
Var(X,X5) = E(X1X5)* — u* = (u* + 0°)* — p*. By Theorem 3.4, for

Un = (E)_l ZIEi{j'ﬂ_in Xi X,

~1
Var(U,,) = (2) [(f) (n -1— 2) C1+ (3) (n ; 2) Cz]
- n{nz__ ) 2(n = 2)p’a”® + (u* + o) — p°]

4p?o? 20"

— + _
n n(n—1)

Comparing U,, with X? — ¢?/n in Example 3.10, which is the UMVUE

under the normality and known ¢? assumption, we find that

Var(Uy) — Var(X? — 0?/n) = —22-
ar(l/,,) — Var — o /n) = — :
n?(n— 1)
Next, consider h(xi,x2) = I _ 0y(x1 + x2) which leads to the one-

sample Wilcoxon statistic. Note that hy(z)) = Pz, + Xo < 0) = F(—11),
where I is the c.d.f. of P. Then {; = Var(F(—X,)). Let ¢ = E[h{X;, X3)].
Then (5 = Var(h(X;, Xs)) = ¥(1 — ). Hence, for U,, being the one-sample

Wilcoxon statistic.

Var(U,,) = 2(n—2)G + (1 =),

n(n—1)
If F'is continuous and symmetric about 0, then (; can be simplified as

G = Var(F(=X1)) = Var(1 — F(X1)) = Var(F(X1)) = 1,
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since F'{X) has the uniform distribution on [0, 1].

Finally, consider h(xy,22) = |21 — 22|, which leads to Gini's mean dif-
ference. Note that

ha(21) = Elz1 — Xof = f 21 — y|dP(y)
and
¢ = Var(h(Xy)) / [/ iz — y|dP(y ] dP(x) — 97,
where o = E|X; — X5|. 1§

3.2.3 The projection method

Since P is nonparametric, the exact distribution of any U-statistic is hard
to derive. In this section we study asymptotic distributions of U-statistics,
using the method of projection.

Definition 3.3. Let T,, be a given statistic based on X,....,X,,. The
projection of 7}, on k,, random elements Y7, ...,Y, 1is defined to be

Tn - E(ﬂi} + Z TTL|Y} n:]]' i

Let o, (X;) = E(T,|X;). If T}, is symmetric (as a function of Xy, ..., X, ),
then ¥,(X1), ..., ¥, (X,,) are i.i.d. with mean E[,(X;)] = E[E(T,|X; :1] =
E(T,). If E[T?} < oo and Var(i,(X;)) > 0, then

JnVar z X0 Z[uf»u (Xi) — E(Ty,)] —a N(0.1) (3.18)
}TL 1 i=—1

by the CLT. Let T}, be the projection of T,, on X1, ..., X,,. Then

TL

T =T =Tn = E(T,) = > [n(X:) — E(T})]- (3.19)

If we can show that T, — T, has a negligible order of magnitude. then
we can derive the asymptotic distribution of T;, by using (3.18)-(3.19) and
Slutsky’s theorem. The order of magnitude of T}, — T, can be obtained with
the help of the following lemma.

Lemma 3.1. Let T}, be a symmetric statistic with Var(T,,) < o fnr every
n and T,, be the projection of T;, on X;,..., X,,. Then E(T,,) = n) and

E(Tn - Tn)z - v‘:‘*l{ﬂa} - Vﬂr{Tn)'
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Proof. Since E(T,,) = E{ﬂl),
E(T, —T,)* = Var(T,) + Var(T,,) — 2Cov(T,, T,,).
From Definition 3.3 with Y; = X,
Var(T),) = nVar(E(T,|X;)).
The result follows from

Cov(T,, T,,) = E(T,T,) — [E(T,))?
= nE[T,E(T,|X;)] - n[E(T,)]?
= nE{E[T, E(T,|X:)|X:]} — n[E(T,)]?
= nE{[E(T,|X;)]*} — n[E(T.)]?
= nVar(E(T,|X;))
= Var(T,,).

This method of deriving the asymptotic distribution of T}, is known as
the method of projection and is particularly effective for U-statistics. For
a U-statistic U,, given by (3.11), one can show (exercise) that

y m Tl _
= ! .-';r- - : . : .
Un = E(U,) + — > hi(Xs), (3.20)

1=1

where U, is the projection of U,, on Xy...., X,, and hy is defined by (3.15).
Hence

var{ﬂﬂ) = m*( /n

and, by Corollary 3.2 and Lemma 3.1,
E(Un — Un)? = 0(n™?).

If ¢(; > 0, then (3.18) holds with ,,(X;) = mhy(X;), which leads to the
result in Theorem 3.5(i) stated later.

If ¢; = 0, then hi1 = 0 and we have to use another projection of U/,.
Suppose that {; = --- = (1 = 0 and (. > 0 for an integer £ > 1. Consider
the projection Uy, of U, on {X; ,... X; }, 1 <i; <--- <ip <n. Wecan

establish a result similar to that in Lemma 3.1 (exercise) and show that
E(U, — U,)? = O(n=*+1),

Also, see Serfling (1980, §5.3.4).

With these results, we obtain the following theorem.
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Theorem 3.5. Let U, be given by (3.11) with E[h(X;..... X,,)]* < oc.
(i) If {; = 0, then

Va[U, — E(U,)] —4 N(0,m*¢,).
(ii) If {; = 0 but {3 > 0, then

n[Un — E(U,)] —q T 2 > NG - 1), (3.21)

where y3 ; s are L.1.d. random variables having the chi-square distribution X9
a = :l a ] a b 5 L i b r' o 2 [
and A;’s are some constants (which may depend on P) satisfying Zj:____l A =

CHE

We have actually proved Theorem 3.5(i). A proof for Theorem 3.5(ii) is
given in Serfling (1980, §5.5.2). One may derive results for the cases where
(> = 0, but the case of either ¢; > 0 or {» > 0 is the most interesting case
in applications.

If {; = 0, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that
amse;; (P) = Var(U,) = m?(;/n. By Theorem 1.8(vii), {n[U,, — E(U,)]*}
is uniformly integrable.

If ¢; = 0 but {3 > 0, it follows from Theorem 3.5(ii) that amse;, (P) =

EY?/n?, where Y denotes the random variable on the right-hand side of
(3.21). The following result provides the value of EY=.

Lemma 3.2. Let Y b? the random variable on the right-hand side of

(3.21). Then EY? = ™ (m=1"/,
Proof. Define

mim — 1 .
Y, = ( }sz{ﬁj—l), k=12, ..

[t can be shown (exercise) that {Y} is uniformly integrable. Since Y}, —4
Y as k — oo, limp_o EY? = EY? (Theorem 18(111}} Since x7;'s are

independent chi-square random variables with £ Xl = 1 and Var(xi. ) = 2,

EYy = 0 for any &k and

‘ m?(m — 1)° oo
EY? = i D AVar(xi;)
=1
20 — 1)2 koo
_ m*(m ) 5% )2
4 J
=1
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It follows from Corollary 3.2(iii) and Lemma 3.2 that amse; (P) =

Var(U,) = mﬂ{”;_ljztfg/nz if (1 = 0. Again, by Theorem 1.8(vii), the
sequence {n?[U,, — E(U,)]*} is uniformly integrable.

We n:::w apply Theorem 3.5 to the U-statistics in Example 3.11. For
U, = ”{“ Y D <icijen XiXjy (1 = pio?. Thus, if u # 0, the result in

Theorem 3.5(i) holds with ¢; = p?0?. If 4 =0, then {; =0, s = o* > 0,
and Theorem 3.5(ii) applies. Hmﬁ.emer, it is not convenient to use Theorem
3.5(ii) to find the limiting distribution of U,,. We may derive this limiting
distribution using the following technique which is further discussed in §3.5.

By the CLT and Theorem 1.10,
ﬂ}_{g)/ﬂz —*d j[%

when p = 0, where x7 is a random variable having the chi-square distribu-
tion x7. Note that

By the SLLN, ﬁ z;'l_;___l X? —,. 1. An application of Slutsky’s theorem
leads to

nlU, /o —4 x] — L.

Since p = 0, this implies that the right-hand side of (3.21) is o%(x5 — 1).
e, Ay =0 and A; = 0 when j > 1.
For the one-sample Wilcoxon statistic, {; = Var(F(—X;)) = 0 unless

F' is degenerate. Similarly, for Gini's mean difference, {; > 0 unless F' is
degenerate. Hence Theorem 3.5(i) applies to these two cases.

Theorem 3.5 does not apply to U,, defined by (3.13), if r, the order of
the kernel, depends on n and diverges to oc as n — oo. We consider the
simple case where

T, =—> ¢(Xi)+ R, (3.22)

mn 4

for some R, satisfying E(R?) = o(n~'). Note that (3.22) is satisfied for
T, being a U-statistic (exercise). Assume that r/d is bounded. Let S'f =

(n—1)7' Y (X)) = n~ P (X% Then
nl, = S, + o0p(1) (3.23)

(exercise). Under (3.22). if 0 < E[(X;)]* < oo, then amse, (P) =
E[(X;)]*/n. Hence, the jackknife estimator U,, in (3.13) provides a con-
sistent estimator of amseq (P), i.e., Uy /amsep (P) —, 1.
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3.3 The LSE in Linear Models

One of the most useful statistical models for non-i.i.d. data in applications
is the following general linear model

Xi_f = ZT;I.'ET + £, 1= 1_, cans T, {:izd}

where X, is the ith observation and is often called the ith response; 3
is a p-vector of unknown parameters, p < n: Z; is the ith value of a p-
vector of explanatory variables (or covariates); and £q,...,&, are random
errors. Our data in this case are (X, 21),...,(X,,Z,) (g;'s are not ob-
served). Throughout this book Z;’s are considered to be nonrandom or
oiven values of a random p-vector. in which case our analysis is conditioned
on Zq...., 4,. Each £; can be viewed as a random measurement error in
measuring the unknown mean of X; when the covariate vector is equal to
Z;. The main parameter of interest is 3. More specific examples of model
(3.24) are provided in this section. Other examples and examples of data

from model (3.24) can be found in many standard books for linear models,
for example, Draper and Smith (1981) and Searle (1971).

3.3.1 The LSE and estimability

Let X = (X1,....,Xn), 2 = (61,....en), and Z be the n x p matrix whose ith

row is Z;, i = 1,...,n. Then a matrix form of model (3.24) is
X=082" 4= (3.25)
Definition 3.4. Suppose that the range of J in model (3.25) is B C RP.

A least squares estimator (LSE) of 3 is defined to be any § € B such that

| X - 827 2 (3.26)

= min || X — bZ7
be

For any | € RP, 517 is called an LSE of 5I7. &

Throughout this book we consider B = RP, unless otherwise stated.
Differentiating || X — bZ7[|* w.r.t. b. we obtain that any solution of

bZTZ = XZ (3.27)

is an LSE of 3. If the rank of the matrix Z is p, in which case (Z272)~!
exists and Z is said to be of full rank, then there is a unique LSE which is

3=X2Z(Z"Z)"" (3.28)
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If Z is not of full rank, then there are infinitely many LSE’s of 3. It can
be shown (exercise) that any LSE of @ is of the form

3=X2Z(Z"2)". (3.29)
where (Z7Z) " is called a generalized inverse of Z7Z and satisfies
VADAVANA VAN ESNANA

(Generalized inverse matrices are not unique unless £ is of full rank. in which
case (Z7Z)” = (Z7Z)~! and (3.29) reduces to (3.28).

To study properties of LSE’s of [, we need some assumptions on the
distribution of X. Since Z;’s are nonrandom, assumptions on the distribu-
tion of X can be expressed in terms of assumptions on the distribution of
£. Several commonly adopted assumptions are stated as follows.

Assumption Al: = is distributed as N, (0, r:rgfn_) with an unknown &% > 0.
Assumption A2: E(z) = 0 and Var(e) = ¢21,, with an unknown o2 > (.

Assumption A3: E(z) = 0 and Var(e) is an unknown matrix.

Assumption Al is the strongest and implies a parametric model. We
may assume a slightly more general assumption that £ has the N, (0, c%D)
distribution with unknown o but a known positive definite matrix D. Let
D~Y/2 be the inverse of the square root matrix of D. Then model (3.25)
with assumption Al holds if we replace X. Z. and = by the transformed
variables X = XD~VY2 Z = ZD-Y2 and £ = =D~1/2 respectively. A
similar conclusion can be made for assumption AZ2.

Under assumption Al, the distribution of X is N,,(3Z7,0%1,). which
is in an exponential family P with parameter § = (3,07) € RP x (0, 0c).
However, if the matrix Z is not of full rank, then P is not identifiable (see
§2.1.2), since 31 Z7 = 33 Z7 does not imply 3, = 5.

Suppose that the rank of Z is r < p. Then there is an n x r submatrix
Z, of Z such that
Z = 7.0 (3.30)

and Z, is of rank r. where () is a fixed r x p matrix. Then
G477 = [BQTZ]

and P is identifiable if we consider the reparameterization 3 = Q7. Note
that the new parameter [ is in a subspace of R¥ with dimension r.

In many applications we are interested in estimating some linear func-
tions of 3, i.e., ¥y = Gl for some | € RP. From the previous discussion,
however, estimation of 317 is meaningless unless [ = ¢() for some ¢ € R" so0
that )

BT = [3Q7 e = [’
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The following result shows that 517 is estimable if [ = (), which is also
necessary for 1™ to be estimable under assumption Al.

Theorem 3.6. Assume model (3.25) with assumption A3.

(i) A necessary and sufficient condition for [ € RP? being () for some ¢ € R"
isl € R(Z)=R(Z™Z), where () is given by (3.30) and R(A) is the smallest
linear subspace of R¥ containing all rows of A.

(ii) If I € R(Z), then the LSE 317 is unique and unbiased for 31".

(iii) If I ¢ R(Z) and assumption Al holds, then 317 is not estimable.
Proof. (i) If [ = ¢}, then

|l =cQ=c(ZIZ) ' Z212.Q = [e(Z]Z.) ' Z]]Z.
Hence l € R(Z). If l € R(Z), then | = (Z for some ( and
[ =(Z.Q = ecQ

with ¢ = (Z,.
(ii) If l € R(Z), then | = (Z7 Z for some ¢ and by (3.29),

E(BI") = E[XZ(Z7Z)71"]
— BZTZZ"Z) (27 Z)CT
= BZTZ(T

8l

I

If 3 is any other LSE of 3, then, by (3.27),
BT —BI" = (8 —-PNZ7Z) ¢ =(XZ - XZ) =0.

(iii) Under assumption Al, if there is an estimator h(X, Z) unbiased for

417, then

e

Bl = / Wz, Z)(2m) ™20 " exp {— 5z ||z — BZ7||*} dz.
R'H.

Differentiating w.r.t.  and applying Theorem 2.1 leads to

D

Im=Z7 / h(z, Z)(2m) 26" 2(2" — ZF7 ) exp{—5is||z — BZ7||*} dx,
. 'TET.'
which implies [ € R(Z). 1§
Theorem 3.6 shows that LSE’s are unbiased for estimable parameters

GIT. 1f Z is of full rank, then R(Z) = R¥ and, therefore, 517 is estimable
for any [ € RF.
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Example 3.12 (Simple linear regression). Let 3 = (5y./71) € R? and
Z; = (1,t;), t; € R, i = 1,...,n. Then model (3.24) or (3.25) is called a
simple linear regression model. It turns out that

Tt
AN ( ffl zii::,:l ) ) .
Zi:‘:zl t'i Zi:‘::l t'i

This matrix is invertible if and only if some t;’s are different. Thus. if some
t;’s are different, then the unique unbiased LSE of 31”7 for any [ € R? is
XZ(Z™Z) "7, which has the normal distribution if assumption Al holds.

The result can be easily extended to the case of polynomial regression
of order p in which 3 = (3. 1. .... Op—1) and Z; = (1,1, ...,tf_l). I

Example 3.13 (One-way ANOVA). Suppose that n = Zjﬁ’l n; with m
positive integers nq, ..., n,, and that

X'i=|£|!'j' +E'!-.' i=n‘j‘—l+1"'""T-Il"j'|j=1"'"'|ﬂ-i"‘

where ng = 0 and (g1, ..., b ) = 3. Let J,, be the m-vector of ones. Then
the matrix Z in this case is a block diagonal matrix with JT:J_ as the jth
diagonal block. Consequently, Z7 Z is an m x m diagonal matrix whose jth
diagonal element is n;. Thus, Z7Z is invertible and the unique LSE of 3

. i ) . . —1 T o
is the m-vector whose jth component is n; Zi___:__n}_lﬂ Xi,7=1..m.

Sometimes it is more convenient to use the following notation:

Xi' - X’.I'li_1+j'.- Eij — Eﬂ,._1+j.'- ..-F — 1'.- "':n'i'.-'i' - 1'.- veny 112,
and
[ = i+ oy, i=1,...,m.
Then our model becomes
Xii = p+ o + 4, j=1,..n;1i=1...,m, (3.31)

which is called a one-way analysis of variance (ANOVA) model. Under
model (3.31), 5 = (p. o, .co0v,) € R™TL The matrix Z under model
(3.31) is not of full rank (exercise). The LSE of § under model (3.31) is

f=(X. X0~ X, oo K — X) |

where X is still the sample mean of X, ;'s and X,. is the sample mean of the
ith group {X;;,7 = 1,...,n;}. The problem of finding the form of [” € R(Z)
under model (3.31) is left as an exercise. 1

The notation used in model (3.31) allows us to generalize the one-way
ANOVA model to any s-way ANOVA model with a positive integer s under
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the so-called factorial experiments. The following example is for the two-

way ANOVA model.
Example 3.14 (Two-way balanced ANOVA). Suppose that
X{_J'k = L+ +ﬁJ -+ Vij -+ Eijhs 1= 1._, cees !"i.j = 1, e b k = 1._, P I[tilﬂ}

where a, b, and ¢ are some positive integers. Model (3.32) is called a two-
way balanced ANOVA model. If we view model (3.32) as a special case of
model (3.25), then the parameter vector [ is

.'9 = (IH._._ I [ ﬂ'ﬂ,_ﬁl, ..._.__,8,!!,_._":{11_._ ey F1ba eees Vals ...,"}’,-1;;}. {:;33)

One can obtain the matrix Z and show that it is n x p, where n = abe and
p=1+a+0b+ ab, and is of rank ab < p (exercise). It can also be shown
(exercise) that the LSE of 3 is gn?n by the right-hand side of (3.33) with p,

g, 3, and ;5 mpla,n??d by fi, &y, ﬁ' and 7;;, respectively, where ji = X...
G; = X:. — X ’3-—}( ~ X f}fu—X” — X, —X + X..., and a dot
is used to dennte aver agmg over the indicated subscr 1pt_ e.g.,

Xj-=izzxijk
ac

..... 1.&- 1

with a fixed 7. 1§

3.3.2 The UMVUE and BLUE

We now study UMVUE's in model (3.25) with assumption Al.

Theorem 3.7. Consider model (3.25) with assumption Al.

(i) The LSE 817 is the UMVUE of 817 for any estimable 317.

(ii) The UMVUE of 0% is 6% = (n — r) 7| X — 3Z7||%, where r is the rank
of Z.

(iii) The UMVUE’s in (i) and (ii) attain the Cramér-Rao lower bound.

Proof. (i) Let 3 be an LSE of 3. By (3.27),
(X —BZTYVZ(3-B) = (XZ-XZ)B-58)7 =0
and, hence,

IX - BZ7||> = | X - 32" + 32" - BZ"|?
= ||IX - 3Z7|* + 182" - BZ"|?
= ||X = BZ7|? - 2XZ3" + 8277 + 1827 ||
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Using this result and assumption Al, we obtain the following joint Lebesgue

p.d.f. of X:

2\ —n/: xZ3" e—[Z7 |2 +||8Z7 | 327
(270 nfzexp{ng _ lle=BZTP+1pZ7E _ 1827) }

T v 2

By Proposition 2.1 and the fact that ﬁZT = XZ(Z7Z)"Z" is a function
of XZ, (XZ,||X — 3Z7|]?) is complete and sufficient for # = (3, 02). Note

that /3 is a function of X Z and, hence, a function of the complete sufficient
statistic. If 817 is estimable, then 317 is unbiased for 517 (Theorem 3.6)
and, hence, 517 is the UMVUE of 3I".

(ii) Since each column of Z7 € R(Z), ﬁfZT does not depend on the choice
of 3 and E(3Z7) = 3Z" (Theorem 3.6). Then

Cov(X — 327,327) = B(X — BZT)2Z37 = E(XZ — XZ)3" =0 (3.34)
and
E|X -BZ7|* = E(X - 8Z")(X — 8Z7)" — E[(8 - B)Z7Z(8 - 53)"]
— tr (Var{X} - vm{,f?if))
= o%[n — tr (Z{ZTZ}_ZTZ{ZTZ}_ZT)]
=o’ln—tr((Z272)" 27 Z)).
Since the previous result does not depend on the particular choice of ’?

or (Z7Z)~, we can evaluate tr((Z7Z)” Z7Z) using a particular (Z72)".
From the theory of linear algebra. there exists a p x p matrix €' such that

CC7 =1, and
e A0
clzrz)c _(u u)’

where A is an r x r diagonal matrix whose diagonal elements are positive.
Then a particular choice of (Z72)~ is

. A0
(Z7Z) = c( iﬂ ) )c’f (3.35)

and

(272)" 277 = f?( L0 )G”
0 0

whose trace is r. Hence 2 is the UMVUE of o2, since it is a function of
the complete sufficient statistic and

Eé* = (n—7v)'E|X - 3Z7|* = ¢°.
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(iii) The result follows from Proposition 3.2. &

The vector X — 3Z7 is called the residual vector and || X — 3Z7|? is

called the sum of squared residuals and is denoted by SSE. The estimator
a? is then equal to SSR/(n — r).

Since X —3Z7 and §I™ are linear in X , they are normally distributed un-
der assumption Al. Then (3.34) and assumption Al imply that 6% and 317
are independent for any estimable 3I7. Furthermore, using the generalized
inverse matrix in (3.35), we obtain that

SSR = X|[I, — Z(Z"Z)"Z7]X", (3.36)

where P, = I,, — Z(Z7Z)” Z" is a projection matrix of rank n — r. Then,
there exists an n x n matrix ¢ such that GG™ = [,, and

P,G = (G]....G]_,.0,...,0).

where (G is the jth row of G7. This and (3.36) imply that

n—r

SSR=> Y2,
j=1

where V; = XGT. Let YV = (Y1, ....Y,_.). Under assumption Al, Y is

normal; Var(Y) = ¢“I,,_,; and EY = U since
EY; = E(XG}) = 827 PG} =0,

which follows from the fact that 27 P, P, Z = Z7 P,,Z = () by the definition
of the generalized inverse. Thus, we have the following result.

Theorem 3.8. Consider model (3.25) with assumption Al. For any es-

timable parameter 507, the UMVUE's SET and &2 are independent; the

distribution of 317 is h{’if'r o?l(Z7Z)~17); and (n — r)d?/c? has the chi-
square distribution y2__.

Example 3.15. In Examples 3.12-3.14, UMVUE’s of estimable GI7 are the
LSE’s 31", under assumption Al. In Example 3.13,

LT o

SSR —_ Z Z{X” — }_(i.:lz;

in Example 3.14, if ¢ > 1,

SSR = Y‘Y (X — Xip)%n
=1

.......... l |EI.
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We now study properties of ﬁET and 6% under assumption A2, i.e., with-
out the normality assumption on £. From Theorem 3.6 and the proof of
Theorem 3.7(ii), F17 (with an I € R(Z)) and 6% are still unbiased without

the normality assumption. In what sense are 31”7 and &° optimal bevond
being unbiased? We have the following result for the LSE 817, Some dis-
cussion about 2 can be found, for example, in Rao (1973, p. 228).

Theorem 3.9. Consider model (3.25) with assumption A2.
(i) A necessary and sufficient condition for the existence of a linear function

of X that is unbiased for 5I7 is | € R(Z).

(ii) (The Gauss-Markov theorem). If I € R(Z), then the LSE 37 is the
best linear unbiased estimator (BLUE) of 31" in the sense that it has the
minimum variance in the class of linear unbiased estimators of JI7.
Proof. (i) The sufficiency has been established in Theorem 3.6. Suppose
now a linear function of X, X¢™ with ¢ € R™, is unbiased for #[7. Then

BI" = E(Xc™) = (EX)c™ = BZ7c".

Since this equality holds for all 3, | = ¢Z, i.e., | € R(Z).

(ii) Let I € R(Z) = R(Z7Z). Then | = {(Z7Z) for some ( and BIT =
_ﬁ[ZTZ}CT = X Z(7 by (3.27). Let X¢™ be any linear unbiased estimator of
GI7. From the proof of (i), ¢Z = l. Then

Cov(XZ(T, Xe™ — XZ(") = E(XZ(cXT) - E(XZ(CZTXT)
= a%tr(Z{7¢c) — o tr(Z{TCZT)
= o?[tr((TeZ) — tr(¢T1)] = 0.

Hence

Var(Xe™) = Var(Xe™ — XZ(7 + X Z(T)
= Var(Xe™ — XZ¢7) + Var(XZ(T)
+2Cov(XZ(™, X" — XZ(T)
= Var(Xe™ — XZ¢™) + Var(G07)
> Var(317).

3.3.3 Robustness of LSE’s

Consider now model (3.25) under assumption A3. An interesting question
is under what conditions on Var(e), the LSE of 4I" with | € R(Z) is
still the BLUE. If I-:?F is still the BLUE, then we say that ﬁET, considered
as a BLUE., is robust against violation of assumption A2. In general, a
statistical procedure having certain properties under an assumption is said
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to be robust against violation of the assumption if the statistical procedure
still has the same properties if the assumption is (slightly) violated. For
example, the LSE of 81" with | € R(Z), as an unbiased estimator, is robust
against violation of assumption Al or A2, since the LSE is unbiased as long
as E(c) = 0, which can be always assumed without loss of generality. On
the other hand, the LSE as a UMV ULE may not be robust against violation
of assumption Al (see §3.5).

Theorem 3.10. Consider model (3.25) with assumption A3. The following
are equivalent.

(a) 317 is the BLUE of 817 for any I € R(Z).

(b) E{ﬁi"’X?f} =0 for any | € R(Z) and any 7 such that EXn™ = 0.

(¢) Z"™Var(e)U = 0, where U is a matrix such that Z7U = 0 and R(U™) +
R(Z7) = R".

(d) Var(s) = ZA Z7 + UASUT for some Ay and As.

(e) The matrix Z(Z7Z)~ Z"Var(e) is symmetric.

Proof. We first show that (a) and (b) are equivalent, which is an analogue

of Theorem 3.2(i). Suppose that (b) holds. Let | € R(Z). If X¢™ is another
unbiased estimator of SI7, then E(Xn™) = 0 with np = ¢ - [(Z7Z2)" Z".
Hence
Var(X¢™) = Var(Xe™ — gl + 8I7)

= Var(X¢™ — XZ(Z72Z)7 1 + 517)

= Var(Xn™ + 3I7)

= Var(Xn7) + Var(817) + 2Cov(Xn™, 8I7)

= Var(Xn7) + Var(317) 4+ 2E(8I" Xn")

= Var(Xn™) + Var(507)

> Var(G17).
Suppose now that there are | € R(Z) and 5 such that E(Xn™) = 0 but
b= E(BI"Xn™) #0. Let ¢, =ty + 1(Z7Z)~ Z7. From the previous proof

we obtain that
Var(X ¢l ) = t2Var(Xn™) + Var(S17) + 26t.

As long as & # 0, there exists a t such that Var(Xe¢]) < va,r{ﬁr). This
shows that 317 cannot be a BLUE and, therefore, (a) implies (b).

We next show that (b) implies (¢). Suppose that (b) holds. Since
l € R(Z), | =~Z for some ~. For any n such that E(Xn™) = 0,

0=E(3X™y)=ENZ(ZTZ)y"ZTXXn| =~Z(Z7Z)~ Z"Var(s)n.

Since this equality holds for all v, Z(Z7Z)” Z"Var(e)n = 0. Note that
E(XnT)= 3Zn" = 0 for all 3. Hence Zn" = 0, i.e., n € R(U). Since this
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is true for all n,

Z(ZTZ) Z™Var(e)U = 0,
which implies
ZTZ(Z7Z)” Z"Var(2)U = Z"Var(s)U = 0,
since Z7Z(Z7Z)"Z7 = Z7. Thus, (¢) holds.

To show that (c¢) implies (d), we need to use the following facts from
the theory of linear algebra: there exists nonsingular matrix ' such that

Var(e) = CC™ and C = ZC + UC; for some matrices C; (since R(UT) +
R(Z7)=TR"). Let Ay = C1C], Ay = CCT, and Ay = C1C]. Then

Var(e) = ZMNZ7 + UANUT + ZAUT + UALZT (3.37)
and Z™Var(s)U = Z7ZA;UTU, which is 0 if (¢) holds. Hence, (¢) implies
0=Z(Z7Z) Z7ZN;UTU(UTU) U™ = ZA3U,

which with (3.37) implies (d).

If (d) holds, then Z(Z7Z)” Z™Var(s) = ZAZ7, which is symmetric.
Hence (d) implies (e). To complete the proof we need to show that (e)
implies (b), which is left as an exercise. 1

As a corollary of this theorem, the following result shows when the
UMVUE’s in model (3.25) with assumption Al is robust against the viola-
tion of Var(e) = o21,,.

Corollary 3.3. Consider model (3.25) with normally distributed ¢ and a

full rank Z. Then 17 and 62 are still UMVUE’s of 3™ and o, respectively,
if and only if one of (b)-(e) in Theorem 3.10 holds.

Example 3.16. Consider model (3.25) with 7 replaced by a random vector
3 which is independent of . Such a model is called a linear model with
random coefficients. Suppose that Var(e) = o1, E(3) = 4. Then

X=p8ZT+(B-0)2" +c=p32Z" +e, (3.38)
where ¢ = (3 — 3)Z" + ¢ satisfies E(e) = 0 and
Var(e) = ZVar(B8)Z™ + o°1,,.

Since

Z(Z7Z2)" Z"Var(e) = ZVar(B)Z™ + 02 Z(Z7Z2) 27

is symmetric. by Theorem 3.10, the LSE _ﬂET under model (3.38) is the
BLUE for any 317, l € R(Z). If Z is of full rank and = is normal, then, by

Corollary 3.3, 81" is the UMVUE. 1
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Example 3.17 (Random effects models). Suppose that
Xij=p+A +ey, j=1..,n,i=1..m, (3.39)

where ;1 € R is an unknown parameter, A;’s are i.i.d. random variables
having mean 0 and variance ¢2, e;;’s are 1.i.d. random errors with mean 0
and variance o2, and A;’s and e;;'s are independent. Model (3.39) is called
a one-way random effects model and A;’s are unobserved random effects.
Let £;; = A; +e;;. Then (3.39) is a special case of the general model (3.25)
with

Var(e) = 05X + 071,

where X is a block diagonal matrix whose ith block is .J],_.J;,, and J; is the k-
vector of ones. Under thismodel, Z = J7, n=5"" n; and Z(Z7Z)" Z7 =
n~tJTJ,. Note that

T Ty n2dD Ty T T
IS nady Jny nedl Jn, oo nmJ T |
ﬂl.}::m . ﬂgf};m Jna o nm*};m T,
which is symmetric if and only if n; = ny = -+ = n,,. Since J.J, Var(z)

is symmetric if and only if J]J, ¥ is symmetric, a necessary and sufficient
condition for the LSE of u to be the BLUE is that all n;’s are the same.
This condition is also necessary and sufficient for the LSE of u to be the
UMVUE when &;;'s are normal. 1

In some cases we are interested in some (not all) linear functions of 3.
For example, consider 317 with I € R(H ), where H is an n x p matrix such

that R(H) € R(Z). We have the following result.

Proposition 3.4. Consider model (3.25) with assumption A3. Suppose
that H is a matrix such that R(H) C R(Z). A necessary and suffi-
cient condition for the LSE 3I™ to be the BLUE for any | € R(H) is
H(Z7Z)= Z™Var(e)U = 0, where U is the same as that in (¢) of Theorem
3.10. 1

Example 3.18. Consider model (3.25) with assumption A3 and Z =
(Hy, Hy), where H] Hy = 0. Suppose that under the reduced model

X =B H] +e,

ﬁliT is the BLUE for any 17, | € R(H,), and that under the reduced
model
X = ﬁgﬂg -+ £,
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_E"EET is not a BLUE for some 3317, | € R(H>), where 3 = (3;, 32) and ,f?j’s
are LSE’s under the reduced models. Let H = (H,0) be n x p. Note that

H(Z™Z)  Z"Var(s)U = Hy(H{ H,)” H{ Var(e)U,
which is 0 by Theorem 3.10 for the U given in (c¢) of Theorem 3.10, and
Z(Z7Z) Z™Var(e)U = Hy(H] Hy)~ Hi Var(s)U,

which is not 0 by Theorem 3.10. This implies that some LSE 317 is not a
BLUE but 317 is the BLUE if l € R(H). 8

Finally, we consider model (3.25) with Var(s) being a diagonal matrix
whose ith diagonal element is 02, i.e., g;’s are uncorrelated but have unequal
variances. A straightforward calculation shows that condition (e) in Theo-
rem 3.10 holds if and only if, for all i # j, o7 # rr:f only when h;; = 0, where
hi; is the (i, j)th element of the projection matrix Z(Z7Z)~ Z7. Thus, the

LSE’s are not BLUE’s in general.

Suppose that the unequal variances of £;'s are caused by some small
perturbations, i.e., £; = e; + u;, where Var(e;) = o2, Var(u;) = §;, and
e; and u; are independent so that o7 = o2 4 §6;. If §; = 0 for all i (no

perturbations), then assumption A2 holds and any LSE ﬂIT is the BLUE
with variance

Var(817) = o21(Z7Z)71".
When 8; > 0, 317 is still unbiased for 317, [ € R(Z), and

Var(B17) = U(Z72)" Y 0727 Z:(Z7Z)7 1.

Suppose that 6; < ¢28. Then
Var(G17) < (14 8)d?1(Z7Z)71".

This indicates that the LSE is robust in the sense that its variance increases
slichtly when there is a slight violation of the equal variance assumption

(small &).

3.3.4 Asymptotic properties of LSE’s

We consider first the consistency of the LSE ﬁET with | € R(Z) for every
.

Theorem 3.11. Consider model (3.25) with assumption A3. Suppose that
sup,, Ay [Var(z)] < oo, where A [A] is the largest eigenvalue of the matrix
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A, and that lim,, ... A:[(Z7Z)7] = 0. Then 317 is consistent in mse for
any | € R(Z).

Proof. The result follows from the fact that ﬁET is unbiased and

Var(Bl7) = (Z7Z)~ Z Var(£)Z(Z7Z) 71"
< Ay [Var(a)|[l(Z27Z)717. »

Without the normality assumption on £, the exact distribution of ﬁf’r

is very hard to obtain. The asvmptotic distribution of 3[7 is derived in the
following result.

Theorem 3.12. Consider model (3.25) with assumption A3. Suppose that
0 < inf,, A_[Var(e)], where ;\_[A] is the smallest eigenvalue of the matrix
A, and that

lim max Z;(Z7Z) Z] = (3.40)

n—oo 1<i<n

Suppose further that n = Zf , m; for some integers k, m;, j = 1,.... k.
with m;’s bounded by a fixed integer m, £ = (&1, ..., &), cf:., e R™i, Fr.lld !jj
are independent.

(i) If sup, E|z;|*T° < oo, then for any [ € R(Z).

(3 - _ﬁ}ET/\/var{ﬁET) —q N(0,1). (3.41)

(ii) If &;'s are i.i.d., then result (3.41) holds.
Proof. Let [ € R(Z). Then

BZTZ(ZTZ)TIT - Bl =0
and

k
(B-BW ==Z(Z7Z)71" =) e,
g=1

where ¢,,; is the m;-vector whose components are [(Z7Z)"Z7, i = mj_; +
l,....,mj, my = 0. Note that

SN lewsl? = U272y~ 27 2(Z272)" 17 = 1(Z72)7T". (3.42)

Also,
max flea;|* < m max [(Z72)" Z]]

< ml(Z7Z)71" max Z:(Z7Z)"Z7.

1<i<n
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which, together with (3.42) and condition (3.40), implies that

ke
: , NE 2l -
Jim | max e | / > lenil* | = 0.

The results then follow from Corollary 1.3. 1

Under the conditions of Theorem 3.12, Var(e) is a diagonal block matrix
with Var(¢;) as the jth diagonal block, which includes the case of indepen-
dent ;s as a special case.

The following lemma tells us how to check condition (3.40).

Lemma 3.3. The following are sufficient conditions for (3.40).

(a) AL[(Z7Z)"| —0and Z,(Z7Z)"Z] — 0, as n — 0.

(b) There is an increasing sequence {a,} such that a,, — oc and Z7Z/a,
converges to a positive definite matrix. §

Ifn=' 3" | t7 — cin the simple linear regression model (Example 3.12),
where ¢ is a positive constant, then condition (b) in Lemma 3.3 is satisfied
with a,, = n and, therefore, Theorem 3.12 applies. In the one-way ANOVA
model (Example 3.13),

max Z;(Z7Z)"ZI = A [(Z7Z)7] = max n; '

1<i<n i )" Zi +( )| 1<5<m
Hence conditions related to Z in Theorem 3.12 are satisfied if and only

if min; n; — oco. Some similar conclusions can be drawn in the two-way
ANOVA model (Example 3.14).

3.4 Unbiased Estimators in Survey Problems

In this section we consider unbiased estimation for another type of non-i.i.d.
data often encountered in applications: survey data from finite populations.
A description of the problem is given in Example 2.3 of §2.1.1. Examples
and a fuller account of theoretical aspects of survey sampling can be found
in, for example, Cochran (1977) and Sarndal, Swensson, and Wretman

(1992).

3.4.1 UMVUE’s of population totals

We use the same notation as in Example 2.3. Let X = (X;,...,X,,) be a
sample from a finite population P = {y;, ..., yn} with

P(Xy =y Xon = 45, ) = pl8),
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where 8 = {iy,...,1,,} is a subset of distinct elements of {1,..., N} and p is
a selection probability measure. We consider univariate y;. although most
of our conclusions are valid for the case of multivariate y;. In many survey
problems the parameter to be estimated is Y = z;'rl y;, the population
total.

In Example 2.27, it is shown that Y =NX= :’—L > icg Yi is unbiased for
Y if p(s) is constant (simple random sampling); a formula of vslr{?) is also
oiven. We now show that Y is in fact the UMVUE of ¥ under simple ran-
- Jﬁ"'If
dom sampling. Let )’ be the range of y;, # = (y1,....yn) and © = [[.2,; V.
Under simple random sampling, the population under consideration is a
parametric family indexed by # € ©.

Theorem 3.13. (i) (Watson and Royall). If p(s) > 0 for all s, then the
vector of order statistics X1y < --- < X(;) is complete for # € ©.

(ii) Under simple random sampling, the vector of order statistics is suffi-
cient for 6 € ©.

(iii) Under simple random sampling, for any estimable function of @, its
unique UMVUE is the unbiased estimator h(X,..., X, ), where h is sym-
metric in its n arguments.

Proof. (i) Let h(X) be a function of the order statistics. Then h is sym-
metric in its n arguments. We need to show that if

E[h(X)] = > p(8)h (yiys oo ys ) =0 (3.43)

for all @ € ©, then h(y;,,...,y;, ) = 0 for all y; ,....,y; . First, suppose that
all N elements of # are equal to a € J. Then (3.43) implies h(a, ....,a) = 0.
Next, suppose that N — 1 elements in # are equal to a and one is b > a.
Then (3.43) reduces to

qrhla,...,a) 4+ gahia, ..., a,b),

where ¢, and ¢o are some known numbers in (0,1). Since h(a,....,a) = 0
and g2 # 0, h(a,...,a,b) = 0. Using the same argument, we can show
that h(a,...,a,b,....,b) = 0 for any k a’s and n — k b’s. Suppose next that
elements of ¢ are equal to a, b, or ¢, a < b < ¢. Then we can show that
h{a,...,a.b,....b,c,....¢c) = 0 forany k a’s, [ b’s, and n—k—1 ¢’s. Continuing
inductively, we see that h(y;,...,y,) = 0 for all possible y,,....y,. This
completes the proof of (i).

(ii) The result follows from the factorization theorem (Theorem 2.2), the
fact that p(s) is constant under simple random sampling, and

P{Xl - yii.'-"".-xn — yi"] - P(X{l:l — y[tl} "".-X[ﬂ} — yl['in:l)/n!'f

where ¥,y < -+ < y(;,) are the ordered values of y;, ..., v, .
(iii) The result follows directly from (i) and (ii). 8
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It is interesting to note the following two issues. (1) Although we have
a parametric problem under simple random sampling, the sufficient and
complete statistic is the same as that in a nonparametric problem (Example
2.17). (2) For the completeness of the order statistics, we do not need the
assumption of simple random sampling.,

Example 3.19. From Example 2.27, Y = N X is unbiased for Y. Since YV
is symmetric in its arguments, it is the UMVUE of Y. We now derive the

UMVUE for Var(Y). From Example 2.27,

. N? ‘ , 1 & 2%
Var(V) = — (1 = ;:,) o’ o = N Z (y-f: - j) . (3.44)

T

[t can be shown (exercise) that E(S?) = %, where S° is the usual sample
variance

Since S? is symmetric in its arguments, — (1 — ﬁ) 52 is the UMVUE of

Var(Y).

Simple random sampling is rarely used in practice, since it is inefficient
unless the population is fairly homogeneous w.r.t. the y;’s. A sampling
plan often used in practice is the stratified sampling plan which can be
described as follows. The population P is divided into nonoverlapping sub-
populations Py, ..., Py called strata; a sample is drawn from each stratum
P, independently across the strata. There are many reasons for strati-
fication: (1) it may produce a gain in precision in parameter estimation
when a heterogeneous population is divided into strata. each of which is
internally homogeneous; (2) sampling problems may differ markedly in dif-
ferent parts of the population; and (3) administrative considerations may

also lead to stratification. More discussions can be found, for example, in
Cochran (1977).

In stratified sampling, if a simple random sample (without replacement},
Xn = (Xn1, .oy Xiny, ), is drawn from each stratum, where ny, is the sample
size in stratum A, then the joint distribution of X = (X;,..., Xy) is in a
parametric family indexed by # = (h,0,...,0y), where h = 1,..., H and
On, = (y;,i € Pp). Let )V, be the range of y;’s in stratum h and @, =

3.13.
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Theorem 3.14. Let X be a sample obtained using the stratified simple
random sampling plan described previously.

(i) For each h, let Z; be the vector of the ordered values of the sample in
stratum k. Then (£, ..., Zy) is sufficient and complete for # € ©.

(ii) For any estimable function of 0, its unique UMVUE is the unbiased
estimator h(X) which is symmetric in its first n; arguments, symmetric in
its second n. arguments,..., and symmetric in its last ny arguments. |

Example 3.20. Consider the estimation of the population total ¥ based on
asample X = (Xy,;.i =1,....n,,h =1, ..., H) obtained by stratified simple
random sampling. Let Y b»? the prlll&tlDll total of the hth stratum and
let YV}, = f"vh}f h.. where X}, is the sample mean of the sample from stratum

h, h = 1,..., H. From Example 2.27. each Y, is an unbiased estimator of
Y. Let
H H  ny, .
- > ke
Y‘-ﬁt - E l/h - E E N Xh:
h=1 h=1 i=1 h

Then, by Theorem 3.14, ﬁt is the UMVUE of Y. Since 171,...,}};; are
independent, it follows from (3.44) that

1 NZ Ty

Var(Yy,) = b (1- 202 3.45
i) z o (1) o (.45
where o7 = (N, — 1)~ Eaeﬁ — Y3 /Np)?. A similar argument to that

in Example 3.19 shows that the U MVUE of Vﬂl‘{Yst] 15

H .
, N TL}

§2=% —E{1-->2)g2 3.46
=X () s (5.16)

where S}i is the usual sample variance based on Xy, ..., Xy,

It is interesting to compare the mse of the UMVUE Y,; with the mse of
the UMVUE Y under simple random sampling. Let o2 be given by (3.44).

Then
i i

(N —1)o* Z{f‘\’h —~1)o; + Z Ni(pen — p)?,

h=1 h=1

where pp, = Y5, /Ny, is the population mean of th#e hth stratum and p = }"/ N
is the overall population mean. By (3.44), (3.45), and (3.46), Var(Y) >
Var(Y,:) if and only if

H

H
T2 AT ra ] (3 —
>ty (- )2 3o [3F (1- ) - e (- )]k
h=
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This means that stratified simple random sampling is better than simple
random sampling if the deviations py, — p are sufficiently large. If %L;L =&
(proportional allocation), then this condition simplifies to

I

H
T ; i\'ri- ‘ g —
E iﬁ"h(”h - ”)J > E (1 - f".,:i ) ﬁﬁ.‘- {"}4")

h=1 h=1

which is usually true when py’s are different and some Np's are large. 1§

3.4.2 Horvitz-Thompson estimators

If some elements of the finite population P are groups (called clusters) of
subunits, then sampling from P is cluster sampling. Cluster sampling is
used often because of administrative convenience or economic considera-
tions. Although sometimes the first intention mayv be to use the subunits
as sampling units, it is found that no reliable list of the subunits in the
population is available. For example, in many countries there are no com-
plete lists of the people or houses in a region. From the maps of the region,
however, it can be divided into units such as cities or blocks in the cities.

In cluster sampling, one may greatly increase the precision of estima-
tion by using sampling with probability proportional to cluster size. Thus,
unequal probability sampling is often used.

Suppose that a sample of clusters is obtained. If subunits within a
selected cluster give similar results, then it may be uneconomical to measure
them all. A sample of the subunits in any chosen cluster may be selected.
This is called two-stage sampling. One can continue this process to have a
multistage sampling (e.g., cities — blocks — houses — people). Of course,
at each stage one may use stratified sampling and/or unequal probability
sampling.

When the sampling plan is complex, so is the structure of the observa-
tions. We now introduce a general method of deriving unbiased estimators
of population totals, which are called Horvitz-Thompson estimators.

Theorem 3.15. Let X = {y;,i € s} denote a sample from P = {y. ..., yn}
which is selected, without replacement, by some method. Define

7; = probability that 1 € 5, i=1,....N.

(i) (Horvitz-Thompson). If m; > 0 for ¢ = 1,..., N and 7; is known when
i € 8, then "f/,:tt = Zie s Ui/ m; is an unbiased estimator of the population
total Y.

(ii) Define

mi; = probability that t € sand jes, i=1, . N, j=1,.. N.
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Then
\ 1—m NN T T
Var(Yy:) = Z _f Lys o+ EZ Z — f_” Ly, (3.48)

=1 B =1 j:‘::“.H—l Tri' Trj
N N . Y

_ o st 41

- Z Z (mim; — i) (m ﬂ';,f) (3.49)
=1 j=2+41

Proof. (i) Let a; = 1ifi € sanda; = 0ifi ¢ s, i =1,....N. Then
Ef(a;) = m; and

(ii) Since a; = a;,

Var(a;) = E(a;) = [E(a;)]" = m(1 — m).
For 1 # 7,
Cov(a;, a;) = E(aja;) — E(a;)E(a;) = m; — mim;.

Then

N
Var(Yy) = Var (Z ﬂ;_yi)

Hence (3.48) follows. To show (3.49), note that

hy

Zm =n and Z mi; = (n — 1)m;,

i=1 j=1,... N, j#i

Z (mi; —mim;) =(n—1)m —m(n—m) = —mi(l —m).
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Hence
I\."’ Ja'ﬁ'r y
T Yi = (mim; Tr”)ﬂ'g
1 i i=1 j=1,...,N,j#i '
N N 1 E y;
= E E (mimy = i) 2 + T2
i=1 j=i+1 ! J

and, by (3.48),

N N >
. N y y Ey-y-'-
Var(Vh) = 3 § (mi; — mimy) | =5 + =5 — ==
. i

N N 2

I

I
:M
M
El
a2
2
3=
|
3 |
[ ]

Using the same idea, we can obtain unbiased estimators of ifa,r{f”,:tt].
Suppose that 7;; > 0 for all ¢ and 7 and 7;; is known when ¢ € s and j € s.
By (3.48), an unbiased estimator of Var(Y},) is

U] = Z Lo m ——yl + ZT y: Tij — T Yilfs- (3.50)

;7570
1ES8 “‘ iE8 jE8. > gty
By (3.49), an unbiased estimator of Var(Y};) is
2
L Ty . .
tES JES. =1

Variance estimators v; and vs may not be the same in general, but they
are the same in some special cases (Exercise 84). A more serious problem
is that they may take negative values. Some discussions about deriving
better estimators of V&r{ﬁt} are provided in Cochran (1977, Chapter 9A).

Some special cases of Theorem 3.15 are considered as follows.

Under simple random sampling, m; = n/N. Thus, Y in Example 3.19 is
the Horvitz-Thompson estimator.

Under stratified simple random sampling, 7; = ny /Ny if unit i is in stra-
tum h. Hence, the estimator Y, in Example 3.20 is the Horvitz-Thompson
estimator.

Suppose now each y; € P iq a cluster, i.e., y; = (¥i1s.., Ying, ), Where
M; is the size of the ith cluster, ¢ = 1,.... N. The total number of units in
P is then M = Z‘ﬁ" L M. CGHSI(‘]E‘I‘ a aluglﬁ—stagﬁ sampling plan., i.e., if y;
is selected, then every y;; is observed. If simple random sampling is used,
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then m; = k/N, where k is the first-stage sample size (the total sample size
15 N = Zf::l M;), and the Horvitz-Thompson estimator is

. N - N
Y, = I Zzyij= I ZY;‘;

=8y =1 i=8

where 8, is the index set of first-stage sampled clusters and Yj; is the total
of the ith cluster. In this case,

: N? kY o 2%
Var(Ys) = v =y (1 - E) Z} (Y*‘? B N) |

If the selection probability is proportional to the cluster size, then m; =
EM; /M and the Horvitz-Thompson estimator is

L M 1 M~ Y
Yops = —- > M. > Vi = k& 2 M;
J

1ES =1 1E8

-

whose variance is given by (3.48) or (3.49). Usually Var(Y},.) is smaller
than Var(Y,); see the discussions in Cochran (1977, Chapter 9A).

Consider next a two-stage sampling in which £ first-stage clusters are se-
lected and a simple random sample of size m; is selected from each sampled
cluster y;. where sampling is independent across clusters. If the first-stage
sampling plan is simple random sampling, then m; = km;/(NM;) and the
Horvitz- Thompson estimator is

N — M,
Y'H: L Z . Z Hij

iE8, ¢ JESa;

where s9; denotes the second-stage sample from cluster i. If the first-stage
selection probability is proportional to the cluster size, then w; = km; /M
and the Horvitz-Thompson estimator is

- M 1
Vore = T 2y 2 W
- ie8) " jeSu

Finally, let us consider another popular sampling method called sys-
tematic sampling. Suppose that P = {y;,...,yx} and the population size
N = nk for two integers n and k. To select a sample of size n. we first draw
a j randomly from {1,...,k}. Our sample is then

{Yis Uitk Yit2ks o Vit (n—1)k }-
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Svstematic sampling is used mainly because it is easier to draw a systematic
sample and often easier to execute without mistakes. It is also likely that
systematic sampling provides more efficient point estimators than simple
random sampling or even stratified sampling, since the sample units are
spread more evenly over the population. Under systematic sampling, m; =
k=1 for every i and the Horvitz-Thompson estimator of the population total
is

n
Y'.fsy =k Z Yi+{t—1)k-
t=1

The unbiasedness of this estimator is a direct consequence of Theorem 3.15,
but it can be easily shown as follows. Since j takes value i € {1,....k} with
probability &1,

ko n N

. 1
E{Ysy) =k (E Z Z yi+{t—1]|ﬁ.:) — Z'Ei =Y.

=1 i=1 =]

The variance of 1?,.41:, is simply
N N2 K ,
Var(Y,) = - 3 — 1)
=1

where p; = n™' >0 vy and po= k7! Zil i = Y/N. Let o2 be
given by (3.44) and

k !
1
2 __
Oy kn—1) ; ;(yz+[t—l]k i)
Then
k k T
(N — l:lf:r‘E =n Z{Hm - H]‘E + Z Z{y-w{t—l].h — 1)
i=1 pe==1 t=1
Thus, )
(N —1)o? = N‘lvm‘{ﬂy) + k(n — Hﬂfy
and

Var(Yy,) = N(N = 1)o? = N(N — k)o?,.

Since the variance of the Horvitz-Thompson estimator of the population
total under simple random sampling is, by (3.44),

N2 ,
= (1 . ) 02 = N(k — 1)o2,

i N

the Horvitz-Thompson estimator under systematic sampling has a smaller
variance if and only if f:rj.fy > g2,
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3.5 Asymptotically Unbiased Estimators

As we discussed in §2.5, we often need to consider biased but asymptoti-
cally unbiased estimators. A large and useful class of such estimators are
smooth functions of some exactly unbiased estimators such as UMVUE’s,
U-statistics, and LSE’s. Some other methods of constructing asymptoti-
cally unbiased estimators are also introduced in this section.

3.5.1 Functions of unbiased estimators

If the parameter to be estimated is ¢ = g(#) with a vector-valued parameter
f and U, is a vector of unbiased estimators of components of # (i.e., EU,, =
#), then T,, = g(U,) is asymptotically unbiased for J. Assume that ¢ is
second-order differentiable and ||U,, — @|| = 0,(1). Then

-

br, (P) = tr(VZg(0)Var(Un))/2

and

amser, (P) = Vg(0)Var(U,,)[Vg(8)]"

(Theorem 2.6). Hence, T), has a good performance in terms of amse if U,
is optimal in terms of mse (such as the UMVUE).

The following are some examples.

Example 3.21 (Ratio estimators). Let (X1,Y7),....(X,,Y,) be i.i.d. ran-
dom 2-vectors. Consider the estimation of the ratio of two population
means: ¢ = p,/p, (g, # 0). Note that (Y, X), the vector of sample
means, is unbiased for (g, pt,). The sample means are UMVUE’s under
some statistical models (§3.1 and §3.2) and are BLUE’s in general (Exam-
ple 2.22). The ratio estimator is T}, = Y /X. Assume that ¢? = Var(X,).
r:r,;‘f = Var(Y}), and o,, = Cov(X;,Y]) exist. A direct calculation shows
that

1 19”;% = Oy ‘
by, (P) = "ugﬂ_ -, (3.52)
and
a2 — 20a,, + e’
vn(T, —9) —4 N ([]_._ z Ii; = 1. (3.53)
which implies
a2 — Mo, + 2o’
amsep (P) = —* 2 - (3.54)

2
pLimn

Results (3.52) and (3.54) still hold when (X, Y7),....(X,.Y,) is a sample
from a finite bivariate population of size N (exercise). In some problems we
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are not interested in the ratio, but the use of a ratio estimator to improve
an estimator of a marginal mean. For example, suppose that ., is known
and we are interested in estimating p,,. Consider the following estimator

fly = (?,/}_f};xm.

Note that fi,, is not unbiased; its n™' order asymptotic bias is

2

b, (P) oy — Ozy
T
£
and
o2 — 2o, + 19202
y y x
amse. (P) =
fiy n

Comparing ji,, with the unbiased estimator Y, we find that f, is asymp-
totically more efficient if and only if

. 92 2
200, > V%0,

which means that ji, is a better estimator if and only if the correlation
between X, and Y] is large enough to pay off the extra variability caused
by using g, /X. 1§

Another example related to a bivariate sample is the sample correlation
coefficient defined in Exercise 19 in §2.6.

Example 3.22. Consider a polynomial regression of order p:
Xi:-ﬁZE—-PEi, i=1,...,ﬂ_._
where 3 = (80,01, ... Bp—1), Zi = (1,ti_._...,tf_l), and &;’s are i.1.d. with

mean () and variance ¢? > (. Suppose that the parameter to be estimated
is t3 € R such that

p—1 p—1

E 3t = max » G;t.
: ' tER “

3 =} J= ]

Note that t53 = g(3) for some function g. Let f? be the LSE of 3. Then the

estimator tg = g(/) is asymptotically unbiased and its amse can be derived
under some conditions (exercise).

Example 3.23. In the study of the reliability of a system component, we
assume that

Xij=2(t;)0] +c45, i=1,.. %k j=1..m.
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Here X;; is the measurement of the ith sample component at time ¢;; z(t)
is a g-vector whose components are known functions of the time #; 6;'s
are unobservable random g-vectors that are ii.d. from N, (0. X). where ¢
and X are unknown: £;;’s are iLi.d. measurement errors with mean zero
and variance ¢?; and 6;’s and £i; 8 are independent. As a function of £,
z(t)0" is the degradation curve for a particular component and z(£)07 is
the mean degradation curve. Suppose that a component will fail to work if
z(t)0@" < n, a given critical value. Assume that z(t)'8 is always a decreasing
function of . Then the reliability function of a component is

£ —
R(t) = P(2(t)87 > 1) = & (3( ) “) ,
s5(t)
where s(t) = /z(t)X[z(t)]” and @ is the standard normal distribution
function. For a fixed t, estimators of R(t) can be obtained by estimating

¢ and ¥, since ® is a known function. It can be shown (exercise) that the
BLUE of # is the LSE

0=X2z(Z2"2)"",
where Z = ([2(t1)]7, ... [2(t:)]7)7, Xi = (Xi1, ..., Ximm), and X is the sample

mean of X;’s. The estimation of ¥ is more difficult. An asvimptotically
unbiased {a,s k — oc) estimator of ¥ is

RZ{ZTZ} LZT(X; - X)X, - X)Z(272) — 6227 Z)!

where
, 1
52 XX - X, Z(27Z IZ'TXT
e Z[ )127X]).

Hence an estimator of R(t) is

s o [ 200 =1
oo (105°21)

§(t) = {z{t)i}[z(t]]"}uz |

If we define Y, = X, Z(Z7Z) z(t)]". Yio = {X; Z(Z72) 7 [2(1)]7}?, Yig =
(X XT - X, Z(Z272) ' Z7XT]/(m — q) and Y; = (Yi1,Yio, Yis)', then it is

apparent that R(t) can be written as g(Y) for a function

g(yr.y2,y3) = @ W . :
Ve — y2 — y3z(t)(Z7Z) -1 [2(t)]"

Suppose that £;; has a finite fourth moment, which implies the existence of
Var(Y;). The amse of R(f) can be derived (exercise). 1§

where
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3.5.2 The method of moments

The method of moments is the oldest method of deriving point estima-
tors. It almost always produces some asymptotically unbiased estimators,
although they may not be the best estimators.

Consider a parametric pI‘DblFIll where X...., X,, are i.i.d. random wvari-
ables from Py, # € © C R, ¥ < oo, Let pj = EX{ be the jth
moment of P and let

TL

be the jth sample moment, which is an unbiased estimator of y¢;. 7 = 1, ... k.
Typically.
for some functions h; on R;‘ By %uh'-?tltutmg (t;i’s on the left-hand side of

(3.55) by the 5&1111}19 moments [i;, we obtain a moment estimator ﬁ ie., 0
satisfies

fi; = h;(), j=1,... k.

which is a sample analogue of (3.55). This method of deriving estimators is
called the method of moments. Note that an important statistical principle,
the substitution principle, is applied in this method.

Let fi = (fi1, ... fir.) and h = (hy, ..., hg). Then i = hl[é}. If h=1 exists.
then the unique moment estimator of 6 is 6 = h=(ji). When h~! does
not exist (i.e., h is not one-to-one), any solution of ji = h(f), denoted by
0 = g(f1), is a moment estimator of 6.

By the SLLN, fi; —4.s ft;. Assume that h is one-to-one and let g = h™1,
Typically, the function ¢ in 9 — g(ft) is continuous and, therefore, 0 is

strongly consistent for 6. If g is differentiable and E|X|?* < oo, then g is
asymptotically normal, by the CLT and Theorem 2.11, and

amse;(#) = n ' Vg(u)V,[Vg(un)], (3.56)
where 1 = (p1,....px) and V), is a k x k matrix whose (i, j)th element is
ity — Hifls-

Example 3.24. Let X,.....X,, be iid. from a pnpu]a,tmn Py indexed by

the parameter = (;1_._:?3}, where p = EX; € R and 0% = Var(X,) €
(0,00). This includes cases like the family of normal distributions, dou-
ble exponential distributions, or logistic distributions (Table 1.2, page 20).
Since EX; = p and EX? = Var(X,) + (EX)? = 02 + u°, setting ji; = u
and jio = 02 4+ p? we obtain the moment estimators

T

. ~ 1 — . - n—-—1 _.
=X, — XE--—};_'g = | X, 52 .
(Z( )) (x)
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Note that X is unbiased, but 11*—;;_;—-1*52 is not. If X, is normal, then g is suffi-
cient and is nearly the same as an optimal estimator such as the UMVUE.
On the other hand, if X; is from a double exponential or logistic distribu-
tion, then 0 is not sufficient and can often be improved.

Consider now the estimation of ¢? when we know that p = 0. Obviously
we cannot use the equation ji; = p to solve the problem. Using fis = pg =
o”, we obtain the moment estimator 6 = iy = n~'>."  X7. This is
still a good estimator when X; is normal, but is not a function of sufficient
statistic when X is from a double exponential distribution. For the double
exponential case one can argue that we should first make a transformation
Y; = | X;| and then obtain the moment estimator based on the transformed
data. The moment estimator of o2 based on the transformed data is ¥ =
n~t 37" | X;|, which is sufficient for 2. Note that this estimator can also

be obtained based on absolute moment equations. 1

Example 3.25. Let X,....,X,, be ii.d. from the uniform distribution on
(01,02), —oc < # < 05 < oo. Note that

EXI = {E’]_ -+ gg);"z

and

EX{ = (07 + 05 + 0:,05)/3.

Setting ji; = EX, and jio = EX? and substituting #; in the second equa-
tion by 2/i; — 05 (the first equation), we obtain that

(2f11 — 02) + 03 + (211 — 02)02 = 3o,
which is the same as
(02 — f11)* = 3(fi2 — f11).

Since s = i1, we obtain that

0, = i1 + \/3{.!1-3 — [if) = X + \/;—HFZ:HSE

and

0, = fi; — \/3{;13 —j?) =X - \/@53

These estimators are not functions of the sufficient and complete statistic

{X[l:lz-x[n})- i

Example 3.26. Let X,....,X, be ii.d. from the binomial distribution
Bi(p, k) with unknown parameters k € {1,2,...} and p € (0,1). Since

EX, =kp
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and
EX{ = kp(1 - p) + k*p*,

we obtain the moment estimators
.“={* _I__*?._ﬂ:]/* _1_?'1—19'2/2
L 25 Hy — Ha )/ = T -

and

k= i3/ (fn + i3 — fig) = X/(1 - 2L5%/X),

1

The estimator p is in the range of (0,1). But k. may not be an integer. It

can be improved by an estimator which is k& rounded to the nearest positive
integer. 1

Example 3.27. Suppose that X,...., X,, are i.i.d. from the Pareto distri-
bution Pa(a, ) with unknown a > 0 and # > 2 (Table 1.2, page 20). Note
that

EX) = f6a/(0 — 1)

and
EX% = ﬁagf{ﬂ — 2).

From the moment equation,

(B—1)" _ ~ ;a2
g(o—2) — fla/ 7.

. e =1 4 1
Note that 0(0-2) 1 = TCRGYR Hence

0(0 — 2) = i /(f12 — fi7).

Since # > 2, there is a unique solution

0 =1+ /fa/(frz — D) = 1 +/1+ 2, X?/5?
and

i (0 —1)

0
= X1+ 25X%/82 [ (14 /14 25 X2/87) .

The method of moments can also be applied to nonparametric problems.
Consider, for example. the estimation of the central moments

c;i=FE(X,—py, j=2 ..k
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which are sample central moments. From the SLLN, ¢;’s are strongly con-
sistent. If E|X|?* < oo, then

x/{ﬁ(ﬁg — Ca, ...,Ek - f:,i:) -+ i‘\-‘r;;_l'[:ﬂ, D} {:5.58)
(exercise), where the (i, j)th element of the (£ — 1) x (k — 1) matrix D is

Cipjra — Cix1Ci41 — (i + 1)eicjpa — (§ + V)eipae; + (i 4+ 1)(7 + 1)eicjen.

3.5.3 V-statistics

Let X1,..., X, be iid. from P. For every U-statistic defined in (3.11) as
an estimator of ¥ = E[h(X, ..., X,,,)], there is a closely related V-statistic
defined by

Vi=—Y > h(Xi,..X;,) (3.59)

As an estimator of ¢/, V,, is biased: but the bias is small asymptotically as
the following results show. For a fixed sample size n, V,, may be better than
U, in terms of their mse’s. Consider, for example, the kernel h(xy, zs) =

(r7 — 2)?/2 in §3.2.1, which leads to # = 0% = Var(X;) and U,, = 5%, the
sample variance. The corresponding V-statistic is

4 — -2 .- — v
L EL TN NL M

) : — r
=1 j=1 1<i<lj<m

which is the moment estimator of o2 discussed in Example 3.24. In Ex-
ercise 52 in §2.6, ”;lS‘a is shown to have a smaller mse than S° in some

cases. Of course, there are situations where U-statistics are better than
their corresponding V-statistics.
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The following result provides orders of magnitude of the bias and vari-
ance of a V-statistic as an estimator of 1.

Proposition 3.5. Let V), be d@ﬁn@d by (3.59).
(i) Assume that E|h(X;,,.... () <o forall 1 <4y <00 < iy, < o
Then the bias of V), s:a,tlsﬁes

by (P) = O(n™").

(i) Assume that E[h(X;,....X; J]* <ocforall 1 <i; <--- < i, < m.
Then the variance of V), satisfies

Var(V,,) = Var(U,) + O(n™?).

where U, is given by (3.11).
Proof. (i) Note that

U, — V, = [1 — my} (U, — W), (3.60)
where W, is the average of all terms h(X; ..., X; ) with at least one equal-
ity i,, = i;, m # . The result follows from E[Uﬂ W,) = 0O(1).

(ii) The result follows from E(U, —W,,)* = O(1), E]W,(U,, —?)] = O(n™1)

(exercise), and (3.60). ®

To study the asymptotic behavior of a V-statistic, we consider the fol-
lowing representation of V,, in (3.59):

where

s a “V-statistic” with

gilxy,....rj) = hj(z1,...,zj) — Z [hj[:r:l z;)dP(x;)

+ ) [/ z;)dP(x;, )dP(x;,) —

1<Ciq <ig<j’

(1) f / Ly oo 23)AP(21) - - dP(x;)

and hj(xy,...z;) = Elh(z,....2;. X 41, .... X;,)]. Using a similar argu-
ment to the pmnf of ThE‘GlElIl 3.4, we can show (exercise) that

EWV,;)?=0n"7), j=1,.,m, (3.61)
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provided that E[h(X;,,...X; )] < ocforall 1 <i; < ... <14, < m.
Thus.
Vi =0 = mVy1 + ™= Vos + 0, (n7),

which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let V,, be given by (3.59) with E[h(X;,,....X; )] <
foralll <i¢ <--- <14, <m.
(i) If {; = Var(h,(X,)) = 0, then

Vn(V, — 1) —4 N(0,m?(y).

(ii) If (; = 0 but (s = Var(ha(X,, X5)) = 0, then

mim — 1 :
H{I‘J:'l - 19) —d 9 ) Z AJX%J

where x7,’s and A;’s are the same as those in (3.21). ¥

Theorem 3.16 indicates that if ¢; > 0, then the asymptotic biases and
amse’'s of /,, and V), are the same. If (; = 0 but (s > 0, then a similar
argument to that in the proof of Lemma 3.2 leads to

2 2 ’ s
m-(m—1)"¢; m*(m—1)
amsey, (P) = o2 + 2n? Z Aj
j::‘;'].
2
m?(m —1)? [
= T P + ‘ }L
amser; (P) 2n? :,,Z; J

(see Lemma 3.2). Hence U, is asymptotically more efficient than V,, unless

E;’:l A; = 0. Technically. the proof of the asymptotic results for Vi, also
requires moment conditions stronger than those for U,,.

Example 3.28. Consider the estimation of ;?, where ;1 = EX;. From the
results in §3.2, the U-statistic U,, = m Zlg i<j<n X; X, 1s unbiased for

(2. The corresponding V-statistic is simply V,, = X2. If u # 0, then ¢; # 0
and the asymptotic relative efficiency of V,, w.r.t. U,, is 1. If jr = (), then

where Y7 is a random variable having the chi-square distribution y?. Hence
the asymptotic relative efficiency of V,, w.r.t. U, is

E(xi - 1)*/E(x1)* =2/3.



3.5. Asymptotically Unbiased Estimators 179

3.5.4 The weighted LSE

In linear model (3.25), the unbiased LSE of 3I™ may be improved by a
slightly biased estimator when Var(e) is not o217, and the LSE is not BLUE.

Assume that Z in (3.25) is of full rank so that every SI7 is estimable.
For simplicity, let us denote Var(e) by V. If V' is known, then the BLUE
of BI™ is 517, where

=XV 1z(Zz7vzZ)"! (3.62)
(see the discussion after the statement of assumption A3 in §3.3.1). If V is

unknown and V' is an estimator of I, then an application of the substitution
principle leads to a weighted least squares estimator

B =XV1Z(Z7V12)7L (3.63)

The weighted LSE is not linear in X and not necessarily unbiased for 4. It
is unbiased if —= and = have the same distribution, E[A, (V)]? < so, and
V = u(e) for some function u satisfying u(—£) = u(s). In such a case the
LSE EET may not be a UMVUE, since Bl may be better than 317.

Asymptotic properties of the weighted LSE depend on the asymptotic
behavior of V. We say that V' is consistent for V' if and only if

V=YV = L,|| —, 0, (3.64)
where ||A|| = [tr(ATA)]'/? for a matrix A.

Theorem 3.17. Consider model (3.25) with a full rank Z. Let 3 and ﬁw
be defined by (3.62) and (3.63), respectively, with a V' consistent in the
sense of (3.64). Assume the conditions in Theorem 3.12. Then

(Bul™ — B17) /a, —q N(0,1),
where [ € RF, [ # 0, and
a? = Var(Bl") = 1(Z7TV1Z)~ 4 .

Proof. Using the same argument as in the proof of Theorem 3.12, we
obtain that

(BI7 — BIT) /an —q N(0,1).

By Shitsky’s theorem, the result follows from

-

_ﬁu;ET _ Jf?ET — ﬂp{ﬂ'ﬂ}'
Note that

B l™ — 317 = eVrZ(Z7TVZ)y T —eViZ(Z7V i)
(VT -vThz(Zz7v )y (3.65)
+eVTiZZTVTI) T = (Zz7v )T (3.66)

I
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Let &, be the term in (3.65) and 4,, = V V-l Using inequality (1.34),
we obtain that

{-i _ [EE;—lffa-‘{r—lfgﬂnz(zﬂ'frr—lz}—lgﬂ']g
<Vl ZTVIZ) T 2T ATV A, Z(Z7V T Z)
< Op(1)op(az).

since || A, || = 0,(1) by condition (3.64). This proves that &, = o,(a;,).

Let ¢, be the term in (3.66), B, = Z7V1Z(Z7V-1Z)"! - I,, and
Cp =VV~L—1, By (3.64), |C.]l = 0,(1). Then

|B.|? = |27V~ Cuz(Z7V 1 2) 7|2
tr ((ZTff—lz}—lzTc:;ﬂ’—lzZT ff—lan{ZTff—lz)—l)

I

FAS

1C, | t (ﬂ"lZZTff‘lCnZ(ZTI?"lZ)‘l(Z"ff“Z}“Z”)
< ||Cl|? tr (Z(Z’fﬂ’—lZ)—l(ZTff—IZ)—IZTI?«’—IZZT?—I)

op(1)tr(1,)
op(1).

I

{

Note that (exercise)
VZ(ZTVTIZ) T = Oy(ay). (3.67)
Then

n=eViZ(ZTVvZ) T BT
<V 2(Z7VZ) P B
= Op(ay)op(1).

TE

This shows that ¢,, = o,(a,,) and thus completes the proof. 1

Theorem 3.17 shows that as long as V is consistent in the sense of (3.64),

the weighted LSE 3, is asvimptotically as efficient as f? which is the BLUE

if V' is known. If V' is known and ¢ is normal, then Var{_ﬂf") attains the
Cramér-Rao lower bound (Theorem 3.7(iii)) and, thus, (3.10) holds with

Tﬂ - ,&111'!1--

By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the
LSE 3I™ w.r.t. the weighted LSE 3,17 is

I{ZT[f—lz}—lfT
WZTZ) 1\ Z VZ(Z7Z)~
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which is always less than 1 and equals 1 if fi".!’r is a BLUE (in which case
3=3).

Finding a consistent V' is possible only when V' has certain structure.
We consider two examples.

Example 3.29. Suppose that V' is a block diagonal matrix with the ith
diagonal block

oI, + U;BUT, i=1,..k, (3.68)

where m;’s are integers bounded by a fixed integer m, ¢? > 0 is an unknown
parameter, X is a g X ¢ unknown nonnegative definite matrix, /; is an m; x g
full rank matrix whose columns are in R(W7), g < inf; m;, and W; is the ith
block of Z = (W7, ...,W)". Under (3.68), a consistent VV can be obtained
if we can obtain consistent estimators of o2 and X.

Let X = (Y7.....Y}), where Y; is m; x 1, and let R; be the matrix
containing linearly independent columns of ;. Then

k
: 1 RTY
;- — E }1 I*.rn,- - 2 RT ) -1 4 " : rg

is an unbiased estimator of o?. Assume that Y;’s are independent and that
sup; E|z;]?T?% < oo for some & > 0. Then 62 is consistent for o2 (exercise).
A consistent estimator of ¥ is then (exercise)

Y =

L

k
SN [O7U) U U (UT U T - 64 UTU) Y (3.70)

p=1

|

where r; =Y, — GW.. B

Example 3.30. Suppose that V' is diagonal with the ith diagonal element
o? = 1(Z;), where 1 is an unknown function. The simplest case is ¥(t) =
0y + 01v(Z;) for a known function v and some unknown 6y and ¢,. One can
then obtain a consistent estimator V' by using the LSE of @y and ¢, under

the “model”
r? =y + 01v(Z;), i=1,...n, (3.71)

where r; = X; — L:-'Z: (exercise). If ¢/ is nonlinear or nonparametric, some
results are given in Carroll (1982) and Miiller and Stadrmiiller (1987). 8

Finally, if V' is not consistent (i.e., (3.64) does not hold), then the
weighted LSE 3,17 can still be consistent and asvmptotically normal. but
its asymptotic variance is not [(Z7V~'Z)"'"; in fact, ,-:?wf” may not be
asymptotically as efficient as the LSE _LE-‘ET (Carroll and Cline, 1988; Chen
and Shao 1993).
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3.6 Exercises

L.

on

6.

~1

Let Xi,..., X, be iid. binary random variables with P(X; = 1) =
pe(0,1).

(a) Find the UMVUE of p™, m < n.

(b) Find the UMVUE of P(X; + --- + X,, = k), where m and k are
positive integers < n.

(¢) Find the UMVUE of P(X; + - + Xp_1 > Xn).

. Let Xy, ..., X, be i.i.d. having the Poisson distribution P(f) with # >

0. Find the UMVUE of e with a fixed t > 0.

. Let Xi,....X,, be iid. having the N(u,o?) distribution with an un-

known g € R and a known o2 > 0.

(a) Find the UMVUE’s of p* and p*.

(b) Find the UMVUE's of P(X; < t) and %P{Xl < t) with a fixed
teR.

. In Example 3.4,

(a) show that the UMVUE of ¢" is k,, 1 ,S", where r > 1 — n;

(b) prove that (X; — X)/S has the p.d.f. given by (3.1):

(¢) show that (X; — X)/S —4 N(0,1) by using (i) the SLLN and (ii)
Scheffé’s theorem (Proposition 1.17).

. Let X1y,...,X,, be iid. having the N(p,,02) distribution and let

Y1, ....Y, be ii.d. having the Nl[,t,ty,ag) distribution. Assume that
X;'s and Y;’s are independent.
a ssume that p, € K, p, € K. g2 > . Al g2 > 0. Find the

A hat R, py € R, 02 >0 ] ; 0. Find th
UMVUE’s of py — p,, and (o, /ay,)", r > (.

ssume that p, € K, p, € K, anc g2 = g2 > (. 1nd the
b) A hat R, iy, € R l o2 ,f, 0. Find th
UMVUE’s of 02 and (g, — pt,) /0
¢) Assume that p, = g, € R. 02 > 0, 02 > 0, and 02 /57 = ~ is
y y y
known. Find the UMVUE of pu...
d) Assume that ., = py, € R, 02 > 0, and ¢2 > (. Show that a
.IE f: i ] T : i
UMVUE of p, does not exist.
e) Assume that ., = i, € R, 2 > 0, and ¢2 > 0. Find the UMVUE
|I .II! 1] M ! i

of P{Xl “:_: Yl)
(f) Repeat (e) under the assumption that o, = 7.

Let X;..... X,, beii.d. having the uniform distribution on the interval
(0 — 02,0, + 03), where 0; € R, j = 1,2. Find the UMVUE’s of §;.
j=1,2, and 6, /0-.

. Let X, ..., X,, be ii.d. having the exponential distribution FE(a, @)

with parameters # > 0 and a € R.
(a) Find the UMVUE of a when # is known.
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11.

12.

13.

14.

(b) Find the UMVUE of 6 when a is known.

(c) Find the UMVUE’s of # and a.

(d) Assume that # is known. Find the UMVUE of P(X;, = t) and
%P{Xl > t) for a fixed t > 0.

(e) Find the UMVUE of P(X, = t) for a fixed t > 0.

. Let X1, ..., X, be ii.d. having the Pareto distribution Pa(a, ) with

# >0 and a > 0.

(a) Find the UMVUE of # when a is known.
(b) Find the UMVUE of a when ¢ is known.
(c) Find the UMVUE’s of a and 6.

. Consider Exercise 41(a) of §2.6. Find the UMVUE of ~.
10.

Let X1, ..., X, be ii.d. having the exponential distribution E(a,, ;)
with @, > 0 and a, € R and Y;..... Y, be ii.d. having the exponential
distribution E(a,,#,) with #, > 0 and a, € R. Assume that X;’s
and Y;’s are independent.

(a) Find the UMVUE'’s of a, — a, and 0,/0,.

(b) Suppose that #, = #, but it is unknown. Find the UMVUE’s of
0, and (a, — ay)/0,.

(c¢) Suppose that a, = a, but it is unknown. Show that a UMVUE
of a, does not exist.

(d) Suppose that n = m and a, = a, = 0 and that our sample is
(Z1, A1), ... (£, A,), where Z; = min(X;,Y;) and A; =1if X; = Y]
and 0 otherwise, i = 1, ..., n. Find the UMVUE of 8, — 4,

Let X1, ..., X,, be i.i.d. having the uniform distribution U(0,6,) and
Y1, ... Y, beii.d. having the uniform distribution U(0,6,). Suppose
that X;’s and Y;’s are independent and that #, > 0 and 8, > 0. Find
the UMVUE of 6, /0, when n > 1.

Let X be a random variable having the negative binomial distribution
N B(p,r) with an unknown p € (0,1) and a known r.

(a) Find the UMVUE of pt, t < r.

(b) Find the UMVUE of Var(X).

(c) Find the UMVUE of log p.

Let Xq,..., X,, be ii.d. random wvariables having the Poisson distri-

bution P(f) truncated at 0, ie., P(X; = z) = (e’ — 1)7167/x!,
r=1,2,.., 0 >0, Find the UMVUE of # when n = 1, 2.

Let X be a random variable having the negative binomial distribution
N B(p,r) truncated at r, where r is known and p € (0, 1) is unknown.
Let k be a fixed positive integer > r.

(a) For r = 1,2, 3, find the UMVUE of p*.

(b) For r = 1,2, 3, find the UMVUE of P(X = k).
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16.

18.

19.
20).

21.

22.

23.

3. Unbiased Estimation

. Let Xy, ..., X, be iid. having the log-distribution L(p) with an un-

known p € (0,1). Let k be a fixed positive integer.
(a) For n = 1,2, 3, find the UMVUE of p*.
(b) For n = 1,2, 3, find the UMVUE of P(X = k).

Suppose that (X, X1, ..., Xz) has the multinomial distribution in Ex-

ample 2.7 with p; € (0,1), Zf ..... opPi = 1. Find the UMVUE of
py’ - p.S, where r;’s are nonnegative integers with ro +---+r; < n.

. Let Xy....., X,, beiid. from P € P containing all symmetric c.d.f.’s

with finite means and with Lebesgue p.d.f.’s on 'R. Show that there
is no UMVUE of pn = EFX;.

Let (X1.Y7),....,(X,,Y,) beiid. random 2-vectors from a population
P € P which is the family of all bivariate populations with Lebesgue
p.d.f.’s.

(a) Show that the set of n pairs (X, Y;) ordered according to the value
of their first coordinate constitute a sufficient and complete statistic
for P € P.

(b) A statistic T" is a function of the complete and sufficient statistic
if and only if 7" is invariant under permutation of the n pairs.

(c) Show that (n — 1)7" 3" (X; — X)(YV; — Y) is the UMVUE of
CGH’{X]_, Yl}

(d) Find the UMVUE’s of P(X; < Y;) and P(X; < X; and ¥; < Y;).
i # .

Prove Corollary 3.1.

Consider the problem in Exercise 68 of §2.6. Use Theorem 3.2 to show
that ;03 (X) is a UMVUE of (1 — p)? and that there is no UMVUE
of p.

Let Xq,..., X,, be ii.d. from a discrete distribution with
PX;=0-1)=P(X;=0)=P(X;=0+1) = %

where # is an unknown integer. Show that no nonconstant function

of # has a UMVUE.

Let X be a random variable having the Lebesgue p.d.f.
[(1—0)+ Sf(zﬁ)]fit}.l}(ﬂf):

where # € [0, 1]. Show that there is no UMVUE of 6.

Let X be a discrete random variable with P(X = —1) = 2p(1 — p)
and P(X = k) =p"(1 — p)*~*, k= 0.1,2,3, where p € (0,1).

(a) Determine whether there is a UMVUE of p.

(b) Determine whether there is a UMVUE of p(1 — p).



3.6. Exercises 185

24

28.

29.

S0,

Sl

52,

Let Xi,..., X, be ii.d. having the exponential distribution E(a,f)
with a known ¢ and an unknown a < (0. Obtain a UMVUE of a.

a known # > 1 and an unknown a € (0,1]. Obtain a UMVUE of «.

Let X1, ..., X,, be ii.d. having the Pareto distribution Pa(a, ) with

. Prove Theorem 3.3 for the multivariate case (k > 1).

. Let X be a single sample from Fy. Find the Fisher information I(#)

in the following cases.
(a) Py is the N, o?
(b) Py is the N (. o®

distribution with # = u € R.

distribution with ¢ = o* > 0.

(¢) Py is the N(pu,0?) distribution with 8 = o > 0.

(d) Py is the N (o, o) distribution with # = o > 0.

(e) Py is the N(pu,o0?) distribution with 8 = (y,0%) € R x (0, 00).

(f) Py is negative binomial distribution N B(#,r) with 8 € (0,1).

(g) Fy is the gamma distribution I'(a,v) with 8 = (a,~v) € (0, 00) x
(0, 00);

(h) Py is the beta distribution B(e«, 3) with @ = (o, 3) € (0,1) x (0,1).

L i S S

Find a function of # for which the amount of information is indepen-
dent of @, when Fj is

(a) the Poisson distribution P(#) with 8 > 0;

(b) the binomial distribution Bi(f,r) with 8 € (0, 1);
(c¢) the gamma distribution I'(a, #) with ¢ = 0.

Prove the result in Example 3.9. Show that if p (or ¢) is known, then
I (pe) (or Is(e)) is the first (or second) diagonal element of I(#).

Obtain the Fisher information matrix for

(a) the Cauchy distribution C'(u, o), p € R, a > 0;

(b) the double exponential distribution DE(j, 0), p € R, ¢ > 0;

(¢) the logistic distribution LG(p. o), p € R, o = 0;

(d) F. (I—;'L—‘) where F, is the c.d.f. of the t-distribution t, with a
known r, g € R, o = 0.

Let ¢ be the standard normal p.d.f. Find the Fisher information
contained in X which has the Lebesgue p.d.f.

folz) = (1 —e)p(ax — p) + S0 (=F),
0= (p,0,¢) € R x(0,00) x (0,1).

Let Xi,..., X, be iid. from the uniform distribution U(0,#) with
6 = 0.

(a) Show that condition (3.3) does not hold for h(X) = X,,.

(b) Show that the inequality (3.6) does not apply to the UMVUE of
f.
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33.

54,

S0,

38.

39.

40).

41.

42.

43.

44,

3. Unbiased Estimation

Prove Proposition 3.3.

Let X be a single sample from the double exponential distribution
DE(t,0) with ;¢ = 0 and € > 0. Find the UMVUE’s of the following
parameters and, in each case, determine whether the variance of the
UMVUE attains the Cramér-Rao lower bound.

(a) o = 0,

(b) ¥ = 0", where r > 1;

(e) = (1+8)"

. Let Xq,...,X,, be iid. binary random variables with P(X; = 1) =

pe (0,1). ) )

(a) Show that the UMVUE of p(1 — p) is T}, = nX(1 - X)/(n — 1).
(b) Show that Var(T,,) does not attain the Cramér-Rao lower bound.
(c¢) Show that (3.10) holds.

Let Xy, ..., X}, beii.d. having the Poisson distribution P(#) with § >
0. Find the amse of the UMVUE of ¢t with a fixed t > 0 and show
that (3.10) holds.

. Let Xy, ..., X, be iid. having the N (g, r:rg} distribution with an un-

known g € R and a known o > 0.

(a) Find the UMVUE of ¥ = ¢ with a fixed t # 0.

(b) Determine whether the variance of the UMVUE in (a) attains the
Crameér-Rao lower bound.

(¢) Show that (3.10) holds.

Show that if X, ..., X,, are i.i.d. binary random variables, U, in (3.12)
equals (T — 1)-- - (T — m + 1)/[n(n — 1)---(n — m + 1)], where
T - Z?-l X’ﬂ:'

Show that if T}, = X, then U, in (3.13) is the same as the sample
variance S? in (2.2). Show that (3.23) holds for T,, given by (3.22)
with E(RZ) = o(n™1).

Prove (3.14) and (3.17).
Let (x be given in Theorem 3.4. Show that (1 < (s < - < (.

Prove Corollary 3.2.

Prove (3.20) and show that U,, — U, is also a U-statistic.

Let T}, be a symmetric statistic with Var(7},) < oo for every n and T,
be the projection of T}, on (E) random vectors {X; ..., X; }.1 <4 <

b

.-+ < i, < n. Show that E(T,) = E(T,) and calculate E(T, — T},)*.
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46.

47.

48.

hh.

Let Y be defined in Lemma 3.2. Show that {Y;?} is uniformly inte-
grable.

Show that (3.22) with E(R?) = o(n™!) is satisfied for T}, being a
U-statistic with E[h(X, ..., X,,)]* < oc.

Let S% be the sample variance given by (2.2), which is also a U-
statistic (§3.2.1). Find the corresponding hy, ho, (i, and (. Discuss
how to apply Theorem 3.5 to this case.

Let h(xy,x2.23) = I g)(x1 + 22 + 23). Define the U-statistic with
this kernel and find Ay and (g, k = 1,2, 3.

. Show that any 3 given by (3.29) is an LSE of 3.

. Obtain explicit forms for the LSE’s of 3;, j = 0,1, and SSR, under

the simple linear regression model in Example 3.11, assuming that
some t;'s are different.

. Consider the polynomial model

X; = By + Bti + Bat] + i, i=1,...,n.

Find explicit forms for the LSE's of 3;. j = 0,1, 2, and SSR. assuming
that some ¢;’s are different.

. Suppose that

Xij =ﬂ'i+_ﬁtij +Eijr_ P = 1..{'1‘]‘= ]...b

Find explicit forms for the LSE’s of 3, a;, i = 1....,a, and SSR.

. Find the matrix Z, 27 Z, and the form of | € R(Z) under the one-way

ANOVA model (3.31).

. Obtain the matrix Z under the two-way balanced ANOVA model

(3.32). Show that the rank of Z is ab. Verify the form of the LSE of
3 given in Example 3.14. Find the form of | € R(Z).

. Consider the following model as a special case of model (3.25):

Xij.f: = U+ "I"ﬁj -+ E'ijj;ﬂ_._ 7= 1.{’1_]" = ]. ..bk’ — 1_, cany L

Obtain the matrix Z, the parameter vector /4, and the form of LSE's
of 3. Discuss conditions under which [ € R(Z).

Under model (3.25) and assumption A1, find the UMVUE's of (317)%,
BI™ Jo. and (BI7 /o)? for an estimable GI7.



6O,

6G1.

62.

6.3,

64.

(5.

66.

3. Unbiased Estimation

. Verify the formulas for §5R’s in Example 3.15.

. Consider model (3.25) with assumption A2. Show that Var(3I17) =

cH(ZTZ)7I" for | € R(Z).

. Consider the one-way random effects model in Example 3.17. Assume

that n; = n for all 7 and that A;’s and e;;’s are normally distributed.
Show that the family of populations is an exponential family with
sufficient and complete st&thtlfq X, Sa=n>"(Xi — X }‘3, &11(1
Se = i-12;-1(Xij — Xi.)?. Find the UMVUE’s of y, o7, and o?

Consider model (3.25). Suppose that ¢;’s are i.i.d. with a Lebesgue
p.d.f. o7 f(x/o), where f is a known Lebesgue p.d.f. and o > 0 is
unknown.

(a) Show that X is from a subfamily of the location-scale family given
by (2.10).

(b) Find the Fisher information about (7, ¢) contained in X;.

(c) Find the Fisher information about (3, ¢) contained in X .

Consider model (3.25) with assumption A2. Let ¢ € RP. Show that if
the equation ¢ = yZ7 has a solution, then there is a unique solution
Yo € R(Z) such that Var(Xyj) < Var(Xy7) for any other solution of
c=yl".

Consider model (3.25). Show that the number of independent linear
functions of X with mean 0 is n — r, where r is the rank of Z.

Consider model (3.25) with assumption A2. Let X; = ,@Z{, which
is called the least squares prediction of X;. Let h;; be the (7, j)th
element of Z(Z7Z)~ Z7. Show that

(a) Var(X;) = 7R

(b) Var(X; — X) o?(1 — hy);

(¢) Cov(X;, X, j) = r_r‘ahtj

(d) me(X - X, X X}— hij, © # J;

(e) Cov Xl,X - X;) =0.

Prove that (e) implies (b) in Theorem 3.10.

Show that (a) in Theorem 3.10 is equivalent to either

(f) Var(s)Z = ZB for some matrix B, or

(g) R(Z) is generated by r eigenvectors of Var(c), where r is the rank
of Z.

Prove Corollary 3.3.

. Suppose that

X =pnd, + HE + e,
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68.

6Y.

i

=]
o

3.

. Find a condition under which the mse of 517 is of the order n—

where p € R is an unknown parameter, H is an n x p known matrix
of full rank, ¢ is a random p-vector with E(&) = 0 and Var(¢) = JEI ps
e is a random n-vector with E(e) = 0 and Var(e) = o1, and £ and
e are independent. Show that the LSE of p is the BLUE if and only
if the row totals of HH7™ are the same.

Consider a special case of model (3.25):
XﬁjZ;.ﬂ+ﬂ'1+lﬁj+Eij: t=1,..a,7=1,..0

where p, a;’s and 3;'s are unknown parameters, E(g;;) = 0, Var(g;;)
= 0%, Cov(eij, i) = 0if i # i', and Cov(e;j,2:5) = o?p if j # 7.
Show that the LSE of 81" is the BLUE for any | € R(Z).

Consider model (3.25) under assumption A3 with Var(s) = a block
diagonal matrix whose ith block diagonal V; is n; x n; and has a single
eigenvalue A; with eigenvector .J,,. and a repeated eigenvalue p; with
multiplicity n; — 1, i = 1. ..., k, Z o ni =n. Let U = (U],...,U]),
where Uy = (J,,,,0,...,0), Ug = (0, Jryy s 0) ey Up = (0,0, ..., J0, ).
(a) If R(Z7) € R(U7) and \; = A, show that 31" is the BLUE for
any | € R(Z).

(b) If ZTU; = 0 for all i and p; = p, show that Al is the BLUE for
any | € R(Z).

. Prove Proposition 3.4.

. Show that the condition sup, A.[Var(s)] < oo is equivalent to the

condition sup, Var(s;) < occ.

l-
Apply it to problems in Exercises 50-53.

Consider 111:::(191 (3.25) with iid. £1,....n hmemg E{ ;) = 0 and

Var(e;) = 02, Let X; = 827 and hy = Z;(Z72)" Z
(a) Show tha,t for any € > 0,

P(|X; — EX;| > ¢) > min[P(z; > ¢/h;), P(s; < —¢/h;)].

(Hint: for independent random variables X and Y, P(|[ X +Y| = ¢) =
P(XZe)P(Y 20)+ P(X < —¢)P(Y <0).)
(b) Show that X; — EX; —, 0 if and only if h;; — 0.

. Prove Lemma 3.3 and show that condition (a) is implied by {||Z;|}

is bounded and A, (Z7Z) — 0.

. Consider the problem in Exercise 52. Suppose that {t;;} is bounded.

Find a condition under which (3.40) holds.
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706,

=]
=]

80).
81.

82.

8.
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Consider the one-way random effects model in Example 3.17. Assume
that {n;} is bounded and Ele;;|**® < oo for some § > 0. Show that
the LSE fi of pu is asvmptotically normal and derive an explicit form

of Var(ji).

. Suppose that

Xi = f}ti + £, 1 = 1 cans 1L,

where p € R is an unknown parameter, t; € (a,b), i = 1,....,n, a
and b are known positive constants, and &;’s are independent random
variables satisfying E(s;) = 0, El|z]|*T® < oo for some § > 0 and
Var(s;) = o*t; with an unknown o* > 0.

(a) Obtain the LSE of p.

(b) Obtain the BLUE of p.

(¢) Show that both the LSE and BLUE are asymptotically normal
and obtain the asymptotic relative efficiency of the BLUE w.r.t. the

LSE.

. In Example 3.19, show that E(S5?) = o2 given by (3.44).

. Suppose that X = (X, ..., X,,) is a simple random sample (without

replacement ) from a finite population P = {y, ..., yn } with univariate
Y-

(a) Show that a necessary condition for h(#) to be estimable is that
h is symmetric in its N arguments.

(b) Find the UMVUE of Y™, where m is a fixed positive integer < n
and Y is the population total.

(¢) Find the UMVUE of P(X; < X;), i # j.

(d) Find the UMVUE of Cov(X;, X;). i # j.

Prove Theorem 3.14.

Under stratified simple random sampling described in §3.4.1, show
that the vector of ordered values of all X;,;’s 1s neither sufficient nor
complete for 6 € O.

Let P = {y1,....yn} be a population with univariate y;. Define the
population c.d.f. by

N
1
F(t) = N Z I{—:c.t}(yi)'
1=1

Find the UMVUE of F(f) under (a) simple random sampling and (b)

stratified simple random sampling.

Consider the estimation of F'(¢) in the previous exercise. Suppose that
a sample of size n is selected with m; > 0. Find the Horvitz- Thompson
estimator of F(#). Is it a c.d.f.?
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84.

86.

87.

88.

89,

90.

91.

92.

93.

Show that v; in (3.50) and vs in (3.51) are unbiased estimators of
Var(Yy:). Prove that vy = vs under (a) simple random sampling and
(b) stratified simple random sampling.

. Consider the following two-stage stratified sampling plan. In the first

stage, the population is stratified into H strata and kj;, clusters are
selected from stratum h with probability proportional to cluster size,
where sampling is independent across strata. In the second stage, a
sample of mp; units are selected from sampled cluster ¢ in stratum A,
and sampling is independent across clusters. Find m; and the Horvitz-
Thompson estimator Yj,; of the population total.

In the previous exercise, prove the unbiasedness of Y}, directly (with-
out using Theorem 3.15).

Under systematic sampling, show that Va,r{fw} is equal to

- k
1\ o® 2 Z Z Y Y

=1 1<t<u<n

Prove (3.52)-(3.54) in Example 3.21. Show that (3.52) and (3.54) still
hold if (X,,Y7)....,(X,.Y,) is a simple random sample from a finite
bivariate population of size N, as n — N.

Derive the n=! order asymptotic bias of the sample correlation coef-
ficient defined in Exercise 19 in §2.6.

Derive the n™! order asymptotic bias and amse of t 53 in Example 3.22,

: —1 4 4 :
assuming that Z?_.:[] 3;t7 is convex in {.

Consider Example 3.23.

(a) Show that @ is the BLUE of 0.

(b) Show that 6 is unbiased for o~.

(c) Show that Y is consistent for ¥ as k — oc.

(d) Derive an amse of R(1).

Let X1,...,X, be iid. from N(u,0°), where g € R and o° > 0.
Consider the estimation of 7 = E®(a+bX,), where ® is the standard
normal c.d.f. and a and b are known constants. Obtain an explicit
form of a function g(u, ¢?) = 1 and an amse of ¥ = g(X, 5%).

Let X4, ..., X,, beiid. with mean j, variance 2, and finite Hi = EX{,
j = 2,3,4. The sample coefficient of variation is defined to be S/X,

where S is the squared root of the sample variance S=.

(a) If p # 0, show that /n(S/X — o/u) —4 N(0.7) and obtain an

explicit formula of 7 in terms of u, o°, and I

(b) If g = 0, show that n=1/2S/X —, [N(0,1)]~ .
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94.

95.

96.

98.
99.
100.

101.

102.

103.

104.

105.

3. Unbiased Estimation

Prove (3.56).

In Exercise 83, discuss how to obtain a consistent (as n — N) esti-

mator F(t) of F(t) such that F is a c.d.f.

Let X, .... X, be iid. from P in a parametric family. Obtain moment
estimators of parameters in the following cases.

(a) P is the gamma distribution I'(cv,v), o = 0, v > 0.

(b) P is the exponential distribution E{a,#), a € R, # > 0.

(c) P is the beta distribution B(a, 3), a > 0, 3 > 0.

(d) P is the log-normal distribution LN (u.0%), p € R, o > 0.

(e) P is the uniform distribution U(0 — 5,0 + 3), 0 € R.

(f) P is the negative binomial distribution NB(p,r), p € (0,1), r =
1.2.....

(g) P is the log-distribution L(p), p € (0,1).

(h) P is the chi-square distribution yi with an unknown & = 1,2, ....

. In part (b) of the previous exercise, obtain the asymptotic relative

efficiencies of moment estimators w.r.t. UMVULE’s.

Prove (3.57) and (3.58).

In the proof of Proposition 3.5, show that E[W, (U,, — )] = O(n™").
Prove (3.61).

Let X, .... X,, beii.d. with a c.d.f. F and U,, and V|, be the U- and V-
statistics with kernel [[1_ . (1) — Fo(y)][{(—ac.y (22) — Fo(y)]dEFy,
where Fjy 1s a known c.d.f.

(a) Obtain the asymptotic distributions of U,, and V,, when F' # Fj.
(b) Obtain the asymptotic relative efficiency of U, w.r.t. V,, when

F = F,.

Let X;....., X, be ii.d. with a c.d.f. F having a finite 6th moment.
Consider the estimation of p*, where = EX,. When p = 0, find

amse g1 (P) /amsey (P), where U,, = [';')_1 Dor<cicichen XiXiXk.
Prove (3.67).

Prove that % in (3.69) is unbiased and consistent for ¢ under model
(3.25) with (3.68) and sup; E|s;|*™ < oo for some § > 0. Under the
same conditions, show that ¥ in (3.70) is consistent for X.

Show how to use equation (3.71) to obtain consistent estimators of 8

and .



Chapter 4

Estimation in Parametric
Models

In this chapter we consider point estimation methods in parametric models.
One such method, the moment method, has been introduced in §3.5.2. It
is assumed in this chapter that the sample X is from a population in a
parametric family {Fy : § € ©}, where © C RF for a fixed integer k > 1.

4.1 Bayes Decisions and Estimators

Bayes rules are introduced in §2.3.2 as decision rules minimizing the average
risk w.r.t. a given probability measure Il on ©. Bayves rules, however, are
optimal rules in the Bayesian approach which is fundamentally different
from the classical frequentist approach that we have been adopting.

4.1.1 Bayes actions

In the Bavesian approach, @ is viewed as a realization of a random vector @
whose prior distribution is II. The prior distribution is based on past expe-
rience, past data, or statistician’s belief and. thus. can be very subjective.
A sample X is drawn from Fy = Py, which is viewed as the conditional
distribution of X given @ = 0. The sample X = x is then used to obtain an
updated prior distribution, which is called the posterior distribution and
can be derived as follows. By Proposition 1.15, the joint distribution of X
and @ is a probability measure on X x © determined by

P(A x B) = / P,o(A)dII(#), A€ By, Be Be,
JB

193
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where X is the range of X. The posterior distribution of 8, given X = x, is
the conditional distribution Py, whose existence is guaranteed by Theorem
1.7 for almost all x € X. When P, has a p.d.f., the following result
provides a formula for the p.d.f. of the posterior distribution Fy|,.

Theorem 4.1 (The Bayes formula). Assume that P = {P,p : § € O} is

. . 1P,
dominated by a o-finite measure v and fy(z) = —=*(z) is a Borel function

on (X x ©,0(By x Bg)). Let II be a prior distribution on ©. Suppose that

= Jg fo(z)dIl > 0.
(i) The posterior distribution Py, < II and

dPyz  fo(z)
dll — m(x)

(ii) If IT < A and 94 = 7(0) for a o-finite measure A, then

APy fo(x)m(6)
dx  mlx)

(4.1)

Proof. Result (ii) follows from result (i) and Proposition 1.7(iii). To show
(i), we first show that m(z) < co a.e. v. Note that

/x m(z)dv = ‘/:,:Lfﬂ{x)dm“ = fofe{m)dudn ~ 1, (42)

where the second equality follows from Fubini’s theorem. Thus, m(x) is
integrable w.r.t. v and m(x) < 0o a.e. v.

For x € X with m(z) < oc, define

P(B.z) = Lfg{j:]dﬂ B e Bg.

1
m(z)
Then P(-,xz) is a probability measure on © a.e. v. By Theorem 1.7, it
remains to show that

P(B,z) = P(@ € B|X = z).

Note that P(B, -) is a measurable function of x. Let P, g denote the “joint”
distribution of (X, 8). For any A € (X)),

LHHIE{QMPE__H - ‘L/B“fﬂ{m)dnd”
LU, iﬂidﬂl [ fwyan] a

L[ [ o m{,} ”IH] folz)dvdll

- / P(B,z)dP, .
AxBS
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where the third equality follows from Fubini’'s theorem. This completes the
proof. 1

Because of (4.2), m(x) is called the marginal p.d.f. of X wor.t. v. If
m(x) = 0 for an @ € X, then fy(x) = 0 a.s. [I. Thus, either = should be
eliminated from X or the prior Il is incorrect and a new prior should be
specified. Therefore, without loss of generality we may assume that the
assumption of m(x) > 0 in Theorem 4.1 is always satisfied.

If both X and @ are discrete and » and A are the counting measures,
then (4.1) becomes

P(X = |0 = 0)P(8 = 0)

P(6 = 0|X = z) = .
O =X =)=~ B(X =216 = 0)P(6 = 0)

which is the Bayes formula that appears in elementary probability.

In the Bayesian approach, the posterior distribution Fy, contains all
the information we have about ¢ and, therefore, statistical decisions and
inference should be made based on Fy,,, conditional on the observed X = x.
In the problem of estimating 6, Py, can be viewed as a randomized decision
riule under the approach discussed in §2.3.

Definition 4.1. Let A be an action space in a decision problem and
L(f#,a) = 0 be a loss function. For any = € X, a Bayes action w.r.t. 11
is any &(x) € A such that

EL(8.6(x))|X = x| = min F[L(8,a)| X = z], (4.3)

r g

where the expectation is w.r.t. the posterior distribution Fy,. 1

The existence and uniqueness of Bayes actions can be discussed under
some conditions on the loss function and the action space.

Proposition 4.1. Assume that the conditions in Theorem 4.1 hold; L(f. a)
is convex in a for each fixed #; and for each x € X, E[L(0,a)|X = z] < o
for some a.

(i) If A is a compact subset of RP for some integer p > 1, then a Bayes
action &(x) exists for each x € X.

(ii) If A = R? and L(#,a) tends to oc as @ — oc uniformly in § € O3 C ©
with I1{©g) > 0, then a Bayes action &(x) exists for each x € X.

(iii) In (i) or (ii), if L(#, a) is strictly convex in a for each fixed @, then the
Bayes action is unique.

Proof. The convexity of the loss function implies the convexity and con-
tinuity of E[L(0,a)|X = x| as a function of ¢ with any fixed x. Then, the
result in (i) follows from the fact that any continuous function on a compact
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set attains its minimum. The result in (ii) follows from the fact that

lim E[L(8,a)|X =z] = lim / L(0,a)dPy, = oo
I:;-:jl..l .

lal|l—oc la|l—oc

under the assumed condition in (ii). Finally, the result in (iii) follows from
the fact that E[L(0,a)|X = x| is strictly convex in a for any fixed = under
the assumed conditions. |

Other conditions on L under which a Bayes action exists can be found,
for example, in Lehmann (1983, §1.6 and §4.1).

Example 4.1. Consider the estimation of ¢ = g(#) for some real-valued
function g such that [ [g(#)]?dIl < oc. Suppose that A = the range of g(#)
and L(0,a) = [g(0) — a]® (squared error loss). Using the same argument as
in Example 1.19, we obtain the Bayes action

_ Jo9(O)fo(x)dIl _ Jo g(6) fo(x)dIT

Oz — (4.4
{ ) TH{I) f@ fgl[.‘l‘)d]_[ )

which is the posterior expectation of g(@), given X = z.
More specifically, let us consider the case where g(f) = 67 for some

integer j = 1, fo(x) = E_HEII{U__LEE_”}l[;r:}/::r:! (the Poisson distribution) with
¢ > 0, and II has a Lebesgue p.d.f. w(f) = E"“_lﬂ_ﬁﬁfﬂ}!mj[E‘)/’[F{ﬂ')f‘}f“]
(the gamma distribution I'(a, +) with known « > 0 and v > 0). Then, for
r=10,1,2,..,

fo(z)m(0)

m(z)

= ﬂ(I)EI-l_H_]'E_HEHH_INTI({L,}D}{&), {45}

where ¢(x) is some function of z. By using Theorem 4.1 and matching the
right-hand side of (4.5) with that of the p.d.f. of the gamma distribution,
we know that the posterior is the gamma distribution I'(z + o, ~v/(y + 1)).

Hence, without actually working out the integral m(z), we know that ¢(x) =
(1+~"H* /T (z + ). Then

&(x) = r{*:r)/ giteta—l,=00+/v g,

0

Note that the integrand is proportional to the p.d.f. of the gamma distri-
bution I'(j + = + a,v/(y + 1)). Hence

5(z) = e(z)L(j 4 = + a) /(1 + 4~ L)it=te
=(tzta-1)(z+a)/(1+y71)

In particular, é(z) = (x + a)vy/(v + 1) when j = 1.
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An interesting phenomenon in Example 4.1 is that the prior and the
posterior are in the same parametric family of distributions. Such a prior is
called a conjugate prior. Under a conjugate prior, Baves actions often have
explicit forms (in ) when the loss function is simple. Whether a prior is
conjugate involves a pair of families; one is the family P = {fy : # € O}
and the other is the family from which II is chosen. Example 4.1 shows
that the Poisson family and the gamma family produce conjugate priors.
[t can be shown (exercise) that many pairs of families in Table 1.1 (page
18) and Table 1.2 (pages 20-21) produce conjugate priors.

In general. numerical methods have to be used in evaluating the inte-
erals in (4.4) or Bayes actions under general loss functions. Even under a
conjugate prior, the integral in (4.4) involving a general g may not have an
explicit form. More discussions on the computation of Bayes actions are
oiven in §4.1.4.

As an example of deriving a Bayes action in a general decision problem.
we consider Example 2.21.

Example 4.2. Consider the decision problem in Example 2.21. Let F,
be the posterior distribution of @, given X = z. In this problem., A =
{a1, a2, az}, which is compact in R. By Proposition 4.1, we know that there
is a Bayes action if the mean of Py, is finite. Let Ej), be the expectation
w.r.t. Fg,. Since A contains only three elements, a Bayes action can be
obtained by comparing

( | j =1
EH|:::[L(|§: ﬂj:]] = § €zt ﬂ:iEﬂim[ﬁ}(B: t}] j = 2

where E;}I[Erif-} e {ﬁ - g{] - t}j{ﬂ“+t.cx:-}{§}- i

The minimization problem (4.3) is the same as the minimization prob-
lem

/ L(0,68(x)) fo(x)dll = min/ L(0,a)fg(x)dll. (4.6)
g o

e b

The minimization problem (4.6) is still defined even if II is not a probability
measure but a g-finite measure on O, in which case m(x) may not be finite.
[fII{©®) = oc, I is called an improper prior. A prior with I1{(©) = 1 is then
called a proper prior. An action é(x) that satisfies (4.6) with an improper
prior is called a generalized Bayes action.

The following is a reason why we need to discuss improper priors and
ceneralized Bayes actions. In many cases one has no past information
and has to choose a prior subjectively. In such cases one would like to
select a noninformative prior that tries to treat all parameter values in ©
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equitably. A noninformative prior is often improper. We only provide one

example here. For more detailed discussions of the use of improper priors.
see Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Example 4.3. Suppose that X;,..., X, are iid. from N(u,o?), where
e ©® Cc R is unknown and o2 is known. Consider the estimation of
U = p under the squared error loss. If © = [a,b] with —co < a < b < o,
then a noninformative prior that treats all parameter values equitably is
the uniform distribution on [a,b]. If ® = R, however, the corresponding
“uniform distribution” is the Lebesgue measure on K. which is an improper
prior. If 11 is the Lebesgue measure on R, then

{E?TETE}_HIE - 2 - - (II - -IE":':]:I d .
L= exp Z 902 1 << Q.
By differentiating a in
2 2y —m /2 - - 2 . {'Ti B H‘)E d
(2m0?) (n—a)?expq =) = i
af — 1

and using the fact that >0 (@ — p)? = >0 (2 — 2)* + n(z — p)?, we
obtain that

7 pexp {—n(z — p)?/(20%)} du
T exp {—n(@ - p)?/(20%)} du

6(x)

= 7,

the sample mean of the observations ;. ..., r,,. Thus, the sample mean is a
ceneralized Baves action under the squared error loss. From Example 2.25
and Exercise 74 in §2.6, if IT is N{up,07), then the Bayes action is p.(x)
in (2.28). Note that in this case Z is a limit of p.(x) as 05 — co.  #

4.1.2 Empirical and hierarchical Bayes methods

A Bayes action depends on the chosen prior which may depend on some pa-
rameters called hyperparameters. In §4.1.1, hyperparameters are assumed
to be known. If hyperparameters are unknown, one way to solve the prob-
lem is to estimate them using data x;. ..., x,: the resulting Bayes action is
called an empirical Bayes action.

The simplest empirical Bayves method is to estimate prior parameters
by viewing = = (z1,...,2,) as a “sample” from the marginal distribution

P£|§{A:] — LRJ:IE{*’“”‘IHHI-:‘E* 31 = BI,
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where Il is a prior depending on an unknown vector £ of hyperparameters,
or from the marginal p.d.f. m(x) in (4.2), if P,y has a p.d.f. fy. The method
of moments introduced in §3.5.3, for example, can be applied to estimate
&£. We consider an example.

Example 4.4. Let X, ..., X,, beiid. from N(u,o?) with an unknown g €
R and a known o°. Consider the prior I1,; = N(u,o7) with £ = (pg, 05)-
To obtain the moment estimates of £, we need to calculate

[ rym(z)dr and / rim(z)dz.
JRn "

These two integrals can be obtained without calculating m(x). Note that

/ :;r:lm{;rr:ldﬂrzf /Ilfill[ﬂf)dj?dnpi(ﬁ:/ pdll e = pg
Jro Jre Jo R

and
/:ra rim(z)dr = / Lﬂ:%f#{j?}dﬂ:dnmf = J2+L;deﬂmf = o g +o;.

Thus, by viewing z1, ..., z, as a sample from m(z), we obtain the moment

estimates
TL

- — hr 1 B ) )
Hp = I and {:r[‘% —_ — E {Ii . .':LT:]‘E - {;-3_

Replacing pp and o3 in formula (2.28) (Example 2.25) by jiy and 63, re-
spectively, we find that the empirical Baves action under the squared error

loss is simply the sample mean & (which is a generalized Baves action; see
Example 4.3). 1§

Note that 3 in Example 4.4 can be negative. Better empirical Bayes
methods can be found, for example, in Berger (1985, §4.5). The follow-
ing method, called the hierarchical Bayes method, is generally better than
empirical Bayes methods.

Instead of estimating hyperparameters, in the hierarchical Bayes ap-
proach we put a prior on hyperparameters. Let IIg¢ be a (first-stage) prior
with a hyperparameter vector £ and let A be a prior on =, the range of £.
Then the “marginal” prior for # is defined by

I1(B) = f g (B)dA(() B € Be. (4.7)

e

=
—

If the second-stage prior A also depends on some unknown hyperparameters,
then one can go on to consider a third-stage prior. In most applications,
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however, two-stage priors are sufficient, since misspecifying a second-stage
prior is much less serious than misspecifying a first-stage prior (Berger,
1985, §4.6). In addition, the second-stage prior can be chosen to be nonin-
formative (improper).

Bayes actions can be obtained in the same way as before, using the prior
in (4.7). Thus, the hierarchical Bayes method is simply a Bayes method
with a hierarchical prior. Empirical Bayes methods, however, deviate from
the Bayes method since . ..., r,, are used to estimate hyperparameters.

Suppose that X has a p.d.f. fy(z) w.r.t. a o-finite measure v and Py,
has a p.d.f. my¢(0) w.rt. a o-finite measure x. Then the prior II in (4.7)

has a p.d.f.
7(0) = [ me(®)an(e)

w.r.t. & and

m(x) =/ fo(x)mg e (0)dAdk.

Let Py|..¢ be the posterior distribution of 8 given x and £ (or £ is assumed
known) and

mae(z) = Lfﬁ(f:‘ﬂmg(g}dh

which is the marginal of X given # and & (or £ is assumed known). Then
the posterior distribution Py, has a p.d.f.

AP fal r}ﬂ 0)

dk
/ oo e

m(zx)
folx) o) (0) ’”hm(—?)d
Mmge(z)  m(z)

.-_iPHlT :
= —=d P\,

I

A(€)

I

where P, is the posterior distribution of £ given x. Thus, under the
estimation problem considered in Example 4.1, the (hierarchical) Bayes
action 1s

é{r}=Lé{I1£)dPE|:1

—

where §(z, £) is the Bayes action when £ is known.

Example 4.5. Consider Example 4.4 again. Suppose that one of the
parameters in the first-stage prior N(ug.03), po. is unknown and of is
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known. Let the second-stage prior for & = uy be the Lebesgue measure on
R (improper prior). From Example 2.25,

2 2
o no
orx, &) = — £+ ——— 7.
(. ¢) nog + Jjg nog + o?

To obtain the Bayes action 6(x), it suffices to calculate E¢|,(£), where the
expectation is w.r.t. P, .. Note that the p.d.f. of P, is proportional to

- L — i . £ — z
¢(£)=[ exp { 2G4 - o8- Kay,

i
— o

Using the properties of normal distributions, one can show that

$(€) = Glexp{(ﬁl o) (#+am) - fg}

]

2 ,
— {Z‘gexp{ ns + B4 }

E{Tr.r:rl‘:j +a?) *.Iw'ﬁ—l—-:rz

= (Cexp {-—- n(¢—z)” }

2{]’!-1‘3’5 +a?)

where C'1, Cy, and C are quantities not depending on §. Hence E . (§) = Z.
The (hierarchical) generalized Bayes action is then

9 9

T ne
Slzr) = — I PRI WS E—— T
(z) nog + o2 ela(8) nog + o2

4.1.3 Bayes rules and estimators

The discussion in §4.1.1 and §4.1.2 is more general than point estimation
and adopts an approach that is different from the frequentist approach used
in the rest of this book. In the frequentist approach, a Bayes action é(x)
viewed as a function of = defines a decision rule. It is easy to see that é(x)
defined in Definition 4.1 also minimizes the Bayes risk (defined in §2.3.2)

rp (IT) = L Ry (6)dIl,

where 1" is any decision rule and Rp(#) is the risk function of 7" defined
in (2.19). Thus, 6(X) is called a Baves rule (§2.3.2). In an estimation
problem. a Baves rule is called a Bayes estimator.

Generalized Bayes risks, generalized Bayes rules (or estimators), and
empirical Bayes rules (or estimators) can be defined similarly.

In view of the discussion in §2.3.2, even if we do not adopt the Bayesian
approach, the method described in §4.1.1 can be used as a way of generating
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decision rules. In this section we study a Baves rule or estimator in terms
of its risk (and bias and consistency for a Bayes estimator).

Bayves rules are typically admissible, since, if there is a rule better than
a Bayes rule, then that rule has the same Bayes risk as the Bayes rule
and, therefore, is itself a Bayes rule. This actually proves part (i) of the
following result. The proof of the other parts of the following result is left
AS an exercise.

Theorem 4.2. In a decision problem, let §(X) be a Baves rule w.r.t. a
prior II.

(i) If &(X) is a unique Bayves rule, then 6(X) is admissible.

(ii) If © is a countable set and 1I gives positive probability to each 0 € ©,
then 6(X) is admissible.

(iii) If the risk Ry (@) is a continuous function of # for every T' (with a finite
risk) and II gives positive probability to any open subset of ©, then §(X)
is admissible. 1

Generalized Bayes rules or estimators are not necessarily admissible.
Many generalized Bayes rules are limits of Bayes rules (see Examples 4.3
and 4.7). Limits of Bayves rules are often admissible (Farrell, 1968a,b). The
following result shows a technique of proving admissibility using limits of
(generalized) Bayes risks.

Theorem 4.3. Suppose that © is an open set of R¥. In a decision problem,
let 3 be the class of decision rules having continuous risk functions. A
decision rule 7" € G is G-admissible if there exists a sequence {II;} of
(possibly improper) priors such that (a) the Bayes risks r(II;) are finite
for all 7; (b) for any open neighborhood O C O, there are j; > 0 and ¢ > 0
such that I1;(0) = ¢ for all j > jo; and (c) lim; . o[r, (II;) = r, (IL;)] = 0,
where é; is the Bayes rule w.r.t. II;.

Proof. Suppose that T is not S-admissible. Then there exists Tj; € ¥ such
that R, (0) < Rp(0) for all # and Ry, (0y) < Rp(0,) for some 8, € ©. From
the continuity of the risk functions, we conclude that Rp, (0) < Rp(0) — €
foralld € O = {0 € ©: |0 — 0 < n}, where € > 0 and n > 0 are some
constants. From conditions (a) and (b}, for sufficiently large j,

Iy {HJ) - Tasj {HJ} > TT(H:.") — T, {HJ)
> [ [Rr(6) - Ra (0)1d11;(0)
o
> I1;(0)
> €C,

which contradicts condition (c¢). Hence, T is S-admissible. B
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Example 4.6. Consider Example 4.3 and the estimation of g under the
squared error loss. From Theorem 2.1, the risk function of any decision rule
is continuous in g if the risk is finite. We now apply Theorem 4.3 to show
that the sample mean X is admissible. Let

() = {Eﬂ)_mﬂ‘“z”zﬂ, i=1,2 .,

and let I1;(p) = f H t)dt. Note that II; is not a probability measure,
but

;(0) > 1L,(0) >0, j=2.3,..

for any open interval O, i.e., condition (b) of Theorem 4.3 is satisfied. Note
that if we choose II; = N(0,77!), then condition (b) is not satisfied. A
direct calculation shows that

Vijo and r, (IL;) = “/}i

n E nj 4+ o?

s (II;) =
Hence (a) of Theorem 4.3 is satisfied. Finally,

(i) =, (1) = ~ T

as j — o0. Thus, (c) of Theorem 4.3 is satisfied and, hence, the sample
mean X is admissible. §

From Example 4.6, it can been seen that the choice of II; in applying

Theorem 4.3 is very elaborate. More results in admissibility can be found
in §4.2 and §4.3.

The following result concerns the bias of a Bayes estimator.

Proposition 4.2. Let §(X) be a Bayes estimator of ¢ = g(f) under the
squared error loss. Then §(X') is not unbiased unless the Bayes risk r, (II) =
0.

Proof. Suppose that &(X) is unbiased. Conditioning on @ and using
Proposition 1.12, we obtain that

E[g(0)6(X)] = E{g(0)E[5(X)|0]} = E[g(0)]".

Since 6(X) = E[g(8)|X], conditioning on X and using Proposition 1.12, we
obtain that

Elg(8)8(X)] = E{6(X)Elg(6)|X]} = E[6(X)]
Then

r,(IT) = E[S(X) - g(0) = E[6(X)]* + E[g(0)]* — 2E[g(6)5(X)] = 0. 8
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Since r, = () occurs usually in some trivial cases, a Bayes estimator is
typically not unbiased. Hence, Proposition 4.2 can be used to check whether
an estimator can be a Bayes estimator w.r.t. some prior under the squared
error loss. However, a generalized Bayes estimator may be unbiased; see,
for instance, Examples 4.3 and 4.7.

Baves estimators are usually consistent and asyvmptotically unbiased.
In a particular problem, it is usually easy to check directly whether Baves
estimators are consistent and asymptotically unbiased (Examples 4.7-4.9).
Bayes estimators also have some other good asymptotic properties, which
are studied in §4.5.3.

Let us consider some examples.

Example 4.7. Let X,...., X,, be i.i.d. from the exponential distribution
E(0,6) with an unknown € > 0. Let the prior be such that #=! has the
gamma distribution I'(a, ) with known o > 0 and 4 > 0. Then the
posterior of w = 07! is the gamma distribution I'(n + a, (nZ + 4~ 1)~ 1)
(exercise).

—1

Consider first the estimation of f = w The Bayes estimator of @

under the squared error loss is

6(T] _ {TI.T -1 f'}-'_].:]*.l'1+f.'t /C:H:I wn+u_2€_ |:1I1;'[!—|-""r'_1:||;|_.ldu; nT + ,F—l
| I'(n + ﬂ':‘ 0 | | n+oa—1

The bias of 6( X)) is

nf + 1 E_*f_l—{ﬂ-_l)ﬁ_g(l)

mn

n+r.x-~1_ n+a—1

[t is also easy to see that &(X) is consistent. The UMVUE of 4 is X.
Since Var(X) = 62/n, r_(I1) > 0 for any IT and, hence, X is not a Bayes
estimator. In this case, X is the generalized Bayes estimator w.r.t. the
lmproper prior % = I{p.0)(w) and is a limit of Bayes estimators (X)) as
a — 1 and v — oo (exercise).

Consider next the estimation of e #/¥ = e™* (see Examples 2.26 and
3.3). The Bayes estimator under the squared error loss is

(S(’]'T) _ (H.’}_,T +":’r_l)n+ﬂ DCu,fn+u_lf"_|:n$+"r_1+ﬂwduj
B I'(n 4+ «a) " "

¢ — (4o
= (1 + ) . (4.8)

nt + 1!

Again, this estimator is biased and it is easy to show that 6(.X) is consistent
as n — 00. In this case, the UMVUE given in Example 3.3 is neither a
Bayes estimator nor a limit of 6(X). 1
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Example 4.8. Let X, ..., X,, be i.i.d. from N(u. %) with unknown p € R
and 0 > (. Let the prior for w = (2¢%)~! be the gamma distribution
['(c,7y) with known o > 0 and v > 0 and let the prior for u be N (g, 05/w)

(conditional on w). Then the posterior p.d.f. of (u,w) is proportional to

u__;ll:'i'?.—]-:lj"llg—Ff.'t—l exp {_ [,.},—l +y+ ﬂ-(.’f . H‘)E + H-ﬂr—fffnf} w.} !

2
ifrl ]

where y = " (z; — 7)*. Note that

]

n(z — m:a + [#;:r{u]l — (ﬂ_ + ﬁ“) _.!.LE — 9 (ni?-}- —ﬁ?) f ni? + f”;r

]

Hence the posterior p.d.f. of (i, w) is proportional to

win—h/24a—1 ayy {—- [,.},—1 + 1y + (n + ﬁ;g) (pt — (j{::r:)}ﬂ u.:} i

where
- EH
nr+ s

E-:ru

((2) =

1
H'I-E

Thus, the posterior of w is the gamma distribution '(n/2+a—1, (v '+y) ')
and the posterior of p (given w and X = z) is N({(z). [(2n + o5 *)w] ™).
Under the squared error loss, the Bayes estimator of p is ((z) and the
Bayes estimator of 2 = (2w)~tis (v7! 4+ y)/(n + 2 — 4), provided that
n + 2a > 4. Apparently, these Bayes estimators are biased but the biases
are of the order n=!; and they are consistent as n — oc. 1

To consider the last example. we need the following useful lemma whose
proof is left as an exercise.

Lemma 4.1. Suppose that X has a p.d.f. fy(x) w.r.t. a o-finite measure
v. Suppose that § = (6,.605), 0; € ©;. and that the prior has a p.d.f.

m(f) = ﬂﬂﬂﬁ'g(gl)ﬁﬂg (02),

where my,(f2) is a p.d.f. wr.t. a o-finite measure v, on Oy and for any
given 6y, my,|p,(01) is a p.d.f. wr.t. a o-finite measure 1, on ©;. Suppose
further that if 6y is given, the Bayes estimator of h(f,) = g(0;,0s) under
the squared error loss is 6(X,f5). Then the Bayes estimator of g(#,,0)
under the squared error loss is 6(X') with

@)= [ 8(X.00pa,1a(6) v
=B

where pg,|.(02) is the posterior p.d.f. of 85 given X = z. 1
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Example 4.9. Consider a linear model
XE" =_-'HZ:-+E?L;,I': J‘ =1._,..._._T1T;, f-=1,..._._ﬂl,

where 3 € RY is unknown, Z;’s are known vectors, £4;'s are independent,
and ¢;; is N(0,07), j = 1,...,n;, i = 1,...,m. The parameter vector is then
0 = (0,w), where w = (wy, ..., wy) and w; = (207) 7. Assume that the prior
for # has the Lebesgue p.d.f.

cw(3) H”"'?ﬂ_wfh’ (4.9)

where o« > 0, v > 0, and ¢ > 0 are known constants and = (3) is a known
Lebesgue p.d.f. on RP. The joint p.d.f. of (X, 8) is then proportional to

T
h(z,0) = (@) [Jw/ 24a — [y Hv(B))wi
1 | T - 1
=1
where v;(3) = z;tzl;l{ﬂfij — 3Z7)*. Suppose first that 3 is known. Then the
Bayes estimator of ¢ under the squared error loss is

/ 1 h{z,0) v+ ()
dw = :
2w; [ h(z,0)dw 200 + n;

By Lemma 4.1, the Bayes estimator of o2 is

. L (5 |
Gl e RO (4.10)

where

x ﬂ{ﬁ)H/w?ﬂ*’{EE_["-’_lJF"f':m]“’fdwi

=1

e _ — {41y S 2 _
s (B) [] [+ + i8] " /2) (4.11)

is the posterior p.d.f. of 3. The Bayes estimator of 37 for any [ € R? is
then the posterior mean of I w.r.t. the p.d.f. f5..(3).

In this problem, Bayes estimators do not have explicit forms. A nu-
merical method (such as one of those in §4.1.4) has to be used to evaluate
Bayes estimators (see Example 4.10).
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Let X, and Sf be the sample mean and variance of X;;, j = 1,....n
and let o = (2a7)~! (the prior mean of ¢7). Then the Bayes estimator in
(4.10) can be written as

200 5, m;—1 _, n; / - 2
—_—gy + —— 5+ ———— [ (X = B2 ) [3(3)d3 4.12
(S7 is defined to be 0 if n; = 1). The Bayes estimator in (4.12) is a
weighted average of prior information, “within group” variation, and an
averaged squared “residual”.
If n; — oo, then the first term in (4.12) converges to 0 and the second
term in (4.12) converges to o7 a.s. Hence, the Bayes estimator is consistent

T
as n; — 0o, since the mean of the third term in (4.12) is bounded by

2
70

B [(Xi - 620 au(5)d5 = 2.

Ty

4.1.4 Markov chain Monte Carlo

As we discussed previously, Bayves actions or estimators have to be com-
puted numerically in many applications. Typically we need to compute an
integral of the form

Ey(9) = / 9(0)p(0)d

with some function g, where p(f) is a p.d.f. w.r.t. a o-finite measure  on
© C RF¥. For example, if g is an indicator function of A and p(f) is the
posterior p.d.f. of # given X = x. then I, (g) is the posterior probability of
A; under the squared error loss, E,(g) is the Bayes action (4.4) if p(f) is
the posterior p.d.f.

There are many numerical methods for computing integrals E, (g): see,
for example, §4.5.3 and Berger (1985, §4.9). In this section we discuss
the Markov Chain Monte Carlo (MCMC) methods, which are powerful
numerical methods not only for Bayvesian computations. but also for general
statistical computing (see, e.g., §4.4.1).

We start with the simple Monte Carlo method. which can be viewed as a
special case of the MCMC. Suppose that we can generate i.i.d. 61, ..., g0
from a p.d.f. h(#) > 0 w.r.t. . By the SLLN (Theorem 1.13(ii)), as m — oc,

. 1 —= g(0) )\ p(ela) Nl o
E,(g) = —Zg{ h{éi(}] ) L%h{ﬁ)dy=Eﬂg).

Hence E,(g) can be used as a numerical approximation to E,(g). The
process of generating ) according to h is called importance sampling and
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h(f) is called the importance function. More discussions on importance
sampling can be found, for example, in Berger (1985), Geweke (1989), Shao
(1989), and Tanner (1996). When p(#) is intractable or complex, it is
often difficult to choose a function h that is simple enough for importance
sampling and results in a fast convergence of Ep{ g) as well.

The simple Monte Carlo method, however, may not work well when k,
the dimension of ©, is large. This is because when k£ is large, the conver-
gence of Ep{g} requires a very large m; generating a random vector from
a k-dimensional distribution is usually expensive, if not impossible. More
sophisticated MCMC methods are different from the simple Monte Carlo
in two aspects: generating random vectors can be done using distributions
whose dimensions are much lower than k: and 6, ... 8" are not inde-
pendent. but form a Markov chain, which is described next.

A sequence of random k-vectors {Y'*) : ¢t = 0.1, ...} taking values in Y
is a homogeneous Markov chain if and only if

P{}f’(t-l—l:l e *‘1|Y“”~ ___?y(z:)) _ P[Y“? c AW“”}
for any £. Let
Py, A)= P(YD c Ay = y).  ycY AcBy,

which is called the transition kernel of the Markov chain. Note that P(y,-)
is a probability measure for every y € Y; P(-, A) is a Borel function for every
A € By; and the distribution of a homogeneous Markov chain is determined
by P(y, A) and the distribution of Y") (initial distribution). MCMC ap-
proximates an integral of the form [, g(y)p(y)dv by m~ IS (VW) with

a Markov chain {Y¥) : + = (0,1, ...}. The basic justification of the MCMC

approximation is given in the following result.

Theorem 4.4. Let p(y) be a p.d.f. on Y w.r.t. a o-finite measure v and g be
a Borel function on Y with fy lg(1)|p(y)dy < oo. Let {Y) : ¢+ =0,1,...} be
a homogeneous Markov chain taking values on Y < R* with the transition

kernel P(y, A). Then

1 T |
— g(YW) - f 9(y)p(y)dv (4.13)
m - Y
t=1
and, as t — o0,
Py, A) =P(YW e AlY"Y = y) -, / p(y)dv. (4.14)
A

provided that
(a) the Markov chain is aperiodic in the sense that there does not exist d = 2



4.1. Baves Decisions and Estimators 209

nonempty disjoint events Ay, ..., Ay in By such that for alli =0,...,d -1
and ally €Y, P(y.4;) =1for j =i+ 1 (mod d);

(b) the Markov chain is p-invariant in the sense that [ P(y, A)p(y)dv =
[, ply)dv for all A € By;

(¢) the Markov chain is p-irreducible in the sense that for any y € Y and any
A with j:,'l p(y)dr > 0, there exists a positive integer t such that P*(y, A)
in (4.14) is positive; and

(d) the Markov f:ha,ill is Hm‘rzla recurrent in the sense that for any A with

ply)dv =0, P A(Y ) = 0olYO) =) =1 forall y. W
A o1 1

The proof of these results is bevond the scope of this book and, hence, is
omitted. It can be found in, for example, Nummelin (1984), Chan (1993),
and Tierney (1994). A homogeneous Markov chain satisfying conditions
(a)-(d) in Theorem 4.4 is called ergodic with equilibrium distribution p.
Result (4.13) means that the MCMC approximation is consistent and result
(4.14) indicates that p is the limit p.d.f. of the Markov chain.

One of the key issues in MCMC is the choice of the kernel P(y, A). The
first requirement on P(y, A) is that conditions (a)-(d) in Theorem 4.4 are
satisfied. Condition {a) is usually easy to check for any given P(y, A). In
the following we consider two popular MCMC methods satisfying conditions

(a)-(d).

Gibbs sampler

One way to construct a p-invariant homogeneous Markov chain is to use
conditioning. Suppose that ¥ has the p.d.f. p(y). Let Y; (or y;) be the ith
component of ¥ (or y) and let Y_; (or y_;) be the (k — 1}-vector containing
all components of YV (or y) except Y; (or y;). Then

Pi(y,A) = Pi(y—i, A) = P(Y € AlY_; = y_;)

is a transition kernel for anv i. The MCMC method using this kernel is
called the single-site Gibbs sampler. Note that

fPi{y_i,A)p{y)dv = E[P(Y e AlY_;)|=P(Y € A) = Lp{y}d.u

and, therefore, the chain with kernel P;(y_;, A) is p-invariant. However,
this chain is not p-irreducible since P(y_;,-) puts all its mass on the set
- H(y—_;), where 1;(y) = y_;. Gelfand and Smith (1990) considered a sys-

8
tematic scan Gibbs Sﬁ:mpifzr whose kernel P(y, A) is a composite of k kernels

Pi(y_;,A),i=1,.... k. More pwfi%el} the f:lmin is defined as follows. Given
Y1 = =1 we generate y, ) from Py (JE _._.....Ji: 2 ) - ;,E” from

¢ ( t—1 (t—1
Pj{yij,....gj}l J§+lj?...,yk },-),.... J;E:} from P{Jl oYy vy o). The
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initial YV is generated from p. It can be shown that this Markov chain
is still p-invariant. We illustrate this with the case of £ = 2. Note that

Yl[” is generated from Pgl[yg‘”, -}, the conditional distribution of ¥ given
Yo = yé“:'. Hence {Ylm,}’gm:') has p.d.f. p. Similarly, we can show that
Y@ = (vY ¥ has p.d.f. p. Thus,

/ Py, A)p(y)dv / P(YW € AlY'") = y)p(y)dv

= E[P(YW € AlYy )]
= P(YW ¢ A)

= [ p(y)dv.
JA

This Markov chain is also p-irreducible and aperiodic if p(y) > 0 for all
y € Y: see, for example, Chan (1993). Finally, if p(y) > 0 for all y € Y,
then P(y, A) < the distribution with p.d.f. p for all y and, by Corollary 1
of Tierney (1994}, the Markov chain is Harris recurrent. Thus, Theorem
4.4 applies and (4.13) and (4.14) hold.

The previous Gibbs sampler can obviously be extended to the case where
y;’s are subvectors (of possibly different dimensions) of .

Let us now return to Bayesian computation and consider the following
example.

Example 4.10. Consider Example 4.9. Under the given prior for # =
(3, w), it is difficult to generate random vectors directly from the posterior
p.d.f. p(f), given X = x (which does not have a familiar form). To apply a
(Gibbs sampler with y = 0, y; = 3, and y» = w, we need to generate random
vectors from the posterior of 3, given x and w, and the posterior of w, given
r and . From (4.9) and (4.11), the posterior of w = (wy,...,wy), given x
and (3, is a product of marginals of w;’s that are the gamma distributions
Mo+ 1+mn;/2, v+ v(8)]1), i =1,...,m. Assume now that #(3) = 1
(noninformative prior for 3). It follows from (4.9) that the posterior p.d.f.
of 3, given x and w, is proportional to

ke
A _ Trarl;2 a1l 2z
He—w,m[ﬁ} ~ e I18ZTW W2

where W is the diagonal matrix whose ith diagonal is w;. Thus, the poste-
rior of BZTW1/2 given z and w, is N,(XWY2 2711 ) and the posterior of
3, given z and w, is N,(XWZ(ZTWZ) 1,27 HZTWZ) ") (Z7TWZ is as-
sumed of full rank for simplicity), since 8 = 3Z"TWY W12 Z(Z"WZ)~1].
Note that random generation using these two posterior distributions is fairly
easy. |
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The Metropolis algorithm

A large class of MCMC methods are obtained using the Metropolis al-
gorithm (Metropolis et al., 1953). We introduce Hastings’ version of the
algorithm. Let Q(y, A) be a transition kernel of a homogeneous Markov
chain satisfying

Qy, A) = /Aq{zh z)dv(z)

for a measurable function g(y,z) = 0 on Y x Y and a o-finite measure v.
Without loss of generality, assume that fH ply)dr = 1 and that p is not
concentrated on a single point. Define

aly,z) =4 [pw;wl:y,z;w 11 p(y)a(y. z) >0
1 p(y)a(y. z) = 0

and

Py, z) = { g{y,_ z)a(y, ) ii i

The Metropolis kernel P(y, A) is defined by

P(y.4) = | py2)d(2) +7()8,(A), (4.15)

where 6, is the point mass at y and r(y) = 1 — [ p(y, z)dv(z). The corre-
sponding Markov chain can be described as follows. If the chain is currently
at a point Y'Y = y. then it generates a candidate value z for the next lo-
cation Y*Y from Q(y.-). With probability a(y,z) the chain moves to
Y+ — 2 Otherwise, the chain remains at Y+ = y.

Note that this algorithm only depends on p(y) through p(y)/p(z). Thus,
it can be used when p(y) is known up to a normalizing constant, which often
occurs in Bayesian analysis.

We now show that a Markov chain with a Metropolis kernel P(y, A) is
p-invariant. First, by the definition of p(y, z) and a(y, z),
p(y)p(y, z) = p(z)p(z.y)

for any y and z. Then, for any A € By,

f P(y, A)p(y)dv = f [[4 Py z)dv(z)] ply)dv(y) +1/ r(y)éy(A)p(y)dv(y)

- / / ply. 2)p(y)dv(y)| dv(z) + / r(y)p(y)dv(y)
A A

=/ /p(z,y}p(z)du{y} dv(z) + [ r(y)p(y)de(y)
A - 4 A
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— /[1 --r{z}]p{z}dy{z}%-fT"[E)P'[z)d”'[fz)
A A
:fp{z}dy{z}.
A

If a Markov chain with a Metropolis kernel defined by (4.15) is p-
irreducible and fr{yj}up{y)dy = (), then, by the results of Nummelin (1984,

§2.4), the chain is aperiodic; by Corollary 2 of Tierney (1994), the chain is
Harris recurrent. Hence, to apply Theorem 4.4 to a Markov chain with a
Metropolis kernel, it suffices to show that the chain is p-irreducible.

Lemma 4.2. Suppose that }(y, A) is the transition kernel of a p-irreducible
Markov chain and that either g(y, z) > 0 for all y and z or g(y, z) = q(z, y)
for all ¥ and z. Then the chain with the Metropolis kernel p(y, A) in (4.15)
is p-irreducible,

Proof. It can be shown (exercise) that if ) is any transition kernel of a
homogeneous Markov chain, then

Q' (y, A) = [ f /Hq[gn_jH?zn_j)d.u{zn_j), (4.16)

JA ' g=1

where 2z, =y, y €Y, and A € By. Let y € Y, A € By with [, p(z)dv > 0,
and By, = {z:a(y,z) = 1}. If [, 5. p(z)dv > 0, then

q(y, z)aly, z)dv(z) = L - q(’z;}?ﬁ{z}d};{z) > (),

Py, A) = /

. Aer;

which follows from either g(z,y) > 0 or ¢(z,y) = q(y,2) > 0 on By. If
.f_qrmc- p(z)dr = 0, then IAHB p(z)dry > 0. From the irreducibility of

(Q(y.A), there exists a ¢ > 1 such that Q*(y.A N B,) > 0. Then, by
(4.15) and (4.16),

Pi(y,A) > Py, ANB,) > Q'(y, ANB,) > 0. 1

Two examples of g(y, z) given by Tierney (1994) are ¢y, z) = f(z — y)
with a Lebesgue p.d.f. f on R*, which corresponds to a random walk chain,
and q(y, z) = f(z) with a p.d.f. f, which corresponds to an independence
chain and is closely related to the importance sampling discussed earlier.

Although the MCMC methods have been used over the last 40 vears,
the research on the theory of MCMC is still very active. Important top-
ics include the choice of the transition kernel for MCMC:; the rate of the
convergence in (4.13); the choice of the Monte Carlo size m; and the esti-

mation of the errors due to Monte Carlo. See more results and discussions
in Tierney (1994), Basag et al. (1995), Tanner (1996), and their references.
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4.2 Invariance

The concept of invariance is introduced in §2.3.2 (Definition 2.9). In this
section, we study the best invariant estimators and their properties in
one-parameter location families (§4.2.1), in one-parameter scale families
(§4.2.2), and in general location-scale families (§4.2.3).

4.2.1 One-parameter location families

Assume that the sample X = (X1, ..., X,,) has a joint distribution P,, with
a Lebesgue p.d.f.

fley = py ooy T — i), (4.17)

where f is known and ¢ € R is an unknown location parameter. The p.d.f.
in (4.17) is a special case of the general location-scale family in Definition
2.3. The family P = {P, : p € R} is called a one-parameter location family
and is invariant under the location transformations g.(X) = (X7 + ¢,...,

Xo+c¢),eeR.

We consider the estimation of jt as a statistical decision problem with
action space & = R and loss function L(u,a). It is natural to consider
the same transformation in the action space, i.e., if X; is transformed to
X; + ¢, then our action a is transformed to a +¢. Consequently, the decision
problem is invariant under location transformation if and only if

L(pt,a) = L{p+ c,a+¢) for all ¢ € R,

which is equivalent to

L(pt,a) = L{a — 1) (4.18)
for a Borel function L(-) on R.

According to Definition 2.9 (see also Example 2.24), an estimator T
(decision rule) of j is location invariant if and only if

T(X1+e,....Xn+c)=T(Xy,..., Xp) +c (4.19)

Many estimators of pu, such as the sample mean and weighted average of
the order statistics, are location invariant. Let d; = »; —x,,, D; = X; — X,
d=(dy,...;,d,_1), and D = (D, ..., D, _1). The following result provides a

characterization of location invariant estimators.

Proposition 4.3. Let T be a location invariant estimator of pu. A nec-
essary and sufficient condition for an estimator T to be location invariant
is that there exists a Borel function © on R"~! (u = a constant if n = 1)
such that

T(x) = To(x) — uld) for all z € R™. (4.20)
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Proof. It is easy to see that T" given by (4.20) satisfies (4.19) and, therefore,
is location invariant. Suppose that T is location invariant. Let @(x) =

T(x) — Ty(x) for any = € R™. Then
w4 ¢ onzyte)=T(x1+c, . xp+¢)—Tolzy + ¢, ...z + )
=T(xy,...,xn) — To(z1, .0 2,
= w(xy, ..., Tp)
for all c € R and x; € R. Putting ¢ = —a,, leads to
w(dy, .y dp_1) = ey — 20y ey 1 — 24, 0)
= (L1, Ty
= 7(z) - T

for all x € R™. This proves the result. &

The next result states an important property of location invariant esti-
mators.

Proposition 4.4. Let X be distributed with the p.d.f. given by (4.17) and
let T" be a location invariant estimator of p under the loss function given
by (4.18). If the bias, variance, and risk of T" are well defined, then they
are all constant (do not depend on ).

Proof. The result for the bias follows from

by () = f T(@)f (21 — fty ooy T — ) —
_ / T(21 + oo + ) f(2)d — g1
- (1@ + Wi@ds - s
_ f T(z) f(z)da.

The proof of the result for variance or risk is left as an exercise. 1

An important consequence of this result is that the problem of finding
the best location invariant estimator reduces to comparing constants in-
stead of risk functions. The following definition can be used not only for
location invariant estimators, but also for general invariant estimators.

Definition 4.2. Consider an invariant estimation problem in which all
invariant estimators have constant risks. An invariant estimator 7' is called
the minimum risk invariant estimator (MRIE) if and only if T has the
smallest risk among all invariant estimators. 1§
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Theorem 4.5. Let X be distributed with the p.d.f. given by (4.17) and
consider the estimation of g under the loss function given by (4.18). Sup-
pose that there is a location invariant estimator T, of i with finite risk.
(i) Assume that for each d there exists a u.(d) that minimizes

Eo[L(To(X) — u(d))|D = d]

over all functions w, where the conditional expectation Ey is calculated
under the assumption that X has p.d.f. f(xq,...,2,). Then an MRIE exists
and is given by

T.(X) = To(X) — u.(D).

(ii) The function u, in (i) exists if L(f) is convex and not monotone; it is
unique if L is strictly convex.

(iii) If Ty and D are independent, then u, is a constant that minimizes
Eo|L(Ty(X) —wu)]. If, in addition, the distribution of T} is symmetric about
it and L is convex and even, then u, = ().

Proof. By Propositions 4.3 and 4.4.

Ry(p) = E{EG[L(Ty(x) — u(d))| D = dl},
where T'(X) = Ty(X) — u(D). This proves part (i). If L is (strictly) convex

and not monotone, then Ey[L(Ty(x) — a)|D = d] is (strictly) convex and
not monotone (exercise). Hence lim|,— Ey[L(Ty(z) — a)|D = d] = oc.
This proves part (ii). The proof of part (iii) is left as an exercise. 1§

Theorem 4.6. Assume the conditions of Theorem 4.5 and that the loss is
the squared error loss.

(i) The unique MRIE of pu is

o f(Xy =t X — t)dt

T.(X) =

which is known as the Pitman estimator of .
(ii) The MRIE is unbiased.
Proof. (i) Under the squared error loss,

w(d) = Eo[To(X)|D = d] (4.21)

(exercise). Let Ty(X) = X, (the nth observation). Then X, is location
invariant. If there exists a location invariant estimator of p with finite risk,
then Ey(X,,|D = d) is finite a.s. P (exercise). By Proposition 1.8, when
i = 0, the joint Lebesgue p.d.f. of (D, X)) is fldy + zp, ..y dp—1 + 20, 25).
The conditional p.d.f. of X,, given D = d is then

f{dl T Ly ooy d‘ﬂ.—l + .’]‘.Tn._.;lfﬂ:]
f_m.:x: f{dl + t'.- == d'ﬂ—l + t, t)!’it
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(see (1.39)). By Proposition 1.11,

[T tf(dy 4+t dny + Et)dE

I Fdy 4ty dyyy + L t)dt

ff; tf(xy —xp +1t, .y @n_q —xy +t,t)dt

oo flzr—zn+ b zny — 2y + £, 1)dE
E; uf(ry —u, ...,z —u)du

: = flar — w2y — u)du

E[]{XH|D - d) -

fr— :T"'i".'_

by letting u = x,, —t. The result in (i) follows from T, (X) = X, — E(X,|D)
(Theorem 4.5).

(ii) Let b be the constant bias of T, (Proposition 4.4). Then T7(X) =
T.(X) — b is a location invariant estimator of p and

Ry, = E[T,(X) — b — p]* = Var(T}) < Var(T,) + b* = Rp,.
since T, is the MRIE, b = 0. i.e.. T, is unbiased. 1

Theorem 4.6(ii) indicates that we only need to consider the unbiased
location invariant estimator in order to find the MRIE, if the loss is the
squared error loss. In particular, a location invariant UMVUE is an MRIE.

Example 4.11. Let X,...., X,, be i.i.d. from N{;.L,ﬁrz) with an unknown
i € R and a known o2. Note that X is location invariant. Since X is the
UMVUE of u (§52.1), it is the MRIE under the squared error loss. Since the
distribution of X is symmetric about p and X is independent of D (Basu’s
theorem), it follows from Theorem 4.5(iii) that X is an MRIE if L is convex
and even. |

Example 4.12. Let X,,....X,, be ii.d. from the exponential distribution
E(p,0), where € is known and g € R is unknown. Since Xy — @/n is
location invariant and is the UMVUE of p, it is the MRIE under the squared
error loss. Note that X, is independent of D (Basu's theorem). By
Theorem 4.4(iii), an MRIE is of the form X{lj — u, with a constant u..
For the absolute error loss, X1y — #log2/n is an MRIE (exercise). &

Example 4.13. Let X,....,X,, be ii.d. from the uniform distribution on
(o — % [+ %} with an unknown g € R. Consider the squared error loss.
Note that

1 ,u—% < Ty S Ty E;..L-I—%
0 otherwise.

f(;lffl — y iy Ty — Fi} — {
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By Theorem 4.6(i), the MRIE of p is

J"’-r[1]‘|-a Xrl".l_"z X+ X
T.(X) = r‘n!t/ = =) 5 )
XI:::] __ X{'u']
We end this section with a brief discussion of the admissibility of MRIE's

in a one-parameter location problem. Under the squared error loss, the
MRIE (Pitman’s estimator) is admissible if there exists a location invariant
estimator Ty v (X)]? < oo (Stein, 1959). Under a general loss
function, an MRIE is admissible when it is a unique MRIE (under some
other minor conditions). See Farrell (1964), Brown (1966}, and Brown and
Fox (1974) for further discussions.

4.2.2 One-parameter scale families

Assume that the sample X = (X,..., X,,) has a joint distribution P, with

a Lebesgue p.d.f.
L f(E L ), (4.22)

't = SR
where f is known and o > () is an unknown scale parameter. The family
= {P, : 0 > 0} is called a one-parameter scale family and is a special

case of the general location-scale family in Definition 2.3. This family is
invariant under the scale transformations g,.(X) = rX, r > 0.

We consider the estimation of " with A = [0, ¢), where h is a nonzero

constant. The transformation g, induces the transformation g, (¢") = rf*o".
Hence a loss function L is scale invariant if and only if
L(ro,r"a) = L(o,a) for all r > 0,
which is equivalent to
L(o.a) = L (%) (4.23)

for a Borel function L(-) on [0,0¢). An example of a loss function satisfying
(4.23) is

a P ||!"L o t,:'.J’r,|p

— 1

Lig,a) = g

(4.24)

aph

where p > 1 is a constant. However, the squared error loss does not satisfy
(4.23).

An estimator T of " is scale invariant if and only if
T(rXy....rX,) =r"T(X,....X,).

Examples of scale invariant estimators are the sample variance S* (for h =
2), the sample standard deviation 5 = v/ S? (for A = 1), the sample range
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Xy — X(1) (for h = 1), and the sample mean deviation n=' 3"7" | | X; — X|
(for h = 1).

The following result is an analogue of Proposition 4.3. Its proof is left
as an exercise.

Proposition 4.5. Let T}, be a scale invariant estimator of ¢". A necessary
and sufficient condition for an estimator 7" to be scale invariant is that there
exists a positive Borel function u on R"™ such that

T(z) = Ty(x)/u(z) for all z € R",

where z = (z1,...,2n), 2 = /e, i=1,....n— 1, and z, = z,/|x,|. 1

The next result is similar to Proposition 4.4. It applies to any invariant
problem defined in Definition 2.9. We use the notation in Definition 2.9.

Theorem 4.7. Let P be a location-scale family invariant for given C and
T. Suppose that the loss function is invariant and 7" is an invariant decision
rule. Then the risk function of T" is a constant. 1

The proof is left as an exercise. Note that a special case of Theorem 4.7
is that any scale invariant estimator of a" has a constant risk and, therefore,
an MRIE (Definition 4.2) of ¢" usually exists. However, Proposition 4.4 is
not a special case of Theorem 4.7, since the bias of T' may not be a constant
in general. For example, the bias of the sample standard deviation is a
function of .

The next result and its proof are analogues of those of Theorem 4.5.

Theorem 4.8. Let X be distributed with the p.d.f. given by (4.22) and
consider the estimation of ¢" under the loss function given by (4.23). Sup-
pose that there is a scale invariant estimator Ty of ¢ with finite risk.

(i) Assume that for each z there exists a u.(z) that minimizes

EL[L(To(X)/u(2))|Z = 2]

over all positive functions u, where the conditional expectation £ is calcu-
lated under the assumption that X has p.d.f. f(z,,....,z,). Then an MRIE
exists and is given by

T.(X) = To(X)/u.(2).

(ii) The function u, in (i) exists if v(¢) = L(e') is convex and not monotone;
it is unique if ~(t) is strictly convex. 1

The loss function given by (4.24) satisfies the condition in Theorem
4.8(ii). A loss function corresponding to the squared error loss in this
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problem is the loss function (4.24) with p = 2. We have the following result
similar to Theorem 4.6 (its proof is left as an exercise).

Corollary 4.1. Under the conditions of Theorem 4.8 and the loss function
(4.24) with p = 2, the unique MRIE of o" is

T {X) _ ﬂ](x:lﬂl[ﬂ]{XHZ] _ _ﬂ;}s t””"_lf(t}fl?...?t}fn)dt
* El{[ﬂ]{X)]E|Z} ﬁ;}c' tTL-I—Eh—lf(tXl txn)dt'h

which is known as the Pitman estimator of o™, 1

Example 4.14. Let X4, .... X, be i.i.d. from N{(0. {TE) and consider the es-
timation of ¢®. Then T = 3" | X7 is scale invariant. By Basu’s theorem,
T} is independent of Z. Hence u, in Theorem 4.8 is a constant minimizing
Ey[L(Th/u)] over u > 0. When the loss is given by (4.24) with p = 2, by
Corollary 4.1, the MRIE (Pitman’s estimator) is

To(X)Eq[To (X)) 1 O 2
T.(X) = : = X:
(X) E[TH(X)]? n -+ 2 EZ: .
since Ty has a chi-square distribution y? when & = 1. Note that the

UMVUE of ¢ is Ty /n, which is different from the MRIE. &

Example 4.15. Let X,...., X,, be ii.d. from the uniform distribution on
(0,0) and consider the estimation of . By Basu’s theorem, the scale in-
variant estimator X, is independent of Z. Hence u, in Theorem 4.8 is a
constant minimizing F[L(X,)/u)] over u > 0. When the loss is given by
(4.24) with p = 2, by Corollary 4.1, the MRIE (Pitman’s estimator) is

x[ﬂ}ElX[n] L {Tl + Z)XI:TL:I .

Eleﬂ]  n+41

T.(X) =

4.2.3 General location-scale families

Assume that X = (X, ..., X,,) has a joint distribution Py with a Lebesgue
p.d.f.

1 (rﬂl—p :'E.rl._.‘_":')! {4.25)

aon o ¥ 1 o

where f is known, # = (p,0) € ©, and © = R x (0,o0¢). The family
P = {Fy : # € O} is a special case of the location-scale family defined
in Definition 2.3 and is invariant under the location-scale transformations
Ger(X) = (r X1 +¢,..,7X,, +¢), ¢ € R, r > 0, which induce similar
transformations on ©: g.,.(f) = (ru+ ec.ra), c€ R, r = 0.
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Consider the estimation of o with a fixed h # 0 under the loss function
(4.23), which is invariant under the location-scale transformations g. . An
estimator T of ¢" is location-scale invariant if and only if

T(rX, +c .t Xy +¢) =" T( X1, ..., X,). (4.26)

By Theorem 4.7, any location-scale invariant 1" has a constant risk. Letting
r=1in (4.26), we obtain that

T{Xl + C, ...,Xn_ -+ E]} = T{X]._. Xﬂ)

for all ¢ € R. Therefore, T' is a function of D = (Dy,.... D, 1), D; =
Xi— X, i=1,...,n— 1. From (4.25), the joint Lebesgue p.d.f. of D is

L[ f (% +t,..., de=t t,t) dt, (4.27)

which is of the form (4.22) with n replaced by n—1 and z;’s replaced by d;’s.
[t follows from Theorem 4.8 that if T;,(D) is any finite risk scale invariant
estimator of ¢ based on D, then an MRIE of o" is

T, (D) = To(D) /us (W). (4.28)

where W = (W, W, 1), W; = D;/D,, 1, i =1,..n—-2 W, ; =
Dy_1/|Dn_1]. ue(w) is any number minimizing E1 [L(Ty(D)/u(w))|W = w]
over all positive functions u. and F; is the conditional expectation calcu-
lated under the assumption that D has p.d.f. (4.27) with o = 1.

Consider next the estimation of p. Under the location-scale transfor-
mation g. ., it can be shown (exercise) that a loss function is invariant if

and only if it is of the form
L(5#). (4.29)

An estimator T of p is location-scale invariant if and only if
TrX,+e ... ,rX,+e)=rT(X,.., X)) + e

Again, by Theorem 4.7, the risk of an invariant T is a constant.

The following result is an analogue of Proposition 4.3 or 4.5.

Proposition 4.6. Let T}, be any estimator of g invariant under location-
scale transformation and let 7 be any estimator of ¢ satisfying (4.26) with
h =1 and 77 > (0. Then an estimator T of u is location-scale invariant if
and only if there is a Borel function v on R™~! such that

T(X) = To(X) — u(W)T (X)),

where W is given in (4.28). 1
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The proofs of Proposition 4.6 and the next result, an analogue of The-
orem 4.4 or 4.7, are left as exercises.

Theorem 4.9. Let X be distributed with p.d.f. given by (4.25) and con-
sider the estimation of g under the loss function given by (4.29). Suppose
that there exist finite risk location-scale invariant estimators 7§ of p and

T, of . Then an MRIE of u is
T.(X) =Th(X) — u, (W)T(X),
where W is given in (4.28), u,(w) is any number minimizing

Eo 1 [L(To(X) — u(w)T1 (X))

W = w]

over all functions u, and FEy, is computed under the assumption that X
has the p.d.f. (4.25) with py=0and e =1. 1

Corollary 4.2. Under the conditions of Theorem 4.9 and the loss function

(a — p)?/o?, u.(w) in Theorem 4.9 is equal to

E{]__l[ﬂ}(X}Tl (X:] W = 'HJ]
Et]'.l {[T] {X:]]EH‘F = 'H_J} .

u(w) =

Example 4.16. Let X,..., X,, be i.i.d. from N(u,0?), where p € R and
o2 = () are unknown. Consider first the estimation of o2 under loss function

(4.23). The sample variance S* is location-scale invariant and is indepen-
dent of W in (4.28) (Basu’s theorem). Thus, by (4.28), S?/u. is an MRIE,

—

where u, is a constant minimizing F1[L(S*/u)] over all u > 0. If the loss

function is given by (4.24) with p = 2, then by Corollary 4.1, the MRIE of

l!'i"‘3 15

T.(X) = S*E\(5?) _ §° _ ! i{x. ~ X)?
) E,(52)2 (n?2-1)/(n-1)2 n+1&" "'

since (n — 1)S5% has a chi-square distribution y?_; when o = 1.

~ Next, consider the estimation of x under the loss function (4.29). Since
X is a location-scale invariant estimator of g and is independent of W in
(4.28) (Basu's theorem), by Theorem 4.9, an MRIE of u is

T.(X)=X —u.S5"

where w. is a constant. If L in (4.29) is convex and even, then u, = 0 (see
Theorem 4.5(iii)) and, hence, X is an MRIE of .

Example 4.17. Let X,...., X,, be ii.d. from the uniform distribution on

(o — %{T, i+ %J}, where € R and ¢ > 0 are unknown. Consider first the
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estimation of ¢ under the loss function (4.24) with p = 2. The sample range
Xiny — X(1) 18 a location-scale invariant estimator of ¢ and is independent
of W in (4.28) (Basu’s theorem). By (4.28) and Corollary 4.1, the MRIE

of o 1s

T.(X) = (Xn) — X(1) E1(X(n) — X(1)) _(n+ 2)( Xy — Xu;,).
En {X[ﬂ} - X{lj)z n

Consider now the estimation of g under the loss function (4.29). Since
(X(1y + X(y)/2 is a location-scale invariant estimator of p and is inde-

pendent of W in (4.28) (Basu’s theorem), by Theorem 4.9, an MRIE of u
18

Xy + X

T*(}f) = - T.L*{X{ﬂ} - X{lj:]_._

where w. is a constant. If L in (4.29) is convex and even, then u, = 0 (see

Theorem 4.5(iii)) and, hence, (X{1) + X(,))/2 is an MRIE of p. 8

Finding MRIE’s in various subfamilies of the location-scale family in
Definition 2.3 under transformations XA 4+ ¢, where A € T and ¢ € C
with given 7 and C. can be done in a similar way. We only provide some
brief discussions for two important cases. The first case is the two-sample
location-scale problem in which two samples, X = (X;,.... X,,) and ¥ =
(Y1, ....Y,,), are taken from a distribution with Lebesgue p.d.f.

1 f (.“E]_ — T — e Y1—Hy i M) . {4:3”}

TPl o TR R 1 yoRERR
T Ty s g O3 Ty Ty

where f is known, p, € R and 1, € R are unknown location parameters,
and o, > 0 and o, > 0 are unknown scale parameters. The family of
distributions is invariant under the transformations

g X.Y)=0rXi+ec,.orXp+e. r'Yi 4+, 'Y, 4+ ), (4.31)

where r > 0, ' > 0, ¢ € R, and ¢’ € R. The parameters to be estimated
in this problem are usually A = p, — p, and n = (o,/ o.)" with a fixed
h=£ 0. It X and Y are from two populations. A and 1 are measures of the
difference between the two populations. For estimating 7, results similar to
those in this section can be established. For estimating A, MRIE’s can be
obtained under some conditions. See Exercises H4-56.

The second case is the general linear model (3.25) under the assumption
that £;’s are i.i.d. with the p.d.f. 7' f(z /o), where f is a known Lebesgue
p.d.f. The family of populations is invariant under the transformations

g(X)=rX+eZ7, re(0,00), ceRY (4.32)
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(exercise). The estimation of 31" with [ € R(Z) is invariant under the
loss function L (u—ﬁi"') and the LSE ﬁf” is an invariant estimator of 37

(exercise). When f is normal, the following result can be established using
an argument similar to that in Example 4.16.

Theorem 4.10. Consider model (3.25) with assumption Al.
(i) Under transformations (4.32) and the loss function L (“—_fi) ., where L

is convex and even, the LSE (17 is an MRIE of Bl for any | € R(Z).

(ii) Under transformations (4.32) and the loss function (a — 0)*/c”, the
MRIE of ¢ is SSR/(n — q+ 2), where SSR is given by (3.36) and q is the
rank of Z. 1

MRIE’s in a parametric family with a multi-dimensional # are often
inadmissible. See Lehmann (1983, p. 285) for more discussions.

4.3 Minimaxity and Admissibility

Consider the estimation of a real-valued # = g(#) based on a sample X from
Fy. 0 € ©, under a given loss function. A minimaz estimator minimizes the
maximum risk sup,_g Rr(0) over all estimators 1" (see §2.3.2).

A unique minimax estimator is admissible, since any estimator better
than a minimax estimator is also minimax. This indicates that we should
consider minimaxity and admissibility together. The situation is different

for a UMVUE (or an MRIE), since if a UMVUE (or an MRIE) is inadmis-

sible, it is dominated by an estimator that is not unbiased (or invariant).

4.3.1 Estimators with constant risks

By minimizing the maximum risk, a minimax estimator tries to do as well
as possible in the worst case. Such an estimator can be very unsatisfactory.
However, if a minimax estimator has some other good properties (e.g.. it is
a Bayes estimator), then it is often a reasonable estimator. Here we study
when estimators having constant risks (e.g., MRIE’s) are minimax.

Theorem 4.11. Let II be a proper prior on © and & be a Bayes estimator
of ¥ w.r.t. II. Let O = {0 : Rs(0) = supyee Rs(0)}. If I1(O1) = 1, then 6
is minimax. If, in addition, & is the unique Bayes estimator w.r.t. I, then
it is the unigue minimax estimator.

Proof. Let T be any other estimator of ©/. Then

sup Ry (0) = Ry (0)dIl = Rs()dIl = sup Rs(0).

He J 8 J B fce
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If 6 is the unique Baves estimator, then the second inequality in the previous
expression should be replaced by > and, therefore, 4 is the unique minimax
estimator. |

The condition of Theorem 4.11 essentially means that 6 has a constant
risk. Thus, a Bayves estimator having constant risk is minimax.

Example 4.18. Let X;.....X, be iid. binary random variables with
P(X; =1) =pe (0,1). Consider the estimation of p under the squared er-
ror loss. The UMVUE X has risk p(1 — p)/n which is not constant. In fact,
X is not minimax (Exercise 58). To find a minimax estimator by applying
Theorem 4.11, we consider the Bayes estimator w.r.t. the beta distribution
Bla, 3) with known o and § (Exercise 1):

§5(X) = (a+nX)/(a+ 3+n).
A straightforward calculation shows that

Rs(p) = [np(l — p) + (a — ap — Bp)?*] /(e + 3 + n)?.

To apply Theorem 4.11, we need to find values of & > 0 and 3 > 0 such
that Rs(p) is constant. It can be shown that Rs(p) is constant if and only
if @ = 3 = ,/n/2, which leads to the unique minimax estimator

T(X) = (nX + vn/2)/(n+ /n).
The risk of T is Ry = 1/[4(1 + /n)"].

Note that T is a Bayes estimator and has some good properties. Com-
paring the risk of T" with that of X. we find that 7" has smaller risk if and

only if
pE(% \/1 e 5+ \/1 e ) (4.33)

Thus, for small value of n, T is better (and can be much better) than X for
most of the range of p (Figure 4.1). When n — oo, the interval in (4.33)
shrinks toward % Hence, for large (and even moderate) n, X is better
than T" for most of the range of p (Figure 4.1). The limit of the asymptotic
relative Pi:ﬁ{"li?lll?\r of T'w.r.t. X is 4p(1 — p), which is always smaller than 1

when p # 2 5 and equals 1 when p = %

The minimax estimator depends strongly on the loss function. To see
this, let us consider the loss function L(p,a) = (a—p)?/[p(1—p)]. Under this
loss function, X has constant risk and is the unique Bayes estimator w.r.t.
the uniform prior on (0,1). By Theorem 4.11, X is the unique minimax
estimator. On the other hand, the risk of 7" is equal to 1/[4(1+4+/n)*p(1—p)].
which is unbounded. 1
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Figure 4.1: mse’s of X (curve) and T(X) (straightline) in Example 4.18

In many cases a constant risk estimator is not a Bayes estimator (e.g.,
an unbiased estimator under the squared error loss), but a limit of Bayes
estimators w.r.t. a sequence of priors. Then the following result may be
used to find a minimax estimator.

Theorem 4.12. Let II;, j = 1.2, ..., be a sequence of priors and r; be the
Bayes risk of a Bayes estimator of ¥ w.r.t. 1I;. Let 7" be a constant risk
estimator of . If lim; . r; = Ry, then 7" is minimax. 1§

The proof of this theorem is similar to that of Theorem 4.11. Although
Theorem 4.12 is more general than Theorem 4.11 in finding minimax esti-
mators, it does not provide uniqueness of the minimax estimator even when
there is a unique Bayes estimator w.r.t. each II;.

In Example 2.25, we actually applied the result in Theorem 4.12 to show
the minimaxity of X as an estimator of g = EX; when X, ..., X,, are i.i.d.
from a normal distribution with a known ¢? = Var(X;), under the squared
error loss. To discuss the minimaxity of X in the case where ¢ is unknown,
we need the following lemma.
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Lemma 4.3. Let ©y be a subset of © and T be a minimax estimator of ¢/
when &y is the parameter space. Then 7' is a minimax estimator if

sup Ry () = sup Rp(0).

pco =
Proof. If there is an estimator Ty with supy.g R1,(0) < supgee Rr(0),
then

sup Rp,(0) < sup Ry, (0) < sup Ry (f) = sup Rp(0),
By 9O He® HeBy,

which contradicts the minimaxity of T" when O is the parameter space.
Hence, T" is minimax when © is the parameter space. 1§

Example 4.19. Let Xy, ..., X,, be i.i.d. from N (g, o?) with unknown 6 =
(pt, 0?). Consider the estimation of g under the squared error loss. Suppose
first that © = R x (0, ¢] with a constant ¢ > 0. Let Oy = R x {¢}. From
Example 2.25, X is a minimax estimator of u when the parameter space
is ©p. An application of Lemma 4.3 shows that X is also minimax when
the parameter space is ©. Although ¢? is assumed to be bounded by ¢, the
minimax estimator X does not depend on c.

2

Consider next the case where ©® = R x (0,00), i.e., ¢° is unbounded.

Let T be any estimator of y. For any fixed o2,

o2

< sup Rr(0).

T HER
since 02 /n is the risk of X which is minimax when ¢? is known (Example
2.25). Letting 0° — oc, we obtain that sup, Ry(f) = oc for any estimator

T. Thus, minimaxity is meaningless (any estimator is minimax).

Theorem 4.13. Suppose that T" as an estimator of ¥/ has constant risk and
i1s admissible. Then 7" is minimax. If the loss function is strictly convex,
then T is the unique minimax estimator.

Proof. By the admissibility of 7', if there is another estimator T} with
supy R, (0) < Ry, then Ry, (0) = Rp for all . This proves that T is
minimax. If the loss function is strictly convex and T} is another minimax
estimator, then

Riri1y)/2(0) < (R, + Rr)/2 = Ry

for all @ and. therefore, T' is inadmissible. This shows that T is unique if
the loss is strictly convex. 1

Combined with Theorem 4.7, Theorem 4.13 tells us that if an MRIE is
admissible, then it is minimax. From the discussion at the end of §4.2.1,
MRIE’s in one-parameter location families (such as Pitman’s estimators)
are usually minimax.
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4.3.2 Results in one-parameter exponential families

The following result provides a sufficient condition for the admissibility of
a class of estimators when the population Fy is in a one-parameter expo-
nential family. Using this result and Theorem 4.13. we can obtain a class
of minimax estimators. The proof of this result is an application of the
information inequality introduced in §3.1.3.

Theorem 4.14. Suppose that X has the p.d.f. ¢(#)e7*) w.r.t. a measure
v, where T'(x) is real-valued and # € (f_,0.) C R. Consider the estimation
of 4 = E[T(X)] under the squared error loss. Let A = 0 and + be known
constants and let T - (X) = (1" 4 ~A)/(1 + A). Then a sufficient condition
for the admissibility of T . is that

H+ F"r'}"-.u!? g E._,’:r','a"l.ﬁ'
- dfl = [ : dfl = >, {4.34
fﬂu "=, Top )

where 0y € (6_.0.).

Proof. From Theorem 2.1, ¢ = E[T(X)] = —'(0)/¢(0) and % = Var(7T") =
[(#), the Fisher information defined in (3.5). Suppose that there is an
estimator & such that for all @,

Rs(0) < R, ,(0) = [1(8) + A (9 — )]/ (1 + N)*.
From the information inequality (3.6),
Rs(0) = [bs(0)]* + [1(0) + b5(0)]°/1(6).
Let h(6) = bs(0) — M(y — 9)/(1 + A). Then

O — Mh{g)(i_-i +20(0) | [h;?gj;]g <o

which implies

2AR(B) (P — ) + 2R'(6)
< (. 4.35
L+ A =Y (4.35)

Let a(0) = h(0)[c(0)]*e’*. Differentiation of a(#) reduces (4.35) to

[h(0)]" -

[a(0)]2e= 1A N 2a' ()
[e(0)] 1+ A

< 0. (4.36)

Suppose that a(fy) < 0 for some 0y € (0_,0.). From (4.36), o'(0) < 0 for
all #. Hence a(f) < 0 for all @ = 0y and, for 0 > fy, (4.36) can be written
as

d [ 1 (14 N)e—"
b Lm)] = T2le(0)]
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Integrating both sides from #, to @ gives

- 0 —~Af -
14 A e 40 < 1 B 1 < 1 |
2 B [c(8)]A a(d) al(bo) a(fly)

Letting # — 6. the left-hand side of the previous expression diverges to oo
by condition (4.34), which is impossible. This shows that a(#) = 0 for all
¢. Similarly, we can show that a(f) < 0 for all . Thus, a(#) = 0 for all 6.
This means that h(f#) = 0 for all # and the equality in (4.35) holds, which
implies Rs(#) = Rr, _ (0). This proves the admissibility of T . 8

The reason why 7', - is considered is that it is often a Baves estimator
w.r.t. some prior; see, for example, Examples 2.25, 4.1, 4.7, and 4.8. To
find minimax estimators, we may use the following result.

Corollary 4.3. Assume that X has the p.d.f. as described in Theorem
4.14 with #_ = —o0 and 0. = oc.

(i) As an estimator of ¥ = E(T'), T(X) is admissible under the squared
error loss and the loss (a — ¥)%/Var(T).

(ii) T is the unique minimax estimator of ¥ under the loss (a —1)*/Var(T').
Proof. (i) With A = 0, condition (4.34) is clearly satisfied. Hence, Theorem
4.14 applies under the squared error loss. The admissibility of 7" under the
loss (a — )% /Var(T') follows from the fact that 7' is admissible under the
squared error loss and Var(T') # 0.

(ii) This is a consequence of part (i) and Theorem 4.13. §

Example 4.20. Let X;...., X, be iid. from N{0,0°) with an unknown
0? > 0. LetY = 3" | X?. From Example 4.14, Y/(n+2) is the MRIE of o*
and has constant risk, under the loss (a —o*)?/a*. We now apply Theorem
4.14 to show that Y/(n + 2) is admissible. Note that the joint p.d.f. of X;’s
is of the form ¢(8)e??*) with 0 = —n/(40?), e(0) = (=20/n)"/?, T(X) =
2Y/n, 0_ = —oc, and #, = 0. By Theorem 4.14, T\ (T 4+ ~4X) /(1 + A) is

admissible under the squared error loss if

— B —1nA /2 o
/ E—";-J"LH (_23) df — / E'}ahﬁg—ﬂﬁfzdﬁ — 0
— T 0

for some ¢ > (. This means that T} - is admissible if v = 0 and A = 2/n, or
if v > 0and A = 2/n. In particular, 2Y/(n + 2) is admissible for estimating
E(T) = 2E(Y)/n = 202, under the squared error loss. It is easy to see that
Y/(n + 2) is then an admissible estimator of ¢ under the squared error
loss and the loss (@ — ¢%)?/o*. Hence Y/(n + 2) is minimax under the loss
(a — %)% /ot

Note that we cannot apply Corollary 4.3 directly since #,. = 0. 1
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Example 4.21. Let X, ..., X, be i.i.d. from the Poisson distribution P(#)
with an unknown # > (0. The joint p.d.f. of X;’s w.r.t. the counting measure
is (x1!---2,!) " te en®loe?  For p = nlogh, the conditions of Corollary
4.3 are satisfied with T(X) = X. Since E(T) = # and Var(T) = 0/n,
by Corollary 4.3, X is the unique minimax estimator of # under the loss
function (a — 6)%/6. ¥

4.3.3 Simultaneous estimation and shrinkage estimators

In this chapter (and most of Chapter 3) we have been focused on the es-
timation of a real-valued v/. The problem of estimating a vector-valued
¢y under the decision theory approach is called simultaneous estimation.
Many results for the case of a real-valued ¢/ can be extended to simultane-
ous estimation in a straightforward manner.

Let ¢ be a p-vector of parameters (functions of ) with range 0. A
vector-valued estimator T'(X') can be viewed as a decision rule taking values
in the action space A = 0. Let L(#, a) be a given nonnegative loss function
on © x A. A natural generalization of the squared error loss is

p

L(0,a) = |la—9|]> =) (a; — 9;)*, (4.37)

where a; and v; are the ith components of a and ¢/, respectively.

A vector-valued estimator T is called unbiased if and only if E(T) = ¢
for all # € ©. If there is an unbiased estimator of 1, then ¥ is called
estimable. It can be seen that the result in Theorem 3.1 extends to the
case of vector-valued ¢/ with any L strictly convex in a. If the loss function
is given by (4.37) and T; is a UMVUE of ; for each i, then T = (T, ..., T},)
is a UMVUE of 9. If there is a sufficient and complete statistic U(X) for
#, then by Theorem 2.5 (Rao-Blackwell’s theorem), 7' must be a function
of U(X) and is the unique best unbiased estimator of .

Example 4.22. Consider the general linear model (3.25) with assumption
Al and a full rank Z. Let ¢ = 3. An unbiased estimator of 3 is then the
LSE ’?f From the proof of Theorem 3.7, fff is a function of the sufficient and
complete statistic for # = (3,0%). Hence, 3 is the unique best unbiased

estimator of ¥/ under any strictly convex loss function. In particular, f? is
the UMVUE of 3 under the loss function (4.37). 1

Next, we consider Bayes estimators of ¢/, which is still defined to be
Bayes actions considered as functions of X. Under the loss function (4.37),
the Bayes estimator is still given by (4.4) with vector-valued g(@) = 9.
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Example 4.23. Let X = (X, Xi,...,X}) have the multinomial dis-
tribution given in Example 2.7. Consider the estimation of the vector
¢ = (po,p1,.... pr) under the loss function (4.37), and the Dirichlet prior
for @ which has the Lebesgue p.d.f.

F{ﬁﬂ'"' ﬂ;,} ﬂt“—l n:h—l q
o) Tan 14(6), (4.38)

where a;’s are known positive constants and A = {0 : 0 < p;, Z j—oPi = 1}
It turns out that the Dirichlet prior is conjugate so that the posterior of #
given X = x is also a Dirichlet distribution having the p.d.f. given by (4.38)
with a; replaced by a; 4+ x;, j = 0,1...., k. Thus, the Bayes estimator of ¢
18 & = [5{]._.(51_, (S;ﬁ) with

{Tj-I-Xj
H[]+ﬂ1+"'+ﬂ'k+ﬂ?

5:(X) = j=0.1... .k 8

After a suitable class of transformations is defined, the results in §4.2
for invariant estimators and MRIE's are still valid. This is illustrated by
the following example.

Example 4.24. Let X be a sample with the Lebesgue p.d.f. f(z — 0),
where f is a known Lebesgue p.d.f. on R? with a finite second moment and
f € RP is an unknown parameter. Consider the estimation of # under the
loss function (4.37). This problem is invariant under the location transfor-
mations g(X) = X + ¢, where ¢ € RP. Invariant estimators of § are of the
form X + 1, ] € R¥. It is easy to show that any invariant estimator has
constant bias and risk (a generalization of Proposition 4.4) and the MRIE
of # is the unbiased invariant estimator. In particular, if f is the p.d.f. of

N,(0,1,). then the MRIE is X. &
The definition of minimax estimators applies without changes.

Example 4.25. Let X be a sample from N,(f,I,) with an unknown
¢ € RP. Consider the estimation of # under the loss function (4.37). A
modification of the proof of Theorem 4.12 with independent priors for #;'s
shows that X is a minimax estimator of § (exercise). 1

Example 4.26. Consider Example 4.23. If we choose ag = --- = ap =
Vv1/(k + 1), then the Bayes estimator of # in Example 4.23 has constant
risk. Using the same argument in the proof of Theorem 4.11, we can show
that this Bayes estimator is minimax.

The previous results for simultaneous estimation are fairly straightfor-
ward generalizations of those for the case of real-valued /. Results for
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admissibility in simultaneous estimation, however, are quite different. A
surprising result, due to Stein (1956), is that in estimating the vector mean
¢ = EX of a normally distributed p-vector X (Example 4.25), X is in-
admissible under the loss function (4.37) when p = 3, although X is the
UMVUE, MRIE (Example 4.24), and minimax estimator (Example 4.25).
Since any estimator better than a minimax estimator is also minimax, there
exist many (in fact, infinitely many) minimax estimators in Example 4.25
when p > 3, which is different from the case of p = 1 in which X is the
unique admissible minimax estimator (Example 4.6 and Theorem 4.13).

We start with the simple case where X is from N,(#,1,) with an un-
known ## € RP. James and Stein (1961) proposed the following class of
estimators of ¥/ = @ having smaller risks than X when the loss is given by
(4.37) and p = 3:

| p—2 4
d.=c+[1-— , X — ). 4.39
=k (1o o) -9 A
where ¢ € RF is fixed. The choice of ¢ is discussed next and at the end of
this section.

Before we prove that 6. in (4.39) is better than X, we try to motivate
O, from two viewpoints. First, suppose that it were thought a priori likely,
though not certain, that & = ¢. Then we might first test a hypothesis
Hy : 0 = ¢ and estimate ) by ¢ if Hj; is accepted and by X otherwise. The
best rejection region has the form | X — ¢||? > t for some constant ¢ > 0
(see Chapter 6) so that we might estimate @ by

Lt ooy (|1 X = )X + [1 = Ty o) (I X = €f*)]e.

[t can been seen that &, in (4.39) is a smoothed version of this estimator,
since

be = (I X — )X + [1 = (| X — c]P)]e (4.40)

for some function . Any estimator having the form of the right-hand side
of (4.40) shrinks the observations toward a given point ¢ and, therefore, is
called a shrinkage estimator.

Next, é. in (4.40) can be viewed as an empirical Baves estimator (§4.1.2).
In view of (2.28) in Example 2.25, a Bayes estimator of 4 is of the form

b= (1-B)X + Be,

where ¢ is the prior mean of # and B involves prior variances. If 1 — B is
“estimated” by ¥(||X — ¢||?), then §. is an empirical Bayes estimator.

Theorem 4.15. Suppose that X is from N,(#,I,) with p > 3. Then,
under the loss function (4.37), the risks of the following estimators of @,

r@~ﬂ]
o =0C+ [1 — - (X — ¢}, 4.41
| X —q| (X (1.41)
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are given by
Rs. . (0) =p— (2r —r?)(p - 2)°E(|X - ¢/ ™), (4.42)

where ¢ € RY and r € R are known.

Proof. Let Z = X — ¢. Then

p—12 :

1]

smAM=Ewm-EmmF=ﬂH}~ )zwﬁw)

Hence, we only need to show the case of ¢ = 0. Let h(#) = R, (d), g(#) be

the right-hand side of (4.42) with ¢ = 0, and 7 (0) = (2ma) —P/2e=II0]%/(20)
which is the p.d.f. of N,(0,al,). Note that the distribution of X can be
viewed as the conditional distribution of X given @ = @, where @ has the

Lebesgue p.d.f. w(#). Then

[ 900 = p - @r — 1) - 22 EE(IX]/6)

(2r —r*)(p - 2)*E(|| X ~7)
(2r = %) (p = 2)/ (e + 1),

p_.
p...

I

where the expectation in the second line of the previous expression is w.r.t.
the joint distribution of (X, #) and the last equality follows from the fact
that the marginal distribution of X is N, (0, (a+1)1,), || X||?/(e+1) has the
chi-square distribution x2 and, therefore, E(||X||7%) = 1/[(p — 2)(a + 1)].

Let B=1/(a+ 1) and B = r(p — 2)/| X||2. Then

/ h(O)r(0)d0 = E||(1 — B)X — 6]
JRE

= E{E[|(1 - B)X - 0|*|X]}
= E{E[|6 — E(6|X)[*|X]
+WEWH3~H;BDWﬂ
= E{p(1 - B) + (B - B)*|| X|?}
= E{p(1 - B) + B*|| X|?
—2Br(p — 2) + r*(p — 2)*|| X *}
=p—(2r—r%)(p—2)B,

where the last equality follows from E||X||72 = B/(p — 2) and E||X|]? =
p/B. This proves

f g(0)7(0)do = f h(0)7(8)do. (4.43)
e

wr
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Note that h(f) and g(#) are expectations of functions of || X, X607,
and ||#]|?. Make an orthogonal transformation from X to Y such that
Y1 = X07/||0|]. £Y; = 0 for j > 1, and Var(Y) = I,. In terms of Y, h(0)
and g(f) are functions of Y7, ?:___2 Y?, and [|0|*. Thus, both h and g are
functions of ||#|°.

For the family of p.d.f.’s {n(#) : a > 0}, ||#]|? is a complete and sufficient
“statistic”. Hence, (4.43) and the fact that h and g are functions of |8
imply that A(]|#]|?) = g(]|0]|?) a.e. w.r.t. the Lebesgue measure. From
Theorem 2.1, both h and g are continuous functions of ||#||* and, therefore,
h(0) = g(#) for all # € RP. This completes the proof. 1

It follows from Theorem 4.15 that the risk of é., is smaller than that
of X (for every value of #) when p = 3 and 0 < r < 2, since the risk of X is
p under the loss function (4.37). From Example 4.6, X is admissible when
p = 1. When p = 2, X is still admissible (Stein, 1956). But we have just
shown that X is inadmissible when p = 3.

The James-Stein estimator é. in (4.39), which is a special case of (4.41)
with » = 1, is better than anyv é,, in (4.41) with » # 1, since the factor
2r — r? takes on its maximum value 1 if and only if » = 1. To see that &,
may have a substantial improvement over X in terms of risks, consider the
special case where # = ¢. Since || X — ¢/|* has a chi-square distribution x;’i
when ) = ¢, E|| X —¢c|| 7% = (p—2) ! and the right-hand side of (4.42) equals
2. Thus, the ratio Rx (#)/Rs_(#) equals p/2 when 8 = ¢ and, therefore, can
be substantially larger than 1 near # = ¢ when p is large.

Since X is minimax (Example 4.25), any shrinkage estimator of the form
(4.41) is minimax provided that p > 3 and 0 < r < 2.

Unfortunately, the James-Stein estimator with any ¢ is also inadmissible.
It is dominated by

— 2
éj=ﬂ+lmﬁ(1~ b ,,JH(X—nh (4.44)
| X =

see, for example, Lehmann (1983, Theorem 4.6.2). This estimator, however,
is still inadmissible. An example of an admissible estimator of the form
(4.40) is provided by Strawderman (1971); see also Lehmann (1983, p.
304). Although neither the James-Stein estimator 6. nor 67 in (4.44) is

admissible, it is found that no substantial improvements over 8 are possible
(Efron and Morris, 1973).

To extend Theorem 4.15 to general Var(X), we consider the case where
Var(X) = ¢?D with an unknown o2 > 0 and a known positive definite
matrix D. If 0% is known, then an extended James-Stein estimator is

. r(p — 2)o*

S..=c+ |1— | D7YX =), 4.45
DX — gz P Ko (4.45)
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One can show (exercise) that under the loss (4.37), the risk of 8., is
o® [tr(D) — (2r — r*)(p— 2)*c*E(|D" (X - ¢)||7*)] . (4.46)

When ¢ is unknown, we assume that there exists a statistic S§3 such
that S35 is independent of X and S3/0° has the chi-square distribution y2,
(see Example 4.27). Replacing ro? in (4.45) by % = tS; with a constant
t > 0 leads to the following extended James-Stein estimator

e {P—z){ig —1 . A A
0. = ¢+ [1 — ID-1(X — )2 D™ (X —e). (4.47)

By (4.46) and the independence of 6% and X, the risk of 8. (as an estimator
of = EX) is

R;,(0) = B | (|18 - 9]*|6%)]
= kK -E{ﬂéﬂ,{&zfcrﬂ} - 19”2|f}2}}

= 0”E {tx(D) = [26°/o*) =~ (6*/o")p - 27s(0)
= o* {tx(D) ~ RE(5%/0%) ~ E(3°/0*))(p — 2)*0*x(0)}
— ﬁ{tr{D)—-[Etm-—t‘gm{mﬁ-ﬁ)“ﬁ 2 h{g)}

where 6 = (¥, 0%) and «(0) = E(||D~"(X —¢)||~*). Since 2tm —t*m(m+ 2)
is maximized at t = 1/(m + 2), replacing t by 1/(m + 2) leads to

R; (0) = o® [tr(D) — m(m +2) "' (p — 2)°c*E(|D™HX — ¢)|77)] .

Hence the risk of the extended James-Stein estimator in (4.47) is smaller
than that of X for any fixed #, when p = 3.

Example 4.27. Consider the general linear model (3.25) with assumption
Al, p = 3, and a full rank Z, and the estimation of ¢/ = 3 under the loss
function (4.37). From Theorem 3.8, the LSE (3 is from N(3,0°D) with a
known matrix D = (Z7Z)""; §; = SSR is independent of 3: and Si/a®
has the chi-square distribution y2 _ p- Hence, from the previous discussion,
the risk of the shrinkage estimator

._2&2
f?.+[1- P }

ZTZ(83 — )

is smaller than that of 3 for any 7 and ¢°, where ¢ € RP is fixed and

= SSR/(n—p+2). 1

From the previous discussion, the James-Stein estimators improve X
substantially when we shrink the observations toward a vector ¢ which is
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near ¥ = KX, Of course this cannot be done since ¥ is unknown. One may
consider shrinking the observations toward the mean of the observations
rather than a given point; that is, one mayv obtain a shrinkage estimator by
replacing ¢ in (4.39) or (4.47) by X J,, where X = p=!3>" X, and J, is
the p-vector of ones. However, we have to replace the factor p — 2 in (4.39)
or (4.47) by p — 3. This leads to shrinkage estimators

. p—23 . f
X.J, + (1 — X - }—:JFHE) (X — XJP} (4.48)
and : ) 5
' p—3)5 iy g |
XJ, + [1 — ID-1(X — X-.fp)HE] DX — XJF). (4.49)

These estimators are better than X (and, hence, are minimax) when p > 4,
under the loss function (4.37) (exercise).

The results discussed in this section for the simultaneous estimation
of a vector of normal means can be extended to a wide variety of cases
where the loss functions are not given by (4.37) (Brown, 1966). The results
have also been extended to exponential families and to general location pa-
rameter families. For example, Berger (1976) studied the inadmissibility
of generalized Bayes estimators of a location vector; Berger (1980) consid-
ered simultaneous estimation of gamma scale parameters; and Tsui (1981)
investigated simultaneous estimation of several Poisson parameters. See
Lehmann (1983, pp. 320-330) for some further references.

4.4 The Method of Maximum Likelihood

So far we have studied estimation methods in parametric families using the
decision theory approach. The mazrimum likelihood method introduced next
is the most popular method for deriving estimators in statistical inference
that does not use any loss function.

4.4.1 The likelihood function and MLE’s

To introduce the idea, let us consider an example.

Example 4.28. Let X be a single observation taking values from {0, 1, 2}
according to Py, where # = 0y or #/; and the values of Iy, ({i}) are given by
the following table:

0 = 0y (0.8 0.1 0.1
0 =0, (0.2 (0.3 (0.5
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If X = 0 is observed, it is more plausible that it came from F,, , since
Py, ({0}) is much larger than Py ({0}). We then estimate ¢ by 6;. On
the other hand, if X = 1 or 2, it is more plausible that it came from Fy ,
although in this case the difference between the probabilities is not as large
as that in the case of X = (). This suggests the following estimator of @:

[ X=0
T{X)_{ﬁl X #0.

The idea in Example 4.28 can be easily extended to the case where Fy
is a discrete distribution and # € © C R*. If X = x is observed, #; is more
plausible than #, if and only if Py ({z}) > Py, ({x}). We then estimate

§ by a @ that maximizes Py({x}) over § € O, if such a 0 exists. The
word plausible rather than probable is used because # is considered to be
nonrandom and Py is not a distribution of . Under the Bayesian approach
with a prior that is the discrete uniform distribution on {#,, ..., 8, }, Ps({z})
is proportional to the posterior probability and we can say that #; is more

probable than 0y if Py ({x}) > Py, ({x}).
Note that Py({z}) in the previous discussion is the p.d.f. w.r.t. the
counting measure. Hence. it is natural to extend the idea to the case of

continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some o-finite
measure on the range X of X. This leads to the following definition.

Definition 4.3. Let X be a sample from Fy, 0 € © C R¥. Assume that
Py's have p.d.f.’s fy w.r.t. a o-finite measure.

(i) For each x € X, fg(z) considered as a function of @ is called the likelihood
function and denoted by £(8).

(ii) Let © be the closure of ©. A § € O satisfying £(d) = maxy-g £(0) is
called a mazimum likelihood estimate (MLE) of 0. 0 viewed as a function
of X is called a mazimum likelihood estimator (MLE) of 0.

(iii) Let ¢ be a Borel function from © to RP, p < k. If 0 is an MLE of 0,
then ¥ = g(f) is defined to be an MLE of ¢ = g(6). &

Note that © instead of © is used in the definition of the MLE. This is
because a maximum of £(f) may not exist when © is a bounded open set
(Examples 4.29 and 4.30). Part (iii) of Definition 4.3 is motivated by a fact
oiven in Exercise 83 of 4.6,

If the parameter space © contains finitely many points, then ® = ©
and an MLE can always be obtained by comparing finitely many values
£(9), 0 € ©. If £(0) is differentiable on an open set ©° C O, then possible
candidates for MLE’s are the values of # € ©° satisfying

2¢(0)

50 0, (4.50)
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which is called the likelihood equation. Note that @’s satisfying (4.50) may
be local or global minima, local or global maxima, or inflection points. Also,
extrema may occur at the boundary of © or when ||#|| — oc. Furthermore,
if £(#) is not always differentiable, then extrema may occur at nondifferen-
tiable or discontinuity points of #(@). Hence, it is important to analyze the
entire likelihood function to find its maxima.

Since logx is a strictly increasing function and £(#) can be assumed

to be positive without loss of generality, ¢ is an MLE if and only if it
maximizes the log-likelihood function log £(#). It is often more convenient
to work with log (@) and the following analogue of (4.50) (which is called
the log-likelihood equation or likelihood equation for simplicity):

dlog £(0)
00

0, (4.51)

Example 4.29. Let X;,....X, be ii.d. binary random wvariables with

P(X,=1)=pec©={(0,1). The likelihood function is
F{p) _ Hp.rt{l . p)l—zﬂ _ p?u{l - j’])ﬂ{l_zj.

Note that © = [0,1] and ©° = O. The likelihood equation (4.51) reduces

to
nt n(l—z)

p l—p
If 0 < & < 1, then this equation has a unique solution . The second-order
derivative of log £(p) is

nz n(l— %)

p*>  (1-p)?*
which is always negative. Also, when p tends to 0 or 1 (the boundary of

), £(p) — 0. Thus, z is the unique MLE of p.

When & = 0, £(p) = (1 — p)™ is a strictly decreasing function of p and,
therefore, its unique maximum is (). Similarly, the MLE is 1 when & = 1.
Combining these results with the previous result, we conclude that the MLE
of pis .

When z = 0 or 1, a maximum of £(p) does not exist on © = (0,1),
although sup . 1y f(p) = 1; the MLE takes a value outside of © and,
hence, is not a reasonable estimator. However, if p € (0, 1), the probability
that £ = 0 or 1 tends to 0 quickly as n — oc. 1§

Example 4.29 indicates that for small n, a maximum of £(#) may not
exist on © and an MLE may be an unreasonable estimator; however, this
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is unlikely to occur when n is large. A rigorous result of this sort is given
in §4.5.2 where we study asvmptotic properties of MLE’s.

Example 4.30. Let Xi,..., X, be iid. from N(u.0?) with an unknown
@ = (p,0%), where n > 2. Consider first the case where ©® = R x (0, oc).
The log-likelihood function is

TL

1 f .
log(0) = ——= Y (z; — p)* - ;lng o’ — glmg{iﬂ'}.

The likelihood equation (4.51) becomes
1 TL 1 , r
S (wi—w) =0  and = (xi—p)?- 5 =0 (452)
i=1] :

Solving the first equation in (4.52) for g we obtain a unique solution z and,
substituting # in the second equation in (4.52), we obtain a unique solution
52 =n tS " (x; — #)2. To show that 0 = (z,4?) is an MLE, first note
that © is an open set and £(f) is differentiable everywhere; as @ tends to
the boundary of © or ||#|| — oc, £(#) tends to 0; and

32 lDE; F(g} — ( % ;IL"" E‘:‘:I(Ii o I“') )
0000 LY @) (- - &

is negative definite when p = 7 and ¢? = 2. Hence 0 is the unique MLE.
Sometimes we can avoid the calculation of the second-order derivatives. For
instance, in this example we know that #(f) is bounded and a maximum
must be in the interior of ©. Since (4.52) has a unique solution and a

maximum of £(f) must satisfy (4.52). @ must be the MLE. Another way to
show that @ is the MLE is indicated by the following discussion.

Consider next the case where © = (0,00) x (0,2¢), i.e., p is known
to be positive. The likelihood function is differentiable on ©° = © and
O = [0,00) x [0,0¢). If Z > 0, then one can still show that (z,5?%) is the
MLE. If Z < 0, then the first equation in (4.52) does not have a solution in
©. However, the function log £(6) = log #(j1, 0°) is strictly decreasing in p
for any fixed . Hence a maximum of log £( e, 0%) is . = 0, which does not
depend on . Then, the MLE is (0,5%), where 67 is the value nmximizing
lngf" (0,0%) over ¢® > 0. Applying (4.51) to the function log £(0, 0?) leads
to 6% =n~ '3, 7. Thus, the MLE is

§— {(‘ %) ff:.:-u
£

(0,6%) < 0.
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Again, the MLE in this case is not in © if ¥ < 0. One can show that a
maximum of £{f) does not exist on © when z < 0. &

Example 4.31. Let Xy, ..., X, bei.i.d. from the uniform distribution on an
interval 7y with an unknown . First, consider the case where 7, = (0, )
and # > (. The likelihood function is #£(f) = 07" (2., .) (#), which is
not always differentiable. In this case ©° = (0. x(,)) U (z(y),00). But, on
(0, 2()), £ =0 and on (x(,),00), '(#) = —nf"~' < 0 for all §. Hence, the
method of using the likelihood equation is not applicable to this problem.
Since £(f) is strictly decreasing on (x(,).oc) and is 0 on (0, z,,), a unique
maximum of £(#) is x,,,, which is a discontinuity point of £(#). This shows
that the MLE of @ is the largest order statistic X,,,.

Next, consider the case where Ty = (0 — 5,0 + 3) with # € R. The
likelihood function is £(0) = I\, 1. ,1,(0). Again, the method of
using the likelihood equation is not applicable. However, it follows from
Definition 4.3 that any statistic 7'(X) satisfving z(,) — 3 < T(z) < z(1) + 3
is an MLE of #. This example indicates that MLE’s may not be unique and
can be unreasonable. 1

Example 4.32. Let X be an observation from the hyvpergeometric dis-
tribution HG(r,n,0 — n) (Table 1.1, page 18) with known r, n, and an
unknown ¢ = n+1,n+ 2, .... In this case, the likelihood function is defined
on integers and the method of using the likelihood equation is certainly not
applicable. Note that

(ey (0 —r)(f—n)
(e—-1) 00 —-n—r+zx)

which is larger than 1 if and only if # < rn/z and is smaller than 1 if and
only if @ = rn/z. Thus, £(#) has a maximum @ = the integer part of rn/x,

which 1s the MLE of 8. 1§

Example 4.33. Let X, ... X, be iid. from the gamma distribution
['(cv, ) with unknown a > 0 and ~ > 0. The log-likelihood function is

i

log £(0) = —nalogy — nlog I'a) + (o — 1) Z log x; — E Z T;

p=1 'rr g=1

and the likelihood equation (4.51) becomes

M T
—n log v — HI‘(ES} f Zlﬂgxi =10
' =1

and
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The second equation yields v = Z /. Substituting v = &/a into the first
equation we obtain that

[Ma) 1< B
log ex — (o) + - ;lngii — log ¥ = (.

In this case, the likelihood equation does not have an explicit solution,
although it can be shown (exercise) that a solution exists and it is the
unique MLE. A numerical method has to be applied to compute the MLE
for any given observations =, ....z,. 1

These examples indicate that we need to use various methods to derive
MLE’s. In applications MLE’s typically do not have analytic forms and
some numerical methods have to be used to compute MLE’s. A commonly
used numerical method is the Newton-Raphson iteration method which
repeatedly computes

X - dlog £(0)
pit+1) — glt) _
Ao

—1
. 4.53
AHOT ;;;é{rn] . (4.53)

lazlﬂgf{ﬁ)
E'.':'.'u!'-}["-:'

t =10.1,..., where ) is an initial value and 2 log £(8) /0000 is assumed of
full rank for every # € ©. If, at each iteration, we replace 9°log £(6) /90007
in (4.53) by its expected value E[0? log £(60)/00007], where the expectation
is taken under Py, then the method is known as the Fisher-scoring method.
If the iteration converges, then 0(>) or 0t) with a sufficiently large ¢ is a
munerical approximation to a solution of the likelihood equation (4.51).

The following example shows that the MCMC methods discussed in
84.1.4 can also be useful in computing MLE’s.

Example 4.34. Let X be a random k-vector from Py with the following
p.d.f. w.r.t. a o-finite measure v:

ﬁm=/ﬁmmwm,

where fg(x,y) is a joint p.d.f. w.rt. v x v. This type of distribution is
called a mizture distribution. Thus, the likelihood £(0) = fg(x) involves a
k-dimensional integral. In many cases this integral has to be computed in
order to compute an MLE of 6.

Let Eml[ﬁ) be the MCMC approximation to £(#) based on one of the
MCMC methods described in §4.1.4 and a Markov chain of length m. Under
the conditions of Theorem 4.4, £,,,(6) —, £(0) for every fixed # and x.
Suppose that for each m, there exists f,,, which maximizes I (0) over 0 € ©,
Geyer (1994) studies the convergence of #,,, to an MLE. 1
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In terms of their mse’s, MLE’s are not necessarily better than UMVUE’s
or Baves estimators. Also, MLE’s are frequently inadmissible. This is
not surprising, since MLE’s are not derived under any given loss function.
The main theoretical justification for MLE’s is provided in the theory of
asymptotic efficiency considered in §4.5.

4.4.2 MLE’s in generalized linear models

Suppose that X has a distribution from a natural exponential family so
that the likelihood function is

t(n) = exp{T'(z)n" — {(n) }h(xz).

where n € Z is a vector of unknown parameters. The likelihood equation
(4.51) is then

which has a unique solution T'(z) = 9{(n)/0n, assuming that T'(x) is in the
range of ¢ (n)/In. Note that

32 2
O”logln) _ 070 _ o (4.54)
andn™ anan”

(see the proof of Proposition 3.2). Since Var(T') is positive definite, the
log-likelihood function is convex in n and 7'(x) is the unique MLE of the
parameter pu(n) = 9¢(n)/dn. By (4.54) again, the function p(n) is one-to-
one so that p~! exists. By Definition 4.3, the MLE of n is 7 = p=1(T'(x)).

If the distribution of X is in a general exponential family and the like-
lihood function is

(6) = exp{T(@)[n(0)]” — £(0)}h(x),

then the MLE of f is § = n~'(5), if 7! exists and 4 is in the range of 5(#).
Of course, # is also the solution of the likelihood equation
dlog((6)  dn(0) E0)

o0~ ap 1@ =0,

The results for exponential families lead to an estimation method in a
class of models that have very wide applications. These models are gener-
alizations of the normal linear model (model (3.25) with assumption Al)
discussed in §3.3.1-§3.3.2 and, therefore, are named generalized linear mod-

els (GLM).
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A GLM has the following structure. The sample X = (X,,...,X,,) € R"

has independent components and X; has the p.d.f.

exp { ”‘I":{mj } hixz;, o), i=1,..,n. (4.55)

w.r.t. a o-finite measure v, where n; and ¢; are unknown, ¢; > 0,
i €2 ={n: 0< [h(z,¢)e"/ ?dy(z) <} CR

for all ¢, ( and h are known functions, and ¢("”(n) > 0 is assumed for all
n € =°, the interior of =. Note that the p.d.f. in (4.55) belongs to an
exponential family if ¢; is known. As a consequence,

E(X;) =" (m;) and Var(X;) = ¢:¢" (n:), i=1,..,n. (4.56)

Define pu(n) = ('(n). It is assumed that 7; is related to Z;, the ith value of
a p-vector of covariates (see (3.24)), through

glp(n:)) = BZ7, i=1,...n, (4.57)

where [ is a p-vector of unknown parameters and g, called a link function.
i1s a known one-to-one, third-order continuously differentiable function on
{p(n) :n ez} If p= g !, then n; = 3Z7 and g is called the canonical or
natural link function. If g is not canonical, we assume that .;E_i.(ﬂ“ p)(n) # 0
for all n.

In a GLM, the parameter of interest is 7. We assume that the range
of 3is B={08:(gop) " YpBz") € Z° forall z € Z}, where Z is the
range of Z;'s. ¢;’s are called dispersion parameters and are considered to
be nuisance parameters. It is often assumed that

f;ﬂll'i'_ = {',D/tt, P = 1, ceay TL {458}

with an unknown ¢ > 0 and known positive #;’s.

As we discussed earlier, the linear model (3.24) with ¢; = N(0,¢)
is a special case of GLM. One can verify this by taking g(px) = p and
((n) = n*/2. The usefulness of GLM is that it covers situations where the
relationship between E(X;) and Z; is nonlinear and/or X;’s are discrete (in
which case the linear model (3.24) is clearly not appropriate). The following
is an example.

Example 4.35. Let X;'s be independent discrete random variables taking
values in {0, 1,...,m}, where m is a known positive integer. First, suppose
that X; has the binomial distribution Bi(p;,m) with an unknown p; €
(0,1), i =1,...,n. Let n; = la::ngT_F"—%E and ((n;) = mlog(1l + €"). Then the

p.d.f. of X; (w.r.t. the counting measure) is given by (4.55) with ¢; = 1,
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h(x;, ¢ ( ), and = = R. Under (4.57) and the logit link (canonical
link) { } log —.
me't melZi

E{Xi:] = mp; =

14em 14 P40

Another popular link in this problem is the probit link g(t) = ®~!(¢), where
® is the c.d.f. of the standard normal. Under the probit link, E(X;) =
m®(FZ7).

The variance of X; is mp;(1 — p;) under the binomial distribution as-
sumption. This assumption is often violated in applications, which results
in an over-dispersion, 1l.e., the variance of X, exceeds the nominal vari-
ance mp;(1 — p;). Over-dispersion can arise in a number of ways, but the
most common one is clustering in the population. Families. households,
and litters are common instances of clustering. For example, suppose that
X; Z”_L X;;. where X;; are binary random variables having a common
dl%tllh‘llt]ﬂn If X;;’s are independent, then X; has a binomial distribution.
However, if X;;’s are from the same cluster (family or household), then

they are often positively related. Suppose that the correlation coefficient
(§1.3.2) between X;; and X;;, j # [, is p; > 0. Then

Var(X;) = mp;(1 — p;) + m(m — 1)p;p; (1 — p;) = dymp; (1 — p;),

where ¢; = 1+ (m — 1)p; is the dispersion parameter. Of course, over-
dispersion can occur only if m > 1 in this case.

This motivates the consideration of GLM (4.55)-(4.57) with dispersion
parameters ¢;. If X; has the p.d.f. (4.55) with ((n;) = mlog(l + ¢"), then

met me'l
ElX;) = and Var(X;) = o; —
(X3) 1+ e™ (i) =@ (1+em)?
which is exactly (4.56). Of course, the distribution of X; is not binomial

unless ¢; = 1. 1

We now derive an MLE of 3 in a GLM under assumption (4.58). Let
0 = (3,¢) and ¢ = (go p)~'. Then the log-likelihood function is

T

log £(8) = _ llng h(zs. o/t;) + LOZDT — (WIBZ]))

O/t

and the likelihood equation is

dlog(6) 1
ng ( ) _ Z{ i — p(W(BZINW (BZIVLZ:) = 0 (4.59)



244 4. FEstimation in Parametric Models

and

dlog £(0) i { Olog h(zi, ¢/t;) i (BZ7 )z — C(P(BZ]))] } = ()
9 9 ” |

=1

From the first equation, an MLE of 3, if it exists, can be obtained without
estimating ¢. The second equation, however, is usually difficult to solve.

Some other estimators of ¢ are suggested by various researchers; see, for
example, McCullagh and Nelder (1989).

Suppose that there is a solution ’? € B to equation (4.59). (The exis-

tence of ,53 is studied in §4.5.2.) We now study whether [ is an MLE of g.
Let

TL

M, (8) =) [ (BZD)*¢" (W(BZT ) Z] Z; (4.60)
g=1
and
Ro(B) = [wi — p(W(BZ] )W (BZ] )t Z] Zi. (4.61)
1=1
then dlog £(0
var (220849 _ 1 )6 (4.62)
a3
and , \
8% log (6 | .
= [Rn(8) — M,(8)]/¢. 1.63
26057 R () (B)]/¢ (4.63)

Consider first the simple case of canonical g. Then ¢ = 0 and R,, = 0.
If M, (3) is positive definite for all 3, then log £(f) is strictly convex in j3
for any fixed ¢ and, therefore, f?; is the unique MLE of 3. For the case
of noncanonical g, R,(3) # 0 and § is not necessarily an MLE. If R,,(3)
is dominated by M, (3) (i.e., [M,(8)]"Y2R.(3)[M.(3)]7*? — 0 in some
sense ), then log £(#) is convex and 3 is an MLE for large n; see more details
in the proof of Theorem 4.18 in §4.5.2.

Example 4.36. Consider the GLM (4.55) with {(n) = n*/2, n € R. If g
in (4.57) is the canonical link, then the model is the same as (3.24) with
independent £;’s distributed as N(0, ¢;). If (4.58) holds with ¢; = 1, then
(4.59) is exactly the same as equation (3.27). If Z is of full rank, then
M, (3) = Z"Z is positive definite. Thus, we have shown that the LSE ’?
given by (3.28) is actually the unique MLE of 3.

Suppose now that g is noncanonical but (4.58) still holds with ¢; = 1.
Then the model reduces to that X,;'s are independent and

X; =N (g~ '(82]), ¢), i=1,..,n. (4.64)
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This type of model is called a nonlinear regresston model (with normal
errors) and an MLE of 3 under this model is also called a nonlinear LSE,
since maximizing the log-likelihood is equivalent to minimizing the sum of

is dominated by M, (/3) and an MLE of 3 exists; see more details in §4.5.2.
i

Example 4.37 (The Poisson model). Consider the GLM (4.55) with {(n) =
e ne R. If ¢; = 1, then X, has the Poisson distribution with mean e":.
Assume that (4.58) holds. Under the canonical link g(t) = logt,

i

M, (B3) = % 1,277,
1

which is positive definite if inf; €7%: > 0 and the matrix (v, 27, ..., /1, Z7)
is of full rank.

There is one noncanonical link that deserves attention. Suppose that
we choose a link function so that [¢'(t)]*¢"(¥(t)) = 1. Then M,(5) =
St 627 Z; does not depend on 5. In §4.5.2 it is shown that the asymp-

totic variance of the MLE ’:’; is ¢[M,,(3)]"". The fact that M, (3) does not
depend on J makes the estimation of the asvmptotic variance (and, thus,
statistical inference) easy. Under the Poisson model, (" (t) = e’ and, there-
fore, we need to solve the differential equation [’ (t)]?e¢¥*) = 1. A solution

is 1(t) = 2log(t/2), which gives the link function g(p) = 2,/u. ¥

In a GLM, an MLE ’% usnally does not have an analytic form. A numer-
ical method such as the Newton-Raphson or the Fisher-scoring method has
to be applied. Using the Newton-Raphson method, we have the following
iteration procedure:

B = U — s (B[R (BY) = M (B, t=0,1,...,
where s,(3) = ¢dlogf(0)/03. Note that E[R,(3)] = 0 if 3 is the true

parameter value and x; is replaced by X;. This means that the Fisher-
scoring method uses the following iteration procedure:

AUEY = 5 4 o (B[ ML (B3], t=0,1,...

If the canonical link is used, then the two methods are identical.

4.4.3 Quasi-likelihoods and conditional likelihoods

We now introduce two variations of the method of using likelihoods.
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Consider a GLM (4.55)-(4.57). Assumption (4.58) is often unrealistic in
applications. If there is no restriction on ¢;’s, however, there are too many
parameters and an MLE of 4 may not exist. (Note that assumption (4.58)
reduces n nuisance parameters to one.) One way to solve this problem
is to assume that ¢; = h(Z;, &) for some known function i and unknown
parameter vector £ (which may include 3 as a subvector). Let 0 = (3,£).
Then we can try to solve the likelihood equation dlog £(#)/96 = 0 to obtain
an MLE of 7 and/or £. We omit the details which can be found, for example,
in Smyth (1989).

Suppose that we do not impose any assumptions on ¢;’s but still esti-
mate [ by solving

in(B) = Z {[#: — p((BZ]) W (BZ])t:Z:i} = 0. (4.65)

Note that (4.65) is not a likelihood equation unless (4.58) holds. In the
special case of Example 4.36 where X; = N(3Z7,¢;), i = 1,...,n, a solution
to (4.65) is simply an LSE of @ whose properties are discussed at the end
of §3.3.3. Estimating 3 by solving equation (4.65) is motivated by the
following facts. First, if (4.58) does hold, then our estimate is an MLE.
Second, if (4.58) is slightly violated, the performance of our estimate is
still nearly the same as that of an MLE under assumption (4.58) (see the
discussion of robustness at the end of §3.3.3). Finally, estimators obtained
by solving (4.65) usually have good asymptotic properties. As a special
case of a general result in §5.4, a solution to (4.65) is asymptotically normal
under some regularity conditions.

In general, an equation such as (4.65) is called a quasi-likelihood equa-
tion if it is a likelihood equation when certain assumptions hold. The
“likelihood” corresponding to a quasi-likelihood equation is called quasi-

likelihood and a maximum of the quasi-likelihood is then called a mazimum
quasi-likelihood estimate (MQLE). Thus, a solution to (4.65) is an MQLE.

Note that (4.65) is a likelihood equation if and only if both (4.55) and
(4.58) hold. The LSE (§3.3) without normality assumption on X;’s is a
simple example of an MQLE without (4.55). Without assumption (4.55),
the model under consideration is usually nonparametric and, therefore. the

MQLE’s are studied in §5.4.

While the quasi-likelihoods are used to relax some assumptions in our
models, the conditional likelihoods discussed next are used mainly in cases
where MLE’s are difficult to compute. We consider two cases. In the first
case, 0 = (#,02), #; is the main parameter vector of interest, and 05 is a
nuisance parameter vector. Suppose that there is a statistic T5(X) that is
sufficient for /5 for each fixed 6,. By the sufficiency, the conditional dis-
tribution of X given 75 does not depend on 65. The likelihood function
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corresponding to the conditional p.d.f. of X given 75 is called the condi-
tional likelihood function. A conditional MLE of ¢#; can then be obtained
by maximizing the conditional likelihood function. This method can be
applied to the case where the dimension of # is considerably larger than
the dimension of #; so that computing the unconditional MLE of # is much
more difficult than computing the conditional MLE of #,. Note that the
conditional MLE’s are usually different from the unconditional MLE's.

As a more specific example. suppose that X has a p.d.f. in an exponential
family:

folz) = exp{T(x)0] + To(x)05 — {(0) }h(x).

Then T is sufficient for 5 for anv given ;. Problems of this type are

from comparisons of two binomial probabilities or two Poisson distributions
(Exercises 104-105).

The second case is when our sample X = (X,,..., X,,) follows a first-
order autoregressive time series model:

Xi—p=p(Xy_1 — p) + &4, t=2,..n,

where p € R and p € (—1,1) are unknown and &;’s are i.i.d. from N(0, o?)
with an unknown ¢ > (0. This model is often a satisfactory representation
of the error time series in economic models, and is one of the simplest
and most heavily used models in time series analysis (Fuller, 1996). Let
8 = (p, p,o?). The log-likelihood function is

: r 1 :
log £(0) = -—glng{ﬂﬂ') — glng ot + Elﬂg{l —p*)

1 r , T |
— E {(.T]_ - H}‘E(l — !}3} +- Z[It - - F{It—l . “)]E} .
=2

-
The computation of the MLE is greatly simplified if we consider the condi-
tional likelihood given X = x;:

ir

Z['Tf —p—p(xi_1 —p)]”.

1
2l

— 1 -1
" log(2m) — =

log £(0|z1) = -

log o —

Let (Z_1,Z0) = (n—1)7' >0 (w1, 24). If

TL TL

p= Yo a0)(aia = ao0) [ S a0
¢ t

is between —1 and 1, then it is the conditional MLE of p and the conditional
MLE's of i and o2 are. respectively,

fo=(To — pr_1)/(1 - p)
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and
TL

= 1
52

Obviously, the result can be extended to the case where X follows a
pth-order autoregressive time series model:

Xe—p=pi(Xo1—p)+- -+ pp(Xiop — 1) 24, t=p+1,...,n, (4.66)

where p;’s are unknown parameters satisfying the constraint that the roots
(which may be complex) of the polynomial 2?7 — pyzP~! — ... — p, = 0 are
less than one in absolute value (exercise).

4.5 Asymptotically Efficient Estimation

In this section, we consider asymptotic optimality of point estimators in
parametric models. We use the asymptotic mean squared error (amse,
see §2.5.2) or its multivariate generalization to assess the performance of
an estimator. Reasons for considering asymptotics have been discussed in

§2.5.

We focus on estimators that are asvmptotically normal. since this covers
the majority of cases. Some cases of asymptotically nonnormal estimators
are studied in Exercises 97-100 in §4.6.

4.5.1 Asymptotic optimality

-

Let {#,} be a sequence of estimators of # in a parametric model, i.e., 8, is
a statistic based on X = (X1, ..., X,,) whose distribution is known for all n
when # is known. Suppose that as n — oc,

(gﬁﬂ - ﬂ') [V;L{g}]—l,-"j —*d -Nrk {U-. Iﬁ.‘.}a l["lﬁT)

where, for each n, V,,(0) is a k x k positive definite matrix depending on
f. If § is one-dimensional (k = 1), then V,,(#) is the asymptotic variance as

well as the amse of 4, (§2.5.2). When k > 1, V,,(0) is called the asymptotic
covariance matriz of 8, and can be used as a measure of asymptotic perfor-
mance of estimators. If E}jﬂ satisfies (4.67) with asymptotic covariance ma-
trix V,(0), 7 = 1.2, and Vi,(0) < V5,,(0) (in the sense that Vy,(0) — V1,,(0)
is nonnegative definite) for all # € O, then 0, is said to be asymptoti-

cally more efficient than égﬂ. Of course, some sequences of estimators are
not comparable under this criterion. Also. since the asymptotic covariance
matrices are unigque only in the limiting sense, we have to make our com-
parison based on their limits. When X;'s are i.i.d., V},(#) is usually of the
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form n=?V(#) for some § > 0 (= 1 in the majority of cases) and a positive
definite matrix V' (#) that does not depend on n.

Note that (4.67) implipq that 6,, is an asymptotically unbiased estimator

of 8. If V,,(#) = Var QH} then, under some regularity conditions, it follows
from Theorem 3.3 that

Val0) > [L(0)] 7, (4.68)

where, for every n, I,,(#) is the Fisher information matrix (see (3.5)) for X of
size n. (Note that (4.68) holds if and only if IV,,(8)I7 > I[1,,(8)]'I" for every
| € R*.) Unfortunately, when V, (#) is an asymptotic covariance matrix,
(4.68) may not hold (even in the limiting sense), even if the regularity
conditions in Theorem 3.3 are satisfied.

Example 4.38 (Hodges). Let Xi,..., X, be iid. from N(0.1), 0 € R.
Then I,,(#) = n. Define

- [ X X | > n~ 1/

Tt K| <n-VA
where t is a fixed constant. By Proposition 3.2, all conditions in Theorem
i i are satisfied. It can be shown (exercise) that (4.67) holds with V,,(#) =

(6)/n, where V() = 1 if 6 # 0 and V(0) = t° 1fE’ =0. If t* <1, (4.68)
rl:::es not hold when & = 0. §

However, the following result, due to Le Cam (1953), shows that (4.68)
holds for i.i.d. X;'s except for # in a set of Lebesgue measure ().

Theorem 4.16. Let X,..... X, be iid. from a p.d.f. fy w.r.t. a g-finite
measure v on (R, Br), where # € © and O is an open set in R*. Suppose
that for every x in the range of X, fg(x) is twice continuously differentiable

in # and satisfies 5
o5 [y = [ Sva(a)ar

for Yg(x) = fa(z) or = 9 fy(x)/00; the Fisher information matrix

10) = E [;ﬂ )r [;5, log fg(XlJ]

is positive definite; and for any given # € ©. there exists a positive number
cg and a positive function hg such that E[hs(X;)] < oc and

9% log f+(x)
OyoyT

sup
villv—0||<cg

H < hg(x) (4.69)

for all = in the range of X;. If ri-?‘” is an estimator of # (based on X, ..., X))
and satisfies (4.67) with V,(#) = V(0)/n, then there is a ©y C C' with
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Lebesgue measure () such that (4.68) holds if @ ¢ ©y.
Proof. We adopt the proof given by Bahadur (1964) and prove the case
of univariate #. The proof for multivariate ¢ is similar and can be found in

Bahadur (1964). Let x = (21, ...,zn). 0, =0 +n"? € ©, and

Ko (,0) = [log €(0,.) — log £(8) + (6) /2] /[2(60)] /2.

Under the assumed conditions, it can be shown (exercise) that
K, (X.0) —4 N(0,1). (4.70)

Let Py (or Py) be the distribution of X under the assumption that X,
has the p.d.f. fy, (or fy). Define g,,(8) = |Py(f, < 6) — 3|. Let ® denote

the standard normal c.d.f. or its probability measure. By the dominated
convergence theorem (Theorem 1.1(i)), as n — oc,

[ 9n(0,,)dD(0) = [ gn(@)e™ =2 ad(6) — 0,

since g, () — 0 under (4.67). By Theorem 1.8(ii) and (vi), there exists a
sequence {ny} such tlmt Gy (On, ) —a.s 0 w.r.t. . Since ¢ is equivalent to
the Lebesgue measure, we conclude that there is a ©; C © with Lebesgue
measure () such that

liminf g,(0,) = 0, 0 & 0. (4.71)
Assume that § ¢ ©g. Then, for any t > [+(6)]'/?,

Py (K. (X.0)<t) = / 00,)dv % - x dv
K, (x.0)

0,
- /KT,{,E - (o) )

_ E—a{ﬂ}fﬁ&f E[T'I:H”UEK"[:E‘depg{;r)
Ko (z.0)<t

‘
= E_“{E”Ef E["w””zzdﬂnfzj

=

¢
= E_“{E”E/ E[”E””zqu’(ﬂ + o(1)

P (:‘, _ [z.(g)]lfﬁ) +o(1).

where H,, denotes the distribution of K, (X, #) and the next to last equality
follows from (4.70) and the dominated convergence theorem. This result
and the fact that

I

-

limsup Py, (0, <0,) < :

TE

Ind | =
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(by (4.71)) imply that there is a sequence {n;} such that for j = 1,2, ...
P, (On, < 0n,) < Py, (K, (X.0) <1). (4.72)

By the Neyman-Pearson lemma (Theorem 6.1 in §6.1.1), we conclude that
(4.72) implies that for j = 1,2, ...,

Py(0n, < 0,,) < Py(K,, (X,0) <1). (4.73)

(The reader should come back to this after reading §6.1.1.) From (4.70)
and (4.67) with V,,(0) = V(0)/n, (4.73) implies

S([V(0)]2) < (1)

Hence [V (#)]7'/2 < t. Since I,,(#)/n = 1(#) (Proposition 3.1(i)) and ¢ is
arbitrary, we conclude that (4.68) holds. 1§

Points at which (4.68) do not hold are called points of superefficiency.
Motivated by the fact that the set of superefficiency points is of Lebesgue
measure () under some regularity conditions, we have the following defini-
tiomn.

Definition 4.4. Assume that the Fisher information matrix I,,(0) is well

defined and positive definite for every n. A sequence of estimators {0, } sat-

isfying (4.67) is said to be asymptotically efficient or asymptotically optimal
if and only if V,,(0) = [I.(0)]"". ®

Suppose that we are interested in estimating 7 = g{E’) where ¢ is a
differentiable function from O to RF, 1 < p < k. If 0, satisfies (4.67),

then, by Theorem 1.12(i), ¥, = — g(d, ) is asymptotically distributed as
N, (0, Vg(0)V,.(0)[Va(d)]7). Thus, inequality (4.68) becomes

g(0)Vo(0)[Vg(0)]" = [L(9)]

where I,,(1) is the Fisher information matrix about 0. If p = k and g is
one-to-one, then

L))" = Vg(O)[L.(0)] " [Va(O)]

and, therefore, J,, is asymptotically efficient if and only if 0,, is asymptot-
ically efficient. For this reason, in the case of p < k, ¥/, is called asymp-
totically efficient if #,, is asymptotically efficient, and we can focus on the
estimation of @ only.
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4.5.2 Asymptotic efficiency of MLE’s and RLE’s

We now show that under some regularity conditions, a root of the likeli-
hood equation (RLE), which is a candidate for an MLE, is asymptotically
efficient.

Theorem 4.17. Assume the conditions of Theorem 4.16.
(i) There is a sequence of estimators {#,,} such that

P(,eﬂ{é,,..l} = U) — 1 and 0., —p, B, (4.74)

where s, (v) = dlog £(v) /0.

(ii) Any consistent sequence 0, of RLE's is asymptotically efficient.
Proof. (i) Let B,(c) = {v : ||(v — 0)[1.(6)]'/?] < ¢} for ¢ > 0. Since ©
is open, for each ¢ > 0, B,(¢) € © for sufficiently large n. Since B,(c)

shrinks to {#} as n — o¢, the existence of 0, satisfying (4.74) is implied by
that for anv € > (), there exists ¢ > () and ny > 1 such that

P(logf(y) —logf(0) <0 forally € dB,(c)) =1—¢€,  n>ng, (4.75)

where dB,,(c) is the boundary of B, (¢). For v € 9B, (¢), the Taylor ex-
pansion gives
log £(7) — log £(6) = csn(0)[1(6)]71/2A" (4.76)
+ (ﬂg/z:]'}‘[I?'L{g}]_lﬁv"?n(’?’r*)[In{g:]]_lﬁ}‘?v

where A = (v — 0)[1,,(0)]*/? /¢ satisfying ||A|| = 1, Vs, (v) = sn(v) /0.
and ~* lies between ~ and . Note that

E”vﬂﬁu{'—}’*) - vﬂn{g}” ”vﬂﬂ{hf) - ?Sﬂ{ﬁ)n

< F max
n vEB, (c) n
< by [P  Plon ity
~EB, (¢) AyayT A0
-0, (4.77)

which follows from (a) 9% log f-(x)/dv0v™ is continuous in a neighborhood
of 0 for any fixed x; (b) B, (c¢) shrinks to {#}; and (c) for sufficiently large
I,

. ‘HE log /,(X1) _ 87 log fo(Xa)
YEBu(c) OyoryT 0907

under condition (4.69). By the SLLN (Theorem 1.13) and Proposition 3.1,
n~1Vs,(0) —, . —(0). These results, together with (4.76), imply that

‘ E Eh.g(xl::l

log £(7) — log £(0) = 5, () [T (0)] 2N — ¢* /2 + 0,(1). (4.78)
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Note that maxy{s,(0)[1.(0)]7V2A"} = ||s,(0)[1,.(0)]~1/2|. Hence, (4.75)
follows from (4.78) and

P([lsn(O)Ln(0)] /2] < /4) = 1= (4/c)* El|su(0) [1n(0)] /]
= 1—k(4/c)*
= 1—c€

by choosing ¢ sufficiently large. This completes the proof of (i).

(ii) Let A, = {~ : [|[v — 0| < €} for € = 0. Since © is open, A, C O
for sufficiently small e. Let {é?.l} be a sequence of consistent RLE's, i.e.,
P{:sﬂ{én) —0and @, € A.) — 1 for any € > 0. Hence, we can focus on the
set on which .ﬁ*n(éﬂ) —Qand 6, € A.. U sing the mean-value theorem for
vector-valued functions, we obtain that

1
—s0(0) = (G, — 0) / V(0 + (6, — 0))dt.
(

)

Note that

l ——
f ?Sn(ﬁ + t{:ﬁﬁﬂ — E’))dt - T-“'S,,.ll[ﬁ)H < max [Vn(y) = Vn(0)] .
0

H.".E ."'"1 & T

1

n

Using the argument in proving (4.77) and the fact that P(d, € A) — 1

for arbitrary € > 0, we obtain that

1 ! -

- / ?ﬁﬂ[i—? + 10, — 9)]{1!15 - vSﬂ{H)H —+p 0,
(

)

Since n= Vs, (0) —,.. —(0) and I,(8)/n = 1(0),
—5,(0) = — (0 — 0)L,(0) + 0, ([|(0. — O) L. (0)]).

This and Slutsky’s theorem (Theorem 1.11) imply that vn(f, — f1) has the
same asymptotic distribution as

Vs, (0)[1.(0)] " = ”_”25?1{’5’}[1{9}]_1 —d N (”-‘- ["J“('Er)]_l)

by the CLT (Corollary 1.2), since Var(s, () = [,(8). 1

Theorem 4.17(i) shows the asymptotic existence of a sequence of con-
sistent RLE’s, and Theorem 4.17(ii) shows the asymptotic efficiency of any
sequence of consistent RLE’s. However, for a given sequence of RLE's,
its consistency has to be checked, unless the RLE’s are unique for suffi-
ciently large n. in which case the consistency of the RLE’s is guaranteed
by Theorem 4.17(i).
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RLE’s are not necessarily MLE’s. We still have to use the techniques
discussed in §4.4 to check whether an RLE is an MLE. However, according
to Theorem 4.17, when a sequence of RLE’s is consistent, then it is asymp-
totically efficient and. therefore, we may not need to search for MLE's, if
asymptotic efficiency is the only criterion to select estimators. The method
of estimating @ by solving s,(v) = 0 over v € © is called scoring and the
function s, () is called the score function.

Example 4.39. Suppose that X; has a distribution in a natural exponen-
tial family, i.e.. the p.d.f. of X; is

folw:) = exp{T(z:)n"™ — C(n) h(zi). (4.79)

Since 9%log f,(x;)/Ondn™ = 8%C(n)/Ondn™, condition (4.69) is satisfied.
From Proposition 3.2, other conditions in Theorem 4.16 are also satisfied.

For i.1.d. X;'s,

) =35 [reva - 280]

If 0, = n=' 32" | T(X;) € O, the range of 8 = g(n) = A¢(n)/dn, then 4, is
a unique RLE of #, which is also a unique MLE of @ since 0%((n)/dndn™ =
Var(T'(X;)) is positive definite. Also, n = g~ (#) exists and a unique RLE

(MLE) of 5 is )y, = ¢~ (0n).

However, #,, may not be in © and the previous argument fails (e.g.,
Example 4.29). What Theorem 4.17 tells us in this case is that as n — oo,

P{Eﬁi‘ﬂ € ©) — 1 and, therefore, 0, (or ) is the unique asymptotically
efficient RLE (MLE) of # (or ) in the limiting sense.

In an example like this we can directly show that P {é?-l € 0) — 1, using

the fact that 6, —, . E[T(X1)] = g(n) (the SLLN).

The next theorem provides a similar result for the MLE or RLE in the
GLM (54.4.2).

Theorem 4.18. Consider the GLM (4.55)-(4.58) with #;’s in a fixed in-
terval (tp,toc), 0 < tg < too < 00. Assume that the range of the unknown
parameter 3 in (4.57) is an open subset of R?; at the true parameter value
3, 0 < inf; p(BZ7) < sup; @(BZ7) < oo, where p(t) = [¢'(£)]*¢"((1)); as
n — 00, MaX;<, Z;(Z7Z) ' Z7 = 0 and A_[Z7Z] — oo, where Z is the
n % p matrix whose ith row is Z; and A_[A] is the smallest eigenvalue of
the matrix A.

(i) There is a unique sequence {3,} such that

-

P(sp(8,)=0)—1 and 3, —, 8. (4.80)
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where s,,(7) is the score function defined to be the left-hand side of (4.59)
with v = 3.
(ii) Let I,,(3) = Var(s,(3)). Then

{-{?1'1 - .S)[In(ﬁ)]uz —d ﬁ"rp(ﬂf IP)' {4-81)

(iii) If ¢ in (4.58) is known or the p.d.f. in (4.55) indexed by 0 = (3. ¢)
satisfies the conditions for fg in Theorem 4.16. then ﬁﬂ is asymptotically
efficient.

Proof. (i) The proof of the existence of &, satisfying (4.80) is the same as
that of Theorem 4.17(i) with @ = 3, except that we need to show

max || [L.(3)] V2V s,(v)[1.(8)] 712 = L|| —, 0,
~eDB, (c)

where B, (c) = {v : ||[(v — 8)[L.(3)]*?] < ¢}. From (4.62) and (4.63).
I.(3) = M,(8)/¢ and Vs,(v) = [Rn(v) — Myu(v)]/¢, where M, (v) and
R, () are defined by (4.60)-(4.61) with v = 3. Hence, it suffices to show
that for anyv ¢ > 0,

max ||[M,(8)] 72 [Mn(7) — Mu(8)][M.(3)]7'2]| = 0 (4.82)
TEB, (c)
and
wmax ||[A(8)] 7R () [Ma(8)] 72 = 0. (4.83)
,-:l_-E - o

The left-hand side of (4.82) is bounded by

max 1 — w(~vZ7 Y (327,
VP __max £n| e(YZ7)/e(BZ] )|,

which converges to () since  is continuous and for v € B, (¢,

I

|’1"Z:Tr - IﬁZﬂE H’]" - .'3)[In(ﬁ)]UE[ITL(.I?)]_UEZHE

< (v = BB 21PN (8)] 2 2] |2
< ¢ max Z;[1,(8)] 7 Z]

< Fo[toinf p(B27)] max Zi(Z72) " 2]
— ()

under the assumed conditions. This proves (4.82).

Let e; = X; — p(y(327)),

TL

Un(v) = S I(ABZD)) - n((vZD) " (127427 2,
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and

Then R, (7v) = U,(v) + Vo(v) + W, (/3). Using the same argument as that
in proving (4.82), we can show that

_max | (Mo (8))™ 2 Un () [Mn(8)] 2 | — 0.

Note that ||[M,,(3)]71/ 2V, (v)[M,(5)]~'/?|| is bounded by the product of

(M (8)] Y2 eslt: 2] Z: M, (8)] 712 = O, (1)
-

b

and

ah’’ TV _ ol T
”I'Eﬂliliiiiin | v {TZT“ ) L {"GZ?, )|

which can be shown to be o(1) using the same argument as that in proving
(4.82). Hence,

: M, (N2 ()M, (8] Y2 — 0
_max ||[M,,(5) (MM (8]

and (4.83) follows from
| IMa ()]~ 2 W (B) M ()] 12| — 0.

To show this result, we apply Theorem 1.14(ii). Since E(e;) = 0 and ¢;’s
are independent, it suffices to show that

TL

N Elea(B27)6:Zi[Ma(8) 1 27| — 0 (4.84)

for some & € (0,1). Note that sup; E|e;|'T® < co. Hence, there is a constant
(' = 0 such that the left-hand side of (4.84) is bounded by

" < pCmax |Z(272) 1278 — 0.

1T

CY |zi(z7z) " Z]|

=1

Hence, (4.84) follows from Theorem 1.14(ii). This proves (4.80). The

uniqueness of 3, follows from (4.83) and the fact that M, (v) is positive
definite in a neighborhood of 3. This completes the proof of (i).
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(ii) The proof of (ii) is very similar to that of Theorem 4.17(ii). Using the
results in the proof of (i) and Taylor’s expansion, we can establish (exercise)
that

(Bu = B2 = su(DLa(B) 2 + 0,(1). (4.85)

Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show
(exercise) that

sn(B)[Ln(8)] 1% =4 Np(0, I). (4.86)

Result (4.81) follows from (4.85)-(4.86) and Slutsky’s theorem.
(iii) The result is obvious if ¢ is known. When ¢ is unknown, it follows
from (4.59) that

d [Ologl(0)|  salB)
| 9 | o
Since E|s,,(F)] = 0, the Fisher information about # = (3, ¢) is

L [0%logt(9)] (LB 0
I“{'ﬂ’@}_“ﬂ[ 0007 ]_( 0 L(¢) )’

where I,,(¢) is the Fisher information about ¢. The result then follows
from (4.81) and the discussion in the end of §4.5.1. #

4.5.3 Other asymptotically efficient estimators

To study other asymptotically efficient estimators, we start with MRIE’s in
location-scale families. Since MLE’s and RLE’s are invariant (see Exercise
95 in §4.6), MRIE's are often asymptotically efficient; see, for example,
Stone (1974).

Assume the conditions in Theorem 4.16 and let s,,(v) be the score func-

tion. Let 65 be an estimator of @ that may not be asymptotically efficient.
The estimator

éial] = éE:” . Sn{éiﬂ})[v"ﬂ(gm :]] (4.87)
is the first iteration in computing an MLE (or RLE) using the Newton-
Raphson iteration method with 6%’ as the initial value (see (4.53)) and,

therefore, is called the one-step MLE. Without any further iteration, éfllj

. . . ~(1
can be used as a numerical approximation to an MLE or RLE; and E‘n]
is asymptotically eflicient under some conditions, as the following result

shows.

Theorem 4.19. Assume that the conditions in Theorem 4.16 hold and
that é::f}} is \/n-consistent for @ (Definition 2.10).

(i) The one-step MLE éi,,” is asymptotically efficient.

(ii) The one-step MLE obtained by replacing Vs, () in (4.87) with its



2H8 4. FEstimation in Parametric Models

expected value, —I,,(v) (the Fisher-scoring method), is asymptotically effi-
clent.

Proof. Since E}HH is y/n-consistent, we can focus on the event éif” c A, =
v :|lv — @ < e} for a sufficiently small € such that A, € ©. From the
mean-value theorem,

sn(09) = 5,,(0) + (61 — f Vs, (0 + (0 — 6))dt.

Substituting this into (4.87) we obtain that
év{alj — 0 = —sp(0) [vﬁn{éal;:”)]_l i {éE:H = 0) 1 - Gn{:éﬂn)]a

where

G (0 — / Vo (0 + (0 — 0))dt[Vs (69"

From (4.77), [1,(8)]/2[V$.(0Y)] 21, (6)]/2 —, —I}. Using an argument
similar to the proofs of (4.77) and (4.82), we can show that Gn{éﬂn} —p 1.
These results and the fact that /n(dy” — ) = O,(1) implies

V(0 —0) = Vnsa (0)[1.(0)] 7" + 0, (1).

This proves (i). The proof for (ii) is similar. 8

Example 4.40. Let X;...., X, be iid. from the Weibull distribution
Wi(#,1), where # > 0 is unknown. Note that

5, () = % + Zlng){ Z;ﬁ’ log X;

_1 1 .....

and

Ven(f) = —— — Zxﬂ{lngx

Hence. the one-step MLE of @ is

aLto)

L0 (T log X ZZ‘ L X[ log X))
n + (HH 230, Xz', 2 {]GEX'&:‘

i = o

Usually one can use a moment estimator (§3.5.2) as the initial estimator

0. In this example, a moment estimator of @ is the solution of X =

r@e-t+1).

Results similar to that in Theorem 4.19 can be obtained in non-i.i.d.
cases, for example, the GLM discussed in §4.4.2 (exercise); see also §5.4.



4.5. Asyvmptotically Efficient Estimation 259

As we discussed in §4.1.3, Baves estimators are usually consistent. The
next result, due to Bickel and Yahav (1969) and Ibragimov and Has'minskii
(1972), states that Bayes estimators are asymptotically efficient when X;’s
are i.i.d.

Theorem 4.20. Assume the conditions of Theorem 4.16. Let w(+) be a
prior p.d.f. (which may be improper) w.r.t. the Lebesgue measure on ©
and p,(7) be the posterior p.d.f., given X;, ..., X, n = 1.2,.... Assume
that there exists an ng such that p, (7v) is continuous and positive for all
v € O, [ puy(¥)dy = 1 and [ ||7||pn, (7)dy < oo. Suppose further that for
any € > (), there exists & > 0 such that

lim P| sup log £() — log ((6) > =0 =10 (4.88)
n=o \ fly—bljze n
and
lim P ( sup [Vsn(y) = Vsn(0)] > E) = (), (4.89)
e A\ ly-ol =8 n

where £(v) is the likelihood function and s, (7) is the score function.

(i) Let pi(+) be the posterior p.d.f. of /n(y — T,), where T,, = 0 +
sp(0)[I,(0)]! and @ is the true parameter value, and let 1, (y) be the
p.d.f. of N.(0,[.(8)]"). Then

[a+in)

(ii) The Bayes estimator of § under the squared error loss is asymptotically
efficient. 1

p':{ﬁ.’r} - 'iﬁf-ll}*.ll{ﬁf:] |*’1|T"~.rr —p 0. {49”}

The proof of Theorem 4.20 is lengthy and is omitted; see Lehmann
(1983, §6.7) for a proof of the case of univariate 6.

A number of conclusions can be drawn from Theorem 4.20. First. result
(4.90) shows that the posterior p.d.f. is approximately normal with mean
0 + sn(0)[1,(6)] "' and covariance matrix [I,,(6)]~!. This result is useful
in Bayesian computation; see Berger (1985, §4.9.3). Second, (4.90) shows
that the posterior distribution and its first-order moments converge to the
degenerate distribution at # and its first-order moments, which implies the
consistency and asymptotic unbiasedness of Bayes estimators such as the
posterior means. Third, the Baves estimator under the squared error loss is
asymptotically efficient., which provides an additional support for the early
suggestion that the Bayesian approach is a useful method for generating
estimators. Finally, the results hold regardless of the prior being used.
indicating that the effect of the prior declines as n increases.
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In addition to the regularity conditions in Theorem 4.16, Theorem 4.20
requires two more nontrivial regularity conditions, (4.88) and (4.89). Let us
verify these conditions for natural exponential families (Example 4.39), i.e.,
X;'s are i.i.d. with p.d.f. (4.79). Since Vs, (n) = —nd?*((n)/dndn™, (4.89)
follows from the continuity of the second-order derivatives of {. To show
(4.88), consider first the case of univariate . Without loss of generality we
assume that + > 1. Note that

log £(y) — log {(n)

n

- Cy) — <)

Y=

=(y—mn) [T —('(m) + '(n) ] . (4.91)

where T is the average of T'(Xi)’s. Since ((v) is strictly convex, v > 5

implies ("(n) < [¢(v) — ¢(m)]/(y —n). Also, T —, .. ('(n). Hence, with
probability tending to 1, the factor of (v — 1) on the right-hand side of

(4.91) is negative. Then (4.88) holds with

s_ €. [C{’}*) ~((n) C’{H)] |

2 y>0 ¥ =7

To show how to extend this to multivariate 7, consider the case of bivariate
n. Let n;. 7, and &; be the jth components of 5, v, and T — V((n),
respectively. Assume ~v; > 1y and 2 > 1. Let C; be the derivative of (
w.r.t. the jth component of 1. Then the left-hand side of (4.91) is the sum
of

(71 — 61)& — [C(m,v2) — €,y m2) — (2 — n2)Ca(m, n2)]
and

(2 = 02)&2 — [C(y1,72) — ¢,y y2) — (1 — TIl)C{{’-‘“h: 12)]
< (72 — 92)52 - [C("‘rla"‘fz) - C{?ha"‘rz) - ("}’1 - Hl)Ci(ﬂl:"}’z)]:

since ¢y (n1.1m2) < ({(M1.72). The rest of the proof is the same as the case
of univariate 7.

When Bayes estimators have explicit forms under a specific prior, it
is usually easy to prove the asymptotic efficiency of the Bayes estimators
directly. For instance, in Example 4.7, the Bayves estimator of @ is

1 1

X 4+~ _ v — 1 -
n +*‘r. =X+{n )_+_,.},
n+o—1 n+a—1

=X +0,(n71),

where X is the MLE of §. Hence the Bayes estimator is asymptotically
efficient by Slutsky’'s theorem. A similar result can be obtained for the
Bayes estimator (4.8) in Example 4.7. Theorem 4.20, however, is useful in
cases where Bayes estimators do not have explicit forms and/or the prior
is not specified clearly. One such example is the problem in Example 4.40
(Exercises 129 and 130).
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4.6 Exercises

6.

- "']

. Show that the priors in the following cases are conjugate priors:

(a) Xq,..., X, are i.i.d. from N (0,1;), 0 € RE and 11 = Ni(pa, Xo)
(Normal family);

(b) Xq,...,X,, are i.i.d. from the binomial distribution Bi(0. k), 0 €
(0,1), and IT = B(«, 3) (Beta family);

(¢c) X1,...,X,, are i.i.d. from the uniform distribution U(0,8), ¢ = 0,
and II = Pa(a,b) (Pareto family);

(d) X4,..., X, are ii.d. from the exponential distribution E(0,#), 6 >
0, II = the inverse gamma distribution I'"*(a, v) (a random variable
Y has the inverse gamma distribution I'"*(a,~) if and only if Y —!
has the gamma distribution I'(«, +));

(e) X1 is from the binomial distribution Bi(p,#) with a known p,

f=1,2,..., and II = P(\) (Poisson family).

. In (a)-(e) of Exercise 1, find the posterior mean for each case.

. Show that if T'(X) is a sufficient statistic for # € ©, then the Baves

action &(x) in (4.3) is a function of T'(x).

. Let Xy, ..., X, be ii.d. from the N (@, 1) distribution and let 1I be the

double exponential distribution DE(0,1). Obtain the Bayes action
under the squared error loss.

. Let X be a single observation from N(u,o?) with a known ¢ and

an unknown g > ). Consider the estimation of p under the squared
error loss and the noninformative prior II = the Lebesgue measure
on (0,00). Show that the Baves action when X = z is §(z) = = +
¢ (z/a) /[l — P(—x/)], where @ is the c.d.f. of the standard normal
distribution and ®’ is its derivative.

Consider the estimation problem in Example 4.1 with the loss function
L(6,a) = w(f)[g(#) —a]*, where w(f) = 0 and [, w(#)[g(0)]*dII < oc.

Show that the Bayes action is

[ w(0)g(0) fo(x)dIT
 Jow(0) fa(x)dll -

&(x)

. Let X1, ..., X,, bei.i.d. binary random variables with P(X; = 1) = p €

(0,1). Consider the estimation of p under the loss function L(p, a)
(p—a)?/[p(1 —p)]. Find the Bayes action w.r.t. the uniform prior on
0, 1].

. Consider Example 4.1 with ¢(f#) = # € R. Under the loss function

L(#,a) = |# — a|, show that a median of the posterior distribution is
a Bayves action (see Exercise 75 in §2.6).
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. Let X be a sample of size 1 from the geometric distribution G'(p) with

an unknown p € (0,1]. Consider the estimation of p with A = [0, 1]
and the loss function L(p,a) = (p — a)*/p.

(a) Show that ¢ is a Baves action w.r.t. Il if and only if 6(x) =
L= [(1 - p)rdll(p)/ [(1 - p)™dl(p), ¢ = 1,2, ..

(b) Let 6y be a rule such that é¢(1) = 1/2 and éy(x) = 0 for all = > 1.
Show that 8y is a limit of Bayes actions.

(c) Let &y be a rule such that §y(z) = 0 for all z > 1 and 6,(1) is
arbitrary. Show that &y is a generalized Baves action.

Let X be a sample from Py having the p.d.f. h(z)exp{zf™ — ((0)}
w.r.t. v. Let II be the Lebesgue measure on © = RP. Show that
the generalized Bayes action under the loss L(f,a) = |[|[E(X) — al|? is

&x) = x.

Let Xi,.... X, beiid. from N(u,o?), where g and ¢ are unknown.
Let the prior for (i, 0?) have the improper Lebesgue density m(u, o%)
=0 L(p,00)(0?).

(a) Show that the posterior p.d.f. of (u, %) given x = (x1,...,xz,) is
w(p, o?|x) = mi(plo?, x)ma(o?|x), where m(p|o?, z) is the p.d.f. of
N(Z,0°/n) and ma(o?|z) is the p.d.f. of the inverse gamma distribu-
tion I~ H(n — 1)/2, D0 (2 — 2)%/2]71) (see Exercise 1(d)).

(b) Show that the marginal posterior p.d.f. of 2 given x is the p.d.f. of

(¢) Show that the marginal posterior p.d.f. of p given x is f (*”’%I)
where 7% = 3" (z; — &)?/[n(n — 1)] and f is the p.d.f. of the t-

distribution t,,_1.

Let X be a sample from Fy. ## € @ C R. Consider the estimation of
under the loss L(|0 — a|), where L is an increasing function on [0, oc).
Let w(#|x) be the posterior p.d.f. of # given X = z. Suppose that
m(f|x) is symmetric and unimodal. Show that 6 satisfying w(é|z) =
sUpgeg T(0|x) is a Bayes action, assuming that all integrals involved
are finite.

(Bayesian hypothesis testing). Let X be a sample from Fy, where
€ 0. Let Oy C © and ©; = 0, the complement of ©;. Consider
the problem of testing Hy : 0 € Oy versus H, : f € ©; under the loss

() 0 e O,
L0, az) ={ c. 0¢6,

where C'; > 0 are known constants and {ag,a;} is the action space.
Let Iy, be the posterior distribution of # w.r.t. a prior distribution
II, given X = x. Show that the Bayes action é(z) = a, if and only if

Hg;m(el) > Cl/l[g“ -+ {Tl)
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14.

16.

18.
19.

20).

21.

Let X be a single observation from the Lebesgue p.d.f. E"’EJ"QIEH__OG:, (x),
where ¢ > 0 is an unknown parameter. Consider the estimation of

| 4 0 >3

under the loss L(i, j), 1 < 4,7 < 4, given by the following matrix

0o 1 1 2
1 0 2 2
1 2 0 2
3 4 3 0

When X = 4, find the Bayes action w.r.t. the prior with the Lebesgue
I'}df E_Elr{[]:xj(g:].

. In (b)-(d) of Exercise 1, assume that the parameters in priors are

unknown. Using the method of moments, find empirical Bayes actions
under the squared error loss.

In Example 4.5, assume that both py and o3 in the prior for p are
unknown. Let the second-stage joint prior for (pg,03) be the prod-
uct of N(a,v?) and the Lebesgue measure on (0, oc), where a and v
are known. Under the squared error loss, obtain a formula for the
hierarchical Baves action in terms of a one-dimensional integral.

. Let 8; be a Bayes estimator of ©; under the squared error loss, i =

: . P8 e o Rav P o
L....,p. Show that » %, ¢;6; is a Bayes estimator of } %, ¢;U; under

the squared error loss.

Prove (ii) and (iii) of Theorem 4.2.

Let Xq,..., X, be ii.d. binary random variables with P(X; = 1) =
pe(0,1). )
(a) Show that X is an admissible estimator of p under the loss function

(@ —p)?/[p(1 - p)].

(b) Show that X is an admissible estimator of p under the squared
error loss.

Let X be a sample (of size 1) from N{u, 1). Consider the estimation
of g under the loss function L{u,a) = | — al. Show that X is an
admissible estimator.

In Exercise 2, consider the posterior mean to be the Bayes estimator
of the corresponding parameter in each case.

(a) Show that the bias of the Bayes estimator converges to 0 if n — oc.
(b) Show that the Bayes estimator is consistent.

(c) Show that the Bayes estimator is admissible.
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Let Xy,...,X,, be ii.d. binary random variables with P(X; = 1) =
pe(0,1).

(a) Obtain the Bayes estimator of p(1 — p) w.r.t. I[I = the beta distri-
bution B(a, 3) with known o and &, under the squared error loss.
(b) Compare the Bayes estimator in part (a) with the UMVUE of
p(1 —p).

(c) Discuss the bias, consistency, and admissibility of the Bayes esti-
mator in (a).

(d) If p has the improper prior density 7(p) = [p(1 — p)]” Lw.1)(p)-
show that the posterior p.d.f. of p given X is proper provided that
0< X < 1.

(e) Under the squared error loss, find the generalized Bayes estimator
of p(1 — p) w.r.t. the improper prior in (d).

Let X be an observation from the negative binomial distribution
N B(p,r) with a known r and an unknown p € (0, 1).

(a) Under the squared error loss, find the Bayes estimators of p and
p~ ! w.r.t. IT = the beta distribution B(«, 3) with known « and /.
(b) Show that the Bayes estimators in (a) are consistent.

In Example 4.7,

(a) show that the posterior distribution of w is the gamma distribution
C(n+a,(nz +~"1)71);

(b) show that X is the generalized Bayes estimator of § w.r.t. the
improper prior % = u.:_lf{u!,x.:, (w) and is a limit of Bayes estimators

(as ¢ — 1 and v — oc).

. Consider Example 4.8 with o = v = (), which leads to an improper

prior. Show that the posterior distribution of n(pu—7)/ \/y/’{n — 1),
given x, is the t-distribution £,,_.

. Prove Lemma 4.1.

. Let X7 and X9 be independently distributed as Py, and Ppy,, respec-

tively. Suppose that #; and 0, are real-valued and independent ac-
cording to some prior distributions II, and Il;. Let é; be the Bayes
estimator of #; on the basis of X, j =1, 2.

(a) Show that é; — &5 is the Bayes estimator of #; — #5 on the basis
of (X]_ . Xg}

(b) Show that 6,85 is the Bayes estimator of #,0; on the basis of
{X] . Xg) .

In Example 4.9, suppose that =;; has the Lebesgue p.d.f.

5(®)o7 " exp { —c(6) /a7 H ]
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where
T (;;;Haq) 1 T [F (;;{H& )]lfﬂ
> 5
c(d) = ) k() = e
1+6 3/2
() (1+6) [T (L£2)]

—~1<é<1anda; > 0.
(a) Assume that & is known. Let w; = ::{é}ﬁ;‘mprﬂ. Under the

squared error loss and the same prior in Example 4.9, show that the
Bayves estimator of o7 is

r 9 1+46

qi(6) [ T_l Z |.IT-,,J Bz |£J’F (1+2) f(Blz,8)dp,

. —

where ¢;(8) = [c(8)]* T (42n; + o« — 8) /T (12n; + @+ 1) and

1+&
ke T

F(Blz.8) cca(B) [T {27 + D sy — 6277+

(b) Assume that & has a prior p.d.f. f(é) and that given 6, w; still
has the same prior in (a). Derive a formula (similar to that in (a))
for the Bayes estimator of o?.

Suppose that we have observations
Xij=pi+e. i=1..k j=1..m,

where ;;'s are i.i.d. from N(0,07), p;'s are i.i.d. from N{;L,Ji}, and
£i; 8 and p;’s are independent. Suppnse that the distribution for o
is the inverse gamma distribution I'"!(ay, 1) (see Exercise 1(d)); the

distribution for f:r;1 is the inverse gamma distribution '™ (as, 35); the

distribution for p is N(po,03); and o., o,, and g are independent.

Describe a Gibbs sampler and obtain explicit forms -:rf

(a) the distribution of p, given X;;’s, y;’s, 02, and ‘Tsu

(b) the distribution of ;LI, given X;;’s, pL, {:rf, and o2
(¢) the distribution of o7, given X;;’s, p;’s, pu, and o

(d) the distribution of J#_ eiven X;;'s, pi's, p, and f:lrE

:H

Prove (4.16).

Consider a Lebesgue p.d.f. p(y) o< (24 )" (1 —y)**y** [0.1)(y). Gen-
erate Markov chains of length 10,000 and compute approximations to
[ yp(y)dy, using the Metropolis kernel with ¢(y, z) being the p.d.f. of
N(y,r?), given y, where (a) r = 0.001; (b) r = 0.05; (¢) r = 0.12.
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Prove Proposition 4.4 for the cases of variance and risk.

In the proof of Theorem 4.5, show that if L is (strictly) convex and
not monotone, then E[L(Ty(x) — a)|D = d] is (strictly) convex and
not monotone.

. Prove part (iii) of Theorem 4.5.

. Under the conditions of Theorem 4.5 and the loss function L{p,a) =

1t — al, show that u.(d) in Theorem 4.5 is any median (Exercise 75 in
§2.6) of Th(X) under the conditional distribution of X given D = d
when p = 0.

Show that if there is a location invariant estimator T, of u with finite
mean, then Ey[T(X)|D = d] is finite a.s. P for any location invariant
estimator.

. Show (4.21) under the squared error loss.

. Let Xy.....X,, beiid. with the Lebesgue p.d.f.

; -
folx) = 2p—(x—0) ”I{g!x}{x}.

W

Find the MRIE of # under the squared error loss.

In Example 4.12,

(a) show that Xy, — flog2/n is an MRIE of px under the absolute
error loss L — a) = |p — al;

(b) show that X ;) —tis an MRIE under the loss function L(p —a) =

Lt 0) (|10 = al).

In Example 4.13, show that T is also an MRIE of y if the loss function
is convex and even. (Hint: the distribution of T, (X'} given D depends
only on X(;; — X(1) and is symmetric about () when g = 0.)

Let Xq,....X,, be iid. from the double exponential distribution
DE(t,1) with an unknown g € R. Under the squared error loss,
find the MRIE of p. (Hint: for 1 < -+ < 2, and o <t < 2441,

T T ke
Zi::‘:l Ly — t| - Zi:‘.‘k+l Ly — Zi::l T+ {Ek o ﬂ)t)
In Example 4.11, find the MRIE of g under the loss function

—a(p — a) [ < a
Al — a) = a,

Lipg—a)= {

where o and @ are positive constants. (Hint: show that if Y is a
random variable with c.d.f. F', then E[L(Y — u)] is minimized for any
u satisfying F(u) = 3/(a + 3).)
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4.3.

44,

46.

47.

48.

49.

Let 1" be a location invariant estimator of g in a one-parameter lo-
cation problem. Show that 7" is an MRIE under the squared error
loss if and only if T" is unbiased and E[T(X)U(X)] = 0 for any U(X)
satistying U(z; + ¢, ...,z +¢) = U(x) for any ¢ and E[U(X)] = 0 for
any .

Assume the conditions in Theorem 4.6. Let T be a sufficient statistic
for p. Show that Pitman’s estimator is a function of T

. Prove Proposition 4.5, Theorems 4.7 and 4.8, and Corollary 4.1.

Under the conditions of Theorem 4.8 and the loss function (4.24) with
p = 1, show that wu,(z) is any constant ¢ > 0 satisfying

/.:;r:dR”; = [ rdPy .,
0 Je

where P, is the conditional distribution of X given Z when o = 1.

In Example 4.15, show that the MRIE is 2[“+1:'_1X{ﬂ;, when the loss
is given by (4.24) with p = 1.

Let Xy, ..., X}, beii.d. from the exponential distribution E(0, #) with
an unknown 4 > 0.

(a) Find the MRIE of # under the loss (4.24) with p = 2.

(b) Find the MRIE of # under the loss (4.24) with p = 1.

(¢) Find the MRIE of #% under the loss (4.24) with p = 2.

Let Xy, ..., X,, beii.d. with a Lebesgue p.d.f. (2/0)[1—(z/0)|l - (x),
where ¢ > () is an unknown scale parameter. Find Pitman’s estimator
of o for n = 2,3, and 4.

. Let X4, ..., X, be iid. from the Pareto distribution Pa(ea, o), where

o > () is an unknown parameter and o > 2 is known. Find the MRIE
of ¢ under the loss function (4.24) with p = 2.

. Assume that the sample X has a joint Lebesgue p.d.f. given by (4.25).

Show that a loss function for the estimation of g is invariant under
the location-scale transformations g..(X) = (rX; + ¢,...,rX,, + ¢},
r >0, c € R, if and only if it is of the form L (“=£).

. Prove Proposition 4.6, Theorem 4.10, and Corollary 4.2.

. Let X4,..., X, be iid. from the exponential distribution E(ju, o),

where p € R and ¢ > 0 are unknown.

(a) Find the MRIE of ¢ under the loss (4.24) with p = 1 or 2.
(b) Under the loss function (a — u)?/o?, find the MRIE of p.
(c) Compute the bias of the MRIE of x in (b).
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Suppose that X and Y are two samples with p.d.f. given by (4.30).
(a) Suppose that g, = g, = 0 and consider the estimation of n =
(oy/0.)" with a fixed h # 0 under the loss L(a/n). Show that the
problem is invariant under the transformations g(X,Y) = (rX,7'Y),
r > 0. r" > 0. Generalize Proposition 4.5, Theorem 4.8, and Corollary
4.1 to the present problem.

(b) Generalize the result in (a) to the case of unknown g, and g,
under the transformations in (4.31).

. Under the conditions of part (a) of the previous exercise and the loss

function (a —n)*/n?, determine the MRIE of 5 in the following cases:
(a) m = n =1, X and Y are independent, X has the gamma dis-
tribution I'(a,,v) with a known o, and an unknown v = o, > 0,
and Y has the gamma distribution I'(ay,, v) with a known «,, and an
unknown v = g, > O

(b) X is N,,,(0.021,,,), Y is N, (0, Jgfﬂ}, and X and Y are indepen-
dent;

(¢) X and Y are independent, X;’s are i.i.d. from the uniform dis-
tribution U(0,e,), and Y;’s are i.i.d. from the uniform distribution

U(0,ay,).

Let X;.....X,, and Y7..... Y,, be two independent samples. where X;’s
are i.i.d. having the p.d.f. o1 f (—L) with p, € R and ¢, > 0. and

€T —
0y
Y;'s are i.i.d. having the p.d.f. o' f (%ﬂ) with pt, € R and o, > 0.
i

Under the loss function (a —5)?/n? and the transformations in (4.31),
obtain the MRIE of § = ¢, /0, when

(a) f is the p.d.f. of N(0,1):

(b) f is the p.d.f. of the exponential distribution E(0, 1);

(¢) f is the p.d.f. of the uniform distribution U (—3, 3):

(d) In (a)-(c), find the MRIE of A = p,, — 11, under the assumption

that o, = 0, = ¢ and under the loss function (a — A)?/o”.

. Consider the general linear model (3.25) under the assumption that

e;’s are i.i.d. with the p.d.f. o= f(x /o), where [ is a known Lebesgue
p.d.f.

(a) Show that the family of populations is invariant under the trans-
formations in (4.32).

(b) Show that the estimation of 31" with [ € R(Z) is invariant under

the loss function L (”—_fi)

(¢) Show that the LSE 517 is an invariant estimator of 317, | € R(Z).
(d) Prove Theorem 4.10.

In Example 4.18, let 1" be a randomized estimator of p with probabil-
ity n/(n+ 1) being X and probability 1/(n + 1) being 5. Show that
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T has a constant risk that is smaller than the maximum risk of X.

. Let X be a single sample from the geometric distribution G(p) with

an unknown p € (0,1). Show that I(y(X) is a minimax estimator of
p under the loss function (a — p)*/[p(1 — p)].

In Example 4.19, show that X is a minimax estimator of g under the
loss function (a — p)? /o when © = R x (0, 2¢).

Let T' be a minimax (or admissible) estimator of ¢/ under the squared
error loss. Show that ¢;7T + ¢ is a minimax (or admissible) estimator
of e11+ ¢y under the squared error loss, where ¢; and ¢; are constants.

Let X be a sample from Fy with an unknown 0 = (6, 65, where #; €
©;. 7 = 1.2, and let Iy be a probability measure on ©3. Suppose tha,t
an estimator 7y minimizes supy, oo, | Rr(#)dIl2(02) over all estima-
tors T" and that supy .o, [ Rr,(0)dll2(02) = supy, co, g,co, Br,(0).
Show that 1} is a minimax estimator.

Let Xi....,X,, be iid. from N(p,,02) and Y7,.... Y, be i.id. from
Ny, o } Assume that X;’s and Y;’s are independent. Consider the
E"’:tllllrltlﬂll of A = p, — pp under th»9 squared error loss.

(a) Show that Y — X is a minimax estimator of A when o, and Ty
are known.

(b) Show that ¥ — X is a minimax estimator of A when o, € (0, c,]
and o, € (0,¢,], where ¢, and ¢, are constants.

Consider the general linear model (3.25) with assumption Al and the
estimation of 31" under the squared error loss, where | € R(Z). Show

that the LSE 317 is minimax if 02 € (0, ¢] with a constant c.

Let X be a random variable having the hypergeometric distribution
HG(r,0, N — 0) (Table 1.1, page 18) with known N and r but an
unknown f. Consider the estimation of /N under the squared error
loss.

(a) Show that the risk function of T(X) = aX/r + J is constant,
where o = {14+ /(N —7)/[r(N —1)]} "' and 3 = (1 —a)/2.

(b) Show that 7" in (a) is the minimax estimator of #/N and the Baves
estimator w.r.t. the prior

I'(2 L/N :
{E}:] [F( ;;-‘])g ("l'l )tﬂ?-l—r.'—l{]_ . t:]h—g—kf:—ldtg g — 1?2?

where ¢ = 3/(a/r — 1/N).

Let X be a single observation from N(j, 1) and let g have the im-
proper prior density m(p) = e* w.r.t. the Lebesgue measure on R.
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Under the squared error loss, show that the generalized Bayes esti-
mator of p is X + 1, which is neither minimax nor admissible.

Let Xy, .... X}, be ii.d. from the exponential distribution E(a,#) with
a known ¢ and an unknown a € R. Under the squared error loss,
show that X,y — #/n is the unique minimax estimator of a.

Let X;..... X, beii.d. from the uniform distribution {/(p — % 1+ %}
with an unknown g € R. Under the squared error loss, show that
(X(1) + X(n))/2 is the unique minimax estimator of p.

Let Xy,....X,, be ii.d. from the double exponential distribution
DE(p, 1) with an unknown g € R. Under the squared error loss,
find a minimax estimator of u.

. Let X4,..., X, be ii.d. binary random variables with P(X; = 1) =

p € (0,1). Consider the estimation of p under the squared error loss.
Using Theorem 4.14, show that X and (X + ~A)/(1 + A) with A > 0
and (0 <~ < 1 are admissible.

. Let X be a single observation. Using Theorem 4.14, find values of «

and 3 such that aX + [ are admissible for estimating X under the
squared error loss, when

(a) X has the Poisson distribution P(#) with an unknown # > 0;

(b) X has the negative binomial distribution N B(p,r) with a known
r and an unknown p € (0, 1).

. Let X be a single observation having the Lebesgue p.d.1. %El{ﬁ)ﬂgﬂ:_lmi,

0] < 1.

(a) Show that (@) =1 — 6%

(b) Show that if 0 < o < % then e« X + 7 is admissible for estimating
E(X) under the squared error loss.

In Example 4.23, find the UMVUE of § = (py, ..., pi) under the loss
function (4.37).

. Let X be a sample from Fy. 0 € © C RP. Consider the estimation of

f under the loss (0 —a)Q(0 —a)™, where a € A = © and @ is a known
positive definite matrix. Show that the Bayes action is the posterior
mean E(0|X = x), assuming that all integrals involved are finite.

. In Example 4.24, show that X is the MRIE of # under the squared

error loss, if

(a) f(z —0) =IIj_, fi(z; — 0;), where each f; is a known Lebesgue
p.d.f. with mean 0:

(b) f(z — 0) = f(|[x — 0l]) with [ 2f(Jz])dz = 0.
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81.

R2.

BJ3.

84.

Prove that X in Example 4.25 is a minimax estimator of ¢ under the
loss function (4.37).

. Let X,...., X} be independent random variables, where X; has the

binomial distribution Bi(p;,n;) with an unknown p; € (0,1) and a
known n;. For estimating # = (py, ..., px) under the loss (4.37), find a
minimax estimator of f and determine whether it is admissible.

. Show that the risk function in (4.42) tends to p as ||@] — oc.

. Suppose that X is N,(0,1,). Consider the estimation of # under the

loss (a — 0)Q(a — )7 with a positive definite p x p matrix ). Show
that the risk of the estimator

r(p —2)
1Q=1/2(X — o) ||

89 =c+ |1 - QX —¢)

is equal to
t(Q) — (2r — 1) (p — 2)2E(|Q2(X — )] 72).

Show that under the loss (4.37), the risk of Sm in (4.45) is given by
(4.46).

Suppose that X is N, (¢, V) with p > 4. Consider the estimation of
under the loss function (4.37).
(a) When V' = [,,, show that the risk of the estimator in (4.48) is

P~ {P o H}E‘C(HX - X*}pﬂ_z)'

(b) When V' = 2D with an unknown ¢¢ > () and a known matrix D,

show that the risk function of the estimator in (4.49) is smaller than
that of X for any # and o~.

Let X be a sample from a p.d.f. fy and T(X) be a sufficient statistic
for . Show that if an MLE exists, it is a function of 7' but it may
not be sufficient for #.

Let {fp : 0 € O} be a family of p.d.f.’s w.r.t. a o-finite measure, where
0 C RE: h be a Borel function from © onto A C R?, 1 < p < k; and
let £(A) = supg.; gy £(#) be the induced likelihood function for the

transformed parameter A. Show that if f € © is an MLE of @, then
A = h(#) is an MLE of A = h(#).

Let Xq,.... X,, be ii.d. with a p.d.f. fy. Find an MLE of # in each of
the following cases.
(a) fo(z) = E_lf{l ,,,,, gy(x), 0 is an integer between 1 and ;.
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(: e~ (=0 I{g oy (x), 0 > 0.
(c) folz) =0(1 — )"~ Iul}'[ ) 0=>1.
(d) fole) = 1Lz @-D/0-DL () 0 € (3,1).

(€) folx) =21t

(5) fol) = 0221 ) (z), 0> 0.

(g) folx) =0%(1—0)"" Loy (z). 0 € [% Ia]
(h) fg(x) is th»? p.d.f. of N (0, E?‘E] 0 e R.

(i) folz) is the p.d.f. of the exponential distribution E(u, o), 0 =
(pr.o) € R x (0, 00).

(j) fo(z) is the p.d.f. of the log-normal distribution LNy, 0?), 6 =
(p1,0%) € R x (0,00).

(k) fo(z) = Ipy(x) if 0 = 0 and fo(z) = (2¢/x) " Lo)(x) if 6 = 1.
(1) fo(a } = ?_“nr I{ﬂ aylz), a>0,5=0.

(m) fo(x { Jp*(1—p)? "o, ey (x), 0 =1,2, ..., where p € (0,1)

is knnwn

. Suppose that n observations are taken from N(g, 1) with an unknown

it. Instead of recording all the observations, one records only whether
the observation is less than (). Find an MLE of pu.

. Find MLE’s of # and e~ */? in Example 4.7.
. Let (Y1, 2441),.... (Y., Z,) be ii.d. with the Lebesgue p.d.f.

J‘_lﬁ-ﬂ_lﬁ_yﬂﬁ_szul.m}{H)I{u.mj (2),

where A > (0 and p > 0.

(a) Find the MLE of (A, ).

(b) Suppose that we only observe X; = min(Y;, Z;) and A; = 1 if
X; =Y, and A; = 0if X; = Z;. Find the MLE of (A, u).

In Example 4.33, show that the likelihood equation has a unique so-
lution that is the MLE of § = («, 7). Obtain iteration equation (4.53)
for this example. Discuss how to apply the Fisher-scoring method in
this example.

Let X,..., X,, be iid. from the discrete p.d.f.

folx) = [2](1 - ez_g)]_lﬁfﬂe_{?f{llg___”}{;1:},

where ¢ > (. Show that the likelihood equation has a unique root
when ¥ > 1. Discuss whether this root is an MLE of #.

Let X1, ..., X,, be ii.d. from the logistic distribution LG, ) (Table
1.2, page 20).

(a) Show how to find an MLE of g when g € R and o is known.

(b) Show how to find an MLE of ¢ when & > 0 and g is known.
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Let (X1,Y1),.... (X, Y,) be i.id. from a two-dimensional normal dis-
tribution with E(X;) = E(Y;) = 0, Var(X;) = Var(Y;) = 1, and an
unknown correlation coefficient p € (—1,1). Show that the likelihood
equation is a cubic in p and the probability that it has a unique root
tends to 1 as n — oc.

Let Xy,.... X, be iid. from the Weibull distribution W{(a, ) (Ta-
ble 1.2, page 20) with unknown o > 0 and # > 0. Show that
the likelihood equation is equivalent to h(a) = n='> "  logz; and

0 =n=' 3 0 xf, where h(e) = (321, =)™ X0, af logw; — o™,

and that the likelihood equation has a unique solution.

Consider the random effects model in Example 3.17. Assume that
(t = 0 and n; = ng for all 7. Provide a condition on X;;’s under which

a unique MLE of (02, 6%) exists and find this MLE.

Let X, ..., X, beiid. with the p.d.f. 0f(fx), where f is a Lebesgue
p.d.f. on (0,00) or symmetric about 0, and ¢ > 0 is an unknown
parameter. Show that the likelihood equation has a unique root if
xf'(x)/ f(x) is strictly decreasing for > 0. Verify that this condition
is satisfied if f is the p.d.f. of the Cauchy distribution C'(0,1).

. Consider the location family in §4.2.1 and the scale family in §4.2.2.

In each case,

(a) show that an MLE of the parameter, if it exists, is invariant:
(b) show that an RLE (root of the likelihood equation), if it exists, is
invariant.

Let X be a sample from Py, # € R. Suppose that Fy's have p.d.f.’s
fo w.r.t. a common o-finite measure and that {x : fy(x) > 0} does
not depend on #. Assume further that an estimator g of # attains
the Cramér-Rao lower bound and that the conditions in Theorem 3.3

hold for #. Show that € is a unique MLE of 0.

. Let Xy, j=1,....r > 1,i=1....,n, be independently distributed as

N(p;, 0%). Find the MLE of (p;. ..., pt,,. 0%). Show that the MLE of

o? is not a consistent estimator (as n — 0o).

Let X1,...,X,, be iid. from the uniform distribution U{0,#), where

6 > 0 is unknown. Let @ be the MLE of # and T be the UMVUE.

(a) Show that nmsep(#) — 62 and nmse;(0) — 26%; hence, the MLE
is inadmissible when n is large enough.

(b) Let Z, 9 be a random variable having the exponential distribution
E(a,d). Prove n*(0 — 0) —g4 Zy g and n*(0 — T) —4 Z_y 4. Obtain
the asvmptotic relative efficiency of # w.r.t. T
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99. Let X1, ..., X,, beii.d. from the exponential distribution E(a,#) with
unknown a and . Obtain the asymptotic relative efficiency of the

MLE of a (or #) w.r.t. the UMVUE of a (or #).

100. Let X,,..., X, be iid. from the Pareto distribution Pa(a,#) with
unknown a and 0.
(a) Find the MLE of (a,#).
(b) Find the asymptotic relative efficiency of the MLE of a w.r.t. the
UMVUE of a.

101. In Example 4.36, obtain the MLE of 3 under the canonical link and
assumption (4.58) but t; # 1.

102. Consider the GLM in Example 4.35 with ¢; = 1 and the canonical
link. Assume that > ) | Z7Z; is positive definite for n > ny. Show
that the likelihood equation has at most one solution when n > ng
and a solution exists with probability tending to 1.

103. Consider the linear model (3.25) with = = N, (0, V), where V is an
unknown positive definite matrix. Show that the LSE 3 defined by

(3.29) is an MQLE and that 3 is an MLE if and only if one of (a)-(e)
in Theorem 3.10 holds.

104. Let X; be a random wvariable having the binomial distribution
Bi(p;.n;) with a known n; and an unknown p; € (0,1}, j = 1.2
Assume that X;’s are independent. Obtain a conditional likelihood

function of the odds ratio 0 = lflpl / 1fiz, given X + Xo.

105. Let X} and X5 be independent from Poisson distributions P(u;) and
P(ji2), respectively. Suppose that we are interested in #; = j1/ps.
Derive a conditional likelihood function of #,, using (a) 05 = 1 (b)
Oy = pu1 + po; and (c) O = piq fis.

106. Assume model (4.66) with p = 2 and normally distributed i.i.d. &¢'s.
Obtained the conditional likelihood given (X, X3) = (z1, 22).

107. Prove the claim in Example 4.38.

108. Prove (4.70). (Hint: Show, using the argument in proving (4.77),

that n=! % log £(&,) — 5?;;3 log ¢(0)| = o,(1) for any random variable
‘Eﬂ = (H gﬂ.)')

109. Let X, ..., X,, be i.i.d. from N(u, 1) truncated at two known points

a < 3, i.e., the Lebesgue p.d.f. of X is

(V2r[®(83 — p) — (e — )]} e @21 4 (2),
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(a) Using Theorem 4.17, show that X is asymptotically efficient for
estimating # = E(X,).

(b) Show directly (without using Theorem 4.17) that the likelihood
equation for # has a solution when o < ¥ < 3.

In Exercise 84, check whether the regularity conditions of Theorem
4.16 are satisfied for cases (b), (c), (d), (e), (g}, (h), and (j). Obtain
asymptotic distributions of RLE’s for cases in which Theorem 4.17
can be applied.

In Example 4.30, show that the MLE (or RLE) of # is asymptotically
efficient by (a) applying Theorem 4.17; and (b) directly deriving the
asymptotic distribution of the MLE.

In Example 4.23, show that there is a unique asymptotically efficient

RLE of @ = (p1,....pi). Discuss whether this RLE is the MLE.

Let X1,...., X, beiid. with P(X; =0)=66° -4+ 1, P(X, = 1) =
0 — 207, and P(X, = 2) = 30 — 46, where 6 € (0, 3) is unknown.
Apply Theorem 4.17 to obtain the asymptotic distribution of an RLE
of 0.

In Exercise 91, show that the RLE of p is asymptotically distributed
as N(p, (1= p?)?/[n(1 + p?)]).

In Exercise 94, obtain the asyvmptotic distribution of the RLE of #
when f is the p.d.f. of the Cauchy distribution C'(0,1).

Let X4,..., X, be iid. from the logistic distribution LG(u, ) with
unknown g € R and ¢ > (0. Obtain the asymptotic distribution of

the RLE of (u, o).
In Exercise 92, show that the conditions of Theorem 4.16 are satisfied.

Assume the conditions in Theorem 4.16. Suppose that # = (6, ..., 0)
and there is a positive integer p < k such that dlog{(#)/96; and
dlog £(0)/00; are uncorrelated whenever i < p < j. Show that the
asymptotic distribution of the RLE of (#,....0,) is unaffected by
whether 0,41, .... 0 are known.

Let X1, ..., X, bel.id. random p-vectors from N, (p. ) with unknown
it and ¥. Find the MLE’s of g and ¥ and derive their asymptotic
distributions.

Let X{.....X, be iid. bivariate normal random vectors with mean
() and an unknown covariance matrix whose diagonal elements are
oi and o3 and off-diagonal element is oy02p. Let 0 = (01.03.p).
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Obtain I,(#) and [I,,(#)]~! and derive the asymptotic distribution of
the MLE of 4.

Let X1,...,X,, be i.i.d. each with probability p as N(u, 0?) and prob-
ability 1 — p as N(n,72), where # = (u,n, 0%, 7%, p) is unknown.

(a) Show that the conditions in Theorem 4.16 are satisfied.

(b) Show that the likelihood function is unbounded and therefore, an
MLE does not exist.

Let X, ..., X, and Y7,..., Y}, be independently distributed as N (y, r:rg}
and N(p.7%), respectively, with unknown 6 = (u, 0%, 7%). Find the
MLE of ¢ and show that it is asymptotically efficient.

In Exercise 93, find the asymptotic distribution of the MLE of (o2, o%).

Under the conditions in Theorem 4.18, prove (4.85) and (4.86).

Assume linear model (3.25) with ¢ = N,(0.0°I,) and a full rank

Z. Apply Theorem 4.18 to show that the LSE L:-' is asymptotically
efficient. Compare this result with that in Theorem 3.12.

Apply Theorem 4.18 to obtain the asymptotic distribution of the RLE
of 3 in (a) Example 4.35; and (b) Example 4.37.

Let X1, ..., X, be iid. from the logistic distribution LG (p, o), p € R,
o > (). Using Newton-Raphson and Fisher-scoring methods, find

(a) one-step MLE’s of g when ¢ is known;

(b) one-step MLE’s of & when g is known;

(c) one-step MLE’s of (u, o).

(d) Show how to obtain y/n-consistent initial estimators in (a)-(c).

Under the GLM (4.55)-(4.58),

(a) show how to obtain a one-step MLE of 3, if an initial estimator
,E?H‘” 1s available:

(b) show that under the conditions in Theorem 4.18, the one-step

MLE satisfies (4.81) if ||(3Y” — 8)[L,.(8)]2]| = 0,(1).

In Example 4.40, show that the conditions in Theorem 4.20 concern-
ing the likelihood function are satisfied.

Let X1,..., X, be ii.d. from the logistic distribution LG(u, o) with
unknown g € R and ¢ > 0. Show that the conditions in Theorem
4.20 concerning the likelihood function are satisfied.



Chapter 5

Estimation in
Nonparametric Models

Estimation methods studied in this chapter are useful for nonparametric
models as well as for parametric models in which the parametric model
assumptions might be violated (so that robust estimators are required)
or the number of unknown parameters is exceptionally large. Some such
methods have been introduced in Chapter 3: for example, the methods
that produce UMVUE’s in nonparametric models, the U- and V-statistics,
the LSE’s and BLUE’s, the Horvitz-Thompson estimators, and the sample
(central) moments.

The theoretical justification for estimators in nonparametric models,
however, relies more on asymptotics than that in parametric models. This
means that applications of nonparametric methods usually require large
sample sizes. Also, estimators derived using parametric methods are asymp-
totically more efficient than those based on nonparametric methods when
the parametric models are correct. Thus, to choose between a parametric
method and a nonparametric method, we need to balance the advantage of
requiring weaker model assumptions (robustness) against the drawback of
losing efficiency which results in requiring a larger sample size.

It is assumed in this chapter that a sample X = (X4,..., X,,) is from a
population in a nonparametric family, where X;’s are random vectors.

5.1 Distribution Estimators

In many applications the c.d.f.’s of X;’s are determined by a single c.d.f.
F on R%: for example, X;’s are i.i.d. random d-vectors. In this section we
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consider the estimation of F' or F(t) for several t's, under a nonparametric
model in which very little is assumed about F.

5.1.1 Empirical c.d.f.’s in i.i.d. cases

For i.i.d. random variables X;...., X,,, the empirical c.d.f. F}, is defined in
(2.31). The definition of the empirical c.d.f. in the case of X; € R? is
analogous. For t € R%, let A(t) be the set of all s € R? such that all
components of t — s are nonnegative. Then the empirical c.d.f. based on X

is defined by
F,(t) = Z Ly (X t e R™. (5.1)

Similar to the case of d = 1 (Example 2.26), F},(t) as an estimator of F(t)
has the following properties. For anv t € RY, nkF,(t) has the binomial
distribution Bi(F'(t),n); F, (1) is unbiased with variance F(t)[1 — F(t)]|/n:
F,.(t) is the UMVUE under some nonparametric models; and F,(f) is /n-
consistent for F'(t). For any m fixed distinct points ¢, ..., f,, in R*"{, it follows
from the multivariate CLT (Corollary 1.2) and (5.1) that as n — oc,

V[ (En(th), oo Fr(tim)) = (F(t1), . F(t)) | —a N (0, 2), (5.2)

where ¥ is the m x m matrix whose (i, j)th element is
P(Xy € A(t) N A(ty)) — F(t)F(t;).

Note that these results hold without any assumption on F'

Considered as a function of £, F|, is a random element taking values in
F, the collection of all c.d.f.’s on RY. As n — oc, /n(F, — F) converges
in some sense to a random element defined on some probability space.
A detailed discussion of such a result is beyond our scope. and can be
found, for example, in Shorack and Wellner (1986). To discuss some global
properties of F,, as an estimator of F' € F., we need to define a closeness
measure between the elements (c.d.f.’s) in F.

Definition 5.1. Let Fy be a subset of F. A function p from Fy x Fy to
[0.00) is called a distance or metric on Fy if and only if for any G, in Fy,
(a) o(G1,G2) = 0 if and only if G} = G;

I[h:] ﬂ{pl pg} = l{_}{ﬂg Gl::l

{{":] El J’l Pg) ":: ﬂ{{ﬁrl :;:] Q{G;:}FGQ:]. i

L=t

The most commonly used distance is the sup-norm distance g, defined

on F:
QE(GlFGg) = sup |G1[t) — Gg(ﬁ”, Gj c F. (5. J)

te 4
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The following result concerning the sup-norm distance between F,, and F
is due to Dvoretzky, Kiefer, and Wolfowitz (1956).

Lemma 5.1. (DKW’s inequality). Let F), be the empirical ¢.d.f. based on
iid. X;.....X,, from ac.df. F on R%

(i) When d = 1, there exists a positive constant €' (not depending on F')
such that

P(Qm{Fu F:] = 3) E {TE_EHEE; z = ”.. n = J. 2, ...

(ii) When d = 2, for any € > 0, there exists a positive constant C, 5 (not
depending on F') such that

P(0o(Fp, F) > 2) < Coge 2™ 25 0,m=1,2,.... 1

The proof of this lemma is omitted. The following results useful in
statistics are direct consequences of Lemma 5.1.

Theorem 5.1. Let F,, be the empirical c.d.f. based on 1.i.d. X, .... X,
from a c.d.f. F on R%. Then

(1) ooc(Fpn, F') —4. 0 as n — oo;

(ii) E[y/nos(Fy,, F)]* = O(1) for any s > 0.

Proof. (i) From DKW’s inequality,

Hence, the result follows from Theorem 1.8(v).
(ii) Using DKW’s inequality with z = y'/*/\/n and the result in Exercise
4h of §1.6. we obtain that

Elvnos(F,. F)]* = /x P(vVnos(Fy. F) > y'/*)dy

(]

=0 a/
< Ced [ e” BTN dy

()

= O(1)
as long as 2 —e > 0. 1§

Theorem 5.1(i) means that F,(t) —,. F(t) uniformly in t € R%, a
result stronger than the strong consistency of F,,(t) for every . Theorem
5.1(ii) implies that /no.(Fn, F) = O,(1), a result stronger than the \/n-
consistency of Fj,(t). Again, these results hold without any condition on
the unknown F.



280 5. Estimation in Nonparametric Models

Let p > 1and F, = {G € F: [|[t|PdG < o}, which is the subset of
c.d.f.’s in F having finite pth moments. Mallows™ distance between (+; and

(2 in F, is defined to be
Qﬂi"ﬂ(Gl: Gy) = inf(E||Y, — Y5|[P)V/7, (5.4)

where the infimum is taken over all pairs of ¥; and Y5 having c.d.f.’s (; and
(i, respectively. Let {G;:j =0,1,2,...} C Fp,. Then g, (G5, Gp) — 0 as

j — oc if and only if [ ||t||PdG; — [ ||t]|[PdGy and G(t) — Gy(t) for every
t € RY at which Gy is continuous. It follows from Theorem 5.1 and the

SLLN (Theorem 1.13) that QMF'[FTHF) —as 0If F € T,

When d = 1. another useful distance for measuring the closeness be-
tween [, and F' is the L, distance (p > 1):

l/p

QLP(GI,GE) = [/ |G (t) — Ga(t)|Pdt : G e Fy. (5.5)
A result similar to Theorem 5.1 is given as follows.

Theorem 5.2. Let F), be the empirical c.d.f. based on i.i.d. random vari-

ables X1,....X,, from a c.d.f. FF € F,. Then

{i) QLP{FTHF) —+a.s. 8

(ii) E[vnor, (Fn, F)] = O(1)if 1 <p < 2and [{F(t)[1 - F(t)]}*/?dt < o0,
or p = 2.

Proof. (i) Since [0y (Fn. F)]" < [00c(Fn, F)P~'op, (Fy. F)] and, by The-
orem 5.1, oo (F,, F') —4.. 0, it suffices to show the result for p = 1. Let
Y; = [ _[[(_aon(Xi) — F(t)]dt. Then Yi,....,Y,, are i.i.d. and

BIYi| < [ Bl () - FOldt =2 [ Pl - F(o)dt.

which is finite under the condition that F € F,. By the SLLN,

0 T
f Fu(t) — FO)]dt = ~ 3 ¥; a0 E(Y3) = 0. (5.6)

— ¥ g=1

Since [F,,(t) — F(t)]- < F(t) and fi]% F(t)dt < oo (Exercise 45 in §1.6), it
follows from Theorem 5.1 and the dominated convergence theorem that

0
/ (F, (1) — F(t)]_dt —y.. 0,

— 0

which with (5.6) implies

[y |
—_ ,:I
S

)
/ FL () — F(t)|dt —a.. 0. (5.
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The result follows since we can similarly show that (5.7) holds with fiﬂ
replaced by fﬂx .
(ii) When 1 < p < 2, the result follows from

1/p
Elow, (Fay F)) < { [ BIE(0) - )P}
1/p
{ [1B1E.0 - F{t)ﬁwt}

1/p
/2 { f (F(H)[1 - F{t)]}?"”dt}
= O(n~Y?),

| M

where the two inequalities follow from Jensen’s inequality. When p > 2,

E[QLJJ (Fu, F)] < E {[QDE-{FTHF}]I_MTJ[QLE{:FMF)]EHP}

e 1/qg a1/
< { Blowe(Fn, )]0 -20 L T { Bloy, (F, F)P}

: 5. ) 1/a : 1/p
- {(}{n—“—if’ﬂffﬁ}} {E/|Fn{t) ~ F(t)ﬁdt}

O(n~—"1=2/p)/2 1 F F(t\d o
- O(n {5 [ Fon- Fo]
= O(n %),

where §+ % = 1; the second inequality follows from Holder's inequality (see,

e.g., Serfling (1980, p. 352)); and the first equality follows from Theorem
5.1(ii). n

5.1.2 Empirical likelihoods

In §4.4 and §4.5, we have shown that the method of using likelihoods pro-
vides some asymptotically efficient estimators. We now introduce some
likelihoods in nonparametric models. This not only provides another justi-
fication for the use of the empirical c¢.d.f. in (5.1), but also leads to a useful
method of deriving estimators in various (possibly non-i.i.d.) cases, some
of which are discussed later in this chapter.

Let Xq,....X,, be iid. with F' € F and Fg be the probability measure
corresponding to G € F. Given Xy = x4...., X,, = x,,. the nonparametric
likelihood function is defined to be the following functional from F to [0, 0c):

UG) = H Po({z:}), Ge&. (5.8)
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Apparently, £(G) = 0 if Pg({x;}) = 0 for at least one i. The following
result, due to Kiefer and Wolfowitz (1956), shows that the empirical c.d.f.
F,, is a nonparametric maximum likelihood estimator of F'

Theorem 5.3. Let X, .... X, be iid. with F € F and £(G) be defined by
(5.8). Then F,, maximizes £(G) over GG € F.

Proof. We only need to consider ¢ € F such that ¢(G) = 0. Let ¢ € (0, 1]
and F(c) be the subset of F containing G's satistying p; = Pg({x;}) = 0,
i = 1,..,n, and Y p; = ¢. We now apply the Lagrange multiplier
method t::: solve the problem of maximizing #(G) over G € F(c). Define

The solution is p; = ¢/n, i = 1,....,n, A = —(¢/n)""'. It can be shown
I[EKEI‘{"iSP:J that this solution is a maximum of H(py,...,pn, A) over p; > (0,
i=1,...n. Y ., pi = c. This shows that

max /(G c/n)™,

Jnax £(G) = (c/n)

which is maximized at ¢ = 1 for any fixed n. The result follows from
Pp ({z;}) =n~! for given X; = x;,i=1,....,n. 1

From the proof of Theorem 5.3, F,, maximizes the likelihood #(G) in
(5.8) over p; > 0,i=1,....,n,and > p; = 1, where p; = Pg({z;}). This
method of deriving an estimator of F' can be extended to various situations
with some modifications of (5.8) and/or constraints on p;’s. Modifications
of the likelihood in (5.8) are called empirical likelihoods (Owen, 1988, 1990);
Qin and Lawless, 1994). An estimator obtained by maximizing an empirical
likelihood is then called a mazimum empirical likelihood estimator (MELE).
We now discuss several applications of the method of empirical likelihoods.

Consider first the estimation of /' with auxiliary information about F
(and i.i.d. X1, ..., X,,). For instance, suppose that there is a known function
u from R to R® such that

[T.L(ﬂ_?::ldF = () (5.9)

(e.g.. some components of the mean of F' are 0). It is then rs-a,sc:na,hlﬁ t{:
expect that any estimate F' of F has property (5.9), i.e., [ u( =
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which is not true for the empirical c¢.d.f. F}, in (5.1), since

1 T

f‘ii{ﬂ?}dfﬂl == Z-M{Xi} # ()

even if Flu(X,)] = 0. Using the method of empirical likelihood, a natu-
ral solution is to put another constraint in the process of maximizing the
likelihood. That is, we maximize £(G) in (5.8) subject to

>0, i=1,..n, Zpi_ = 1. and ZPHL(I?;] = (), (5.10)

where p; = Pg({x;}). Using the Lagrange multiplier method and a similar
argument to the proof of Theorem 5.3, it can be shown (exercise) that an

MELE of F'is

F(t) =) pilaq)(Xi), (5.11)
P
where
pi = {n[l+u(X)A]}H  i=1,..n, (5.12)
and A, € R* is the Lagrange multiplier satisfving
i ) TL EL{XE)
iu(X;) = = (). 0.13
Z;p 4(Xi) ZE [l + u(X,)A7] (5:13)

Note that F' reduces to F,if u=0.

To see that (5.13) has a solution asymptotically, note that

0 |1 ~1 1 - u(X;)
3_}1 E ;lﬂg(l + TL(X'I)}'- )] o Hzl 1+ ?.!.{:Xi)/\’kT

and

a° 1 — _ T 1 — Tul( X;
ONONT [E;l“g(l u(Xa)A )] T & T u(X)AT

which is negative definite if Var(u(X)) is positive definite. Also,

a 1 T _
E { o [H Z; log (1 + w(X:)A )]

Hence, using the same argument as in the proof of Theorem 4.18, we can
show that there exists a unique sequence {A,(X)} such that as n — oo,

" u(X;)
P =0] —1 and A = 0. n.14
(Z n[l + u(X;)AZ)] ) “‘“ ; (5.14)

=

} = Elu(X;)] = 0.
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Theorem 5.4. Let Xl,..ﬁ.,Xn be 1.i.d. with F' € F., u be a function on
R* satisfying (5.9), and F be given by (5.11)-(5.13). Suppose that U =
Var(u(Xy)) is positive definite. Then, for any m fixed distinct ¢4, ...,1,, in

Rd!
VA[(E(t)s o F(tm)) = (F(t1), o F(tm))] —a Ni(0,2,,), (5.15)

where

Yu=3—-WTUW,

W o= ([W(t)]7, oot [W(tm)]7), W(t;) = E[u(X1)L e,y (X1)] (A(t) is given
in (5.1)), and ¥ is given in (5. 2).

Proof. We prove the case of m = 1. The case of m = 2 is left as an
exercise. Let & = n~ !> " u(X;). It follows from (5.13), (5.14), and
Taylor’s expansion that

'HT — 1 Z[u }] H{X) + ﬂp{”}"-‘l;U'

By the SLLN and CLT,
U™ =\ + o,(n™'?).

Using Taylor’s expansion and the SLLN again, we have

TL

-
(N
ol
—
=+
L
s
p
——
=
-
[T
S
|
—_
(-
e
=
——
-~
R —
| —— |
—
|
=

= == ZI;‘[{H X )“(X }}lﬂ, +GP( IEE)

1=1
= —W ()AL + 0,(n~1/?)
= W)U a" + o,(n~12),

_ Fﬂ.,{t) — F(t) - W(HU '@ + op(n~/?)

=—Z{f,d.ﬁ (X:) = F(t) = WU u(X)]"} + 0p (02,

The result follows from the CLT and the fact that
Var (W () U u(X;)]7) = W) UTUU W (8)]7
= WU W ()"
— E{W (U [u(X)] Lagy (X2)}
= Cov(Law (X)), WU u(X)]7). ¥
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Comparing (5.15) with (5.2), we conclude that Fis asymptotically more
efficient than F),.

Example 5.1 (Survey problems). An example of situations in which we
have auxiliary information expressed as (5.9) is a survey problem {E:-:amp]%
2.3) where the population P = {yy, ..., yn } consists of two- dlmn.f-ll'-;mna,l Yi's
y; = (y15,Y25). and the population mean Yo = N1 Z ..... ., Y2 1s known.
For example, suppose that y;; is the current year's income of unit j in
the population and ys; is the last year’s income. In many applications
the population total or mean of y»;’s is known, for example, from tax
return records. Let X,....,X,, be a simple random sample (see Example

2.3) selected from P with replacement. Then X;'s are i.i.d. bivariate random
vectors whose c.d.f. is

F(t) = N > Lag(y;)- (5.16)

If Y is known, then it can be expressed as (5.9) with u(z,,25) = 25 — Y.
In survey problems X;'s are usually sampled without replacement so that
Xi.....X,, are not i.i.d. However, for a simple random sample without
mpla,f»?m-?nt (5.8) can still be treated as an empirical likelihood, given
X;’s. Note that F' in (5.16) is the c.d.f. of X;, regardless of whether X;’s
are sampled with replacement.

If X = (X1,....,X4) is not a simple random sample, then the likelihood
(5.8) has to be modified. Suppose that m; is the probability that the ith

unit is selected (see Theorem 3.15). Given X = {y;,i € s}, an empirical

likelihood is
™ Lfm; E oA
= [TPe(whl™ = [T»"™ (5.17)
i€ S ic8
WhFl‘F pi = Po({y:}). With the auxiliary information (5.9), an MELE of F
in (5.16) can be obtained by maximizing /() in (5.17) subject to (5.10).
In this case F' may not be the c.d.f. of X;, but the c.d.f.’s of X;’s are

determined by F and 7;’s. It can be shown (exercise) that an MELE is
given by (5.11) with

pi = / (5.18)
mi[l +H{Ja)2 2 T

and

> i ) =0 (5.19)

— m[l+ w(y; ) AT ]

If m; = a constant, then the MELE reduces to that in (5.11)-(5.13). If
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u(x) = 0 (no auxiliary information), then the MELE is

. 1
F(t) = E :;Iﬂitj{;}'a /
1E8 Ti

ics !

which is a ratio of two Horvitz-Thompson estimators (§3.4.2). Some asymp-
totic properties of the MELE F can be found in Chen and Qin (1993). 8

The second part of Example 5.1 shows how to use empirical likelihoods
in a non-i.i.d. problem. Applications of empirical likelihoods in non-i.i.d.
problems are usually straightforward extensions of those in i.i.d. cases. The
following is another example.

Example 5.2 (Biased sampling). Biased sampling is often used in applica-
tions. Suppose that n = ny +---+n,. k£ > 2; X;’s are independent random

variables; Xp,..., X, are i.i.d. with F; and X, +q,..., X, are i.i.d. with
the c.d.f.
t o0
/ 'iﬂj+1{5:‘dp'[5}// wj1(s)dF(s),
Y i
j = 1,....k — 1, where w;’s are some nonnegative functions. A simple

example is that X;,.... X, are sampled from F and X, ,i,...,X,, are
sampled from F' but conditional on the fact that each sampled value exceeds
a given value zq (i.e., wo(s) = [, ~)(s)). For instance, X;’s are blood
pressure measurements; X, ..., X, are sampled from ordinary people and
Xo 41, -y Ay, are sampled from patients whose blood pressures are higher
than xy. The name biased sampling comes from the fact that there is a
bias in the selection of samples.

For simplicity we consider the case of & = 2. since the extension to k > 3
is straightforward. Denote ws by w. An empirical likelihood is

— S w(z) Pa({x;
1& = Irate) T1 “Faridy

I

Z'Piw{;ri)] H'pi H w(x;), (5.20)

1=1 i=mn1+1

where p; = Pg({z;}). An MELE of F' can be rc:hta,illf-d by ma:{imizing the
empirical likelihood (5.20) subject to p; > 0, ey and YT p =
1. Using the Lagrange 1111111:113]191‘ method we can shmﬁ. (exercise) that an

MELE F is given by (5.11) with

pi = [n1 + now(X;) /], i=1,..n, (5.21)
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where w0 satisfies
. i w{xi}
o ‘ny + now(X;) /o

An asymptotic result similar to that in Theorem 5.4 can be established

(Vardi, 1985; Qin, 1993). 1
Our last example concerns an important application in survival analysis.

Example 5.3 (Censored data). Let Z1,..., Z, be survival times that are
1.i.d. nonnegative random variables from a c.d.f. F'. and Y7.....Y,, be i.i.d.
nonnegative random variables independent of Z;’s. In a variety of applica-
tions in biostatistics and life-time testing, we are only able to observe the
smaller of Z; and Y, and an indicator of which variables is smaller:

X‘i — Illill(zi,.l/i), 6‘& — I{[]!y?.:,{Z.,;]? 7= 1, ceay 1L

This is called a random censorship model and Y;'s are called censoring times.
We consider the estimation of the survival distribution F'; see Kalbfleisch
and Prentice (1980) for other problems involving censored data.

An MELE of F can be derived as follows. Let x4y < --- < x(,, be
ordered values of X;’s and é;; be the é-value associated with x;,. Consider
a c.d.f. G that assigns its mass to the points z(yy,...,x(,) and the interval
((n).00). Let p; = Po({zy}t), 1 =1,...n, and p,p1 = 1 = G(z(,)). An

MELE of F'is then obtained by maximizing

n n+41 =0
8 .
oa =117 D2 » (5.22)
i=1 J=14+1
subject to
n+1
p; >0, i=1...n+1, Zpi= . (5.23)
=1
[t can be shown (exercise) that an MELE is
n+1
F(f:] - Zﬁij{}f{i_lj:x[{ﬂ(t)? {524)

A . l - S "5-"1} - '5 - . B _Z..‘_-
pl _ at p'!- — 'I"?-—'E.--|—]_ (1 ﬂ_j_|_l)'_- 1T = 2._,..._._?1._, p'ﬂ--l—]. — ]_ pj"
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The F in (5.24) can also be written as (exercise)

Pit)y=1- ] (1 -ii-ﬁ) (5.25)

.r"h-[ij Et

which is the well-known Kaplan-Meier (195 )8) product-limit estimator. Some

asymptotic results for F in (5.25) can be found, for example, in Shorack
and Wellner (1986).

5.1.3 Density estimation

Suppose that X,...., X,, are i.i.d. random wvariables from F and that F' is
unknown but has a Lebesgue p.d.f. f. Estimation of F' can be done by
estimating f, which is called density estimation. Note that estimators of F
derived in §5.1.1 and §5.1.2 do not have Lebesgue p.d.f.’s.

Since f(t) = F'(t) a.e., a simple estimator of f(t) is the difference
quotient

Fn{t + }ln) - Fn(t " :’"ﬂ}

TLt —
f(:] 2}"1’1

teR, (5.26)

where F), is the empirical c.d.f. given by (2.31) or (5.1) with d = 1, and
{An} is a sequence of positive constants. Since 2nA,, f,,(f) has the binomial
distribution Bi(F(t + A,) — F(t — An),n),

[fu )] — f{ﬂ if A, = 0asn— oo

and

‘Jar(fﬂ_{t)) — 0 if A,, — 0 and nA, — 0.

Thus. we should choose A,, converging to 0 slower than n=!. If we assume
that A, — 0. nA,, — oo, and [ is continuously differentiable at {f, then it
can be shown (exercise) that

mse; o (F) = 2O g( 1 )+0{hﬁ_) (5.27)

2nA, nA,

and, under the additional condition that nA? — 0,

VadalFa(t) = F(B)] —a N(0, 17(2)). (5.28)

A useful class of estimators is the class of kernel density estimators of

the form
. 1 |
fty= == w (f;—*‘ﬁ) (5.29)
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where w is a known Lebesgue p.d.f. on R and is called the kernel. If we
choose w(t) = 51_y 1)(t), then f(t) in (5.29) is essentially the same as the

so-called histogram. The bias of f(t) in (5.29) is

B0 - 10 = 1 [ w(552) 1)z - 10

- f W) [F(t = Any) — F(O]dy.

If fis bounded and is continuous at , then. by the dominated convergence
theorem (Theorem 1.1), the bias of f(t) converges to 0 as A,, — 0; if f'is

bounded and is continuous at t and [ [tjw(t)dt < oo, then the bias of f(t)
is O(M,,). The variance of f(t) is

var(f{t}) nii Var (w (t;fl ))
- ﬁ,}i [w(zrz)rf(z)dz
L ()]

1

_ / ()] f(t = Any)dy + O (?’1_1)

I

nA,

HJ‘(].f(f) 1
nA, o (n.h,,.l)

if f is bounded and is continuous at ¢ and wy = [[w(t)]?dt < oc. Hence, if
An — 0 and nA,, — oo and if f’ is bounded and is continuous at ¢, then

I

wo f(t) 2
mse ¢, (F) = o + O(A;).

Using the CLT (Theorem 1.15), one can show (exercise) that if A,, — 0,
n\, — 0o, f is bounded and is continuous at ¢, and [[w(t)]*T?dt < o for
some & > (), then

Vi F(t) — E[f ()]} —a N(0,wof(t)). (5.30)
Furthermore, if f’ is bounded and is continuous at ¢ and nA? — 0. then
VIMAELF ()] - F()) = 0( n,wﬂ) 0

and, therefore, (5.30) holds with E[f(t)] replaced by f(t).

Similar to the estimation of a c.d.f., we can also study global properties
of f,, or f as an estimator of the density curve f, using a suitably defined
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........... - True p.d.f
i Estimator {5.26)
5 | - -- Estimator {5.29)
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Figure 5.1: Density estimates in Example 5.4

distance between f and its density estimator. For example, we may study
the convergence of sup,. [f(t) — f(t)| or [|f(t) — f(t)|*dt. More details
can be found, for example, in Silverman (1986).

Example 5.4. An ii.d. sample of size n = 200 was generated from N(0, 1).
Density curve estimates (5.26) and (5.29) are plotted in Figure 5.1 with the
curve of the true p.d.f. For the kernel density estimator (5.29), w(t) = %F_ i
is used and A, = 0.4. From Figure 5.1, it seems that the kernel estimate

(5.29) is much better than the estimate (5.26). §

There are many other density estimation methods, for example, the
nearest neighbor method (Stone, 1977), the smoothing splines (Wahba,
1990), and the method of empirical likelihoods described in §5.1.2 (see,
e.g., Jones (1991)), which produces estimators of the form
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5.2 Statistical Functionals

In many nonparametric problems we are interested in estimating some char-
acteristics (parameters) of the unknown population, not the entire popula-
tion. We assume in this section that X;’s are i.i.d. from an unknown c.d.f.
F on R?. Most characteristics of F' can be written as T(F'), where T is a
functional from F to R*. If we estimate F' by the empirical c.d.f. F}, in
(5.1), then a natural estimator of T(F') is T(F},), which is called a statistical
functional.

Many commonly used statistics can be written as T(F},) for some T.
Two simple examples are given as follows. Let T(F') = [ (x)dF(z) with an
integrable function 1, and T(F},) = [ (2)dF,(x) =n~'3 " | ¥(X;). The
sample moments discussed in §3.5.2 are particular examples of this kind of
statistical functionals. For d = 1, let T(F) = F~!(p) = inf{x : F(x) > p}.
where p € (0.1) is a fixed constant. F~!(p) is called the pth quantile of F.
The statistical functional T(F,,) = F'(p) is called the pth sample quantile.
More examples of statistical functionals are provided in §5.2.1 and §5.2.2.

In this section we study asymptotic distributions of T(F},). We focus on
the case of real-valued T (s = 1), since the extension to the case of s = 2 is
straightforward.

5.2.1 Differentiability and asymptotic normality

Note that T(F),) is a function of the “statistic” F},. In Theorem 1.12 (and
§3.5.1) we have studied how to use Tavlor's expansion to establish asymp-
totic normality of differentiable functions of statistics that are asymptot-
ically normal. This leads to the approach of establishing asymptotic nor-
mality of T(F},) by using some generalized Taylor expansions for functionals
and using asymptotic properties of F,, given in §5.1.1.

First., we need a suitably defined differential of T. Several versions of
differentials are given in the following definition.

Definition 5.2. Let T be a functional on Fy, a collection of c.d.f.’s on RY,
and let D = {c(G, — G2) :ceR, G; € Fy, j=1,2}.

(i) A functional T on Fy is Gateaux differentiable at G € Fy if and only if
there is a linear functional Lg on D (i.e., Lg(c1 A1 + e2As) = ¢1Lg(Aq) +
coLg(As) for any A; € D and ¢; € R) such that A € D and G + tA € F

imply

) T(G + tA) — T(G)
lim

t—=() i

.- L{;(ﬂ} = ().

(ii) Let ¢ be a distance on Fy. Suppose that ||c(Gy — Ga)|| = |c¢|o(G1, Ga),
c € R, G; € Fy, defines a norm on D (ie., |Al = 0 and = 0 if and only
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if A =0, |lcA| = |c[||A]l, and [|A + A| < ||A]| + |A|, A € D, A € D,
c € R). A functional T on F; is p-Hadamard differentiable at G € F if
and only if there is a linear functional Ly on D such that for any sequence
of numbers t; — 0 and {A, A, j=1,2,...} C D satisfying ||A; — A — 0
and G+ t;A; € Fy,

TG +t.A) - TG

lim (G +18,) = T(G) — La(4A;)
J—oa ty

(iii) Let o be a distance on Fy. A functional T on Fy is o-Fréchet differen-
tiable at G € & if and only if there is a linear functional L; on D such

that for any sequence {G';} satisfying G; € Fy and o(G;, G) — 0,

lim T(G;) = T(G) — Lg(G; — G)

=0. 1
J—0e Q(Gj, G)

The functional Ly is called the differential of T at . If we define
h(t) = T(G + tA), then the Gateaux differentiability is equivalent to the
differentiability of the function h(t) at ¢ = 0, and L (A) is simply A'(0). Let
6, denote the d-dimensional c.d.f. degenerated at the point z and ¢g(x) =
Lg(6, — G). Then ¢p(z) is called the influence function of T at F', which
is an important tool in robust statistics (see Hampel (1974)).

If T is Gateaux differentiable at I, then we have the following expansion

(taking t = n~ Y2 and A = /n(F,, — F)):

VR[T(E,) — T(F)] = Lp(vn(F, — F)) + R,.. (5.31)

Since Lg is linear,

1
Le(Vi(F, — F)) = —= > ¢p(X:) =4 N(0,0%) (5.32)
N
by the CLT, provided that
El¢pp(X1)]=0 and o% = E[¢op(X1)]? < x (5.33)

(which is usually true when op is l]D‘lllldFd or when I has some finite
moments). By Slutsky’s theorem and (5.32),

V/T_I[T{Fﬂ) — T(F)] —a ﬂ"'r'[”:{?%) (5.34)

if R,, in (5.31) is o,(1).
Unfortunately, Gateaux differentiability is too weak to be useful in es-
tablishing R, = o,(1) (or (5.34)). This is why we need other types of
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differentiability. Hadamard differentiability, which is also referred to as
compact differentiability, is clearly stronger than Gateaux differentiability
but weaker than Fréchet differentiability (exercise). For a given functional
T, we can first find L by differentiating h(t) = T(G'+tA) at t = 0 and then
check whether T is p-Hadamard (or o-Fréchet) differentiable with a given o.
The most commonly used distances on F are the sup-norm distance p.
in (5.3) and the L, distance p L, n (5.5). Their corresponding norms on D

are ||A]|.c =sup, |A(z)| and |[|A||L, =[[ |[A(z)[Pdz]*/?, A € D.

Theorem 5.5. Let X;. ..., X,, be iid. from a c.d.f. F' on R
(i) If T is p-Hadamard differentiable at F', then R,, in (5.31) is op(1).
(ii) If T is o-Fréchet differentiable at F' with a distance p satisfying

’M/EQ{FH:F:] - OD{I)'.* '[535)

then R,, in (5.31) is o,(1).

(iii) In either (i) or (ii), if (5.33) is also satisfied, then (5.34) holds.
Proof. Part (iii) follows directly from (i) or (ii). The proof of (i) involves
some high-level mathematics and is omitted; see, for example, Fernholz
(1983). We now prove (ii). From Definition 5.2(iii), for any ¢ > 0, there is
a & > 0 such that |R,| < e\/no(F,., F) whenever o(F,,F) < §. Then

P(|R.| >n) < P (Vno(Fu,F) >n/e) + P(o(F,, F) > §)
for any n > 0, which implies

limsup P (|R,| > n) < limsup P (v/no(F,, F) > n/e) .

The result follows from (5.35) and the fact that € can be arbitrarily small.
|

Since p-Fréchet differentiability implies o-Hadamard differentiability,
Theorem 5.5(ii) is useful when p is not the sup-norm distance. There
are functionals that are not p,.-Hadamard differentiable {and hence not
0~-Fréchet differentiable). For example, if d = 1 and T(G) = g([ zdG)
with a differentiable function g. then 7' is not necessarily p..-Hadamard
differentiable, but is p; -Fréchet differentiable (exercise).

From Theorem 5.2, condition (5.35) holds for g, under the moment
- - - - ‘rll
conditions on F' given in Theorem 5.2.

Note that if p and g are two distances on Fy satisfying g(G1,G2) <
co(G1, (o) for a constant ¢ and all G; € Fy, then g-Hadamard (Fréchet)
differentiability implies p-Hadamard (Fréchet) differentiability. This sug-
gests the use of the distance pyp = 05 + 0 L, which also satisfies (5.35)
under the moment conditions in Theorem 5.2. The distance 9.4, is useful
in some cases (Theorem 5.6).
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A p-Hadamard differentiable T having a bounded and continuous in-
fluence function ¢p is robust in Hampel’s sense (see, e.g., Huber (1981)).
This is motivated by the fact that the asymptotic behavior of T(F},) is de-
termined by that of Lp(F,, — F'), and a small change in the sample, i.e.,
small changes in all z;’s (rounding, grouping) or large changes in a few of
r;'s (gross errors, blunders), will result in a small change of T(F},) if and
only if ¢p is bounded and continuous.

We now consider some examples. For the sample moments related to
functionals of the form T(G) = [(z)dG(z), it is clear that T is a linear
functional. Any linear functional is trivially g-Fréchet differentiable for any
o. Next, if I’ is one-dimensional and F'(x) > 0 for all z, then the quantile
functional T(G) = G~!(p) is p.o-Hadamard differentiable at F' (Fernholz,
1983). Hence, Theorem 5.5 applies to these functionals. But the asymptotic
normality of sample quantiles can be established under weaker conditions,
which are studied in §5.3.1.

Example 5.5 (Convolution functionals). Suppose that F' is on R and for
a fixed z € R,

T(G) = /G{z —y)dG(y), GedF,

If X; and X5 are i.i.d. with c.d.f. G, then T(G) is the c.d.f. of X7 + X5
(Exercise 42 in §1.6), and is also called the convolution of G evaluated at

z. Fort; — 0 and ||A; — Al| — 0,

(for A = e1G + oG, G; € Fy, and ¢; € R, dA denotes ¢1dG + c2dGa).
Using Lemma 5.2, one can show (exercise) that

/aj(z A (y) = O(1). (5.36)

Hence T is g..-Hadamard differentiable at any G € F with Lg(A) =
2 [ A(z—y)dG(y). The influence function, ¢pp(x) = 2 [(8,—F)(z—y)dF(y),
is a bounded function and clearly satisfies (5.33). Thus, (5.34) holds. If F
is continuous, then T is robust in Hampel's sense (exercise). 1§

Three important classes of statistical functionals, i.e., L-estimators, M-
estimators, and rank statistics and R-estimators, are considered in §5.2.2.

Lemma 5.2. Let A € D and h be a function on R such that [ h(x)dA(z)
is finite. Then

\ [ h@)ia@)| < v 1Al
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where ||h||y is the variation norm defined by
i T i
|||y = lim sup E |h(z;) — h(z;j_1)]
a——oxa ,b—oc .
=1
with the supremum being taken over all partitions a = zy < --- < x1,,, = b

of the interval [a,b]. 1

The proof of Lemma 5.2 can be found, for example. in Natanson (1961,
p. 232).

The differentials in Definition 5.2 are first-order differentials. For some
functionals, we can also consider their second-order differentials.

Definition 5.3. Let T be a functional on Fy; and p be a distance on F.
(i) T is second-order p-Hadamard differentiable at G € Fy if and only if
there is a functional Q5 on D such that for any sequence of numbers £; — 0

and {A.A;.7=1,2, ...} C D satisfying |A; — A|| = 0and G +t;A; € Fy,

i TG+ 14)) — T(G) — Qe (t;4,)

. 5
J i

— 0.

where Qg (A) = [ [ va(x,y)d(G + t;A)(z)d(G + t;A)(y) for a function g
satisfying ya(z,y) = va(y,2), | [Ya(z,y)dG(z)dG(y) = 0, and || - | is
the same as that in Definition 5.2(ii).

(ii) T is second-order p-Fréchet differentiable at G € Fy if and only if, for
any sequence {(;} satisfying GG; € Fy and p(G;.G) — 0,

i T(G5) —T(G) ~ Qa(G — G) _
j—oo o(G;. G)]?

0,

where Qg is the same as that in (i). #

For a second-order differentiable T. we have the following expansion:
n[T(F,) — T(F)] = nV, + R,, (5.37)

where

ir! r!

> vp(X: X;)

Jg=1 =1

, . 1
I’Jn - QG{F‘J’L - F) - // wF{I! y)an{?)dFu{y) - E
is a “V-statistic” (§3.5.3) whose asymptotic properties are given by The-
orem 3.16. If R, in (5.37) is o,(1). then the asymptotic behavior of
T(F,) — T(F') is the same as that of V,,.
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Proposition 5.1. Let X;...., X, be ii.d. from F.

(i) If T is second-order g..-Hadamard differentiable at F', then R,, in (5.37)
is 0p(1).

(ii) If T is second-order p-Fréchet differentiable at F' with a distance p
satisfying (5.35), then R, in (5.37) is o,(1). W

Combining Proposition 5.1 with Theorem 3.16, we can summarize the
asymptotic behavior of T(F),,) — T(F') as follows. If

(1 = Var (/'EE"F{XL-. y)dF{y))

is positive, then (5.34) holds with % = 4¢;. If (; = 0, then
n[T(F,) = T(F)] —a Y Ajxi;

If T is also first-order differentiable, then it can be shown (exercise) that

¢r(z) =2 ['iﬁF(Ly)dF(y)- (5.38)

Then (; = 47 'Var(¢dp(X1)) and ¢; = 0 corresponds to the case of ¢op(xr) =
0. However, second-order p-Hadamard (Fréchet) differentiability does not
in general imply first-order g-Hadamard (Fréchet) differentiability (exer-
cise).

The technique in this section can be applied to non-i.i.d. X;’s when the
c.d.f.’s of X;’s are determined by an unknown c.d.f. F', provided that results
similar to (5.32) and (5.35) (with F), replaced by some other estimator F)
can be established.

5.2.2 L-, M-, R-estimators and rank statistics

Three large classes of statistical functionals based on i.i.d. X;’s are studied
in this section.

L-estimators

Let F' be a c.d.f. on R and J(#) be a function on [0,1]. An L-functional is
defined as

T(G) = [ﬂ:..i’{(?[ﬂ:}}d(}’{x}, Ged. (5.39)

T(F},) is called an L-estimator of T(F').



5.2, Statistical Functionals 297

Example 5.6. The following are some examples of commonly used L-
estimators.

(i) When J = 1, T(F,)) = X, the sample mean.

(ii) When J(t) = 4t — 2, T(F,,) is called Gini’s mean difference.

(iii) When J(t) = (8 — a)~'1, 5 (t) for some constants o < 3, T(F},) is
called the trimmed sample mean. 1

For an L-functional T, it can be shown (exercise) that

T(G) — T(F) = qu:;{:r:)d{(? — F)(x) 4+ R(G, F), (5.40)
where
or(2) =~ [ (6 = PY)I(F (W) (5.41)
R(G,F) = — [Ifif’.;;{::r:) (G(x) — F(z)]dx,
and
Welz) = { G(z) — F(@)]7* [£5) J(t)dt - J(F(z))  Glz) # F(x)
0 G(x) = F(x).

A sufficient condition for (5.33) in this case is that F' has a finite vari-
ance (exercise). However, (5.33) is also satisfied if ¢ is bounded. The
differentiability of T can be verified under some conditions on .J.

Theorem 5.6. Let T be an L-functional defined by (5.39).

(i) Suppose that .J is bounded, .J(t) = 0 when t € [0,a]| U [3, 1] for some
constants o < 4, and that the set D = {z : J is discontinuous at F(x)}
has Lebesgue measure (). Then T is p..-Fréchet differentiable at F' with the
influence function ¢p given by (5.41), and ¢p is bounded and continuous
and satisfies (5.33).

(ii) Suppose that J is bounded, the set D in (i) has Lebesgue measure (),
and J is continuous on [0, o] U [3, 1] for some constants o < 3. Then T is
0~ +1-Fréchet differentiable at F'.

(iii) Suppose that |J(t) — J(s)| < C|t — s|P~!, where C' > 0 and p > 1 are
some constants. Then T is p Lp—Fréf:het differentiable at F'.

(iv) If, in addition to the conditions in part (i), J' is continuous on [a, 3],
then T is second-order g..-Fréchet differentiable at F' with

Vr(e.y) = 6r(z) + 0r(y) — / (6. — F)(2)(8, — F)(=)J'(F(2))d=.

(v) Suppose that .J’ is continuous on [0,1]. Then T is second-order g -
Fréchet differentiable at ' with the same ' given in (iv).



298 5. Estimation in Nonparametric Models

Proof. We prove (i)-(iii). The proofs for (iv) and (v) are similar and are
left to the reader.

(i) Let G; € F and 0. (G5, F') — (. Let ¢ and d be two constants such that
F(c) > 8 and F(d) < . Then, for sufficiently large j. G;(z) € [0, a]U[3. 1]
if r > ¢ or x < d. Hence, for sufficiently large j.

I

R(G;, F) [ We, ()(C, — F)(z)da

Jd

d

L

Wea, (x)|dz.

Since J is continuous at F(z) when x ¢ D and D has Lebesgue measure
0, Wg,(z) — 0 a.e. Lebesgue. By the dominated convergence theorem,

[; IWg,(z)|dz — 0. This proves that T is g.-Fréchet differentiable. The
assertions on ¢ can be proved by noting that

or() = - [ (82— F)(9)J(F(y))dy.

1l'.i

(ii) From the proof of (i), we only need to show that

‘ [ Wa, (x)(Gj — F)(x)dx /QDC.+1I[G:;_,F) — 0, (5.42)
JA

where A = {x : F(z) < a or F(z) > 3}. The quantity on the left-hand
side of (5.42) is bounded by sup, . 4 |[Wg, ()| which converges to () under
the continuity assumption of .J on [0, a] U [3,1]. Hence (5.42) follows.

(iii) The result follows from

RG.F)| <C [16() - F@)dz = 0 (les, (G.F)F)
and the fact that p > 1. 1

An L-estimator with J(t) = 0 when ¢ € [0, a]U[3, 1] is called a trimmed
L-estimator. Theorem 5.6(1) shows that trimmed L-estimators satisfy (5.34)
and are robust in Hampel’s sense. In case (ii) or (iii) of Theorem 5.6, (5.34)
holds if Var(X;) < oo, but T(F},) may not be robust in Hampel's sense. It
can be shown (exercise) that one or several of (i)-(v) of Theorem 5.6 can
be applied to each of the L-estimators in Example 5.6.

M-estimators

Let F be a c.d.f. on R? and p(z.t) be a Borel function on R? x R. An
M-functional is defined to be a solution of

/p{:r:,T(G})dG(:r:) = ?éigf;}{ﬂ.?, t)dG(x), G e, (5.43)
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where © is an open subset of R. T(F},) is called an M-estimator of T(F').
Assume that ¢/(x,t) = Jp(x,t) /0t exists a.e. and

Aq(t) = /'E_;"J{.’Ir.??t)df?l[ﬂ:) = %/p{ﬂ:,i)d(}‘[ﬂ:). (5.44)
Then A (T(G)) = 0.

Example 5.7. The following are some examples of M-estimators.

(i) If p(x,t) = (x — 1)*/2, then ¥(z,t) = t — z; T(G) = [xdG(x) is the
mean functional; and T(F},) = X is the sample mean.

(ii) If p(x,t) = |x — t|P/p, where p € [1,2), then

|z — t|P~! r <t
Plx,t) =< 0 r =t
—|z —t|P~! T > t.

If p =1, T(F,) is the sample median. If 1 < p < 2, T'(F,,) is called the pth
least absolute deviations estimator or the minimum L, distance estimator.
(iii) Let Fy = {fs : @ € O} be a parametric family of p.d.f.’s and p(z.t) =
—log fi(x). Then T(F,) is an MLE. This indicates that M-estimators are
extensions of MLE’s in parametric models.

(iv) Huber (1964) considers

l 3
T e B
| C? lz—t|>C

with
t—x -t <C

Nx. t) =
¥(a.1) { 0 z—t| > C.

The corresponding T(F},) is a type of trimmed sample mean.
(v) Huber (1964) considers

1 2
S(x—t) z—t| < C
..'lt = j [
Pl t) { Clz—t|-1c?  |o—t|>C
with
C t—x>C
Pl t) =< t—ux lz—t| < C

—(' t—x < =C.

The corresponding T(F},) is a type of Winsorized sample mean.

(vi) Hampel (1974) considers i(x,t) = gt — z) with ¥g(s) = —o(—3)
and )
S D<s<a
a a<s<b
S IO PP
() L
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where () < a < b < ¢ are constants. A smoothed version of v is

| [ sin(as) 0<s<m/a
¥1(s) = { 0 s > n/a. '

For bounded and continuous 10, the following result shows that T is p..-
Hadamard differentiable with a bounded and continuous influence function
and, hence, T(F},) satisfies (5.34) and is robust in Hampel’s sense.

Theorem 5.7. Let T be an M-functional defined by (5.43). Assume that
r is a bounded and continuous function on R? x R and that A r(t) is
continuously differentiable at T(F') and A% (T(F)) # 0. Then T is 0.c-
Hadamard differentiable at ' with

¢r(x) = —(x, T(F))/Np(T(F)).

Proof. Let t; = 0. A; € D, ||A; = Alloe = 0, and G; = F +t;A; € F.
Since A (T(G)) = 0,

by |A; — Al — 0 and the boundedness of ¢». Note that M- (T(F)) # 0.
Hence, the inverse of Ap(t) exists and is continuous in a neighborhood of

0 = Ap(T(F')). Therefore,
T{Gj) — T(F} — (). {5.45)

LF;;E.F{T{F)} = No(T(F)), hi(t) = Do) — Ae(T(E))]/[t — T(F)] if ¢ #
T(F),
1 1

Np(T(F)) — hr(T(G)))]

Rij = [ vl 1(F)da @) |

1 o : — A
Ry = @) [0.7(G5)) - vl T(F)IAA, @)

and

Lp(A) = _h}:{;{FJ) [ W T(F))dAz),  AeD.

Then
T(G;) — T(F) = —Lp(t;4;) + t;(R1; — Raj).

By (5.45), ||A; — All~ — 0, and the boundedness of v, R;; — 0. The
result then follows from Ry; — 0, which follows from |A; — Al|« — 0 and
the boundedness and continuity of i (exercise). 1
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Some ) functions in Example 5.7 satisfy the conditions in Theorem
5.7 (exercise). Under more conditions on ), it can be shown that an M-
functional is g..-Fréchet differentiable at F' (Clarke, 1986; Shao, 1993).
Some M-estimators that satisfy (5.34) but are not differentiable functionals
are studied in §5.4.

Rank statistics and R-estimators

Assume that X;...., X, are i.i.d. from a c.d.f. F on R. The rank of X;
among Xi,..., Xn, denoted by R;, is defined to be the number of X;’s
satisfying X < X;, i =1,...n. The rank of |X;| among |X1|...._._|Xu| is

similarly defined and denoted by R;. A statistic that is a function of R;’s
or R;’s is called a rank statistic. For G € F, let

G(z) = G(z) — G((—x)-), x > ),

where g(z—) denotes the left limit of the function g at 2. Define a functional
T by
T(G) = / J(G(x))dG(x), Ged, (5.46)
Jo
where .J is a function on [0, 1] with a bounded J'. Then

T(F,) = / J(Fu(2))dFn(z) = . > J (%‘) L(0,00) (Xi)
1

0 T

is a (one-sample) signed rank statistic. If J(t) = ¢, then T(F,) is the well-
known Wilcoxon signed rank test (§6.5.1).

Statistics based on ranks (or signed ranks) are robust against changes in
values of x;’s. but may not provide efficient inference procedures, since the
values of x;'s are discarded after ranks (or signed ranks) are determined.

It can be shown (exercise) that T in (5.46) is p..-Hadamard differentiable
at ' with the differential

=0

LF{a)=f J’{F‘(I})ﬁ{x}dﬁ‘{x}ﬂ-/ J(F(x))dA(x). (5.47)

0 J0

These results can be extended to the case where X, ..., X, are i.i.d.
from a c.d.f. F' on R?. For any c.d.f. G on R?, let J be a function on [0, 1]
with J(1 —t) = —.J(t) and a bounded .J',

Gy) = [G(y,0) + G0, y)l/2, yER,

and

= [J{G’(y))df?(y? ). (5.48)
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Let X; = (Y;,Z;), R; be the rank of ¥;, and U; be the number of Z;’s
satisfying Z; <Y, i =1,...,n. Then

NE) = [ J(F()dFa(v.50) = 'Zf

is called a two-sample linear rank statistic. It can be shown (exercise) that
T in (5.48) is po-Hadamard differentiable at F' with the differential

Lr(8) = [ J(F@)AWIFE.) + [ IFE@)AGx). (549

Rank statistics (one-sample or two-sample) are asymptotically normal
and robust in Hampel’s sense (exercise). These results are useful in testing
hypotheses (§6.5).

Let F' be a continuous c.d.f. on R symmetric about an unknown pa-
rameter ¢ € R. An estimator of # closely related to a rank statistic can be
derived as follows. Let X; be iid. from F and W, = (X;, 2t — X;) with a
fixed # € R. The functional T in (5.48) evaluated at the c.d.f. of W; is equal

to
Ap(t) = f J (F )L E ‘?*"’“J) dF(z). (5.50)

If J is strictly increasing and F' is strictly increasing in a neighborhood of
f, then Ap(t) = 0 if and only if t = # (exercise). For GG € F, define T(G) to

be a solution of

/J (G‘I3'+“f§”’””}‘f3') dG(z) = 0. (5.51)

T(F,) is called an R-estimator of T(F) = . When J(t) = ¢t — 5 (which is
related to the Wilcoxon signed rank test), T(F},) is the well-known Hodges-

Lehmann estimator and is equal to any value between the two middle points
of the values (X; + X;)/2,i=1,..n,j=1,...n

Theorem 5.8. Let T be the functional defined by (5.51). Suppose that
F'is continuous and symmetric about €, the derivatives ' and .J' exist,
and .J’ is bounded. Then T is p..-Hadamard differentiable at F with the
influence function

b () = J(F(x))
[ JN(F(z))F'(z)dF(z)
Proof. Since F is symmetric about 6, F(x) + F(20 — x) = 1. Under
the assumed conditions, Ap(t) is continuous and [ J'(F(x))F'(x)dF(x) =

~Ap(0) # 0 (exercise). Hence the inverse of A\p exists and is continuous
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at 0 = Ap(f). Suppose that t; — 0, A; € D, ||A; — Al — 0., and
Gj=F+t;A; € F. Then

/[..F{Gj{:r:, t)) — J(F(x,t))dG;(x) — 0

uniformly in ¢, where G(z,t) = [G(x) + 1 — G(2t — x)]/2, and

/J{F[::r:, t)d(G; — F)(z) = /{GJ— — F)(z)J'(F(x.t))dF(x.t) — 0
uniformly in ¢. Let Ag(t) be defined by (5.50) with F' replaced by G. Then
Ac, () — Ap(t) — 0

uniformly in t. Thus, Ap(T(G;)) — 0, which implies
T(G;) — T(F) = 0. (5.52)

Let (a(t) = [ J(F(z,1)dG(z), hp(t) = [Ap(t) — Ap(@)]/(t — 0) if t # 0,
and hp(0) = Np(0). Then T(G;) — T(F) — [ ¢p(x)d(G; — F)(x) is equal to

I 1 ] N Ap(T(Gy)) — €, (0)
No(0)  hp(T(G)) he(T(G5)

£a, (0) [ (5.53)

Note that
= [ J(F(x))dG;(z) = t, | [ J(F(z))dA;(z).

By (5.52), Lemma 5.2, and ||A; — A||~ — 0, the first term in (5.53) is o(t;).
The second ferm in ( :.53} is the sum of

t | N
"hp('r(s:;*j))/ (F(z, T(G5))) — J(F(x))]dA;(x) (5.54)

and

T{(‘*J))/ G;))) = J(G;(x, T(G5))) |dG (). (5.55)

From the continuity of J and F', the quantity in (5.54) is o(t;). Similarly,
the quantity in (5.55) is equal to

1

hp g

G;)) [[}(F{IT{GJ)}) - I(GJ(IT[GJ}))]{}IF(I) + G(ﬁj}. (5.56)

Using Taylor's expansion, (5.52), and ||[A; — Al — 0, the quantity in
(5.56) is equal to

£ (VAL , | -
i [ 7 FE)AG G + o) 557
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Since J(1 — t) = —.J(t), the integral in (5.57) is 0. This proves that the
second term in (5.53) is o(f;) and thus the result.

It is clear that the influence function ¢ for an R-estimator is bounded
and continuous if .J and F are continuous. Thus, R-estimators satisfy (5.34)
and are robust in Hampel’'s sense.

Example 5.8. Let J(t) =t — 1. Then T(F},) is the Hodges-Lehmann esti-
mator. From Theorem 5.8, {'.DF(.I‘) [F'(z)— 5]/v, where v = [ F'(z)dF(z).

Since F'(X;) has a uniform distribution on [0, 1], ¢#(X;) has mean 0 and
variance (1292)~'. Thus, /n[T(F,) — T(F)] —a N(0,(129%)71). »

5.3 Linear Functions of Order Statistics

In this section we study statistics that are linear functions of order statistics
Xy = -+ £ X, based on independent random variables X, ... X
(in §5.3.1 and §5.3.2, X, ..., X, are assumed i.i.d.). Order statistics, first
introduced in E:::a,mple 2.9, are usually sufficient and often complete (or
minimal sufficient) for nonparametric families (Examples 2.12 and 2.14).

L-estimators defined in §5.2.2 are in fact linear functions of order statis-
tics. If T is given by (5.39), then

(F,) = /I; F(2))dF, (z) = - > (£) X, (5.58)

since F,(X(;)) = i/n, i = 1,...,n. If J is a smooth function, such as those
oiven in Example 5.6 or those satisfying the conditions in Theorem 5.6, the
corresponding L-estimator is often called a smooth L-estimator. Asymp-
totic properties of smooth L-estimators can be obtained using Theorem 5.6
and the results in §5.2.1. Results on L-estimators that are slightly different
from that in (5.58) can be found in Serfling (1980, Chapter 8).

In §5.3.1, we consider another useful class of linear functions of 01‘{'191‘
statistics, the sample quantiles described in the beginning of §5.2. In §5.3
we study robust linear functions of order statistics (in Hampel's sense) a:nd
their relative efficiencies w.r.t. X, an efficient but nonrobust estimator. In
§5.3.3, extensions to linear models are discussed.

5.3.1 Sample quantiles

Recall that G~ '(p) is defined to be inf{z : G(z) = p} for any c.d.f. G on
R, where p € (0,1) is a fixed constant. For iid. Xy, ..., X, from F. let

0, = F~'(p) and ép = F,'(p) denote the pth quantile of F' and the pth
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sample quantile, respectively. Then
E'ip — Ean{an]I + {1 - ﬂnp)x[mp—l—ljz {559)

where m,, is the integer part of np, ¢,,, = 1 if np is an integer, and ¢,,,, = 0
if np is not an integer. Thus, #, is a linear function of order statistics.

Note that F(#,—) < p < F'(#,). If F is not flat in a neighborhood of
0. then F(0, —€¢) < p < F(8, + ¢€) for any € > 0.

Theorem 5.9. Let X,...., X, be ii.d. random variables from a c.d.f. F
satisfying F'(6, — €¢) < p < F(0, + €) for any € > 0. Then, for every ¢ > 0
and n = 1,2....,
~ o g2
P(|0, — 0, > €) < 2Ce ", (5.60)
where 6, is the smaller of F'(f, +¢) —p and p— F'(#, — €) and C' is the same

constant in Lemma 5.1(i).
Proof. Let € > 0 be fixed. Note that G(z) > ¢ if and only if x > G~1(t)
for any c.d.f. G on R (exercise). Hence

P(0,>0,+¢) = P(p> F.(0,+¢))

= P(F(0, +¢) — F,,(0, + €) > F(0, + ¢) — p)

< P(0se(Fu. F) > &.)

< Cﬂ—i&nﬁ.f:
where the last inequality follows from DKW’s inequality (Lemma 5.1(i)).
Similarly,

P(0, < 0, —¢) < Ce

This proves (5.60). 8

Result (5.60) implies that ép is strongly consistent for @, (exercise) and

that 0, is \/n-consistent for 0, if F'(#,—) and F'(6,+) (the left and right
derivatives of F' at 0,) exist (exercise).

The exact distribution of ép can be obtained as follows. Since nF,, (1)
has the binomial distribution Bi(F'(t),n) for any t € R,

P(6, <t) = P(Fu(t) > p)

I

- Y (}) e - For- (5.61)

where m,, is given in (5.59). If F' has a Lebesgue p.d.f. f, then ép has the
Lebesgue p.d.f.

on(t) = ﬂ(

n—1

) [F(6)]™ 11 — F(£)]"~™ £(1). (5.62)

my, — 1
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The following result provides an asymptotic distribution for ﬁ{éP —6,).

Theorem 5.10. Let X,..... X, be ii.d. random variables from F'.

(i) P(y/n(0, —0,) <0) — ®(0) = 5, where ® is the c.d.f. of the standard
normal.

(ii) If F'is continuous at #, and there exists F'(#,—) > 0, then

P(vnl(l, — 0,) <t) — &(t/op), t<0,

where o = /p(1 — p)/F'(0,—).

(iii) If ' is continuous at #,, and there exists F'(f,+) > 0, then
P(vn(0, —0,) <t) — ®(t/a}), t>0,

where o = /p(1 — p)/F'(0,+).

(iv) If F'(0,) exists and is positive, then
;
x/n{rijp —0,) =4 N(0,0%), (5.63)

where op = /p(1 — p)/F'(8,).
Proof. The proof of (i) is left as an exercise. Part (iv) is a direct conse-

quence of (i)-(iii) and the proofs of (ii) and (iii) are similar. Thus, we only
oive a prm::f for (iii).

Let { > U'.- Pnt = F{E‘ip -+ t{T;n_ljz)y Cnt = \/_{pnt - P)/\/Pnt Pnt
and Z,,; = [B,(pnt) —npn/ \/ NPnt(1 — pnt), where B, (g) denotes a random

variable having the binomial distribution Bi(g,n). Then

P(ép < E'.]TJ + fﬂ}ﬂ_l’m) — P(ﬁ' < Fn{gp + tg}_n_uz))
- P(Znt :_} _'::n.t)-

Under the assumed conditions on F, p,; — p and ¢,; — {. Hence, the
result follows from

P{Z?'J.f < _Ent) - (I}(_E:‘J'Lt) — ().

But this follows from the CLT (Example 1.26) and Pdélya’s theorem (Propo-
sition 1.16). 1

If both F'(0,—) and F'(0,+) exist and are positive, but F'(0,—) #
F'(0,+), then the asymptotic distribution of «._/H[éP — ) has the c.d.f.

O(t/op)(—no0)(t) + ®(t/of)[0.50)(t), & mixture of two normal distribu-

tions. An example of such a case when p = % is

Fz) =zl 1)(x) + (22 — ".lE)I[% j(®) + I3 o0y ().

3
E|
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When F'(0,—) = F'(0,+) = F'(8,) > 0, (5.63) shows that the asymptotic
distribution of /n(#, —8,) is the same as that of \/n[F,(0,)—F(6,)]/F'(0,)
(see (5.2)). The following result reveals a stronger relationship between
sample quantiles and the empirical c.d.f.

Theorem 5.11 (Bahadur’s representation). Let X, ..., X, beii.d. random
variables from F. Suppose that F'(6,) exists and is positive. Then

F(0,) — F,.(6,) o
e o (%) (5.64)

Proof. Let t € R, Oy = 0, +tn=12, Zu(t) = /A[F(Ons) — Fn(0,0)]/ F'(6,),
and U, (1) = vn[F(0,:) — F.(0,)]/F'(6,). It can be shown (exercise) that

0, =6, +

Zn(t) — Zo(0) = 0,(1). (5.65)
Note that |p — F,,(6,)] <n~'. Then

Li'n(t) - \/‘H[F{gut) —p+p- Fﬁ(é}”)]/}:"{ﬁiﬂ:}
= V/n[F(0u) — pl/F'(0,) + O(n™1/?)
— t. (5.66)

Let &, = \/ﬁ[ép — #,). Then, for any t € R and € > 0,

P(& <t,Z,(0) 2t +¢)

P(Z,(t) < Un(t), Z,(0) = t +¢€)

< P(Zn(1) = Za(0)] = €/2) (5.67)
+ P(|UL(t) — t] = €/2)
— ()
by (5.65) and (5.66). Similarly,
P(én = t+e Z,(0) <t) — 0. (5.68)

It follows from the result in Exercise 97 of §1.6 that

‘Eﬂ, - Z?.'..l[[]} - ﬂp{l:]v

which is the same as (5.64). 8

If F' has a positive Lebesgue p.d.f., then ép viewed as a statistical func-
tional (§5.2) is poc-Hadamard differentiable at F (Fernholz, 1983) with the
influence function

dp(z) = [F(0,) - I[—Dc-,ﬁi'p]'[T}]/F!(Ep}-
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This implies result (5.64). Furthermore, ¢, is robust in Hampel’s sense; see
also §5.3.2.

Corollary 5.1. Let X,....., X,, be ii.d. random variables from F having
positive derivatives at ¢, , where 0 < p; < --- < p,,, < 1 are fixed constants.

Then

~ ~

[0y, 0y, )~ (0. 0y, )] —a Nin(0, D).

where D is the m x m symmetric matrix whose (i, j)th element is

pi(l _Pj)/r[F;{ngf}Ff{gm )] 1 <j. |

The proof of this corollary is left to the reader.

Example 5.9 (Interquartile range). One application of Corollary 5.1 is the

derivation of the asymptotic distribution of the interguartile range 0 75 —
fn.25. The interquartile range is used as a measure of the variability among
X;’s. It can be shown (exercise) that

v/ﬁ[{én.?ﬁ - é[].Eﬁ) — (0o.75 — O0.25)] —a N(0, ”E}?)

with
3 3 1

2
f:r —_ + . v - ’
F L6[F"(00.25)]2  8F’(00.75)F"(0o.25)

: |
IG[FI(QQ}.TE,)]E

There are some applications of using extreme order statistics such as
X1y and X(,,;. One example is given in Example 2.34. Some other examples
and references can be found in Serfling (1980, pp. 89-91).

5.3.2 Robustness and efficiency

Let ' be a c.d.f. on R symmetric about § € R with F'(f) > 0. Then
0 = 045 and is called the median of F'. If F' has a finite mean, then # is also
equal to the mean. In this section we consider the estimation of # based on

1.1.d. X;’s from F.

If F is normal. it has been shown in previous chapters that X is the
UMVUE. MRIE, and MLE of #, and is asymptotically efficient. On the
other hand, if F' is the c.d.f. of the Cauchy distribution C(#, 1), it follows
from Exercise 50 in §1.6 that X has the same distribution as X;. i.e., X is
as variable as X, and is inconsistent as an estimator of 6.

Why does X perform so differently? An important difference between
the normal and Cauchy p.d.f.’s is that the former tends to (0 at the rate
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e~ /2 as |z| — oo, whereas the latter tends to 0 at the much slower rate
x~2, which results in [ |z|dF(z) = oc. The poor performance of X in the
Cauchy case is due to the high probability of getting extreme observations
and the fact that X is sensitive to large changes in a few of the X;’s. (Note
that X is not robust in Hampel’s sense, since the functional [ 2dG(x) has
an unbounded influence function at F.) This suggests the use of a robust
estimator that discards some extreme observations. The sample median.
which is defined to be the 50%th sample quantile é[]lﬁ described in §5.3.1,
is insensitive to the behavior of F' as |z| — oc.

Since both the sample mean and the sample median can be used to
estimate f, a natural question is when one is better than the other, using a
criterion such as the amse. Unfortunately, a general answer does not exist,
since the asymptotic relative efficiency between these two estimators de-
pends on the unknown distribution F. If F' does not have a finite variance,
then the sample median is certainly preferred since X is inconsistent but
fo.5 is consistent and asymptotically normal as long as F'(#) > 0, and may
still have a finite variance (Exercise 54). The following example, which com-
pares the sample mean and median in some cases. shows that the sample
median can be better even if Var(X;) < ~c.

Example 5.10. Suppose that Var(X;) < oc. Then, by the CLT,
V(X —68) —4 N(0, Var(X)).

By Theorem 5.10(iv),

Vil —0) —4 N(0,[2F"(0)]72).
Hence. the asymptotic relative efficiency of riju,a w.ort. X is
e(F) = 4[F'(0)]*Var(X).

(i) If F is the c.d.f. of N(0,0?), then Var(X,) = o2, F'(#) = (v/2n0)7 !,
and e(F) = 2/m = 0.637.

(ii) If F' is the c.d.f. of the logistic distribution LG(#, o), then Var(X;) =
aw? (3, F'(0) = (40)~ !, and e(F) = 7%/12 = 0.822.

(iii) If F(x) = Fy(x — 8) and Fj is the c.d.f. of the t-distribution ¢, with
v > 3. then Var(X,) = v/(v - 2), F'(0) = ['(*)/[Vval(%)]. e(F) = 1.62
when v = 3, e(F) = 1.12 when v = 4, and ¢(F') = 0.96 when v = 5.

(iv) If F'is the c.d.f. of the double exponential distribution DE(f, ), then
F'(0) = (20)7 ! and e(F) = 2.

(v) Consider the Tukey model

F(z) = (1- ) (55°) +e® (%7), (5.69)
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where ¢ > 0, 7 > 0 and 0 < € < 1. Then Var(X;) = (1 — €)o? + er?07,
F'(0)=(1—e+¢€/7)/(v2r0), and e(F) = 2(1 — e+ e72)(1 — € + €/7)* /:vr.
Note that lim,_.ge(F) = 2/7 and lim, o e(F) =oc. 1§

Since the sample median uses at most two actual values of x;’s, it may
go too far in discarding observations, which results in a possible loss of
efficiency. The trimmed sample mean introduced in Example 5.6(iii) is a
natural compromise between the sample mean and median. Since F' is
symmetric, we consider 7 = 1 — «a in the trimmed mean, which results in
the following L-estimator

—1

: 1
Xo = e > Xy (5.70)

J=mtn+1

where m,, is the integer part of na and « € (0, %} The estimator in (5.70)
is called the a-trimmed sample mean. It discards the m, smallest and m,
largest observations. The sample mean and median can be viewed as two
extreme cases of X, as o« — 0 and % respectively.

It follows from Theorem 5.6 that if F(x) = Fy(x — 6), where Fj is
symmetric about (0 and has a Lebesgue p.d.f. positive in the range of X,
then

vn(X, —0) —4 N(0,02), (5.71)
where
, 2 #1-a
{Ti = {l B 2{“3)2 L xIr dF{}(T] -+ {’iﬂl ¥

Lehmann (1983, §5.4) provides various values of the asymptotic relative
efficiency ex_ ¢(F) = Var(X;)/o2. For instance, when F(z) = Fy(z — )
and Fj; is the c.d.f. of the t-distribution t5. ey ¢ {F) = 1.70, 1.91, and 1.97
for o = 0.05. 0.125, and 0.25, respectively: when F' is given by (5.69) with
7 =3 and € = 0.05, eg_ ¢(F) = 1.20, 1.19, and 1.09 for o = 0.05, 0.125,
and 0.25, respectively; when F' is given by (5.69) with 7 = 3 and € = 0.01,
ex. x(F) =1.04, 0.98, and 0.89 for a = 0.05, 0.125, and 0.25, respectively.

Robustness and efficiency of other L-estimators can be discussed simi-
larly. Fc::r an L-estimator T(F},) with T given by (5.39), if the conditions in
one of (i)-(iii) of Theorem 5.6 are satisfied, then (5.34) holds with

0% = / / J(F(x))J(F(y))[F(min(x,y)) — F(x)F(y)]dzdy, (5.72)

provided that o% < oo (exercise). If F is symmetric about # and .J is
symmetric about % then T(F') = 6 (exercise) and, therefore, the asymptotic
relative efficiency of T(F),) w.r.t. X is Var(X;)/o7.
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5.3.3 L-estimators in linear models

In this section we extend L-estimators to the following linear model:
X; =082 4 &4, i =1....,m, (5.73)

with i.i.d. £;'s having an unknown c.d.f. Fy and afull vank Z = (Z7,..., Z7)".

Note that the c.d.f. of X; is Fy(x — SZ7). Instead of assuming E{EI) 0
(as we did in Chapter 3), we assume that

/IJ[E;(I)](}IF{}(J:) = 0, (5.74)

where J is a function on [0, 1] (the same as that in (5.39)). Note that
(5.74) may hold without any assumption on the existence of E(z;). For
instance, (5.74) holds if Fy is symmetric about 0 and .J is symmetric about
1 (Exercise 61).

Since X;'s are not identically distributed, the use of the order statistics
and the empirical c.d.f. based on Xj,..., X,, may not be appropriate. In-
stead, we consider the ordered values of residuals r; = X;— I?ZT_ 1 =1, ..

and some empirical c.d.f.’s based on residuals, where 7 = XZ(Z7Z2 )_1 is

the LSE of /3.

To illustrate the idea, let us start with the case where [ and Z; are
univariate. First, assume that Z; = 0 for all i. Let Fjy be the c.d.f. putting
mass Z;/ > ., Z‘3 at ri, i = 1,...,n. An L-estimator of /3 is defined to be

SL=¢L+/}Jum )dﬂ_ﬂ}jzf/ﬁzzi (5.75)

When J(t) = (1-2a) ", 1_o)(t) with an a € (0, %:1 which corresponds to
the a-trimmed sample mean in the i.i.d. case, fff r in (5.75) can be computed
as follows. Order the residuals and trim off all observations corresponding
to residuals r(; with w; = ! Zs, /S0 Z2 € [0,a]U[1 — a,1], where
ray = -+ = Ty are ordered r-.f-qulua,lq and ¢; satisfies r; = r(;. Then BL
is the L‘SE based on the remaining observations.

If some Z;’s are negative., we can define L-estimators as follows. Let
Z = max(Z;,0) and Z; = Z — Z;. Let FJL be the c.d.f. putting mass
Z“L/’ Z Z,f at r;, 1= 1,....n. An L-estimator of 3 is defined to be

b=+ [ 2B @)k @)Y 21 / S 2
) i=1 i=1

T
g =

—/MHQMﬁ&ig/ié

3|
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F:::r ceneral p-vector Z'I-, let z;; be the jth component of Z;, j =1, ..., p.

Let z = 111&3{{313 0), z Zij = :::;5 — zij, and F,Li be the c.d.f. putting mass

fzt 1 z cat r;, 1= 1,...,n. Then an L-estimator of 3 is defined to be
B =0+ (AT —A")Z"2)7 ", (5.76)

where

I

A% = ( [ SIS NFE ) Y v [ 21BN )zzw).

Obviously, (5.76) reduces to (5.75) if p = 1 and Z; = 0 for all i.

Theorem 5.12. Assume model (5.73) with i.i.d. £;’s from a c.d.f. Fj
satisfving (5.74) for a given J. Suppose that Fj, has a uniformly continuous,
positive, and bounded derivative on the range of ;. Suppose further that
the conditions on Z;’s in Theorem 3.12 are satisfied.

(i) If the function .J is continuous on («, ) and equals 0 on [0, o] U [3, 1],
where 0 < av < 3 < 1 are constants, then

o (BL = B)(Z72)'? 4 Ny (0, L), (5.77)

where {T%;-l is given by (5.72) with F' = Fj,.
(ii) Result (5.77) also holds if .J' is bounded on [0,1], E
is finite. 1§

, and oF 7

The proof of this theorem can be found in Bickel (1973). Robustness

and efficiency comparisons between the LSE ,.’3' and L-estimators 3y, can be
made in a similar way to those in §5.3.2.

5.4 Generalized Estimating Equations

The method of generalized estimating equations (GEE) is a powerful and
ceneral method of deriving point estimators, which includes many previ-
ously described methods as special cases. In §5.4.1, we begin with a descrip-
tion of this method and, to motivate the idea, we discuss its relationship
with other methods that have been studied. Consistency and asymptotic
normality of estimators derived from generalized estimating equations are
studied in §5.4.2 and §5.4.3.

Throughout this section we assume that X, ..., X, are independent (not
necessarily identically distributed) random vectors, where the dimension of
Xiisd;, i =1,....,n (sup; d; < oc), and that we are interested in estimating
. a k-vector of unknown parameters related to the unknown population.
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5.4.1 The GEE method and its relationship with others

The sample mean and, more generally, the LSE in linear models are solu-
tions of equations of the form

Also, MLE’s (or RLE’s) in §4.4 and, more generally, M-estimators in §5.2.2
are solutions of equations of the form

This leads to the following general estimation method. Let © € R* be the
range of f, 1; be a Borel function from R% x © to R*, i = 1,...,n, and

sn(7) = Ziﬁl}i(Xﬁ:ﬁf:}: v EO. (5.78)

If ¢ is estimated by §eO satisfying ﬁn{é) — 0, then 0 is called a GEE
estimator. The equation s, (v) = 0 is called a GEE. Apparently, the LSE’s,
RLE’s, MQLE’s, and M-estimators are special cases of GEE estimators.

Usually GEE’s are chosen so that
E[Sn{g)] - Z E[qu’i(Xt ﬂ}] = 0, {5‘-9)

where the expectation / may be replaced by an asymptotic expectation
defined in §2.5.2 if the exact expectation does not exist. If this is true,
then # is motivated by the fact that s, 6‘) () is a sample analogue of

E[s,(6)] = 0.

To motivate the idea, let us study the relationship between the GEE
method and other methods that have been introduced.

M-estimators

The M-estimators defined in §5.2.2 for unvariate # = T(F') in the i.i.d. case
are special cases of GEE estimators. Huber (1981) also considers regression
M-estimators in the linear model (5.73). A regression M-estimator of 7 is
defined as a solution to the GEE

TL

> (X —vZ])Zi = 0,

where 1 is one of the functions given in Example 5.7.
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LSE’s in linear and nonlinear regression models

Suppose that
Xi; = f(ZE..g} + £, P = 1 vy 1L, {58”}

where Z;’s are the same as those in (5.73), ¢ is an unknown k-vector of
parameters, [ is a known function, and £;’s are independent random vari-
ables. Model (5.80) is the same as model (5.73) if f is linear in # and is
called a nonlinear regression model otherwise. Note that model (4.64) is a
special case of model (5.80). The LSE under model (5.80) is any point in
O minimizing Y7 | [X; — f(Z;,7)]? over v € ©. If f is differentiable, then
the LSE is a soluation to the GEE

TL

Z[X'i - f(Zi?f-},}]ﬁf{Zi,*‘y)

vy

= (.

Quasi-likelihoods

This is a continuation of the discussion of the quasi-likelihoods introduced
in §4.4.3. Assume first that X;’s are univariate (d; = 1). If X;’s follow a
GLM, i.e., X; has the p.d.f. in (4.55) and (4.57) holds, and if (4.58) holds,

then the likelihood equation (4.59) can be written as

X

) - E_ ;;i}(ﬁr)ﬁi{’}“) =0, (5.81)
=1 t

where () = p((vZ])), Gi(v) = Opil(y) /Oy, vi(v) = Var(X;) /¢, and we

have used the following fact:

()= (=) (g7 W) g™ (1) = [" ()] (g7 (1)

Equation (5.81) is a quasi-likelihood equation if either X; does not have
the p.d.f. in (4.55) or (4.58) does not hold. Note that this generalizes
the discussion in §4.4.3: if X; does not have the p.d.f. in (4.55), then the
problem is often nonparametric. Let s,(v) be the left-hand side of (5.81).
Then s, () = 0 is a GEE and E[s,,(3)] = 0 is satisfied as long as the first
condition in (4.56), E(X;) = p;(3), is satisfied.

For general d;'s, let X; = (X;1,....,Xiq,), 1 = 1,...,n, where each X
satisfies (4.56) and (4.57), i.e.,

E(Xi) = p(ni) = ﬂ_l(.ﬁzﬂ) and Var(X;) = ﬁf’ﬂ-ﬂj{’-‘“ht):

and Z;;'s are k-vector values of covariates. In biostatistics and life-time
testing problems, components of X; are repeated measurements at different
times from subject ¢ and are called longitudinal data. Although X;’s are
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assumed independent, X;;’s are likely to be dependent for each i. Let R;
be the d; x d; correlation matrix whose (f,1)th element is the correlation
coefficient between X;; and X;;. Then

Var(X;) = ¢:[D;(8)]'/*Ri[Di(0)]'/2, (5.82)

where D;(~) is the d; x d; diagonal matrix with the tth diagonal element
g H~ZT). If R;’s in (5.82) are known, then an extension of (5.81) to the
multivariate x;’s is

TL

Z[Iv: — (N HD: (N2 R[Di ()] 2} 1 Gi(y) = 0. (5.83)

where f1;(v) = (p(¥(vZ7)). -, p((v2],,))) and Gi(y) = Opi(v)/dv. In
most applications, f; is unknown and its form is hard to model. Let R; be
a known correlation matrix (called a working correlation matriz). Replacing

R; in (5.83) by R; leads to the quasi-likelihood equation

TL

> i = (VD (N2 RAD: ()]} Gilv) = 0. (5.84)

For example., we may assume that the components of X; are independent
and take R; = I 4,- Although the working correlation matrix R; may not be
the same as the true unknown correlation matrix R;, an MQLE obtained
from (5.84) is still consistent and asymptotically normal (§5.4.2 and §5.4.3).
Of course, MQLE’s are asymptotically more efficient if R; is closer to R;.
Even if R; = R; and ¢; = o, (5.84) is still a quasi-likelihood equation, since
the covariance matrix of X, cannot determine the distribution of X, unless
X, is normal.

Since an R; closer to R; results in a better MQLE, sometimes it is
suggested to replace R; in (5.84) by R;. an estimator of R, (Liang and Zeger,
1986). The resulting equation is called a pseudo-likelihood equation. As long
as max;<r, §|ﬁ1 — U;|| —p 0 as n — oo, where U;’s are correlation matrices
(not necessarily the same as the true correlation matrices), MQLE’s are
consistent and asyvmptotically normal.

Profile empirical likelihoods

The previous discussion shows that the GEE method coincides with the
method of deriving M-estimators, LSE’s, MLE’s, or MQLE’s. The following
discussion indicates that the GEE method is also closely related to the
method of empirical likelihoods introduced in §5.1.2.

Assume that X;'s are i.i.d. from a c¢.d.f. F on R? and ¢; = 1 for all
i. Then condition (5.79) reduces to E[)(X,0)] = 0. This leads to the



316 5. Estimation in Nonparametric Models

consideration of the empirical likelihood

T

WPy =T swbjectto pi20, Spi=1. 3 pb(e0) =0
' =1 =1

where p; = Pp({x;}), i = 1,...,n. Maximizing this empirical likelihood is
equivalent to maximizing

((Prs ey Prowh A, 0) = H;tn- + w (1 - Zm) + Zpﬂ;'f{ﬂa.-ﬂ)f;

where w and A are Lagrange multipliers.

Suppose that £(0,&) is a likelihood (or empirical likelihood) function,
where f/ and & are not necessarily vector-valued. For example, £ = . a
c.d.f. If maximizing £(0,&) over (6,&) is difficult, sometimes we can apply
the method of profile likelihoods, which can be described as follows. For

each fixed 8, let £(0) satisfy

1(0.€(0)) = sup (0,€).

The function

(p(0) = £(6,£(0))

is called a profile likelihood function for #. Suppose that é_p maximizes
£p(#). Then fp is called a maximum profile likelihood estimator of §. Note

that 0p may be different from an MLE of #.

In general, it is difficult to maximize the likelihood ¢(p1, ..., pn,w, A, 8).
We consider the following profile empirical likelihood. Let & be fixed. It
follows from (5.12) and (5.13) that

W= 1, j::"'i = {ﬂ[l + W{I:L*ﬁ}}‘:t]}_l

with a A, = A, (0) satisfying

Tt

P(x;, 0) _ - g
Z}n{1+-1;'ﬁ[;1:1:€:1[}1n({§)]“f} ¥ (5.85)

maximize £(py, ...pn, w, A, @) for any fixed 0. Substituting p; with > | p; =
1 into £(p1,...pn.w, A, 8) leads to the following profile empirical likelihood
for 0:

T

1 |
w0 = e amery (5.86)
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Let 0 be a maximum of £p (@) in (5.86). It follows from the proof of Theorem
5.4 that

Mn(#) = O, (n~1?) and 0—0=0,n""?%

(see also Qin and Lawless (1994)), under some conditions on ¢ and its
derivatives. Using (5.85), we obtain that

n I,f)(ifigé} | _1/2 T | )
0= a A = |1+ O} T W -’1’1:-.9
Z; 14 (s, 0)[Aa(0)]7 1+0,(n7?)] Z} J(z:,0)

and, therefore,

That is, 0 is a GEE estimator.

5.4.2 Consistency of GEE estimators

We now study under what conditions (besides (5.79)) GEE estimators are
consistent. For each n. let E‘:u be a GEE estimator, i.e., .ﬁ,l{éﬂ_) = (), where
sn(7y) is defined by (5.78).

First. Theorem 5.7 and its proof can be extended to multivariate T in a
straightforward manner. Hence., we have the following result.

Proposition 5.2. Suppose that X,...., X, are ii.d. from F and v; =
i, a bounded and continuous function from R? x © to R*. Let U(t) =
[ Y(x,t)dF(xz). Suppose that W(#) = 0 and 9¥(t)/0t exists and is of full

rank at { = 0. Then #,, —, 6. 1

For unbounded 1 in the i.i.d. case. the following result and its proof can
be found in Qin and Lawless (1994).

Proposition 5.3. Suppose that X, .... X,, are i.i.d. from F and ; = 1.
Assume that p(x,v) = 9 (z, )/ 07 exists in Ny, a neighborhood of #, and
is continuous at @; there is a function h(x) such that sup.cn, |[@(z, v)|| <
h(z), sup,cn, [10(z,7)]]° < h(z). and E[h(X1)] < oo; E[p(X1,8)] is of full
rank; E{[¢(X;,0)]7¢ (X1, 0)} is positive definite; and (5.79) holds. Then,
there exists a sequence of random vectors {@,} such that

oy

P(sn(0)=0) =1 and 6, —,0 (5.87)

Next, we consider non-i.i.d. X;'s.



318 5. Estimation in Nonparametric Models

Proposition 5.4. Suppose that X,...., X, are independent and € is uni-
variate. Assume that ¢; (2, ) is 1&11—»&,1119(1 and nonincreasing in v for all
i; there is a § > 0 such that sup, E|vy;(X;, v)|' ™ < o for any f111 Ng. a
neighborhood of # (this condition can be replaced by E|¢ (X, )| < oc for
any v in Ny when X;’s are i.i.d. and ¢; = ¢); ¢;(x,v) are continuous in
Ny; (5.79) holds; and

limsup E[U, (0 + ¢)] <0 < liminf E[¥,, (0 — €] (5.88)

for any € > 0, where ¥, (v) = n~'s,(v). Then, there exists a sequence of
random variables {#,} such that (5.87) holds. Furthermore, any sequence

{E?”} satisfying qﬂ{ﬂﬂ) = () satisfies (5.87).

Proof. Since ;’s are nonincreasing, the functions W, () and E[¥,,(v)] are
nonincreasing. Let € > 0 be fixed so that # & ¢ € Ny. Under the assumed
conditions.

U, (0te)— E[¥, (0 £e)] —,0
(Theorem 1.14(ii)). By condition (5.88),

P{II»',,..l[E' +€) <0< W, (0 - F)) — 1.
The rest of the proof is left as an exercise. 1

To establish the next result, we need the following lemma. First, we need
the following concept. A sequence of functions {g;} from R* to R is called
equicontinuous on an open set O C R¥ if and only if for any € > 0, there is a
6e > 0 such that sup, ||gi:(t)—gi(s)|| < ¢ whenever t € O, s € O, and |[t—s| <
O.. Since a continuous function on a compact set is uniformly continuous,
functions such as g;(+) = g(t;,~) form an equicontinuous sequence on O if
t;’s vary in a compact set containing ¢ and g(?, f} is a continuous function

in (t,).

Lemma 5.3. Suppose that © is a compact subset of R*. Let h;(X;) =
SUp., o |1 (X — 1.2..... Suppose that sup, E|h;(X;)|'T® < oc and
sup; E||X;||® < oc for some § > 0 (this condition can be replaced by
E|h(X1)] < oo when X;'s are i.i.d. and v; = ). Suppose further that
for any ¢ > 0 and sequence {z;} satisfying |z;|| < ¢, the sequence of func-
tions {g;(v) = ¥;(x;,v)} is equicontinuous on any open subset of @. Then

sup
vEB

Proof. Since we only need to consider components of #;’s, without loss of
senerality we can assume that ¢;’s are functions from R% x © to R. For
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any ¢ > (),
1 Tt
sup &7 | — Y il Xi) (o) (1 X)) | < sup E[ha(Xi) (e o0y (1 X )]
TE i=1 T

Let ¢y = sup, E|h;(X;)|*T° and ¢; = sup, E . By Holder's inequality,

X
< ﬂ{l}f{1+&llﬂrff{1+&llﬂ—& J(148)

571/ (1+8) _
Elhi(Xi)(e,o0) (1X: )] < [ElRi(X0)["+] [P(IX ]| > )0
1/({1448) 5fl:l+:5:|ﬂ_(53f,f“+(5:|

for all i. For e > 0 and € > 0. choose a ¢ such that ¢ cy
) (5.89)

< €€/2. Then, for any O C O, the probability
is bounded by € (exercise). From the equicontinuity of {v;(x;,v)}, there is
a 0. > () such that

b | ™

P (EZ {‘illl} Er} [X ":r'::l — lllf T,L»;(X ]}I{f o) {H"X ||:] =

,r'E'L}

v,

_Z { sup ¥;(X;,v) — mf (X, )}I[[]__{_,][ﬂ)(i;” c g

for sufficiently large n, where ), denotes any open ball in R* with radius
less than 6.. These results, together with Theorem 1.14(ii) and the fact
that ||¢ (X, v)|| < h;(X;), imply that

1 Tl
P (H Z {21{%’1 Vi(Xi,y) — E Lm{g i (X, f}]} ) — 0. (5.90)

i=1]

Let Hﬂ.{'.}'f) =n~! Z:ﬁ.{;:l{tl&i{:Xi?ﬁ.’r:] o E[tlbi{xi? T}]} Then

1 7
) = aup vl X _F (X ‘
SUp Hu{ f:] —_ Z { SUp 4y {Xi- .-T} E [".flé]*-lge. Wy '[-Xz F}’}] } .

HI.EE}r r i=1 ":-'E{r.],_..

which with (5.90) implies that

P(Hn{f'}f) > ¢ forall v € {f}ﬁ) = (5111} H,(v) = E) — ().

v,

Similarly we can show that

P(H,(y) < —€ forally € 0,.) — 0.
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Since © is compact, there exists m. open balls O, ; such that ©® C U0, ;.
Then, the result follows from

P ('-?111} |H,.(7)| = F) ZP ( Sup \H,,(7v)| = E) — 0. 1

==l a=1

Example 5.11. Consider the quasi-likelihood equation (5.84). Let {R;}
be a sequence of working correlation matrices and

Uilxi,y) = (2 = (N {[Di(N] 2 R Di(1)] 2} Gi(v). (5.91)

[t can be shown (exercise) that ;s satisfvy the conditions of Lemma 5.3 if
© is compact and sup, || Z;]| < oco. B

Proposition 5.5. Assume (5.79) and thE‘ conditions in Lemma 5.3. Sup-
pose that the functions A,(v) = E[n~!'s,(v)] have the property that
lim,, ..o Ay(v) = 0 if and only if v = 8. (If A, converges to a func-
tion A, then this condition and (5.79) means that A has a unique 0 at 6.)
Suppose that {0,,} is a sequence of GEE estimators and that 0, = O,(1).
Then 6,, —, 0.

Proof. First, assume that © is a compact subset of RE. From Lemma 5.3
and s, (f,) = 0, A, (#,) —, 0. By Theorem 1.8(vi), there is a subsequence
{n;} such that

-

ﬂ'ﬂ--ﬁ {Q?“:] ~a.s. 0. {592)

Let x1,x9,... be a fixed sequence such that (5.92) holds and let f; be a
limit point of {#, }. Since © is compact, #; € © and there is a subsequence

{m;} C {n;} such that é'mj — ). Using the argument in the proof of
Lemma 5.3, it can be shown (exercise) that {A,(v)} is equicontinuous on
any open subset of ©. Then

ﬂl-Tr:,} {é]’i'i_-l.) "' &m,] I[ﬂ'[]) — U'.-

which with (5.92) implies ﬂ.,.-njl[ﬁ[]} — (). Under the assumed condition,
0y = #. Since this is true for any limit point of {f;'n}, 0, —p 0.
Next, consider a general ©. For anyv € > (), there is an M, > () such

that P(||0,.]| < M,) > 1 — e. The result follows from the previous proof by
considering the closure of ©@ N {7 : [|v|| < M.} as the parameter space. |

Condition #,, = O,(1) in Proposition 5.5 is obviously necessary for the
consistency of #,,. It has to be checked in any particular problem.
If a GEE is a likelihood equation under some conditions, then we can

often show. using a similar argument to the proof of Theorem 4.17 or 4.18,
that there exists a consistent sequence of GEE estimators.
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Proposition 5.6. Suppose that s,(v) = dlog/,(v)/0dv for some func-
tion £,; I,(0) = Var(s,(0)) — 0; pi(x,v) = d;i(x,~v)/0v exists and the
sequence of functions {p;;,i = 1,2, ...} satisfies the conditions in Lemma
5.3 with © replaced by a compact neighborhood of @, where ;; is the jth
row of @;, j = 1,....k; and —liminf,, [I,(6)]Y2E[Vs,.(0)][1.(0)]'/? is posi-
tive definite, where Vs, (v) = ds,(v)/07v. Then, there exists a sequence of
estimators {f,,} satisfving (5.87). W

The proof of Proposition 5.6 is similar to that of Theorem 4.17 or The-
orem 4.18 and is left as an exercise.

Example 5.12. Consider the quasi-likelihood equation (5.84) with R; =
I;, for all i. Then the GEE is a likelihood equation under a GLM (§4.4.2)
assumption. It can be shown (exercise) that the conditions of Proposition
5.6 are satisfied if sup, || Z;|| < cc. ¥

5.4.3 Asymptotic normality of GEE estimators

Asymptotic normality of a consistent sequence of GEE estimators can be
established under some conditions. We first consider the special case where
f is univariate and X, ..., X,, are i.i.d.

Theorem 5.13. Let X,....,X,, be ii.d. from F. 5 =
Suppose that ¥(v) = [ (x,v)dF(z) = 0 if and only if v
and W'(0) # 0.

(i) Assume that 1)(x,+) is nonincreasing in v and that [[¢(z,~)]*dF(x)
is finite for 4 in a neighborhood of # and is continuous at #. Then, any

1

sequence of GEE estimators (M-estimators) {0,,} satisfies

V0, — 0) —q N(0,0%), (5.93)

Y, and 6 € R.
0, U'(0) exists

where
o} = j (. ) dF () /[ (6))2.

(ii) Assume that [[y(z,0)]*dF(x) < oo, ¥(x,7) is continuous in z, and
lim g ||¢(-,v) — (-, )|y = 0, where || - ||}/ is the variation norm defined

in Lemma 5.2. Then, any consistent sequence of GEE estimators {0, }
satisfies (5.93).
Proof. (i) Let ¥,,(v) = n~'s,(v). Since ¥,, is nonincreasing,

P(U,,(t) <0) < P4, <t) < P(U,(t) <0)
for any t € R. Then, (5.93) follows from

lim P(W,(t,) <0) = lim P(¥,(t,) <0)=&(t)

TL—* X0 FL—+ 50
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fDl all t € R, where t,, = 0 + topn=1/2. Let s7, = Var(y(X,,t,)) and
Yai = [W(X;, tﬂ) — W(t,)|/s¢.n. Then, it suffices to show that

lim P (L_ i Y., < — V/ﬁw{t”)) = (1)

St.n

for all £. Under the assumed conditions, /n¥(t,,) — ¥'(0)top and s;,, —
—U'(0)o . Hence, it suffices to show that
Ly Y, N(0,1)
—— ni 2 L)
\'/TL i=1

Note that Y),1,.... Y, are ii.d. random variables. Hence we can apply
Lindeberg's CLT (Theorem 1.15). In this case, Lindeberg’s condition (1.53)
is implied by

TE—* O3

lim / [(x, t,)]2dF (z) = 0
Wzt )| >y me

for any € > 0. For any n > 0, ¥(z,0 + 1) < Y(x,t,) < (x,0 —n) for all =
and sufficiently large n. Let u(x) = max{|¢(x,0 — n)|, |¢(z,0 + n)|}. Then

[ P t)PiFE) < [ u@)PdF)
Sz tn )| = Ve Ju(z)=vne

which converges to 0 since [[(x,v)]*dF (x) is finite for 4 in a neighborhood
of §. This proves (i).
(ii) Let ¢p(x) = —1(z,8)/¥'(0). Following the proof of Theorem 5.7, we

have _
) 1 Tl |
V/“H{Eﬂ - ﬁ:l - \_/ﬁ g @F{Xi) + Rln - RE?U

where
1

Ry, — _Za!»(?‘f [mf{ﬂ} h ()

RE n o

hi(0,,) 1/'[-1;":(:1:, 0,) — (x, 0)d(F, — F)(x),

and hp is defined in the proof of Theorem 5.7 with W = Ap. By the CLT
and the consistency of Sﬂ_ Ry, = 0,(1). Hence the result follows if we can
show that Ry, = 0,(1). By Lemma 5.2,

|Ron| < Vilhp(00)| ! 0cc(Fny P) [0, 00) = 9(-,0) v

The result follows from the assumed condition on v and the fact that

VN0sc (Fp, F) = O,(1) (Theorem 5.1). 1§
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Note that the result in Theorem 5.13 coincides with the result in The-
orem 5.7 and (5.34).

Example 5.13. Consider the M-estimators given in Example 5.7 based
on i.i.d. random variables X;..... X,,. If ¢/ is bounded and continuous. then
Theorem 5.7 applies and (5.93) holds. For case (ii), ¥(x, v) is not bounded
but is nondecreasing in ~ (—1(x, ) is nonincreasing in +). Hence Theorem
5.13 can be applied to this case.

Consider Huber’s 1 given in (v). Assume that F' is differentiable in
neighborhoods of # — €' and # + C'. Then

v+
¥() = [ (= 2)iP(a) - CF(y - C) + Cl1 - Fly + C)

is differentiable at § (exercise); W(#) = 0 if F' is symmetric about 0 (exer-
cise); and

v+

[ rar@ = [ G -27dF @) + PG -0)+ ¢ -l +0)

, Jy—c

is continuous at @ (exercise). Therefore, (5.93) holds with

0 — 2)2dF (z) + C2F(0 — C) + C2[1 — F(0 + O))
[F(0+C)—F(0—-C))*

o2 =

(exercise). Note that Huber's M-estimator is robust in Hampel's sense.

Asymptotic relative efficiency of 6,, w.r.t. the sample mean X can be ob-
tained (exercise). |

The next result is for general # and independent X;’s.

Theorem 5.14. Suppose that @;(x,v) = OP;(x,~v)/0v exists and the
sequence of functions {p;;,i = 1,2, ...} satisfies the conditions in Lemma
5.3 with © replaced by a compact neighborhood of #, where ;; is the jth
row of @;; sup, E||vy;(X;,0)]|*T° < oo for some & > 0 (this condition can be
replaced by El[¢(X1,0)|* < oo if X;’s are i.i.d. and v; = 4); E[y,(X;,0)] =
0; liminf, A_[n~'Var(s,(0))] > 0 and liminf, A_[n='M,(6)] > 0, where
M,(0) = —E[Vs,(0)] and A_[A] is the smallest eigenvalue of the matrix
A If {é?l} is a consistent sequence of GEE estimators, then

(0, — OV 2y N (0, 1), (5.94)

L

where

Vi = [M,(0)] "Var(s,,(0))[M,.(8)] . (5.95)
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Proof. The proof is similar to that of Theorem 4.17. By the consistency
of 6,,, we can focus on the event {0,, € A}, where A, = {v: ||y — 0| < ¢}
with a given € > 0. For sufficiently small €, it can be shown (exercise) that

”v"?ﬂ(ﬁf) - ?Sn{ﬁ'}ﬂ T
max - = op(1), (5.96)

using a similar argument to the proof of Lemma 5.3. From the mean-value
theorem and s,,(0,,) = 0,

1
—sn(0) = (0, — 0) / Vs (0 + (0, — 6))dt.
{

)

[t follows from (5.96) that

1 A
- f Vs, (0 +t(0, —0))dt — ‘an(ﬂ)H = 0,(1).
0

Also, by Theorem 1.14(ii),
n" [Vsn(0) + M, (0)] = o0,(1).
This and liminf,, A\_[n=1M,,(#)] > 0 imply
5n(0)[Mn(0)] 7" = (0, — O)[1 + 0, (1))].
The result follows if we can show that
Su(0)[ M (] 1V V2 4y NL(0, ). (5.97)

For any nonzero [ € R*,

0,0, (5.98)

1 i | ) i
(IV,17)1+5/2 > Bli(Xi,0)[M,(0)] 71
" 1=1

since liminf, A_[n~='Var(s,(0))] > 0 and sup, E|[1;(X;.0)]|*T° < oo (exer-
cise). Applying the CLT (Theorem 1.15) with Liapunov’s condition (5.98),
we obtain that

Sn(0)[ M (0)] 1T /\/IVRIT —4 N(0,1) (5.99)
for any [, which implies (5.97) (exercise).

Asymptotic normality of GEE estimators can be established under var-

ious other conditions; see, for example, Serfling (1980, Chapter 7) and He
and Shao (1996).
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If X;’s are i.i.d. and ; = v, the asymptotic covariance matrix in (5.95)
reduces to

Vo = n" {E[p(X1,0)]} " E{[{(X1, )] [(X1, O) H{E[p(X1, 0)]}
where @(x,v) = d(x,v)/dv. When 0 is univariate, V,, further reduces to
Vo = n" E[p(X1,0)]° /{E[p(X1, 0)]}*.

Under the conditions of Theorem 5.14,

Blo(x0.0) = [ 22 ar@) = o [ v 0)dF ().

Hence, the result in Theorem 5.14 coincides with that in Theorem 5.13.

Example 5.14. Consider the quasi-likelihood equation in (5.84) and ; in

(5.91). If sup; ||Z:|| < oo, then ¥y satisfies the conditions in Theorem 5.14
(exercise). Let Vi, (v) = [D:(7)]Y2R;[D;(v)]*/2. Then

Var(s,(0)) = Z[Gi{ﬂ)]"’[ffn{H)]‘lvarﬁxi)[ﬂ;{ﬂ)]—lm(ﬁ}

and

Mo(0) = D [Gil0)]" [Val(0)) 7 Gi(0).

If, in addition. ¢; = ¢, then

Vi, = [ M (0)] "2 Var(s,.(0)) [ Mo (0)] 7 = ¢[M,.(0)] 1. W

5.5 Variance Estimation

In statistical inference the accuracy of a point estimator is usually assessed
by its mse or amse. If the bias or asymptotic bias of an estimator is (asymp-
totically) negligible w.r.t. its mse or amse, then assessing the mse or amse is
equivalent to assessing variance or asymptotic variance. Since variances and
asymptotic variances usually depend on the unknown population, we have
to estimate them in order to report accuracies of point estimators. Vari-
ance estimation is an important part of statistical inference, not only for
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assessing accuracy. but also for constructing inference procedures studied
in Chapters 6 and 7. See also the discussion at the end of §2.5.1.

If the unknown population is in a parametric family indexed by a pa-
rameter @, then the covariance matrix or asymptotic covariance matrix of
an estimator of @ is a function of @, say V,,(#). If @ is estimated by @,
then it is natural to estimate V(@) by EL(E;'}. Thus, variance estimation
in parametric problems is usually simple. This idea of substitution can be
applied to nonparametric problems in which variance estimation is much
more complex.

We introduce three commonly used variance estimation methods in this
section, the substitution method, the jackknife, and the bootstrap.

5.5.1 The substitution method

Suppose that we can obtain a formula for the covariance or asymptotic
covariance matrix of an estimator 6,,. Then a direct method of variance
estimation is to substitute unknown quantities in the variance formula by
some estimators. To illustrate, consider the simplest case where X, ..., X,
are 1.i.d. random d-vectors, 0, = g(X). and g is a function from R? to RE.
Suppose that E||X;|* < oo and g is differentiable at g = E(X;). Then, by
the CLT and Theorem 1.12{1},

0, —0)V. 12 oy N0, 1), (5.100)
where § = g(p) and
Vo = Vg(p) Var(X1)[Vg(p)]" /n (5.101)

is the asymptotic covariance matrix of #,, which depends on unknown quan-
tities g and Var(X;). A substitution estimator of V,, is

Vo, = Vg(X)S%[Vg(X)] /n. (5.102)
where 5% = (n — 1)7' 3" (X; — X)7(X; — X) is the sample covariance
matrix, an extension of the sample variance to the multivariate X;’s.

An essential asymptotic requirement in variance estimation is the con-
sistency of variance estimators according to the following definition.

Definition 5.4. Let {V/,} be a sequence of k x k positive definite matrices
and V,, be an estimator of V,, for each n. Then {Pn} or Ifﬂ is said to be
consistent for V,, if and only if

IV I IVl —, 1 for any I € R". (5.103)

-

V., is strongly consistent if (5.103) holds with —, Teplaced by —, .. |
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If (5.103) holds, then (5’”_ - Q}fﬁflﬁ —4 Ni(0,I;,), a result useful for
asymptotic inference as discussed in Chapters 6 and 7.

By the SLLN, V., in (5.102) is strongly consistent for V, in_{ﬁ.lﬂl],
provided that Vg(u) # 0 and Vg is continuous at p so that Vg(X) —, .

Vg(u).

Example 5.15. Let Y7....,Y,, be ii.d. random variables with finite p, =
EYy, o) = Var(Y1), 7, = EY}, and k, = EY;'. Consider the estimation

1

of 0 = (py,0;). Let 0, = {}?5&5), where 62 = n=1Y. " (V; —Y)2 If

~ — y i
X; = (Y;.Y?), then 6,, = g(X) with g(x) = (21,22 — 7). Hence, (5.100)
holds with

Var(X,) — {Tg Yy — ;.Lyl[{:rg + ,ugr)
ariAy) = 2 y . 9 242
Ty = Hyloy + 1) Ky — (o + 1y,

and

Vg(z) = ( _;:1 2 )

The estimator V), in (5.102) is strongly consistent, since Vg(x) is obviously
a continuous function. 1§

Similar results can be obtained for problems in Examples 3.21 and 3.23.
and Exercises 92 and 93 in §3.6.

A key step in the previous discussion is the derivation of formula (5.101)

for the asymptotic covariance matrix of 0, = g(X). via Taylor’s expansion
(Theorem 1.12) and the CLT. Thus, the idea can be applied to the case

where 0, = T(F,,), a differentiable statistical functional.

We still consider i.i.d. random d-vectors Xq,.... X,, from F. Suppose
that T is a vector-valued functional whose components are g-Hadamard
differentiable at F', where p is either o, or a distance satisfying (5.35).
Let ¢p be the vector of influence functions of components of T. If the
components of ¢p satisfy (5.33), then (5.100) holds with 8 = T(F), 6,, =
T(F,), F,, = the empirical c.d.f. in (5.1), and

v Var(@e(X1)

T

=+ [Gr@I6r(x)dF (@), (5.104)

Formula (5.104) leads to a natural substitution variance estimator
~ 1 . . 1 T | N N
Vi = E [@Fﬁ{i’f)] OF, {I)ETEFH {.1") = n_*"*' Z[QDF” (Xt}] @F;L{Xi); {d.l[]ﬁ)

provided that ¢ (x) is well defined, i.e., the components of T are Gateaux
differentiable at F), for sufficiently large n. Under some more conditions on
¢, we can establish the consistency of V,, in (5.105).
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Theorem 5.15. Let X;,....X,, be ii.d. random d-vectors from F, T be
a vector-valued functional whose components are Gateaux differentiable at
F and F,,. and ¢p be the vector of influence functions of components of
T. Suppose that sup, <. |l¢F, (z) — ¢p(x)] = 0,(1) for any ¢ > 0 and
that there exist a constant ¢y > 0 and a function h(x) = 0 such that
E[h(X,)] < oo and P(sup,s., lor, ()|[* < Rh(z)) — 1. Then V, in
(5.105) is consistent for V,, in (5.104).

EE‘E?{f- Let {(z) = [¢r(x)]"[¢r(x)] and (u(x) = [¢F, (2)]"[¢F, (z)]. By the

Tt

%ZC(XE) —a.s. 1/‘C{T)dF{T)

=1

Hence the result follows from

Using the assumed conditions and the argument in the proof of Lemma 5.3,
we can show that for any € > 0, there is a ¢ > () such that

1 — _
‘D( D 11Gn(Xi) = CXa) [ eoo0y (1 X511 > %) < e

n
and

1 _
P (E; G Xi) — C(Xa) o, (Nl X:ll) = g) < €

for sufficiently large n. This completes the proof. 1

Example 5.16. Consider the L-functional defined in (5.39) and the L-

£

estimator #,, = T(F,,). Theorem 5.6 shows that T is Hadamard differentiable
at F' under some conditions on J. It can be shown (exercise) that T is
Gateaux differentiable at F,, with ¢ g (z) given by (5.41) (with F' replaced
by F,). Then the difference ¢ (z) — ¢p(x) is equal to

/ (£ — F)(y)J (Fu(y))dy + / (F = &) () [J (Fuly)) — J(F(y))]dy.

One can show (exercise) that the conditions in Theorem 5.15 are satisfied
if the conditions in Theorem 5.6(i) or (ii) (with E|X;| < ~c) hold. &

Substitution variance estimators for M-estimators and U-statistics can
also be derived (exercises).

The substitution method can clearly be applied to non-i.i.d. cases. For
example, the LSE 3 in linear model (3.25) with a full rank Z and i.i.d. &;’s
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has Var(3) = ¢2(Z7Z)~', where 62 = Var(e;). A consistent substitution

estimator of Varl[,f?-'} can be obtained by replacing ¢ in the formula of Varl[,f?-'}
by a consistent estimator of o2 such as SSR/(n — p) (see (3.36)).

We now consider variance estimation for the GEE estimators described
in §5.4.1. By Theorem 5.14, the asymptotic covariance matrix of the GEE
estimator #,, is given by (5.95), where

vﬂl‘(ﬂn(ﬁ)) - Z E{['Eﬁiﬁ{Xﬁ: ﬁ)]T¢i{Xivg)}:

and ;(x,v) = di(x,~)/0y. Substituting by 0, and the expectations
by their empirical analogues, we obtain the substitution estimator V,, =
M 'Var(s,)M ', where

and

The proof of the following result is left as an exercise.

Theorem 5.16. Let X,...., X, be independent and {ﬁhﬂ} be a consistent
sequence of GEE estimators. Assume the conditions in Theorem 5.14. Sup-
pose further that the sequence of functions {h;;,i = 1,2, ...} satisfies the
conditions in Lemma 5.3 with © replaced by a compact neighborhood of
0., where h;;(x,~) is the jth row of [¢;(z,~)]7¢:(x,~v). Let V,, be given by
(5.95). Then V,, = M 'Var(s, )M is consistent for V,,. #

5.5.2 The jackknife

Applying the substitution method requires the derivation of a formula for
the covariance matrix or asymptotic covariance matrix of a point estimator.
There are variance estimation methods that can be used without actually
deriving such a formula (only the existence of the covariance matrix or
asymptotic covariance matrix is assumed), at the expense of requiring a
large number of computations. These methods are called resampling meth-
ods, replication methods, or data reuse methods. The jackknife method
introduced here and the bootstrap method in §5.5.3 are the most popular
resampling methods.
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The jackknife method was proposed by Quenouille (1949) and Tukey
(1958). Let 0, be a vector-valued estimator based on independent X;'s,
where each X; is a random d;-vector and sup,; d; < oo. Let 0_; be the
same estimator but based on X,..... X;_ . X;1.....X,,, i = 1,....n. Note
that 3—1 also deE‘HLlS on n but thF subscript n is omitted for simplicity.
Since #,, and _;, : ...0_,, are estimators of the same quantity, the “sample
covariance ma,trlx

| _NT /. _
S (6o —Sﬂ.,) (H_i —En) 5.106
n—14 ( (5.106)

can be used as a measure of the variation of H'Hﬂ_, where #,, is the average of
g_i?S.

There are two major differences between the quantity in (5.106) and
the sample covariance matrix S? previously discussed. First, f_,’s are not
independent. Second, 0_; — 0_ ; usually converges to 0 at a fast rate (such
as n~'). Hence, to estimate the asymptotic covariance matrix of é?.l, the
quantity in (5.106) should be multiplied by a correction factor ¢,,. If 0, =X
(d; = d), then 0_; = (n—1)"Y(X — X;) and the quantity in (5.106) reduces
to

i

1 - _ 1
R N

where S? is the sample covariance matrix. Thus. the correction factor ¢,, is
(n — 1)?/n for the case of d, = X, since, by the SLLN, S2/n is consistent
for Var(X).

It turns out that the same correction factor works for many other esti-
mators. This leads to the following jackknife variance estimator for 0,,:

. n—1 e /4 _NT /. _
v, = (a_i _ an) (a_i _ an) | 5.107
J - Z (5.107)

p=1

Theorem 5.17. Let X,.....X,, be iid. random d-vectors from F with
finite ¢ = E(X;) and ‘f&r{le, and let 6, = g(X). Suppose that Vg is
continuous at u and Vg(u) # 0. Then the jackknife variance estimator V;
in (5.107) is strongly consistent for V,, in (5.101).

Proof. From Definition 5.4, it suffices to show the case where g is real-
valued. Let X_; be the sample mean based on X, ..., Xi—1. Xit1, .. Xn.
From the mean-value theorem, we have

0_; — 6, = g(X ;) — g(X)
- vg(&ft) '[_X—t - :J
= Vg(X)(X_; - )T
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where R, ; = [?gl[cfn_.,;) Vgl X}] (X_; — X)™ and cf“ i 1s a pmnt on the
line segment between X_; and X. From X_i—-X=(n-1)"1X-X,),it
follows that "7 (X_; — X) = 0 and

-_Z(g—i - gn) — _ZR T E’”’f'

From the definition of the jackknife estimator in (5.107),

ff.f — 3)111 -+ Bn + ECTH

where
n-—1 e - _ _ _ _
Ay = ——Vg(X) D (X - X) (X - X)[Ve(X)].
=1
B "= 1 Zn:'[R R,)?
TE T T p— .t “TE
and |
n—1«— _ _ _
Cn - n ;{Ru i Rfl)vg(X){X—I - X)

By X_;— X =(n—-1)"%X — X;), the SLLN, and the continuity of Vg at
I,

*’111;{1’:1 —+q.s. L.
Also,

T ~ . 1 ' .
- 2 __ L 2 __ . e
(n—1) Z} 1 X_i = X| — Z} 1X; = X||*=0(1) as. (5.108)

Hence

max | X_; — X||? —... 0,
isn

which, together with the continuity of Vg at p and ||&, ;— X|| < || X_; - X].
implies that )
Uy = IIE\K ||vq{£ﬂi) - ?Q{X:]” “a.s. 0.

1T

From (5.101) and (5.108), Y., | X_; — X||?/V,, = O(1) a.s. Hence

B Z iln i: ||-/‘::—1 - }_:”.3 . 0.

By the Cauchy-Schwarz inequality, (C,/V,)? < (A, / Vo) (B /Vy) —a.s. 0.
This proves the result. 1
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A key step in the proof of Theorem 5.17 is that 6_; — 0, can be ap-
proximated by Vg(X)(X_; — X)™ and the contributions of the remainders,
R,1..... Ry n, are sufficiently small, ie., B,,/V,, —,, 0. This indicates
that the jackknife estimator (5.107) is consistent for 0,, that can be well ap-
proximated by some linear statistic. In fact, the jackknife estimator (5.107)
has been shown to be consistent when 0,, is a U-statistic (Arvesen, 1969)
or a statistical functional that is Hadamard differentiable and continuously
Gateaux differentiable at F' (which includes certain types of L-estimators
and M-estimators). More details can be found in Shao and Tu (1995, Chap-
ter 2).

The jackknife method can be applied to non-i.i.d. problems. A detailed
discussion of the use of the jackknife method in survey problems can be
found in Shao and Tu (1995, Chapter 6). We now consider the jackknife

variance estimator for the LSE fff in linear model (3.25). For simplicity,
assume that Z is of full rank. Assume also that =;'s are independent with

E(g;) = 0 and Var(s;) = 07. Then

Var(3) = (Z272)~" Z{Tiz AVANARE

Let ﬁ_i be the LSE of 3 based on the data with the ith pair (X, Z;) deleted.
Using the fact that (A 4+ ¢7¢)7! = A7 — A~ leTed /(1 + eA™1e™) for a
matrix A and a vector ¢, we can show that (exercise)

.S—i = ."ﬁl - ?‘iZi;"l[l - h—"i‘i)'.- {51[]9}
where r; = X; — _{?Z{ is the ith residual and hy; = Z;(Z72)"'ZT. Hence

- jfZ:Zl 1 n ‘-Z_T Tt i:Zi i _
> PERD D Dl [EAEI

=1 =1 =1

v, =" Lz -

Tt

Wu (1986) proposed the following weighted jackknife variance estimator
that improves V;:

N AT s . i EZT
Vi = Y (1=hi) (8- = 8) (8- B) = (272 *Z oz

Theorem 5.18. Assume the conditions in Theorem 3.12 and that ;s are

independent. Then both V; and Vi are consistent for Var {I’E}
Proof. Let | € R” be a fixed nonzero vector and I; = I(Z7Z) ' ZT. Since

max;<, h; — 0, the result for Vi ; follows from

F j/ZEEJE -, 1. (5.110)
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By the WLLN (Theorem 1.14{11)),

Note that r; = ¢; + (3 — {i’)ZIT and

max{(8 — )27 < (8~ B)27 | max his = 0p(1).

Hence (5.110) holds.

The consistency of V; follows from (5.110) and

1 n f 1
”ng ( L__? )/Zzﬂaﬁ—up (5.111)

The proof of (5.111) is left as an exercise.

Finally, let us consider the jackknife estimators for GEE estimators in
55.4.1. Under the conditions of Proposition 5.5 or 5.6, it can be shown that

max [|0-; — 0] = o0,(1), (5.112)

where #_. is a root of Sni(7) = 0 and

sni(¥) = D i(X5.9).
JFLIEN

-,

Using Tavlor's expansion and the fact that s,,;(f_;) = 0 and sn{ﬂu}
we obtain that

1
EIJI{XV g—l) — {'E'}—i - gﬂ) / vSTL ('En + t(g—i - gu})dt
0

Following the proof of Theorem 5.14, we obtain that

r!

I’}-f - [ﬂ'fn{g)]_l Z[TP-L{X H—z}] {X E}_i)[’ifn(ﬁ)]_l Ry,
=1
where R,, denotes a quantity satisfying {R,,[7 /IV,,[” = o0,(1) for V,, in (5.95).
Under the conditions of Theorem 5.16, it follows from (5.112) that Vj is

consistent.

If 0,, is computed using an iteration method, then the computation of
Vi requires n additional iteration processes. We may use the idea of a
one-step MLE to reduce the amount of computation. For each i, let

é—i - éﬂ, - S’."Li(éﬂ:][vﬁni(éﬂ}]_l,'- {5113)
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which is the result from the first iteration when Newton-Raphson's method
is applied in computing a root of s,;(v) = 0 and #,, is used as the initial

point. Note that f_;’s in (5.113) satisfy (5.112) (exercise). If the jackknife
variance estimator is based on #_;’s in (5.113), then

H,,,,,,{a)—lZ[w (X, 0.)]7i(X:,0,) [M.(0)] 7' + R,..

These results are summarized in the following theorem.

Theorem 5.19. Assume the conditions in Theorems 5.14 and 5.16. As-
sume further that 6_;’s are given by (5.113) or GEE estimators satisfying
(5.112). Then the jackknife variance estimator V' is consistent for V,, given
in (5.95). &

5.5.3 The bootstrap

The basic idea of the bootstrap method can be described as follows. Sup-
pose that P is a population or model that generates the sample X and that
we need to estimate Var(d), where § = (X) is an estimator, a statistic
based on X. Suppose further that the unknown population P is estimated
by P, based on the sample X. Let X* be a sample (called a bootstrap
sample) taken from the estimated population P using the same or a similar

sampling procedure used to obtain X, and let 9* = E}{X *), which is the
same as 0 but with X replaced by X*. If we believe that P = P (i.e.,
we have a perfect estimate of the population), then Var(f) = Var,(0%),
where Var, is the conditional variance w.r.t. the randomness in generating
X*, given X. In general, P # P and, therefore, Var(0 :1 o= V&l*{ﬂ'*:]. But
Vg = Var.( g ) is an empirical analogue of 1fr11‘|[E?} and can be used as an
estimate of Var(f).

In a few cases, an explicit form of Vi = ‘».f'a,r*{rij*} can be obtained.
First, consider i.i.d. X,....X,, from a c.d.f. ' on R%. The population is
determined by F'. Suppose that we estimate I by the empirical c.d.f. F,
in (5.1) and that X;. ..., X are i.i.d. from F,. For § = X, its bootstrap
analogue is 0 = X *, the average of X’s. Then

Vg = Var, (X*) =

=1

where S? is the sample covariance matrix. In this case Vg = Var,(X*) is
a strongly consistent estimator for Var(X). Next, consider i.i.d. random

variables X;...., X,, from a c.d.f. F on R and 0 — F?fl(%), the sample
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median. Suppose that n = 2/ — 1 for an integer [. Let X7, ..., X be i.i.d.

from F,, and 6% be the sample median based on X{,..., X . Then
T TE -
Vi = Var (") = ) " p, (X{j;. - ZP#XHJ) :
J=1 i=1

where Xy < --- < X,y are order statistics and p; = P(6* = XplX). It
can be shown (exercise) that

-1 ' : n—t __ 5 — g
PJ:Z(T) U_l)t{n_jﬂ)_ St ) (5.114)

However, in most cases Vg does not have a simple explicit form. When
P is known, the Monte Carlo method described in §4.1.4 can be used to
approximate Va,l(f?) That is, we draw repeatedly new data sets from P and
then use the sample covariance matrix based on the values of 0 computed
from new data sets as a numerical approximation to Var(#). This idea
can be used to approximate V5, since P is a known population. That is,
we can draw m bootstrap data sets X *L ., X*™ independently from P
(conditioned on X'), compute g1 — E{:X *J}, 7 = 1,....m, and approximate

Vp by
-~ 1 n.i - . — T - - —
s ] p L
Vi m__l(g 9) (E’ E)"

where 0~ is the average of §%7°s. Since each X*7 is a data set generated from
P V Stis a resampling estimator. From the SLLN, as m — oo, V = .

Vg, conditioned on X. Both Vi and its Monte Carlo approximation P Wt oare
called bootstrap variance estimators for 9. V 4 1s more useful in practical
applications, whereas in theoretical studies, we usually focus on V.

The consistency of the bootstrap variance estimator Vj is a much more

complicated problem than that of the jackknife variance estimator in §5.5.2.
Some examples can be found in Shao and Tu (1995, §3.2.2).

The bootstrap method can also be a,pplmd to estimate quantities other
than &r(i—?‘) For example, let K(t) = P(# < t) be the c.d.f. of a real-valued

estimator #. From the previous discussion, a bootstrap estimator of K(t)
is the conditional probability P(6* < t|X), which can be approximated
by the Monte Carlo approximation m™" 3 "" | I(—0ey)(0*7). An important
application of bootstrap distribution estimators in problems of constructing
confidence sets is studied in §7.4. Here, we study the use of a bootstrap
distribution estimator to form a consistent estimator of the asymptotic
variance of a real-valued estimator 6.
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Suppose that A
Vn(d —8) —4 N(0,v), (5.115)

where v is unknown. Let H,(t) be the c.d.f. of /n(f — ) and
Hip(t) = P(vn(0" —0) < t|X) (5.116)
be a bootstrap estimator of H, (t). If
Hp(t) — Hy(t) —, 0
for any ¢, then, by (5.115),
Hp(t) — @ (t/\/v) —, 0,
which implies (exercise) that
Hy'(a) = 7' (a/Vo) = V@~ (o)

for any v € (0,1). Then, for a # %

Hy'(1 - a) - Hy'(a) =, Vo[@ (1 - ) - &~} (a)].

Therefore, a consistent estimator of v/n, the asymptotic variance of @, is

2

i~ 1| Hp (1= 0) ~ Hy'(a)
n| &1l -a)—- o a)

The following result gives some conditions under which H p(t)—H,(t) —rp 0.
The proof of part (i) is omitted. The proof of part (ii) is given in Exercises
97-99 in §5.6.

Theorem 5.20. Suppose that X,...., X,, are i.i.d. from a c.d.f. F' on R4,
Let @ = T(F,), where T is a real-valued functional, * = T(F*). where F* is
the empirical c.d.f. based on a bootstrap sample X7, ..., X" iid. from F,,
and let Hp be given by (5.116).

(i) If T is po-Hadamard differentiable at ' and (5.33) holds, then
Q:ﬁc(ffﬂv Hn) —p 0. {511?)

(ii) If d = 1 and T is g, -Fréchet differentiable at F' ([{F(t)[1 - F(t)]}*/*dt
< oo if 1 < p < 2) and (5.33) holds, then (5.117) holds. 1§

Applications of the bootstrap method to non-i.i.d. cases can be found.
for example, in Efron and Tibshirani (1993), Hall (1992), and Shao and Tu
(1995).
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il

5.6 Exercises

o

6.

-1

10.

11.

12.

. Let go be defined by (5.3).

(a) Show p~ is a distance on F.

(b) Find an example of a sequence {G;} C F for which lim; ... G;(t)
= Gy(t) for every t at which G is continuous, but Q:,,:{Gj, (7g) does
not converge to (.

. Let X4....,X,, beii.d. random d-vectors with c.d.f. F' and F}, be the

empirical c.d.f. defined by (5.1). Show that for any ¢t > 0 and € > 0,
there is a . ; such that for all n = 1.2, ...,

I 2.
- Cﬁ.dﬂ (2—e)t Iu |
=1 ezt

P (sup O (Fs F) >t

T

. Show that Om, defined by (5.4) is a distance on F,, p > 1.
. Show that or, defined by (5.5) is a distance on F; for any p = 1.

. Let F; be the collection of c.d.f.’s on R with finite means.

(a) Show that gy, (G1,G2) = f“l GT(2) — G5 H(2)|dz, where G™1(2)
=inf{t: G(t) = z} for any G € F.
(b) Show that g, (G1.G2) = oy (G1, Ga).

Find an example of a sequence {G;} C F for which
(a) im; o 00 (G, Go) = 0 but g, (G;.Gy) does not converge to 0;
(b) lim; .o 05, (G, Go) = 0 but g (Gj, Gy) does not converge to 0.

. Repeat the previous exercise with o), replaced by o, .

. Let X be a random variable having c.d.f. F'. Show that

(a) E|X|? < oo implies [{F(t)[1 — F(t)]}P/?dt < x for p € (1,2);
(b) E|X|*™® < oo with some § > 0 implies [{F(t)[1 — F(t)]}'/%dt <

.

. For any one-dimensional G; € Fy, j = 1,2, show that QLI(GI,GE) >

| [ 2dGy — [ 2dGal.

In the proof of Theorem 5.3, show that p; = ¢/n, i = 1,...,n, A =
—(e/n)" ! is a maximum of the function H(py, ..., p,. A) over p; > 0,

Tt
i=1,..n >, pi=c

Show that (5.11)-(5.13) is a solution to the problem of maximizing
£(G) in (5.8) subject to (5.10).

In the proof of Theorem 5.4, prove the case of m = 2.
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L3.

14.

16.

8.

19.

20).
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Show that a maximum of £(() in (5.17) subject to (5.10) is given by
(5.11) with p; defined by (5.18) and (5.19).

In Example 5.2, show that an MELE is given by (5.11) with p;’s given
by (5.21).

. In Example 5.3, show that

(a) maximizing (5.22) subject to (5.23) is equivalent to maximizing
TL 5
i) n—i+1—¥b,
H '[:!I{_ {1 - '[:IIE:) ( :I'.h
1=]

where ¢; = p;/ Z”_fl Li=1,..,n;

(b) F given by (5. 24} maximizes (5. 22} subject to (5.23); (Hint: use
part (a) and the fact that p; = ¢ Hj:-.-:l'[l —q;).)

(c) F given by (5.25) is the same as that in (5.24).

(d) if 6; = 1 for all 7 (no censoring), then F in (5.25) is the same as
the empirical c¢.d.f. in (5.1).

Let f, be given by (5.26).

(a) Show that f, is a Lebesgue p.d.f. on R.

(b) Suppose that f is continuously differentiable at ¢, A, — 0, and
nA, — oo. Show that (5.27) holds.

(¢) Under nA? — 0 and the conditions of (b), show that (5.28) holds.
(d) Suppose that f is continuous on [a,b], —0o < a < b < o0, A, — 0,

and nA\,, — oco. Show that ff fol(t)dt —, fff{f)df

. Let f be given by (5.29).

(a) Show that f is a Lebesgue p.d.f. on R.

(b) Prove (5.30) under the condition that A, — 0, nA, — oo, and
f is bounded and is continuous at ¢ and [[w(t)]*T*dt < oo for some
& > 0. (Hint: check Liapunov’s condition and apply Theorem 1.15.)
(¢) Suppose that A,, — 0, nA,, — oo, and f is bounded and is contin-

uous on [a,b], —oc < a < b < oo. Show that ff f(t)dt — j:' f(t)dt

Show that o-Fréchet differentiability implies o-Hadamard differentia-
bility.

Suppose that a functional T is Gateaux differentiable at F' with a
continuous differential Ly in the sense that p.o(A;, A) — 0 implies

Lp(A;) — Lp(A). Show that ¢ is bounded.

Suppose that a functional T is Gateaux differentiable at F' with a
bounded and continuous influence function ¢p. Show that the differ-
ential Ly is continuous in the sense described in the previous exercise.
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21.

22.

23.

24.

27.

28.

29.

S0,

Sl

32,

33,

Let T(G) = g( [ #dG) be a functional defined on F;, the collection of
one-dimensional c.d.f.’s with finite means.

(a) Find a differentiable function g for which the functional T is not
0~-Hadamard differentiable at F.

(b) Show that if g is a differentiable function, then T is p; -Fréchet
differentiable at F'. (Hint: use the result in Exercise 9.)

In Example 5.5, show that (5.36) holds. (Hint: for A = ¢(G — G2},
show that ||Allv < |e|(||Gillv + ||G2]v) = 2|¢|.)

In Example 5.5, show that ¢ is continuous if /' is continuous.

In Example 5.5, show that T is not o..-Fréchet differentiable at F.

. Prove Proposition 5.1(ii).

. Suppose that T is first-order and second-order g-Hadamard differen-

tiable at F'. Prove (5.38).

Find an example of a second-order p-Fréchet differentiable functional
T that is not first-order p-Hadamard differentiable.

Prove (5.40) and that (5.33) is satisfied if F' has a finite variance.
Prove (iv) and (v) of Theorem 5.6.

Discuss which of (i)-(v) in Theorem 5.6 can be applied to each of the
L-estimators in Example 5.6.

Obtain explicit forms of the influence functions for L-estimators in
Example 5.6. Discuss which of them are bounded and continuous.

Provide an example in which the L-functional T given by (5.39) is not
0-c-Hadamard differentiable at F. (Hint: consider an untrimmed .J.)

Discuss which M-functionals defined in (i)-(vi) of Example 5.7 satisfy
the conditions of Theorem 5.7.

. In the proof of Theorem 5.7, show that Ry; — 0.

. Show that the second equality in (5.44) holds when v is Borel and

bounded.

. Show that the functional T in (5.46) is g..-Hadamard differentiable at

F' with the differential given by (5.47). Obtain the influence function
¢r and show that it is bounded and continuous if F' is continuous.
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Show that the functional T in (5.48) is g..-Hadamard differentiable
at F' with the differential given by (5.49). Obtain the influence func-
tion ¢p and show that it is bounded and continuous if F(y, oc) and
F (oo, z) are continuous.

Let F' be a continuous c.d.f. on R. Suppose that F' is symmetric
about f/ and is strictly increasing in a neighborhood of #. Show that
Ap(t) = 0 if and only if t = 0, where Ap(#) is defined by (5.50) with
a strictly increasing J satisfying J(1 —t) = —J(t).

Show that Ap(t) in (5.50) is differentiable at @ and A (f) is equal to
— [ J(F(z))F'(z)dF(z).

Let T(F},) be an R-estimator satisfying the conditions in Theorem 5.8.
Show that (5.34) holds with

2

it = [ Wpra /] rEer@are

S

Calculate the asymptotic relative efficiency of the Hodges-Lehmann
estimator in Example 5.8 w.r.t. the sample mean based on an i.i.d.
sample from F when

(a) F is the c.d.f. of N(u,a%);

(b) F' is the c.d.f. of the logistic distribution LG (u, 7);

(c) F is the c.d.f. of the double exponential distribution DFE(u, o);
(d) F(z) = Fo(x — 0), where Fy(x) is the c.d.f. of the t-distribution
t, with v = 3.

Let G be a c.d.f. on R. Show that G(x) > t if and only if z > G~ '(#).

Show that (5.60) implies that ép is strongly consistent for 6, and is
y/n-consistent for 0, if F'(0,—) and F'(0,+) exist.

Under the condition of Theorem 5.9, show that for p, = E_Eﬁ-f,

207
1—p.’

P (sup |§p — &, > F.) < n=12, ...

T

. Prove that ¢, (t) in (5.62) is the Lebesgue p.d.f. of the pth sample

quantile ¢, when F has the Lebesgue p.d.f. f, by
(a) differentiating the c.d.f. of #, in (5.61);
(b) using result (5.59) and the result in Example 2.9.

Let Xq.....X,, be 1i.d. random wvariables from /¥ with a finite mean.

-

Show that 6, has a finite jth moment for sufficiently large n, j =
1.2....
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A7

—_—

48.

49,

Prove Theorem 5.10(i).

Suppose that a c.d.f. F' has a Lebesgue p.d.f. f. Using the p.d.f. in
(5.62) and Scheffé’s theorem (Proposition 1.17), prove part (iv) of
Theorem 5.10.

Let {k,} be a sequence of integers satisfying k,/n = p + o(n™'/?)
with p € (0,1), and let X, ..., X,, be i.i.d. random variables from a

c.d.f. F with F'(0,) > 0. Show that
VI X,y = 0p) —a N(0,p(1 —p)/[F'(6,)]°).

. In the proof of Theorem 5.11, prove (5.65), (5.68), and inequality

(5.67).

. Prove Corollary 5.1.
. Prove the claim in Example 5.9.

. Let T(G) = G~ '(p) be the pth quantile functional. Suppose that F

has a positive derivative F’ in a neighborhood of # = F~!(p). Show
that 7" 1s Gateaux differentiable at F' and obtain the influence function
pr(x).

. Let X1, ..., X,, be i.id. from the Cauchy distribution C'(0,1).

(a) Show that E(X;))? < oo ifand only if 3 <j <n - 2.
(b) Show that E(fy5)? < oo for n > 5.

. Suppose that F'is the c.d.f. of the uniform distribution U/ (# — % &+ %]

! € R. Obtain the asymptotic relative efficiency of the sample median
w.r.t. the sample mean, based on an i.i.d. sample of size n from F'.

. Suppose that F(x) = Fy(x — ) and Fy is the c.d.f. of the Cauchy

distribution C'(0, 1) truncated at ¢ and —¢, i.e., Fjy has the Lebesgue
p.df (L +2%) . (z)/ [° (1+ 2*)~'dt. Obtain the asymptotic
relative efficiency of the sample median w.r.t. the sample mean, based
on an i.i.d. sample of size n from F.

. Show that X, in (5.70) is the L-estimator corresponding to the .J

function given in Example 5.6(iii) with 3 =1 — a.

. Let Xy, .... X, bei.id. random variables from F', where F' is symmet-

ric about 6.
(a) Show that X ;) =@ and 6 — X{,,_, ) have the same distribution.
(b) Show that E;l_:.__l w; Xy has a c.d.f. symmetric about @, if w;’s are

(c) Show that the trimmed sample mean X, has a c.d.f. symmetric
about #.

- . TL y
constants satisfying > ., w; = 1 and w; = w,_ ;4 for all j.
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59. Under the conditions in one of (i)-(iii) of Theorem 5.6, show that
(5.34) holds for T(F,,) with o7 given by (5.72), if 0% < oco.

60. Prove (5.71) under the assumed conditions.

61. For the functional T given by (5.39), show that T(F') = 0 if F is
symmetric about ¢ and .J is symmetric about %

62. Suppose that F is the double exponential distribution DE(#, 1), where
@ € R. Obtain the asymptotic relative efficiency of the trimmed sam-
ple mean X, w.r.t. the sample mean, based on an i.i.d. sample of size
n from F.

63. Show that the method of moments in §3.5.2 is a special case of the

GEE method.

64. Let £(0,&) be a likelihood. Show that a maximum profile likelihood

-

estimator ¢ of ¢ is an MLE if {(#), the maximum of sup, £(#,&) for a
fixed f1, does not depend on #.

65. Let Xi,..., X, be iid. from N(pu,0%). Derive the profile likelihood

function for g or ¢?. Discuss in each case whether the maximum

profile likelihood estimator is the same as the MLE.
66. Complete the proof of Proposition 5.4.

67. In the proof of Lemma 5.3, show that the probability in (5.89) is
bounded by e.

68. In Example 5.11, show that ;s satisfy the conditions of Lemma 5.3
if © is compact and sup, || Z;]| < ~c.

69. In the proof of Proposition 5.5, show that {A, ()} is equicontinuous
on any open subset of 6.

70. Prove Proposition 5.6
71. Prove the claim in Example 5.12.
72. Prove the claims in Example 5.13.

73. For Huber's M-estimator discussed in Example 5.13, obtain a formula
for e(F'), the asymptotic relative efficiency of 0, wrt. X, when F is
given by (5.69). Show that lim, . e(F) = oo. Find the value of
e(F) whene =0, 0 =1, and C = 1.5.

74. Consider the v function in Example 5.7(ii). Show that under some
conditions on F', ¢ satisfies the conditions given in Theorem 5.13(i)
or (ii). Obtain ¢% in (5.93) in this case.
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76.
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81.

82.
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84.

87.

. Assume the conditions in Theorem 5.8. Let r € (0. -

In the proof of Theorem 5.14, show that

(a) (5.96) holds;

(b) (5.98) holds;

(c) (5.99) implies (5.97). (Hint: use Theorem 1.9(iii).)

Prove the claim in Example 5.14, assuming some necessary moment
conditions.

. Derive the asymptotic distribution of the MQLE (the GEE estima-

tor based on (5.84)), assuming that X; = (X1, ..., Xiq,), E(Xy) =
me f(1 4 €M), Var(X;;) = me;e™ /(1 + e")?, and (4.57) holds with
g(t) = log 15

. Repeat the previous exercise under the assumption that E(X;;) = e,

Var(X;;) = ¢, and (4.57) holds with g(t) = logt or g(t) = 2+/t.

. In Theorem 5.14, show that result {5.94) still holds if R; is replaced

by an estimator R; satisfying max;,, ||R; — U;|| = 0,(1), where U;’s
are correlation matrices.

Suppose that X, ..., X, are independent (not necessarily identically

distributed) random d-vectors with E(X;) = u for all i. Suppose also
that sup, F||X;||?*7® < oc for some § > 0. Let u = E(X,), 0 = g(u),
and #,, = g(X). Show that

(a) (5.100) holds with V,, = n™*Vg(p) > ., Var(X;)[Vg(p)]™:

=

(b) V., in (5.102) is consistent for V,, in part (a).

Consider the ratio estimator in Example 3.21. Derive the estimator
V,, given by (5.102) and show that V, is consistent for the asymptotic
variance of the ratio estimator.

Derive a consistent variance estimator for R(t) in Example 3.23.
Prove the claims in Example 5.16.

Derive a consistent variance estimator for a U-statistic satisfying the
conditions in Theorem 3.5(i).

. Derive a consistent variance estimator for Huber’'s M-estimator dis-

cussed in Example 5.13.

ey [

).
(a) Show that n" Ap(T(F,) +n™") —, Ap(T(F)).
(b) Show that n" [Ap, (T(F,)+n"") = Ap(T(£,) +n~")] —, 0.
(c) Derive a consistent estimator of the asymptotic variance of T(F}, ),
using the results in (a) and (b).

Prove Theorem 5.16.
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Let Xi,....X, be random variables and § = X2. Show that the

4X2¢, AX éq fa—é3
—1 oz T Goo1yes Where

¢;'s are the sample central moments defined by (3.57).

Prove (5.109).

jackknife estimator in (5.107) equals

In the proof of Theorem 5.18, prove (5.111).

Show that 0_;’s in (5.113) satisfy (5.112), under the conditions of
Theorem 5H.14.

Prove Theorem 5.19.
Prove (5.114).

Let X;.....X, be random variables and # = XZ*. Show that the
bootstrap variance estimator based on i.i.d. X 's from £, is equal to
] 2 "_I - £ .

Vg = %Ui’ng + %—i + ~4, where ¢;’s are the sample central moments

defined by (3.57).

. Let X;.....,X,, beiid. from a Lebesgue p.d.f. ﬁf (Efi) on R, where

f is known. Let H,(t) = P(yn(X — p)/S < t) and Hp(t) =
P(y/n(X* — X)/S* <t|X) be the bootstrap estimator of H,,., where
5< is the sample variance, X’s are i.i.d. from %f (J::*) cgiven X = 7
and 5 = s, and 5" is the bootstrap analogue of 5. Show that

HB EH”_.

Let GG, G1, Ga,..., be c.d.f.’s on R. Suppose that o0..(G;, G) — 0 as
j — oo and G'(x) exists and is positive for all x € R. Show that
G7 ' (p) — G~ (p) for any p € (0,1).

Let X,.....X,, beiid. from a c.d.f. F on R? with a finite Var(X,).
Let X7, ..., X" be iid. from the empirif:a_l f:.d._f. F.,. Show that for
almost all given sequences X1, Xs, ..., /n(X*—X) —4 N(0, Var(X1)).

(Hint: verify Lindeberg’s condition.)

Let X,....X,, beiid. from a c.d.f. F on RY, X{, ... X" beiid. from
the empirical c.d.f. F,,, and let 7 be the empirical c.d.f. based on
X¥'s. Using DKW's inequality (Lemma 5.1), show that

() 0 (F7, F) —a.s. 0;

(b) 0w (F:, F) = Op(n="12)

(c) oy (F. F) = O,(n~1/2), under the condition in Theorem 5.20(ii).

Using the results from the previous two exercises, prove Theorem
5.20(ii).

Under the conditions in Theorem 5.11, establish a Bahadur’s repre-
sentation for the bootstrap sample quantile 7.



Chapter 6

Hypothesis Tests

A general theory of testing hvpotheses is presented in this chapter. Let X
be a sample from a population P in P, a family of populations. Based on
the observed X, we test a given hypothesis H, : P € Py versus H, : P € Py,
where Py and P, are two disjoint subsets of P and Py UP; = P. Notational
conventions and basic concepts (such as two types of errors, significance
levels, and sizes) given in Example 2.20 and §2.4.2 are used in this chapter.

6.1 UMP Tests

A test for a hypothesis is a statistic T(X) taking values in [0,1]. When
X = x is observed, we reject Hy with probability T'(z) and accept Hy with
probability 1-T'(z). If T(X) = 1 or 0 a.s. P, then T'(X) is a nonrandomized
test. Otherwise T'(X) is a randomized test. For a given test T'(X), the
power function of T'(X) is defined to be

Br(P) = E[T(X), PeP. (6.1)

which is the type I error probability of T(X) when P € P, and one minus
the type Il error probability of T(X) when P € P;.

As we discussed in §2.4.2, with a sample of a fixed size, we are not able
to minimize two error probabilities simultaneously. Our approach involves
maximizing the power Fr(P) over all P € Py (i.e., minimizing the type II
error probability) and over all tests T' satisfying

sup Gr(P) < a, (6.2)
PePy

where o € [0, 1] is a given level of significance.

345
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Definition 6.1. A test T, of size « is a uniformly most powerful (UMP)
test if and only if 3y (P) = S¢(P) for all P € P; and T of level a. &

If U(X) is a sufficient statistic for P € P, then for any test T'(X),
E(T|U) has the same power function as T and, therefore, to find a UMP
test we may consider tests that are functions of U7 only.

The existence and characteristics of UMP tests are studied in this sec-
tio1.

6.1.1 The Neyman-Pearson lemma

A hypothesis Hy (or H;) is said to be simple if and only if Py (or Py)
contains exactly one population. The following useful result, which has
already been used once in the proof of Theorem 4.16. provides the form of
UMP tests when both Hyp and H; are simple.

Theorem 6.1. (The Neyman-Pearson lemma). Suppose that Py = {Fy}
and P; = {P1}. Let f; be the p.d.f. of P; w.r.t. a o-finite measure v (e.g.,
v=FPy+ P),j=0,1.

(i) (Existence of a UMP test). For every «, there exists a UMP test of size
«, which is equal to

1 fi(X) > efo(X)
0 fi(X) < efolX).

where 4 € (0,1) and ¢ = 0 are some constants chosen so that E[T,(X)] = a
when P = Fy (¢ = oc is allowed).
(ii) (Uniqueness). If 7, is a UMP test of size «, then

1 AX) s efulX) -
T (X) = { 0 F(X) < cfolX) a.s. P. (6.4)

Proof. The proof for the case of @ = 0 or 1 is left as an exercise. Assume
now that 0 < a < 1.
(i) We first show that there exist v and ¢ such that Ey[T.,(X)] = o, where

E; is the expectation w.r.t. P;. Let v(t) = FPo(fi1(X) > tfo(X)). Then ~(¢)
is nonincreasing, v(—oc) = 1, and ~(oc) = 0 (why?). Thus, there exists a
¢ € (0,00) such that v(c) < a < y(c—). Set

f.'t:—":r'l[f:} }
_ vle—)—ylc) ﬁ.’r("'*_) ?é
! { 0 (e=) =
Note that v(c—) — v(c) = P(f1(X) = ¢fo(X)). Then
E{].[T¢I[X:l] = Pt}{fl{X} = ﬂfu(x)) + Py (fl{x:] = ﬂfu'[X)) = .
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Next, we show that 7, in (6.3) is a UMP test. Suppose that T(X) is a
test satisfving Ey[T(X)] < e. If T (x) — T'(x) > 0, then T, (x) > 0 and,
therefore, fi(x) = efy(x). If Ti(x) — T(x) < 0, then T,(x) < 1 and,
therefore, fi(z) < efy(x). In any case, [T.(z) — T(x)][fi(x) — cfo(z)] = 0

and, therefore,

f[T 2)[f1() — efola)]dv > 0,

l.e.,
[T - T@ A @ > ¢ [1.0) - T@Ih@d. (69

The left-hand side t::f (6.5) is Eq [T (X)] — EL[T(X)] and the right-hand side
of (6.5) is ¢{Ey[T.(X)] — Ey[T(X)]} = ela — E[T(X)]} = 0. This proves
the result in (i).

(ii) Let T%.(X) be a UMP test of size . Define

A={z:Ti(x) # Ti(z)., filz)# cfolz)}
Then [T\(z) =T\ (z)][fi(z)—cfo(z)] > 0 when x € A and = 0 when =z € A",

and

[1.40) = T @ (0)  cfolli =0,

since both T, and T,, are UMP tests of size a. By Proposition 1.6(ii),
v(A) = 0. This proves (6.4).

Theorem 6.1 shows that when both Hy and H, are simple, there exists
a UMP test that can be determined by (6.4) uniquely (a.s. P) except on
the set B = {z : fi(z) = efo(x)}. If v(B) = 0, then we have a unique
nonrandomized UMP test; otherwise UMP tests are randomized on the set
B and the randomization is necessary for UMP tests to have the given size
a; furthermore, we can always choose a UMP test that is constant on .

Example 6.1. Suppose that X is a sample of size 1, Py = {Fy} and P; =
{ P}, where Py is N(0,1) and P; is the double exponential distribution
DE(0,2) with the p.d.f. 47 te=#l/2 Since P(f1(X) = efo(X)) = 0, there is
a unique nonrandomized UMP test. From (6.3), the UMP test T.(z) = 1
if and only if %FIE_lIE > ¢ for some ¢ > (), which is equivalent to |x| > t
or |z| < 1 —t for some t > % Suppose that a < % To determine ¢, we use

a = [T (X)] = Py(|X]| = t)+ Po(| X| <1-—1t). (6.6)

Ift <1, then Py(|X| >1t) = Fy(|X]| > 1) =0.3374 > a. Hence ¢ should be
larger than 1 and (6.6) becomes

a = Py(|X]|>1t) =P(—t) + 1 — D(t).
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Thus, t = 11 — a/2) and T.(X) = I o) (|X]|). Note that it is not

necessary to find out what ¢ is.

Intuitively, the reason why the UMP test in this example rejects Hj
when |X| is large is that the probability of getting a large |X| is much
higher under H; (i.e., P is the double exponential distribution DFE(0,2)).

The power of T, when P € P, is

i
EA\T(X)] =P(X|>t) =1~ i/ e 1w 2dy = e7H2

—t

Example 6.2. Let X;...., X,, be i.i.d. binary random variables with p =

P(X, = 1). Suppose that Hy : p = pg and H; : p = p;, where 0 < py <
p < 1. By Theorem 6.1, a UMP test of size « is

1 AMY) = e
T.(Y)=<¢ « AMY)=¢
0 AMY) < e,

where Y = >°" | X, and

P Y 1_p n—y
=) ()
Po = Pu

Since A(Y') is increasing in Y, there is an integer m > 0 such that

1 Y >m
T.(Y)=4 « Y =m
0 Y < m,

where m and ~ satisfy o = Ey[T,(Y)] = Py(Y > m) + vFy(Y = m). Since

Y has the binomial distribution Bi(p,n), we can determine m and + from

. n ' n—7 n - n—T .
= Z (j)pﬂ{l—p“} J+"}“(m)ﬁn (1 - po) : (6.7)

j=m+1

Unless ;
AR L
o= Y (0)ra-mr
J=m-+1 "?

for some integer m, in which case we can choose v = (), the UMP test T, is
a randomized test.

An interesting phenomenon in Example 6.2 is that the UMP test T.
does not depend on p;. In such a case T is in fact a UMP test for testing
Hy i p = py versus Hy : p > py.
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Lemma 6.1. Suppose that there is a test T, of size « such that for every

P, e Py, T, is UMP for testing Hy versus the hypothesis P = P,. Then T,
is UMP for testing H versus H;. 1

The proof of this lemma is left as an exercise.

We conclude this section with the following generalized Neyman-Pearson
lemma. Its proof is left to the reader.

Proposition 6.1. Let fi..... f,ni1 be real-valued functions on ‘R¥ that are
integrable w.r.t. a o-finite measure . For given constants £,,....%,,, let T
be the class of Borel functions ¢ (from R to [0, 1]) satisfying

f@fidss <t;, i=1,...m, (6.8)

and 7 be the set of ¢’s in T satisfying (6.8) with all inequalities replaced
by equalities. If there are constants ¢y. ..., ¢, such that
; 1 i T)=c )+t Cmfmla .
@*{I:J:{ .f -I—l{ } lfl{ :] f { ) {{}9)
0 fi’]"i-l—ll[;r} < ﬂlfl{j:) + - En‘afn‘a{j:)

is a member of 7y, then ¢, maximizes f O fmardy over ¢ € Ty, If ¢; = 0 for
all i, then ¢, maximizes [ ¢fp1dv over g € 7. B

The existence of constants ¢;’s in (6.9) is considered in the following
lemma whose proof can be found in Lehmann (1986, pp. 97-99).

Lemma 6.2. Let fi..... f,,, and v be given by Proposition 6.1. Then the
set M = {([ofrdv, ..., [ ¢fmdr) : ¢ is from R? to [0,1]} is convex and
closed. If (t1,...,%;) is an interior point of M, then there exist constants
€1, ..., Cp Such that the function defined by (6.9) is in 7. 1

6.1.2 Monotone likelihood ratio

The case of both Hy and H; are simple is mainly of theoretical interest. If
a hvpothesis is not simple. it is called composite. As we discussed in §6.1.1,
UMP tests for composite H; exist in the problem discussed in Example 6.2.
We now extend this result to a class of parametric problems in which the
likelihood functions have a special property.

Definition 6.2. Suppose that the distribution of X isin P = {Fy : 0 € O},
a parametric family indexed by a real-valued #. and that P is dominated
by a g-finite measure v. Let fy = dPy/dr. The family P is said to have
monotone likelihood ratio in Y (X) (a real-valued statistic) if and only if, for
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any 0 < 03, fo,(x)/fo,(x) is a nondecreasing function of Y (x) for values x
at which at least one of fy, () and fy,(x) is positive. 1

The following lemma states a useful result for a family with monotone
likelihood ratio.

Lemma 6.3. Suppose that the distribution of X is in a parametric family
P indexed by a real-valued # and that P has monotone likelihood ratio in
Y(X). If ¢ is a nondecreasing function of ¥, then g(f) = E[/(Y)] is a
nondecreasing function of 4.

Proof. Let 6, < 02, A = {z : fo,(z) > fo.(z)}, a = sup,-, V(Y (x)),
B ={x:fg(x)< fo,(x)}, and b = inf.cp (Y (x)). Since P has monotone
likelihood ratio in Y (X) and ¢ is nondecreasing in Y, b > a. Then the
result follows from

9(02) — g(01) = j B(Y (@) (fay — fa,)(@)dv
> a [ (o= fo)@dv +b [ (o, fo)(x)av
— (b—a) [ (For — fo) ()
J B

=0 1

Before discussing UMP tests in families with monotone likelihood ratio,
let us consider some examples of such families.

Example 6.3. Let ) be real-valued and 5(#) be a nondecreasing function
of #. Then the one-parameter exponential family with

fo(@) = exp{n(0)Y (z) - £(0)}h(z) (6.10)

has monotone likelihood ratio in Y (X). From Tables 1.1-1.2 (§1.3.1), this
includes the binomial family { Bi(d,r)}, the Poisson family { P(#)}, the neg-
ative binomial family {NB(0,r)}, the log-distribution family {L(#)}, the
normal family {N (6, ¢?)} or {N(c,#)}, the exponential family { E(c, @)}, the
camma family {I'(0,¢)} or {I'(¢,#)}, the beta family {B(0,¢)} or {B(e¢,0)},

and the double exponential family { DE(¢, #)}, where r or ¢ is known. §

Example 6.4. Let X,.....X,, be iid. from the uniform distribution on
(0,0), where 6 > 0. The Lebesgue p.d.f. of X = (X1,....X,) is fo(z) =
0~ "19.9)(x(n)), Where 2, is the value of the largest order statistic X,,,.
For 67 < 04,

fo, (x) _ 07 L10.0,)(T(n))

fﬁ'l '['T} EE I{[]._Hl}{j:(?ﬂl:] ?




G.1. UMP Tests anl

which is a nondecreasing function of x,, for x’s at which at least one of
fo,(xz) and fy,(x) is positive, i.e., x(,) < f2. Hence the family of distribu-
tions of X has monotone likelihood ratio in X,,,. 1

Example 6.5. The following families have monotone likelihood ratio:
(a) the double exponential distribution family {DFE(#, ¢)} with a known ¢;
(b) the exponential distribution family {E(#,c)} with a known c¢;
(c) the logistic distribution family {LG(6, ¢)} with a known ¢;
(d) the uniform distribution family {U(0,0 + 1)};
(e) the hypergeometric distribution family {HG(r,0, N — #)} with known
rand N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is
the Cauchy distribution family {C'(#,¢)} with a known ¢. 8

Hypotheses of the form Hy : 0 < 0y (or Hy : 0 = ) versus Hy : 0 > 0y
(or Hy : f < fy) are called one-sided hypotheses for any given constant
fy. The following result provides UMP tests for testing one-sided hypothe-
ses when the distribution of X is in a parametric family with monotone
likelihood ratio.

Theorem 6.2. Suppose that the distribution of X is in a parametric family

P indexed by a real-valued # and that P has monotone likelihood ratio in
Y(X). Consider the problem of testing Hy : § < 0y versus Hy : 0 > #,

where ; is a given constant.
(i) There exists a UMP test of size «, which is given by

1 Y(X)>e¢
T.(X)=1<¢ ~ Y(X)=-c (6.11)
0 Y(X) <e,
where ¢ and v are determined by Sp (fy) = «a, and Gp(0) is the power

function of a test T

(ii) The power function G, (0) = E[T.(X)] is strictly increasing for all #’s
for which 0 < 8, (0) < 1.

(iii) For any # < 0y, T, minimizes 3¢(f) (the type I error probability of T')
among all tests T" satisfying Gr(0y) = .

(iv) For any #,, T. is UMP for testing Hy : 0 < 0 versus H; : 0 > ¢, with
size G (01).

Proof. (i) Consider the hypotheses 0 = 0y versus ¢ = #; with any #; > 6.
From Theorem 6.1, a UMP test is given by (6.3) with f; = fp,, j = 0, 1.
Since P has monotone likelihood ratio in Y (X), this UMP test is the same
as T, in (6.11) (with a different ¢), as long as 4 and ¢ satisfv G (0y) = «a.
Since T, does not depend on #,, it follows from Lemma 6.1 that 7. is UMP
for testing the hypotheses # = fly versus H,.
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Note that if 7% is UMP for testing 6 = #; versus Hy. then it is UMP for
testing Hy versus H, provided that G¢ (f) < o for all 8 < 0, i.e., the size
of T, is a. But this follows from Lemma 6.3, i.e., 37 (#) is nondecreasing
in . This proves (i).

(ii) See Exercise 2 in §6.6.

(iii) The result can be proved using Theorem 6.1 with all inequalities re-
versed.

(iv) The proof for (iv) is similar to that of (i).

By reversing inequalities throughout, we can obtain UMP tests for test-
ing Hy : 0 = 0y versus Hy : 0 < #.

A major application of Theorem 6.2 is to problems with one-parameter
exponential families.

Corollary 6.1. Suppose that X has the p.d.f. given by (6.10) w.r.t. a
o-finite measure », where 1 is a strictly monotone function of #. If n is
increasing, then T, given by (6.11) is UMP for testing Hy : # < 0y versus
H, : 0 > 0y, where ~ and ¢ are determined by 3 _(0y) = «. If 7 is decreasing
or Hy : 0 = 0y (H; : 0 < 0p), the result is still valid by reversing inequalities
in (6.11). n

Example 6.6. Let X,..., X, be i.i.d. from the N(u, c?) distribution with
an unknown g € R and a known ¢?. Consider the hypotheses

Hy o p < g Versus Hy > pg.

where pip is a fixed constant. The joint distribution of X is of the form
(6.10) with Y(X) = X and n(u) = np/o?. By Corollary 6.1 and the
fact that X is N(u,0%/n), the UMP test is T.(X) = (., ~)(X), where
Co = 0P 1 — a)/\/n+ po (see also Example 2.28),

To derive a UMP test for testing Hy : @ < 0y versus H, : 0 > 0y when
X has the p.d.f. (6.10), it is essential to know the distribution of Y (X).
Typically, a nonrandomized test can be obtained if the distribution of Y is
continuous; otherwise UMP tests are randomized.

Example 6.7. Let X;...., X,, be i.i.d. binary random variables with p =

P(X; = 1). The distribution of X is of the form (6.10) with Y (X) =
>y X: and n(p) = log 7£=. Note that 5(p) is a strictly increasing function

of p. By Corollary 6.1, a,_[rIMP test for Hy : p < pg versus Hy : p > pg is
given by (6.11), where ¢ and ~ are determined by (6.7) with ¢ =m. 1

Example 6.8. Let X, ....X,, be ii.d. random variables from the Poisson
distribution P(#) with an unknown @ > 0. The distribution of X is of the



G.1. UMP Tests ana

form (6.10) with Y(X) = > | X; and n(#) = logf. Note that Y has the
Poisson distribution P(n#). By Corollary 6.1, a UMP test for Hy : 0 < @,
versus Hy : ¢ > 0y is given by (6.11) with ¢ and ~ determined by

o0 Efrﬁ'u {ng[])j Err.ﬁ'u {HE[])E?

i l '

iy =
j=c+1

Example 6.9. Let X,...., X,, be ii.d. random variables from the uniform
distribution U(0,0), # > 0. Consider the hypotheses Hy : 8 < f; and
Hy : 0 = 0. Since the distribution of X is in a family with monotone
likelihood ratio in X(,) (Example 6.4), by Theorem 6.2, a UMP test is of
the form (6.11). Since X(,,, has the Lebesgue p.d.f. né="2"~ "1 4)(x), the
UMP test in (6.11) is nonrandomized and ¢ is determined by

i %o i e
k= _-HT* {E[]} — ﬁ / " rdr =1 — ﬁ
[ (

Hence ¢ = (1 — a)'/™. The power function of 7. when > 6, is

5' i1
Or (0) = if " ldr =1 — b (1 ﬂ).

Ejn gn

In this problem, however, UMP tests are not unique. It can be shown
(exercise) that the following test is also UMP with size a:

1 Xy =0
L {r) (]
T{X) N { iy X{n] “:_: H[].

6.1.3 UMP tests for two-sided hypotheses

The following hypotheses are called two-sided hypotheses:

Hy: 6 <0ior 0 >0 versus Hy: 0y <8 < 05, (6.12)
Hy: 6, <0 <60y versus Hy: 0 <0y orf >0, (6.13)
Hy: 0 =0y versus H;p: 0+ 0y, (6.14)

where #; < f5 and @, are given constants.

Theorem 6.3. Suppose that X has the p.d.f. given by (6.10) w.r.t. a o-
finite measure v, where 1 is a strictly increasing function of @.
(i) For testing hypotheses (6.12), a UMP test of size a is

T*{X:] — Vi Y{:X} = &y, 1= 1..2 {f}].ﬁl)
0 Y(X) <eor V(X) > e,
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where ¢; < ¢o and «;’s are determined by

Br, (01) = fr,(02) = «. (6.16)

(ii) The test defined by (6.15) minimizes 37(@) over all 8 < ,, § > 05, and
T satistying G (01) = Gr(02) = a.

(iii) If T and T, are two tests satisfying (6.15) and g1, (61) = Sr..(f1) and
if the region {7T., = 1} is to the right of {T. = 1}, then ¢ (0) < G, _ ()
for @ = 0, and Gp (0) > G, (0) for 0 < 0. If both T, and 7., satisfy
(6.15) and (6.16), then T, = T,. a.s. P.

Proof. (i) The distribution of ¥ has a p.d.f.

g90(y) = exp{n(#)y — £(0)} (6.17)

(Theorem 2.1). Since Y is sufficient for #, we only need to consider tests
of the form T(Y'). Let 0; < 03 < #5. Consider the problem of maximizing
O (03) subject to gp(0,) = Br(0s) = a. Clearly, («, «) is an interior point
of the set of all points (F1(01), F7(0s)) as T ranges over all tests of the form
T(Y). By (6.17), Lemma 6.2, and Proposition 6.1, there are constants a,
as, by, and by (by < 0 < by) such that

T.(Y) - { 1 areY 4 aoet2Y <1

0 are”Y 4 aqeY = 1

maximizes Jr(fy) and satisfies (6.16). Clearly a;’s cannot both be < 0. If
one of the a;’s is < 0 and the other is > 0, then a;e®Y + aze®?Y is strictly
monotone and 7', is of the form (6.11), which has a strictly monotone power
function (Theorem 6.2) and, therefore, cannot satisfy (6.16). Thus, both
a;'s are positive and T, is of the form (6.15). It follows from Proposition
6.1 that 7%, is UMP for testing & = @, or f§ = 05 versus f/ = 5. Since T, does
not depend on #;, it follows from Lemma 6.1 that T, is UMP for testing
= 0 or 0 = 05 versus H,.

To show that T, is a UMP test of size « for testing H, versus M, it
remains to show that ¢ (#) < a for 8 < 6, or 6 = ;. But this follows
from part (ii) of the theorem by comparing 7. with the test T(Y) = a.

(ii) The proof is similar to that in (i) and is left as an exercise.

(iii) The first claim in (iii) follows from Lemma 6.4, since the function
T.. — T. has a single change of sign. The second claim in (iii) follows from
the first claim. &

Lemma 6.4. Suppose that X has a p.d.f. in {fs(z) : 0 € O}, a parametric
family of p.d.f.’s w.r.t. a single g-finite measure » on R. where & C R.
Suppose that this family has monotone likelihood ratio in X. Let % be a

function with a single change of sign.
(i) There exists 0y € © such that Eg[y)(X)] < 0for @ < 0y and Ey[p(X)] = 0
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for @ = 6, where Ey is the expectation w.r.t. fy.

(ii) Suppose that fg(x) > 0 for all x and 6, that fy (z)/fg(x) is strictly
increasing in x for # < #,, and that v({x : ¥(x) # 0}) > 0. If Ky, [W(X)] =
0, then Eg[y(X)] < 0 for 8 < 0y and Eg[y(X)] = 0 for 8 = 6.

Proof. (i) Suppose that there is an xy € R such that ¢/(z) < 0 for z < xq
and ¢»(x) = 0 for 2 > xy. Let #; < #,. We first show that Ey [¢/(X)] > 0
implies Eg, [v(X)] = 0. If fo,(z0)/ fo,(x0) = o0, then fg, (x) = 0 for x = xq
and, therefore, Ey [¢(X)] < 0. Hence fg,(x0)/fo,(zq) = ¢ < oo. Then
(z) = 0 on the set A= {x: fy, (x) =0 and fy,(x) > 0}. Thus,

Eao(X0)] > [ 2% po,an
S A 1
> [ cvfudv+ [ cbfon (6.18)
JETp Jxzaxg
= cly, [U{X}]

The result follows by letting #y = inf{f : Ey[)(X)] = 0}.

(ii) Under the assumed conditions fg,(zg)/ fe,(x0) = ¢ < oo. The result
follows from the proof in (i) with #; replaced by #; and the fact that =
should be replaced by > in (6.18) under the assumed conditions. §

Part (iii) of Theorem 6.3 shows that the ¢;’s and ~;’s are uniquely de-

termined by (6.15) and (6.16). It also indicates how to select the ¢;'s and

~;'s. One can start with some trial values {?{im and j{m, find ﬂg” and "‘Ir’é[]]

such that 7 (6,) = «a, and compute Fp, (02). If 31 (02) < a, by Theorem

6.3(iii), the correct rejection region {7, = 1} is to the right of the one
chosen so that one should try EE” > ni‘” or ﬂill] = ﬁg{” and ’}fi” < "‘Ir‘iﬂj; the

converse holds if 31 (0) > «.

Example 6.10. Let X,...., X, be iid. from N{Q,l}. By Theorem 6.3, a
UMP test for testing (6.12) is T.(X) = I (X), where ¢;’s are deter-

mined by

£1.02)

"I)(\/T_l{ﬂg — 5’1}) — @*(\/ﬁ(ﬂl — ﬂlj) = o
and

EI*(V/E(Q —f3)) — @*(\/r_l{ﬁl —02)) =a. ¥

When the distribution of X is not given by (6.10), UMP tests for hy-
potheses (6.12) exist in some cases (see Exercises 15 and 24). Unfortunately,
a UMP test does not exist in general for testing hypotheses (6.13) or (6.14)
(Exercise 25).
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6.2 UMP Unbiased Tests

When a UMP test does not exist, we may use the same approach used
in estimation problems, i.e., imposing a reasonable restriction on the tests
to be considered and finding optimal tests within the class of tests under
the restriction. Two such types of restrictions in estimation problems are
unbiasedness and invariance. We consider unbiased tests in this section.
The class of invariant tests is studied in §6.3.

6.2.1 Unbiasedness and similarity

A UMP test T of size o has the property that
Gr(P) <a, PePy, and Br(P)>za, PePy. (6.19)

This means that 7" is at least as good as the silly test T' = a. Thus, we
have the following definition.

Definition 6.3. A test of Hy : P € Py versus H, : P € P, is said to be
unbiased if and only if (6.19) holds for some «. A test of size « is called
a uniformly most powerful unbiased (UMPU) test if and only if it is UMP
within the class of unbiased tests of level a. §

In a large class of problems for which a UMP test does not exist, there

do exist UMPU tests.

Suppose that U is a sufficient statistic for P € P. Then. similar to the
search for a UMP test, we need to consider functions of / only in order to

find a UMPU test, since for any unbiased test T(X), E(T|U) is unbiased

and has the same power function as 7T

Throughout this section we consider the following hvpotheses:
Hy: 0 € 6 Versis Hy:0 e 06, (6.20)

where # = 0(P) is a functional from P onto © and Oy and ©; are two
disjoint Borel sets with ©y U ©; = ©. Note that P; = {P : # € O,},
7 = 0.,1. For instance, X;,....X,, are i.i.d. from F' but we are interested in
testing Hy : 0 < 0 versus H, : 0 > 0, where § = EX, or the median of F.

Definition 6.4. Consider the hypotheses specified by (6.20). Let a be a
given level of significance and let ©y; be the common boundary of ©, and
©. i.e., the set of points # that are points or limit points of both @ and
©,. A test T is similar on O, if and only if

BT(P) = (¥, 0 e é’t}l- i {6.21)
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It is more convenient to work with (6.21) than to work with (6.19) when
the hypotheses are given by (6.20). Thus, the following lemma is useful. For
a given test T, the power function 3¢ (P) is said to be continuous in @ if and
only if for any {0, : j =0.1.2,...} C ©, 0; — Oy implies Gp(P;) — Gr(F),
where P; € P satisfying 0(P;) = 0;. j = 0,1,.... Note that if G7 is a function
of @, then this continuity property is simply the continuity of 3r(8).

Lemma 6.5. Consider hypotheses (6.20). Suppose that for every T, 3¢ (P)
is continuous in #. If T, is UMP among all tests satisfying (6.21) and has
size v, then 7T, is a UMPU test.

Proof. Under the continuity assumption on . the class of tests satistving
(6.21) contains the class of tests satisfving (6.19). Since T, is uniformly at
least as powerful as the test T' = o, T, is unbiased. Hence, T, is a UMPU
test. |

Using Lemma 6.5, we can derive a UMPU test for testing hypotheses
given by (6.13) or (6.14), when X has the p.d.f. (6.10) in a one-parameter
exponential family. (Note that a UMP test does not exist in these cases.)
We do not provide the details here, since the results for one-parameter
exponential families are special cases of those in §6.2.2 for multiparameter
exponential families. To prepare for the discussion in §6.2.2, we introduce
the following result that simplifies (6.21) when there is a statistic sufficient

and complete for P € P = {P : §(P) € O, }.
Let U(X) be a sufficient statistic for P € P and let Py be the family of
distributions of U as P ranges over P. If T is a test satisfying

ET(X)U| =a a.s. Py, (6.22)

then
E[T(X)] = E{E[T(X)|U]})=a PeP,

i.e., T is similar on Oy;. A test satisfying (6.22) is said to have Neyman
structure w.r.t. UJ. If all tests similar on ©; have Neyman structure w.r.t.
U, then working with (6.21) is the same as working with (6.22).

Lemma 6.6. Let U(X) be a sufficient statistic for P € P. Then a nec-
essary and sufficient condition for all tests similar on Og1 to have Neyman
structure w.r.t. [/ is that U is boundedly complete for P € P.

Proof. (i) Suppose first that U is boundedly complete for P € P. Let
T(X) be a test similar on ©g;. Then E[T(X)—a] = 0 for all P € P. From
the boundedness of T'(X), E[T(X)|U] is bounded (Proposition 1.12). Since
E{E[T(X)|U] —a} = E[T(X) —a] =0 for all P € P, (6.22) holds.

(ii) Suppose now that U is not boundedly complete for P € P. Then
there is a function A such that |h(u)| < C, E[R(U)] = 0 for all P € P, and
h(U) # 0 with positive probability for some P € P. Let T'(X) = a+ch(U),
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where ¢ = min(a, 1 — a)/C. The result follows from the fact that 7" is a
test similar on &y, but does not have Neyman structure w.r.t. U. 1§

6.2.2 UMPU tests in exponential families

Suppose that the distribution of X is in a multiparameter natural expo-
nential family (§2.1.3) with the following p.d.f. w.r.t. a o-finite measure
75

fo.o(z) = exp{0Y(z) + U(z)p™ — C(0,¢)}. (6.23)

where # is a real-valued parameter, ¢ is a vector-valued parameter, and Y
(real-valued) and U (vector-valued) are statistics. It follows from Theorem
2.1 that (Y, U) has the p.d.f. exp {0y + uwe™ — {(#, ¢)} w.r.t. some measure
and, given U = u, the conditional distribution of ¥ has the p.d.f. exp {0y}
w.r.t. some measure 1, which is also in a natural exponential family.

Theorem 6.4. Suppose that the distribution of X is in a multiparameter
natural exponential family given by (6.23).
(i) For testing Hy : 8 < 0y versus Hy : 0 > 6y, a UMPU test of size o is

1 Y > e(U)
T.(Y.U)= (¢ ~(U) YV =¢(U) (6.24)
0 Y < (U},

where ¢(u) and y(u) are Borel functions determined by
Ey [T.(Y. U = u] =« (6.25)

for every u., and Fy, is the expectation w.r.t. fg, ..
(ii) For testing hypotheses (6.12), a UMPU test of size « is

1 c1(U) <Y < ea(U)
T.(Y,U)={ ~(U) Y=c(U),i=12 (6.26)
(0 Y < ﬂlfr_f} or Y = EEI[-U:]._.

where ¢;(u)’s and v;(u)’s are Borel functions determined by
Eg [T.(Y,U)U = u] = Eg, [T, (Y, U)|U = u] = « (6.27)

for every u.
(iii) For testing hypotheses (6.13), a UMPU test of size « is

1 Yﬁif‘l{rj:] GI‘Y:}E&{IJ}
T.(Y,U)={ %(U) Y =c(l),i=12 (6.28)
0 cl(U) <Y <ea(U),
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where ¢;(u)’s and ~;(u)’s are Borel functions determined by (6.27) for every
.

(iv) For testing hypotheses (6.14), a UMPU test of size « is given by (6.28),
where ¢;(u)’s and ~;(u)’s are Borel functions determined by (6.25) and

Ep, [T.(Y,U)Y|U = u] = aEy, (Y|U = u) (6.29)

for every wu.

Proof. Since (Y,U) is sufficient for (@, ), we only need to consider tests
that are functions of (Y,U). Hypotheses in (i)-(iv) are of the form (6.20)
with Og; = {(f.¢) : 0 = 6y} or = {(0,¢) : 8 = 0;,i = 1,2}. In any case,
U is sufficient and complete for P € P and, hence, Lemma 6.6 applies. By
Theorem 2.1, the power functions of all tests are continuous and, hence,
Lemma 6.5 applies. Thus, for (i)-(iii), we only need to show that T, is
UMP among all tests T satisfying (6.25) (for part (i)) or (6.27) (for part

(ii) or (iii)) with T, replaced by T. For (iv), any unbiased T" should satisfy
(6.25) with T\ replaced by T and

d
a0

Ep [T(Y,U)] =0, 6¢c0By. (6.30)

By Theorem 2.1, the differentiation can be carried out under the expecta-
tion sign. Hence, one can show (exercise) that (6.30) is equivalent to

By JJT(Y,U)Y —aY] =0, 0 ¢ Oq. (6.31)

Using the argument in the proof of Lemma 6.6, one can show (exercise)
that (6.31) is equivalent to (6.29) with T, replaced by T'. Hence, to prove
(iv) we only need to show that T, is UMP among all tests T satisfving
(6.25) and (6.29) with 7. replaced by T.

Note that the power function of any test T(Y, U) is

.-'GT(H? ‘1:':] :/ [/ T{y* T"::]dPVHJ:::H{y) dpff{“:]'

Thus, it suffices to show that for every fixed u and 6 € 0, T, maximizes

over all T subject to the given side conditions. Since Py, 18 in a
one-parameter exponential family, the results in (i) and (ii) follow from
Corollary 6.1 and Theorem 6.3, respectively. The result in (iii) follows
from Theorem 6.3(ii) by considering 1 — T, with T, given by (6.15). To
prove the result in (iv), it suffices to show that if Y has the p.d.f. given

by (6.10) and if U is treated as a constant in (6.25), (6.28), and (6.29), T.
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in (6.28) is UMP subject to conditions (6.25) and (6.29). We now omit
U in the following proof for (iv), which is very similar to the proof of
Theorem 6.3. First, (a,aFEy, (Y)) is an interior point of the set of points
(Ko, [T (Y], Eg,[T(Y)Y]) as T ranges over all tests of the form 7T(Y). By
Lemma 6.2 and Proposition 6.1, for testing @ = 0, versus ¢ = #;. the UMP
test is equal to 1 when

“i’] + ﬁ?gy}ﬁeny < {T{g.{}, gl)ﬂﬂly, {632)

where k;’s and C'(fy, 1) are constants. Note that (6.32) is equivalent to

a1 + sy < ey
for some constants a,, as. and b. This region is either one-sided or the
outside of an interval. By Theorem 6.2(ii), a one-sided test has a strictly
monotone power function and therefore cannot satisfy (6.29). Thus, this
test must have the form (6.28). Since T, in (6.28) does not depend on
f1, by Lemma 6.1, it is UMP over all tests satisfying (6.25) and (6.29), in
particular, the test = . Thus, T, is UMPU.

Finally, it can be shown that all the e- and ~-functions in (i)-(iv) are
Borel functions (see Lehmann (1986, p. 149)).

Example 6.11. A problem arising in many different contexts is the com-
parison of two treatments. If the observations are integer-valued, the prob-
lem often reduces to testing the equality of two Poisson distributions (e.g.,
a comparison of the radioactivity of two substances or the car accident rate
in two cities) or two binomial distributions (when the observation is the
number of successes in a sequence of trials for each treatment).

Consider first the Poisson problem in which X, and X are indepen-
dently distributed as the Poisson distributions P(A;) and P(A3), respec-

tively. The p.d.f. of X = (X, X5) is

E_[}'-l‘l‘}'tl:l

———exp {z2log(A2/A1) + (21 + 22) log Az} (6.33)

Ir1.I'2.
w.r.t. the counting measure on {(i,j) : i = 0,1,2,...,7 =0,1,2, ..}. Let 8 =
log(A2/A1). Then hypotheses such as Ay = Ay and A\ = A; are equivalent to
¢ =1 and # < 1, respectively. The p.d.f. in (6.33) is of the form (6.23) with
w=logAs. Y = Xy, and U = X| + X5. Thus, Theorem 6.4 applies. To
obtain various tests in Theorem 6.4, it is enough to derive the conditional
distribution of ¥ = Xy given U = X| + Xy = u. Using the fact that
X1 + X5 has the Poisson distribution P(A; + A2), one can show that

P(Y = y|lU = u) = (;)py{l — p}”‘_yf{[]ll__m__u}{y}_._ w=0,1.2 ...,
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where p = Ao/(A + Az) = €?/(1 + ¢). This is the binomial distribu-
tion Bi(p,u). On the boundary set Gy, # = 0; (a known value) and the
distribution Py ;;—,, is known.

The previous result can obviously be extended to the case where two
independent samples, Xy, ..., X, ¢ = 1,2, are i.i.d. from the Poisson
distributions P(A;), ¢ = 1,2, respectively.

Consider next the binomial problem in which X;, j = 1,2, are inde-
pendently distributed as the binomial distributions Bi(p;.n;), j = 1,2,
respectively, where n;’s are known but p;’s are unknown. The p.d.f. of

X = {Xl,}:g) 15

ni na T L E P1) P
( )( ){1_3}1) 1{1 p} EF:{I-:'{ lﬂgngl P2 ) +{11+I£)1Dg (1— Pl]‘}

i Lo
w.r.t. the counting measure on {(i,j) : i =0,1,....,m1, 7 = 0,1, ...,n2}. This
p.d.f. is of the form (6.23) with # = log % Y Xo,and U = X + X,

Thus, Theorem 6.4 applies. Note that hypotheses such as p; = po and
P = p2 are equivalent to # = 0 and 0 < 0, respectively. Using the joint
distribution of (X, X5), one can show (exercise) that

PY = y|U = u) = I{u(ﬂ}( = ) (”E)E‘*m(yj, w=0,1,...,n1 +ns,
u—1y)\y
where A = {y:y=0,1,...min(u,ns),u — y < n;} and

- q -1

; n na\ g, .
K,(0) = Z (u _ly) ( ;) vl . (6.34)

yeA

If # = 0, this distribution reduces to a known distribution: the hypergeo-
metric distribution HG(u, ne,ny) (Table 1.1, page 18). i

Example 6.12 (2 x 2 contingency tables). Let A and B be two different
events in a probability space related to a random experiment. Suppose that
n independent trials of the experiment are carried out and that we observe
the frequencies of the occurrence of the events AN B, AN B°, AN B, and
AN B°. The results can be summarized in the following 2 x 2 contingency
table:

A A | Total
B X1 Xy Ty
Be Xor Xoo L

Total | m; mo n
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The distribution of X = (X1, X2, X271, X92) is multinomial (Example 2.7)
with probabilities pi1. p12, p21, and pae. where p;; = E(X;;)/n. Thus, the
p.d.f. of X is

n!

. . PLL | o P12 | .. p21
S !Igz!pﬂexp {.3:11 log s T T12 log pay T T21 log s }

w.r.t. the counting measure on the range of X. This p.d.f. is clearly of the
form (6.23). By Theorem 6.4, we can derive UMPU tests for any parameter
of the form

— P11 P12 ‘ P21
0 = aplog s T 01 log s T 02 log -

where a;’s are given constants. In particular, testing independence of A
and B is equivalent to the hypotheses Hy : € = 0 versus H; : 0 # 0 when
a; = as = 1 and ag = —1 (exercise).

For hypotheses concerning # with a, = as = 1 and ay = —1, the p.d.f. of
X can be written as (6.23) with ¥ = X, and U = (X1, + X102, X191 + Xo21).
A direct calculation shows that P(Y = y| X1 + X120 = ny, X1 + Xo1 = us)

is equal to
K., (0) (”1) ( " )e‘**“-'f—wf,q{y),.
y ) \u2 —y

where A = {y : y = 0,1,...,min(us,n1),us — y < ny} and K,(#) is given
by (6.34). This distribution is known when # = @; is known. In particular,
for testing independence of A and B, # = 0 implies that Py, is the hy-

pergeometric distribution HG(us, ny, ne), and the UMPU test in Theorem
6.4(iv) is also known as Fisher’s exact test.

Suppose that X;;’s in the 2 x 2 contingency table are from two binomial
distributions, i.e., X;; is from the binomial distribution Bi(p;.n;), X2 =
n; — X;1, 1 = 1,2, and that X;;'s are independent. Then the UMPU test
for independence of A and B previously derived is exactly the same as the
UMPU test for p; = ps given in Example 6.11. The only difference is that
n; s are fixed for testing the equality of two binomial distributions whereas
n; s are random for testing independence of A and B. This is also true for
the general r x ¢ contingency tables considered in §6.4.3.

6.2.3 UMPU tests in normal families

An important application of Theorem 6.4 to problems with continuous dis-
tributions in exponential families is the derivation of UMPU tests in normal
families. The results presented here are the basic justifications for tests in
elementary textbooks concerning parameters in normal families.

We start with the following lemma, which is useful especially when X
is from a normal family.
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Lemma 6.7. Suppose that X has the p.d.f. (6.23) and that V(Y,U) is a
statistic independent of U when # = #;, where 6;’s are known values given
in the hypotheses in (i)-(iv) of Theorem 6.4.

(i) If V(y,u) is increasing in y for each u, then the UMPU tests in (i)-(iii)
of Theorem 6.4 are equivalent to those given by (6.24)-(6.28) with ¥ and
(Y, U) replaced by V and with ¢;(U)’s and ~;(U)’s replaced by constants
c;'s and ~;'s.

(ii) If there are functions a(u) > 0 and b(u) such that V(y,u) = a(u)y+b(w),
then the UMPU test in (iv) of Theorem 6.4 is equivalent to that given by
(6.25), (6.28), and (6.29) with ¥ and (Y, U) replaced by V and with ¢;(U)’s
and v;(U)’s replaced by constants ¢;’s and ~;’s.

Proof. (i) Since V' is increasing in y, ¥ > ¢;(u) is equivalent to V' > d;(u)
for some d;. The result follows from the fact that V" is independent of U so
that d;’s and ~,;’s do not depend on u when Y is replaced by V.

(ii) Since V' = a(U)Y + b(U), the UMPU test in Theorem 6.4(iv) is the

SIle a5

1 Vo< E]{LI) or V' = ﬂg(ff}
T.(V,U) = v (U) V=¢(U), 1=1,2, (6.35)
0 e (U) <V <es(U),

subject to Eg, [T, (V,U)

U = u| = a and

Ul . (6.36)

V —b(U)
a(U)

V —b(U)
a(U)

Ep, |T.(V.U) U] — By, [

Under Ey, [T(V,U)|U = u] = v, (6.36) is the same as Ey, [T.(V,U)V|U] =
aFy, (V|U). Since V and U are independent, ¢;(u)’s and ~;(u)’s do not
depend on u and, therefore, T. in (6.35) does not depend on U. 1§

If the conditions of Lemma 6.7 are satisfied. then UMPU tests can
be derived by working with the distribution of V' instead of Py;-,. In
exponential families, a V(Y,U) independent of U can often be found by
applying Basu's theorem (Theorem 2.4).

When we consider normal families, «;'s can be chosen to be 0 since the
c.d.f. of ¥ or V is continuous.

One-sample problems

Let X1,..., X, be iid. from N(u,0?) with unknown g € R and o2 > 0,
where n > 2. The joint p.d.f. of X = (X;,...,X,,) is

T

1 1 5 ML npt
; S eXp 4 ———= r,+ —Ir— —F% ¢.

=1
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Consider first hypotheses concerning o2. The p.d.f. of X has the form

(6.23) with 8 = —(20%)7!, o = npfe?, Y = 3" X2 and U = X. By

I

Basu’s theorem, V' = (n — 1)5% (52 is the sample variance) is independent

of U = X (Example 2.18). Also,

T

ZX? = (n —1)S* 4+ nX?,

1

ie.. V =Y — nU? Hence the conditions of Lemma 6.7 are satisfied. Since
V/e? has the chi-square distribution y2_, (Example 2.18), values of ¢;’s
for hypotheses in (i)-(iii) of Theorem 6.4 are related to quantiles of y2_,.
For testing Hy : 6 = 0y versus Hy : 0 £ 0 (which is equivalent to testing

Hy : 02 = of versus Hy : 0% # 03), d; = ¢;/o5, i = 1,2, are determined by

dg d'&
/ X2 (v)dv=1—« and [ vx:_(v)de = (n — 1)(1 — a),
d1 . 'il

where y2 is the p.d.f. of the chi-square distribution y2 . Since vy _,(v) =
(n —1)x>.,(v), di and dy are determined by

dg "il'}:
[ = [ e =1-a
1 1

If n—1=n+1, then d; and dy are nearly the (a/2)th and (1 — a/2)th
quantiles of x> _,, respectively, in which case the UMPU test in Theorem

6.4(iv) is the same as the “equal-tailed” chi-square test for Hj in elementary
textbooks.

Consider next hypotheses concerning p. The p.d.f. of X has the form
(6.23) with @ = nu/o?, p = —(202)71, Y = X, and U = 3.7 | X2. For
testing hypotheses Hy @ p < pup versus Hy @ p > pg, we take V' to be
tHX) = vn(X — pp)/S. By Basu’s theorem, #(X) is independent of U
when g = pg. Hence it satisfies the conditions in Lemma 6.7(i). From
Examples 1.15 and 2.18, ¢(X) has the t-distribution #,,_; when p = pyg.
Thus, ¢(U) in Theorem 6.4(i) is the (1 — «)th quantile of £, _;. For the
two-sided hypotheses Hy @ 0 = pg versus Hy @ # g, we consider V' =
(X — po)/ 320 (Xi — po)?, which satisfies the conditions in Lemma 6.7(ii)
and has a distribution symmetric about 0 when p = pg. Then the UMPU
test in Theorem 6.4(iv) rejects Hy when |V| > d with P, (|V]| > d) = a.
Since

tHX) = V(n - )nV(X)/V/1-n[V(X)2
the UMPU test rejects Hy if and only if [£(X )| > t,,_1 o2, Where £, , is
the (1 — a)th quantile of the t-distribution ¢,,_;. The UMPU tests derived
here are the so-called one-sample t-tests in elementary textbhooks.

The power function of a one-sample t-test is related to the noncentral
t-distribution introduced in §1.3.1 (see Exercise 32).
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Two-sample problems

The problem of comparing the parameters of two normal distributions arises
in the comparison of two treatments, products, and so on (see also Example
6.11). Suppose that we have two independent samples, X, ..., X;,,, 1 =
1,2, iid. from N(p;.07), i = 1.2, respectively, where n; > 2. The joint
p.d.f. of X;;'sis

where Z; is the sample mean based on w1, ..., 2, and C(-) is a known
function.

Consider first the hypothesis Hy : 035/07 < Ay or Hy : 05 /07 = Ag.
The p.d.f. of X;;’s is of the form (6.23) with

0 — 1 1 - I nypp nops
2&[]:?% Ef:r%’ ? Ea'ff’ {:r:f " r:r% ’
o LS| LLS*:
9 .
Yy => X5, U= ZXu Ay - ZXEJ X, X,

To apply Lemma 6.7, consider

V, _ '[:ﬂ-jg — 1:]5%/"&{} _ (Y - TI-QLI;;}/&{]
{Tl.]_ - 1};5':1g + (ﬂg - L)S%/ﬂ[] U’l - TI]LFQ - ﬂ,g{){';/.ﬂ[]!

where Sf is the sample variance based on X;;...., Xj,, and U; is the jth
mmp:::n»?nt of V. By Basu's theorem, V' and U are independent when
= 0 (03 = Apoi). Since V is increasing and linear in Y, the conditions

of Lemnm 6.7 are satisﬁﬁd Thus, a UMPU test rejects Hy : @ < 0 (which
is equivalent to Hy : /Jl < &[]) when V' > ¢p with Py—o(V > ¢y) = a;
a UMPU test rejects H[] # = 0 (which is equivalent to Hy : 03 /0] =
Ag) when V' < ¢ or V > ¢ with Py—glcy < V < ¢3) = 1 — a and
Eﬁ ----- [][1 T -L‘ )] = ﬂEg ----- .[]Uf‘ :] Note that
V = (_ﬂz —1F with F = 53 ’/& &

ny — 14 (ng — 1)F St

It follows from Example 1.15 that F has the F-distribution F,,, 1 ,, -1 (Ta-
ble 1.2, page 20) when # = 0. Since V is a strictly increasing function of
F, a UMPU test rejects Hy : @ < 0 when F > Fi,, 1 n,—1.0, Where F,
is the (1 — a)th quantile of the F-distribution Fj ;. This is the F-test in
elementary textbooks.
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When ¢ = 0, V' has the beta distribution B((ns — 1)/2,(n; —1)/2) and
Eg—o(V) = (na—1)/(ny+ne—2) (Table 1.2). Then condition Ey_q[VT. (V)]

(1 —a)(ny —1
ny +ng — 2

o
| B / Uf(na—1)/2.(ns—1)/2(v)dv,

<o

where f, 5 is the p.d.f. of the beta distribution B(a,b). Using the fact that

Uf{n-j—1};2_@1—1];2{'”} = (n1 + ng — 2}_1{”2 - l}f{ng+l]fﬁ,{n1—I}IE{U)! we
conclude that a UMPU test rejects Hy : @ = 00 when V < ¢; or V' > ¢4,

where ¢; and ¢y are determined by

ol 2
l—a= [ Uftna—1)/2,(n1 —1)j2(V)dv = / fina+1)/2.0n0—1)p2(v)dv.
Jog 9

If no — 1 = ny + 1 (i.e., ng is large), then this UMPU test can be ap-
proximated by the F-test which rejects Hy : 0 = 0 if and only if F <

F‘TL_‘.I—].._'H]_—]..].—{'.'EJ-"IE or F > an—l,nl—l.ﬁtﬂﬁ'

Consider next the hypothesis Hy : i1 > pz or Hy @ i1 = po. If of # o3,
the problem is the so-called Behrens-Fisher problem and is not accessible by
the method introduced in this section. We now assume that o7 = 03 = o2

but ¢* is unknown. The p.d.f. of X;;’s is then

, 1 , T fL Mo fL
2 2 11 _ 2fi2 _
C(p1, po,0°)exp§ — = E E T+ Tt o

which is of the form (6.23) with

0 — Lo — py | (ﬂ.l;..:l + Tiofto 1 )

{nl_l + -n.;l}rr?"' (ny +mns)o?’ 202

2 Ty
Y-:_}_:g-—}_fl,. U = H]_X]_'l-ﬂg}_:g, ZZXET
=1 5=1
For testing Hy : 0 < 0 (i.e., g1 = po) versus Hy : 0 > 0, we consider V' in
Lemma 6.7 to be

(X2 = X1)/y/ni" +ny
VI —1)87 + (na — 1)83]/(ny1 + ng — 2)
When 6 = 0, £(X) is independent of UU (Basu’s theorem) and satisfies

the conditions in Lemma 6.7(i); the numerator and the denominator of
t(X) (after division by &) are independently distributed as N(0,1) and

HX) = . (6.37)



6.2. UMP Unbiased Tests 367

the chi-square distribution x;. ., _,. respectively. Hence ¢(X) has the t-
distribution t,,, +, 2 and a UMPU test rejects Hy when t(X) > t,,, +0.—2.a-
where t,,, 1n,-2.o is the (1 — a)th quantile of the t-distribution #,, 4, 2.
This is the so-called (one-sided) two-sample t-test.

For testing Hy : 0 = 0 (i.e., gy = po) versus Hy : 0 # 0, it follows from a
similar argument used in the derivation of the (two-sided) one-sample t-test

that a UMPU test rejects Hy when [£(X)| > ¢, 4+1,—2.0/2 (exercise). This
is the (two-sided) two-sample t-test.

The power function of a two-sample t-test is related to a noncentral
t-distribution.

Normal linear models

Consider linear model (3.25) with assumption Al, i.e.,
X = (X1,...X,) is N,(BZ7,0°L,). (6.38)

where 3 is a p-vector of unknown parameters, Z = (Z7,..., Z7)7, Z;'s are the
values of a p-vector of deterministic covariates, and ¢ > 0 is an unknown
parameter. Assume that n > p and the rank of Z is r < p. Let | € R(Z)
(the linear space generated by the rows of Z) and 6, be a fixed constant.
We consider the hypotheses

Hy: 817 < 8, Versus Hy: 817 = 6, (6.39)

or

Hy: 8lm =6, Versus Hy: 317 £ 8. (6.40)

Since H = Z(Z7Z)” Z" is a projection matrix of rank r, there exists an
n % n orthogonal matrix I' such that

[ =([,[s) and  HI = (T4,0), (6.41)

where I'y isnxrand 'y isnx (n—r). Let Y; = XT';, j = 1.2, Consider the
transformation (Y;,Ys) = XT'. Since I'"T" = I, and X is N, (3Z7,0°1,).
(Y1,Ys) is N,,(BZ7T,0°1,). It follows from (6.41) that

E(Y;) = E(XTy)=p32"Ty = 8Z"HT3 = 0.
Let n = 327"y = E(Y1). Then the p.d.f. of (¥1,Y5) is

1 {YLTIT M+ YalE ||’f}i|2}

(2wo2)n/2 P o2 207 202

(6.42)

Since ! in (6.39) or (6.40) is in R(Z), there exists A € R" such that |l = A Z.
Then

=

BT = XHN = XHTT™A™ = XT4T'TA" = YiTT\", (6.43)
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where 3 is the LSE defined by (3.27). By (6.43) and Theorem 3.6(ii),
E(BIT) = 31" = BE(Y1)TTA™ = na”,

where @ = AI'y. Let n = (11, ....,n:) and a = (ay,...,a,). Without loss of
generality, we assume that a; # 0. Then the p.d.f. in (6.42) is of the form
(6.23) with

naT 1 T2 Ty
f = . C=\|"T=:"5:1"5 |
‘ : (s Y" i, Y,
Y = Y. U=(;|}q||ﬂ+||y2;|{m- ;11,...,}’”—- ﬂ”),
1 1]

where Y7, is the jth component of Y7. By Basu’s theorem,

vi—r(Yia™ — )
1Yz al]

HX) =

is independent of U when na™ = SI™ = #,. Note that ||¥3* = SSR in
(3.36) and ||al|® = AL1TTA™ = AHAT = [(Z7Z)~17. Hence, by (6.43),

BT — by
VUZTZ)"17\/SSR/(n — )
which has the t-distribution #,, _,. (Theorem 3.8). Using the same arguments
in deriving the one-sample or two-sample t-test, we obtain that a UMPU

test for the hypotheses in (6.39) rejects Hy when ¢(X) > £,,_, ,, and that a
UMPU test for the hypotheses in (6.40) rejects Hy when [£(X)| > £, _, . /s.

tX) =

7

Testing for independence in the bivariate normal family

Suppose that X4, ..., X, are i.i.d. from a bivariate normal distribution, i.e.,

the p.d.f. of X = (Xy,..., X,,) is

1 . ”Fl_fi-lllﬂ P[:?l_#lj{yﬂ—lﬂlﬂ}'_ N ”F.E_F-jllﬂ } .
(2moyoay/1—p2)" E:{p{ 203(1-p%) T aio2(1—p7) 202 (1—p?) [ (6.44)

where Y; is the n-vector containing the jth components of Xy,.... X, j =
1,2.

Testing for independence of the two components of X (or ¥} and Y5) is
equivalent to testing Hy : p = 0 versus H, : p % 0. In some cases one may
also be interested in the one-sided hypotheses Hy 1 p < 0 versus Hy : p > 0.
[t can be shown (exercise) that the p.d.f. in (6.44) is of the form (6.23) with

_ P :
0 = TToa (172 and

Y:ixﬂxﬂ, U = (Zxﬁ ixﬁg, ixﬂ, ZXE)
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where X;; is the jth component of X, j =1, 2.

The hypothesis p < (0 is equivalent to # < (). The sample correlation
coefficient

R = Z(Xﬂ — jl}(x?;g - j:g:l/ [Z(X'il - }?1:]2 Z{Xﬂ - -"?E:]E
=1 1=1

== ) e T-.:: l

1/2

where X ; 1s the sample mean of Xy;...., X,,;, 7 = 1,2, is independent of UU
when p = 0 (Basu’s theorem). To apply Lemma 6.7, we consider

V=+vn-2R/v1—- R (6.45)

[t can be shown (exercise) that R is linear in Y and that V has the t-
distribution t,,_» when p = (. Hence, a UMPU test for Hy : p < 0 versus
Hy : p > 0 rejects Hy when V' = {,,_s , and a UMPU test for Hy : p = 0
versus Hy : p # 0 rejects Hy when V| > ¢, 5 /. where ¢,_5, is the
(1 — a)th quantile of the t-distribution ¢, _s.

6.3 UMP Invariant Tests

In the previous section the unbiasedness principle is considered to derive an
optimal test within the class of unbiased tests when a UMP test does not
exist. In this section we study the same problem with unbiasedness replaced
by invariance under a given group of transformations. The principles of
unbiasedness and invariance often complement each other in that each is
successful in cases where the other is not.

6.3.1 Invariance and UMPI tests

The invariance principle considered here is similar to that introduced in
§2.3.2 (Definition 2.9) and in §4.2, but is more general in the sense that we
are not restricted to location-scale families (although most examples in this
section are about location-scale families).

Definition 6.5. Let X be a sample from P € P.

(i) A class G of one-to-one transformations of X is called a group if and
only if g; € & implies g0g2 € G and gi_l 4.

(ii) We say that P is invariant under G if and only if g(Px) = Py(x) is a
one-to-one transformation from P onto P for each g € G.

(iii) We say that the problem of testing Hy : P € Py versus Hy : P € Py is
invariant under ¢ if and only if both P, and P; are invariant under G.
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(iv) In an invariant testing problem, a test T(X) is said to be invariant
under G if and only if

T(g(x)) =T(x) for all  and g. (6.46)

(v) A test of size « is said to be a uniformly most powerful invariant (UMPI)
test if and only if it is UMP within the class of level « tests that are invariant
under G.

(vi) A statistic M(X') is said to be mazimal invariant under G if and only
if (6.46) holds with T" replaced by M and

M(xy) = M(xs3) implies 7 = g(xs) for some g € G. 1 (6.47)

The following result indicates that invariance reduces the data X to a
maximal invariant statistic M (X) whose distribution may depend only on
a functional of P that shrinks P.

Proposition 6.2. Let M (X) be maximal invariant under G.

(i) A test T(X) is invariant under G if and only if there is a function h such
that T'(x) = h(M (x)) for all z.

(ii) Suppose that there is a functional 8( P) on P satistying 8(g(P)) = 0(P)
for all g € G and P € P and

G P) = 0(Ps) implies P} = g(Ps) for some g € G

(i.e., #(P) is “maximal invariant” ). Then the distribution of M (X) depends
only on ¢(P).

Proof. (i) If T(z) = h(M(z)) for all x, then T(g(z)) = h(M(g(x)))
h(M(z)) = T(x) so that T is invariant. If T" is invariant and if M (z;) =
M(zs), then x; = g(xs) for some g and T'(x;) = T(g(xs)) = T'(x3). Hence
T is a function of M.

(ii) Suppose that 8(P) = 0(F,). Then P, = g(P;) for some g € G and for
any event B in the range of M (X)),

I

Po(M(X) € B) = g(P) (M(X) € B)
= Py(M(g(X)) € B)
— P (M(X) € B).

Hence the distribution of M (X) depends only on #(P). 1

In applications, maximal invariants M(X) and 6 = 0(P) are frequently
real-valued. If the hypotheses of interest can be expressed in terms of #, then
there may exist a test UMP among those depending only on M(X) (e.g.,
when the distribution of M({X) is in a parametric family having monotone
likelihood ratio). Such a test is then a UMPI test.
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Example 6.13 (Location-scale families). Suppose that X has the Lebesgue
p.d.f. fi.(z) = fi(re — p....,zp — p), where n > 2, p € R is unknown, and
fi, © = 0,1, are known Lebesgue p.d.f.’s. We consider the problem of testing

Hy: X is from fy Vversus Hy: X is from fy . (6.48)

Consider G = {g. : ¢ € R} with g.(x) = (z1 +¢,...,x, + ¢). For any g. € G,
it induces a transformation g.(f; ) = fi u+. and the problem of testing Hj
versus H; in (6.48) is invariant under G.

We now show that a maximal invariant under G is D(X )= (D, ..., D,,_1)
= (X1 - X, ... X1 — X,,). First, it is easy to see that D(X) is invariant
under G. Let x = (xy,...,2,) and ¥y = (y1,.... Yn) be two points in the
range of X. Suppose that x; — x,, = v; —y,, fori = 1,....n — 1. Putting
¢ = Yn — Ty, we have y; = x; + ¢ for all i. Hence, D(X) is maximal invariant

under G.

By Proposition 1.8, D has the p.d.f. [ fi(dy +t,...,d,—1 + t,)dt under
H;, i = 0.1, which does not depend on g. In fact, in this case Proposition
6.2 applies with M (X) = D(X) and 0(f; ,) = ¢. If we consider tests that
are functions of D(X), then the problem of testing the hypotheses in (6.48)
becomes one of testing a simple hypothesis versus a simple hypothesis. By
Theorem 6.1, the test UMP among functions of D(X), which is then the
UMPI test, rejects Hy in (6.48) when

| fildy + ¢t .. dpy + t,E)dt _ [ filzy +t,... z, +1)d