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Preface

Linear models are central to the practice of statistics. They are part of the core knowl-
edge expected of any applied statistician. Linear models are the foundation of a broad
range of statistical methodologies; this book is a survey of techniques that grow from
a linear model. Our starting point is the regression model with response y and pre-
dictors x1, . . .xp. The model takes the form:

y = β0 +β1x1 + · · ·+βpxp + ε

where ε is normally distributed. This book presents three extensions to this frame-
work. The first generalizes the y part; the second, the ε part; and the third, the x part
of the linear model.

Generalized Linear Models (GLMs): The standard linear model cannot handle
nonnormal responses, y, such as counts or proportions. This motivates the develop-
ment of generalized linear models that can represent categorical, binary and other
response types.

Mixed Effect Models: Some data has a grouped, nested or hierarchical structure.
Repeated measures, longitudinal and multilevel data consist of several observations
taken on the same individual or group. This induces a correlation structure in the
error, ε. Mixed effect models allow the modeling of such data.

Nonparametric Regression Models: In the linear model, the predictors, x, are
combined in a linear way to model the effect on the response. Sometimes this linear-
ity is insufficient to capture the structure of the data and more flexibility is required.
Methods such as additive models, trees and neural networks allow a more flexible
regression modeling of the response that combines the predictors in a nonparametric
manner.

This book aims to provide the reader with a well-stocked toolbox of statistical
methodologies. A practicing statistician needs to be aware of and familiar with the
basic use of a broad range of ideas and techniques. This book will be a success if the
reader is able to recognize and get started on a wide range of problems. However,
the breadth comes at the expense of some depth. Fortunately, there are book-length
treatments of topics discussed in every chapter of this book, so the reader will know
where to go next if needed.

R is a free software environment for statistical computing and graphics. It runs on
a wide variety of platforms including the Windows, Linux and Macintosh operating
systems. Although there are several excellent statistical packages, only R is both
free and possesses the power to perform the analyses demonstrated in this book.
While it is possible in principle to learn statistical methods from purely theoretical

xi



xii PREFACE

expositions, I believe most readers learn best from the demonstrated interplay of
theory and practice. The data analysis of real examples is woven into this book and
all the R commands necessary to reproduce the analyses are provided.

Prerequisites: Readers should possess some knowledge of linear models. The
first chapter provides a review of these models. This book can be viewed as a sequel
to Linear Models with R, Faraway (2014). Even so there are plenty of other good
books on linear models such as Draper and Smith (1998) or Weisberg (2005), that
would provide ample grounding. Some knowledge of likelihood theory is also very
useful. An outline is provided in Appendix A, but this may be insufficient for those
who have never seen it before. A general knowledge of statistical theory is also ex-
pected concerning such topics as hypothesis tests or confidence intervals. Even so,
the emphasis in this text is on application, so readers without much statistical theory
can still learn something here.

This is not a book about learning R, but the reader will inevitably pick up the
language by reading through the example data analyses. Readers completely new to
R will benefit from studying an introductory book such as Dalgaard (2002) or one
of the many tutorials available for free at the R website. Even so, the book should
be intelligible to a reader without prior knowledge of R just by reading the text and
output. R skills can be further developed by modifying the examples in this book,
trying the exercises and studying the help pages for each command as needed. There
is a large amount of detailed help on the commands available within the software
and there is no point in duplicating that here. Please refer to Appendix B for details
on obtaining and installing R along with the necessary add-on packages and data
necessary for running the examples in this text.

The website for this book is at people.bath.ac.uk/jjf23/ELM where data,
updates and errata may be obtained.

Second Edition: Ten years have passed since the publication of the first edition.
R has expanded enormously both in popularity and in the number of packages avail-
able. I have updated the R content to correct for changes and to take advantage of the
greater functionality now available. I have revised or added several topics:
• One chapter on binary and binomial responses has been expanded to three. The

analysis of strictly binary responses is sufficiently different to justify a separate
treatment from the binomial response. Sections for proportion responses, quasi-
binomial and beta regression have been added. Applied considerations regarding
these models have been gathered into a third chapter.
• Poisson models with dispersion and zero inflated count models have new sections.
• A section on linear discriminant analysis has been added for contrast with multi-

nomial response models.
• New sections on sandwich and robust estimation for GLMs have been added.

Tweedie GLMs are now covered.
• The chapters on random effects and repeated measures have been substantially

revised to reflect changes in the lme4 package that removed many p-values from
the output. We show how to do hypothesis testing for these models using other
methods.



PREFACE xiii

• I have added a chapter concerning the Bayesian analysis of mixed effect models.
There are sufficient drawbacks to the analysis in the existing two chapters that
make the Bayes approach rewarding even for non-Bayesians. We venture a little
beyond the confines of R in the use of STAN (Stan Development Team (2015)).
We also present the approximation method of INLA (Rue et al. (2009)).
• The chapter on generalized linear mixed models has been substantially revised

to reflect the much richer choice of fitting software now available. A Bayesian
approach has also been included.
• The chapter on nonparametric regression has updated coverage on splines and

confidence bands. In additive models, we now use the mgcv package exclusively
while the multivariate adaptive regression splines (MARS) section has an easier-
to-use interface.
• Random forests for regression and classification have been added to the chapter

on trees.
• The R code has revamped throughout. In particular, there are many plots using the
ggplot2 package.
• The exercises have been revised and expanded. They are now more point-by-point

specific rather than open-ended questions. Solutions are now available.
• The text is about one third longer than the first edition.

My thanks to many past students and readers of the first edition whose comments
and questions have helped me make many improvements to this edition. Thanks to
the builders of R (R Core Team (2015)) who made all this possible.
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Chapter 1

Introduction

This book is about extending the linear model methodology using R statistical soft-
ware. Before setting off on this journey, it is worth reviewing both linear models and
R. We shall not attempt a detailed description of linear models; the reader is advised
to consult texts such as Faraway (2014) or Draper and Smith (1998). We do not in-
tend this as a self-contained introduction to R as this may be found in books such as
Dalgaard (2002) or Maindonald and Braun (2010) or from guides obtainable from
the R website. Even so, a reader unfamiliar with R should be able to follow the intent
of the analysis and learn a little R in the process without further preparation.

Let’s consider an example. The 2000 United States Presidential election gener-
ated much controversy, particularly in the state of Florida where there were some
difficulties with the voting machinery. In Meyer (2002), data on voting in the state of
Georgia is presented and analyzed.

Let’s take a look at this data using R. Please refer to Appendix B for details on
obtaining and installing R along with the necessary add-on packages and data for
running the examples in this text. In this book, we denote R commands with bold
text in a grey box. You should type this in at the command prompt: >. We start by
loading the data:
data(gavote, package="faraway")

The data command loads the particular dataset into R. The name of the dataset
is gavote and it is being loaded from the package faraway. If you get an error
message about a package not being found, it probably means you have not installed
the faraway package. Please check the Appendix.

An alternative means of making the data is to load the faraway package:
library(faraway)

This will make all the data and functions in this package available for this R session.

In R, the object containing the data is called a dataframe. We can obtain defini-
tions of the variables and more information about the dataset using the help com-
mand:
help(gavote)

You can use the help command to learn more about any of the commands we use.
For example, to learn about the quantile command:
help(quantile)

If you do not already know or guess the name of the command you need, use:
help.search("quantiles")

to learn about all commands that refer to quantiles.
We can examine the contents of the dataframe simply by typing its name:

1



2 INTRODUCTION

gavote
equip econ perAA rural atlanta gore bush other votes ballots

APPLING LEVER poor 0.182 rural notAtlanta 2093 3940 66 6099 6617
ATKINSON LEVER poor 0.230 rural notAtlanta 821 1228 22 2071 2149
....

The output in this text is shown in typewriter font. I have deleted most of the
output to save space. This dataset is small enough to be comfortably examined in
its entirety. Sometimes, we simply want to look at the first few cases. The head
command is useful for this:
head(gavote)

equip econ perAA rural atlanta gore bush other votes ballots
APPLING LEVER poor 0.182 rural notAtlanta 2093 3940 66 6099 6617
ATKINSON LEVER poor 0.230 rural notAtlanta 821 1228 22 2071 2149
BACON LEVER poor 0.131 rural notAtlanta 956 2010 29 2995 3347
BAKER OS-CC poor 0.476 rural notAtlanta 893 615 11 1519 1607
BALDWIN LEVER middle 0.359 rural notAtlanta 5893 6041 192 12126 12785
BANKS LEVER middle 0.024 rural notAtlanta 1220 3202 111 4533 4773

The cases in this dataset are the counties of Georgia and the variables are (in order)
the type of voting equipment used, the economic level of the county, the percentage
of African Americans, whether the county is rural or urban, whether the county is
part of the Atlanta metropolitan area, the number of voters for Al Gore, the number
of voters for George Bush, the number of voters for other candidates, the number of
votes cast, and ballots issued.

The str command is another useful way to examine an R object:
str(gavote)
’data.frame’: 159 obs. of 10 variables:
$ equip : Factor w/ 5 levels "LEVER","OS-CC",..: 1 1 1 2 1 1 2 3 3 2 ...
$ econ : Factor w/ 3 levels "middle","poor",..: 2 2 2 2 1 1 1 1 2 2 ...
$ perAA : num 0.182 0.23 0.131 0.476 0.359 0.024 0.079 0.079 0.282 0.107 ...
$ rural : Factor w/ 2 levels "rural","urban": 1 1 1 1 1 1 2 2 1 1 ...
$ atlanta: Factor w/ 2 levels "Atlanta","notAtlanta": 2 2 2 2 2 2 2 1 2 2 ...
$ gore : int 2093 821 956 893 5893 1220 3657 7508 2234 1640 ...
$ bush : int 3940 1228 2010 615 6041 3202 7925 14720 2381 2718 ...
$ other : int 66 22 29 11 192 111 520 552 46 52 ...
$ votes : int 6099 2071 2995 1519 12126 4533 12102 22780 4661 4410 ...
$ ballots: int 6617 2149 3347 1607 12785 4773 12522 23735 5741 4475 ...

We can see that some of the variables, such as the equipment type, are factors. Fac-
tor variables are categorical. Other variables are quantitative. The perAA variable is
continuous while the others are integer valued. We also see the sample size is 159.

A potential voter goes to the polling station where it is determined whether he
or she is registered to vote. If so, a ballot is issued. However, a vote is not recorded
if the person fails to vote for President, votes for more than one candidate or the
equipment fails to record the vote. For example, we can see that in Appling county,
6617− 6099 = 518 ballots did not result in votes for President. This is called the
undercount. The purpose of our analysis will be to determine what factors affect the
undercount. We will not attempt a full and conclusive analysis here because our main
purpose is to illustrate the use of linear models and R. We invite the reader to fill in
some of the gaps in the analysis.

Initial Data Analysis: The first stage in any data analysis should be an initial
graphical and numerical look at the data. A compact numerical overview is:
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summary(gavote)
equip econ perAA rural atlanta

LEVER:74 middle:69 Min. :0.000 rural:117 Atlanta : 15
OS-CC:44 poor :72 1st Qu.:0.112 urban: 42 notAtlanta:144
OS-PC:22 rich :18 Median :0.233
PAPER: 2 Mean :0.243
PUNCH:17 3rd Qu.:0.348

Max. :0.765
gore bush other votes ballots

Min. : 249 Min. : 271 Min. : 5 Min. : 832 Min. : 881
1st Qu.: 1386 1st Qu.: 1804 1st Qu.: 30 1st Qu.: 3506 1st Qu.: 3694
Median : 2326 Median : 3597 Median : 86 Median : 6299 Median : 6712
Mean : 7020 Mean : 8929 Mean : 382 Mean : 16331 Mean : 16927
3rd Qu.: 4430 3rd Qu.: 7468 3rd Qu.: 210 3rd Qu.: 11846 3rd Qu.: 12251
Max. :154509 Max. :140494 Max. :7920 Max. :263211 Max. :280975

For the categorical variables, we get a count of the number of each type that
occurs. We notice, for example, that only two counties used a paper ballot. This
will make it difficult to estimate the effect of this particular voting method on the
undercount. For the numerical variables, we have six summary statistics that are
sufficient to get a rough idea of the distributions. In particular, we notice that the
number of ballots cast ranges over orders of magnitudes. This suggests that I should
consider the relative, rather than the absolute, undercount. I create this new relative
undercount variable, where we specify the variables using the dataframe$variable
syntax:
gavote$undercount <- (gavote$ballots-gavote$votes)/gavote$ballots
summary(gavote$undercount)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0278 0.0398 0.0438 0.0565 0.1880

We see that the undercount ranges from zero up to as much as 19%. The mean across
counties is 4.38%. Note that this is not the same thing as the overall relative under-
count which is:
with(gavote, sum(ballots-votes)/sum(ballots))
[1] 0.03518

We have used with to save the trouble of prefacing all the subsequent variables with
gavote$. Graphical summaries are also valuable in gaining an understanding of the
data. Considering just one variable at a time, histograms are a well-known way of
examining the distribution of a variable:
hist(gavote$undercount,main="Undercount",xlab="Percent Undercount")

The plot is shown in the left panel of Figure 1.1. A histogram is a fairly crude estimate
of the density of the variable that is sensitive to the choice of bins. A kernel density
estimate can be viewed as a smoother version of a histogram that is also a superior
estimate of the density. We have added a “rug” to our display that makes it possible
to discern the individual data points:
plot(density(gavote$undercount),main="Undercount")
rug(gavote$undercount)

We can see that the distribution is slightly skewed and that there are two outliers in
the right tail of the distribution. Such plots are invaluable in detecting mistakes or un-
usual points in the data. Categorical variables can also be graphically displayed. The
pie chart is a popular method. We demonstrate this on the types of voting equipment:
pie(table(gavote$equip),col=gray(0:4/4))
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Figure 1.1 Histogram of the undercount is shown on the left and a density estimate with a
data rug is shown on the right.

The plot is shown in the first panel of Figure 1.2. I have used shades of grey for the
slices of the pie because this is a monochrome book. If you omit the col argument,
you will see a color plot by default. Of course, a color plot is usually preferable, but
bear in mind that some photocopying machines and many laser printers are black and
white only, so a good greyscale plot is still needed. Alternatively, the Pareto chart is
a bar plot with categories in descending order of frequency:
barplot(sort(table(gavote$equip),decreasing=TRUE),las=2)

The plot is shown in the second panel of Figure 1.2. The las=2 argument means that
the bar labels are printed vertically as opposed to horizontally, ensuring that there is
enough room for them to be seen. The Pareto chart (or just a bar plot) is superior to
the pie chart because lengths are easier to judge than angles.

Two-dimensional plots are also very helpful. A scatterplot is the obvious way to
depict two quantitative variables. Let’s see how the proportion voting for Gore relates
to the proportion of African Americans:
gavote$pergore <- gavote$gore/gavote$votes
plot(pergore ~ perAA, gavote, xlab="Proportion African American", ylab

↪→ ="Proportion for Gore")

The ↪→ character just indicates that the command ran over onto a second line. Don’t
type ↪→ in R — just type the whole command on a single line without hitting return
until the end. The plot, seen in the first panel of Figure 1.3, shows a strong correlation
between these variables. This is an ecological correlation because the data points are
aggregated across counties. The plot, in and of itself, does not prove that individual
African Americans were more likely to vote for Gore, although we know this to be
true from other sources. We could also compute the proportion of voters for Bush, but
this is, not surprisingly, strongly negatively correlated with the proportion of voters
for Gore. We do not need both variables as the one explains the other. We will use the
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Figure 1.2 Pie chart of the voting equipment frequencies is shown on the left and a Pareto
chart on the right.

proportion for Gore in the analysis to follow, although one could just as well replace
this with the proportion for Bush. I will not consider the proportion for other voters
as this has little effect on our conclusions. The reader may wish to verify this.

Side-by-side boxplots are one way of displaying the relationship between quali-
tative and quantitative variables:
plot(undercount ~ equip, gavote, xlab="", las=3)

The plot, shown in the second panel of Figure 1.3, shows no major differences in un-
dercount for the different types of equipment. Two outliers are visible for the optical
scan-precinct count (OS-PC) method. Plots of two qualitative variables are generally
not worthwhile unless both variables have more than three or four levels. The xtabs
function is useful for cross-tabulations:
xtabs(~ atlanta + rural, gavote)

rural
atlanta rural urban
Atlanta 1 14
notAtlanta 116 28

We see that just one county in the Atlanta area is classified as rural. We also notice
that variable name rural is not sensible because it is the same as the name given
to one of the two levels of this factor. It is best to avoid misunderstanding by using
unambiguous labeling:
names(gavote)
[1] "equip" "econ" "perAA" "rural" "atlanta" "gore"

...
names(gavote)[4] <- "usage"

Correlations are the standard way of numerically summarizing the relationship be-
tween quantitative variables. However, not all the variables in our dataframe are
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Figure 1.3 A scatterplot plot of proportions of Gore voters and African Americans by county
is shown on the left. Boxplots showing the distribution of the undercount by voting equipment
are shown on the right.

quantitative or immediately of interest. First we construct a vector using c() of length
three which contains the indices of the variables of interest. We select these columns
from the dataframe and compute the correlation. The syntax for selecting rows and/or
columns is dataframe[rows,columns] where rows and/or columns are vectors of
indices. In this case, we want all the rows, so I omit that part of the construction:
nix <- c(3,10,11,12)
cor(gavote[,nix])

perAA ballots undercount pergore
perAA 1.000000 0.027732 0.22969 0.921652
ballots 0.027732 1.000000 -0.15517 0.095617
undercount 0.229687 -0.155172 1.00000 0.218765
pergore 0.921652 0.095617 0.21877 1.000000

We see some mild correlation between some of the variables except for the Gore
— African Americans correlation which we know is large from the previous plot.

Defining a Linear Model: We describe this data with a linear model which takes
the form:

Y = β0 +β1X1 +β2X2 + · · ·+βp−1Xp−1 + ε

where βi, i = 0,1,2, . . . , p− 1 are unknown parameters. β0 is called the intercept
term. The response is Y and the predictors are X1, . . . ,Xp−1. The predictors may be
the original variables in the dataset or transformations or combinations of them. The
error ε represents the difference between what is explained by the systematic part
of the model and what is observed. ε may include measurement error although it is
often due to the effect of unincluded or unmeasured variables.
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The regression equation is more conveniently written as:

y = Xβ+ ε

where, in terms of the n data points, y = (y1, . . . ,yn)
T , ε = (ε1, . . . ,εn)

T ,
β = (β0, . . . ,βp−1)

T and:

X =


1 x11 x12 . . . x1,p−1
1 x21 x22 . . . x2,p−1
...

...
1 xn1 xn2 . . . xn,p−1


The column of ones incorporates the intercept term. The least squares estimate of β,
called β̂, minimizes:

∑ε
2
i = ε

T
ε = (y−Xβ)T (y−Xβ)

Differentiating with respect to β and setting to zero, we find that β̂ satisfies:

XT X β̂ = XT y

These are called the normal equations.
Fitting a Linear Model: Linear models in R are fit using the lm command. For

example, suppose we model the undercount as the response and the proportions of
Gore voters and African Americans as predictors:
lmod <- lm(undercount ~ pergore + perAA, gavote)

This corresponds to the linear model formula:

undercount= β0 +β1pergore+β2perAA+ ε

R uses the Wilkinson–Rogers notation of Wilkinson and Rogers (1973). For a
straightforward linear model, such as this example, we see that it corresponds to
just dropping the parameters from the mathematical form. The intercept is included
by default.

We can obtain the least squares estimates of β, called the regression coefficients,
β̂, by:
coef(lmod)
(Intercept) pergore perAA

0.032376 0.010979 0.028533

The construction of the least squares estimates does not require any assumptions
about ε. If we are prepared to assume that the errors are at least independent and
have equal variance, then the Gauss–Markov theorem tells us that the least squares
estimates are the best linear unbiased estimates. Although it is not necessary, we
might further assume that the errors are normally distributed, and we might compute
the maximum likelihood estimate (MLE) of β (see Appendix A for more MLEs).
For the linear models, these MLEs are identical with the least squares estimates.
However, we shall find that, in some of the extension of linear models considered
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later in this book, an equivalent notion to least squares is not suitable and likelihood
methods must be used. This issue does not arise with the standard linear model.

The predicted or fitted values are ŷ = X β̂, while the residuals are ε̂ = y−X β̂ =
y− ŷ. We can compute these as:
predict(lmod)
APPLING ATKINSON BACON BAKER BALDWIN BANKS

0.041337 0.043291 0.039618 0.052412 0.047955 0.036016
...
residuals(lmod)

APPLING ATKINSON BACON BAKER BALDWIN
0.0369466 -0.0069949 0.0655506 0.0023484 0.0035899

...

where the ellipsis indicates that (much of) the output has been omitted.
It is useful to have some notion of how well the model fits the data. The residual

sum of squares (RSS) is ε̂T ε̂. This can be computed as:
deviance(lmod)
[1] 0.09325

The term deviance is a more general measure of fit than RSS, which we will meet
again in chapters to follow. For linear models, the deviance is the RSS.

The degrees of freedom for a linear model is the number of cases minus the
number of coefficients or:
df.residual(lmod)
[1] 156
nrow(gavote)-length(coef(lmod))
[1] 156

Let the variance of the error be σ2, then σ is estimated by the residual standard error
computed from

√
(RSS/df). For our example, this is:

sqrt(deviance(lmod)/df.residual(lmod))
[1] 0.024449

Although several useful regression quantities are stored in the lm model object
(which we called lmod in this instance), we can compute several more using the
summary command on the model object. For example:
lmodsum <- summary(lmod)
lmodsum$sigma
[1] 0.024449

R is an object-oriented language. One important feature of such a language is that
generic functions, such as summary, recognize the type of object being passed to it
and behave appropriately. We used summary for dataframes previously and now for
linear models. residuals is another generic function and we shall see how it can be
applied to many model types and return appropriately defined residuals.

The deviance measures how well the model fits in an absolute sense, but it does
not tell us how well the model fits in a relative sense. The popular choice is R2, called
the coefficient of determination or percentage of variance explained:

R2 = 1− ∑(ŷi− yi)
2

∑(yi− ȳ)2 = 1− RSS
TSS

where TSS = ∑(yi− ȳ)2 and stands for total sum of squares. This can be most con-
veniently extracted as:
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lmodsum$r.squared
[1] 0.053089

We see that R2 is only about 5% which indicates that this particular model does not
fit so well. An appreciation of what constitutes a good value of R2 varies according
to the application. Another way to think of R2 is the (squared) correlation between
the predicted values and the response:
cor(predict(lmod),gavote$undercount)^2
[1] 0.053089

R2 cannot be used as a criterion for choosing models among those available because
it can never decrease when you add a new predictor to the model. This means that
it will favor the largest models. The adjusted R2 makes allowance for the fact that a
larger model also uses more parameters. It is defined as:

R2
a = 1− RSS/(n− p)

T SS/(n−1)

Adding a predictor will only increase R2
a if it has some predictive value. Furthermore,

minimizing σ̂2 means maximizing R2
a over a set of possible linear models. The value

can be extracted as:
lmodsum$adj.r.squared
[1] 0.040949

One advantage of R over many statistical packages is that we can extract all these
quantities individually for subsequent calculations in a convenient way. However, if
we simply want to see the regression output printed in a readable way, we use the
summary:
summary(lmod)
Residuals:

Min 1Q Median 3Q Max
-0.04601 -0.01500 -0.00354 0.01178 0.14244

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0324 0.0128 2.54 0.012
pergore 0.0110 0.0469 0.23 0.815
perAA 0.0285 0.0307 0.93 0.355

Residual standard error: 0.0244 on 156 degrees of freedom
Multiple R-Squared: 0.0531, Adjusted R-squared: 0.0409
F-statistic: 4.37 on 2 and 156 DF, p-value: 0.0142

We have already separately computed many of the quantities given above. This sum-
mary is too verbose to my taste and I prefer a shorter sumary found in my R package:
library(faraway)
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0324 0.0128 2.54 0.012
pergore 0.0110 0.0469 0.23 0.815
perAA 0.0285 0.0307 0.93 0.355

n = 159, p = 3, Residual SE = 0.024, R-Squared = 0.05

You only need to load the package with library(faraway) once per session so this
line may be skipped if you did it earlier. If you get an error message about a function
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not being found, it probably means you forgot to load the package that contains that
function.

Qualitative Predictors: The addition of qualitative variables requires the intro-
duction of dummy variables. Two-level variables are easy to code; consider the ru-
ral/urban indicator variable. We can code this using a dummy variable d:

d =

{
0 rural
1 urban

This is the default coding used in R. Zero is assigned to the level which is first
alphabetically, unless something is done to change this (perhaps using the relevel
command). If we add this variable to our model, it would now be:

undercount= β0 +β1pergore+β2perAA+β3d+ ε

So β3 would now represent the difference between the undercount in an urban county
and a rural county. Codings other than 0-1 could be used although the interpretation
of the associated parameter would not be quite as straightforward.

A more extensive use of dummy variables is needed for factors with k > 2 levels.
We define k−1 dummy variables d j for j = 2, . . . ,k such that:

d j =

{
0 is not level j
1 is level j

Interactions between variables can be added to the model by taking the columns
of the model matrix X that correspond to the two variables and multiplying them
together entrywise for all terms that make up the interaction.

Interpretation: Let’s add some qualitative variables to the model to see how the
terms can be interpreted. We have centered the pergore and perAA terms by their
means for reasons that will become clear:
gavote$cpergore <- gavote$pergore - mean(gavote$pergore)
gavote$cperAA <- gavote$perAA - mean(gavote$perAA)
lmodi <- lm(undercount ~ cperAA+cpergore*usage+equip, gavote)
sumary(lmodi)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04330 0.00284 15.25 < 2e-16
cperAA 0.02826 0.03109 0.91 0.3648
cpergore 0.00824 0.05116 0.16 0.8723
usageurban -0.01864 0.00465 -4.01 0.000096
equipOS-CC 0.00648 0.00468 1.39 0.1681
equipOS-PC 0.01564 0.00583 2.68 0.0081
equipPAPER -0.00909 0.01693 -0.54 0.5920
equipPUNCH 0.01415 0.00678 2.09 0.0387
cpergore:usageurban -0.00880 0.03872 -0.23 0.8205

n = 159, p = 9, Residual SE = 0.023, R-Squared = 0.17

Here is the model witten in a mathematical form:

undercount= β0+β1cperAA+β2cpergore+β2usageurban+β4equipOSCC+

β5equipOSPC+β6equipPAPER+β7equipPUNCH+β8cpergore : usageurban+ε

(1.1)
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The terms usageurban, equipOSCC, equipOSPC, equipPAPER and equipPUNCH
are all dummy variables taking the value 1 when the county is urban or using that
voting method, respectively. They take the value 0 otherwise. The term
cpergore:usageurban is formed taking the product of the dummy variable for
usageurban and the quantitative variable cpergore. Hence it is zero for rural coun-
ties and takes the value of cpergore for urban counties.

Consider a rural county that has an average proportion of Gore voters and an
average proportion of African Americans where lever machines are used for voting.
Because rural and lever are the reference levels for the two qualitative variables,
there is no contribution to the predicted undercount from these terms. Furthermore,
because we have centered the two quantitative variables at their mean values, these
terms also do not enter into the prediction. Notice the worth of the centering because
otherwise we would need to set these variables to zero to get them to drop out of the
prediction equation; zero is not a typical value for these predictors. Given that all the
other terms are dropped, the predicted undercount is just given by the intercept β̂0,
which is 4.33%.

The interpretation of the coefficients can now be made relative to this baseline.
We see that, with all other predictors unchanged, except using optical scan with
precinct count (OS-PC), the predicted undercount increases by 1.56%. The other
equipment methods can be similarly interpreted. Notice that we need to be cautious
about the interpretation. Given two counties with the same values of the predictors,
except having different voting equipment, we would predict the undercount to be
1.56% higher for the OS-PC county compared to the lever county. However, we can-
not go so far as to say that if we went to a county with lever equipment and changed
it to OS-PC that this would cause the undercount to increase by 1.56%.

With all other predictors held constant, we would predict the undercount to in-
crease by 2.83% going from a county with no African Americans to all African
American. Sometimes a one-unit change in a predictor is too large or too small,
prompting a rescaling of the interpretation. For example, we might predict a 0.283%
increase in the undercount for a 10% increase in the proportion of African Ameri-
cans. Of course, this interpretation should not be taken too literally. We already know
that the proportion of African Americans and Gore voters is strongly correlated so
that an increase in the proportion of one would lead to an increase in the propor-
tion of the other. This is the problem of collinearity that makes the interpretation of
regression coefficients much more difficult. Furthermore, the proportion of African
Americans is likely to be associated with other socioeconomic variables which might
also be related to the undercount. This further hinders the possibility of a causal con-
clusion.

The interpretation of the usage and pergore cannot be done separately as there
is an interaction term between these two variables. For an average number of Gore
voters, we would predict a 1.86%-lower undercount in an urban county compared
to a rural county. In a rural county, we predict a 0.08% increase in the undercount
as the proportion of Gore voters increases by 10%. In an urban county, we predict a
(0.00824−0.00880)∗10 =−0.0056% increase in the undercount as the proportion
of Gore voters increases by 10%. Since the increase is by a negative amount, this is
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actually a decrease. This illustrates the potential pitfalls in interpreting the effect of
a predictor in the presence of an interaction. We cannot give a simple stand-alone
interpretation of the effect of the proportion of Gore voters. The effect is to increase
the undercount in rural counties and to decrease it, if only very slightly, in urban
counties.

Hypothesis Testing: We often wish to determine the significance of one, some
or all of the predictors in a model. If we assume that the errors are independent and
identically normally distributed, there is a very general testing procedure that may
be used. Suppose we compare two models, a larger model Ω and a smaller model ω

contained within that can be represented as a linear restriction on the parameters of
the larger model. Most often, the predictors in ω are just a subset of the predictors in
Ω.

Now suppose that the dimension (or number of parameters) of Ω is p and the
dimension of ω is q. Then, assuming that the smaller model ω is correct, the F-
statistic is:

F =
(RSSω−RSSΩ)/(p−q)

RSSΩ/(n− p)
∼ Fp−q,n−p

Thus we would reject the null hypothesis that the smaller model is correct if F >

F(α)
p−q,n−p.

For example, we might compare the two linear models considered previously.
The smaller model has just pergore and perAA while the larger model adds usage
and equip along with an interaction. We compute the F-test as:
anova(lmod,lmodi)
Analysis of Variance Table

Model 1: undercount ~ pergore + perAA
Model 2: undercount ~ cperAA + cpergore * usage + equip

Res.Df RSS Df Sum of Sq F Pr(>F)
1 156 0.0932
2 150 0.0818 6 0.0115 3.51 0.0028

It does not matter that the variables have been centered in the larger model but not
in the smaller model, because the centering makes no difference to the RSS. The
p-value here is small indicating the null hypothesis of preferring the smaller model
should be rejected.

One common need is to test specific predictors in the model. It is possible to
use the general F-testing method: fit a model with the predictor and without the
predictor and compute the F-statistic. It is important to know what other predictors
are also included in the models and the results may differ if these are also changed.
An alternative computation is to use a t-statistic for testing the hypothesis:

ti = β̂i/se(β̂i)

and check for significance using a t-distribution with n− p degrees of freedom. This
approach will produce exactly the same p-value as the F-testing method. For ex-
ample, in the larger model above, the test for the significance of the proportion of
African Americans gives a p-value of 0.3648. This indicates that this predictor is
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not statistically significant after adjusting for the effect of the other predictors on the
response.

We would usually avoid using the t-tests for the levels of qualitative predictors
with more than two levels. For example, if we were interested in testing the effects of
the various voting equipment, we would need to fit a model without this predictor and
compute the corresponding F-test. A comparison of all models with one predictor
less than the larger model may be obtained conveniently as:
drop1(lmodi,test="F")
Single term deletions

Model:
undercount ~ cperAA + cpergore * usage + equip

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.0818 -1186
cperAA 1 0.00045 0.0822 -1187 0.83 0.365
equip 4 0.00544 0.0872 -1184 2.50 0.045
cpergore:usage 1 0.00003 0.0818 -1188 0.05 0.821

We see that the equipment is barely statistically significant in that the p-value is just
less than the traditional 5% significance level. You will also notice that only the inter-
action term cpergore:usage is considered and not the corresponding main effects
terms, cpergore and usage. This demonstrates respect for the hierarchy principle
which demands that all lower-order terms corresponding to an interaction be retained
in the model. In this case, we see that the interaction is not significant, but a further
step would now be necessary to test the main effects.

There are numerous difficulties with interpreting the results of hypothesis tests
and the reader is advised to avoid taking the results too literally before understanding
these problems.

Confidence Intervals: These may be constructed for β using:

β̂i± t(α/2)
n−p se(β̂i)

where t(α/2)
n−p is the upper α/2th quantile of a t distribution with n− p degrees of

freedom. A convenient way of computing the 95% confidence intervals in R is:
confint(lmodi)

2.5 % 97.5 %
(Intercept) 0.03768844 0.0489062
cperAA -0.03317106 0.0896992
cpergore -0.09284293 0.1093166
usageurban -0.02782090 -0.0094523
equipOS-CC -0.00276464 0.0157296
equipOS-PC 0.00412523 0.0271540
equipPAPER -0.04253684 0.0243528
equipPUNCH 0.00074772 0.0275515
cpergore:usageurban -0.08529909 0.0677002

Confidence intervals have a duality with the corresponding t-tests in that if the p-
value is greater than 5%, zero will fall in the interval and vice versa. Confidence
intervals give a range of plausible values for the parameter and are more useful for
judging the size of the effect of the predictor than a p-value that merely indicates
statistical significance, not necessarily practical significance. These intervals are in-
dividually correct, but there is not a 95% chance that the true parameter values fall in
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all the intervals. This problem of multiple comparisons is particularly acute for the
voting equipment, where five levels leads to 10 possible pairwise comparisons, more
than just the four shown here.

Diagnostics: The validity of the inference depends on the assumptions concern-
ing the linear model. One part of these assumptions is that the systematic form of the
model EY = Xβ is correct; we assume we have included all the right variables and
transformed and combined them correctly. Another set of assumptions concerns the
random part of the model: ε. We require that the errors have equal variance, be un-
correlated and have a normal distribution. We are also interested in detecting points,
called outliers, that are unusual in that they do not fit the model that seems otherwise
adequate for the rest of the data. Ideally, we would like each case to have an equal
contribution to the fitted model; yet sometimes a few points have a much larger effect
than others. Such points are called influential.

Diagnostic methods can be graphical or numerical. We prefer graphical methods
because they tend to be more versatile and informative. It is virtually impossible to
verify that a given model is exactly correct. The purpose of the diagnostics is more
to check whether the model is not grossly wrong. Indeed, a successful data analyst
should pay more attention to avoiding big mistakes than optimizing the fit.

A collection of four useful diagnostics can be simply obtained with:
plot(lmodi)

as can be seen in Figure 1.4. The plot in the upper-left panel shows the residuals
plotted against the fitted values. The plot can be used to detect lack of fit. If the
residuals show some curvilinear trend, this is a sign that some change to the model
is required, often a transformation of one of the variables. A smoothed curve has
been added to the plot to aid in this assessment. In this instance, there is no sign of
such a problem. The plot is also used to check the constant variance assumption on
the errors. In this case, it seems the variance is roughly constant as the fitted values
vary. Assuming symmetry of the errors, we can effectively double the resolution by
plotting the absolute value of the residuals against the fitted values. As it happens
|ε̂| tends to be rather skewed and it is better to use

√
ε̂. Such a plot is shown in the

lower-left panel, confirming what we have already observed about the constancy of
the variance. Notice that a few larger residuals have been labeled.

The residuals can be assessed for normality using a QQ plot. This compares
the residuals to “ideal” normal observations. We plot the sorted residuals against
Φ−1( i

n+1 ) for i = 1, . . . ,n. This can be seen in the upper-right panel of Figure 1.4.
In this plot, the points follow a linear trend (except for one or two cases), indicat-
ing that normality is a reasonable assumption. If we observe a curve, this indicates
skewness, suggesting a possible transformation of the response, while two tails of
points diverging from linearity would indicate a long-tailed error, suggesting that we
should consider robust fitting methods. Particularly for larger datasets, the normal-
ity assumption is not crucial, as the inference will be approximately correct in spite
of the nonnormality. Only a clear deviation from normality should necessarily spur
some action to change the model.

The fitted values can be written as X β̂ = X(XT X)−1XT y = Hy where the hat-
matrix H = X(XT X)−1XT . hi = Hii are called leverages and are useful diagnostics.
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Figure 1.4 Diagnostics obtained from plotting the model object.

For example, since var ε̂i = σ2(1−hi), a large leverage, hi, will tend to make var ε̂i
small. The fit will be “forced” close to yi. It is useful to examine the leverages to
determine which cases have the power to be influential. Points on the boundary of
the predictor space will have the most leverage.

The Cook statistics are a popular influence diagnostic because they reduce the
information to a single value for each case. They are defined as:

Di =
(ŷ− ŷ(i))T (ŷ− ŷ(i))

pσ̂2 =
1
p

r2
i

hi

1−hi

where ri are the standardized residuals. They represent a scaled measure of the
change in the fit if the single case is dropped from the dataset. Information about
the leverages and Cook statistics for the current model is given in the lower-right
panel of Figure 1.4. A large residual combined with a large leverage will result in
a larger Cook statistic. The plot shows two contour lines for the Cook statistics as
these are a function of the standardized residuals and leverages.

We can see that there are a couple of cases that stick out and we should investigate
more closely the influence of these points. We can pick out the top two influential
cases with:
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gavote[cooks.distance(lmodi) > 0.1,]
equip econ perAA usage atlanta gore bush other votes

BEN.HILL OS-PC poor 0.282 rural notAtlanta 2234 2381 46 4661
RANDOLPH OS-PC poor 0.527 rural notAtlanta 1381 1174 14 2569

ballots undercount pergore cpergore cperAA
BEN.HILL 5741 0.18812 0.47930 0.070975 0.039019
RANDOLPH 3021 0.14962 0.53756 0.129241 0.284019

Notice how we can select a subset of a dataframe using a logical expression. Here
we ask for all rows in the dataframe that have Cook statistics larger than 0.1. We
see that these are the same two counties that stuck out in the boxplots seen in Fig-
ure 1.3. These points are influential because they have much higher undercounts than
would be expected. Their leverages are not high so they do not have unusual predictor
values. The standardized residual for Ben Hill is over 5. Roughly speaking, standard-
ized residuals exceeding 3.5 deserve closer attention so this case would attract some
attention.

A useful technique for judging whether some cases in a set of positive observa-
tions are unusually extreme is the half-normal plot. Here we plot the sorted values
against Φ−1( n+i

2n+1 ) which represent the quantiles of the upper half of a standard nor-
mal distribution. We are usually not looking for a straight line relationship since
we do not necessarily expect a positive normal distribution for quantities like the
leverages. We are looking for outliers, which will be apparent as points that diverge
substantially from the rest of the data. Here is the half-normal plot of the leverages:
library(faraway)
halfnorm(hatvalues(lmodi))

The halfnorm function is part of the faraway package so we need to load that to
access the function (if you have not already done so earlier in this session). The plot,
seen in the left panel of Figure 1.5, shows two points with much higher leverage than
the rest. These points are:
gavote[hatvalues(lmodi)>0.3,]

equip econ perAA usage atlanta gore bush other
MONTGOMERY PAPER poor 0.243 rural notAtlanta 1013 1465 31
TALIAFERRO PAPER poor 0.596 rural notAtlanta 556 271 5

votes ballots undercount pergore cpergore
MONTGOMERY 2509 2573 0.024874 0.40375 -0.0045753
TALIAFERRO 832 881 0.055619 0.66827 0.2599475

These are the only two counties that use a paper ballot, so they will be the only cases
that determine the coefficient for paper. This is sufficient to give them high leverage
as the remaining predictor values are all unremarkable. Note that these counties were
not identified as influential — having high leverage alone is not necessarily enough
to be influential.

Partial residual plots display ε̂+ β̂ixi against xi. To see the motivation, look at the
response with the predicted effect of the other X removed:

y−∑
j 6=i

x jβ̂ j = ŷ+ ε̂−∑
j 6=i

x jβ̂ j = xiβ̂i + ε̂

The partial residual plot for cperAA is shown in the right panel of Figure 1.5:
termplot(lmodi,partial=TRUE,terms=1)

The line is the least squares fit to the data on this plot as well as having the same
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Figure 1.5 Half-normal plot of the leverages is shown on the left and a partial residual plot
for the proportion of African Americans is shown on the right.

slope as the cperAA term in the current model. This plot gives us a snapshot of
the marginal relationship between this predictor and the response. In this case, we
see a linear relationship indicating that it is not worthwhile seeking transformations.
Furthermore, there is no sign that a few points are having undue influence on the
relationship.

Robust Regression: Least squares works well when there are normal errors, but
performs poorly for long-tailed errors. We have identified a few potential outliers in
the current model. One approach is to simply eliminate the outliers from the dataset
and then proceed with least squares. This approach is satisfactory when we are con-
vinced that the outliers represent truly incorrect observations, but even then, detecting
such cases is not always easy as multiple outliers can mask each other. However, in
other cases, outliers are real observations. Sometimes, removing these cases simply
creates other outliers. A generally better approach is to use a robust alternative to
least squares that downweights the effect of larger errors. The Huber method is the
default choice of the rlm function and is found in the MASS package of Venables
and Ripley (2002):
library(MASS)
rlmodi <- rlm(undercount ~ cperAA+cpergore*usage+equip, gavote)
summary(rlmodi)
Coefficients:

Value Std. Error t value
(Intercept) 0.041 0.002 17.866
cperAA 0.033 0.025 1.290
cpergore -0.008 0.042 -0.197
usageurban -0.017 0.004 -4.406
equipOS-CC 0.007 0.004 1.802
equipOS-PC 0.008 0.005 1.695
equipPAPER -0.006 0.014 -0.427
equipPUNCH 0.017 0.006 3.072
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cpergore:usageurban 0.007 0.032 0.230

Residual standard error: 0.0172 on 150 degrees of freedom

Inferential methods are more difficult to apply when robust estimation methods are
used, hence there is less in this output than for the corresponding lm output previ-
ously. The most interesting change is that the coefficient for OS-PC is now about
half the size. Recall that, using the treatment coding, this represents the difference
between OS-PC and the reference lever method. There is some fluctuation in the
other coefficients, but not enough to change our impression of the important effects.
The robust fit here has reduced the effect of the two outlying counties.

Weighted Least Squares: The sizes of the counties in this dataset vary greatly
with the number of ballots cast in each county ranging from 881 to 280,975. We
might expect the proportion of undercounted votes to be more variable in smaller
counties than larger ones. Since the responses from the larger counties might be
more precise, perhaps they should count for more in the fitting of the model. This
effect can be achieved by the use of weighted least squares where we attempt to
minimize ∑wiε

2
i . The appropriate choice for the weights wi is to set them to be

inversely proportional to var yi.
Now var y for a binomial proportion is inversely proportional to the group size,

in this case, the number of ballots. This suggests setting the weights proportional to
the number of ballots:
wlmodi <- lm(undercount ~ cperAA+cpergore*usage+equip, gavote, weights

↪→ =ballots)

This results in a fit that is substantially different from the unweighted fit. It is domi-
nated by the data from a few large counties.

However, the variation in the response is likely to be caused by more than just
binomial variation due to the number of ballots. There are likely to be other variables
that affect the response in a way that is not proportional to ballot size. Consider
the relative size of these effects. Even for the smallest county, assuming an average
undercount rate, the standard deviation using the binomial is:
sqrt(0.035*(1-0.035)/881)
[1] 0.0061917

which is much smaller than the residual standard error of 0.0233. The effects will
be substantially smaller for other counties. So since the other sources of variation
dominate, we recommend leaving this particular model unweighted.

Transformation: Models can sometimes be improved by transforming the vari-
ables. Ideas for transformations can come from several sources. One method is to
search through a family of possible transformations looking for the best fit. An ex-
ample of this approach is the Box–Cox method of selecting a transformation on the
response variable. Alternatively, the diagnostic plots for the current model can sug-
gest transformations that might improve the fit or ameliorate apparent violations of
the assumptions. In other situations, transformations may be motivated by theories
concerning the relationship between the variables or to aid the interpretation of the
model.

For this dataset, transformation of the response is problematic for both technical
and interpretational reasons. The minimum undercount is exactly zero which pre-
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cludes directly applying some popular transformations such as the log or inverse. An
arbitrary fix for this problem is to add a small amount (say 0.005 here) to the re-
sponse which would enable the use of all power transformations. The application of
the Box–Cox method, using the boxcox function from the MASS package, suggests a
square root transformation of the response. However, it is difficult to give an interpre-
tation to the regression coefficients with this transformation on the response. Other
than no transformation at all, a logged response does allow a simple interpretation.
For an untransformed response, the coefficients represent addition to the undercount
whereas for a logged response, the coefficients can be interpreted as multiplying the
response. So we see that, although transformations of the response might sometimes
improve the fit, they can lead to difficulties with interpretation and so should be ap-
plied with care. Another point to consider is that if the untransformed response was
normally distributed, it will not be so after transformation. This suggests considering
nonnormal, continuous responses as seen in Section 9.1, for example.

Transformations of the predictors are less problematic. Let’s first consider the
proportion of African Americans predictor in the current model. Polynomials provide
a commonly used family of transformations. The use of orthogonal polynomials is
recommended as these are more numerically stable and make it easier to select the
correct degree:
plmodi <- lm(undercount ~ poly(cperAA,4)+cpergore*usage+equip, gavote)
summary(plmodi)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04346 0.00288 15.12 < 2e-16
poly(cperAA, 4)1 0.05226 0.06939 0.75 0.4526
poly(cperAA, 4)2 -0.00299 0.02613 -0.11 0.9091
poly(cperAA, 4)3 -0.00536 0.02427 -0.22 0.8254
poly(cperAA, 4)4 -0.01651 0.02420 -0.68 0.4961
cpergore 0.01315 0.05693 0.23 0.8176
usageurban -0.01913 0.00474 -4.03 0.000088
equipOS-CC 0.00644 0.00472 1.36 0.1746
equipOS-PC 0.01559 0.00588 2.65 0.0089
equipPAPER -0.01027 0.01720 -0.60 0.5514
equipPUNCH 0.01405 0.00687 2.05 0.0425
cpergore:usageurban -0.01054 0.04136 -0.25 0.7993

Residual standard error: 0.0235 on 147 degrees of freedom
Multiple R-Squared: 0.173, Adjusted R-squared: 0.111
F-statistic: 2.79 on 11 and 147 DF, p-value: 0.00254

The hierarchy principle requires that we avoid eliminating lower-order terms of a
variable when high-order terms are still in the model. From the output, we see that
the fourth-order term is not significant and can be eliminated. With standard polyno-
mials, the elimination of one term would cause a change in the values of the remain-
ing coefficients. The advantage of the orthogonal polynomials is that the coefficients
for the lower-order terms do not change as we change the maximum degree of the
model. Here we see that all the terms of cperAA are not significant and all can be
removed. Some insight into the relationship may be gained by plotting the fit on top
of the partial residuals:
termplot(plmodi,partial=TRUE,terms=1)
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The plot, seen in the first panel of Figure 1.6, shows that the quartic polynomial is
not so different from a constant fit, explaining the lack of significance.

Polynomial fits become less attractive with higher-order terms. The fit is not local
in the sense that a point in one part of the range of the variable affects the fit across
the whole range. Furthermore, polynomials tend to have rather oscillatory fits and
extrapolate poorly. A more stable fit can be had using splines, which are piecewise
polynomials. Various types of splines are available and they typically have the local
fit and stable extrapolation properties. We demonstrate the use of cubic B-splines
here:
library(splines)
blmodi <- lm(undercount ~ cperAA+bs(cpergore,4)+usage+equip, gavote)

Because the spline fit for cperAA was very similar to orthogonal polynomials, we
consider cpergore here for some variety. Notice that we have eliminated the inter-
action with usage for simplicity. The complexity of the B-spline fit may be controlled
by specifying the degrees of freedom. We have used four here. The nature of the fit
can be seen in the second panel of Figure 1.6:
termplot(blmodi,partial=TRUE,terms=2)

Figure 1.6 Partial fits using orthogonal polynomials for cperAA (shown on the left) and
cubic B-splines for cpergore (shown on the right).

We see that the curved fit is not much different from a constant. More details about
splines can be found in Section 14.2.

Variable Selection: One theoretical view of the problem of variable selection is
that one subset of the available variables represents the correct model for the data and
that any method should be judged by its success in identifying this correct model.
While this may be a tempting world in which to test competing variable selection
methods, it seems unlikely to match with reality. Even if we believe that a correct
model even exists, it is more than likely that we will not have recorded all the relevant
variables or not have chosen the correct transformations or functional form for the
model amongst the set we choose to consider. We might then retreat from this ideal
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view and hope to identify the best model from the available set. Even then, we would
need to define what is meant by best.

Linear modeling serves two broad goals. Some build linear models for the pur-
poses of prediction — they expect to observe new X and wish to predict y, along
with measures of uncertainty in the prediction. Prediction performance is improved
by removing variables that contribute little or nothing to the model. We can define a
criterion for prediction performance and search for the model that optimizes that cri-
terion. One such criterion is the adjusted R2 previously mentioned. The regsubsets
function in the leaps package implements this search. For problems involving a
moderate number of variables, it is possible to exhaustively search all possible mod-
els for the best. As the number of variables increases, exhaustive search becomes
prohibitive and various stepwise methods must be used to search the model space.
The implementation also has the disadvantage that it can only be applied to quanti-
tative predictors.

Another popular criterion is the Akaike Information Criterion or AIC defined as:

AIC =−2 maximum log likelihood+2p

where p is the number of parameters. This criterion has the advantage of generality
and can be applied far beyond normal linear models. The step command implements
a stepwise search strategy through the space of possible models. It does allow qual-
itative variables and respects the hierarchy principle. We start by defining a rather
large model:
biglm <- lm(undercount ~ (equip+econ+usage+atlanta)^2+(equip+econ+

↪→ usage+atlanta)*(perAA+pergore), gavote)

This model includes up to all two-way interactions between the qualitative variables
along with all two-way interaction between a qualitative and a quantitative variable.
All main effects are included. The step command sequentially eliminates terms to
minimize the AIC:
smallm <- step(biglm,trace=FALSE)

The resulting model includes interactions between equip and econ, econ and perAA,
and usage and perAA, together with the associated main effects. The trace=FALSE
argument blocks the large amount of intermediate model information that we would
otherwise see.

Linear modeling is also used to try to understand the relationship between the
variables — we want to develop an explanation for the data. For this dataset, we are
much more interested in explanation than prediction. However, the two goals are not
mutually exclusive and often the same methods are used for variable selection in both
cases. Even so, when explanation is the goal, it may be unwise to rely on completely
automated variable selection methods. For example, the proportion of voters for Gore
was eliminated from the model by the AIC-based step method and yet we know this
variable to be strongly correlated with the proportion of African Americans which is
in the model. It would be rash to conclude that the latter variable is important and
the former is not — the two are intertwined. Researchers interested in explaining the
relationship may prefer a more manual variable selection approach that takes into



22 INTRODUCTION

account background information and is geared toward the substantive questions of
interest.

The other major class of variable selection methods is based on testing. We can
use F-tests to compare larger models with smaller nested models. A stepwise test-
ing approach can then be applied to select a model. The consensus view among
statisticians is that this is an inferior method to variable selection compared to the
criterion-based methods. Nevertheless, testing-based methods are still useful, partic-
ularly when under manual control. They have the advantage of applicability across a
wide class of models where tests have been developed. They allow the user to respect
restrictions of hierarchy and situations where certain variables must be included for
explanatory purposes. Let’s compare the AIC-selected models above to models with
one fewer term:
drop1(smallm,test="F")
Single term deletions

Model:
undercount ~ equip + econ + usage + perAA + equip:econ + equip:perAA +

usage:perAA
Df Sum of Sq RSS AIC F value Pr(F)

<none> 0.0536 -1231
equip:econ 6 0.0075 0.0612 -1222 3.25 0.0051
equip:perAA 4 0.0068 0.0605 -1220 4.43 0.0021
usage:perAA 1 0.0010 0.0546 -1230 2.65 0.1060

We see that the usage:perAA can be dropped. A subsequent test reveals that usage
can also be removed. This gives us a final model of:
finalm <- lm(undercount~equip + econ + perAA + equip:econ + equip:

↪→ perAA, gavote)
sumary(finalm)
Coefficients: (2 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04187 0.00503 8.33 6.5e-14
equipOS-CC -0.01133 0.00737 -1.54 0.12670
equipOS-PC 0.00858 0.01118 0.77 0.44429
equipPAPER -0.05843 0.03701 -1.58 0.11669
equipPUNCH -0.01575 0.01875 -0.84 0.40218
econpoor 0.02027 0.00553 3.67 0.00035
econrich -0.01697 0.01239 -1.37 0.17313
perAA -0.04204 0.01659 -2.53 0.01239
equipOS-CC:econpoor -0.01096 0.00988 -1.11 0.26922
equipOS-PC:econpoor 0.04838 0.01380 3.51 0.00061
equipPUNCH:econpoor -0.00356 0.01243 -0.29 0.77492
equipOS-CC:econrich 0.00228 0.01538 0.15 0.88246
equipOS-PC:econrich -0.01332 0.01705 -0.78 0.43615
equipPUNCH:econrich 0.02003 0.02200 0.91 0.36405
equipOS-CC:perAA 0.10725 0.03286 3.26 0.00138
equipOS-PC:perAA -0.00591 0.04341 -0.14 0.89198
equipPAPER:perAA 0.12914 0.08181 1.58 0.11668
equipPUNCH:perAA 0.08685 0.04650 1.87 0.06388

n = 159, p = 18, Residual SE = 0.020, R-Squared = 0.43

Because there are only two paper-using counties, there is insufficient data to esti-
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mate the interaction terms involving paper. This model output is difficult to interpret
because of the interaction terms.

Conclusion: Let’s attempt an interpretation of this final model. Certainly we
should explore more models and check more diagnostics, so our conclusions can
only be tentative. The reader is invited to investigate other possibilities.

To interpret interactions, it is often helpful to construct predictions for all the
levels of the variables involved. Here I generate all combinations of equip and econ
for a median proportion of perAA:
pdf <- data.frame(econ=rep(levels(gavote$econ), 5), equip=rep(levels(

↪→ gavote$equip), rep(3,5)), perAA=0.233)

We now compute the predicted undercount for all 15 combinations and display the
result in a table:
pp <- predict(finalm,new=pdf)
xtabs(round(pp,3) ~ econ + equip, pdf)

equip
econ LEVER OS-CC OS-PC PAPER PUNCH
middle 0.032 0.046 0.039 0.004 0.037
poor 0.052 0.055 0.108 0.024 0.053
rich 0.015 0.031 0.009 -0.013 0.040

We can see that the undercount is lower in richer counties and higher in poorer coun-
ties. The amount of difference depends on the voting system. Of the three most com-
monly used voting methods, the LEVER method seems best. It is hard to separate
the two optical scan methods, but there is clearly a problem with the precinct count
in poorer counties, which is partly due to the two outliers we observed earlier. We
notice one impossible prediction — a negative undercount in rich paper-using coun-
ties, but given the absence of such data (there were no such counties), we are not too
disturbed.

We use the same approach to investigate the relationship between the proportion
of African Americans and the voting equipment. We set the proportion of African
Americans at three levels — the first quartile, the median and the third quartile —
and then compute the predicted undercount for all types of voting equipment. We set
the econ variable to middle:
pdf <- data.frame(econ=rep("middle",15), equip=rep(levels(gavote$equip

↪→ ), rep(3,5)), perAA=rep(c(.11,0.23,0.35),5))
pp <- predict(finalm,new=pdf)

We create a three-level factor for the three levels of perAA to aid the construction of
the table:
propAA <- gl(3,1,15,labels=c("low","medium","high"))
xtabs(round(pp,3) ~ propAA + equip,pdf)

equip
propAA LEVER OS-CC OS-PC PAPER PUNCH
low 0.037 0.038 0.045 -0.007 0.031
medium 0.032 0.046 0.039 0.003 0.036
high 0.027 0.053 0.034 0.014 0.042

We see that the effect of the proportion of African Americans on the undercount
is mixed. High proportions are associated with higher undercounts for OS-CC and
PUNCH and associated with lower undercounts for LEVER and OS-PC.

In summary, we have found that the economic status of a county is the clearest
factor determining the proportion of undercounted votes, with richer counties having
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lower undercounts. The type of voting equipment and the proportion of African
Americans do have some impact on the response, but the direction of the effects
is not simply stated. We would like to emphasize again that this dataset deserves
further analysis before any definitive conclusions are drawn.

Exercises

Since this is a review chapter, it is best to consult the recommended background
texts for specific questions on linear models. However, it is worthwhile gaining some
practice using R on some real data. Your data analysis should consist of:
• An initial data analysis that explores the numerical and graphical characteristics

of the data.
• Variable selection to choose the best model.
• An exploration of transformations to improve the fit of the model.
• Diagnostics to check the assumptions of your model.
• Some predictions of future observations for interesting values of the predictors.
• An interpretation of the meaning of the model with respect to the particular area

of application.
There is always some freedom in deciding which methods to use, in what order to
apply them, and how to interpret the results. So there may not be one clear right
answer and good analysts may come up with different models.

Here are some datasets which should provide some good practice at building
linear models:
1. The swiss data — use Fertility as the response.
2. The rock data — use perm as the response.
3. The mtcars data — use mpg as the response.
4. The attitude data — use rating as the response.
5. The prostate data — use lpsa as the response.
6. The teengamb data — use gamble as the response.



Chapter 2

Binary Response

2.1 Heart Disease Example

What might affect the chance of getting heart disease? One of the earliest studies
addressing this issue started in 1960 and used 3154 healthy men, aged from 39 to 59,
from the San Francisco area. At the start of the study, all were free of heart disease.
Eight and a half years later, the study recorded whether these men now suffered from
heart disease along with many other variables that might be related to the chance of
developing this disease. We load a subset of this data from the Western Collaborative
Group Study described in Rosenman et al. (1975):
data(wcgs, package="faraway")

We start by focusing on just three of the variables in the dataset:
summary(wcgs[,c("chd","height","cigs")])
chd height cigs
no :2897 Min. :60.0 Min. : 0.0
yes: 257 1st Qu.:68.0 1st Qu.: 0.0

Median :70.0 Median : 0.0
Mean :69.8 Mean :11.6
3rd Qu.:72.0 3rd Qu.:20.0
Max. :78.0 Max. :99.0

We see that only 257 men developed heart disease as given by the factor variable chd.
The men vary in height (in inches) and the number of cigarettes (cigs) smoked per
day. We can plot these data using R base graphics:
plot(height ~ chd, wcgs)
wcgs$y <- ifelse(wcgs$chd == "no",0,1)
plot(jitter(y,0.1) ~ jitter(height), wcgs, xlab="Height", ylab="Heart

↪→ Disease", pch=".")

The first panel in Figure 2.1 shows a boxplot. This shows the similarity in the dis-
tribution of heights of the two groups of men with and without heart disease. But
the heart disease is the response variable so we might prefer a plot which treats it as
such. We convert the absence/presence of disease into a numerical 0/1 variable and
plot this in the second panel of Figure 2.1. Because heights are reported as round
numbers of inches and the response can only take two values, it is sensible to add a
small amount of noise to each point, called jittering, so that we can distinguish them.
Again we can see the similarity in the distributions. We might think about fitting a
line to this plot.

More informative plots may be obtained using the ggplot2 package of Wickham
(2009). In the first panel of Figure 2.2, we see two histograms showing the distri-
bution of heights for both those with and without heart disease. The dodge option
ensures that the two histograms are interleaved. We see that the two distributions are
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Figure 2.1 Plots of the presence/absence of heart disease according to height in inches.

similar. We also had to set the bin width of the histogram. It was natural to use one
inch as all the height measurements are rounded to the nearest inch. In the second
panel of Figure 2.2, we see the corresponding histograms for smoking. In this case,
we have shown the frequency rather than the count version of the histogram. We see
that smokers are more likely to get heart disease.
library(ggplot2)
ggplot(wcgs, aes(x=height, color=chd)) + geom_histogram(position="

↪→ dodge", binwidth=1)
ggplot(wcgs, aes(x=cigs, color=chd)) + geom_histogram(position="dodge"

↪→ , binwidth=5, aes(y=..density..))

It is also helpful to plot both predictors and the response on the same display as
seen in Figure 2.3. Some special effort is necessary in constructing this plot because
of the large number of men that have the same height and cigarette usage. We use
both jittering and partial transparency, controlled by the parameter alpha to provide
a clearer sense of the numbers of such repeated points. With a smaller number of
points, it is possible to combine both levels of the response in a single plot by using
two colors or plotting symbols. But this does not work well with a large number of
points as it becomes difficult to distinguish the two. We have chosen to display the
two levels on separate panels called facets in the ggplot2 package. It is worth the
effort of plotting data well to gain insight into the best approaches to modeling.
ggplot(wcgs, aes(x=height,y=cigs))+geom_point(alpha=0.2, position=

↪→ position_jitter())+facet_grid(~ chd)

We would like to predict the heart disease outcome for a given individual and
also to explain the relationship between height, cigarette usage and heart disease. We
observe that, for the same height and cigarette consumption, both outcomes occur.
This occurs quite regularly. Hence it makes better sense to model the probability of
getting heart disease rather than the outcome itself.
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Figure 2.2 Interleaved histograms of the distribution of heights and cigarette usage for men
with and without heart disease.

Figure 2.3 Height and cigarette consumption for men without heart disease on the left and
with heart disease on the right. Some jittering and transparency have been used to reduce
overplotting problems.



28 BINARY RESPONSE

We might envisage fitting a line to the data in the second panel of Figure 2.1.
But there are several problems with this approach. A line would eventually extend
above one or below zero and these are not valid probabilites. We could truncate the
predictions in these regions to [0,1] but this would result in predictor values where
the outcome was considered certain. That does not seem reasonable in this dataset,
nor would it in many others. So using a linear model for binary response data is
usually not a sensible idea.

2.2 Logistic Regression

Suppose we have a response variable Yi for i = 1, . . . ,n which takes the values zero
or one with P(Yi = 1) = pi. This response may be related to a set of q predictors
(xi1, . . . ,xiq). We need a model that describes the relationship of x1, . . . ,xq to the
probability p. Following the linear model approach, we construct a linear predictor:

ηi = β0 +β1xi1 + · · ·+βqxiq

Since the linear predictor can accommodate quantitative and qualitative predictors
with the use of dummy variables and also allows for transformations and combina-
tions of the original predictors, it is very flexible and yet retains interpretability. The
idea that we can express the effect of the predictors on the response solely through
the linear predictor is important. The idea can be extended to models for other types
of response and is one of the defining features of the wider class of generalized linear
models (GLMs) discussed later in Chapter 8.

We have seen previously that the linear relation ηi = pi is not workable because
we require 0≤ pi ≤ 1. Instead we shall use a link function g such that ηi = g(pi). We
need g to be monotone and be such that 0≤ g−1(η)≤ 1 for any η. The most popular
choice of link function in this situation is the logit. It is defined so that:

η = log(p/(1− p))

or equivalently:

p =
eη

1+ eη

Combining the use of the logit link with a linear predictor gives us the term logistic
regression. Other choices of link function are possible but we will defer discussion
of these until later. The logit and its inverse are defined as logit and ilogit in the
faraway package. The relationship between p and the linear predictor η is shown in
Figure 2.4.
library(faraway)
curve(ilogit(x),-6,6, xlab=expression(eta), ylab="p")

The logistic curve is almost linear in its midrange. This means that for modeling re-
sponses that are all of moderate probability, logistic and linear regression will not
behave very differently. The curve approaches one at its upper end and zero at its
lower end but never reaches these bounds. This means that logistic regression will
never predict that anything is inevitable or impossible. Notice that changes in the lin-
ear predictor will result in different changes in the probability depending on where
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Figure 2.4 A logistic relationship between the probability of the response, p, and the linear
predictor, η.

the change is made. This is in contrast to a linear relationship and makes the inter-
pretation of logistic regression coefficients more difficult.

Now we estimate the parameters of the model. We use the method of maximum
likelihood; see Appendix A for a brief introduction to this method. The log-likelihood
using the logit link is given by:

l(β) =
n

∑
i=1

[
yiηi− log(1+ eη

i )
]

We can maximize this to obtain the maximum likelihood estimates β̂ and use the
standard theory to obtain approximate standard errors. An algorithm to perform the
maximization will be discussed in Chapter 8. We fit the model in R like this:
lmod <- glm(chd ~ height + cigs, family = binomial, wcgs)

This model is a special case of wider class called a generalized linear model (GLM)
so we use the glm fitting function and specify the distribution of the response, in
this case binomial, which identifies the member of this wider family of models. The
model formula is specified in the same way as for linear models. A binary response
is a special case of the binomial and requires that the response have only two levels.
By default, the first level alphabetically will be associated with y = 0 and the second
with y = 1. If you want to change this, use the relevel command.

We can examine the standard summary output:
summary(lmod)
Call:
glm(formula = chd ~ height + cigs, family = binomial, data = wcgs)

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.004 -0.443 -0.363 -0.350 2.436

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.50161 1.84186 -2.44 0.015
height 0.02521 0.02633 0.96 0.338
cigs 0.02313 0.00404 5.72 1e-08

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1781.2 on 3153 degrees of freedom
Residual deviance: 1749.0 on 3151 degrees of freedom
AIC: 1755

Number of Fisher Scoring iterations: 5

A shorter version is available in the faraway package as sumary (a shortened sum-
mary). Incidentally, we don’t need to keep loading the faraway package within a
single R session. We have included it here just as a reminder of where the sumary
function comes from. If you get a “not found” message, it means you forgot to load
this package.
library(faraway)
sumary(lmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.50161 1.84186 -2.44 0.015
height 0.02521 0.02633 0.96 0.338
cigs 0.02313 0.00404 5.72 1e-08

n = 3154 p = 3
Deviance = 1749.049 Null Deviance = 1781.244 (Difference = 32.195)

You can always use the summary version if you prefer but henceforth we will use
this shorter sumary. Let’s start with the interpretation of the regression coefficients:
β̂0 = −4.50, β1 = 0.025 and β2 = 0.023. We can compute the probability of heart
disease given the values of the predictors. We can vary the height for fixed levels of
cigarette consumption — nonsmoker and 20 a day. For this we need to extract the
coefficients:
(beta <- coef(lmod))
(Intercept) height cigs

-4.501614 0.025208 0.023127

We then construct the plot using a point plotting symbol and add the fitted curves:
plot(jitter(y,0.1) ~ jitter(height), wcgs, xlab="Height", ylab="Heart

↪→ Disease",pch=".")
curve(ilogit(beta[1] + beta[2]*x + beta[3]*0),add=TRUE)
curve(ilogit(beta[1] + beta[2]*x + beta[3]*20),add=TRUE,lty=2)

In the first panel of Figure 2.5, we see that the probability of heart disease increases
slightly with height. We also see a somewhat higher risk for smokers. We produce a
similar plot varying the cigarette consumption rather than the height:
plot(jitter(y,0.1) ~ jitter(cigs), wcgs, xlab="Cigarette Use", ylab="

↪→ Heart Disease",pch=".")
curve(ilogit(beta[1] + beta[2]*60 + beta[3]*x),add=TRUE)
curve(ilogit(beta[1] + beta[2]*78 + beta[3]*x),add=TRUE,lty=2)

In the second panel of Figure 2.5, we see how the probability of heart disease in-
creases with the amount of smoking.
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Figure 2.5 Predicted probability of heart disease as height and cigarette consumption vary.
In the first panel, the solid line represents a nonsmoker, while the dashed line is a pack-a-day
smoker. In the second panel, the solid line represents a very short man (60 in. tall) while the
dashed line represents a very tall man (78 in. tall.)

Interpreting Odds: Odds are an alternative scale to probability for representing
chance. They arose as a way to express the payoffs for bets. An evens bet means
that the winner gets paid an equal amount to that staked. A 3–1 against bet would
pay $3 for every $1 bet, while a 3–1 on bet would pay only $1 for every $3 bet. If
these bets are fair in the sense that a bettor would break even in the long-run average,
then we can make a correspondence to probability. Let p be the probability and o be
the odds, where we represent 3–1 against as 1/3 and 3–1 on as 3, then the following
relationship holds:

p
1− p

= o or p =
o

1+o

One mathematical advantage of odds is that they are unbounded above, which makes
them more convenient for some modeling purposes.

Odds also form the basis of a subjective assessment of probability. Some prob-
abilities are determined from considerations of symmetry or long-term frequencies,
but such information is often unavailable. Individuals may determine their subjective
probability for events by considering what odds they would be prepared to offer on
the outcome. Under this theory, other potential persons would be allowed to place
bets for or against the event occurring. Thus the individual would be forced to make
an honest assessment of probability to avoid financial loss.

If we have two covariates x1 and x2, then the logistic regression model is:

log(odds) = log
(

p
1− p

)
= β0 +β1x1 +β2x2
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or
odds = eβ0 .eβ1x1 .eβ2x2

Now β1 can be interpreted as follows: a unit increase in x1 with x2 held fixed increases
the log-odds of success by β1 or increases the odds of success by a factor of eβ1 . So
the exponentiated coefficients are more useful:
exp(beta)
(Intercept) height cigs

0.011091 1.025528 1.023397

We can say that the odds of heart disease increase by 2.6% with each additional
inch in height and by 2.3% with each additional cigarette smoked per day. Note that
expx≈ 1+ x for small values of x. We observe that β̂2 = 0.023 so the 2.3% increase
in odds due to smoking a cigarette a day could have been quickly estimated from the
original model output without further computation. This approximation is useful for
quick intuitions.

It is more natural to compute the effect of a pack a day (20 cigarettes):
exp(beta[3]*20)

cigs
1.5881

So we have 59% increase in the odds of heart disease due to smoking. Of course, the
usual interpretational difficulties regarding causation apply as in standard regression.
We cannot conclude, just from this study, that smoking causes an increase in the risk
of heart disease.

Most people are more comfortable with a probability scale so it is a good idea
to compute the difference in the predicted probabilities as a predictor is changed
over a sensible range as we have done above. Odds are more convenient from a
mathematical perspective and do allow us to express the effects of smoking in this
example in a compact way. One disadvantage of odds ratios is that they only express
the relative difference. Although smoking is associated with a strongly increased risk
of heart disease, the absolute probabilites are still not large.

An alternative notion to odds is relative risk. Suppose the probability of “success”
in the presence of some condition is p1 and p2 in its absence. The relative risk is
p1/p2. For example, the predicted probabilities of getting heart disease for a 68in.-
tall man who does not smoke and who smokes 20 a day are, respectively:
c(ilogit(sum(beta*c(1,68,20))),ilogit(sum(beta*c(1,68,0))))
[1] 0.089079 0.058004

The relative risk is then:
ilogit(sum(beta*c(1,68,20)))/ilogit(sum(beta*c(1,68,0)))
[1] 1.5357

The relative risk of 1.54 is not far different from the odds ratio of 1.59. For low
probability outcomes, the relative risk and the odds ratio will be very similar, but for
larger probabilities, there may be substantial differences.

2.3 Inference

Consider two models, a larger model with l parameters and likelihood LL and a
smaller model with s parameters and likelihood LS where the smaller model repre-
sents a subset (or more generally a linear subspace) of the larger model. Likelihood
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methods suggest the likelihood ratio statistic:

2 log
LL

LS
(2.1)

as an appropriate test statistic for comparing the two models. Now suppose we choose
a saturated larger model — such a model typically has as many parameters as cases
and has fitted values p̂i = yi. The test statistic becomes:

D =−2
n

∑
i=1

p̂ilogit(p̂i)+ log(1− p̂i)

where p̂i are the fitted values from the smaller model. D is called the deviance and is
useful in making hypothesis tests to compare models.

In other examples of GLMs, the deviance is a measure of how well the model fit
the data but in this case, D is just a function of the fitted values p̂ so it cannot be used
for that purpose. Other methods must be used to judge goodness of fit for binary data
— for example, the Hosmer-Lemeshow test described in Section 2.6.

In the summary output previously, we had:
Deviance = 1749.049 Null Deviance = 1781.244 (Difference = 32.195)

The Deviance is the deviance for the current model while the Null Deviance is
the deviance for a model with no predictors and just an intercept term.

We can use the deviance to compare two nested models. The test statistic in (2.1)
becomes DS−DL. This test statistic is asymptotically distributed χ2

l−s, assuming that
the smaller model is correct and the distributional assumptions hold. For example,
we can compare the fitted model to the null model (which has no predictors) by
considering the difference between the residual and null deviances. For the heart
disease example, this difference is 32.2 on two degrees of freedom (one for each
predictor). Hence, the p-value for the test of the hypothesis that at least one of the
predictors is related to the response is:
1-pchisq(32.2,2)
[1] 1.0183e-07

Since this value is so small, we are confident that there is some relationship between
the predictors and the response. Note that the expected value of a χ2-variate with d
degrees of freedom is simply d so we knew the p-value would be small before even
calculating it.

We can test the individual predictors by fitting models that drop these predictors
and computing the difference in the deviance observed. We test the significance of
height in the model as follows:
lmodc <- glm(chd ~ cigs, family = binomial, wcgs)
anova(lmodc,lmod, test="Chi")
Analysis of Deviance Table

Model 1: chd ~ cigs
Model 2: chd ~ height + cigs
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3152 1750
2 3151 1749 1 0.92 0.34
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The analysis of deviance table displays all the information. We see that height is not
significant in a model that already includes cigarette consumption. We can readily
test all the predictors in the model using the drop1 function:
drop1(lmod,test="Chi")
Single term deletions

Model:
chd ~ height + cigs

Df Deviance AIC LRT Pr(>Chi)
<none> 1749 1755
height 1 1750 1754 0.92 0.34
cigs 1 1780 1784 31.07 2.5e-08

An alternative to this test is the z-value, which is β̂/se(β̂), which is approximately
normally distributed. Recalling the output from before:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.50161 1.84186 -2.44 0.015
height 0.02521 0.02633 0.96 0.338
cigs 0.02313 0.00404 5.72 1e-08

In this case, the outcomes are similar to previous tests but not identical. This is in
contrast to the normal (Gaussian) linear model where the two would be identical.
In this particular example, there is no practical difference, but in some cases, espe-
cially with sparse data, the standard errors can be overestimated and so the z-value
is too small and the significance of an effect could be missed. This is known as the
Hauck–Donner effect — see Hauck and Donner (1977). So the deviance-based test
is preferred.

Confidence intervals for the regression parameters can be constructed using nor-
mal approximations for the parameter estimates. A 100(1−α)% confidence interval
for βi would be:

β̂i± zα/2se(β̂i)

where zα/2 is a quantile from the normal distribution. Thus a 95% confidence interval
for β1 in our model would be:
0.02521 + c(-1,1) * 1.96 * 0.02633
[1] -0.026397 0.076817

A better way is to construct a profile likelihood-based confidence interval:
confint(lmod)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -8.134755 -0.912970
height -0.026199 0.077028
cigs 0.015149 0.031005

The profile likelihood method is generally preferable for the same Hauck–Donner
reasons discussed above although it is more work to compute.

2.4 Diagnostics

Regression diagnostics are useful in checking the assumptions of the model and in
identifying any unusual points. As with linear models, residuals are the most impor-
tant means of determining how well the data fits the model and where any changes or
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improvements might be advisable. We can compute residuals as a difference between
observed and fitted values. There are two kinds of fitted (or predicted) values:
linpred <- predict(lmod)
predprob <- predict(lmod, type="response")

The former is the predicted value in the linear predictor scale, η, while the latter is the
predicted probability p = logit−1(η). Here are the first few values and a confirmation
of the relationship between them:
head(linpred)

2001 2002 2003 2004 2005 2006
-2.0833 -2.2745 -2.7623 -2.3249 -2.2745 -2.6867
head(predprob)

2001 2002 2003 2004 2005 2006
0.110734 0.093255 0.059397 0.089079 0.093255 0.063766
head(ilogit(linpred))

2001 2002 2003 2004 2005 2006
0.110734 0.093255 0.059397 0.089079 0.093255 0.063766

We compute the raw residuals as y− p̂:
rawres <- wcgs$y - predprob

These can also be obtained as residuals(lmod, type="response"). Following
the standard practice for diagnostics in linear models, we plot the residuals against
the fitted values:

Figure 2.6 The panel on the left shows the raw residuals and linear predictor. The two lines
are due to the binary response. The panel on the right shows the binned version of the plot.

plot(rawres ~ linpred, xlab="linear predictor", ylab="residuals")

The plot, as seen in the first panel of Figure 2.6, is not very helpful. Because y = 0 or
1, the residual can take only two values given a fixed linear predictor. The upper line
in the plot corresponds to y= 1 and the lower line to y= 0. We gain no insight into the
fit of the model. We have chosen to plot the linear predictor rather than the predicted
probability on the horizontal axis because the former provides a better spacing of the
points in this direction.



36 BINARY RESPONSE

Another problem with the raw residuals is that we do not expect them to have
equal variance. Binary variance is given by p(1− p) so there will be more variation
from probabilities in the midrange. Some form of standardization is desirable. In the
standard linear model, the residual sum of squares is given by ∑i ε̂2

i . For a logistic
regression model, the equivalent quantity is the deviance. The deviance residuals, ri,
are defined by analogy using ∑r2

i = Deviance. We ensure these residuals have the
right sign by defining:

ri = sign(yi− p̂i)
√

ri
2

The deviance residuals are the default choice and are given by residuals(lmod).
We now construct a more useful residuals plot by grouping the residuals into bins

where the bins are based on similar predictor values. The choice of the number of
bins depends on the size of the dataset. We choose 100 bins so that we have roughly
30 observations per bin. Some effort is required to construct this plot. The dplyr
package of Wickham and Francois (2015) is useful for this task. First, we add the
residuals and linear predictor into the data frame.
library(dplyr)
wcgs <- mutate(wcgs, residuals=residuals(lmod), linpred=predict(lmod))

The next step is to create the bins:
gdf <- group_by(wcgs, cut(linpred, breaks=unique(quantile(linpred,

↪→ (1:100)/101))))

The cut function divides a variable into a factor with levels defined by breakpoints
given by breaks. We would like to have a roughly equal number of points per bin so
we divide the range of the linear predictor based on quantiles. As it happens, there
are many tied values in this variable so we insist on only the unique breakpoints.

Now within each of these bins, we ask for the means of the residuals and linear
predictors:
diagdf <- summarise(gdf, residuals=mean(residuals), linpred=mean(

↪→ linpred))

The residuals plot can be seen in the second panel of Figure 2.6 as:
plot(residuals ~ linpred, diagdf, xlab="linear predictor")

The deviance residuals are not constrained to have mean zero so the mean level in
the plot is not of interest. We see an even variation as the linear predictor varies so
this plot reveals no inadequacy in the model. A similar plot can be constructed using
the binnedplot function of the arm package of Gelman and Hill (2006).

We should also plot the binned residuals against the predictors. We make a similar
calculation:
gdf <- group_by(wcgs, height)
diagdf <- summarise(gdf, residuals=mean(residuals))
ggplot(diagdf, aes(x=height,y=residuals)) + geom_point()

The height predictor only takes a limited number of integer values so we just group
by height directly. The plot is shown in the first panel of Figure 2.7 where we see
nothing remarkable except perhaps for a large residual for a height of 77 in. Let’s
look at the data for this height:
filter(wcgs, height==77) %>% select(height, cigs, chd, residuals)

height cigs chd residuals
1 77 0 no -0.38579
2 77 0 yes 2.29566
3 77 5 no -0.40785
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Figure 2.7 Binned residuals plots for the predictors.

We use some features from the dplyr package. The filter command picks out the
subset of the rows of the data with height of 77 in. The output is piped to the next
command using the operator %>%. The select command picks out the variables we
want to see. From this we see that this bin consists of only three cases, of which one is
a man who has heart disease. Hence, this point on the residual plot is not exceptional.

We now construct the corresponding plot for cigarette consumption as seen in the
second panel of Figure 2.7.
group_by(wcgs, cigs) %>% summarise(residuals=mean(residuals), count=n

↪→ ()) %>% ggplot(aes(x=cigs, y=residuals, size=sqrt(count))) +
↪→ geom_point()

We use the %>% operator to chain together the intermediate steps. This time we
keep a count of the number of residuals in each bin using the n() function within
summarise. We use this count to control the size of the plotted point. We take square
roots because the SD is proportional to the square root of the sample size so this gives
the appropriate visual impression. Many men in the sample do not smoke at all so
there is a large bin for zero consumption. Other round numbers such as 20 a day are
similarly highlighted. We see the more unusual points on the display corresponding
to small bin sizes and so they can be discounted in interpreting the plot. Focusing on
the larger bins, we see no evidence of lack of fit or a need to transform the predictor.

We now turn attention to the detection of unusual points. A QQ plot of the resid-
uals is standard practice in checking linear models. Such a plot is shown in the first
panel of Figure 2.8.
qqnorm(residuals(lmod))

We see that the plot is very far from the desired linear relationship. We see two
clusters of points corresponding to y = 0 and y = 1. But there is no reason to expect
these residuals to be normally distributed so this does not raise any concern. The
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largest residuals will be observed in cases where yi = 1 when p̂i is small and where
yi = 0 when p̂i is close to 1. These represent occasions when something unexpected
happened. But even in such cases, the residual cannot become particularly large.

We can detect cases which are unusual in the predictor space by examining the
leverages just as in standard linear models. These are best examined using a half-
normal plot as seen in the second panel of Figure 2.8.
halfnorm(hatvalues(lmod))

Figure 2.8 A QQ plot of the deviance residuals is shown on the left and a half-normal plot of
the leverages is shown on the right.

The two outlying points can be identified:
filter(wcgs, hatvalues(lmod) > 0.015) %>% select(height, cigs, chd)

height cigs chd
1 71 99 no
2 64 80 no

These are the two men with the very highest cigarette consumption which can be
seen near the top of Figure 2.3. Given the relatively large size of the dataset and the
fact that these two points are not particularly extreme, we are not concerned.

2.5 Model Selection

The analysis thus far has used only two of the predictors available but we might
construct a better model for the response if we used some of the other predictors.
We might find that not all these predictors are helpful in explaining the response. We
would like to identify a subset of the predictors that model the response well without
including any superfluous predictors.

We could use the inferential methods to construct hypothesis tests to compare
various candidate models and use this as a mechanism for choosing a model. Back-
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ward elimination is one such method which is relatively easy to implement. The
method proceeds sequentially:
1. Start with the full model including all the available predictors. We can add derived

predictors formed from transformations or interactions between two or more pre-
dictors.

2. Compare this model with all the models consisting of one less predictor. Compute
the p-value corresponding to each dropped predictor. The drop1 function in R can
be used for this purpose.

3. Eliminate the term with largest p-value that is greater than some preset critical
value, say 0.05. Return to the previous step. If no such term meets this criterion,
stop and use the current model.

Thus predictors are sequentially eliminated until a final model is settled upon. Un-
fortunately, this is an inferior procedure. Although the algorithm is simple to use, it
is hard to identify the problem to which it provides a solution. It does not identify
the best set of predictors for predicting future responses. It is not a reliable indication
of which predictors are the best explanation for the response. Even if one believes
the fiction that there is a true model, this procedure would not be best for identifying
such a model.

The Akaike information criterion (AIC) is a popular way of choosing a model —
see Section A.3 for more. The criterion for a model with likelihood L and number of
parameters q is defined by

AIC =−2logL+2q

We select the model with the smallest value of AIC among those under consider-
ation. Any constant terms in the definition of log-likelihood can be ignored when
comparing different models that will have the same constants. For this reason we can
use AIC = deviance+2q.

We would like to consider models consisting of all possible subsets of the avail-
able predictors. For large values of q, there may be a very large number of such
subsets so a sequential search through this set may be necessary to reduce the com-
putation. Such a sequential search is provided by the step command:
wcgs$bmi <- with(wcgs, 703*wcgs$weight/(wcgs$height^2))
lmod <- glm(chd ~ age + height + weight +bmi + sdp + dbp + chol +

↪→ dibep + cigs +arcus, family=binomial, wcgs)
lmodr <- step(lmod, trace=0)
sumary(lmodr)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -15.95760 2.28608 -6.98 2.9e-12
age 0.06159 0.01240 4.97 6.8e-07
height 0.05016 0.02782 1.80 0.071
bmi 0.06038 0.02660 2.27 0.023
sdp 0.01773 0.00415 4.27 2.0e-05
chol 0.01071 0.00153 7.01 2.4e-12
dibepB 0.65762 0.14590 4.51 6.6e-06
cigs 0.02104 0.00426 4.94 8.0e-07
arcuspresent 0.21100 0.14372 1.47 0.142

n = 3140 p = 9
Deviance = 1569.325 Null Deviance = 1769.171 (Difference = 199.846)
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We have derived a body mass index (BMI) variable from height and weight. The
factor of 703 is required to convert to the metric units used by BMI. The trace=0
argument prevents the printing of the intermediate stages of the search. Omit this if
you would like to see these. In this case, only two predictors are dropped from the
full set: weight and diastolic blood pressure.

The urge to houseclean may tempt us to use model selection methods such as
AIC. If the purpose of the model is to predict future observations, then AIC-based
model selection may provide a decent choice for this purpose. There are other cri-
teria, similar to AIC, that can also be used. On the other hand, we may be more
interested in explaining the response. For example, we may wish to know what the
risk factors are for coronary heart disease. We might be tempted to think that since
diastolic blood pressure has been dropped from the model that is has no relation to
the chance of heart disease. Even so, considered alone:
drop1(glm(chd ~ dbp, family=binomial, wcgs), test="Chi")

Single term deletions

Model:
chd ~ dbp

Df Deviance AIC LRT Pr(>Chi)
<none> 1752 1756
dbp 1 1781 1783 29.6 5.5e-08

We see that diastolic blood pressure is related to the chance of heart disease. For this
and other reasons, model selection is not a magical sword that can cut through the
knotty problem of determining the risk factors for heart disease let alone what might
be causing it.

2.6 Goodness of Fit

As mentioned earlier, we cannot use the deviance for a binary response GLM as a
measure of fit. We can use diagnostic plots of the binned residuals to help us identify
inadequacies in the model but these cannot tell us whether the model fits or not. Even
so the process of binning can help us develop a test for this purpose. We divide the
observations up into J bins based on the linear predictor. Let the mean response in the
jth bin be y j and the mean predicted probability be p̂ j with m j observations within
the bin. We compute these values:
wcgsm <- na.omit(wcgs)
wcgsm <- mutate(wcgsm, predprob=predict(lmod,type="response"))
gdf <- group_by(wcgsm, cut(linpred, breaks=unique(quantile(linpred,

↪→ (1:100)/101))))
hldf <- summarise(gdf, y=sum(y), ppred=mean(predprob), count=n())

There are a few missing values in the data. The default method is to ignore these
cases. The na.omit command drops these cases from the data frame for the purposes
of this calculation. We use the same method of binning the data as for the residuals
but now we need to compute the number of observed cases of heart disease and total
observations within each bin. We also need the mean predicted probability within
each bin.

When we make a prediction with probability p, we would hope that the event oc-
curs in practice with that proportion. We can check that by plotting the observed
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proportions against the predicted probabilities as seen in Figure 2.9. For a well-
calibrated prediction model, the observed proportions and predicted probabilities
should be close.
hldf <- mutate(hldf, se.fit=sqrt(ppred*(1-ppred)/count))
ggplot(hldf,aes(x=ppred,y=y/count,ymin=y/count-2*se.fit,ymax=y/count+2

↪→ *se.fit))+geom_point()+geom_linerange(color=grey(0.75))+geom_
↪→ abline(intercept=0,slope=1)+xlab("Predicted Probability")+ylab(
↪→ "Observed Proportion")

Figure 2.9 Binned predicted probabilities and observed proportions for the heart disease
model.

Although we can see there is some variation, there is no consistent deviation from
what is expected. We have computed approximate 95% confidence intervals using
the binomial variation. The line passes through most of these intervals confirming
that the variation from the expected is not excessive.

The Hosmer-Lemeshow statistic formalizes this assessment and is defined as:

X2
HL =

J

∑
j=1

(y j−m j p̂ j)
2

m j p̂ j(1− p̂ j)

This statistic has an approximate χ2 distribution with J−1 degrees of freedom. We
have some freedom to decide on the binning. We need sufficient observations per
bin to ensure the accuracy of the χ2 approximation yet not so few bins that the fit is
barely tested.
hlstat <- with(hldf, sum( (y-count*ppred)^2/(count*ppred*(1-ppred))))
c(hlstat, nrow(hldf))
[1] 63.212 56.000

The p-value is then given by
1-pchisq(63.212, 56-1)
[1] 0.20898
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Since the p-value is moderate, we detect no lack of fit. In marginal cases, it is worth
experimenting with differing numbers of bins to check the robustness of the conclu-
sion.

We might want a method for assessing the quality of predictions that does not de-
pend on binning methods, as these involve some arbitrary choices about numbers and
spacing of bins. Scoring methods were developed, initially by weather forecasters, to
assess predictions. The most popular method is logarithmic scoring which is given
as y∗ log(p̂)+ (1− y)∗ log(1− p̂). So if the event y = 1 occurs, we score log p̂ and
score log(1− p̂) if it does not. Better prediction methods have higher scores. Notice
if we predict something is certain to happen (p̂ = 1) but it does not occur then we
score −∞, so this method of scoring does not encourage certainty.

The model can be used to predict the outcome for each man in the dataset. Some-
times it is natural to think of the model as classifying observations. When p̂i < 0.5
we classify the case into no heart disease but when p̂i ≥ 0.5 we put the case into the
yes category. Of course, for the observed cases we already know the outcome but for
future unknown cases, this classification may be helpful.
wcgsm <- mutate(wcgsm, predout=ifelse(predprob < 0.5, "no", "yes"))
xtabs( ~ chd + predout, wcgsm)

predout
chd no yes

no 2882 3
yes 253 2

We see how the classifications match with the observed outcomes. The correct clas-
sification rate is:
(2882+2)/(2882+3+253+2)
[1] 0.91847

So the error or misclassification rate is about 8%. This can be a helpful way of judg-
ing the fit of the model although it can conceal some important variation. Suppose
we were to use this model prospectively to predict the outcomes of men with given
characteristics. Perhaps we might recommend certain treatments based on these pre-
dictions. For the men who will not develop heart disease, what fraction are predicted
to not develop the disease? This is known as the specificity of the test. We calculate
this as 2882/(2882+ 3) = 0.999, which is very high. In contrast, the proportion of
those who will develop heart disease that are correctly identified by the model is
called the sensitivity. Here this is 2/(253+ 2) = 0.00784, which is extremely low.
Our prediction process is very unlikely to detect which men will develop heart dis-
ease. We see that the overall error rate of 8% conceals important information if this
procedure were to be used as a diagnostic test.

We can improve the sensitivity of the test by dropping the 0.5 threshold we used
for the classification. We compute how the sensitivity and specificity change as the
threshold changes for a range of values up to 0.5:
thresh <- seq(0.01,0.5,0.01)
Sensitivity <- numeric(length(thresh))
Specificity <- numeric(length(thresh))
for(j in seq(along=thresh)){

pp <- ifelse(wcgsm$predprob < thresh[j],"no","yes")
xx <- xtabs( ~ chd + pp, wcgsm)
Specificity[j] <- xx[1,1]/(xx[1,1]+xx[1,2])
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Sensitivity[j] <- xx[2,2]/(xx[2,1]+xx[2,2])
}

We can now plot how these change as a function of the threshold:
matplot(thresh,cbind(Sensitivity,Specificity),type="l",xlab="Threshold

↪→ ",ylab="Proportion",lty=1:2)

The plot, shown in the first panel of Figure 2.10, demonstrates how the sensitivity
falls but the specificity rises as the threshold is increased. The costs of the two possi-
ble kinds of errors in such diagnostic tests are rarely equal. We would need to balance
the costs and risks of treating a man who will not get heart disease against the costs
of failing to treat a man who will. This is a difficult calculation but at least we now
have an understanding of the properties of the test. An alternative and popular way to
display the same information is the receiver operating characteristic (ROC) curve
which plots the sensititivity (true positive rate) against one minus the specificity (false
positive rate) as seen in the second panel of Figure 2.10.
plot(1-Specificity,Sensitivity,type="l")
abline(0,1,lty=2)

A useless test (one that decides at random) would fall on the y = x line whereas a
very good test has a curve that is pulled out into the upper left corner. The area under
the ROC curve can be used as a measure of the performance of the test and might be
used to compare different tests.
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Figure 2.10 Sensitivity and specificity for the heart disease model plotted as a function of the
probability threshold on the left and as the receiver operating characteristic curve on the right.

The proportion of variance explained or R2 is a popular measure of fit for normal
linear models. We might consider applying the same concept to binomial regression
models by using the proportion of deviance explained. However, a better statistic is
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due to Nagelkerke (1991):

R2 =
1− (L̂0/L̂)2/n

1− L̂2/n
o

=
1− exp((D−Dnull)/n)

1− exp(−Dnull/n)

where n is the number of binary observations and L̂0 is the maximized likelihood
under the null. The numerator can be seen as a ratio of the relative likelihood with
the 1/n power having the effect of a geometric mean on the observations. The de-
nominator simply normalizes so that 0≤ R2 ≤ 1. For example, for the current model,
the R2 is:
lmodr <- glm(chd ~ age + height +bmi + sdp + chol + dibep + cigs +

↪→ arcus, family=binomial, wcgs)
(1-exp((lmodr$dev-lmodr$null)/3140))/(1-exp(-lmodr$null/3140))
[1] 0.14315

This gives the impression of a fairly poor fit when judged from the experience of lin-
ear models. However, this is misleading. In a standard linear model, it is possible for
the observed and fitted values to be very close showing a strong fit and an R2 close
to one. This simply isn’t possible for binary response models given the natural vari-
ation. It is quite common to see low values of Naglekerke’s and other R2 substitutes
even when the model is good. For this reason, it may be best to avoid this statistic
except perhaps for the purpose of comparing compatible models.

2.7 Estimation Problems

Estimation of the logistic regression model using the Fisher scoring algorithm, de-
scribed in Section 8.2, is usually fast. However, difficulties can sometimes arise.
When convergence fails, it is sometimes due to a problem exhibited by the following
dataset. We take a subset of the famous Fisher Iris data to consider only two of the
three species of Iris and use only two of the potential predictors:
library(dplyr)
irisr <- filter(iris, Species != "virginica") %>% select(Sepal.Width,

↪→ Sepal.Length,Species)

We plot the data using a different shape of plotting symbol for the two species:
(p <- ggplot(irisr, aes(x=Sepal.Width, y=Sepal.Length, shape=Species))

↪→ +geom_point())

We now fit a logistic regression model to see if the species can be predicted from the
two sepal dimensions.
lmod <- glm(Species ~ Sepal.Width + Sepal.Length, family=binomial,

↪→ irisr)
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred

We see that there were problems with the convergence. A look at the summary reveals
further evidence:
sumary(lmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -361 195973 0 1
Sepal.Width -110 55362 0 1
Sepal.Length 132 64577 0 1
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Figure 2.11 Two species of iris by sepal length and width. The line is computed from the
bias-reduced GLM fit.

n = 100 p = 3
Deviance = 0.000 Null Deviance = 138.629 (Difference = 138.629)

Notice that the residual deviance is zero indicating a perfect fit and yet none of the
predictors are significant due to the high standard errors. A look at the data reveals
the reason for this. We see that the two groups are linearly separable so that a
perfect fit is possible. We suffer from an embarrassment of riches in this example
— we can fit the data perfectly. Unfortunately, this results in unstable estimates of
the parameters and their standard errors and would (probably falsely) suggest that
perfect predictions can be made. An alternative fitting approach might be considered
in such cases called exact logistic regression. See Cox (1970) or Mehta and Patel
(1995). Implementations can be found in the elrm and logistiX packages in R.

An alternative to exact methods is the bias reduction method of Firth (1993) and
implemented in the brglm package of Kosmidis (2013). For the maximum likeli-
hood estimate (MLE), Eβ̂ 6= β and indeed a sensible unbiased estimator would be
difficult to obtain. Firth’s method removes the O(1/n) term from the asymptotic bias
of estimated coefficients. These estimates have the advantage of always being finite:
library(brglm)
bmod <- brglm(Species ~ Sepal.Width + Sepal.Length, family=binomial,

↪→ irisr)
summary(bmod)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -24.51 12.49 -1.96 0.0498
Sepal.Width -8.90 2.75 -3.24 0.0012
Sepal.Length 9.73 3.33 2.92 0.0035
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 130.638 on 99 degrees of freedom
Residual deviance: 3.323 on 97 degrees of freedom

We can see that this results in significant predictors which we expect given Fig-
ure 2.11. We compute and display the line corresponding to a predicted probability
of 1/2.
p + geom_abline(intercept=(0.5+24.51)/9.73, slope=8.9/9.73)

Instability in parameter estimation will also occur in datasets that approach linear
separability. Care will also be needed in such cases.

Further Reading: See books by Collett (2003), Hosmer and Lemeshow (2013),
Cox (1970), Harrell (2001), Menard (2002), Christensen (1997), Kleinbaum and
Klein (2002) and Hilbe (2009).

Exercises

1. The dataset wbca comes from a study of breast cancer in Wisconsin. There are
681 cases of potentially cancerous tumors of which 238 are actually malignant.
Determining whether a tumor is really malignant is traditionally determined by an
invasive surgical procedure. The purpose of this study was to determine whether
a new procedure called fine needle aspiration, which draws only a small sample
of tissue, could be effective in determining tumor status.

(a) Plot the relationship between the classification and BNucl.

i. Explain why
plot(Class ~ BNucl, wbca)

does not work well.
ii. Create a factor version of the response and produce a version of the first

panel of Figure 2.1. Comment on the shape of the boxplots.
iii. Produce a version of the second panel of Figure 2.1. What does this plot say

about the distribution?
iv. Produce a version of the interleaved histogram shown in Figure 2.2 and

comment on the distribution.

(b) Produce a version of Figure 2.3 for the predictors BNucl and Thick. Produce
an alternative version with only one panel but where the two types are plotted
differently. Compare the two plots and describe what they say about the ability
to distinguish the two types using these two predictors.

(c) Fit a binary regression with Class as the response and the other nine variables
as predictors. Report the residual deviance and associated degrees of freedom.
Can this information be used to determine if this model fits the data? Explain.

(d) Use AIC as the criterion to determine the best subset of variables. (Use the
step function.)

(e) Suppose that a cancer is classified as benign if p> 0.5 and malignant if p< 0.5.
Compute the number of errors of both types that will be made if this method is
applied to the current data with the reduced model.
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(f) Suppose we change the cutoff to 0.9 so that p < 0.9 is classified as malignant
and p > 0.9 as benign. Compute the number of errors in this case.

(g) Produce an ROC plot and comment on effectiveness of the new diagnostic test.
(h) It is usually misleading to use the same data to fit a model and test its pre-

dictive ability. To investigate this, split the data into two parts — assign every
third observation to a test set and the remaining two thirds of the data to a train-
ing set. Use the training set to determine the model and the test set to assess
its predictive performance. Compare the outcome to the previously obtained
results.

2. The National Institute of Diabetes and Digestive and Kidney Diseases conducted
a study on 768 adult female Pima Indians living near Phoenix. The purpose of the
study was to investigate factors related to diabetes. The data may be found in the
the dataset pima.

(a) Create a factor version of the test results and use this to produce an interleaved
histogram to show how the distribution of insulin differs between those testing
positive and negative. Do you notice anything unbelievable about the plot?

(b) Replace the zero values of insulin with the missing value code NA. Recreate the
interleaved histogram plot and comment on the distribution.

(c) Replace the incredible zeroes in other variables with the missing value code.
Fit a model with the result of the diabetes test as the response and all the other
variables as predictors. How many observations were used in the model fitting?
Why is this less than the number of observations in the data frame.

(d) Refit the model but now without the insulin and triceps predictors. How
many observations were used in fitting this model? Devise a test to compare
this model with that in the previous question.

(e) Use AIC to select a model. You will need to take account of the missing val-
ues. Which predictors are selected? How many cases are used in your selected
model?

(f) Create a variable that indicates whether the case contains a missing value. Use
this variable as a predictor of the test result. Is missingness associated with
the test result? Refit the selected model, but now using as much of the data as
reasonable. Explain why it is appropriate to do this.

(g) Using the last fitted model of the previous question, what is the difference in
the odds of testing positive for diabetes for a woman with a BMI at the first
quartile compared with a woman at the third quartile, assuming that all other
factors are held constant? Give a confidence interval for this difference.

(h) Do women who test positive have higher diastolic blood pressures? Is the dias-
tolic blood pressure significant in the regression model? Explain the distinction
between the two questions and discuss why the answers are only apparently
contradictory.

3. A study was conducted on children who had corrective spinal surgery. We are
interested in factors that might result in kyphosis (a kind of deformation) after
surgery. The data can be loaded by
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data(kyphosis,package="rpart")

Consult the help page on the data for further details.
(a) Make plots of the response as it relates to each of the three predictors. You

may find a jittered scatterplot more effective than the interleaved histogram for
a dataset of this size. Comment on how the predictors appear to be related to
the response.

(b) Fit a GLM with the kyphosis indicator as the response and the other three
variables as predictors. Plot the deviance residuals against the fitted values.
What can be concluded from this plot?

(c) Produce a binned residual plot as described in the text. You will need to select
an appropriate amount of binning. Comment on the plot.

(d) Plot the residuals against the Start predictor, using binning as appropriate.
Comment on the plot.

(e) Produce a normal QQ plot for the residuals. Interpret the plot.
(f) Make a plot of the leverages. Interpret the plot.
(g) Check the goodness of fit for this model. Create a plot like Figure 2.9. Com-

pute the Hosmer-Lemeshow statistic and associated p-value. What do you con-
clude?

(h) Use the model to classify the subjects into predicted outcomes using a 0.5
cutoff. Produce cross-tabulation of these predicted outcomes with the actual
outcomes. When kyphosis is actually present, what is the probability that this
model would predict a present outcome? What is the name for this character-
istic of the test?

4. Treatment of prostate cancer depends on whether the cancer has spread to the
surrounding lymph nodes. This can be determined using a surgical procedure but
it would be better if noninvasive methods could be used. Load in the data and
learn about the variables by:

data(nodal, package="boot")
help(nodal, package="boot")

(a) A plot consisting of a binary image of the data can be constructed as:
nodal$m <- NULL
image(as.matrix(nodal))

Improve this plot by ordering the cases on the response and labeling the axes
informatively using the axis command.

(b) Fit an appropriate model with nodal outcome as the response and the other five
variables as predictors. Is there evidence that at least some of the five predictors
are related to the response?

(c) Fit a smaller model that removes aged and grade from the model. Can this
smaller model be used in preference to the larger model?

(d) How much does having a serious x-ray result increase the odds of nodal in-
volvement compared to a nonserious result? (Use the smaller model.) Give a
95% confidence interval for the odds.

(e) Fit a model with all five predictors and all their two-way interactions. Explain
why the standard errors of the coefficients are so large.
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(f) Use the bias-reduced model fitting method described in the chapter to fit the
model of the previous question. Which interaction is largest?

(g) If the predicted response probability exceeds 0.5, the case is classified posi-
tively and, if not, negatively. Use the bias-reduced model to classify the cases
in the dataset. Compare these to the actual classifications. How many were
wrongly classified? Repeat this comparison for the model in (b). Do you think
these misclassification rates are a reasonable estimate of how these models will
perform in the future?

5. A study was conducted to determine the effectiveness of a new teaching method
in economics. The data may be found in the dataset spector. Write a report on
how well the new method works. You should include suitable graphical depictions
of the data, diagnostics on your chosen model and an interpretation of the effects
of the predictors on the response.

6. Additional datasets with binary responses are readily accessible for more practice:
• lizards in the brglm package
• shuttle, crabs, birthwt, biopsy, bacteria in the MASS package
• urine in the boot package
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Chapter 3

Binomial and Proportion Responses

Sometimes we observe more than one binary outcome for each combination of the
predictors so that the response becomes more than simply binary but some number of
one type and some number of the other type. In such situations, we have a binomial
rather than just a Bernoulli distributed response.

3.1 Binomial Regression Model

Suppose the response variable Yi for i = 1, . . . ,n is binomially distributed B(mi, pi)
so that:

P(Yi = yi) =

(
mi

yi

)
pyi

i (1− pi)
mi−yi

We further assume that the Yi are independent. The individual outcomes or trials that
compose the response Yi are all subject to the same q predictors (xi1, . . . ,xiq). The
group of trials is known as a covariate class. For example, we might record whether
customers of a particular type make a purchase or not. Conventionally, one outcome
is labeled a success (say, making purchase in this example) and the other outcome is
labeled as a failure. No emotional meaning should be attached to success and fail-
ure in this context. For example, success might be the label given to a patient death
with survival being called a failure. Because we need to have multiple trials for each
covariate class, data for binomial regression models is more likely to result from de-
signed experiments with a few predictors at chosen values rather than observational
data which is likely to be more sparse.

As in the binary case, we construct a linear predictor:

ηi = β0 +β1xi1 + · · ·+βqxiq

We can use a logistic link function ηi = log(pi/(1− pi)). The log-likelihood is then
given by:

l(β) =
n

∑
i=1

[
yiηi−mi log(1+ eη

i )+ log
(

mi

yi

)]
Let’s work through an example to see how the analysis differs from the binary re-
sponse case.

In January 1986, the space shuttle Challenger exploded shortly after launch. An
investigation was launched into the cause of the crash and attention focused on the
rubber O-ring seals in the rocket boosters. At lower temperatures, rubber becomes
more brittle and is a less effective sealant. At the time of the launch, the temperature

51
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was 31◦F. Could the failure of the O-rings have been predicted? In the 23 previous
shuttle missions for which data exists, some evidence of damage due to blow by and
erosion was recorded on some O-rings. Each shuttle had two boosters, each with
three O-rings. For each mission, we know the number of O-rings out of six showing
some damage and the launch temperature. This is a simplification of the problem —
see Dalal et al. (1989) for more details.

We plot the proportion of damaged O-rings against temperature in Figure 3.1:
data(orings, package="faraway")
plot(damage/6 ~ temp, orings, xlim=c(25,85), ylim = c(0,1), xlab="

↪→ Temperature", ylab="Prob of damage")
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Figure 3.1 Damage to O-rings in 23 space shuttle missions as a function of launch tempera-
ture. Logistic fit is shown.

We are interested in how the probability of failure in a given O-ring is related to the
launch temperature and predicting that probability when the temperature is 31◦F. We
estimate the regression parameters for the Challenger data:
lmod <- glm(cbind(damage,6-damage) ~ temp, family=binomial,orings)
sumary(lmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004
temp -0.2162 0.0532 -4.07 0.000048

n = 23 p = 2
Deviance = 16.912 Null Deviance = 38.898 (Difference = 21.985)

For binomial response data, we need two pieces of information about the response
values — yi and mi. We express this as a two-column matrix with the first column
representing the number of successes y and the second column the number of failures
m− y. In this case, an O-ring damage incident is a “success.”

We show the logit fit to the data as seen in Figure 3.1:
x <- seq(25,85,1)
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lines(x,ilogit(11.6630-0.2162*x))

We can predict the response at 31◦F:
ilogit(11.6630-0.2162*31)
[1] 0.99304

We see a very high probability of damage although we still need to develop some
inferential techniques before we leap to any conclusion.

3.2 Inference

We use the same likelihood-based methods as in Section 2.3 to derive the binomial
deviance:

D = 2
n

∑
i=1
{yi logyi/ŷi +(mi− yi) log(mi− yi)/(mi− ŷi)}

where ŷi are the fitted values from the model.
Provided that Y is truly binomial and that the mi are relatively large, the deviance

is approximately χ2 distributed with n− q− 1 degrees of freedom if the model is
correct. Thus we can use the deviance to test whether the model is an adequate fit.
For the logit model of the Challenger data, we may compute:
pchisq(deviance(lmod),df.residual(lmod),lower=FALSE)
[1] 0.71641

Since this p-value is well in excess of 0.05, we conclude that this model fits suffi-
ciently well. Of course, this does not mean that this model is correct or that a simpler
model might not also fit adequately. Even so, for the null model:
pchisq(38.9,22,lower=FALSE)
[1] 0.014489

We see that the fit is inadequate, so we cannot ascribe the response to simple variation
not dependent on any predictor. Note that a χ2

d variable has mean d and standard
deviation

√
2d so that it is often possible to quickly judge whether a deviance is large

or small without explicitly computing the p-value. If the deviance is far in excess of
the degrees of freedom, the null hypothesis can be rejected.

The χ2 distribution is only an approximation that becomes more accurate as the
mi increase. The approximation is very poor for small mi and fails entirely in binary
cases where mi = 1. Although it is not possible to say exactly how large mi should
be for an adequate approximation, mi ≥ 5 ∀i has often been suggested. Permutation
or bootstrap methods might be considered as an alternative.

We can also use the deviance to compare two models, with smaller model S rep-
resenting a subspace (usually a subset) of a larger model L. The likelihood ratio test
statistic becomes DS−DL. This test statistic is asymptotically distributed χ2

l−s, as-
suming that the smaller model is correct and the distributional assumptions hold. We
can use this to test the significance of temperature by computing the difference in the
deviances between the model with and without temperature. The model without tem-
perature is just the null model and the difference in degrees of freedom or parameters
is one:
pchisq(38.9-16.9,1,lower=FALSE)
[1] 2.7265e-06
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Since the p-value is so small, we conclude that the effect of launch temperature is sta-
tistically significant. An alternative to this test is the z-value, which is β̂/se(β̂), here
equal to −4.07 with a p-value of 4.8e-05. As in the binary case, the deviance-based
test is preferred. Again, there are concerns with the accuracy of the approximation,
but the test involving differences of deviances is generally more accurate than the
goodness of fit test involving a single deviance.

What if all the cases that form a covariate class have not been grouped together?
Let’s see what happens when each individual O-ring is listed separately:
erings <- with(orings, data.frame(temp=rep(temp,each=6), damage=as.

↪→ vector(sapply(orings$damage, function(x) rep(c(0,1), times=c(6-
↪→ x,x))))))

The first launch was at 53 degrees and resulted in five damaged O-rings out of six.
This has been divided into six individual trials:
head(erings)

temp damage
1 53 0
2 53 1
3 53 1
4 53 1
5 53 1
6 53 1

Now we fit the model and examine the ouput:
emod <- glm(damage ~ temp, family=binomial, erings)
sumary(emod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2962 3.54 0.0004
temp -0.2162 0.0532 -4.07 0.000048

n = 138 p = 2
Deviance = 54.759 Null Deviance = 76.745 (Difference = 21.985)

We see that the parameter estimates, standard errors and the difference in the de-
viances are the same as before so we will make the same conclusions. The only thing
we have lost in this version of the output is the ability to make the goodness of fit test
from the residual deviance.

Confidence intervals for the regression parameters may be constructed as with
the binary regression model:
confint(lmod)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 5.57543 18.73812
temp -0.33267 -0.12018

We prefer this profile likelihood method to the β̂±2se(β̂) approach.

3.3 Pearson’s χ2 Statistic

The deviance is one measure of how well the model fits the data, but there are alter-
natives. The Pearson’s X2 statistic takes the general form:

X2 =
n

∑
i=1

(Oi−Ei)
2

Ei
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where Oi is the observed count and Ei is the expected count for case i. For a binomial
response, we count the number of successes for which Oi = yi while Ei = ni p̂i and
failures for which Oi = ni− yi and Ei = ni(1− p̂i), which results in:

X2 =
n

∑
i=1

(yi−ni p̂i)
2

ni p̂i(1− p̂i)

If we define Pearson residuals as:

rP
i = (yi−ni p̂i)/

√
var ŷi

which can be viewed as a type of standardized residual, then X2 = ∑
n
i=1(r

P
i )

2. So
the Pearson’s X2 is analogous to the residual sum of squares used in normal linear
models.

The Pearson X2 will typically be close in size to the deviance and can be used in
the same manner. Alternative versions of the hypothesis tests described above might
use the X2 in place of the deviance with the same approximate null distributions.
However, some care is necessary because the model is fit to minimize the deviance
and not the Pearson’s X2. This means that it is possible, although unlikely, that the
X2 could increase as a predictor is added to the model. X2 can be computed like this:
[1] 28.067

Compare this to:
deviance(lmod)
[1] 16.912

In this case there is more than the typical small difference between X2 and the de-
viance. However, a test for model fit:
1-pchisq(28.067, 21)
[1] 0.13826

results in a moderate sized p-value which would not reject this model which agrees
with decision based on the deviance statistic.

3.4 Overdispersion

If the binomial model specification is correct, we expect that the residual deviance
will be approximately distributed χ2 with the appropriate degrees of freedom. Some-
times, we observe a deviance that is much larger than would be expected if the model
were correct. We must then determine which aspect of the model specification is in-
correct.

The most common explanation is that we have the wrong structural form for
the model. We have not included the right predictors or we have not transformed or
combined them in the correct way. We have a number of ways of determining the
importance of potential additional predictors and diagnostics for determining better
transformations — see Section 8.4. Suppose, however, that we are able to exclude this
explanation. This is difficult to achieve, but when we have only one or two predictors,
it is feasible to explore the model space quite thoroughly and be sure that there is not
a plausible superior model formula.

Another common explanation for a large deviance is the presence of a small
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number of outliers. Fortunately, these are easily checked using diagnostic methods.
When larger numbers of points are identified as outliers, they become unexceptional,
and we might more reasonably conclude that there is something amiss with the error
distribution.

Sparse data can also lead to large deviances. In the extreme case of a binary re-
sponse, the deviance is not even approximately χ2. In situations where the group sizes
are simply small, the approximation is poor. Because we cannot judge the fit using
the deviance, we shall exclude this case from further consideration in this section.

Having excluded these other possibilities, we might explain a large deviance by
deficiencies in the random part of the model. A binomial distribution for Y arises
when the probability of success p is independent and identical for each trial within
the group. If the group size is m, then var Y = mp(1− p) if the binomial assumptions
are correct. However, if the assumptions are broken, the variance may be greater. This
is overdispersion. In rarer cases, the variance is less and underdispersion results.

There are two main ways that overdispersion can arise — the independent or
identical assumptions can be violated. We look at the constant p assumption first. It
is easy to see how there may be some unexplained heterogeneity within a group that
might lead to some variation in p. For example, in the shuttle disaster case study of
Section 3.1, the position of the O-ring on the booster rocket may have some effect on
the failure probability. Yet this variable was not recorded and so we cannot include
it as a predictor. Heterogeneity can also result from clustering. Suppose a population
is divided into clusters, so that when you take a sample, you actually get a sample of
clusters. This would be common in epidemiological applications.

Let the sample size be m, the cluster size be k and the number of clusters be
l = m/k. Let the number of successes in cluster i be Zi ∼ B(k, pi). Now suppose
that pi is a random variable such that E pi = p and var pi = τ2 p(1− p). Let the total
number of successes be Y = Z1 + · · ·+Zl . Then:

EY = ∑EZi =
l

∑
i=1

kp = mp

as in the standard case, but:

var Y =∑var Zi =∑{E(var (Zi|pi))+var (E(Zi|pi))}= (1+(k−1)τ2)mp(1− p)

So Y is overdispersed since 1+(k−1)τ2 ≥ 1. Notice that in the sparse case, m = 1,
and this problem cannot arise.

Overdispersion can also result from dependence between trials. If the response
has a common cause, say a disease is influenced by genes, the responses will tend
to be positively correlated. For example, subjects in human or animal trials may be
influenced in their responses by other subjects. If the food supply is limited, the
probability of survival of an animal may be increased by the death of others. This
circumstance would result in underdispersion.

The simplest approach for modeling overdispersion is to introduce an additional
dispersion parameter, so that varY = σ2mp(1− p). In the standard binomial case
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σ2 = 1. We now let σ2 vary and estimate using the data. Notice the similarity to
linear regression. The dispersion parameter may be estimated using:

σ̂
2 =

X2

n− p

Using the deviance in place of the Pearson’s X2 is not recommended as it may not
be consistent. The estimation of β is unaffected since σ2 does not change the mean
response but:

ˆvar β̂ = σ̂
2(XTŴX)−1

So we need to scale up the standard errors by a factor of σ̂.
We cannot use the difference in deviances when comparing models, because the

test statistic will be distributed σ2χ2. Since σ2 is not known and must be estimated
in the overdispersion situation, an F-statistic must be used:

F =
(Dsmall−Dlarge)/(d fsmall−d flarge)

σ̂2

This statistic is only approximately F distributed, in contrast to the Gaussian case.
In Manly (1978), an experiment is reported where boxes of trout eggs were buried

at five different stream locations and retrieved at four different times, specified by
the number of weeks after the original placement. The number of surviving eggs was
recorded. The box was not returned to the stream. The data is also analyzed by Hinde
and Demetrio (1988). We can construct a tabulation of the data by:
data(troutegg, package="faraway")
ftable(xtabs(cbind(survive,total) ~ location+period, troutegg))

survive total
location period
1 4 89 94

7 94 98
8 77 86
11 141 155

2 4 106 108
7 91 106
8 87 96
11 104 122

3 4 119 123
7 100 130
8 88 119
11 91 125

4 4 104 104
7 80 97
8 67 99
11 111 132

5 4 49 93
7 11 113
8 18 88
11 0 138

Notice that in one case, all the eggs survive, while in another, none of the eggs sur-
vive. We now fit a binomial GLM for the two main effects:
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bmod <- glm(cbind(survive,total-survive) ~ location+period, family=
↪→ binomial,troutegg)

sumary(bmod)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.636 0.281 16.48 < 2e-16
location2 -0.417 0.246 -1.69 0.09
location3 -1.242 0.219 -5.66 1.5e-08
location4 -0.951 0.229 -4.16 3.2e-05
location5 -4.614 0.250 -18.44 < 2e-16
period7 -2.170 0.238 -9.10 < 2e-16
period8 -2.326 0.243 -9.57 < 2e-16
period11 -2.450 0.234 -10.47 < 2e-16

n = 20 p = 8
Deviance = 64.495 Null Deviance = 1021.469 (Difference = 956.974)

The deviance of 64.5 on 12 degrees of freedom seems to show that this model does
not fit. Before we conclude that there is overdispersion, we need to eliminate other
potential explanations. With about 100 eggs in each box, we have no problem with
sparseness, but we do need to check for outliers and look at the model formula. A
half-normal plot of the residuals is a good way to check for outliers:
halfnorm(residuals(bmod))
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Figure 3.2 Diagnostic plots for the trout egg model. A half-normal plot of the residuals is
shown on the left and an interaction plot of the empirical logits is shown on the right.

The half-normal plot is shown in the left panel of Figure 3.2. No single outlier is
apparent. Perhaps one can discern a larger number of residuals which seem to follow
a more dispersed distribution than the rest.

We can also check whether the predictors are correctly expressed by plotting the
empirical logits. These are defined as:

log
(

y+1/2
m− y+1/2

)
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The halves are added to prevent infinite values for groups consisting of all successes
or failures. We now construct an interaction plot of the empirical logits:
elogits <- with(troutegg,log((survive+0.5)/(total- survive+0.5)))
with(troutegg,interaction.plot(period,location,elogits))

Interaction plots are difficult to interpret conclusively, but there is no obvious sign
of large interactions. So there is no evidence that the linear model is inadequate.
We do not have any outliers and the functional form of the model appears to be
suitable, but the deviance is still larger than should be expected. Having eliminated
these more obvious causes as the source of the problem, we may now put the blame
on overdispersion. Possible reasons for the overdispersion include inhomogeneous
trout eggs, variation in the experimental procedures or unknown variables affecting
survival.

We can estimate the dispersion parameter as:
(sigma2 <- sum(residuals(bmod,type="pearson")^2)/12)
[1] 5.3303

We see that this is substantially larger than one as it would be in the standard binomial
GLM. We can now make F-tests on the predictors using:
drop1(bmod,scale=sigma2,test="F")
Single term deletions
scale: 5.3303

Df Deviance AIC F value Pr(F)
<none> 64 157
location 4 914 308 39.5 8.1e-07
period 3 229 182 10.2 0.0013
Warning message:
F test assumes quasibinomial family in:
drop1.glm(bmod, scale = sigma2, test = "F")

We see that both terms are clearly significant. It is necessary to specify the scale
argument using the estimated value of σ2. If this argument is omitted, the deviance
will be used in the estimation of the dispersion parameter. For this particular dataset,
it makes very little difference, but in some cases, using the deviance to estimate the
dispersion gives inconsistent results. The warning message reminds us that the use of
free dispersion parameter results in a model that is no longer a true binomial GLM,
but rather what is known as a quasi-binomial GLM. More on such models may be
found in Section 3.5.

No goodness of fit test is possible because we have a free dispersion parameter.
We can use the dispersion parameter to scale up the estimates of the standard error
as in:
sumary(bmod,dispersion=sigma2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.636 0.649 7.14 9.5e-13
location2 -0.417 0.568 -0.73 0.463
location3 -1.242 0.507 -2.45 0.014
location4 -0.951 0.528 -1.80 0.072
location5 -4.614 0.578 -7.99 1.4e-15
period7 -2.170 0.550 -3.94 8.1e-05
period8 -2.326 0.561 -4.15 3.4e-05
period11 -2.450 0.540 -4.53 5.8e-06

overdispersion parameter = 5.330
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n = 20 p = 8
Deviance = 64.495 Null Deviance = 1021.469 (Difference = 956.974)

We see that the differences in the location become less pronounced with only the fifth
location being clearly different.

This dispersion parameter method is only appropriate when the covariate classes
are roughly equal in size. If not, more sophisticated methods should be used. One
such approach uses the beta-binomial distribution where we assume that p follows a
beta distribution. This approach is discussed in Williams (1982) and Crowder (1978)
and can be implemented using the dispmod package of Scrucca (2012) in R:
library(dispmod)
dmod <- glm.binomial.disp(bmod)
summary(dmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.518 0.621 7.28 3.3e-13
location2 -0.377 0.560 -0.67 0.501
location3 -1.210 0.507 -2.39 0.017
location4 -0.956 0.520 -1.84 0.066
location5 -4.468 0.559 -8.00 1.3e-15
period7 -2.086 0.520 -4.01 6.1e-05
period8 -2.227 0.523 -4.26 2.0e-05
period11 -2.362 0.519 -4.56 5.2e-06

n = 20 p = 8
Deviance = 12.400 Null Deviance = 190.186 (Difference = 177.786)

As can be seen, the results are quite similar to the previous approach because the
covariate class sizes do not vary much.

3.5 Quasi-Binomial

In the previous section, we have demonstrated ways to model data where the suppos-
edly binomial response is more variable than should be expected. A quasi-binomial
model is another way to allow for extra-binomial variation. We will explain the
method in greater generality than immediately necessary because the idea can be
used across a wider range of response types.

The idea is to specify only how the mean and variance of the response are con-
nected to the linear predictor. The method of weighted least squares, as used for
standard linear models, would be a simple example of this. An examination of the
fitting of the binomial model reveals that this only requires the mean and variance
information and does not use any additional information about the binomial distri-
bution. Hence, we can obtain the parameter estimates β̂ and standard errors without
making the full binomial assumption.

The problem arises when we attempt to do inference. To construct a confidence
interval or perform an hypothesis test, we need some distributional assumptions. Pre-
viously we have used the deviance, but for this we need a likelihood and to compute a
likelihood we need a distribution. Now we need a suitable substitute for a likelihood
that can be computed without assuming a distribution.

Let Yi have mean µi and variance φV (µi). We assume that Yi are independent. We
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define a score, Ui:

Ui =
Yi−µi

φV (µi)

Now:
EUi = 0

var Ui =
1

φV (µi)

−E
∂Ui

∂µi
=−E

−φV (µi)− (Yi−µi)φV ′(µi)

[φV (µi)]2
=

1
φV (µi)

These properties are shared by the derivative of the log-likelihood, l′. This suggests
that we can use U in place of l′. So we define:

Qi =
∫ µi

yi

yi− t
φV (t)

dt

The intent is that Q should behave like the log-likelihood. We then define the log
quasi-likelihood for all n observations as:

Q =
n

∑
i=1

Qi

The usual asymptotic properties expected of maximum likelihood estimators also
hold for quasi-likelihood-based estimators as may be seen in McCullagh (1983).

Notice that the quasi-likelihood depends directly only on the variance function
and that the choice of distribution also determines only the variance function. So
the choice of variance function is associated with the random structure of the model
while the link function determines the relationship with the systematic part of the
model.

For the standard linear model, the quasi-likelihood corresponds exactly to the
log-likelihood. Here the dispersion parameter φ is σ2 so nothing is gained by this
approach. However, for the binomial model, the introduction of φ provides an addi-
tional dimension of flexibility to the model, which is useful in modeling overdisper-
sion. One curious possibility is that some choices of V (µ) may not correspond to a
known, or even any, distribution.

β̂ is obtained by maximizing Q. Everything proceeds as before except for the
estimation of φ since the likelihood approach is not reliable here. We recommend:

φ̂ =
X2

n− p

Although quasi-likelihood estimators are attractive because they require fewer as-
sumptions, they are generally less efficient than the corresponding regular likelihood-
based estimator. So if you have information about the distribution, you are advised
to use it.

The inferential procedures are similar to those used before. Recall that the regular
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deviance for a model is formed from the difference in log-likelihoods for the model
and the saturated model:

D(y, µ̂) =−2φ∑
i
(l(µ̂i|yi)− l(yi|yi))

so by analogy the quasi-deviance is −2φQ because the contribution from the satu-
rated model is zero. The φ cancels, so the quasi-deviance is just:

Q =−2∑
i

∫ µi

yi

yi− t
V (t)

dt

In Allison and Cicchetti (1976), data on the sleep behavior of 62 mammals is pre-
sented. Suppose we are interested in modeling the proportion of sleep spent dreaming
as a function of the other predictors: the weight of the body and the brain, the gesta-
tion period, the lifespan and the three constructed indices measuring vulnerability to
predation, exposure while sleeping and overall danger:
data(mammalsleep, package="faraway")
mammalsleep$pdr <- with(mammalsleep, dream/sleep)
summary(mammalsleep$pdr)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.000 0.118 0.176 0.186 0.243 0.462 14.000

We notice that the proportion of time spent dreaming varies from zero up to almost
half the time. For some datasets with a proportion response, the range of proportions
might never come close to zero or one. For such datasets, using a normal Gaussian
model (with perhaps some weights) might be acceptable. But for this dataset, we
have some very small proportions as response values and so a Gaussian model will
not work. We attempt to model the proportion response directly. A logit link seems
sensible since the response is restricted between zero and one. Furthermore, we might
expect the variance to be greater for moderate values of the proportion µ and less as
µ approaches zero or one because of the nature of the measurements. This suggests a
variance function of the approximate form µ(1−µ). This corresponds to the binomial
GLM with the canonical logit link and yet the response is not binomial. We can use
a quasi-binomial:
modl <- glm(pdr ~ log(body)+ log(brain) + log(lifespan) + log(

↪→ gestation) + predation + exposure + danger, family=
↪→ quasibinomial, mammalsleep)

where we have logged many of the predictors because of skewness. Since we now
have a free dispersion parameter, we must use F-tests to compare models:
drop1(modl,test="F")
Single term deletions

Df Deviance F value Pr(F)
<none> 1.57
log(body) 1 1.78 4.51 0.041
log(brain) 1 1.59 0.33 0.568
log(lifespan) 1 1.65 1.79 0.189
log(gestation) 1 1.62 1.15 0.292
predation 1 1.57 0.10 0.749
exposure 1 1.58 0.32 0.575
danger 1 1.58 0.31 0.579
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We might eliminate predation as the least significant variable. Further sequential
backward elimination results in:
modl <- glm(pdr ~ log(body) + log(lifespan) + danger, family=

↪→ quasibinomial, mammalsleep )
sumary(modl)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4932 0.2913 -1.69 0.09796
log(body) 0.1463 0.0384 3.81 0.00046
log(lifespan) -0.2866 0.1080 -2.65 0.01126
danger -0.1732 0.0600 -2.89 0.00615

overdispersion parameter = 0.041
n = 45 p = 4
Deviance = 1.732 Null Deviance = 2.509 (Difference = 0.777)

Notice that the dispersion parameter is far less than the default value of one that we
would see for a binomial. We see the proportion of time spent dreaming increases for
heavier mammals that live less time and live in less danger. Notice that the relatively
large residual deviance compared to the null deviance indicates that this is not a
particularly well-fitting model.

The usual diagnostics should be performed. Here are two selected plots that have
some interest:
ll <- row.names(na.omit(mammalsleep[,c(1,6,10,11)]))
halfnorm(cooks.distance(modl),labs=ll)
plot(predict(modl),residuals(modl,type="pearson"), xlab="Linear

↪→ Predictor", ylab="Pearson Residuals")
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Figure 3.3 A half-normal plot of the Cook statistics is shown on the left and a plot of the
Pearson residuals against the fitted linear predictors is shown on the right.

In the first panel of Figure 3.3, we see that the Asian elephant is quite influential and
a fit without this case should be considered. In the second panel, we see that a pattern
of constant variation indicating that our choice of variance function was reasonable.
We used the Pearson residuals because these explicitly normalize the raw residuals
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using the variance function making the check more transparent. Even so, the deviance
residuals would have served the same purpose.

3.6 Beta Regression

Beta regression is useful for responses that are bounded in (0,1) such as proportions.
It could also be used for variables that are bounded in some other finite interval
simply by rescaling to (0,1). A Beta-distributed random variable Y has density:

f (y|a,b) = Γ(a+b)
Γ(a)Γ(b)

ya−1(1− y)b−1

for parameters a,b and Gamma function Γ(). It is more convenient to transform the
parameters so µ = a/(a+b) and φ = a+b so that EY = µ and var Y = µ(1−µ)/(1+
φ). We can then link the linear predictor η using η = g(µ) using a link function g
where any of the choices used for the binomial model would be suitable.

An implementation of the Beta regression model can be found in the mgcv pack-
age of Wood (2006) . We can apply this to the mammalsleep also used in the previous
section.
data(mammalsleep, package="faraway")
mammalsleep$pdr <- with(mammalsleep, dream/sleep)
library(mgcv)
modb <- gam(pdr ~ log(body)+log(lifespan), family=betar(), mammalsleep

↪→ )
summary(modb)
Family: Beta regression(8.927)
Link function: logit

Formula:
pdr ~ log(body) + log(lifespan)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3779 0.3732 1.01 0.31
log(body) 0.2680 0.0551 4.86 1.2e-06
log(lifespan) -0.9227 0.1658 -5.56 2.6e-08

R-sq.(adj) = -0.178 Deviance explained = 73.5%
-REML = -47.801 Scale est. = 1 n = 45

The default choice of link is the logit function. The estimated value of φ is 8.927.
A comparison of the fitted values of this model and the quasi-binomial model fitted
earlier reveals no substantial difference. The advantage of the Beta-based model is
the full distributional model which would allow the construction of full predictive
distributions rather than just a point estimate and standard error.

Exercises

1. The question concerns data from a case-control study of esophageal cancer in Ile-
et-Vilaine, France. The data is distributed with R and may be obtained along with
a description of the variables by:
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data(esoph)
help(esoph)

(a) Plot the proportion of cases against each predictor using the size of the point
to indicate the number of subject as seen in Figure 2.7. Comment on the rela-
tionships seen in the plots.

(b) Fit a binomial GLM with interactions between all three predictors. Use AIC as
a criterion to select a model using the step function. Which model is selected?

(c) All three factors are ordered and so special contrasts have been used appropri-
ate for ordered factors involving linear, quadratic and cubic terms. Further sim-
plification of the model may be possible by eliminating some of these terms.
Use the unclass function to convert the factors to a numerical representation
and check whether the model may be simplified.

(d) Use the summary output of the factor model to suggest a model that is slightly
more complex than the linear model proposed in the previous question.

(e) Does your final model fit the data? Is the test you make accurate for this data?
(f) Check for outliers in your final model.
(g) What is the predicted effect of moving one category higher in alcohol con-

sumption?
(h) Compute a 95% confidence interval for this predicted effect.

2. Incubation temperature can affect the sex of turtles. An experiment was conducted
with three independent replicates for each temperature and the number of male
and female turtles born was recorded and can be found in the turtle dataset.

(a) Plot the proportion of males against the temperature. Comment on the nature
of the relationship.

(b) Fit a binomial response model with a linear term in temperature. Does this
model fit the data?

(c) Is this data sparse?
(d) Check for outliers.
(e) Compute the empirical logits and plot these against temperature. Does this

indicate a lack of fit?
(f) Add a quadratic term in temperature. Is this additional term a significant pre-

dictor of the response. Does the quadratic model fit the data?
(g) There are three replicates for each value of temperature. Assuming indepen-

dent binomial variation, how much variation would be expected in the three
proportions observed? Compare this to the observed variation in these propor-
tions. Do they approximately agree or is there evidence of greater variation?

(h) If the three replicates are homogenous, they could be combined so that the
dataset would have only five cases in total. Create this dataset and fit a model
linear in temperature. Compare the fit seen for this model with that found in
(b).
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3. A biologist analyzed an experiment to determine the effect of moisture content
on seed germination. Eight boxes of 100 seeds each were treated with the same
moisture level. Four boxes were covered and four left uncovered. The process was
repeated at six different moisture levels.

(a) Plot the germination percentage against the moisture level on two side-by-side
plots according to the coverage of the box. What relationship do you see?

(b) Create a new factor describing the box (the data are ordered in blocks of 6 ob-
servations per box). Add lines to your previous plot that connect observations
from the same box. Is there an indication of a box effect?

(c) Fit a binomial response model including the coverage, box and moisture pre-
dictors. Use the plots to determine an appropriate choice of model.

(d) Test for the significance of a box effect in your model. Repeat the same test but
using the Pearson’s Chi-squared statistic instead of the deviance.

(e) At what value of moisture does the predicted maximum germination occur for
noncovered boxes? For covered boxes?

(f) Produce a plot of the residuals against the fitted values and interpret.
(g) Plot the residuals against moisture while distinguishing the covering. Interpret.
(h) Plot the residuals against the leverages. Are there any influential points?

4. This problem concerns the modeling of the quantitative structure-activity rela-
tionships (QSAR) of the inhibition of dihydrofolate reductase (DHFR) by pyrim-
idines. We want to relate the physicochemical and/or structural properties as ex-
hibited by the 26 predictors in pyrimidines with an activity level. We have struc-
tural information on 74 2,4-diamino- 5-(substituted benzyl) pyrimidines used as
inhibitors of DHFR in E. coli. All the variables lie in [0,1].

(a) Plot the activity (response) against the first three predictors. Are any outliers in
the response apparent? Remove any such cases.

(b) Fit a Gaussian linear model for the response with all 26 predictors. How well
does this model fit the data in terms of R2? Plot the residuals against the fitted
values. Is there any evidence of a violation of the standard assumptions?

(c) Fit a quasi-binomial model for the activity response. Compare the predicted
values for this model to those for the Gaussian linear model. Take care to com-
pute the predicted values in the appropriate scale. Compare the fitted coeffi-
cients between the two models. Are there any substantial differences?

(d) Fit a Gaussian linear model with the logit transformation applied to the re-
sponse. Compare the coefficients of this model with the quasi-binomial model.

(e) Fit a Beta regression model. Compare the coefficients of this model with that
of logit response regression model.

(f) What property of the response leads to the similarity of the models considered
thus far in this question?



Chapter 4

Variations on Logistic Regression

4.1 Latent Variables

Suppose that students answer questions on a test and that a specific student has an
aptitude T . A particular question might have difficulty d and the student will get the
answer correct only if T > d. Now if we consider d fixed and T as a random variable
with density f and distribution function F , then the probability that the student will
get the answer wrong is:

p = P(T ≤ d) = F(d)

T is called a latent variable. Suppose that the distribution of T is logistic:

F(y) =
exp(y−µ)/σ

1+ exp(y−µ)/σ

So
logit(p) =−µ/σ+d/σ

If we set β0 =−µ/σ and β1 = 1/σ, we now have a logistic regression model. We can
illustrate this in the following example where we set d = 1 and let T have mean −1
and σ = 1:
x <- seq(-6,4,0.1)
y <- dlogis(x,location=-1)
plot(x,y,type="l",ylab="density",xlab="t")
ii <- (x <= 1)
polygon(c(x[ii],1,-6),c(y[ii],0,0),col=’gray’)

The plot in Figure 4.1 shows a logistically distributed latent variable. We can see
that this distribution is apparently very similar to the normal distribution. The shaded
area represents the probability of getting an answer wrong. As the mean aptitude of
this student is somewhat less than the difficulty of the question, this probability is
substantially greater than one half.

This idea also arises in a bioassay where we might treat an animal, plant or per-
son with some concentration of a treatment and observe the outcome. For example,
suppose we are interested in the concentration of insecticide to be used in extermi-
nating a pest. Insects will have varying tolerances for the toxin and will survive if
their tolerance is greater than the dose. In this context, the term tolerance distribu-
tion for T is used. Applications in several other areas exist where we observe only a
binary outcome but believe this to be generated by some continuous but unobserved
variable.

67
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Figure 4.1 Probability of getting the answer wrong for logistic latent variable.

4.2 Link Functions

Until now we have used logit link function to connect the probability and the linear
predictor. But other choices of link function are reasonable. We need a function that
bounds the probability between zero and one. We also expect the link function to be
monotone. It is conceivable that the success probability may go up and down as the
linear predictor increases but this circumstance is best modeled by adding nonlinear
components to the linear predictors such as quadratic terms rather than modifying
the link function. The latent variable formulation suggests some other possibilities
for the link function. Here are some choices which are implemented in the glm()
function:
1. Probit: η = Φ−1(p) where Φ is the normal cumulative distribution function. This

arises from a normally distributed latent variable.
2. Complementary log-log: η= log(− log(1− p)). A Gumbel-distributed latent vari-

able will lead to this.
3. Cauchit: η= tan−1(π(p−1/2)) which is motivated by a Cauchy-distributed latent

variable.
We can illustrate the choices using some data from Bliss (1935) on the numbers

of insects dying at different levels of insecticide concentration. We fit all four link
functions:
data(bliss,package="faraway")
bliss

dead alive conc
1 2 28 0
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2 8 22 1
3 15 15 2
4 23 7 3
5 27 3 4
mlogit <- glm(cbind(dead,alive) ~ conc, family=binomial, data=bliss)
mprobit <- glm(cbind(dead,alive) ~ conc, family=binomial(link=probit),

↪→ data=bliss)
mcloglog <- glm(cbind(dead,alive) ~ conc, family=binomial(link=cloglog

↪→ ), data=bliss)
mcauchit <- glm(cbind(dead,alive) ~ conc, family=binomial(link=cauchit

↪→ ), data=bliss)

We start by considering the fitted values:
fitted(mlogit)

1 2 3 4 5
0.089172 0.238323 0.500000 0.761677 0.910828

or from predict(mlogit,type="response"). These are constructed using linear
predictor, η:
coef(mlogit)[1]+coef(mlogit)[2]*bliss$conc
[1] -2.3238 -1.1619 0.0000 1.1619 2.3238

Alternatively, these values may be obtained from modl$linear.predictors or
predict(modl). The fitted values are then:
library(faraway)
ilogit(mlogit$lin)

1 2 3 4 5
0.089172 0.238323 0.500000 0.761677 0.910828

Notice the need to distinguish between predictions in the scale of the response and
the link. Now compare the logit, probit and complementary log-log fits:
predval <- sapply(list(mlogit,mprobit,mcloglog,mcauchit),fitted)
dimnames(predval) <- list(0:4,c("logit","probit","cloglog","cauchit"))
round(predval,3)
logit probit cloglog cauchit

0 0.089 0.084 0.127 0.119
1 0.238 0.245 0.250 0.213
2 0.500 0.498 0.455 0.506
3 0.762 0.752 0.722 0.791
4 0.911 0.914 0.933 0.882

These are not very different, but now look at a wider range from [−4,8]. We apply the
predict function to each of the four models forming a matrix of predicted values.
We label the columns and add the information about the dose. The tidyr package is
useful for reformatting data from a wide format of multiple measured values per row
to a long format where there is only one response value per row. This is accomplished
using the gather() function. This format, where each row is an observation and each
column is a variable, is the most convenient form for many R analyses. Finally, the
ggplot2 package is useful for completing and well-labeled plot.
dose <- seq(-4,8,0.2)
predval <- sapply(list(mlogit,mprobit,mcloglog,mcauchit),function(m)

↪→ predict(m,data.frame(conc=dose),type="response"))
colnames(predval) <- c("logit","probit","cloglog","cauchit")
predval <- data.frame(dose,predval)
library(tidyr)
mpv <- gather(predval, link, probability, -dose)
library(ggplot2)
ggplot(mpv, aes(x=dose,y=probability,linetype=link))+geom_line()
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Figure 4.2 Probit, logit, complementary log-log and cauchit compared. The data range from 0
to 4. We see that the links are similar in this range and only begin to diverge as we extrapolate.

The predicted probabilities as shown in Figure 4.2 do not differ much in the range
of the data but the differences become more apparent as we extrapolate. The cauchit
link is most different as the corresponding latent variable is most variable and would
be slowest to converge to zero on the left and one on the right. The complementary
log-log can also be clearly distinguished from the logit and probit. But the logit and
probit are harder to separate.

The difference between the probit and the logit becomes apparent when we ex-
amine the ratio of the probabilities in the lower and upper tails:
ggplot(predval, aes(x=dose,y=probit/logit))+geom_line()+xlim(c(-4,0))
ggplot(predval, aes(x=dose,y=(1-probit)/(1-logit)))+geom_line()+xlim(c

↪→ (4,8))

In Figure 4.3, we see that the probit and logit differ substantially in the tails. The
same phenomenon is observed for the complementary log-log. This is problematic
since the former plot indicates it would be difficult to distinguish between the two
using the data we have. This is an issue in trials of potential carcinogens and other
substances that must be tested for possible harmful effects on humans. Some sub-
stances are highly poisonous in that their effects become immediately obvious at
doses that might normally be experienced in the environment. It is not difficult to
detect such substances. However, there are other substances whose harmful effects
only become apparent at large dosages where the observed probabilities are suffi-
ciently larger than zero to become estimable without immense sample sizes. In order
to estimate the probability of a harmful effect at a low dose, it would be necessary
to select an appropriate link function and yet the data for high dosages will be of lit-
tle help in doing this. As Paracelsus (1493–1541) said, “All substances are poisons;
there is none which is not a poison. The right dose differentiates a poison.”
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Figure 4.3 Ratio of predicted probit to logit probabilities in the lower tail on the left and in
the upper tail to the right.

A good example of this problem is asbestos. Information regarding the harmful
effects of asbestos derives from historical studies of workers in industries exposed to
very high levels of asbestos dust. However, we would like to know the risk to individ-
uals exposed to low levels of asbestos dust such as those found in old buildings. It is
very difficult to accurately determine this risk. We cannot accurately measure expo-
sure or outcome. This is not to argue that nothing should be done, but that decisions
should be made in recognition of the uncertainties.

We must choose a link function to specify a binomial regression model. It is
usually not possible to make this choice based on the data alone. For regions of
moderate p, that is not close to zero or one, the link functions we have proposed are
quite similar and so a very large amount of data would be necessary to distinguish
between them. Larger differences are apparent in the tails, but for very small p, one
needs a very large amount of data to obtain just a few successes, making it expensive
to distinguish between link functions in this region. So usually, the choice of link
function is made based on assumptions derived from physical knowledge or simple
convenience.

The default choice is the logit link. There are three advantages: it leads to simpler
mathematics than the probit due the intractability of Φ, it is easier to interpret using
odds and it allows easier analysis of retrospectively sampled data as we shall see in
the next section.

4.3 Prospective and Retrospective Sampling

Consider the data shown in Table 4.1 from a study on infant respiratory disease which
shows the proportions of children developing bronchitis or pneumonia in their first
year of life by type of feeding and sex, which may be found in Payne (1987):
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Bottle Only Some Breast with Supplement Breast Only
Boys 77/458 19/147 47/494
Girls 48/384 16/127 31/464

Table 4.1 Incidence of respiratory disease in infants to the age of 1 year.

We can recover the layout above with the proportions as follows:
data(babyfood, package="faraway")
xtabs(disease/(disease + nondisease) ~ sex + food, babyfood)

food
sex Bottle Breast Suppl

Boy 0.16812 0.095142 0.12925
Girl 0.12500 0.066810 0.12598

In prospective sampling, the predictors are fixed and then the outcome is ob-
served. This is also called a cohort study. In the infant respiratory disease example
shown in Table 4.1, we would select a sample of newborn girls and boys whose par-
ents had chosen a particular method of feeding and then monitor them for their first
year.

In retrospective sampling, the outcome is fixed and then the predictors are ob-
served. This is also called a case-control study. Typically, we would find infants
coming to a doctor with a respiratory disease in the first year and then record their
sex and method of feeding. We would also obtain a sample of respiratory disease-
free infants and record their information. The method for obtaining the samples is
important — we require that the probability of inclusion in the study is independent
of the predictor values.

Since the question of interest is how the predictors affect the response, prospec-
tive sampling seems to be required. Let’s focus on just boys who are breast or bottle
fed. The data we need is:
babyfood[c(1,3),]

disease nondisease sex food
1 77 381 Boy Bottle
3 47 447 Boy Breast

As we have seen in Section 2.2, the log-odds is a sensible way to measure the strength
of the association of a predictor with the outcome.
• Given the infant is breast fed, the log-odds of having a respiratory disease are

log47/447 =−2.25.
• Given the infant is bottle fed, the log-odds of having a respiratory disease are

log77/381 =−1.60.
The difference between these two log-odds, ∆ = −1.60−−2.25 = 0.65, represents
the increased risk of respiratory disease incurred by bottle feeding relative to breast
feeding. This is the log-odds ratio. In this case, the log-odds ratio is positive indicat-
ing a greater risk of respiratory disease for bottle-fed compared to breast-fed babies.

Now suppose that this had been a retrospective study — we could compute the
log-odds of feeding type given respiratory disease status and then find the difference.
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Notice that this would give the same result because:

∆ = log77/47− log381/447 = log77/381− log47/447 = 0.65

This shows that a retrospective design is as effective as a prospective design for
estimating ∆. This manipulation is not possible for other links such as the probit so
we have to use the logit.

Retrospective designs have several advantages compared to prospective designs.
In this example, we would need to wait a year before the outcome for a particu-
lar baby is known when using the cohort approach. For many other responses such
as cancer or heart disease and even nonmedical outcomes related to career achieve-
ments, we may need to wait a long time before the results are known. In contrast, the
case-control study can be done quickly. Also, we can investigate many possible pre-
dictors using the retrospective approach whereas in the prospective study, we must
specify these in advance and we may not be gifted with foresight. Retrospective stud-
ies are particularly valuable for rare outcomes, otherwise a very large cohort will be
necessary to guarantee any “positive” responses.

Prospective designs have other advantages. They are less susceptible to bias in
the selection of the sample. Retrospective studies rely on historical records which
may be of unknown accuracy and completeness. They may also rely on the memory
of the subject which may be unreliable. Prospective studies also allow the study of
more than one outcome. For example, we might also measure babies’ success in
learning to walk. This is problematic in the case-control approach because more than
one outcome would lead to different samples. We shall also see that only prospective
studies can generate models that predict the probability of an outcome.

In most practical situations, we will also need to account for the effects of covari-
ates X . Let π0 be the probability that an individual is included in the study if they do
not have the disease, while let π1 be the probability of inclusion if they do have the
disease. For a prospective study, π0 = π1 because we have no knowledge of the out-
come, while for a retrospective study typically π1 is much greater than π0. Suppose
that for given x, p∗(x) is the conditional probability that an individual has the disease
given that he or she was included in the study, while p(x) is the unconditional prob-
ability that he or she has the disease as we would obtain from a prospective study.
Now by Bayes theorem:

p∗(x) =
π1 p(x)

π1 p(x)+π0(1− p(x))

which can be rearranged to show that:

logit(p∗(x)) = log
π1

π0
+ logit(p(x))

So the only difference between the retrospective and the prospective study would be
the difference in the intercept: log(π1/π0). Generally π1/π0 would not be known,
so we would not be able to estimate β0, but knowledge of the other β would be
most important since this can be used to assess the relative effect of the covariates.
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We could not, however, estimate the absolute effect. Hence, a retrospective study
might tell us that a particular lifestyle choice would double the risk of an unpleasant
outcome but it cannot tell us the probability of that outcome. If the probability is not
high, we may not care.

4.4 Prediction and Effective Doses

Sometimes we wish to predict the outcome for given values of the covariates. For
binomial data this will mean estimating the probability of success. Given covari-
ates x0, the predicted response on the link scale is η̂ = x0β̂ with variance given by
xT

0 (X
TWX)−1x0. Approximate confidence intervals may be obtained using a nor-

mal approximation. To get an answer in the probability scale, it will be necessary to
transform back using the inverse of the link function. We predict the response for the
insect data:
data(bliss, package="faraway")
lmod <- glm(cbind(dead,alive) ~ conc, family=binomial,data=bliss)
lmodsum <- summary(lmod)

We show how to predict the response at a dose of 2.5:
x0 <- c(1,2.5)
eta0 <- sum(x0*coef(lmod))
ilogit(eta0)
[1] 0.64129

A 64% predicted chance of death at this dose — now compute a 95% confidence
interval (CI) for this probability. First, extract the variance matrix of the coefficients:
(cm <- lmodsum$cov.unscaled)

(Intercept) conc
(Intercept) 0.174630 -0.065823
conc -0.065823 0.032912

The standard error on the logit scale is then:
se <- sqrt( t(x0) %*% cm %*% x0)

so the CI on the probability scale is:
ilogit(c(eta0-1.96*se,eta0+1.96*se))
[1] 0.53430 0.73585

A more direct way of obtaining the same result is:
predict(lmod,newdata=data.frame(conc=2.5),se=T)
$fit
[1] 0.58095

$se.fit
[1] 0.2263
ilogit(c(0.58095-1.96*0.2263,0.58095+1.96*0.2263))
[1] 0.53430 0.73585

Note that in contrast to the linear regression situation, there is no distinction pos-
sible between confidence intervals for a future observation and those for the mean
response. Now we try predicting the response probability at the low dose of −5:
x0 <- c(1,-5)
se <- sqrt( t(x0) %*% cm %*% x0)
eta0 <- sum(x0*lmod$coef)
ilogit(c(eta0-1.96*se,eta0+1.96*se))
[1] 2.3577e-05 3.6429e-03
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This is not a wide interval in absolute terms, but in relative terms, it certainly is. The
upper limit is about 100 times larger than the lower limit.

When there is a single (continuous) covariate or when other covariates are held
fixed, we sometimes wish to estimate the value of x corresponding to a chosen p.
For example, we may wish to determine which dose, x, will lead to a probability of
success p. ED50 stands for the effective dose for which there will be a 50% chance
of success. When the objective is to kill the subjects or determine toxicity, as when
using insecticides, the term LD50 would be used. LD stands for lethal dose. Other
percentiles are also of interest. For a logit link, we can set p = 1/2 and then solve for
x to find:

ÊD50 =−β̂0/β̂1

Using the Bliss data, the LD50 is:
(ld50 <- -lmod$coef[1]/lmod$coef[2])
(Intercept)

2

To determine the standard error, we can use the delta method. The general expression
for the variance of g(θ̂) for multivariate θ is given by

var g(θ̂)≈ g′(θ̂)T var θ̂g′(θ̂)

which, in this example, works out as:
dr <- c(-1/lmod$coef[2],lmod$coef[1]/lmod$coef[2]^2)
sqrt(dr %*% lmodsum$cov.un %*% dr)[,]
[1] 0.17844

So the 95% CI is given by:
c(2-1.96*0.178,2+1.96*0.178)
[1] 1.6511 2.3489

Other levels may be considered — the effective dose xp for probability of success p
is:

xp =
logit(p)−β0

β1

So, for example:
(ed90 <- (logit(0.9)-lmod$coef[1])/lmod$coef[2])
(Intercept)

3.8911

More conveniently, we may use the dose.p function in the MASS package:
library(MASS)
dose.p(lmod,p=c(0.5,0.9))

Dose SE
p = 0.5: 2.0000 0.17844
p = 0.9: 3.8911 0.34499

4.5 Matched Case-Control Studies

In a case-control study, we try to determine the effect of certain risk factors on the
outcome. We understand that there are other confounding variables that may affect
the outcome. One approach to dealing with these is to measure or record them, in-
clude them in the logistic regression model as appropriate and thereby control for
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their effect. But this method requires that we model these confounding variables
with the correct functional form. This may be difficult. Also, making an appropriate
adjustment is problematic when the distribution of the confounding variables is quite
different in the cases and controls. So we might consider an alternative where the
confounding variables are explicitly adjusted for in the design.

In a matched case-control study, we match each case (diseased person, defective
object, success, etc.) with one or more controls that have the same or similar values of
some set of potential confounding variables. For example, if we have a 56-year-old,
Hispanic male case, we try to match him with some number of controls who are also
56-year-old Hispanic males. This group would be called a matched set. Obviously,
the more confounding variables one specifies, the more difficult it will be to make
the matches. Loosening the matching requirements, for example, accepting controls
who are 50–60 years old, might be necessary. Matching also gives us the possibility
of adjusting for confounders that are difficult to measure. For example, suppose we
suspect an environmental effect on the outcome. However, it is difficult to measure
exposure, particularly when we may not know which substances are relevant. We
could match subjects based on their place of residence or work. This would go some
way to adjusting for the environmental effects.

Matched case-control studies also have some disadvantages apart from the dif-
ficulties of forming the matched sets. One loses the possibility of discovering the
effects of the variables used to determine the matches. For example, if we match on
sex, we will not be able to investigate a sex effect. Furthermore, the data will likely be
far from a random sample of the population of interest. So although relative effects
may be found, it may be difficult to generalize to the population.

Sometimes, cases are rare but controls are readily available. A 1 : M design has M
controls for each case. M is typically small and can even vary in size from matched
set to matched set due to difficulties in finding matching controls and missing values.
Each additional control yields a diminished return in terms of increased efficiency in
estimating risk factors — it is usually not worth exceeding M = 5.

For individual i in the jth matched set, we also observe a covariate vector xi j
which will include the risk factors of interest plus any other variables that we may
wish to adjust for, but were unable for various reasons to include among the criteria
used to match the sets. It is important that the decision to include a subject in the
study be independent of the risk factors as in the unmatched case-control studies.
Suppose we have n matched sets and that we take i = 0 to represent the case and
i = 1, . . . ,M to represent the controls. We propose a logistic regression model of the
following form:

logit(p j(xi j)) = α j +β
T xi j

The α j models the effect of the confounding variables in the jth matched set. Given
a matched set j of M +1 subjects known to have one case and M controls, the con-
ditional probability of the observed outcome, or, in other words, that subject i = 0 is
the case and the rest are controls, is:

expβT x0 j

∑
M
i=0 expβT xi j
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Notice that α j cancels out in this expression. We may then form the conditional
likelihood for the model by taking the product over all the matched sets:

L(β) =
n

∏
j=1
{1+

M

∑
i=1

exp[βT (xi j− x0 j)]}−1

We may now employ standard likelihood methods to make inference — see Bres-
low (1982) for details. The likelihood takes the same form as that used for the pro-
portional hazards model used in survival analysis. This is convenient because we
may use software developed for those models as we demonstrate below. Since the
αs are not estimated, we cannot make predictions about individuals, but only make
statements about the relative risks as measured by the βs. This same restriction also
applies to the unmatched model, so this is nothing new.

In Le (1998), a matched case-control study is presented concerning the associ-
ation between x-rays and childhood acute myeloid leukemia. The sets are matched
on age, race and county of residence. For the most part, there is only one control for
each case, but there are a few instances of two controls. We start with a look at the
data:
data(amlxray, package="faraway")
head(amlxray)

ID disease Sex downs age Mray MupRay MlowRay Fray Cray CnRay
1 7004 1 F no 0 no no no no no 1
2 7004 0 F no 0 no no no no no 1
3 7006 1 M no 6 no no no no yes 3
4 7006 0 M no 6 no no no no yes 2
5 7009 1 F no 8 no no no no no 1
6 7009 0 F no 8 no no no no no 1

Only the age is presented here as one of the matching variables. In the three sets
shown here, we see that both subjects have the same age and the first is the case and
the second is the control. The other variables are risk factors of interest.

Downs syndrome is known to be a risk factor. There are only seven such subjects
in the dataset:
amlxray[amlxray$downs=="yes",1:4]

ID disease Sex downs
7 7010 1 M yes
17 7018 1 F yes
78 7066 1 F yes
88 7077 1 M yes
173 7146 1 F yes
196 7176 1 F yes
210 7189 1 F yes

We see that all seven subjects are cases. If we include this variable in the regression,
its coefficient is infinite. Given this and the prior knowledge, it is simplest to exclude
all these subjects and their associated matched subjects:
(ii <- which(amlxray$downs=="yes"))
[1] 7 17 78 88 173 196 210
ramlxray <- amlxray[-c(ii,ii+1),]

The variables Mray, MupRay and MlowRay record whether the mother has ever had an
x-ray, ever had an upper body x-ray and ever had a lower body x-ray, respectively.
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These variables are closely associated, so we will pick just Mray for now and investi-
gate the others more closely if indicated. We will also use CnRay, a four-level ordered
factor grouping the number of x-rays that the child has received in preference to Cray
which merely indicates whether the child has ever had an x-ray.

The clogit function fits a conditional logit model. Since the likelihood is iden-
tical with that from a proportional hazards model, it may be found in the survival
package. The matched sets must be designated by the strata function:
library(survival)
cmod <- clogit(disease ~ Sex+Mray+Fray+CnRay+strata(ID),ramlxray)
summary(cmod)

coef exp(coef) se(coef) z p
SexM 0.156 1.17 0.386 0.405 0.6900
Mrayyes 0.228 1.26 0.582 0.391 0.7000
Frayyes 0.693 2.00 0.351 1.974 0.0480
CnRay.L 1.941 6.96 0.621 3.127 0.0018
CnRay.Q -0.248 0.78 0.582 -0.426 0.6700
CnRay.C -0.580 0.56 0.591 -0.982 0.3300

exp(coef) exp(-coef) lower .95 upper .95
SexM 1.17 0.855 0.549 2.49
Mrayyes 1.26 0.796 0.401 3.93
Frayyes 2.00 0.500 1.005 3.98
CnRay.L 6.96 0.144 2.063 23.51
CnRay.Q 0.78 1.281 0.249 2.44
CnRay.C 0.56 1.786 0.176 1.78

Rsquare= 0.089 (max possible= 0.499 )
Likelihood ratio test= 20.9 on 6 df, p=0.00192
Wald test = 14.5 on 6 df, p=0.0246
Score (logrank) test = 18.6 on 6 df, p=0.0049

The overall tests for significance of the predictors indicate that at least some of the
variables are significant. We see that Sex and whether the mother had an x-ray are
not significant. There seems little point in investigating the other x-ray variables as-
sociated with the mother. An x-ray on the father is marginally significant. However,
the x-ray on the child has the clearest effect. Because this is an ordered factor, we
have used linear, quadratic and cubic contrasts. Only the linear effect is significant.

The second table of coefficients gives us information helpful for interpreting the
size of the effects. We see that the father having had an x-ray doubles the odds of the
disease. The interpretation of the number of x-rays of the child is more difficult to
interpret because of the coding. Since we have found only a linear effect, we convert
CnRay to the numerical values 1–4 using unclass. We also drop the insignificant
predictors:
cmodr <- clogit(disease ~ Fray+unclass(CnRay)+strata(ID),ramlxray)
summary(cmodr)

coef exp(coef) se(coef) z p
Frayyes 0.670 1.96 0.344 1.95 0.05100
unclass(CnRay) 0.814 2.26 0.237 3.44 0.00058

exp(coef) exp(-coef) lower .95 upper .95
Frayyes 1.96 0.512 0.996 3.84
unclass(CnRay) 2.26 0.443 1.419 3.59

The codes for Cnray are 1 = none, 2 = 1 or 2 x-rays, 3 = 3 or 4 x-rays and 4 = 5 or
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more x-rays. We see that the odds of the disease increase by a factor of 2.26 as we
move between adjacent categories. Notice that the father’s x-ray variable is now just
insignificant in this regression underlining its borderline status.

An incorrect analysis of this data ignores the matching structure and simply uses
a binomial GLM:
gmod <- glm(disease ~ Fray+unclass(CnRay),family=binomial,ramlxray)
summary(gmod)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.162 0.301 -3.86 0.00011
Frayyes 0.500 0.308 1.63 0.10405
unclass(CnRay) 0.601 0.177 3.39 0.00071

The results are somewhat different.
Although we have found an effect due to x-rays of the child, we cannot conclude

the effect is causal. After all, subjects only have x-rays when something is wrong, so
it is quite possible that the x-rays are linked to some unknown causal factor.

Other examples of matched data may be found in Section 6.4.

Exercises

1. The Chicago insurance dataset found in chredlin concerns the problem of redlin-
ing in insurance. Read the help page for background. Use involact as the re-
sponse and ignore volact.

(a) Plot a histogram of the distribution of involact taking care to choose the bin
width to illustrate the issue with zero values. What fraction of the responses is
zero?

(b) Fit a Gaussian linear model with involact as the response with the other
five variables as predictors. Use a log transformation for income. Describe the
relationship between these predictors and the response.

(c) Plot the residuals against the fitted values. How are the zero response values
manifested on the plot? What impact do these cases have on the interpretation
of the plot?

(d) Create a binary response variable which distinguishes zero values of
involact. Fit a logistic regression model with this response but with the same
five predictors. What problem occurred during this fit? Explain why this hap-
pened.

(e) Fit a smaller model using only race and age. Interpret the z-statistics. Test
for the signficance of the two predictors using the difference-in-deviances test.
Which test for the significance of the predictors should be preferred?

(f) Make plot of race against age which also distinguishes the two levels of the
response variable. Interpret the plot and connect it to the previous model out-
put.

(g) Refit the logit model but use a probit link. Compare the model output between
the logit and probit models. Which parts are similar and which parts differ
substantively? Plot the predicted values on the probability scale against each
other and comment on what you see.
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(h) Which binary response model is most comparable to the Gaussian linear
model? Contrast the drawbacks between the Gaussian and binary response
models.

2. Aflatoxin B1 was fed to lab animals at various doses and the number responding
with liver cancer recorded. The data may be found in the dataset aflatoxin.

(a) Plot the proportion of animals with liver cancer against the dose.
(b) Fit a logistic regression for the number of animals with liver cancer as a func-

tion of the dose. Assess the statistical significance of the dose with two different
tests. Which test is preferable?

(c) For the fitted model, compute the predicted probability of liver cancer over the
range of the data. Show the predicted curve on top of the data shown in (a).

(d) Change to a probit link. Compute the predicted probability under this model
and add the curve to the existing plot.

(e) Compute the predicted probability of liver cancer for a dose of 25 ppb on the
link scale. Compute a 95% confidence interval. Transform onto the probability
scale.

(f) Compute the predicted probability directly on the probability scale and report
the standard error. Use this standard error to construct a 95% confidence inter-
val for the probability. Which of the two methods of computing the CI as seen
in this and the previous question is preferable?

(g) Compute the effective dose at 1%, 10% and at 50% levels with associated
standard error. Remark on any incongruity in your calculated effective doses.

3. The infert dataset presents data from a study of secondary infertility (failure to
conceive after at least one previous conception). The factors of interest are induced
abortions and spontaneous abortions (e.g., miscarriages). The study matched each
case of infertility with two controls who were not infertile, matching on age, edu-
cation and parity (number of prior pregnancies).

(a) Construct cross-classified tables by number of spontaneous and induced abor-
tions separately for cases and controls. Comment on the differences between
the two tables.

(b) Fit a binary response model with only spontaneous and induced as predictors.
Determine the statistical significance of these predictors. Express the effects of
the predictors in terms of odds.

(c) Fit a binary response model with only education, age and parity as predictors.
Explain how the significance (or lack thereof) of these predictors should be
interpreted.

(d) Now put all five predictors in a binary response model. Interpret the results in
terms of odds.

(e) Fit a matched case control model appropriate to the data. Interpret the output
and compare the odds to those found in the previous model.

(f) The spontaneous and induced predictors could be viewed as ordinal due to the
grouping in the highest level. Refit the model using ordinal factors rather than
numerical variables for these two predictors. Is there evidence that the ordinal
representation is necessary?
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4. The data in downs.bc found in the boot package describes the proportion of
births with Down’s syndrome by the ages of the mothers collected in British
Columbia.

(a) Plot the proportion of Down’s births against age and comment on the relation-
ship.

(b) Fit a binomial response model for the Down’s births with age as a linear pre-
dictor. Comment on the significance of the age effect.

(c) Display the predicted probability on the plot from (a). Comment on the quality
of the fit.

(d) Add a quadratic term in age to the model and display the predicted probability
on the same plot. Is the fit improved?

(e) Compute the predicted probability of a Down’s birth at age 30 and at age 40
using the previous model. What is the odds ratio of these two probabilities?
Now compute the predicted response on the link scale at age 30 and age 40.
Exponentiate the difference between these two predictions. Explain why the
answer is identical to that computed in the first part of this question.

(f) Fit a binomial response model with just a linear predictor in age but now using
the complementary log-log link. Display the fitted probability curve on top of
the observed proportions. Comment on the fit.

(g) Exponentiate the coefficient of age in the previous model. Now compute the
predicted probability of a Down’s birth at age 30 and at age 31. Compute the
ratio of these two probabilities. Explain why this ratio is the same as the expo-
nentiated coefficient. Give an interpretation in the context of this data.
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Chapter 5

Count Regression

When the response is an unbounded count (0,1,2,3,...), we can use a count regression
model to explain this in terms of the given predictors. Sometimes other models may
be appropriate. When the count is bounded, a binomial-type response regression as
discussed in the previous chapters is sensible. In some cases, the counts might be
sufficiently large that a normal approximation is justified so that a normal linear
model may be used. We shall consider two distributions for counts: the Poisson and,
less commonly, the negative binomial.

5.1 Poisson Regression

If Y is Poisson with mean µ > 0, then:

P(Y = y) =
e−µµy

y!
, y = 0,1,2, . . .

Three examples of the Poisson density are depicted in Figure 5.1. In the left panel,
we see a distribution that gives highest probability to y = 0 and falls rapidly as y
increases. In the center panel, we see a skew distribution with longer tail on the right.
Even for a not so large µ = 5, we see the distribution become more normally shaped.
This becomes more pronounced as µ increases.
barplot(dpois(0:5,0.5),xlab="y",ylab="Probability",names=0:5,main="

↪→ mean = 0.5")
barplot(dpois(0:10,2),xlab="y",ylab="Probability",names=0:10,main="

↪→ mean = 2")
barplot(dpois(0:15,5),xlab="y",ylab="Probability",names=0:15,main="

↪→ mean = 5")

The expectation and variance of a Poisson are the same: EY = var Y = µ. The
Poisson distribution arises naturally in several ways:

1. If the count is some number out of some possible total, then the response would
be more appropriately modeled as a binomial. However, for small success proba-
bilities and large totals, the Poisson is a good approximation and can be used. For
example, in modeling the incidence of rare forms of cancer, the number of peo-
ple affected is a small proportion of the population in a given geographical area.
Specifically, if µ = np while n→∞, then B(n, p) is well approximated by Pois(µ).
Also, for small p, note that logit(p)≈ log p, so that the use of the Poisson with a
log link is comparable to the binomial with a logit link. Where n varies between
cases, a rate model can be used as described in Section 5.3.
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Figure 5.1 Poisson probabilities for µ = 0.5, 2 and 5, respectively.

2. Suppose the probability of occurrence of an event in a given time interval is pro-
portional to the length of that time interval and independent of the occurrence of
other events. In this case the number of events in any specified time interval will
be Poisson distributed. Examples include modeling the number of incoming tele-
phone calls to a service center or the number of earthquakes in a fixed period of
time. However, in any real application, the assumptions are likely to be violated.
For example, the rate of incoming telephone calls is likely to vary with the time
of day while the timing of earthquakes are unlikely to be completely independent.
Nevertheless, the Poisson may be a good approximation.

3. Poisson distributions also arise naturally when the time between events is inde-
pendent and identically exponentially distributed. We count the number of events
in a given time period. This is effectively equivalent to the previous case, since
the exponential distribution between events will result from the assumption of
constant and independent probability of occurrence of an event in an interval.

If the count is the number falling into some level of a given category, then a multi-
nomial response model or categorical data analysis should be used. For example, if
we have counts of how many people have type O, A, B or AB blood and are inter-
ested in how that relates to race and gender, then a straight Poisson regression model
will not be appropriate. We will see later that the Poisson distribution still comes into
play in Chapter 7.

An important result concerning Poisson random variables is that their sum is also
Poisson. Specifically, suppose that Yi ∼ Pois(µi) for i = 1,2, . . . and are independent,
then ∑i Yi ∼ Pois(∑i µi). This is useful because sometimes we have access only to
the aggregated data. If we assume the individual-level data is Poisson, then so is the
summed data and Poisson regression can still be applied.

For 30 Galápagos Islands, we have a count of the number of plant species found
on each island and the number that are endemic to that island. We also have five
geographic variables for each island. The data was presented by Johnson and Raven
(1973) and also appear in Weisberg (2005). We have filled in a few missing values
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that appeared in the original dataset for simplicity. We model the number of species
using normal linear regression:
data(gala, package="faraway")
gala <- gala[,-2]

We throw out the Endemics variable (which falls in the second column of the
dataframe) since we won’t be using it in this analysis. We fit a linear regression
and look at the residual vs. fitted plot:
modl <- lm(Species ~ . , gala)
plot(modl, 1)

Figure 5.2 Residual-fitted plots for the Galápagos dataset. The plot on the left is for a model
with the original response while that on the right is for the square-root transformed response.

We see clear evidence of nonconstant variance in the left panel of Figure 5.2. Some
experimentation (or the use of the Box–Cox method) reveals that a square-root trans-
formation is best:
modt <- lm(sqrt(Species) ~ . , gala)
plot(modt, 1)

We now see in the right panel of Figure 5.2 that the nonconstant variance problem
has been cleared up. Let’s take a look at the fit:
library(faraway)
sumary(modt)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.391924 0.871268 3.89 0.00069
Area -0.001972 0.001020 -1.93 0.06508
Elevation 0.016478 0.002441 6.75 5.5e-07
Nearest 0.024933 0.047950 0.52 0.60784
Scruz -0.013483 0.009798 -1.38 0.18151
Adjacent -0.003367 0.000805 -4.18 0.00033

n = 30, p = 6, Residual SE = 2.774, R-Squared = 0.78
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We see a fairly good fit (R2 = 0.78) considering the nature of the variables. How-
ever, we achieved this fit at the cost of transforming the response. This makes in-
terpretation more difficult. Furthermore, some of the response values are quite small
(single digits) which makes us question the validity of the normal approximation.
This model may be adequate, but perhaps we can do better. We develop a Poisson
regression model.

Suppose we have count responses Yi that we wish to model in terms of a vector of
predictors xi. Now if Yi ∼ Pois(µi), we need some way to link the µi to the xi. We use
a linear combination of the xi to form the linear predictor ηi = xT

i β. Since we require
that µi ≥ 0, we can ensure this by using a log link function, that is:

logµi = ηi = xT
i β

So, as with the binomial regression models of the previous chapter, this model also
has a linear predictor and a link function. The log-likelihood is:

l(β) =
n

∑
i=1

(yixT
i β− exp(xT

i β)− log(yi!))

Differentiating with respect to β j gives the MLE as the solution to:
n

∑
i=1

(yi− exp(xT
i β̂))xi j = 0 ∀ j

which can be more compactly written as:

XT y = XT µ̂

The normal equations for the least squares estimate of β in Gaussian linear models
take the same form when we set µ̂ = X β̂. The equations for β for a binomial regres-
sion with a logit link also take the same form. This would not be true for other link
functions. The link function having this property is known as the canonical link.

However, there is no explicit formula for β̂ for the Poisson (or binomial) regres-
sion and we must resort to numerical methods to find a solution. We fit the Poisson
regression model to the Galápagos data:
modp <- glm(Species ~ ., family=poisson, gala)
sumary(modp)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1548079 0.0517495 60.96 < 2e-16
Area -0.0005799 0.0000263 -22.07 < 2e-16
Elevation 0.0035406 0.0000874 40.51 < 2e-16
Nearest 0.0088256 0.0018213 4.85 0.0000013
Scruz -0.0057094 0.0006256 -9.13 < 2e-16
Adjacent -0.0006630 0.0000293 -22.61 < 2e-16

n = 30 p = 6
Deviance = 716.846 Null Deviance = 3510.729 (Difference = 2793.883)

Using the same arguments as for binary response regression as seen in Section 2.3,
we develop a deviance for the Poisson regression:

D = 2
n

∑
i=1

(yi log(yi/µ̂i)− (yi− µ̂i))
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This Poisson deviance is also known as the G-statistic.
The same asymptotic inference may be employed as for the binomial model.

We can judge the goodness of fit of a proposed model by checking the deviance
of the model against a χ2 distribution with degrees of freedom equal to that of the
model. We can compare nested models by taking the difference of the deviances and
comparing to a χ2 distribution with degrees of freedom equal to the difference in the
number of parameters for the two models. We can test the significance of individual
predictors and construct confidence intervals for β using the standard errors, se(β̂),
although, as before, it is better to use profile likelihood methods.

An alternative and perhaps better-known goodness of fit measure is the Pearson’s
X2 statistic:

X2 =
n

∑
i=1

(yi− µ̂i)
2

µ̂i

In this example, we see that the residual deviance is 717 on 24 degrees of free-
dom, which indicates an ill-fitting model if indeed the Poisson is the correct model
for the response. A common drawback in using the standard Poisson regression is that
responses are often more variable than the Poisson model would imply. The Poisson
distribution has only one parameter µ which represents both the mean and the vari-
ance. In contrast, the standard linear model has a variance σ2 that is independent of
the mean µ and hence is more flexible.

5.2 Dispersed Poisson Model

We can modify the standard Poisson model to allow for more variation in the re-
sponse. But before we do that, we must check whether the large size of deviance
might be related to some other cause.

In the Galápagos example, we check the residuals to see if the large deviance can
be explained by an outlier:
halfnorm(residuals(modp))

The half-normal plot of the (absolute value of the) residuals shown in Figure 5.3
shows no outliers. It could be that the structural form of the model needs some im-
provement, but some experimentation with different forms for the predictors will
reveal that there is little scope for improvement. Furthermore, the proportion of de-
viance explained by this model, 1− 717/3510 = 0.796, is about the same as in the
linear model above.

For a Poisson distribution, the mean is equal to the variance. Let’s investigate this
relationship for this model. It is difficult to estimate the variance for a given value of
the mean, but (y− µ̂)2 does serve as a crude approximation. We plot this estimated
variance against the mean, as seen in the second panel of Figure 5.3:
plot(log(fitted(modp)),log((gala$Species-fitted(modp))^2), xlab=

↪→ expression(hat(mu)),ylab=expression((y-hat(mu))^2))
abline(0,1)

We see that the variance is proportional to, but larger than, the mean. When the vari-
ance assumption of the Poisson regression model is broken but the link function and
choice of predictors are correct, the estimates of β are consistent, but the standard er-
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Figure 5.3 Half-normal plot of the residuals of the Poisson model is shown on the left and the
relationship between the mean and variance is shown on the right. A line representing mean
equal to variance is also shown.

rors will be wrong. We cannot determine which predictors are statistically significant
in the above model using the output we have.

The Poisson distribution has only one parameter and so is not very flexible for
empirical fitting purposes. We can generalize by allowing ourselves a dispersion pa-
rameter. Over- or underdispersion can occur in various ways in Poisson models. For
example, suppose the Poisson response Y has rate λ which is itself a random vari-
able. The tendency to fail for a machine may vary from unit to unit even though
they are the same model. We can model this by letting λ be gamma distributed with
Eλ = µ and var λ = µ/φ. Now Y is negative binomial with mean EY = µ. The mean
is the same as the Poisson, but the variance var Y = µ(1+ φ)/φ which is not equal
to µ. In this case, overdispersion would occur and could be modeled using a negative
binomial model as demonstrated in Section 5.4.

If we know the specific mechanism, as in the above example, we could model the
response as a negative binomial or other more flexible distribution. If the mechanism
is not known, we can introduce a dispersion parameter φ such that var Y = φEY = φµ.
φ = 1 is the regular Poisson regression case, while φ > 1 is overdispersion and φ < 1
is underdispersion.

The dispersion parameter may be estimated using:

φ̂ =
X2

n− p
=

∑i(yi− µ̂i)
2/µ̂i

n− p

We estimate the dispersion parameter in our example by:
(dp <- sum(residuals(modp,type="pearson")^2)/modp$df.res)
[1] 31.749
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We can then adjust the standard errors and so forth in the summary as follows:
sumary(modp,dispersion=dp)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.154808 0.291590 10.82 < 2e-16
Area -0.000580 0.000148 -3.92 8.9e-05
Elevation 0.003541 0.000493 7.19 6.5e-13
Nearest 0.008826 0.010262 0.86 0.39
Scruz -0.005709 0.003525 -1.62 0.11
Adjacent -0.000663 0.000165 -4.01 6.0e-05

overdispersion parameter = 31.749
n = 30 p = 6
Deviance = 716.846 Null Deviance = 3510.729 (Difference = 2793.883)

Notice that the estimation of the dispersion and the regression parameters is inde-
pendent, so choosing a dispersion other than one has no effect on the regression
parameter estimates. Notice also that there is some similarity in which variables are
picked out as significant when compared with the linear regression model.

The same result can be achieved by using the quasi-Poisson model which directly
incorporates the dispersion parameter:
modd <- glm(Species ~ ., family=quasipoisson, gala)

When comparing Poisson models with overdispersion, an F-test rather than a χ2

test should be used. As in normal linear models, the variance, or dispersion parameter
in this case, needs to be estimated. This requires the use of the F-test. We can test
the significance of each of the predictors relative to the full model:
drop1(modd,test="F")
Single term deletions

Model:
Species ~ Area + Elevation + Nearest + Scruz + Adjacent

Df Deviance AIC F value Pr(>F)
<none> 717 890
Area 1 1204 1375 16.32 0.00048
Elevation 1 2390 2560 56.00 1e-07
Nearest 1 739 910 0.76 0.39336
Scruz 1 814 984 3.24 0.08444
Adjacent 1 1341 1512 20.91 0.00012

The z-statistics from the sumary() are less reliable and so the F-test is preferred. In
this example, there is little practical difference between the two.

5.3 Rate Models

The number of events observed may depend on a size variable that determines the
number of opportunities for the events to occur. For example, if we record the number
of burglaries reported in different cities, the observed number will depend on the
number of households in these cities. In other cases, the size variable may be time.
For example, if we record the number of customers served by a sales worker, we
must take account of the differing amounts of time worked.

Sometimes, it is possible to analyze such data using a binomial response model.
For the burglary example above, we might model the number of burglaries out of the
number of households. However, if the proportion is small, the Poisson approxima-
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tion to the binomial is effective. Furthermore, in some examples, the total number of
potential cases may not be known exactly. The modeling of rare diseases illustrates
this issue as we may know the number of cases but not have precise population data.
Sometimes, the binomial model simply cannot be used. In the burglary example,
some households may be robbed more than once. In the customer service example,
the size variable is not a count. An alternative approach is to model the ratio. How-
ever, there are often difficulties with normality and unequal variance when taking
this approach, particularly if the counts are small.

In Purott and Reeder (1976), some data is presented from an experiment con-
ducted to determine the effect of gamma radiation on the numbers of chromosomal
abnormalities (ca) observed. The number (cells), in hundreds of cells exposed in
each run, differs. The dose amount (doseamt) and the rate (doserate) at which the
dose is applied are the predictors of interest. We may format the data for observation
like this:
data(dicentric, package="faraway")
round(xtabs(ca/cells ~ doseamt+doserate, dicentric),2)

doserate
doseamt 0.1 0.25 0.5 1 1.5 2 2.5 3 4

1 0.05 0.05 0.07 0.07 0.06 0.07 0.07 0.07 0.07
2.5 0.16 0.28 0.29 0.32 0.38 0.41 0.41 0.37 0.44
5 0.48 0.82 0.90 0.88 1.23 1.32 1.34 1.24 1.43

We can plot the data as seen in the first panel of Figure 5.4:
with(dicentric,interaction.plot(doseamt, doserate, ca/cells, legend=

↪→ FALSE))

Figure 5.4 Chromosomal abnormalities rate response is shown on the left and a residuals vs.
fitted plot of a linear model fit to these data is shown on the right.

We might try modeling the rate directly. We see that the effect of the dose rate may
be multiplicative, so we log this variable in the following model:
lmod <- lm(ca/cells ~ log(doserate)*factor(doseamt), dicentric)
summary(lmod)$adj
[1] 0.98444
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As can be seen from the adjusted R2, this model fits well. However, a look at the
diagnostics reveals a problem, as seen in the second panel of Figure 5.4:
plot(residuals(lmod) ~ fitted(lmod),xlab="Fitted",ylab="Residuals")
abline(h=0)

We might prefer an approach that directly models the count response. We need to use
the log of the number of cells because we expect this to have a multiplicative effect
on the response:
dicentric$dosef <- factor(dicentric$doseamt)
pmod <- glm(ca ~ log(cells)+log(doserate)*dosef, family=poisson,

↪→ dicentric)
sumary(pmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7653 0.3812 -7.25 4e-13
log(cells) 1.0025 0.0514 19.52 < 2e-16
log(doserate) 0.0720 0.0355 2.03 0.04240
dosef2.5 1.6298 0.1027 15.87 < 2e-16
dosef5 2.7667 0.1229 22.52 < 2e-16
log(doserate):dosef2.5 0.1611 0.0484 3.33 0.00087
log(doserate):dosef5 0.1932 0.0430 4.49 7e-06

n = 27 p = 7
Deviance = 21.748 Null Deviance = 916.127 (Difference = 894.379)

We can relate this Poisson model with a log link back to a linear model for the ratio
response:

log(ca/cells) = Xβ

This can be rearranged as

logca= logcells+Xβ

We are using logcells as a predictor. Checking above, we can see that the coefficient
of 1.0025 is very close to one. This suggests fitting a model with the coefficient fixed
as one. In this manner, we are modeling the rate of chromosomal abnormalities while
still maintaining the count response for the Poisson model. This is known as a rate
model. We fix the coefficient as one by using an offset. Such a term on the predictor
side of the model equation has no parameter attached:
rmod <- glm(ca ~ offset(log(cells))+log(doserate)*dosef, family=

↪→ poisson,dicentric)
sumary(rmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7467 0.0343 -80.16 < 2e-16
log(doserate) 0.0718 0.0352 2.04 0.04130
dosef2.5 1.6254 0.0495 32.86 < 2e-16
dosef5 2.7611 0.0435 63.49 < 2e-16
log(doserate):dosef2.5 0.1612 0.0483 3.34 0.00084
log(doserate):dosef5 0.1935 0.0424 4.56 0.0000051

n = 27 p = 6
Deviance = 21.750 Null Deviance = 4753.004 (Difference = 4731.254)

Not surprisingly, the coefficients are only slightly different from the previous model.
We see from the residual deviance that the model fits well. Previous analyses have
posited a quadratic effect in dose; indeed, the observed coefficients speak against
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a purely linear effect. However, given that we have only three dose levels, we can
hardly check whether quadratic is appropriate. Given the significant interaction ef-
fect, we can see that the effect of the dose rate is different depending on the overall
dose. We can see that the combination of a high dose, delivered quickly, has a greater
combined effect than the main effect estimates would suggest. More on the analysis
of this data may be found in Frome and DuFrain (1986).

5.4 Negative Binomial

Given a series of independent trials, each with probability of success p, let Z be the
number of trials until the kth success. Then:

P(Z = z) =
(

z−1
k−1

)
pk(1− p)z−k z = k,k+1, . . .

The negative binomial can arise naturally in several ways. Imagine a system that can
withstand k hits before failing. The probability of a hit in a given time period is p and
we count the number of time periods until failure. The negative binomial also arises
from a generalization of the Poisson where the parameter λ is gamma distributed.
The negative binomial also comes up as a limiting distribution for urn schemes that
can be used to model contagion.

We get a more convenient parameterization if we let Y = Z−k and p = (1+α)−1

so that:

P(Y = y) =
(

y+ k−1
k−1

)
αy

(1+α)y+k , y = 0,1,2, . . .

then EY = µ = kα and var Y = kα+ kα2 = µ+µ2/k.
The log-likelihood is then:

n

∑
i=1

(
yi log

α

1+α
− k log(1+α)+

yi−1

∑
j=0

log( j+ k)− log(yi!)

)

The most convenient way to link the mean response µ to a linear combination of the
predictors X is:

η = xT
β = log

α

1+α
= log

µ
µ+ k

We can regard k as fixed and determined by the application or as an additional pa-
rameter to be estimated. More on regression models for negative binomial responses
may be found in Cameron and Trivedi (1998) and Lawless (1987).

Consider this example. ATT ran an experiment varying five factors relevant to a
wave-soldering procedure for mounting components on printed circuit boards. The
response variable, skips, is a count of how many solder skips appeared to a visual
inspection. The data comes from Comizzoli et al. (1990). We start with a Poisson
regression:
data(solder, package="faraway")
modp <- glm(skips ~ . , family=poisson, data=solder)
c(deviance(modp), df.residual(modp))
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[1] 1829 882

We see that the full model has a residual deviance of 1829 on 882 degrees of freedom.
This is not a good fit. Perhaps including interaction terms will improve the fit:
modp2 <- glm(skips ~ (Opening +Solder + Mask + PadType + Panel)^2 ,

↪→ family=poisson, data=solder)
deviance(modp2)
[1] 1068.8
pchisq(deviance(modp2),df.residual(modp2),lower=FALSE)
[1] 1.1307e-10

The fit is improved but not enough to conclude that the model fits. We could try
adding more interactions but that would make interpretation increasingly difficult. A
check for outliers reveals no problem.

An alternative model for counts is the negative binomial. The functions for fitting
come from the MASS package — see Venables and Ripley (2002) for more details. We
can specify the link parameter k. Here we choose k = 1 to demonstrate the method,
although there is no substantive motivation from this application to use this value.
Note that the k = 1 case corresponds to an assumption of a geometric distribution for
the response.
library(MASS)
modn <- glm(skips ~ .,negative.binomial(1),solder)
modn
Coefficients:
(Intercept) OpeningM OpeningS SolderThin MaskA3

-1.6993 0.5085 1.9997 1.0489 0.6571
MaskA6 MaskB3 MaskB6 PadTypeD6 PadTypeD7
2.5265 1.2726 2.0803 -0.4612 0.0161

PadTypeL4 PadTypeL6 PadTypeL7 PadTypeL8 PadTypeL9
0.4688 -0.4711 -0.2949 -0.0849 -0.5213

PadTypeW4 PadTypeW9 Panel
-0.1425 -1.4836 0.1693

Degrees of Freedom: 899 Total (i.e. Null); 882 Residual
Null Deviance: 1740
Residual Deviance: 559 AIC: 3880

We could experiment with different values of k, but there is a more direct way of
achieving this by allowing the parameter k to vary and be estimated using maximum
likelihood in:
modn <- glm.nb(skips ~ .,solder)
summary(modn)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.4225 0.1427 -9.97 < 2e-16
OpeningM 0.5029 0.0798 6.31 2.9e-10
OpeningS 1.9132 0.0715 26.75 < 2e-16
SolderThin 0.9393 0.0536 17.52 < 2e-16
MaskA3 0.5898 0.0965 6.11 9.9e-10
MaskA6 2.2673 0.1018 22.27 < 2e-16
MaskB3 1.2110 0.0964 12.57 < 2e-16
MaskB6 1.9904 0.0922 21.58 < 2e-16
PadTypeD6 -0.4659 0.1124 -4.15 3.4e-05
PadTypeD7 -0.0331 0.1067 -0.31 0.75611
PadTypeL4 0.3827 0.1026 3.73 0.00019
PadTypeL6 -0.5784 0.1141 -5.07 4.0e-07
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PadTypeL7 -0.3666 0.1109 -3.30 0.00095
PadTypeL8 -0.1589 0.1082 -1.47 0.14199
PadTypeL9 -0.5660 0.1139 -4.97 6.8e-07
PadTypeW4 -0.2004 0.1087 -1.84 0.06526
PadTypeW9 -1.5646 0.1362 -11.49 < 2e-16
Panel 0.1637 0.0314 5.21 1.8e-07

(Dispersion parameter for Negative Binomial(4.3972) family taken to be 1)

Null deviance: 4043.3 on 899 degrees of freedom
Residual deviance: 1008.3 on 882 degrees of freedom
AIC: 3683

Theta: 4.397
Std. Err.: 0.495

2 x log-likelihood: -3645.309

We see that k̂ = 4.397 with a standard error of 0.495. We can compare negative
binomial models using the usual inferential techniques.

5.5 Zero Inflated Count Models

Sometimes we see count response data where the number of zeroes appearing is
significantly greater than the Poisson or negative binomial models would predict.
Consider the number of arrests for criminal offenses incurred by individuals. A large
number of people have never been arrested by the police while a smaller number
have been detained on multiple occasions. Modifying the Poisson by adding a dis-
persion parameter does not adequately model this divergence from the standard count
distributions.

We consider a sample of 915 biochemistry graduate students as analyzed by Long
(1990). The response is the number of articles produced during the last three years of
the PhD. We are interested in how this is related to the gender, marital status, number
of children, prestige of the department and productivity of the advisor of the student.
The dataset may be found in the pscl package of Zeileis et al. (2008) which also
provides the new model fitting functions needed in this section. We start by fitting a
Poisson regression model:
library(pscl)
modp <- glm(art ~ ., data=bioChemists, family=poisson)
sumary(modp)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.30462 0.10298 2.96 0.0031
femWomen -0.22459 0.05461 -4.11 0.0000392
marMarried 0.15524 0.06137 2.53 0.0114
kid5 -0.18488 0.04013 -4.61 0.0000041
phd 0.01282 0.02640 0.49 0.6271
ment 0.02554 0.00201 12.73 < 2e-16

n = 915 p = 6
Deviance = 1634.371 Null Deviance = 1817.405 (Difference = 183.034)

We can see that deviance is significantly larger than the degrees of freedom. Some
experimentation reveals that this cannot be solved by using a richer linear predic-
tor or by eliminating some outliers. We might consider a dispersed Poisson model
or negative binomial but some thought suggests that there are good reasons why a
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student might produce no articles at all. We count and predict how many students
produce between zero and seven articles. Very few students produce more than seven
articles so we ignore these. The predprob function produces the predicted probabil-
ities for each case. By summing these, we get the expected number for each article
count.
ocount <- table(bioChemists$art)[1:8]
pcount <- colSums(predprob(modp)[,1:8])
plot(pcount,ocount,type="n",xlab="Predicted",ylab="Observed")
text(pcount,ocount, 0:7)

Figure 5.5 On the left, the predicted and observed counts for number of articles 0-7 is shown.
On the right, the predictions from the hurdle and zero-inflated Poisson model are compared.

In the left panel of Figure 5.5, we see that there are many more unproductive students
than would be predicted by the Poisson model. In contrast, the relationship between
observed and predicted is linear for the students who produce at least one article.

There are two main ways of modeling an excess of zero counts. First we con-
sider the hurdle model. This can be understood in terms of a latent variable. In our
example, this latent variable might measure the propensity of the student to publish.
We can imagine a hurdle which this latent variable must exceed for a publication to
be produced. If the latent variable is less than the hurdle, nothing appears, but as it
exceeds the hurdle, more articles may be produced. The latent variable is related to
the predictors in some manner we may wish to uncover. A general specification of
the model is:

P(Y = 0) = f1(0)

P(Y = j) =
1− f1(0)
1− f2(0)

f2( j), j > 0

The first part of the model describes the probability of zero being observed (or not).
We shall use a binary response model that can link this probability to the predictors.
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The second part of the model specifies the probability of outcomes greater than zero.
We shall use a Poisson for f2 but this now describes a truncated Poisson, as zero is
not an allowable outcome and we must rescale the distribution accordingly. Zero is
the hurdle here but we could specify higher hurdles if the application warranted it.
We can fit such a model as:
modh <- hurdle(art ~ ., data=bioChemists)
summary(modh)
Count model coefficients (truncated poisson with log link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.67114 0.12246 5.48 4.2e-08
femWomen -0.22858 0.06522 -3.51 0.00046
marMarried 0.09648 0.07283 1.32 0.18521
kid5 -0.14219 0.04845 -2.93 0.00334
phd -0.01273 0.03130 -0.41 0.68434
ment 0.01875 0.00228 8.22 < 2e-16
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2368 0.2955 0.80 0.423
femWomen -0.2512 0.1591 -1.58 0.114
marMarried 0.3262 0.1808 1.80 0.071
kid5 -0.2852 0.1111 -2.57 0.010
phd 0.0222 0.0796 0.28 0.780
ment 0.0801 0.0130 6.15 7.5e-10

Number of iterations in BFGS optimization: 12
Log-likelihood: -1.61e+03 on 12 Df

Notice that the model produces two sets of coefficients — one for the truncated
Poisson part of the model and one for the binary response part of the model. As can
be seen, these can be quite different. By default a binomial model with a logit link
is used for the zero component and a Poisson with a log link is used for the count
component. Sensible alternatives can be specified. Before interpreting the model, we
present a second form of model for zero inflated count data.

Suppose we ask people how many games of chess they have played in the last
month. Some will say zero because they do not play chess but some zero responses
will be from chess players who have not managed a game in the last month. Circum-
stances such as these require a mixture model. A general specification of this model
takes the form:

P(Y = 0) = φ+(1−φ) f (0)
P(Y = j) = (1−φ) f ( j), j > 0

The parameter φ represents the proportion who will always respond zero. We can
model this proportion using binary response model. The distribution f models the
counts of those individuals that can have a positive response. In some cases, these
individuals will have a zero response which combines with the always-zero subjects.
We can use a Poisson for f in which case this is called zero-inflated Poisson or ZIP
model. We can fit this:
modz <- zeroinfl(art ~ ., data=bioChemists)
summary(modz)
Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)
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(Intercept) 0.64084 0.12131 5.28 1.3e-07
femWomen -0.20914 0.06340 -3.30 0.00097
marMarried 0.10375 0.07111 1.46 0.14456
kid5 -0.14332 0.04743 -3.02 0.00251
phd -0.00617 0.03101 -0.20 0.84238
ment 0.01810 0.00229 7.89 3.1e-15

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.57706 0.50939 -1.13 0.257
femWomen 0.10975 0.28008 0.39 0.695
marMarried -0.35401 0.31761 -1.11 0.265
kid5 0.21710 0.19648 1.10 0.269
phd 0.00127 0.14526 0.01 0.993
ment -0.13411 0.04524 -2.96 0.003

Number of iterations in BFGS optimization: 21
Log-likelihood: -1.6e+03 on 12 Df

The results take a similar form to the hurdle model. Focusing on the zero part of
the model, we notice that the ment variable which counts the number of articles pro-
duced by the mentor is the most significant predictor in both cases but takes opposing
signs. This is because the hurdle approach models the probability of a positive count
whereas the zero-inflated approach models the probability of a zero count. Hence
there is no contradiction.

It is difficult to choose between the two approaches. We can compare the fitted
values:
plot(fitted(modh), fitted(modz), xlab="Hurdle predictions", ylab="ZIP

↪→ predictions")
abline(0,1)

As can be seen in the second panel of Figure 5.5, there is not much difference be-
tween these fits. We might use our background knowledge of the application to make
an appropriate choice.

We can use the standard likelihood testing theory to compare nested models. For
example, suppose we consider a simplified version of the ZIP model where we now
have different predictors for the two components of the model. The count part of the
model is specified before the | and the zero model after.
modz2 <- zeroinfl(art ~ fem+kid5+ment | ment, data=bioChemists)
summary(modz2)
Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.69452 0.05303 13.10 < 2e-16
femWomen -0.23386 0.05840 -4.00 6.2e-05
kid5 -0.12652 0.03967 -3.19 0.0014
ment 0.01800 0.00222 8.10 5.7e-16

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6849 0.2053 -3.34 0.00085
ment -0.1268 0.0398 -3.18 0.00145

Number of iterations in BFGS optimization: 13
Log-likelihood: -1.61e+03 on 6 Df
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Twice the difference in the log-likelihood will be approximately χ2-distributed
with degrees of freedom equal to the difference in the number of parameters.
(lrt <- 2*(modz$loglik-modz2$loglik))
[1] 6.1728
1-pchisq(6.1728,6)
[1] 0.40411

Given the large p-value of 0.4, we conclude that our simplification of the model is
justifiable. For interpretation, the exponentiated coefficients are more useful:
exp(coef(modz2))
count_(Intercept) count_femWomen count_kid5

2.00274 0.79147 0.88116
count_ment zero_(Intercept) zero_ment

1.01817 0.50415 0.88091

We see that among students who are inclined to write articles, women produce at a
rate 0.79 times that for men and each child under five reduces production by about
12% while each additional article produced by the mentor increases production by
about 1.8%. We see that each extra article from the mentor reduces the odds of a
nonproductive student by a factor of 0.88. Of course, none of these interpretations
can be taken as causal.

We can also use the model to make predictions. Consider a single male with no
children whose mentor produced six articles:
newman <- data.frame(fem="Men",mar="Single",kid5=0,ment=6)
predict(modz2, newdata=newman, type="prob")

0 1 2 3 4 5 6
1 0.27759 0.19394 0.21636 0.16091 0.089758 0.040054 0.014895
...

We see that most likely outcome for this student is that no articles will be produced
with a probability of 0.278. We can query the probability of no production from the
zero part of the model:
predict(modz2, newdata=newman, type="zero")

1
0.19067

So the additional probability to make this up to 0.278 comes from the Poisson count
part of the model. This difference might be attributed to the student who had the
potential to write an article but just didn’t do it.

Exercises

1. The dataset discoveries lists the numbers of “great” inventions and scientific
discoveries in each year from 1860 to 1959.

(a) Plot the discoveries over time and comment on the trend, if any.
(b) Fit a Poisson response model with a constant term. Now compute the mean

number of discoveries per year. What is the relationship between this mean
and the coefficient seen in the model?

(c) Use the deviance from the model to check whether the model fits the data.
What does this say about whether the rate of discoveries is constant over time?

(d) Make a table of how many years had zero, one, two, three, etc. discoveries.
Collapse eight or more into a single category. Under an appropriate Poisson
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distribution, calculate the expected number of years with each number of dis-
coveries. Plot the observed against the expected using a different plotting char-
acter to denote the number of discoveries. How well do they agree?

(e) Use the Pearson’s Chi-squared test to check whether the observed numbers are
consistent with the expected numbers. Interpret the result.

(f) Fit a Poisson response model that is quadratic in the year. Test for the signifi-
cance of the quadratic term. What does this say about the presence of a trend
in discovery?

(g) Compute the predicted number of discoveries each year and show these pre-
dictions as a line drawn over the data. Comment on what you see.

2. The salmonella data was collected in a salmonella reverse mutagenicity assay.
The predictor is the dose level of quinoline and the response is the numbers of
revertant colonies of TA98 salmonella observed on each of three replicate plates.

(a) Plot the data and comment on the relationship between dose and colonies.
(b) Compute the mean and variance within each set of observations with the same

dose. Plot the variance against the mean and comment on what this says about
overdispersion.

(c) Fit a model with dose treated as a six-level factor. Check the deviance to de-
termine whether this model fits the data. Do you think it is possible to find a
transformation of the dose predictor that results in a Poisson model that does
fit the data?

(d) Make a QQ plot of the residuals from the previous model. Interpret the plot.
(e) Fit a Poisson model what includes an overdispersion parameter and is quadratic

in the dose. Can we determine from the deviance of this model whether the fit
is adequate?

(f) Plot the residuals against the fitted values for the previous model. Interpret the
plot.

(g) Plot the fitted mean response of this model on top of the data.
(h) Give the predicted mean response for a dose of 500. Compute a 95% confi-

dence interval.
(i) At what dose does the maximum predicted response occur?

3. The ships dataset found in the MASS package gives the number of wave damage
incidents and aggregate months of service for different types of ships broken down
by year of construction and period of operation.

(a) Examine the data for the period of operation 1960–1974 for ships constructed
in the years 1975–1979. Why are there no damage incidents?

(b) Make a two-way table that shows the rate of damage incidents per 1000 months
of aggregate service classified by type and year of construction. Comment on
the table.

(c) Compute the rate of damage incidents per year for all cases where some service
was recorded.
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(d) Fit linear models with the observed rate of damage incidents as the response
and the following three combinations of predictors: (i) All two-way interac-
tions, (ii) main effects terms only, (iii) null (no predictors). Make sure year is
treated as a factor rather than numerical variable. Which of these three models
is preferred?

(e) Fit a Poisson response model for the number of incidents with the predictors:
log of service, type, year and period. Test whether the parameter associated
with the service term can be one. Explain why we are interested in such a test.

(f) Fit the Poisson rate model with all two-way interactions of the three predictors.
Does this model fit the data?

(g) Check the residuals. Are there any outliers? Plot residuals against the fitted
values. Investigate any unusual features of this plot.

(h) Now fit the rate model with just the main effects and compare it to the interac-
tion model. Which model is preferred?

(i) Fit quasi-Poisson versions of the two previous models and repeat the compari-
son.

(j) Interpret the coefficients of the main effects of the quasi-Poisson model. What
factors are associated with higher and lower rates of damage incidents?

4. The dataset africa gives information about the number of military coups in sub-
Saharan Africa and various political and geographical information.

(a) Plot the response, the number of military coups against each of the other vari-
ables.

(b) Use a stepwise AIC-based method to select a model that uses a smaller number
of the available predictors.

(c) Does the deviance of your selected model indicate a good fit to the data?
(d) Make a QQ plot of the residuals and comment. Plot the residuals against the

fitted values and interpret the result. What is the source of the lines of points
observed on this plot?

(e) Give an interpretation of the coefficients of this plot.
(f) Count the number of countries with each number of military coups. Compare

this with the numbers predicted by the previous model. Is there any evidence
of excess of countries with zero coups? Use a Chi-squared test as implemented
in chisq.test().

5. The dvisits data comes from the Australian Health Survey of 1977–1978 and
consist of 5190 single adults where young and old have been oversampled.

(a) Make plots which show the relationship between the response variable,
doctorco, and the potential predictors, age and illness.

(b) Combine the predictors chcond1 and chcond2 into a single three-level factor.
Make an appropriate plot showing the relationship between this factor and the
response. Comment.
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(c) Build a Poisson regression model with doctorco as the response and sex,
age, agesq, income, levyplus, freepoor, freerepa, illness, actdays,
hscore and the three-level condition factor as possible predictor variables.
Considering the deviance of this model, does this model fit the data?

(d) Plot the residuals and the fitted values — why are there lines of observations
on the plot? Make a QQ plot of the residuals and comment.

(e) Use a stepwise AIC-based model selection method. What sort of person would
be predicted to visit the doctor the most under your selected model?

(f) For the last person in the dataset, compute the predicted probability distribution
for their visits to the doctor, i.e., give the probability they visit 0, 1, 2, etc. times.

(g) Tabulate the frequencies of the number of doctor visits. Compute the expected
frequencies of doctor visits under your most recent model. Compare the ob-
served with the expected frequencies and comment on whether it is worth fit-
ting a zero-inflated count model.

(h) Fit a comparable (Gaussian) linear model and graphically compare the fits.
Describe how they differ.

6. Components are attached to an electronic circuit card assembly by a wave-
soldering process. The soldering process involves baking and preheating the cir-
cuit card and then passing it through a solder wave by conveyor. Defects arise
during the process. The design is 27−3 with three replicates. The data is presented
in the dataset wavesolder. You can assume that the replicates are independent.

(a) Make plots of the number of defects against each of the predictors. Comment
on the relationships you see. Check graphically that there is no trend in the
replicates.

(b) Compute the mean and variance within each group of three replicates. Plot the
variance against the mean. Comment on the relationship and the viability of a
Poisson model for the response. Repeat the plot, but use a log scale on both
axes. Does this plot reveal anything new?

(c) Fit a Poisson model for the number of defects with all predictors included as
main effects. What does the deviance of this model say about its fit?

(d) Make a plot of the residuals against the fitted values and comment on what is
seen. Make a QQ plot of the residuals. Are there any outliers?

(e) Refit the Poisson model but excluding the case with the largest residual. Com-
pute the deviance. Does this model now fit the data?

(f) Fit a quasi-poisson model with same model formula and excluded case. Esti-
mate the value of the dispersion parameter. Check the model summary. Now
use an F-test to the significance of each of the predictors. Compare the two sets
of tests—one from the model summary and one from the F-test. Are they simi-
lar? Report on what predictors are significant and which level of the significant
factors will lead to higher defects.

(g) Check the diagnostics again as in (d).
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7. The dataset esdcomp was recorded on 44 doctors working in an emergency service
at a hospital to study the factors affecting the number of complaints received.

(a) Consider the rate of complaints in terms of the number received in relation to
the number of patient visits made. Plot this against each of the four potential
predictors and comment on the relationships.

(b) Fit a binomial GLM for the number of complaints out of the number of vis-
its with the other four variables as predictors. Does this model fit the data?
Perform this check numerically and graphically.

(c) Check the significance of the four predictors in the binomial model. Give a
numerical interpretation to the effect of any significant predictors.

(d) Fit an appropriate Poisson rate model for number of complaints that takes a
comparable form to the binomial GLM fitted earlier. Does this model fit the
data? Again check this numerically and graphically.

(e) Again check the significance of the predictors and provide a numerical inter-
pretation. Compare the conclusions of the two models.

(f) Exchange the role of hours and visits in the Poisson rate model. Again check
the significance of the predictors and interpret the outcome.

(g) Compare the two proposed rate models.



Chapter 6

Contingency Tables

A contingency table is used to show cross-classified categorical data on two or more
variables. The variables can be nominal or ordinal. A nominal variable has cate-
gories with no natural ordering; for example, consider the automotive companies
Ford, General Motors and Toyota. An ordering could be imposed using some crite-
rion like sales, but there is nothing inherent in the categories that makes any particular
ordering obvious. An ordinal variable has a natural default ordering. For example, a
disease might be recorded as absent, mild or severe. The five-point Likert scale rang-
ing through strongly disagree, disagree, neutral, agree and strongly agree is another
example.

An interval scale is an ordinal variable that has categories with a distance mea-
sure. This is often the result of continuous data that has been discretized into inter-
vals. For example, age groups 0–18, 18–34, 34–55 and 55+ might be used to record
age information. If the intervals are relatively wide, then methods for ordinal data
can be used where the additional information about the intervals may be useful in the
modeling. If the intervals are quite narrow, then we could replace interval response
with the midpoint of the interval and then use continuous data methods. One could
argue that all so-called continuous data is of this form, because such data cannot be
measured with arbitrary precision. Height might be given to the nearest centimeter,
for example.

6.1 Two-by-Two Tables

The data shown in Table 6.1 were collected as part of a quality improvement study at
a semiconductor factory. A sample of wafers was drawn and cross-classified accord-
ing to whether a particle was found on the die that produced the wafer and whether
the wafer was good or bad. More details on the study may be found in Hall (1994).
The data might have arisen under several possible sampling schemes:

Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Table 6.1 Study of the relationship between wafer quality and the presence of particles on the
wafer.
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1. We observed the manufacturing process for a certain period of time and observed
450 wafers. The data were then cross-classified. We could use a Poisson model.

2. We decided to sample 450 wafers. The data were then cross-classified. We could
use a multinomial model.

3. We selected 400 wafers without particles and 50 wafers with particles and then
recorded the good or bad outcome. We could use a binomial model.

4. We selected 400 wafers without particles and 50 wafers with particles that also
included, by design, 334 good wafers and 116 bad ones. We could use a hyperge-
ometric model.

The first three sampling schemes are all plausible. The fourth scheme seems less
likely in this example, but we include it for completeness. Such a scheme is more
attractive when one level of each variable is relatively rare and we choose to over-
sample both levels to ensure some representation.

The main question of interest concerning these data is whether the presence of
particles on the wafer affects the quality outcome. We shall see that all four sam-
pling schemes lead to exactly the same conclusion. First, let’s set up the data in a
convenient form for analysis:
y <- c(320,14,80,36)
particle <- gl(2,1,4,labels=c("no","yes"))
quality <- gl(2,2,labels=c("good","bad"))
(wafer <- data.frame(y,particle,quality))

y particle quality
1 320 no good
2 14 yes good
3 80 no bad
4 36 yes bad

We will need the data in this form with one observation per line for our model fitting,
but usually we prefer to observe it in table form:
(ov <- xtabs(y ~ quality+particle))

particle
quality no yes

good 320 14
bad 80 36

Poisson Model: Suppose we assume that the process is observed for some period
of time and we count the number of occurrences of the possible outcomes. It would
be natural to view these outcomes occurring at different rates and that we could form
a Poisson model for these rates. Suppose we fit an additive model:
modl <- glm(y ~ particle+quality, poisson)
library(faraway)
sumary(modl)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.6934 0.0572 99.54 <2e-16
particleyes -2.0794 0.1500 -13.86 <2e-16
qualitybad -1.0576 0.1078 -9.81 <2e-16

n = 4 p = 3
Deviance = 54.030 Null Deviance = 474.099 (Difference = 420.068)

The null model, which suggests all four outcomes occur at the same rate, does not fit
because the deviance of 474.1 is very large for three degrees of freedom. The additive
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model, with a deviance of 54.03, is clearly an improvement over this. We might also
want to test the significance of the individual predictors. We could use the z-values,
but it is better to use the likelihood ratio test based on the differences in the deviance
(not that it matters much for this particular dataset):
drop1(modl,test="Chi")
Single term deletions

Model:
y ~ particle + quality

Df Deviance AIC LRT Pr(Chi)
<none> 54 84
particle 1 364 392 310 <2e-16
quality 1 164 192 110 <2e-16

We see that both predictors are significant relative to the full model. By examining
the coefficients, we see that wafers without particles occur at a significantly higher
rate than wafers with particles. Similarly, we see that good-quality wafers occur at a
significantly higher rate than bad-quality wafers.

The model coefficients are closely related to the marginal totals in the table. The
maximum likelihood estimates satisfy:

XT y = XT µ̂

where the XT y is, in this example:
(t(model.matrix(modl)) %*% y)[,]
(Intercept) particleyes qualitybad

450 50 116

So we see that the fitted values, µ̂, are a function of marginal totals. This fact is
exploited in an alternative fitting method known as iterative proportional fitting. The
glm function in R, however, uses Fisher scoring, described in Section 8.2. In any
case, the log-likelihood (ignoring any terms not involving µ) is:

logL = ∑
i

yi logµi

which is maximized to obtain the fit. In fact the log-likelihood has a second term,
∑i(yi− µi), but this will be zero at the MLE provided the model has an intercept
term, so this term can be ignored.

The analysis so far has told us nothing about the relationship between the pres-
ence of particles and the quality of the wafer. The additive model posits:

logµ = γ+αi +β j

where α represents the particle effect and β represents the quality outcome and i, j =
1,2. γ is the intercept term. Due to the log link, the predicted rate for the response
in any cell in the table is formed from the product of the rates for the corresponding
levels of the two predictors. There is no interaction term and so good- or bad-quality
outcomes occur independently of whether a particle was found on the wafer. This
model has a deviance of 54.03 on one degree of freedom and so does not fit the data.

The addition of an interaction term would saturate the model and so would have
zero deviance and degrees of freedom. So an hypothesis comparing the models with
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and without interaction would give a test statistic of 54.03 on one degree of freedom.
The hypothesis of no interaction would be rejected. We conclude that the presence
of particles is related to the quality outcome.

Multinomial Model: Suppose we assume that the total sample size was fixed
at 450 and that the frequency of the four possible outcomes was recorded. In these
circumstances, it is natural to use a multinomial distribution to model the response.
Let yi j be the observed response in cell (i, j) and let pi j be the probability that an
observation falls in that cell and let n be the sample size. The probability of the
observed response under the multinomial is then:

n!
∏i ∏ j yi j

∏
i

∏
j

p
yi j
i j

Now the pi j will be linked to the predictor information according to the model we
choose. To estimate the parameters, we would maximize the log-likelihood:

logL = ∑
i

∑
j

yi j log pi j

where terms not involving pi j are ignored. Notice that this takes essentially the same
form as for the Poisson model above.

The main hypothesis of interest is whether the quality and presence of a particle
on the wafer are independent. Let pi for i= 1,2 be the probabilities of the two quality
outcomes and p j for j = 1,2 be the probability of the two particle categories. Let pi j
be the probability of a particular joint outcome. Under independence, pi j = pi p j.
Using the fact that probabilities must sum to one, the maximum likelihood estimates
are:

p̂i = ∑
j

yi j/n and p̂ j = ∑
i

yi j/n

We can compute these for the wafer data as, respectively:
(pp <- prop.table( xtabs(y ~ particle)))
particle

no yes
0.88889 0.11111
(qp <- prop.table( xtabs(y ~ quality)))
quality

good bad
0.74222 0.25778

The fitted values are then µ̂i j = npi p j = ∑i yi j ∑ j yi j/n or:
(fv <- outer(qp,pp)*450)

particle
quality no yes

good 296.89 37.111
bad 103.11 12.889

To test the fit, we compare this model against the saturated model, for which
µ̂i j = yi j. So the deviance is:

2∑
i

∑
j

yi j log(yi j/µi j)
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which computes to:
2*sum(ov*log(ov/fv))
[1] 54.03

which is the same deviance we observed in the Poisson model. So we see that the test
for independence in the multinomial model coincides with the test for no interaction
in the Poisson model. The Poisson-based test is easier to execute in R, so we shall
usually take that approach.

This connection between the Poisson and multinomial is no surprise due to the
following result. Let Y1, . . . ,Yk be independent Poisson random variables with means
λ1, . . .λk, then the joint distribution of Y1, . . . ,Yk|∑i Yi = n is multinomial with prob-
abilities p j = λ j/∑i λi.

One alternative to the deviance is the Pearson X2 statistic:

X2 = ∑
i, j

(yi j− µ̂i j)
2

µ̂i j

which takes the value:
sum( (ov-fv)^2/fv)
[1] 62.812

Yates’ continuity correction subtracts 0.5 from yi j− µ̂i j when this value is positive
and adds 0.5 when it is negative. This gives superior results for small samples. This
correction is implemented in:
prop.test(ov)

2-sample test for equality of proportions with
continuity correction

data: ov
X-squared = 60.124, df = 1, p-value = 8.907e-15

The deviance-based test is preferred to the Pearson’s X2.
Binomial: It would also be natural to view the presence of the particle as affecting

the quality of wafer. We would view the quality as the response and the particle status
as a predictor. We might fix the number of wafers with no particles at 400 and the
number with particles as 50 and then observe the outcome. We could then use a
binomial model for the response for both groups. Let’s see what happens:
(m <- matrix(y,nrow=2))

[,1] [,2]
[1,] 320 80
[2,] 14 36
modb <- glm(m ~ 1, family=binomial)
deviance(modb)
[1] 54.03

We fit the null model which suggests that the probability of the response is the
same in both the particle and no-particle group. This hypothesis of homogeneity cor-
responds exactly to the test of independence and the deviance is exactly the same.

For larger contingency tables, where there are more than two rows (or columns),
we can use a multinomial model for each row. This model is more accurately called a
product multinomial model to distinguish it from the unrestricted multinomial model
introduced above.
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Hypergeometric: The remaining case is where both sets of marginal totals are
fixed. This situation is rather less common in practice, but does suggest a more accu-
rate test for independence. This sampling scheme can arise when classifying objects
into one of two types when the true proportions of each type are known in advance.
For example, suppose you are given 10 true or false statements and told that 5 are
true and 5 are false. You are asked to sort the statements into true and false. We can
generate a two-by-two table of the correct classification against the observed clas-
sification generated. Under the hypergeometric distribution and the assumption of
independence, the probability of the observed table is:

(y11 + y12)!(y11 + y21)!(y12 + y22)!(y21 + y22)!
y11!y12!y21!y22!n!

If we fix any number in the table, say y11, the remaining three numbers are completely
determined because the row and column totals are known. There is a limited number
of values which y11 can possibly take and we can compute the probability of all these
outcomes. Specifically, we can compute the total probability of all outcomes more
extreme than the one observed. This method is called Fisher’s exact test. We may
execute it as follows:
fisher.test(ov)

Fisher’s Exact Test for Count Data

data: ov
p-value = 2.955e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

5.0906 21.5441
sample estimates:
odds ratio

10.213

The odds ratio, which is (y11y22)/(y12y21), takes the value:
(320*36)/(14*80)
[1] 10.286

and is a measure of the association for which an exact confidence interval may be
calculated as we see in the output.

Fisher’s test is attractive because the null distribution for the deviance and Pear-
son’s χ2 test statistics is only approximately χ2 distributed. This approximation is
particularly suspect for tables with small counts making an exact method valuable.
The Fisher test becomes more difficult to compute for larger tables and some ap-
proximations may be necessary. However, for larger tables, the χ2 approximation
will tend to be very accurate.

6.2 Larger Two-Way Tables

Snee (1974) presents data on 592 students cross-classified by hair and eye color:
data(haireye, package="faraway")
haireye

y eye hair
1 5 green BLACK
2 29 green BROWN
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..etc..
16 7 brown BLOND

The data is more conveniently displayed using:
(ct <- xtabs(y ~ hair + eye, haireye))

eye
hair green hazel blue brown
BLACK 5 15 20 68
BROWN 29 54 84 119
RED 14 14 17 26
BLOND 16 10 94 7

We can execute the usual Pearson’s χ2 test for independence as:
summary(ct)
Call: xtabs(formula = y ~ hair + eye, data = haireye)
Number of cases in table: 592
Number of factors: 2
Test for independence of all factors:

Chisq = 138, df = 9, p-value = 2.3e-25

where we see that hair and eye color are clearly not independent.
One option for displaying contingency table data is the dotchart:

dotchart(ct)

which may be seen in the first panel of Figure 6.1. The mosaic plot, described in
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Figure 6.1 Dotchart and mosaic plot.

Hartigan and Kleiner (1981), divides the plot region according to the frequency of
each level in a recursive manner:
mosaicplot(ct, color=TRUE, main=NULL, las=1)

In the plot shown in the second panel of Figure 6.1, the area is first divided according
to the frequency of hair color. Within each hair color, the area is then divided accord-
ing to the frequency of eye color. A different plot could be constructed by reversing
the order of hair and eye in the xtabs command above. We can now readily see
the frequency of various outcomes. We see, for example, that brown hair and brown
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eyes is the most common combination while green eyes and black hair is the least
common. When the two categories are independent, the rectangles in the plot will
align close to a grid. In this example, the horizontal divisions do not line up at all so
we can tell there is dependence.

Now we fit the Poisson GLM:
modc <- glm(y ~ hair+eye, family=poisson, haireye)
sumary(modc)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.458 0.152 16.14 <2e-16
hairBROWN 0.974 0.113 8.62 <2e-16
hairRED -0.419 0.153 -2.75 0.006
hairBLOND 0.162 0.131 1.24 0.216
eyehazel 0.374 0.162 2.30 0.021
eyeblue 1.212 0.142 8.51 <2e-16
eyebrown 1.235 0.142 8.69 <2e-16

n = 16 p = 7
Deviance = 146.444 Null Deviance = 453.308 (Difference = 306.864)

We see that most of the levels of hair and eye color show up as significantly different
from the reference levels of black hair and green eyes. But this merely indicates that
there are higher numbers of people with some hair colors than others and some eye
colors than others. We already know this. We are more interested in the relationship
between hair and eye color. The deviance of 146.44 on just nine degrees freedom
shows that they are clearly dependent.

6.3 Correspondence Analysis

The analysis of the hair-eye color data in the previous section revealed how hair and
eye color are dependent. But this does not tell us how they are dependent. To study
this, we can use a kind of residual analysis for contingency tables called correspon-
dence analysis.

Compute the Pearson residuals rP and write them in the matrix form Ri j, where
i = 1, . . . ,r and j = 1, . . . ,c, according to the structure of the data. Perform the sin-
gular value decomposition:

Rr×c =Ur×wDw×wV T
w×c

where r is the number of rows, c is the number of columns and w = min(r,c). U and
V are called the right and left singular vectors, respectively. D is a diagonal matrix
with sorted elements di, called singular values. Another way of writing this is:

Ri j =
w

∑
k=1

UikdkVjk

As with eigendecompositions, it is not uncommon for the first few singular values to
be much larger than the rest. Suppose that the first two dominate so that:

Ri j ≈Ui1d1Vj1 +Ui2d2Vj2
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We usually absorb the ds into U and V for plotting purposes so that we can assess
the relative contribution of the components. Thus:

Ri j ≈ (Ui1
√

d1)× (Vj1
√

d1)+(Ui2
√

d2)× (Vj2
√

d2)

≡ Ui1Vj1 +Ui2Vj2

where in the latter expression we have redefined the Us and V s to include the
√

d.
The two-dimensional correspondence plot displays Ui2 against Ui1 and Vj2

against Vj1 on the same graph. So the points on the plot will either represent a row
level (U) or a column level (V ). We compute the plot for the hair and eye color data:
z <- xtabs(residuals(modc,type="pearson")~hair+eye,haireye)
svdz <- svd(z,2,2)
leftsv <- svdz$u %*% diag(sqrt(svdz$d[1:2]))
rightsv <- svdz$v %*% diag(sqrt(svdz$d[1:2]))
ll <- 1.1*max(abs(rightsv),abs(leftsv))
plot(rbind(leftsv,rightsv),asp=1,xlim=c(-ll,ll),ylim=c(-ll,ll), xlab="

↪→ SV1",ylab="SV2",type="n")
abline(h=0,v=0)
text(leftsv,dimnames(z)[[1]])
text(rightsv,dimnames(z)[[2]])

The plot is shown in Figure 6.2. The correspondence analysis plot can be interpreted
in light of the following observations:
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Figure 6.2 Correspondence analysis for hair-eye combinations. Hair colors are given in up-
percase letters and eye colors are given in lowercase letters.
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• ∑d2
i = Pearson’s X2 is called the inertia. When r = c, d2

i are the eigenvalues of R.
• Look for large values of |Ui| indicating that the row i profile is different. For

example, the point for blonds in Figure 6.2 is far from the origin indicating that
the distribution of eye colors within this group of people is not typical. In contrast,
we see that the point for people with brown hair is close to the origin, indicating
an eye color distribution that is close to the overall average. The same type of
observation is true for the columns, |Vj|. Points distant from the origin mean that
the level associated with the column j profile is different in some way.
• If row and column levels appear close together on the plot and far from the ori-

gin, we can see that there will be a large positive residual associated with this
particular combination indicating a strong positive association. For example, we
see that blue eyes and blond hair occur close together on the plot and far from
the origin indicating a strong association. On the other hand, if the two points are
situated diametrically apart on either side of the origin, we may expect a large
negative residual indicating a strong negative association. For example, there are
relatively fewer people with blond hair and brown eyes than would be expected
under independence.
• If points representing two rows or two column levels are close together, this indi-

cates that the two levels will have a similar pattern of association. In some cases,
one might consider combining the two levels. For example, people with hazel or
green eyes have similar hair color distributions and we might choose to combine
these two categories.
• Because the distance between points is of interest, it is important that the plot is

scaled so that the visual distance is proportionately correct. This does not happen
automatically, because the default behavior of plots is to fill the plot region out to
the specified aspect ratio.
There are several competing ways to construct contingency tables. See Venables

and Ripley (2002) who provide the function corresp in the MASS package. See
also Blasius and Greenacre (1998) for a survey of methods for visualizing categorical
data.

6.4 Matched Pairs

In the typical two-way contingency tables, we display accumulated information
about two categorical measures on the same object. In matched pairs, we observe
one measure on two matched objects.

In Stuart (1955), data on the vision of a sample of women is presented. The left
and right eye performance is graded into four categories:
data(eyegrade)
(ct <- xtabs(y ~ right+left, eyegrade))

left
right best second third worst

best 1520 266 124 66
second 234 1512 432 78
third 117 362 1772 205
worst 36 82 179 492
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If we check for independence:
summary(ct)
Call: xtabs(formula = y ~ right + left, data = eyegrade)
Number of cases in table: 7477
Number of factors: 2
Test for independence of all factors:

Chisq = 8097, df = 9, p-value = 0

We are not surprised to find strong evidence of dependence. Most people’s eyes are
similar. A more interesting hypothesis for such matched pair data is symmetry. Is
pi j = p ji? We can fit such a model by defining a factor where the levels represent
the symmetric pairs for the off-diagonal elements. There is only one observation for
each level down the diagonal:
(symfac <- factor(apply(eyegrade[,2:3],1, function(x) paste(sort(x),

↪→ collapse="-"))))
[1] best-best best-second best-third best-worst
[5] best-second second-second second-third second-worst
[9] best-third second-third third-third third-worst

[13] best-worst second-worst third-worst worst-worst
10 Levels: best-best best-second best-third ... worst-worst

We now fit this model:
mods <- glm(y ~ symfac, eyegrade, family=poisson)
c(deviance(mods),df.residual(mods))
[1] 19.249 6.000
pchisq(deviance(mods),df.residual(mods),lower=F)
[1] 0.0037629

Here, we see evidence of a lack of symmetry. It is worth checking the residuals:
round(xtabs(residuals(mods) ~ right+left, eyegrade),3)

left
right best second third worst
best 0.000 1.001 0.317 2.008
second -1.023 0.000 1.732 -0.225
third -0.320 -1.783 0.000 0.928
worst -2.219 0.223 -0.949 0.000

We see that the residuals above the diagonal are mostly positive, while they are
mostly negative below the diagonal. So there are generally more poor left, good right
eye combinations than the reverse. Furthermore, we can compute the marginals:
margin.table(ct,1)
right
best second third worst
1976 2256 2456 789

margin.table(ct,2)
left
best second third worst
1907 2222 2507 841

We see that there are somewhat more poor left eyes and good right eyes, so per-
haps marginal homogeneity does not hold here. The assumption of symmetry implies
marginal homogeneity (the reverse is not necessarily true). We may observe data
where there is a difference in the frequencies of the levels of the rows and columns,
but still be interested in symmetry. Suppose we set:

pi j = αiβ jγi j

where γi j = γ ji. This will allow for some symmetry while allowing for different
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marginals. This is the quasi-symmetry model. Now:

logEYi j = lognpi j = logn+ logαi + logβ j + logγi j

So we can fit this model using:
modq <- glm(y ~ right+left+symfac, eyegrade, family=poisson)
pchisq(deviance(modq),df.residual(modq),lower=F)
[1] 0.06375

We see that this model does fit. It can be shown that marginal homogeneity together
with quasi-symmetry implies symmetry. One can test for marginal homogeneity by
comparing the symmetry and quasi-symmetry models:
anova(mods,modq,test="Chi")
Analysis of Deviance Table

Model 1: y ~ symfac
Model 2: y ~ right + left + symfac

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 6 19.25
2 3 7.27 3 11.98 0.01

So we find evidence of a lack of marginal homogeneity. This test is only appropriate
if quasi-symmetry already holds.

When we examine the data here, we do see that many people do have symmetric
vision. These entries lie down the diagonal. We might ask whether there is indepen-
dence between left and right eyes among those people whose vision is not symmet-
ric. This is the quasi-independence hypothesis and we can test it by omitting the data
from the diagonal:
modqi <- glm(y ~ right + left, eyegrade, family=poisson, subset= -c

↪→ (1,6,11,16))
pchisq(deviance(modqi),df.residual(modqi),lower=F)
[1] 4.4118e-41

This model does not fit. This is not surprising since we can see that the entries ad-
jacent to the diagonal are larger than those farther away. The difference in vision
between the two eyes is likely to be smaller than expected under independence.

6.5 Three-Way Contingency Tables

In Appleton et al. (1996), a 20-year follow-up study on the effects of smoking is pre-
sented. In the period 1972–1974, a larger study, which also considered other issues,
categorized women into smokers and nonsmokers and according to their age group.
In the follow-up, the researchers recorded whether the subjects were dead or still
alive. Only smokers or women who had never smoked are presented here. Relatively
few smokers quit and these women have been excluded from the data. The cause of
death is not reported here. Here is the data:
data(femsmoke)
femsmoke

y smoker dead age
1 2 yes yes 18-24
2 1 no yes 18-24
3 3 yes yes 25-34
....
28 0 no no 75+
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We can combine the data over age groups to produce:
(ct <- xtabs(y ~ smoker+dead,femsmoke))

dead
smoker yes no

yes 139 443
no 230 502

We can compute the proportions of dead and alive for smokers and nonsmokers:
prop.table(ct,1)

dead
smoker yes no

yes 0.23883 0.76117
no 0.31421 0.68579

We see that 76% of smokers have survived for 20 years while only 69% of nonsmok-
ers have survived. Thus smoking appears to have a beneficial effect on longevity. We
can check the significance of this difference:
summary(ct)
Call: xtabs(formula = y ~ smoker + dead, data = femsmoke)
Number of cases in table: 1314
Number of factors: 2
Test for independence of all factors:

Chisq = 9.1, df = 1, p-value = 0.0025

So the difference cannot be reasonably ascribed to chance variation. However, if we
consider the relationship within a given age group, say 55–64:
(cta <- xtabs(y ~ smoker+dead,femsmoke, subset=(age=="55-64")))

dead
smoker yes no

yes 51 64
no 40 81

prop.table(cta,1)
dead

smoker yes no
yes 0.44348 0.55652
no 0.33058 0.66942

We see that 56% of the smokers have survived compared to 67% of the non-
smokers. This advantage to nonsmokers holds throughout all the age groups. Thus
the marginal association where we add over the age groups is different from the con-
ditional association observed within age groups. Data where this effect is observed
are an example of Simpson’s paradox. The paradox is named after Simpson (1951),
but dates back to Yule (1903).

Let’s see why the effect occurs here:
prop.table(xtabs(y ~ smoker+age, femsmoke),2)

age
smoker 18-24 25-34 35-44 45-54 55-64 65-74 75+

yes 0.47009 0.44128 0.47391 0.62500 0.48729 0.21818 0.16883
no 0.52991 0.55872 0.52609 0.37500 0.51271 0.78182 0.83117

We see that smokers are more concentrated in the younger age groups and younger
people are more likely to live for another 20 years. This explains why the marginal
table gave an apparent advantage to smokers which is, in fact, illusory because once
we control for age, we see that smoking has a negative effect on longevity.

It is interesting to note that the dependence in the 55–64 age group is not statisti-
cally significant:
fisher.test(cta)
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Fisher’s Exact Test for Count Data

data: cta
p-value = 0.08304
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.92031 2.83340

sample estimates:
odds ratio

1.6103

However, this is just a subset of the data. Suppose we compute the odds ratios in all
the age groups:
ct3 <- xtabs(y ~ smoker+dead+age,femsmoke)
apply(ct3, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

18-24 25-34 35-44 45-54 55-64 65-74 75+
2.30189 0.75372 2.40000 1.44175 1.61367 1.14851 NaN

We see that there is some variation in the odds ratio, but they are all greater than
one with the exception of the 25–34 age group. We could test for independence in
each 2×2 table, but it is better to use a combined test. The Mantel–Haenszel test is
designed to test independence in 2×2 tables across K strata. It only makes sense to
use this test if the relationship is similar in each stratum. For this data, the observed
odds ratios do not vary greatly, so the use of the test is justified.

Let the entries in the 2× 2×K table be yi jk. If we assume a hypergeometric
distribution in each 2× 2 table, then y11k is sufficient for each table given that we
assume that the marginal totals for each table carry no information. The Mantel–
Haenszel statistic is:

(|∑k y11k−∑k Ey11k|−1/2)2

∑k var y11k

where the expectation and variance are computed under the null hypothesis of in-
dependence in each stratum. The statistic is approximately χ2

1 distributed under the
null, although it is possible to make an exact calculation for smaller datasets. The
statistic as stated above is due to Mantel and Haenszel (1959), but a version without
the half-continuity correction was published by Cochran (1954). For this reason, it is
sometimes known as the Cochran–Mantel–Haenszel statistic.

We compute the statistic for the data here:
mantelhaen.test(ct3,exact=TRUE)
Exact conditional test of independence in 2 x 2 x k tables

data: ct3
S = 139, p-value = 0.01591
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.0689 2.2034

sample estimates:
common odds ratio

1.5303

We used the exact method in preference to the approximation. We see that a sta-
tistically significant association is revealed once we combine the information across
strata.

Now let’s consider a linear model approach to investigating how the three factors
interact. Let pi jk be the probability that an observation falls into the (i, j,k) cell. Let
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pi be the marginal probability that the observation falls into the ith cell of the first
variable, p j be the marginal probability that the observation falls into the jth cell of
the second variable and pk be the marginal probability that the observation falls into
the kth cell of the third variable.

Mutual Independence: If all three variables are independent, then:

pi jk = pi p j pk

Now EYi jk = npi jk so:

logEYi jk = logn+ log pi + log p j + log pk

So the main effects-only model corresponds to mutual independence. The coding we
use will determine exactly how the parameters relate to the margin totals of the table
although typically we will not be especially interested in these. Since independence
is the simplest possibility, this model is the null model in an investigation of this type.
The model logEYi jk = µ would suggest that all the cells have equal probability. It is
rare that such a model would have any interest so the model above makes for a more
appropriate null.

We can test for independence using the Pearson’s χ2 test:
summary(ct3)
Call: xtabs(formula = y ~ smoker + dead + age, data = femsmoke)
Number of cases in table: 1314
Number of factors: 3
Test for independence of all factors:

Chisq = 791, df = 19, p-value = 2.1e-155

We can also fit the appropriate linear model:
modi <- glm(y ~ smoker + dead + age, femsmoke, family=poisson)
c(deviance(modi),df.residual(modi))
[1] 735 19

Although the statistics for the two tests are somewhat different, in either case, we see
a very large value given the degrees of freedom. We conclude that this model does
not fit the data.

We can show that the coefficients of this model correspond to the marginal pro-
portions. For example, consider the smoker factor:
(coefsmoke <- exp(c(0,coef(modi)[2])))

smokerno
1.0000 1.2577

coefsmoke/sum(coefsmoke)
smokerno

0.44292 0.55708

We see that these are just the marginal proportions for the smokers and nonsmok-
ers in the data:
prop.table(xtabs(y ~ smoker, femsmoke))
smoker

yes no
0.44292 0.55708

This just serves to emphasize the point that the main effects of the model just convey
information that we already know and is not the main interest of the study.
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Joint Independence: Let pi j be the (marginal) probability that the observation
falls into a (i, j, ·) cell where any value of the third variable is acceptable. Now sup-
pose that the first and second variable are dependent, but jointly independent of the
third. Then:

pi jk = pi j pk

We can represent this as:

logEYi jk = logn+ log pi j + log pk

Using the hierarchy principle, we would also include the main effects correspond-
ing to the interaction term log pi j. So the log-linear model with just one interaction
term corresponds to joint independence. The specific interaction term tells us which
pair of variables is dependent. For example, we fit a model that says age is jointly
independent of smoking and life status:
modj <- glm(y ~ smoker*dead + age, femsmoke, family=poisson)
c(deviance(modj),df.residual(modj))
[1] 725.8 18.0

Although this represents a small improvement over the mutual independence model,
the deviance is still very high for the degrees of freedom and it is clear that this model
does not fit the data. There are two other joint independence models that have the two
other interaction terms. These models also fit badly.

Conditional Independence: Let pi j|k be the probability that an observation falls
in cell (i, j, ·) given that we know the third variable takes the value k. Now suppose
we assert that the first and second variables are independent given the value of the
third variable, then:

pi j|k = pi|k p j|k

which leads to:
pi jk = pik p jk/pk

This results in the model:

logEYi jk = logn+ log pik + log p jk− log pk

Again, using the hierarchy principle, we would also include the main effects corre-
sponding to the interaction terms and we would have model with main effects and
two interaction terms. The minus for the log pk term is irrelevant because we do not
care about the main effects parameters in these models. The nature of the conditional
independence can be determined by observing which of one of the three possible
two-way interactions does not appear in the model.

The most plausible conditional independence model for our data is:
modc <- glm(y ~ smoker*age + age*dead, femsmoke, family=poisson)
c(deviance(modc),df.residual(modc))
[1] 8.327 7.000

We see that the deviance is only slightly larger than the degrees of freedom indicating
a fairly good fit. This indicates that smoking is independent of life status given age.
However, bear in mind that we do have some zeroes and other small numbers in the
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table and so there is some doubt as to the accuracy of the χ2 approximation here. It
is generally better to compare models rather than assess the goodness of fit.

Uniform Association: We might consider a model with all two-way interactions:

logEYi jk = logn+ log pi + log p j + log pk + log pi j + log pik + log p jk

The model has no three-way interaction and so it is not saturated. There is no simple
interpretation in terms of independence. Consider our example:
modu <- glm(y ~ (smoker+age+dead)^2, femsmoke, family=poisson)

Now we compute the fitted values and determine the odds ratios for each age group
based on these fitted values:
ctf <- xtabs(fitted(modu) ~ smoker+dead+age,femsmoke)
apply(ctf, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
18-24 25-34 35-44 45-54 55-64 65-74 75+

1.5333 1.5333 1.5333 1.5333 1.5333 1.5333 1.5333

We see that the odds ratio is the same for every age group. Thus the uniform associ-
ation model asserts that for every level of one variable, we have the same association
for the other two variables.

The information may also be extracted from the coefficients of the fit. Consider
the odds ratio for smoking and life status for a given age group:

(EY11kEY22k)/(EY12kEY21k)

This will be precisely the coefficient for the smoking and life-status term. We extract
this:
exp(coef(modu)[’smokerno:deadno’])
smokerno:deadno

1.5333

We see that this is exactly the odds ratio we found above. The other interaction terms
may be interpreted similarly.

Model Selection: Log-linear models are hierarchical, so it makes sense to start
with the most complex model and see how far it can be reduced. We can use analysis
of deviance to compare models. We start with the saturated model:
modsat <- glm(y ~ smoker*age*dead, femsmoke, family=poisson)
drop1(modsat,test="Chi")
Single term deletions

Model:
y ~ smoker * age * dead

Df Deviance AIC LRT Pr(Chi)
<none> 3.0e-10 190.2
smoker:age:dead 6 2.4 180.6 2.4 0.88

We see that the three-way interaction term may be dropped. Now we consider drop-
ping the two-way terms:
drop1(modu,test="Chi")
Single term deletions

Model:
y ~ (smoker + age + dead)^2

Df Deviance AIC LRT Pr(Chi)
<none> 2 181
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smoker:age 6 93 259 90 <2e-16
smoker:dead 1 8 185 6 0.015
age:dead 6 632 798 630 <2e-16

Two of the interaction terms are strongly significant, but the smoker:dead term is
only just statistically significant. This term corresponds to the test for conditional
independence of smoking and life status given age group. We see that the conditional
independence does not hold. This tests the same hypothesis as the Mantel–Haenszel
test above. In this case the p-values for the two tests are very similar.

Binomial Model: For some three-way tables, it may be reasonable to regard one
variable as the response and the other two as predictors. In this example, we could
view life status as the response. Since this variable has only two levels, we can model
it using a binomial GLM. For more than two levels, a multinomial model would be
required.

We construct a binomial response model:
ybin <- matrix(femsmoke$y,ncol=2)
modbin <- glm(ybin ~ smoker*age, femsmoke[1:14,], family=binomial)

This model is saturated, so we investigate a simplification:
drop1(modbin,test="Chi")
Single term deletions

Model:
ybin ~ smoker * age

Df Deviance AIC LRT Pr(Chi)
<none> 5.3e-10 75.0
smoker:age 6 2.4 65.4 2.4 0.88

We see that the interaction term may be dropped, but now we check if we may drop
further terms:
modbinr <- glm(ybin ~ smoker+age, femsmoke[1:14,], family=binomial)
drop1(modbinr,test="Chi")
Single term deletions

Model:
ybin ~ smoker + age

Df Deviance AIC LRT Pr(Chi)
<none> 2 65
smoker 1 8 69 6 0.015
age 6 632 683 630 <2e-16

We see that both main effect terms are significant, so no further simplification is pos-
sible. This model is effectively equivalent to the uniform association model above.
Check the deviances:
deviance(modu)
[1] 2.3809
deviance(modbinr)
[1] 2.3809

We see that they are identical. We can extract the same odds ratio from the parameter
estimates as above:
exp(-coef(modbinr)[2])
smokerno

1.5333

The change in sign is simply due to which outcome is considered a success in the
binomial GLM. So we can identify the binomial GLM with a corresponding Pois-
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son GLM and the numbers we will obtain will be identical. We would likely prefer
the binomial analysis where one factor can clearly be identified as the response and
we would prefer the Poisson GLM approach when the relationship between the vari-
ables is more symmetric. However, there is one important difference between the two
approaches. The null model for the binomial GLM:
modbinull <- glm(ybin ~ 1, femsmoke[1:14,], family=binomial)
deviance(modbinull)
[1] 641.5

is associated with this two-way interaction model for the Poisson GLM:
modj <- glm(y ~ smoker*age + dead, femsmoke, family=poisson)
deviance(modj)
[1] 641.5

So the binomial model implicitly assumes an association between smoker and age.
In this particular dataset, there are more younger smokers than older ones, so the
association is present. However, what if there was no association? One could argue
that the Poisson GLM approach would be superior because it would allow us to drop
this term and achieve a simpler model. On the other hand, one could argue that if
the relationship between the response and the two predictors is the main subject of
interest, then we lose little by conditioning out the marginal combined effect of age
and smoking status, whether it is significant or not.

Our conclusion is that smoking is associated with higher mortality after we adjust
for age. We have seen this in three different, but related, ways. The Mantel-Haenszel
test, the preference for the uniform association model and the binomial response
model all point in this direction. The test for the fit of the conditional independence
model suggested no association between smoking and mortality adjusting for age.
However, this goodness of fit test is of inferior quality to the other tests so we prefer
the association conclusion.

Correspondence Analysis: We cannot directly apply the correspondence anal-
ysis method described above for two-way tables. However, we could combine two
of the factors into a single factor by considering all possible combinations of the
two levels. To make the choice of which two levels to combine, we would pick the
pair whose association is least interesting to us. We could apply this to the smoking
dataset here, but because there are only two levels of smoking and life status, the plot
is not very interesting.

6.6 Ordinal Variables

Some variables have a natural order. We can use the methods for nominal variables
described earlier in this chapter, but more information can be extracted by taking
advantage of the structure of the data. Sometimes we might identify a particular
ordinal variable as the response. In such cases, the methods of Section 7.4 can be
used. However, sometimes we are interested in modeling the association between
ordinal variables. Here the use of scores can be helpful.

Consider a two-way table where both variables are ordinal. We may assign scores
ui and v j to the rows and columns such that u1 ≤ u2 ≤ ·· · ≤ uI and v1 ≤ v2 ≤ ·· · ≤ vJ .
The assignment of scores requires some judgment. If you have no particular prefer-
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ence, even spacing allows for the simplest interpretation. If you have an interval
scale, for example, 0–10 years old, 10–20 years old, 20–40 years old and so on, mid-
points are often used. It is a good idea to check that the inference is robust to the
assignment of scores by trying some reasonable alternative choices. If your qualita-
tive conclusions are changed, this is an indication that you cannot make any strong
finding.

Now fit the linear-by-linear association model:

logEYi j = logµi j = lognpi j = logn+αi +β j + γuiv j

So γ = 0 means independence while γ represents the amount of association and can
be positive or negative. γ is rather like an (unscaled) correlation coefficient. Consider
underlying (latent) continuous variables which are discretized by the cutpoints ui and
v j. We can then identify γ with the correlation coefficient of the latent variables.

Consider an example drawn from a subset of the 1996 American National Elec-
tion Study (Rosenstone et al. (1997)). Using just the data on party affiliation and level
of education, we can construct a two-way table:
data(nes96)
xtabs( ~ PID + educ, nes96)

educ
PID MS HSdrop HS Coll CCdeg BAdeg MAdeg

strDem 5 19 59 38 17 40 22
weakDem 4 10 49 36 17 41 23
indDem 1 4 28 15 13 27 20
indind 0 3 12 9 3 6 4
indRep 2 7 23 16 8 22 16
weakRep 0 5 35 40 15 38 17
strRep 1 4 42 33 17 53 25

Both variables are ordinal in this example. We need to convert this to a dataframe
with one count per line to enable model fitting.
(partyed <- as.data.frame.table(xtabs( ~ PID + educ, nes96)))

PID educ Freq
1 strDem MS 5
2 weakDem MS 4
3 indDem MS 1
...etc....

If we fit a nominal-by-nominal model, we find no evidence against independence:
nomod <- glm(Freq ~ PID + educ, partyed, family= poisson)
pchisq(deviance(nomod),df.residual(nomod),lower=F)
[1] 0.26961

However, we can take advantage of the ordinal structure of both variables and define
some scores. As there seems to be no strong reason to the contrary, we assign evenly
spaced scores—one to seven for both PID and educ:
partyed$oPID <- unclass(partyed$PID)
partyed$oeduc <- unclass(partyed$educ)

The unclass function converts a factor to an integer, numbered by level. It achieves
exactly the assignment of scores we desire here. Now fit the linear-by-linear associ-
ation model and compare to the independence model:
ormod <- glm(Freq ~ PID + educ + I(oPID*oeduc), partyed, family=

↪→ poisson)
anova(nomod,ormod,test="Chi")
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Analysis of Deviance Table

Model 1: Freq ~ PID + educ
Model 2: Freq ~ PID + educ + I(oPID * oeduc)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 36 40.7
2 35 30.6 1 10.2 0.0014

We see that there is evidence of an association. We find that using the ordinal infor-
mation gives us more power to detect an association. We can examine γ̂:
summary(ormod)$coef[’I(oPID * oeduc)’,]
Estimate Std. Error z value Pr(>|z|)
0.0287446 0.0090617 3.1720850 0.0015135

We see that γ̂ is 0.0287. The p-value here can also be used to test the significance of
the association although, as a Wald test, it is less reliable than the likelihood ratio test
we used first. We see that γ̂ is positive, which, given the way that we have assigned the
scores, means that a higher level of education is associated with a greater probability
of tending to the Republican end of the spectrum.

Just to check the robustness of the assignment of the scores, it is worth trying
some different choices. For example, suppose we choose scores so that there is more
of a distinction between Democrats and Independents as well as Independents and
Republicans. Our assignment of scores for apid below achieves this. Another idea
might be that people who complete high school or less are not different; that those
who go to college, but do not get a BA degree are not different and that those who
get a BA or higher are not different. My assignment of scores in aedu achieves this:
apid <- c(1,2,5,6,7,10,11)
aedu <- c(1,1,1,2,2,3,3)
ormoda <- glm(Freq ~ PID + educ + I(apid[oPID]*aedu[oeduc]), partyed,

↪→ family= poisson)
anova(nomod,ormoda,test="Chi")
Analysis of Deviance Table

Model 1: Freq ~ PID + educ
Model 2: Freq ~ PID + educ + I(apid[oPID] * aedu[oeduc])
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 36 40.7
2 35 30.9 1 9.8 0.0017

The numerical outcome is slightly different, but the result is still significant. Some
experimentation with other plausible choices indicates that we can be fairly confident
about the association here.

The association parameter may be interpreted in terms of log-odds. For example,
consider the log-odds ratio for adjacent entries in both rows and columns:

log
µi jµi+1, j+1

µi, j+1µi+1, j
= γ(ui+1−ui)(v j+1− v j)

For evenly spaced scores, these log-odds ratios will all be equal. For our example,
where the scores are spaced one apart, the log-odds ratio is γ. To illustrate this point,
consider the fitted values under the linear-by-linear association model:
round(xtabs(predict(ormod,type="response") ~ PID + educ, partyed),2)

educ
PID MS HSdrop HS Coll CCdeg BAdeg MAdeg
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strDem 3.58 13.36 59.22 41.34 18.34 42.46 21.71
weakDem 2.92 11.22 51.20 36.78 16.80 40.02 21.06
indDem 1.59 6.27 29.45 21.78 10.23 25.09 13.59
indind 0.49 2.00 9.65 7.34 3.55 8.96 5.00
indRep 1.12 4.71 23.41 18.33 9.13 23.70 13.60
weakRep 1.61 6.95 35.59 28.68 14.69 39.28 23.19
strRep 1.69 7.49 39.48 32.74 17.26 47.49 28.85

Now compute log-odds ratio for, say, the lower two-by-two table:
log(39.28*28.85/(47.49*23.19))
[1] 0.028585

We see this is, but for rounding, equal to γ̂.
It is always worth examining the residuals to check if there is more structure

than the model suggests. We use the raw response residuals (the unscaled difference
between observed and expected) because we would like to see effects that are large
in an absolute sense.
round(xtabs(residuals(ormod,type="response") ~ PID + educ, partyed),2)

educ
PID MS HSdrop HS Coll CCdeg BAdeg MAdeg

strDem 1.42 5.64 -0.22 -3.34 -1.34 -2.46 0.29
weakDem 1.08 -1.22 -2.20 -0.78 0.20 0.98 1.94
indDem -0.59 -2.27 -1.45 -6.78 2.77 1.91 6.41
indind -0.49 1.00 2.35 1.66 -0.55 -2.96 -1.00
indRep 0.88 2.29 -0.41 -2.33 -1.13 -1.70 2.40
weakRep -1.61 -1.95 -0.59 11.32 0.31 -1.28 -6.19
strRep -0.69 -3.49 2.52 0.26 -0.26 5.51 -3.85

We do see some indications of remaining structure. For example, we see many more
weak Republicans with some college than expected while fewer Republicans with
master’s degrees or higher. There may not be a monotone relationship between party
affiliation and educational level.

To investigate this effect, we might consider an ordinal-by-nominal model where
we now treat education as a nominal variable. This is called a column effects model
because the columns (which are the education levels here) are not assigned scores
and we will estimate their effect instead. A row effects model is effectively the same
model except with the roles of the variables reversed. The model takes the form:

logEYi j = logµi j = lognpi j = logn+αi +β j +uiγ j

where the γ j are called the column effects. Equality of the γ js corresponds to the
hypothesis of independence. We fit this model for our data:
cmod <- glm(Freq ~ PID + educ + educ:oPID, partyed, family= poisson)

We can compare this to the independence model:
anova(nomod,cmod,test="Chi")
Analysis of Deviance Table

Model 1: Freq ~ PID + educ
Model 2: Freq ~ PID + educ + educ:oPID

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 36 40.7
2 30 22.8 6 18.0 0.0063

We find that the column-effects model is preferred. Now examine the fitted coef-
ficients, looking at just the interaction terms as the main effects have no particular
interest:
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summary(cmod)$coef[14:19,]
Estimate Std. Error z value Pr(>|z|)

educMS:oPID -0.3122169 0.154051 -2.026710 0.042692
educHSdrop:oPID -0.1944513 0.077228 -2.517891 0.011806
educHS:oPID -0.0553470 0.048196 -1.148384 0.250810
educColl:oPID 0.0044605 0.050603 0.088147 0.929760
educCCdeg:oPID -0.0086994 0.060667 -0.143395 0.885978
educBAdeg:oPID 0.0345539 0.048782 0.708330 0.478740

The last coefficient, educMAdeg:oPID, is not identifiable and so this may be taken as
zero. If there was really a monotone trend in the effect of educational level on party
affiliation, we would expect these coefficients to be monotone. However, we can see
that they are not. However, if we compare this to the linear-by-linear association
model:
anova(ormod,cmod,test="Chi")
Analysis of Deviance Table

Model 1: Freq ~ PID + educ + I(oPID * oeduc)
Model 2: Freq ~ PID + educ + educ:oPID
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 35 30.57
2 30 22.76 5 7.81 0.17

We see that the simpler linear-by-linear association is preferred to the more complex
column-effects model. Nevertheless, if the linear-by-linear association were a good
fit, we would expect the observed column-effect coefficients to be roughly evenly
spaced. Looking at these coefficients, we observe that for high school and above,
the coefficients are not significantly different from zero while for the lowest two
categories, there is some difference. This suggests an alternate assignment of scores
for education:
aedu <- c(1,1,2,2,2,2,2)
ormodb <- glm(Freq ~ PID + educ + I(oPID*aedu[oeduc]),
partyed, family= poisson)

deviance(ormodb)
[1] 28.451
deviance(ormod)
[1] 30.568

We see that the deviance of this model is even lower than our original model. This
gives credence to the view that whether a person finishes high school or not is the
determining factor in party affiliation. However, since we used the data itself to assign
the scores and come up with this hypothesis, we would be tempting fate to then use
the data again to test this hypothesis.

The use of scores can be helpful in reducing the complexity of models for cate-
gorical data with ordinal variables. It is especially useful in higher dimensional tables
where a reduction in the number of parameters is particularly welcome. The use of
scores can also sharpen our ability to detect associations.

Further Reading: See books by Agresti (2013), Bishop et al. (1975), Haber-
man (1977), Le (1998), Leonard (2000), Powers and Xie (2000), Santner and Duffy
(1989), Simonoff (2003) and Bilder and Loughin (2014).
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Exercises

1. The dataset parstum contains cross-classified data on marijuana usage by college
students as it relates to the alcohol and drug usage of the parents.

(a) Display the data in a two-way table. Make a graphical display of the data and
comment on the evidence of dependence between the two factors.

(b) Fit a nominal-by-nominal model for the count response. Does this model fit the
data? What does this say about dependence?

(c) Make a Chi-squared test for independence. Compare to the previous test.
(d) Assign evenly spaced scores in the appropriate order to each of the two factors.

Fit an ordinal-by-ordinal model. Report and interpret the coefficient of the in-
teraction term in your model. What does the deviance of this model say about
the quality of the fit?

(e) Test the significance of the interaction term by comparing this model to the
nominal by nominal model.

(f) A researcher proposes that it does not matter whether one or both parents use
drugs or alcohol. Make an assignment of scores consistent with this belief and
compare the fit to the previous model.

2. The dataset melanoma gives data on a sample of patients suffering from melanoma
(skin cancer) cross-classified by the type of cancer and the location on the body.

(a) Display the data in a two-way table. Make a mosaic plot and comment on the
evidence for independence.

(b) Check for independence between site and tumor type using a Chi-squared test.
(c) Fit a Poisson GLM model and use it to check for independence.
(d) Make a two-way table of the deviance residuals from the last model. Comment

on the larger residuals.
(e) Construct the correspondence plot. Interpret the plot.
(f) Omit all the head location data and repeat the test for independence. What does

this indicate?
3. Data on social mobility of men in the United Kingdom may be found in cmob.

A sample of men aged 45–64 was drawn from the 1971 census and 1981 census
and the social class of man was recorded at each time point. The classes are I
= professional, II = semiprofessional, IIIN = skilled nonmanual, IIIM = skilled
manual, IV = semiskilled, V = unskilled.

(a) Display the data as a two-way table and comment on the arrangement around
the diagonal.

(b) Fit a Poisson model and use it to check for independence.
(c) Create a symmetry factor and use it to check for symmetry between class over

the two time points.
(d) Compute the difference between the matrix of data as seen in (a) and its trans-

pose. Comment on the distribution of numbers above and below the diagonal.
What does this say about the direction of social mobility?
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(e) Check for quasi-symmetry.
(f) Divide the data by ten to simulate the effect of a smaller sample and repeat the

test for quasi-symmetry. What can be concluded from this?
(g) If possible, check for marginal homogeneity.
(h) Check for quasi-independence.
(i) Make an assignment of scores to the levels of each factor and fit the ordinal by

ordinal model. Is the association parameter significant?
4. The dataset death contains data on murder cases in Florida in 1977. The data is

cross-classified by the race (black or white) of the victim, of the defendant and
whether the death penalty was given.

(a) Consider the frequency with which the death penalty is applied to black and
white defendants, both marginally and conditionally, with respect to the race
of the victim. Is this an example of Simpson’s paradox? Are the observed dif-
ferences in the frequency of application of the death penalty statistically sig-
nificant?

(b) Determine the most appropriate dependence model between the variables.
(c) Fit a binomial regression with death penalty as the response and show the re-

lationship to your model in the previous question.
5. The dataset sexfun comes from a questionnaire from 91 couples in the Tucson,

Arizona, area. Subjects answered the question “Sex is fun for me and my partner.”
The possible answers were “never or occasionally,” “fairly often,” “very often”
and “almost always.”

(a) Check for symmetry, quasi-symmetry, marginal homogeneity and
quasi-independence.

(b) Develop a score-based model. Find some good-fitting scores.
6. The dataset suicide contains one year of suicide data from the United Kingdom

cross-classified by sex, age and method.
(a) Determine the most appropriate dependence model between the variables.
(b) Collapse the sex and age of the subject into a single six-level factor containing

all combinations of sex and age. Conduct a correspondence analysis and give
an interpretation of the plot.

(c) Repeat the correspondence analysis separately for males and females. Does
this analysis reveal anything new compared to the combined analysis in the
previous question?

7. A student newspaper conducted a survey of student opinions about the Vietnam
War in May 1967. Responses were classified by sex, year in the program and one
of four opinions. The survey was voluntary. The data may be found in the dataset
uncviet.

(a) Conduct an analysis of the patterns of dependence in the data assuming that all
variables are nominal.
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(b) Assign scores to the year and opinion and fit an appropriate model. Interpret
the trends in opinion over the years. Check the sensitivity of your conclusions
to the assignment of the scores.

8. The dataset HairEyeColor contains the same data analyzed in this chapter as
haireye. Repeat the analysis in the text for each sex and make a comparison of
the conclusions.

9. A sample of psychiatry patients was cross-classified by their diagnoses and
whether a drug treatment was prescribed. The data may be found in drugpsy.
Is the chance that drugs will be prescribed constant across diagnoses?

10. The UCBAdmissions dataset presents data on applicants to graduate school at
Berkeley for the six largest departments in 1973 classified by admission and sex.

(a) Show that this provides an example of Simpson’s paradox.
(b) Determine the most appropriate dependence model between the variables.
(c) Fit a binomial regression with admissions status as the response and show the

relationship to your model in the previous question.



Chapter 7

Multinomial Data

The multinomial distribution is an extension of the binomial where the response can
take more than two values. Let Yi be a random variable that falls into one of a finite
number of categories, labeled 1,2, . . . ,J. Let pi j = P(Yi = j) so ∑

J
j=1 pi j = 1. As with

binary data (the case where J = 2), we may encounter both grouped and ungrouped
data. Let Yi j be the number of observations falling into category j for group or in-
dividual i and let ni = ∑ j Yi j. For ungrouped data, ni = 1 and one and only one of
Yi1, . . . ,YiJ is equal to one and the rest are zero. The Yi j, conditional on the total ni,
follow a multinomial distribution:

P(Yi1 = yi1, . . . ,YiJ = yiJ) =
ni

yi1! · · ·yiJ!
pyi1

i1 · · · p
yiJ
iJ

We must also distinguish between nominal multinomial data where there is no
natural order to the categories and ordinal multinomial data where there is an order.
The multinomial logit model is intended for nominal data. It can be used for ordinal
data, but the information about order will not be used.

7.1 Multinomial Logit Model

As with the binary response model, we must find a way to link the probabilities pi j
to the predictors xi, while ensuring that the probabilities are restricted between zero
and one. We can use a similar idea:

ηi j = xT
i β j = log

pi j

pi1
, j = 2, . . . ,J

We must obey the constraint that ∑
J
j=1 pi j = 1, so it is convenient to declare one of

the categories as the baseline, say, j = 1. So we get pi1 = 1−∑
J
j=2 pi j and have:

pi j =
exp(ηi j)

1+∑
J
j=2 exp(ηi j)

Note that ηi1 = 0. It does not matter which category is declared as the baseline al-
though some choices may be more convenient for interpretation. We may estimate
the parameters of this model using maximum likelihood and then use the standard
methods of inference.

Consider an example drawn from a subset of the 1996 American National Elec-
tion Study (Rosenstone et al. (1997)). For simplicity, we consider only the age,

129



130 MULTINOMIAL DATA

education level and income group of the respondents. Our response will be the party
identification of the respondent: Democrat, Independent or Republican. The original
data involved more than three categories; we collapse this to three, again for simplic-
ity of the presentation.
data(nes96, package="faraway")
party <- nes96$PID
levels(party) <- c("Democrat","Democrat","Independent","Independent",

↪→ "Independent","Republican","Republican")
inca <- c(1.5,4,6,8,9.5,10.5,11.5,12.5,13.5,14.5,16,18.5,21,23.5,

↪→ 27.5,32.5,37.5,42.5,47.5,55,67.5,82.5,97.5,115)
income <- inca[unclass(nes96$income)]
rnes96 <- data.frame(party, income, education=nes96$educ, age=nes96$

↪→ age)
summary(rnes96)

party income education age
Democrat :380 Min. : 1.5 MS : 13 Min. :19
Independent:239 1st Qu.: 23.5 HSdrop: 52 1st Qu.:34
Republican :325 Median : 37.5 HS :248 Median :44

Mean : 46.6 Coll :187 Mean :47
3rd Qu.: 67.5 CCdeg : 90 3rd Qu.:58
Max. :115.0 BAdeg :227 Max. :91

MAdeg :127

The income variable in the original data was an ordered factor with income ranges.
We have converted this to a numeric variable by taking the midpoint of each range.
This corresponds to a score-based approach of handling interval-valued variables.

Let’s start with a graphical look at the relationship between the predictors and the
response. The response is at the individual level and so we need to group the data just
to get a sense of how the party identification is associated with the predictors. Some
manipulation of the data is facilitated with the dplyr package. We group the data by
education and party affiliation, count the number in each category and then count the
number in each education category, using this to compute the proportion supporting
each party for each party affiliation. The resulting plot is shown in the first panel
of Figure 7.1. We see that proportion of Democrats falls with educational status,
reaching a plateau for the college educated. We see the proportion of Republicans
rising with educational level and reaching a similar plateau.
library(dplyr)
egp <- group_by(rnes96, education, party) %>% summarise(count=n()) %>%

↪→ group_by(education) %>% mutate(etotal=sum(count), proportion=
↪→ count/etotal)

ggplot(egp, aes(x=education, y=proportion, group=party, linetype=party
↪→ ))+geom_line()

A similar calculation is made for income but unfortunately there are relatively low
counts in some income categories making the computation of a stable proportion
difficult. To overcome this, we first group the income into seven groups of roughly
equal size and then follow much the same calculation as for education.
igp <- mutate(rnes96, incomegp=cut_number(income,7)) %>% group_by(

↪→ incomegp, party) %>% summarise(count=n()) %>% group_by(incomegp
↪→ ) %>% mutate(etotal=sum(count), proportion=count/etotal)

ggplot(igp, aes(x=incomegp, y=proportion, group=party, linetype=party)
↪→ )+geom_line()

The plot is shown in the second panel of Figure 7.1. As income increases, we observe
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Figure 7.1 Relationship between party affiliation and education, age and income. Democrats
are shown with solid line, Republicans with a dashed line and Independents with a dotted
line. Education is categorized into seven levels described in the text. Income is in thousands of
dollars.

an increase in the proportion of Republicans and Independents and a decrease in the
proportion of Democrats. A similar plot can be made for age where the relationship
of party to age is not clear. This is cross-sectional rather than longitudinal data, so
we cannot say anything about what might happen to an individual with, for exam-
ple, increasing income. We can only expect to make conclusions about the relative
probability of party affiliations for different individuals with different incomes.

We might ask whether the trends we see in the observed proportions are statisti-
cally significant. We need to model the data to answer this question. We fit a multi-
nomial logit model. The multinom function is part of the nnet package described in
Venables and Ripley (2002):
library(nnet)
mmod <- multinom(party ~ age + education + income, rnes96)
# weights: 30 (18 variable)
initial value 1037.090001
iter 10 value 990.568608
iter 20 value 984.319052
final value 984.166272
converged

The program uses the optimization method from the neural net trainer in nnet as
described in Chapter 17 to compute the maximum likelihood. There is no deeper
connection to neural networks — we just need the optimization found in that pack-
age.

We can select which variables to include in the model based the AIC criterion us-
ing a stepwise search method (output edited to show only the decision information):
mmodi <- step(mmod)
Start: AIC=2004.3
party ~ age + education + income
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Df AIC
- education 6 1996.5
- age 16 2003.6
<none> 18 2004.3
- income 16 2045.9

Step: AIC=1996.5
party ~ age + income

Df AIC
- age 4 1993.4
<none> 6 1996.5
- income 4 2048.9

Step: AIC=1993.4
party ~ income

Df AIC
<none> 4 1993.4
- income 2 2045.3

At the first stage of the search, we see that omitting education would be the best
option to reduce the AIC criterion. At the next step, age is removed resulting in a
model with only income.

We can also use the standard likelihood methods to derive a test to compare
nested models. For example, we can fit a model without education and then compare
the deviances:
mmode <- multinom(party ~ age + income, rnes96)
deviance(mmode) - deviance(mmod)
[1] 16.206
pchisq(16.206,mmod$edf-mmode$edf,lower=F)
[1] 0.18198

We see that education is not significant relative to the full model. This may seem
somewhat surprising given the plot in Figure 7.1, but the large differences between
proportions of Democrats and Republicans occur for groups with low education
which represent only a small number of people.

We can obtain predicted values for specified values of income. We can compute
the probability of party affiliation for a range of incomes in [0,110].
inclevels <- 0:110
preds <- data.frame(income=inclevels,predict(mmodi,data.frame(income=

↪→ inclevels),type="probs"))
library(tidyr)
lpred <- gather(preds, party, probability, -income)
ggplot(lpred, aes(x=income,y=probability,group=party,linetype=party))+

↪→ geom_line()

We see in Figure 7.2 how the probability of being Republican or Independent in-
creases with income while the probability of being Democrat drops. The default form
just gives the most probable category:
predict(mmodi,data.frame(income=inclevels))

[1] Democrat Democrat Democrat Democrat Democrat
....
[111] Republican

The multinomial logit model can also be used in a predictive sense to classify
new observations. We can see how well the selected model does in predicting the
party of the known individuals in our dataset:
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Figure 7.2 Predicted probabilities of party affiliation as income varies (thousands).

xtabs( ~ predict(mmodi) + rnes96$party)
rnes96$party

predict(mmodi) Democrat Independent Republican
Democrat 284 123 166
Independent 0 0 0
Republican 96 116 159

We can compute the proportion correctly classified as:
(284+0+159)/nrow(rnes96)
[1] 0.46928

We see that only 47% of the current data are correctly classified and we could ex-
pect the performance on new individuals to be slightly worse than this. No cases are
classified as independents because the probability of the other two outcomes always
dominates this outcome. We see that the majority of actual Republicans are classified
as Democrats. So the performance is not impressive but given the large overlap in the
predictor space between the three levels (or classes), it is not surprising.

The multinomial logit model is not usually the best choice for classification per-
formance. Better performance can be obtained by methods specialized for this pur-
pose such as random forests or support vector machines. Even so, the multinomial
logit model often provides better insight into how and which predictors affect the
classification. This understanding of how a classification method works can be in-
valuable in predicting how it will behave in new circumstances or how predictors
might be added or modified. The more sophisticated methods are often opaque as to
meaning so while they may perform well, they may add little to our understanding.

We can examine the coefficients to gain an understanding of the relationship
between the predictor and the response:
summary(mmodi)
Coefficients:

(Intercept) nincome



134 MULTINOMIAL DATA

Independent -1.17493 0.016087
Republican -0.95036 0.017665

Std. Errors:
(Intercept) nincome

Independent 0.15361 0.0028497
Republican 0.14169 0.0026525

Residual Deviance: 1985.4
AIC: 1993.4

The intercept terms model the probabilities of the party identification for an income
of zero. We can see the relationship from this calculation:
cc <- c(0,-1.17493,-0.95036)
exp(cc)/sum(exp(cc))
[1] 0.58982 0.18216 0.22802
predict(mmodi,data.frame(income=0),type="probs")

Democrat Independent Republican
0.58982 0.18216 0.22802

The slope terms represent the log-odds of moving from the baseline category of
Democrat to Independent and Republican, respectively, for a unit change of $1000 in
income. We can see more explicitly what this means by predicting probabilities for
incomes $1000 apart and then computing the log-odds:
(pp <- predict(mmodi,data.frame(income=c(0,1)),type="probs"))

Democrat Independent Republican
1 0.58982 0.18216 0.22802
2 0.58571 0.18382 0.23047
log(pp[1,1]*pp[2,2]/(pp[1,2]*pp[2,1]))
[1] 0.016087
log(pp[1,1]*pp[2,3]/(pp[1,3]*pp[2,1]))
[1] 0.017665

Log-odds can be difficult to interpret particularly with many predictors and in-
teractions. Sometimes, computing predicted probabilities for a selected range of pre-
dictors can provide better intuition.

7.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method based on linear combinations of the
predictors that classifies cases into one of a fixed number of possibilities. This predic-
tion is called classification and LDA is usually considered as a classification method.
A multinomial logit model explains the relationship between a response that can take
one of a fixed number of levels and linear combinations of the predictors. Although
LDA focuses more on prediction and the multinomial logit more on explanation, we
can learn from comparing the two. We give only a brief introduction to LDA here and
the reader is encouraged to consult other sources regarding this method. We focus on
the explanatory insights offered by LDA in this section.

Consider the vector of predictors xi for i = 1, . . . ,n. We can compute a measure
of total variation in the data using the total sum of squares S:

S =
n

∑
i=1

(xi− x̄)(xi− x̄)T
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Suppose we have G groups and we add a group subscript g to denote which group a
case belongs to. We define the within-group covariance W as:

W =
G

∑
g=1

ng

∑
i=1

(xgi− x̄g)(xgi− x̄g)
T

We define the between-groups covariance B as:

B =
G

∑
g=1

(x̄g− x̄)(x̄g− x̄)T

where ng is the number of cases in group g. We have S =W +B. We want to form lin-
ear combinations a of the predictors to maximize the separation between the groups.
To achieve this, we choose a to maximize:

aTBa
aTWa

The solution can be found using eigendecomposition of W−1B. The first eigenvector
represents the combination which maximizes the ratio with subsequent eigenvectors
representing the next best solutions subject to the requirement that they are orthogo-
nal to previous eigenvectors.

The calculation can be performed using the MASS library.
library(MASS)
mlda <- lda(party ~ age + income, rnes96)
mlda
Prior probabilities of groups:

Democrat Independent Republican
0.40254 0.25318 0.34428

Group means:
age income

Democrat 47.066 37.632
Independent 46.506 51.655
Republican 47.412 53.298

Coefficients of linear discriminants:
LD1 LD2

age 0.0053257 0.060821
income 0.0332155 -0.000114

Proportion of trace:
LD1 LD2

0.9926 0.0074

The prior probabilites are chosen by default as the observed proportion in the data.
One can specify the prior if, for example, we have a biased sample in which the class
sizes do not correspond to the population. The means in the groups, x̄g, reveal that
there is not much difference in the ages of the three groups but there are noticeable
differences in income. The proportion of the trace is computed using the eigenvalues
of the decomposition. In this case, we see that the first component is strongly dom-
inant and so the classification will depend mostly on this. The coefficients give us
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the a. We see that the first combination is dominated by the income while the second
by the age. However, the second combination counts for little so the classification is
based mainly on the income.

We can use the LDA to classify the current data:
preds <- predict(mlda)
head(preds$posterior)

Democrat Independent Republican
1 0.58666 0.18945 0.22389
2 0.59537 0.19135 0.21328
3 0.59322 0.19089 0.21590
4 0.59105 0.19042 0.21854
5 0.56846 0.18533 0.24620
6 0.59483 0.19124 0.21393

The posterior probabilites computed from the model can be used to classify the cases.
The first six cases are all classified as Democrats as this is highest probability in each
case.

We can get the most likely outcome from each case and compare it against the
observed class:
xtabs( ~ predict(mlda)$class + rnes96$party)

rnes96$party
predict(mlda)$class Democrat Independent Republican

Democrat 298 141 184
Independent 0 0 0
Republican 82 98 141

The result is quite similar to the multinomial logit in that no cases are classified as
Independent and many true Republicans are classified as Democrats.

7.3 Hierarchical or Nested Responses

Consider the following data collected by Lowe et al. (1971) by way of McCullagh
and Nelder (1989) concerning live births with deformations of the central nervous
system in south Wales:
data(cns, package="faraway")
cns

Area NoCNS An Sp Other Water Work
1 Cardiff 4091 5 9 5 110 NonManual
2 Newport 1515 1 7 0 100 NonManual
3 Swansea 2394 9 5 0 95 NonManual
4 GlamorganE 3163 9 14 3 42 NonManual
5 GlamorganW 1979 5 10 1 39 NonManual
6 GlamorganC 4838 11 12 2 161 NonManual
7 MonmouthV 2362 6 8 4 83 NonManual
8 MonmouthOther 1604 3 6 0 122 NonManual
9 Cardiff 9424 31 33 14 110 Manual
10 Newport 4610 3 15 6 100 Manual
11 Swansea 5526 19 30 4 95 Manual
12 GlamorganE 13217 55 71 19 42 Manual
13 GlamorganW 8195 30 44 10 39 Manual
14 GlamorganC 7803 25 28 12 161 Manual
15 MonmouthV 9962 36 37 13 83 Manual
16 MonmouthOther 3172 8 13 3 122 Manual
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NoCNS indicates no central nervous system (CNS) malformation. An denotes anen-
cephalus while Sp denotes spina bifida and Other represents other malformations.
Water is water hardness and the subjects are categorized by the type of work per-
formed by the parents. We might consider a multinomial response with four cat-
egories. However, we can see that most births suffer no malformation and so this
category dominates the other three. It is better to consider this as a hierarchical re-
sponse as depicted in Figure 7.3. Now consider the multinomial likelihood for the ith

Births

No CNS CNS

An Sp Other

Figure 7.3 Hierarchical response for birth types.

observation which is proportional to:

pyi1
i1 pyi2

i2 pyi3
i3 pyi4

i4

Define pic = pi2 + pi3 + pi4 which is probability of a birth with some kind of CNS
malformation. We can then write the likelihood as:

pyi1
i1 pyi2+yi3+yi4

ic ×
(

pi2

pic

)yi2
(

pi3

pic

)yi3
(

pi4

pic

)yi4

The first part of the product is now a binomial likelihood for a CNS vs. NoCNS re-
sponse. The second part of the product is now a multinomial likelihood for the three
CNS categories conditional of the presence of CNS. For example, pi2/pic is the con-
ditional probability of an anencephalus birth given that a malformation has occurred
for the ith observation. We can now separately develop a binomial model for whether
malformation occurs and a multinomial model for the type of malformation.

We start with the binomial model. First we accumulate the number of CNS births
and plot the data with the response on the logit scale as shown in the first panel of
Figure 7.4:
cns$CNS <- cns$An+cns$Sp+cns$Other
plot(log(CNS/NoCNS) ~ Water, cns, pch=as.character(Work))

We observe that the proportion of CNS births falls with increasing water hardness and
is higher for manual workers. We observe one observation (manual, Newport) that
may be an outlier. Notice that the Area is confounded with the Water hardness, so we
cannot put both these predictors in our model. But Water does represent a subspace
of Area so it is legitimate to compare:
binmodw <- glm(cbind(CNS,NoCNS) ~ Water + Work, cns, family=binomial)
binmoda <- glm(cbind(CNS,NoCNS) ~ Area + Work, cns, family=binomial)
anova(binmodw,binmoda,test="Chi")
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Figure 7.4 The first plot shows the empirical logits for the proportion of CNS births related
to water hardness and profession (M=Manual, N=Nonmanual). The second is a half-normal
plot of the residuals of the chosen model.

Analysis of Deviance Table

Model 1: cbind(CNS, NoCNS) ~ Water + Work
Model 2: cbind(CNS, NoCNS) ~ Area + Work

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 13 12.36
2 7 3.08 6 9.29 0.16

One can view this test as a check for linear trend in the effect of water hardness. We
find that the simpler model using Water is acceptable. A check for an interaction
effect revealed nothing significant although a look at the residuals is worthwhile:
library(faraway)
halfnorm(residuals(binmodw))

In the second plot of Figure 7.4, we see an outlier corresponding to Newport manual
workers. This case deserves closer examination. Finally, a look at the chosen model:
sumary(binmodw)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.432580 0.089789 -49.37 < 2e-16
Water -0.003264 0.000968 -3.37 0.00075
WorkNonManual -0.339058 0.097094 -3.49 0.00048

n = 16 p = 3
Deviance = 12.363 Null Deviance = 41.047 (Difference = 28.685)

The residual deviance is close to the degrees of freedom indicating a reasonable fit
to the data. We see that since:
exp(-0.339058)
[1] 0.71244
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births to nonmanual workers have a 29% lower chance of CNS malformation. Water
hardness ranges from about 40 to 160. So a difference of 120 would decrease the
odds of CNS malformation by about 32%.

Now consider a multinomial model for the three malformation types conditional
on a malformation having occurred. As this data is grouped, in contrast to the nes96
example, it is most convenient to present the response as a matrix:
cmmod <- multinom(cbind(An,Sp,Other) ~ Water + Work, cns)

We find that neither predictor has much effect:
nmod <- step(cmmod)

Df AIC
- Water 4 1381.1
- Work 4 1381.2
<none> 6 1383.5

Df AIC
- Work 2 1378.5
<none> 4 1381.1

which leaves us with a null final model:
nmod
Coefficients:

(Intercept)
Sp 0.28963
Other -0.98083

Residual Deviance: 1374.5

The fitted proportions are:
cc <- c(0,0.28963,-0.98083)
names(cc) <- c("An","Sp","Other")
exp(cc)/sum(exp(cc))

An Sp Other
0.36888 0.49279 0.13833

So we find that water hardness and parents’ professions are related to the probability
of a malformed birth, but that they have no effect on the type of malformation.

Observe that if we fit a multinomial logit model to all four categories:
multinom(cbind(NoCNS,An,Sp,Other) ~ Water + Work, cns)
Coefficients:

(Intercept) Water WorkNonManual
An -5.4551 -0.00290884 -0.36388
Sp -5.0710 -0.00432305 -0.24359
Other -6.5947 -0.00051358 -0.64219

Residual Deviance: 9391
AIC: 9409

We find that both Water and Work are significant, but that the fact that they do not
distinguish the type of malformation is not easily discovered from this model.

7.4 Ordinal Multinomial Responses

Suppose we have J ordered categories and that for individual i, with ordinal response
Yi, pi j = P(Yi = j) for j = 1, . . . ,J. With an ordered response, it is often easier to
work with the cumulative probabilities, γi j = P(Yi ≤ j). The cumulative probabilities
are increasing and invariant to combining adjacent categories. Furthermore, γiJ = 1,
so we need only model J−1 probabilities.
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As usual, we must link the γs to the covariates x. We will consider three possibil-
ities which all take the form:

g(γi j) = θ j− xT
i β

Possible link functions, g, are the logit, the probit and the complementary log-log. We
have explicitly specified the intercepts, θ j, so that the vector xi does not include an
intercept. Furthermore, β does not depend on j so that we assume that the predictors
have a uniform effect on the response categories in a sense that we will shortly make
clear.

Suppose that Zi is some unobserved continuous variable that might be thought of
as the real underlying latent response. We only observe a discretized version of Zi
in the form of Yi where Yi = j is observed if θ j−1 < Zi ≤ θ j. Further suppose that
Zi−βT xi has distribution F , then:

P(Yi ≤ j) = P(Zi ≤ θ j) = P(Zi−β
T xi ≤ θ j−β

T xi) = F(θ j−β
T xi)

Now if, for example, F follows the logistic distribution, where F(x) = ex/(1+ ex),
then:

γi j =
exp(θ j−βT xi)

1+ exp(θ j−βT xi)

and so we would have a logit model for the cumulative probabilities γi j. Choosing the
normal distribution for the latent variable leads to a probit model, while the choice of
an extreme value distribution leads to the complementary log-log. This latent vari-
able explanation for the model is displayed in Figure 7.5. We include the R code for
reference.
x <- seq(-5,5,by=0.1)
xa <- c(21,41,71)
plot(x,dlogis(x),type="l",axes=FALSE,ylab="",xlab="")
segments(x[xa],rep(0,3),x[xa],dlogis(x[xa]))
axis(1,at=x[xa],c(expression(theta[1]),expression(theta[2]),expression

↪→ (theta[3])))

Notice that if β > 0, as xi increases, P(Yi = J) will also increase. This explains the
use of the minus sign in the definition of the model because it allows for the more
intuitive interpretation of the sign of β.

Proportional Odds Model: Let γ j(xi) = P(Yi ≤ j|xi), then the proportional odds
model, which uses the logit link, is:

log
γ j(xi)

1− γ j(xi)
= θ j−β

T xi, j = 1, . . . ,J−1

It is called this because the relative odds for Y ≤ j comparing x1 and x2 are:(
γ j(x1)

1− γ j(x1)

)/(
γ j(x2)

1− γ j(x2)

)
= exp(−β

T (x1− x2))

This does not depend on j. Of course, the assumption of proportional odds does need
to be checked for a given dataset.
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θ1 θ2 θ3

Figure 7.5 Latent variable view of an ordered multinomial response. Here, four discrete re-
sponses can occur, depending on the position of Z relative to the cutpoints θ j. As x changes,
the cutpoints will move together to change the relative probabilities of the four responses.

Returning to the nes96 dataset, suppose we assume that Independents fall some-
where between Democrats and Republicans. We would then have an ordered multi-
nomial response. We can then fit this using the polr function from the MASS library
described in Venables and Ripley (2002):
library(MASS)
pomod <- polr(party ~ age + education + income, rnes96)

The deviance and number of parameters for this model are:
c(deviance(pomod),pomod$edf)
[1] 1984.2 10.0

which can be compared to the corresponding multinomial logit model:
c(deviance(mmod),mmod$edf)
[1] 1968.3 18.0

The proportional odds model uses fewer parameters, but does not fit quite as well.
Typically, the output from the proportional odds model is easier to interpret. We may
use an AIC-based variable selection method:
pomodi <- step(pomod)
Start: AIC=2004.2
party ~ age + education + income

Df AIC
- education 6 2003
<none> 2004
- age 1 2004
- income 1 2039

Step: AIC=2002.8
party ~ age + income
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Df AIC
- age 1 2001
<none> 2003
- income 1 2047

Step: AIC=2001.4
party ~ income

Df AIC
<none> 2001
- income 1 2045

Thus we finish with a model including just income as we did with the earlier multi-
nomial model. We could also use a likelihood ratio test to compare the models:
deviance(pomodi)-deviance(pomod)
[1] 11.151
pchisq(11.151,pomod$edf-pomodi$edf,lower=F)
[1] 0.13217

We see that the simplification to just income is justifiable. We can check the propor-
tional odds assumption by computing the observed odds proportions with respect to,
in this case, income levels. We have computed the log-odds difference between γ1
and γ2:
pim <- with(rnes96,prop.table(table(income,party),1))
logit(pim[,1])-logit(pim[,1]+pim[,2])

1.5 4 6 8 9.5 10.5 11.5
-0.90079 -2.06142 -0.75769 -1.00330 -2.30259 -0.30830 -0.79851

12.5 13.5 14.5 16 18.5 21 23.5
-1.89712 -1.25276 -1.17865 -0.41285 -0.35424 -1.51413 -1.65345

27.5 32.5 37.5 42.5 47.5 55 67.5
-0.74678 -0.52252 -0.92326 -1.02962 -0.82198 -1.42760 -1.18261

82.5 97.5 115
-0.98676 -1.48292 -1.70660

It is questionable whether these can be considered sufficiently constant, but at least
there is no trend. Now consider the interpretation of the fitted coefficients:
summary(pomodi)
Coefficients:

Value Std. Error t value
income 0.013120 0.0019708 6.6572

Intercepts:
Value Std. Error t value

Democrat|Independent 0.209 0.112 1.863
Independent|Republican 1.292 0.120 10.753

Residual Deviance: 1995.36
AIC: 2001.36

We can say that the odds of moving from Democrat to Independent/Republican cat-
egory (or from Democrat/Independent to Republican) increase by a factor of
exp(0.013120) = 1.0132 as income increases by one unit ($1000). Notice that the
log-odds are similar to those obtained in the multinomial logit model. The intercepts
correspond to the θ j. So for an income of $0, the predicted probability of being a
Democrat is:
ilogit(0.209)
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[1] 0.55206

while that of being an Independent is:
ilogit(1.292)-ilogit(0.209)
[1] 0.23242

with the remainder being Republicans. We can compute predicted values:
inclevels <- seq(0,100,by=20)
predict(pomodi,data.frame(income=inclevels,row.names=inclevels), type=

↪→ "probs")
Democrat Independent Republican

0 0.55209 0.23232 0.21559
20 0.48668 0.25007 0.26325
40 0.42173 0.26109 0.31718
60 0.35937 0.26411 0.37652
80 0.30143 0.25877 0.43980
100 0.24920 0.24569 0.50511

Notice how the probability of being a Democrat uniformly decreases with income
while that for being a Republican uniformly increases as income increases, but that
the middle category of Independent increases then decreases. This type of behavior
can be expected from the latent variable representation of the model.

We can illustrate the latent variable interpretation of proportional odds by com-
puting the cutpoints for incomes of $0, $50,000 and $100,000:
x <- seq(-4,4,by=0.05)
plot(x,dlogis(x),type="l")
abline(v=c(0.209,1.292))
abline(v=c(0.209,1.292)-50*0.013120,lty=2)
abline(v=c(0.209,1.292)-100*0.013120,lty=5)

The plot is shown in Figure 7.6.
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Figure 7.6 Solid lines represent an income of $0, dotted lines are for $50,000 and dashed
lines are for $100,000. The probability of being a Democrat is given by the area lying to the
left of the leftmost of each pair of lines, while the probability of being a Republican is given
by the area to the right of the rightmost of the pair. Independents are represented by the area
in-between.
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Generalization: The proportional odds models can be generalized by allowing
β to vary by

log
γ j(x)

1− γ j(x)
= θ j−β

T
j x j = 1, . . . ,k−1

but this loses the proportionality property. Such models cannot be fitted using polr()
but are provided for in the VGAM package of Yee (2010). Here’s how we fit such a
model to the current data:
library(VGAM)
nmod <- vglm(party ~ income, family=cumulative(parallel=FALSE),rnes96)
summary(nmod)
Coefficients:

Estimate Std. Error z value
(Intercept):1 0.3289 0.12156 2.71
(Intercept):2 1.1483 0.12872 8.92
income:1 -0.0162 0.00236 -6.86
income:2 -0.0105 0.00220 -4.76

Residual deviance: 1987.5 on 1884 degrees of freedom

The parameterization is different for this package in that θ j + βT
j x is used for the

linear predictor replacing the − with a + in the polr form. The argument parallel
= FALSE indicates we have chosen the nonproportional (or parallel) option.

We compare this to the proportional odds model and use the standard likelihood
theory to compare the models:
pmod <- vglm(party ~ income, family=cumulative(parallel=TRUE), rnes96)
deviance(pmod) - deviance(nmod)
[1] 7.8241
1-pchisq(7.82,1)
[1] 0.0051671

There is a difference of only one parameter between the two models. We see that the
simplification to the proportional odds model is not justified here because the p-value
is small. However, we should bear in mind that we have a fairly large sample size of
almost 1000 cases so even relatively small differences are prone to be significant. So
our previous use of the proportional odds model was not completely unreasonable.

Predictions can be made in a straightforward manner. Interpreting the model is
somewhat more difficult due to the varying slopes. Nonparallel lines will cross some-
where. For this model that point is:
(1.148-0.329)/(0.0105-0.0162)
[1] -143.68

So at an income below −$144,000, the predicted probability of being Democrat
would exceed the probability of being Democrat or Independent. Clearly this is im-
possible and the model predictions are ridiculous. This is not a practical problem in
this example as −$144,000 is far outside the range of incomes we would consider.
But in other situations, particularly where more predictors are used, this could be-
come a serious issue. This is one good reason to prefer the proportional model if it is
viable.

Ordered Probit Model: If the latent variable Zi has a standard normal distribu-
tion, then:

Φ
−1(γ j(xi)) = θ j−β

T xi j = 1, . . . ,J−1
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Applying this model to the nes96 data, we find:
opmod <- polr(party ~ income, method="probit", rnes96)
summary(opmod)
Coefficients:

Value Std. Error t value
nincome 0.008182 0.0012078 6.7745

Intercepts:
Value Std. Error t value

Democrat|Independent 0.128 0.069 1.851
Independent|Republican 0.798 0.072 11.040

Residual Deviance: 1994.89
AIC: 2000.89

The deviance is similar to the logit version of this model, but the coefficients appear
to be different. However, if we compute the same predictions:
dems <- pnorm(0.128-inclevels*0.008182)
demind <- pnorm(0.798-inclevels*0.008182)
data.frame(Democrat=dems,Independent=demind-dems,Republican=1-demind,

↪→ row.names=inclevels)
Democrat Independent Republican

0 0.55093 0.23664 0.21244
20 0.48578 0.25129 0.26292
40 0.42102 0.26006 0.31892
60 0.35833 0.26228 0.37939
80 0.29925 0.25778 0.44297
100 0.24503 0.24691 0.50806

We see that the predicted values are very similar to those seen for the logit. If the
coefficients are appropriately rescaled, they are also very similar.

Proportional Hazards Model: A concept of hazard was developed in insurance
applications. When issuing a life insurance policy, the insurer is interested in the
probability that the person will die during the term of the policy given that they are
alive now. This is not the same as the unconditional probability of death during the
same time period. In other words, for example, we want to know the chance that a
55-year-old man will die in the next year, given that he is alive and aged 55. The
unconditional probability that a man will die aged 55 is not particularly useful for
the purposes of insurance.

Suppose we use the complementary log-log in place of the logit above, that is:

log(− log(1− γ j(xi))) = θ j +β
T xi

Then the hazard of category j is the probability of falling in category j given that
your category is greater than j:

Hazard( j) = P(Yi = j|Yi ≥ j) =
P(Yi = j)
P(Yi ≥ j)

=
p j

1− γi, j−1
=

γi j− γi, j−1

1− γi, j−1

The corresponding latent variable distribution is the extreme value:

F(x) = 1− exp(−exp(x))

The extreme value distribution is not symmetric like the logistic and normal and so
there seems little justification for applying it to the nes96 data, but the command is:
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polr(party ~ income, method="cloglog")

Assigning Scores: When the ordinal response has a larger number of categories,
it may be sensible to assign scores to each level and then model these scores as the
response in a standard linear model. Suppose we reconsider the nes96 data but use
the income as the response variable. In the original form of the data this is an ordinal
variable:
levels(nes96$income)
[1] "$3Kminus" "$3K-$5K" "$5K-$7K" "$7K-$9K" "$9K-$10K"
[6] "$10K-$11K" "$11K-$12K" "$12K-$13K" "$13K-$14K" "$14K-$15K"

[11] "$15K-$17K" "$17K-$20K" "$20K-$22K" "$22K-$25K" "$25K-$30K"
[16] "$30K-$35K" "$35K-$40K" "$40K-$45K" "$45K-$50K" "$50K-$60K"
[21] "$60K-$75K" "$75K-$90K" "$90K-$105K" "$105Kplus"

This is a special case of ordinal variable called an interval variable because a contin-
uous variable has been discretized into intervals. For such variables, it is natural to
assign scores equal to the midpoints of the intervals:
inca <- c(1.5,4,6,8,9.5,10.5,11.5,12.5,13.5,14.5,16,18.5,21,23.5,

↪→ 27.5,32.5,37.5,42.5,47.5,55,67.5,82.5,97.5,115)
nes96$sincome <- inca[unclass(nes96$income)]

The unclass function converts a categorical variable into an integer variable with
the levels numbered in the order in which they appear. We have to choose a score for
the first and last levels. It is natural to suppose that zero is the lower bound giving a
choice of 1.5 for the first interval. We have chosen 115 for the last interval but other
choices may be reasonable. For noninterval valued ordinal variables the choice of
scores is much more subjective and should reflect an understanding of the relative
difference between adjacent levels.

Now we can fit a linear model using the same variables considered previously
(but using the original form of the party identification variable):
lmod <- lm(sincome ~ age + educ + PID, nes96)
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.8380 3.3533 13.67 < 2e-16
age -0.0496 0.0582 -0.85 0.394
educ.L 39.2854 5.0850 7.73 2.9e-14
educ.Q 2.8554 4.7508 0.60 0.548
educ.C 3.4486 4.0083 0.86 0.390
educ^4 2.5299 3.2825 0.77 0.441
educ^5 -4.4705 2.7992 -1.60 0.111
educ^6 -0.5773 2.3419 -0.25 0.805
PID.L 12.7103 2.1634 5.88 5.9e-09
PID.Q -6.3140 2.8613 -2.21 0.028
PID.C 1.0306 2.3740 0.43 0.664
PID^4 6.2413 2.9296 2.13 0.033
PID^5 -2.5174 2.5585 -0.98 0.325
PID^6 -0.7923 3.6532 -0.22 0.828

n = 944, p = 14, Residual SE = 27.899, R-Squared = 0.2

Both the education and party identification variable are ordinal and so are represented
using polynomial contrasts. These can be hard to interpret when we have several
levels. One option is to recode these predictors as nominal factors which is more
straightforward to understand but loses some information. In this case, we notice
that the linear term for both education and party identification is the only strongly
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significant term. This provides the hint that we might simplify this model by also
assigning scores to these two predictors. We also notice that age appears not to be
needed. We can then compare this simplified model to the original model:
lmod2 <- lm(sincome ~ unclass(educ) + unclass(PID), nes96)
anova(lmod2,lmod)
Analysis of Variance Table

Model 1: sincome ~ unclass(educ) + unclass(PID)
Model 2: sincome ~ age + educ + PID
Res.Df RSS Df Sum of Sq F Pr(>F)

1 941 737108
2 930 723881 11 13227 1.54 0.11

We see that the simplification is justifiable. We need to know the ordering of the
scores before interpreting the model:
levels(nes96$educ)
[1] "MS" "HSdrop" "HS" "Coll" "CCdeg" "BAdeg" "MAdeg"
levels(nes96$PID)
[1] "strDem" "weakDem" "indDem" "indind" "indRep" "weakRep"
[7] "strRep"

Now we consider the model summary:
sumary(lmod2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.510 3.038 1.16 0.25
unclass(educ) 7.359 0.573 12.84 < 2e-16
unclass(PID) 2.463 0.403 6.11 1.4e-09

n = 944, p = 3, Residual SE = 27.988, R-Squared = 0.19

We see that each one-step increase in the level of education is associated with a
$7359 increase in income. We also see that each step along our political scale from
stongly Democrat to strongly Republican is associated with $2463 increase income.
This association should only be viewed predictively and not causally. It would cer-
tainly be surprising if changing your political opinions caused you to earn more or
less. Furthermore, more intelligent and/or privileged people would tend to earn more
regardless of their level of formal education.

Further Reading: For more on the analysis of ordered categorical data see the
books by Agresti (1984), Clogg and Shihadeh (1994), Powers and Xie (2000) and
Simonoff (2003).

Exercises

1. The hsb data was collected as a subset of the High School and Beyond study con-
ducted by the National Education Longitudinal Studies program of the National
Center for Education Statistics. The variables are gender; race; socioeconomic
status (SES); school type; chosen high school program type; scores on reading,
writing, math, science, and social studies. We want to determine which factors are
related to the choice of the type of program — academic, vocational or general
— that the students pursue in high school. The response is multinomial with three
levels.

(a) Make a table showing the proportion of males and females choosing the three
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different programs. Comment on the difference. Repeat this comparison but
for SES rather than gender.

(b) Construct a plot like the right panel of Figure 7.1 that shows the relationship
between program choice and reading score. Comment on the plot. Repeat for
math in place of reading.

(c) Compute the correlation matrix for the five subject scores.
(d) Fit a multinomial response model for the program choice and examine the fitted

coefficients. Of the five subjects, one gives unexpected coefficients. Identify
this subject and suggest an explanation for this behavior.

(e) Construct a derived variable that is the sum of the five subject scores. Fit a
multinomial model as before except with this one sum variable in place of the
five subjects separately. Compare the two models to decide which should be
preferred.

(f) Use a stepwise method to reduce the model. Which variables are in your se-
lected model?

(g) Construct a plot of predicted probabilities from your selected model where the
math score varies over the observed range. Other predictors should be set at the
most common level or mean value as appropriate. Your plot should be similar
to Figure 7.2. Comment on the relationship.

(h) Compute a table of predicted probabilities cross-classified by SES and school
type. Fix the other predictors at their mean values. Comment on how SES and
school type are related to the response.

(i) Compute the predicted outcome for the student with ID 99. What did this stu-
dent actually choose?

(j) Construct a table of the most likely predicted outcomes and observed out-
comes. In what proportion of cases is the predicted and observed outcome the
same?

2. Data were collected from 39 students in a University of Chicago MBA class and
may be found in the dataset happy.

(a) Make plots of the relationship between the response, happiness and each of the
four predictors. Transform sex and love to appropriate factors.

(b) Fit a proportional odds model with the main effects of each of the four pre-
dictors. Extract the estimated values of θ using the zeta component of the fit.
Make an index plot of these and comment on any deviation from linearity and
what this may signify.

(c) Use stepwise AIC to select a reduced model. Which variables are eliminated.
Make a test to compare this reduced model to the original model.

(d) Compare a model where love is treated as an ordered factor with one where it
is treated as a numerical predictor. Which model is preferred?

(e) Examine the regression coefficients of your selected model and provide an
interpretation of their meaning.
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(f) Varying money across its range and holding love and work fixed at their median
values, predict the most likely happiness level. Repeat the process varying only
love and then work. What do we learn about the effect of the three predictors
on the response?

(g) Predict the happiness distribution for subject whose parents earn $30,000 a
year, who is lonely, not sexually active and has no job.

3. A student newspaper conducted a survey of student opinions about the Vietnam
War in May 1967. Responses were classified by sex, year in the program and one
of four opinions. The survey was voluntary. The data may be found in the dataset
uncviet.

(a) Compute the proportion favoring each policy within each year by sex combi-
nation. Plot these proportions as year varies with a different line type for each
policy. Plot men and women on separate panels. Your plot should look similar
to Figure 7.1.

(b) Fit a proportional odds model with policy as the response with sex and year as
predictors (include their interaction). Use the weight argument to set the num-
ber of respondents for each case. Why is it sensible to include an interaction
term?

(c) Now fit a model with main effects only, excluding the interaction. Compare
this model to the previous one. Which is preferred?

(d) Compute the predicted proportion for each case and plot in the same format as
(a). Use the type="probs" argument to predict. You will need to select only
one of the four probabilities for each case. Comment on the plot and compare
it to (a).

(e) Compute the raw residuals as the difference between the predicted and ob-
served proportions. Use the same format to plot these residuals as the predicted
proportions. Comment on the plot and suggest how the definition of the resid-
ual might be improved.

(f) Examine the regression summary output to find the coefficients that are rele-
vant to the opinions of women. What does the significance (or lack thereof)
say about how the opinions of women vary across the year groups?

4. The pneumo data gives the number of coal miners classified by radiological ex-
amination into one of three categories of pneumonoconiosis and by the number of
years spent working at the coal face divided into eight categories.

(a) Make a plot showing how the proportion on miners in the three categories at
each year point varies over time. Comment on the relationship.

(b) Treating the pneumonoconiosis status as response variable as nominal, build a
model for predicting the frequency of the three outcomes in terms of length of
service. What does the model say about the similarity of the proportions falling
into the mild and severe categories?

(c) Would it be better to use log(year) as the predictor?
(d) Produce a plot of the predicted probabilities in the same format as (a).
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(e) Fit a proportional odds model to the data. Take care to order response correctly.
You will need to specify the number falling in each case using the weight
argument. What is the estimated value of θ1 and how should it be interpreted?

(f) Repeat the analysis with the pneumonoconiosis status being treated as ordinal.
(g) Extract the predicted probabilities from the model and plot in the same format

as (a). Compare to the predictions from the nominal model.
(h) Fit a hierarchical model to the status response. First fit a binomial response—

normal and not normal. Interpret the effect of year on the odds of getting the
lung disease.

(i) Now fit a binomial model for mild vs. severe lung disease. Is the year effect
signficant. What is the probability of a mild disease within the diseased sub-
group?

(j) Compute the predicted probabilities of the three categories by combining the
two binomial model predictions. Plot in the same format as (a) and comment.

5. The debt data arise from a large postal survey on the psychology of debt. The
frequency of credit card use is a three-level factor ranging from never, through
occasionally to regularly.

(a) Declare the response as an ordered factor and make a plot showing the rela-
tionship to prodebt. Comment on the plot. Use a table or plot to display the
relationship between the response and the income group.

(b) Fit a proportional odds model for credit card use with all the other variables as
predictors. What are the two most significant predictors (largest t-values) and
what is their qualitative effect on the response? What is the least significant
predictor?

(c) Fit a proportional odds model using only the least significant predictor from the
previous model. What is the significance of this predictor in this small model?
Are the conclusions regarding this predictor contradictory for the two models?

(d) Use stepwise AIC to select a smaller model than the full set of predictors. You
will need to handle the missing values carefully. Report on the qualitative effect
of the predictors in your chosen model. Can we conclude that the predictors
that were dropped from the model have no relation to the response?

(e) Compute the median values of the predictors in your selected model. At these
median values, contrast the predicted outcome probabilities for both smokers
and nonsmokers.

(f) Fit a proportional hazards model to the same set of predictors and recompute
the two sets of probabilities from the previous question. Does it make a differ-
ence to use this type of model?



Chapter 8

Generalized Linear Models

In previous chapters, we have seen how to model a binomial or Poisson response.
Multinomial response models can often be recast as Poisson responses and the stan-
dard linear model with a normal (Gaussian) response is already familiar. Although
these models each have their distinctive characteristics, we see some common fea-
tures in all of them. We can abstract these to form the generalized linear model
(GLM). By developing a theory and constructing general methods for GLMs, we are
able to tackle a wider range of data with different types of response variables. GLMs
were introduced by Nelder and Wedderburn (1972), while McCullagh and Nelder
(1989) provide a book-length treatment.

8.1 GLM Definition

A GLM is defined by specifying two components. The response should be a member
of the exponential family distribution and the link function describes how the mean
of the response and a linear combination of the predictors are related.

Exponential Family: In a GLM the distribution of Y is from the exponential
family of distributions which take the general form:

f (y|θ,φ) = exp
[

yθ−b(θ)
a(φ)

+ c(y,φ)
]

The θ is called the canonical parameter and represents the location, while φ is called
the dispersion parameter and represents the scale. We may define various members
of the family by specifying the functions a, b and c. The most commonly used exam-
ples are:
1. Normal or Gaussian:

f (y|θ,φ) = 1√
2πσ

exp
[
− (y−µ)2

2σ2

]

= exp
[

yµ−µ2/2
σ2 − 1

2

(
y2

σ2 + log(2πσ
2)

)]
So we can write θ = µ, φ = σ2, a(φ) = φ, b(θ) = θ2/2 and c(y,φ) = −(y2/φ+
log(2πφ))/2.

2. Poisson:
f (y|θ,φ) = e−µµy/y!
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= exp(y logµ−µ− logy!)

So we can write θ = log(µ), φ≡ 1, a(φ) = 1, b(θ) = exp(θ) and c(y,φ) =− logy!.
3. Binomial:

f (y|θ,φ) =
(

n
y

)
µy(1−µ)n−y

= exp
(

y logµ+(n− y) log(1−µ)+ log
(

n
y

))
= exp

(
y log

µ
1−µ

+n log(1−µ)+ log
(

n
y

))
So we see that θ = log µ

1−µ , b(θ) =−n log(1−µ) = n log(1+expθ) and c(y,φ) =
log
(n

y

)
.

The gamma and inverse Gaussian are other less used members of the exponen-
tial family that are covered in Chapter 9. Notice that in the normal density, the φ

parameter is free (as it is also for the gamma density), while for the Poisson and bi-
nomial it is fixed at one. This is because the Poisson and binomial are one-parameter
families, while the normal and gamma have two parameters. In fact, some authors
reserve the term exponential family distribution for cases where φ is not used, while
using the term exponential dispersion family for cases where it is. This has important
consequences for the analysis.

Some other densities, such as the negative binomial and the Weibull distribution,
are not members of the exponential family, but they are sufficiently close that the
GLM can be fit with some modifications. It is also possible to fit distributions that
are not in the exponential family using the GLM-style approach, but there are some
additional complications.

We now derive the mean and variance of the exponential family distributions.
The log-likelihood for a single y is given by:

l(θ) = (yθ−b(θ))/a(φ)+ c(y,φ)

Taking derivatives with respect to θ gives:

l′(θ) = (y−b′(θ))/a(φ)

Taking the expectation over y gives:

El′(θ) = (EY −b′(θ))/a(φ)

From general likelihood theory, we know that El′(θ) = 0 at the true value of θ which
implies that:

EY = µ = b′(θ)

Now taking second derivatives:

l′′(θ) =−b′′(θ)/a(φ)
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General likelihood theory tells us that El′′(θ) =−E[(l′(θ))2]. We evaluate at the true
value of θ to obtain

b′′(θ)/a(φ) = E[(Y −b′(θ))2]/a2(φ)

which gives us
var Y = b′′(θ)a(φ)

The mean is a function of θ only, while the variance is a product of functions of the
location and the scale. V (µ) = b′′(θ)/w is called the variance function and describes
how the variance relates to the mean using the known relationship between θ and µ.

In the Gaussian case, b′′(θ) = 1 and so the variance is independent of the mean.
For other distributions, this is not true, making the Gaussian case exceptional. We
can introduce weights by setting:

a(φ) = φ/w

where w is a known weight that varies between observations. We could allow for
general choices of a but the simplified form, including weights if needed, covers all
the situations we currently need.

Link Function: Suppose we may express the effect of the predictors on the re-
sponse through a linear predictor:

η = β0 +β1x1 + · · ·+βpxp = xT
β

The link function, g, describes how the mean response, EY = µ, is linked to the
covariates through the linear predictor:

η = g(µ)

In principle, any monotone continuous and differentiable function will do, but there
are some convenient and common choices for the standard GLMs.

In the Gaussian linear model, the identity link, η = µ, is the obvious selection,
but another choice would give y = g−1(xT β)+ ε. This does not correspond directly
to a transform on the response: g(y) = xT β+ ε as, for example, in a Box–Cox type
transformation. In a GLM, the link function is assumed known whereas in a single
index model, g is estimated.

For the Poisson GLM, the mean µ must be positive so η = µ will not work con-
veniently since η can be negative. The standard choice is µ = eη, so that η = logµ
which ensures µ > 0. This log link means that additive effects of x lead to multiplica-
tive effects on µ.

For the binomial GLM, let p be the probability of success and let this be our µ
if we define the response as the proportion rather than the count. This requires that
0≤ p≤ 1. There are several commonly used ways to ensure this: the logistic, probit
and complementary log-log links. These are discussed in detail in Chapter 2.

The canonical link has g such that η = g(µ) = θ, the canonical parameter of the
exponential family distribution. This means that g(b′(θ)) = θ. The canonical links
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Family Link Variance Function
Normal η = µ 1
Poisson η = logµ µ
Binomial η = log(µ/(1−µ)) µ(1−µ)
Gamma η = µ−1 µ2

Inverse Gaussian η = µ−2 µ3

Table 8.1 Canonical links for GLMs.

for the common GLMs are shown in Table 8.1. If a canonical link is used, XTY is
sufficient for β. The canonical link is mathematically and computationally conve-
nient and is often the natural choice of link. However, one is not required to use the
canonical link and sometimes context may compel another choice.

8.2 Fitting a GLM

The parameters, β, of a GLM can be estimated using maximum likelihood. The log-
likelihood for a single observation, where ai(φ) = φ/wi, is:

l(β;yi) = wi[
yiθi−b(θi)

φ
]+ c(yi,φ)

So for independent observations, the log-likelihood will be ∑i l(β;yi). We want to
maximize this over β and start by taking partial derivatives with respect to the com-
ponents β j:

∂l
∂β j

=
1
φ

∑
i

wi

(
yi

∂θi

∂β j
−b′(θi)

∂θi

∂β j

)
The chain rule gives us:

∂θi

∂β j
=

∂θi

∂µi

∂µi

∂β j

Using the fact that ∂µi
∂θi

= b′′(θi), we have

∂l
∂β j

=
1
φ

∑
i

(yi−b′(θi))

b′′(θi)/wi

∂µi

∂β j

We now substitute in the known relations for the mean and variance functions. We
set the partial derivatives to zero to obtain the maximum likelihood estimates as the
solution to:

∑
i

(yi−µi)

V (µi)

∂µi

∂β j
= 0 ∀ j

Now suppose we knew the variance function V (µ), then we would obtain this same
set of equations if we had started out to minimize the weighted least squares criterion:

∑
i

(yi−µi)
2

V (µi)
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This suggests how we might develop an algorithm for deriving the estimates using
iteratively reweighted least squares (IRWLS). Full details can be found in McCullagh
and Nelder (1989) or Wood (2006).

The procedure requires an initial guess of µ̂0 from which η̂0 where the superscript
indicates the iteration number.
1. Form the “adjusted dependent variable” zi = η̂i +(y− µ̂i) dη

dµ |η̂i .

2. Form the weights 1/w0 =
(

dη

dµ

)2
|η̂0V (µ̂0).

3. Reestimate to get β̂i+1 and hence η̂i+1.
Repeat these steps until convergence.

Notice that the fitting procedure uses only η = g(µ) and V (µ), but requires no
further knowledge of the distribution of y. This point will be important later when
considering the quasi-likelihood method in Section 9.4. Estimates of variance may
be obtained using standard likelihood theory from:

ˆvar (β̂) = (XTWX)−1
φ̂

where W is a diagonal matrix formed from the weights w. This is comparable to the
form used in weighted least squares with the exception that the weights are now a
function of the response for a GLM.

Let’s implement the procedure explicitly to understand how the fitting algorithm
works. We use the Bliss data from Section 4.2 to illustrate this. Here is the fit we are
trying to match:
data(bliss, package="faraway")
modl <- glm(cbind(dead,alive) ~ conc, family=binomial, bliss)
summary(modl)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.3238 0.41789 -5.5608 2.6854e-08
conc 1.1619 0.18142 6.4046 1.5077e-10

For a binomial response, we have:

η = log
µ

1−µ
dη

dµ
=

1
µ(1−µ)

V (µ) = µ(1−µ)/n w = nµ(1−µ)

where the variance is computed with the understanding that y is the proportion, not
the count. We use y for our initial guess for µ̂ which works here because none of the
observed proportions are zero or one:
y <- bliss$dead/30; mu <- y
library(faraway)
eta <- logit(mu)
z <- eta + (y-mu)/(mu*(1-mu))
w <- 30*mu*(1-mu)
lmod <- lm(z ~ conc, weights=w, bliss)
coef(lmod)
(Intercept) conc

-2.3025 1.1536

It is interesting how close these initial estimates are to the converged values given
above. This is not uncommon. Even so, to get a more precise result, iteration is
necessary. We do five iterations here:
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for(i in 1:5){
eta <- lmod$fit
mu <- ilogit(eta)
z <- eta + (y-mu)/(mu*(1-mu))
w <- 30*mu*(1-mu)
lmod <- lm(z ~ bliss$conc, weights=w)
cat(i,coef(lmod),"\n")

}
1 -2.3237 1.1618
2 -2.3238 1.1619
3 -2.3238 1.1619
4 -2.3238 1.1619
5 -2.3238 1.1619

We can see that convergence is fast in this case. In most cases, the convergence is
rapid. If there is a failure to converge, this is often a sign of some problem with the
model specification or an unusual feature of the data. An example of such a problem
with the estimation may be seen in Section 2.7. A look at the final (weighted) linear
model reveals that:
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.3238 0.1462 -15.9 0.00054
bliss$conc 1.1619 0.0635 18.3 0.00036

n = 5, p = 2, Residual SE = 0.350, R-Squared = 0.99

The standard errors are not correct and can be computed (rather inefficiently) as
follows:
xm <- model.matrix(lmod)
wm <- diag(w)
sqrt(diag(solve(t(xm) %*% wm %*% xm)))
[1] 0.41787 0.18141

Now ˆvar (β̂) = (XTWX)−1 because φ = 1 for the binomial model but in the Gaussian
linear model ˆvar (β̂) = (XTWX)−1σ̂2. To get the correct standard errors from the lm
fit, we need to scale out the σ̂ as follows:
summary(lmod)$coef[,2]/summary(lmod)$sigma
(Intercept) conc

0.41789 0.18142

These calculations are shown for illustration purposes only and are done more effi-
ciently and reliably by the glm function.

8.3 Hypothesis Tests

When considering the choice of model for some data, we must define the range of
possibilities. The null model is the smallest model we will entertain while the full or
saturated model is the most complex.

The null model represents the situation where there is no relation between the
predictors and the response. Usually this means we fit a common mean µ for all y,
that is, one parameter only. For the Gaussian GLM, this is the model y = µ+ ε. For
some contingency table models, there will be additional parameters that represent
row or column totals or other such constraints. In these cases, the null model will
have more than one parameter.
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In the saturated model, the response is explained in the best achievable way.
There are usually several ways in which this can be done by adding sufficiently many
parameters. One way that will always be available is to define a factor with one level
for each unique combination of the predictors appearing in the data. In many datasets,
there will be only one observation for each unique combination. In such cases there
will be n parameters for n data points and µ̂ = y. In other examples, where replication
occurs, we will need fewer than n parameters.

A statistical model describes how we partition the data into systematic structure
and random variation. The null model represents one extreme where the data is rep-
resented entirely as random variation, while the saturated or full model represents
the data as being entirely systematic, excepting any variation that no model could
explain.

We would like a measure of how well our model fits. We can do this by comparing
our model to the full model. Hence we consider the difference between the log-
likelihood for the full model, l(y,φ|y), and that for the model under consideration,
l(µ̂,φ|y), expressed as a log likelihood ratio statistic:

2(l(y,φ|y)− l(µ̂,φ|y))

The factor of two is used for convenience in the subsequent distributional results.
Provided that the observations are independent and for an exponential family distri-
bution, when ai(φ) = φ/wi, this simplifies to:

∑
i

2wi(yi(θ̃i− θ̂i)−b(θ̃i)+b(θ̂i))/φ

where θ̃ are the estimates under the full (saturated) model and θ̂ are the estimates
under the model of interest. We write this quantity as D(y, µ̂)/φ where D(y, µ̂) is
called the deviance and D(y, µ̂)/φ is called the scaled deviance. Deviances for the
common GLMs are shown in Table 8.2.

GLM Deviance
Gaussian ∑i(yi− µ̂i)

2

Poisson 2∑i[yi log(yi/µ̂i)− (yi− µ̂i)]
Binomial 2∑i[yi log(yi/µ̂i)+(m− yi) log((m− yi)/(m− µ̂i))]
Gamma 2∑i[− log(yi/µ̂i)+(yi− µ̂i)/µ̂i]
Inverse Gaussian ∑i(yi− µ̂i)

2/(µ̂2
i yi)

Table 8.2 For the binomial yi ∼ B(m, pi) and µi = mpi, that is, µ is the count and not propor-
tion in this formula. For the Poisson, the deviance is known as the G-statistic. The second term
∑i(yi− µ̂i) is usually zero if an intercept term is used in the model.

An alternative measure of fit that is sometimes used in place of the deviance is
the Pearson’s X2 statistic:

X2 = ∑
i

(yi− µ̂i)
2

V (µ̂i)

where V (µ̂) = var (µ̂).
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There are two main types of hypothesis test. The goodness of fit test asks whether
the current model fits the data. The other type of test compares two nested models
where the smaller model represents a linear restriction on the parameters of the larger
model. The goodness of fit test can be viewed as a model comparison test if we
identify the smaller model with the model of interest and the larger model with the
full or saturated model.

For the goodness of fit test, we use the fact that, under certain conditions, pro-
vided the model is correct, the scaled Deviance and the Pearson’s X2 statistic are
both asymptotically χ2 with degrees of freedom equal to the number of observations
minus the number of identifiable parameters. For GLMs with a dispersion param-
eter, such as the Gaussian, we usually do not know the value of the φ, and so this
test usually cannot be used. For the binomial and the Poisson, φ = 1, and so the test
is practical. However, the accuracy of the asymptotic approximation is dubious for
smaller datasets. For a binary response, the approximation is worthless as explained
in Section 2.3.

For comparing a larger model, Ω, to a smaller nested model, ω, the difference in
the scaled deviances, Dω−DΩ, is asymptotically χ2 with degrees of freedom equal
to the difference in the number of identifiable parameters in the two models. For the
Gaussian model and other models where the dispersion φ is usually not known, this
test cannot be directly used. However, if we insert an estimate of φ we may compute
an F-statistic of the form:

(Dω−DΩ)/(d fω−d fΩ)

φ̂

where φ̂ = X2/(n− p) is a good estimate of the dispersion. The degrees of freedom
d f are typically the number of observations minus the number of parameters. For the
Gaussian model, a sensible estimate is φ̂ = RSSΩ/d fΩ, and the resulting F-statistic
has an exact F distribution for the null. For other GLMs with free dispersion param-
eters, the statistic is only approximately F distributed.

For every GLM except the Gaussian, an approximate null distribution must be
used whose accuracy may be in doubt particularly for smaller samples. However, the
approximation is better when comparing models than for the goodness of fit statistic.

Let’s consider the possible tests on the Bliss insect data:
sumary(modl)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.324 0.418 -5.56 2.7e-08
conc 1.162 0.181 6.40 1.5e-10

n = 5 p = 2
Deviance = 0.379 Null Deviance = 64.763 (Difference = 64.385)

We are able to make a goodness of fit test by examining the size of the residual
deviance compared to its degrees of freedom:
1-pchisq(deviance(modl),df.residual(modl))
[1] 0.9446

where we see the p-value is large indicating no evidence of a lack of fit. As with lack
of fit tests for Gaussian linear models, this outcome does not mean that this model is
correct or that no better models exist. We can also see that the null model would be
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inadequate for the data since the null deviance of 64.7 is very large for four degrees
of freedom.

We can test for the significance of the linear concentration term by comparing
the current model to the null model:
anova(modl,test="Chi")
Analysis of Deviance Table
Model: binomial, link: logit

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4 64.8
conc 1 64.4 3 0.4 1e-15

We see that the concentration term is clearly significant. We can also fit and test a
more complex model:
modl2 <- glm(cbind(dead,alive) ~ conc+I(conc^2),family=binomial,bliss)
anova(modl,modl2,test="Chi")
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3 0.379
2 2 0.195 1 0.183 0.669

We can see that there is no need for a quadratic term in the model. The same infor-
mation could be extracted with:
anova(modl2,test="Chi")

We may also take a Wald test approach by taking the standard error of the param-
eter estimates to construct a z-statistic of the form β̂/se(β̂). This has an asymptoti-
cally normal null distribution. For the Bliss data, for the concentration term, we have
z = 1.162/0.181 = 6.40. Thus the (approximate) p-value for the Wald test of the
concentration parameter being equal to zero is 1.5e−10 and thus we clearly reject the
null here. Remember that this is again only an approximate test except in the spe-
cial case of the Gaussian GLM where the z-statistic is the t-statistic and has an exact
t-distribution. The difference of deviances test is preferred to the Wald test, due, in
part, to the problem noted by Hauck and Donner (1977).

8.4 GLM Diagnostics

As with standard linear models, it is important to check the adequacy of the assump-
tions that support the GLM. The diagnostic methods for GLMs mirror those used for
Gaussian linear models. However, some adaptations are necessary and, depending on
the type of GLM, not all diagnostic methods will be applicable.

Residuals: Residuals represent the difference between the data and the model and
are essential to explore the adequacy of the model. In the Gaussian case, the residuals
are ε̂ = y− µ̂. These are called response residuals for GLMs, but since the variance
of the response is not constant for most GLMs, some modification is necessary. We
would like residuals for GLMs to be defined such that they can be used in a similar
way as in the Gaussian linear model.

The Pearson residual is comparable to the standardized residuals used for linear
models and is defined as:

rP =
y− µ̂√
V (µ̂)
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where V (µ) ≡ b′′(θ). These are just a rescaling of y− µ̂. Notice that ∑r2
P = X2 and

hence the name. Pearson residuals can be skewed for nonnormal responses.
The deviance residuals are defined by analogy to Pearson residuals. The Pearson

residual was rP such that ∑r2
P = X2, so we set the deviance residual as rD such that

∑r2
D = Deviance = ∑di. Thus:

rD = sign(y− µ̂)
√

di

For example, in the Poisson:

rD = sign(y− µ̂)[2(y logy/µ̂− y+ µ̂)]1/2

Let’s examine the types of residuals available to us using the Bliss data. We can
obtain the deviance residuals as:
residuals(modl)
[1] -0.451015 0.359696 0.000000 0.064302 -0.204493

These are the default choice of residuals. The Pearson residuals are:
residuals(modl,"pearson")

1 2 3 4 5
-0.432523 0.364373 0.000000 0.064147 -0.208107

which are just slightly different from the deviance residuals. The response residuals
are:
residuals(modl,"response")

1 2 3 4 5
-0.0225051 0.0283435 0.0000000 0.0049898 -0.0108282

which is just the response minus the fitted value:
bliss$dead/30 - fitted(modl)

1 2 3 4 5
-0.0225051 0.0283435 0.0000000 0.0049898 -0.0108282

Finally, the so-called working residuals are:
residuals(modl,"working")

1 2 3 4 5
-0.277088 0.156141 0.000000 0.027488 -0.133320
modl$residuals

1 2 3 4 5
-0.277088 0.156141 0.000000 0.027488 -0.133320

Note that it is important to use the residuals() function to get the deviance residu-
als which are most likely what is needed for diagnostic purposes. Using $residuals
gives the working residuals which is not usually needed for diagnostics. We can now
identify the working residuals as a by-product of the IRWLS fitting procedure from
Section 8.2.
residuals(lmod)

1 2 3 4 5
-2.7709e-01 1.5614e-01 -3.8463e-16 2.7488e-02 -1.3332e-01

Leverage and Influence: For a linear model, ŷ = Hy, where H = X(XT X)−1XT

is the hat matrix that projects the data onto the fitted values. The leverages hi are
given by the diagonal of H and represent the potential of the point to influence the
fit. They are solely a function of X and whether they are in fact influential will also
depend on y. Leverages are somewhat different for GLMs. The IRWLS algorithm
used to fit the GLM uses weights, w. These weights are just part of the IRWLS
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algorithm and are not user assigned. However, these do affect the leverage. We form
a matrix W = diag(w) and the hat matrix is:

H =W 1/2X(XTWX)−1XTW 1/2

We extract the diagonal elements of H to get the leverages hi. A large value of hi indi-
cates that the fit may be sensitive to the response at case i. Large leverages typically
mean that the predictor values are unusual in some way. One important difference
from the linear model case is that the leverages are no longer just a function of X and
now depend on the response through the weights W . The leverages may be calculated
as:
influence(modl)$hat

1 2 3 4 5
0.42550 0.41331 0.32238 0.41331 0.42550

As in the linear model case, we might choose to studentize the residuals as follows:

rSD =
rD√

φ̂(1−hi)

or compute jackknife residuals representing the difference between the observed re-
sponse for case i and that predicted from the data with case i excluded, scaled ap-
propriately. These are expensive to compute exactly and so an approximation due to
Williams (1987) can be used:

sign(y− µ̂)
√

(1−hi)r2
SD +hir2

SP

where rSP = rP/
√

1−hi. These may be computed as:
rstudent(modl)

1 2 3 4 5
-0.584786 0.472135 0.000000 0.083866 -0.271835

Outliers may be detected by observing particularly large jackknife residuals.
Leverage only measures the potential to affect the fit whereas measures of in-

fluence more directly assess the effect of each case on the fit. We can examine the
change in the fit from omitting a case by looking at the changes in the coefficients:
influence(modl)$coef
(Intercept) conc

1 -0.2140015 0.0806635
2 0.1556719 -0.0470873
3 0.0000000 0.0000000
4 -0.0058417 0.0084177
5 0.0492639 -0.0365734

Alternatively, we can examine the Cook statistics:

Di =
(β̂(i)− β̂)T (XTWX)(β̂(i)− β̂)

pφ̂

which may be calculated as:
cooks.distance(modl)
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1 2 3 4 5
0.1205927 0.0797100 0.0000000 0.0024704 0.0279174

We can see that the biggest change would occur by omitting the first observation.
However, since this is a very small dataset with just five observations, we would not
contemplate dropping cases. In any event, we see that the change in the coefficients
would not qualitatively change the conclusion.

Model Diagnostics: We may divide diagnostic methods into two types. Some
methods are designed to detect single cases or small groups of cases that do not
fit the pattern of the rest of the data. Outlier detection is an example of this. Other
methods are designed to check the assumptions of the model. These methods can be
subdivided into those that check the structural form of the model, such as the choice
and transformation of the predictors, and those that check the stochastic part of the
model, such as the nature of the variance about the mean response. Here, we focus
on methods for checking the assumptions of the model.

For linear models, the plot of residuals against fitted values is probably the single
most valuable graphic. For GLMs, we must decide on the appropriate scale for the fit-
ted values. Usually, it is better to plot the linear predictors η̂ rather than the predicted
responses µ̂. We revisit the model for Galápagos data first presented in Section 5.1.
Consider first a plot using µ̂ presented in the first panel of Figure 8.1:
data(gala, package="faraway")
gala <- gala[,-2]
modp <- glm(Species ~ .,family=poisson,gala)
plot(residuals(modp) ~ predict(modp,type="response"),

xlab=expression(hat(mu)),ylab="Deviance residuals")

Figure 8.1 Residual vs. fitted plots for the Galápagos model. The first uses fitted values in the
scale of the response while the second uses fitted values in the scale of the linear predictor.
The third plot uses response residuals while the first two use deviance residuals.

There are just a few islands with a large predicted number of species while most
predicted response values are small. This makes it difficult to see the relationship
between the residuals and the fitted values because most of the points are compressed
on the left of the display. Now we try plotting η̂:
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plot(residuals(modp) ~ predict(modp,type="link"),
xlab=expression(hat(eta)),ylab="Deviance residuals")

Now the points, shown in the second panel of Figure 8.1, are more evenly spaced
in the horizontal direction. We are looking for two main features in such a plot. Is
there any nonlinear relationship between the predicted values and the residuals? If so,
this would be an indication of a lack of fit that might be rectified by a change in the
model. For a linear model, we might consider a transformation of the response, but
this is usually impractical for a GLM since it would change the assumed distribution
of the response. We might also consider a change to the link function, but often this
is undesirable since there are a few choices of link function that lead to easily inter-
pretable models. It is best if a change in the choice of predictors or transformations
on these predictors can be made since this involves the least disruption to the GLM.
For this particular plot, there is no evidence of nonlinearity.

The variance of the residuals with respect to the fitted values should also be
inspected. The assumptions of the GLM would require constant variance in the plot
and, in this case, this appears to be the case. A violation of this assumption would
prompt a change in the model. We might consider a change in the variance function
V (µ), but this would involve abandoning the Poisson GLM since this specifies a
particular form for the variance function. We would need to use a quasi-likelihood
GLM described in Section 9.4. Alternatively, we could employ a different GLM for
a count response such as the negative binomial. Finally, we might use weights if we
could identify some feature of the data that would suggest a suitable choice.

For all GLMs but the Gaussian, we have a nonconstant variance function. How-
ever, by using deviance residuals, we have already scaled out the variance function
and so, provided the variance function is correct, we do expect to see constant vari-
ance in the plot. If we use response residuals, that is y− µ̂, as seen in the third panel
of Figure 8.1:
plot(residuals(modp,type="response") ~ predict(modp,type="link"),
xlab=expression(hat(eta)),ylab="Response residuals")

We see a pattern of increasing variation consistent with the Poisson.
In some cases, plots of the residuals are not particularly helpful. For a binary re-

sponse, the residual can only take two possible values for given predicted response.
This is the most extreme situation, but similar discreteness can occur for binomial
responses with small group sizes and Poisson responses that are small. Plots of resid-
uals in these cases tend to show curved lines of points corresponding to the limited
number of observed responses. Such artifacts can obscure the main purpose of the
plot. Difficulties arise for binomial data where the covariate classes have very differ-
ent sizes. Points on plots may represent just a few or a large number of individuals.

Investigating the nature of the relationship between the predictors and the re-
sponse is another primary objective of diagnostic plots. Even before a model is fit to
the data, we might simply plot the response against the predictors. For the Galápagos
data, consider a plot of the number of species against the area of the island shown in
the first panel of Figure 8.2:
plot(Species ~ Area, gala)
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Figure 8.2 Plots of the number of species against area for the Galápagos data. The first plot
clearly shows a need for transformation, the second shows the advantage of using logged area,
while the third shows the value of using the linearized response.

We see that both variables have skewed distributions. We start with a log transforma-
tion on the predictor as seen in the second panel of Figure 8.2:
plot(Species ~ log(Area), gala)

We see a curvilinear relationship between the predictor and the response. However,
the default Poisson GLM uses a log link which we need to take into account. To
allow for the choice of link function, we can plot the linearized response:

z = η+(y−µ)
dη

dµ

as we see in the third panel of Figure 8.2:
mu <- predict(modp,type="response")
z <- predict(modp)+(gala$Species-mu)/mu
plot(z ~ log(Area), gala,ylab="Linearized Response")

We now see a linear relationship suggesting that no further transformation of area
is necessary. Notice that we used the current model in the computation of z. Some
might prefer to use an initial guess here to avoid presuming the choice of model. For
this dataset, we find that a log transformation of all the predictors is helpful:
modpl <- glm(Species ~ log(Area) + log(Elevation) + log(Nearest) +

log(Scruz+0.1) + log(Adjacent), family=poisson, gala)
c(deviance(modp),deviance(modpl))
[1] 716.85 359.12

We see that this results in a substantial reduction in the deviance.
The disadvantage of simply examining the raw relationship between the response

and the other predictors is that it fails to take into account the effect of the other
predictors. Partial residual plots are used for linear models to make allowance for the
effect of the other predictors while focusing on the relationship of interest. These can
be adapted for use in GLMs by plotting z− η̂+β jx j vs. x j. The interpretation is the
same as in the linear model case. We compute the partial residual plot for the (now
logged) area, as shown in the first panel of Figure 8.3:
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mu <- predict(modpl,type="response")
u <- (gala$Species-mu)/mu + coef(modpl)[2]*log(gala$Area)
plot(u ~ log(Area), gala,ylab="Partial Residual")
abline(0,coef(modpl)[2])
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Figure 8.3 A partial residual plot for log(Area) is shown on the left while a diagnostic for the
link function is shown on the right.

In this plot, we see no reason for concern. There is no nonlinearity indicating a need
to transform nor are there any obvious outliers or influential points. Partial residuals
can also be obtained from residuals(., type="partial") although an offset will
be necessary if you want the regression line displayed correctly on the plot.

One can search for good transformations of the predictors in nongraphical ways.
Polynomial terms or spline functions of the predictors can be experimented with,
but generalized additive models, described in Chapter 15, offer a more direct way to
discover some good transformations.

The link function is a fundamental assumption of the GLM. Quite often the
choice of link function is set by the characteristics of the response, such as positivity,
or by ease of interpretation, as with logit link for binomial GLMs. It is often difficult
to contemplate alternatives. Nevertheless, it is worth checking to see whether the link
assumption is not grossly wrong. Before doing this, it is important to eliminate other
simpler violations of the assumptions that are more easily rectified such as outliers
or transformations of the predictors. After these concerns have been eliminated, one
can check the link assumption by making a plot of the linearized response z against
linear predictor η̂. An example of this is shown in the second panel of Figure 8.3:
z <- predict(modpl)+(gala$Species-mu)/mu
plot(z ~ predict(modpl), xlab="Linear predictor",
ylab="Linearized Response")

In this case, we see no indication of a problem.
An alternative approach to checking the link function is to propose a family of

link functions of which the current choice is a member. A range of links can then be
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fit and compared to the current choice. The approach is analogous to the Box–Cox
method used for linear models. Alternative choices are easier to explore within the
quasi-likelihood framework described in Section 9.4.

Unusual Points: We have already described the raw material of residuals, lever-
age and influence measures that can be used to check for points that do not fit the
model or influence the fit unduly. Let’s now see how to use graphical methods to
examine these quantities.

The QQ plot of the residuals is the standard way to check the normality assump-
tion on the errors typically made for a linear model. For a GLM, we do not expect
the residuals to be normally distributed, but we are still interested in detecting out-
liers. For this purpose, it is better to use a half-normal plot that compares the sorted
absolute residuals and the quantiles of the half-normal distribution:

Φ
−1
(

n+ i
2n+1

)
i = 1, . . . ,n

The residuals are not expected to be normally distributed, so we are not looking for
an approximate straight line. We only seek outliers which may be identified as points
off the trend. A half-normal plot is better for this purpose because in a sense the
resolution of the plot is doubled by having all the points in one tail.

Since we are more specifically interested in outliers, we should plot the jack-
knife residuals. An example for the Galápagos model is shown in the first panel of
Figure 8.4:
halfnorm(rstudent(modpl))
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Figure 8.4 Half-normal plots of the jackknife residuals on the left and the leverages on the
right.

We see no sign of outliers in the plot. The half-normal plot is also useful for positive-
valued diagnostics such as the leverages and the Cook statistics. A look at the lever-
ages is shown in the second panel of Figure 8.4:
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gali <- influence(modpl)
halfnorm(gali$hat)

There is some indication that case 25, Santa Cruz island, may have some leverage.
The predictor Scruz is the distance from Santa Cruz island which is zero for this case.
This posed a problem for making the log transformation and explains why we added
0.1 to this variable. However, there is some indication that this inelegant fix may be
causing some difficulty.

Moving on to influence, a half-normal plot of the Cook statistics is shown in the
first panel of Figure 8.5:
halfnorm(cooks.distance(modpl))
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Figure 8.5 Half-normal plot of the Cook statistics is shown on the left and an index plot of the
change in the Scruz coefficient is shown on the right.

Again we have some indication that Santa Cruz island is influential. We can examine
the change in the fitted coefficients. For example, consider the change in the Scruz
coefficient as shown in the second panel of Figure 8.5:
plot(gali$coef[,5],ylab="Change in Scruz coef",xlab="Case no.")

We see a substantial change for case 25. If we compare the full fit to a model
without this case, we find:
modplr <- glm(Species ~ log(Area) + log(Elevation) + log(Nearest)
+ log(Scruz+0.1) + log(Adjacent), family=poisson, gala, subset=-25)

cbind(coef(modpl),coef(modplr))
[,1] [,2]

(Intercept) 3.287941 3.050699
log(Area) 0.348445 0.334530
log(Elevation) 0.036421 0.059603
log(Nearest) -0.040644 -0.052548
log(Scruz + 0.1) -0.030045 0.015919
log(Adjacent) -0.089014 -0.088516

We see a sign change for the Scruz coefficient. This is interesting since in the full
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model, the coefficient is more than twice the standard error way from zero indicating
some significance. A simple solution is to add a larger amount, say 0.5, to Scruz.

Other than this user-introduced anomaly, we find no difficulty. Using our ear-
lier discovery of the log transformation, some variable selection and allowing for
remaining overdispersion, our final model is:
modpla <- glm(Species ~ log(Area)+log(Adjacent), family=poisson, gala)
dp <- sum(residuals(modpla,type="pearson")^2)/modpla$df.res
sumary(modpla,dispersion=dp)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.2767 0.1794 18.26 < 2e-16
log(Area) 0.3750 0.0326 11.50 < 2e-16
log(Adjacent) -0.0957 0.0249 -3.85 0.00012

overdispersion parameter = 16.527
n = 30 p = 3
Deviance = 395.543 Null Deviance = 3510.729 (Difference = 3115.186)

Notice that the deviance is much lower and the elevation variable is not used when
compared with our model choice in Section 5.1.

This example concerned a Poisson GLM. Diagnostics for binomial GLMs are
similar, but see Pregibon (1981) and Collett (2003) for more details.

8.5 Sandwich Estimation

Inference from GLMs depends on the accuracy of the assumptions of the model.
Diagnostics are one way in which we can detect violations for these assumptions.
Sometimes we can modify the model so that these violations no longer occur or are
sufficiently minor to ignore. But sometimes we may not be able or wish to change the
model. Instead we would like to modify the inferential procedures so that they are
insensitive to these violations. Two common forms of violation are heteroscedasc-
ity (unequal variance) and autocorrelation in the response. In GLMs, excepting the
Gaussian case, the variance of the response varies as a function of the mean response.
By heteroscedascity, we mean the problem where this variation goes beyond what is
expected from the mean.

In the standard linear model, ordinary least squares estimation is not optimal in
the presence of heteroscedascity and/or correlation in the errors. Nevertheless, it still
retains some desirable properties (unbiasedness) and we might retain these estimates
especially if we were unsure of a modification that would surely improve them. For
GLMs, we also wish to retain the standard MLEs of β because these will still be
reasonable. For example, we have seen that these estimators are unchanged in the
presence of overdispersion. However, the estimate of var β̂ is much more sensitive to
these violations of the assumptions. Sandwich estimation is a method for obtaining
better estimates of var β̂ in these circumstances.

We describe how these are applied for standard linear models (LM) to avoid
complicating the exposition but the extension to GLMs is straightforward. We have

y = Xβ+ ε where var ε = Ω
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Using the standard ordinary least squares estimate β̂ gives

var β̂ = (XT X)−1XT
ΩX(XT X)−1

The usual assumption of independent and identical errors has Ω = σ2I which means
we reduce to var β̂ = σ2(XT X)−1. But suppose we believe that this assumption has
been violated. Let’s focus on the heteroscedastic case with no correlation. We might
estimate Ω = diag(ω1, . . . ,ωn) in order to obtain a better estimate of the variance.
Various estimates have been proposed but one that has been shown to behave well in
the small sample case is:

ωi =
ε̂2

i
(1−hi)2

for leverages hi. This allows the computation of a sandwich estimate of the variance
of β̂. The estimator gets its name from the bread, (XT X)−1 and the meat, XT ΩX .

The estimator can be extended to handle autocorrelation in the response which
might be a concern for time-ordered data. We have described the LM solution but the
extension to GLMs is straightforward. For more details, see Zeileis (2004).

Sandwich estimators are implemented in the sandwich package. We illustrate
their application to the Galápagos data using the final model of the previous section:
data(gala,package="faraway")
library(sandwich)
modpla <- glm(Species ~ log(Area)+log(Adjacent), family=poisson, gala)
(sebeta <- sqrt(diag(vcovHC(modpla))))
(Intercept) log(Area) log(Adjacent)

0.181162 0.034877 0.026938

Notice that these standard errors for the regression coefficients are quite similar to
the previous model where we used a dispersion parameter to account for the known
violation of the mean equal to variance assumption of the strictly Poisson GLM.
Hence the sandwich estimator also takes care of the overdispersion problem and it
is not necessary to introduce a dispersion parameter into the sandwich-based solu-
tion. Wald tests of the parameters can be obtained by simply dividing the parameter
estimates by their standard errors as before with much the same outcome.

8.6 Robust Estimation

When we compute the MLE for a GLM we are required to solve a set of equations
as seen in Section 8.2:

∑
i

γi
(yi−µi)

V (µi)

∂µi

∂β j
= 0 ∀ j

We have added weights γi to give us some additional flexibility. These weights are
distinct from previously defined weights wi and are used for the specific purpose of
downweighting extreme observations where yi is far from µi. One problem with the
standard MLE is that as a particular yi becomes more extreme, the influence on β̂ is
unbounded. We want to define γi in such a way that each observation has bounded
influence. Now consider

Eγ
(y−µ)
V (µ)

∂µ
∂β j
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When γ = 1 we know from standard likelihood theory that this expectation is equal
to zero. We will need γ to be defined as a function of y, x and β to ensure we achieve
bounded influence but we still want the expectation to be zero as in the standard case.
In other words, we want these to be conditionally unbiased given x.

These considerations lead to the definition of the CUBIF (conditionally unbiased
influence function) method of robust estimation. Our description has been intuitive
but for the full details see Kunsch et al. (1989). This method is implemented in the
robust package of Wang et al. (2014) which we apply to the same Galápagos model
of the previous sections:
data(gala,package="faraway")
library(robust)
rmodpla <- glmrob(Species ~ log(Area)+log(Adjacent), family=poisson,

↪→ data=gala)
summary(rmodpla)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.98321 0.05198 57.4 <2e-16
log(Area) 0.42115 0.00925 45.5 <2e-16
log(Adjacent) -0.11214 0.00660 -17.0 <2e-16
Robustness weights w.r * w.x:
9 weights are ~= 1. The remaining 21 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0879 0.2540 0.3820 0.4340 0.6300 0.8330

This implementation uses a Huber-style influence function. There are various fitting
parameters which can be tweaked but we have shown the default choices here.

There are two strategies for using robust models. One approach is to use them as
the primary method of estimation. We can use them to make inferences about rela-
tionships between the variables and to predict future observations. The drawback is
that the statistical methodology to achieve this is more complicated and less devel-
oped than for standard GLMs. Progress can be made but it is more difficult. In some
applications, a very large number of models will be fitted or future data will be used
so that it will be impractical for a human analyst to judge the results. In such circum-
stances, we may prefer the robust modeling approach as it will be less sensitive to
unexpected or aberrant observations.

The other approach is to view the robust fit as an ancillary to the standard GLM
fit. We can compare the results of these two fits. In this particular example, we find
that the coefficients are not substantially different. We might proceed to make con-
clusions using the standard fit with the added confidence that these results were not
unduly sensitive to some extreme observations. If we had seen a substantially differ-
ent fit, we would investigate to find the cause of the difference.

It is worth checking which observations received the lowest weighting in the
robust model:
wts <- rmodpla$w.r
names(wts) <- row.names(gala)
head(sort(wts))

Gardner1 Rabida Bartolome Seymour Daphne.Minor
0.087863 0.114472 0.214854 0.216445 0.228807

Our previous diagnostic analyses also detected unusual points but these methods
struggle with the problem that such points often influence the fit itself. At most, they
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can check the effect of excluding one case whereas robust methods are able to handle
multiple unusual cases. In this example, we might examine these cases more closely
to see what makes them unusual.

Further Reading: The canonical book on GLMs is McCullagh and Nelder
(1989). Other books include Dobson and Barnett (2008), Lindsey (1997), Myers et al.
(2002), Gill (2001) and Fahrmeir and Tutz (2001). For a Bayesian perspective, see
Dey et al. (2000).

Exercises

1. Data is generated from the exponential distribution with density f (y) =
λexp(−λy) where λ,y > 0.

(a) Identify the specific form of θ,φ,a(),b() and c() for the exponential distribu-
tion.

(b) What is the canonical link and variance function for a GLM with a response
following the exponential distribution?

(c) Identify a practical difficulty that may arise when using the canonical link in
this instance.

(d) When comparing nested models in this case, should an F or χ2 test be used?
Explain.

(e) Express the deviance in this case in terms of the responses yi and the fitted
values µ̂i.

2. The Conway–Maxwell–Poisson distribution has probability function:

P(Y = y) =
λy

(y!)ν

1
Z(λ,ν)

y = 0,1,2, . . .

where

Z(λ,ν) =
∞

∑
i=0

λi

(i!)ν

Place this in exponential family form, identifying all the relevant components
necessary for use in a GLM.

3. Consider the following distributions and determine whether they can be put in
exponential family form. If it is not possible, consider whether there is a special
case which follows the form.
• The Uniform distribution:

f (y|α,β) = 1
β−α

I(y ∈ [α,β])

• The Weibull distribution: (y > 0)

f (y|α,β) = αβ
−αyα−1e(y/β)α
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• The Gumbel distribution: (y > 0)

f (y|α,β) = 1
β

exp((y−α)/β− exp((y−α)/β))

4. Consider the Galápagos data and model analyzed in this chapter. The purpose of
this question is to reproduce the details of the GLM fitting of this data.

(a) Fit a Poisson model to the species response with the five geographic variables
as predictors. Do not use the endemics variable. Report the values of the coef-
ficients and the deviance.

(b) For a Poisson GLM, derive η, dη/dµ, V (µ) and the weights to be used in an
iteratively fit GLM. What is the form of the adjusted dependent variable here?

(c) Using the observed response as initial values, compute the first stage of the
iteration, stopping after the first linear model fit. Compare the coefficients of
this linear model to those found in the GLM fit. How close are they?

(d) Continue the iteration to get the next η and µ. Use this to compute the current
value of the deviance. How close is this to the deviance from the GLM?

(e) Compute one more iteration of the GLM fit, reporting the next calculation of
the coefficients and deviance. How close are these to target now?

(f) Repeat these iterations a few more times, computing the deviance in each time.
Stop when the deviance does not change much. Compare your final estimated
coefficients to that produced by the GLM fit.

(g) Use your final iterated linear model fit to produce standard errors for the coef-
ficients. How close are these to that produced by the direct GLM fit?

5. Again using the Galápagos data, fit a Poisson model to the species response with
the five geographic variables as predictors. Do not use the endemics variable. The
purpose of this question is to compare six different ways of testing the significance
of the elevation predictor, i.e., H0 : βElev = 0. In each case, report the p-value.

(a) Use the z-statistic from the model summary.
(b) Fit a model without elevation and use the difference in deviances to make the

test.
(c) Use the Pearson Chi-squared statistic in place of the deviance in the previous

test.
(d) Fit the Poisson model with a free dispersion parameter as described in Sec-

tion 5.2. Make the test using the model summary.
(e) Use the sandwich estimation method for the standard errors in the original

model. Use these to compute z-statistics.
(f) Use the robust GLM estimation method and report the test result from the

summary.
(g) Compare all six results. Pick the best one and justify your choice.
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6. The worldcup data were collected at the 2010 World Cup. We are interested in
modeling the number of shots taken by each player. As goalkeepers do not nor-
mally shoot, you should remove them from the dataset. Due to substitution and
varying success in the tournament, the number of minutes played by each player
is quite variable. For this reason, compute new variables that represent the number
of tackles and passes made per 90-minute game.

(a) Fit a Poisson model with the number of shots as the response and team, posi-
tion, tackles and passes per game as predictor. Note that time played is a rate
variable and should be accounted for as described in Section 5.3. Interpret the
effect of tackles and passes on shots.

(b) Calculate the leverages for the current model. Report which player has the
highest leverage and suggest why this might be so. Make an appropriate plot
of the leverages and comment on whether any leverage is exceptional.

(c) Compute the change in the regression coefficients when each case is dropped.
In particular, examine the change in the tackle coefficient identifying the player
which causes the greatest absolute change in this value. What is unusual about
this player? Plot the change in the tackle coefficient and determine if any of the
values is particularly large.

(d) Calculate the Cook Statistics. Which player has the largest such statistic and
what is unusual about him?

(e) Find the jacknife residuals. Find the player with the largest absolute residual
of this kind. How did he come to be the largest?

(f) Plot the residuals against the appropriate fitted values. Explain the source of
the lines of points appearing on the plot. What does this plot indicate?

(g) Make the following three plots:

i. Plot raw shots against tackles.
ii. Plot shots per game against tackles per game.

iii. Plot the linearized response against tackles per game.

Make an interpretation of each plot and choose the best one for discovering the
relationship between this predictor and the response. Justify your choice.

(h) Construct the partial residual plot for tackles and interpret. Is the point on the
far right really influential?

(i) Make a diagnostic plot to check the choice of the (default) link function.
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Chapter 9

Other GLMs

The binomial, Gaussian and Poisson GLMs are by far the most commonly used, but
there are a number of less popular GLMs that are useful for particular types of data.
The gamma and inverse Gaussian are intended for continuous, skewed responses.
In some cases, we are interested in modeling both the mean and the dispersion of
the response and so we present dual GLMs for this purpose. The quasi-GLM is a
model that is useful for nonstandard responses where we are unwilling to specify the
distribution but can state the link and variance functions.

9.1 Gamma GLM

The density of the gamma distribution is usually given by:

f (y) =
1

Γ(ν)
λ

νyν−1e−λy y > 0

where ν describes the shape and λ describes the scale of the distribution. However,
for the purposes of a GLM, it is convenient to reparameterize by putting λ = ν/µ to
get:

f (y) =
1

Γ(ν)

(
ν

µ

)ν

yν−1e−
(

yν

µ

)
y > 0

Now EY = µ and var Y = µ2/ν = (EY )2/ν. The dispersion parameter is φ = ν−1.
Here we plot a gamma density with three different values of the shape parameter ν

(the scale parameter would just have a multiplicative effect) as seen in Figure 9.1:
x <- seq(0,8,by=0.1)
plot(x,dgamma(x,0.75), type="l", ylab="", xlab="", ylim=c(0,1.25),

↪→ xaxs="i", yaxs="i")
plot(x,dgamma(x,1.0), type="l", ylab="", xlab="", ylim=c(0,1.25), xaxs

↪→ ="i",yaxs="i")
plot(x,dgamma(x,2.0), type="l", ylab="", xlab="", ylim=c(0,1.25), xaxs

↪→ ="i",yaxs="i")

The gamma distribution can arise in various ways. The sum of ν independent and
identically distributed exponential random variables with rate λ has a gamma dis-
tribution. The χ2 distribution is a special case of the gamma where λ = 1/2 and
ν = d f/2.

The canonical parameter is −1/µ, so the canonical link is η = −1/µ. However,
we typically remove the minus (which is fine provided we take account of this in any
derivations) and just use the inverse link. We also have b(θ) = log(1/µ) =− log(−θ)

175
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Figure 9.1 The gamma density explored. In the first panel ν = 0.75 and we see that the density
is unbounded at zero. In the second panel, ν = 1 which is the exponential density. In the third
panel, ν = 2 and we see a skewed distribution.

and so b′′(θ) = µ2 is the variance function. The (unscaled) deviance is:

D(y, µ̂) =−2∑{logyi/µ̂i− (yi− µ̂i)/µ̂i}

The utility of the gamma GLM arises in two different ways. Certainly, if we
believe the response to have a gamma distribution, the model is clearly applicable.
However, the model can also be useful in other situations where we may be willing to
speculate on the relationship between the mean and the variance of the response but
are not sure about the distribution. Indeed, it is possible to grasp the mean-to-variance
relationship from graphical displays with relatively small datasets, while assertions
about the response distribution would require a lot more data.

In the Gaussian linear model, var Y is constant as a function of the mean response.
This is a fundamental assumption necessary for the optimality of least squares. How-
ever, sometimes contextual knowledge of the data or diagnostics shows that var Y
is nonconstant. When the form of nonconstancy is known exactly, then weighted
least squares can be used. In practice, however, the form is often not known exactly.
Alternatively, the transformation of Y may lead to a constant variance model. The
difficulty here is that while the original scale Y may be meaningful, logY or

√
Y , for

example, may not. An example is where a sum of the Y s may be of interest. In such
a case, transformation would be a hindrance.

If var Y ∝ EY , then
√

Y is the variance stabilizing transform. If one wants to avoid
a transformation, a GLM approach can be used. When Y has a Poisson distribution,
then var Y ∝ EY , suggesting the use of a Poisson GLM. Now one might object that
the Poisson is a distribution for discrete data, which would seem to disallow its use
for continuous responses. However, fitting a GLM only depends on the mean and
variance of a distribution; the other moments are not used. This is important because
it indicates that we need specify nothing more than the mean and variance. The dis-
tribution could be discrete or continuous and it would make no difference.
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For some data, we might expect the standard deviation to increase linearly with
the response. If so, the coefficient of variation, SD Y/EY , would be constant and
var Y ∝ (EY )2. For example, measurements of larger objects do tend to have more
error than smaller ones.

If we wanted to apply a Gaussian linear model, the log transform is indicated.
This would imply a lognormal distribution for the original response. Alternatively, if
Y ∼ gamma, then var Y ∝ (EY )2, so a gamma GLM is also appropriate in this situa-
tion. In a few cases, one may have some knowledge concerning the true distribution
of the response which would drive the choice. However, in many cases, it would be
difficult to distinguish between these two options on the basis of the data alone and
the choice would be driven by the purpose and desired interpretation of the model.

There are three common choices of link function:
1. The canonical link is η = µ−1. Since −∞ < η < ∞, the link does not guarantee

µ > 0 which could cause problems and might require restrictions on β or on the
range of possible predictor values. On the other hand, the reciprocal link has some
advantages. The Michaelis–Menten model, used in biochemistry, has:

Ey = µ =
α0x

1+α1x

which can be represented after some reexpression as:

η = α1/α0 +1/(α0x) = µ−1

As x increases, η→ α1/α0, which means that the mean µ will be bounded. The
inverse link can be useful in such situations where we know the mean response to
be bounded.

2. The log link, η = logµ, should be used when the effect of the predictors is sus-
pected to be multiplicative on the mean. When the variance is small, this approach
is similar to a Gaussian model with a logged response.

3. The linear link, η = µ, is useful for modeling sums of squares or variance compo-
nents which are χ2. This is a special case of the gamma.
The general GLM procedures apply to the analysis and fitting. To estimate the

dispersion, McCullagh and Nelder (1989) recommend the use of:

φ̂ =
1
ν̂
=

X2

n− p

The maximum likelihood estimator and the usual estimator, D/(n− p), are both sen-
sitive to unusually small values of the response and are not consistent estimates of
the coefficient of variation when the gamma distribution assumption does not hold.

Myers and Montgomery (1997) present data from a step in the manufacturing
process for semiconductors. Four factors are believed to influence the resistivity of
the wafer and so a full factorial experiment with two levels of each factor was run.
Previous experience led to the expectation that resistivity would have a skewed dis-
tribution and so the need for transformation was anticipated. We start with a look at
the data:
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data(wafer, package="faraway")
summary(wafer)
x1 x2 x3 x4 resist
-:8 -:8 -:8 -:8 Min. :166
+:8 +:8 +:8 +:8 1st Qu.:201

Median :214
Mean :229
3rd Qu.:259
Max. :340

The application of the Box–Cox method or past experience suggests the use of a
log transformation on the response. We fit the full model and then reduce it using
AIC-based model selection:
llmdl <- lm(log(resist) ~ .^2, wafer)
rlmdl <- step(llmdl)
library(faraway)
sumary(rlmdl)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3111 0.0476 111.53 4.7e-14
x1+ 0.2009 0.0476 4.22 0.00292
x2+ -0.2107 0.0476 -4.43 0.00221
x3+ 0.4372 0.0673 6.49 0.00019
x4+ 0.0354 0.0476 0.74 0.47892
x1+:x3+ -0.1562 0.0673 -2.32 0.04896
x2+:x3+ -0.1782 0.0673 -2.65 0.02941
x3+:x4+ -0.1830 0.0673 -2.72 0.02635

n = 16, p = 8, Residual SE = 0.067, R-Squared = 0.95

We find a model with three two-way interactions, all with x3.
Now we fit the corresponding gamma GLM and again select the model using the

AIC criterion. Note that the family must be specified as Gamma rather than gamma to
avoid confusion with the Γ function. We use the log link to be consistent with the
linear model. This must be specified as the default is the inverse link:
gmdl <- glm(resist ~ .^2, family=Gamma(link=log), wafer)
rgmdl <- step(gmdl)
sumary(rgmdl)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3120 0.0476 111.68 4.6e-14
x1+ 0.2003 0.0476 4.21 0.00295
x2+ -0.2110 0.0476 -4.44 0.00218
x3+ 0.4367 0.0673 6.49 0.00019
x4+ 0.0354 0.0476 0.74 0.47836
x1+:x3+ -0.1555 0.0673 -2.31 0.04957
x2+:x3+ -0.1763 0.0673 -2.62 0.03064
x3+:x4+ -0.1819 0.0673 -2.70 0.02687

Dispersion parameter = 0.005
n = 16 p = 8
Deviance = 0.036 Null Deviance = 0.698 (Difference = 0.662)

In this case, we see that the coefficients are remarkably similar to the linear model
with the logged response. Even the standard errors are almost identical and the square
root of the dispersion corresponds to the residual standard error of the linear model:
sqrt(summary(rgmdl)$dispersion)
[1] 0.067267
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The maximum likelihood estimate of φ may be computed using the MASS package:
library(MASS)
gamma.dispersion(rgmdl)
[1] 0.0022657

We see that this gives a substantially smaller estimate, which would suggest smaller
standard errors. However, it is not consistent with our experience with the Gaussian
linear model in this example.

In this example, because the value of ν = 1/φ is large (221), the gamma distri-
bution is well approximated by a normal. Similarly, for the logged response linear
model, a lognormal distribution with a small variance (σ = 0.0673) is also very well
approximated by a normal. For this reason, there is not much to distinguish these two
models. The gamma GLM has the advantage of modeling the response directly while
the lognormal has the added convenience of working with a standard linear model.

Let us examine another example where there is more distinction between the two
approaches. In Hallin and Ingenbleek (1983) data on payments for insurance claims
for various areas of Sweden in 1977 are presented. The data is further subdivided
by mileage driven, the bonus from not having made previous claims and the type of
car. We have information on the number of insured, measured in policy-years, within
each of these groups. Since we expect that the total amount of the claims for a group
will be proportionate to the number of insured, it makes sense to treat the log of the
number insured as an offset for similar reasons to those in Section 5.3. Attention has
been restricted to data from Zone 1. After some model selection, a gamma GLM of
the following form was found:
data(motorins, package="faraway")
motori <- motorins[motorins$Zone == 1,]
gl <- glm(Payment ~ offset(log(Insured)) + as.numeric(Kilometres) +

↪→ Make+Bonus, family=Gamma(link=log), motori)
sumary(gl)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5273 0.1777 36.72 < 2e-16
as.numeric(Kilometres) 0.1201 0.0311 3.85 0.00014
Make2 0.4070 0.1782 2.28 0.02313
Make3 0.1553 0.1796 0.87 0.38767
Make4 -0.3439 0.1915 -1.80 0.07355
Make5 0.1447 0.1810 0.80 0.42473
Make6 -0.3456 0.1782 -1.94 0.05352
Make7 0.0614 0.1824 0.34 0.73689
Make8 0.7504 0.1873 4.01 0.000079
Make9 0.0320 0.1782 0.18 0.85778
Bonus -0.2007 0.0215 -9.33 < 2e-16

Dispersion parameter = 0.556
n = 295 p = 11
Deviance = 155.056 Null Deviance = 238.974 (Difference = 83.918)

In comparison, the lognormal model, where we have used the glm function for com-
patibility, looks like this:
llg <- glm(log(Payment) ~ offset(log(Insured))+as.numeric(Kilometres)+

↪→ Make+Bonus,family=gaussian , motori)
sumary(llg)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.51403 0.18634 34.96 < 2e-16
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as.numeric(Kilometres) 0.05713 0.03265 1.75 0.0813
Make2 0.36387 0.18686 1.95 0.0525
Make3 0.00692 0.18824 0.04 0.9707
Make4 -0.54786 0.20076 -2.73 0.0067
Make5 -0.02179 0.18972 -0.11 0.9087
Make6 -0.45881 0.18686 -2.46 0.0147
Make7 -0.32118 0.19126 -1.68 0.0942
Make8 0.20958 0.19631 1.07 0.2866
Make9 0.12545 0.18686 0.67 0.5025
Bonus -0.17806 0.02254 -7.90 6.2e-14

Dispersion parameter = 0.611
n = 295 p = 11
Deviance = 173.529 Null Deviance = 238.565 (Difference = 65.035)

Notice that there are now important differences between the two models. We see that
mileage class given by Kilometers is statistically significant in the gamma GLM,
but not in the lognormal model. Some of the coefficients are quite different. For
example, we see that for make 8, relative to the reference level of make 1, there are
exp(0.7504) = 2.1178 times as much payment when using the gamma GLM, while
the comparable figure for the lognormal model is exp(0.20958) = 1.2332.

These two models are not nested and have different distributions for the response,
which makes direct comparison problematic. The AIC criterion, which is minus
twice the maximized likelihood plus twice the number of parameters, has often been
used as a way to choose between models. Smaller values are preferred. However,
when computing a likelihood, it is common practice to discard parts that are not
functions of the parameters. This has no consequence when models with same dis-
tribution for the response are compared since the parts discarded will be equal. For
responses with different distributions, it is essential that all parts of the likelihood be
retained. The large difference in AIC for these two models indicates that this pre-
caution was not taken. Nevertheless, we note that the null deviance for both models
is almost the same while the residual deviance is smaller for the gamma GLM. This
improvement relative to the null indicates that the gamma GLM should be preferred
here. Note that purely numerical comparisons such as this are risky and that some
attention to residual diagnostics, scientific context and interpretation is necessary.

We compare the shapes of the distributions for the response using the dispersion
estimates from the two models, as seen in Figure 9.2:
x <- seq(0,5,by=0.05)
plot(x,dgamma(x,1/0.55597,scale=0.55597),type="l",ylab="", xlab="",

↪→ yaxs="i",ylim=c(0,1))
plot(x,dlnorm(x,meanlog=-0.30551,sdlog=sqrt(0.61102)),type="l", ylab="

↪→ ",xlab="",yaxs="i",ylim=c(0,1))

We see the greater peakedness of the lognormal indicating more small payments
which are balanced by more large payments. The lognormal thus has higher kurtosis.

We may also make predictions from both models. Here is a plausible value of the
predictors:
x0 <- data.frame(Make="1",Kilometres=1,Bonus=1,Insured=100)

and here is predicted response for the gamma GLM:
predict(gl,new=x0,se=T,type="response")
$fit
[1] 63061
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Figure 9.2 Gamma density for observed shape of 1/0.55597 is shown on the left and lognormal
density for an observed SD on the log scale of

√
0.61102. The means have been set to one in

both cases.

$se.fit
[1] 9711.5

For the lognormal, we have:
predict(llg,new=x0,se=T,type="response")
$fit
[1] 10.998

$se.fit
[1] 0.16145

so that the corresponding values on the original scale would be:
c(exp(10.998),exp(10.998)*0.16145)
[1] 59754.5 9647.4

where we have used the delta method to estimate the standard error on the original
scale.

9.2 Inverse Gaussian GLM

The density of an inverse Gaussian random variable, Y ∼ IG(µ,λ), is:

f (y|µ,λ) = (λ/2πy3)1/2 exp[−λ(y−µ)2/2µ2y] y,µ,λ > 0

The mean is µ and the variance is µ3/λ. The canonical link is η = 1/µ2 and the
variance function is V (µ) = µ3. The deviance is given by:

D = ∑
i
(yi− µ̂i)

2/(µ2
i yi)
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Plots of the inverse Gaussian density for a range of values of the shape parameter, λ,
are shown in Figure 9.3. We require the SuppDists package of Wheeler (2013).
library(SuppDists)
x <- seq(0,8,by=0.1)
plot(x,dinvGauss(x,1,0.5),type="l",ylab="",xlab="",ylim=c(0,1.5),

xaxs="i",yaxs="i")
plot(x,dinvGauss(x,1,1),type="l",ylab="",xlab="",ylim=c(0,1.5),

xaxs="i",yaxs="i")
plot(x,dinvGauss(x,1,5),type="l",ylab="",xlab="",ylim=c(0,1.5),

xaxs="i",yaxs="i")
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Figure 9.3 Inverse Gaussian densities for λ = 0.5 on the left, λ = 1 in the middle and λ = 5
on the right. µ = 1 in all three cases.

The case of µ = 1 is known as the Wald distribution. The inverse Gaussian has found
application in the modeling of lifetime distributions with nonmonotone failure rates
and in the first passage times of Brownian motions with drift. See Seshadri (1993)
for a book-length treatment.

Notice that the variance function for the inverse Gaussian GLM increases more
rapidly with the mean than the gamma GLM, making it suitable for data where this
occurs.

In Whitmore (1986), some sales data on a range of products is presented for the
projected, xi, and actual, yi, sales for i = 1, . . . ,20. We consider a model, yi = βxi
where β would represent the relative bias in the projected sales. Since the sales vary
over a wide range from small to large, a normal error would be unreasonable because
Y is positive and violations of this constraint could easily occur. We start with a look
at the normal model:
data(cpd, package="faraway")
lmod <- lm(actual ~ projected-1,cpd)
summary(lmod)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
projected 0.9940 0.0172 57.9 <2e-16
plot(actual ~ projected, cpd)
abline(lmod)
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Now consider the inverse Gaussian GLM where we must specify an identity link
because we have yi = βxi:
igmod <- glm(actual ~ projected-1, family=inverse.gaussian(link="

↪→ identity"), cpd)
sumary(igmod)

Estimate Std. Error t value Pr(>|t|)
projected 1.1036 0.0614 18 2.2e-13

Dispersion parameter = 0.000
n = 20 p = 1
Deviance = 0.003 Null Deviance = Inf (Difference = Inf)
abline(igmod,lty=2)

We see that there is a clear difference in the estimates of the slope. The fits are
shown in the first panel of Figure 9.4. We should check the diagnostics on the inverse
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Figure 9.4 Projected and actual sales are shown for 20 products on the left. The linear model
fit is shown as a solid line and the inverse Gaussian GLM fit is shown with a dotted line. A
residual-fitted plot for the inverse Gaussian GLM is shown on the right.

Gaussian GLM:
plot(residuals(igmod) ~ log(fitted(igmod)),ylab="Deviance residuals",

↪→ xlab=expression(log(hat(mu))))
abline(h=0)

We see in the second panel of Figure 9.4 that the variance of the residuals is decreas-
ing with error, indicating that the inverse Gaussian variance function is too strong for
this data. We have used log(µ̂) so that the points are more evenly spread horizontally
making it easier, in this case, to see the variance relationship. A gamma GLM is a
better choice here. In Whitmore (1986), a different variance function is used, but we
do not pursue this here as this would not be a GLM.
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9.3 Joint Modeling of the Mean and Dispersion

All the models we have considered so far have modeled the mean response µ =
EY where the variance takes a known form: var Yi = φV (µi) where the dispersion
parameter φ is the variance in the Gaussian model, the squared coefficient of variation
in the gamma model and one in the binomial and Poisson models. We can generalize
a little to allowing weights by letting φ≡ φi = φwi when the weights are known.

In this section, we are interested in examples where φi varies with the covariates
X . This is a particular issue that arises in industrial experiments. We wish to man-
ufacture an item with a target mean or optimized response. We set the predictors to
produce items as close as possible to the target mean or to optimize the mean. This
requires a model for the mean. We would also prefer that the variance of the response
be small at the chosen value of the predictors for production. So we need to model
the variance as a function of the predictors.

We take, as an example, an experiment to determine which recipe will most re-
liably produce the best cake. The data comes from Box et al. (1988) and is shown
in Table 9.1. The objective is to bake a cake reliably no matter how incompetent the

Design Vars Environmental Vars
T 0 − + − +

F S E t 0 − − + +
0 0 0 6.7 3.4 5.4 4.1 3.8
− − − 3.1 1.1 5.7 6.4 1.3
+ − − 3.2 3.8 4.9 4.3 2.1
− + − 5.3 3.7 5.1 6.7 2.9
+ + − 4.1 4.5 6.4 5.8 5.2
− − + 6.3 4.2 6.8 6.5 3.5
+ − + 6.1 5.2 6.0 5.9 5.7
− + + 3.0 3.1 6.3 6.4 3.0
+ + + 4.5 3.9 5.5 5.0 5.4

Table 9.1 F=Flour, S=Shortening, E=Eggs, T=Oven temperature and t=Baking time. “+”
indicates a higher-than-normal setting while “−” indicates a lower-than-normal setting. “0”
indicates the standard setting.

cook. For this data, we can see, by examination, that a response of 6.8 is possible for
lower flour and shortening content and higher egg content if the temperature is on
the high side and the cooking time on the short side. However, we cannot be sure that
the consumer will be able to set the temperature and cooking time correctly. Perhaps
their oven is not correctly calibrated or they are just incompetent. If they happen to
bake the cake for longer than the set time, they will produce a cake with a 3.5 rating.
They will blame the product and not themselves and not buy that mix again. If on
the other hand we produce the mix with high flour and eggs and low shortening, the
worst the customer can do is a 5.2 and will do better than that for other combinations
of time and temperature.

Here we need a combination of a high mean with respect to the design factors,
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flour, eggs and shortening, and a low variance with respect to the environmental fac-
tors, temperature and time. In this example, the answer is easily seen by inspection,
but usually more formal model fitting methods will be needed.

Joint Model Specification: We use the standard GLM approach for the mean:

EYi = µi ηi = g(µi) = ∑
j

xi jβ j var Yi = φiV (µi) wi = 1/φi

Now the dispersion, φi, is no longer considered fixed. Suppose we find an estimate,
di, of the dispersion and model it using a gamma GLM:

Edi = φi ζi = log(φi) = ∑
j

zi jγ j var di = τφ
2
i

Notice the connection between the two models. The model for the mean produces
the response for the model for the dispersion, which in turn produces the weights for
the mean model. In principle, something other than a gamma GLM could be used
for the dispersion, although since we wish to model a strictly positive, continuous
and typically skewed dispersion, the gamma is the obvious choice. The dispersion
predictors Z are usually a subset of the mean model predictors X .

For unreplicated experiments, r2
P and r2

D are two possible choices for di. If repli-
cations are available, then a more direct estimate of dispersion would be possible.
For more details on the formulation, estimation and inference for these kinds of
model, see McCullagh and Nelder (1989), Box and Meyer (1986), Bergman and
Hynen (1997) and Nelder et al. (1998).

In the last three citations, data from a welding-strength experiment was analyzed.
There were nine two-level factors and 16 unreplicated runs. Previous analyses have
differed on which factors are significant for the mean. We found that two factors,
Drying and Material, were apparently strongly significant, while the significance
of others, including Preheating, was less clear. We fit a linear model for the mean
using these three predictors:
data(weldstrength, package="faraway")
lmod <- lm(Strength ~ Drying + Material + Preheating, weldstrength)
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.625 0.262 166.25 < 2e-16
Drying 2.150 0.262 8.19 2.9e-06
Material -3.100 0.262 -11.81 5.8e-08
Preheating -0.375 0.262 -1.43 0.18

n = 16, p = 4, Residual SE = 0.525, R-Squared = 0.95

Following a suggestion of Smyth et al. (2001), we use the squared studentized resid-
uals, (yi− ŷi)

2/(1−hi), as the response in the dispersion with a gamma GLM using
a log-link and weights of 1− hi. Again, we follow the suggestion of some previous
authors as to which predictors are important for modeling the dispersion:
h <- influence(lmod)$hat
d <- residuals(lmod)^2/(1-h)
gmod <- glm(d ~ Material+Preheating,family=Gamma(link=log),

↪→ weldstrength,weights=1-h)

Now feed back the estimated weights to the linear model:
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w <- 1/fitted(gmod)
lmod <- lm(Strength ~ Drying + Material + Preheating, weldstrength,

↪→ weights=w)

We now iterate until convergence, where we find that:
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.825 0.108 406.83 < 2e-16
Drying 1.869 0.045 41.53 2.5e-14
Material -3.234 0.108 -30.03 1.2e-12
Preheating -0.239 0.101 -2.35 0.036

n = 16, p = 4, Residual SE = 1.000, R-Squared = 1

We note that Preheating is now significant in contrast to the initial mean model fit.
The output for the dispersion model is:
sumary(gmod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.064 0.356 -8.60 0.0000010
Material -3.037 0.413 -7.35 0.0000056
Preheating 2.904 0.413 7.03 0.0000089

overdispersion parameter = 0.500
n = 16 p = 3
Deviance = 20.943 Null Deviance = 57.919 (Difference = 36.976)

The standard errors are not correct in this output and further calculation, described
in Smyth et al. (2001), would be necessary. This would result in somewhat larger
standard errors (about twice the size), but the two factors would still be significant.

9.4 Quasi-Likelihood GLM

An examination of the fitting procedure for GLMs as described in Section 8.2 re-
veals that it is necessary only to know the link and variance functions to fit the
model. This might be convenient since we may wish to minimize the assumptions
by avoiding the specification of a distribution for the response. Even so, the distri-
bution is necessary to compute the likelihood and hence the deviance. We need this
for the inference. Fortunately, we can compute a substitute for the real likelihood,
called the quasi-likelihood. This has already been demonstrated in Sections 3.5 and
5.2 where the quasi-likelihood method is introduced. We return to the idea again later
in Section 13.2 in the context of dependent data.

We show here how the quasi method can help clarify the choice of the link and
power function. Let’s return to the wafer example of Section 9.1. We refit the gamma
GLM model with just the main effects for simplicity:
gl <- glm(resist ~ x1 + x2 + x3 + x4, family=Gamma(link=log), wafer)

The equivalent quasi version of this model is:
glq <- glm(resist ~ x1 + x2 + x3 + x4, family=quasi(link=log,variance=

↪→ "mu^2"), wafer)

Notice that we need to specify both the link and the variance functions. We compare
the deviance, degrees of freedom and log-likelihood for these two models. First the
gamma GLM:
c(deviance(gl),df.residual(gl),logLik(gl))
[1] 0.12418 11.00000 -70.45392
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and now the quasi GLM:
c(deviance(glq),df.residual(glq),logLik(glq))
[1] 0.12418 11.00000 NA

The fitted coefficients, the deviance and the degrees of freedom are the same for
both models. There is no log-likelihood for the quasi GLM because it is not a true
likelihood fit. There’s not much to recommend the quasi GLM in this instance as the
additional assumption of the gamma distribution of the response makes the analysis
easier. We can check this assumption so we are not being presumptuous.

The quasi GLM becomes more interesting if we vary the link function. We can
consider link functions of the form η = µp using the power function. We consider
values of p in [0,1], where p = 0 is considered as logµ. We fit a model for a range of
powers and save the deviance obtained.
linkpow <- seq(0,1,by=0.1)
devpow <- numeric(length(linkpow))
for(i in seq(along=linkpow)){

glqq <- glm(resist ~ x1 + x2 + x3 + x4, family=quasi(link=power(
↪→ linkpow[i]),variance="mu^2"), wafer)

devpow[i] <- deviance(glqq)
}

A plot of the deviance against the power is shown in the first panel of Figure 9.5.
We see that log is indeed the best choice. We would like to investigate p < 0 but that
facility is not available in the power function.
plot(linkpow, devpow, type="l", xlab="Link power", ylab="Deviance")
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Figure 9.5 Deviance as the power of the link function is varied on the left and the variance
function on the right.

We can also change the variance function. We might consider variance functions
of the form V (µ) = µp. Again we can investigate how the fit of the model changes
over a range of values of p, in this case in the range [1,3]:
powfam <- quasi(link="log",variance="mu^2")
varpow <- seq(1,3,by=0.1)
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devpow <- numeric(length(varpow))
for(i in seq(along=varpow)){

powfam[["variance"]] <- function(mu) mu^varpow[i]
glqq <- glm(resist ~ x1 + x2 + x3 + x4, family=powfam, wafer)
devpow[i] <- deviance(glqq)

}

The relationship is shown in the second panel of Figure 9.5. We see that p = 2 is the
best choice. Fortunately, that choice is implicit in the use of a gamma GLM so we
are vindicated.
plot(varpow, devpow, type="l", xlab="Variance power", ylab="Deviance")

9.5 Tweedie GLM

In Section 8.1, we derived the mean and variance for an exponential (dispersion)
family as

EY = µ = b′(θ) var Y = b′′(θ)φ

The variance function V (µ) = b′′(θ) defines how the variance is connected to the
mean. We can essentially define the distribution by specifying the variance function
since µ can be derived from this. Suppose we consider variance functions of the form
V (µ) = µp. We have already seen four examples: the Gaussian (p = 0), the Poisson
(p = 1), the gamma (p = 2) and the inverse Gaussian (p = 3).

We could take the quasi-likelihood approach and simply choose the link and the
variance functions as demonstrated in the previous section. We can specify our cho-
sen link and variance and use the quasi family in fitting the glm(). Unfortunately,
only the four values of p = 0,1,2,3 are pre-programmed in base R. For these four
choices, it is usually more convenient to use the one of the four distributional GLMs
rather than the quasi model since we have the advantage of a full rather than quasi-
likelihood. We could use other, perhaps noninteger values of p as demonstrated ear-
lier but it is difficult to interpret such choices meaningfully.

Fortunately, any choice of p, except for the open interval (0,1), defines a so-
called Tweedie distribution. Values of p in the interval (1,2) are particularly interest-
ing since these result in a compound Poisson-Gamma distribution. Observations from
this distribution are generated as the sum of a Poisson number of gamma distributed
variables in the following manner:

Y =
N

∑
i=1

Xi, N ∼ Poisson and, independently, Xi ∼ Gamma

The mean of the Poisson is given by µ2−p/((2− p)φ). The gamma variables have
shape parameter (2− p)/(p−1) and scale parameter φ(p−1)µp−1.

The interesting feature of this distribution is the possibility that N = 0 and so
Y = 0. This is useful for modeling responses where there is a nonzero probability
that Y = 0 but is otherwise a positive value. One example of this is insurance claims
by customers that are often zero but can be positive. Rainfall amounts in a short
period of time can often be zero but are otherwise some positive quantity. The zero
inflated Poisson discussed in Section 5.5 also models excess zeroes but otherwise
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the distribution is integer so may not be suitable. Further discussion of the Tweedie
distribution may be found in Dunn and Smyth (2005).

The chredlin dataset concerns insurance redlining in Chicago in the 1970s.
The response, involact, is the rate of usage of a default insurance plan available
to those denied regular insurance in a given zip code. We want to relate this to five
demographic predictors. A worked analysis of this data as a standard linear model
can be found in Faraway (2014). The response has several zero values out of 47 total
observations.
data(chredlin, package="faraway")
sum(chredlin$involact == 0)
[1] 15

This makes the assumption of normal distribution for the response somewhat prob-
lematic. We could try a Tweedie GLM but we have no particular preference for the
value of p. We consider this an additional parameter that can be estimated by likeli-
hood methods. An implementation is found in the mgcv package of Wood (2006):
library(mgcv)
twmod <- gam(involact ~ race+fire+theft+age+log(income), family=tw(

↪→ link="log"), data=chicago)
summary(twmod)
Family: Tweedie(p=1.108)
Link function: log

Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.69565 9.10630 -1.50 0.14025
race 0.02159 0.00554 3.90 0.00035
fire 0.04850 0.01519 3.19 0.00270
theft -0.01022 0.00504 -2.03 0.04895
age 0.03458 0.00911 3.80 0.00048
log(income) 1.03099 0.93234 1.11 0.27526

R-sq.(adj) = 0.753 Deviance explained = 69.7%
-REML = 42.572 Scale est. = 0.30847 n = 47

The gam function is used instead of glm but otherwise the syntax is familiar. We are
free to specify a link function and we make the default choice of log. It seems reason-
able that the predictors would have a multiplicative rather than additive effect on the
mean response. In the standard linear model, this would be achieved by logging the
response, but that is not possible when some response values are zero. We avoid that
obstacle by using the log in the link. We see that the estimated value of p is 1.108.
Otherwise, the general significance and direction of the effect of the predictors and
the quality of the fit are quite similar to that achieved by the linear model.

Consider the first zip code in the dataset. What is the predicted distribution for
this case? We set up a grid to compute the density and extract the p and φ values:
xgrid <- seq(1e-10, 1.25, len=100)
p <- 1.108
phi <- 0.30847

The expected mean response for the first case is:
(mu <- twmod$fit[1])
[1] 0.17818

From this we can compute the mean of the Poisson as
(poismean <- mu^(2-p)/(phi * (2- p)))
[1] 0.78018
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which means the probability of a zero response is:
(p0 <- exp(-poismean))
[1] 0.45832

Now we compute the density for the nonzero part of the response, scale it down for
the probability of a nonzero response and plot. We add a line segment to denote the
point mass at zero and show the result in Figure 9.6.
twden <- exp(ldTweedie(xgrid, mu, p=p, phi=phi)[,1])
plot(xgrid, twden*(1-p0), type="l",xlab="x",ylab="Density")
dmax <- max(twden*(1-p0))
segments(0,0,0,dmax,lwd=2)
text(0.05,dmax,paste0("p=",signif(p0,3)))
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Figure 9.6 Predictive density for the first zip code based on the fitted Tweedie GLM. Response
is zero with probability 0.458 but otherwise takes a continuous positive value.

Exercises

1. The relationship between corn yield (bushels per acre) and nitrogen (pounds per
acre) fertilizer application was studied in Wisconsin. The data may be found in
cornnit.

(a) Make a plot of the data and comment on the relationship. Do you think the
effect of nitrogen on yield is likely to be additive or multiplicative? Do you
think yield will always increase with more nitrogen or will there be an optimum
application of nitrogen?

(b) Using a (Gaussian) linear model, represent the relationship between the yield
response and the nitrogen predictor taking into account your answers to the
previous questions. Check the residual vs. fitted plot and the QQ plot and com-
ment on any anomalies.

(c) Remove any outliers and repeat the model diagnostics.
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(d) At what level of nitrogen does the maximum yield occur according to your
model? Find a 95% confidence interval for the expected yield at this dose of
nitrogen.

(e) Now develop a GLM for the data that does not (explicitly) transform the re-
sponse. Pick a form for this model which is analogous to the Gaussian linear
model just fitted. Check the same diagnostics as before.

(f) Remove any outliers and repeat the model diagnostics.
(g) Find the optimum level of nitrogen and form a 95% confidence interval for the

expected yield.
(h) Make a plot of the data that shows the fitted curves from both models.

2. An experiment was conducted as part of an investigation to combat the effects of
certain toxic agents. The survival time of rats depended on the type of poison used
and the treatment applied. The data is found in rats.

(a) Make plots of the data and comment on differences between the treatments and
poisons.

(b) Fit a linear model with an interaction between the two predictors. Use the Box-
Cox method to determine an optimal transformation on the response. Can this
optimal transformation be rounded to a more interpretable function?

(c) Refit the model using your chosen interpretable transformation. Check the
standard diagnostics and report any problems.

(d) Is the interaction term significant? Simplify the model if justified and indicate
which poison and treatment will result in the shortest survival time.

(e) Build an inverse Gaussian GLM for this data. Select an appropriate link func-
tion consistent with the previous modeling. Perform diagnostics to verify your
choice. Which poison and treatment will result in the shortest survival time?

(f) Compare the predicted values on the original scale of the response for the two
models. Do the two models achieve a similar fit?

3. Components are attached to an electronic circuit card assembly by a wave-
soldering process. The soldering process involves baking and preheating the cir-
cuit card and then passing it through a solder wave by conveyor. Defects arise
during the process. The data is found in wavesolder.

(a) Make boxplots of the number of defects for each of the predictors and comment
on the relationships seen.

(b) Compute the mean and variance within each group of three replicates. Plot the
variance against the mean. What is the relation?

(c) Fit a quasi-poisson model for the mean number of defects using the main ef-
fects of all the predictors. Which predictors seem to be significant and which
not? Make a test to check whether the insignificant predictors can be removed
from the model.

(d) Fit a gamma GLM with a log link for the variance response using all the main
effects of the predictors. What problem arises?
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(e) Now fit a standard linear model to the log of the variance. Check whether the
same set of predictors can be removed from this model as previously.

(f) Try fitting the gamma GLM with a log link for the variances, now using a
reducted set of predictors as determined from the previous question. Compare
the fitted values from both models of the variance. Are they close?

(g) Examine the final models for the mean and variance. State the qualitative effect
of the chosen predictors on the mean and variance.

(h) Compare the fitted values from the model for the mean with those for the vari-
ance. What is the relationship? Are the fitted variances consistent with what
might be expected given a quasi-Poisson model?

4. Data were collected from 39 students in a University of Chicago MBA class and
presented in happy. Happiness was measured on a 10 point scale.

(a) Plot the happiness response on each of the four predictors. Comment on the
relationships.

(b) Rescale the response and fit an appropriate quasi-likelihood model. Which pre-
dictors are not statistically significant in your model?

(c) Consider dropping each of the predictors from the full model using an F-test to
check the significance of each predictor. Remove the least significant predictor
and repeat the consideration of single predictors relative to the current model.
Iterate as necessary.

(d) Make a plot of the residuals and predicted values from your selected model.
Interpret it. Which subject is the best example of someone happier than s/he
deserves to be?

(e) Using your model, indicate how much familial income would compensate for
a two level drop in love.

5. The leafblotch data shows the percentage leaf area affected by leaf blotch on
10 varieties of barley at nine different sites. The data comes from Wedderburn
(1974).

(a) Make plots of the blotch response against the two predictors. Describe the re-
lationships seen.

(b) Fit a binomial GLM with blotch as the response and site and variety as predic-
tors. Find the deviance and degrees of freedom and comment on what this says
about the fit of this model.

(c) Fit a quasi-binomial model and report the value of the dispersion parameter.
Could this dispersion estimate be derived from the binomial GLM? Demon-
strate how if possible.

(d) Plot the residuals against the predicted values. Interpret the plot.
(e) A better variance function is µ2(1−µ)2 and yet this is not one of the available

choices in R. However, the effect may be obtained by the appropriate use of
weighting. Define weights as a function of µ that, when used in conjunction
with a variance function of µ(1−µ), achieve the effect of a µ2(1−µ)2 variance
function. Repeat the plot of the residuals and comment.
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(f) Test the significance of each of the predictors relative to the full model using
an F-test.

(g) There may be an interaction between sites and varieties although this is difficult
to check. Which site and variety combination shows the greatest indication of
an interaction?

6. Consider the orings data regarding space shuttle flights prior to the Challenger
disaster from Chapter 3.

(a) Fit a quasi-likelihood model with an identity link to the data. You will need to
rescale the response to [0,1]. You should use the usual binomial variation. Why
does the model fitting fail?

(b) Now try fitting the same model but now setting the starting values for the re-
gression coefficients using the start argument. You will need to make a valid
choice for the coefficients. You may also find it helpful to set the argument
trace=TRUE to check the convergence. What happens?

(c) Examine the summary output of your fitted model and determine the tempera-
ture above which the predicted probability of failure would be invalid.

(d) Fit a quasi-likelihood model but with the usual logit link. Compare this model
to the identity link model. Determine which model is superior.

(e) Display curves showing the predicted probabilities as temperature varies for
both models. Show these curves on a single plot, superimposed on the data.

(f) Compute the predicted probability of failure at 31◦F for both models. Compare
the results.

7. Fit the orings data with a binomial response and a logit link as in Chapter 3.
(a) Construct the appropriate test statistic for testing the effect of the temperature.

State the appropriate null distribution and give the p-value.
(b) Generate data under the null distribution for the previous test. Use the rbinom

function with the average proportion of damaged O-rings. Recompute the test
statistic and compute the p-value.

(c) Repeat the process of the previous question 1000 times, saving the test statistic
each time. Compare the empirical distribution of these simulated test statistics
with the nominal null distribution stated in the first part of this question.

(d) Compare the critical values for a 5% level test computed using these two meth-
ods.

8. One hundred twenty-five fruitflies were divided randomly into five groups of 25
each. The response was the longevity of the fruitfly in days. One group was kept
solitary, while another was kept individually with a virgin female each day. An-
other group was given eight virgin females per day. As an additional control the
fourth and fifth groups were kept with one or eight pregnant females per day.
Pregnant fruitflies will not mate. The thorax length of each male was measured as
this was known to affect longevity. The data is presented in fruitfly.

(a) Make a plot of the data.
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(b) Fit a standard linear model with longevity as the response and thorax length and
activity as predictors, including an interaction term. Remove the interaction
term if it is not significant.

(c) Plot the residuals and fitted values. Interpret the plot.
(d) Transform the response in an appropriate way and recheck the residual plot.
(e) Fit a gamma GLM with an appropriate link. Plot the residuals against the pre-

dicted values. Interpret the plot.
(f) Consider a fruit fly with mean thorax length in the isolated activity group. Use

the fit from the model to plot the gamma density for the lifetime of such a fly.
9. The truck data concerns an experiment to optimize the production of leaf springs

for trucks. A heat treatment is designed so that the free height of the spring should
come as close to eight inches as possible. We can vary five factors at two levels
each. A 25−1 fractional factorial experiment with three replicates was carried out.
The data comes from Pignatiello and Ramberg (1985).

(a) Plot the data and comment on the effect of the factors on the response.
(b) Fit a model with all two-way interactions for the height response. Why is it that

not all two-way terms can be estimated?
(c) Use step() to choose a smaller model. What is the largest interaction term?
(d) Compute the predicted height for each of the 16 possible combinations of the

factors. Order them in closeness to the target of 8 inches.
(e) Compute the variance in each group of three replicates. Use a gamma GLM

with a log link to model the variances using all two-way interactions. Use
step() to select a model. Comment on the factors which have an effect on
the variance.

(f) Compute the predicted variance for each of the 16 combinations and display
them in increasing order. Which combination produces the lowest variation?

(g) Discuss the problem of selecting a combination that comes close to the target
of 8 inches while minimizing the variation.
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Random Effects

Grouped data arise in almost all areas of statistical application. Sometimes the group-
ing structure is simple, where each case belongs to a single group and there is only
one grouping factor. More complex datasets have a hierarchical or nested structure or
include longitudinal or spatial elements. Sometimes the grouping arises because the
same individual is measured repeatedly or sometimes each individual is measured
once only but these individuals have some form of group structure. We defer exam-
ination of the repeated measurement of individuals to the next chapter, although the
statistical methodology used is the same.

All such data share the common feature of correlation of observations within
the same group and so analyses that assume independence of the observations will
be inappropriate. The use of random effects is one common and convenient way to
model such grouping structure.

A fixed effect is an unknown constant that we try to estimate from the data. Al-
most all the parameters used in the linear and generalized linear models we have
presented earlier in this book are fixed effects. In contrast, a random effect is a ran-
dom variable. It does not make sense to estimate a random effect; instead, we try to
estimate the parameters that describe the distribution of this random effect.

Consider an experiment to investigate the effect of several drug treatments on a
sample of patients. Typically, we are interested in specific drug treatments and so we
would treat the drug effects as fixed. However, it makes most sense to treat the pa-
tient effects as random. It is often reasonable to treat the patients as being randomly
selected from a larger collection of patients whose characteristics we would like to
estimate. Furthermore, we are not particularly interested in these specific patients,
but in the whole population of patients. A random effects approach to modeling ef-
fects is more ambitious in the sense that it attempts to say something about the wider
population beyond the particular sample. Blocking factors can often be viewed as
random effects, because these often arise as a random sample of those blocks poten-
tially available.

There is some judgment required in deciding when to use fixed and when to
use random effects. Sometimes the choice is clear, but in other cases, reasonable
statisticians may differ. In some analyses, random effects are used simply to induce
a certain correlation structure in the data and there is sense in which the chosen
levels represent a sample from a population. Gelman (2005) remarks on the variety
of definitions for random effects and proposes a particular straightforward solution
to the dilemma of whether to use fixed or random effects — he recommends always
using random effects.

195
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A mixed effects model has both fixed and random effects. A simple example of
such a model would be a two-way analysis of variance (ANOVA):

yi jk = µ+ τi + v j + εi jk

where the µ and τi are fixed effects and the error εi jk and the random effects v j are
independent and identically distributed N(0,σ2) and N(0,σ2

v), respectively.
We would want to estimate the τi and test the hypothesis H0 : τi = 0 ∀i while

we would estimate σ2
v and might test H0 : σ2

v = 0. Notice the difference: we need to
estimate and test several fixed effect parameters while we need only estimate and test
a single random effect parameter.

In the following sections, we consider estimation and inference for mixed effects
models and then illustrate the application to several common designs.

10.1 Estimation

This is not as simple as it was for fixed effects models, where least squares is an easily
applied method with many good properties. Let’s start with the simplest possible
random effects model: a one-way ANOVA design with a factor at a levels:

yi j = µ+αi + εi j i = 1, . . . ,a j = 1, . . . ,n

where the αs and εs have mean zero, but variances σ2
α and σ2

ε , respectively. These
variances are known as the variance components. Notice that this induces a correla-
tion between observations at the same level equal to:

ρ =
σ2

α

σ2
α +σ2

ε

This is known as the intraclass correlation coefficient (ICC). In the limiting case
when there is no variation between the levels, σα = 0 so then ρ = 0. Alternatively,
when the variation between the levels is much larger than that within the levels, the
value of ρ will approach 1. This illustrates how random effects generate correlations
between observations.

For simplicity, let there be an equal number of observations n per level. We can
decompose the variation as follows (where dot in the subscript indicates the average
over that index):

a

∑
i=1

n

∑
j=1

(yi j− ȳ··)2 =
a

∑
i=1

n

∑
j=1

(yi j− ȳi·)
2 +

a

∑
i=1

n

∑
j=1

(ȳi·− ȳ··)2

or SST = SSE + SSA, respectively. SSE is the residual sum of squares, SST is the
total sum of squares (corrected for the mean) and SSA is the sum of squares due to
α. These quantities are often displayed in an ANOVA table along with the degrees
of freedom associated with each sum of squares. Dividing through by the respective
degrees of freedom, we obtain the mean squares, MSE and MSA. Now we find that:

E(SSE) = a(n−1)σ2
ε , E(SSA) = (a−1)(nσ

2
α +σ

2
ε)
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which suggests using the estimators:

σ̂
2
ε = SSE/(a(n−1)) = MSE, σ̂

2
α =

SSA/(a−1)− σ̂2
ε

n
=

MSA−MSE
n

This method of estimating variance components can be used for more complex de-
signs. The ANOVA table is constructed, the expected mean squares calculated and
the variance components obtained by solving the resulting equations. These estima-
tors are known as ANOVA estimators. These were the first estimators developed for
variance components. They have the advantage of taking explicit forms suitable for
hand calculation which was important in precomputing days, but they have a number
of disadvantages:

1. The estimates can take negative values. For example, in our situation above, if
MSA < MSE then σ̂2

α < 0. This is rather embarrassing since variances cannot
be negative. Various fixes have been proposed, but these all take away from the
original simplicity of the estimation method.

2. A balanced design has an equal number of observations per cell, where cell is
defined as the finest subdivision of the data according to the factors. In such cir-
cumstances, the ANOVA decomposition into sums of squares is unique. For un-
balanced data, this is not true and we must choose which ANOVA decomposition
to use, which will in turn affect the estimation of the variance components. Vari-
ous rules have been suggested about how the decomposition should be done, but
none of these have universal appeal.

3. The need for complicated algebraic calculations. Formulae for the simpler models
are easy to find and coded in software. More complex models will require difficult
and opaque constructions.

We would like a method that would avoid negative variances, work unambigu-
ously for unbalanced data and that can be applied in a transparent and straightfor-
ward manner. Maximum likelihood (ML) estimation satisfies these requirements.
This does require that we assume some distribution for the errors and the random
effects. The usual assumption is normality; ML would work for other distributions,
but these are rarely considered in this context.

For a fixed effect model with normal errors, we can write:

y = Xβ+ ε or y∼ N(Xβ,σ2I)

where X is an n× p model matrix and β is a vector of length p. We can generalize
to a mixed effect model with a vector γ of q random effects with associated model
matrix Z which has dimension n× q. Then we can model the response y, given the
value of the random effects as:

y = Xβ+Zγ+ ε or y|γ∼ N(Xβ+Zγ,σ2I)

If we further assume that the random effects γ ∼ N(0,σ2D) then var y = var Zγ+
var ε = σ2ZDZT +σ2I and we can write the unconditional distribution of y as:

y∼ N(Xβ,σ2(I +ZDZT ))
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If we knew D, then we could estimate β using generalized least squares; see, for ex-
ample, Chapter 8 in Faraway (2014). However, the estimation of the variance compo-
nents, D, is often one purpose of the analysis. Standard maximum likelihood is one
method of estimation that can be used here. If we let V = I +ZDZT , then the joint
density for the response is:

1
2πn/2|σ2V |1/2 e−

1
2σ2 (y−Xβ)T V−1(y−Xβ)

so that the log-likelihood for the data is:

l(β,σ,D|y) =−n
2

log2π− 1
2

log |σ2V |− 1
2σ2 (y−Xβ)TV−1(y−Xβ)

This can be optimized to find maximum likelihood estimates of β,σ2 and D. This is
straightforward in principle, but there may be difficulties in practice. More complex
models involving larger numbers of random effects parameters can be difficult to
estimate. Sometimes the MLE of a variance parameter may be zero which occurs on
the boundary of its domain. The derivative of the likelihood may not be zero in this
boundary state which causes problems for many optimization methods.

Standard errors can be obtained using the usual large sample theory for maximum
likelihood estimates. The variance can be estimated using the inverse of the negative
second derivative of the log-likelihood evaluated at the MLE.

MLEs have some drawbacks. One particular problem is that they are biased. For
example, consider an i.i.d. sample of normal data x1, . . . ,xn, then the MLE is:

σ̂
2 =

∑
n
i=1(xi− x̄)2

n
A denominator of n−1 is needed for an unbiased estimator. Similar problems occur
with the estimation of variance components. Given that the number of levels of a fac-
tor may not be large, the bias of the MLE of the variance component associated with
that factor may be quite large. Restricted maximum likelihood (REML) estimators
are an attempt to get round this problem. The idea is to find all independent linear
combinations of the response, k, such that kT X = 0. Form matrix K with columns k,
so that:

KT y∼ N(0,KTV K)

We can then proceed to maximize the likelihood based on KT y which does not in-
volve any of the fixed effect parameters. Once the random effect parameters have
been estimated, it is simple enough to obtain the fixed effect parameter estimates.
REML generally produces less biased estimates. For balanced data, the REML esti-
mates are usually the same as the ANOVA estimates.

We illustrate the fitting methods using some data from an experiment to test the
paper brightness depending on a shift operator described in Sheldon (1960). We start
with a fixed effects one-way ANOVA:
data(pulp, package="faraway")
op <- options(contrasts=c("contr.sum", "contr.poly"))
lmod <- aov(bright ~ operator, pulp)
summary(lmod)
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Df Sum Sq Mean Sq F value Pr(>F)
operator 3 1.340 0.447 4.2 0.023
Residuals 16 1.700 0.106

We can plot the data as seen in Figure 10.1.
library(ggplot2)
ggplot(pulp, aes(x=operator, y=bright))+geom_point(position = position

↪→ _jitter(width=0.1, height=0.0))
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Figure 10.1 Paper brightness varying by operator. Some jittering has been used to make co-
incident points apparent.

coef(lmod)
(Intercept) operator1 operator2 operator3

60.40 -0.16 -0.34 0.22
options(op)

We have specified sum contrasts here instead of the default treatment contrasts to
make the later connection to the corresponding random effects clearer. The aov
function is just a wrapper for the standard lm function that produces results more
appropriate for ANOVA models. We see that the operator effect is significant with a
p-value of 0.023. The estimate of σ2 is 0.106 and the estimated overall mean is 60.4.
For sum contrasts, ∑αi = 0, so we can calculate the effect for the fourth operator as
0.16+0.34−0.22 = 0.28.

Turning to the random effects model, we can compute the variance of the operator
effects, σ2

α, using the formula above as:
(0.447-0.106)/5
[1] 0.0682

Now we demonstrate the maximum likelihood estimators. The original R package
for fitting mixed effects models was nlme as described in Pinheiro and Bates (2000).
Subsequently Bates (2005) introduced the package lme4. The syntax for these two
packages is somewhat different. The lme4 package is generally more capable es-
pecially for larger datasets. The estimates these two packages produce for smaller,
simpler datasets as considered in this chapter will generally be the same. However,
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there are some crucial differences in the approach to inference that we will discuss
later. We use the lme4 packages in preference to nlme:
library(lme4)
mmod <- lmer(bright ~ 1+(1|operator), pulp)
summary(mmod)
Linear mixed model fit by REML [’lmerMod’]
Formula: bright ~ 1 + (1 | operator)

Data: pulp

REML criterion at convergence: 18.6

Scaled residuals:
Min 1Q Median 3Q Max

-1.467 -0.759 -0.124 0.628 1.601

Random effects:
Groups Name Variance Std.Dev.
operator (Intercept) 0.0681 0.261
Residual 0.1062 0.326

Number of obs: 20, groups: operator, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 60.400 0.149 404

The model has fixed and random effects components. The fixed effect here is just
the intercept represented by the first 1 in the model formula. The random effect is
represented by (1|operator) indicating that the data is grouped by operator and
the 1 indicating that the random effect is constant within each group. The parentheses
are necessary to ensure that expression is parsed in the correct order.

The default fitting method is REML. We see that this gives identical estimates to
the ANOVA method above — σ̂2 = 0.106, σ̂2

α = 0.068 and µ̂ = 60.4. For unbalanced
designs, the REML and ANOVA estimators are not necessarily identical. The stan-
dard deviations are simply the square roots of the variances and not estimates of the
uncertainty in the variances.

As with the GLM summary output, we find it rather verbose and prefer our own
abbreviated version (which is adapted from the display() function in the arm pack-
age of Gelman and Su (2013)):
sumary(mmod)
Fixed Effects:
coef.est coef.se

60.40 0.15

Random Effects:
Groups Name Std.Dev.
operator (Intercept) 0.26
Residual 0.33

---
number of obs: 20, groups: operator, 4
AIC = 24.6, DIC = 14.4
deviance = 16.5

This output contains just the information we need. It is better to use standard devi-
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ations rather than variances as the former are measured in the units of the response
and so much easier to interpret.

The maximum likelihood estimates may also be computed:
smod <- lmer(bright ~ 1+(1|operator), pulp, REML=FALSE)
sumary(smod)
Fixed Effects:
coef.est coef.se

60.40 0.13

Random Effects:
Groups Name Std.Dev.
operator (Intercept) 0.21
Residual 0.33

---
number of obs: 20, groups: operator, 4
AIC = 22.5, DIC = 16.5
deviance = 16.5

The between-subjects SD, 0.21, is smaller than with the REML method as the ML
method biases the estimates towards zero. The fixed effects are unchanged.

10.2 Inference

Test Statistic: We follow a general procedure. Decide which component(s) of the
model you wish to test. These can be fixed and/or random effects. Specify two mod-
els: a null H0 which does not contain your specified component(s) and an alternative
H1 which does include your component(s). The other terms in the models must be
the same. These other terms (usually) make a difference to the result and must be
chosen with care.

Using standard likelihood theory, we may derive a test to compare two nested
hypotheses, H0 and H1, by computing the likelihood ratio test statistic:

2(l(β̂1, σ̂1, D̂1|y)− l(β̂0, σ̂0, D̂0|y))

where β̂0, σ̂0, D̂0 are the MLEs of the parameters under the null hypothesis and
β̂1, σ̂1, D̂1 are the MLEs of the parameters under the alternative hypothesis.

If you plan to use the likelihood ratio test to compare two nested models that
differ only in their fixed effects, you cannot use the REML estimation method. The
reason is that REML estimates the random effects by considering linear combina-
tions of the data that remove the fixed effects. If these fixed effects are changed, the
likelihoods of the two models will not be directly comparable. Use ordinary maxi-
mum likelihood in this situation if you also wish to use the likelihood ratio test.

Approximate Null Distribution: This test statistic is approximately chi-squared
with degrees of freedom equal to the difference in the dimensions of the two pa-
rameters spaces (the difference in the number of parameters when the models are
identifiable). Unfortunately, this test is not exact and also requires several assump-
tions — see a text such as Cox and Hinkley (1974) for more details. Serious problems
can arise with this approximation.

One crucial assumption is that the parameters under the null are not on the bound-
ary of the parameter space. Since we are often interested in testing hypotheses about
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the random effects that take the form H0 : σ̂2 = 0, this is a common problem which
makes the asymptotic inference invalid. If you do use the χ2 distribution with the
usual degrees of freedom, then the test will tend to be conservative — the p-values
will tend to be larger than they should be. This means that if you observe a significant
effect using the χ2 approximation, you can be fairly confident that it is actually sig-
nificant. The p-values generated by the likelihood ratio test for fixed effects are also
approximate and unfortunately tend to be too small, thereby sometimes overstating
the importance of some effects.

Regrettably the p-value based on the χ2 approximation can either be entirely or
just somewhat wrong. Perhaps with sufficient data and favorable models, the approx-
imation may be satisfactory but it is difficult to say exactly when such propitious
conditions may arise. Hence the safest advice is to not use this approximation.

Expected mean squares: Another method of hypothesis testing is based on
the sums of squares found in the ANOVA decompositions. These tests are some-
times more powerful than their likelihood ratio test equivalents. However, the correct
derivation of these tests usually requires extensive tedious algebra that must be recal-
culated for each type of model. Furthermore, the tests cannot be used (at least without
complex and unsatisfactory adjustments) when the experiment is unbalanced. This
method only works for simple models and balanced data.

F-tests for fixed effects: We might try to use the F-test used in standard lin-
ear models to perform hypothesis tests regarding the fixed effects. The F-statistic is
based on residual sums of squares and degrees of freedom as described in Chapter
3 of Faraway (2014). This is the method used in the nlme package. In the standard
linear model setting, provided the normality assumption is correct, the null distri-
bution has an exact F-distribution. Unfortunately, problems arise in transferring this
method to mixed effect models. Firstly, the definition of degrees of freedom becomes
murky in the presence of random effect parameters. Secondly, the test statistic is not
necessarily F-distributed.

For some simple models with balanced data, the F-test is correct but in other
cases with more complex models or unbalanced data, the p-values can be substan-
tially incorrect. It is difficult to specify exactly when this test may be relied upon.
For this reason, the lme4 now declines to state p-values. Furthermore, the t-statistics
that one might generate to test or form a confidence interval for a single fixed effect
parameter also rely on the same problematic approximations.

Strategies for inference: We have good test statistics in the likelihood ratio test
(LRT) or F-statistic but as yet no universally reliable way to obtain a null distribution.
One solution would be to ignore the possible problem and use either the nlme pack-
age or the lmerTest package (which restores the questionable p-values to lme4). In
certain known simple models with balanced data, this will produce accurate results
but it would be speculative to report such results in other situations without at least
verifying the results using other methods. A number of alternatives exist.

The standard degrees of freedom for the F-statistic in mixed models are not al-
ways reliable. Various researchers have developed methods for adjusting these de-
grees of freedom. One popular method is due to Kenward and Roger (1997). We will
illustrate the use of this method later in this chapter. Even if the adjustment is opti-
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mal, there remains the problem that the null distribution may not be F . Furthermore,
the method is relevant only for the testing of fixed effects.

We can use bootstrap methods to find more accurate p-values for the likelihood
ratio test. The usual bootstrap approach is nonparametric in that no distribution is
assumed. Since we are willing to assume normality for the errors and the random
effects, we can use a technique called the parametric bootstrap. We generate data
under the null model using the fitted parameter estimates. We compute the likelihood
ratio statistic for this generated data. We repeat this many times and use this to judge
the significance of the observed test statistic. This approach will be demonstrated
below. The problem may also be addressed by using Bayesian methods to fit the
models. We discuss these in Chapter 12.

Model Selection: For comparing larger numbers of models, it is unwise to take a
testing-based approach to selection. The problems are similar to those encountered in
model selection for standard linear models. When the number of models considered
becomes more than a handful, the issue of multiple testing arises and p-values lose
their normal meaning. Instead it is better to take a criterion-based approach to model
selection. Although we can develop the ideas of model selection of linear models
and extend them to linear mixed models, there are some important additional diffi-
culties which means that this extension is not straightforward. Firstly, the dependent
response means that effective sample size is less than the total number of cases. Sec-
ondly, we have two kinds of parameters, some for the fixed effects and some for the
random effects. It is not clear how these two types of parameters should be counted
together. Thirdly, most criteria are based on the likelihood which does not behave
well at the boundary of the parameter space as can occur with variance parameters.

The Akaike Information Criterion (AIC) and its variations are the most popular
model selection criterion. In the lme4 package, AIC is defined as:

−2(max log likelihood)+2p

where p is the total number of parameters. We can confidently use this criterion to
compare models which differ only in their fixed effects, as the number of random
effect parameters will be the same for all models considered. If we compare models
where the random effects are also varied, then we must think more carefully about
how to count the random effect parameters. This is problematic due to the aforemen-
tioned boundary problems.

Other criteria can be considered. The Bayes Information Criterion (BIC) replaces
the 2p in the AIC with p logn and tends to prefer smaller models to the AIC. An-
other popular criterion used with mixed effect models is the Deviance Information
Criterion (DIC) of Spiegelhalter et al. (2002). This criterion is more suited to the
Bayesian models discussed in Chapter 12. For a discussion of model selection crite-
ria, see Section A.3. For the specific application to linear mixed models, see Müller
et al. (2013). For most of the examples considered in this chapter, there are only a
few variables so we are able to rely on testing methods to choose between just a few
models. We defer an example of using these methods to Section 10.10.

Example: Now let’s demonstrate these inferential methods on the pulp data.
The fixed effect analysis shows that the operator effects are statistically significant
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with a p-value of 0.023. A random effects analysis using the expected mean squares
approach yields exactly the same F-statistic for the one-way ANOVA. This method
works exactly for such a simple model.

We can also employ the likelihood ratio approach to test the null hypothesis that
the variance between the operators is zero. In the fixed effects model, we tested the
hypothesis that the four operators had the same effect. In the mixed effect model
where the operators are treated as random, the hypothesis that this variance is zero
claims that there is no differences between operators in the population. This is a
stronger claim than the fixed effect model hypothesis about just the four chosen op-
erators.

We first fit the null model:
nullmod <- lm(bright ~ 1, pulp)

As there are no random effects in this model, we must use lm. For models of the
same class, we could use anova to compute the LRT and its p-value. Here, we need
to compute this directly:
lrtstat <- as.numeric(2*(logLik(smod)-logLik(nullmod)))
pvalue <- pchisq(lrtstat,1,lower=FALSE)
data.frame(lrtstat, pvalue)

lrtstat pvalue
1 2.5684 0.10902

The p-value is now well above the 5% significance level. We cannot say that this
result is necessarily wrong, but the use of the χ2 approximation does cause us to
doubt the result.

We can use the parametric bootstrap approach to obtain a more accurate p-value.
We need to estimate the probability, given that the null hypothesis is true, of observ-
ing an LRT of 2.5684 or greater. Under the null hypothesis, y ∼ N(µ,σ2). A simu-
lation approach generates data under this model, fits the null and alternative models
and computes the LRT statistic. The process is repeated a large number of times and
the proportion of LRT statistics exceeding the observed value of 2.5684 is used to
estimate the p-value. In practice, we do not know the true values of µ and σ, but
we can use the estimated values; this distinguishes the parametric bootstrap from the
purely simulation approach. The simulate function makes it simple to generate a
sample from a model:
y <- simulate(nullmod)

Now taking the data we generate, we fit both the null and alternative models and then
compute the LRT. We repeat the process 1000 times:
lrstat <- numeric(1000)
set.seed(123)
for(i in 1:1000){

y <- unlist(simulate(nullmod))
bnull <- lm(y ~ 1)
balt <- lmer(y ~ 1 + (1|operator), pulp, REML=FALSE)
lrstat[i] <- as.numeric(2*(logLik(balt)-logLik(bnull)))
}

We have set the random number seed here so that the results will reproduce exactly
if you run the same code. You do not need to set a seed for your own data unless you
need to achieve the same reproducibility. Be aware that simulation naturally contains
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some variation. If this variation might make a difference to your conclusions, you
need to use a larger number of bootstrap samples.

We may examine the distribution of the bootstrapped LRTs. We compute the
proportion that are close to zero:
mean(lrstat < 0.00001)
[1] 0.703

We see there is a 70% chance that the likelihoods for the null and alternatives are
virtually identical giving an LRT statistic of practically zero. The LRT clearly does
not have a χ2 distribution. There is some discussion of this matter in Stram and Lee
(1994), who propose a 50:50 mixture of a χ2 and a mass at zero. Unfortunately,
as we can see, the relative proportions of these two components vary from case to
case. Crainiceanu and Ruppert (2004) give a more complete solution to the one-way
ANOVA problem, but there is no general and exact result for this and more complex
problems. The parametric bootstrap may be the simplest approach. The method we
have used above is transparent and could be computed much more efficiently if speed
is an issue.

Our estimated p-value is:
mean(lrstat > 2.5684)
[1] 0.019

We can compute the standard error for this estimate by:
sqrt(0.019*0.981/1000)
[1] 0.0043173

So we can be fairly sure it is under 5%. If in doubt, do some more replications to
make sure; this only costs computer time. As it happens, this p-value is close to the
fixed effects p-value.

The RLRsim package of Scheipl et al. (2008) can be used to test random effect
terms:
library(RLRsim)
exactLRT(smod, nullmod)
No restrictions on fixed effects. REML-based inference preferable.

simulated finite sample distribution of LRT. (p-value based
on 10000 simulated values)

data:
LRT = 2.5684, p-value = 0.0213

The result is obtained with less computing time than our explicitly worked example.
The difference in the outcomes is within the sampling error. As the output points out,
it is slightly better to use REML when testing the random effects (although remember
that REML would be invalid for testing fixed effects). We can make this computation:
exactRLRT(mmod)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 3.4701, p-value = 0.021

Notice that the testing function is now exactRLRT and that only the alternative model
needs to be specified as there is only one random effect component. The outcome is
very similar to those obtained previously.
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The parametric bootstrap can also be used to construct confidence intervals for
the parameters. We simulate data from the chosen model and estimate the parameters.
We repeat this process many times, storing the results each time. Quantiles of the
bootstrapped estimates are then used to compute the intervals. We need to be able
to extract the parameter estimates from the model. We can view the estimates of
variance parameters using:
VarCorr(mmod)
Groups Name Std.Dev.
operator (Intercept) 0.261
Residual 0.326

A more convenient form for extracting the values can be obtained as:
as.data.frame(VarCorr(mmod))

grp var1 var2 vcov sdcor
1 operator (Intercept) <NA> 0.068083 0.26093
2 Residual <NA> <NA> 0.106250 0.32596

Now we are ready to bootstrap:
bsd <- numeric(1000)
for(i in 1:1000){

y <- unlist(simulate(mmod))
bmod <- refit(mmod, y)
bsd[i] <- as.data.frame(VarCorr(bmod))$sdcor[1]

}

The refit function changes only the response in a model we have already fit. This
is significantly faster than fitting the model from scratch as the overhead in setting
up the model is avoided. The 95% bootstrap confidence interval for σα is:
quantile(bsd, c(0.025, 0.975))

2.5% 97.5%
0.00000 0.51335

Essentially the same result can be obtained more directly using the confint function:
confint(mmod, method="boot")
Computing bootstrap confidence intervals ...

2.5 % 97.5 %
sd_(Intercept)|operator 0.00000 0.51539
sigma 0.21347 0.45522
(Intercept) 60.09417 60.69724

Nevertheless, it is worth understanding the detailed method of construction to know
how it works and to allow one to modify the method if circumstances require it.

In this case, the lower bound is zero. This is not surprising given our earlier
uncertainty over whether there really is a difference between the operators. In simpler
circumstances, there is a duality between confidence intervals and hypothesis tests in
that the outcome of a test can be determined by whether the point null hypothesis
lies within the confidence interval. Unfortunately, this duality does not apply in all
circumstances, this being a case in point. If you want to do a hypothesis test, use the
method described earlier and not the confidence interval.

In this example, the random and fixed effect tests gave similar outcomes. How-
ever, the hypotheses in random and fixed effects are intrinsically different. To gener-
alize somewhat, it is easier to conclude there is an effect in a fixed effects model since
the conclusion applies only to the levels of the factor used in the experiment, while
for random effects, the conclusion extends to levels of the factor not considered.
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Since the range of the random effect conclusions is greater, the evidence necessarily
has to be stronger.

10.3 Estimating Random Effects

In a fixed effects model, the effects are represented by parameters and it makes sense
to estimate them. For example, in the one-way ANOVA model:

yi j = µ+αi + εi j

We can calculate α̂i. We do need to resolve the identifiability problem with the αs
and the µ, but once we decide on this, the meaning of the α̂s is clear enough. We can
then proceed to make further inference such as multiple comparisons of these levels.

In a model with random effects, the αs are no longer parameters, but random
variables. Using the standard normal assumption:

αi ∼ N(0,σ2
α)

It does not make sense to estimate the αs because they are random variables. So
instead, we might think about the expected values. However:

Eαi = 0 ∀i

which is clearly not very interesting. If one looks at this from a Bayesian point of
view, as described in, for example, Gelman et al. (2013), we have a prior density on
the αs. The prior mean is Eαi = 0. Let f represent density, then the posterior density
for α is given by:

f (αi|y) ∝ f (y|αi) f (αi)

We can then find the posterior mean, denoted by α̂ as:

E(αi|y) =
∫

αi f (αi|y)dαi

For the general case, this works out to be:

α̂ = DZTV−1(y−Xβ)

Now a purely Bayesian approach would specify the parameters of the prior (or spec-
ify priors for these) and compute a posterior distribution for α. Here we take an
empirical Bayes point of view and substitute the MLEs into D, V and β to obtain the
predicted random effects. These may be computed as:
ranef(mmod)$operator
(Intercept)

a -0.12194
b -0.25912
c 0.16767
d 0.21340

The predicted random effects are related to the fixed effects. These fixed effects are:
(cc <- model.tables(lmod))
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Tables of effects

operator
operator

a b c d
-0.16 -0.34 0.22 0.28

Let’s compute the ratio to the random effects as:
cc[[1]]$operator/ranef(mmod)$operator

X.Intercept.
a 1.3121
b 1.3121
c 1.3121
d 1.3121

We see that the predicted random effects are exactly in proportion to the fixed effects.
Typically, the predicted random effects are smaller and could be viewed as a type of
shrinkage estimate.

The 95% confidence intervals for the random effects can be calculated and dis-
played as seen in Figure 10.2.
library(lattice)
dotplot(ranef(mmod, condVar=TRUE))
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Figure 10.2 Confidence intervals for the random effects in the pulp data.

10.4 Prediction

Suppose we wish to predict a new value. If the prediction is to be made for a new
operator or unknown operator, the best we can do is give µ̂ = 60.4. If we know the
operator, then we can combine this with our fixed effects to produce what are known
as the best linear unbiased predictors (BLUPs) as follows:
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fixef(mmod)+ranef(mmod)$operator
(Intercept)

a 60.278
b 60.141
c 60.568
d 60.613

We can also use the predict function to construct these predictions. First consider
the prediction for a new or unknown operator. We specify the random effects part of
the prediction as ~0 meaning that this term is not present. In more complex models
with more than one random effect, more choices are available. By default this would
produce a fitted value for each case in the data but since these are identical we take
only the first value:
predict(mmod, re.form=~0)[1]

1
60.4

Now we specify that the operator is ‘a’:
predict(mmod, newdata=data.frame(operator="a"))

1
60.278

The predict function for mixed model objects does not compute standard errors or
prediction intervals. For this simple model, it would be possible to compute these
explicitly but for more general models, it becomes much more difficult. For this
reason, we present a parametric bootstrap method for computing these as it is clearer
how the bands are computed. We start with the unknown operator case:
group.sd <- as.data.frame(VarCorr(mmod))$sdcor[1]
resid.sd <- as.data.frame(VarCorr(mmod))$sdcor[2]
pv <- numeric(1000)
for(i in 1:1000){
y <- unlist(simulate(mmod))
bmod <- refit(mmod, y)
pv[i] <- predict(bmod, re.form=~0)[1] + rnorm(n=1,sd=group.sd) +

↪→ rnorm(n=1,sd=resid.sd)
}
quantile(pv, c(0.025, 0.975))
2.5% 97.5%

59.535 61.286

As in previous bootstraps, the first step is to simulate from the fitted model. We refit
the model with the simulated response and generate a predicted value. But there are
two additional sources of variation. We have variation due to the new operator and
also due to a new observation from that operator. For this reason, we add normal
sample values with standard deviations equal to those estimated earlier. If you really
want a confidence interval for the mean prediction, you should not add these extra
error terms. We repeat this 1000 times and take the appropriate quantiles to get a
95% interval.

Some modification is necessary if we know the operator we are making the pre-
diction interval for. We use the option use.u=TRUE in the simulate function indicat-
ing that we should simulate new values conditional on the estimated random effects.
We need to do this because otherwise we would simulate an entirely new ‘a’ effect
in each replication. Instead, we want to preserve the originally generated ‘a’ effect.
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for(i in 1:1000){
y <- unlist(simulate(mmod, use.u=TRUE))
bmod <- refit(mmod, y)
pv[i] <- predict(bmod, newdata=data.frame(operator="a")) + rnorm(n=1,

↪→ sd=resid.sd)
}
quantile(pv, c(0.025, 0.975))

2.5% 97.5%
59.606 61.023

In a simple model such as this, we could mathematically calculate the standard er-
ror formulas and use this to compute these intervals more efficiently. However, the
bootstrap is more general and is easier to apply in more complex situations. More
bootstrapping functionality can be found in the lme4::bootMer() function and also
in the merTools package. Bootstrapping is fast enough for simple models but greater
efficiency is needed in more complex cases.

10.5 Diagnostics

It is important to check the assumptions made in fitting the model. Diagnostic meth-
ods available for checking linear mixed models largely mirror those used for linear
models but there are some variations. Residuals are commonly defined as the differ-
ence between the observed and fitted values. In mixed models, there is more than one
kind of fitted (or predicted) value resulting in more than one kind of residual. The
default predicted values and residuals use the estimated random effects. This means
these residuals can be regarded as estimates of ε which is usually what we want.

As with linear models, this pair of diagnostics plots is most valuable:
qqnorm(residuals(mmod),main="")
plot(fitted(mmod),residuals(mmod),xlab="Fitted",ylab="Residuals")
abline(h=0)
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Figure 10.3 Diagnostic plots for the one-way random effects model.
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The plots are shown in Figure 10.3 and indicate no particular problems. Random
effects models are particularly sensitive to outliers, because they depend on variance
components that can be substantially inflated by unusual points. The QQ plot is one
way to pick out outliers. We also need the normality for the testing. The residual-
fitted plot is also important because we made the assumption that the error variance
was constant.

If we had more than four groups, we could also look at the normality of the
group level effects and check for constant variance also. With so few groups, it is not
sensible to do this. Also note that there is no particular reason to think about multiple
comparisons. These are for comparing selected levels of a factor. For a random effect,
the levels were randomly selected, so such comparisons have less motivation.

10.6 Blocks as Random Effects

Blocks are properties of the experimental units. The blocks are either clearly defined
by the conditions of the experiment or they are formed with the judgment of the
experimenter. Sometimes, blocks represent groups of runs completed in the same
period of time. Typically, we are not interested in the block effects specifically, but
must account for their effect. It is therefore natural to treat blocks as random effects.

We illustrate with an experiment to compare four processes, A, B, C and D, for
the production of penicillin. These are the treatments. The raw material, corn steep
liquor, is quite variable and can only be made in blends sufficient for four runs. Thus
a randomized complete block design is suggested by the nature of the experimental
units. The data comes from Box et al. (1978). We start with the fixed effects analysis:
data(penicillin, package="faraway")
summary(penicillin)
treat blend yield
A:5 Blend1:4 Min. :77
B:5 Blend2:4 1st Qu.:81
C:5 Blend3:4 Median :87
D:5 Blend4:4 Mean :86

Blend5:4 3rd Qu.:89
Max. :97

We plot the data as seen in Figure 10.4. We create a version of the blend variable to
get neater labeling.
penicillin$Blend <- gl(5,4)
ggplot(penicillin, aes(y=yield, x=treat, shape=Blend))+geom_point()+

↪→ xlab("Treatment")
ggplot(penicillin, aes(y=yield, x=Blend, shape=treat))+geom_point()

It is convenient to use sum contrasts rather than the default treatment contrasts for
the purpose of comparison to the mixed effect modeling to come.
op <- options(contrasts=c("contr.sum", "contr.poly"))
lmod <- aov(yield ~ blend + treat, penicillin)
summary(lmod)

Df Sum Sq Mean Sq F value Pr(>F)
blend 4 264.0 66.0 3.50 0.041
treat 3 70.0 23.3 1.24 0.339
Residuals 12 226.0 18.8
coef(lmod)
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Figure 10.4 Yield from penicillin blends varying by treatment.

(Intercept) blend1 blend2 blend3 blend4
86 6 -3 -1 2

treat1 treat2 treat3
-2 -1 3

From this we see that there is no significant difference between the treatments, but
there is between the blends. Now let’s fit the data with a mixed model, where we
have fixed treatment effects, but random blend effects. This seems natural since the
blends we use can be viewed as having been selected from some notional population
of blends.
mmod <- lmer(yield ~ treat + (1|blend), penicillin)
sumary(mmod)
Fixed Effects:

coef.est coef.se
(Intercept) 86.00 1.82
treat1 -2.00 1.68
treat2 -1.00 1.68
treat3 3.00 1.68

Random Effects:
Groups Name Std.Dev.
blend (Intercept) 3.43
Residual 4.34

---
number of obs: 20, groups: blend, 5
AIC = 118.6, DIC = 128
deviance = 117.3
options(op)

We notice a few connections. The residual variance is the same in both cases: 18.8 =
4.342. This is because we have a balanced design and so REML is equivalent to the
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ANOVA estimator. The treatment effects are also the same as is the overall mean.
The BLUPs for the random effects are:
ranef(mmod)$blend

(Intercept)
Blend1 4.28788
Blend2 -2.14394
Blend3 -0.71465
Blend4 1.42929
Blend5 -2.85859

which, as with the one-way ANOVA, are a shrunken version of the corresponding
fixed effects. The usual diagnostics show nothing amiss.

We have a number of options in testing the fixed effects in this example. For this
simple balanced model, the aov function can be used:
amod <- aov(yield ~ treat + Error(blend), penicillin)
summary(amod)
Error: blend

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 4 264 66

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

treat 3 70 23.3 1.24 0.34
Residuals 12 226 18.8

Notice how the random effects term for blend is specified. The p-value for testing
the treatment effects is 0.34 indicating no significant effect. This test is exact and
works well here but only works for simple balanced models. For example, a single
missing value would invalidate this test so we have good reason to explore more
general methods.

We might try to base a test on the F-statistic which can be obtained like this:
anova(mmod)
Analysis of Variance Table

Df Sum Sq Mean Sq F value
treat 3 70 23.3 1.24

For this simple balanced case, it can be shown that this F-statistic has a true F null
distribution with usual degrees of freedom from which we could derive a p-value.
Unfortunately, as with the aov method, this result does not generalize well.

More reliable F-tests can be achieved by using adjusted degrees of freedom. The
pbkrtest package (Halekoh and Højsgaard (2014)) implements the Kenward-Roger
(Kenward and Roger (1997)) method:
library(pbkrtest)
amod <- lmer(yield ~ treat + (1|blend), penicillin, REML=FALSE)
nmod <- lmer(yield ~ 1 + (1|blend), penicillin, REML=FALSE)
KRmodcomp(amod, nmod)
F-test with Kenward-Roger approximation; computing time: 0.14 sec.
large : yield ~ treat + (1 | blend)
small : yield ~ 1 + (1 | blend)

stat ndf ddf F.scaling p.value
Ftest 1.24 3.00 12.00 1 0.34

It is essential to use the ML method of estimation when testing fixed effects. Since
we wish to test the treatment effect, we fit the model with this term and the same
model but without this term. As can be seen, it produces an identical result to the aov
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output with the same degrees of freedom and p-value. The advantage of this method
is that it can be generalized to a much wider class of problems.

We can also use the parametric bootstrap. First we compute the LRT statistic:
as.numeric(2*(logLik(amod)-logLik(nmod)))
[1] 4.0474

Just for reference, we could use the χ2 approximation to quickly compute a p-value:
1-pchisq(4.0474,3)
[1] 0.25639

This is just an approximation of unknown quality. We aim to do better than this.
We can improve the accuracy with the parametric bootstrap approach. We can

generate a response from the null model and use this to compute the LRT. We repeat
this 1000 times, saving the LRT each time:
lrstat <- numeric(1000)
for(i in 1:1000){
ryield <- unlist(simulate(nmod))
nmodr <- refit(nmod, ryield)
amodr <- refit(amod, ryield)
lrstat[i] <- 2*(logLik(amodr)-logLik(nmodr))
}

Notice how we have used refit to speed up the computation. Under the standard
likelihood theory, the LRT statistic here should have a χ2

3 distribution. A QQ plot
of these simulated LRT values indicates that this is a poor approximation. We can
compute our estimated p-value as:
mean(lrstat > 4.0474)
[1] 0.353

which is much closer to the F-test result than the χ2
3-based approximation.

The pbkrtest package offers a convenient way to perform the parametric boot-
strap for fixed effect terms:
pmod <- PBmodcomp(amod, nmod)
summary(pmod)
Parametric bootstrap test; time: 32.22 sec; samples: 1000 extremes: 333;
large : yield ~ treat + (1 | blend)
small : yield ~ 1 + (1 | blend)

stat df ddf p.value
PBtest 4.05 0.33
Gamma 4.05 0.33
Bartlett 3.42 3.00 0.33
F 1.35 3.00 12.9 0.30
LRT 4.05 3.00 0.26

The parametric bootstrap p-value is 0.33, which is similar to our previous results.
Remember that bootstrap is based on random sampling so if you repeat this, you
will get slightly different results. Since this p-value is not close to significance, we
have no worries about this. Notice that the output also produces the χ2-based LRT
result along with three other versions that are explained in the documentation for
the pbkrtest package. The package also offers the possibility of using the multiple
cores available now on most computers. This parallel computing can be helpful as
the parametric bootstrap is computationally expensive.

We can also test the significance of the blends. As with a fixed effects analysis,
we are typically not directly interested in size of the blocking effects. Once having
decided to design the experiment with blocks, we must retain them in the model.



SPLIT PLOTS 215

However, we may wish to examine the blocking effects for information useful for
the design of future experiments. We can fit the model with and without random
effects and compute the LRT:
rmod <- lmer(yield ~ treat + (1|blend), penicillin)
nlmod <- lm(yield ~ treat, penicillin)
as.numeric(2*(logLik(rmod)-logLik(nlmod,REML=TRUE)))
[1] 2.7629

We need to specify the nondefault REML option for null model to ensure that the
LRT is computed correctly. Now we perform the parametric bootstrap much as be-
fore:
lrstatf <- numeric(1000)
for(i in 1:1000){

ryield <- unlist(simulate(nlmod))
nlmodr <- lm(ryield ~ treat, penicillin)
rmodr <- refit(rmod, ryield)
lrstatf[i] <- 2*(logLik(rmodr)-logLik(nlmodr,REML=TRUE))
}

Again, the distribution is far from χ2
1 which is clear when we examine the proportion

of generated LRTs which are close to zero:
mean(lrstatf < 0.00001)
[1] 0.551

We can see from this that the LRT is clearly not χ2
1 distributed. Even the nonzero

values seem to have some other distribution. This makes it clear that asymptotic
approximations cannot be relied on these circumstances.

We can compute the estimated p-value as:
mean(lrstatf > 2.7629)
[1] 0.043

So we find a significant blend effect. The p-value is close to that observed for the
fixed effects analysis. Given that the p-value is close to 5%, we might wish to increase
the number of bootstrap samples to increase our confidence in the result.

We can also use RLRsim to obtain a p-value.
library(RLRsim)
exactRLRT(rmod)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 2.7629, p-value = 0.0406

In this example, we saw no major advantage in modeling the blocks as random
effects, so we might prefer to use the fixed effects analysis as it is simpler to execute.
However, in subsequent analyses, we shall see that the use of random effects will
be mandatory as equivalent results may not be obtained from a purely fixed effects
analysis.

10.7 Split Plots

Split plot designs originated in agriculture, but occur frequently in other settings. As
the name implies, main plots are split into several subplots. The main plot is treated
with a level of one factor while the levels of some other factor are allowed to vary
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with the subplots. The design arises as a result of restrictions on a full randomization.
For example, a field may be divided into four subplots. It may be possible to plant
different varieties in the subplots, but only one type of irrigation may be used for the
whole field. Note the distinction between split plots and blocks. Blocks are features
of the experimental units which we have the option to take advantage of in the ex-
perimental design. Split plots impose restrictions on what assignments of factors are
possible. They impose requirements on the design that prevent a complete random-
ization. Split plots often arise in nonagricultural settings when one factor is easy to
change while another factor takes much more time to change. If the experimenter
must do all runs for each level of the hard-to-change factor consecutively, a split-plot
design results with the hard-to-change factor representing the whole plot factor.

Consider the following example. In an agricultural field trial, the objective was
to determine the effects of two crop varieties and four different irrigation methods.
Eight fields were available, but only one type of irrigation may be applied to each
field. The fields may be divided into two parts with a different variety planted in each
half. The whole plot factor is the method of irrigation, which should be randomly
assigned to the fields. Within each field, the variety is randomly assigned. Here is a
summary of the data:
data(irrigation,package="faraway")
summary(irrigation)

field irrigation variety yield
f1 :2 i1:4 v1:8 Min. :34.8
f2 :2 i2:4 v2:8 1st Qu.:37.6
f3 :2 i3:4 Median :40.1
f4 :2 i4:4 Mean :40.2
f5 :2 3rd Qu.:42.7
f6 :2 Max. :47.6
(Other):4

We can plot the data as seen in Figure 10.5.
ggplot(irrigation, aes(y=yield, x=field, shape=irrigation, color=

↪→ variety)) + geom_point()

The irrigation and variety are fixed effects, but the field is clearly a random effect.
We must also consider the interaction between field and variety, which is necessarily
also a random effect because one of the two components is random. The fullest model
that we might consider is:

yi jk = µ+ ii + v j +(iv)i j + fk +(v f ) jk + εi jk

µ, ii,v j,(iv)i j are fixed effects; the rest are random having variances σ2
f , σ2

v f and σ2
ε .

Note that we have no (i f )ik term in this model. It would not be possible to estimate
such an effect since only one type of irrigation is used on a given field; the factors
are not crossed. We would fit such a model using the expression
lmer(yield ~ irrigation * variety + (1|field) +(1|field:variety),

↪→ irrigation)

However, if you try to fit such a model, it will fail because it is not possible to distin-
guish the variety within the field variation. We would need more than one observa-
tion per variety within each field for us to separate the two variabilities. We resort to
a simpler model that omits the variety by field interaction random effect:

yi jk = µ+ ii + v j +(iv)i j + fk + εi jk



SPLIT PLOTS 217

●

●

●

●

35

40

45

f1 f2 f3 f4 f5 f6 f7 f8
field

yi
el

d

irrigation
● i1

i2

i3

i4

variety
●

●

v1

v2

Figure 10.5 Yield on fields with different irrigation methods.

lmod <- lmer(yield ~ irrigation * variety + (1|field), irrigation)
sumary(lmod)
Fixed Effects:

coef.est coef.se
(Intercept) 38.50 3.03
irrigationi2 1.20 4.28
irrigationi3 0.70 4.28
irrigationi4 3.50 4.28
varietyv2 0.60 1.45
irrigationi2:varietyv2 -0.40 2.05
irrigationi3:varietyv2 -0.20 2.05
irrigationi4:varietyv2 1.20 2.05

Random Effects:
Groups Name Std.Dev.
field (Intercept) 4.02
Residual 1.45

---
number of obs: 16, groups: field, 8
AIC = 65.4, DIC = 91.8
deviance = 68.6

We can see that the largest variance component is that due to the field effect: σ̂ f =
4.02 with σ̂ε = 1.45.

The relatively large standard errors compared to the fixed effect estimates suggest
that there may be no significant fixed effects. We can check this sequentially using
F-tests with adjusted degrees of freedom:
library(pbkrtest)
lmoda <- lmer(yield ~ irrigation + variety + (1|field),data=irrigation

↪→ )
KRmodcomp(lmod, lmoda)
F-test with Kenward-Roger approximation; computing time: 0.07 sec.
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large : yield ~ irrigation * variety + (1 | field)
small : yield ~ irrigation + variety + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 0.25 3.00 4.00 1 0.86

We find there is no significant interaction term. We can now test each of the main
effects starting with the variety:
lmodi <- lmer(yield ~ irrigation + (1|field), irrigation)
KRmodcomp(lmoda, lmodi)
F-test with Kenward-Roger approximation; computing time: 0.06 sec.
large : yield ~ irrigation + variety + (1 | field)
small : yield ~ irrigation + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 1.58 1.00 7.00 1 0.25

Dropping variety from the model seems reasonable since the p-value of 0.25 is large.
We can test irrigation in a similar manner:
lmodv <- lmer(yield ~ variety + (1|field), irrigation)
KRmodcomp(lmoda, lmodv)
F-test with Kenward-Roger approximation; computing time: 0.06 sec.
large : yield ~ irrigation + variety + (1 | field)
small : yield ~ variety + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 0.39 3.00 4.00 1 0.77

Irrigation also fails to be significant.
We should check the diagnostic plots to make sure there is nothing amiss:

plot(fitted(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")
qqnorm(residuals(lmod),main="")
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Figure 10.6 Diagnostic plots for the split plot example.

We can see in Figure 10.6 that there is no problem with the nonconstant variance, but
that the residuals indicate a bimodal distribution caused by the pairs of observations
in each field. This type of divergence from normality is unlikely to cause any major
problems with the estimation and inference.
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We can test the random effects term like this:
library(RLRsim)
exactRLRT(lmod)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 6.1118, p-value = 0.0098

We see that the fields do seem to vary as the result is clearly significant.
Sometimes analysts ignore the split-plot variable as in:

mod <- lm(yield ~ irrigation * variety, data=irrigation)
anova(mod)
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 3 40.2 13.4 0.73 0.56
variety 1 2.2 2.2 0.12 0.73
irrigation:variety 3 1.6 0.5 0.03 0.99
Residuals 8 146.5 18.3

The results will not be the same. This last model is incorrect because it fails to take
into account the restrictions on the randomization introduced by the fields and the
additional variability thereby induced.

10.8 Nested Effects

When the levels of one factor vary only within the levels of another factor, that factor
is said to be nested. For example, when measuring the performance of workers at
several different job locations, if the workers only work at one location, the workers
are nested within the locations. If the workers work at more than one location, then
the workers are crossed with locations.

Here is an example to illustrate nesting. Consistency between laboratory tests is
important and yet the results may depend on who did the test and where the test was
performed. In an experiment to test levels of consistency, a large jar of dried egg
powder was divided up into a number of samples. Because the powder was homog-
enized, the fat content of the samples is the same, but this fact is withheld from the
laboratories. Four samples were sent to each of six laboratories. Two of the samples
were labeled as G and two as H, although in fact they were identical. The laborato-
ries were instructed to give two samples to two different technicians. The technicians
were then instructed to divide their samples into two parts and measure the fat content
of each. So each laboratory reported eight measures, each technician four measures,
that is, two replicated measures on each of two samples. The data comes from Bliss
(1967):
data(eggs, package="faraway")
summary(eggs)

Fat Lab Technician Sample
Min. :0.060 I :8 one:24 G:24
1st Qu.:0.307 II :8 two:24 H:24
Median :0.370 III:8
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Mean :0.388 IV :8
3rd Qu.:0.430 V :8
Max. :0.800 VI :8

We can plot the data as seen in Figure 10.7.
library(ggplot2)
ggplot(eggs, aes(y=Fat, x=Lab, color=Technician, shape=Sample)) + geom

↪→ _point(position = position_jitter(width=0.1, height=0.0))+scale
↪→ _color_grey()
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Figure 10.7 Fat content of homogenous powdered egg as tested by different laboratories, tech-
nicians and samples.

Although the technicians have been labeled “one” and “two,” they are two different
people in each lab. Thus the technician factor is nested within laboratories. Further-
more, even though the samples are labeled “H” and “G,” these are not the same
samples across the technicians and the laboratories. Hence we have samples nested
within technicians. Technicians and samples should be treated as random effects
since we may consider these as randomly sampled. If the labs were specifically se-
lected, then they should be taken as fixed effects. If, however, they were randomly
selected from those available, then they should be treated as random effects. If the
purpose of the study is to come to some conclusion about consistency across labora-
tories, the latter approach is advisable.

For the purposes of this analysis, we will treat labs as random. So all our effects
(except the grand mean) are random. The model is:

yi jkl = µ+Li +Ti j +Si jk + εi jkl

This can be fit using:
cmod <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician) + (1|Lab:

↪→ Technician:Sample), data=eggs)
sumary(cmod)
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Fixed Effects:
coef.est coef.se

0.39 0.04

Random Effects:
Groups Name Std.Dev.
Lab:Technician:Sample (Intercept) 0.06
Lab:Technician (Intercept) 0.08
Lab (Intercept) 0.08
Residual 0.08

---
number of obs: 48, groups: Lab:Technician:Sample, 24; Lab:Technician, 12; Lab, 6
AIC = -54.2, DIC = -73.3
deviance = -68.8

So we have σ̂L = 0.08, σ̂T = 0.08, σ̂S = 0.06 and σ̂ε = 0.08. So all four variance
components are of a similar magnitude. The lack of consistency in measures of fat
content can be ascribed to variance between labs, variance between technicians, vari-
ance in measurement due to different labeling and just plain measurement error. We
can see if the model can be simplified by removing the lowest level of the variance
components. Again the parametric bootstrap can be used:
cmodr <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician), data=eggs)
lrstat <- numeric(1000)
for(i in 1:1000){

rFat <- unlist(simulate(cmodr))
nmod <- lmer(rFat ~ 1 + (1|Lab) + (1|Lab:Technician), data=eggs)
amod <- lmer(rFat ~ 1 + (1|Lab) + (1|Lab:Technician) +
(1|Lab:Technician:Sample), data=eggs)
lrstat[i] <- 2*(logLik(amod)-logLik(nmod))
}

mean(lrstat > 2*(logLik(cmod)-logLik(cmodr)))
[1] 0.092

We do not reject H0 : σ2
S = 0. A similar computation may be made using the RLRsim

package. This requires us to specify another model where only the tested random
effect is included:
library(RLRsim)
cmods <- lmer(Fat ~ 1 + (1|Lab:Technician:Sample), data=eggs)
exactRLRT(cmods, cmod, cmodr)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 1.6034, p-value = 0.1056

An examination of the reduced model is interesting:
VarCorr(cmodr)
Groups Name Std.Dev.
Lab:Technician (Intercept) 0.0895
Lab (Intercept) 0.0769
Residual 0.0961

The variation due to samples has been absorbed into the other components.
So we can reasonably say that the variation due to samples can be ignored. We

may now test the significance of the variation between technicians. Using the same
method above, this is found to be significant.
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Although the data has a natural hierarchical structure which suggests a particular
order of testing, we might reasonably wonder which of the components contribute
substantially to the overall variation. Why test the sample effect first? A look at the
confidence intervals reveals the problem:
confint(cmod, method="boot")

2.5 % 97.5 %
sd_(Intercept)|Lab:Technician:Sample 0.000000 0.097527
sd_(Intercept)|Lab:Technician 0.000000 0.136021
sd_(Intercept)|Lab 0.000000 0.152663
sigma 0.058872 0.107040
(Intercept) 0.299666 0.473920

We might drop any of the three random effect terms but it is not possible to be
sure which is best to go. It is safest to conclude there is some variation in the fat
measurement coming from all three sources.

10.9 Crossed Effects

Effects are said to be crossed when they are not nested. In full factorial designs,
effects are completely crossed because every level of one factor occurs with every
level of another factor. However, in some other designs, crossing is not complete.
An example of less than complete crossing is a latin square design, where there
is one treatment factor and two blocking factors. Although not all combinations of
factors occur, the blocking factors are not nested. When at least some crossing occurs,
methods for nested designs cannot be used. We consider a latin square example.

In an experiment reported by Davies (1954), four materials, A, B, C and D, were
fed into a wear-testing machine. The response is the loss of weight in 0.1 mm over the
testing period. The machine could process four samples at a time and past experience
indicated that there were some differences due to the position of these four samples.
Also some differences were suspected from run to run. A fixed effects analysis of
this dataset may be found in Faraway (2014). Four runs were made. The latin square
structure of the design may be observed:
data(abrasion, package="faraway")
matrix(abrasion$material,4,4)

[,1] [,2] [,3] [,4]
[1,] "C" "A" "D" "B"
[2,] "D" "B" "C" "A"
[3,] "B" "D" "A" "C"
[4,] "A" "C" "B" "D"

We can plot the data as seen in Figure 10.8.
library(ggplot2)
ggplot(abrasion,aes(x=material, y=wear, shape=run, color=position))+

↪→ geom_point(position = position_jitter(width=0.1, height=0.0))+
↪→ scale_color_grey()

A fixed effects analysis of the data reveals:
lmod <- aov(wear ~ material + run + position, abrasion)
summary(lmod)

Df Sum Sq Mean Sq F value Pr(>F)
material 3 4622 1540 25.15 0.00085
run 3 986 329 5.37 0.03901
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Figure 10.8 Abrasion wear on material according to run and position.

position 3 1468 489 7.99 0.01617
Residuals 6 367 61

All the effects are significant. However, we might regard the run and position as
random effects. The appropriate model is then:
mmod <- lmer(wear ~ material + (1|run) + (1|position), abrasion)
sumary(mmod)
Fixed Effects:

coef.est coef.se
(Intercept) 265.75 7.67
materialB -45.75 5.53
materialC -24.00 5.53
materialD -35.25 5.53

Random Effects:
Groups Name Std.Dev.
run (Intercept) 8.18
position (Intercept) 10.35
Residual 7.83

---
number of obs: 16, groups: run, 4; position, 4
AIC = 114.3, DIC = 140.4
deviance = 120.3

The lmer function is able to recognize that the run and position effects are
crossed and fit the model appropriately. We can test the random effects using the
RLRsim package. We need to fit both models that use just one random effect:
library(RLRsim)
mmodp <- lmer(wear ~ material + (1|position), abrasion)
mmodr <- lmer(wear ~ material + (1|run), abrasion)
exactRLRT(mmodp, mmod, mmodr)

simulated finite sample distribution of RLRT.
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(p-value based on 10000 simulated values)

data:
RLRT = 4.5931, p-value = 0.0139

This first comparison tests the significance of the position term. The first model in
the exactRLRT specifies the model with only that random effect term being tested.
The second and third terms specify the alternative and null models under the hypoth-
esis being tested. We see that the position variance is statistically significant. We can
also test the run term:
exactRLRT(mmodr, mmod, mmodp)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 3.0459, p-value = 0.0345

We see that the run variation is also statistically significant. Since the design of this
experiment has already restricted the randomization to allow for these effects, we
would keep these terms in the model even if they were found not to be significant.
This information would only be valuable for future experiments.

The fixed effect term can be tested using the pbkrtest package. Given the small
balanced nature of the experiment, we can feel confident in using the Kenward-Roger
adjustment. Note that we need to use ML estimation for the fixed effect comparison.
library(pbkrtest)
mmod <- lmer(wear ~ material + (1|run) + (1|position), abrasion,REML=

↪→ FALSE)
nmod <- lmer(wear ~ 1+ (1|run) + (1|position), abrasion,REML=FALSE)
KRmodcomp(mmod, nmod)
F-test with Kenward-Roger approximation; computing time: 0.15 sec.
large : wear ~ material + (1 | run) + (1 | position)
small : wear ~ 1 + (1 | run) + (1 | position)

stat ndf ddf F.scaling p.value
Ftest 25.1 3.0 6.0 1 0.00085

We find that there is a clearly significant difference in the materials.
The fixed effects analysis was somewhat easier to execute, but the random effects

analysis has the advantage of producing estimates of the variation in the blocking
factors which will be more useful in future studies. Fixed effects estimates of the run
effect for this experiment are only useful for the current study.

10.10 Multilevel Models

Multilevel models is a term used for models for data with hierarchical structure. The
term is most commonly used in the social sciences. We can use the methodology we
have already developed to fit some of these models.

We take as our example some data from the Junior School Project collected from
primary (U.S. term is elementary) schools in inner London. The data is described in
detail in Mortimore et al. (1988) and a subset is analyzed extensively in Goldstein
(1995).

The variables in the data are the school, the class within the school (up to
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four), gender, social class of the father (I=1; II=2; III nonmanual=3; III man-
ual=4; IV=5; V=6; Long-term unemployed=7; Not currently employed=8; Father ab-
sent=9), raven’s test in year 1, student id number, english test score, mathematics
test score and school year (coded 0, 1 and 2 for years one, two and three). So there
are up to three measures per student. The data was obtained from the Multilevel
Models project.

We shall take as our response the math test score result from the final year and
try to model this as a function of gender, social class and the Raven’s test score from
the first year which might be taken as a measure of ability when entering the school.
We subset the data to ignore the math scores from the first two years:
data(jsp, package="faraway")
jspr <- jsp[jsp$year==2,]

We start with two plots of the data. Due to the discreteness of the score results, it is
helpful to jitter (add small random perturbations) the scores to avoid overprinting.
The use of transparency, specified using the alpha parameter, also helps with dense
data.
ggplot(jspr, aes(x=raven, y=math))+xlab("Raven Score")+ylab("Math

↪→ Score")+geom_point(position = position_jitter(),alpha=0.3)
ggplot(jspr, aes(x=social, y=math))+xlab("Social Class")+ylab("Math

↪→ Score")+geom_boxplot()

Figure 10.9 Plots of the Junior School Project data.

In Figure 10.9, we can see the positive correlation between the Raven’s test score and
the final math score. The maximum math score was 40, which reduces the variability
at the upper end of the scale. We also see how the math scores tend to decline with
social class.

One possible approach to analyzing these data is multiple regression. For exam-
ple, we could fit:
glin <- lm(math ~ raven*gender*social,jspr)
anova(glin)
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Analysis of Variance Table

Response: math
Df Sum Sq Mean Sq F value Pr(>F)

raven 1 11481 11481 368.06 <2e-16
gender 1 44 44 1.41 0.2347
social 8 779 97 3.12 0.0017
raven:gender 1 0.01145 0.01145 0.00037 0.9847
raven:social 8 583 73 2.33 0.0175
gender:social 8 450 56 1.80 0.0727
raven:gender:social 8 235 29 0.94 0.4824
Residuals 917 28603 31

It would seem that gender effects can be removed entirely, giving us:
glin <- lm(math ~ raven*social,jspr)
anova(glin)
Analysis of Variance Table

Response: math
Df Sum Sq Mean Sq F value Pr(>F)

raven 1 11481 11481 365.72 <2e-16
social 8 778 97 3.10 0.0019
raven:social 8 564 71 2.25 0.0222
Residuals 935 29351 31

This is a fairly large dataset, so even small effects can be significant. Even though
the raven:social term is significant at the 5% level, we remove it to simplify inter-
pretation:
glin <- lm(math ~ raven+social,jspr)
summary(glin)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.0248 1.3745 12.39 <2e-16
raven 0.5804 0.0326 17.83 <2e-16
social2 0.0495 1.1294 0.04 0.965
social3 -0.4289 1.1957 -0.36 0.720
social4 -1.7745 1.0599 -1.67 0.094
social5 -0.7823 1.1892 -0.66 0.511
social6 -2.4937 1.2609 -1.98 0.048
social7 -3.0485 1.2907 -2.36 0.018
social8 -3.1175 1.7749 -1.76 0.079
social9 -0.6328 1.1273 -0.56 0.575

n = 953, p = 10, Residual SE = 5.632, R-Squared = 0.29

We see that the final math score is strongly related to the entering Raven score and
that the math scores of the lower social classes are lower, even after adjustment for the
entering score. Of course, any regression analysis requires more investigation than
this; there are diagnostics and transformations to be considered and more. However,
even if we were to do this, there would still be a problem with this analysis. We are
assuming that the 953 students in the dataset are independent observations. This is
not a tenable assumption as the students come from 50 different schools. The number
coming from each school varies:
table(jspr$school)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

26 11 14 24 26 18 11 27 21 0 11 23 22 13 7 16 6 18 14 13 28
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
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14 18 21 14 20 22 15 13 27 35 23 44 27 16 28 17 12 14 10 10 41
44 45 46 47 48 49 50
5 11 15 33 63 22 14

It is highly likely that students in the same school (and perhaps class) will show
some dependence. So we have somewhat less than 953 independent cases worth of
information. Any analysis that pretends these are independent is likely to overstate
the significance of the results. Furthermore, the analysis above tells us nothing about
the variation between and within schools. People will certainly be interested in this.
We could aggregate the results across schools but this would lose information and
expose us to the dangers of an ecological regression.

We need an analysis that uses the individual-level information, but also reflects
the grouping in the data. Our first model has fixed effects representing all interactions
between raven, social and gender with random effects for the school and the class
nested within the school:
mmod <- lmer(math ~ raven*social*gender+(1|school)+(1|school:class),

↪→ data=jspr)

A look at the summary output from this model suggests that gender may not be signif-
icant. We can test this using the Kenward-Roger adjusted F-test from the pbkrtest
package:
mmodr <- lmer(math ~ raven*social+(1|school)+(1|school:class), data=

↪→ jspr)
KRmodcomp(mmod, mmodr)
F-test with Kenward-Roger approximation; computing time: 0.39 sec.
large : math ~ raven * social * gender + (1 | school) + (1 | school:class)
small : math ~ raven * social + (1 | school) + (1 | school:class)

stat ndf ddf F.scaling p.value
Ftest 1.01 18.00 892.94 1 0.44

This can be verified using the parametric bootstrap although with a dataset of this
size, it does take some time to run. The size of the dataset means that we can be quite
confident about the adjusted F-test in any case.

In this example, we have more than a handful of potential models we might con-
sider even if we vary only the fixed effect part of the model. In such circumstances,
we might prefer to take a criterion-based approach to model selection. One approach
is to specify all the models we wish to consider:
all3 <- lmer(math ~ raven*social*gender+(1|school)+(1|school:class),

↪→ data=jspr, REML=FALSE)
all2 <- update(all3, . ~ . - raven:social:gender)
notrs <- update(all2, . ~ . -raven:social)
notrg <- update(all2, . ~ . -raven:gender)
notsg <- update(all2, . ~ . -social:gender)
onlyrs <- update(all2, . ~ . -social:gender - raven:gender)
all1 <- update(all2, . ~ . -social:gender - raven:gender - social:

↪→ raven)
nogen <- update(all1, . ~ . -gender)

It is important to use the ML method for constructing the AICs. As explained pre-
viously, it is not sensible to use the REML method when comparing models with
different fixed effects. We have specified models with a three-way interaction, all
two-way interactions, models leaving out each two-way interaction, a model exclud-
ing any interaction involving gender, a model with just main effects and finally a
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model without gender entirely. Now we can create a table showing the AIC and BIC
values:
anova(all3, all2, notrs, notrg, notsg, onlyrs, all1, nogen)[,1:4]

Df AIC BIC logLik
all1 14 5956 6024 -2964
nogen 21 5949 6051 -2954
onlyrs 22 5950 6057 -2953
notrs 23 5962 6073 -2958
notsg 23 5952 6064 -2953
notrg 30 5956 6102 -2948
all2 31 5958 6108 -2948
all3 39 5967 6156 -2944

The anova output produces chi-squared tests for comparing the models. This is not
correct here as the sequence of models is not nested and furthermore, these tests are
inaccurate for reasons previously explained. We exclude this part of the output using
[,1:4]. We can see that the AIC is minimized by the model that removes gender
entirely. This confirms our hypothesis-testing based approach to selecting the model
but rather more thoroughly by also considering the intermediate models.

The BIC criterion commonly prefers models that are smaller than the AIC. We
see that illustrated in this example as BIC picks the model with only the main effects.
We might reasonably add other models to the comparison. It becomes tedious to list
all the possibilities when there are more variables but it requires some more complex
R code to generate these automatically.

Given that we have decided that gender is not important, we simplify to:
jspr$craven <- jspr$raven-mean(jspr$raven)
mmod <- lmer(math ~ craven*social+(1|school)+(1|school:class),jspr)
sumary(mmod)
Fixed Effects:

coef.est coef.se
(Intercept) 31.91 1.20
craven 0.61 0.19
social2 0.02 1.27
social3 -0.63 1.31
social4 -1.97 1.20
social5 -1.36 1.30
social6 -2.27 1.37
social7 -2.55 1.41
social8 -3.39 1.80
social9 -0.83 1.25
craven:social2 -0.13 0.21
craven:social3 -0.22 0.22
craven:social4 0.04 0.19
craven:social5 -0.15 0.21
craven:social6 -0.04 0.23
craven:social7 0.40 0.23
craven:social8 0.26 0.26
craven:social9 -0.08 0.21

Random Effects:
Groups Name Std.Dev.
school:class (Intercept) 1.08
school (Intercept) 1.77
Residual 5.21
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---
number of obs: 953, groups: school:class, 90; school, 48
AIC = 5963.2, DIC = 5893.6
deviance = 5907.4

We centered the Raven score about its overall mean. This means that we can interpret
the social effects as the predicted differences from social class one at the mean Raven
score. If we did not do this, these parameter estimates would represent differences
for raven=0 which is not very useful. We can see the math score is strongly related
to the entering Raven score. We see that for the same entering score, the final math
score tends to be lower as social class goes down. Note that class 9 here is when
the father is absent and class 8 is not necessarily worse than 7, so this factor is not
entirely ordinal. We also see the most substantial variation at the individual level with
smaller amounts of variation at the school and class level.

We check the standard diagnostics first:
diagd <- fortify(mmod)
ggplot(diagd,aes(sample=.resid))+stat_qq()
ggplot(diagd,aes(x=.fitted,y=.resid)) +geom_point(alpha=0.3) +geom_

↪→ hline(yintercept=0) +xlab("Fitted") +ylab("Residuals")

Figure 10.10 Diagnostic plots for the Junior Schools Project model.

In Figure 10.10, we see that the residuals are close to normal, but there is a clear de-
crease in the variance with an increase in the fitted values. This is due to the reduced
variation in higher scores already observed. We might consider a transformation of
the response to remove this effect.

We can also check the assumption of normally distributed random effects. We
can do this at the school and class level:
qqnorm(ranef(mmod)$school[[1]],main="School effects")
qqnorm(ranef(mmod)$"school:class"[[1]],main="Class effects")

We see in Figure 10.11 that there is approximate normality in both cases with some
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Figure 10.11 QQ plots of the random effects at the school and class levels.

evidence of short tails for the school effects. It is interesting to look at the sorted
school effects:
adjscores <- ranef(mmod)$school[[1]]

These represent a ranking of the schools adjusted for the quality of the intake and the
social class of the students. The difference between the best and the worst is about
five points on the math test. Of course, we must recognize that there is variability in
these estimated effects before making any decisions about the relative strengths of
these schools. Compare this with an unadjusted ranking that simply takes the average
score achieved by the school, centered by the overall average:
rawscores <- coef(lm(math ~ school-1,jspr))
rawscores <- rawscores-mean(rawscores)

We compare these two measures of school quality in Figure 10.12:
plot(rawscores,adjscores)
sint <- c(9,14,29)
text(rawscores[sint],adjscores[sint]+0.2,c("9","15","30"))

School 10 is listed but has no students, hence the need to adjust the labeling. There
are some interesting differences. School 15 looks best on the raw scores but after
adjustment, it drops to 15th place. This is a school that apparently performs well, but
when the quality of the incoming students is considered, its performance is not so
impressive. School 30 illustrates the other side of the coin. This school looks average
on the raw scores, but is doing quite well given the ability of the incoming students.
School 9 is actually doing a poor job despite raw scores that look quite good.

It is also worth plotting the residuals and the random effects against the predic-
tors. We would be interested in finding any inhomogeneity or signs of structure that
might lead to an improved model.
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Figure 10.12 Raw and adjusted school-quality measures. Three selected schools are marked.

We may also be interested to know whether there really is much variation be-
tween schools or classes within schools. We can investigate this by testing the ran-
dom effect terms using the RLRsim package. We need to fit models without each of
the random effect terms.
library(RLRsim)
mmodc <- lmer(math ~ craven*social+(1|school:class),jspr)
mmods <- lmer(math ~ craven*social+(1|school),jspr)

We can test the class effect:
exactRLRT(mmodc, mmod, mmods)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 2.3903, p-value = 0.0549

The evidence for a class effect is quite marginal. We would certainly choose to in-
clude it for testing fixed effect terms as we would rather be sure that it had been taken
account of. Even so we can see that the class effect may be quite small. In contrast,
we can test for a school effect:
exactRLRT(mmods, mmod, mmodc)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 7.1403, p-value = 0.0033

The school effect comes through strongly. It seems schools matter more than specific
teachers.

Compositional Effects: Fixed effect predictors in this example so far have been
at the lowest level, the student, but it is not improbable that factors at the school or
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class level might be important predictors of success in the math test. We can construct
some such predictors from the individual-level information; such factors are called
compositional effects. For example, the average entering score for a school might be
an important predictor. The ability of one’s fellow students may have an impact on
future achievement. We construct this variable:
schraven <- lm(raven ~ school, jspr)$fit

and insert it into our model:
mmodc <- lmer(math ~ craven*social+schraven*social+(1|school)+ (1|

↪→ school:class),jspr)
KRmodcomp(mmod, mmodc)
F-test with Kenward-Roger approximation; computing time: 0.16 sec.
large : math ~ craven * social + schraven * social + (1 | school) + (1 |

school:class)
small : math ~ craven * social + (1 | school) + (1 | school:class)

stat ndf ddf F.scaling p.value
Ftest 0.68 9.00 640.14 0.997 0.73

We see that this new effect is not significant. We are not constrained to taking means.
We might consider various quantiles or measures of spread as potential compositional
variables.

Much remains to be investigated with this dataset. We have only used the simplest
of error structures and we should investigate whether the random effects may also
depend on some of the other covariates.

Further Reading: The classical approach to random effects can be found in
many older books such as Snedecor and Cochran (1989) or Scheffé (1959). More
recent books such as Searle et al. (1992) also focus on the ANOVA approach. A wide
range of models are explicitly considered in Milliken and Johnson (1992). Multilevel
models are covered in Goldstein (1995), Raudenbush and Bryk (2002) and Gelman
and Hill (2006). The predecessor to the lme4 package was nlme which is described
in Pinheiro and Bates (2000), but the book still contains much general material of
interest.

Exercises

1. The denim dataset concerns the amount of waste in material cutting for a jeans
manufacturer due to five suppliers.

(a) Plot the data and comment.
(b) Fit the linear fixed effects model. Is the operator significant?
(c) Make a useful diagnostic plot for this model and comment.
(d) Analyze the data with supplier as a random effect. What are the estimated

standard deviations of the effects?
(e) Test the significance of the supplier term.
(f) Compute confidence intervals for the random effect SDs.
(g) Locate two outliers and remove them from the data. Repeat the fitting, testing

and computation of the confidence intervals, commenting on the differences
you see from the complete data.
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(h) Estimate the effect of each supplier. If only one supplier will be used, choose
the best.

2. The coagulation dataset comes from a study of blood coagulation times.
Twenty-four animals were randomly assigned to four different diets and the sam-
ples were taken in a random order.

(a) Plot the data and comment.
(b) Fit a fixed effects model and construct a prediction together with a 95% pre-

diction interval for the response of a new animal assigned to diet D.
(c) Now fit a random effects model using REML. A new animal is assigned to

diet D. Predict the blood coagulation time for this animal along with a 95%
prediction interval.

(d) A new diet is given to a new animal. Predict the blood coagulation time for this
animal along with a 95% prediction interval

(e) A new diet is given to the first animal in the dataset. Predict the blood coagu-
lation time for this animal with a prediction interval. You may assume that the
effects of the initial diet for this animal have washed out.

3. The eggprod dataset concerns an experiment where six pullets were placed into
each of 12 pens. Four blocks were formed from groups of three pens based
on location. Three treatments were applied. The number of eggs produced was
recorded.

(a) Make suitable plots of the data and comment.
(b) Fit a fixed effects model for the number of eggs produced with the treatments

and blocks as predictors. Determine the significance of the two predictors and
perform a basic diagnostic check.

(c) Fit a model for the number of eggs produced with the treatments as fixed ef-
fects and the blocks as random effects. Which treatment is best in terms of
maximizing production according to the model? Are you sure it is better than
other two treatments?

(d) Use the Kenward-Roger approximation for an F-test to check for differences
between the treatments. How does the result compare to the fixed effects result?

(e) Perform the same test but using a bootstrap method. How do the results com-
pare?

(f) Test for the significance of the blocks. Does the outcome agree with the fixed
effects result?

4. Data on the cutoff times of lawnmowers may be found in the dataset lawn. Three
machines were randomly selected from those produced by manufacturers A and
B. Each machine was tested twice at low speed and high speed.

(a) Make plots of the data and comment.
(b) Fit a fixed effects model for the cutoff time response using just the main effects

of the three predictors. Explain why not all effects can be estimated.
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(c) Fit a mixed effects model with manufacturer and speed as main effects along
with their interaction and machine as a random effect. If the same machine
were tested at the same speed, what would be the SD of the times observed? If
different machines were sampled from the same manufacturer and tested at the
same speed once only, what would be the SD of the times observed?

(d) Test whether the interaction term of the model can be removed. If so, go on to
test the two main fixed effects terms.

(e) Check whether there is any variation between machines.
(f) Fit a model with speed as the only fixed effect and manufacturer as a ran-

dom effect with machines also as a random effect nested within manufacturer.
Compare the variability between machines with the variability between manu-
facturers.

(g) Construct bootstrap confidence intervals for the terms of the previous model.
Discuss whether the variability can be ascribed solely to manufacturers or to
machines.

5. A number of growers supply broccoli to a food processing plant. The plant in-
structs the growers to pack the broccoli into standard-size boxes. There should be
18 clusters of broccoli per box. Because the growers use different varieties and
methods of cultivation, there is some variation in the cluster weights. The plant
manager selected three growers at random and then four boxes at random supplied
by these growers. Three clusters were selected from each box. The data may be
found in the broccoli dataset. The weight in grams of the cluster is given.

(a) Plot the data and comment on the nature of the variation seen.
(b) Compute the mean weights within growers. Compute the mean weights within

boxes.
(c) Fit an appropriate mixed effects model. Comment on how the variation is as-

signed to the possible sources.
(d) Test whether there may be no variation attributable to growers.
(e) Test whether there may be no variation attributable to boxes.
(f) Compute confidence intervals for the SD components in your full model.

6. An experiment was conducted to select the supplier of raw materials for produc-
tion of a component. The breaking strength of the component was the objective of
interest. Four suppliers were considered. The four operators can only produce one
component each per day. A latin square design is used and the data is presented in
breaking.

(a) Plot the data and interpret.
(b) Fit a fixed effects model for the main effects. Determine which factors are

significant.
(c) Fit a mixed effects model with operators and days as random effects but the

suppliers as fixed effects. Why is this a natural choice of fixed and random ef-
fects? Which supplier results in the highest breaking point? What is the nature
of the variation between operators and days?
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(d) Test the operator and days effects.
(e) Test the significance of the supplier effect.
(f) For the best choice of supplier, predict the proportion of components produced

in the future that will have a breaking strength less than 1000.
7. An experiment was conducted to optimize the manufacture of semiconductors.

The semicond data has the resistance recorded on the wafer as the response. The
experiment was conducted during four different time periods denoted by ET and
three different wafers during each period. The position on the wafer is a factor
with levels 1 to 4. The Grp variable is a combination of ET and wafer. Analyze
the data as a split plot experiment where ET and position are considered as fixed
effects. Since the wafers are different in experimental time periods, the Grp vari-
able should be regarded as the block or group variable.

(a) Plot the data appropriately and comment.
(b) Fit a fixed effects model with an interaction between ET and position (no

other predictors). What terms are significant? What is wrong with using this
model to make inference about these predictors?

(c) Fit a model appropriate to the split plot design used here. Comment on the
relative variation between and within the groups (Grp).

(d) Test for the effect of position.
(e) Which level of ET results in the highest resistance? Can we be sure that this is

really better than the second highest level?
(f) Make a plot of the residuals and fitted values and interpret. Make a QQ plot

and comment.
8. Redo the Junior Schools Project data analysis in the text with the final year English

score as the response. Highlight any differences from the analysis of the final year
Math scores.

9. An experiment was conducted to determine the effect of recipe and baking tem-
perature on chocolate cake quality. Fifteen batches of cake mix for each recipe
were prepared. Each batch was sufficient for six cakes. Each of the six cakes was
baked at a different temperature which was randomly assigned. Several measures
of cake quality were recorded of which breaking angle was just one. The dataset
is presented as choccake.

(a) Plot the data and comment.
(b) Fit linear model with an interaction between recipe and temperature as fixed ef-

fects and no random effects. Which terms are significant? Why is this analysis
unreliable?

(c) Fit a mixed effects model that takes account of the batch structure, identifying
the design type. Compare the temperature effect (minimum to maximum) with
the likely difference between batches. How do they compare?

(d) Test for a recipe effect.
(e) Check the following diagnostic plots and comment.

i. The residuals against fitted values.
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ii. A QQ plot of the residuals.
iii. A QQ plot of the batch random effects.



Chapter 11

Repeated Measures and Longitudinal Data

In repeated measures designs, there are several individuals (or units) and measure-
ments are taken repeatedly on each individual. When these repeated measurements
are taken over time, it is called a longitudinal study or, in some applications, a panel
study. Typically various covariates concerning the individual are recorded and the
interest centers on how the response depends on the covariates over time. Often it is
reasonable to believe that the response of each individual has several components: a
fixed effect, which is a function of the covariates; a random effect, which expresses
the variation between individuals; and an error, which is due to measurement or un-
recorded variables.

Suppose each individual has response yi, a vector of length ni which is modeled
conditionally on the random effects γi as:

yi|γi ∼ N(Xiβ+Ziγi,σ
2
Λi)

Notice this is very similar to the model used in the previous chapter with the ex-
ception of allowing the errors to have a more general covariance Λi. As before, we
assume that the random effects γi ∼ N(0,σ2D) so that:

yi ∼ N(Xiβ,Σi)

where Σi = σ2(Λi + ZiDZT
i ). Now suppose we have M individuals and we can as-

sume the errors and random effects between individuals are uncorrelated, then we
can combine the data as:

y =


y1
y2
. . .
yM

 X =


X1
X2
. . .
XM

 γ =


γ1
γ2
. . .
γM


and D̃ = diag(D,D, . . . ,D), Z = diag(Z1,Z2, . . . ,ZM), Σ = diag(Σ1,Σ2, . . . ,ΣM) and
Λ = diag(Λ1,Λ2, . . . ,ΛM). Now we can write the model as

y∼ N(Xβ,Σ) Σ = σ
2(Λ+ZD̃ZT )

The log-likelihood for the data is then computed as previously and estimation, test-
ing, standard errors and confidence intervals all follow using standard likelihood the-
ory as before. There is no strong distinction between the methodology used in this
and the previous chapter.

This general structure encompasses a wide range of possible models for different
types of data. We explore some of these in the following three examples:

237
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11.1 Longitudinal Data

The Panel Study of Income Dynamics (PSID), begun in 1968, is a longitudinal study
of a representative sample of U.S. individuals described in Hill (1992). The study is
conducted at the Survey Research Center, Institute for Social Research, University of
Michigan, and is still continuing. There are currently 8700 households in the study
and many variables are measured. We chose to analyze a random subset of this data,
consisting of 85 heads of household who were aged 25–39 in 1968 and had complete
data for at least 11 of the years between 1968 and 1990. The variables included were
annual income, gender, years of education and age in 1968:
data(psid, package="faraway")
head(psid)

age educ sex income year person
1 31 12 M 6000 68 1
2 31 12 M 5300 69 1
3 31 12 M 5200 70 1
4 31 12 M 6900 71 1
5 31 12 M 7500 72 1

Now plot the data:
library(dplyr)
psid20 <- filter(psid, person <= 20)
library(ggplot2)
ggplot(psid20, aes(x=year, y=income))+geom_line()+facet_wrap(~ person)
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Figure 11.1 The first 20 subjects in the PSID data. Income is shown over time.
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Figure 11.2 Income change in the PSID data grouped by sex.

The first 20 subjects are shown in Figure 11.1. We see that some individuals have
a slowly increasing income, typical of someone in steady employment in the same
job. Other individuals have more erratic incomes. We can also show how the incomes
vary by sex. Income is more naturally considered on a log-scale:
ggplot(psid20, aes(x=year, y=income+100, group=person)) +geom_line() +

↪→ facet_wrap(~ sex) + scale_y_log10()

See Figure 11.2. We added $100 to the income of each subject to remove the effect
of some subjects having very low incomes for short periods of time. These cases
distorted the plots without the adjustment. We see that men’s incomes are generally
higher and less variable while women’s incomes are more variable, but are perhaps
increasing more quickly. We could fit a line to each subject starting with the first:
lmod <- lm(log(income) ~ I(year-78), subset=(person==1), psid)
coef(lmod)
(Intercept) I(year - 78)

9.399957 0.084267

We have centered the predictor at the median value so that the intercept will represent
the predicted log income in 1978 and not the year 1900 which would be nonsense.
We now fit a line for all the subjects and plot the results:
library(lme4)
ml <- lmList(log(income) ~ I(year-78) | person, psid)
intercepts <- sapply(ml,coef)[1,]
slopes <- sapply(ml,coef)[2,]

The lmList command fits a linear model to each group within the data, here specifed
by person. A list of linear models, one for each group, is returned from which we
extract the intercepts and slopes.
plot(intercepts,slopes,xlab="Intercept",ylab="Slope")
psex <- psid$sex[match(1:85,psid$person)]
boxplot(split(slopes,psex))
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In the first panel of Figure 11.3, we see how the slopes relate to the intercepts — there
is little correlation. This means we can test incomes and income growths separately.
In the second panel, we compare the income growth rates where we see these as
higher and more variable for women compared to men. We can test the difference in
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Figure 11.3 Slopes and intercepts for the individual income growth relationships are shown
on the left. A comparison of income growth rates by sex is shown on the right.

income growth rates for men and women:
t.test(slopes[psex=="M"],slopes[psex=="F"])

Welch Two Sample t-test

data: slopes[psex == "M"] and slopes[psex == "F"]
t = -2.3786, df = 56.736, p-value = 0.02077
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0591687 -0.0050773

sample estimates:
mean of x mean of y
0.056910 0.089033

We see that women have a significantly higher growth rate than men. We can also
compare the incomes at the intercept (which is 1978):
t.test(intercepts[psex=="M"],intercepts[psex=="F"])

Welch Two Sample t-test

data: intercepts[psex == "M"] and intercepts[psex == "F"]
t = 8.2199, df = 79.719, p-value = 3.065e-12
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.87388 1.43222

sample estimates:
mean of x mean of y

9.3823 8.2293
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We see that men have significantly higher incomes.
This is an example of a response feature analysis. It requires choosing an impor-

tant characteristic. We have chosen two here: the slope and the intercept. For many
datasets, this is not an easy choice and at least some information is lost by doing this.

Response feature analysis is attractive because of its simplicity. By extracting a
univariate response for each individual, we are able to use a wide array of well-known
statistical techniques. However, it is not the most efficient use of the data as all the
additional information besides the chosen response feature is discarded. Notice that
having additional data on each subject would be of limited value.

Suppose that the income change over time can be partly predicted by the subject’s
age, sex and educational level. We do not expect a perfect fit. The variation may
be partitioned into two components. Clearly there are other factors that will affect
a subject’s income. These factors may cause the income to be generally higher or
lower or they may cause the income to grow at a faster or slower rate. We can model
this variation with a random intercept and slope, respectively, for each subject. We
also expect that there will be some year-to-year variation within each subject. For
simplicity, let us initially assume that this error is homogeneous and uncorrelated,
that is, Λi = I. We also center the year to aid interpretation as before. We may express
these notions in the model:
library(lme4)
psid$cyear <- psid$year-78
mmod <- lmer(log(income) ~ cyear*sex +age+educ+(cyear|person),psid)

This model can be written as:

log(income)i j = µ+βyyeari +βssex j +βyssex j×yeari +βeeduc j +βaage j

+ γ
0
j + γ

1
jyeari + εi j

where i indexes the year and j indexes the individual. We have:(
γ0

k
γ1

k

)
∼ N(0,σ2D)

The model summary is:
sumary(mmod, digits=3)
Fixed Effects:

coef.est coef.se
(Intercept) 6.674 0.543
cyear 0.085 0.009
sexM 1.150 0.121
age 0.011 0.014
educ 0.104 0.021
cyear:sexM -0.026 0.012

Random Effects:
Groups Name Std.Dev. Corr
person (Intercept) 0.531

cyear 0.049 0.187
Residual 0.684

---
number of obs: 1661, groups: person, 85
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AIC = 3839.8, DIC = 3751.2
deviance = 3785.5

Let’s start with the fixed effects. We see that income increases about 10% for each
additional year of education. We see that age does not appear to be significant. For
females, the reference level in this example, income increases about 8.5% a year,
while for men, it increases about 8.5−2.6 = 5.9% a year. We see that, for this data,
the incomes of men are exp(1.15) = 3.16 times higher.

We know the mean for males and females, but individuals will vary about this.
The standard deviation for the intercept and slope are 0.531 and 0.049 (σ

√
D11 and

σ
√

D22), respectively. These have a correlation of 0.189 (cor(γ0,γ1)). Finally, there
is some additional variation in the measurement not so far accounted for having stan-
dard deviation of 0.684 (sd(εi jk)). We see that the variation in increase in income
is relatively small while the variation in overall income between individuals is quite
large. Furthermore, given the large residual variation, there is a large year-to-year
variation in incomes.

We can test the fixed effect terms for significance. We use the Kenward-Roger
adjusted F-test:
library(pbkrtest)
mmod <- lmer(log(income) ~ cyear*sex +age+educ+(cyear|person),psid,

↪→ REML=FALSE)
mmodr <- lmer(log(income) ~ cyear + sex +age+educ+(cyear|person),psid,

↪→ REML=FALSE)
KRmodcomp(mmod,mmodr)
F-test with Kenward-Roger approximation; computing time: 0.30 sec.
large : log(income) ~ cyear + sex + age + educ + (cyear | person) + cyear:sex
small : log(income) ~ cyear + sex + age + educ + (cyear | person)

stat ndf ddf F.scaling p.value
Ftest 4.61 1.00 81.33 1 0.035

We have tested the interaction term between year and sex as this is the most complex
term in the model. We see that this term is marginally significant so there is no justi-
fication to simplify the model by removing this term. Female incomes are increasing
faster than male incomes.

We could test the random effect terms using perhaps the parametric bootstrap
method. It is less trouble to create confidence intervals for all the parameters:
confint(mmod, method="boot")

2.5 % 97.5 %
sd_(Intercept)|person 0.440965 0.6095268
cor_cyear.(Intercept)|person -0.044677 0.4486294
sd_cyear|person 0.039271 0.0582838
sigma 0.658930 0.7087268
(Intercept) 5.571034 7.7676101
cyear 0.067160 0.1027455
sexM 0.899570 1.3772171
age -0.017808 0.0365997
educ 0.064944 0.1530431
cyear:sexM -0.051526 -0.0028899

We see that all the standard deviations are clearly well above zero. There might be
a case for removing the correlation between the intercept and slope but this term is
difficult to interpret and little would be gained from removing it. It is simpler just to
leave it in.
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There is a wider range of possible diagnostic plots that can be made with longitu-
dinal data than with a standard linear model. In addition to the usual residuals, there
are random effects to be examined. We may wish to break the residuals down by sex
as seen in the QQ plots in Figure 11.4:
diagd <- fortify(mmod)
ggplot(diagd,aes(sample=.resid))+stat_qq()+facet_grid(~sex)

Figure 11.4 QQ plots by sex.

We see that the residuals are not normally distributed, but have a long tail for the
lower incomes. We should consider changing the log transformation on the response.
Furthermore, we see that there is greater variance in the female incomes. This sug-
gests a modification to the model. We can make the same plot broken down by subject
although there will be rather too many plots to be useful.

Plots of residuals and fitted values are also valuable. We have broken education
into three levels: less than high school, high school or more than high school:
diagd$edulevel <- cut(psid$educ,c(0,8.5,12.5,20), labels=c("lessHS","

↪→ HS","moreHS"))
ggplot(diagd, aes(x=.fitted,y=.resid)) + geom_point(alpha=0.3) + geom_

↪→ hline(yintercept=0) + facet_grid(~ edulevel) + xlab("Fitted") +
↪→ ylab("Residuals")

See Figure 11.5. Again, we can see evidence that a different response transformation
should be considered. Plots of the random effects would also be useful here.

11.2 Repeated Measures

The acuity of vision for seven subjects was tested. The response is the lag in mil-
liseconds between a light flash and a response in the cortex of the eye. Each eye is
tested at four different powers of lens. An object at the distance of the second number
appears to be at distance of the first number. The data is given in Table 11.1. The data
comes from Crowder and Hand (1990) and was also analyzed by Lindsey (1999).



244 REPEATED MEASURES AND LONGITUDINAL DATA

Figure 11.5 Residuals vs. fitted plots for three levels of education: less than high school on
the left, high school in the middle and more than high school on the right.

Power
6/6 6/18 6/36 6/60 6/6 6/18 6/36 6/60

Left Right
116 119 116 124 120 117 114 122
110 110 114 115 106 112 110 110
117 118 120 120 120 120 120 124
112 116 115 113 115 116 116 119
113 114 114 118 114 117 116 112
119 115 94 116 100 99 94 97
110 110 105 118 105 105 115 115

Table 11.1 Visual acuity of seven subjects measured in milliseconds of lag in responding to a
light flash. The power of the lens causes an object six feet in distance to appear at a distance
of 6, 18, 36 or 60 feet.

We start by making some plots of the data. We create a numerical variable rep-
resenting the power to complement the existing factor so that we can see how the
acuity changes with increasing power:
data(vision, package="faraway")
vision$npower <- rep(1:4,14)
ggplot(vision, aes(y=acuity, x=npower, linetype=eye)) + geom_line() +

↪→ facet_wrap(~ subject, ncol=4) + scale_x_continuous("Power",
↪→ breaks=1:4,labels=c("6/6","6/18","6/36","6/60"))

See Figure 11.6. There is no apparent trend or difference between right and left eyes.



REPEATED MEASURES 245

However, individual #6 appears anomalous with a large difference between the eyes.
It also seems likely that the third measurement on the left eye is in error for this
individual.
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Figure 11.6 Visual acuity profiles. The left eye is shown as a solid line and the right as a
dashed line. The four powers of lens displayed are 6/6, 6/18, 6/36 and 6/60.

We must now decide how to model the data. The power is a fixed effect. In the
model below, we have treated it as a nominal factor, but we could try fitting it in a
quantitative manner. The subjects should be treated as random effects. Since we do
not believe there is any consistent right-left eye difference between individuals, we
should treat the eye factor as nested within subjects. We start with this model:
mmod <- lmer(acuity~power + (1|subject) + (1|subject:eye),vision)

Note that if we did believe there was a consistent left vs. right eye effect, we would
have used a fixed effect, putting eye in place of (1|subject:eye).

We can write this (nested) model as:

yi jk = µ+ p j + si + eik + εi jk

where i = 1, . . . ,7 runs over individuals, j = 1, . . . ,4 runs over power and k = 1,2
runs over eyes. The p j term is a fixed effect, but the remaining terms are random.
Let si ∼ N(0,σ2

s ), eik ∼ N(0,σ2
e) and εi jk ∼ N(0,σ2Σ) where we take Σ = I. The

summary output is:
sumary(mmod)
Fixed Effects:

coef.est coef.se
(Intercept) 112.64 2.23
power6/18 0.79 1.54
power6/36 -1.00 1.54
power6/60 3.29 1.54
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Random Effects:
Groups Name Std.Dev.
subject:eye (Intercept) 3.21
subject (Intercept) 4.64
Residual 4.07

---
number of obs: 56, groups: subject:eye, 14; subject, 7
AIC = 342.7, DIC = 349.6
deviance = 339.2

We see that the estimated standard deviation for subjects is 4.64 and that for eyes for
a given subject is 3.21. The residual standard deviation is 4.07. The random effects
structure we have used here induces a correlation between measurements on the same
subject and another between measurements on the same eye. We can compute these
two correlations, respectively, as:
4.64^2/(4.64^2+3.21^2+4.07^2)
[1] 0.44484
(4.64^2+3.21^2)/(4.64^2+3.21^2+4.07^2)
[1] 0.65774

As we might expect, there is a stronger correlation between observations on the
same eye than between the left and right eyes of the same individual.

We can check for a power effect using a Kenward-Roger adjusted F-test:
library(pbkrtest)
mmod <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,REML=

↪→ FALSE)
nmod <- lmer(acuity~1+(1|subject)+(1|subject:eye),vision,REML=FALSE)
KRmodcomp(mmod, nmod)
F-test with Kenward-Roger approximation; computing time: 0.16 sec.
large : acuity ~ power + (1 | subject) + (1 | subject:eye)
small : acuity ~ 1 + (1 | subject) + (1 | subject:eye)

stat ndf ddf F.scaling p.value
Ftest 2.83 3.00 39.00 1 0.051

We see the result is just above the 5% level. We might expect some trend in acuity
with power, but the estimated effects do not fit with this trend. While acuity is greatest
at the highest power, 6/60, it is lowest for the second highest power, 6/36. A look at
the data makes one suspect the measurement made on the left eye of the sixth subject
at this power. If we omit this observation and refit the model, we find:
mmodr <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,REML=

↪→ FALSE, subset=-43)
nmodr <- lmer(acuity~1+(1|subject)+(1|subject:eye),vision,REML=FALSE,

↪→ subset=-43)
KRmodcomp(mmodr, nmodr)
F-test with Kenward-Roger approximation; computing time: 0.15 sec.
large : acuity ~ power + (1 | subject) + (1 | subject:eye)
small : acuity ~ 1 + (1 | subject) + (1 | subject:eye)

stat ndf ddf F.scaling p.value
Ftest 3.6 3.0 38.0 1 0.022

Now the power effect is significant, but it appears this is due to an effect at the highest
power only. We can check that the highest power has a higher acuity than the average
of the first three levels by using Helmert contrasts:
op <- options(contrasts=c("contr.helmert", "contr.poly"))
mmodr <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,subset

↪→ =-43)
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sumary(mmodr)
Fixed Effects:

coef.est coef.se
(Intercept) 113.79 1.76
power1 0.39 0.54
power2 0.04 0.32
power3 0.71 0.22

By looking at the standard errors relative to the effect sizes, we can see that only
the third contrast is of significance. We remember to reset the contrasts back to the
default or subsequent output will be surprising:
options(op)

The Helmert contrast matrix is
contr.helmert(4)
[,1] [,2] [,3]

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

We can see that the third contrast (column) represents the difference between the
average of the first three levels and the fourth level, scaled by a factor of three. In the
output, we can see that this is significant while the other two contrasts are not.

We finish with some diagnostic plots. The residuals and fitted values and the QQ
plot of random effects for the eyes are shown in Figure 11.7:
plot(resid(mmodr) ~ fitted(mmodr),xlab="Fitted",ylab="Residuals")
abline(h=0)
qqnorm(ranef(mmodr)$"subject:eye"[[1]],main="")
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Figure 11.7 Residuals vs. fitted plot is shown on the left and a QQ plot of the random effects
for the eyes is shown on the right.

The outlier corresponds to the right eye of subject #6. For further analysis, we should
consider dropping subject #6. There are only seven subjects altogether, so we would
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certainly regret losing any data, but this may be unavoidable. Ultimately, we may
need more data to make definite conclusions.

11.3 Multiple Response Multilevel Models

In Section 10.10, we analyzed some data from the Junior Schools Project. In addition
to a math test, students also took a test in English. Although it would be possible to
analyze the English test results in the same way that we analyzed the math scores,
additional information may be obtained from analyzing them simultaneously. Hence
we view the data as having a bivariate response with English and math scores for each
student. The student is a nested factor within the class which is in turn nested within
the school. We express the multivariate response for each individual by introducing
an additional level of nesting at the individual level. So we might view this as just
another nested model except that there is a fixed subject effect associated with this
lowest level of nesting.

We set up the data in a format with one test score per line with an indicator
subject identifying which type of test was taken. We scale the English and math
test scores by their maximum possible values, 40 and 100, respectively, to aid com-
parison:
data(jsp, package="faraway")
jspr <- jsp[jsp$year==2,]
mjspr <- data.frame(rbind(jspr[,1:6],jspr[,1:6]), subject=factor(rep(

↪→ c("english","math"),c(953,953))), score=c(jspr$english/100,
↪→ jspr$math/40))

We can examine the relationship between subject, gender and scores, as seen in Fig-
ure 11.8:
ggplot(mjspr, aes(x=raven, y=score))+geom_jitter(alpha=0.25)+facet_

↪→ grid(gender ~ subject)

We now fit a model for the data that includes all the variables of interest that incor-
porates some of the interactions that we suspect might be present:
mjspr$craven <- mjspr$raven-mean(mjspr$raven)
mmod <- lmer(score ~ subject*gender + craven*subject + social + (1|

↪→ school) + (1|school:class) + (1|school:class:id),mjspr)

The model being fit for school i, class j, student k in subject l is:

scorei jkl = sub jectl +genderk + ravenk + socialk +(sub ject×gender)lk +

(raven× sub ject)lk + schooli + class j + studentk + εi jkl

where the Raven score has been mean centered and school, class and student are
random effects with the other terms, apart from ε, being fixed effects. The summary
output:
sumary(mmod)
Fixed Effects:

coef.est coef.se
(Intercept) 0.442 0.026
subjectmath 0.367 0.008
gendergirl 0.063 0.010
craven 0.017 0.001
social2 0.014 0.027
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Figure 11.8 Scores on test compared to Raven score for subjects and genders.

social3 -0.021 0.029
social4 -0.071 0.026
social5 -0.050 0.029
social6 -0.088 0.031
social7 -0.099 0.032
social8 -0.082 0.042
social9 -0.047 0.027
subjectmath:gendergirl -0.059 0.011
subjectmath:craven -0.004 0.001

Random Effects:
Groups Name Std.Dev.
school:class:id (Intercept) 0.101
school:class (Intercept) 0.024
school (Intercept) 0.047
Residual 0.117

---
number of obs: 1906, groups: school:class:id, 953; school:class, 90; school, 48
AIC = -1705.6, DIC = -1951.1
deviance = -1846.4

Starting with the fixed effects, we see that the math subject scores were about 37%
higher than the English scores. This may just reflect the grading scale and difficulty of
the test and so perhaps nothing in particular should be concluded from this except, of
course, that it is necessary to have this term in the model to control for this difference.
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Since gender has a significant interaction with subject, we must interpret these terms
together. We see that on the English test, which is the reference level, girls score
6.3% higher than boys. On the math test, the difference is 6.3− 5.9 = 0.4% which
is negligible. We see that the scores are strongly related to the entering Raven score
although the relation is slightly less strong for math than English (slope is 0.017 for
English but 0.017−0.004 = 0.013 for math). We also see the declining performance
as we move down the social class scale as we found in the previous analysis.

We can test the fixed effects using an F-test incorporating the Kenward-Roger
F-test degrees of freedom adjustment:
library(pbkrtest)
mmod <- lmer(score ~ subject*gender+craven*subject+social+ (1|school)

↪→ +(1|school:class)+(1|school:class:id),mjspr, REML=FALSE)
mmodr <- lmer(score ~ subject*gender+craven+subject+social+(1|school)

↪→ +(1|school:class)+(1|school:class:id),mjspr, REML=FALSE)
KRmodcomp(mmod, mmodr)
F-test with Kenward-Roger approximation; computing time: 0.63 sec.
large : score ~ subject + gender + craven + social + (1 | school) + (1 |

school:class) + (1 | school:class:id) + subject:gender +
subject:craven

small : score ~ subject * gender + craven + subject + social + (1 | school) +
(1 | school:class) + (1 | school:class:id)

stat ndf ddf F.scaling p.value
Ftest 16 1 950 1 6.9e-05

Here we test for a subject by gender interaction. We can see that this effect is strongly
statistically significant.

Moving to the random effects, we can see from Figure 11.9 that the standard
deviation of the residual error in the math scores is smaller than that seen in the
English scores. Perhaps this can be ascribed to the greater ease of consistent grading
of math assignments or perhaps just greater variation is to be expected in English
performance. The correlation between the English and math scores after adjusting for
the other effects is also of interest. The last two terms in the model, studentk + εi jkl ,
represent a 2×2 covariance matrix for the residual scores for the two tests. We can
compute the correlation as:
0.101^2/(0.101^2+0.117^2)
[1] 0.427

giving a moderate positive correlation between the scores. Various diagnostic plots
can be made. An interesting one is:
diagd <- fortify(mmod)
ggplot(diagd, aes(x=.fitted,y=.resid)) + geom_point(alpha=0.3) + geom_

↪→ hline(yintercept=0) + facet_grid(~ subject) + xlab("Fitted") +
↪→ ylab("Residuals")

as seen in Figure 11.9. There is somewhat greater variance in the verbal scores. The
truncation effect of the maximum score is particularly visible for the math scores.

Further Reading: Longitudinal data analysis is explicitly covered in books by
Verbeke and Molenberghs (2000), Fitzmaurice et al. (2004), Gelman and Hill (2006),
Diggle et al. (2013) and Frees (2004). Books stating repeated measures in the title,
such as Lindsey (1999), cover much the same material.
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Figure 11.9 Residuals vs. fitted plot broken down by subject.

Exercises

1. The ratdrink data consist of five weekly measurements of body weight for 27
rats. The first 10 rats are on a control treatment while 7 rats have thyroxine added
to their drinking water. Ten rats have thiouracil added to their water.

(a) Plot the data showing how weight increases with age on a single panel, taking
care to distinguish the three treatment groups. Now create a three-panel plot,
one for each group. Discuss what can be seen.

(b) Fit a linear longitudinal model that allows for a random slope and intercept for
each rat. Each group should have a different mean line. Give interpretation for
the following estimates:

i. The fixed effect intercept term.
ii. The interaction between thiouracil and week.

iii. The intercept random effect SD.

(c) Check whether there is a significant treatment effect.
(d) Construct diagnostic plots showing the residuals against the fitted values and a

QQ plot of the residuals. Interpret.
(e) Construct confidence intervals for the parameters of the model. Which ran-

dom effect terms may not be significant? Is the thyroxine group significantly
different from the control group?

2. Data on housing prices in 36 metropolitan statistical areas (MSAs) over nine years
from 1986–1994 were collected and can be found in the dataset hprice.

(a) Make a plot of the data on a single panel to show how housing prices increase
by year. Describe what can be seen in the plot.
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(b) Fit a linear model with the (log) house price as the response and all other
variables (except msa) as fixed effect predictors. Which terms are statistically
significant? Discuss the coefficient for time.

(c) Make a plot that shows how per-capita income changes over time. What is
the nature of the increase? Make a similar plot to show how income growth
changes over time. Comment on the plot.

(d) Create a new variable that is the per-capita income for the first time period for
each MSA. Refit the same linear model but now using the initial income and
not the income as it changes over time. Compare the two models.

(e) Fit a mixed effects model that has a random intercept for each MSA. Why
might this be reasonable? The rest of the model should have the same structure
as in the previous question. Make a numerical interpretation of the coefficient
of time in your model.

(f) Make the following diagnostic plots and interpret: (i) Residuals vs. Fitted plot,
(ii) QQ plot of the residuals, (iii) QQ plot of the random effects.

(g) Fit a model that omits the adjacent to water and rent control predictors. Test
whether this reduction in the model can be supported.

(h) It is possible that the increase in prices may not be linear in year. Fit a model
where year is treated as a factor rather than a linear term. Is this a better model
than the previous choice? Make a plot of the coefficients of the time factor that
shows how prices have increased over time.

(i) Interpret the coefficients in the previous model for the initial annual income,
growth and regulation predictors.

3. The nepali data is a subset from public health study on Nepalese children. In this
question we develop a model for the weight of the child as he or she ages. You
may use mage, lit, died, gender and alive (but not ht) as predictors.

(a) Remove first the height variable and then the missing values from the dataset.
You may find it cleaner to recode the sex variable to have better labels. Plot the
data using two panels, one for each sex, showing how weight increases with
age. Comment on the plot.

(b) Fit a fixed effects model with weight as the response and age, sex, mother’s
age, literacy and other deaths in the family as predictors. Which terms are
significant in this model?

(c) Fit a mixed effects model with weight as the response. Include an interaction
between age and sex and main effects in the other two predictors. Use a random
intercept term for the child. What is the predicted difference in child weight
between a 15- and a 25-year-old mother? What difference in weights would
be expected for identical twins according to the model? Do you think this is
reasonable?

(d) Make the following diagnostic plots and interpret: (i) Residuals vs. Fitted plot,
(ii) QQ plot of the residuals, (iii) QQ plot of the random effects.

(e) Fit a model with age and mother’s age as the only fixed effects and compare it
to the previous model.
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(f) Now elaborate the previous model to include a random slope in age. Use AIC
to choose between this model and the previous one. For your chosen model,
describe how children are expected to increase in weight as they age.

(g) Extract information about panchayat, ward, household and birth order from
the id variable. You may find the substring command useful. Now fit a ran-
dom intercept mixed effects model which allows for the nested random effects
structure of child within household within ward within panchayat. Construct
boostrap confidence intervals to get a sense of which random effects are im-
portant. Compare the relative sizes of the random effects to the fixed effects
and interpret.

4. The attenu data gives peak accelerations measured at various observation sta-
tions for 23 earthquakes in California. The data has been used by various workers
to estimate the attenuating effect of distance on ground acceleration.

(a) Plot lines showing how the acceleration increases with distance for each quake.
Make transformations of both axes so that the relationship is easier to see and
replot.

(b) Fit a mixed effects model with the transformed variables which takes account
of both events and stations as random effects. Express the effect of magnitude
on the acceleration.

(c) Does adding a quadratic term in distance improve the model?
(d) Can we remove the station variation term?
(e) For a new magnitude 6 quake, predict the acceleration for up to a distance of

200 miles. Make a plot of the data and show your predicted curve on top of the
data in a different color.

(f) Predict how the acceleration varied for the first event where only one observa-
tion was available. Show the predicted acceleration up to 200 miles in a plot.
Add the actual observation to the plot.

5. The sleepstudy data found in the lme4 package describes the reaction times of
subjects who are progressively sleep deprived.

(a) Plot the data taking care to distinguish the trajectories of the different subjects.
Comment on the pattern of variation.

(b) Fit a mixed effects model that describes how the reaction time varies linearly
with days and allows for random variation in both the slope and intercepts of
the subject lines. Under this model, would it be unusual for an individual to
have a reaction time that does not increase over time?

(c) Allow for quadratic effects in the previous model. Does the data support the
inclusion of quadratic effects?

(d) Make the following diagnostic plots and interpret: (i) Residuals vs. Fitted plot,
(ii) QQ plot of the residuals, (iii) QQ plot of both random effects, (iv) a scat-
terplot of the random effects.

(e) Identify any outlying cases and mark these on top of your initial plot. Try
refitting the model without these cases and identify the largest change in the
model fit.
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(f) Simulate the response under your first model and plot it. Does the simulated
data look like the actual data?



Chapter 12

Bayesian Mixed Effect Models

There are a number of drawbacks to likelihood-based estimation of mixed effect
models. We have seen in the previous two chapters that inference is often difficult.
Furthermore, we may encounter problems even in the maximization of the likelihood
leading to untrustworthy results. This leads us to explore alternative approaches to
inference for these models.

Bayesian methods for inference are well established. In the past, fitting Bayesian
methods had been difficult in comparison to the often one-line R command used to
fit likelihood-based models. The glm and lmer commands in R are powerful in their
scope. In contrast, fitting Bayesian models required more effort in setting up and
implementation. In recent years, Bayesian modeling has become more accessible. It
still requires more effort but one does not have to be an expert to make some progress.

It is important to understand that Bayesian inference is not simply a replacement
for classical (Frequentist) inference. We can equally well address the substantive
issues of the specific application but the questions and answers will be somewhat
different. In particular, the classical theory of hypothesis testing does not fit well with
the Bayesian approach and so it would be a mistake to expect the exact equivalence
of p-values and the like. The answers will come in a different form. Historically,
there have been purists who insist on an entirely Frequentist or Bayesian solution,
but now many would recognize that both methods have strengths and weaknesses
and one can learn much by using both.

A full explanation of Bayesian methods would take a whole book — I recom-
mend Gelman et al. (2013) as a good starting point. Here we shall simply give a
sufficient overview so that we can get started on analyses of the types of data we
have seen in the previous two chapters. Likelihood-based methods as used by the
lme4 package depend on the likelihood l(θ|y) for parameters θ and data y. We dis-
cussed how this likelihood can be constructed in Chapter 10. We can maximize this
likelihood to produce maximum likelihood estimates and use the general theory of
likelihood to construct hypothesis tests and confidence intervals. We considered the
parameters θ to be fixed (but unknown) and the data y to be random. The Bayes ap-
proach considers the θ to be random but the data y, once it has been observed, to be
fixed. We have, from Bayes theorem:

p(θ|y) ∝ l(θ|y)p(θ)

The term p(θ|y is called the posterior probability (or density for continuous y). This
expresses our knowledge about the parameter values after seeing the data. We can
use this probability to make decisions or predictions. The price of getting a prob-

255
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ability on the parameters is that we must first specify a prior probability, p(θ), on
the parameters. This should be done before looking at the data. Sometimes we know
very little about these parameters. In such cases, we want an uninformative prior. In
other cases, we may know rather more, in which case, the prior should reflect that
knowledge.

The specification of the prior is the most important task that distinguishes
Bayesian modeling. Many researchers feel uncomfortable about this choice because
of the subjective choice involved. However, one should recognize that the Frequen-
tist analysis is not entirely objective and deterministic either. The analyst often has
to make strong assumptions to specify the model. Diagnostics can check some of
these assumptions but not entirely or sometimes at all. One has to accept that there
will be a subjective element to the analysis whichever method is used. It is best sim-
ply to be honest about this. In some cases, the prior enables us to use subject matter
knowledge in the analysis more effectively. Even when we wish to assume as little
as possible, there are some good ways to choose the prior to match this assumed lack
of knowledge.

The formula linking the posterior to the likelihood and prior is rarely a means
by which the posterior can be explicitly calculated. We demonstrate two distinct so-
lutions in the chapter. The STAN language, described in Stan Development Team
(2015), implements a simulation-based solution. In contrast, the INLA method, de-
scribed in Rue et al. (2009), uses an approximation.

12.1 STAN

STAN is an example of a simulation-based approach to computing posterior densi-
ties. The idea is to set up a Markov chain of realizations of θ such that the equilibrium
distribution is the posterior distribution. These methods aim to give you a sample
from the posterior distribution that you can use to answer your questions. This class
of methods is known as MCMC (Monte Carlo Markov chain). We do not explain how
MCMC works. The reader is referred to Gelman et al. (2013) or other texts. Here we
simply present the implementation by means of examples.

The first major general software for Bayesian computing was BUGS (Bayesian
inference Using Gibbs Sampling) introduced in 1989. The book by Lunn et al. (2012)
provides a general introduction. BUGS developed into WinBUGS and more recently
OpenBUGS. JAGS is another offshoot of the original BUGS. Around 2012, STAN
became available and is described in Stan Development Team (2015). The languages
used in all these software packages are quite similar although underneath there are
substantial differences in the implementation. I have chosen STAN here because it
was originally motivated by the fitting of just the types of models we are interested
in. It is much more general but it does work particularly well for our applications.
Another reason is that STAN is faster for our particular problems. Even so, this is not
a strong preference and one could very reasonably choose one of the other options.

STAN will require us to venture beyond R a little, but we will be able to prepare
the data, call the fitting method and process the results in R by means of the RStan
package. There are R packages which provide an entirely R-based MCMC solu-
tion. For example, the MCMCglmm package of Hadfield (2010) offers some flexibility
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in fitting Bayesian models to grouped, hierarchical and longitudinal data. However,
it is inevitably limited in the functionality it provides. Of course, R is a very pro-
grammable language so it is entirely possible to implement methods to fit virtually
any model. However, there are reasons beyond simply the programming effort re-
quired why this would be less than effective. Fitting Bayesian models using MCMC
or related techniques is inherently computationally intensive. R has many virtues but
speed is not its strongest point. This leads one to go beyond R in search of a language
for describing Bayesian models that will be both more efficient and also convenient
for the specification of Bayesian models.

Before proceeding, you will need to install STAN as described on the STAN
website at mc-stan.org. This is more work than simply installing the R package,
and the details will vary according to the operating system you are running. STAN
derives its speed from translating its code into C++, then compiling and running this.
This means you will need a C++ compiler (but no knowledge of C++).

One-Way ANOVA: Let’s see how we can use STAN to fit a Bayesian model to
the pulp data that we have already explored with lme4 in Chapter 10. See Figure 10.1
for a plot of the data. The model has a single factor at a levels:

yi j = µ+αi + εi j i = 1, . . . ,a j = 1, . . . ,ni

where the αs and εs are independently distributed N(0,σ2
α) and N(0,σ2

ε), respec-
tively. There is a single fixed effect parameter µ and two random effect parameters
σ2

α and σ2
ε . We must specify prior distributions for these three parameters.

Here is the STAN code we have used to fit our model. It could be used for any
one-way ANOVA data. Let’s suppose we have N observations in total with J groups
with a response and predictor named just so. You don’t need to understand the
STAN code to follow the output so you can skip to the discussion of the output unless
you are interested in writing your own STAN programs. You should copy this code
into a file called oneway.stan and save it into the working directory for your R
session.
data {
int<lower=0> N;
int<lower=0> J;
int<lower=1,upper=J> predictor[N];
vector[N] response;

}
parameters {
vector[J] eta;
real mu;
real<lower=0> sigmaalpha;
real<lower=0> sigmaepsilon;

}
transformed parameters {
vector[J] a;
vector[N] yhat;

a <- mu + sigmaalpha * eta;

for (i in 1:N)
yhat[i] <- a[predictor[i]];

http://mc-stan.org
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}
model {

eta ~ normal(0, 1);

response ~ normal(yhat, sigmaepsilon);
}

The first block of code describes the format of the data. C++ is a much fussier
language than R regarding the declaration of variables and the types of variables that
are allowed. This means we often have to do a little work to prepare the data in a
format that the STAN code will allow. In this case, we need numerical values for
the factors rather than alphanumeric strings. We specify N, J, the response and the
predictor. We need to tell it the length of the two vectors (which is N). We can
also specify bounds on the values between the angle brackets. Here we have required
that N and J be strictly positive and that the predictor values lie in the set {1, . . . ,J}.
These bounds are not essential but it is a good idea to put them in as it will catch
some forms of invalid data that might be supplied.

The next block contains the parameters. The mu, sigmaalpha and sigmaepsilon
correspond to the µ, σα and σε parameters used in previous modeling. The eta pa-
rameter (actually a vector of parameters) will be needed in the construction of the
model. We have specified lower bounds of zero on sigmaalpha and sigmaepsilon.
This is essential to the proper treatment of these parameters.

The transformed parameters block combines the previously declared param-
eters in preparation for declaring the model in the next block. The a vector corre-
sponds to the random effects declared previously although this includes the mean
term µ. The mean values of the response are given by yhat and are just the appropri-
ate value from the a vector.

The final model block defines the model. Here we declare the eta variables to be
standard normal. We then specify the response to be normally distributed with mean
and standard deviation sigmaepsilon (not the variance!).

You may have noticed that we have not explicitly specified the priors for the
three parameters: mu, sigmaalpha and sigmaepsilon. By default, improper uniform
priors will be declared. For mu, this is the whole real line. Because both limits have
not been specified, this is not a proper uniform distribution—that is why it is called
improper. For the two standard deviation parameters, the prior is uniform on the
positive real line. This explains the necessity of specifying bounds on the parameters
earlier so that appropriate priors will be used. Our intent in choosing these particular
priors is to express our lack of knowledge about these parameters.

We need to arrange the data in R into a list format consistent with the data
statement of the STAN program:
data(pulp, package="faraway")
pulpdat <- list(N=20, J=4, response=pulp$bright, predictor=as.numeric(

↪→ pulp$operator))

We load the library that interfaces STAN to R:
library(rstan)

When loading the library, you may receive a prompt about how to use the multiple
cores in your CPU. It is worth taking this advice as it will speed up the computations
significantly. Now we can fit the STAN model as follows:
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fit <- stan(file = "oneway.stan", data = pulpdat)

This assumes that the oneway.stan file containing the STAN code is in the working
directory used by R. This command involves three major steps. The first is to trans-
late the STAN code into C++. If you have made a syntax error in your STAN code, it
will be revealed here. The second step is to compile the C++ code. We might change
the data or simply want to run the MCMC again with different settings but this would
not require repeating these two steps. There is a way to split the process into three
separate steps if this would save some time. The third step actually runs the MCMC.
A large amount of output will be produced, most of which can be ignored. Compiler
warnings are usually not important. There are typically some cryptic warnings re-
garding the progress of the Markov chains. These can be ignored provided there are
not too many. The entire process might take a few minutes depending on the quality
of your computer.

The first step is to examine the model fitting diagnostics as seen in Figure 12.1.
These diagnostics are entirely distinct from usual residual-based diagnostics which
check the adequacy of the model. We are checking whether the MCMC process has
produced a satisfactory result. The Markov chain needs to start from some initial
values which should be feasible values of the parameters but may well be unlikely
values. This means it may take some time before the chain settles into anything
resembling the equilibrium distribution. This initial period is called the burn-in or
warm-up time. We can determine an appropriate length for this period by plotting
the chain(s). STAN recognizes this potential sensitivity to initial values and, by de-
fault, computes four chains from different randomly chosen initial values. We start
with the mu parameter:
traceplot(fit, pars="mu", inc_warmup = TRUE)

The plot, seen in the first panel of Figure 12.1, shows the four complete chains start-
ing from the initial values. The greyed area shows the warm-up period. We can see
that all four chains have stabilized well within this period. If this stabilization fails to
occur within the period, we can increase the length of the warm-up period or perhaps
give the program some hints about suitable initial values.

For the subsequent computations, STAN discards this warm-up half of the chain.
The resolution of the first plot means that it is difficult to see the behavior of the
chains once they become more stationary. This requires that we redo the plot without
the warm-up period as seen in the second panel of Figure 12.1:
traceplot(fit, pars="mu", inc_warmup = FALSE)

The Markov chain, by its nature, is dependent. We can still use it to estimate the
posterior density or functions of it, such as the mean. However, a positively depen-
dent chain contains less information than an independent sample of the same size.
The less dependent the chain, the better. A chain that is not strongly dependent is
said to mix well. In less favorable situations, a chain may become “stuck” in some
sub-region of the parameter space for long sequences. Such chains are said to mix
poorly. The four chains shown in the second panel of Figure 12.1 exhibit strong mix-
ing as they all vary randomly around a constant level with no obvious dependence.

If you find a poorly mixing chain, you can run the chain for longer. The default
chain length is 2000 iterations and this can be substantially increased. For simpler
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Figure 12.1 Diagnostic plots for µ from the STAN model for the pulp data. Version with a
warm-up period is shown on the left. Four chains are shown in each case.

models, this additional computational time may not matter much. However, in more
extreme cases, one may be concerned that equilibrium has not been reached despite
the extra iterations and that the chain is unreliable. In such cases, one may need to
tinker with the construction of the chain or even change the prior.

We can make similar plots for sigmaalpha and sigmaepsilon, which both show
a satisfactory outcome. Now we can examine the printed output:
fit
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
eta[1] -0.33 0.02 0.65 -1.62 -0.74 -0.32 0.10 0.89 910 1.01
eta[2] -0.70 0.02 0.70 -2.13 -1.15 -0.65 -0.23 0.55 999 1.00
eta[3] 0.43 0.03 0.69 -0.92 -0.03 0.42 0.89 1.82 562 1.02
eta[4] 0.57 0.03 0.69 -0.73 0.11 0.54 1.02 1.96 420 1.02
mu 60.42 0.03 0.32 59.77 60.26 60.40 60.54 61.39 124 1.05
sigmaalpha 0.52 0.04 0.49 0.06 0.23 0.37 0.61 2.14 129 1.03
sigmaepsilon 0.36 0.00 0.07 0.25 0.31 0.35 0.40 0.53 1085 1.00
a[1] 60.28 0.00 0.15 59.98 60.19 60.28 60.38 60.59 2526 1.00
a[2] 60.14 0.00 0.17 59.82 60.03 60.14 60.25 60.48 1413 1.00
a[3] 60.57 0.00 0.16 60.26 60.46 60.56 60.67 60.88 1485 1.00
a[4] 60.61 0.00 0.16 60.29 60.50 60.61 60.72 60.93 2042 1.00
yhat[1] 60.28 0.00 0.15 59.98 60.19 60.28 60.38 60.59 2526 1.00
yhat[2] 60.28 0.00 0.15 59.98 60.19 60.28 60.38 60.59 2526 1.00
...
lp__ 7.80 0.12 2.81 1.35 6.11 8.27 9.91 12.03 582 1.00

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

We have 2000 iterations for each of four chains but 1000 iterations are discarded for
the first half of each chain, making 4000 iterations in all. If you use a much larger
number of iterations, you may generate more posterior samples than convenient. You
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can reduce this by thinning. STAN does not thin by default hence the thin=1. Setting
thin=10 would take every tenth observation and discard the rest.

For each posterior distribution, we have a dependent sample of size 4000. Various
summary statistics are calculated as seen in the output. The samples are dependent
but this is not a problem unless this is too strong. We can use the methods of time
series analysis to compute various measures of dependence. The Rhat statistic is a
measure of dependence. Values close to one indicate less dependence. The effective
sample size tells us the equivalent independent sample size. These would be equal
to the iteration total of 4000 for independent samples. We see that all these are well
into the hundreds which is sufficient for most purposes.

The eta values represent scaled versions of the random effects. These are not par-
ticularly useful to us. The mu posterior mean is 60.4 just as in previous analyses. The
sigmaalpha and sigmaepsilon posterior means are 0.52 and 0.36, respectively. We
can also see how the posterior means for the four groups vary in the a parameters.
The yhat posterior expected means for the response for each case just take the cor-
responding value of a depending on the group. For this reason, we have not printed
all these out. The final lp term is the “log probability” and can be used to diagnose
some problems with the chain.

The 2.5 and 97.5 percentiles form 95% credible intervals for the parameters. We
claim a 0.95 probability that the parameter lies within the interval. This interpretation
is different from a confidence interval where the 0.95 probability refers to the chance
that the interval contains the parameter.

We can now examine the posterior distributions of σα and σε:
library(reshape2)
postsig <- extract(fit, pars=c("sigmaalpha","sigmaepsilon"))
ref <- melt(postsig,value.name="bright")
ggplot(data=ref,aes(x=bright, linetype=L1)) + geom_density()+xlim(0,2)

↪→ +scale_linetype(name="SD",labels=c("operator","error"))

These can be seen in the first panel of Figure 12.2. We see that the posterior for the
error SD is much more concentrated than the operator SD. The operator SD could be
negligibly small but there is also a small chance that it could be substantially larger
than the error SD.

In previous analysis of this data in Chapter 10, we tested a null hypothesis that
there was no difference between the operators by setting H0 : σα = 0. The hypothesis
testing formulation does not make sense within the Bayesian approach. Even so, we
may still be interested whether there is a difference between the operators. We might
formulate this question in terms of P(σα = 0). We have set a continuous prior and
so we get a continuous posterior. This means the answer to our question is inevitably
zero. For there to be a chance of a nonzero answer, we would need to specify a prior
that gave strictly positive probability to the event that σα = 0.

There are three reasons why we do not want to set such a prior. Firstly, for various
technical reasons, the computation of the posterior resulting from such priors is dif-
ficult. Secondly, we would need to specify the prior probability that P(σα = 0). We
may accept that the specification of a model requires some subjectivity but setting a
probability like this feels uncomfortably close to fixing the conclusion. Thirdly, we
might not view this as a sensible question. If the operators are four different people,
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why would we expect them to behave identically? Instead, we might ask whether the
difference between the operators is less than some specified small value. For exam-
ple, we could compute P(σα < 0.1).
mean(postsig$sigmaalpha < 0.1)
[1] 0.05725

This is not a p-value. We have had to specify what we meant by “small,” but this is
a judgement that we might reasonably ask of anyone with knowledge of the appli-
cation. In this case, the response is recorded with only one figure after the decimal
point so 0.1 is a reasonable choice, but choices will differ according to the situation.
In this example, Figure 12.2 tells us that the difference between operators is likely to
be considerable.

We may also be interested in the differences between specific operators. We can
plot these posterior distributions:
opre <- rstan::extract(fit, pars="a")
ref <- melt(opre, value.name="bright")
ggplot(data=ref,aes(x=bright, linetype=factor(Var2)))+geom_density()+

↪→ scale_linetype(name="operator",labels=LETTERS[1:4])
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Figure 12.2 Posterior distributions for the standard deviations on the left and for the operator
effects on the right.

We can see the posterior distributions for these effects in the second panel of Fig-
ure 12.2. We see that A and B tend to have lower responses than C and D but there is
a substantial overlap such that we cannot be sure of any difference between the op-
erators. We can compute a probability like P(αA > αD) from the posterior samples:
mean(ref[,1] > ref[,4])
[1] 0.0665

We have used uninformative priors for the parameters but we should think more
carefully about this choice. In particular, we would have good reason to expect that
there would not be extreme differences between and within operators. For this reason
we might specify a prior that puts most mass on small to moderate values but does
not completely exclude the possibility of much larger values. A good distribution
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for this is the Cauchy as the Gaussian (or similar) distributions have light tails and
do not allow any reasonable possibility of extremes. In contrast, the Cauchy does
have heavy tails but will give most weight to the small/moderate values that we most
anticipate. For strictly positive parameters like standard deviations, we can use the
half-Cauchy.

We modify the oneway.stan file to add two new lines to the model block:
sigmaalpha ~ cauchy(0, 1);
sigmaepsilon ~ cauchy(0, 1);

We call the modified file onewaycauchy.stan and rerun it:
fit <- stan(file = "onewaycauchy.stan", data = pulpdat)

We can now examine the output:
print(fit, pars=c("mu","sigmaalpha","sigmaepsilon","a"))

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
mu 60.38 0.04 0.27 59.65 60.26 60.40 60.52 60.86 47 1.10
sigmaalpha 0.43 0.03 0.28 0.06 0.23 0.35 0.55 1.11 71 1.05
sigmaepsilon 0.35 0.00 0.07 0.25 0.30 0.34 0.39 0.52 381 1.01
a[1] 60.28 0.00 0.15 59.99 60.19 60.28 60.38 60.57 1765 1.00
a[2] 60.14 0.00 0.17 59.83 60.04 60.14 60.25 60.46 1099 1.00
a[3] 60.56 0.00 0.15 60.27 60.47 60.56 60.66 60.86 1588 1.00
a[4] 60.61 0.00 0.16 60.32 60.51 60.61 60.71 60.92 1301 1.00

We see that the posterior means for the two SDs are σ̂α = 0.43 and σ̂ε = 0.35, which
is a little smaller than the previous result although not radically different. We can also
plot the posteriors in the same way as previously to find a slightly more concentrated
distribution for σα. We are reassured that the results are not particularly sensitive
to the choice of priors. We prefer the latter result since this is more consistent with
reasonable assumptions about the data-generating mechanism.

Randomized Block Design: In Section 10.6, we analyzed some data on peni-
cillin production that had treatments as fixed effects and blends (of the raw material)
being random effects. We repeat this analysis here using STAN. We create STAN
code in a file called rbd.stan in the R working directory:
data {

int<lower=0> N;
int<lower=0> Nt;
int<lower=0> Nb;
int<lower=1,upper=Nt> treat[N];
int<lower=1,upper=Nb> blk[N];
vector[N] y;

}
parameters {

vector[Nb] eta;
vector[Nt] trt;
real<lower=0> sigmablk;
real<lower=0> sigmaepsilon;

}
transformed parameters {

vector[Nb] bld;
vector[N] yhat;

bld <- sigmablk * eta;

for (i in 1:N)
yhat[i] <- trt[treat[i]]+bld[blk[i]];
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}
model {

eta ~ normal(0, 1);

y ~ normal(yhat, sigmaepsilon);
}

The STAN code is a generalization of the one-way ANOVA example. We load and
put the data into a list consistent with the data declaration in the STAN program:
data(penicillin, package="faraway")
penidat <- list(N=20, Nt=4, Nb=5, y=penicillin$yield, treat=as.numeric

↪→ (penicillin$treat), blk=as.numeric(penicillin$blend))

We break up the fitting process into the three component parts:
rt <- stanc(file="rbd.stan")
sm <- stan_model(stanc_ret = rt, verbose=FALSE)
fit <- sampling(sm, data=penidat)

The first step converts the STAN code to C++ and the second step compiles that code.
We only need to do this once. We could save this and load it back in a future session
like this:
save(sm,file="rbd.RData")
load("rbd.RData")

Since we often want to refit a model or try it with different data, this saves us some
time by avoiding the repetition of the same steps. We must check the convergence of
the MCMC. Trouble is most likely to appear in the block SD parameter, σb, so we
check that:
traceplot(fit, pars="sigmablk", inc_warmup = FALSE)

The plot, shown in the first panel of Figure 12.3, reveals no problem. Checks of
the other parameters are similarly uneventful. Now we study the summary output,
selecting only the parts of immediate interest:
print(fit, pars=c("trt","sigmablk","sigmaepsilon","bld"), probs=c

↪→ (0.025,0.5,0.975))
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
trt[1] 83.97 0.35 3.74 76.87 83.81 92.06 114 1.03
trt[2] 85.03 0.30 3.58 77.46 85.01 92.39 139 1.03
trt[3] 89.07 0.37 3.75 81.81 88.99 98.79 105 1.04
trt[4] 86.01 0.33 3.54 78.98 85.88 95.16 118 1.03
sigmablk 5.35 0.41 3.99 0.68 4.27 17.70 95 1.03
sigmaepsilon 4.95 0.04 1.11 3.29 4.78 7.57 674 1.01
bld[1] 4.12 0.31 3.63 -2.11 3.93 11.75 138 1.03
bld[2] -2.09 0.32 3.48 -11.73 -1.64 4.05 119 1.03
bld[3] -0.59 0.31 3.34 -7.76 -0.50 6.10 115 1.04
bld[4] 1.30 0.33 3.42 -6.73 1.20 8.17 106 1.04
bld[5] -2.77 0.37 3.67 -12.68 -2.40 3.69 101 1.04

The effective sample sizes are large enough so we are satisfied with the fit. The
posterior means are comparable to the REML estimates obtained from the lme4 fit.

We can plot the posterior densities for the two random SD parameters:
postsig <- rstan::extract(fit, pars=c("sigmablk","sigmaepsilon"))
ref <- melt(postsig,value.name="yield")
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Figure 12.3 Diagnostic plot for the MCMC for σb is shown on the left. Posterior densities for
the random SDs are shown on the right.

ggplot(data=ref,aes(x=yield, linetype=L1))+geom_density()+scale_
↪→ linetype(name="SD",labels=c("block","error"))

We see in the second panel of Figure 12.3 that the error SD distribution is quite
concentrated while the block SD is more diffuse. As with the previous example,
it makes little sense to ask whether the blend SD is zero. The plot makes it clear
that there probably is substantial variation between blends. We could ask whether
the blend SD is less than some small value—one seems a reasonable limit in this
example:
mean(postsig$sigmablk < 1)
[1] 0.0435

This confirms that there is a small chance that the blend SD is negligibly small but
it seems much more likely that it is considerable. Given the relatively small effec-
tive sample size of 95 for this parameter, we would want more MCMC iterations
to get a more accurate estimate if this was needed. We can plot the blend posterior
distributions:
bldeff <- rstan::extract(fit, pars="bld")
rdf <- data.frame(yield=unlist(bldeff), blend=gl(5,4000))
ggplot(data=rdf,aes(x=yield, linetype=blend))+geom_density()

We see in the first panel of Figure 12.4 that although there is some separation
in the distributions, it would be difficult to conclude that one was clearly better than
another. The bumps in the tails of the densities are caused by the small sample size
and could be removed with a larger number of MCMC iterations if desired.

We can construct the posteriors for the treatment effects also:
trteff <- rstan::extract(fit, pars="trt")
rdf <- data.frame(yield=unlist(trteff), treat=gl(4,4000, labels=

↪→ LETTERS[1:4]))
ggplot(data=rdf,aes(x=yield, linetype=treat))+geom_density()

In the second panel of Figure 12.4 we see that there is considerable overlap between
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Figure 12.4 Posterior densities for the blend effects are shown on the left, while the treatment
effects are shown on the right.

the distributions with A appearing worst and C best. We can estimate the probability
that A is actually better than C as:
mean(trteff$trt[,1] > trteff$trt[,3])
[1] 0.05725

We conclude there is no clear difference between the treatments. If forced to choose,
perhaps with information about the relative costs of the treatments, we could use the
posterior distributions to make a rational decision.

It would also be reasonable to consider the treatments as a random effect. We
could modify the STAN program to accommodate this and analyze accordingly.

STAN analyses of the other mixed effect models from previous chapters may be
found in the online materials.

12.2 INLA

INLA stands for integrated nested Laplace approximation and was introduced by
Rue et al. (2009). A Laplace approximation is a method for computing integrals of
the form

∫
exp f (x)dx. It requires only the maximum of f and the second derivative

of f (x) at that point. It can be surprisingly accurate given how little information is
required. The INLA method builds on this idea and can be used for a wide class
known as Gaussian Markov random field models. This class includes all the models
considered in the previous two chapters. Because the method requires no simulation,
it is much faster than MCMC-based approaches.

INLA is an R package that provides an interface to the INLA method. Visit
http://www.r-inla.org for installation instructions as the package is not avail-
able from CRAN.

One-Way ANOVA: Let’s use INLA to fit a model to the pulp data that we have

http://www.r-inla.org
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already explored with lme4 in Chapter 10 and with STAN in Section 12.1. See Fig-
ure 10.1 for a plot of the data and Section 12.1 for a specification of the model.

We load the library and data before fitting the model.
library(INLA)
data(pulp, package="faraway")
formula <- bright ~ f(operator, model="iid")
result <- inla(formula, family="gaussian", data=pulp)

There is only the fixed effect intercept term which is included implicitly by default
in the formula for the model. We specify how the random operator enters the model
using the f() term. We expect no correlation in the observations for each operator so
we set the iid option. We use the Gaussian family for the response when fitting the
model with inla(). We examine the result and look at a somewhat-edited output:
summary(result)
Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 60.4 0.0876 60.226 60.4 60.573 60.4 0

Random effects:
Name Model
operator IID model

Model hyperparameters:
mean sd 0.025quant

Precision for the Gaussian observations 6.895 2.131 3.494
Precision for operator 18377.553 18267.005 1205.289

0.5quant 0.975quant mode
Precision for the Gaussian observations 6.647 11.78 6.183
Precision for operator 12974.392 66416.77 3248.557

Expected number of effective parameters(std dev): 1.013(0.0132)
Number of equivalent replicates : 19.74

We see that the intercept of 60.4 is the same as in previous model fits. INLA uses
the precision, which is the inverse of the variance, for its internal computations. We
need to compute SDs for interpretative purposes. We have a posterior mean for σ̂ε

of 1/
√

6.895 = 0.38, but the precision for the operator term is very large and so the
posterior mean for σα is close to zero. Even without our previous modeling experi-
ence with this data, we know from the plots of the data that we could not possibly
be this confident about a conclusion of no variation between operators. Something is
wrong.

The problem is the default priors chosen by INLA for the random effects preci-
sion terms. A gamma distribution with a very large variance is used. Past experience
with LMMs reveals that this can sometimes lead to anomalous results. Indeed, this
illustrates a general problem with so-called noninformative priors. We would like to
have some default choice that will not have much effect on the outcome, but some-
times it will fail. One solution is to use a more informative prior that uses the weak
information that we are likely to possess.

Let a random effect have SD σ and choose an exponential prior on σ such that a
tail probability P(σ > U) = α. We can pick a small value for α such as 0.01. Let’s
allow ourselves to look at the SD of the response and set U = 3SD(Y ). We are not
constraining σ very much but we still allow a small probability that it could be even
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three times larger than the response SD. This is an example of a penalized complexity
prior as explained in Simpson et al. (2014).
sdres <- sd(pulp$bright)
pcprior <- list(prec = list(prior="pc.prec", param = c(3*sdres,0.01)))
formula <- bright ~ f(operator, model="iid", hyper = pcprior)
result <- inla(formula, family="gaussian", data=pulp)
result <- inla.hyperpar(result)
summary(result)

We specify U = 3SD(Y ) and α = 0.01 in the penalized complexity prior. We use
this prior for σα, but retain the default prior for σε. The estimates for the posterior
densities are improved by inla.hyperpar. The summary output shows precisions
that are believable so we move onto a consideration of the posteriors.

Unlike MCMC programs, INLA does not just give you a sample from the pos-
terior. It gives you the posterior density itself. Since we cannot easily plot the full
multivariate posterior, we resort to looking at the marginals. The precisions are not
very interpretable so we naturally want to convert it to the SD scale. Since we are
transforming a density, the calculation is exact and can be achieved as follows:
sigmaalpha <- inla.tmarginal(function(x) 1/sqrt(exp(x)),result$

↪→ internal.marginals.hyperpar[[2]])
sigmaepsilon <- inla.tmarginal(function(x) 1/sqrt(exp(x)),result$

↪→ internal.marginals.hyperpar[[1]])

We can plot these as seen in the first panel of Figure 12.5:
ddf <- data.frame(rbind(sigmaalpha,sigmaepsilon),errterm=gl(2,1024,

↪→ labels = c("alpha","epsilon")))
ggplot(ddf, aes(x,y, linetype=errterm))+geom_line()+xlab("bright")+

↪→ ylab("density")+xlim(0,2)

We see that the posteriors for the error and operator SDs are similar to those seen in
Figure 12.2.
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Figure 12.5 Posterior densities for the SDs are shown on the right. On the left, we see the
posterior densities for the operator effects.
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In the STAN analysis, we asked whether the operator SD was small. Specifically
we computed P(σα < 0.1). We can compute this here by:
inla.pmarginal(0.1, sigmaalpha)
[1] 0.095447

The probability is still small but larger than that seen in the STAN-based analysis.
Our prior for INLA put more weight on σ = 0, so this is not surprising.

We can plot the posteriors for the operator effects as seen in the second panel of
Figure 12.5:
rdf <- do.call(rbind.data.frame, result$marginals.random$operator)
rdf <- cbind(operator=gl(4,nrow(rdf)/4,labels=letters[1:4]),rdf)
ggplot(rdf, aes(x=x,y=y,linetype=operator))+geom_line()+xlim(-1.5,

↪→ 1.5)+xlab("bright")+ylab("density")

There is considerable overlap between the densities, meaning that it will be difficult
to distinguish between specific operators.

Finally, we can obtain a numerical summary of the parameters of interest by:
restab <- sapply(result$marginals.fixed, function(x) inla.zmarginal(x,

↪→ silent=TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaalpha,silent=TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaepsilon,silent=TRUE))
restab <- cbind(restab, sapply(result$marginals.random$operator,

↪→ function(x) inla.zmarginal(x, silent=TRUE)))
colnames(restab) = c("mu","alpha","epsilon",levels(pulp$operator))
data.frame(restab)

mu alpha epsilon a b c d
mean 60.4 0.24684 0.32115 -0.11008 -0.23533 0.15157 0.19329
sd 0.13238 0.11499 0.047074 0.14841 0.15769 0.1509 0.15398
quant0.025 60.03 0.041186 0.23559 -0.54174 -0.70209 -0.21423 -0.16563
quant0.25 60.297 0.16693 0.28606 -0.22994 -0.36867 0.037022 0.076544
quant0.5 60.399 0.24632 0.32084 -0.10922 -0.23292 0.1482 0.1894
quant0.75 60.501 0.34822 0.36309 0.0011632 -0.11752 0.27338 0.31963
quant0.975 60.768 0.66073 0.4694 0.2622 0.11642 0.59304 0.64648

Compare these posterior means to those obtained from the lme4 analysis in Chap-
ter 10 and in the earlier STAN analysis. The results are comparable but not the same.

Randomized Block Design: In Section 10.6, we analyzed some data on peni-
cillin production that had treatments as fixed effects and blends (of the raw material)
being random effects. Refer back to this section for a description of the model and
plots of the data. We repeat this analysis here using INLA:
data(penicillin, package="faraway")
lmod <- lm(yield ~ treat, data=penicillin)
sdres <- sd(residuals(lmod))
pcprior <- list(prec = list(prior="pc.prec", param = c(3*sdres,0.01)))
formula <- yield ~ treat + f(blend, model="iid", hyper = pcprior)
result <- inla(formula, family="gaussian", data=penicillin)
result <- inla.hyperpar(result)
summary(result)

Use of the default prior for the blend precision gives rise to the same problem seen
in the pulp analysis. We supply a more informative prior making use of the residual
SD from the fixed effects only model. This SD will be bigger than the blend or error
SD. The prior allows the possibility that the SD could be bigger still so we are doing
little to constrain the outcome but ensuring a reasonable result. We transform the
precisions to the SD scale:
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sigmaalpha <- inla.tmarginal(function(x) 1/sqrt(exp(x)),result$
↪→ internal.marginals.hyperpar[[2]])

sigmaepsilon <- inla.tmarginal(function(x) 1/sqrt(exp(x)),result$
↪→ internal.marginals.hyperpar[[1]])

We produce a summary table of the posterior densities:
restab <- sapply(result$marginals.fixed, function(x) inla.zmarginal(x,

↪→ silent <- TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaalpha,silent=TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaepsilon,silent=TRUE))
colnames(restab) <- c("mu","B-A","C-A","D-A","alpha","epsilon")
data.frame(restab)

mu B.A C.A D.A alpha epsilon
mean 84.028 0.96989 4.9565 1.9666 3.1441 4.2801
sd 2.0898 2.1297 2.1297 2.1297 1.4291 0.72534
quant0.025 78.76 -4.3684 -0.38568 -3.3725 0.48106 3.003
quant0.25 82.332 -0.7651 3.2211 0.2315 2.1311 3.7446
quant0.5 84.017 0.95897 4.9457 1.9557 3.1579 4.275
quant0.75 85.702 2.6811 6.6674 3.6777 4.3837 4.9327
quant0.975 89.28 6.2686 10.251 7.2646 7.908 6.6071

The posterior means are quite similar to the previous analyses. Particularly for asym-
metric densities, the posterior mode is more analogous to a maximum likelihood
estimate. These can be calculated for the two SDs as:
c(inla.mmarginal(sigmaalpha), inla.mmarginal(sigmaepsilon))
[1] 2.8331 4.0070

We examine the posterior densities of the SDs as seen in the first panel of Figure 12.6.
ddf <- data.frame(rbind(sigmaalpha,sigmaepsilon),errterm=gl(2,1024,

↪→ labels = c("alpha","epsilon")))
ggplot(ddf, aes(x,y, linetype=errterm))+geom_line()+xlab("yield")+ylab

↪→ ("density")+xlim(0,15)

We see that the error SD is more precisely specified than the block SD as is expected
for such experiments. As before, we might ask whether there is much difference
between the blends. We might express this by P(σα < 1). We can compute this as:
inla.pmarginal(1, sigmaalpha)
[1] 0.089164

We see that there is a small but significant chance that the blend SD is negligible.
We can also obtain the posterior densities for the treatment effects as seen in the

second panel of Figure 12.6.
x <- seq(-15,15,length.out = 100)
rden <- sapply(result$marginals.fixed,function(y) inla.dmarginal(x, y)

↪→ )[,-1]
ddf <- data.frame(yield=rep(x,3), density=as.vector(rden), treat=gl

↪→ (3,100, labels=c("B-A","C-A","D-A")))
ggplot(ddf, aes(x=yield, y=density, linetype=treat))+geom_line()

The standard parameterization of the fixed effects means that these represent dif-
ferences from the the reference level, A. We can estimate the probability that A is
actually better than C as:
inla.pmarginal(0,result$marginals.fixed$treatC)
[1] 0.033363

If we use the usual p-value reasoning that doubles this for a two-sided test, we obtain
a value of about 6.6%. Given that the other differences are smaller, we find there
is little evidence of a significant difference between the treatments. Given this is a
Bayesian analysis, the usual justification for p-values does not apply, but we can
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Figure 12.6 Posterior densities for SDs on the left and for the treatment effects on the right.

reasonably compute such quantities as summaries of the posterior densities if it is
helpful.

12.3 Discussion

The maximum likelihood analysis of linear mixed models, demonstrated in Chap-
ters 10 and 11, has several advantages. The models can be specified and fit with a
single R command. The statistical hypothesis testing paradigm is widely accepted
and may be required for the communication of some scientific research. The calcula-
tion of the p-values can be difficult, but is possible, even if simulation methods, such
as the bootstrap, are required. Even so, problems may arise in fitting these models,
particularly to larger datasets. Some types of valid questions cannot be answered in
this mode of analysis.

The Bayesian approach offers a quite different way of analyzing this class of
models. It offers several advantages in that we can use prior information to improve
the inference and we can answer various relevant questions about the application in
natural ways. There are some drawbacks. The models are more difficult to specify
and require more programming knowledge, particularly when using STAN. The fit-
ting process may fail in ways which are difficult to diagnose and rectify. The specifi-
cation of reliable, so-called noninformative priors does not seem possible as failures
producing unreasonable results are not uncommon. This requires us to think care-
fully about the specification of these priors. To the Bayesian, this is expected, but to
others, this introduces an additional element of subjectivity which makes reaching
convincing conclusions more difficult.

INLA beats STAN for speed, especially since it produces posterior densities not
samples. For small datasets, the savings of a few minutes is not so important, but
for larger datasets, the difference can be critical. STAN is more versatile as we are
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able to program for a wider range of models than considered here. There is a general
difficulty in validating a Bayesian analysis. Sometimes the outcome will be clearly
flawed and we can make modifications. More worrisome are results which seem
plausible, but are wrong. INLA produces approximations, but it is difficult to know
when these are adequate. In principle, the MCMC analysis is essentially exact given
a large enough run, but the simulation-based procedures used by STAN can fail in
practice for various reasons that may be difficult to spot. For these reasons, a careful
analyst is advised to use both INLA and STAN as a significant difference between
the analyses will be revealing. Comparison with the lme4-based results provides a
further check.

Exercises

1. The denim dataset concerns the amount of waste in material cutting for a jeans
manufacturer due to five suppliers. See another question on this dataset in Chap-
ter 10.

(a) Plot the data and comment.
(b) Fit the one-way ANOVA model using INLA using the default prior. Comment

on the fit.
(c) Refit the model but with more informative priors. Make a density plot of the

error and supplier SD posterior densities.
(d) Calculate summaries of the posteriors from the model fit.
(e) Report 95% credible intervals for the SDs using the summary output. Compute

the posterior modes for the error and supplier SDs and compare these to the
posterior means.

(f) Remove the two outliers from the data and repeat the analysis. Comment on
any interesting differences.

2. Use the denim dataset again for this question but conduct the analysis using
STAN.

(a) Fit the one-way ANOVA model using STAN with the default prior. Produce
diagnostic plots for the three parameters: the mean and standard deviations of
the supplier and error effects.

(b) Report the posterior mean, 95% credible intervals and effective sample size for
the three parameters.

(c) Make a plot of the posterior densities of the supplier and error effects. Estimate
the probability that the supplier SD is bigger than the error SD.

(d) Plot the posterior distributions of the five suppliers. Which supplier tends to
produce the least waste and which the most? What is the probability that the
best supplier is better than the worst supplier?

(e) A plot of the data reveals two obvious outliers. Repeat the analysis without
these two points and report on any interesting differences with the full data.
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(f) Instead of removing the two outliers, change the error distribution from nor-
mal to t3. Repeat the analysis and indicate how this changes the conclusions.
Discuss which approach to handling the outliers is best.

3. The oatvar dataset concerns a randomized block design comparing the yields of
eight varieties of oats. The growing area was divided into five blocks, each planted
with a single plot of each variety.

(a) Plot the data and comment.
(b) Use INLA to fit a linear model with variety as a fixed effect and block as a ran-

dom effect using informative priors. Make plots of the posterior SD densities
of the error and block.

(c) Compute a numerical summary of the posteriors. Which varieties show a sig-
nificant difference from the first variety?

(d) Plot the densities of the variety effects.
(e) Consider a model with both variety and block as random effects. Use INLA to

fit the model and construct a density plot of the three posterior SDs. How do
these SDs compare?

4. Repeat question three using STAN in place of INLA.
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Chapter 13

Mixed Effect Models for Nonnormal
Responses

13.1 Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) combine the ideas of generalized linear
models with the random effects modeling ideas of the previous two chapters. The
response is a random variable, Yi, taking observed values, yi, for i = 1, . . . ,n, and
follows an exponential family distribution as defined in Chapter 8:

f (yi|θi,φ) = exp
[

yiθi−b(θi)

a(φ)
+ c(y,φ)

]
Let EYi = µi and let this be connected to the linear predictor ηi using the link function
g by ηi = g(µi). Suppose for simplicity that we use the canonical link for g so that
we may make the direct connection that θi = µi.

Now let the random effects, γ, have distribution h(γ|V ) for parameters V . The
fixed effects are β. Conditional on the random effects, γ,

θi = xT
i β+ zT

i γ

where xi and zi are the corresponding rows from the design matrices, X and Z, for
the respective fixed and random effects. Now the likelihood may be written as:

L(β,φ,V |y) =
n

∏
i=1

∫
f (yi|β,φ,γ)h(γ|V )dγ

Typically the random effects are assumed normal: γ ∼ N(0,D). However, unless f
is also normal, the integral remains in the likelihood, which becomes difficult to
compute, particularly if the random effects structure is complicated.

13.2 Inference

A variety of approaches are available for estimating and performing inference for
these models. All have strengths and weaknesses so it is not possible to recommend
a single method to use in all circumstances. We present an overview of the theory
behind these approaches before demonstrating the implementation on two examples.
Later in the chapter, we discuss a related method called generalized estimating equa-
tions (GEE).

Penalized Quasi-Likelihood (PQL): In Section 8.2, we described a method by
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which GLMs can be fit using only LMs with weights. The idea is to produce a lin-
earized version of the response which we called the adjusted dependent variable
(sometimes called the pseudo or working response) defined as

ỹi = η̂
i +(y− µ̂i)

dη

dµ
|η̂i

The superscripted is indicate the iteration in the optimization algorithm. We have
E(ỹi|γ) = xT

i β+ zT
i γ and we may derive an expression for var (ỹi|γ). We are now able

to use LMM methods with appropriate weighting. Iteration is necessary as ỹ must be
updated after each linear mixed model (LMM) fit. This and similar methods are de-
scribed in Schall (1991) and Breslow and Clayton (1993). The name quasi-likelihood
is not entirely appropriate for PQL as we still use the distributional assumptions. The
GEE method described later in this chapter fits better with the “quasi” paradigm.

The PQL method has the advantage of relatively easy implementation given that
existing LMM methods can be adapted. However, the inference is only asymptoti-
cally correct. Biased estimates are mostly likely to arise for binomial responses with
small groups (covariate classes) and will be worst for Bernoulli responses. Similar
problems will be observed for Poisson response data where the counts tend to be low.
Further difficulties will arise with hypothesis testing and confidence intervals because
the problems already present in LMMs are added to the approximations introduced
by the linearization. We can compute p-values using likelihood theory-based meth-
ods but we will have limited trust in their veracity. Even so, PQL will tend to be faster
and work on more complex models than some of the competitors.

Numerical Integration: Provided the dimension of the random effects γ is not
too large, it is possible to use numerical methods to approximate the likelihood. The
Laplace approximation is one of the least demanding methods for computing inte-
grals of the form

∫
exph(x)dx. We need only find the maximum of h and the second

derivative of h(x) at that point. For the integral in the GLMM likelihood, this can
provide a surprisingly good approximation despite the integrand being evaluated at
just one point. The maximization step is already familiar from simpler problems.

We can do better with more function evaluations. For these kinds of integrals,
Gauss-Hermite quadrature is appropriate. The method approximates integrals of the
form

∫
h(x)exp(−x2)dx by ∑k wk f (xk) where the best choice weights wk and knot-

points xk have been determined. This method is more accurate than the Laplace ap-
proach but the computational cost can become prohibitive, particularly for higher
dimensional random effects. The Laplace method can be viewed as equivalent to the
Gauss-Hermite method with just a single knotpoint.

Experience suggests that numerical integration methods are superior to PQL. The
drawback is that they may be time-consuming or impossible to compute for more
complex models. The advantage is that we have an approximation to the true like-
lihood rather than a quasi-likelihood. This means we have more scope and greater
confidence in the inference derived from these approaches. They are not perfect since
similar issues as with LMMs remain but better than PQL. See McCulloch and Searle
(2002) for more discussion.

Bayes: As with LMMs, there is good reason to consider Bayesian methods as
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an alternative to the standard likelihood-based methods. There are several advan-
tages. Complex models can be fit with a high degree of accuracy. We can incorporate
useful prior information and we have the flexibility to modify the models to allow
for nonstandard features. The disadvantages are that these models may require more
programming to implement and may take substantial computing resources. Further-
more, one must address technical concerns about the quality of the fit. Finally, the
inferential conclusions are of a different form. This is either an advantage or dis-
advantage depending on your point of view. See Chapter 12 for an introduction to
Bayes methods for LMMs. Extending these ideas to GLMMs is not difficult.

We now apply these methods to two examples. The first has a Bernoulli response
and the second a Poisson response.

13.3 Binary Response

An experiment was conducted to study the effects of surface and vision on balance.
The balance of subjects was observed for two different surfaces and for restricted and
unrestricted vision. Balance was assessed qualitatively on an ordinal four-point scale
based on observation by the experimenter. Forty subjects were studied, 20 males and
20 females ranging in age from 18 to 38, with heights given in cm and weights in
kg. The subjects were tested while standing on foam or a normal surface and with
their eyes closed or open or with a dome placed over their head. Each subject was
tested twice in each of the surface and eye combinations for a total of 12 measures
per subject. The data comes from Steele (1998) via the Australasian Data and Story
Library (OzDASL).

For the purposes of this analysis, we will reduce the response to a two-point
scale: whether the subject was judged completely stable (=1) or not (=0). We start by
defining this response:
data(ctsib, package="faraway")
ctsib$stable <- ifelse(ctsib$CTSIB==1,1,0)

We can investigate the effects of the treatment variables on stability descriptively.
Here is the mean response for the combined conditions:
xtabs(stable ~ Surface + Vision, ctsib)/80

Vision
Surface closed dome open

foam 0.0000 0.0000 0.1250
norm 0.2125 0.2750 0.8125

We have divided by 80 because xtabs sums the values for each combination and
there are 40 subjects with each combination replicated twice. We see that the normal
surface with open vision leads to the highest stability. We can group the data by
subject and average over the 12 observations (6 conditions, replicated twice). The
plots are seen in Figure 13.1.
library(dplyr)
subsum <- ctsib %>% group_by(Subject) %>% summarise(Height=Height[1],

↪→ Weight=Weight[1], stable=mean(stable), Age=Age[1], Sex=Sex[1])
library(ggplot2)
ggplot(subsum, aes(x=Height,y=stable))+geom_point()
ggplot(subsum, aes(x=Weight,y=stable))+geom_point()
ggplot(subsum, aes(x=Age,y=stable))+geom_point()
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ggplot(subsum, aes(x=Sex,y=stable))+geom_boxplot()

Figure 13.1 Subject effects for the stability experiment. Response is proportion of stable over
treatment conditions.

We could fit a binomial GLM ignoring the subject information entirely:
gf <- glm(stable ~ Sex+Age+Height+Weight+Surface+Vision,binomial,data=

↪→ ctsib)
sumary(gf)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.27745 3.80399 1.91 0.05573
Sexmale 1.40158 0.51623 2.72 0.00663
Age 0.00252 0.02431 0.10 0.91739
Height -0.09641 0.02684 -3.59 0.00033
Weight 0.04350 0.01800 2.42 0.01567
Surfacenorm 3.96752 0.44718 8.87 < 2e-16
Visiondome 0.36375 0.38322 0.95 0.34252
Visionopen 3.18750 0.41600 7.66 1.8e-14

n = 480 p = 8
Deviance = 295.203 Null Deviance = 526.254 (Difference = 231.051)

This assumes we have 480 independent observations but, in reality, we have only 40
subjects whose responses will be correlated. This analysis is likely to underestimate
the standard errors and so exaggerate the significance of the experimental effects. We
could also try including a fixed subject factor:
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gfs <- glm(stable ~ Sex + Age + Height + Weight + Surface + Vision +
↪→ factor(Subject), binomial,data=ctsib)

However, when we examine the summary for this model, we see problems with iden-
tifiability. This is because the subject factors cannot be completely distinguished
from the four subject-specific measures: sex, age, height and weight. Even if we
could get around this problem, it would hardly be appropriate to treat the subject
factor as a fixed effect. We do not care about the individual subjects but we are
interested in how the four subject measures might affect stability. The experimen-
tal subjects are intended as a random sample from the target population. We’d like to
know something about the inherent variability in that population that is not explained
by measurable variables but we don’t care about the specific individuals.

There are a variety of ways of fitting GLMMs in R. First we demonstrate the PQL
method implemented in the MASS package:
library(MASS)
modpql <- glmmPQL(stable ~ Sex + Age + Height + Weight + Surface +

↪→ Vision, random=~1|Subject, family=binomial,data=ctsib)
summary(modpql)
Random effects:
Formula: ~1 | Subject

(Intercept) Residual
StdDev: 3.0607 0.59062

Variance function:
Structure: fixed weights
Formula: ~invwt

Fixed effects: stable ~ Sex + Age + Height + Weight + Surface + Vision
Value Std.Error DF t-value p-value

(Intercept) 15.5715 13.4983 437 1.1536 0.2493
Sexmale 3.3553 1.7526 35 1.9145 0.0638
Age -0.0066 0.0820 35 -0.0810 0.9359
Height -0.1908 0.0920 35 -2.0736 0.0455
Weight 0.0695 0.0629 35 1.1052 0.2766
Surfacenorm 7.7241 0.5736 437 13.4665 0.0000
Visiondome 0.7265 0.3259 437 2.2289 0.0263
Visionopen 6.4853 0.5440 437 11.9219 0.0000

The SD for the subject effect is 3.06. We can use the same ideas from logistic re-
gression to interpret this value. We have exp(3.06) = 21.3 so the odds of stability are
multiplied by this factor. Hence we can see that there is substantial variation in the
inherent stability of individuals. Indeed, this variation is of comparable magnitude to
the treatment effects. The residual SD is an artefact of the fitting process and does
not exist in the statement of the model.

We see strongly significant surface and vision effects while some other effects
have marginally significant p-values. However, this inference is based on the lin-
earized model and rather dubious assumptions as explained in Section 10.2, so these
results cannot be relied upon. Furthermore, the Bernoulli response may lead to bi-
ased estimates of regression coefficients. Hence, it would be unwise to rely entirely
on this analysis without investigating alternative methods of estimation.

The numerical integration-based methods are implemented in the lme4 package.
The default choice of method is the Laplace approximation.
library(lme4)
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modlap <- glmer(stable ~ Sex + Age + Height + Weight + Surface +
↪→ Vision + (1|Subject), family=binomial, data=ctsib)

Since the Laplace method is a special case of the Gauss-Hermite approximation
which can only be more accurate, it is best to attempt this approach. Here we can
use the maximum allowable number of quadrature points which is 25:
modgh <- glmer(stable ~ Sex + Age + Height + Weight + Surface +

↪→ Vision + (1|Subject), nAGQ=25, family=binomial, data=ctsib)

We have a particularly simple random effects structure so we can easily afford to be
profligate in the number of quadrature points (which is certainly more than we need).
In more complex examples, we may need to specify much smaller numbers to allow
computation in a reasonable time. Start small and increase until the estimates stop
changing very much or the computation becomes infeasibly long. Now look at the
output:
summary(modgh)

AIC BIC logLik deviance df.resid
247.9 285.5 -115.0 229.9 471

Scaled residuals:
Min 1Q Median 3Q Max

-4.884 -0.139 -0.020 -0.001 4.902

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 7.19 2.68

Number of obs: 480, groups: Subject, 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 16.17166 12.72107 1.27 0.204
Sexmale 3.09679 1.69612 1.83 0.068
Age -0.00668 0.07646 -0.09 0.930
Height -0.19226 0.08895 -2.16 0.031
Weight 0.07515 0.05910 1.27 0.204
Surfacenorm 7.28541 1.05516 6.90 5.0e-12
Visiondome 0.67591 0.52737 1.28 0.200
Visionopen 6.08896 0.97241 6.26 3.8e-10

Notice that we have AIC/BIC values for model comparison purposes. These are not
available from PQL because it is not a true likelihood method. As it happens, the
parameter estimates are quite similar to PQL which provides some reassurance.

We might ask whether any of the subject-specific variables have an effect. We
can test this by fitting a model without these terms and comparing the two:
modgh2 <- glmer(stable ~ Surface + Vision + (1|Subject), nAGQ=25,

↪→ family=binomial, data=ctsib)
anova(modgh, modgh2)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
modgh2 5 247 268 -119 237
modgh 9 248 286 -115 230 7.37 4 0.12

This uses the standard likelihood-based methods to construct a chi-squared test. We
have the same reasons as with LMMs to view these results with some scepticism.
Even so, this is a balanced experiment of a reasonable size so this provides some
confidence in the result. We see that a simplification to just the treatment variables
as fixed effects seems reasonable. If we feel uncomfortable with this conclusion, we
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may further point to the minimization of AIC (or BIC) as a justification for choosing
the smaller model.

As with all such models, it is wise to check some diagnostics. These can be
extracted using residuals() and fitted() functions. An alternative convenience
is:
dd <- fortify(modgh2)

which extracts the residuals and fitted values and places them in a common data
frame with the other variables. This makes the construction of some plots more con-
venient. For example, we might look at the QQ plots subsetted by the treatment
variables:
ggplot(dd, aes(sample=.resid))+stat_qq() + facet_grid(Surface~Vision)

Figure 13.2 QQ plots subsetted by treatment variables.

In Figure 13.2, we see that the residuals are close to zero for two of the six com-
binations. This is because these were universally unstable conditions and have been
predicted as such by the model. In the most stable, normal and open condition, larger
positive residuals are not seen because there is no headroom for such cases. It would
be a mistake to view this plot as indicating heteroscedascity as we have seen there
are more convincing explanations for the differences in spread.

We can use INLA for a Bayesian approach to fitting these models. See Sec-
tion 12.2 for an introduction. For ease of exposition, we use only the surface and
vision as fixed effect predictors. The default, noninformative priors, are satisfactory:
library(INLA)
formula <- stable ~ Surface + Vision + f(Subject, model="iid")
result <- inla(formula, family="binomial", data=ctsib)
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We compute the SD for the subject random effect:
sigmaalpha <- inla.tmarginal(function(x) 1/sqrt(x), result$marginals.

↪→ hyperpar$"Precision for Subject")

The posterior density for this SD is shown in the first panel of Figure 13.3:
x <- seq(0,7,length.out = 100)
sdf <- data.frame(yield = x, density=inla.dmarginal(x, sigmaalpha))
ggplot(sdf,aes(x=yield,y=density))+geom_line()

We see that the subject effect is clear since the distribution is well away from zero
but there is some uncertainty regarding the size of the effect.

We can produce a numerical summary of the posteriors:
restab <- sapply(result$marginals.fixed, function(x) inla.zmarginal(x,

↪→ silent=TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaalpha,silent=TRUE))
colnames(restab) = c("mu","norm","dome","open","alpha")
data.frame(restab)

mu norm dome open alpha
mean -10.298 7.3641 0.66618 6.1279 3.0248
sd 1.3507 0.92526 0.49873 0.8498 0.62416
quant0.025 -13.172 5.7182 -0.29877 4.6184 1.9838
quant0.25 -11.181 6.6971 0.32503 5.517 2.5756
quant0.5 -10.21 7.3038 0.65785 6.0704 2.9585
quant0.75 -9.334 7.9657 0.99581 6.6771 3.4007
quant0.975 -7.9392 9.3029 1.6579 7.9167 4.429

We could compute similar statistics on the subject random effects but there are too
many to display them all. We see that the posterior means are quite similar to the last
glmer-based fit. We can plot the posterior densities of the fixed effects as seen in the
second panel of Figure 13.3:
x <- seq(-2,11,length.out = 100)
rden <- sapply(result$marginals.fixed,function(y) inla.dmarginal(x, y)

↪→ )[,-1]
ddf <- data.frame(yield=rep(x,3), density=as.vector(rden), treat=gl

↪→ (3,100, labels=c("norm","dome","open")))
ggplot(ddf, aes(x=yield, y=density, linetype=treat))+geom_line()

The norm level of surface and the open level of vision are clearly different from
the respective reference levels since the densities are well separated from zero. In
contrast, we see there may not be much difference between the dome and closed
levels of vision as this density overlaps zero. We can compute a “Bayesian p-value”
as:
2*inla.pmarginal(0,result$marginals.fixed$Visiondome)
[1] 0.17982

We have multiplied by two to account for the usual two-sided testing argument. In
this context, p-values do not have the same meaning. Nonetheless, it does serve as
a measure of how the posterior density relates to zero. This confirms our impression
that there is not much difference between the levels.

We can also use STAN for a Bayesian analysis as introduced in Section 12.1.
Here is the STAN program we need:
data {

int<lower=0> Nobs;
int<lower=0> Nsubs;
int<lower=0> Npreds;
int<lower=0,upper=1> y[Nobs];
int<lower=1,upper=Nsubs> subject[Nobs];
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Figure 13.3 Posterior density for the subject SD on the left and posterior densities for the
treatment effects on the right.

matrix[Nobs,Npreds] x;
}
parameters {
vector[Nsubs] subeff;
real<lower=0> sigmasubj;
vector[Npreds] beta;

}
model {
subeff ~ normal(0,sigmasubj);
sigmasubj ~ cauchy(0, 1);
for(n in 1:Nobs) {

y[n] ~ bernoulli_logit(x[n]*beta + subeff[subject[n]] );
}

}

We have written this in a generic form so that you could use this for any grouped-by-
subject data with a binary response. We use a half-Cauchy prior for the subject SD.
This is somewhat more informative but seems justifiable in the context of this data.
It also has the advantage of being more transparent.

We need to prepare the data in a format compatible with the data block in the
code above. We form the model matrix of fixed effects, X , in advance:
xm <- model.matrix(~ Sex + Age + Height + Weight + Surface + Vision,

↪→ ctsib)
stabledat <- with(ctsib, list(Nobs=nrow(ctsib),
Nsubs=length(unique(ctsib$Subject)), Npreds=ncol(xm),
y=stable, subject=Subject, x=xm))

We can now run the STAN model. We have broken the process into three steps. The
first step translates the STAN code into C++, the second compiles that C++ code and
the third runs the MCMC sampler. The advantage of doing it in three stages is that
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one is likely only to do the first two once but the third might need to be repeated if
the model or data is changed.
library(rstan)
rt <- stanc("glmmbin.stan")
sm <- stan_model(stanc_ret = rt, verbose=FALSE)
fit <- sampling(sm, data=stabledat)

This will take several minutes to run depending on the quality of your computer.
First we need to check the diagnostics of the MCMC sampling. We plot the chain

for the subject SD as this is the parameter most likely to cause problems:
traceplot(fit,pars="sigmasubj", inc_warmup=FALSE)

The plot (not shown) is entirely satisfactory. We can display a summary for the pa-
rameters of interest:
print(fit,pars=c("sigmasubj","beta"))

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
sigmasubj 3.60 0.04 0.81 2.28 3.03 3.48 4.09 5.36 515 1.01
beta[1] 19.25 0.73 17.56 -13.12 7.66 18.52 30.11 55.08 585 1.01
beta[2] 3.83 0.10 2.24 -0.45 2.35 3.76 5.27 8.33 531 1.01
beta[3] -0.01 0.00 0.11 -0.23 -0.08 -0.01 0.06 0.20 836 1.00
beta[4] -0.23 0.00 0.12 -0.48 -0.30 -0.22 -0.15 -0.01 586 1.01
beta[5] 0.09 0.00 0.08 -0.06 0.03 0.08 0.14 0.24 860 1.00
beta[6] 8.56 0.06 1.33 6.28 7.58 8.43 9.39 11.33 560 1.01
beta[7] 0.75 0.01 0.56 -0.34 0.38 0.74 1.14 1.87 4000 1.00
beta[8] 7.24 0.05 1.24 5.17 6.34 7.13 8.01 9.92 563 1.01

The effective sample sizes are more than satisfactory.
Now we examine the posterior distributions. We extract the parameters of interest

and restore the variable names for convenience. The reshape2 package helps us
arrange the data in a format for convenient plotting. We show the estimated densities
in Figure 13.4 along with a vertical line at zero.
ipars <- data.frame(extract(fit, pars=c("sigmasubj","beta")))
colnames(ipars)[-1] <- colnames(xm)
library(reshape2)
rdf <- melt(ipars)
ggplot(rdf, aes(x=value))+geom_density() + facet_wrap(~ variable,

↪→ scales="free")+geom_vline(xintercept=0)

We might also be interested in how the subjects in the experiment compare. We
extract the subject random effects and sort the posterior means:
ppars <- data.frame(extract(fit, pars="subeff"))
sort(colMeans(ppars))
subeff.3 subeff.38 subeff.37 subeff.14

-6.704126 -4.926872 -4.563769 -4.036449 ...
...edited...
subeff.17 subeff.29 subeff.25 subeff.27
3.488328 5.906336 6.735636 6.924570

We see that subject 3 is the least stable and subject 27 is the most stable. Since we
have access to the posterior distributions, we can readily investigate which difference
might be notable.

13.4 Count Response

In this example, we have data from a clinical trial of 59 epileptics. For a baseline,
patients were observed for 8 weeks and the number of seizures recorded. The patients
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Figure 13.4 Posterior distributions as produced by the STAN fit to the epilepsy data.

were then randomized to treatment by the drug Progabide (31 patients) or to the
placebo group (28 patients). They were observed for four 2-week periods and the
number of seizures recorded. The data have been analyzed by many authors including
Thall and Vail (1990), Breslow and Clayton (1993) and Diggle et al. (2013). Does
Progabide reduce the rate of seizures?

First we create some derived variables and then look at the first two patients:
data(epilepsy, package="faraway")
epilepsy$period <- rep(0:4, 59)
epilepsy$drug <- factor(c("placebo","treatment")[epilepsy$treat+1])
epilepsy$phase <- factor(c("baseline","experiment")[epilepsy$expind

↪→ +1])
epilepsy[epilepsy$id < 2.5,]

seizures id treat expind timeadj age period drug phase
1 11 1 0 0 8 31 0 placebo baseline
2 5 1 0 1 2 31 1 placebo experiment
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3 3 1 0 1 2 31 2 placebo experiment
4 3 1 0 1 2 31 3 placebo experiment
5 3 1 0 1 2 31 4 placebo experiment
6 11 2 0 0 8 30 0 placebo baseline
7 3 2 0 1 2 30 1 placebo experiment
8 5 2 0 1 2 30 2 placebo experiment
9 3 2 0 1 2 30 3 placebo experiment
10 3 2 0 1 2 30 4 placebo experiment

Both were not treated (treat=0). The expind indicates the baseline phase by 0 and
the treatment phase by 1. The length of these time phases is recorded in timeadj.
We have created three new convenience variables: period, denoting the 2- or 8-
week periods, drug recording the type of treatment in nonnumeric form and phase
indicating the phase of the experiment.

We now compute the mean number of seizures per week broken down by the
treatment and baseline vs. experimental period. The dplyr package is useful for
these types of group summaries:
library(dplyr)
epilepsy %>%
group_by(drug, phase) %>%
summarise(rate=mean(seizures/timeadj)) %>%
xtabs(formula=rate ~ phase + drug)

drug
phase placebo treatment

baseline 3.8482 3.9556
experiment 4.3036 3.9839

We see that the rate of seizures in the treatment group actually increases during
the period in which the drug was taken. The rate of seizures also increases even
more in the placebo group. Perhaps some other factor is causing the rate of seizures
to increase during the treatment period and the drug is actually having a beneficial
effect. Now we make some plots to show the difference between the treatment and
the control. The first plot shows the difference between the two groups during the
experimental period only:
ggplot(epilepsy, aes(x=period, y=seizures, linetype=drug, group=id))

↪→ + geom_line() + xlim(1,4) + scale_y_sqrt(breaks=(0:10)^2) +
↪→ theme(legend.position = "top", legend.direction = "horizontal")

We compare the two groups in the left panel of Figure 13.5 and find little to choose
between them. The square-root transform is used to stabilize the variance; this is
often used with count data. Now we compare the average seizure rate to the baseline
for the two groups:
ratesum <- epilepsy %>%
group_by(id, phase, drug) %>%
summarise(rate=mean(seizures/timeadj))

library(tidyr)
comsum <- spread(ratesum, phase, rate)
ggplot(comsum, aes(x=baseline, y=experiment, shape=drug)) + geom_point

↪→ () + scale_x_sqrt() + scale_y_sqrt() + geom_abline(intercept=0,
↪→ slope=1)+ theme(legend.position = "top", legend.direction = "
↪→ horizontal")

A treatment effect, if one exists, is not readily apparent. Now we fit GLMM models.
Patient #49 is unusual because of the high rate of seizures observed. We exclude it:
epilo <- filter(epilepsy, id != 49)
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Figure 13.5 Seizures per 2-week period on a square-root scale with treatment group shown as
solid lines and the placebo group shown as dotted lines in the plot on the left. Mean seizures
per week is shown on the right. We compare the baseline period with the experimental period,
distinguishing those who receive treatment or control.

Excluding a case should not be taken lightly. It is worth repeating the analysis with
and without this subject. For projects where the analyst works with producers of the
data, it will be possible to discuss substantive reasons for excluding cases. Exclusion
of cases should always be reported and not concealed.

It is worth starting with a GLM even though the model is not correct due to the
grouping of the observations. We must use an offset as explained in Section 5.3 to
allow for the difference in lengths in the baseline and treatment periods.
modglm <- glm(seizures ~offset(log(timeadj)) + expind + treat + I(

↪→ expind*treat), family=poisson, data=epilo)
sumary(modglm)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3476 0.0341 39.57 < 2e-16
expind 0.1118 0.0469 2.39 0.017
treat -0.1068 0.0486 -2.20 0.028
I(expind * treat) -0.3024 0.0697 -4.34 0.000014

n = 290 p = 4
Deviance = 2411.550 Null Deviance = 2485.110 (Difference = 73.560)

The interaction term is the primary parameter of interest. All the subjects were un-
treated in the baseline, even the ones who were subsequently treated. This means
that the main effect for treatment does properly measure the response to treatment
because it includes the baseline period. As we have observed already, we suspect
the response may have been different during the baseline time and the active period
of the experiment. The interaction term represents the effect of the treatment during
the baseline period after adjustment. In the output above we see that this interac-
tion seems highly significant and negative (which is good since we want to reduce



288 MIXED EFFECT MODELS FOR NONNORMAL RESPONSES

seizures). But this inference is suspect because we have made no allowance for the
correlated responses within individuals. The p-value is far smaller than it should be.

We might also consider allowing for overdispersion in the response by using a
quasi-Poisson model as discussed in Section 9.4. However, this is a different consid-
eration to the correlated response.

We move through the estimation options in the same order as with the binary
response example earlier, starting with PQL:
library(MASS)
modpql <- glmmPQL(seizures ~offset(log(timeadj)) + expind + treat + I(

↪→ expind*treat), random = ~1|id, family=poisson, data=epilo)
summary(modpql)
Formula: ~1 | id

(Intercept) Residual
StdDev: 0.68197 1.6054

Variance function:
Structure: fixed weights
Formula: ~invwt

Fixed effects: seizures ~ offset(log(timeadj)) + expind + treat + I(expind*treat)
Value Std.Error DF t-value p-value

(Intercept) 1.08079 0.143701 230 7.5211 0.0000
expind 0.11184 0.075767 230 1.4761 0.1413
treat -0.00894 0.200244 56 -0.0446 0.9646
I(expind * treat) -0.30238 0.112689 230 -2.6834 0.0078

The parameter estimates are comparable to the GLM but the standard errors are larger
as might be expected given that the correlated response has been allowed for. As
with the binary response example, we still have some doubts about the accuracy of
the inference. This is a particular concern when some count responses are small. A
further concern is the problematic meaning of the residual SD as such a term does not
appear in the statement of the model. Also we lack an AIC due to the quasi-ness of
the likelihood. Even so, we do see a significant negative interaction effect indicating
that the drug is effective.

Numerical quadrature can also be used. We use Gauss-Hermite in preference to
Laplace as the model random effect structure is simple and so the computation is fast
even though we have used the most expensive nAGQ=25 setting.
library(lme4)
modgh <- glmer(seizures ~offset(log(timeadj)) + expind + treat + I(

↪→ expind*treat)+ (1|id), nAGQ=25, family=poisson, data=epilo)
summary(modgh)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.515 0.718

Number of obs: 290, groups: id, 58

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.03600 0.14126 7.33 2.2e-13
expind 0.11184 0.04688 2.39 0.017
treat -0.00815 0.19652 -0.04 0.967
I(expind * treat) -0.30239 0.06971 -4.34 1.4e-05

We see that the interaction effect is significant. Notice that the estimate of this effect
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has been quite consistent over all the estimation methods so we draw some confi-
dence from this. We have
exp(-0.302)
[1] 0.73934

So the drug is estimated to reduce the rate of seizures by about 26%. However, the
subject SD is more than twice the drug effect of−0.3 at 0.718. This indicates that the
expected improvement in the drug is substantially less than the variation between in-
dividuals. Interpretation of the main effect terms is problematic in the presence of an
interaction. For example, the treatment effect reported here represents the predicted
difference in the response during the baseline period (i.e., expind=0). Since none of
the subjects are treated during the baseline period, we are reassured to see that this
effect is not significant. However, this does illustrate the danger in naively presuming
that this is the treatment effect.

We can also take a Bayesian approach, starting with STAN. We can use almost the
same code as the binary response example except we need to add
vector[Nobs] offset;

in the data block and replace the model line with
y[n] ~ poisson_log(log(offset[n])+x[n]*beta + subeff[subject[n]] );

We prepare the data into the required format using:
epilo$id[epilo$id == 59] <- 49
xm <- model.matrix( ~ expind + treat + I(expind*treat), epilo)
epildat <- with(epilo,list(Nobs=nrow(epilo), Nsubs=length(unique(id)),

Npreds=ncol(xm),
y=seizures,
subject=id,
x=xm, offset=timeadj))

We’ve renumbered case 59 into the previously deleted case 49 slot. This is ugly but
we need the subjects to be consecutively numbered.

Assuming that the code is placed in a file called glmmpois.stan, we translate,
compile and run the sampler:
library(rstan)
rt <- stanc("glmmpois.stan")
sm <- stan_model(stanc_ret = rt, verbose=FALSE)
fit <- sampling(sm, data=epildat)

We can check the sampling properties of the chain by
traceplot(fit,pars="sigmasubj", inc_warmup=FALSE)

We’ve made the plot only for subject SD since this is the one most likely to cause
problems. In this case, the plot (not shown) is satisfactory. We can review the poste-
rior distributions:
ipars <- data.frame(rstan::extract(fit, pars=c("sigmasubj","beta")))
colnames(ipars) <- c("subject","intercept","expind","treat","

↪→ interaction")

We plot the two most interesting posterior distributions as seen in Figure 13.6:
ggplot(ipars, aes(x=subject))+geom_density()
ggplot(ipars, aes(x=interaction))+geom_density() +geom_vline(

↪→ xintercept=0)

We can see the subject SD is very clearly different from zero and that it is centered
on about 0.7. The interaction effect (or drug effect) is negative centered on about
−0.3. This looks clearly less than zero.

We can construct a convenient summary of the results including a sort of p-value.
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Figure 13.6 Posterior distribution of the subject SD and drug effect for the epilepsy data.

bayespval <- function(x) {p <- mean(x > 0); 2*min(p,1-p)}
smat <- apply(ipars, 2, function(x) c(mean(x), quantile(x,c(0.025,

↪→ 0.975)), bayespval(x)))
row.names(smat) <- c("mean","LCB","UCB","pvalue")
t(smat)

mean LCB UCB pvalue
subject 0.743504 0.613355 0.90935 0.0000
intercept 1.021433 0.736583 1.30687 0.0000
expind 0.110912 0.017704 0.20310 0.0210
treat 0.005876 -0.386557 0.39178 0.9695
interaction -0.301699 -0.434090 -0.17111 0.0000

We see that the posterior means reported here are quite similar to the estimates com-
puted earlier using likelihood methods. The Bayesian analysis seems rather more
confident that there is a drug effect since this posterior distribution is well separated
from zero.

The same model can also be fit by INLA in a straightforward way:
formula <- seizures ~offset(log(timeadj)) + expind + treat + I(expind*

↪→ treat) + f(id,model="iid")
result <- inla(formula, family="poisson", data = epilo)

We obtain a summary of the posteriors as:
sigmaalpha <- inla.tmarginal(function(x) 1/sqrt(x), result$marginals.

↪→ hyperpar$"Precision for id")
restab <- sapply(result$marginals.fixed, function(x) inla.zmarginal(x,

↪→ silent=TRUE))
restab <- cbind(restab, inla.zmarginal(sigmaalpha,silent=TRUE))
colnames(restab) = c("mu","expind","treat","interaction","alpha")
data.frame(restab)

mu expind treat interaction alpha
mean 1.036 0.11178 -0.0081489 -0.30246 0.72583
sd 0.14196 0.046891 0.19753 0.06973 0.070948
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quant0.025 0.75556 0.019681 -0.39732 -0.4396 0.59944
quant0.25 0.94023 0.079891 -0.14164 -0.34985 0.67548
quant0.5 1.0354 0.11151 -0.0093067 -0.3028 0.72079
quant0.75 1.1304 0.14314 0.12302 -0.25579 0.77093
quant0.975 1.3133 0.20349 0.3787 -0.16626 0.87796

We see that the results are similar to those obtained previously. We observe that
the 95% credible interval for the interaction is (−0.44,−0.17) so we are sure that
this parameter differs from zero as in the STAN analysis. We can compute further
numerical and graphical summaries as in previous examples obtaining very similar
results.

13.5 Generalized Estimating Equations

The advantage of the quasi-likelihood approach as described in Section 9.4 compared
to GLMs was that we did not need to specify the distribution of the response. We only
needed to give the link function and the variance. We can adapt this approach for
repeated measures and/or longitudinal studies. Let Yi be a vector of random variables
representing the responses on a given individual or cluster and let EYi = µi which
is then linked to the linear predictor using g(µi) = xT

i β, where g is a link function
appropriate to the response type and xi is the predictor vector.

As with the quasi-likelihood, we also need to specify a variance function a():

var Yi = φa(µi)

Certain choices of a() will be sensible depending on the type of response. The φ is a
scale parameter which may be set to one if not needed.

In addition, we must also specify how the responses within an individual or clus-
ter are correlated with each other. We set a working correlation matrix Ri(α) depend-
ing on a parameter α which we will estimate. This results in a working covariance
matrix for Yi:

Vi = φA1/2
i Ri(α)A

1/2
i

where Ai is a diagonal matrix formed from a(µi).
Given estimates of φ and α, we can estimate β by setting the (multivariate) score

function to zero and solving:

∑
i

(
∂µi

∂β

)T

V−1
i (Yi−µi) = 0

These equations can be regarded as the multivariate analogue of those used for the
quasi-likelihood models described in Section 9.4. Since var Y also depends on α, we
substitute any consistent estimate of α in this equation and still obtain an estimate as
asymptotically efficient as if α were known. A similar set of equations can be derived
representing the score with respect to α, which may be similarly solved. We iterate
between estimating α and β until we converge at a solution.

These are called generalized estimating equations (GEE). Note that no specifica-
tion of the distribution has been necessary which makes the fitting and specification
much simpler. The estimates of β are consistent even if the variance is misspecified.
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We use the geepack package as described in Højsgaard et al. (2005). The gee
package can also fit these models with somewhat different features.

We reanalyze the stability dataset:
data(ctsib, package="faraway")
ctsib$stable <- ifelse(ctsib$CTSIB==1,1,0)
library(geepack)
modgeep <- geeglm(stable ~ Sex + Age + Height + Weight + Surface +

↪→ Vision, id=Subject, corstr="exchangeable", scale.fix=TRUE,
↪→ data=ctsib, family=binomial)

We have specified the same fixed effects as in the corresponding GLMM earlier. The
grouping variable is specified by the id argument. Only simple groups are allowed
while nested grouping variables cannot be accommodated easily in this function. We
must choose the correlation structure within each group. If we choose no correlation,
then the problem reduces to a standard GLM. Several choices are available. For this
data, it seems reasonable to assume that any pair of observations from the same
subject have the same correlation. This is known as an exchangeable correlation or,
equivalently, compound symmetry. We have chosen to fix the scale parameter at the
default value of 1 to ensure maximum compatibility with the GLMM fit. Otherwise,
there would not be a strong reason to fix this. Let us now examine the output:
summary(modgeep)
Coefficients:

Estimate Std.err Wald Pr(>|W|)
(Intercept) 8.6233 5.9199 2.12 0.145
Sexmale 1.6449 0.9035 3.31 0.069
Age -0.0121 0.0480 0.06 0.802
Height -0.1021 0.0424 5.80 0.016
Weight 0.0437 0.0340 1.65 0.199
Surfacenorm 3.9163 0.5668 47.74 4.9e-12
Visiondome 0.3589 0.4040 0.79 0.374
Visionopen 3.1799 0.4606 47.66 5.1e-12

Scale is fixed.

Correlation: Structure = exchangeable Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.218 0.0447
Number of clusters: 40 Maximum cluster size: 12

We can see that the estimated correlation between observations on the same subject
is 0.22. The standard error of 0.04 indicates that we can be quite sure there is a
correlation in the responses within individuals.

The standard errors are constructed using a sandwich estimator as described in
Section 8.5. These are typically, but not always, larger than the naive standard errors
from the likelihood calculations. These standard errors can be used to construct Wald
statistics. We see that the treatment factors, surface and vision, are significant. Height
and possibly gender are marginally significant. This part of the conclusion is similar
to our GLMM results.

There is one clear difference with the GLMM output: the estimates for the GEE
are about half the size of the GLMM βs. This is to be expected. GLMMs model the
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data at the subject or individual level. The correlation between the measurements on
the individual is generated by the random effect. Thus the βs for the GLMM represent
the effect on an individual. A GEE models the data at the population level. The βs
for a GEE represent the effect of the predictors averaged across all individuals with
the same predictor values. GEEs do not use random effects but model the correlation
at the marginal or correlation level.

The testing for vision is not entirely satisfactory since it has three levels meaning
two tests—one being highly significant and the other not at all. If we want a single
test for the significance of vision, we need to refit the model without vision and make
the standard anova-type comparison:
modgeep2 <- geeglm(stable ~ Sex + Age + Height + Weight + Surface, id

↪→ =Subject, corstr="exchangeable", scale.fix=TRUE, data=ctsib,
↪→ family=binomial)

anova(modgeep2, modgeep)
Analysis of ’Wald statistic’ Table

Model 1 stable ~ Sex + Age + Height + Weight + Surface + Vision
Model 2 stable ~ Sex + Age + Height + Weight + Surface
Df X2 P(>|Chi|)

1 2 58.4 2.1e-13

As expected, we see that vision is strongly significant.
The geepack package also offers the possibility of modeling an ordinal response

with clusters using the ordgee() function. This would be appropriate for the original
form of this data where the response is measured on a four-point scale.

We can also model the epilepsy data:
data(epilepsy, package="faraway")

We exclude the 49th case as before. An autoregressive AR(1) model for the correla-
tion structure is most natural since consecutive measurements will be more correlated
than measurements separated in time. Note that this does require that the clusters be
sorted in time order — they are in this case.
modgeep <- geeglm(seizures ~offset(log(timeadj)) + expind + treat + I(

↪→ expind*treat), id=id, family=poisson, corstr="ar1", data=
↪→ epilepsy, subset=(id!=49))

summary(modgeep)
Coefficients:

Estimate Std.err Wald Pr(>|W|)
(Intercept) 1.3138 0.1616 66.10 4.4e-16
expind 0.1509 0.1108 1.86 0.173
treat -0.0797 0.1983 0.16 0.688
I(expind * treat) -0.3987 0.1745 5.22 0.022

Estimated Scale Parameters:
Estimate Std.err

(Intercept) 10.6 2.35

Correlation: Structure = ar1 Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.783 0.0519
Number of clusters: 58 Maximum cluster size: 5

The drug effects, as measured by the interaction term, has a just significant effect.
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The dispersion parameter is estimated as 10.6. This means that if we did not account
for the overdispersion, the standard errors would be much larger. The AR(1) corre-
lation structure can be seen in the working correlation where adjacent measurements
have 0.78 correlation.

Further analysis would involve an investigation of alternative correlation struc-
tures, the age covariate and any trend during the experimental period. The analysis
of this dataset is discussed in Diggle et al. (2013).

Further Reading: McCulloch and Searle (2002) have some coverage of
GLMMs as well as more material on GLMs. Hardin and Hilbe (2003) give a book-
length treatment of GEEs. Diggle et al. (2013) discuss both topics.

Exercises

1. The ohio data concern 536 children from Steubenville, Ohio and were taken as
part of a study on the effects of air pollution. Children were in the study for 4 years
from ages 7 to 10. The response was whether they wheezed or not. The variables
are:
resp an indicator of wheeze status (1 = yes, 0 = no)
id an identifier for the child
age 7 yrs = −2, 8 yrs = −1, 9 yrs = 0, 10 yrs = 1
smoke an indicator of maternal smoking at the first year of the study (1 = smoker,

0 = nonsmoker)

(a) Do any of the mothers in the study change their smoking status during the
period of observation?

(b) Construct a table that shows proportion of children who wheeze for 0, 1, 2, 3
or 4 years broken down by maternal smoking status.

(c) Make plot which shows how the proportion of children wheezing changes by
age with a separate line for smoking and nonsmoking mothers.

(d) Group the data by child to count the total (out of four) years of wheezing.
Fit a binomial GLM to this response to check for a maternal smoking effect.
Does this prove there is a smoking effect or could there be another plausible
explanation?

(e) Fit a model for each individual response using a GLMM fit using penalized
quasi-likelihood. Describe the effects of age and maternal smoking. How do
the odds of wheezing change numerically over time?

(f) Now fit the same model but using adaptive Gaussian-Hermit quadrature. Com-
pare to the previous model fit.

(g) Use INLA to fit the same model. What does this model say about the effect of
age and maternal smoking?

(h) Use STAN to fit the same model. Check the MCMC diagnostics and again dis-
cuss the age and maternal smoking effects.
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(i) Fit the model using GEE. Use an autoregressive rather than exchangeable error
structure. Compare the results to the previous model fits. In your model, what
indicates that a child who already wheezes is likely to continue to wheeze?

(j) What is your overall conclusion regarding the effect of age and maternal smok-
ing? Can we trust the GLM result or are the GLMM models preferable?

2. The National Youth Survey collected a sample of 11–17 year olds, 117 boys
and 120 girls, asking questions about marijuana usage. The data is presented in
potuse.

(a) Plot the total number of people falling into each usage category as it varies
over time separately for each sex.

(b) Condense the levels of the response into whether the person did or did not use
marijuana that year. Turn the year into a numerical variable. Fit a GLMM for
the now binary response with an interaction between sex and year as a predictor
using Gauss-Hermite quadrature. Comment on the effect of sex.

(c) Fit a reduced model without sex and use it to test for the significance of sex in
the larger model.

(d) Fit a model with year as a factor. Should this model be preferred to the model
with year as just a linear term? Interpret the estimated effects in the year as a
factor version of the model.

(e) Fit GEE version of the model and compare it to the analogous GLMM fit.
3. Components are attached to an electronic circuit card assembly by a wave-

soldering process. The soldering process involves baking and preheating the cir-
cuit card and then passing it through a solder wave by conveyor. Defects arise
during the process. The design is 27−3 with three replicates and the data is found
in wavesolder.

(a) Plot the data to show how the number of defects varies with the predictors.
(b) Fit a Poisson GLM to the individual runs with the number of defects as the

response and main effects for all the predictors. How can you tell that this
model is inadequate? Fit a comparable quasi-Poisson GLM. What difference
does this make to the significance of the predictors?

(c) Sum the defects within each replicate group of three and fit a quasi-Poisson
GLM to these sums. Compare the fitted model to the previous one.

(d) Fit a GEE model to the individual defect responses with a fixed scale that
allows for an autoregressive correlation structure within the groups (assuming
that the replicates are in time order). Is it reasonable to fix the scale?

(e) Now refit without a fixed scale. Is there any evidence of a correlation between
successive replicates?

(f) Finally fit a GEE model with an independent correlation structure within the
replicates. Compare this model to the quasi-Poisson GLM fit.

4. The nitrofen data in boot package come from an experiment to measure the
reproductive toxicity of the pesticide nitrofen on a species of zooplankton called
Ceriodaphnia dubia. Each animal produced three broods in which the number of
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live offspring was recorded. Fifty animals in total were used and divided into five
batches. Each batch was treated in a solution with a different concentration of the
pesticide.

(a) Plot the total number of live offspring as they vary with concentration and
comment. Now plot the numbers for each brood, taking care to distinguish the
different broods. Is the trend within each brood the same?

(b) Fit a GLMM for the number of live offspring within each brood that varies with
concentration and brood number (including an interaction). The model should
take account of the dependence between observations from the same animal.
Describe what the model says about how the number of live offspring change
with concentration for the different broods.

(c) Fit an equivalent GEE model and compare it to the GLMM result.
5. The toenail data comes from a multicenter study comparing two oral treatments

for toenail infection. Patients were evaluated for the degree of separation of the
nail. Patients were randomized into two treatments and were followed over seven
visits: four in the first year and yearly thereafter. The patients have not been treated
prior to the first visit so this should be regarded as the baseline.

(a) Calculate the proportion of patients with a normal or severe condition broken
down by treatment and visit number. Plot these proportions and comment.

(b) Fit a GLMM for the outcome as a function of an interaction between the visit
and the treatment. Since the two groups are selected at random, there should
be no difference at the first visit. Does this model show a significant difference
at this baseline (first visit)?

(c) Test for a significant treatment effect by fitting a model without treatment and
comparing to the previous model.



Chapter 14

Nonparametric Regression

The generalized linear model was an extension of the linear model y = Xβ+ ε to
allow the responses y from the exponential family. The mixed effect models allowed
for a much more general treatment of ε. We now switch our attention to the linear
predictor η = Xβ. We want to make this more flexible. There are a wide variety of
available methods, but it is best to start with simple regression. The methods devel-
oped here form part of the solution to the multiple predictor problem.

Given fixed x1, . . . ,xn, we observe y1, . . . ,yn where:

yi = f (xi)+ εi

where the εi are i.i.d. and have mean zero and unknown variance σ2. The problem is
to estimate the function f .

A parametric approach is to assume that f (x) belongs to a parametric family of
functions: f (x|β). So f is known up to a finite number of parameters. Some examples
are:

f (x|β) = β0 +β1x

f (x|β) = β0 +β1x+β2x2

f (x|β) = β0 +β1xβ2

The parametric approach is quite flexible because we are not constrained to just linear
predictors as in the first model of the three above. We can add many different types of
terms such as polynomials and other functions of the variable to achieve flexible fits.
Nonlinear models, such as the third case above, are also parametric in nature. Nev-
ertheless, no matter what finite parametric family we specify, it will always exclude
many plausible functions.

The nonparametric approach is to choose f from some smooth family of func-
tions. Thus the range of potential fits to the data is much larger than the parametric
approach. We do need to make some assumptions about f — that it has some degree
of smoothness and continuity, for example, but these restrictions are far less limiting
than the parametric way.

The parametric approach has the advantage that it is more efficient if the model
is correct. If you have good information about the appropriate model family, you
should prefer a parametric model. Parameters may also have intuitive interpretations.
Nonparametric models do not have a formulaic way of describing the relationship be-
tween the predictors and the response; this often needs to be done graphically. This
relates to another advantage of parametric models in that they reduce information
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necessary for prediction; you can write down the model formula, typically in a com-
pact form. Nonparametric models are less easily communicated on paper. Parametric
models also enable easy utilization of past experience.

The nonparametric approach is more flexible. In modeling new data, one often
has very little idea of an appropriate form for the model. We do have a number of
heuristic tools using diagnostic plots to help search for this form, but it would be
easier to let the modeling approach take care of this search. Another disadvantage of
the parametric approach is that one can easily choose the wrong form for the model
and this results in bias. The nonparametric approach assumes far less and so is less
liable to make bad mistakes. The nonparametric approach is particularly useful when
little past experience is available

For our examples we will use three datasets, one real (data on the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA) and two simulated, called exa
and exb. The data comes from Härdle (1991). The reason we use simulated data is to
see how well the estimates match the true function (which cannot usually be known
for real data). We plot the data in the first three panels of Figure 14.1, using a line to
mark the true function where known. For exa, the true function is f (x) = sin3(2πx3).
For exb, it is constant zero, that is, f (x) = 0:
data(exa, package="faraway")
plot(y ~ x, exa,main="Example A")
lines(m ~ x, exa, lwd=2)
data(exb, package="faraway")
plot(y ~ x, exb,main="Example B")
lines(m ~ x, exb, lwd=2)
plot(waiting ~ eruptions, faithful,main="Old Faithful")

Figure 14.1 Data examples. Example A has varying amounts of curvature, two optima and a
point of inflexion. Example B has two outliers. The Old Faithful provides the challenges of real
data.

We now examine several widely used nonparametric regression estimators, also
known as smoothers.
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14.1 Kernel Estimators

In its simplest form, this is just a moving average estimator. More generally, our
estimate of f , called f̂λ(x), is:

f̂λ(x) =
1

nλ

n

∑
j=1

K
(

x− x j

λ

)
Yj =

1
n

n

∑
j=1

w jYj where w j = K
(

x− x j

λ

)
/λ

K is a kernel where
∫

K = 1. The moving average kernel is rectangular, but smoother
kernels can give better results. λ is called the bandwidth, window width or smoothing
parameter. It controls the smoothness of the fitted curve.

If the xs are spaced very unevenly, then this estimator can give poor results. This
problem is somewhat ameliorated by the Nadaraya–Watson estimator:

fλ(x) =
∑

n
j=1 w jYj

∑
n
j=1 w j

We see that this estimator simply modifies the moving average estimator so that it is
a true weighted average where the weights for each y will sum to one.

It is worth understanding the basic asymptotics of kernel estimators. The optimal
choice of λ gives:

MSE(x) = E( f (x)− f̂λ(x))
2 = O(n−4/5)

MSE stands for mean squared error and we see that this decreases at a rate propor-
tional to n−4/5 with the sample size. Compare this to the typical parametric estimator
where MSE(x) = O(n−1), provided that the parametric model is correct. So the ker-
nel estimator is less efficient. Indeed, the relative difference between the MSEs be-
comes substantial as the sample size increases. However, if the parametric model is
incorrect, the MSE will be O(1) and the fit will not improve past a certain point even
with unlimited data. The advantage of the nonparametic approach is the protection
against model specification error. Without assuming much stronger restrictions on f ,
nonparametric estimators cannot do better than O(n−4/5).

The implementation of a kernel estimator requires two choices: the kernel and
the smoothing parameter. For the choice of kernel, smoothness and compactness are
desirable. We prefer smoothness to ensure that the resulting estimator is smooth, so
for example, the uniform kernel will give stepped-looking fit that we may wish to
avoid. We also prefer a compact kernel because this ensures that only data, local to
the point at which f is estimated, is used in the fit. This means that the Gaussian
kernel is less desirable, because although it is light in the tails, it is not zero, meaning
that the contribution of every point to the fit must be computed. The optimal choice
under some standard assumptions is the Epanechnikov kernel:

K(x) =
{ 3

4 (1− x2) |x|< 1
0 otherwise

This kernel has the advantage of some smoothness, compactness and rapid computa-
tion. This latter feature is important for larger datasets, particularly when resampling
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techniques like bootstrap are being used. Even so, any sensible choice of kernel will
produce acceptable results, so the choice is not crucially important.

The choice of smoothing parameter λ is critical to the performance of the esti-
mator and far more important than the choice of kernel. If the smoothing parameter
is too small, the estimator will be too rough; but if it is too large, important features
will be smoothed out.

We demonstrate the Nadaraya–Watson estimator next for a variety of choices
of bandwidth on the Old Faithful data shown in Figure 14.2. We use the ksmooth
function which is part of the R base package. This function lacks many useful features
that can be found in some other packages, but it is adequate for simple use. The
default uses a uniform kernel, which is somewhat rough. We have changed this to the
normal kernel:
for(bw in c(0.1,0.5,2)){
with(faithful,{

plot(waiting ~ eruptions, col=gray(0.75))
lines(ksmooth(eruptions,waiting,"normal",bw))
})}

Figure 14.2 Nadaraya–Watson kernel smoother with a normal kernel for three different band-
widths on the Old Faithful data.

The central plot in Figure 14.2 is the best choice of the three. Since we do not know
the true function relating waiting time and eruption duration, we can only speculate,
but it does seem reasonable to expect that this function is quite smooth. The fit on
the left does not seem plausible since we would not expect the mean waiting time to
vary so much as a function of eruptions. On the other hand, the plot on the right is
even smoother than the plot in the middle. It is not so easy to choose between these.
Another consideration is that the eye can always visualize additional smoothing, but
it is not so easy to imagine what a less smooth fit might look like. For this reason, we
recommend picking the least smooth fit that does not show any implausible fluctua-
tions. Of the three plots shown, the middle plot seems best. Smoothers are often used
as a graphical aid in interpreting the relationship between variables. In such cases,
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visual selection of the amount of smoothing is effective because the user can employ
background knowledge to make an appropriate choice and avoid serious mistakes.

You can choose λ interactively using this subjective method. Plot f̂λ(x) for a
range of different λ and pick the one that looks best as we have done above. You may
need to iterate the choice of λ to focus your decision. Knowledge about what the true
relationship might look like can be readily employed.

In cases where the fitted curve will be used to make numerical predictions of
future values, the choice of the amount of smoothing has an immediate effect on
the outcome. Even here subjective methods may be used. If this method of selecting
the amount of smoothing seems disturbingly subjective, we should also understand
that the selection of a family of parametric models for the same data would also
involve a great deal of subjective choice although this is often not explicitly recog-
nized. Statistical modeling requires us to use our knowledge of what general forms
of relationship might be reasonable. It is not possible to determine these forms from
the data in an entirely objective manner. Whichever methodology you use, some sub-
jective decisions will be necessary. It is best to accept this and be honest about what
these decisions are.

Even so, automatic methods for selecting the amount of smoothing are also use-
ful. Selecting the amount of smoothing using subjective methods requires time and
effort. When a large number of smooths are necessary, some automation is desirable.
In other cases, the statistician will want to avoid the explicit appearance of subjec-
tivity in the choice. Cross-validation (CV) is a popular general-purpose method. The
criterion is:

CV (λ) =
1
n

n

∑
j=1

(y j− f̂λ( j)(x j))
2

where ( j) indicates that point j is left out of the fit. We pick the λ that minimizes this
criterion. True cross-validation is computationally expensive, so an approximation to
it, known as generalized cross-validation or GCV, is sometimes used. There are also
many other methods of automatically selecting the λ.

Our practical experience has been that automatic methods, such as CV, often
work well, but sometimes produce estimates that are clearly at odds with the amount
of smoothing that contextual knowledge would suggest. For this reason, we are un-
willing to trust automatic methods completely. We recommend using them as a start-
ing point for a possible interactive exploration of the appropriate amount of smooth-
ing if time permits. They are also useful when very large numbers of smooths are
needed such as in the additive modeling approach described in Chapter 15.

When smoothing is used to determine whether f has certain features such as mul-
tiple maximums (called bump hunting) or monotonicity, special methods are neces-
sary to choose the amount of smoothing since this choice will determine the outcome
of the investigation.

The sm library, described in Bowman and Azzalini (1997), allows the computa-
tion of the cross-validated choice of smoothing parameter. For example, we find the
CV choice of smoothing parameter for the Old Faithful and plot the result:
library(sm)
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with(faithful,sm.regression(eruptions, waiting, h=h.select(eruptions,
↪→ waiting)))

Figure 14.3 The first panel shows the kernel estimated smooth of the Old Faithful data for a
cross-validated choice of smoothing parameter. The second and third panels show the resulting
fits for Examples A and B, respectively.

We see the resulting fit plotted in the first panel of Figure 14.3. The sm package uses
a Gaussian kernel where the smoothing parameter is the standard deviation of the
kernel.

We repeat the exercise for Example A; the plots are shown in the second panel of
Figure 14.3. The resulting fit is somewhat oversmoothed.
with(exa, sm.regression(x, y, h=h.select(x,y)))

Finally, we compute the fit for Example B as seen in the third panel of Fig-
ure 14.3.
with(exb, sm.regression(x, y, h=h.select(x,y)))

We see that the fitted curve notices the two outliers but does not reach out to them.
A much smaller choice of smoothing parameter would allow the fitted curve to pass
near these two points but only at the price of a much rougher fit elsewhere.

14.2 Splines

Smoothing Splines: The model is yi = f (xi)+εi, so in the spirit of least squares, we
might choose f̂ to minimize the MSE: 1

n ∑(yi− f (xi))
2. The solution is f̂ (xi) = yi.

This is a “join the dots” regression that is almost certainly too rough. Instead, suppose
we choose f̂ to minimize a modified least squares criterion:

1
n ∑(Yi− f (xi))

2 +λ

∫
[ f ′′(x)]2dx

where λ > 0 is the smoothing parameter and
∫
[ f ′′(x)]2dx is a roughness penalty.

When f is rough, the penalty is large, but when f is smooth, the penalty is small. Thus
the two parts of the criterion balance fit against smoothness. This is the smoothing
spline fit.
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For this choice of roughness penalty, the solution is of a particular form: f̂ is
a cubic spline. This means that f̂ is a piecewise cubic polynomial in each interval
(xi,xi+1) (assuming that the xis are unique and sorted). It has the property that f̂ , f̂ ′

and f̂ ′′ are continuous. Given that we know the form of the solution, the estimation is
reduced to the parametric problem of estimating the coefficients of the polynomials.
This can be done in a numerically efficient way.

Several variations on the basic theme are possible. Other choices of roughness
penalty can be considered, where penalties on higher-order derivatives lead to fits
with more continuous derivatives. We can also use weights by inserting them in the
sum of squares part of the criterion. This feature is useful when smoothing splines are
means to an end for some larger procedure that requires weighting. A robust version
can be developed by modifying the sum of squares criterion to:

∑ρ(yi− f (xi))+λ

∫
[ f ′′(x)]2dx

where ρ(x) = |x| is one possible choice.
In R, cross-validation is used to select the smoothing parameter by default. We

show this default choice of smoothing for our three test cases:
with(faithful,{

plot(waiting ~ eruptions, col=gray(0.75))
lines(smooth.spline(eruptions,waiting),lty=2)

})
with(exa,{

plot(y ~ x, col=gray(0.75))
lines(x,m)
lines(smooth.spline(x,y),lty=2)

})
with(exb,{

plot(y ~ x, col=gray(0.75))
lines(x,m)
lines(smooth.spline(x,y),lty=2)

})

The fits may be seen in Figure 14.4. The fit for the Old Faithful data looks rea-
sonable. The fit for Example A does a good job of tracking the hills and valleys but
overfits in the smoother region. The default choice of smoothing parameter given by
CV is a disaster for Example B as the data is just interpolated. This illustrates the
danger of blindly relying on automatic smoothing parameter selection methods.

Regression Splines: Regression splines differ from smoothing splines in the fol-
lowing way: for regression splines, the number of knots of the B-splines used for the
basis are typically much smaller than the sample size. The number of knots chosen
controls the amount of smoothing. For smoothing splines, the observed unique x val-
ues are the knots and λ is used to control the smoothing. It is arguable whether the
regression spline method is parametric or nonparametric, because once the knots are
chosen, a parametric family has been specified with a finite number of parameters.
It is the freedom to choose the number of knots that makes the method nonparamet-
ric. One of the desirable characteristics of a nonparametric regression estimator is
that it should be consistent for smooth functions. This can be achieved for regression
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Figure 14.4 Smoothing spline fits. For Examples A and B, the true function is shown as solid
and the spline fit as dashed.

splines if the number of knots is allowed to increase at an appropriate rate with the
sample size.

We demonstrate some regression splines here. We use piecewise linear splines in
this example, which are constructed and plotted as follows: knots
rhs <- function(x,c) ifelse(x>c,x-c,0)
curve(rhs(x,0.5),0,1)

where the spline is shown in the first panel of Figure 14.5. Now we define some knots
for Example A:
(knots <- 0:9/10)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

and compute a design matrix of splines with knots at these points for each x:
dm <- outer(exa$x,knots,rhs)
matplot(exa$x,dm,type="l",col=1, xlab="x", ylab="")

where the basis functions are shown in the second panel of Figure 14.5. Now we
compute and display the regression fit:
lmod <- lm(exa$y ~ dm)
plot(y ~ x, exa, col=gray(0.75))
lines(exa$x,predict(lmod))

where the plot is shown in the first panel of Figure 14.6. Because the basis functions
are piecewise linear, the fit is also piecewise linear. A better fit may be obtained by
adjusting the knots so that they are denser in regions of greater curvature:
newknots <- c(0,0.5,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95)
dmn <- outer(exa$x,newknots,rhs)
lmod <- lm(exa$y ~ dmn)
plot(y ~x, exa, col=gray(0.75))
lines(exa$x,predict(lmod))

where the plot is shown in the second panel of Figure 14.6. We obtain a better fit
but only by using our knowledge of the true curvature. This knowledge would not be
available for real data, so more practical methods place the knots adaptively accord-
ing to the estimated curvature.
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Figure 14.5 One basis function for linear regression splines shown on the left and the complete
set shown on the right.

Figure 14.6 Evenly spaced knots fit shown on the left and knots spread relative to the curvature
on the right.
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One can achieve a smoother fit by using higher-order splines. The bs() function
can be used to generate the appropriate spline basis. The default is cubic B-splines.
We display 12 cubic B-splines evenly spaced on the [0,1] interval. The splines close
to the boundary take a different form as seen in the first panel of Figure 14.7:
library(splines)
matplot(bs(seq(0,1,length=1000),df=12),type="l",ylab="",col=1)

Figure 14.7 A cubic B-spline basis is shown in the left panel and the resulting fit to the Exam-
ple A data is shown in the right panel.

We can now use least squares to determine the coefficients. We then display the fit as
seen in the second panel of Figure 14.7:
lmod <- lm(y ~ bs(x,12),exa)
plot(y ~ x, exa, col=gray(0.75))
lines(m ~ x, exa)
lines(predict(lmod) ~ x, exa, lty=2)

We see a smooth fit, but again we could do better by placing more knots at the points
of high curvature and fewer in the flatter regions.

14.3 Local Polynomials

Both the kernel and spline methods have been relatively vulnerable to outliers as
seen by their performance on Example B. The fits can be improved with some man-
ual intervention, either to remove the outliers or to increase the smoothing param-
eters. However, smoothing is frequently just a small part of an analysis and so we
might wish to avoid giving each smooth individual attention. Furthermore, habitual
removal of outliers is an ad hoc strategy that is better replaced with a method that
deals with long-tailed errors gracefully. The local polynomial method combines ro-
bustness ideas from linear regression and local fitting ideas from kernel methods.

First we select a window. We then fit a polynomial to the data in that window
using robust methods. The predicted response at the middle of the window is the
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fitted value. We then slide the window over the range of the data, repeating the fitting
process as the window moves. The most well-known implementation of this type of
smoothing is called lowess or loess and is due to Cleveland (1979).

As with any smoothing method, there are choices to be made. We need to choose
the order of the polynomial fit. A quadratic allows us to capture peaks and valleys
in the function. However, a linear term also performs well and is the default choice
in the loess function. As with most smoothers, it is important to pick the window
width well. The default choice takes three quarters of the data and may not be a good
choice as we shall see below.

For the Old Faithful data, the default choice is satisfactory, as seen in the first
panel of Figure 14.8:
with(faithful,{

plot(waiting ~ eruptions, col=gray(0.75))
f <- loess(waiting ~ eruptions)
i <- order(eruptions)
lines(f$x[i],f$fitted[i])

})

For Example A, the default choice is too large. The choice that minimizes the inte-
grated squared error between the estimated and true function requires a span (pro-
portion of the range) of 0.22. Both fits are seen in the middle panel of Figure 14.8:
with(exa,{

plot(y ~ x, col=gray(0.75))
lines(m ~ x)
f <- loess(y ~ x)
lines(f$x,f$fitted,lty=2)
f <- loess(y ~ x,span=0.22)
lines(f$x,f$fitted,lty=5)

})

In practice, the true function is, of course, unknown and we would need to select the
span ourselves, but this optimal choice does at least show how well loess can do in
the best of circumstances. The fit is similar to that for smoothing splines.

For Example B, the optimal choice of span is one (that is all the data). This is
not surprising since the true function is a constant and so maximal smoothing is
desired. We can see that the robust qualities of loess prevent the fit from becoming
too distorted by the two outliers even with the default choice of smoothing span:
with(exb,{

plot(y ~ x, col=gray(0.75))
lines(m ~ x)
f <- loess(y ~ x)
lines(f$x,f$fitted,lty=2)
f <- loess(y ~ x,span=1)
lines(f$x,f$fitted,lty=5)

})

14.4 Confidence Bands

It is helpful to have some expression of uncertainty in the curve estimates. Both the
regression spline and loess methods use (local) linear fitting using parametric meth-
ods. These same methods naturally generate a standard error which can be used to
construct a confidence interval at any point in x. We may connect these intervals to-
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Figure 14.8 Loess smoothing: Old Faithful data is shown in the left panel with the default
amount of smoothing. Example A data is shown in the middle and B in the right panel. The
true function is shown as a solid line along with the default choice (dotted) and respective
optimal amounts of smoothing (dashed) are also shown.

gether to form a confidence band. These are conveniently constructed and displayed
using the ggplot2 package.

We construct the 95% confidence band for Example A data using loess:
ggplot(exa, aes(x=x,y=y)) + geom_point(alpha=0.25) + geom_smooth(

↪→ method="loess", span=0.22) + geom_line(aes(x=x,y=m),linetype=2)

The plot is seen in the first panel of Figure 14.9. We have added the true function
as a dashed line. We observe that the true function falls just outside the band in a
few areas. However, the band we have constructed is a pointwise confidence band.
The 95% confidence applies at each point but since we have a wide range of points,
the 95% probability of the interval containing the true value cannot hold across the
range. For this we would need a simultaneous confidence band.

We can also construct a band using splines. We need the mgcv package which
includes a spline smoother.
library(mgcv)
ggplot(exa, aes(x=x,y=y)) + geom_point(alpha=0.25) + geom_smooth(

↪→ method="gam", formula=y ~ s(x, k=20)) + geom_line(aes(x=x,y=m),
↪→ linetype=2)

We see the resulting plot in the second panel of Figure 14.9. In this case, we have
manually chosen the smoothing parameter, k=20, representing the degrees of free-
dom in the fit. It is larger to accommodate the variation in this function, producing a
better although not perfect fit to that seen in Figure 14.6.

14.5 Wavelets

Regression splines are an example of a basis function approach to fitting. We ap-
proximate the curve by a family of basis functions, φi(x), so that f̂ (x) = ∑i ciφi(x).
Thus the fit requires estimating the coefficients, ci. The choice of basis functions will
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Figure 14.9 95% confidence bands for loess (left) and spline (right) fits to Example A.

determine the properties of the fitted curve. The estimation of ci is particularly easy
if the basis functions are orthogonal.

Examples of orthogonal bases are orthogonal polynomials and the Fourier basis.
The disadvantage of both these families is that the basis functions are not compactly
supported so that the fit of each basis function depends on the whole data. This means
that these fits lack the desirable local fit properties that we have seen in previously
discussed smoothing methods. Although Fourier methods are popular for some ap-
plications, particularly those involving periodic data, they are not typically used for
general-purpose smoothing.

Cubic B-splines are compactly supported, but they are not orthogonal. Wavelets
have the advantage that they are compactly supported and can be defined so as to
possess the orthogonality property. They also possess the multiresolution property
which allows them to fit the grosser features of the curve while focusing on the finer
detail where necessary.

We begin with the simplest type of wavelet: the Haar basis. The mother wavelet
for the Haar family is defined on the interval [0,1) as:

w(x) =
{

1 x≤ 1/2
−1 x > 1/2

We generate the members of the family by dilating and translating this function. The
next two members of the family are defined on [0,1/2) and [1/2,1) by rescaling
the mother wavelet to these two intervals. The next four members are defined on
the quarter intervals in the same way. We can index the family members by level
j and within the level by k so that each function will be defined on the interval
[k/2 j,(k+1)/2 j) and takes the form:

hn(x) = 2 j/2w(2 jx− k)
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where n = 2 j + k and 0 ≤ k ≤ 2 j. Plotting these functions reveals that they are or-
thogonal. They are also orthonormal, because they integrate to 1. Furthermore, they
have a local basis where the support becomes narrower as the level is increased.
Computing the coefficients is particularly quick because of these properties.

Wavelet fitting can be implemented using the wavethresh package of Nason
(2013). The first step is to make the wavelet decomposition. We will illustrate this
with Example A:
library(wavethresh)
wds <- wd(exa$y,filter.number=1, family="DaubExPhase")

The filter number specifies the complexity of the family. The Haar basis is the sim-
plest available but is not the default choice. We can now show the mother wavelet
and wavelet coefficients:
draw(wds)
plot(wds)
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Figure 14.10 Haar mother wavelet and wavelet coefficients from decomposition for Example
A.

We can see the Haar mother wavelet in the left panel of Figure 14.10. We see the
wavelet decomposition in the right panel.

Suppose we wanted to compress the data into a more compact format. Smoothing
can be viewed as a form of compression because it retains the important features of
the data while discarding some of the finer detail. The smooth is described in terms
of the fitted coefficients which are fewer than the number of data points. The method
would be called lossy since some information about the original data is lost.

For example, suppose we want to smooth the data extensively. We could throw
away all the coefficients of level four or higher and then reconstruct the function as
follows:
wtd <- threshold(wds,policy="manual",value=9999)
fd <- wr(wtd)

Only level-three and higher coefficients are retained. There are only 23 = 8 of these.
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The thresholding here applies to level four and higher only by default. Any coefficient
less than 9999 in absolute value is set to zero — that is, all of them in this case. The
wr() inverts the wavelet transform. We now plot the result as seen in the first panel
of Figure 14.11:
plot(y ~ x, exa, col=gray(0.75))
lines(m ~ x, exa)
lines(fd ~ x, exa, lty=5, lwd=2)

Figure 14.11 Thresholding and inverting the transform. In the left panel all level-four and
above coefficients are zeroed. In the right, the coefficients are thresholded using the default
method. The true function is shown as a solid line and the estimate as a dashed line.

We see that the fit consists of eight constant fits; we expect this since Haar basis is
piecewise constant and we have thrown away the higher-order parts leaving just eight
coefficients.

Instead of simply throwing away higher-order coefficients, we could zero out
only the small coefficients. We choose the threshold using the default method:
wtd2 <- threshold(wds)
fd2 <- wr(wtd2)

Now we plot the result as seen in the second panel of Figure 14.11.
plot(y ~ x, exa, col=gray(0.75))
lines(m ~ x,exa)
lines(fd2 ~ x, exa, lty=5, lwd=2)

Again, we see a piecewise constant fit, but now the segments are of varying lengths.
Where the function is relatively flat, we do not need the detail from the higher-order
terms. Where the function is more variable, the finer detail is helpful.

We could view the thresholded coefficients as a compressed version of the orig-
inal data (or signal). Some information has been lost in the compression, but the
thresholding algorithm ensures that we tend to keep the detail we need, while throw-
ing away noisier elements.

Even so, the fit is not particularly good because the fit is piecewise constant. We
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would like to use continuous basis functions while retaining the orthogonality and
multiresolution properties. Families of such functions were discovered and described
in Daubechies (1991). We illustrate such a form in Figure 14.12 for our data:
wds <- wd(exa$y,filter.number=2,bc="interval")
draw(filter.number=2,family="DaubExPhase")
plot(wds)
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Figure 14.12 Mother wavelet is shown in the left panel — the Daubechies orthonormal com-
pactly supported wavelet N=2 from the extremal phase family. The right panel shows the
wavelet coefficients.

The mother wavelet takes an unusual form. The function is not explicitly defined, but
is implicitly computed from the method for making the wavelet decomposition. Now
we try the default thresholding and reconstruct the fit:
wtd <- threshold(wds)
fd <- wr(wtd)
plot(y ~ x, exa, col=gray(0.75))
lines(m ~ x,exa)
lines(fd ~ x, exa, lty=2)

We can see the fit in Figure 14.13. Although the fit follows the true function quite
well, there is still some roughness.

The standard wavelet fitting function is designed only for evenly spaced x with
a number of observations in some power of two. Fortunately, there are 256 ob-
servations in Example A, but the Old Faithful set is not so conveniently arranged.
The wavethresh package implements a method described in Kovac and Silverman
(2000) that handles irregularly spaced data. We illustrate how this can be applied
here. The method works by interpolating an evenly spaced grid on [0,1] using the
next highest power of two beyond the size of the data — in this case 512. We need to
rescale the predictor to [0,1] first for this to work. We have taken the default options
throughout except to say that the boundary condition, bc, does not assume a periodic
function.
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Figure 14.13 Daubechies wavelet N=2 thresholded fit to the Example A data shown on the
left. Irregular wavelet fit to the Old Faithful data is shown on the right.

x <- with(faithful, (eruptions-min(eruptions))/(max(eruptions)-min(
↪→ eruptions)))

gridof <- makegrid(x, faithful$waiting)
wdof <- irregwd(gridof, bc="symmetric")
wtof <- threshold(wdof)
wrof <- wr(wtof)
plot(waiting ~ eruptions, faithful, col=grey(0.75))
with(faithful,lines(seq(min(eruptions),max(eruptions),len=512), wrof))

The resulting plot, shown in the second panel of Figure 14.13, reveals a discontinuity
in the fit not seen in previous plots. This demonstrates one of the main advantages of
the wavelet method in handling and revealing discontinuities. Wavelet methods are
particularly useful in processing very large datasets such as those found in image and
sound files because the filtering method of thresholding coefficients can drastically
reduce file size without losing much information.

14.6 Discussion of Methods

We have presented only a selection of the wide variety of methods available. For
example, nearest neighbor methods adjust for varying density in the predictor space
by adjusting window widths to be wider in sparser regions and narrower in denser
regions. Window widths are also nonconstant in variable bandwidth methods. Such
methods are particularly appropriate for functions like Example A where the smooth-
ness of the function varies. We would like to use a smaller bandwidth in regions
where the function changes rapidly but a wider one where it is more constant.

Bayesian methods of smoothing are evident in the Gaussian Process method as
described in Rasmussen and Williams (2006). This method is particularly appropriate
if you have prior knowledge and also works well on quite small datasets.
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The construction of alternate smoothing methods has long been a popular topic of
interest for statisticians and researchers in other fields. Because no definitive solution
is possible, this has encouraged the development of a wide range of methods. But it
is important not to allow the enthusiasm to solve an interesting technical problem to
overshadow the purpose of a data analysis. We propose four possible objectives:
Description Sometimes we simply want to draw a line on a scatterplot to aid in the

visual interpretation of the relationship displayed. We do not want to spend a lot
of time or effort in constructing this smooth. We want a method that is simple and
reliable.

Auxiliary In some applications, the smoothed fit is needed as part of some larger
analysis. The smooth is not the principal aim. For example, the smooth might
be used to impute some missing values. In such examples, we need to choose
the smoothing method to optimize the wider objective. Sometimes, this means
choosing rougher or smoother results than we would pick in a standalone problem.

Prediction Interpolating values in noisy data is one example where these methods
could be useful. Extrapolation is more problematic as this requires some assump-
tions about how the function will behave outside the range of the data. Parametric
methods do better here as, although extrapolation is inherently risky, it is more
transparent how they will behave. We may also want to construct confidence state-
ments which is easier to do with the basis function methods, such as splines, be-
cause we can mirror the parametric methods.

Explanation In linear modeling, the most common regression question concerns
whether there is a relationship between x and y. No relationship corresponds to an
assertion that the function is constant. We can construct confidence bands for some
of the methods. We can then observe whether a constant function fits between the
bands to decide the question. Even so, it would be better to directly construct a
hypothesis test for which parametric methods are more amenable. Nonparametric
methods do at least give us more information about situations where the assertion
of no relationship only holds for part of the range of the predictor.
So when should we use nonparametric regression and which particular method

should we choose? In the univariate case, we can describe three situations. When
there is very little noise, interpolation (or at most, very mild smoothing) is the best
way to recover the relation between x and y. Splines are good for this purpose.
When there is a moderate amount of noise, nonparametric methods are most effec-
tive. There is enough noise to make smoothing worthwhile but also enough signal
to justify a flexible fit. When the amount of noise becomes larger, parametric meth-
ods become relatively more attractive. There is insufficient signal to justify anything
more than a simple model.

It is not reasonable to claim that any one smoother is better than the rest. The
best choice of smoother will depend on the characteristics of the data and knowledge
about the true underlying relationship. The choice will also depend on whether the fit
is to be made automatically or with human intervention. When only a single dataset
is being considered, it’s simple enough to craft the fit and intervene if a particular
method produces unreasonable results. If a large number of datasets are to be fit
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automatically, then human intervention in each case may not be feasible. In such
cases, a reliable and robust smoother may be needed.

We think the loess smoother makes a good all-purpose smoother. It is robust to
outliers and yet can produce smooth fits. When you are confident that no outliers are
present, smoothing splines is more efficient than local polynomials.

14.7 Multivariate Predictors

Given x1, . . . ,xn where x ∈ IRp, we observe:

yi = f (x)+ εi i = 1, . . .n

Many of the methods discussed previously extend naturally to higher dimensions, for
example, the Nadaraya–Watson estimator becomes:

fλ(x) =
∑

n
j=1 K(

x−x j
λ

)Yj

∑
n
j=1 K(

x−x j
λ

)

where the kernel K is typically spherically symmetric, provided the dimensions of x
are scaled the same way. The spline idea can be used with the introduction of thin
plate splines and local polynomials can also be naturally extended.

We can illustrate kernel smoothing in two dimensions. We see in Figure 14.14
that too little smoothing has been used in the first example while the choice for the
second example appears about right.
data(savings, package="faraway")
y <- savings$sr
x <- cbind(savings$pop15,savings$ddpi)
sm.regression(x,y,h=c(1,1),xlab="pop15",ylab="growth",zlab="savings

↪→ rate")
sm.regression(x,y,h=c(5,5),xlab="pop15",ylab="growth",zlab="savings

↪→ rate")

We can produce a spline surface fit with the help of the mgcv package which is
explained in detail in the next chapter:
library(mgcv)
amod <- gam(sr ~ s(pop15,ddpi), data=savings)
vis.gam(amod, col="gray", ticktype="detailed",theta=-35)

We have used the default amount of smoothing and rotated the view of the plot, as
seen in the first panel of Figure 14.15, to make it similar to the kernel version. We
achieve a smoother but similar fit to the kernel smooth. Two-dimensional smoothing
is also possible using loess. We need to do more work to construct a 2D grid of
predictor values on which we compute the prediction and make the perspective plot:
lomod <- loess(sr ~ pop15 + ddpi, data=savings)
xg <- seq(21,48,len=20)
yg <- seq(0,17,len=20)
zg <- expand.grid(pop15=xg,ddpi=yg)
persp(xg, yg, predict(lomod, zg), theta=-35, ticktype="detailed", xlab

↪→ ="pop15", ylab="growth", zlab="savings rate", col="gray")

The fit, as seen in the second panel of Figure 14.15, looks similar to the previous
smooths but notice the high predicted response for high growth, low pop15 countries.
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Figure 14.14 Smoothing savings rate as a function growth and population under 15. Plot on
the left is too rough while that on the right seems about right.
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Figure 14.15 Smoothing spline fit to the savings data shown on the left. Loess smooth is shown
on the right.

Checking the data, we find there are no countries in this region of the predictor space,
meaning this represents an extrapolation away from the observed data. The loess
method uses linear extrapolation, producing the observed result. The kernel-based
method does not even attempt to predict outside the range whereas the spline method
produced a more restrained prediction. It is difficult to say which is best as we must
appeal to subject-matter knowledge to guide our choice.

Developing multivariate estimators is not so difficult but there are problems. Be-
cause nonparametric fits are quite complex, we need to visualize them to make sense
of them and yet this cannot be done easily for more than two predictors. Most non-
parametric regression methods rely on local smoothing; local averaging is the crudest
example of this. However, to maintain a stable average we need sufficient points in
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the window. For data in high dimensions, the window will need to be wide to capture
sufficient points to average. You need an extremely large number of points to cover
a high-dimensional space to high density. This is known as the “curse of dimension-
ality,” a term coined by Bellman (1961). In truth, it should not be called a curse, but
rather a blessing, since information on additional variables should have some value,
even if it is inconvenient. Our challenge is to make use of this information. Nonpara-
metric regression fits are hard to interpret in higher dimensions where visualization
is difficult. Simply extending the one-dimensional method is not effective.

The methods we describe in the following chapters impose additional restrictions
on the fitted function to make the problem feasible and the results easier to interpret.

Further Reading: For a general review of smoothing methods, see Simonoff
(1996). For books on specific methods of smoothing, see Loader (1999), Wahba
(1990), Bowman and Azzalini (1997), Wand and Jones (1995) and Eubank (1988).
The application of nonparametric regression to the goodness of fit problem may be
found in Hart (1997).

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Take the
variables gamble as the response and income as the predictor.

(a) Make a plot of the data.
(b) Fit a curve to the data using kernel smoothing with a cross-validated choice of

bandwith. Display the fit on the data. Does the fit look linear?
(c) Fit a curve using smoothing splines with the automatically chosen amount of

smoothing. Display the fit and report the effective degrees of freedom. Dis-
play a fit with somewhat larger degrees of freedom. Was the automatic choice
satisfactory?

(d) Use loess to fit a curve to the data with the default amount of smoothing. Dis-
play the fit.

(e) Produce and show a plot with a 95% confidence band for the fit. Is a linear fit
plausible?

2. The dataset uswages is drawn as a sample from the Current Population Survey in
1988. Predict the wage from the years of education.

(a) Make a plot of the two variables of interest that makes some effort to avoid the
problems of overplotting. Repeat the plot but use a log scale for the response.

(b) Compute the default smoothing spline fit and display on top of the data. Com-
ment on the quality of the fit.

(c) Compute the default lowess fit and display on the fit. Does this method work
better than smoothing splines in this instance?

(d) For each number of years of education, compute both the mean and the median
wage. Construct a plot showing how these means and medians change with
education. Which summary works better?
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(e) Instead of means and medians, compute the two quartiles and the median and
display on top of the data. (This is a form of quantile regression).

(f) Display the lowess fit on the log-transformed data. Do you think it is better to
work on the log scale for this data?

3. The dataset prostate is from a study of 97 men with prostate cancer who were
due to receive a radical prostatectomy. Predict the lweight using the age.

(a) Plot the data and comment on the relationship.
(b) Fit a curve using kernel methods, plotting the fit on top of the data. What is the

effect of the outlier?
(c) Compute the smoothing spline fit with the default amount of smoothing. What

type of curve has been fit to the data?
(d) Fit a loess curve with a 95% confidence band. Do you think a linear fit is

plausible for this data?
(e) Display all three previous fits on top of the same display and compare.
(f) Introduce lpsa as a second predictor and show the bivariate fit to the data using

smoothing splines.
4. The dataset divusa contains data on divorces in the United States from 1920 to

1996. We focus on the military variable as it changes by year. There really were
more military personnel during World War II, so these points are not outliers.

(a) Plot the number of military personnel and identify the three peaks in the
dataset.

(b) Fit the data using smoothing splines with the default amount of smoothing,
commenting on the quality of the fit. Repeat with lowess, again using the de-
fault amount of smoothing.

(c) Discuss the utility of smoothing in understanding this data.
5. The aatemp data comes from the U.S. Historical Climatology network. They are

the annual mean temperatures (in degrees Fahrenheit) in Ann Arbor, Michigan,
going back about 150 years.

(a) Plot the temperature as a function of time and comment on the underlying
trend.

(b) Fit a least squares line to the data and test whether the slope of the line is
different from zero. What is the main drawback of this modeling approach?

(c) Fit a Lowess curve to the data using the default amount of smoothing. Dis-
play the fit along with a 95% confidence band. What does this say about the
underlying trend in the relationship?

(d) Fit a regression spline basis to the data with 12 knots. Display the fit on the
data.

(e) Compare this model to the linear fit using an F-test. Which model is preferred?
What more needs to be explored with spline fit before drawing conclusions?
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6. Generate simulated data according to the following model. Use 256 evenly spaced
points on [0,1] for x. Let y = f (x)+ ε with

f (x) =
{

x x≤ 1/2
x−1 x > 1/2

and ε∼ N(0,(0.1)2).
(a) Plot the data along with the true function f .
(b) Display the Lowess fit on top of the data using the default choice of smoothing.

Comment on the quality of the fit. Repeat using a smaller span in the smooth.
(c) Use the default method of wavelet smoothing to compute a fit to the data.

Comment on the quality of the fit.
(d) In the wavelet thresholding, replace the policy with universal. Does this

improve the fit?
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Chapter 15

Additive Models

Suppose we have a response y and predictors x1, . . . ,xp. A linear model takes the
form:

y = β0 +
p

∑
j=1

β jX j + ε

We can include transformations and combinations of the predictors among the xs,
so this model can be very flexible. However, it can often be difficult to find a good
model, given the wide choice of transformations available. We can try a systematic
approach of fitting a family of transformations. For example, we can try polyno-
mials of the predictors, but particularly if we include interactions, the number of
terms becomes very large, perhaps greater than the sample size. Alternatively, we
can use more interactive and graphical approaches that reward intuition over brute
force. However, this requires some skill and effort on the part of the analyst. It is
easy to miss important structure; a particular difficulty is that the methods only con-
sider one variable at a time, when the secret to finding good transformations may
require that variables be considered simultaneously.

We might try a nonparametric approach by fitting:

y = f (x1, . . . ,xp)+ ε

This avoids the necessity of parametric assumptions about the form of the function
f , but for p bigger than two or three, it is simply impractical to fit such models due
to large sample size requirements, as discussed at the end of the previous chapter.

A good compromise between these extremes is the additive model:

y = β0 +
p

∑
j=1

f j(X j)+ ε

where the f j are smooth arbitrary functions. Additive models were introduced by
Stone (1985).

Additive models are more flexible than the linear model, but still interpretable
since the functions f j can be plotted to give a sense of the marginal relationship
between the predictor and the response. Of course, many linear models discovered
during a data analysis take an additive form where the transformations are determined
in an ad hoc manner by the analyst. The advantage of the additive model approach is
that the best transformations are determined simultaneously and without parametric
assumptions regarding their form.

321
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In its basic form, the additive model will do poorly when strong interactions exist.
In this case we might consider adding terms like fi j(xix j) or even fi j(xi,x j) if there is
sufficient data. Categorical variables can be easily accommodated within the model
using the usual regression approach. For example:

y = β0 +
p

∑
j=1

f j(X j)+Zγ+ ε

where Z is the design matrix for the variables that will not be modeled additively,
where some may be quantitative and others qualitative. The γ are the associated re-
gression parameters. We can also have an interaction between a factor and a continu-
ous predictor by fitting a different function for each level of that factor. For example,
we might have fmale and f f emale.

There are several different ways of fitting additive models in R. The gam package
originates from the work of Hastie and Tibshirani (1990). The mgcv package is part
of the recommended suite that comes with the default installation of R and is based
on methods described in Wood (2000). The gam package allows more choice in the
smoothers used while the mgcv package has an automatic choice in the amount of
smoothing as well as wider functionality. The gss package of Gu (2002) takes a
spline-based approach.

The fitting algorithm depends on the package used. The backfitting algorithm is
used in the gam package. It works as follows:
1. We initialize by setting β0 = ȳ and f j(x) = β̂ jx where β̂ is some initial estimate,

such as the least squares, for j = 1, . . . p.
2. We cycle j = 1, . . . , p,1, . . . , p,1, . . .

f j = S(x j,y−β0−∑
i6= j

fi(Xi))

where S(x,y) means the smooth on the data (x,y). The choice of S is left open to
the user. It could be a nonparametric smoother like splines or loess, or it could be
a parametric fit, say linear or polynomial. We can even use different smoothers on
different predictors with differing amounts of smoothing.

The algorithm is iterated until convergence. Hastie and Tibshirani (1990) show
that convergence is assured under some rather loose conditions. The term y−β0−
∑i6= j fi(xi) is a partial residual — the result of fitting everything except x j, making
the connection to linear model diagnostics.

The mgcv package employs a penalized smoothing spline approach. Suppose we
represent f j(x) = ∑i βiφi(x) for a family of spline basis functions, φi. We impose a
penalty

∫
[ f ′′j (x)]

2dx which can be written in the form βT
j S jβ j, for a suitable matrix

S j that depends on the choice of basis. We then maximize:

logL(β)−∑
j

λ jβ
T
j S jβ j

where L(β) is likelihood with respect to β and the λ js control the amount of smooth-
ing for each variable. Generalized cross-validaton (GCV) is used to select the λ js.
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15.1 Modeling Ozone Concentration

We illustrate the methodology in this chapter and some of the following chapters
using some data on air pollution from the Los Angeles area in 1976. The response is
O3, the atmospheric ozone concentration on a particular day. To simplify matters, we
will initially reduce the predictors to just three: temperature measured at El Monte,
temp, inversion base height at LAX, ibh, and inversion top temperature at LAX, ibt.
A number of cases with missing variables have been removed for simplicity. The data
were first presented by Breiman and Friedman (1985). We might start with a look at
how the response is related to each of the predictors as seen in Figure 15.1. The loess
fitted line and confidence band are added using the geom_smooth() command. We
can see a somewhat nonlinear relationship in all three cases.
data(ozone, package="faraway")
ggplot(ozone, aes(x=temp, y=O3)) + geom_point(size=1) + geom_smooth()
ggplot(ozone, aes(x=ibh, y=O3)) + geom_point(size=1) + geom_smooth() +

↪→ theme(axis.text.x = element_text(angle = 90))
ggplot(ozone, aes(x=ibt, y=O3)) + geom_point(size=1) + geom_smooth()

Figure 15.1 Ozone concentration and three predictors. Loess fitted line and confidence band
are shown.

These plots show only the raw relationship between the predictors and response with-
out allowance for the effect of other predictors. We can see that, for example, O3 in-
creases with ibt but would this remain true if we adjusted for the effect of temp and
ibt? A first attempt at doing this suggests a linear model, useful at least for reference
purposes:
olm <- lm(O3 ~ temp + ibh + ibt, ozone)
sumary(olm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.727982 1.621662 -4.77 2.8e-06
temp 0.380441 0.040158 9.47 < 2e-16
ibh -0.001186 0.000257 -4.62 5.5e-06
ibt -0.005821 0.010179 -0.57 0.57

n = 330, p = 4, Residual SE = 4.748, R-Squared = 0.65



324 ADDITIVE MODELS

Note that ibt is not significant in this model. Although we can determine the indi-
vidual relationships between the predictors and the response by examining the re-
gression coefficients, it can be helpful to view these effects graphically. One can use
the termplot function but the effects package due to Fox (2003) has more com-
prehensive capabilities for achieving this functionality. We fix the other predictors at
some typical value (the mean by default) and allow only the chosen predictor to vary.
We plot the resulting prediction. Plots of these predictions are shown in Figure 15.2
for each of the predictors. We have added the partial residuals to the display. The
dashed line represents a smooth fit to these residuals and gives a suggestion of the
extent of nonlinearity.
library(effects)
plot(Effect("temp", olm, partial.residuals=TRUE))
plot(Effect("ibh", olm, partial.residuals=TRUE))
plot(Effect("ibt", olm, partial.residuals=TRUE))
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Figure 15.2 Effects of predictors in a linear model for Ozone concentration.

These plots show us how much the predicted response will vary over the observed
range of the predictor and so are helpful in assessing the magnitude and direction of
the effect. We can see from these plots that ibt does not have much effect after ad-
justing for the other two predictors, although there is some suggestion of a quadratic
effect.

15.2 Additive Models Using mgcv

A method of fitting additive models is provided by the mgcv package of Wood (2006).
Splines are the default choice of smoother with the appropriate amount of smoothing
chosen automatically, unless we intervene.
library(mgcv)
ammgcv <- gam(O3 ~ s(temp)+s(ibh)+s(ibt),data=ozone)
summary(ammgcv)
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.776 0.238 49.4 <2e-16
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Approximate significance of smooth terms:
edf Ref.df F p-value

s(temp) 3.39 4.26 20.55 7.7e-16
s(ibh) 4.17 5.08 7.34 1.4e-06
s(ibt) 2.11 2.73 1.61 0.19

R-sq.(adj) = 0.708 Deviance explained = 71.7%
GCV = 19.346 Scale est. = 18.72 n = 330

The intercept is the only parametric coefficient in this model because all the predictor
terms have smooths. We can compute the equivalent degrees of freedom by an anal-
ogy to linear models. For linear smoothers, the relationship between the observed
and fitted values may be written as ŷ = Py. The trace of P then estimates the effec-
tive number of parameters. For example, in linear regression, the projection matrix
is X(XT X)−1XT whose trace is equal to the rank of X or the number of identifiable
parameters. This notion can be used to obtain the degrees of freedom for additive
models. The column marked Ref.df is a modified computation of the degrees of
freedom which is more appropriate for use in test statistics.

Since we have sums of squares and degrees of freedom, we can compute F-
statistics in the same way as linear models. However, the F-statistics quoted in the
summary output have been modified to produce somewhat better statistical prop-
erties. The p-values are computed from these F-statistics and degrees of freedom
although we cannot claim the null distributions are exactly F-distributed. Usually,
they are good approximations. We see that the R2, which in this case is called the
“Deviance explained,” is somewhat higher than in the lm fit.

We can also examine the transformations used:
plot(ammgcv, residuals=TRUE, select=1)
plot(ammgcv, residuals=TRUE, select=2)
plot(ammgcv, residuals=TRUE, select=3)
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Figure 15.3 Transformation functions for the model fit by mgcv. Note how the same scale
has been deliberately used on all three plots. This allows us to easily compare the relative
contribution of each variable.
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We see that the transformations, as see in Figure 15.3, are nonlinear. The chosen
transformation for temperature is roughly piecewise linear with a change in the slope
around 60. We see a similar piecewise linear relationship with a change at about 1000
for ibh. A deeper understanding of the application might lead to some interpretation
of these changepoints. We have asked for the residuals to be shown on the plot, in
keeping with our previous plots, as this adds to our ability to judge the choice of
smoothing. We can see the degree of smoothing appears appropriate as there is no
obvious finer structure. Note that the label on the vertical axis gives the degrees of
freedom for the smooth which will correspond to the shape of the fit. Something
close to linear will have degrees of freedom close to one.

The confidence bands are helpful in judging the significance of features seen in
the plots. We might judge whether a straight line could be drawn entirely between the
two bands. This might suggest that a linear term would be sufficient. In the case of
ibt, we see that a horizontal line at zero would fit between the bands. This suggests
this predictor has no marginal effect on the response.

We might also be interested in whether there really is a change in the trend for
temperature. We test this supposition with a linear term in temperature and then make
the F-test:
am1 <- gam(O3 ~ s(temp)+s(ibh),data=ozone)
am2 <- gam(O3 ~ temp+s(ibh),data=ozone)
anova(am2,am1,test="F")
Analysis of Deviance Table

Model 1: O3 ~ temp + s(ibh)
Model 2: O3 ~ s(temp) + s(ibh)

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 324 6950
2 321 6054 2.7 896 17.6 7.9e-10

The p-value is only approximate, but we can be confident there is a change in the
trend for temperature.

You can include functions of two variables with mgcv. This remains within the
framework of the additive model. For example, suppose we suspect that there is an
interaction between temperature and IBH. We must decide on the appropriate bivari-
ate smoothing method. In some cases, the two variables are measured in the same
units. For example, one might measure location on the north-south axis and another
the location on the east-west axis. In this isotropic case, it is appropriate to use the
same degree of smoothing in both variables. But in our example, temperature and
inverse base height (IBH) are measured on different scales and are thus anisotropic.
In this case, we will likely need a different amount of smoothing the two directions.
This can be achieved using tensor product smooth:
amint <- gam(O3 ~ te(temp,ibh)+s(ibt),data=ozone)
summary(amint)
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.776 0.239 49.4 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

te(temp,ibh) 10.49 13.08 12.96 <2e-16
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s(ibt) 1.04 1.08 0.47 0.51

R-sq.(adj) = 0.707 Deviance explained = 71.8%
GCV = 19.526 Scale est. = 18.784 n = 330

We see that the combined temperature and IBH term are clearly significant with the
ibt term remaining redundant. This output does not tell us whether the interaction
between the two terms adds anything to the model although the very small increase
in the deviance explained suggests that it does not.

We can test the significance of the interaction:
anova(ammgcv,amint,test="F")
Analysis of Deviance Table

Model 1: O3 ~ s(temp) + s(ibh) + s(ibt)
Model 2: O3 ~ te(temp, ibh) + s(ibt)
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 319 5978
2 317 5963 1.86 14.6 0.42 0.64

The large p-value confirms the insignificance of the interaction term. We can be sat-
isfied with just the two univariate additive terms. In more interesting cases, we would
be eager to visualize the interaction as seen in two different ways in Figure 15.4:
plot(amint, select=1)
vis.gam(amint,theta=-45,color="gray")

Figure 15.4 The bivariate contour plot for temperature and ibh is shown in the left panel.
The right panel shows a perspective view of the information on the left panel.

The contours appear almost parallel. The perspective view also suggests no in-
teraction.

One use for additive models is as an exploratory tool for standard parametric re-
gression modeling. We can use the fitted functions to help us find suitable simple
transformations of the predictors. One idea here is to model the temp and ibh ef-
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fects using piecewise linear regression (also known as “broken stick” or segmented
regression). We define the right and left “hockey-stick” functions:
rhs <- function(x,c) ifelse(x > c, x-c, 0)
lhs <- function(x,c) ifelse(x < c, c-x, 0)

and now fit a parametric model using cutpoints of 60 and 1000 for temp and ibh,
respectively. We pick the cutpoints using the plots:
olm2 <- lm(O3 ~ rhs(temp,60)+lhs(temp,60)+rhs(ibh,1000)+lhs(ibh,1000),

↪→ ozone)
sumary(olm2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.603832 0.622651 18.64 < 2e-16
rhs(temp, 60) 0.536441 0.033185 16.17 < 2e-16
lhs(temp, 60) -0.116173 0.037866 -3.07 0.0023
rhs(ibh, 1000) -0.001486 0.000198 -7.49 6.7e-13
lhs(ibh, 1000) -0.003554 0.001314 -2.71 0.0072

n = 330, p = 5, Residual SE = 4.342, R-Squared = 0.71

Compare this model to the first linear model we fit to this data. The fit is better and
about as good as the additive model fit. It is unlikely we could have discovered these
transformations without the help of the intermediate additive models. Furthermore,
the linear model has the advantage that we can write the prediction formula in a
compact form.

We can use additive models for building a linear model as above, but they can be
used for inference in their own right. For example, we can predict new values with
standard error:
predict(ammgcv,data.frame(temp=60,ibh=2000,ibt=100),se=T)
$fit
[1] 11.013

$se.fit
[1] 0.97278

If we try to make predictions for predictor values outside the original range of the
data, we will need to linearly extrapolate the spline fits. This is dangerous for all the
usual reasons:
predict(ammgcv,data.frame(temp=120,ibh=2000,ibt=100),se=T)
$fit
[1] 35.511

$se.fit
[1] 5.7261

We see that the standard error is much larger although this likely does not fully reflect
the uncertainty.

We should also check the usual diagnostics:
plot(residuals(ammgcv)~predict(ammgcv),xlab="Predicted",ylab="

↪→ Residuals")
abline(h=0)
qqnorm(residuals(ammgcv),main="")
qqline(residuals(ammgcv))

We can see in Figure 15.5 there is some nonconstant variance. There are also some-
what long tails for the residuals.
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Figure 15.5 Residual plots for the additive model.

Now let’s see the model for the full dataset. We found that the ibh and ibt terms
were insignificant and so we removed them:
amred <- gam(O3 ~ s(vh)+s(wind)+s(humidity)+s(temp)+s(dpg)+ s(vis)+s(

↪→ doy),data=ozone)
summary(amred)
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.776 0.201 58.7 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

s(vh) 1.00 1.00 20.50 8.4e-06
s(wind) 1.00 1.00 6.56 0.01091
s(humidity) 1.00 1.00 14.61 0.00016
s(temp) 5.77 6.92 12.66 2.1e-14
s(dpg) 3.31 4.20 14.11 6.4e-11
s(vis) 2.22 2.77 7.20 0.00021
s(doy) 4.07 5.13 20.80 < 2e-16

R-sq.(adj) = 0.793 Deviance explained = 80.5%
GCV = 14.113 Scale est. = 13.285 n = 330

We will compare this to the results of different modeling approaches that we will
present later. We can see that we achieve a good fit with an R2 of 80.5%, but at the
cost of using effectively 19.4 (sum the df) parameters including the intercept.

Also for future reference, here is the linear model with all insignificant terms
removed:
alm <- lm(O3 ~ vis+doy+ibt+humidity+temp,data=ozone)
sumary(alm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.01786 1.65306 -6.06 3.8e-09
vis -0.00820 0.00369 -2.22 0.027
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doy -0.01020 0.00245 -4.17 3.9e-05
ibt 0.03491 0.00671 5.21 3.4e-07
humidity 0.08510 0.01435 5.93 7.7e-09
temp 0.23281 0.03607 6.45 4.0e-10

n = 330, p = 6, Residual SE = 4.430, R-Squared = 0.7

We can see that the fit is substantially worse, but uses only six parameters. Of course,
we may be able to improve this fit with some manual data analysis. We could look for
good transformations and check for outliers and influential points. However, since we
want to compare different modeling techniques, we want to avoid making subjective
interventions for the sake of a fair comparison.

15.3 Generalized Additive Models

In generalized linear models:

η = Xβ EY = µ g(µ) = η Var(Y ) ∝ V (µ)

The approach is readily extended to additive models to form generalized additive
models (GAM). We replace the linear predictor with

η = β0 +
p

∑
j=1

f j(X j)

In the mgcv package, the f j are represented by splines. These splines have coefficients
that are just more parameters that can be estimated using the likelihood approach.

The ozone data has a response with relatively small integer values. Furthermore,
the diagnostic plot in Figure 15.5 shows nonconstant variance. This suggests that a
Poisson response might be suitable. We fit this using:
gammgcv <- gam(O3 ~ s(temp)+s(ibh)+s(ibt),family=poisson, scale=-1,

↪→ data=ozone)
summary(gammgcv)
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.293 0.023 99.5 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

s(temp) 3.82 4.74 16.82 4.2e-14
s(ibh) 3.74 4.57 10.54 1.2e-08
s(ibt) 1.35 1.62 0.57 0.53

R-sq.(adj) = 0.712 Deviance explained = 72.9%
GCV = 1.5062 Scale est. = 1.4573 n = 330

We have set scale=-1 because negative values for this parameter indicate that the
dispersion should be estimated rather than fixed at one. Since we do not truly believe
the response is Poisson, it seems wise to allow for overdispersion. The default of not
specifying scale would fix the dispersion at one. We see that the estimated disper-
sion is indeed somewhat bigger than one. We see that IBT is not significant. We can
check the transformations on the predictors as seen in Figure 15.6:
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plot(gammgcv, residuals=TRUE, select=1)
plot(gammgcv, residuals=TRUE, select=2)
plot(gammgcv, residuals=TRUE, select=3)
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Figure 15.6 Transformation on the predictors for the Poisson GAM.

We see that the selected transformations are quite similar to those observed previ-
ously.

There are natural extensions to additive modeling for all the response types we
have considered earlier in this book.

15.4 Alternating Conditional Expectations

In the additive model:

y = α+
p

∑
j=1

f j(X j)+ ε

but in the transform-both-sides (TBS) model:

θ(y) = α+
p

∑
j=1

f j(X j)+ ε

For example, y = ex1+
√

x2 cannot be modeled well by additive models, but can if we
transform both sides: logy = x1+

√
x2. This fits within the TBS model framework. A

more complicated alternative approach would be nonlinear regression. One particu-
lar way of fitting TBS models is alternating conditional expectation (ACE) which is
designed to minimize ∑i(θ(yi)−∑ f j(xi j))

2. Distractingly, this can be trivially mini-
mized by setting θ = f j = 0 for all j. To avoid this solution, we impose the restriction
that the variance of θ(y) be one. The fitting proceeds using the following algorithm:
1. Initialize:

θ(y) =
y− ȳ

SD(y)
f j = β̂ jx j j = 1, . . . p
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2. Cycle:

f j = S(x j,θ(y)−∑
i6= j

fi(xi))

θ = S(y,∑
j

f j(x j))

where S(x,y) represents a smoother returning a function on (x,y) data. Renormal-
ize at the end of each cycle:

θ(y)← θ(y)−θ(y)

SD(θ(y))

We repeat until convergence. ACE is comparable to the additive model, except now
we allow transformation of the response as well. In principle, you can use any reason-
able smoother S, but the original smoother used was the supersmoother. This cannot
be easily changed in the R software implementation.

For our example, we start with the same three predictors in the ozone data:
x <- ozone[,c("temp","ibh","ibt")]
library(acepack)
acefit <- ace(x,ozone$O3)

Note that the ace function interface is quite rudimentary as we must give it the X
matrix explicitly. The function returns the component ty which contains θ(y) and
tx which is a matrix whose columns contain the f j(x j). We can get a sense of how
well these transformations work by fitting a linear model that uses the transformed
variables. We know that the intercept is zero so we exclude it to get cleaner output:
sumary(lm(ty ~ tx-1, acefit))

Estimate Std. Error t value Pr(>|t|)
txtemp 0.9676 0.0508 19.04 <2e-16
txibh 1.1801 0.1358 8.69 <2e-16
txibt 1.3712 0.5116 2.68 0.0077

n = 330, p = 3, Residual SE = 0.526, R-Squared = 0.73

All three transformed predictors are strongly significant and the fit is superior to
the original model. The R2 for the comparable additive model was 0.703. So the
additional transformation of the response did improve the fit. Now we examine the
transforms on the response and the three predictors:
plot(ozone$O3,acefit$ty,xlab="O3", ylab=expression(theta(O3)))
plot(x[,1],acefit$tx[,1],xlab="temp",ylab="f(temp)")
plot(x[,2],acefit$tx[,2],xlab="ibh",ylab="f(ibh)")
plot(x[,3],acefit$tx[,3],xlab="ibt",ylab="f(ibt)")

See Figure 15.7. The transform on the response is close to, but not quite, linear. The
transformations on temp and ibh are similar to those found by the additive model.
The transformation for ibt looks implausibly rough in some parts.

Now let’s see how we do on the full data:
x <- ozone[,-1]
acefit <- ace(x,ozone$O3)
sumary(lm(acefit$ty ~ acefit$tx-1))

Estimate Std. Error t value Pr(>|t|)
acefit$txvh 1.172 0.385 3.05 0.0025
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Figure 15.7 ACE transformations: the first panel shows the transformation on the response
while the remaining three show the transformations on the predictors.

acefit$txwind 1.074 0.404 2.66 0.0083
acefit$txhumidity 0.651 0.245 2.66 0.0083
acefit$txtemp 0.916 0.123 7.43 1.0e-12
acefit$txibh 1.351 0.436 3.10 0.0021
acefit$txdpg 1.322 0.167 7.92 4.0e-14
acefit$txibt 0.926 0.196 4.71 3.7e-06
acefit$txvis 1.386 0.230 6.03 4.5e-09
acefit$txdoy 1.284 0.110 11.72 < 2e-16

n = 330, p = 9, Residual SE = 0.408, R-Squared = 0.84

A very good fit, but we must be cautious. Notice that all the predictors are strongly
significant. This might be a reflection of reality or it could just be that the ACE
model is overfitting the data by using implausible transformations as seen on the
ibt variable above. Another problem is in constructing new predictions from fresh
inputs. The nature of the smoothing used does not make it obvious how this can be
achieved.

ACE can be useful in searching for good transformations while building a linear
model. We might examine the fitted transformations as seen in Figure 15.7 to suggest
appropriate parametric forms. More caution is necessary if the model is to be used in
its own right, because of the tendency to overfit.

An alternative view of ACE is to consider the problem of choosing θ and f j’s
such that θ(Y ) and ∑ j f j(X j) are maximally correlated. ACE solves this problem.
For this reason, ACE can be viewed as a correlation method rather than a regression
method.

The canonical correlation method is an ancestor to ACE. Given two sets of ran-
dom variables X1, . . .Xm and Y1, . . .Yn, we find unit vectors a and b such that:

corr(aT X ,bTY )

is maximized. One generalization of canonical correlation is to allow some of the X’s
and Y ’s to be power transforms of the original variables; this results in a parametric
form of ACE. For example:
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y <- cbind(ozone$O3,ozone$O3^2,sqrt(ozone$O3))
x <- ozone[,c("temp","ibh","ibt")]
cancor(x,y)
$cor
[1] 0.832346 0.217517 0.016908

$xcoef
[,1] [,2] [,3]

temp -3.4951e-03 3.6335e-03 -6.7913e-03
ibh 1.3667e-05 -5.2054e-05 -5.2243e-06
ibt 1.6744e-04 -1.7384e-03 1.2436e-03

$ycoef
[,1] [,2] [,3]

[1,] -0.00390830 -0.00539076 -0.1802230
[2,] 0.00009253 -0.00044172 0.0022167
[3,] -0.03928664 0.12068982 0.7948130

We see that it is possible to obtain a correlation of 0.832 by taking particular linear
combinations of O3, O32 and

√
(O3) with the three predictors. The other two orthog-

onal combinations are not of interest to us here. Remember that R2 is the correlation
squared in a simple linear model and 0.8322 = 0.692, so this is not a particularly
competitive fit.

There are some oddities about ACE. For a single predictor, ACE is symmetric in
X and Y , which is not the usual situation in regression. Furthermore, ACE does not
necessarily reproduce the true model. Consider the population form of the problem
and take Y = X +ε and ε∼N(0,1) and X ∼U(0,1), then E(Y |X) = X but E(X |Y ) 6=
Y which is not what one might expect, because f and θ will not both be identity
transformations as the model might suggest.

15.5 Additivity and Variance Stabilization

Additivity and variance stabilization (AVAS) is another TBS model and is quite sim-
ilar to ACE. We choose the f j to optimize the fit, but we also want constant variance
for the response:

var[θ(Y )|
p

∑
j=1

f j(X j)] = constant

So we choose the f j’s to get a good additive fit and choose the θ to get constant
variance.

Here is how the method of fitting θ works: suppose Var(Y ) ≡ V (Y ) is not con-
stant. We transform to constancy by:

θ(t) =
∫ t

0

dµ√
V (µ)

We use data to estimate V (y), then get θ. The purpose of the AVAS method is to
obtain additivity and variance stabilization and not necessarily to produce the best
possible fit. We demonstrate its application on the ozone data:
avasfit <- avas(x,ozone$O3)
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Plot the transformations selected:
plot(ozone$O3,avasfit$ty,xlab="O3",ylab=expression(theta(O3)))
plot(x[,1],avasfit$tx[,1],xlab="temp",ylab="f(temp)")
plot(x[,2],avasfit$tx[,2],xlab="ibh",ylab="f(ibh)")
plot(x[,3],avasfit$tx[,3],xlab="ibt",ylab="f(ibt)")

Figure 15.8 AVAS transformations — the first panel shows the transformation on the response
while the remaining three show the transformations on the predictors.

See Figure 15.8. It would be convenient if the transformation on the response
matched a simple functional form. We see if this is possible. We need to sort the
response to get the line plots to work:
i <- order(ozone$O3)
plot(ozone$O3[i],avasfit$ty[i],type="l",xlab="O3",ylab=expression(

↪→ theta(O3)))
gs <- lm(avasfit$ty[i] ~ sqrt(ozone$O3[i]))
lines(ozone$O3[i],gs$fit,lty=2)
gl <- lm(avasfit$ty[i] ~ log(ozone$O3[i]))
lines(ozone$O3[i],gl$fit,lty=5)

See the left panel of Figure 15.9. We have shown the square-root fit as a dotted line
and log fit as a dashed line. Neither one fits well across the whole range. Now look
at the overall fit:
lmod <- lm(avasfit$ty ~ avasfit$tx - 1)
sumary(lmod)

Estimate Std. Error t value Pr(>|t|)
avasfit$txtemp 0.9006 0.0746 12.08 < 2e-16
avasfit$txibh 0.7950 0.1091 7.29 2.4e-12
avasfit$txibt 0.5637 0.2389 2.36 0.019

n = 330, p = 3, Residual SE = 0.562, R-Squared = 0.69

The fit is not so good, but check the diagnostics:
plot(predict(lmod),residuals(lmod),xlab="Fitted",ylab="Residuals")

The plot is shown in the right panel of Figure 15.9.
AVAS does not optimize the fit; it trades some of the optimality in order to obtain

constant variance. Whether this is a good trade depends on how much relative value
you put on the accuracy of point predictions and accurate estimation of the standard
error of prediction. In other words, is it more important to try to be right or to know
how much you are wrong? The choice will depend on the application. An alternative



336 ADDITIVE MODELS

Figure 15.9 The left panel checks for simple fits to the AVAS transformation on the response
given by the solid line. The log fit is given by the dashed line while the square-root fit is given
by the dotted line. The right panel shows the residuals vs. fitted values plot for the AVAS model.

approach is to accept the nonconstant variance but try to model it and modify the un-
certainty expressed in predictions accordingly. This sophistication in modeling is not
always possible to achieve within some of the nonparametric regression frameworks.

15.6 Generalized Additive Mixed Models

The generalized additive mixed model (GAMM) manages to combine the three ma-
jor themes of this book. The response can be nonnormal from the exponential family
of distributions. The error structure can allow for grouping and hierarchical arrange-
ments in the data. Finally we can allow for smooth transformations of the response.
We demonstrate this method on the epilepsy data from Section 13.5:
data(epilepsy, package="faraway")
egamm <- gamm(seizures ~ offset(timeadj) + treat*expind+s(age), family

↪→ =poisson, random=list(id=~1), data=epilepsy, subset=(id!=49))
summary(egamm$gam)
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.8392 0.1434 -33.74 <2e-16
treat -0.0104 0.1999 -0.05 0.9584
expind 4.7255 0.0758 62.38 <2e-16
treat:expind -0.3024 0.1127 -2.68 0.0077

Approximate significance of smooth terms:
edf Ref.df F p-value

s(age) 1 1 0.31 0.58
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R-sq.(adj) = 0.328
Scale est. = 2.5765 n = 290

We see that the age effect is not significant. Again the interaction effect is significant
which shows, in this case, a beneficial effect for the drug.

15.7 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) were introduced by Friedman
(1991). We wish to find a model of the form:

f̂ (x) =
k

∑
j=1

c jB j(x)

where the basis functions, B j(x), are formed from products of terms of the form
[±(xi− t)]q+. The [ ]+ denotes taking the positive part. For q = 1, this is sometimes
called a hockey-stick function and can be seen in the right panel of Figure 14.5. The
q = 1 case is the most common choice and one might think this results in a piecewise
linear fit, as in Section 14.2. However, the fit is more flexible than this. Consider
the product of two hockey-stick functions in one dimension; this forms a quadratic
shape. Furthermore, if we form the product of terms in two or more variables, we
have an interaction term.

The model building proceeds iteratively. We start with no basis functions. We
then search over all variables and possible knotpoints t to find the one basis function
that produces the best fit to the data. We now repeat this process to find the next best
basis function addition given that the first basis function is already included in the
model. We might impose rules on what new basis functions are included. For exam-
ple, we might disallow interactions or only allow up to two-way interactions. This
will enhance interpretability, possibly at the cost of fit. The number of basis func-
tions added determines the overall smoothness of the fit. We can use cross-validation
to determine how many basis functions are enough.

When interactions are disallowed, the MARS approach will be a type of additive
model. The MARS model building will be iterative, in contrast to the fit using the
gam function of the mgcv package that fits and determines overall smoothness in one
step. If a strictly additive model is all that is needed, the mgcv approach will typically
be more effective. The MARS approach will have a relative advantage when interac-
tions are considered, particularly when there are a larger number of variables. Here
there will be a large number of potential interactions that cannot be simultaneously
entertained. The iterative approach of MARS will be more appropriate here.

We apply the MARS method to the ozone dataset. We use the earth package
which is built on the functionality in the original mda package.
library(earth)
mmod <- earth(O3 ~ ., ozone)
summary(mmod)

coefficients
(Intercept) 11.01166
h(5890-vh) -0.01349
h(9-wind) 0.27685
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h(humidity-41) 0.27438
h(humidity-54) -0.26598
h(temp-58) 0.38519
h(1049-ibh) -0.00269
h(ibh-1049) -0.00056
h(dpg-10) -0.10564
h(150-vis) 0.02336
h(96-doy) -0.11977
h(doy-96) 0.03885
h(doy-158) -0.08187

Selected 13 of 19 terms, and 8 of 9 predictors
Termination condition: Reached nk 21
Importance: temp, doy, humidity, dpg, ibh, vh, vis, wind, ibt-unused
Number of terms at each degree of interaction: 1 12 (additive model)
GCV 14.573 RSS 4108.1 GRSq 0.77362 RSq 0.80545

The default choice allows only additive (first-order) predictors and chooses the model
size using a GCV criterion. The basis functions are expressed in terms of the break-
points.

The fit is good in terms of R2, but the model size is also larger. It is also an additive
model, so we can reasonably compare it to the additive model presented at the end
of Section 15.2. That model had an adjusted R2 of 79.3% using 19.4 parameters.

Let’s reduce the model size to that used for previous models. The parameter nk
controls the maximum number of model terms:
mmod <- earth(O3 ~ ., ozone, nk=7)
summary(mmod)

coefficients
(Intercept) 13.07286
h(58-temp) -0.10623
h(temp-58) 0.49066
h(1049-ibh) -0.00253
h(ibh-1049) -0.00142
h(96-doy) -0.09609
h(doy-96) -0.01279

Selected 7 of 7 terms, and 3 of 9 predictors
Termination condition: Reached nk 7
Importance: temp, ibh, doy, vh-unused, wind-unused, humidity-unused,

dpg-unused, ibt-unused, vis-unused
Number of terms at each degree of interaction: 1 6 (additive model)
GCV 18.284 RSS 5567.8 GRSq 0.71597 RSq 0.73631

This fit is worse, but remember we are disallowing any interaction terms. Now let’s
allow second-order (two-way) interaction terms. nk was chosen to get the same
model size as before:
mmod <- earth(O3 ~ ., ozone, nk=7, degree=2)
summary(mmod)

coefficients
(Intercept) 10.03251
h(58-temp) -0.10668
h(temp-58) 0.45593
h(ibh-1049) -0.00115
h(55-humidity) * h(temp-58) -0.01311
h(humidity-55) * h(temp-58) 0.00599
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Selected 6 of 7 terms, and 3 of 9 predictors
Termination condition: Reached nk 7
Importance: temp, ibh, humidity, vh-unused, wind-unused, dpg-unused,
ibt-unused, vis-unused, doy-unused

Number of terms at each degree of interaction: 1 3 2
GCV 18.383 RSS 5580.2 GRSq 0.71444 RSq 0.73573

This is a good fit. Compare this with an additive model approach. Since there are nine
predictors, this would mean 36 possible two-way interaction terms. Such a model
would be complex to estimate and interpret. In contrast, the MARS approach reduces
the complexity by carefully selecting the interaction terms.

Now let’s see how the terms enter into the model, as seen in Figure 15.10:
plotmo(mmod)
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Figure 15.10 Contribution of predictors in the MARS model.

We see similar transformations to those used previously. Now check the diagnostics:
plot(mmod,3)
plot(mmod,4)

These plots, seen in Figure 15.11, show no problem with normality, but some
indication of nonconstant variance.

It is interesting to compare the MARS approach to the univariate version as
demonstrated in Figure 14.6. There we used a moderate number of knots in just
one dimension while MARS gets by with just a few knots in higher dimensions.
The key is to choose the right knots. MARS can be favorably compared to linear
regression: it has additional flexibility to find nonlinearity in the predictors in higher
dimensions. MARS can also be favorably compared to the tree method discussed in
the next chapter: it allows for continuous fits but still maintains good interpretability.

Further Reading: Hastie and Tibshirani (1990) provide the original overview of
additive modeling, while Wood (2006) gives a more recent introduction. Gu (2002)
presents another approach to the problem. Green and Silverman (1993) show the link



340 ADDITIVE MODELS

Figure 15.11 Diagnostics for the MARS model.

to GLMs. Hastie et al. (2001) discuss additive models as part of a larger review and
compare them to competitive methods.

Exercises

1. The fat data gives percentage of body fat, age, weight and height, and 10 body
circumference measurements, such as the abdomen, are recorded for 252 men.
Body fat is estimated through an underwater weighing technique, but this is incon-
venient to use widely. In this question, we develop an additive model that allows
the estimation of body fat for men using only a scale and a measuring tape. Your
model should predict % body fat according to Siri. You may not use Brozek’s %
body fat, density or fat-free weight as predictors.

(a) Plot the Siri measure against each of the potential predictors and comment on
the general pattern of relationships seen in these plots.

(b) Fit a linear model with the body fat as the response and use all the remaining
variables as predictors. Use Cook Statistics to identify any extremely influen-
tial points. Eliminate these points and refit. (You may need to iterate this pro-
cess.) List the influential points found and identify what particular values con-
tribute to their status. What predictor is most significant in your final model?
What value of R2 is achieved?

(c) Fit an additive model for the body fat with smooths on all the available predic-
tors. Identify any influential points.

(d) Plot the transformations on the predictors identified by the additive model.
Which predictor has the strongest relation to the response? What happens at
the extreme values of x observed for some predictors?
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(e) What is the value of R2 for this additive model and how does it compare to the
linear model? Does this mean the additive model is better? Which predictor
makes the most nonlinear contribution to the prediction of the response? For
this predictor, test whether it can be replaced with a linear term.

(f) For the predictor identified in the previous question, plot the transformation
used. Describe the nature of the relationship and attempt an interpretation. How
can we tell from just the plot that this function is significantly nonlinear?

2. Find a good model for volume in terms of girth and height using the trees
data. We might expect that Volume = c * Height * Girth2 suggesting a log-
arithmic transformation on all variables to achieve a linear model.

(a) Plot the relationship between the response and each of the predictors.
(b) Fit a linear model with all three variables log-transformed. Check the diagnos-

tics of this model. Do the coefficients of the model accord with the theoretically
expected relationship?

(c) Fit an additive model to the log-transformed variables. Plot the transformations
chosen by the default additive model fit. How do these compare to the linear
model?

(d) Fit an additive model with a log-transformed response but with smooths on the
untransformed predictors. Does this additive model point towards the expected
log transformations?

(e) Fit an ACE model. Plot the transformations found. Do these point towards the
logged relationship that theory predicts?

3. The pima dataset consists of 768 female Pima Indians. We want to predict the
diabetes test result from the other predictors.

(a) Plot the test results against each of the predictors. Identify impossible values
of the predictors and replace them with the missing value code. Plot the data
again and comment on the relationships.

(b) Find the subset of cases that are complete (i.e., contain no missing values).
From this subset, take a random sample of size 100. This is the test set. All the
remaining cases, including those with missing values, are the training set.

(c) Fit a GLM to the diabetes test outcome using all the predictors on the training
set. Predict the response, negative if p̂ < 0.5, positive otherwise for the cases
in the test set. Make a table showing how the test set predictions compare with
the actual outcomes.

(d) Use stepwise AIC variable selection on the GLM. Use this reduced model to
predict the outcomes, evaluating its performance as in the last question.

(e) Fit a GAM using all the predictors. Evaluate the performance on the test set.
(f) Fit a GAM using only those predictors selected by the reduced GLM model.

Evaluate performance.
(g) Compare the results from the four different models. Is one of them clearly

better than the others? Would this classification method be suitable for use in
practice?
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4. The dvisits data comes from the Australian Health Survey of 1977–1978 and
consist of 5190 single adults where young and old have been oversampled.

(a) Build a generalized additive model with doctorco as the response and sex,
age, agesq, income, levyplus, freepoor, freerepa, illness, actdays,
hscore, chcond1 and chcond2 as possible predictor variables. You will need
to decide which variables can reasonably be smoothed. Which variables are
not statistically significant in your model.

(b) Fit a GAM that does not include the insignificant variables identified in the
previous question. Test whether this model can be preferred to the larger model.

(c) Fit a GLM with the same predictor set as the previous question. Is this model
superior to the GAM?

(d) What sort of person would be predicted to visit the doctor the most under the
smaller GLM model.

(e) If you did the exercise on this data in Chapter 5, compare the interpretations of
that selected GLM with the GAM used here.

(f) For the last person in the dataset, compute the predicted probability distribution
for their visits to the doctor, i.e., give the probability they visit 0, 1, 2 etc. times.

5. The ethanol dataset in the lattice package presents data from ethanol fuel
burned in a single-cylinder engine. The emissions of nitrogen oxides should be
considered as the response and engine compression and equivalence ratio as the
predictors.

(a) Reproduce the example plots given on the help page for ethanol to reveal the
relationship between the variables.

(b) Fit a GAM with a bivariate s() on the predictors. Plot the relationship and
comment.

(c) Refit the GAM but with an appropriate kind of smoothing. Plot the surface and
compare.

(d) Fit a GAM with univariate smooths on the predictors. Can this model be used
in preference to the bivariate version used in the previous question?

(e) Fit a MARS model with univariate smooths on the predictors. Compare it to
the equivalent GAM fit.

(f) Now fit a bivariate MARS model and compare to the GAM version.
(g) Plot the relationships found by the MARS model and compare to those seen

previously.



Chapter 16

Trees

16.1 Regression Trees

Regression trees are similar to additive models in that they represent a compromise
between the linear model and the completely nonparametric approach. Tree method-
ology has roots in both the statistics and computer science literature. A precursor
to current methodology was CHAID developed by Morgan and Sonquist (1963) al-
though the book by Breiman et al. (1984) introduced the main ideas to statistics.
Concurrently, tree methodology was developed in machine learning starting in the
1970s — see Quinlan (1993) for an overview.

Most statistical work starts from the specification of a model. The model says
how we believe the data is generated and contains both a systematic and a random
component. The model is not completely specified and so we use the data to select a
particular model by either estimating parameters or perhaps by fitting functions, as in
our recent nonparametric approaches. This strategy has been effective in a wide range
of situations. However, the insistence on specifying a model, right from the start, does
limit statistics. It is often difficult to specify a model, particularly for larger and more
complex datasets. Furthermore, it is often impractical to develop inferential methods
for more complex statistical models.

Tukey (1977) advocated exploratory data analysis (EDA) in his book. Graphical
and descriptive statistics can sometimes make the message of the data very clear or at
least suggest a suitable form for the model. However, EDA is not a complete solution
and sometimes we need definite predictions or conclusions.

Regression trees are an example of a statistical method that is best described by
the algorithm used in their construction. One can uncover the implicit model underly-
ing regression trees, but the algorithm is the true starting point. Any method of analy-
sis should ultimately be judged on whether it successfully predicts or explains some-
thing. Statistical models may achieve this, but algorithmically based methods are also
competitive. The distinction between algorithm-based and model-based methods is
discussed in Breiman (2001b). In the computer science literature, tree methodology
has been applied to decision tree problems where there is no stochastic structure and
we simply want to build a rule for making the correct decision.

To grow a tree, we use the recursive partitioning regression algorithm:
1. Consider all partitions of the region of the predictors into two regions where the

division is parallel to one of the axes. In other words, we partition a single predic-
tor by choosing a point along the range of that predictor to make the split. It does

343



344 TREES

not matter exactly where we make the split between two adjacent points so there
will be at most (n−1)p partitions to consider.

2. For each partition, we take the mean of the response in that partition. We then
compute:

RSS(partition) = RSS(part1)+RSS(part2)

We then choose the partition that minimizes the residual sum of squares (RSS).
We do need to consider many partitions, but the computations on each partition
are simple, so that fit can be accomplished without excessive effort.

3. We now subpartition the partitions in a recursive manner. We only allow partitions
within existing partitions and not across them. This means that the partitioning can
be represented using a tree. There is no restriction preventing us from splitting the
same variables consecutively.
For categorical predictors, it is possible to split on the levels of the factor. For an

ordered factor with L levels, there are only L− 1 possible splits. For an unordered
factor, there are 2L−1−1 possible splits. Although this is a large number of possibili-
ties as L grows, there is a way to limit the number that needs to be considered. Notice
that there is no point in monotonely transforming a quantitative predictor as this will
have no effect on the partitioning algorithm. Transforming the response will make a
difference because it will change the computation of the RSS.

Missing values can be handled quite easily by tree methods. When we construct
the tree, we may encounter missing values for a predictor when we are considering
a split on that variable. We may simply exclude such points from the computation
provided we weight appropriately. This approach is suitable for data where the ob-
servations are missing in a noninformative manner. If we believe the fact of being
missing expresses some information, we might choose to treat missingness as an ad-
ditional level of a factor. For continuous predictors, we could discretize the data into
ranges so that it becomes a factor and then add missingness as an additional level.
When we wish to predict the response for a new value with missing values, we can
drop the prediction down through the tree until the missing values prevent us from
going further. We can then use the mean value for that internal node.

Tree models are well suited to finding interactions. If we split on one variable and
then split on another variable within the partitions of the first variable, we are find-
ing an interaction between these two variables. As we construct further splits within
splits, we are finding higher and higher order interactions. This may be a disadvan-
tage as true high-order interactions are not common in reality. The MARS method
discussed in Section 15.7 counteracts this by limiting the amount of interaction.

Trees are quite popular because the structure is easier for nontechnical people to
understand. The term CART stands for Classification and Regression Trees and is
also the name of a commercial software product.

We applied the regression tree methodology to study the relationship between at-
mospheric ozone concentration and meteorology in the Los Angeles Basin in 1976,
as introduced in Section 15.1. A number of cases with missing variables have been re-
moved for simplicity. The data were first presented by Breiman and Friedman (1985).
We wish to predict the ozone level from the other predictors. We read in the data:
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data(ozone, package="faraway")

An examination of the data reveals several nonlinear relationships indicating that a
linear regression might not be appropriate without the addition of some transforma-
tions. Now fit a tree:
library(rpart)
(tmod <- rpart(O3 ~ .,ozone))
n= 330

node), split, n, deviance, yval
* denotes terminal node

1) root 330 21115.00 11.7760
2) temp< 67.5 214 4114.30 7.4252

4) ibh>=3573.5 108 689.63 5.1481 *
5) ibh< 3573.5 106 2294.10 9.7453
10) dpg< -9.5 35 362.69 6.4571 *
11) dpg>=-9.5 71 1366.50 11.3660

22) ibt< 159 40 287.90 9.0500 *
23) ibt>=159 31 587.10 14.3550 *

3) temp>=67.5 116 5478.40 19.8020
6) ibt< 226.5 55 1276.80 15.9450
12) humidity< 59.5 10 167.60 10.8000 *
13) humidity>=59.5 45 785.64 17.0890 *
7) ibt>=226.5 61 2646.30 23.2790
14) doy>=306.5 8 398.00 16.0000 *
15) doy< 306.5 53 1760.50 24.3770

30) vis>=55 36 1149.90 22.9440 *
31) vis< 55 17 380.12 27.4120 *

We see that the first split (nodes 2 and 3) is on temperature: 214 observations have
temperatures less than 67.5 with a mean response value of 7.4, whereas 116 obser-
vations have temperatures greater than 67.5 with a mean response value of 20. The
total RSS has been reduced from 21,115 to 4114+ 5478 = 9592. The indentation
describes the level of nesting within the tree. The children of node x are labeled as
2x and 2x+1. So for example, node 8 does not appear because node 4 was not split,
even though there are more than 8 nodes in this tree. Much more substantial output
can be obtained from summary(tmod).

Although the relevant information can be gleaned from the text-based output,
a graphical display is nicer as in Figure 16.1. In the first version of the plot, the
depth of the branches is proportional to the reduction in error due to the split. The
disadvantage is that the labels can be hard to read in lower parts of the tree where
the reduction in error is much smaller. The second version of the plot uses a uniform
spacing to allow more room for labeling:
plot(tmod)
text(tmod)
plot(tmod,compress=T,uniform=T,branch=0.4)
text(tmod)

We see that the first split on temperature produces a large reduction in the RSS.
Some of the subsequent splits do not do much. The immediate message is that high
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Figure 16.1 Tree model for the ozone data. On the left, the depth of the branches is propor-
tional to the improvement in fit. On the right, the depth is held constant to improve readability.
If the logical condition at a node is true, follow the branch to the left.

temperatures are associated with high ozone levels. A regression tree is a regression
model, so diagnostics are worthwhile:
plot(jitter(predict(tmod)),residuals(tmod),xlab="Fitted",ylab="

↪→ Residuals")
abline(h=0)
qqnorm(residuals(tmod))
qqline(residuals(tmod))

See Figure 16.2. There are no visible problems here. If nonconstant variance is ob-
served, one might consider transforming the response. Trees are also somewhat sen-
sitive to outliers as they are based on local means. Outliers may be observed in the
QQ plot, but, as with linear models, they may conceal themselves and be influential
on the fit. Suppose we wanted to predict the response for a new value — for example
the median value in the dataset:
(x0 <- apply(ozone[,-1],2,median))

vh wind humidity temp ibh dpg ibt vis doy
5760.0 5.0 64.0 62.0 2112.5 24.0 167.5 120.0 205.5

predict(tmod,data.frame(t(x0)))
1

14.355

You should be able to verify this prediction by following the splits down through the
tree shown in Figure 16.1.

16.2 Tree Pruning

The recursive partitioning algorithm describes how to grow the tree, but what is the
optimal size for the tree? The default form of rpart does restrict the size of the tree,
but some intervention is probably necessary to select the best tree size.

One possibility, called a greedy strategy, is to keep partitioning until the reduction
in overall cost (RSS for this type of tree) is not reduced by more than ε. However,
it is difficult to set ε in a sensible way. Furthermore, a greedy strategy may stop too
soon. For example, consider data laid out in Table 16.1: neither the horizontal nor
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Figure 16.2 Residuals and fitted values for the tree model of the Ozone data are shown in the
left panel. A QQ plot of the residuals is shown in the right panel.

x2 1 2
2 1

x1

Table 16.1 There are four data points arranged in a square. The number shows the value of y
at that point.

the vertical split will improve the fit at all. Both splits are required to get a better
fit. We might need to look further ahead which will increase the computational cost.
Furthermore, it’s not clear what the best choice of ε is for this strategy.

One general problem with model selection is that measures of fit such as the
RSS (or deviance) usually improve as the complexity of the model increases. The
measures tend to give a misleadingly optimistic impression of how well the model
will predict future observations. A generic method of obtaining a better estimate of
predictive ability is cross-validation (CV). For a given tree, leave out one observation,
recalculate the tree and use that tree to predict the left-out observation. Repeat for all
observations. For regression, this criterion would be:

n

∑
j=1

(y j− f̂( j)(x j))
2

where f̂( j)(x j) denotes the predicted value of the tree given the input x j when case j
is not used in the construction of the tree. For other types of trees, a different criterion
would be used. For classification problems, it might be the deviance.

CV is a more realistic estimate of how the tree will perform in practice.
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Leave-out-one cross-validation is computationally expensive so often k-fold cross-
validation is used. The data is randomly divided into k roughly equal parts. We use
k−1 parts to predict the cases in the remaining part. We repeat k times, leaving out
a different part each time. k = 10 is a typical choice. As well as being much less ex-
pensive computationally than the full leave-out-one method, it may even work better.
One drawback is that the partition is random so that repeating the method will give
different numerical results.

However, there may be very many possible trees if we consider all subsets of a
large tree; cross-validation would just be too expensive. We need a method to reduce
the set of trees to be considered to just those that are worth considering. This is where
cost-complexity pruning is useful. We define a cost-complexity function for trees:

CC(Tree) = ∑
terminal nodes: i

RSSi +λ(number of terminal nodes)

If λ is large, then the tree that minimizes this cost will be small and vice versa. Notice
the similarity to AIC. We can determine the best tree of any given size by growing a
large tree and then pruning it back. Given a tree of size n, we can determine the best
tree of size n−1 by considering all the possible ways of combining adjacent nodes.
We pick the one that increases the fit criterion by the least amount. The strategy is
akin to backward elimination in linear regression variable selection except that it can
be shown that it generates the optimal sequence of trees of a given size.

We now use cross-validation to select from this sequence of trees. By default,
rpart selects a tree size that may not be large enough to include all those trees we
might want to consider. We force it to consider a larger tree and then examine the
cross-validation criterion for all the subtrees. The parameter cp plays a similar role
to the smoothing parameter in nonparametric regression and is defined as the ratio of
λ to the RSS of the root tree (a tree with no branches). When we call rpart initially,
it computes the whole sequence of trees and we merely need to use functions like
printcp to examine the intermediate possibilities:
set.seed(123)
tmode <- rpart(O3 ~ .,ozone,cp=0.001)
printcp(tmode)

CP nsplit rel error xerror xstd
1 0.54570 0 1.000 1.005 0.0767
2 0.07366 1 0.454 0.482 0.0427
3 0.05354 2 0.381 0.427 0.0393
4 0.02676 3 0.327 0.415 0.0392
5 0.02328 4 0.300 0.403 0.0389
6 0.02310 5 0.277 0.398 0.0387
7 0.01532 6 0.254 0.396 0.0385
8 0.01091 7 0.239 0.375 0.0343
9 0.00707 8 0.228 0.353 0.0323
10 0.00599 9 0.221 0.350 0.0346
11 0.00593 10 0.215 0.354 0.0350
12 0.00497 12 0.203 0.354 0.0350
13 0.00480 15 0.188 0.353 0.0355
14 0.00447 16 0.183 0.357 0.0359
15 0.00319 17 0.179 0.358 0.0357
16 0.00222 19 0.172 0.363 0.0365
17 0.00207 20 0.170 0.362 0.0361
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18 0.00203 22 0.166 0.364 0.0361
19 0.00144 23 0.164 0.361 0.0361
20 0.00113 24 0.162 0.362 0.0361
21 0.00110 25 0.161 0.362 0.0361
22 0.00100 26 0.160 0.362 0.0361

In this table, we see the value of the cp parameter, the number of splits in the tree,
the RSS of the tree divided by the RSS of the null tree. xerror denotes the cross-
validated error which is also scaled by the RSS of the null tree. Since the partition of
the data into 10 parts is random, this CV error is also random, which makes the given
standard error useful. The random division also means that if you repeat this com-
mand, you will not get the same answer unless you use set.seed. We can select the
size of the tree by minimizing the value of xerror and selecting the corresponding
value of CP.

Because the selection method is quite dependent on the random division, an-
other strategy for selecting the tree size can be considered. We can select the small-
est tree with a CV error within one standard error of the minimum — in this case,
0.350+0.035 = 0.385. So we would take the seven-split tree. We can illustrate this
by plotting the CV error and a line showing one standard deviation above this value
as shown in the first panel of Figure 16.3:
plotcp(tmod)
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Figure 16.3 Cross-validation plot for ozone tree model shown in the left panel and chosen tree
model shown in the right panel.

Notice that even the four-split tree comes close in terms of cross-validated error, so
if we put a premium on simplicity, we might pick this tree. You can get some fancier
output by using the rpart.plot package.
library(rpart.plot)
rpart.plot(tmod, type=3)

There are many options for the display—our chosen version is seen in the second
panel of Figure 16.3. Let’s compare the result to the earlier linear regression. We
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achieved an R2 of about 70% using only six parameters in the previous chapter. We
can select a tree with five splits and hence effectively six parameters and compare
them:
tmodr <- prune.rpart(tmod,0.0154)
1-sum(residuals(tmodr)^2)/sum((ozone$O3-mean(ozone$O3))^2)
[1] 0.74603

We see that the tree model achieved a better fit than the equivalent linear model. Of
course, it would be a mistake to generalize from this, but it is a good demonstration
of the value of trees. A tree fit is piecewise constant over the regions defined by the
partitions, so one might not expect a particularly good fit. However, we can see that
it is not necessarily worse than linear regression.

Regression methods are used for two main purposes — prediction and explana-
tion. Tree-based methods share the transparency of linear models in that it is rel-
atively easy to see how they work and understand how they will predict for new
inputs. However, they have two disadvantages relative to linear models. They lack
the inferential apparatus of prediction intervals. They have discontinuities in the pre-
diction at the partition boundaries but are constant elsewhere. For optimal prediction
performance, more flexible methods tend to do better.

If the goal of the analysis is in explaining how the predictors are related to the
response, the tree model has the apparent advantage of selecting which variables have
a strong relationship to the response. However, these relationships are not always
stable. For example, suppose we randomly divide our data in two and see what tree
is formed. We choose the same size tree as our final choice above.
set.seed(123)
tmod <- rpart(O3 ~ ., ozone[sample(330,165),])
(tmods <- prune.rpart(tmod,0.0154))
n= 165

node), split, n, deviance, yval
* denotes terminal node

1) root 165 9743.60 10.9520
2) temp< 72.5 127 2836.00 7.9134
4) ibt< 118 52 241.77 4.6538 *
5) ibt>=118 75 1658.70 10.1730
10) doy>=357 10 18.00 4.0000 *
11) doy< 357 65 1201.00 11.1230
22) ibh>=2327.5 24 170.50 8.7500 *
23) ibh< 2327.5 41 816.24 12.5120

46) temp< 65.5 29 317.86 11.0690 *
47) temp>=65.5 12 292.00 16.0000 *

3) temp>=72.5 38 1817.60 21.1050
6) ibt< 226.5 15 227.60 15.6000 *
7) ibt>=226.5 23 838.87 24.6960 *

Although the initial split is about the same, the variables chosen for subsequent splits
are somewhat different. We have set the random seed so we will get the same results
every time, but if you repeat this, you will get a different tree every time. This in-
stability in variable selection shows that one should avoid overinterpreting the tree
model on the full data. Of course, similar problems can be seen when using linear
models but the results do tend to be more stable.
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Tree models are not optimal for prediction or explanation purposes. Nevertheless,
they do provide a contrasting approach to linear models that may provide additional
insight into the structure of your data.

16.3 Random Forests

The experience with fitting tree models to random partitions of the data provides
the inspiration for a method that builds on trees to form a forest. The random forest
(RF) method, introduced by Breiman (2001a), uses bootstrap aggregating, known as
bagging. For b = 1, . . . ,B,
1. We draw a sample with replacement from (X ,Y ) to generate (Xb,Yb).
2. We fit a regression tree to (Xb,Yb).
3. For the set of cases not drawn in bootstrap sample (this will be about one third),

we compute the mean squared error of prediction by inputting these predictor
cases and comparing the predicted value to the observed value.

The latter step means that we have a measure of prediction performance that avoids
the overfitting problem by not using data that was used in the construction of the
given tree.

The B trees form the forest. Larger values of B are better although incremental
improvement in performance levels off at some point. We will show later how we
can be confident we have a sufficiently large B. We grow the trees as far as we can
without going below a minimum of five cases per node. The trees in the forest will
typically be larger than the one we would select as a single tree. New predictions
can be made feeding the new predictor value into each of the trees in the forest and
averaging the predictions made.

It has been observed that, for some datasets, certain predictors are chosen very
frequently, meaning that there are strong correlations among the trees in the forest.
To reduce this effect, at each node, a subsample of predictors is selected from which
to choose a split. This ensures that every predictor has an opportunity to contribute to
the prediction. The default choice of the subsample size is

√
p where p is the number

of predictors.
Let’s fit and examine the default forest. We use the randomForest package of

Liaw and Wiener (2002).
library(randomForest)
fmod <- randomForest(O3 ~ ., ozone)
plot(fmod, main="")

The plot of the returned model objects, as seen in the first panel of Figure 16.4,
shows the mean squared error (MSE) of prediction as the number of trees B used
increases. There is a rapid decrease in this MSE as we progress through smaller
values of B but we can see that the improvement levels off after 100. We can see
that the default choice of 500 trees is more than enough in this example. Since the
forest was computed quite rapidly for this size of dataset, there is no incentive to
economize. For much larger datasets, one might wish to reduce the number of trees
to save time. This plot suggests how much economy may be reasonable.
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Figure 16.4 MSE as a function of bootstrap sample size is shown on the left. Effect of temper-
ature on ozone is shown on the right. The solid line is computed using the partial dependence
method. The dashed line using the predicted RF response as temperature is varied and other
predictors held at their means. The dotted line derives from a linear model.

We must also choose the size of the subsample of predictors selected at each
node (called mtry in the R command). This tuning parameter can have some impact
on the performance of the forest. We can use cross-validation to choose from a range
of values of mtry:
cvr <- rfcv(ozone[,-1],ozone[,1],step=0.9)
cbind(nvars=cvr$n.var,MSE=cvr$error.cv)

nvars MSE
9 9 15.51
8 8 15.50
7 7 16.10
6 6 16.43
5 5 17.95
4 4 19.26
3 3 21.24
2 2 22.17
1 1 30.51

We have chosen the step fraction to be sufficiently large so that every subsample size
is evaluated. We start with the full sample of p = 9 and then move on to step× p
recursively, rounding at each stage. For larger datasets with more predictors, compute
times may require us to be more economical by choosing a smaller step so that not
too many subsample sizes are evaluated. We see that, in this example, a subsample of
size 8 is suggested. However, since the performance of the full sample is hardly any
different, we choose mtry=9 for simplicity. Let’s compute the R2 for comparison to
previous models:
fmod <- randomForest(O3 ~ ., ozone, mtry=9)
1-sum((fmod$predict-ozone$O3)^2)/sum((ozone$O3-mean(ozone$O3))^2)
[1] 0.7455

The resulting fit is similar to those seen previously.
Although we can readily make a prediction using the forest model, we lack the

same interpretability provided by the tree. One idea is to fix the value of all but one
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predictor at some typical value, say the median, and vary the chosen predictor over
its range and observe how the predictor varies. Let’s perform this calculation for the
temperature predictor. We form a data frame where only the temperature predictor
varies:
tgrid <- 20:100
meds <- apply(ozone, 2, median)[-match(c("O3","temp"),names(ozone))]
tdf <- cbind(temp=tgrid, data.frame(t(meds)))
head(tdf)
temp vh wind humidity ibh dpg ibt vis doy

1 20 5760 5 64 2112.5 24 167.5 120 205.5
2 21 5760 5 64 2112.5 24 167.5 120 205.5
3 22 5760 5 64 2112.5 24 167.5 120 205.5
4 23 5760 5 64 2112.5 24 167.5 120 205.5
5 24 5760 5 64 2112.5 24 167.5 120 205.5
6 25 5760 5 64 2112.5 24 167.5 120 205.5

Now we make predictions for all the cases in this data frame:
medfor <- predict(fmod, tdf)

We will plot these predictions but first we consider an alternative but similar
approach called a partial dependence plot introduced by Friedman (1991). For each
value of temperature on a grid, we compute the predicted value for every case in the
dataset using the observed values of the predictors not including temperature. These
predictions are then averaged. Thus this method requires n times as many calculations
as our median-based method but forms an aggregate over the whole dataset. Such
plots can be directly produced using:
partialPlot(fmod, ozone, "temp", main="")

We can add the median-based estimate of the effect:
lines(tgrid, medfor, lty=5)

Just for comparison purposes, we can make the same calculation using a linear
model:
lmod <- lm(O3 ~ ., ozone)
lmpred <- predict(lmod, tdf)
lines(tgrid, lmpred, lty=2)

If you create all the partial dependence plots, you will find that temperature is
the predictor exhibiting the strongest relationship with the response. Predictors ibh
and ibt also demonstrate a lesser, but noticeable change in the predicted response
over their range. In contrast, wind and vh show almost no relationship. This is an
indication that, although random forests lack transparently interpretable regression
coefficients, there is some indication of predictor importance. Such a measure of
importance can be obtained as:
importance(fmod)

IncNodePurity
vh 357.2
wind 177.8
humidity 891.3
temp 12820.6
ibh 1377.6
dpg 1034.4
ibt 2623.2
vis 714.0
doy 780.2
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For regression-type forests, the importance is computed in the following way. For
each bootstrap sample, the cases not chosen form the out-of-bag sample. We can
use these to compute an MSE of prediction as before. Now for each predictor, we
permute the values of that predictor in the out-of-bag sample while leaving the other
predictors unchanged. We then recompute the MSE of prediction and compute the
difference from unpermuted MSE. The permutation should destroy the relationship
between that predictor and the response so if the predictor is important, the difference
in the MSE will be large. We repeat this calculation over all the bootstrap samples
and average the differences. This value is reported in the output of the importance
above.

In this case, we see that temperature is by far the most important predictor. We
also see which predictors we might safely discard, such as vh and wind. This method
has no test for significance or criterion-based variable selection, but it does indicate
the order in which we might consider discarding variables.

Random forests have demonstrated strong prediction performance in practice
across a wide range of datasets. If the goal of your analysis is prediction, then the
random forest is a good choice. In contrast, if your goal is to explain the relationship
between the predictors and the response, random forests may provide some insight
but they lack the full power of linear or additive models.

16.4 Classification Trees

Trees can be used for several different types of response data. For the regression
tree, we computed the mean within each partition. This is just the null model for a
regression. We can extend the tree method to other types of response by fitting an
appropriate null model on each partition. For example, we can extend the idea to
binomial, multinomial, Poisson and survival data by using a deviance, instead of the
RSS, as a criterion.

Classification trees work similarly to regression trees except the residual sum of
squares is no longer a suitable criterion for splitting the nodes. The splits should
divide the observations within a node so that the class types within a split are mostly
of one kind (or failing that, just a few kinds). We can measure the purity of the node
with several possible measures. Let nik be the number of observations of type k within
terminal node i and pik be the observed proportion of type k within node i. Let Di be
the measure for node i so that the total measure is ∑Di. There are several choices for
Di:
1. Deviance:

Di =−2∑
k

nik log pik

2. Entropy:
Di =−∑

k
pik log pik

3. Gini index:
Di = 1−∑

k
p2

ik
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All these measures share the characteristic that they are minimized when all members
of the node are of the same type. The rpart function uses the Gini index by default.

We illustrate the classification tree method in a problem involving the identifi-
cation of the sex and species of an historical specimen of kangaroo. We have some
training data consisting of 148 cases with the following variables: there are three
possible species, Giganteus, Melanops and Fuliginosus, the sex of the animal and 18
skull measurements. The data were published in Andrews and Herzberg (1985). The
historical specimen is from the Rijksmuseum van Natuurlijkee Historie in Leiden
which had the following skull measurements in the same order as in the data:
1115 NA 748 182 NA NA 178 311 756 226 NA NA NA 48 1009 NA 204 593

We have a choice in how we model the response. One possibility is to form a six-
level response representing all possible combinations of sex and species. Another
approach is to form separate trees for identifying the sex and the species. We take
the latter approach below, focusing on the species. This choice is motivated by the
belief that different features are likely to discriminate the sex and the species so that
attempting to model them both in the same tree might result in a larger, more complex
tree that might be less powerful than two smaller trees. Even so, it would be worth
trying the first approach although we shall not do so here. We start by reading in and
specifying the museum case:
data(kanga, package="faraway")
x0 <- c(1115,NA,748,182,NA,NA,178,311,756,226,NA,NA,NA,48,1009,NA

↪→ ,204,593)

We have missing values for the case to be classified. We have two options. We can
build a tree model that will classify if there are missing values in the input or we can
build a tree model that uses only variables that are observed. If we believe that the
missing values were in some way informative, the first choice would be sensible. In
this particular case, that does not seem plausible, so the latter approach is preferred.
However, if we want to build a model that could be used for future unspecified cases,
then we would have to deal directly with the missing values. For this special purpose
situation, where we want to classify one particular kangaroo, this is not a concern.

We exclude all variables that are missing in the test case. We drop sex since we
will not be modeling it yet. We form a convenient data frame:
kanga <- kanga[,c(T,F,!is.na(x0))]
kanga[1:2,]

species basilar.length palate.length palate.width squamosal.depth
1 giganteus 1312 882 NA 180
2 giganteus 1439 985 230 150

lacrymal.width zygomatic.width orbital.width foramina.length
1 394 782 249 88
2 416 824 233 100
mandible.length mandible.depth ramus.height

10861 179 591
11582 181 643

We still have missing values in the training set. We have a number of options:
1. Build a tree model that discretizes the predictors into factors and then treats miss-

ing values as another level of the factors. This might be appropriate if we think
missing values are informative in some way. Information would be lost in the dis-
cretization. For this data, we have no reason to believe that the data is not missing
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at random and furthermore we have already decided to ignore the missing values
in the test case.

2. Fill in or estimate the missing values and then build a tree. We could use miss-
ing data fill-in methods as used in other regression problems. This is not easy to
implement and there are concerns about the bias caused by such methods.

3. The tree-fitting algorithm can handle missing values naturally. If a value for some
case is not available, then it is simply excluded from the criterion. When we want
to classify a new case with missing values, we follow the tree down until we reach
a split that involves a missing value in our new case and take the majority verdict
in that node. A more complicated approach is to allow a second-choice variable
for splitting at a node called a surrogate split. Information on the surrogate splits
may be obtained by using the summary command on the tree object.

4. Leave out the missing cases entirely.
We first check where the missing values occur:
apply(kanga,2,function(x) sum(is.na(x)))

species basilar.length palate.length palate.width
0 1 1 24

squamosal.depth lacrymal.width zygomatic.width orbital.width
1 0 1 0

foramina.length mandible.length mandible.depth ramus.height
0 12 0 0

We observe that the majority of missing values occur in just two variables: mandible
length and palate width. Suppose we throw out those variables and then remove the
remaining missing cases. We compute the pairwise correlation of these variables with
the other variables.
round(cor(kanga[,-1],use="pairwise.complete.obs")[,c(3,9)],2)

palate.width mandible.length
basilar.length 0.77 0.98
palate.length 0.81 0.98
palate.width 1.00 0.81
squamosal.depth 0.69 0.80
lacrymal.width 0.77 0.92
zygomatic.width 0.78 0.92
orbital.width 0.12 0.25
foramina.length 0.19 0.23
mandible.length 0.81 1.00
mandible.depth 0.62 0.85
ramus.height 0.73 0.94

We see that these two variables are highly correlated with other variables in the data.
We claim that there is not much additional information in these two variables and
we can reasonably discard them. We do this and then remove the remaining missing
cases:
newko <- na.omit(kanga[,-c(4,10)])
dim(newko)
[1] 144 10

After excluding these two variables, we only lose four cases more by throwing out all
the missing value cases. Alternatively, suppose we just throw out the missing value
cases on the original data:
dim(na.omit(kanga))
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[1] 112 12

We would lose 36 cases by simply throwing out all the missing values. Removing a
combination of variables and cases seems a better choice for this data.

We should also plot the data to see how the classes separate. An example of such
a plot is:
ggplot(newko, aes(x=zygomatic.width,y=foramina.length,shape=species))+

↪→ geom_point()+theme(legend.position = "top", legend.direction =
↪→ "horizontal", legend.title=element_blank())

We see in the left panel of Figure 16.5 that the classes do not separate well, at least for
these two variables. We now fit a classification tree as follows: because the response

|
zygomatic.width>=923

zygomatic.width>=901

foramina.length< 98.5

lacrymal.width< 448.5

ramus.height>=628.5

squamosal.depth< 182.5

fuliginosus

giganteus

fuliginosus melanops

melanops giganteus melanops

Figure 16.5 Historical kangaroo tree model. The left panel shows the three species as they
vary with two of the measurements. The right panel shows the chosen tree.

is a factor, classification rather than regression is automatically used. Gini’s index
is the default choice of criterion. Here we specify a smaller value of the complexity
parameter cp than the default, so that larger trees are also considered:
set.seed(123)
kt <- rpart(species ~ ., data=newko,cp=0.001)
printcp(kt)
Root node error: 95/144 = 0.66

n= 144

CP nsplit rel error xerror xstd
1 0.179 0 1.00 1.20 0.051
2 0.105 1 0.82 0.97 0.061
3 0.050 2 0.72 0.86 0.063
4 0.021 6 0.52 0.82 0.063
5 0.011 7 0.49 0.84 0.063
6 0.001 8 0.48 0.87 0.062

The cross-validated error (expressed in relative terms in the rel error column)
reaches a minimum for the six-split tree. We select this tree:
(ktp <- prune(kt,cp=0.0211))
n= 144
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node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 144 95 fuliginosus (0.34028 0.33333 0.32639)
2) zygomatic.width>=923 37 13 fuliginosus (0.64865 0.16216 0.18919) *
3) zygomatic.width< 923 107 65 giganteus (0.23364 0.39252 0.37383)
6) zygomatic.width>=901 16 3 giganteus (0.12500 0.81250 0.06250) *
7) zygomatic.width< 901 91 52 melanops (0.25275 0.31868 0.42857)
14) foramina.length< 98.5 58 33 melanops (0.36207 0.20690 0.43103)
28) lacrymal.width< 448.5 50 29 fuliginosus (0.42000 0.24000 0.34000)

56) ramus.height>=628.5 33 14 fuliginosus (0.57576 0.18182 0.24242) *
57) ramus.height< 628.5 17 8 melanops (0.11765 0.35294 0.52941) *

29) lacrymal.width>=448.5 8 0 melanops (0.00000 0.00000 1.00000) *
15) foramina.length>=98.5 33 16 giganteus (0.06061 0.51515 0.42424)
30) squamosal.depth< 182.5 26 10 giganteus (0.07692 0.61538 0.30769) *
31) squamosal.depth>=182.5 7 1 melanops (0.00000 0.14286 0.85714) *

plot(ktp,compress=T,uniform=T,branch=0.4)
text(ktp)

This tree is not particularly successful as the relative error is estimated as 80% of just
guessing the species. Some of the terminal nodes are quite pure, for example, #29
and #31, while others retain much uncertainty, for example, #56 and #57. We now
compute the misclassification error:
(tt <- table(actual=newko$species, predicted=predict(ktp, type="class"

↪→ )))
predicted

actual fuliginosus giganteus melanops
fuliginosus 43 4 2
giganteus 12 29 7
melanops 15 9 23

1-sum(diag(tt))/sum(tt)
[1] 0.34028

We see that the error rate is 34%. We might hope to do better. We see that we can
generally correctly identify fuliginosus, but we are more likely to be in error in dis-
tinguishing melanops and giganteus.

A look at the left panel of Figure 16.5 explains why we may have difficulty in
classification. Any single measure will reflect mostly the overall size of the skull. For
example, suppose we wanted to distinguish male human skulls from female human
skulls. Most interesting measures will correlate strongly with size. If we just use one
measure, then the rule will likely be: if the measure is small, then pick female; if it is
large, pick male. This cannot be expected to work particularly well. There is some-
thing about the relative dimensions of the skulls that ought to be more informative.

One possibility is to allow splits on linear combinations of variables. This is
allowed in some classification tree software implementations. An alternative idea
is to apply the method to the principal component scores rather than the raw data.
Principal components (PC) seek out the main directions of variation in the data and
might generate more effective predictors for classification in this example:
pck <- princomp(newko[,-1])
pcdf <- data.frame(species=newko$species,pck$scores)
kt <- rpart(species ~ ., pcdf,cp=0.001)
printcp(kt)
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Root node error: 95/144 = 0.66

n= 144

CP nsplit rel error xerror xstd
1 0.400 0 1.00 1.18 0.053
2 0.179 1 0.60 0.76 0.063
3 0.042 2 0.42 0.52 0.060
4 0.011 3 0.38 0.54 0.060
5 0.001 5 0.36 0.61 0.062

We find a significantly smaller relative CV error (0.52). Our chosen tree is:
(ktp <- prune.rpart(kt,0.0421))
n= 144

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 144 95 fuliginosus (0.34028 0.33333 0.32639)
2) Comp.2< -15.13 49 8 fuliginosus (0.83673 0.04082 0.12245) *
3) Comp.2>=-15.13 95 49 giganteus (0.08421 0.48421 0.43158)

6) Comp.4>=-9.513 63 24 giganteus (0.11111 0.61905 0.26984)
12) Comp.3>=-19 55 17 giganteus (0.09091 0.69091 0.21818) *
13) Comp.3< -19 8 3 melanops (0.25000 0.12500 0.62500) *
7) Comp.4< -9.513 32 8 melanops (0.03125 0.21875 0.75000) *

It is interesting that the first PC is not used. Typically, the first PC represents an
overall average or total size. Other PCs represent contrasts between variables which
would describe shape features in this case. We can also compute the error rate as
before:
(tt <- table(newko$species,predict(ktp,type="class")))

fuliginosus giganteus melanops
fuliginosus 41 5 3
giganteus 2 38 8
melanops 6 12 29

1-sum(diag(tt))/sum(tt)
[1] 0.25

We see that the error rate has been reduced to 25%. It would be worth considering
other combinations of predictors in an attempt to reduce the error rate further.

Before we can predict the test case, we need to do some work to remove the miss-
ing values and unused variables and apply the principal component transformation:
nx0 <- x0[!is.na(x0)]
nx0 <- nx0[-c(3,9)]
nx0 <- (nx0-pck$center)/pck$scale
ndf <- data.frame(nx0 %*% pck$loadings)
predict(ktp, ndf)
fuliginosus giganteus melanops

1 0.83673 0.040816 0.12245

We see that the test case is classified as fuliginosus, which agrees with the experts.
Given the structure of this dataset, with strongly correlated predictors, we might

expect linear discriminant analysis, as explained in Section 7.2, to perform well. It is
simple to implement:
library(MASS)
ldamod <- lda(species ~ ., newko)
(tt <- table(newko$species,predict(ldamod)$class))
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fuliginosus giganteus melanops
fuliginosus 42 6 1
giganteus 5 32 11
melanops 3 14 30

1-sum(diag(tt))/sum(tt)
[1] 0.27778

We see that the default classification performance is reasonably good compared to
trees.

It is a mistake to generalize from a single dataset. Different classification methods
are likely to do well for certain kinds of data but perform poorly in others. It’s always
a good idea to try more than one.

16.5 Classification Using Forests

Random forests are also a natural extension to classification trees. These can be ap-
plied in much the same way as in the regression case but now we use a measure
of node purity such as the Gini index in place of MSE as a measure of success.
We demonstrate the random forest method on the kangaroo skull data. We start by
selecting the subsample size:
cvr <- rfcv(newko[,-1],newko[,1],step=0.9)
cbind(nvars=cvr$n.var,error.rate=cvr$error.cv)

nvars error.rate
9 9 0.45139
8 8 0.43750
7 7 0.43750
6 6 0.43750
5 5 0.47222
4 4 0.55556
3 3 0.55556
2 2 0.59028
1 1 0.59028

We see that we can go as low as six for the sub-sample size. All things be equal, a
small subsample size will be faster. Now given this choice:
fmod <- randomForest(species ~ ., newko, mtry=6)
(tt <- table(actual=newko$species,predicted=predict(fmod)))

predicted
actual fuliginosus giganteus melanops

fuliginosus 38 5 6
giganteus 6 21 21
melanops 10 21 16

1-sum(diag(tt))/sum(tt)
[1] 0.47917

The performance is quite poor. As before, we might attempt to improve matters using
principal components on the predictors:
pck <- princomp(newko[,-1])
pcdf <- data.frame(species=newko$species,pck$scores)
fmod <- randomForest(species ~ ., pcdf, mtry=6)
tt <- table(actual=newko$species,predicted=predict(fmod))
1-sum(diag(tt))/sum(tt)
[1] 0.33333
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The result is not impressive but random forests have a strong track record in clas-
sification across a wide range of problems so do not let this single poor outcome
discourage you from using this method.

Exercises

1. Four hundred three African Americans were interviewed in a study to understand
the prevalence of obesity, diabetes and other cardiovascular risk factors in central
Virginia. Data is presented in diabetes. In this question we build a regression
tree-based model for predicting glycosolated hemoglobin (glyhb) in terms of the
other relevant variables.

(a) Plot the response against each of the predictors and comment on the apparent
strength of the relationships observed.

(b) Investigate the pattern of missing values in the data. By eliminating a combina-
tion of rows and columns, produce a reduced dataset that contains no missing
values. Try to make the reduction as small as possible.

(c) Fit a linear model with main effects for all the predictors. Which predictors
appear to be most important? Make a plot of the residuals and fitted values
from this model and comment.

(d) Fit the default tree. From the output, answer the following questions: How
many observations had stab.glu < 158? What is the mean response for these
observations? What characterizes the largest terminal node in the tree? What
is the mean response in this node?

(e) Make a plot of the tree. What feature of the plot reveals the most important
predictor?

(f) Plot the residuals against the fitted values for this tree. Comment.
(g) Select the optimal tree using cross-validation. What would be the smallest tree

that could reasonably be used?
(h) Predict the response for an individual with these predictor values:

id chol stab.glu hdl ratio location age gender height
1004 213 72 58 3.3 Buckingham 56 female 64

weight frame bp.1s bp.1d bp.2s bp.2d waist hip time.ppn
131 medium 108 55 NA NA 30 40 720

(i) Glycosolated hemoglobin greater than 7.0 is usually taken as a positive diagno-
sis of diabetes. Build the default classification tree for the diagnosis of diabetes
and compare this model to the corresponding regression tree. Which predictors
are most useful?

2. Refer to the pima dataset described in Question 3 of Chapter 15. If you have not
done so already, answer parts (a) and (b) of that question before proceeding with
the rest of this question.

(a) Fit the default tree model with the result of the diabetes test as the response
and all the other variables as predictors using the training set. Make a nice plot
of the tree and comment on the shape of the tree. Is it broad or deep?
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(b) What fraction of cases in the test set are correctly classified according to this
model?

(c) Use cross-validation to select the optimal tree size. For the selected model,
check the performance on the test set.

(d) Fit the default random forest model to the training set. Use this to classify the
cases in the test set. How many are correctly classified?

(e) Use the subsample size selection method for the random forest. For the selected
model, evaluate the performance on the test set.

3. The dataset wbca is described in Question 2 of Chapter 2. You may find it helpful
to repeat the plotting part of that question first.

(a) Without modifying the data, fit a tree model with Class as the response and
the other nine variables as predictors. Now change Class to a factor and refit
the tree. What is the difference between these two trees and which one should
we prefer?

(b) Use the default (10-way) cross-validation to select a tree size. Now repeat the
cross-validation. Explain why the outcome is different. Now use leave-out-
one cross-validation (set the argument xval equal to the sample size). Does
this calculation change if it is repeated? What model is chosen by this latter
method?

(c) Using the last model chosen in the previous question, determine how many
cases in the data are correctly classified using the model. (Suppose a cancer is
classified as benign if p > 0.5 and malignant if p < 0.5.)

(d) Compute the receiver operating characteristic (ROC) plot by varying the 0.5
threshold used in the previous question.

(e) Pick out every third observation as a test set. Use the remainder as a training
set with which to estimate the model. Evaluate the performance on the test set.
Compare the results to (c). Which classification rate is a more reliable estimate
of future performance?

4. The dataset uswages is drawn as a sample from the Current Population Survey in
1988.

(a) Plot the wage response with each of the remaining variables as potential pre-
dictors. Try a log-scale for the response. Does this reveal more about the rela-
tionships in the data?

(b) Fit the default tree regression model to predict wage using untransformed ver-
sions of all the predictors. Now transform years of experience using the func-
tion log(x + 3). (The +3 is to cancel out some negative values.) Does this
change the fit of the model? Explain.

(c) Now fit a model with a logged response. Compare this to the previous model
and explain why it is different. Compare the RSS from both models — you
will need to back-transform the fitted values from the logged model for com-
parability.
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(d) Predict the response from the untransformed tree model for each year of edu-
cation ranging from 0 up to 18 with the other predictors held at their median
values. Plot the observed data on wages and years of education and display
your predictions on top of this plot. Now fit a standard linear mode to the same
variables, compute the predictions in the same manner and also display on the
same plot. Compare the two sets of predictions.

5. The dvisits data comes from the Australian Health Survey of 1977–1978 and
consist of 5190 single adults where young and old have been oversampled.

(a) Build a Poisson tree model with doctorco as the response and sex, age,
agesq, income, levyplus, freepoor, freerepa, illness, actdays,
hscore, chcond1 and chcond2 as possible predictor variables. Consult the
rpart documentation for how to specify a Poisson response. What size tree
might be the minimum acceptable?

(b) Make a plot of the selected tree and interpret. How do the predictors explain
the response.

(c) For the last person in the dataset, compute the predicted probability distribution
for their visits to the doctor, i.e., give the probability they visit 0, 1, 2 etc. times.

(d) Fit a random forest model to the same variables. You will need to use the re-
gression method. Construct the same predicted probabilities as in the previous
question.

(e) Assess the importance of each variable in the forest model. Make partial de-
pendence plots of the most and the least important predictors. Compare the
two.
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Chapter 17

Neural Networks

Neural networks (NN) were originally developed as an attempt to emulate the hu-
man brain. The brain has about 1.5×1010 neurons each with 10 to 104 connections
called synapses. The speed of messages between neurons is about 100 m/sec which is
much slower than CPU speed. Given that our fastest reaction time is around 100 ms
and neuron computation time is 1–10 ms, then the number of steps must be less than
100. This is inconceivably small for a sequential computation, even in machine code;
therefore, the brain must be computing in parallel. The original idea behind neural
networks was to use a computer-based model of the human brain to perform com-
plex tasks. We can recognize people in fractions of a second, but this task is difficult
for computers. So why not make software more like the human brain? Despite the
promise, there are some drawbacks. The brain model of connected neurons, first sug-
gested by McCulloch and Pitts (1943), is too simplistic given more recent research.
For these and other reasons, the methodology is more properly called artificial neu-
ral nets. As with artificial intelligence, the promise of NNs is not matched by the
reality of their performance. There was a large amount of hype concerning NNs but
that is now past. Nevertheless, viewed simply as an algorithmic procedure, NNs are
competitive with other less ambitiously named methods. NNs are used for various
purposes. They can be used as biological models, which was the original motivation.
They can also be used as a hardware implementation for adaptive control. But the
area of application we are interested in is data analysis. There are NN models that
rival the regression, classification and clustering methods normally used by statisti-
cians. A perceptron is a model of a neuron and is the basic building block of a neural
network as depicted in Figure 17.1. The output xo is determined from inputs xi:

Input

Input

Input

Output

Figure 17.1 A perceptron.
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xo = fo( ∑
inputs:i

wixi)

where fo is called the activation function. Standard choices include the identity, lo-
gistic and indicator functions. The wi are weights. The NN learns the weights from
the data. A statistician would prefer to say that the NN estimates the parameters from
the data. Thus NN terminology differs from statistical usage in ways that can be
confusing.

17.1 Statistical Models as NNs

Three common statistical models are analogous to the single perceptron NN. For
multiple linear regression:

y = ∑
i

wixi

So here fo is the identity function. We can define x1 ≡ 1 to get an intercept term. The
NN alternative is to attach a weight, called a bias, to each neuron:

f (x) = x+θ

A statistician would call the bias θ an intercept.
Logistic regression also fits easily within this framework if we define fo as the lo-

gistic function. Of course, such an NN is not exactly equivalent to the corresponding
statistical model unless that NN is fit in a very particular way.

Linear discriminant analysis is used to classify a binary response. Suppose there
are two groups encoded by y = 0 or y = 1. In this case f0 is the indicator function.
Again the NN and statistical approach are not exactly equivalent unless the same
fitting procedures are used.

Other common statistical models can be approximated by adding more neurons.
Multivariate multiple linear regression with a bivariate response is Y = Xβ+ε where
Y,X ,β,ε are all matrices and is depicted as an NN in Figure 17.2: polynomial re-
gression can be mimicked by using a different activation function and more than one
layer of neurons as seen in the second panel of Figure 17.2.

x1

x2

x3

/

/

y1

y2

x x

1

x2

/ y

Figure 17.2 NN equivalent of multivariate linear regression is shown on the left. It uses lin-
ear activation functions. Polynomial regression is shown on the right and uses powers for
activation functions.
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17.2 Feed-Forward Neural Network with One Hidden Layer

The feed-forward neural network with one hidden layer is the most common choice
for regression-like modeling applications. It takes the form:

yo = φo(∑
h

whoφh(∑
i

wihxi))

The activation functions for the hidden layer, φh, are almost always logistic. If iden-
tity functions are used for the hidden layer and for the output, the resulting NN is
quite similar to the partial least squares approach of Wold et al. (1984). We will set
one of our inputs to be constant at one so as to allow for an intercept/bias term. The
choice of output activation function depends on the nature of the response. For con-
tinuous unrestricted output, an identity function is appropriate, while for response
bounded between zero and one, such as a binomial proportion, a logistic function
should be used. We show the feed-forward NN in Figure 17.3. Sometimes a direct

x1

x2

y1

y2

Figure 17.3 Feed-forward neural network with one hidden layer.

connection between the inputs and outputs is added called a skip-layer connection.
More complexity can be added using more layers or feedbacks although this not
always beneficial to the practical performance of the NN.

NNs can be elaborated to perform as universal approximators. This has been
shown by authors such as Hornik et al. (1989). However, these results are of little
practical value when confronted with a finite amount of data subject to noise. We
must use the data to estimate the parameters of the model or, in NN-speak, use the
data to train the network. The weights w are chosen to minimize a criterion, such as
MSE = ∑(y− ŷ)2 where y is the observed output and ŷ is the predicted output. A
different criterion would be more suitable for categorical responses.

NN researchers have developed different methods of estimation motivated by
brain models of learning. These methods have generally not compared well with the
numerical analysis-based approaches which are generally faster and more reliable.
Nevertheless, in all but the most simple NNs, the criterion is a complicated function
of the parameters. The function often has many local minima making it difficult
to find the true minimum. A statistician, with no pretensions to mimicking brain
functions, would be inclined to use standard methods of numerical analysis such
as quasi-Newton methods, conjugate gradients or simulated annealing. The nnet
function in R uses the BFGS method, as described in Fletcher (1987).
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17.3 NN Application

We apply the NN method to the ozone data analyzed in previous chapters. The nnet
package, due to Venables and Ripley (2002), must be loaded first:
library(nnet)
data(ozone, package="faraway")

We start with just three variables for simplicity of exposition as in previous analyses.
We fit a feed-forward NN with one hidden layer containing two units with a linear
output unit:
set.seed(123)
nnmdl <- nnet(O3 ~ temp + ibh + ibt, ozone, size=2, linout=T)
# weights: 11
initial value 65447.874069
final value 21115.406061
converged

If you repeat this, your result may differ slightly because of the random starting point
of the algorithm, but you will likely get a similar result. We set the random number
seed for reproducibility.

The RSS of 21,115 is equal to ∑i(yi− ȳ)2, so the fit is not any better than the null
model. The problem lies with the initial selection of weights. It is hard to do this well
when the variables have very different scales. The solution is to rescale the data to
have zero mean and unit variance:
sx <- scale(ozone)

Because a random starting point is used, the algorithm will not necessarily converge
to the same solution if the fitting is repeated. Now we try refitting the model. We
repeat this 100 times because of the random starting point. Here we find the best fit
of the 100 attempts:
bestrss <- 10000
for(i in 1:100){

nnmdl <- nnet(O3 ~ temp + ibh + ibt, sx, size=2, linout=T, trace=F)
cat(i,nnmdl$value,"\n")
if(nnmdl$value < bestrss){
bestnn <- nnmdl
bestrss <- nnmdl$value
}}

bestnn$value
[1] 88.031

The criterion function has 11 parameters or weights and has multiple minima. The
problem is that we can never really know whether we have found the true minimum.
All we can do is keep trying and stop if we do not find anything better after some
number of attempts. The best strategy is not clear, although one can do better than
the simple approach we have used above. Examine the estimated weights:
summary(bestnn)
a 3-2-1 network with 11 weights
options were - linear output units
b->h1 i1->h1 i2->h1 i3->h1
1.12 -0.98 0.84 0.29

b->h2 i1->h2 i2->h2 i3->h2
137.89 -74.74 240.66 137.89

b->o h1->o h2->o
2.59 -4.41 0.67
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The notation i2->h1, for example, refers to the link between the second input vari-
able and the first hidden neuron. b refers to the bias, which takes a constant value of
one. We see that there is one skip-layer connection, b->o, from the bias to the output.

NNs have some drawbacks relative to competing statistical models. The parame-
ters of an NN are uninterpretable whereas they often have some meaning in statistical
models. Furthermore, NNs are not based on a probability model that expresses the
structure and variation. As a consequence, there are no standard errors. It is possi-
ble to graft some statistical inference onto this NN model, but it is not easy. The
bootstrap is a possible way of implementing this. The R2 for the fit is:
1-88.03/sum((sx[,1]-mean(sx[,1]))^2)
[1] 0.73243

which is very similar to the additive model fit for these predictors.
Although the NN weights may be difficult to interpret, we can get some sense of

the effect of the predictors by observing the marginal effect of changes in one or more
predictor as other predictors are held fixed. Here, we vary each predictor individually
while keeping the other predictors fixed at their mean values. Because the data has
been centered and scaled for the NN fitting, we need to restore the original scales.
The fits are shown in Figure 17.4:
ozmeans <- colMeans(ozone)
ozscales <- apply(ozone,2,sd)
xx <- expand.grid(temp=seq(-3,3,0.1),ibh=0,ibt=0)
plot(xx$temp*ozscales[’temp’]+ozmeans[’temp’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’], xlab="Temp", ylab="O3", type="l")
xx <- expand.grid(temp=0,ibh=seq(-3,3,0.1),ibt=0)
plot(xx$ibh*ozscales[’ibh’]+ozmeans[’ibh’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’], xlab="IBH", ylab="O3", type="l")
xx <- expand.grid(temp=0,ibh=0,ibt=seq(-3,3,0.1))
plot(xx$ibt*ozscales[’ibt’]+ozmeans[’ibt’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’],xlab="IBT",ylab="O3", type="l")
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Figure 17.4 Marginal effects of predictors for the NN fit. Other predictors are held fixed at
their mean values.

We see some surprising discontinuities in the plots which do not seem consistent with
what we might expect for the effect of these predictors. If we examine the weights
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for this NN above, we see several large values. Consider that all the variables have
been scaled to mean zero and variance one. Products formed using the large weights
will vary substantially. The situation is analogous to the collinearity problem in linear
regression where unreasonably large regression coefficients are often seen. The NN
is choosing extreme weights in order to optimize the fit, but the predictions will be
unstable, especially for extrapolations.

We can use a penalty function, as with smoothing splines, to obtain a more stable
fit. Instead of minimizing MSE, we minimize:

MSE +λ∑
i

w2
i

In NN terms, this is known as weight decay. The idea is similar to ridge regression.
Let’s try λ = 0.001 for 100 NN model fits:
bestrss <- 10000
for(i in 1:100){

nnmdl <- nnet(O3 ~ temp + ibh + ibt, sx, size=2, linout=T, decay
↪→ =0.001, trace=F)

cat(i, nnmdl$value,"\n")
if(nnmdl$value < bestrss){
bestnn <- nnmdl
bestrss <- nnmdl$value
}}

bestnn$value
[1] 92.055

The value of the best RSS is somewhat larger than before. We expect this since
weight decay sacrifices some fit to the current data to obtain a more stable result.
We repeat the assessment of the marginal effects as before and display the results in
Figure 17.5:
xx <- expand.grid(temp=seq(-3,3,0.1),ibh=0,ibt=0)
plot(xx$temp*ozscales[’temp’]+ozmeans[’temp’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’],xlab="Temp",ylab="O3", type="l")
xx <- expand.grid(temp=0,ibh=seq(-3,3,0.1),ibt=0)
plot(xx$ibh*ozscales[’ibh’]+ozmeans[’ibh’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’],xlab="IBH",ylab="O3", type="l")
xx <- expand.grid(temp=0,ibh=0,ibt=seq(-3,3,0.1))
plot(xx$ibt*ozscales[’ibt’]+ozmeans[’ibt’], predict(bestnn,new=xx)*

↪→ ozscales[’O3’]+ozmeans[’O3’],xlab="IBT",ylab="O3", type="l")

We see that the fits are now plausibly smooth. Note that ibh is strictly positive in
practice so the strange behavior for negative values is irrelevant. Compare these plots
to Figure 15.3. The shapes are similar for temperature and ibh. The ibt plot looks
quite different although we have no way to assess the significance of any of the terms
in the NN fit.

NNs have interactions built in so one should also look at these. We could produce
analogous plots to those in Figure 17.5 by varying two predictors at a time.

Now let’s look at the full dataset. We use four hidden units because there are now
more inputs.
bestrss <- 10000
for(i in 1:100){

nnmdl <- nnet(O3 ~ ., sx, size=4, linout=T,trace=F)
cat(i, nnmdl$value,"\n")
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Figure 17.5 Marginal effects of predictors for the NN fit with weight decay. Other predictors
are held fixed at their mean values.

if(nnmdl$value < bestrss){
bestnn <- nnmdl
bestrss <- nnmdl$value

}}
1-bestnn$value/sum((sx[,1]-mean(sx[,1]))^2)
[1] 0.85063

The fit is good and there may be better minimum than we have found and increasing
the number of hidden units would always improve the fit. The fit can be compared to
those in previous chapters. The R2s for the linear, tree and MARS model fits were not
as impressive but these approaches tell us more about the relationship between the
predictors and the response, so it would not be sensible to judge by R2 alone. It would
be rash to draw firm conclusions from just one dataset. Furthermore, the value of the
modeling approaches needs to be judged within the context of the particular problem.
If explanation is the main goal of the data analysis, NNs are not a good choice. If
prediction is the objective, we cannot judge just by the fit to the data we have now.
It is more important how the model performs on future observations. We do not have
fresh data here as we have used it all to fit the data. It is a good idea to withhold data
for use in testing the prediction performance of the models considered. NNs have
been generally competitive in comparison studies but by no means dominant.

17.4 Conclusion

NNs, as presented here, are a controlled flexible class of nonlinear regression mod-
els. By adding more hidden units we can control the complexity of the model in a
measured way from relatively simple models up to models suitable for large datasets
with complex structure. NNs are also attractive because they require less expertise to
use successfully compared to statistical models. Nevertheless the user must still pay
attention to basic statistical issues involving transformation and scaling of the data
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and outliers and influential points. See Faraway and Chatfield (1998) for an example
of the application of neural networks and how they compare with statistical methods.

NNs are generally good for prediction but bad for understanding. The NN
weights are almost uninterpretable. Although one can gain some insight from plotting
the marginal effect of predictors, the NN inevitably introduces complex interactions
that often do not reflect reality. Furthermore, without careful control, the NN can
easily overfit the data resulting in overoptimistic predictions.

NNs are quite effective for large complex datasets compared to statistical meth-
ods where the burden of developing an appropriate sampling model can sometimes
slow or even block progress. NNs do lack good statistical theory for inference, diag-
nostics and model selection. Of course, they were not developed with these statistical
considerations in mind, but experience shows that such issues are often important.

NNs can outperform their statistical competitors for some problems provided
they are carefully used. However, one should not be fooled by the evocative name, as
NNs are just another tool in the box.

Further Reading: See Ripley (1996), Bishop (1995), Haykin (1998), Neal
(1996) and Hertz et al. (1991) for more on NNs.

Exercises

1. Consider the diabetes dataset analyzed in the exercises for Chapter 16. Before
starting, plot the data and construct a reduced dataset without missing values as
described in that question.

(a) Compute the total sum of squares for the response, glyhb. This is the sum of
squares about the mean. Now fit a neural network model with this response and
the remaining variables as predictors. Use two hidden nodes. Do not rescale
and fit the model only once. Compute the residual sum of squares. How has
the model performed?

(b) Rescale all the numerical variables in the data frame and recompute the total
sum of squares. Refit the same neural network model but to the rescaled data
frame. Has the model done any better?

(c) Fit the model of the previous question 100 times, saving the RSS on each iter-
ation. Plot the RSS against the iteration index. Comment. Do you think more
iterations would help?

(d) The number of steps within each model fit is limited to 100 and is controlled
by the argument maxit in the nnet call. Set this argument to 200 and repeat
the model fitting 100 times as in the previous question. Does increasing this
argument improve the fit of the models?

(e) Fit the model 100 times as before, but this time save the model producing the
best fit. Plot the weights of the best fitting model against the weights from the
100th model fitted. Comment on the relationship.

(f) Fit the model 100 times but now use four hidden units. Does this produce a
better fit?
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2. Refer to the pima dataset described in Question 3 of Chapter 15.
(a) Find all the zero predictor values which are clearly impossible and replace

them with missing values. Now fit a neural network model with the diabetes
test outcome as the response and the other variables as predictors. Use two
hidden units. Do not rescale the data yet. Examine the fitted values from this
fit. How do they compare to the proportion of negative and positive test results
in the data? How many fitted values are calculated? How does this compare to
the number of rows in the data frame?

(b) Rescale all the predictors to standard units and refit the model. Are the fitted
values more informative now?

(c) Fit the model 100 times and save the best fitting result. What proportion of
response values are correctly classified by this best model?

(d) Construct a test set by taking a random sample of 100 cases from the subset
of rows which contain no missing values. Use all the remaining cases as the
training set. Fit the model 100 times to the training set and choose the best fit.
Evaluate this best model by its performance on the training set. Compare the
classification rate achieved with that of the previous question. Which rate is a
more realistic representation of how the model might perform on fresh data?

(e) Increase the number of hidden units to eight. Evaluate the model performance
on the full data (fitting 100 times and picking the best model). Now evaluate
performance by fitting the models on the training set and classifying the test
set. Compare the two performances and comment. Does adding more hidden
units help the classification?

3. In this question we model the Volume in terms of Girth and Height using the
trees data.

(a) Plot the reponse on each of the predictors and comment on the relationship. Do
they look linear?

(b) Fit a linear model with Volume as the response and the other two variables
as predictors. Produce effect displays like those seen in Figure 15.2 for both
predictors. Comment on the relationships seen.

(c) Rescale all the variables to standard units. Fit a neural network model with two
hidden units. Repeat 100 times and pick the best fit. Compute the R2 for this
model and compare to the linear model fit.

(d) Construct a data frame where the (standardized) height varies in the range
[−2,2] and the girth is fixed at the standardized mean of zero. Predict the re-
sponse for the cases in this data frame. Plot the volume against the height and
show your predicted responses as a line on top of this plot. Comment on the
shape of the curve. Repeat the exercise, reversing the roles of height and girth.

(e) Construct a perspective plot showing the bivariate view of the fit. Look at Fig-
ure 14.14 for hints on the construction.
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Appendix A

Likelihood Theory

This appendix is just an overview of the likelihood theory used in this book. For
greater detail or a more gentle introduction, the reader is advised to consult a book
on theoretical statistics such as Cox and Hinkley (1974), Bickel and Doksum (2015),
Wood (2015) or Rice (1998).

A.1 Maximum Likelihood

Consider n independent discrete random variables, Y1, . . . ,Yn, with probability dis-
tribution function f (y|θ) where θ is the, possibly vector-valued, parameter. Suppose
we observe y = (y1, . . . ,yn)

T , then we define the likelihood as:

P(Y = y) =
n

∏
i=1

f (yi|θ) = L(θ|y)

So the likelihood is a function of the parameter(s) given the data and is the probability
of the observed data given a specified value of the parameter(s).

For continuous random variables, Y1, . . . ,Yn with probability density function
f (y|θ), we recognize that, in practice, we can only measure or observe data with
limited precision. We may record yi, but this effectively indicates an observation in
the range [yl

i ,y
u
i ] so that:

P(Yi = yi) = P(yl
i ≤ yi ≤ yu

i ) =
∫ yl

i

yl
i

f (u|θ)du≈ f (yi|θ)δi

where δi = yu
i − yl

i . We can now write the likelihood as:

L(θ|y)≈
n

∏
i=1

f (yi|θ)
n

∏
i=1

δi

Now provided that δi is relatively small and does not depend on θ, we may ignore it
and the likelihood is the same as in the discrete case.

As an example, suppose that Y is binomially distributed B(n, p). The likelihood
is:

L(p|y) =
(

n
y

)
py(1− p)n−y

The maximum likelihood estimate (MLE) is the value of the parameter(s) that
gives the largest probability to the observed data or, in other words, maximizes the

375
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likelihood function. The value at which the maximum occurs, θ̂, is the maximum
likelihood estimate. In most cases, it is easier to maximize the log of likelihood func-
tion, l(θ|y) = logL(θ|y). Since log is a monotone increasing function, the maximum
occurs at the same θ̂.

In a few cases, we can find an exact analytical solution for θ̂. For the binomial,
we have the log-likelihood:

l(p|y) = log
(

n
y

)
+ y log p+(n− y) log(1− p)

The score function, u(θ), is the derivative of the log-likelihood with respect to the
parameters. For this example, we have:

u(p) =
dl(p|y)

d p
=

y
p
− n− y

1− p

We can find the maximum likelihood estimate p̂ by solving u(p)= 0. We get p̂= y/n.
We should also verify that this stationary point actually represents a maximum.

Usually we want more than an estimate; some measure of the uncertainty in the
estimate is valuable. This can be obtained via the Fisher information which is:

I(θ) = var u(θ) =−E
∂2l(θ)
∂θ∂θT

If there is more than one parameter, I(θ) will be a matrix. The information at θ̂

is the second derivative at the maximum. Large values indicate high curvature so
that the maximum is well defined and even close alternatives will have much lower
likelihood. This would indicate a high level of confidence in the estimate. One can
show that the variance of θ̂ can be estimated by:

ˆvar (θ̂) = I−1(θ̂)

under mild conditions. Sometimes it is difficult to compute the expected value of the
matrix of second derivatives. As an alternative, the observed, rather than expected,
value at θ̂ may be used instead. For the binomial example this gives:

ˆvar p̂ = p̂(1− p̂)/n

We illustrate these concepts by plotting the log-likelihood for two binomial datasets:
one where n = 25,y = 10 and another where n = 50,y = 20. We construct the log-
likelihood function:
loglik <- function(p,y,n) lchoose(n,y) + y*log(p) + (n-y)*log(1-p)

For ease of presentation, we normalize by subtracting the log-likelihood at the max-
imum likelihood estimate:
nloglik <- function(p,y,n) loglik(p,y,n) - loglik(y/n,y,n)

Now plot the two log-likelihoods, as seen in Figure A.1:
pr <- seq(0.05,0.95,by=0.01)
matplot(pr,cbind(nloglik(pr,10,25),nloglik(pr,20,50)),type="l", xlab="

↪→ p",ylab="log-likelihood")
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Figure A.1 Normalized binomial log-likelihood for n = 25,y = 10 shown with a solid line and
n = 50,y = 20 shown with a dotted line.

We see that the maximum occurs at p = 0.4 in each case at a value of zero because
of the normalization. For the larger sample, we see greater curvature and hence more
information.

Examples where likelihood can be maximized explicitly are confined to simple
cases. Typically, numerical optimization is necessary. The Newton–Raphson method
is the most well-known technique. Let θ0 be an initial guess at θ, then we update
using:

θ1 = θ0−H−1(θ0)u(θ0)

where H is the Hessian matrix of second derivatives:

H(θ) =
∂2l(θ)
∂θ∂θT

We iterate this method, putting θ1 in place of θ0 and so on, until the procedure (hope-
fully) converges. This method works well provided the log-likelihood is smooth and
convex around the maximum and that the initial value is reasonably close. In less
well-behaved cases, several things can go wrong:
• The likelihood has multiple maxima. The maximum that Newton–Raphson finds

will depend on the choice of initial estimate. If you are aware that multiple max-
ima may exist, it is advisable to try multiple starting values to search for the overall
maximum. The number and choice of these starting values are problematic. Such
problems are common in fitting neural networks, but rare for generalized linear
models.
• The maximum likelihood may occur at the boundary of the parameter space. This

means that perhaps u(θ̂) 6= 0, which will confuse the Newton–Raphson method.
Mixed effect models have several variance parameters. In some cases, these are
maximized at zero, which causes difficulties in the numerical optimization.
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• The likelihood has a large number of parameters and is quite flat in the neigh-
borhood of the maximum. The Newton–Raphson method may take a long time to
converge.
The Fisher scoring method replaces H with −I and sometimes gives superior re-

sults. This method is used in fitting GLMs and is equivalent to iteratively reweighted
least squares.

A minimization function that uses a Newton-type method is available in R. We
demonstrate its use for likelihood maximization. Note that we need to minimize −l
because nlm minimizes, not maximizes:
f <- function(x) -loglik(x,10,25)
mm <- nlm(f,0.5,hessian=T)

We use a starting value of 0.5 and find the optimum at:
mm$estimate
[1] 0.4

The inverse of the Hessian at the optimum is equal to the standard estimate of the
variance:
c(1/mm$hessian,0.4*(1-0.4)/25)
[1] 0.0096016 0.0096000

Of course, this calculation is not necessary for the binomial, but it is useful for cases
where exact calculation is not possible.

A.2 Hypothesis Testing

Consider two nested models, a larger model Ω and a smaller model ω. Let θ̂Ω be the
maximum likelihood estimate under the larger model, while θ̂ω is the correspond-
ing value when θ is restricted to the range proscribed by the smaller model. The
likelihood ratio test statistic (LRT) is:

2 log(L(θ̂ω)/L(θ̂Ω)) =−2(l(θ̂ω)− l(θ̂Ω))

Under some regularity conditions, this statistic is asymptotically distributed χ2 with
degrees of freedom equal to the difference in the number of identifiable parameters
in the two models. The approximation may not be good for small samples and may
fail entirely if the regularity conditions are broken. For example, if the smaller model
places some parameters on the boundary of the parameter space, the χ2 may not be
valid. This can happen in mixed effects models when testing whether a particular
variance component is zero.

The Wald test may be used to test hypotheses of the form H0 : θ = θ0 and the test
statistic takes the form:

(θ̂−θ0)
T I(θ̂)(θ̂−θ0)

Under the null, the test statistic has approximately a χ2 distribution with degrees of
freedom equal to the number of parameters being tested. Quite often, one does not
wish to test all the parameters and the Wald test is confined to a subset. In particular,
if we test only one parameter, H0 : θi = θi0, the square root of the Wald test statistic
is simply:

z =
θ̂i−θi0

se(θ̂i)
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This is asymptotically normal. For a Gaussian linear model, these are the t-statistics
and have an exact t-distribution, but for generalized linear and other models, the
normal approximation must suffice.

The score test of the hypothesis H0 : θ = θ0 uses the statistic:

u(θ0)
T I−1(θ0)u(θ0)

and is asymptotically χ2 distributed with degrees of freedom equal to the number of
parameters being tested.

There is no uniform advantage to any of these three tests. The score test does
not require finding the maximum likelihood estimate, while the likelihood ratio test
needs this computation to be done for both models. The Wald test needs just one
maximum likelihood estimate. However, although the likelihood ratio test requires
more information, the extra work is often rewarded. Although the likelihood ratio test
is not always the best, it has been shown to be superior in a wide range of situations.
Unless one has indications to the contrary or the computation is too burdensome, the
likelihood ratio test is the recommended choice.

These test methods can be inverted to produce confidence intervals. To compute
a 100(1−α)% confidence interval for θ, we calculate the range of hypothesized θ0
such that H0 : θ0 = 0 would not be rejected at the α level. The computation is simple
for the single-parameter Wald test where the confidence interval for θi is:

θ̂i± z1−α/2se(θ̂i)

where z is the appropriate quantile of the normal distribution. The computation is
trickier for the likelihood ratio test. If we are interested in a confidence interval for
a single parameter θi, we will need to compute the log-likelihood for a range of θi
with the other θ set to the maximizing values. This is known as the profile likelihood
for θi. Once this is computed as li(θi|y), the confidence interval is:

{θi : 2(l(θ̂i|y)− l(θi|y))< χ
1−α

1 }

As an example, this type of calculation is used in the computation of the confidence
interval for the transformation parameter used in the Box–Cox method.

We can illustrate this by considering a binomial dataset where n = 100 and y =
40. We plot the normalized log-likelihood in Figure A.2 where we have drawn a
horizontal line at half the distance of the 0.95 quantile of χ2

1 below the maximum:
pr <- seq(0.25,0.55,by=0.01)
plot(pr,nloglik(pr,40,100),type="l",xlab="p",ylab="log-likelihood")
abline(h=-qchisq(0.95,1)/2)

All p that have a likelihood above the line are contained within a 95% confidence
interval for p. We can compute the range by solving for the points of intersection:
g <- function(x) nloglik(x,40,100)+qchisq(0.95,1)/2
uniroot(g,c(0.45,0.55))$root
[1] 0.49765
uniroot(g,c(0.25,0.35))$root
[1] 0.30743
abline(v=c(0.49765,0.30743))
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Figure A.2 Likelihood ratio test-based confidence intervals for binomial p.

The confidence interval is (0.307,0.498) as is indicated by the vertical lines on the
plot. We can compute the Wald test-based interval as:
se <- sqrt(0.4*(1-0.4)/100)
cv <- qnorm(0.975)
c(0.4-cv*se,0.4+cv*se)
[1] 0.30398 0.49602

which is very similar, but not identical, to the LRT-based intervals.
Suppose we are interested in the hypothesis, H0 : p = 0.5. The LRT and p-value

are:
(lrstat <- 2*(loglik(0.4,40,100)-loglik(0.5,40,100)))
[1] 4.0271
pchisq(lrstat,1,lower=F)
[1] 0.044775

So the null is barely rejected at the 5% level. The Wald test gives:
(z <- (0.5-0.4)/se)
[1] 2.0412
2*pnorm(z,lower=F)
[1] 0.041227

Again, not very different from the LRT. The score test takes more effort to compute.
The observed information is:

−d2l(p|y)
d p2 =

y
p2 +

n− y
(1− p)2

We compute the score and information at p = 0.5 and then form the test and get the
p-value:
(sc <- 40/0.5-(100-40)/(1-0.5))
[1] -40
(obsinf <- 40/0.5^2+(100-40)/(1-0.5)^2)
[1] 400
(score.test <- 40*40/400)
[1] 4
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pchisq(4,1,lower=F)
[1] 0.0455

The outcome is again slightly different from the previous two tests. Asymptotically,
the three tests agree. We have a moderate size sample in the example, so there is little
difference. More substantial differences could be expected for smaller sample sizes.

A.3 Model Selection

It is possible to use hypothesis testing methods to choose between models but this
is not always practical or desirable. Sometimes the models we want to compare are
not nested and sometimes we want to compare larger numbers of models. Comparing
multiple models introduces problems with multiple testing which degrades the mean-
ing of p-values. Furthermore, we might wish to select a model for superior prediction
— hypothesis testing is not designed for this purpose.

We envisage comparing several models and require a criterion that will measure
the fitness and allow us to choose the best model. Many choices have been proposed
but some are only applicable to particular classes of model. We present three popular
criteria:

AIC or Akaike Information Criterion: The Kullback-Leibler distance is a mea-
sure of the closeness of our proposed model to the true model, having density g(y).
It is defined by

K( f ,g) =
∫
(logg(y)− log( f (y|θ̂)))g(y)d(y)

This is the expected log-likelihood ratio of the true model and the proposed model,
evaluated at the true model. This would be an ideal criterion except that we need to
know the true model. However, we can estimate the expected value EK( f ,g) using

−l(θ̂)+ p+
∫

log(g(y))g(y)dy

where p is the number of parameters. Since the last term only depends on the true
model and not our proposed model, we can discard it when comparing proposed
models. The AIC criterion is then:

AIC =−2l(θ̂)+2p

The multiplication by two makes the criterion compatible with the definition of the
likelihood ratio statistic which also multiplies by two (so that the null distribution is
χ2). AIC is not perfect — one problem is its lack of consistency. It is not guaranteed
to choose the true model asymptotically. Nevertheless, it is the most widely used
model selection criterion.

BIC or Bayes Information Criterion: This criterion has a Bayesian motivation.
The marginal likelihood is defined as∫

f (y|θ)h(θ)dθ
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where h(θ) is a prior density on θ. The Bayes factor compares two models by con-
sidering the ratio of the marginal likelihoods. All things being equal, we would favor
the model with the larger marginal likelihood. As we can see, this will depend on the
choice of prior h(θ) which is undesirable. However, a crude approximation to minus
twice the log marginal likelihood is

BIC =−2l(θ̂)+ p logn

which does not depend on the prior. We can now use BIC to compare models without
concern for the prior, making it usable for non-Bayesian model selection. Notice the
similarity to AIC despite the different motivation. BIC penalizes larger models more
heavily than AIC and so it prefers smaller models.

DIC or Deviance Information Criterion: In more complex models, particularly
involving hierarchical data structures, it is not always obvious how to count p or n.
DIC uses an effective degrees of freedom:

pD = D(θ)−D(θ̄)

where D is a deviance −2l(θ). The bar in x̄ denotes mean over x. The DIC is then
defined as

DIC = D(θ̄)+2pD

DIC is more naturally computed for Bayesian models but can also be used for
likelihood-based models where we assume a noninformative prior.



Appendix B

About R

Installation: R may be obtained free of charge from the R project Website at
www.r-project.org.

How to Learn R: The R website provides extensive resources for learning R.
Several free introductory guides can be found along with a list of the many books
about R which are now available. I have assumed a basic knowledge of R for readers
of this text but it is not necessary to learn it in detail before starting on this book.
Many readers are able to pick up the language from the examples in the text with
reference to the help pages. For example, for more information on the lm function,
type within R:
help(lm)

More advanced users may find the R mailing lists and online forums such as Stack-
Exchange helpful for more difficult questions.

Packages: This book uses some functions and data that are not part of base R.
These are collected in packages which you may need to install. You can find out
which packages are already installed in your library by:
library()

Some packages, such as MASS, come with the base installation so you will not need to
install them. If you have not already done so, you will need to select a location from
which to download additional packages by setting your CRAN (Comprehensive R
Archive Network) mirror by:
chooseCRANmirror()

You can then install packages. You will surely need to install the faraway package
which contains data and functions specific to this text:
install.packages("faraway")

You may also wish to install the other packages used in this text which are:
acepack, brglm, dispmod, dplyr, earth, effects, geepack, ggplot2,
lme4, pbkrtest, pscl, randomForest, reshape2, robust, RLRsim,
rpart.plot, rstan, sandwich, sm, SuppDists, tidyr, VGAM, wavethresh

All these packages are used infrequently (except for ggplot2), so you might delay
installation until you need them. Note that you only need to install packages once
on a given computer unless you upgrade the version of R. The standard GUIs for
Windows and Mac provide menu-based methods for package installation and main-
tenance which you may find more convenient. The packages MASS, rpart, mgcv,
nnet, splines and survival are part of the “recommended” R installation; you
will have these already.

Any time you want to use these particular data or functions, you will need to load
the package. For example,
library(faraway)
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makes the data from this text available. If you get an error message about some
data or functions not being found, it’s quite possible that you have forgotten to load
the necessary package. The faraway package is mostly data but does provide the
halfnorm, ilogit, logit and sumary functions used in this text.

Customization: There are several ways to customize the look of R. I set the
following options to achieve the output seen in this book:
options(width=70,digits=5,show.signif.stars=FALSE,scipen=2)

The width=70 controls the width of the printed output. You may wish to increase
this, depending on your screen or the width of your page. The digits=5 reduces
the number of digits shown when printing numbers from the default of seven. Note
that this does not reduce the precision with which these numbers are internally
stored. One might take this further — anything more than two or three significant
digits in a displayed table is usually unnecessary and more importantly, distract-
ing. show.signif.stars=FALSE prevents the printing of ugly significance stars in
model summaries. scipen=2 penalizes the use of scientific notation in reporting
numbers. This notation has its uses but can make it harder to appreciate the size of a
number. I have also sometimes edited the R output in the text to remove extraneous
output or to improve the formatting.

Updates and Errata: The code and output shown in this book were generated
under R version 3.2. R is regularly updated and improved so more recent versions
may show some differences in the output. Sometimes these changes can break the
code in the text. This is more likely to occur in the additional packages. Please refer
to the book website at http://people.bath.ac.uk/jjf23/ELM/ for information
about such changes or errors found in the text.

Interfaces: The R website provides a GUI for both Mac and Windows instal-
lations. More functionality can be found elsewhere in ESS (which runs within the
Emacs environment) and RStudio. Advanced users of R often find it more convenient
to prepare R commands in a separate script before running these in R. Customizations
to write R for many popular text editing programs are available.

Reproducible Research: It is important that you be able to reproduce your anal-
ysis in the future if needed. Sometimes, other people will need to verify your findings
or, more likely, you yourself will need to modify or update your analysis. At a mini-
mum you should maintain a commented set of R commands that will reproduce your
analysis.

Sometimes you will want produce a document that includes the R commands, text
describing the analysis and the output including graphs. This might look something
like the text of this book. The knitr and rmarkdown packages provide this along
with ability to use formats compatible with Microsoft Word and HTML for web
display.

http://people.bath.ac.uk/jjf23/ELM/
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