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PREFACE

The theory and practice of time series analysis have developed rapidly since the appear-
ance in 1970 of the seminal work of George E. P. Box and Gwilym M. Jenkins, Time
Series Analysis: Forecasting and Control, now available in its third edition (1994) with
co-author Gregory C. Reinsel. Many books on time series have appeared since then, but
some of them give too little practical application, while others give too little theoretical
background. This book attempts to present both application and theory at a level acces-
sible to a wide variety of students and practitioners. Our approach is to mix application
and theory throughout the book as they are naturally needed. 

The book was developed for a one-semester course usually attended by students in
statistics, economics, business, engineering, and quantitative social sciences. Basic
applied statistics through multiple linear regression is assumed. Calculus is assumed
only to the extent of minimizing sums of squares, but a calculus-based introduction to
statistics is necessary for a thorough understanding of some of the theory. However,
required facts concerning expectation, variance, covariance, and correlation are
reviewed in appendices. Also, conditional expectation properties and minimum mean
square error prediction are developed in appendices. Actual time series data drawn from
various disciplines are used throughout the book to illustrate the methodology. The book
contains additional topics of a more advanced nature that can be selected for inclusion in
a course if the instructor so chooses.

All of the plots and numerical output displayed in the book have been produced
with the R software, which is available from the R Project for Statistical Computing at
www.r-project.org. Some of the numerical output has been edited for additional clarity
or for simplicity. R is available as free software under the terms of the Free Software
Foundation's GNU General Public License in source code form. It runs on a wide vari-
ety of UNIX platforms and similar systems, Windows, and MacOS.

R is a language and environment for statistical computing and graphics, provides a
wide variety of statistical (e.g., time-series analysis, linear and nonlinear modeling, clas-
sical statistical tests) and graphical techniques, and is highly extensible. The extensive
appendix An Introduction to R, provides an introduction to the R software specially
designed to go with this book. One of the authors (KSC) has produced a large number of
new or enhanced R functions specifically tailored to the methods described in this book.
They are listed on page 468 and are available in the package named TSA on the R
Project’s Website at www.r-project.org. We have also constructed R command script
files for each chapter. These are available for download at www.stat.uiowa.edu/
~kchan/TSA.htm. We also show the required R code beneath nearly every table and
graphical display in the book. The datasets required for the exercises are named in each
exercise by an appropriate filename; for example, larain for the Los Angeles rainfall
data. However, if you are using the TSA package, the datasets are part of the package
and may be accessed through the R command data(larain), for example.

All of the datasets are also available at the textbook website as ASCII files with
variable names in the first row. We believe that many of the plots and calculations
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described in the book could also be obtained with other software, such as SAS©, Splus©,
Statgraphics©, SCA©, EViews©, RATS©, Ox©, and others.

This book is a second edition of the book Time Series Analysis by Jonathan Cryer,
published in 1986 by PWS-Kent Publishing (Duxbury Press). This new edition contains
nearly all of the well-received original in addition to considerable new material, numer-
ous new datasets, and new exercises. Some of the new topics that are integrated with the
original include unit root tests, extended autocorrelation functions, subset ARIMA mod-
els, and bootstrapping. Completely new chapters cover the topics of time series regres-
sion models, time series models of heteroscedasticity, spectral analysis, and threshold
models. Although the level of difficulty in these new chapters is somewhat higher than
in the more basic material, we believe that the discussion is presented in a way that will
make the material accessible and quite useful to a broad audience of users. Chapter 15,
Threshold Models, is placed last since it is the only chapter that deals with nonlinear
time series models. It could be covered earlier, say after Chapter 12. Also, Chapters 13
and 14 on spectral analysis could be covered after Chapter 10.

We would like to thank John Kimmel, Executive Editor, Statistics, at Springer, for
his continuing interest and guidance during the long preparation of the manuscript. Pro-
fessor Howell Tong of the London School of Economics, Professor Henghsiu Tsai of
Academica Sinica, Taipei, Professor Noelle Samia of Northwestern University, Profes-
sor W. K. Li and Professor Kai W. Ng, both of the University of Hong Kong, and Profes-
sor Nils Christian Stenseth of the University of Oslo kindly read parts of the manuscript,
and Professor Jun Yan used a preliminary version of the text for a class at the University
of Iowa. Their constructive comments are greatly appreciated. We would like to thank
Samuel Hao who helped with the exercise solutions and read the appendix: An Introduc-
tion to R. We would also like to thank several anonymous reviewers who read the manu-
script at various stages. Their reviews led to a much improved book. Finally, one of the
authors (JDC) would like to thank Dan, Marian, and Gene for providing such a great
place, Casa de Artes, Club Santiago, Mexico, for working on the first draft of much of
this new edition.

Iowa City, Iowa Jonathan D. Cryer
January 2008 Kung-Sik Chan
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CHAPTER 1

INTRODUCTION

Data obtained from observations collected sequentially over time are extremely com-
mon. In business, we observe weekly interest rates, daily closing stock prices, monthly
price indices, yearly sales figures, and so forth. In meteorology, we observe daily high
and low temperatures, annual precipitation and drought indices, and hourly wind
speeds. In agriculture, we record annual figures for crop and livestock production, soil
erosion, and export sales. In the biological sciences, we observe the electrical activity of
the heart at millisecond intervals. In ecology, we record the abundance of an animal spe-
cies. The list of areas in which time series are studied is virtually endless. The purpose
of time series analysis is generally twofold: to understand or model the stochastic mech-
anism that gives rise to an observed series and to predict or forecast the future values of
a series based on the history of that series and, possibly, other related series or factors.

This chapter will introduce a variety of examples of time series from diverse areas
of application. A somewhat unique feature of time series and their models is that we
usually cannot assume that the observations arise independently from a common popu-
lation (or from populations with different means, for example). Studying models that
incorporate dependence is the key concept in time series analysis.

1.1 Examples of Time Series

In this section, we introduce a number of examples that will be pursued in later chapters.

Annual Rainfall in Los Angeles

Exhibit 1.1 displays a time series plot of the annual rainfall amounts recorded in Los
Angeles, California, over more than 100 years. The plot shows considerable variation in
rainfall amount over the years — some years are low, some high, and many are
in-between in value. The year 1883 was an exceptionally wet year for Los Angeles,
while 1983 was quite dry. For analysis and modeling purposes we are interested in
whether or not consecutive years are related in some way. If so, we might be able to use
one year’s rainfall value to help forecast next year’s rainfall amount. One graphical way
to investigate that question is to pair up consecutive rainfall values and plot the resulting
scatterplot of pairs.

Exhibit 1.2 shows such a scatterplot for rainfall. For example, the point plotted near
the lower right-hand corner shows that the year of extremely high rainfall, 40 inches in
1883, was followed by a middle of the road amount (about 12 inches) in 1884. The point
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near the top of the display shows that the 40 inch year was preceded by a much more
typical year of about 15 inches.

Exhibit 1.1 Time Series Plot of Los Angeles Annual Rainfall

> library(TSA)
> win.graph(width=4.875, height=2.5,pointsize=8)
> data(larain); plot(larain,ylab='Inches',xlab='Year',type='o')

Exhibit 1.2 Scatterplot of LA Rainfall versus Last Year’s LA Rainfall

> win.graph(width=3,height=3,pointsize=8)
> plot(y=larain,x=zlag(larain),ylab='Inches', 

xlab='Previous Year Inches')

●●

●

●
●

●

●

●●

●

●

●●

●
●

●

●●
●

●

●
●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

Year

In
ch

es

1880 1900 1920 1940 1960 1980

10
20

30
40

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

10 20 30 40

10
20

30
40

Previous Year Inches

In
ch

es
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The main impression that we obtain from this plot is that there is little if any infor-
mation about this year’s rainfall amount from last year’s amount. The plot shows no
“trends” and no general tendencies. There is little correlation between last year’s rainfall
amount and this year’s amount. From a modeling or forecasting point of view, this is not
a very interesting time series!

An Industrial Chemical Process

As a second example, we consider a time series from an industrial chemical process.
The variable measured here is a color property from consecutive batches in the process.
Exhibit 1.3 shows a time series plot of these color values. Here values that are neighbors
in time tend to be similar in size. It seems that neighbors are related to one another.

Exhibit 1.3 Time Series Plot of Color Property from a Chemical Process

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(color)
> plot(color,ylab='Color Property',xlab='Batch',type='o')

This can be seen better by constructing the scatterplot of neighboring pairs as we
did with the first example.

Exhibit 1.4 displays the scatterplot of the neighboring pairs of color values. We see
a slight upward trend in this plot—low values tend to be followed in the next batch by
low values, middle-sized values tend to be followed by middle-sized values, and high
values tend to be followed by high values. The trend is apparent but is not terribly
strong. For example, the correlation in this scatterplot is about 0.6. 
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Exhibit 1.4 Scatterplot of Color Value versus Previous Color Value

> win.graph(width=3,height=3,pointsize=8)
> plot(y=color,x=zlag(color),ylab='Color Property', 

xlab='Previous Batch Color Property')

Annual Abundance of Canadian Hare

Our third example concerns the annual abundance of Canadian hare. Exhibit 1.5 gives
the time series plot of this abundance over about 30 years. Neighboring values here are
very closely related. Large changes in abundance do not occur from one year to the next.
This neighboring correlation is seen clearly in Exhibit 1.6 where we have plotted abun-
dance versus the previous year’s abundance. As in the previous example, we see an
upward trend in the plot—low values tend to be followed by low values in the next year,
middle-sized values by middle-sized values, and high values by high values. 
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Exhibit 1.5 Abundance of Canadian Hare

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(hare); plot(hare,ylab='Abundance',xlab='Year',type='o')

Exhibit 1.6 Hare Abundance versus Previous Year’s Hare Abundance

> win.graph(width=3, height=3,pointsize=8)
> plot(y=hare,x=zlag(hare),ylab='Abundance',

xlab='Previous Year Abundance')
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Monthly Average Temperatures in Dubuque, Iowa

The average monthly temperatures (in degrees Fahrenheit) over a number of years
recorded in Dubuque, Iowa, are shown in Exhibit 1.7.

Exhibit 1.7 Average Monthly Temperatures, Dubuque, Iowa

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(tempdub); plot(tempdub,ylab='Temperature',type='o')

This time series displays a very regular pattern called seasonality. Seasonality for
monthly values occurs when observations twelve months apart are related in some man-
ner or another. All Januarys and Februarys are quite cold but they are similar in value
and different from the temperatures of the warmer months of June, July, and August, for
example. There is still variation among the January values and variation among the June
values. Models for such series must accommodate this variation while preserving the
similarities. Here the reason for the seasonality is well understood—the Northern
Hemisphere’s changing inclination toward the sun.

Monthly Oil Filter Sales

Our last example for this chapter concerns the monthly sales to dealers of a specialty oil
filter for construction equipment manufactured by John Deere. When these data were
first presented to one of the authors, the manager said, “There is no reason to believe
that these sales are seasonal.” Seasonality would be present if January values tended to
be related to other January values, February values tended to be related to other Febru-
ary values, and so forth. The time series plot shown in Exhibit 1.8 is not designed to dis-
play seasonality especially well. Exhibit 1.9 gives the same plot but amended to use
meaningful plotting symbols. In this plot, all January values are plotted with the charac-
ter J, all Februarys with F, all Marches with M, and so forth.† With these plotting sym-
bols, it is much easier to see that sales for the winter months of January and February all
tend to be high, while sales in September, October, November, and December are gener-

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

Time

T
em

pe
ra

tu
re

1964 1966 1968 1970 1972 1974 1976

10
30

50
70



1.1  Examples of Time Series 7

ally quite low. The seasonality in the data is much easier to see from this modified time
series plot.

Exhibit 1.8 Monthly Oil Filter Sales

> data(oilfilters); plot(oilfilters,type='o',ylab='Sales')

Exhibit 1.9 Monthly Oil Filter Sales with Special Plotting Symbols

> plot(oilfilters,type='l',ylab='Sales')
> points(y=oilfilters,x=time(oilfilters),

pch=as.vector(season(oilfilters)))

† In reading the plot, you will still have to distinguish between Januarys, Junes, and Julys,
between Marches and Mays, and Aprils and Augusts, but this is easily done by looking at
neighboring plotting characters.
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In general, our goal is to emphasize plotting methods that are appropriate and use-
ful for finding patterns that will lead to suitable models for our time series data. In later
chapters, we will consider several different ways to incorporate seasonality into time
series models.

1.2 A Model-Building Strategy

Finding appropriate models for time series is a nontrivial task. We will develop a multi-
step model-building strategy espoused so well by Box and Jenkins (1976). There are
three main steps in the process, each of which may be used several times:

1. model specification (or identification)

2. model fitting, and

3. model diagnostics

In model specification (or identification), the classes of time series models are
selected that may be appropriate for a given observed series. In this step we look at the
time plot of the series, compute many different statistics from the data, and also apply
any knowledge of the subject matter in which the data arise, such as biology, business,
or ecology. It should be emphasized that the model chosen at this point is tentative and
subject to revision later on in the analysis.

In choosing a model, we shall attempt to adhere to the principle of parsimony; that
is, the model used should require the smallest number of parameters that will adequately
represent the time series. Albert Einstein is quoted in Parzen (1982, p. 68) as remarking
that “everything should be made as simple as possible but not simpler.”

The model will inevitably involve one or more parameters whose values must be
estimated from the observed series. Model fitting consists of finding the best possible
estimates of those unknown parameters within a given model. We shall consider criteria
such as least squares and maximum likelihood for estimation.

Model diagnostics is concerned with assessing the quality of the model that we
have specified and estimated. How well does the model fit the data? Are the assump-
tions of the model reasonably well satisfied? If no inadequacies are found, the modeling
may be assumed to be complete, and the model may be used, for example, to forecast
future values. Otherwise, we choose another model in the light of the inadequacies
found; that is, we return to the model specification step. In this way, we cycle through
the three steps until, ideally, an acceptable model is found.

Because the computations required for each step in model building are intensive,
we shall rely on readily available statistical software to carry out the calculations and do
the plotting. 

1.3 Time Series Plots in History

According toTufte (1983, p. 28), “The time-series plot is the most frequently used form
of graphic design. With one dimension marching along to the regular rhythm of sec-
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onds, minutes, hours, days, weeks, months, years, or millennia, the natural ordering of
the time scale gives this design a strength and efficiency of interpretation found in no
other graphic arrangement.”

Exhibit 1.10 reproduces what appears to be the oldest known example of a time
series plot, dating from the tenth (or possibly eleventh) century and showing the inclina-
tions of the planetary orbits.† Commenting on this artifact, Tufte says “It appears as a
mysterious and isolated wonder in the history of data graphics, since the next extant
graphic of a plotted time-series shows up some 800 years later.”

Exhibit 1.10 A Tenth-Century Time Series Plot

1.4 An Overview of the Book

Chapter 2 develops the basic ideas of mean, covariance, and correlation functions and
ends with the important concept of stationarity. Chapter 3 discusses trend analysis and
investigates how to estimate and check common deterministic trend models, such as
those for linear time trends and seasonal means.

Chapter 4 begins the development of parametric models for stationary time series,
namely the so-called autoregressive moving average (ARMA) models (also known as
Box-Jenkins models). These models are then generalized in Chapter 5 to encompass
certain types of stochastic nonstationary cases—the ARIMA models.

Chapters 6, 7, and 8 form the heart of the model-building strategy for ARIMA mod-
eling. Techniques are presented for tentatively specifying models (Chapter 6), effi-
ciently estimating the model parameters using least squares and maximum likelihood
(Chapter 7), and determining how well the models fit the data (Chapter 8).

Chapter 9 thoroughly develops the theory and methods of minimum mean square
error forecasting for ARIMA models. Chapter 10 extends the ideas of Chapters 4

† From Tufte (1983, p. 28).
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through 9 to stochastic seasonal models. The remaining chapters cover selected topics
and are of a somewhat more advanced nature.

EXERCISES

1.1 Use software to produce the time series plot shown in Exhibit 1.2, on page 2. The
data are in the file named larain.†

1.2 Produce the time series plot displayed in Exhibit 1.3, on page 3. The data file is
named color.

1.3 Simulate a completely random process of length 48 with independent, normal val-
ues. Plot the time series plot. Does it look “random”? Repeat this exercise several
times with a new simulation each time.

1.4 Simulate a completely random process of length 48 with independent, chi-square
distributed values, each with 2 degrees of freedom. Display the time series plot.
Does it look “random” and nonnormal? Repeat this exercise several times with a
new simulation each time.

1.5 Simulate a completely random process of length 48 with independent, t-distrib-
uted values each with 5 degrees of freedom. Construct the time series plot. Does it
look “random” and nonnormal? Repeat this exercise several times with a new
simulation each time.

1.6 Construct a time series plot with monthly plotting symbols for the Dubuque tem-
perature series as in Exhibit 1.7, on page 6. The data are in the file named temp-
dub.

† If you have installed the R package TSA, available for download at www.r-project.org, the
larain data are accessed by the R command: data(larain). An ASCII file of the data is also
available on the book Website at www.stat.uiowa.edu/~kchan/TSA.htm.
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CHAPTER 2

FUNDAMENTAL CONCEPTS

This chapter describes the fundamental concepts in the theory of time series models. In
particular, we introduce the concepts of stochastic processes, mean and covariance func-
tions, stationary processes, and autocorrelation functions.

2.1 Time Series and Stochastic Processes

The sequence of random variables {Yt : t = 0, ±1, ±2, ±3,…} is called a stochastic
process and serves as a model for an observed time series. It is known that the complete
probabilistic structure of such a process is determined by the set of distributions of all
finite collections of the Y’s. Fortunately, we will not have to deal explicitly with these
multivariate distributions. Much of the information in these joint distributions can be
described in terms of means, variances, and covariances. Consequently, we concentrate
our efforts on these first and second moments. (If the joint distributions of the Y’s are
multivariate normal distributions, then the first and second moments completely deter-
mine all the joint distributions.)

2.2 Means, Variances, and Covariances

For a stochastic process {Yt : t = 0, ±1, ±2, ±3,…}, the mean function is defined by

(2.2.1)

That is, μt is just the expected value of the process at time t. In general, μt can be differ-
ent at each time point t.

The autocovariance function, γt,s, is defined as

(2.2.2)

where Cov(Yt, Ys) = E[(Yt − μt)(Ys − μs)] = E(YtYs) − μt μs .
The autocorrelation function, ρt,s, is given by

(2.2.3)

where

(2.2.4)

μt E Yt( )= for t = 0, 1± 2 ...,±,

γt s, Cov Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,

ρt s, Corr Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,

Corr Yt  Ys,( )
Cov Yt  Ys,( )

Var Yt( )Var Ys( )
--------------------------------------------

γt s,

γt t, γs s,

---------------------= =
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We review the basic properties of expectation, variance, covariance, and correlation
in Appendix A on page 24.

Recall that both covariance and correlation are measures of the (linear) dependence
between random variables but that the unitless correlation is somewhat easier to inter-
pret. The following important properties follow from known results and our definitions:

(2.2.5)

Values of ρt,s near ±1 indicate strong (linear) dependence, whereas values near zero
indicate weak (linear) dependence. If ρt,s = 0, we say that Yt and Ys are uncorrelated.

To investigate the covariance properties of various time series models, the follow-
ing result will be used repeatedly: If c1, c2,…, cm and d1, d2,… , dn are constants and t1,
t2,…, tm and s1, s2,… , sn are time points, then

(2.2.6)

The proof of Equation (2.2.6), though tedious, is a straightforward application of
the linear properties of expectation. As a special case, we obtain the well-known result

(2.2.7)

The Random Walk

Let e1, e2,… be a sequence of independent, identically distributed random variables
each with zero mean and variance . The observed time series, {Yt : t = 1, 2,…}, is
constructed as follows:

(2.2.8)

Alternatively, we can write
(2.2.9)

with “initial condition” Y1 = e1. If the e’s are interpreted as the sizes of the “steps” taken
(forward or backward) along a number line, then Yt is the position of the “random
walker” at time t. From Equation (2.2.8), we obtain the mean function

γt t, Var Yt( )=

γt s, γs t,=

γt s, γt t, γs s,≤

ρt t, 1=

ρt s, ρs t,=

ρt s, 1≤ ⎭
⎪
⎬
⎪
⎫

Cov ciYti
i 1=

m

∑ djYsj
j 1=

n

∑,   cidjCov Yti
Ysj

,( )
j 1=

n

∑
i 1=

m

∑=

Var ciYti
i 1=

n

∑ ci
2Var Yti

( )
i 1=

n

∑ 2   cicjCov Yti
Ytj

,( )
j 1=

i 1–

∑
i 2=

n

∑+=

σe
2

Y1 e1=
Y2 e1 e2+=

...

Yt e1 e2
… et+ + +=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

Yt Yt 1– et+=
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so that
μt = 0    for all t (2.2.10)

We also have

so that

(2.2.11)

Notice that the process variance increases linearly with time.
To investigate the covariance function, suppose that 1 ≤ t ≤ s. Then we have

From Equation (2.2.6), we have

However, these covariances are zero unless i = j, in which case they equal Var(ei) = .
There are exactly t of these so that γt,s = t .

Since γt,s = γs,t, this specifies the autocovariance function for all time points t and s
and we can write

(2.2.12)

The autocorrelation function for the random walk is now easily obtained as

(2.2.13)

The following numerical values help us understand the behavior of the random
walk.

The values of Y at neighboring time points are more and more strongly and posi-
tively correlated as time goes by. On the other hand, the values of Y at distant time
points are less and less correlated.

A simulated random walk is shown in Exhibit 2.1 where the e’s were selected from
a standard normal distribution. Note that even though the theoretical mean function is

μt E Yt( ) E e1 e2
… et+ + +( ) E e1( ) E e2( ) … E et( )+ + += = =

0 0 … 0+ + +=

Var Yt( ) Var e1 e2
… et+ + +( ) Var e1( ) Var e2( ) … Var et( )+ + += =

σe
2 σe

2 … σe
2+ + +=

Var Yt( ) tσe
2=

γt s, Cov Yt  Ys,( ) Cov e1 e2
… et  + + + e1 e2

… et et 1+
… es+ + + + + +,( )= =

γt s,   Cov ei ej,( )
j 1=

t

∑
i 1=

s

∑=

σe
2

σe
2

γt s, tσe
2= for 1 t s≤ ≤

ρt s,
γt s,

γt t, γs s,

--------------------- t
s
--= = for 1 t s≤ ≤

ρ1 2,
1
2
--- 0.707= =

ρ24 25,
24
25
------ 0.980= =

ρ8 9,
8
9
--- 0.943= =

ρ1 25,
1

25
------ 0.200= =
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zero for all time points, the fact that the variance increases over time and that the corre-
lation between process values nearby in time is nearly 1 indicate that we should expect
long excursions of the process away from the mean level of zero.

The simple random walk process provides a good model (at least to a first approxi-
mation) for phenomena as diverse as the movement of common stock price, and the
position of small particles suspended in a fluid—so-called Brownian motion.

Exhibit 2.1  Time Series Plot of a Random Walk

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(rwalk) # rwalk contains a simulated random walk
> plot(rwalk,type='o',ylab='Random Walk')

A Moving Average

As a second example, suppose that {Yt} is constructed as

(2.2.14)

where (as always throughout this book) the e’s are assumed to be independent and iden-
tically distributed with zero mean and variance . Here
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Also

or

(2.2.15)

Furthermore,

Similarly, Cov(Yt, Yt−k) = 0 for k > 1, so we may write

For the autocorrelation function, we have

(2.2.16)

since 0.25 /0.5 = 0.5.
Notice that ρ2,1 = ρ3,2 = ρ4,3 = ρ9,8 = 0.5. Values of Y precisely one time unit apart

have exactly the same correlation no matter where they occur in time. Furthermore, ρ3,1
= ρ4,2 = ρt, t − 2 and, more generally, ρt, t − k is the same for all values of t. This leads us to
the important concept of stationarity.

Var Yt( ) Var
et et 1–+

2
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ Var et( ) Var et 1–( )+

4
---------------------------------------------------= =

0.5σe
2=

Cov Yt Yt 1–,( ) Cov
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----------------------
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-----------------------------,
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Cov et et 1–,( ) Cov et et 2–,( ) Cov et 1– et 1–,( )+ +
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--------------------------------------------------------------------------------------------------------------------------=

       
Cov et 1– et 2–,( )

4
-----------------------------------------+

Cov et 1– et 1–,( )
4

-----------------------------------------= (as all the other covariances are zero)

0.25σe
2=

γt t 1–, 0.25σe
2= for all t

Cov Yt Yt 2–,( ) Cov
et et 1–+

2
----------------------

et 2– et 3–+

2
-----------------------------,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

0= since the e′s are independent.
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⎨
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⎧
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1    for t s– 0=
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0    for t s– 1>⎩
⎪
⎨
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2.3 Stationarity

To make statistical inferences about the structure of a stochastic process on the basis of
an observed record of that process, we must usually make some simplifying (and pre-
sumably reasonable) assumptions about that structure. The most important such
assumption is that of stationarity. The basic idea of stationarity is that the probability
laws that govern the behavior of the process do not change over time. In a sense, the pro-
cess is in statistical equilibrium. Specifically, a process {Yt} is said to be strictly sta-
tionary if the joint distribution of  is the same as the joint distribution of

  for all choices of time points t1, t2,…, tn and all choices of time
lag k.

Thus, when n = 1 the (univariate) distribution of Yt is the same as that of Yt  − k for
all t and k; in other words, the Y’s are (marginally) identically distributed. It then follows
that E(Yt) = E(Yt  − k) for all t and k so that the mean function is constant for all time.
Additionally, Var(Yt) = Var(Yt  − k) for all t and k so that the variance is also constant over
time.

Setting n = 2 in the stationarity definition we see that the bivariate distribution of Yt
and Ys must be the same as that of Yt − k and Ys − k from which it follows that Cov(Yt, Ys)
= Cov(Yt − k, Ys − k) for all t, s, and k. Putting k = s and then k = t, we obtain

That is, the covariance between Yt and Ys depends on time only through the time differ-
ence |t − s | and not otherwise on the actual times t and s. Thus, for a stationary process,
we can simplify our notation and write

(2.3.1)

Note also that

The general properties given in Equation (2.2.5) now become

(2.3.2)

If a process is strictly stationary and has finite variance, then the covariance func-
tion must depend only on the time lag.

A definition that is similar to that of strict stationarity but is mathematically weaker

Yt1
Yt2

,… Ytn
, ,

Yt1 k– Yt2 k– ,… Ytn k–,

γt s, Cov Yt s– Y0,( )=

Cov Y0 Ys t–,( )=

Cov Y0 Y t s–,( )=

γ0 t s–,=

γk Cov Yt Yt k–,( )= and ρk Corr Yt Yt k–,( )=

ρk

γk

γ0
-----=

γ0 Var Yt( )=

γk γ k–=

γk γ0≤

ρ0 1=

ρk ρ k–=

ρk 1≤ ⎭
⎪
⎬
⎪
⎫
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is the following: A stochastic process {Yt} is said to be weakly (or second-order)
stationary if

In this book the term stationary when used alone will always refer to this weaker form of
stationarity. However, if the joint distributions for the process are all multivariate normal
distributions, it can be shown that the two definitions coincide. For stationary processes,
we usually only consider k ≥ 0.

White Noise

A very important example of a stationary process is the so-called white noise process,
which is defined as a sequence of independent, identically distributed random variables
{et}. Its importance stems not from the fact that it is an interesting model itself but from
the fact that many useful processes can be constructed from white noise. The fact that
{et} is strictly stationary is easy to see since

as required. Also, μt = E(et) is constant and

Alternatively, we can write

(2.3.3)

The term white noise arises from the fact that a frequency analysis of the model shows
that, in analogy with white light, all frequencies enter equally. We usually assume that
the white noise process has mean zero and denote Var(et) by .

The moving average example, on page 14, where Yt = (et + et − 1)/2, is another
example of a stationary process constructed from white noise. In our new notation, we
have for the moving average process that

1.

2.

The mean function is constant over time, and

γt t k–, γ0 k,= for all time t and lag k

Pr et1
x1≤ et2

x2≤ … etn
xn≤, , ,( )

Pr et1
x1≤( )Pr et2

x2≤( )…Pr etn
xn≤( )= (by independence) 

Pr et1 k– x1≤( )Pr et2 k– x2≤( )…Pr etn k– xn≤( )=

           (identical distributions)

Pr et1 k– x1≤ et2 k– x2≤ … etn k– xn≤, , ,( )= (by independence)

γk
Var et( )

0⎩
⎨
⎧

=
for k 0=

for k 0≠

ρk
1

0⎩
⎨
⎧

=
for k 0=

for k 0≠

σe
2

ρk

1

0.5

0⎩
⎪
⎨
⎪
⎧

=

for k 0=

for k 1=

for k 2≥
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Random Cosine Wave

As a somewhat different example,† consider the process defined as follows:

where Φ is selected (once) from a uniform distribution on the interval from 0 to 1. A
sample from such a process will appear highly deterministic since Yt will repeat itself
identically every 12 time units and look like a perfect (discrete time) cosine curve. How-
ever, its maximum will not occur at t = 0 but will be determined by the random phase Φ.
The phase Φ can be interpreted as the fraction of a complete cycle completed by time t =
0. Still, the statistical properties of this process can be computed as follows:

But this is zero since the sines must agree. So μt = 0 for all t.
Also

† This example contains optional material that is not needed in order to understand most of
the remainder of this book. It will be used in Chapter 13, Introduction to Spectral Analysis.

Yt 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞cos= for t 0 1 2 …,±,±,=

E Yt( ) E 2π t
12
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⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2π t
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So the process is stationary with autocorrelation function

(2.3.4)

This example suggests that it will be difficult to assess whether or not stationarity is
a reasonable assumption for a given time series on the basis of the time sequence plot of
the observed data.

The random walk of page 12, where , is also constructed
from white noise but is not stationary. For example, the variance function, Var(Yt) =
t , is not constant; furthermore, the covariance function  for 0 ≤ t ≤ s does
not depend only on time lag. However, suppose that instead of analyzing {Yt} directly,
we consider the differences of successive Y-values, denoted ∇Yt. Then ∇Yt = Yt − Yt−1 =
et, so the differenced series, {∇Yt}, is stationary. This represents a simple example of a
technique found to be extremely useful in many applications. Clearly, many real time
series cannot be reasonably modeled by stationary processes since they are not in statis-
tical equilibrium but are evolving over time. However, we can frequently transform non-
stationary series into stationary series by simple techniques such as differencing. Such
techniques will be vigorously pursued in the remaining chapters.

2.4 Summary

In this chapter we have introduced the basic concepts of stochastic processes that serve
as models for time series. In particular, you should now be familiar with the important
concepts of mean functions, autocovariance functions, and autocorrelation functions.
We illustrated these concepts with the basic processes: the random walk, white noise, a
simple moving average, and a random cosine wave. Finally, the fundamental concept of
stationarity introduced here will be used throughout the book.

EXERCISES

2.1 Suppose E(X) = 2, Var(X) = 9, E(Y) = 0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find:
(a) Var(X + Y).
(b) Cov(X, X + Y).
(c) Corr(X + Y, X − Y).

2.2 If X and Y are dependent but Var(X) = Var(Y), find Cov(X + Y, X − Y).
2.3 Let X have a distribution with mean μ and variance σ2, and let Yt = X for all t.

(a) Show that {Yt} is strictly and weakly stationary.
(b) Find the autocovariance function for {Yt}.
(c) Sketch a “typical” time plot of Yt.

ρk 2π k
12
------⎝ ⎠

⎛ ⎞cos= for k 0 1 2 …,±,±,=

Yt e1 e2
… et+ + +=

σe
2 γt s, tσe

2=
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2.4 Let {et} be a zero mean white noise process. Suppose that the observed process is
Yt = et + θet − 1, where θ is either 3 or 1/3.
(a) Find the autocorrelation function for {Yt} both when θ = 3 and when θ = 1/3.
(b) You should have discovered that the time series is stationary regardless of the

value of θ and that the autocorrelation functions are the same for θ = 3 and θ =
1/3. For simplicity, suppose that the process mean is known to be zero and the
variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2, ... , n
and suppose that you can produce good estimates of the autocorrelations ρk.
Do you think that you could determine which value of θ is correct (3 or 1/3)
based on the estimate of ρk? Why or why not?

2.5 Suppose Yt = 5 + 2t + Xt, where {Xt} is a zero-mean stationary series with autoco-
variance function γk.
(a) Find the mean function for {Yt}.
(b) Find the autocovariance function for {Yt}.
(c) Is {Yt} stationary? Why or why not?

2.6 Let {Xt} be a stationary time series, and define 

(a) Show that is free of t for all lags k.
(b) Is {Yt} stationary?

2.7 Suppose that {Yt} is stationary with autocovariance function γk.
(a) Show that Wt = ∇Yt = Yt − Yt − 1 is stationary by finding the mean and autoco-

variance function for {Wt}.
(b) Show that Ut = ∇2Yt = ∇[Yt − Yt−1] = Yt − 2Yt−1 + Yt−2 is stationary. (You need

not find the mean and autocovariance function for {Ut}.)
2.8 Suppose that {Yt} is stationary with autocovariance function γk. Show that for any

fixed positive integer n and any constants c1, c2, ... , cn, the process {Wt} defined
by  is stationary. (Note that Exercise
2.7 is a special case of this result.)

2.9 Suppose Yt = β0 + β1t + Xt, where {Xt} is a zero-mean stationary series with auto-
covariance function γk and β0 and β1 are constants.
(a) Show that {Yt} is not stationary but that Wt = ∇Yt = Yt − Yt − 1 is stationary.
(b) In general, show that if Yt = μt + Xt, where {Xt} is a zero-mean stationary

series and μt is a polynomial in t of degree d, then ∇mYt = ∇(∇m−1Yt) is sta-
tionary for m ≥ d and nonstationary for 0 ≤ m < d.

2.10 Let {Xt} be a zero-mean, unit-variance stationary process with autocorrelation
function ρk. Suppose that μt is a nonconstant function and that σt is a positive-val-
ued nonconstant function. The observed series is formed as Yt = μt + σtXt.
(a) Find the mean and covariance function for the {Yt} process.
(b) Show that the autocorrelation function for the {Yt} process depends only on

the time lag. Is the {Yt} process stationary?
(c) Is it possible to have a time series with a constant mean and with

Corr(Yt ,Yt − k) free of t but with {Yt} not stationary?

Yt
Xt
Xt 3+⎩

⎨
⎧

=
for t odd

for t even.
Cov Yt Yt k–,( )

Wt c1Yt c2Yt 1–
… cnYt n– 1++ + +=
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2.11 Suppose Cov(Xt,Xt − k) = γk is free of t but that E(Xt) = 3t.
(a) Is {Xt} stationary?
(b) Let Yt = 7 − 3t + Xt. Is {Yt} stationary?

2.12 Suppose that Yt = et − et−12. Show that {Yt} is stationary and that, for k > 0, its
autocorrelation function is nonzero only for lag k = 12.

2.13 Let Yt = et − θ(et − 1)2. For this exercise, assume that the white noise series is nor-
mally distributed.
(a) Find the autocorrelation function for {Yt}.
(b) Is {Yt} stationary?

2.14 Evaluate the mean and covariance function for each of the following processes. In
each case, determine whether or not the process is stationary.
(a) Yt = θ0 + tet .
(b) Wt =  ∇Yt, where Yt is as given in part (a). 
(c) Yt = et et − 1. (You may assume that {et } is normal white noise.)

2.15 Suppose that X is a random variable with zero mean. Define a time series by
Yt = (−1)tX.
(a) Find the mean function for {Yt}.
(b) Find the covariance function for {Yt}.
(c) Is {Yt} stationary?

2.16 Suppose Yt = A + Xt, where {Xt} is stationary and A is random but independent of
{Xt}. Find the mean and covariance function for {Yt} in terms of the mean and
autocovariance function for {Xt} and the mean and variance of A.

2.17 Let {Yt} be stationary with autocovariance function γk. Let .
Show that

2.18 Let {Yt} be stationary with autocovariance function γk. Define the sample vari-

ance as .

(a) First show that .

(b) Use part (a) to show that

(c) . 

(Use the results of Exercise 2.17 for the last expression.)

(d) If {Yt} is a white noise process with variance γ0, show that E(S2) =  γ0.

Y
 _ 1

n
--- Ytt 1=

n∑=

Var Y
 _
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n
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n
--- 1 k

n
---–⎝ ⎠
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k 1=

n 1–
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1
n
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n
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⎛ ⎞ γk
k n– 1+=

n 1–

∑=

S2 1
n 1–
------------ Yt Y

 _
–( )2

t 1=

n
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Yt μ–( )2
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∑ Yt Y
 _

–( )2

t 1=

n

∑ n Y
 _

μ–( )2+=
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n 1–
------------Var Y
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2
n 1–
------------ 1 k
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2.19 Let Y1 = θ0 + e1, and then for t > 1 define Yt recursively by Yt = θ0 + Yt−1 + et.
Here θ0 is a constant. The process {Yt} is called a random walk with drift.
(a) Show that Yt may be rewritten as .
(b) Find the mean function for Yt.
(c) Find the autocovariance function for Yt.

2.20 Consider the standard random walk model where Yt = Yt − 1 + et with Y1 = e1.
(a) Use the representation of Yt above to show that μt = μt − 1 for t > 1 with initial

condition μ1 = E(e1) = 0. Hence show that μt = 0 for all t.
(b) Similarly, show that Var(Yt) = Var(Yt − 1) +  for t > 1 with Var(Y1) = 

and hence Var(Yt) = t .
(c) For 0 ≤ t ≤ s, use Ys = Yt + et + 1 + et + 2 + + es to show that Cov(Yt, Ys) =

Var(Yt) and, hence, that Cov(Yt, Ys) = min(t, s) .
2.21 For a random walk with random starting value, let 

for t > 0, where Y0 has a distribution with mean μ0 and variance . Suppose fur-
ther that Y0, e1, ... , et are independent.
(a) Show that E(Yt) = μ0 for all t.
(b) Show that Var(Yt) = t + .
(c) Show that Cov(Yt, Ys) = min(t, s) + .

(d) Show that .

2.22 Let {et} be a zero-mean white noise process, and let c be a constant with |c| < 1.
Define Yt recursively by Yt = cYt − 1 + et with Y1 = e1.
(a) Show that E(Yt) = 0.
(b) Show that Var(Yt) = (1 + c2 +c4 + + c2t − 2). Is {Yt} stationary?
(c) Show that

and, in general,

Hint: Argue that Yt − 1 is independent of et. Then use
Cov(Yt, Yt − 1) = Cov(cYt − 1 + et, Yt −1 )

(d) For large t, argue that

so that {Yt} could be called asymptotically stationary.
(e) Suppose now that we alter the initial condition and put . Show

that now {Yt} is stationary.

Yt tθ0 et et 1–
… e1+ + + +=

σe
2 σe

2

σe
2

…
σe

2
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2 σ0

2

σe
2 σ0

2

Corr Yt Ys,( )
tσa

2 σ0
2+

sσa
2 σ0
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----------------------= for 0 t s≤ ≤

σe
2 …

Corr Yt  Yt 1–,( ) c
Var Yt 1–( )

Var Yt( )
---------------------------=

Corr Yt  Yt k–,( ) ck
Var Yt k–( )

Var Yt( )
--------------------------= for k 0>

Var Yt( )
σe

2

1 c2–
--------------≈ and Corr Yt  Yt k–,( ) ck≈ for k 0>
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2.23 Two processes {Zt} and {Yt} are said to be independent if for any time points t1,

t2,... , tm and s1, s2, ... , sn the random variables { } are independent

of the random variables { }. Show that if {Zt} and {Yt} are inde-

pendent stationary processes, then Wt = Zt + Yt is stationary.

2.24 Let {Xt} be a time series in which we are interested. However, because the mea-
surement process itself is not perfect, we actually observe Yt = Xt + et. We assume
that {Xt} and {et} are independent processes. We call Xt the signal and et the
measurement noise or error process.

If {Xt} is stationary with autocorrelation function ρk, show that {Yt} is also sta-
tionary with

We call  the signal-to-noise ratio, or SNR. Note that the larger the SNR,
the closer the autocorrelation function of the observed process {Yt} is to the auto-
correlation function of the desired signal {Xt}.

2.25 Suppose , where β0, f1, f2,..., fk are

constants and A1, A2, ... , Ak, B1, B2, ... , Bk are independent random variables with
zero means and variances Var(Ai) = Var(Bi) = . Show that {Yt} is stationary
and find its covariance function.

2.26 Define the function . In geostatistics, Γt,s is called the
semivariogram.
(a) Show that for a stationary process .
(b) A process is said to be intrinsically stationary if Γt,s depends only on the time

difference | t − s |. Show that the random walk process is intrinsically station-
ary.

2.27 For a fixed, positive integer r and constant φ, consider the time series defined by
.

(a) Show that this process is stationary for any value of φ.
(b) Find the autocorrelation function.

2.28 (Random cosine wave extended) Suppose that

where 0 < f < ½ is a fixed frequency and R and Φ are uncorrelated random vari-
ables and with Φ uniformly distributed on the interval (0,1).
(a) Show that E(Yt) = 0 for all t.
(b) Show that the process is stationary with .

Hint: Use the calculations leading up to Equation (2.3.4), on page 19.

Zt1
Zt2

… Ztm
, , ,

Ys1
Ys2

… Ysn
, , ,

Corr Yt Yt k–,( )
ρk

1 σe
2 σX

2⁄+
---------------------------= for k 1≥

σX
2 σe

2⁄

Yt β0 Ai 2πfit( ) Bi 2πfit( )sin+cos[ ]
i 1=

k

∑+=

σi
2

Γt s,
1
2
---E Yt Ys–( )2[ ]=

Γt s, γ0 γ t s––=

Yt et φet 1– φ2et 2–
… φret r–+ + + +=

Yt R 2π f t Φ+( )( )cos= for t 0 1 2 …,±,±,=

γk
1
2
---E R2( ) 2πf k( )cos=
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2.29 (Random cosine wave extended further) Suppose that

where 0 < f1 < f2 < … < fm < ½ are m fixed frequencies, and R1, Φ1, R2, Φ2,…,
Rm, Φm are uncorrelated random variables with each Φj uniformly distributed on
the interval (0,1).
(a) Show that E(Yt) = 0 for all t.
(b) Show that the process is stationary with .

Hint: Do Exercise 2.28 first.
2.30 (Mathematical statistics required) Suppose that

 

where R and Φ are independent random variables and f is a fixed frequency. The
phase Φ is assumed to be uniformly distributed on (0,1), and the amplitude R has
a Rayleigh distribution with pdf  for r > 0. Show that for each
time point t, Yt has a normal distribution. (Hint: Let  and
X = . Now find the joint distribution of X and Y. It can also be
shown that all of the finite dimensional distributions are multivariate normal and
hence the process is strictly stationary.)

Appendix A: Expectation, Variance, Covariance,
and Correlation

In this appendix, we define expectation for continuous random variables. However, all
of the properties described hold for all types of random variables, discrete, continuous,
or otherwise. Let X have probability density function f(x) and let the pair (X,Y) have
joint probability density function f(x,y).

The expected value of X is defined as .

(If ; otherwise E(X) is undefined.) E(X) is also called the expectation

of X or the mean of X and is often denoted μ or μX.

Properties of Expectation

If h(x) is a function such that , it may be shown that

Similarly, if , it may be shown that

Yt Rj 2π fj t Φj+( )[ ]cos
j 1=

m
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γk
1
2
--- E Rj

2( ) 2πfj k( )cos
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m

∑=

Yt R 2π ft Φ+( )[ ]cos= for t 0 1 2 …,±,±,=

f r( ) re r2 2⁄–=
Y R 2π ft Φ+( )[ ]cos=

R 2π ft Φ+( )[ ]sin

E X( ) xf x( ) xd
∞–

∞
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x f x( ) xd
∞–

∞
∫ ∞<

h x( ) f x( ) xd
∞–

∞
∫ ∞<

E h X( )[ ] h x( )f x( ) xd
∞–

∞
∫=

h x y( , ) f x y,( ) xd yd
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∞
∫

∞–

∞
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 (2.A.1)

As a corollary to Equation (2.A.1), we easily obtain the important result

(2.A.2)

We also have

(2.A.3)

The variance of a random variable X is defined as

(2.A.4)

(provided E(X2) exists). The variance of X is often denoted by σ2 or .

Properties of Variance

(2.A.5)

(2.A.6)

If X and Y are independent, then

(2.A.7)

In general, it may be shown that

(2.A.8)

The positive square root of the variance of X is called the standard deviation of X and
is often denoted by σ or σX. The random variable (X − μX)/σX is called the standard-
ized version of X. The mean and standard deviation of a standardized variable are
always zero and one, respectively.

The covariance of X and Y is defined as .

Properties of Covariance

(2.A.9)

(2.A.10)

(2.A.11)

(2.A.12)

(2.A.13)

If X and Y are independent,

(2.A.14)

E h X Y,( )[ ] h x y,( )f x y,( ) xd yd
∞–

∞
∫

∞–

∞
∫=

E aX bY c+ +( ) aE X( ) bE Y( ) c+ +=

E XY( ) xyf x y,( ) xd yd
∞–

∞
∫

∞–

∞
∫=
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Cov a bX+ c dY+,( ) bdCov X Y,( )=

Var X Y+( ) Var X( ) Var Y( ) 2Cov X Y,( )+ +=

Cov X Y+ Z,( ) Cov X Z,( ) Cov Y Z,( )+=
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The correlation coefficient of X and Y, denoted by Corr(X, Y) or ρ, is defined as

Alternatively, if X* is a standardized X and Y* is a standardized Y, then ρ = E(X*Y*).

Properties of Correlation

(2.A.15)

(2.A.16)

Corr(X, Y) =  if and only if there are constants a and b such that Pr(Y = a + bX) = 1.

ρ Corr X Y,( ) Cov X Y,( )
Var X( )Var Y( )

-----------------------------------------= =

1– Corr X Y,( ) 1≤ ≤

Corr a bX+ c dY+,( ) sign bd( )Corr X Y,( )=

where sign bd( )
1 if bd 0>
0 if bd 0=

1–  if bd 0<⎩
⎪
⎨
⎪
⎧

=

1±
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CHAPTER 3

TRENDS

In a general time series, the mean function is a totally arbitrary function of time. In a sta-
tionary time series, the mean function must be constant in time. Frequently we need to
take the middle ground and consider mean functions that are relatively simple (but not
constant) functions of time. These trends are considered in this chapter.

3.1 Deterministic Versus Stochastic Trends

“Trends” can be quite elusive. The same time series may be viewed quite differently by
different analysts. The simulated random walk shown in Exhibit 2.1 might be consid-
ered to display a general upward trend. However, we know that the random walk process
has zero mean for all time. The perceived trend is just an artifact of the strong positive
correlation between the series values at nearby time points and the increasing variance
in the process as time goes by. A second and third simulation of exactly the same pro-
cess might well show completely different “trends.” We ask you to produce some addi-
tional simulations in the exercises. Some authors have described such trends as
stochastic trends (see Box, Jenkins, and Reinsel, 1994), although there is no generally
accepted definition of a stochastic trend.

The average monthly temperature series plotted in Exhibit 1.7 on page 6, shows a
cyclical or seasonal trend, but here the reason for the trend is clear—the Northern
Hemisphere’s changing inclination toward the sun. In this case, a possible model might
be Yt = μt + Xt, where μt is a deterministic function that is periodic with period 12; that
is μt, should satisfy

We might assume that Xt, the unobserved variation around μt, has zero mean for all t so
that indeed μt is the mean function for the observed series Yt. We could describe this
model as having a deterministic trend as opposed to the stochastic trend considered
earlier. In other situations we might hypothesize a deterministic trend that is linear in
time (that is,  μt = β0 + β1t) or perhaps a quadratic time trend,  μt = β0 + β1t + β2t2. Note
that an implication of the model Yt = μt + Xt with E(Xt) = 0 for all t is that the determin-
istic trend μt applies for all time. Thus, if μt = β0 + β1t, we are assuming that the same
linear time trend applies forever. We should therefore have good reasons for assuming
such a model—not just because the series looks somewhat linear over the time period
observed.

μt μt 12–= for all t
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In this chapter, we consider methods for modeling deterministic trends. Stochastic
trends will be discussed in Chapter 5, and stochastic seasonal models will be discussed
in Chapter 10. Many authors use the word trend only for a slowly changing mean func-
tion, such as a linear time trend, and use the term seasonal component for a mean func-
tion that varies cyclically. We do not find it useful to make such distinctions here.

3.2 Estimation of a Constant Mean

We first consider the simple situation where a constant mean function is assumed. Our
model may then be written as

(3.2.1)

where E(Xt) = 0 for all t. We wish to estimate μ with our observed time series Y1, Y2,…,
Yn. The most common estimate of μ is the sample mean or average defined as

(3.2.2)

Under the minimal assumptions of Equation (3.2.1), we see that E( ) = μ; there-
fore  is an unbiased estimate of μ. To investigate the precision of  as an estimate of
μ, we need to make further assumptions concerning Xt.

Suppose that {Yt}, (or, equivalently, {Xt} of Equation (3.2.1)) is a stationary time
series with autocorrelation function ρk. Then, by Exercise 2.17, we have

(3.2.3)

Notice that the first factor, γ0/n, is the process (population) variance divided by the sam-
ple size—a concept with which we are familiar in simpler random sampling contexts. If
the series {Xt} of Equation (3.2.1) is just white noise, then ρk = 0 for k > 0 and 
reduces to simply γ0/n. 

In the (stationary) moving average model Yt = et − ½et − 1, we find that ρ1 = −0.4
and ρk = 0 for k > 1. In this case, we have

For values of n usually occurring in time series (n > 50, say), the factor (n − 1)/n
will be close to 1, so that we have
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We see that the negative correlation at lag 1 has improved the estimation of the mean
compared with the estimation obtained in the white noise (random sample) situation.
Because the series tends to oscillate back and forth across the mean, the sample mean
obtained is more precise.

On the other hand, if ρk ≥ 0 for all k ≥ 1, we see from Equation (3.2.3) that 
will be larger than γ0/n. Here the positive correlations make estimation of the mean more
difficult than in the white noise case. In general, some correlations will be positive and
some negative, and Equation (3.2.3) must be used to assess the total effect.

For many stationary processes, the autocorrelation function decays quickly enough
with increasing lags that

(3.2.4)

(The random cosine wave of Chapter 2 is an exception.)
Under assumption (3.2.4) and given a large sample size n, the following useful

approximation follows from Equation (3.2.3) (See Anderson, 1971, p. 459, for example)

(3.2.5)

Notice that to this approximation the variance is inversely proportional to the sample
size n.

As an example, suppose that ρk = φ|k| for all k, where φ is a number strictly between
−1 and +1. Summing a geometric series yields

(3.2.6)

For a nonstationary process (but with a constant mean), the precision of the sample
mean as an estimate of μ can be strikingly different. As a useful example, suppose that
in Equation (3.2.1) {Xt} is a random walk process as described in Chapter 2. Then
directly from Equation (2.2.8) we have
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so that

(3.2.7)

Notice that in this special case the variance of our estimate of the mean actually
increases as the sample size n increases. Clearly this is unacceptable, and we need to
consider other estimation techniques for nonstationary series.

3.3 Regression Methods

The classical statistical method of regression analysis may be readily used to estimate
the parameters of common nonconstant mean trend models. We shall consider the most
useful ones: linear, quadratic, seasonal means, and cosine trends.

Linear and Quadratic Trends in Time

Consider the deterministic time trend expressed as

(3.3.1)

where the slope and intercept, β1 and β0 respectively, are unknown parameters. The
classical least squares (or regression) method is to choose as estimates of β1 and β0 val-
ues that minimize

The solution may be obtained in several ways, for example, by computing the partial
derivatives with respect to both β’s, setting the results equal to zero, and solving the
resulting linear equations for the β’s. Denoting the solutions by and , we find that

(3.3.2)

where  = (n + 1)/2 is the average of 1, 2,…, n. These formulas can be simplified some-
what, and various versions of the formulas are well-known. However, we assume that
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the computations will be done by statistical software and we will not pursue other
expressions for and here.

Example

Consider the random walk process that was shown in Exhibit 2.1. Suppose we (mistak-
enly) treat this as a linear time trend and estimate the slope and intercept by
least-squares regression. Using statistical software we obtain Exhibit 3.1.

Exhibit 3.1 Least Squares Regression Estimates for Linear Time Trend

> data(rwalk)
> model1=lm(rwalk~time(rwalk))
> summary(model1)

So here the estimated slope and intercept are = 0.1341 and  = −1.008, respec-
tively. Exhibit 3.2 displays the random walk with the least squares regression trend line
superimposed. We will interpret more of the regression output later in Section 3.5 on
page 40 and see that fitting a line to these data is not appropriate.

Exhibit 3.2 Random Walk with Linear Time Trend

> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(rwalk,type='o',ylab='y')
> abline(model1) # add the fitted least squares line from model1

Estimate Std. Error t value Pr(>|t|)

Intercept −1.008 0.2972 −3.39 0.00126

Time 0.1341 0.00848 15.82 < 0.0001
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Cyclical or Seasonal Trends

Consider now modeling and estimating seasonal trends, such as for the average monthly
temperature data in Exhibit 1.7. Here we assume that the observed series can be repre-
sented as

where E(Xt) = 0 for all t.
The most general assumption for μt with monthly seasonal data is that there are 12

constants (parameters), β1, β2,…, and β12, giving the expected average temperature for
each of the 12 months. We may write

(3.3.3)

This is sometimes called a seasonal means model.
As an example of this model consider the average monthly temperature data shown

in Exhibit 1.7 on page 6. To fit such a model, we need to set up indicator variables
(sometimes called dummy variables) that indicate the month to which each of the data
points pertains. The procedure for doing this will depend on the particular statistical
software that you use. We also need to note that the model as stated does not contain an
intercept term, and the software will need to know this also. Alternatively, we could use
an intercept and leave out any one of the β’s in Equation (3.3.3). 

Exhibit 3.3 displays the results of fitting the seasonal means model to the tempera-
ture data. Here the t-values and Pr(>|t|)-values reported are of little interest since they
relate to testing the null hypotheses that the β’s are zero—not an interesting hypothesis
in this case.

Exhibit 3.3 Regression Results for the Seasonal Means Model

Estimate Std. Error t-value Pr(>|t|)

January 16.608 0.987 16.8 < 0.0001

February 20.650 0.987 20.9 < 0.0001

March 32.475 0.987 32.9 < 0.0001

April 46.525 0.987 47.1 < 0.0001

May 58.092 0.987 58.9 < 0.0001

June 67.500 0.987 68.4 < 0.0001

July 71.717 0.987 72.7 < 0.0001

Yt μt Xt+=

μt

β1 for t = 1, 13, 25, ...

β2 for t = 2, 14, 26, ...

...

β12 for t =12, 24, 36, ...
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=
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> data(tempdub)
> month.=season(tempdub) # period added to improve table display
> model2=lm(tempdub~month.-1) # -1 removes the intercept term 
> summary(model2)

Exhibit 3.4 shows how the results change when we fit a model with an intercept
term. The software omits the January coefficient in this case. Now the February coeffi-
cient is interpreted as the difference between February and January average tempera-
tures, the March coefficient is the difference between March and January average
temperatures, and so forth. Once more, the t-values and Pr(>|t|) (p-values) are testing
hypotheses of little interest in this case. Notice that the Intercept coefficient plus the
February coefficient here equals the February coefficient displayed in Exhibit 3.3.

Exhibit 3.4 Results for Seasonal Means Model with an Intercept

> model3=lm(tempdub~month.) # January is dropped automatically
> summary(model3)

August 69.333 0.987 70.2 < 0.0001

September 61.025 0.987 61.8 < 0.0001

October 50.975 0.987 51.6 < 0.0001

November 36.650 0.987 37.1 < 0.0001

December 23.642 0.987 24.0 < 0.0001

Estimate Std. Error t-value Pr(>|t|)

Intercept 16.608 0.987 16.83 < 0.0001

February 4.042 1.396 2.90 0.00443

March 15.867 1.396 11.37 < 0.0001

April 29.917 1.396 21.43 < 0.0001

May 41.483 1.396 29.72 < 0.0001

June 50.892 1.396 36.46 < 0.0001

July 55.108 1.396 39.48 < 0.0001

August 52.725 1.396 37.78 < 0.0001

September 44.417 1.396 31.82 < 0.0001

October 34.367 1.396 24.62 < 0.0001

November 20.042 1.396 14.36 < 0.0001

December 7.033 1.396 5.04 < 0.0001

Estimate Std. Error t-value Pr(>|t|)
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Cosine Trends

The seasonal means model for monthly data consists of 12 independent parameters and
does not take the shape of the seasonal trend into account at all. For example, the fact
that the March and April means are quite similar (and different from the June and July
means) is not reflected in the model. In some cases, seasonal trends can be modeled eco-
nomically with cosine curves that incorporate the smooth change expected from one
time period to the next while still preserving the seasonality.

Consider the cosine curve with equation

(3.3.4)

We call β (> 0) the amplitude, f the frequency, and Φ the phase of the curve. As t varies,
the curve oscillates between a maximum of β and a minimum of −β. Since the curve
repeats itself exactly every 1/f time units, 1/f is called the period of the cosine wave. As
noted in Chapter 2, Φ serves to set the arbitrary origin on the time axis. For monthly
data with time indexed as 1, 2,…, the most important frequency is f = 1/12, because such
a cosine wave will repeat itself every 12 months. We say that the period is 12.

Equation (3.3.4) is inconvenient for estimation because the parameters β and Φ do
not enter the expression linearly. Fortunately, a trigonometric identity is available that
reparameterizes (3.3.4) more conveniently, namely

(3.3.5)

where

(3.3.6)

and, conversely,
(3.3.7)

To estimate the parameters β1 and β2 with regression techniques, we simply use
cos(2πft) and sin(2πft) as regressors or predictor variables.

The simplest such model for the trend would be expressed as

(3.3.8)

Here the constant term, β0, can be meaningfully thought of as a cosine with frequency
zero.

In any practical example, we must be careful how we measure time, as our choice
of time measurement will affect the values of the frequencies of interest. For example, if
we have monthly data but use 1, 2, 3,... as our time scale, then 1/12 would be the most
interesting frequency, with a corresponding period of 12 months. However, if we mea-
sure time by year and fractional year, say 1980 for January, 1980.08333 for February of
1980, and so forth, then a frequency of 1 corresponds to an annual or 12 month periodic-
ity.

Exhibit 3.5 is an example of fitting a cosine curve at the fundamental frequency to
the average monthly temperature series.

μt β 2πft Φ+( )cos=

β 2πft Φ+( )cos β1 2πft( )cos β2 2πft( )sin+=

β β1
2 β2

2+  ,= Φ β2– β1⁄( )atan=

β1 β Φ( ),cos= β2 β Φ( )sin=

μt β0 β1 2πft( )cos β2 2πft( )sin+ +=
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Exhibit 3.5 Cosine Trend Model for Temperature Series

> har.=harmonic(tempdub,1)
> model4=lm(tempdub~har.)
> summary(model4)

In this output, time is measured in years, with 1964 as the starting value and a fre-
quency of 1 per year. A graph of the time series values together with the fitted cosine
curve is shown in Exhibit 3.6. The trend fits the data quite well with the exception of
most of the January values, where the observations are lower than the model would pre-
dict.

Exhibit 3.6 Cosine Trend for the Temperature Series

> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(ts(fitted(model4),freq=12,start=c(1964,1)), 

ylab='Temperature',type='l',
> ylim=range(c(fitted(model4),tempdub))); points(tempdub)
> # ylim ensures that the y axis range fits the raw data and the 

fitted values

Additional cosine functions at other frequencies will frequently be used to model
cyclical trends. For monthly series, the higher harmonic frequencies, such as 2/12 and
3/12, are especially pertinent and will sometimes improve the fit at the expense of add-

Coefficient Estimate Std. Error t-value Pr(>|t|)

Intercept 46.2660 0.3088 149.82 < 0.0001

cos(2πt) −26.7079 0.4367 −61.15 < 0.0001

sin(2πt) −2.1697 0.4367 −4.97 <0.0001
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ing more parameters to the model. In fact, it may be shown that any periodic trend with
period 12 may be expressed exactly by the sum of six pairs of cosine-sine functions.
These ideas are discussed in detail in Fourier analysis or spectral analysis. We pursue
these ideas further in Chapters 13 and 14.

3.4 Reliability and Efficiency of Regression Estimates

We assume that the series is represented as Yt = μt + Xt, where μt is a deterministic trend
of the kind considered above and {Xt} is a zero-mean stationary process with autocova-
riance and autocorrelation functions γk and ρk, respectively. Ordinary regression esti-
mates parameters in a linear model according to the criterion of least squares regardless
of whether we are fitting linear time trends, seasonal means, cosine curves, or whatever.

We first consider the easiest case—the seasonal means. As mentioned earlier, the
least squares estimates of the seasonal means are just seasonal averages; thus, if we have
N (complete) years of monthly data, we can write the estimate for the mean for the j th
season as

Since  is an average like  but uses only every 12th observation, Equation
(3.2.3) can be easily modified to give . We replace n by N (years) and ρk by ρ12k
to get

(3.4.1)

We notice that if {Xt} is white noise, then  reduces to γ0/N, as expected. Fur-
thermore, if several ρk are nonzero but ρ12k = 0, then we still have . In
any case, only the seasonal autocorrelations, ρ12, ρ24, ρ36 ,..., enter into Equation
(3.4.1). Since N will rarely be very large (except perhaps for quarterly data), approxima-
tions like those shown in Equation (3.2.5) will usually not be useful.

We turn now to the cosine trends expressed as in Equation (3.3.8). For any fre-
quency of the form f = m/n, where m is an integer satisfying 1 ≤ m < n/2, explicit expres-
sions are available for the estimates  and , the amplitudes of the cosine and sine:

(3.4.2)

(These are effectively the correlations between the time series {Yt} and the cosine and
sine waves with frequency m/n.)

Because these are linear functions of {Yt}, we may evaluate their variances using
Equation (2.2.6). We find
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(3.4.3)

where we have used the fact that . However, the double

sum in Equation (3.4.3) does not, in general, reduce further. A similar expression holds

for  if we replace the cosines by sines.

If {Xt} is white noise, we get just 2γ0/n. If ρ1 ≠ 0, ρk = 0 for k > 1, and m/n = 1/12,
then the variance reduces to

(3.4.4)

To illustrate the effect of the cosine terms, we have calculated some representative val-
ues:

If ρ1 = −0.4, then the large sample multiplier in Equation (3.4.5) is 1+1.732(−0.4) =
0.307 and the variance is reduced by about 70% when compared with the white noise
case.

In some circumstances, seasonal means and cosine trends could be considered as
competing models for a cyclical trend. If the simple cosine model is an adequate model,
how much do we lose if we use the less parsimonious seasonal means model? To
approach this problem, we must first consider how to compare the models. The parame-
ters themselves are not directly comparable, but we can compare the estimates of the
trend at comparable time points.

Consider the two estimates for the trend in January; that is, μ1. With seasonal
means, this estimate is just the January average, which has variance given by Equation
(3.4.1). With the cosine trend model, the corresponding estimate is
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To compute the variance of this estimate, we need one more fact: With this model, the
estimates , , and are uncorrelated.† This follows from the orthogonality rela-
tionships of the cosines and sines involved. See Bloomfield (1976) or Fuller (1996) for
more details. For the cosine model, then, we have

(3.4.6)

For our first comparison, assume that the stochastic component is white noise. Then
the variance of our estimate in the seasonal means model is just γ0/N. For the cosine
model, we use Equation (3.4.6), and Equation (3.4.4) and its sine equivalent, to obtain

since . Thus the ratio of the standard deviation in the cosine
model to that in the seasonal means model is

In particular, for the monthly temperature series, we have n = 144 and N = 12; thus, the
ratio is

Thus, in the cosine model, we estimate the January effect with a standard deviation that
is only half as large as it would be if we estimated with a seasonal means model—a sub-
stantial gain. (Of course, this assumes that the cosine trend plus white noise model is the
correct model.)

Suppose now that the stochastic component is such that ρ1 ≠ 0 but ρk = 0 for k > 1.
With a seasonal means model, the variance of the estimated January effect will be
unchanged (see Equation (3.4.1) on page 36). For the cosine trend model, if we have a
reasonably large sample size, we may use Equation (3.4.5), an identical expression for

, and Equation (3.2.3) on page 28 for to obtain

† This assumes that 1/12 is a “Fourier frequency”; that is, it is of the form m/n. Otherwise,
these estimates are only approximately uncorrelated.
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If ρ1 = −0.4, then we have 0.814γ0/n, and the ratio of the standard deviation in the cosine
case to the standard deviation in the seasonal means case is

If we take n = 144 and N = 12, the ratio is

a very substantial reduction indeed!
We now turn to linear time trends. For these trends, an alternative formula to Equa-

tion (3.3.2) on page 30 for is more convenient. It can be shown that the least squares
estimate of the slope may be written

(3.4.7)

Since the estimate is a linear combination of Y-values, some progress can be made in
evaluating its variance. We have

(3.4.8)

where we have used = n(n2 − 1)/12. Again the double sum does not in gen-
eral reduce.

To illustrate the effect of Equation (3.4.8), consider again the case where ρ1 ≠ 0 but
ρk = 0 for k > 1. Then, after some algebraic manipulation, again involving the sum of
consecutive integers and their squares, Equation (3.4.8) can be reduced to

For large n, we can neglect the 3/n term and use

(3.4.9)
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If ρ1 = −0.4, then 1 + 2ρ1 = 0.2, and then the variance of is only 20% of what it
would be if {Xt} were white noise. Of course, if ρ1 > 0, then the variance would be
larger than for the white noise case.

We turn now to comparing the least squares estimates with the so-called best linear
unbiased estimates (BLUE) or the generalized least squares (GLS) estimates. If the
stochastic component {Xt} is not white noise, estimates of the unknown parameters in
the trend function may be made; they are linear functions of the data, are unbiased, and
have the smallest variances among all such estimates—the so-called BLUE or GLS
estimates. These estimates and their variances can be expressed fairly explicitly by
using certain matrices and their inverses. (Details may be found in Draper and Smith
(1981).) However, constructing these estimates requires complete knowledge of the
covariance function of the stochastic component, a function that is unknown in virtually
all real applications. It is possible to iteratively estimate the covariance function for {Xt}
based on a preliminary estimate of the trend. The trend is then estimated again using the
estimated covariance function for {Xt} and thus iterated to an approximate BLUE for
the trend. These methods are pursued further in Chapter 11.

Fortunately, there are some results based on large sample sizes that support the use
of the simpler least squares estimates for the types of trends that we have considered. In
particular, we have the following result (see Fuller (1996), pp. 476–480, for more
details): We assume that the trend is either a polynomial in time, a trigonometric poly-
nomial, seasonal means, or a linear combination of these. Then, for a very general sta-
tionary stochastic component {Xt}, the least squares estimates for the trend have the
same variance as the best linear unbiased estimates for large sample sizes.

Although the simple least squares estimates may be asymptotically efficient, it does
not follow that the estimated standard deviations of the coefficients as printed out by all
regression routines are correct. We shall elaborate on this point in the next section. We
also caution the reader that the result above is restricted to certain kinds of trends and
cannot, in general, be extended to regression on arbitrary predictor variables, such as
other time series. For example, Fuller (1996, pp. 518–522) shows that if Yt = βZt + Xt,
where {Xt} has a simple stochastic structure but {Zt} is also a stationary series, then the
least squares estimate of β can be very inefficient and biased even for large samples.

3.5 Interpreting Regression Output

We have already noted that the standard regression routines calculate least squares esti-
mates of the unknown regression coefficients—the betas. As such, the estimates are rea-
sonable under minimal assumptions on the stochastic component {Xt}. However, some
of the properties of the regression output depend heavily on the usual regression
assumption that {Xt} is white noise, and some depend on the further assumption that
{Xt} is approximately normally distributed. We begin with the items that depend least
on the assumptions.

Consider the regression output shown in Exhibit 3.7. We shall write for the esti-
mated trend regardless of the assumed parametric form for μt. For example, for the lin-
ear time trend, we have μt = β0 + β1t. For each t, the unobserved stochastic component

β̂1

μ̂t
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Xt can be estimated (predicted) by Yt − . If the {Xt} process has constant variance,
then we can estimate the standard deviation of Xt, namely , by the residual stan-
dard deviation

(3.5.1)

where p is the number of parameters estimated in μt and n − p is the so-called degrees of
freedom for s. The value of s gives an absolute measure of the goodness of fit of the esti-
mated trend—the smaller the value of s, the better the fit. However, a value of s of, say,
60.74 is somewhat difficult to interpret.

A unitless measure of the goodness of fit of the trend is the value of R2, also called
the coefficient of determination or multiple R-squared. One interpretation of R2 is that
it is the square of the sample correlation coefficient between the observed series and the
estimated trend. It is also the fraction of the variation in the series that is explained by
the estimated trend. Exhibit 3.7 is a more complete regression output when fitting the
straight line to the random walk data. This extends what we saw in Exhibit 3.1 on page
31.

Exhibit 3.7 Regression Output for Linear Trend Fit of Random Walk

> model1=lm(rwalk~time(rwalk))
> summary(model1)

According to Exhibit 3.7, about 81% of the variation in the random walk series is
explained by the linear time trend. The adjusted R-squared value is a small adjustment
to R2 that yields an approximately unbiased estimate based on the number of parameters
estimated in the trend. It is useful for comparing models with different numbers of
parameters. Various formulas for computing R2 may be found in any book on regres-
sion, such as Draper and Smith (1981). The standard deviations of the coefficients
labeled Std. Error on the output need to be interpreted carefully. They are appropriate
only when the stochastic component is white noise—the usual regression assumption.

Estimate Std. Error t-value Pr(>|t|)

Intercept −1.007888 0.297245 −3.39 0.00126

Time 0.134087 0.008475 15.82 < 0.0001

Residual standard error 1.137  with 58 degrees of freedom

Multiple R-Squared 0.812

Adjusted R-squared 0.809

F-statistic 250.3 with 1 and 58 df; p-value < 0.0001

μ̂t
γ0

s
1

n p–
------------ Yt μ̂̂t–( )2

t 1=

n

∑=
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For example, in Exhibit 3.7 the value 1.137 is obtained from the square root of the value
given by Equation (3.4.8) when ρk = 0 for k > 0 and with γ0 estimated by s2, that is, to
within rounding,

The important point is that these standard deviations assume a white noise stochastic
component that will rarely be true for time series.

The t-values or t-ratios shown in Exhibit 3.7 are just the estimated regression coef-
ficients, each divided by their respective standard errors. If the stochastic component is
normally distributed white noise, then these ratios provide appropriate test statistics for
checking the significance of the regression coefficients. In each case, the null hypothesis
is that the corresponding unknown regression coefficient is zero. The significance levels
and p-values are determined from the t-distribution with n − p degrees of freedom.

3.6 Residual Analysis

As we have already noted, the unobserved stochastic component {Xt} can be estimated,
or predicted, by the residual

(3.6.1)

Predicted is really a better term. We reserve the term estimate for the guess of an
unknown parameter and the term predictor for an estimate of an unobserved random
variable. We call  the residual corresponding to the tth observation. If the trend model
is reasonably correct, then the residuals should behave roughly like the true stochastic
component, and various assumptions about the stochastic component can be assessed by
looking at the residuals. If the stochastic component is white noise, then the residuals
should behave roughly like independent (normal) random variables with zero mean and
standard deviation s. Since a least squares fit of any trend containing a constant term
automatically produces residuals with a zero mean, we might consider standardizing the
residuals as . However, most statistics software will produce standardized residuals
using a more complicated standard error in the denominator that takes into account the
specific regression model being fit.

With the residuals or standardized residuals in hand, the next step is to examine var-
ious residual plots. We first look at the plot of the residuals over time. If the data are
possibly seasonal, we should use plotting symbols as we did in Exhibit 1.9 on page 7, so
that residuals associated with the same season can be identified easily.

We will use the monthly average temperature series which we fitted with seasonal
means as our first example to illustrate some of the ideas of residual analysis. Exhibit
1.7 on page 6 shows the time series plot of that series. Exhibit 3.8 shows a time series
plot for the standardized residuals of the monthly temperature data fitted by seasonal
means. If the stochastic component is white noise and the trend is adequately modeled,
we would expect such a plot to suggest a rectangular scatter with no discernible trends
whatsoever. There are no striking departures from randomness apparent in this display.

0.008475 12 1.137( )2

60 602 1–( )
----------------------------=

X̂t Yt μ̂t–=

X̂t

X̂t s⁄
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Exhibit 3.9 repeats the time series plot but now with seasonal plotting symbols. Again
there are no apparent patterns relating to different months of the year.

Exhibit 3.8 Residuals versus Time for Temperature Seasonal Means

> plot(y=rstudent(model3),x=as.vector(time(tempdub)),
xlab='Time',ylab='Standardized Residuals',type='o')

Exhibit 3.9 Residuals versus Time with Seasonal Plotting Symbols

> plot(y=rstudent(model3),x=as.vector(time(tempdub)),xlab='Time',
> ylab='Standardized Residuals',type='l')
> points(y=rstudent(model3),x=as.vector(time(tempdub)), 

pch=as.vector(season(tempdub)))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 20 40 60 80 100 120 140

−
2

−
1

0
1

2
3

Time

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

J

F

M

A

M

J
J

A
S

O

N

D

J
F

M

A

M

J
J
AS
O
N

D

J

F

M

A

M

J
J

A
SO
ND

J

F

M
A

M

J

J
A

S

O
N

DJ

F

M

A

M

J
J

A
SON

DJ

F

M

AM

J

J

A
S

O
N
D

J

FM

A
M

JJ
ASO

ND

J

F

M

A

M

J

J
A

S

O

N

D

JF

M
A

M

JJ

A
S

O
N

D

J
F

M

A
M

J
J

A
S

O

N

D

J
F

M
A

MJ

J

A
S

ON

D

J

F

M

A

M

J
J
A

S

O

N
D

0 20 40 60 80 100 120 140

−
2

−
1

0
1

2
3

Time

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls



44 Trends

Next we look at the standardized residuals versus the corresponding trend estimate,
or fitted value, as in Exhibit 3.10. Once more we are looking for patterns. Are small
residuals associated with small fitted trend values and large residuals with large fitted
trend values? Is there less variation for residuals associated with certain sized fitted
trend values or more variation with other fitted trend values? There is somewhat more
variation for the March residuals and less for November, but Exhibit 3.10 certainly does
not indicate any dramatic patterns that would cause us to doubt the seasonal means
model.

Exhibit 3.10 Standardized Residuals versus Fitted Values for the 
Temperature Seasonal Means Model

> plot(y=rstudent(model3),x=as.vector(fitted(model3)), 
xlab='Fitted Trend Values',

> ylab='Standardized Residuals',type='n')
> points(y=rstudent(model3),x=as.vector(fitted(model3)), 

pch=as.vector(season(tempdub)))

Gross nonnormality can be assessed by plotting a histogram of the residuals or stan-
dardized residuals. Exhibit 3.11 displays a frequency histogram of the standardized
residuals from the seasonal means model for the temperature series. The plot is some-
what symmetric and tails off at both the high and low ends as a normal distribution does.
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Exhibit 3.11 Histogram of Standardized Residuals from Seasonal 
Means Model

> hist(rstudent(model3),xlab='Standardized Residuals')

Normality can be checked more carefully by plotting the so-called normal scores or
quantile-quantile (QQ) plot. Such a plot displays the quantiles of the data versus the the-
oretical quantiles of a normal distribution. With normally distributed data, the QQ plot
looks approximately like a straight line. Exhibit 3.12 shows the QQ normal scores plot
for the standardized residuals from the seasonal means model for the temperature series.
The straight-line pattern here supports the assumption of a normally distributed stochas-
tic component in this model.

Exhibit 3.12 Q-Q Plot: Standardized Residuals of Seasonal Means Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(rstudent(model3))

Standardized Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

20
25

30
35

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s



46 Trends

An excellent test of normality is known as the Shapiro-Wilk test.† It essentially cal-
culates the correlation between the residuals and the corresponding normal quantiles.
The lower this correlation, the more evidence we have against normality. Applying that
test to these residuals gives a test statistic of W = 0.9929 with a p-value of 0.6954. We
cannot reject the null hypothesis that the stochastic component of this model is normally
distributed.

Independence in the stochastic component can be tested in several ways. The runs
test examines the residuals in sequence to look for patterns—patterns that would give
evidence against independence. Runs above or below their median are counted. A small
number of runs would indicate that neighboring residuals are positively dependent and
tend to “hang together” over time. On the other hand, too many runs would indicate that
the residuals oscillate back and forth across their median. Then neighboring residuals
are negatively dependent. So either too few or too many runs lead us to reject indepen-
dence. Performing a runs test‡ on these residuals produces the following values:
observed runs = 65, expected runs = 72.875, which leads to a p-value of 0.216 and we
cannot reject independence of the stochastic component in this seasonal means model.

The Sample Autocorrelation Function

Another very important diagnostic tool for examining dependence is the sample auto-
correlation function. Consider any sequence of data Y1, Y2,…, Yn—whether residuals,
standardized residuals, original data, or some transformation of data. Tentatively assum-
ing stationarity, we would like to estimate the autocorrelation function ρk for a variety of
lags k = 1, 2,…. The obvious way to do this is to compute the sample correlation
between the pairs k units apart in time. That is, among (Y1, Y1 + k), (Y2, Y2 + k),
(Y3, Y3 + k),..., and (Yn − k, Yn). However, we modify this slightly, taking into account
that we are assuming stationarity, which implies a common mean and variance for the
series. With this in mind, we define the sample autocorrelation function, rk, at lag k as

(3.6.2)

Notice that we used the “grand mean,” , in all places and have also divided by the
“grand sum of squares” rather than the product of the two separate standard deviations
used in the ordinary correlation coefficient. We also note that the denominator is a sum
of n squared terms while the numerator contains only n − k cross products. For a variety
of reasons, this has become the standard definition for the sample autocorrelation func-
tion. A plot of rk versus lag k is often called a correlogram.

† Royston, P. (1982) “An Extension of Shapiro and Wilk’s W Test for Normality to Large
Samples.” Applied Statistics, 31, 115–124.

‡ R code: runs(rstudent(model3))
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In our present context, we are interested in discovering possible dependence in the
stochastic component; therefore the sample autocorrelation function for the standard-
ized residuals is of interest. Exhibit 3.13 displays the sample autocorrelation for the
standardized residuals from the seasonal means model of the temperature series. All val-
ues are within the horizontal dashed lines, which are placed at zero plus and minus two
approximate standard errors of the sample autocorrelations, namely . The values
of rk are, of course, estimates of ρk. As such, they have their own sampling distributions,
standard errors, and other properties. For now we shall use rk as a descriptive tool and
defer discussion of those topics until Chapters 6 and 8. According to Exhibit 3.13, for k
= 1, 2,..., 21, none of the hypotheses ρk = 0 can be rejected at the usual significance lev-
els, and it is reasonable to infer that the stochastic component of the series is white
noise.

Exhibit 3.13 Sample Autocorrelation of Residuals of Seasonal Means 
Model

> win.graph(width=4.875,height=3,pointsize=8)
> acf(rstudent(model3))

As a second example consider the standardized residuals from fitting a straight line
to the random walk time series. Recall Exhibit 3.2 on page 31, which shows the data and
fitted line. A time series plot of the standardized residuals is shown in Exhibit 3.14.
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Exhibit 3.14 Residuals from Straight Line Fit of the Random Walk

> plot(y=rstudent(model1),x=as.vector(time(rwalk)), 
ylab='Standardized Residuals',xlab='Time',type='o')

In this plot, the residuals “hang together” too much for white noise—the plot is too
smooth. Furthermore, there seems to be more variation in the last third of the series than
in the first two-thirds. Exhibit 3.15 shows a similar effect with larger residuals associ-
ated with larger fitted values.

Exhibit 3.15 Residuals versus Fitted Values from Straight Line Fit

> win.graph(width=4.875, height=3,pointsize=8)
> plot(y=rstudent(model1),x=fitted(model1), 

ylab='Standardized Residuals',xlab='Fitted Trend Line Values', 
type='p')
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The sample autocorrelation function of the standardized residuals, shown in Exhibit
3.16, confirms the smoothness of the time series plot that we observed in Exhibit 3.14.
The lag 1 and lag 2 autocorrelations exceed two standard errors above zero and the lag 5
and lag 6 autocorrelations more than two standard errors below zero. This is not what
we expect from a white noise process.

Exhibit 3.16 Sample Autocorrelation of Residuals from Straight Line 
Model

> acf(rstudent(model1))

Finally, we return to the annual rainfall in Los Angeles shown in Exhibit 1.1 on
page 2. We found no evidence of dependence in that series, but we now look for evi-
dence against normality. Exhibit 3.17 displays the normal quantile-quantile plot for that
series. We see considerable curvature in the plot. A line passing through the first and
third normal quartiles helps point out the departure from a straight line in the plot.
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Exhibit 3.17 Quantile-Quantile Plot of Los Angeles Annual Rainfall Series

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(larain); qqline(larain)

3.7 Summary

This chapter is concerned with describing, modeling, and estimating deterministic
trends in time series. The simplest deterministic “trend” is a constant-mean function.
Methods of estimating a constant mean were given but, more importantly, assessment of
the accuracy of the estimates under various conditions was considered. Regression
methods were then pursued to estimate trends that are linear or quadratic in time. Meth-
ods for modeling cyclical or seasonal trends came next, and the reliability and efficiency
of all of these regression methods were investigated. The final section began our study
of residual analysis to investigate the quality of the fitted model. This section also intro-
duced the important sample autocorrelation function, which we will revisit throughout
the remainder of the book.

EXERCISES

3.1 Verify Equation (3.3.2) on page 30, for the least squares estimates of β0 and of β1
when the model Yt = β0 + β1t + Xt is considered.

3.2 Suppose Yt = μ + et − et−1. Find . Note any unusual results. In particular,
compare your answer to what would have been obtained if Yt = μ + et. (Hint: You
may avoid Equation (3.2.3) on page 28 by first doing some algebraic simplifica-
tion on .)
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3.3 Suppose Yt = μ + et + et−1. Find . Compare your answer to what would
have been obtained if Yt = μ + et. Describe the effect that the autocorrelation in
{Yt} has on .

3.4 The data file hours contains monthly values of the average hours worked per
week in the U.S. manufacturing sector for July 1982 through June 1987.
(a) Display and interpret the time series plot for these data.
(b) Now construct a time series plot that uses separate plotting symbols for the

various months. Does your interpretation change from that in part (a)?
3.5 The data file wages contains monthly values of the average hourly wages (in dol-

lars) for workers in the U.S. apparel and textile products industry for July 1981
through June 1987.
(a) Display and interpret the time series plot for these data.
(b) Use least squares to fit a linear time trend to this time series. Interpret the

regression output. Save the standardized residuals from the fit for further anal-
ysis.

(c) Construct and interpret the time series plot of the standardized residuals from
part (b).

(d) Use least squares to fit a quadratic time trend to the wages time series. Inter-
pret the regression output. Save the standardized residuals from the fit for fur-
ther analysis.

(e) Construct and interpret the time series plot of the standardized residuals from
part (d).

3.6 The data file beersales contains monthly U.S. beer sales (in millions of barrels)
for the period January 1975 through December 1990.
(a) Display and interpret the plot the time series plot for these data.
(b) Now construct a time series plot that uses separate plotting symbols for the

various months. Does your interpretation change from that in part (a)?
(c) Use least squares to fit a seasonal-means trend to this time series. Interpret the

regression output. Save the standardized residuals from the fit for further anal-
ysis.

(d) Construct and interpret the time series plot of the standardized residuals from
part (c). Be sure to use proper plotting symbols to check on seasonality in the
standardized residuals.

(e) Use least squares to fit a seasonal-means plus quadratic time trend to the beer
sales time series. Interpret the regression output. Save the standardized residu-
als from the fit for further analysis.

(f) Construct and interpret the time series plot of the standardized residuals from
part (e). Again use proper plotting symbols to check for any remaining sea-
sonality in the residuals.

3.7 The data file winnebago contains monthly unit sales of recreational vehicles from
Winnebago, Inc., from November 1966 through February 1972.
(a) Display and interpret the time series plot for these data.
(b) Use least squares to fit a line to these data. Interpret the regression output. Plot

the standardized residuals from the fit as a time series. Interpret the plot.
(c) Now take natural logarithms of the monthly sales figures and display and

Var Y
 _

( )

Var Y
 _
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interpret the time series plot of the transformed values.
(d) Use least squares to fit a line to the logged data. Display and interpret the time

series plot of the standardized residuals from this fit.
(e) Now use least squares to fit a seasonal-means plus linear time trend to the

logged sales time series and save the standardized residuals for further analy-
sis. Check the statistical significance of each of the regression coefficients in
the model.

(f) Display the time series plot of the standardized residuals obtained in part (e).
Interpret the plot.

3.8 The data file retail lists total U.K. (United Kingdom) retail sales (in billions of
pounds) from January 1986 through March 2007. The data are not “seasonally
adjusted,” and year 2000 = 100 is the base year.
(a) Display and interpret the time series plot for these data. Be sure to use plotting

symbols that permit you to look for seasonality.
(b) Use least squares to fit a seasonal-means plus linear time trend to this time

series. Interpret the regression output and save the standardized residuals from
the fit for further analysis.

(c) Construct and interpret the time series plot of the standardized residuals from
part (b). Be sure to use proper plotting symbols to check on seasonality.

3.9 The data file prescrip gives monthly U.S. prescription costs for the months
August 1986 to March 1992. These data are from the State of New Jersey’s Pre-
scription Drug Program and are the cost per prescription claim.
(a) Display and interpret the time series plot for these data. Use plotting symbols

that permit you to look for seasonality.
(b) Calculate and plot the sequence of month-to-month percentage changes in the

prescription costs. Again, use plotting symbols that permit you to look for sea-
sonality.

(c) Use least squares to fit a cosine trend with fundamental frequency 1/12 to the
percentage change series. Interpret the regression output. Save the standard-
ized residuals.

(d) Plot the sequence of standardized residuals to investigate the adequacy of the
cosine trend model. Interpret the plot.

3.10 (Continuation of Exercise 3.4) Consider the hours time series again.
(a) Use least squares to fit a quadratic trend to these data. Interpret the regression

output and save the standardized residuals for further analysis.
(b) Display a sequence plot of the standardized residuals and interpret. Use

monthly plotting symbols so that possible seasonality may be readily identi-
fied.

(c) Perform the Runs test of the standardized residuals and interpret the results.
(d) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(e) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
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3.11 (Continuation of Exercise 3.5) Return to the wages series.
(a) Consider the residuals from a least squares fit of a quadratic time trend.
(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.12 (Continuation of Exercise 3.6) Consider the time series in the data file beersales.

(a) Obtain the residuals from the least squares fit of the seasonal-means plus qua-
dratic time trend model.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.13 (Continuation of Exercise 3.7) Return to the winnebago time series.

(a) Calculate the least squares residuals from a seasonal-means plus linear time
trend model on the logarithms of the sales time series.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.14 (Continuation of Exercise 3.8) The data file retail contains U.K. monthly retail

sales figures.
(a) Obtain the least squares residuals from a seasonal-means plus linear time

trend model.
(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.15 (Continuation of Exercise 3.9) Consider again the prescrip time series.

(a) Save the standardized residuals from a least squares fit of a cosine trend with
fundamental frequency 1/12 to the percentage change time series.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
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3.16 Suppose that a stationary time series, {Yt}, has an autocorrelation function of the
form ρk = φk for k > 0, where φ is a constant in the range (−1,+1).

(a) Show that .

(Hint: Use Equation (3.2.3) on page 28, the finite geometric sum 

, and the related sum .)

(b) If n is large, argue that .

(c) Plot  for φ over the range −1 to +1. Interpret the plot in terms
of the precision in estimating the process mean.

3.17 Verify Equation (3.2.6) on page 29. (Hint: You will need the fact that

 for −1 < φ < +1.)

3.18 Verify Equation (3.2.7) on page 30. (Hint: You will need the two sums

 and .)
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CHAPTER 4

MODELS FOR STATIONARY TIME SERIES

This chapter discusses the basic concepts of a broad class of parametric time series
models—the autoregressive moving average (ARMA) models. These models have
assumed great importance in modeling real-world processes.

4.1 General Linear Processes

We will always let {Yt} denote the observed time series. From here on we will also let
{et} represent an unobserved white noise series, that is, a sequence of identically distrib-
uted, zero-mean, independent random variables. For much of our work, the assumption
of independence could be replaced by the weaker assumption that the {et} are uncorre-
lated random variables, but we will not pursue that slight generality.

A general linear process, {Yt}, is one that can be represented as a weighted linear
combination of present and past white noise terms as

(4.1.1)

If the right-hand side of this expression is truly an infinite series, then certain conditions
must be placed on the ψ-weights for the right-hand side to be meaningful mathemati-
cally. For our purposes, it suffices to assume that

(4.1.2)

We should also note that since {et} is unobservable, there is no loss in the generality of
Equation (4.1.2) if we assume that the coefficient on et is 1; effectively, ψ0 = 1.

An important nontrivial example to which we will return often is the case where the
ψ’s form an exponentially decaying sequence

where φ is a number strictly between −1 and +1. Then

For this example,

Yt et ψ1et 1– ψ2et 2–
…+ + +=

ψi
2 ∞<

i 1=

∞
∑

ψj φ j=

Yt et φet 1– φ2et 2–
…+ + +=

E Yt( ) E et φet 1– φ2et 2–
…+ + +( ) 0= =
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so that {Yt} has a constant mean of zero. Also,

Furthermore,

Thus

In a similar manner, we can find 

and thus

(4.1.3)

It is important to note that the process defined in this way is stationary—the autoco-
variance structure depends only on time lag and not on absolute time. For a general lin-
ear process, , calculations similar to those done above
yield the following results:

(4.1.4)

with ψ0 = 1. A process with a nonzero mean μ may be obtained by adding μ to the
right-hand side of Equation (4.1.1). Since the mean does not affect the covariance prop-
erties of a process, we assume a zero mean until we begin fitting models to data.
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4.2 Moving Average Processes

In the case where only a finite number of the ψ-weights are nonzero, we have what is
called a moving average process. In this case, we change notation† somewhat and write

(4.2.1)

We call such a series a moving average of order q and abbreviate the name to MA(q).
The terminology moving average arises from the fact that Yt is obtained by applying the
weights 1, −θ1, −θ2, ... , −θq to the variables et, et − 1, et − 2,…,  et − q and then moving the
weights and applying them to et + 1, et, et − 1,... , et − q + 1 to obtain Yt+1 and so on. Mov-
ing average models were first considered by Slutsky (1927) and Wold (1938).

The First-Order Moving Average Process

We consider in detail the simple but nevertheless important moving average process of
order 1, that is, the MA(1) series. Rather than specialize the formulas in Equation
(4.1.4), it is instructive to rederive the results. The model is . Since
only one θ is involved, we drop the redundant subscript 1. Clearly = 0
and  . Now

and

since there are no e’s with subscripts in common between Yt and Yt − 2. Similarly,
 whenever ; that is, the process has no correlation beyond lag

1. This fact will be important later when we need to choose suitable models for real
data.

In summary, for an MA(1) model ,

(4.2.2)

† The reason for this change will be evident later on. Some statistical software, for example
R, uses plus signs before the thetas. Check with yours to see which convention it uses.

Yt et θ1et 1–– θ2et 2–– … θq– et q––=

Yt et θet 1––=
E Yt( )

Var Yt( ) σe
2 1 θ2+( )=

Cov Yt Yt 1–,( ) Cov et θet 1–– et 1– θet 2––,( )=

Cov θet 1–– et 1–,( ) θσe
2–==

Cov Yt Yt 2–,( ) Cov et θet 1–– et 2– θet 3––,( )=

0=

Cov Yt Yt k–,( ) 0= k 2≥

Yt et θet 1––=

E Yt( ) 0=

γ0 Var Yt( ) σe
2 1 θ2+( )= =

γ1 θσe
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γk ρk 0     for k 2≥= =
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⎪
⎪
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⎪
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⎫
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Some numerical values for ρ1 versus θ in Equation (4.2.2) help illustrate the possi-
bilities. Note that the ρ1 values for negative θ can be obtained by simply negating the
value given for the corresponding positive θ-value.

A calculus argument shows that the largest value that ρ1 can attain is ρ1 = ½ when
θ = −1 and the smallest value is ρ1 = −½, which occurs when θ = +1 (see Exercise 4.3).
Exhibit 4.1 displays a graph of the lag 1 autocorrelation values for θ ranging from −1 to
+1.

Exhibit 4.1 Lag 1 Autocorrelation of an MA(1) Process for Different θ

Exercise 4.4 asks you to show that when any nonzero value of θ is replaced by 1/θ,
the same value for ρ1 is obtained. For example, ρ1 is the same for θ = ½ as for θ = 1/(½)
= 2. If we knew that an MA(1) process had ρ1 = 0.4, we still could not tell the precise
value of θ. We will return to this troublesome point when we discuss invertibility in
Section 4.5 on page 79.

Exhibit 4.2 shows a time plot of a simulated MA(1) series with θ = −0.9 and nor-
mally distributed white noise. Recall from Exhibit 4.1 that ρ1 = 0.4972 for this model;
thus there is moderately strong positive correlation at lag 1. This correlation is evident
in the plot of the series since consecutive observations tend to be closely related. If an
observation is above the mean level of the series, then the next observation also tends to
be above the mean. The plot is relatively smooth over time, with only occasional large
fluctuations.
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Exhibit 4.2 Time Plot of an MA(1) Process with θ = −0.9

> win.graph(width=4.875,height=3,pointsize=8)
> data(ma1.2.s); plot(ma1.2.s,ylab=expression(Y[t]),type='o')

The lag 1 autocorrelation is even more apparent in Exhibit 4.3, which plots Yt ver-
sus Yt−1. Note the moderately strong upward trend in this plot.

Exhibit 4.3 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.2

> win.graph(width=3,height=3,pointsize=8)
> plot(y=ma1.2.s,x=zlag(ma1.2.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')
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The plot of Yt versus Yt − 2 in Exhibit 4.4 gives a strong visualization of the zero
autocorrelation at lag 2 for this model.

Exhibit 4.4 Plot of Yt versus Yt – 2 for MA(1) Series in Exhibit 4.2

> plot(y=ma1.2.s,x=zlag(ma1.2.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')

A somewhat different series is shown in Exhibit 4.5. This is a simulated MA(1)
series with θ = +0.9. Recall from Exhibit 4.1 that ρ1 = −0.497 for this model; thus there
is moderately strong negative correlation at lag 1. This correlation can be seen in the
plot of the series since consecutive observations tend to be on opposite sides of the zero
mean. If an observation is above the mean level of the series, then the next observation
tends to be below the mean. The plot is quite jagged over time—especially when com-
pared with the plot in Exhibit 4.2.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Yt−2

Y
t



4.2  Moving Average Processes 61

Exhibit 4.5 Time Plot of an MA(1) Process with θ = +0.9

> win.graph(width=4.875,height=3,pointsize=8)
> data(ma1.1.s)
> plot(ma1.1.s,ylab=expression(Y[t]),type='o')

The negative lag 1 autocorrelation is even more apparent in the lag plot of Exhibit
4.6.

Exhibit 4.6 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.5

> win.graph(width=3, height=3,pointsize=8)
> plot(y=ma1.1.s,x=zlag(ma1.1.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')
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The plot of Yt versus Yt − 2 in Exhibit 4.7 displays the zero autocorrelation at lag 2
for this model.

Exhibit 4.7 Plot of Yt versus Yt−2 for MA(1) Series in Exhibit 4.5

> plot(y=ma1.1.s,x=zlag(ma1.1.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')

MA(1) processes have no autocorrelation beyond lag 1, but by increasing the order
of the process, we can obtain higher-order correlations.

The Second-Order Moving Average Process

Consider the moving average process of order 2:

Here

and
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Thus, for an MA(2) process,

(4.2.3)

For the specific case , we have

and

A time plot of a simulation of this MA(2) process is shown in Exhibit 4.8. The
series tends to move back and forth across the mean in one time unit. This reflects the
fairly strong negative autocorrelation at lag 1.

Exhibit 4.8 Time Plot of an MA(2) Process with θ1 = 1 and θ2 = −0.6

> win.graph(width=4.875, height=3,pointsize=8)
> data(ma2.s); plot(ma2.s,ylab=expression(Y[t]),type='o')

γ2 Cov Yt Yt 2–,( ) Cov et θ1et 1–– θ2et 2–– et 2– θ1et 3–– θ2et 4––,( )= =

Cov θ2et 2–– et 2–,( )=

θ2σe
2–=

ρ1

θ1– θ1θ2+

1 θ1
2 θ2

2+ +
----------------------------=

ρ2

θ2–

1 θ1
2 θ2

2+ +
---------------------------=

ρk 0  for k = 3, 4,...=

Yt et et 1–– 0.6et 2–+=

ρ1
1– 1( ) 0.6–( )+

1 1( )2 0.6–( )2+ +
-------------------------------------------- 1.6–

2.36
---------- 0.678–= = =

ρ2
0.6
2.36
---------- 0.254= =
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The plot in Exhibit 4.9 reflects that negative autocorrelation quite dramatically.

Exhibit 4.9 Plot of Yt versus Yt – 1 for MA(2) Series in Exhibit 4.8

> win.graph(width=3,height=3,pointsize=8)
> plot(y=ma2.s,x=zlag(ma2.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')

The weak positive autocorrelation at lag 2 is displayed in Exhibit 4.10.

Exhibit 4.10 Plot of Yt versus Yt – 2 for MA(2) Series in Exhibit 4.8

> plot(y=ma2.s,x=zlag(ma2.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')
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Finally, the lack of autocorrelation at lag 3 is apparent from the scatterplot in
Exhibit 4.11.

Exhibit 4.11 Plot of Yt versus Yt – 3 for MA(2) Series in Exhibit 4.8

> plot(y=ma2.s,x=zlag(ma2.s,3),ylab=expression(Y[t]), 
xlab=expression(Y[t-3]),type='p')

The General MA(q) Process

For the general MA(q) process , similar calcu-
lations show that

(4.2.4)

and

(4.2.5)

where the numerator of ρq is just −θq. The autocorrelation function “cuts off” after lag
q; that is, it is zero. Its shape can be almost anything for the earlier lags. Another type of
process, the autoregressive process, provides models for alternative autocorrelation pat-
terns.
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4.3 Autoregressive Processes

Autoregressive processes are as their name suggests—regressions on themselves. Spe-
cifically, a pth-order autoregressive process {Yt} satisfies the equation

(4.3.1)

The current value of the series Yt is a linear combination of the p most recent past values
of itself plus an “innovation” term et that incorporates everything new in the series at
time t that is not explained by the past values. Thus, for every t, we assume that et is
independent of Yt − 1, Yt − 2, Yt − 3, ... . Yule (1926) carried out the original work on
autoregressive processes.†

The First-Order Autoregressive Process

Again, it is instructive to consider the first-order model, abbreviated AR(1), in detail.
Assume the series is stationary and satisfies

(4.3.2)

where we have dropped the subscript 1 from the coefficient φ for simplicity. As usual, in
these initial chapters, we assume that the process mean has been subtracted out so that
the series mean is zero. The conditions for stationarity will be considered later.

We first take variances of both sides of Equation (4.3.2) and obtain

Solving for γ0 yields

(4.3.3)

Notice the immediate implication that  or that . Now take Equation
(4.3.2), multiply both sides by Yt − k (k = 1, 2,...), and take expected values

or

Since the series is assumed to be stationary with zero mean, and since et is indepen-
dent of Yt − k, we obtain

and so

† Recall that we are assuming that Yt has zero mean. We can always introduce a nonzero
mean by replacing Yt by Yt − μ throughout our equations.

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +=

Yt φYt 1– et+=

γ0 φ2γ0 σe
2+=

γ0

σe
2

1 φ2–
--------------=

φ2 1< φ 1<

E Yt k– Yt( ) φE Yt k– Yt 1–( ) E etYt k–( )+=

γk φγk 1– E etYt k–( )+=

E etYt k–( ) E et( )E Yt k–( ) 0= =
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(4.3.4)

Sett ing k = 1, we get  .  With k = 2, we obtain
. Now it is easy to see that in general

(4.3.5)

and thus

(4.3.6)

Since , the magnitude of the autocorrelation function decreases exponentially
as the number of lags, k, increases. If , all correlations are positive; if

, the lag 1 autocorrelation is negative (ρ1 = φ) and the signs of successive
autocorrelations alternate from positive to negative, with their magnitudes decreasing
exponentially. Portions of the graphs of several autocorrelation functions are displayed
in Exhibit 4.12.

Exhibit 4.12 Autocorrelation Functions for Several AR(1) Models

Notice that for φ near , the exponential decay is quite slow (for example, (0.9)6 =
0.53), but for smaller φ, the decay is quite rapid (for example, (0.4)6 = 0.00410). With φ
near , the strong correlation will extend over many lags and produce a relatively
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smooth series if φ is positive and a very jagged series if φ is negative.
Exhibit 4.13 displays the time plot of a simulated AR(1) process with φ = 0.9.

Notice how infrequently the series crosses its theoretical mean of zero. There is a lot of
inertia in the series—it hangs together, remaining on the same side of the mean for
extended periods. An observer might claim that the series has several trends. We know
that in fact the theoretical mean is zero for all time points. The illusion of trends is due
to the strong autocorrelation of neighboring values of the series.

Exhibit 4.13 Time Plot of an AR(1) Series with φ = 0.9

> win.graph(width=4.875, height=3,pointsize=8)
> data(ar1.s); plot(ar1.s,ylab=expression(Y[t]),type='o')

The smoothness of the series and the strong autocorrelation at lag 1 are depicted in
the lag plot shown in Exhibit 4.14.
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Exhibit 4.14 Plot of Yt versus Yt − 1 for AR(1) Series of Exhibit 4.13

> win.graph(width=3, height=3,pointsize=8)
> plot(y=ar1.s,x=zlag(ar1.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')

This AR(1) model also has strong positive autocorrelation at lag 2, namely ρ2 =
(0.9)2 = 0.81. Exhibit 4.15 shows this quite well.

Exhibit 4.15 Plot of Yt versus Yt − 2 for AR(1) Series of Exhibit 4.13

> plot(y=ar1.s,x=zlag(ar1.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')
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Finally, at lag 3, the autocorrelation is still quite high: ρ3 = (0.9)3 = 0.729. Exhibit
4.16 confirms this for this particular series.

Exhibit 4.16 Plot of Yt versus Yt − 3 for AR(1) Series of Exhibit 4.13

> plot(y=ar1.s,x=zlag(ar1.s,3),ylab=expression(Y[t]), 
xlab=expression(Y[t-3]),type='p')

The General Linear Process Version of the AR(1) Model

The recursive definition of the AR(1) process given in Equation (4.3.2) is extremely
useful for interpretating the model. For other purposes, it is convenient to express the
AR(1) model as a general linear process as in Equation (4.1.1). The recursive definition
is valid for all t. If we use this equation with t replaced by t− 1, we get 

. Substituting this into the original expression gives

If we repeat this substitution into the past, say k − 1 times, we get

(4.3.7)

Assuming  and letting k increase without bound, it seems reasonable (this is
almost a rigorous proof) that we should obtain the infinite series representation

(4.3.8)
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This is in the form of the general linear process of Equation (4.1.1) with ,
which we already investigated in Section 4.1 on page 55. Note that this representation
reemphasizes the need for the restriction .

Stationarity of an AR(1) Process

It can be shown that, subject to the restriction that et be independent of Yt − 1, Yt − 2,
Yt − 3,… and that , the solution of the AR(1) defining recursion 
will be stationary if and only if . The requirement  is usually called the
stationarity condition for the AR(1) process (See Box, Jenkins, and Reinsel, 1994,
p. 54; Nelson, 1973, p. 39; and Wei, 2005, p. 32) even though more than stationarity is
involved. See especially Exercises 4.16, 4.18, and 4.25.

At this point, we should note that the autocorrelation function for the AR(1) process
has been derived in two different ways. The first method used the general linear process
representation leading up to Equation (4.1.3). The second method used the defining
recursion  and the development of Equations (4.3.4), (4.3.5), and
(4.3.6). A third derivation is obtained by multiplying both sides of Equation (4.3.7) by
Yt − k, taking expected values of both sides, and using the fact that et, et − 1, et − 2, ... ,
et − (k − 1) are independent of Yt − k. The second method should be especially noted since
it will generalize nicely to higher-order processes.

The Second-Order Autoregressive Process

Now consider the series satisfying

(4.3.9)

where, as usual, we assume that et is independent of Yt − 1, Yt − 2, Yt − 3, ... . To discuss
stationarity, we introduce the AR characteristic polynomial

and the corresponding AR characteristic equation

We recall that a quadratic equation always has two roots (possibly complex).

Stationarity of the AR(2) Process

It may be shown that, subject to the condition that et is independent of Yt − 1, Yt − 2,
Yt − 3,..., a stationary solution to Equation (4.3.9) exists if and only if the roots of the AR
characteristic equation exceed 1 in absolute value (modulus). We sometimes say that the
roots should lie outside the unit circle in the complex plane. This statement will general-
ize to the pth-order case without change.†

† It also applies in the first-order case, where the AR characteristic equation is just = 0
with root 1/φ, which exceeds 1 in absolute value if and only if .

ψj φ j=

φ 1<

σe
2 0> Yt φYt 1– et+=

φ 1< φ 1<

Yt φYt 1– et+=

Yt φ1Yt 1– φ2Yt 2– et+ +=

φ x( ) 1 φ1x– φ2x2–=

1 φ1x– φ2x2– 0=

1 φx–
φ 1<
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In the second-order case, the roots of the quadratic characteristic equation are easily
found to be

(4.3.10)

For stationarity, we require that these roots exceed 1 in absolute value. In Appendix
B, page 84, we show that this will be true if and only if three conditions are satisfied:

(4.3.11)

As with the AR(1) model, we call these the stationarity conditions for the AR(2)
model. This stationarity region is displayed in Exhibit 4.17.

Exhibit 4.17 Stationarity Parameter Region for AR(2) Process

The Autocorrelation Function for the AR(2) Process

To derive the autocorrelation function for the AR(2) case, we take the defining recursive
relationship of Equation (4.3.9), multiply both sides by Yt − k, and take expectations.
Assuming stationarity, zero means, and that et is independent of Yt − k, we get

(4.3.12)

or, dividing through by γ0,

(4.3.13)

Equations (4.3.12) and/or (4.3.13) are usually called the Yule-Walker equations, espe-
cially the set of two equations obtained for k = 1 and 2. Setting k = 1 and using ρ0 = 1
and ρ−1 = ρ1, we get  and so

φ1 φ1
2 4φ2+±

2φ2–
-------------------------------------

φ1 φ2 1,<+ φ2 φ1 1,<– and φ2 1<
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(4.3.14)

Using the now known values for ρ1 (and ρ0), Equation (4.3.13) can be used with k = 2 to
obtain

(4.3.15)

Successive values of ρk may be easily calculated numerically from the recursive rela-
tionship of Equation (4.3.13).

Although Equation (4.3.13) is very efficient for calculating autocorrelation values
numerically from given values of φ1 and φ2, for other purposes it is desirable to have a
more explicit formula for ρk. The form of the explicit solution depends critically on the
roots of the characteristic equation . Denoting the reciprocals of
these roots by G1 and G2, it is shown in Appendix B, page 84, that

For the case G1 ≠ G2, it can be shown that we have

(4.3.16)

If the roots are complex (that is, if ), then ρk may be rewritten as

(4.3.17)

where  and Θ and Φ are defined by  and 
.

For completeness, we note that if the roots are equal ( ), then we have

(4.3.18)

A good discussion of the derivations of these formulas can be found in Fuller (1996,
Section 2.5).

The specific details of these formulas are of little importance to us. We need only
note that the autocorrelation function can assume a wide variety of shapes. In all cases,
the magnitude of ρk dies out exponentially fast as the lag k increases. In the case of com-
plex roots, ρk displays a damped sine wave behavior with damping factor R, ,
frequency Θ, and phase Φ. Illustrations of the possible shapes are given in Exhibit
4.18. (The R function ARMAacf discussed on page 450 is useful for plotting.)

ρ1

φ1

1 φ2–
--------------=

ρ2 φ1ρ1 φ2ρ0+=

φ2 1 φ2–( ) φ1
2+

1 φ2–
--------------------------------------=

1 φ1x– φ2x2– 0=

G1

φ1 φ1
2 4φ2+–

2
-------------------------------------= and G2

φ1 φ1
2 4φ2++

2
-------------------------------------=

ρk

1 G2
2–( )G1

k 1+ 1 G1
2–( )G2

k 1+–

G1 G2–( ) 1 G1G2+( )
-----------------------------------------------------------------------------= for k 0≥

φ1
2 4φ2+ 0<

ρk Rk Θk Φ+( )sin
Φ( )sin

-------------------------------= for k 0≥

R φ2–= Θ( )cos φ1 2 φ2–( )⁄= Φ( )tan =
1 φ2–( ) 1 φ2+( )⁄[ ]

φ1
2 4φ2+ 0=

ρk 1
1 φ+ 2

1 φ2–
---------------k+⎝ ⎠

⎛ ⎞ φ1

2
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⎛ ⎞
k

= for k = 0, 1, 2,...

0 R 1<≤
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Exhibit 4.18 Autocorrelation Functions for Several AR(2) Models

Exhibit 4.19 displays the time plot of a simulated AR(2) series with φ1 = 1.5 and
φ2 = −0.75. The periodic behavior of ρk shown in Exhibit 4.18 is clearly reflected in the
nearly periodic behavior of the series with the same period of 360/30 = 12 time units. If
Θ is measured in radians, 2π/Θ is sometimes called the quasi-period of the AR(2) pro-
cess.

Exhibit 4.19 Time Plot of an AR(2) Series with φ1 = 1.5 and φ2 = −0.75

> win.graph(width=4.875,height=3,pointsize=8)
> data(ar2.s); plot(ar2.s,ylab=expression(Y[t]),type='o')
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The Variance for the AR(2) Model

The process variance γ0 can be expressed in terms of the model parameters φ1, φ2, and
as follows: Taking the variance of both sides of Equation (4.3.9) yields

(4.3.19)

Setting k = 1 in Equation (4.3.12) gives a second linear equation for γ0 and γ1,
, which can be solved simultaneously with Equation (4.3.19) to

obtain

(4.3.20)

The ψ-Coefficients for the AR(2) Model

The ψ-coefficients in the general linear process representation for an AR(2) series are
more complex than for the AR(1) case. However, we can substitute the general linear
process representation using Equation (4.1.1) for Yt, for Yt − 1, and for Yt − 2 into

. If we then equate coefficients of ej , we get the recursive
relationships

(4.3.21)

These may be solved recursively to obtain ψ0 = 1, ψ1 = φ1, , and so on.
These relationships provide excellent numerical solutions for the ψ-coefficients for
given numerical values of φ1 and φ2.

One can also show that, for G1 ≠ G2, an explicit solution is

(4.3.22)

where, as before, G1 and G2 are the reciprocals of the roots of the AR characteristic
equation. If the roots are complex, Equation (4.3.22) may be rewritten as

(4.3.23)

a damped sine wave with the same damping factor R and frequency Θ as in Equation
(4.3.17) for the autocorrelation function.

For completeness, we note that if the roots are equal, then

(4.3.24)
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2+ +=
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-------------------------------------------------------------------------=
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---------------⎝ ⎠
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1 φ2–( )2 φ1
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----------------------------------=

Yt φ1Yt 1– φ2Yt 2– et+ +=

ψ0 1=

ψ1 φ1ψ0– 0=

ψj φ1ψj 1–– φ2ψj 2–– 0    for j =  2, 3, ...= ⎭
⎪
⎬
⎪
⎫

ψ2 φ1
2 φ2+=

ψj

G 1
j 1+ G 2

j 1+–

G1 G2–
---------------------------------=

ψj R j j 1+( )Θ[ ]sin
Θ( )sin

---------------------------------
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⎨ ⎬
⎧ ⎫

=
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The General Autoregressive Process

Consider now the pth-order autoregressive model

(4.3.25)

with AR characteristic polynomial

(4.3.26)

and corresponding AR characteristic equation

(4.3.27)

As noted earlier, assuming that et is independent of Yt − 1, Yt − 2, Yt − 3, ... a station-
ary solution to Equation (4.3.27) exists if and only if the p roots of the AR characteristic
equation each exceed 1 in absolute value (modulus). Other relationships between poly-
nomial roots and coefficients may be used to show that the following two inequalities
are necessary for stationarity. That is, for the roots to be greater than 1 in modulus, it is
necessary, but not sufficient, that both

(4.3.28)

Assuming stationarity and zero means, we may multiply Equation (4.3.25) by Yt − k,
take expectations, divide by γ0, and obtain the important recursive relationship

(4.3.29)

Putting k = 1, 2,..., and p into Equation (4.3.29) and using ρ0 = 1 and ρ−k = ρk, we get
the general Yule-Walker equations

(4.3.30)

Given numerical values for φ1, φ2, ... , φp, these linear equations can be solved to
obtain numerical values for ρ1, ρ2, ... , ρp. Then Equation (4.3.29) can be used to obtain
numerical values for ρk at any number of higher lags.

Noting that

we may multiply Equation (4.3.25) by Yt, take expectations, and find

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +=

φ x( ) 1 φ1x– φ2x2– …– φpxp–=

1 φ1x– φ2x2– …– φpxp– 0=

φ1 φ2
… φp+ + + 1<

and φp 1< ⎭
⎬
⎫

ρk φ1ρk 1– φ2ρk 2– φ3ρk 3–
… φpρk p–+ + + += for k 1≥

ρ1 φ1 φ2ρ1 φ3ρ2
… φpρp 1–+ + + +=

ρ2 φ1ρ1 φ2 φ3ρ1
… φpρp 2–+ + + +=

...

ρp φ1ρp 1– φ2ρp 2– φ3ρp 3–
… φp+ + + += ⎭

⎪
⎪
⎬
⎪
⎪
⎫

E etYt( ) E et φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +( )[ ] E et

2( ) σe
2= = =

γ0 φ1γ1 φ2γ2
… φpγp σe

2+ + + +=
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which, using ρk = γk/γ0, can be written as

(4.3.31)

and express the process variance γ0 in terms of the parameters , φ1, φ2, ... , φp, and the
now known values of ρ1, ρ2, ... , ρp. Of course, explicit solutions for ρk are essentially
impossible in this generality, but we can say that ρk will be a linear combination of
exponentially decaying terms (corresponding to the real roots of the characteristic equa-
tion) and damped sine wave terms (corresponding to the complex roots of the character-
istic equation).

Assuming stationarity, the process can also be expressed in the general linear pro-
cess form of Equation (4.1.1), but the ψ-coefficients are complicated functions of the
parameters φ1, φ2,..., φp. The coefficients can be found numerically; see Appendix C on
page 85.

4.4 The Mixed Autoregressive Moving Average Model

If we assume that the series is partly autoregressive and partly moving average, we
obtain a quite general time series model. In general, if

(4.4.1)

we say that {Yt} is a mixed autoregressive moving average process of orders p and q,
respectively; we abbreviate the name to ARMA(p,q). As usual, we discuss an important
special case first.†

The ARMA(1,1) Model

The defining equation can be written

(4.4.2)

To derive Yule-Walker type equations, we first note that

and

† In mixed models, we assume that there are no common factors in the autoregressive and
moving average polynomials. If there were, we could cancel them and the model would
reduce to an ARMA model of lower order. For ARMA(1,1), this means θ ≠ φ.

γ0

σe
2

1 φ1ρ1– φ2ρ2– …– φpρp–
---------------------------------------------------------------------=

σe
2

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + += θ1et 1– θ2et 2––

…– θqet q––
–

Yt φYt 1– et θet 1––+=

E etYt( ) E et φYt 1– et θet 1––+( )[ ]=

σe
2=
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If we multiply Equation (4.4.2) by Yt−k and take expectations, we have

(4.4.3)

Solving the first two equations yields

(4.4.4)

and solving the simple recursion gives

(4.4.5)

Note that this autocorrelation function decays exponentially as the lag k increases.
The damping factor is φ, but the decay starts from initial value ρ1, which also depends
on θ. This is in contrast to the AR(1) autocorrelation, which also decays with damping
factor φ but always from initial value ρ0 = 1. For example, if φ = 0.8 and θ = 0.4, then
ρ1 = 0.523, ρ2 = 0.418, ρ3 = 0.335, and so on. Several shapes for ρk are possible,
depending on the sign of ρ1 and the sign of φ.

The general linear process form of the model can be obtained in the same manner
that led to Equation (4.3.8). We find

, (4.4.6)

that is,

We should now mention the obvious stationarity condition , or equivalently
the root of the AR characteristic equation 1 − φx = 0 must exceed unity in absolute
value.

For the general ARMA(p,q) model, we state the following facts without proof:
Subject to the condition that et is independent of Yt − 1, Yt − 2, Yt − 3,…, a stationary solu-
tion to Equation (4.4.1) exists if and only if all the roots of the AR characteristic equa-
tion φ(x) = 0 exceed unity in modulus.

If the stationarity conditions are satisfied, then the model can also be written as a
general linear process with ψ-coefficients determined from

E et 1– Yt( ) E et 1– φYt 1– et θet 1––+( )[ ]=
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2 θσe
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φ θ–( )σe
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------------------------------------σe

2=

ρk
1 θφ–( ) φ θ–( )
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Yt et φ θ–( ) φ j 1– et j–
j 1=

∞
∑+=

ψj φ θ–( )φ j 1–= for j 1≥

φ 1<
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(4.4.7)

where we take ψj = 0 for j < 0 and θj = 0 for j > q.
Again assuming stationarity, the autocorrelation function can easily be shown to

satisfy
(4.4.8)

Similar equations can be developed for k = 1, 2, 3, ... , q that involve θ1, θ2, ... , θq. An
algorithm suitable for numerical computation of the complete autocorrelation function
is given in Appendix C on page 85. (This algorithm is implemented in the R function
named ARMAacf.)

4.5 Invertibility

We have seen that for the MA(1) process we get exactly the same autocorrelation func-
tion if θ is replaced by 1/θ. In the exercises, we find a similar problem with nonunique-
ness for the MA(2) model. This lack of uniqueness of MA models, given their
autocorrelation functions, must be addressed before we try to infer the values of param-
eters from observed time series. It turns out that this nonuniqueness is related to the
seemingly unrelated question stated next.

An autoregressive process can always be reexpressed as a general linear process
through the ψ-coefficients so that an AR process may also be thought of as an infi-
nite-order moving average process. However, for some purposes, the autoregressive rep-
resentations are also convenient. Can a moving average model be reexpressed as an
autoregression?

To fix ideas, consider an MA(1) model:

(4.5.1)

First rewriting this as et = Yt + θet−1 and then replacing t by t − 1 and substituting for
et − 1 above, we get

If , we may continue this substitution “infinitely” into the past and obtain the
expression [compare with Equations (4.3.7) and (4.3.8)]

ψ0 1=

ψ1 θ1– φ1+=

ψ2 θ2– φ2 φ1ψ1+ +=

...

ψj θj– φpψj p– φp 1– ψj p– 1+
… φ1ψj 1–+ + + += ⎭

⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

ρk φ1ρk 1– φ2ρk 2–
… φpρk p–+ + += for k q>

Yt et θet 1––=

et Yt θ Yt 1– θet 2–+( )+=

Yt θYt 1– θ2et 2–+ +=

θ 1<

et Yt θYt 1– θ2Yt 2–
…+ + +=
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or

(4.5.2)

If , we see that the MA(1) model can be inverted into an infinite-order autoregres-
sive model. We say that the MA(1) model is invertible if and only if .

For a general MA(q) or ARMA(p,q) model, we define the MA characteristic
polynomial as

(4.5.3)

and the corresponding MA characteristic equation

(4.5.4)

It can be shown that the MA(q) model is invertible; that is, there are coefficients πj
such that

(4.5.5)

if and only if the roots of the MA characteristic equation exceed 1 in modulus. (Com-
pare this with stationarity of an AR model.)

It may also be shown that there is only one set of parameter values that yield an
invertible MA process with a given autocorrelation function. For example, Yt =
et + 2et − 1 and Yt = et + ½et − 1 both have the same autocorrelation function, but only the
second one with root −2 is invertible. From here on, we will restrict our attention to the
physically sensible class of invertible models.

For a general ARMA(p,q) model, we require both stationarity and invertibility.

4.6 Summary

This chapter introduces the simple but very useful autoregressive, moving average
(ARMA) time series models. The basic statistical properties of these models were
derived in particular for the important special cases of moving averages of orders 1 and
2 and autoregressive processes of orders 1 and 2. Stationarity and invertibility issues
have been pursued for these cases. Properties of mixed ARMA models have also been
investigated. You should be well-versed in the autocorrelation properties of these mod-
els and the various representations of the models.

Yt θYt 1–– θ2Yt 2–– θ3Yt 3–
…––( ) et+=

θ 1<
θ 1<

θ x( ) 1 θ1x– θ2x2– θ3x3– …– θqxq–=

1 θ1x– θ2x2– θ3x3– …– θqxq– 0=

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=
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EXERCISES

4.1 Use first principles to find the autocorrelation function for the stationary process
defined by

4.2 Sketch the autocorrelation functions for the following MA(2) models with param-
eters as specified:
(a) θ1 = 0.5 and θ2 = 0.4.
(b) θ1 = 1.2 and θ2 = −0.7.
(c) θ1 = −1 and θ2 = −0.6.

4.3 Verify that for an MA(1) process

4.4 Show that when θ is replaced by 1/θ, the autocorrelation function for an MA(1)
process does not change.

4.5 Calculate and sketch the autocorrelation functions for each of the following
AR(1) models. Plot for sufficient lags that the autocorrelation function has nearly
died out.
(a) φ1 = 0.6.
(b) φ1 = −0.6.
(c) φ1 = 0.95. (Do out to 20 lags.)
(d) φ1 = 0.3.

4.6 Suppose that {Yt} is an AR(1) process with −1 < φ < +1.
(a) Find the autocovariance function for Wt = ∇Yt = Yt − Yt−1 in terms of φ and

.
(b) In particular, show that Var(Wt) = 2 /(1+φ).

4.7 Describe the important characteristics of the autocorrelation function for the fol-
lowing models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (e) ARMA(1,1).

4.8 Let {Yt} be an AR(2) process of the special form Yt = φ2Yt − 2 + et. Use first prin-
ciples to find the range of values of φ2 for which the process is stationary.

4.9 Use the recursive formula of Equation (4.3.13) to calculate and then sketch the
autocorrelation functions for the following AR(2) models with parameters as
specified. In each case, specify whether the roots of the characteristic equation are
real or complex. If the roots are complex, find the damping factor, R, and fre-
quency, Θ, for the corresponding autocorrelation function when expressed as in
Equation (4.3.17), on page 73.
(a) φ1 = 0.6 and φ2 = 0.3.
(b) φ1 = −0.4 and φ2 = 0.5.
(c) φ1 = 1.2 and φ2 = −0.7.
(d) φ1 = −1 and φ2 = −0.6.
(e) φ1 = 0.5 and φ2 = −0.9.
(f) φ1 = −0.5 and φ2 = −0.6.

Yt 5 et
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2
---et 1–– 1

4
---et 2–+ +=
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0.5–=

σe
2
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2
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4.10 Sketch the autocorrelation functions for each of the following ARMA models:
(a) ARMA(1,1) with φ = 0.7 and θ = 0.4.
(b) ARMA(1,1) with φ = 0.7 and θ = −0.4.

4.11 For the ARMA(1,2) model Yt = 0.8Yt − 1 + et + 0.7et − 1 + 0.6et − 2, show that
(a) ρk = 0.8ρk−1 for k > 2.
(b) ρ2 = 0.8ρ1 + 0.6 /γ0.

4.12 Consider two MA(2) processes, one with θ1 = θ2 = 1/6 and another with θ1 = −1
and θ2 = 6.
(a) Show that these processes have the same autocorrelation function.
(b) How do the roots of the corresponding characteristic polynomials compare?

4.13 Let {Yt} be a stationary process with ρk = 0 for k > 1. Show that we must have
|ρ1| ≤ ½. (Hint: Consider Var(Yn + 1 + Yn + + Y1) and then Var(Yn + 1 − Yn +
Yn − 1 −  ± Y1). Use the fact that both of these must be nonnegative for all n.)

4.14 Suppose that {Yt} is a zero mean, stationary process with |ρ1| < 0.5 and ρk = 0 for
k > 1. Show that {Yt} must be representable as an MA(1) process. That is, show
that there is a white noise sequence {et} such that Yt = et − θet − 1, where ρ1 is cor-
rect and et is uncorrelated with Yt − k for k > 0. (Hint: Choose θ such that |θ| < 1
and ρ1 = −θ/(1 + θ2); then let . If we assume that {Yt} is a nor-
mal process, et will also be normal, and zero correlation is equivalent to indepen-
dence.)

4.15 Consider the AR(1) model Yt = φYt − 1 + et. Show that if |φ| = 1 the process cannot
be stationary. (Hint: Take variances of both sides.)

4.16 Consider the “nonstationary” AR(1) model Yt = 3Yt−1 + et.
(a) Show that  satisfies the AR(1) equation.
(b) Show that the process defined in part (a) is stationary.
(c) In what way is this solution unsatisfactory?

4.17 Consider a process that satisfies the AR(1) equation Yt = ½Yt − 1 + et.
(a) Show that Yt = 10(½)t + et + ½et − 1 + (½)2et − 2 + is a solution of the AR(1)

equation.
(b) Is the solution given in part (a) stationary?

4.18 Consider a process that satisfies the zero-mean, “stationary” AR(1) equation Yt =
φYt − 1 + et with −1 < φ < +1. Let c be any nonzero constant, and define Wt = Yt +
cφt.
(a) Show that E(Wt) = cφt.
(b) Show that {Wt} satisfies the “stationary” AR(1) equation Wt = φWt − 1 + et.
(c) Is {Wt} stationary?

4.19 Consider an MA(6) model with θ1 = 0.5, θ2 = −0.25, θ3 = 0.125, θ4 = −0.0625,
θ5 = 0.03125, and θ6 = −0.015625. Find a much simpler model that has nearly the
same ψ-weights.

4.20 Consider an MA(7) model with θ1 = 1, θ2 = −0.5, θ3 = 0.25, θ4 = −0.125,
θ5 = 0.0625, θ6 = −0.03125, and θ7 = 0.015625. Find a much simpler model that
has nearly the same ψ-weights.

σe
2

…
…

et θ jYt j–j 0=

∞∑=

Yt
1
3
---( ) jet j+j 1=

∞∑–=

…
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4.21 Consider the model Yt = et − 1 − et − 2 + 0.5et − 3.
(a) Find the autocovariance function for this process.
(b) Show that this is a certain ARMA(p,q) process in disguise. That is, identify

values for p and q and for the θ’s and φ’s such that the ARMA(p,q) process
has the same statistical properties as {Yt}.

4.22 Show that the statement “The roots of  are
greater than 1 in absolute value” is equivalent to the statement “The roots of

 are less than 1 in absolute value.” (Hint: If
G is a root of one equation, is 1/G a root of the other?)

4.23 Suppose that {Yt} is an AR(1) process with ρ1 = φ. Define the sequence {bt} as
bt = Yt − φYt + 1.
(a) Show that Cov(bt,bt − k) = 0 for all t and k.
(b) Show that Cov(bt,Yt + k) = 0 for all t and k > 0.

4.24 Let {et} be a zero-mean, unit-variance white noise process. Consider a process
that begins at time t = 0 and is defined recursively as follows. Let Y0 = c1e0 and
Y1 = c2Y0 + e1. Then let Yt = φ1Yt − 1 + φ2Yt − 2 + et for t > 1 as in an AR(2) pro-
cess.
(a) Show that the process mean is zero.
(b) For particular values of φ1 and φ2 within the stationarity region for an AR(2)

model, show how to choose c1 and c2 so that both Var(Y0) = Var(Y1) and the
lag 1 autocorrelation between Y1 and Y0 match that of a stationary AR(2) pro-
cess with parameters φ1 and φ2.

(c) Once the process {Yt} is generated, show how to transform it to a new process
that has any desired mean and variance. (This exercise suggests a convenient
method for simulating stationary AR(2) processes.)

4.25 Consider an “AR(1)” process satisfying Yt = φYt − 1 + et, where φ can be any num-
ber and {et} is a white noise process such that et is independent of the past {Yt − 1,
Yt − 2,…}. Let Y0 be a random variable with mean μ0 and variance .
(a) Show that for t > 0 we can write

Yt = et + φet − 1 + φ2et − 2 + φ3et − 3 + + φt−1e1 + φtY0.

(b) Show that for t > 0 we have E(Yt) = φtμ0.
(c) Show that for t > 0

(d) Suppose now that μ0 = 0. Argue that, if {Yt} is stationary, we must have .
(e) Continuing to suppose that μ0 = 0, show that, if {Yt} is stationary, then

and so we must have |φ| <1.

1 φ1x– φ2x2 …– φpxp–– 0=

xp φ1xp 1–– φ2xp 2– …– φp–– 0=

σ0
2

…

Var Yt( )

1 φ2t–
1 φ2–
----------------σe

2 φ2tσ0
2+ for φ 1≠

tσe
2 σ0

2+ for φ 1=⎩
⎪
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=

φ 1≠

Var Yt( ) σe
2 1 φ2–( )⁄=
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Appendix B: The Stationarity Region for an AR(2) Process

In the second-order case, the roots of the quadratic characteristic polynomial are easily
found to be

(4.B.1)

For stationarity we require that these roots exceed 1 in absolute value. We now
show that this will be true if and only if three conditions are satisfied:

(4.B.2)

Proof: Let the reciprocals of the roots be denoted G1 and G2. Then

Similarly,

We now divide the proof into two cases corresponding to real and complex roots.
The roots will be real if and only if .

I. Real Roots: for i = 1 and 2 if and only if

or

.

Consider just the first inequality. Now   if and only if
 if and only if  if and only if ,

or .

The inequality  is treated similarly and leads to .
These equations together with  define the stationarity region for the

real root case shown in Exhibit 4.17.
II. Complex Roots: Now . Here G1 and G2 will be complex conju-

gates and if and only if . But
 so that . This together with the inequality  defines the part

of the stationarity region for complex roots shown in Exhibit 4.17 and establishes Equa-
tion (4.3.11). This completes the proof.
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Appendix C: The Autocorrelation Function for ARMA(p,q)

Let {Yt} be a stationary, invertible ARMA(p,q) process. Recall that we can always write
such a process in general linear process form as

(4.C.1)

where the ψ-weights can be obtained recursively from Equations (4.4.7), on page 79.
We then have

(4.C.2)

Thus the autocovariance must satisfy

(4.C.3)

where θ0 = −1 and the last sum is absent if k > q. Setting k = 0, 1, …, p and using γ−k =
γk leads to p + 1 linear equations in γ0, γ1, …, γp.

(4.C.4)

where θj = 0 if j > q.
For a given set of parameter values , φ’s, and θ’s (and hence ψ’s), we can solve

the linear equations to obtain γ0, γ1,…, γp. The values of γk for k > p can then be evalu-
ated from the recursion in Equations (4.4.8), on page 79. Finally, ρk is obtained from ρk
= γk/γ0.
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CHAPTER 5

MODELS FOR NONSTATIONARY TIME 
SERIES

Any time series without a constant mean over time is nonstationary. Models of the form

Yt = μt + Xt

where μt is a nonconstant mean function and Xt is a zero-mean, stationary series, were
considered in Chapter 3. As stated there, such models are reasonable only if there are
good reasons for believing that the deterministic trend is appropriate “forever.” That is,
just because a segment of the series looks like it is increasing (or decreasing) approxi-
mately linearly, do we believe that the linearity is intrinsic to the process and will persist
in the future? Frequently in applications, particularly in business and economics, we
cannot legitimately assume a deterministic trend. Recall the random walk displayed in
Exhibit 2.1, on page 14. The time series appears to have a strong upward trend that
might be linear in time. However, also recall that the random walk process has a con-
stant, zero mean and contains no deterministic trend at all. 

As an example consider the monthly price of a barrel of crude oil from January
1986 through January 2006. Exhibit 5.1 displays the time series plot. The series displays
considerable variation, especially since 2001, and a stationary model does not seem to
be reasonable. We will discover in Chapters 6, 7, and 8 that no deterministic trend
model works well for this series but one of the nonstationary models that have been
described as containing stochastic trends does seem reasonable. This chapter discusses
such models. Fortunately, as we shall see, many stochastic trends can be modeled with
relatively few parameters.
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Exhibit 5.1 Monthly Price of Oil: January 1986–January 2006 

> win.graph(width=4.875,height=3,pointsize=8)
> data(oil.price)
> plot(oil.price, ylab='Price per Barrel',type='l')

5.1 Stationarity Through Differencing

Consider again the AR(1) model
(5.1.1)

We have seen that assuming et is a true “innovation” (that is, et is uncorrelated with
Yt − 1, Yt − 2,…), we must have |φ| < 1. What can we say about solutions to Equation
(5.1.1) if |φ| ≥ 1? Consider in particular the equation

(5.1.2)

Iterating into the past as we have done before yields

(5.1.3)

We see that the influence of distant past values of Yt and et does not die out—indeed,
the weights applied to Y0 and e1 grow exponentially large. In Exhibit 5.2, we show the
values for a very short simulation of such a series. Here the white noise sequence was
generated as standard normal variables and we used Y0 = 0 as an initial condition.

Exhibit 5.2 Simulation of the Explosive “AR(1) Model” 

t 1 2 3 4 5 6 7 8

et 0.63 −1.25 1.80 1.51 1.56 0.62 0.64 −0.98

Yt 0.63 0.64 3.72 12.67 39.57 119.33 358.63 1074.91
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Exhibit 5.3 shows the time series plot of this explosive AR(1) simulation.

Exhibit 5.3 An Explosive “AR(1)” Series

> data(explode.s)
> plot(explode.s,ylab=expression(Y[t]),type='o')

The explosive behavior of such a model is also reflected in the model’s variance
and covariance functions. These are easily found to be

(5.1.4)

and

(5.1.5)

respectively. Notice that we have

The same general exponential growth or explosive behavior will occur for any φ
such that |φ| > 1. A more reasonable type of nonstationarity obtains when φ = 1. If φ = 1,
the AR(1) model equation is

(5.1.6)

This is the relationship satisfied by the random walk process of Chapter 2 (Equation
(2.2.9) on page 12). Alternatively, we can rewrite this as

(5.1.7)
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where  is the first difference of Yt. The random walk then is easily
extended to a more general model whose first difference is some stationary pro-
cess—not just white noise.

Several somewhat different sets of assumptions can lead to models whose first dif-
ference is a stationary process. Suppose

(5.1.8)

where Mt is a series that is changing only slowly over time. Here Mt could be either
deterministic or stochastic. If we assume that Mt is approximately constant over every
two consecutive time points, we might estimate (predict) Mt at t by choosing β0 so that

is minimized. This clearly leads to

and the “detrended” series at time t is then

This is a constant multiple of the first difference, ∇Yt.
†

A second set of assumptions might be that Mt in Equation (5.1.8) is stochastic and
changes slowly over time governed by a random walk model. Suppose, for example, that

(5.1.9)

where {et} and {εt} are independent white noise series. Then

which would have the autocorrelation function of an MA(1) series with

(5.1.10)

In either of these situations, we are led to the study of ∇Yt as a stationary process.
Returning to the oil price time series, Exhibit 5.4 displays the time series plot of the

differences of logarithms of that series.‡ The differenced series looks much more sta-
tionary when compared with the original time series shown in Exhibit 5.1, on page 88. 

† A more complete labeling of this difference would be that it is a first difference at lag 1.
‡ In Section 5.4 on page 98 we will see why logarithms are often a convenient transforma-

tion.
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(We will also see later that there are outliers in this series that need to be considered to
produce an adequate model.)

Exhibit 5.4 The Difference Series of the Logs of the Oil Price Time 

> plot(diff(log(oil.price)),ylab='Change in Log(Price)',type='l')

We can also make assumptions that lead to stationary second-difference models.
Again we assume that Equation (5.1.8) on page 90, holds, but now assume that Mt is lin-
ear in time over three consecutive time points. We can now estimate (predict) Mt at the
middle time point t by choosing and to minimize

The solution yields

and thus the detrended series is

a constant multiple of the centered second difference of Yt. Notice that we have differ-
enced twice, but both differences are at lag 1.

Alternatively, we might assume that
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(5.1.11)

with {et} and {εt} independent white noise time series. Here the stochastic trend Mt is
such that its “rate of change,” ∇Mt, is changing slowly over time. Then

and

which has the autocorrelation function of an MA(2) process. The important point is that
the second difference of the nonstationary process {Yt} is stationary. This leads us to the
general definition of the important integrated autoregressive moving average time series
models.

5.2 ARIMA Models

A time series {Yt} is said to follow an integrated autoregressive moving average
model if the dth difference Wt = ∇dYt is a stationary ARMA process. If {Wt} follows an
ARMA(p,q) model, we say that {Yt} is an ARIMA(p,d,q) process. Fortunately, for
practical purposes, we can usually take d = 1 or at most 2.

Consider then an ARIMA(p,1,q) process. With Wt = Yt − Yt − 1, we have

(5.2.1)

or, in terms of the observed series,

which we may rewrite as

(5.2.2)

We call this the difference equation form of the model. Notice that it appears to be an
ARMA(p + 1,q) process. However, the characteristic polynomial satisfies
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which can be easily checked. This factorization clearly shows the root at x = 1, which
implies nonstationarity. The remaining roots, however, are the roots of the characteristic
polynomial of the stationary process ∇Yt.

Explicit representations of the observed series in terms of either Wt or the white
noise series underlying Wt are more difficult than in the stationary case. Since nonsta-
tionary processes are not in statistical equilibrium, we cannot assume that they go infi-
nitely into the past or that they start at . However, we can and shall assume that
they start at some time point , say, where  is earlier than time t = 1, at which
point we first observed the series. For convenience, we take Yt = 0 for t < −m. The differ-
ence equation Yt − Yt − 1 = Wt can be solved by summing both sides from  to t =
t to get the representation

(5.2.3)

for the ARIMA(p,1,q) process.
The ARIMA(p,2,q) process can be dealt with similarly by summing twice to get the

representations

(5.2.4)

These representations have limited use but can be used to investigate the covariance
properties of ARIMA models and also to express Yt in terms of the white noise series
{et}. We defer the calculations until we evaluate specific cases.

If the process contains no autoregressive terms, we call it an integrated moving
average and abbreviate the name to IMA(d,q). If no moving average terms are present,
we denote the model as ARI(p,d). We first consider in detail the important IMA(1,1)
model.

The IMA(1,1) Model

The simple IMA(1,1) model satisfactorily represents numerous time series, especially
those arising in economics and business. In difference equation form, the model is

(5.2.5)

To write Yt explicitly as a function of present and past noise values, we use Equation
(5.2.3) and the fact that Wt = et − θet − 1 in this case. After a little rearrangement, we can
write

(5.2.6)

Notice that in contrast to our stationary ARMA models, the weights on the white noise
terms do not die out as we go into the past. Since we are assuming that −m < 1 and 0 < t,
we may usefully think of Yt as mostly an equally weighted accumulation of a large num-
ber of white noise values.
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From Equation (5.2.6), we can easily derive variances and correlations. We have

(5.2.7)

and

(5.2.8)

We see that as t increases,  increases and could be quite large. Also, the correla-
tion between Yt and Yt − k will be strongly positive for many lags k = 1, 2, … .

The IMA(2,2) Model

The assumptions of Equation (5.1.11) led to an IMA(2,2) model. In difference equation
form, we have

or
(5.2.9)

The representation of Equation (5.2.4) may be used to express Yt in terms of et, et − 1,….
After some tedious algebra, we find that

(5.2.10)

where ψj = 1 + θ2 + (1 − θ1 − θ2) j for j = 1, 2, 3,…, t + m. Once more we see that the
ψ-weights do not die out but form a linear function of j.

Again, variances and correlations for Yt can be obtained from the representation
given in Equation (5.2.10), but the calculations are tedious. We shall simply note that the
variance of Yt increases rapidly with t and again  is nearly 1 for all mod-
erate k.

The results of a simulation of an IMA(2,2) process are displayed in Exhibit 5.5.
Notice the smooth change in the process values (and the unimportance of the zero-mean
function). The increasing variance and the strong, positive neighboring correlations
dominate the appearance of the time series plot. 
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Exhibit 5.5 Simulation of an IMA(2,2) Series with θ1 = 1 and θ2 = −0.6 

> data(ima22.s)
> plot(ima22.s,ylab='IMA(2,2) Simulation',type='o')

Exhibit 5.6 shows the time series plot of the first difference of the simulated series.
This series is also nonstationary, as it is governed by an IMA(1,2) model.

Exhibit 5.6 First Difference of the Simulated IMA(2,2) Series

> plot(diff(ima22.s),ylab='First Difference',type='o')

Finally, the second differences of the simulated IMA(2,2) series values are plotted
in Exhibit 5.7. These values arise from a stationary MA(2) model with θ1 = 1 and θ2 =
−0.6. From Equation (4.2.3) on page 63, the theoretical autocorrelations for this model
are ρ1 = −0.678 and ρ2 = 0.254. These correlation values seem to be reflected in the
appearance of the time series plot.
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Exhibit 5.7 Second Difference of the Simulated IMA(2,2) Series

> plot(diff(ima22.s,difference=2),ylab='Differenced 
Twice',type='o')

The ARI(1,1) Model

The ARI(1,1) process will satisfy

(5.2.11)

or
(5.2.12)

where |φ| < 1.†

To find the ψ-weights in this case, we shall use a technique that will generalize to
arbitrary ARIMA models. It can be shown that the ψ-weights can be obtained by equat-
ing like powers of x in the identity:

(5.2.13)

In our case, this relationship reduces to

or

Equating like powers of x on both sides, we obtain

† Notice that this looks like a special AR(2) model. However, one of the roots of the corre-
sponding AR(2) characteristic polynomial is 1, and this is not allowed in stationary AR(2)
models.
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Yt Yt 1–– φ Yt 1– Yt 2––( ) et+=

Yt 1 φ+( )Yt 1– φYt 2–– et+=

1 φ1x– φ2x2– …– φpxp–( ) 1 x–( )d 1 ψ1x ψ2x2 ψ3x3 …+ + + +( )

1 θ1x– θ2x2– θ3x3– …– θqxq–( )=

1 φx–( ) 1 x–( ) 1 ψ1x ψ2x2 ψ3x3 …+ + + +( ) 1=

1 1 φ+( )x– φx2+[ ] 1 ψ1x ψ2x2 ψ3x3 …+ + + +( ) 1=



5.3  Constant Terms in ARIMA Models 97

and, in general,
(5.2.14)

with ψo = 1 and ψ1 = 1 + φ. This recursion with starting values allows us to compute as
many ψ-weights as necessary. It can also be shown that in this case an explicit solution
to the recursion is given as

(5.2.15)

(It is easy, for example, to show that this expression satisfies Equation (5.2.14).

5.3 Constant Terms in ARIMA Models

For an ARIMA(p,d,q) model, ∇dYt = Wt is a stationary ARMA(p,q) process. Our stan-
dard assumption is that stationary models have a zero mean; that is, we are actually
working with deviations from the constant mean. A nonzero constant mean, μ, in a sta-
tionary ARMA model {Wt} can be accommodated in either of two ways. We can
assume that

Alternatively, we can introduce a constant term θ0 into the model as follows:

Taking expected values on both sides of the latter expression, we find that

so that

(5.3.16)

or, conversely, that

(5.3.17)

Since the alternative representations are equivalent, we shall use whichever parameter-
ization is convenient.

1 φ+( )– ψ1+ 0=

φ 1 φ+( )ψ1 ψ2+– 0=

ψk 1 φ+( )ψk 1– φψk 2––= for k 2≥

ψk
1 φk 1+–

1 φ–
----------------------  for k 1≥=

Wt μ– φ1 Wt 1– μ–( ) φ2 Wt 2– μ–( ) … φp Wt p– μ–( )+ + +=

et+ θ1et 1– θ2et 2–– …– θqet q–––

Wt θ0 φ1Wt 1– φ2Wt 2–
… φpWt p–+ + ++=

et θ1et 1– θ2et 2–– …– θqet q–––+ 

μ θ0 φ1 φ2
… φp+ + +( )μ+=

μ
θ0

1 φ1 φ2– …– φp––
--------------------------------------------------=

θ0 μ 1 φ1 φ2– …– φp––( )=
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What will be the effect of a nonzero mean for Wt on the undifferenced series Yt?
Consider the IMA(1,1) case with a constant term. We have

or

Either by substituting into Equation (5.2.3) on page 93 or by iterating into the past, we
find that

(5.3.18)

Comparing this with Equation (5.2.6), we see that we have an added linear deterministic
time trend (t + m + 1)θ0 with slope θ0.

An equivalent representation of the process would then be

where  is an IMA(1,1) series with E  = 0 and E  = β1. 
For a general ARIMA(p,d,q) model where E  ≠ 0, it can be argued that Yt =

, where μt is a deterministic polynomial of degree d and  is ARIMA(p,d,q)
with E  = 0. With d = 2 and θ0 ≠ 0, a quadratic trend would be implied.

5.4 Other Transformations

We have seen how differencing can be a useful transformation for achieving stationarity.
However, the logarithm transformation is also a useful method in certain circumstances.
We frequently encounter series where increased dispersion seems to be associated with
higher levels of the series—the higher the level of the series, the more variation there is
around that level and conversely.

Specifically, suppose that Yt > 0 for all t and that

(5.4.1)

Then

(5.4.2)

These results follow from taking expected values and variances of both sides of the
(Taylor) expansion

In words, if the standard deviation of the series is proportional to the level of the series,
then transforming to logarithms will produce a series with approximately constant vari-
ance over time. Also, if the level of the series is changing roughly exponentially, the

Yt Yt 1– θ0 et θet 1––+ +=

Wt θ0 et θet 1––+=

Yt et 1 θ–( )et 1– 1 θ–( )et 2–
… 1 θ–( )e m– θe m– 1––+ + + +=

t m 1+ +( )θ0+

Yt Yt' β0 β1t+ +=

Yt' Yt'∇( ) Yt∇( )
∇dYt( )

Yt' μt+ Yt'
Yt'

E Yt( ) μt= and Var Yt( ) μtσ=

E Yt( )log[ ] μt( )log≈ and Var Yt( )log( ) σ2≈

Yt( )log μt( )log
Yt μt–

μt
---------------+≈
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log-transformed series will exhibit a linear time trend. Thus, we might then want to take
first differences. An alternative set of assumptions leading to differences of logged data
follows.

Percentage Changes and Logarithms

Suppose Yt tends to have relatively stable percentage changes from one time period to
the next. Specifically, assume that

where 100Xt is the percentage change (possibly negative) from Yt−1 to Yt. Then

If Xt is restricted to, say, |Xt| < 0.2 (that is, the percentage changes are at most ±20%),
then, to a good approximation, log(1+Xt) ≈ Xt. Consequently,

(5.4.3)

will be relatively stable and perhaps well-modeled by a stationary process. Notice that
we take logs first and then compute first differences—the order does matter. In financial
literature, the differences of the (natural) logarithms are usually called returns.

As an example, consider the time series shown in Exhibit 5.8. This series gives the
total monthly electricity generated in the United States in millions of kilowatt-hours.
The higher values display considerably more variation than the lower values.

Exhibit 5.8 U.S. Electricity Generated by Month

> data(electricity); plot(electricity)

Yt 1 Xt+( )Yt 1–=

Yt( )log Yt 1–( )log–
Yt

Yt 1–
------------⎝ ⎠

⎛ ⎞log=
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∇ Yt( )log[ ] Xt≈
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Exhibit 5.9 displays the time series plot of the logarithms of the electricity values.
Notice how the amount of variation around the upward trend is now much more uniform
across high and low values of the series.

Exhibit 5.9 Time Series Plot of Logarithms of Electricity Values

> plot(log(electricity),ylab='Log(electricity)')

The differences of the logarithms of the electricity values are displayed in Exhibit
5.10. On the basis of this plot, we might well consider a stationary model as appropriate.

Exhibit 5.10 Difference of Logarithms for Electricity Time Series

> plot(diff(log(electricity)), 
ylab='Difference of Log(electricity)')
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Power Transformations

A flexible family of transformations, the power transformations, was introduced by
Box and Cox (1964). For a given value of the parameter λ, the transformation is defined
by

(5.4.4)

The term xλ is the important part of the first expression, but subtracting 1 and dividing
by λ makes g(x) change smoothly as λ approaches zero. In fact, a calculus argument†

shows that as λ , (xλ − 1)/λ log(x). Notice that λ = ½ produces a square root
transformation useful with Poisson-like data, and λ = −1 corresponds to a reciprocal
transformation.

The power transformation applies only to positive data values. If some of the values
are negative or zero, a positive constant may be added to all of the values to make them
all positive before doing the power transformation. The shift is often determined subjec-
tively. For example, for nonnegative catch data in biology, the occurrence of zeros is
often dealt with by adding a constant equal to the smallest positive data value to all of
the data values. An alternative approach consists of using transformations applicable to
any data—positive or not. A drawback of this alternative approach is that interpretations
of such transformations are often less straightforward than the interpretations of the
power transformations. See Yeo and Johnson (2000) and the references contained
therein.

We can consider λ as an additional parameter in the model to be estimated from the
observed data. However, precise estimation of λ is usually not warranted. Evaluation of
a range of transformations based on a grid of λ values, say ±1, ±1/2, ±1/3, ±1/4, and 0,
will usually suffice and may have some intuitive meaning.

Software allows us to consider a range of lambda values and calculate a log-likeli-
hood value for each lambda value based on a normal likelihood function. A plot of these
values is shown in Exhibit 5.11 for the electricity data. The 95% confidence interval for
λ contains the value of λ = 0 quite near its center and strongly suggests a logarithmic
transformation (λ = 0) for these data.

† Exercise (5.17) asks you to verify this.

g x( )
xλ 1–

λ
-------------- for λ 0≠

xlog for λ 0=⎩
⎪
⎨
⎪
⎧

=

0→ →
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Exhibit 5.11 Log-likelihood versus Lambda

> BoxCox.ar(electricity)

5.5 Summary

This chapter introduced the concept of differencing to induce stationarity on certain
nonstationary processes. This led to the important integrated autoregressive moving
average models (ARIMA). The properties of these models were then thoroughly
explored. Other transformations, namely percentage changes and logarithms, were then
considered. More generally, power transformations or Box-Cox transformations were
introduced as useful transformations to stationarity and often normality.
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EXERCISES

5.1 Identify the following as specific ARIMA models. That is, what are p, d, and q
and what are the values of the parameters (the φ’s and θ’s)?
(a) Yt = Yt − 1 − 0.25Yt − 2 + et − 0.1et − 1.
(b) Yt = 2Yt − 1 − Yt−2 + et.
(c) Yt = 0.5Yt − 1 − 0.5Yt − 2 + et − 0.5et − 1+ 0.25et − 2.

5.2 For each of the ARIMA models below, give the values for E(∇Yt) and Var(∇Yt).
(a) Yt = 3 + Yt − 1 + et − 0.75et − 1.
(b) Yt = 10 + 1.25Yt − 1 − 0.25Yt − 2 + et − 0.1et − 1.
(c) Yt = 5 + 2Yt − 1 − 1.7Yt − 2 + 0.7Yt − 3 + et − 0.5et − 1+ 0.25et − 2.

5.3 Suppose that {Yt} is generated according to Yt = et + cet − 1+ cet − 2+ cet − 3+ +
ce0 for t > 0.
(a) Find the mean and covariance functions for {Yt}. Is {Yt} stationary?
(b) Find the mean and covariance functions for {∇Yt}. Is {∇Yt} stationary?
(c) Identify {Yt} as a specific ARIMA process.

5.4 Suppose that Yt = A + Bt + Xt, where {Xt} is a random walk. First suppose that A
and B are constants.
(a) Is {Yt} stationary?
(b) Is {∇Yt} stationary?

Now suppose that A and B are random variables that are independent of the random 
walk {Xt}.

(c) Is {Yt} stationary?
(d) Is {∇Yt} stationary?

5.5 Using the simulated white noise values in Exhibit 5.2, on page 88, verify the val-
ues shown for the explosive process Yt.

5.6 Consider a stationary process {Yt}. Show that if ρ1 < ½, ∇Yt has a larger variance
than does Yt.

5.7 Consider two models:
A: Yt = 0.9Yt − 1 + 0.09Yt − 2 + et.
B: Yt = Yt − 1 + et − 0.1et − 1.

(a) Identify each as a specific ARIMA model. That is, what are p, d, and q and
what are the values of the parameters, φ’s and θ’s?
(b) In what ways are the two models different?
(c) In what ways are the two models similar? (Compare ψ-weights and

π-weights.)

…
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5.8 Consider a nonstationary “AR(1)” process defined as a solution to Equation
(5.1.2) on page 88, with |φ| > 1.
(a) Derive an equation similar to Equation (5.1.3) on page 88, for this more gen-
eral case. Use Y0 = 0 as an initial condition.
(b) Derive an equation similar to Equation (5.1.4) on page 89, for this more gen-

eral case.
(c) Derive an equation similar to Equation (5.1.5) on page 89, for this more gen-

eral case.
(d) Is it true that for any |φ| > 1, for large t and moderate k?

5.9 Verify Equation (5.1.10) on page 90.
5.10 Nonstationary ARIMA series can be simulated by first simulating the correspond-

ing stationary ARMA series and then “integrating” it (really partially summing
it). Use statistical software to simulate a variety of IMA(1,1) and IMA(2,2) series
with a variety of parameter values. Note any stochastic “trends” in the simulated
series.

5.11 The data file winnebago contains monthly unit sales of recreational vehicles
(RVs) from Winnebago, Inc., from November 1966 through February 1972.
(a) Display and interpret the time series plot for these data.
(b) Now take natural logarithms of the monthly sales figures and display the time

series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the fractional relative changes, (Yt − Yt − 1)/Yt − 1, and compare them
with the differences of (natural) logarithms,∇log(Yt) = log(Yt) − log(Yt − 1).
How do they compare for smaller values and for larger values?

5.12 The data file SP contains quarterly Standard & Poor’s Composite Index stock
price values from the first quarter of 1936 through the fourth quarter of 1977.
(a) Display and interpret the time series plot for these data.
(b) Now take natural logarithms of the quarterly values and display and the time

series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the (fractional) relative changes, (Yt − Yt − 1)/Yt − 1, and compare
them to the differences of (natural) logarithms, ∇log(Yt). How do they com-
pare for smaller values and for larger values?

5.13 The data file airpass contains international airline passenger monthly totals (in
thousands) flown from January 1960 through December 1971. This is a classic
time series analyzed in Box and Jenkins (1976).
(a) Display and interpret the time series plot for these data.
(b) Now take natural logarithms of the monthly values and display and the time

series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the (fractional) relative changes, (Yt − Yt − 1)/Yt − 1, and compare
them to the differences of (natural) logarithms,∇log(Yt). How do they com-
pare for smaller values and for larger values?

Corr Yt Yt k–,( ) 1≈
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5.14 Consider the annual rainfall data for Los Angeles shown in Exhibit 1.1, on page 2.
The quantile-quantile normal plot of these data, shown in Exhibit 3.17, on page
50, convinced us that the data were not normal. The data are in the file larain.
(a) Use software to produce a plot similar to Exhibit 5.11, on page 102, and deter-
mine the “best” value of λ for a power transformation of the data.
(b) Display a quantile-quantile plot of the transformed data. Are they more nor-

mal?
(c) Produce a time series plot of the transformed values.
(d) Use the transformed values to display a plot of Yt versus Yt − 1 as in Exhibit

1.2, on page 2. Should we expect the transformation to change the dependence
or lack of dependence in the series?

5.15 Quarterly earnings per share for the Johnson & Johnson Company are given in the
data file named JJ. The data cover the years from 1960 through 1980.
(a) Display a time series plot of the data. Interpret the interesting features in the
plot.
(b) Use software to produce a plot similar to Exhibit 5.11, on page 102, and deter-

mine the “best” value of λ for a power transformation of these data.
(c) Display a time series plot of the transformed values. Does this plot suggest

that a stationary model might be appropriate?
(d) Display a time series plot of the differences of the transformed values. Does

this plot suggest that a stationary model might be appropriate for the differ-
ences?

5.16 The file named gold contains the daily price of gold (in dollars per troy ounce) for
the 252 trading days of year 2005.
(a) Display the time series plot of these data. Interpret the plot.
(b) Display the time series plot of the differences of the logarithms of these data.

Interpret this plot.
(c) Calculate and display the sample ACF for the differences of the logarithms of

these data and argue that the logarithms appear to follow a random walk
model.

(d) Display the differences of logs in a histogram and interpret.
(e) Display the differences of logs in a quantile-quantile normal plot and inter-

pret.
5.17 Use calculus to show that, for any fixed x > 0, as . λ 0 xλ 1–( ) λ⁄ xlog→,→
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Appendix D: The Backshift Operator

Many other books and much of the time series literature use what is called the backshift
operator to express and manipulate ARIMA models. The backshift operator, denoted B,
operates on the time index of a series and shifts time back one time unit to form a new
series.† In particular,

The backshift operator is linear since for any constants a, b, and c and series Yt and Xt, it
is easy to see that

Consider now the MA(1) model. In terms of B, we can write

where θ(B) is the MA characteristic polynomial “evaluated” at B.
Since BYt is itself a time series, it is meaningful to consider BBYt. But clearly BBYt

= BYt − 1 = Yt − 2, and we can write

More generally, we have

for any positive integer m. For a general MA(q) model, we can then write

or

where, again, θ(B) is the MA characteristic polynomial evaluated at B.
For autoregressive models AR(p), we first move all of the terms involving Y to the

left-hand side

and then write

or

† Sometimes B is called a Lag operator.

BYt Yt 1–=

B aYt bXt c+ +( ) aBYt bBXt c+ +=

Yt et θet 1–– et θBet– 1 θB–( )et= = =

θ B( )et=

B2Yt Yt 2–=

BmYt Yt m–=

Yt et θ1et 1–– θ2et 2–– … θqet q–––=

et θ1Bet– θ2B2et– … θqBqet––=

1 θ1B– θ2B2– … θqBq––( )et=

Yt θ B( )et=

Yt φ1Yt 1–– φ2Yt 2–– …– φpYt p–– et=

Yt φ1BYt– φ2B2Yt– …– φpBpYt– et=



Appendix D: The Backshift Operator 107

which can be expressed as

where φ(B) is the AR characteristic polynomial evaluated at B.
Combining the two, the general ARMA(p,q) model may be written compactly as

Differencing can also be conveniently expressed in terms of B. We have

with second differences given by

Effectively, ∇ = 1 − B and ∇2 = (1 − B)2.
The general ARIMA(p,d,q) model is expressed concisely as

In the literature, one must carefully distinguish from the context the use of B as a
backshift operator and its use as an ordinary real (or complex) variable. For example,
the stationarity condition is frequently given by stating that the roots of φ(B) = 0 must be
greater than 1 in absolute value or, equivalently, must lie outside the unit circle in the
complex plane. Here B is to be treated as a dummy variable in an equation rather than as
the backshift operator.

1 φ1B– φ2B2– …– φpBp–( )Yt et=

φ B( )Yt et=

φ B( )Yt θ B( )et=

Yt∇ Yt Yt 1–– Yt BYt–= =

1 B–( )Yt=

∇2Yt 1 B–( )2Yt=

φ B( ) 1 B–( )dYt θ B( )et=
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CHAPTER 6

MODEL SPECIFICATION

We have developed a large class of parametric models for both stationary and nonsta-
tionary time series—the ARIMA models. We now begin our study and implementation
of statistical inference for such models. The subjects of the next three chapters, respec-
tively, are:

1. how to choose appropriate values for p, d, and q for a given series;

2. how to estimate the parameters of a specific ARIMA(p,d,q) model;

3. how to check on the appropriateness of the fitted model and improve it if needed.

Our overall strategy will first be to decide on reasonable—but tentative—values
for p, d, and q. Having done so, we shall estimate the φ’s, θ’s, and σe for that model in
the most efficient way. Finally, we shall look critically at the fitted model thus obtained
to check its adequacy, in much the same way that we did in Section 3.6 on page 42. If
the model appears inadequate in some way, we consider the nature of the inadequacy to
help us select another model. We proceed to estimate that new model and check it for
adequacy. 

With a few iterations of this model-building strategy, we hope to arrive at the best
possible model for a given series. The book by George E. P. Box and G. M. Jenkins
(1976) so popularized this technique that many authors call the procedure the “Box-
Jenkins method.” We begin by continuing our investigation of the properties of the sam-
ple autocorrelation function.

6.1 Properties of the Sample Autocorrelation Function

Recall from page 46 the definition of the sample or estimated autocorrelation function.
For the observed series Y1, Y2,…, Yn, we have

(6.1.1)

Our goal is to recognize, to the extent possible, patterns in rk that are characteristic
of the known patterns in ρk for common ARMA models. For example, we know that
ρk = 0 for k > q in an MA(q) model. However, as the rk are only estimates of the ρk, we

rk

Yt Y
 _

–( ) Yt k– Y
 _

–( )
t k 1+=

n

∑

Yt Y
 _

–( )2

t 1=

n

∑
---------------------------------------------------------------= for k = 1, 2, ...
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need to investigate their sampling properties to facilitate the comparison of estimated
correlations with theoretical correlations.

From the definition of rk, a ratio of quadratic functions of possibly dependent vari-
ables, it should be apparent that the sampling properties of rk will not be obtained easily.
Even the expected value of rk is difficult to determine—recall that the expected value of
a ratio is not the ratio of the respective expected values. We shall be content to accept a
general large-sample result and consider its implications in special cases. Bartlett (1946)
carried out the original work. We shall take a more general result from Anderson (1971).
A recent discussion of these results may be found in Shumway and Stoffer (2006, p.
519).

We suppose that

where the et are independent and identically distributed with zero means and finite, non-
zero, common variances. We assume further that

(These will be satisfied by any stationary ARMA model.)
Then, for any fixed m, the joint distribution of

approaches, as , a joint normal distribution with zero means, variances cjj , and
covariances cij,where

(6.1.2)

For large n, we would say that rk is approximately normally distributed with mean ρk
and variance ckk /n. Furthermore, . Notice that the approxi-
mate variance of rk is inversely proportional to the sample size, but  is
approximately constant for large n.

Since Equation (6.1.2) is clearly difficult to interpret in its present generality, we
shall consider some important special cases and simplifications. Suppose first that {Yt}
is white noise. Then Equation (6.1.2) reduces considerably, and we obtain

(6.1.3)

Next suppose that {Yt} is generated by an AR(1) process with ρk = φk for k > 0.
Then, after considerable algebra and summing several geometric series, Equation
(6.1.2) with i = j yields

(6.1.4)

Yt μ ψjet j–
j 0=

∞
∑+=

ψj
j 0=

∞
∑ ∞< and jψj

2

j 0=

∞
∑ ∞<

n r1 ρ1–( ) n r2 ρ2–( ) … n rm ρm–( ), , ,

n ∞→

cij ρk i+ ρk j+ ρk i– ρk j+ 2ρiρkρk j+– 2ρjρkρk i+– 2ρiρjρk
2+ +( )

k ∞–=

∞
∑=

Corr rk rj,( ) ckj ckkcjj⁄≈
Corr rk rj,( )

Var rk( ) 1
n
---  and  Corr rk  rj,( ) 0 for k j≠≈≈

Var rk( ) 1
n
--- 1 φ2+( ) 1 φ2k–( )

1 φ2–
------------------------------------------ 2kφ2k–≈
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In particular,

(6.1.5)

Notice that the closer φ is to ±1, the more precise our estimate of ρ1 (= φ) becomes.
For large lags, the terms in Equation (6.1.4) involving φk may be ignored, and we

have

(6.1.6)

Notice that here, in contrast to Equation (6.1.5), values of φ close to ±1 imply large vari-
ances for rk. Thus we should not expect nearly as precise estimates of ρk = for
large k as we do of ρk = φk for small k.

For the AR(1) model, Equation (6.1.2) can also be simplified (after much algebra)
for general 0 < i < j as

(6.1.7)

In particular, we find

(6.1.8)

Based on Equations (6.1.4) through (6.1.8), Exhibit 6.1 gives approximate standard
deviations and correlations for several lags and a few values of φ in AR(1) models.

Exhibit 6.1 Large Sample Results for Selected rk from an AR(1) Model

For the MA(1) case, Equation (6.1.2) simplifies as follows:

(6.1.9)

Furthermore,

(6.1.10)

Based on these expressions, Exhibit 6.2 lists large-sample standard deviations and cor-
relations for the sample autocorrelations for several lags and several θ-values. Notice
again that the sample autocorrelations can be highly correlated and that the standard
deviation of rk is larger for k > 1 than for k = 1.

φ

±0.9  ±0.97

±0.7 ±0.89

±0.4 ±0.66

±0.2 ±0.38

Var r1( ) 1 φ2–
n

--------------≈

Var rk( ) 1
n
--- 1 φ2+

1 φ2–
---------------≈   for large k

φk 0≈

cij
φ j i– φ j i+–( ) 1 φ2+( )

1 φ2–
----------------------------------------------------- j i–( )φ j i– j i+( )φ j i+–+=

Corr r1 r2,( ) 2φ 1 φ2–

1 2φ2 3φ4–+
---------------------------------≈

Var r1( ) Var r2( ) Corr r1 r2,( ) Var r10( )
0.44 n⁄ 0.807 n⁄ 2.44 n⁄

0.71 n⁄ 1.12 n⁄ 1.70 n⁄

0.92 n⁄ 1.11 n⁄ 1.18 n⁄

0.98 n⁄ 1.04 n⁄ 1.04 n⁄

c11 1 3ρ1
2– 4ρ1

4    and    ckk+ 1 2ρ1
2  for k 1>+= =

c12 2ρ1 1 ρ1
2–( )=
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Exhibit 6.2 Large-Sample Results for Selected rk from an MA(1) Model

For a general MA(q) process and i = j = k, Equation (6.1.2) reduces to

so that

(6.1.11)

For an observed time series, we can replace ρ’s by r’s, take the square root, and
obtain an estimated standard deviation of rk, that is, the standard error of rk for large
lags. A test of the hypothesis that the series is MA(q) could be carried out by comparing
rk to plus and minus two standard errors. We would reject the null hypothesis if and only
if rk lies outside these bounds. In general, we should not expect the sample autocorrela-
tion to mimic the true autocorrelation in great detail. Thus, we should not be surprised to
see ripples or “trends” in rk that have no counterparts in the ρk.

6.2 The Partial and Extended Autocorrelation Functions

Since for MA(q) models the autocorrelation function is zero for lags beyond q, the sam-
ple autocorrelation is a good indicator of the order of the process. However, the autocor-
relations of an AR(p) model do not become zero after a certain number of lags—they
die off rather than cut off. So a different function is needed to help determine the order
of autoregressive models. Such a function may be defined as the correlation between Yt
and Yt − k after removing the effect of the intervening variables Yt − 1, Yt − 2, Yt − 3,…,
Yt − k + 1. This coefficient is called the partial autocorrelation at lag k and will be denoted
by φkk. (The reason for the seemingly redundant double subscript on φkk will become
apparent later on in this section.)

There are several ways to make this definition precise. If {Yt} is a normally distrib-
uted time series, we can let

(6.2.1)

That is, φkk is the correlation in the bivariate distribution of Yt and Yt − k conditional on
Yt − 1, Yt − 2,…, Yt − k + 1.

θ

±0.9

±0.7

±0.5

±0.4

Var r1( ) Var rk( ) for k 1> Corr r1 r2,( )
0.71 n⁄ 1.22 n⁄ 0.86+−

0.73 n⁄ 1.20 n⁄ 0.84+−

0.79 n⁄ 1.15 n⁄ 0.74+−

0.89 n⁄ 1.11 n⁄ 0.53+−

ckk 1 2 ρj
2  for k q>

j 1=

q

∑+=

Var rk( ) 1
n
--- 1 2 ρj

2

j 1=

q

∑+   for k q>=

φkk Corr Yt Yt k– |Yt 1– Yt 2– … Yt k– 1+, , ,,( )=
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An alternative approach, not based on normality, can be developed in the following
way. Consider predicting Yt based on a linear function of the intervening variables Yt − 1,
Yt − 2,…, Yt − k + 1, say, β1Yt − 1+ β2Yt − 2 + + βk − 1Yt − k + 1, with the β’s chosen to
minimize the mean square error of prediction. If we assume that the β’s have been so
chosen and then think backward in time, it follows from stationarity that the best “pre-
dictor” of Yt − k based on the same Yt − 1, Yt − 2,…, Yt − k +1 will be β1Yt − k +1+
β2Yt − k + 2+ + βk − 1Yt − 1. The partial autocorrelation function at lag k is then
defined to be the correlation between the prediction errors; that is,

(6.2.2)

(For normally distributed series, it can be shown that the two definitions coincide.) By
convention, we take φ11 = 1.

As an example, consider φ22. It is shown in Appendix F on page 218 that the best
linear prediction of Yt based on Yt − 1 alone is just ρ1Yt − 1. Thus, according to Equation
(6.2.2), we will obtain φ22 by computing

Since

we have that, for any stationary process, the lag 2 partial autocorrelation can be
expressed as

(6.2.3)

Consider now an AR(1) model. Recall that ρk = φk so that

We shall soon see that for the AR(1) case, φkk = 0 for all k > 1. Thus the partial autocor-
relation is nonzero for lag 1, the order of the AR(1) process, but is zero for all lags
greater than 1. We shall show this to be generally the case for AR(p) models. Sometimes
we say that the partial autocorrelation function for an AR(p) process cuts off after the
lag exceeds the order of the process.

Consider a general AR(p) case. It will be shown in Chapter 9 that the best linear
predictor of Yt based on a linear function of the variables Yt − 1, Yt − 2,…, Yp,…, Yt − k + 1
for k > p is φ1Yt − 1 + φ2Yt − 2 + + φpYt − p. Also, the best linear predictor of Yt − k is
some function of Yt − 1,Yt − 2,…,Yp,…,Yt − k + 1, call it h(Yt − 1,Yt − 2,…,Yp,…,Yt − k + 1).
So the covariance between the two prediction errors is

…

…

φkk Corr Y( t β1Yt 1–– β2Yt 2–
…–– βk 1– Y

t 2–
,–=

                      Yt k– β1Y
t k– 1+

– β2Yt k– 2+
… β– k 1– Yt 1– )––

Cov Yt ρ1Yt 1–– Yt 2– ρ1Yt 1––,( ) γ0 ρ2 ρ1
2– ρ1

2– ρ1
2+( ) γ0 ρ2 ρ1

2–( )= =

Var Yt ρ1Yt 1––( ) Var Yt 2– ρ1Yt 1––( )=

γ0 1 ρ1
2 2ρ1

2–+( )=

γ0 1 ρ1
2–( )=

φ22

ρ2 ρ1
2–

1 ρ1
2–

------------------=

φ22
φ2 φ2–
1 φ2–
----------------- 0= =

…
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Thus we have established the key fact that, for an AR(p) model,

(6.2.4)

For an MA(1) model, Equation (6.2.3) quickly yields

(6.2.5)

Furthermore, for the MA(1) case, it may be shown that

(6.2.6)

Notice that the partial autocorrelation of an MA(1) model never equals zero but essen-
tially decays to zero exponentially fast as the lag increases—rather like the autocorrela-
tion function of the AR(1) process. More generally, it can be shown that the partial
autocorrelation of an MA(q) model behaves very much like the autocorrelation of an
AR(q) model.

A general method for finding the partial autocorrelation function for any stationary
process with autocorrelation function ρk is as follows (see Anderson 1971, pp. 187–188,
for example). For a given lag k, it can be shown that the φkk satisfy the Yule-Walker
equations (which first appeared in Chapter 4 on page 79):

(6.2.7)

More explicitly, we can write these k linear equations as

(6.2.8)

Here we are treating ρ1, ρ2,…, ρk as given and wish to solve for φk1, φk2,…, φkk (dis-
carding all but φkk).

These equations yield φkk for any stationary process. However, if the process is in
fact AR(p), then since for k = p Equations (6.2.8) are just the Yule-Walker equations
(page 79), which the AR(p) model is known to satisfy, we must have φpp = φp. In addi-
tion, as we have already seen by an alternative derivation, φkk = 0 for k > p. Thus the par-
tial autocorrelation effectively displays the correct order p of an autoregressive process
as the highest lag k before φkk becomes zero.

Cov Y( t φ1Yt 1–– φ2Yt 2–
…–– φpYt p  – ,–

                                  Yt k– h Yt k– 1+ Yt k– 2+ … Yt 1–, , ,( ) )–

Cov et  Yt k– h Yt k– 1+ Yt k– 2+ … Yt 1–, , ,( )–,( )=

0  since et is independent of Yt k– Yt k– 1+ Yt k– 2+ … Yt 1–, , , ,=

φkk 0  for  k p>=

φ22
θ2–

1 θ2 θ4+ +
---------------------------=

φkk
θk 1 θ2–( )

1 θ2 k 1+( )–
----------------------------  for  k 1≥–=

ρj φk1ρj 1– φk2ρj 2– φk3ρj 3–
… φkkρj k–     for j 1 2 … k, , ,=+ + + +=

φk1 +

ρ1φ
k1

+

...

ρk 1– φ
k1

+

ρ1φk2 +

φk2 +

ρk 2– φ
k2

+

ρ2φk3

ρ1φk3

ρk 3– φk3

…+ +

…+ +

…+ +

ρk 1– φkk

ρk 2– φkk

φkk

ρ1=

ρ2=

ρk= ⎭
⎪
⎪
⎬
⎪
⎪
⎫
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The Sample Partial Autocorrelation Function

For an observed time series, we need to be able to estimate the partial autocorrelation
function at a variety of lags. Given the relationships in Equations (6.2.8), an obvious
method is to estimate the ρ’s with sample autocorrelations, the corresponding r’s, and
then solve the resulting linear equations for k = 1, 2, 3,… to get estimates of φkk. We call
the estimated function the sample partial autocorrelation function (sample PACF)
and denote it by .

Levinson (1947) and Durbin (1960) gave an efficient method for obtaining the solu-
tions to Equations (6.2.8) for either theoretical or sample partial autocorrelations. They
showed independently that Equations (6.2.8) can be solved recursively as follows:

(6.2.9)

where

For example, using φ11 = ρ1 to get started, we have

(as before) with , which is needed for the next step.
Then

We may thus calculate numerically as many values for φkk as desired. As stated,
these recursive equations give us the theoretical partial autocorrelations, but by replac-
ing ρ’s with r’s, we obtain the estimated or sample partial autocorrelations.

To assess the possible magnitude of the sample partial autocorrelations, Quenoulle
(1949) has shown that, under the hypothesis that an AR(p) model is correct, the sample
partial autocorrelations at lags greater than p are approximately normally distributed
with zero means and variances 1/n. Thus, for k > p,  can be used as critical limits
on  to test the null hypothesis that an AR(p) model is correct.

Mixed Models and the Extended Autocorrelation Function

Exhibit 6.3 summarizes the behavior of the autocorrelation and partial autocorrelation
functions that is useful in specifying models.

φ̂kk

φkk

ρk φk 1– j, ρk j–
j 1=

k 1–

∑–

1 φk 1– j, ρj
j 1=

k 1–

∑–

--------------------------------------------------=

φk j, φk 1– j, φkkφk 1– k j–,     for j– 1 2 … k 1–, , ,= =

φ22

ρ2 φ11ρ1–

1 φ11ρ1–
--------------------------

ρ2 ρ1
2–

1 ρ1
2–

------------------= =

φ21 φ11 φ22φ11–=

φ33

ρ3 φ21ρ2– φ22ρ1–

1 φ21ρ1– φ22ρ2–
----------------------------------------------=

2 n⁄±
φ̂kk
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Exhibit 6.3 General Behavior of the ACF and PACF for ARMA Models

The Extended Autocorrelation Function

The sample ACF and PACF provide effective tools for identifying pure AR(p) or MA(q)
models. However, for a mixed ARMA model, its theoretical ACF and PACF have infi-
nitely many nonzero values, making it difficult to identify mixed models from the sam-
ple ACF and PACF. Many graphical tools have been proposed to make it easier to
identify the ARMA orders, for example, the corner method (Becuin et al., 1980), the
extended autocorrelation (EACF) method (Tsay and Tiao, 1984), and the smallest
canonical correlation (SCAN) method (Tsay and Tiao, 1985), among others. We shall
outline the EACF method, which seems to have good sampling properties for moder-
ately large sample sizes according to a comparative simulation study done by W. S.
Chan (1999). 

The EACF method uses the fact that if the AR part of a mixed ARMA model is
known, “filtering out” the autoregression from the observed time series results in a pure
MA process that enjoys the cutoff property in its ACF. The AR coefficients may be esti-
mated by a finite sequence of regressions. We illustrate the procedure for the case where
the true model is an ARMA(1,1) model: 

In this case, a simple linear regression of Yt on Yt − 1 results in an inconsistent esti-
mator of φ, even with infinitely many data. Indeed, the theoretical regression coefficient
equals ρ1 = (φ − θ)(1 − φθ)/(1 − 2φθ + θ2), not φ. But the residuals from this regression
do contain information about the error process {et}. A second multiple regression is per-
formed that consists of regressing Yt on Yt − 1 and on the lag 1 of the residuals from the
first regression. The coefficient of Yt − 1 in the second regression, denoted by , turns
out to be a consistent estimator of φ. Define , which is then approxi-
mately an MA(1) process. For an ARMA(1,2) model, a third regression that regresses Yt
on its lag 1, the lag 1 of the residuals from the second regression, and the lag 2 of the
residuals from the first regression leads to the coefficient of Yt − 1 being a consistent esti-
mator of φ. Similarly, the AR coefficients of an ARMA(p,q) model can be consistently
estimated via a sequence of q regressions. 

As the AR and MA orders are unknown, an iterative procedure is required. Let

(6.2.10)

be the autoregressive residuals defined with the AR coefficients estimated iteratively
assuming the AR order is k and the MA order is j. The sample autocorrelations of Wt, k, j
are referred to as the extended sample autocorrelations. For k = p and j ≥ q, {Wt, k, j} is
approximately an MA(q) model, so that its theoretical autocorrelations of lag q + 1 or

AR(p) MA(q) ARMA(p,q), p>0, and q>0

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

Yt φYt 1– e+
t

θet 1––=

φ~

Wt Yt φ~Yt 1––=

Wt k j, , Yt φ~1Yt 1–
… φ~kYt k––––=
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higher are equal to zero. For k > p, an overfitting problem occurs, and this increases the
MA order for the W process by the minimum of k − p and j − q. Tsay and Tiao (1984)
suggested summarizing the information in the sample EACF by a table with the element
in the kth row and jth column equal to the symbol X if the lag j + 1 sample correlation of
Wt, k, j is significantly different from 0 (that is, if its magnitude is greater than

 since the sample autocorrelation is asymptotically N(0,1/(n − k − j)) if
the W’s are approximately an MA(j) process) and 0 otherwise. In such a table, an
MA(p,q) process will have a theoretical pattern of a triangle of zeroes, with the upper
left-hand vertex corresponding to the ARMA orders. Exhibit 6.4 displays the schematic
pattern for an ARMA(1,1) model. The upper left-hand vertex of the triangle of zeros is
marked with the symbol 0* and is located in the p = 1 row and q = 1 column—an indica-
tion of an ARMA(1,1) model.

Exhibit 6.4 Theoretical Extended ACF (EACF) for an ARMA(1,1) Model

Of course, the sample EACF will never be this clear-cut. Displays like Exhibit 6.4
will contain 8×14 = 112 different estimated correlations, and some will be statistically
significantly different from zero by chance (see Exhibit 6.17 on page 124, for an exam-
ple). We will illustrate the use of the EACF in the next two sections and throughout the
remainder of the book.

6.3 Specification of Some Simulated Time Series

To illustrate the theory of Sections 6.1 and 6.2, we shall consider the sample autocorre-
lation and sample partial correlation of some simulated time series.

Exhibit 6.5 displays a graph of the sample autocorrelation out to lag 20 for the sim-
ulated time series that we first saw in Exhibit 4.5 on page 61. This series, of length 120,
was generated from an MA(1) model with θ = 0.9. From Exhibit 4.1 on page 58, the the-
oretical autocorrelation at lag 1 is −0.4972. The estimated or sample value shown at lag
1 on the graph is −0.474. Using Exhibit 6.2 on page 112, the approximate standard error

1.96 n j k––⁄

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x x x x x x x x x x x

1 x 0* 0 0 0 0 0 0 0 0 0 0 0 0

2 x x 0 0 0 0 0 0 0 0 0 0 0 0

3 x x x 0 0 0 0 0 0 0 0 0 0 0

4 x x x x 0 0 0 0 0 0 0 0 0 0

5 x x x x x 0 0 0 0 0 0 0 0 0

6 x x x x x x 0 0 0 0 0 0 0 0

7 x x x x x x x 0 0 0 0 0 0 0
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of this estimate is 0.71/  = 0.71/  = 0.065, so the estimate is well within two stan-
dard errors of the true value.

Exhibit 6.5 Sample Autocorrelation of an MA(1) Process with θ = 0.9

> data(ma1.1.s)
> win.graph(width=4.875,height=3,pointsize=8)
> acf(ma1.1.s,xaxp=c(0,20,10))

The dashed horizontal lines in Exhibit 6.5, plotted at = ±0.1826, are
intended to give critical values for testing whether or not the autocorrelation coefficients
are significantly different from zero. These limits are based on the approximate large
sample standard error that applies to a white noise process, namely . Notice that
the sample ACF values exceed these rough critical values at lags 1, 5, and 14. Of course,
the true autocorrelations at lags 5 and 14 are both zero.

Exhibit 6.6 displays the same sample ACF but with critical bounds based on plus
and minus two of the more complex standard errors implied by Equation (6.1.11) on
page 112. In using Equation (6.1.11), we replace ρ’s by r’s, let q equal 1, 2, 3,… succes-
sively, and take the square root to obtain these standard errors. 

n 120

2 4 6 8 10 12 14 16 18 20
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1 n⁄
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Exhibit 6.6 Alternative Bounds for the Sample ACF for the MA(1) 
Process

> acf(ma1.1.s,ci.type='ma',xaxp=c(0,20,10))

Now the sample ACF value at lag 14 is insignificant and the one at lag 5 is just
barely significant. The lag 1 autocorrelation is still highly significant, and the informa-
tion given in these two plots taken together leads us to consider an MA(1) model for this
series. Remember that the model is tentative at this point and we would certainly want to
consider other “nearby” alternative models when we carry out model diagnostics.

As a second example, Exhibit 6.7 shows the sample ACF for the series shown in
Exhibit 4.2 on page 59, generated by an MA(1) model with θ = −0.9. The critical values
based on the very approximate standard errors point to an MA(1) model for this series
also.

Exhibit 6.7 Sample Autocorrelation for an MA(1) Process with θ = −0.9 

> data(ma1.2.s); acf(ma1.2.s,xaxp=c(0,20,10))
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For our third example, we use the data shown in Exhibit 4.8 on page 63, which were
simulated from an MA(2) model with θ1 = 1 and θ2 = −0.6. The sample ACF displays
significance at lags 1, 2, 5, 6, 7, and 14 when we use the simple standard error bounds.

Exhibit 6.8 Sample ACF for an MA(2) Process with θ1 = 1 and θ2 = −0.6

> data(ma2.s); acf(ma2.s,xaxp=c(0,20,10))

Exhibit 6.9 displays the sample ACF with the more sophisticated standard error
bounds. Now the lag 2 ACF is no longer significant, and it appears that an MA(1) may
be applicable. We will have to wait until we get further along in the model-building pro-
cess to see that the MA(2) model—the correct one—is the most appropriate model for
these data.

Exhibit 6.9 Alternative Bounds for the Sample ACF for the MA(2) 
Process

> acf(ma2.s,ci.type='ma',xaxp=c(0,20,10))
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How do these techniques work for autoregressive models? Exhibit 6.10 gives the
sample ACF for the simulated AR(1) process we saw in Exhibit 4.13 on page 68. The
positive sample ACF values at lags 1, 2, and 3 reflect the strength of the lagged relation-
ships that we saw earlier in Exhibits 4.14, 4.15, and 4.16. However, notice that the sam-
ple ACF decreases more linearly than exponentially as theory suggests. Also contrary to
theory, the sample ACF goes negative at lag 10 and remains so for many lags.

Exhibit 6.10 Sample ACF for an AR(1) Process with φ = 0.9

> data(ar1.s); acf(ar1.s,xaxp=c(0,20,10))

The sample partial autocorrelation (PACF) shown in Exhibit 6.11, gives a much
clearer picture about the nature of the generating model. Based on this graph, we would
certainly entertain an AR(1) model for this time series.

Exhibit 6.11 Sample Partial ACF for an AR(1) Process with φ = 0.9
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> pacf(ar1.s,xaxp=c(0,20,10))

Exhibit 6.12 displays the sample ACF for our AR(2) time series. The time series
plot for this series was shown in Exhibit 4.19 on page 74. The sample ACF does look
somewhat like the damped wave that Equation (4.3.17) on page 73, and Exhibit 4.18
suggest. However, the sample ACF does not damp down nearly as quickly as theory pre-
dicts.

Exhibit 6.12 Sample ACF for an AR(2) Process with φ1 = 1.5 and φ2 = −0.75

> acf(ar2.s,xaxp=c(0,20,10))

The sample PACF in Exhibit 6.13 gives a strong indication that we should consider
an AR(2) model for these data. The seemingly significant sample PACF at lag 9 would
need to be investigated further during model diagnostics.

Exhibit 6.13 Sample PACF for an AR(2) Process with φ1 = 1.5 and 
φ2 = −0.75
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> pacf(ar2.s,xaxp=c(0,20,10))

As a final example, we simulated 100 values of a mixed ARMA(1,1) model with φ
= 0.6 and θ = −0.3. The time series plot is shown in Exhibit 6.14 and the sample ACF
and PACFs are shown in Exhibit 6.15 and Exhibit 6.16, respectively. These seem to indi-
cate that an AR(1) model should be specified.

Exhibit 6.14 Simulated ARMA(1,1) Series with φ = 0.6 and θ = −0.3.

> data(arma11.s)
> plot(arma11.s, type='o',ylab=expression(Y[t]))

Exhibit 6.15 Sample ACF for Simulated ARMA(1,1) Series

> acf(arma11.s,xaxp=c(0,20,10))
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Exhibit 6.16 Sample PACF for Simulated ARMA(1,1) Series

> pacf(arma11.s,xaxp=c(0,20,10))

However, the triangular region of zeros shown in the sample EACF in Exhibit 6.17
indicates quite clearly that a mixed model with q = 1 and with p = 1 or 2 would be more
appropriate. We will illustrate further uses of the EACF when we specify some real
series in Section 6.6.

Exhibit 6.17 Sample EACF for Simulated ARMA(1,1) Series

> eacf(arma11.s)

AR / MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x o o o o o o o o o o

1 x o o o o o o o o o o o o o

2 x o o o o o o o o o o o o o

3 x x o o o o o o o o o o o o

4 x o x o o o o o o o o o o o

5 x o o o o o o o o o o o o o

6 x o o o x o o o o o o o o o

7 x o o o x o o o o o o o o o
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6.4 Nonstationarity

As indicated in Chapter 5, many series exhibit nonstationarity that can be explained by
integrated ARMA models. The nonstationarity will frequently be apparent in the time
series plot of the series. A review of Exhibits 5.1, 5.5, and 5.8 is recommended here.

The sample ACF computed for nonstationary series will also usually indicate the
nonstationarity. The definition of the sample autocorrelation function implicitly
assumes stationarity; for example, we use lagged products of deviations from the overall
mean, and the denominator assumes a constant variance over time. Thus it is not at all
clear what the sample ACF is estimating for a nonstationary process. Nevertheless, for
nonstationary series, the sample ACF typically fails to die out rapidly as the lags
increase. This is due to the tendency for nonstationary series to drift slowly, either up or
down, with apparent “trends.” The values of rk need not be large even for low lags, but
often they are.

Consider the oil price time series shown in Exhibit 5.1 on page 88. The sample ACF
for the logarithms of these data is displayed in Exhibit 6.18. All values shown are “sig-
nificantly far from zero,” and the only pattern is perhaps a linear decrease with increas-
ing lag. The sample PACF (not shown) is also indeterminate. 

Exhibit 6.18 Sample ACF for the Oil Price Time Series

> data(oil.price)
> acf(as.vector(oil.price),xaxp=c(0,24,12))

The sample ACF computed on the first differences of the logs of the oil price series
is shown in Exhibit 6.19. Now the pattern emerges much more clearly—after differenc-
ing, a moving average model of order 1 seems appropriate. The model for the original
oil price series would then be a nonstationary IMA(1,1) model. (The “significant” ACF
at lags 15, 16, and 20 are ignored for now.)
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Exhibit 6.19 Sample ACF for the Difference of the Log Oil Price Series

> acf(diff(as.vector(log(oil.price))),xaxp=c(0,24,12))

If the first difference of a series and its sample ACF do not appear to support a sta-
tionary ARMA model, then we take another difference and again compute the sample
ACF and PACF to look for characteristics of a stationary ARMA process. Usually one
or at most two differences, perhaps combined with a logarithm or other transformation,
will accomplish this reduction to stationarity. Additional properties of the sample ACF
computed on nonstationary data are given in Wichern (1973), Roy (1977), and Hasza
(1980). See also Box, Jenkins, and Reinsel (1994, p. 218).

Overdifferencing

From Exercise 2.6 on page 20, we know that the difference of any stationary time series
is also stationary. However, overdifferencing introduces unnecessary correlations into a
series and will complicate the modeling process.

For example, suppose our observed series, {Yt}, is in fact a random walk so that one
difference would lead to a very simple white noise model

However, if we difference once more (that is, overdifference) we have

which is an MA(1) model but with θ = 1. If we take two differences in this situation we
unnecessarily have to estimate the unknown value of θ. Specifying an IMA(2,1) model
would not be appropriate here. The random walk model, which can be thought of as
IMA(1,1) with θ = 0, is the correct model.† Overdifferencing also creates a noninvert-

† The random walk model can also be thought of as an ARI(1,1) with φ = 0 or as a nonsta-
tionary AR(1) with φ = 1.
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ible model—see Section 4.5 on page 79.† Noninvertible models also create serious
problems when we attempt to estimate their parameters—see Chapter 7.

To illustrate overdifferencing, consider the random walk shown in Exhibit 2.1 on
page 14. Taking one difference should lead to white noise—a very simple model. If we
mistakenly take two differences (that is, overdifference) and compute the sample ACF,
we obtain the graph shown in Exhibit 6.20. Based on this plot, we would likely specify
at least an IMA(2,1) model for the original series and then estimate the unnecessary MA
parameter. We also have a significant sample ACF value at lag 7 to think about and deal
with.

Exhibit 6.20 Sample ACF of Overdifferenced Random Walk

> data(rwalk)
> acf(diff(rwalk,difference=2),ci.type='ma', xaxp=c(0,18,9))

In contrast, Exhibit 6.21 displays the sample ACF of the first difference of the ran-
dom walk series. Viewing this graph, we would likely want to consider the correct
model—the first difference looks very much like white noise.

† In backshift notation, if the correct model is , overdifferencing
leads to , say, where 
and the “forbidden” root in at B = 1 is obvious.

φ B( ) 1 B–( )Yt θ B( )et=
φ B( ) 1 B–( )2Yt θ B( ) 1 B–( )et θ' B( )et= = θ' B( ) 1 B–( )θ B( )=

θ' B( )
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Exhibit 6.21 Sample ACF of Correctly Differenced Random Walk

> acf(diff(rwalk),ci.type='ma',xaxp=c(0,18,9))

To avoid overdifferencing, we recommend looking carefully at each difference in
succession and keeping the principle of parsimony always in mind—models should be
simple, but not too simple.

The Dickey-Fuller Unit-Root Test

While the approximate linear decay of the sample ACF is often taken as a symptom that
the underlying time series is nonstationary and requires differencing, it is also useful to
quantify the evidence of nonstationarity in the data-generating mechanism. This can be
done via hypothesis testing. Consider the model 

for t = 1, 2, …

where {Xt} is a stationary process. The process {Yt} is nonstationary if the coefficient α
= 1, but it is stationary if |α| < 1. Suppose that {Xt} is an AR(k) process: Xt = φ1Xt − 1 +

 + φkXt − k + et. Under the null hypothesis that α = 1, Xt = Yt − Yt − 1. Letting a = α −
1, we have 

(6.4.1)

where a = 0 under the hypothesis that Yt is difference nonstationary. On the other hand,
if {Yt} is stationary so that −1 < α < 1, then it can be verified that Yt still satisfies an
equation similar to the equation above but with different coefficients; for example, a =
(1 − φ1 − − φk)(1 − α) < 0. Indeed, {Yt} is then an AR(k + 1) process whose AR char-
acteristic equation is given by Φ(x)(1 − αx) = 0, where Φ(x) = 1 − φ1x −…− φkx

k. So, the
null hypothesis corresponds to the case where the AR characteristic polynomial has a
unit root and the alternative hypothesis states that it has no unit roots. Consequently, the
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test for differencing amounts to testing for a unit root in the AR characteristic polyno-
mial of {Yt}. 

By the analysis above, the null hypothesis that α = 1 (equivalently a = 0) can be
tested by regressing the first difference of the observed time series on lag 1 of the
observed series and on the past k lags of the first difference of the observed series. We
then test whether the coefficient a = 0—the null hypothesis being that the process is dif-
ference nonstationary. That is, the process is nonstationary but becomes stationary after
first differencing. The alternative hypothesis is that a < 0 and hence {Yt} is stationary.
The augmented Dickey-Fuller (ADF) test statistic is the t-statistic of the estimated coef-
ficient of a from the method of least squares regression. However, the ADF test statistic
is not approximately t-distributed under the null hypothesis; instead, it has a certain non-
standard large-sample distribution under the null hypothesis of a unit root. Fortunately,
percentage points of this limit (null) distribution have been tabulated; see Fuller (1996). 

In practice, even after first differencing, the process may not be a finite-order AR
process, but it may be closely approximated by some AR process with the AR order
increasing with the sample size. Said and Dickey (1984) (see also Chang and Park,
2002) showed that with the AR order increasing with the sample size, the ADF test has
the same large-sample null distribution as the case where the first difference of the time
series is a finite-order AR process. Often, the approximating AR order can be first esti-
mated based on some information criteria (for example, AIC or BIC) before carrying
out the ADF test. See Section 6.5 on page 130 for more information on the AIC and BIC
criteria.

In some cases, the process may be trend nonstationary in the sense that it has a
deterministic trend (for example, some linear trend) but otherwise is stationary. A
unit-root test may be conducted with the aim of discerning difference stationarity from
trend stationarity. This can be done by carrying out the ADF test with the detrended
data. Equivalently, this can be implemented by regressing the first difference on the
covariates defining the trend, the lag 1 of the original data, and the past lags of the first
difference of the original data. The t-statistic based on the coefficient estimate of the lag
1 of the original data furnishes the ADF test statistic, which has another nonstandard
large-sample null distribution. See Phillips and Xiao (1998) for a survey of unit root
testing.

We now illustrate the ADF test with the simulated random walk shown in Exhibit
2.1 on page 14. First, we consider testing the null hypothesis of a unit root versus the
alternative hypothesis that the time series is stationary with unknown mean. Hence, the
regression defined by Equation (6.4.1) is augmented with an intercept to allow for the
possibly nonzero mean under the alternative hypothesis. (For the alternative hypothesis
that the process is a stationary process of zero mean, the ADF test statistic can be
obtained by running the unaugmented regression defined by Equation (6.4.1).) To carry
out the test, we must determine k.† Using the AIC with the first difference of the data,
we find that k = 8, in which case the ADF test statistic becomes −0.601, with the p-value

† R code: ar(diff(rwalk))
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being greater than 0.1.† On the other hand, setting k = 0 (the true order) leads to the
ADF statistic −1.738, with p-value still greater than 0.1.‡ Thus, there is strong evidence
supporting the unit-root hypothesis. Second, recall that the simulated random walk
appears to have a linear trend. Hence, linear trend plus stationary error forms another
reasonable alternative to the null hypothesis of unit root (difference nonstationarity). For
this test, we include both an intercept term and the covariate time in the regression
defined by Equation (6.4.1). With k = 8, the ADF test statistic equals −2.289 with
p-value greater than 0.1††; that is, we do not reject the null hypothesis of unit root. On
the other hand, setting k = 0, the true order that is unknown in practice, the ADF test sta-
tistic becomes −3.49 with p-value equal to 0.0501.‡‡ Hence, there is weak evidence that
the process is linear-trend nonstationary; that is, the process equals linear time trend
plus stationary error, contrary to the truth that the process is a random walk, being dif-
ference nonstationary! This example shows that with a small sample size, it may be hard
to differentiate between trend nonstationarity and difference nonstationarity.

6.5 Other Specification Methods

A number of other approaches to model specification have been proposed since Box and
Jenkins’ seminal work. One of the most studied is Akaike’s (1973) Information Crite-
rion (AIC). This criterion says to select the model that minimizes

(6.5.1)

where k = p + q + 1 if the model contains an intercept or constant term and k = p + q oth-
erwise. Maximum likelihood estimation is discussed in Chapter 7. The addition of the
term 2(p + q +1) or 2(p + q) serves as a “penalty function” to help ensure selection of
parsimonious models and to avoid choosing models with too many parameters.

The AIC is an estimator of the average Kullback-Leibler divergence of the esti-
mated model from the true model. Let p(y1,y2,…,yn) be the true pdf of Y1, Y2, …, Yn ,
and qθ(y1,y2,…,yn) be the corresponding pdf under the model with parameter θ. The
Kullback-Leibler divergence of qθ from p is defined by the formula 

The AIC estimates , where  is the maximum likelihood estimator of the
vector parameter θ. However, the AIC is a biased estimator, and the bias can be appre-
ciable for large parameter per data ratios. Hurvich and Tsai (1989) showed that the bias
can be approximately eliminated by adding another nonstochastic penalty term to the
AIC, resulting in the corrected AIC, denoted by AICc and defined by the formula

† R code: library(uroot); ADF.test(rwalk,selectlags=list 
(mode=c(1,2,3,4,5,6,7,8),Pmax=8),itsd=c(1,0,0))

‡ ADF.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,0,0))
†† ADF.test(rwalk,selectlags=list 

(mode=c(1,2,3,4,5,6,7,8),Pmax=8),itsd=c(1,1,0))
‡‡ ADF.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,1,0))
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(6.5.2)

Here n is the (effective) sample size and again k is the total number of parameters as
above excluding the noise variance. Simulation results by Hurvich and Tsai (1989) sug-
gest that for cases with k/n greater than 10%, the AICc outperforms many other model
selection criteria, including both the AIC and BIC. 

Another approach to determining the ARMA orders is to select a model that mini-
mizes the Schwarz Bayesian Information Criterion (BIC) defined as

(6.5.3)

If the true process follows an ARMA(p,q) model, then it is known that the orders speci-
fied by minimizing the BIC are consistent; that is, they approach the true orders as the
sample size increases. However, if the true process is not a finite-order ARMA process,
then minimizing AIC among an increasingly large class of ARMA models enjoys the
appealing property that it will lead to an optimal ARMA model that is closest to the true
process among the class of models under study.† 

Regardless of whether we use the AIC or BIC, the methods require carrying out
maximum likelihood estimation. However, maximum likelihood estimation for an
ARMA model is prone to numerical problems due to multimodality of the likelihood
function and the problem of overfitting when the AR and MA orders exceed the true
orders. Hannan and Rissanen (1982) proposed an interesting and practical solution to
this problem. Their procedure consists of first fitting a high-order AR process with the
order determined by minimizing the AIC. The second step uses the residuals from the
first step as proxies for the unobservable error terms. Thus, an ARMA(k, j) model can be
approximately estimated by regressing the time series on its own lags 1 to k together
with the lags 1 to j of the residuals from the high order autoregression; the BIC of this
autoregressive model is an estimate of the BIC obtained with maximum likelihood esti-
mation. Hannan and Rissanen (1982) demonstrated that minimizing the approximate
BIC still leads to consistent estimation of the ARMA orders. 

Order determination is related to the problem of finding the subset of nonzero coef-
ficients of an ARMA model with sufficiently high ARMA orders. A subset ARMA(p,q)
model is an ARMA(p,q) model with a subset of its coefficients known to be zero. For
example, the model

Yt = 0.8Yt−12 + et + 0.7et−12 (6.5.4)

is a subset ARMA(12,12) model useful for modeling some monthly seasonal time
series. For ARMA models of very high orders, such as the preceding ARMA(12,12)
model, finding a subset ARMA model that adequately approximates the underlying pro-
cess is more important from a practical standpoint than simply determining the ARMA
orders. The method of Hannan and Rissanen (1982) for estimating the ARMA orders
can be extended to solving the problem of finding an optimal subset ARMA model.

† Closeness is measured in terms of the Kullback-Leibler divergence—a measure of dispar-
ity between models. See Shibata (1976) and the discussion in Stenseth et al. (2004).

AICc AIC 2 k 1+( ) k 2+( )
n k 2––

-------------------------------------+=

BIC 2 maximum likelihood( )log– k n( )log+=
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Indeed, several model selection criteria (including AIC and BIC) of the subset
ARMA(p,q) models (2p + q of them!) can be approximately, exhaustively, and quickly
computed by the method of regression by leaps and bounds (Furnival and Wilson, 1974)
applied to the subset regression of Yt on its own lags and on lags of the residuals from a
high-order autoregression of {Yt}. 

It is prudent to examine a few best subset ARMA models (in terms of, for example,
BIC) in order to arrive at some helpful tentative models for further study. The pattern of
which lags of the observed time series and which of the error process enter into the var-
ious best subset models can be summarized succinctly in a display like that shown in
Exhibit 6.22. This table is based on a simulation of the ARMA(12,12) model shown in
Equation (6.5.4). Each row in the exhibit corresponds to a subset ARMA model where
the cells of the variables selected for the model are shaded. The models are sorted
according to their BIC, with better models (lower BIC) placed in higher rows and with
darker shades. The top row tells us that the subset ARMA(14,14) model with the small-
est BIC contains only lags 8 and 12 of the observed time series and lag 12 of the error
process. The next best model contains lag 12 of the time series and lag 8 of the errors,
while the third best model contains lags 4, 8, and 12 of the time series and lag 12 of the
errors. In our simulated time series, the second best model is the true subset model.
However, the BIC values for these three models are all very similar, and all three (plus
the fourth best model) are worthy of further study. However, lag 12 of the time series
and that of the errors are the two variables most frequently found in the various subset
models summarized in the exhibit, suggesting that perhaps they are the more important
variables, as we know they are! 

Exhibit 6.22 Best Subset ARMA Selection Based on BIC
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> set.seed(92397)
> test=arima.sim(model=list(ar=c(rep(0,11),.8), 

ma=c(rep(0,11),0.7)),n=120)
> res=armasubsets(y=test,nar=14,nma=14,y.name='test', 

ar.method='ols')
> plot(res)

6.6 Specification of Some Actual Time Series

Consider now specification of models for some of the actual time series that we saw in
earlier chapters. 

The Los Angeles Annual Rainfall Series

Annual total rainfall amounts for Los Angeles were shown in Exhibit 1.1 on page 2. In
Chapter 3, we noted in Exhibit 3.17 on page 50, that rainfall amounts were not normally
distributed. As is shown in Exhibit 6.23, taking logarithms improves the normality dra-
matically.

Exhibit 6.23 QQ Normal Plot of the Logarithms of LA Annual Rainfall

> data(larain); win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(log(larain)); qqline(log(larain))
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Exhibit 6.24 displays the sample autocorrelations for the logarithms of the annual
rainfall series.

Exhibit 6.24 Sample ACF of the Logarithms of LA Annual Rainfall

> win.graph(width=4.875,height=3,pointsize=8)
> acf(log(larain),xaxp=c(0,20,10))

The log transformation has improved the normality, but there is no discernable
dependence in this time series. We could model the logarithm of annual rainfall amount
as independent, normal random variables with mean 2.58 and standard deviation 0.478.
Both these values are in units of log(inches).

The Chemical Process Color Property Series

The industrial chemical process color property displayed in Exhibit 1.3 on page 3,
shows more promise of interesting time series modeling—especially in light of the
dependence of successive batches shown in Exhibit 1.4 on page 4. The sample ACF
plotted in Exhibit 6.25 might at first glance suggest an MA(1) model, as only the lag 1
autocorrelation is significantly different from zero.
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Exhibit 6.25 Sample ACF for the Color Property Series

> data(color); acf(color,ci.type='ma')

However, the damped sine wave appearance of the plot encourages us to look fur-
ther at the sample partial autocorrelation. Exhibit 6.26 displays that plot, and now we
see clearly that an AR(1) model is worthy of first consideration. As always, our speci-
fied models are tentative and subject to modification during the model diagnostics stage
of model building.

Exhibit 6.26 Sample Partial ACF for the Color Property Series

> pacf(color)

2 4 6 8 10 12 14

−
0.

4
0.

0
0.

2
0.

4

Lag

A
C

F

2 4 6 8 10 12 14

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F



136 Model Specification

The Annual Abundance of Canadian Hare Series

The time series of annual abundance of hare of the Hudson Bay in Canada was dis-
played in Exhibit 1.5 on page 5, and the year-to-year dependence was demonstrated in
Exhibit 1.6. It has been suggested in the literature that a transformation might be used to
produce a good model for these data. Exhibit 6.27 displays the log-likelihood as a func-
tion of the power parameter, λ. The maximum occurs at λ = 0.4, but a square root trans-
formation with λ = 0.5 is well within the confidence interval for λ. We will take the
square root of the abundance values for all further analyses.

Exhibit 6.27 Box-Cox Power Transformation Results for Hare Abundance

> win.graph(width=3,height=3,pointsize=8)
> data(hare); BoxCox.ar(hare)

Exhibit 6.28 shows the sample ACF for this transformed series. The fairly strong
lag 1 autocorrelation dominates but, again, there is a strong indication of damped oscil-
latory behavior.
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Exhibit 6.28 Sample ACF for Square Root of Hare Abundance 

> acf(hare^.5)

The sample partial autocorrelation for the transformed series is shown in Exhibit
6.29. It gives strong evidence to support an AR(2) or possibly an AR(3) model for these
data.

Exhibit 6.29 Sample Partial ACF for Square Root of Hare Abundance

> pacf(hare^.5)
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The Oil Price Series

In Chapter 5, we began to look at the monthly oil price time series and argued graphi-
cally that the difference of the logarithms could be considered stationary—see Exhibit
5.1 on page 88. Software implementation of the Augmented Dickey-Fuller unit-root test
applied to the logs of the original prices leads to a test statistic of −1.1119 and a p-value
of 0.9189. With stationarity as the alternative hypothesis, this provides strong evidence
of nonstationarity and the appropriateness of taking a difference of the logs. For this
test, the software chose a value of k = 6 in Equation (6.4.1) on page 128 based on
large-sample theory.

Exhibit 6.30 shows the summary EACF table for the differences of the logarithms
of the oil price data. This table suggests an ARMA model with p = 0 and q = 1.

Exhibit 6.30 Extended ACF for Difference of Logarithms of Oil Price 
Series

> eacf(diff(log(oil.price)))

AR / MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x o o o o o o o o o o o o o

1 x x o o o o o o o o x o o o

2 o x o o o o o o o o o o o o

3 o x o o o o o o o o o o o o

4 o x x o o o o o o o o o o o

5 o x o x o o o o o o o o o o

6 o x o x o o o o o o o o o o

7 x x o x o o o o o o o o o o
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The results of the best subsets ARMA approach are displayed in Exhibit 6.31. 

Exhibit 6.31 Best Subset ARMA Model for Difference of Log(Oil)

> res=armasubsets(y=diff(log(oil.price)),nar=7,nma=7, 
y.name='test', ar.method='ols')

> plot(res)

Here the suggestion is that Yt = ∇log(Oilt) should be modeled in terms of Yt − 1 and
Yt − 4 and that no lags are needed in the error terms. The second best model omits the lag
4 term so that an ARIMA(1,1,0) model on the logarithms should also be investigated
further.
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Exhibit 6.32 suggests that we specify an MA(1) model for the difference of the log
oil prices, and Exhibit 6.33 says to consider an AR(2) model (ignoring some significant
spikes at lags 15, 16, and 20). We will want to look at all of these models further when
we estimate parameters and perform diagnostic tests in Chapters 7 and 8. (We will see
later that to obtain a suitable model for the oil price series, the outliers in the series will
need to be dealt with. (Can you spot the outliers in Exhibit 5.4 on page 91?)

Exhibit 6.32 Sample ACF of Difference of Logged Oil Prices

> acf(as.vector(diff(log(oil.price))),xaxp=c(0,22,11))

Exhibit 6.33 Sample PACF of Difference of Logged Oil Prices

> pacf(as.vector(diff(log(oil.price))),xaxp=c(0,22,11))
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6.7 Summary

In this chapter, we considered the problem of specifying reasonable but simple models
for observed times series. In particular, we investigated tools for choosing the orders (p,
d, and q) for ARIMA(p,d,q) models. Three tools, the sample autocorrelation function,
the sample partial autocorrelation function, and the sample extended autocorrelation
function, were introduced and studied to help with this difficult task. The Dickey-Fuller
unit-root test was also introduced to help distinguish between stationary and nonstation-
ary series. These ideas were all illustrated with both simulated and actual time series.

EXERCISES

6.1 Verify Equation (6.1.3) on page 110 for the white noise process.
6.2 Verify Equation (6.1.4) on page 110 for the AR(1) process.
6.3 Verify the line in Exhibit 6.1 on page 111, for the values φ = ±0.9.
6.4 Add new entries to Exhibit 6.1 on page 111, for the following values:

(a) φ = ±0.99.
(b) φ = ±0.5.
(c) φ = ±0.1.

6.5 Verify Equation (6.1.9) on page 111 and Equation (6.1.10) for the MA(1) process.
6.6 Verify the line in Exhibit 6.2 on page 112, for the values θ = ±0.9.
6.7 Add new entries to Exhibit 6.2 on page 112, for the following values:

(a) θ = ±0.99.
(b) θ = ±0.8.
(c) θ = ±0.2.

6.8 Verify Equation (6.1.11) on page 112, for the general MA(q) process.
6.9 Use Equation (6.2.3) on page 113, to verify the value for the lag 2 partial autocor-

relation function for the MA(1) process given in Equation (6.2.5) on page 114.
6.10 Show that the general expression for the partial autocorrelation function of an

MA(1) process given in Equation (6.2.6) on page 114, satisfies the Yule-Walker
recursion given in Equation (6.2.7).

6.11 Use Equation (6.2.8) on page 114, to find the (theoretical) partial autocorrelation
function for an AR(2) model in terms of φ1 and φ2 and lag k = 1, 2, 3, … .

6.12 From a time series of 100 observations, we calculate r1 = −0.49, r2 = 0.31, r3 =
−0.21, r4 = 0.11, and |rk| < 0.09 for k > 4. On this basis alone, what ARIMA
model would we tentatively specify for the series?

6.13 A stationary time series of length 121 produced sample partial autocorrelation of
= 0.8, = −0.6, = 0.08, and = 0.00. Based on this information

alone, what model would we tentatively specify for the series?
6.14 For a series of length 169, we find that r1 = 0.41, r2 = 0.32, r3 = 0.26, r4 = 0.21,

and r5 = 0.16. What ARIMA model fits this pattern of autocorrelations?

φ̂11 φ̂22 φ̂33 φ̂44
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6.15 The sample ACF for a series and its first difference are given in the following
table. Here n = 100.

Based on this information alone, which ARIMA model(s) would we consider for
the series?

6.16 For a series of length 64, the sample partial autocorrelations are given as:

Which models should we consider in this case?
6.17 Consider an AR(1) series of length 100 with φ = 0.7.

(a) Would you be surprised if r1 = 0.6?
(b) Would r10 = −0.15 be unusual?

6.18 Suppose the {Xt} is a stationary AR(1) process with parameter φ but that we can
only observe Yt = Xt + Nt where {Nt} is the white noise measurement error inde-
pendent of {Xt}.
(a) Find the autocorrelation function for the observed process in terms of φ, ,

and .
(b) Which ARIMA model might we specify for {Yt}?

6.19 The time plots of two series are shown below.
(a) For each of the series, describe r1 using the terms strongly positive, moder-

ately positive, near zero, moderately negative, or strongly negative. Do you
need to know the scale of measurement for the series to answer this?

(b) Repeat part (a) for r2.

lag 1 2 3 4 5 6

ACF for Yt 0.97 0.97 0.93 0.85 0.80 0.71

ACF for ∇Yt −0.42 0.18 −0.02 0.07 −0.10 −0.09

Lag 1 2 3 4 5

PACF 0.47 −0.34 0.20 0.02 −0.06
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6.20 Simulate an AR(1) time series with n = 48 and with φ = 0.7.
(a) Calculate the theoretical autocorrelations at lag 1 and lag 5 for this model.
(b) Calculate the sample autocorrelations at lag 1 and lag 5 and compare the val-

ues with their theoretical values. Use Equations (6.1.5) and (6.1.6) page 111,
to quantify the comparisons. 

(c) Repeat part (b) with a new simulation. Describe how the precision of the esti-
mate varies with different samples selected under identical conditions.

(d) If software permits, repeat the simulation of the series and calculation of r1
and r5 many times and form the sampling distributions of r1 and r5. Describe
how the precision of the estimate varies with different samples selected under
identical conditions. How well does the large-sample variance given in Equa-
tion (6.1.5) on page 111, approximate the variance in your sampling distribu-
tion?

6.21 Simulate an MA(1) time series with n = 60 and with θ = 0.5.
(a) Calculate the theoretical autocorrelation at lag 1 for this model.
(b) Calculate the sample autocorrelation at lag 1, and compare the value with its

theoretical value. Use Exhibit 6.2 on page 112, to quantify the comparisons. 
(c) Repeat part (b) with a new simulation. Describe how the precision of the esti-

mate varies with different samples selected under identical conditions.
(d) If software permits, repeat the simulation of the series and calculation of r1

many times and form the sampling distribution of r1. Describe how the preci-
sion of the estimate varies with different samples selected under identical con-
ditions. How well does the large-sample variance given in Exhibit 6.2 on page
112, approximate the variance in your sampling distribution?

6.22 Simulate an AR(1) time series with n = 48, with 
(a) φ = 0.9, and calculate the theoretical autocorrelations at lag 1 and lag 5;
(b) φ = 0.6, and calculate the theoretical autocorrelations at lag 1 and lag 5;
(c) φ = 0.3, and calculate the theoretical autocorrelations at lag 1 and lag 5.
(d) For each of the series in parts (a), (b), and (c), calculate the sample autocorre-

lations at lag 1 and lag 5 and compare the values with their theoretical values.
Use Equations (6.1.5) and 6.1.6, page 111, to quantify the comparisons. In
general, describe how the precision of the estimate varies with the value of φ.

6.23 Simulate an AR(1) time series with φ = 0.6, with
(a) n = 24, and estimate ρ1 = φ = 0.6 with r1;
(b) n = 60, and estimate ρ1 = φ = 0.6 with r1;
(c) n = 120, and estimate ρ1 = φ = 0.6 with r1.
(d) For each of the series in parts (a), (b), and (c), compare the estimated values

with the theoretical value. Use Equation (6.1.5) on page 111, to quantify the
comparisons. In general, describe how the precision of the estimate varies
with the sample size.
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6.24 Simulate an MA(1) time series with θ = 0.7, with
(a) n = 24, and estimate ρ1 with r1;
(b) n = 60, and estimate ρ1 with r1;
(c) n = 120, and estimate ρ1 with r1.
(d) For each of the series in parts (a), (b), and (c), compare the estimated values of

ρ1 with the theoretical value. Use Exhibit 6.2 on page 112, to quantify the
comparisons. In general, describe how the precision of the estimate varies
with the sample size.

6.25 Simulate an AR(1) time series of length n = 36 with φ = 0.7.
(a) Calculate and plot the theoretical autocorrelation function for this model. Plot

sufficient lags until the correlations are negligible.
(b) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(c) What are the theoretical partial autocorrelations for this model?
(d) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)? Use the
large-sample standard errors reported in Exhibit 6.1 on page 111, to quantify
your answer.

(e) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical PACF from part (c)? Use the
large-sample standard errors reported on page 115 to quantify your answer.

6.26 Simulate an MA(1) time series of length n = 48 with θ = 0.5.
(a) What are the theoretical autocorrelations for this model?
(b) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(c) Calculate and plot the theoretical partial autocorrelation function for this

model. Plot sufficient lags until the correlations are negligible. (Hint: See
Equation (6.2.6) on page 114.)

(d) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical PACF from part (c)?

6.27 Simulate an AR(2) time series of length n = 72 with φ1 = 0.7 and φ2 = −0.4.
(a) Calculate and plot the theoretical autocorrelation function for this model. Plot

sufficient lags until the correlations are negligible.
(b) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(c) What are the theoretical partial autocorrelations for this model?
(d) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(e) Calculate and plot the sample PACF for your simulated series. How well do

the values and patterns match the theoretical PACF from part (c)?
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6.28 Simulate an MA(2) time series of length n = 36 with θ1 = 0.7 and θ2 = −0.4.
(a) What are the theoretical autocorrelations for this model?
(b) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(c) Plot the theoretical partial autocorrelation function for this model. Plot suffi-

cient lags until the correlations are negligible. (We do not have a formula for
this PACF. Instead, perform a very large sample simulation, say n = 1000, for
this model and calculate and plot the sample PACF for this simulation.)

(d) Calculate and plot the sample PACF for your simulated series of part (a). How
well do the values and patterns match the “theoretical” PACF from part (c)?

6.29 Simulate a mixed ARMA(1,1) model of length n = 60 with φ = 0.4 and θ = 0.6.
(a) Calculate and plot the theoretical autocorrelation function for this model. Plot

sufficient lags until the correlations are negligible.
(b) Calculate and plot the sample ACF for your simulated series. How well do the

values and patterns match the theoretical ACF from part (a)?
(c) Calculate and interpret the sample EACF for this series. Does the EACF help

you specify the correct orders for the model?
(d) Repeat parts (b) and (c) with a new simulation using the same parameter val-

ues and sample size.
(e) Repeat parts (b) and (c) with a new simulation using the same parameter val-

ues but sample size n = 36.
(f) Repeat parts (b) and (c) with a new simulation using the same parameter val-

ues but sample size n = 120.
6.30 Simulate a mixed ARMA(1,1) model of length n = 100 with φ = 0.8 and θ = 0.4.

(a) Calculate and plot the theoretical autocorrelation function for this model. Plot
sufficient lags until the correlations are negligible.

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(c) Calculate and interpret the sample EACF for this series. Does the EACF help
you specify the correct orders for the model?

(d) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues and sample size.

(e) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 48.

(f) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 200.
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6.31 Simulate a nonstationary time series with n = 60 according to the model
ARIMA(0,1,1) with θ = 0.8.
(a) Perform the (augmented) Dickey-Fuller test on the series with k = 0 in Equa-

tion (6.4.1) on page 128. (With k = 0, this is the Dickey-Fuller test and is not
augmented.) Comment on the results.

(b) Perform the augmented Dickey-Fuller test on the series with k chosen by the
software—that is, the “best” value for k. Comment on the results.

(c) Repeat parts (a) and (b) but use the differences of the simulated series. Com-
ment on the results. (Here, of course, you should reject the unit root hypothe-
sis.)

6.32 Simulate a stationary time series of length n = 36 according to an AR(1) model
with φ = 0.95. This model is stationary, but just barely so. With such a series and a
short history, it will be difficult if not impossible to distinguish between stationary
and nonstationary with a unit root.
(a) Plot the series and calculate the sample ACF and PACF and describe what you

see.
(b) Perform the (augmented) Dickey-Fuller test on the series with k = 0 in Equa-

tion (6.4.1) on page 128. (With k = 0 this is the Dickey-Fuller test and is not
augmented.) Comment on the results.

(c) Perform the augmented Dickey-Fuller test on the series with k chosen by the
software—that is, the “best” value for k. Comment on the results.

(d) Repeat parts (a), (b), and (c) but with a new simulation with n = 100.
6.33 The data file named deere1 contains 82 consecutive values for the amount of

deviation (in 0.000025 inch units) from a specified target value that an industrial
machining process at Deere & Co. produced under certain specified operating
conditions.
(a) Display the time series plot of this series and comment on any unusual points.
(b) Calculate the sample ACF for this series and comment on the results.
(c) Now replace the unusual value by a much more typical value and recalculate

the sample ACF. Comment on the change from what you saw in part (b).
(d) Calculate the sample PACF based on the revised series that you used in part

(c). What model would you specify for the revised series? (Later we will
investigate other ways to handle outliers in time series modeling.)

6.34 The data file named deere2 contains 102 consecutive values for the amount of
deviation (in 0.0000025 inch units) from a specified target value that another
industrial machining process produced at Deere & Co.
(a) Display the time series plot of this series and comment on its appearance.

Would a stationary model seem to be appropriate?
(b) Display the sample ACF and PACF for this series and select tentative orders

for an ARMA model for the series.
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6.35 The data file named deere3 contains 57 consecutive measurements recorded from
a complex machine tool at Deere & Co. The values given are deviations from a
target value in units of ten millionths of an inch. The process employs a control
mechanism that resets some of the parameters of the machine tool depending on
the magnitude of deviation from target of the last item produced.
(a) Display the time series plot of this series and comment on its appearance.

Would a stationary model be appropriate here?
(b) Display the sample ACF and PACF for this series and select tentative orders

for an ARMA model for the series.
6.36 The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a
desired ending point was recorded in inches. This was repeated 324 times to form
the time series.
(a) Display the time series plot of the data. Based on this information, do these

data appear to come from a stationary or nonstationary process?
(b) Calculate and plot the sample ACF and PACF for these data. Based on this

additional information, do these data appear to come from a stationary or non-
stationary process?

(c) Calculate and interpret the sample EACF.
(d) Use the best subsets ARMA approach to specify a model for these data. Com-

pare these results with what you discovered in parts (a), (b), and (c).
6.37 Calculate and interpret the sample EACF for the logarithms of the Los Angeles

rainfall series. The data are in the file named larain. Do the results confirm that the
logs are white noise?

6.38 Calculate and interpret the sample EACF for the color property time series. The
data are in the color file. Does the sample EACF suggest the same model that was
specified by looking at the sample PACF?

6.39 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
(a) Plot the time series, and comment on the display. Are there any unusual val-

ues?
(b) Calculate the sample ACF and PACF for this series.
(c) Now replace each of the unusual values with a value of 35 days—much more

typical values—and repeat the calculation of the sample ACF and PACF.
What ARMA model would you specify for this series after removing the out-
liers? (Later we will investigate other ways to handle outliers in time series
modeling.)
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CHAPTER 7

PARAMETER ESTIMATION

This chapter deals with the problem of estimating the parameters of an ARIMA model
based on the observed time series Y1, Y2,…, Yn. We assume that a model has already
been specified; that is, we have specified values for p, d, and q using the methods of
Chapter 6. With regard to nonstationarity, since the d th difference of the observed series
is assumed to be a stationary ARMA(p,q) process, we need only concern ourselves with
the problem of estimating the parameters in such stationary models. In practice, then we
treat the dth difference of the original time series as the time series from which we esti-
mate the parameters of the complete model. For simplicity, we shall let Y1, Y2,…, Yn
denote our observed stationary process even though it may be an appropriate difference
of the original series. We first discuss the method-of-moments estimators, then the least
squares estimators, and finally full maximum likelihood estimators.

7.1 The Method of Moments

The method of moments is frequently one of the easiest, if not the most efficient, meth-
ods for obtaining parameter estimates. The method consists of equating sample
moments to corresponding theoretical moments and solving the resulting equations to
obtain estimates of any unknown parameters. The simplest example of the method is to
estimate a stationary process mean by a sample mean. The properties of this estimator
were studied extensively in Chapter 3.

Autoregressive Models

Consider first the AR(1) case. For this process, we have the simple relationship ρ1 = φ.
In the method of moments, ρ1 is equated to r1, the lag 1 sample autocorrelation. Thus
we can estimate φ by

(7.1.1)

Now consider the AR(2) case. The relationships between the parameters φ1 and φ2
and various moments are given by the Yule-Walker equations (4.3.13) on page 72:

The method of moments replaces ρ1 by r1 and ρ2 by r2 to obtain

φ̂ r1=

ρ1 φ1 ρ1φ2  and  ρ2+ ρ1φ1 φ2+= =

r1 φ1 r1φ2  and  r2+ r1φ1 φ2+= =



150 Parameter Estimation

which are then solved to obtain

(7.1.2)

The general AR(p) case proceeds similarly. Replace ρk by rk throughout the
Yule-Walker equations on page 79 (or page 114) to obtain

(7.1.3)

These linear equations are then solved for . The Durbin-Levinson recur-
sion of Equation (6.2.9) on page 115 provides a convenient method of solution but is
subject to substantial round-off errors if the solution is close to the boundary of the sta-
tionarity region. The estimates obtained in this way are also called Yule-Walker esti-
mates.

Moving Average Models

Surprisingly, the method of moments is not nearly as convenient when applied to mov-
ing average models. Consider the simple MA(1) case. From Equations (4.2.2) on
page 57, we know that

Equating ρ1 to r1, we are led to solve a quadratic equation in θ. If |r1| < 0.5, then the two
real roots are given by

As can be easily checked, the product of the two solutions is always equal to 1; there-
fore, only one of the solutions satisfies the invertibility condition |θ| < 1. 

After further algebraic manipulation, we see that the invertible solution can be writ-
ten as

(7.1.4)

If r1 = ±0.5, unique, real solutions exist, namely , but neither is invertible. If |r1| > 0.5
(which is certainly possible even though |ρ1| < 0.5), no real solutions exist, and so the
method of moments fails to yield an estimator of θ. Of course, if |r1| > 0.5, the specifica-
tion of an MA(1) model would be in considerable doubt.
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For higher-order MA models, the method of moments quickly gets complicated.
We can use Equations (4.2.5) on page 65 and replace ρk by rk for k = 1, 2,…, q, to
obtain q equations in q unknowns θ1, θ2,..., θq. The resulting equations are highly non-
linear in the θ’s, however, and their solution would of necessity be numerical. In addi-
tion, there will be multiple solutions, of which only one is invertible. We shall not
pursue this further since we shall see in Section 7.4 that, for MA models, the method of
moments generally produces poor estimates.

Mixed Models

We consider only the ARMA(1,1) case. Recall Equation (4.4.5) on page 78, 

Noting that ρ2 /ρ1 = φ, we can first estimate φ as

(7.1.5)

Having done so, we can then use

(7.1.6)

to solve for . Note again that a quadratic equation must be solved and only the invert-
ible solution, if any, retained.

Estimates of the Noise Variance

The final parameter to be estimated is the noise variance, . In all cases, we can first
estimate the process variance, γ0 = Var(Yt), by the sample variance

(7.1.7)

and use known relationships from Chapter 4 among γ0, , and the θ’s and φ’s to esti-
mate .

For the AR(p) models, Equation (4.3.31) on page 77 yields

(7.1.8)

In particular, for an AR(1) process,

since .
For the MA(q) case, we have, using Equation (4.2.4) on page 65,
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For the ARMA(1,1) process, Equation (4.4.4) on page 78 yields

(7.1.10)

Numerical Examples

The table in Exhibit 7.1 displays method-of-moments estimates for the parameters from
several simulated time series. Generally speaking, the estimates for all the autoregres-
sive models are fairly good but the estimates for the moving average models are not
acceptable. It can be shown that theory confirms this observation—method-of-moments
estimators are very inefficient for models containing moving average terms.

Exhibit 7.1 Method-of-Moments Parameter Estimates for Simulated 
Series

> data(ma1.2.s); data(ma1.1.s); data(ma1.3.s); data(ma1.4.s)
> estimate.ma1.mom(ma1.2.s); estimate.ma1.mom(ma1.1.s)
> estimate.ma1.mom(ma1.3.s); estimate.ma1.mom(ma1.4.s)
> arima(ma1.4.s,order=c(0,0,1),method='CSS',include.mean=F)
> data(ar1.s); data(ar1.2.s)
> ar(ar1.s,order.max=1,AIC=F,method='yw')
> ar(ar1.2.s,order.max=1,AIC=F,method='yw')
> data(ar2.s)
> ar(ar2.s,order.max=2,AIC=F,method='yw')

Consider now some actual time series. We start with the Canadian hare abundance
series. Since we found in Exhibit 6.27 on page 136 that a square root transformation was
appropriate here, we base all modeling on the square root of the original abundance
numbers. We illustrate the estimation of an AR(2) model with the hare data, even

True Parameters
Method-of-Moments 

Estimates

Model θ φ1 φ2 θ φ1 φ2 n

MA(1) −0.9 −0.554 120

MA(1) 0.9 0.719 120

MA(1) −0.9 NA†

† No method-of-moments estimate exists since r1 = 0.544 for this simulation.

60

MA(1) 0.5 −0.314 60

AR(1) 0.9 0.831 60

AR(1) 0.4 0.470 60

AR(2) 1.5 −0.75 1.472 −0.767 120

σ̂e
2 1 φ̂2–

1 2φ̂θ̂– θ̂2+
------------------------------s2=
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though we shall show later that an AR(3) model provides a better fit to the data. The first
two sample autocorrelations displayed in Exhibit 6.28 on page 137 are r1 = 0.736 and r2
= 0.304. Using Equations (7.1.2), the method-of-moments estimates of φ1 and φ2 are

(7.1.11)

and

(7.1.12)

The sample mean and variance of this series (after taking the square root) are found to
be 5.82 and 5.88, respectively. Then, using Equation (7.1.8), we estimate the noise vari-
ance as

(7.1.13)

The estimated model (in original terms) is then

(7.1.14)

or

(7.1.15)

with estimated noise variance of 1.97.
Consider now the oil price series. Exhibit 6.32 on page 140 suggested that we spec-

ify an MA(1) model for the first differences of the logarithms of the series. The lag 1
sample autocorrelation in that exhibit is 0.212, so the method-of-moments estimate of θ
is

(7.1.16)

The mean of the differences of the logs is 0.004 and the variance is 0.0072. The esti-
mated model is

(7.1.17)

or
(7.1.18)

with estimated noise variance of 

(7.1.19)
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Using Equation (3.2.3) on page 28 with estimated parameters yields a standard error of
the sample mean of 0.0060. Thus, the observed sample mean of 0.004 is not signifi-
cantly different from zero and we would remove the constant term from the model, giv-
ing a final model of

(7.1.20)

7.2 Least Squares Estimation

Because the method of moments is unsatisfactory for many models, we must consider
other methods of estimation. We begin with least squares. For autoregressive models,
the ideas are quite straightforward. At this point, we introduce a possibly nonzero mean,
μ, into our stationary models and treat it as another parameter to be estimated by least
squares.

Autoregressive Models

Consider the first-order case where

(7.2.1)

We can view this as a regression model with predictor variable Yt − 1 and response vari-
able Yt. Least squares estimation then proceeds by minimizing the sum of squares of the
differences

Since only Y1, Y2,…, Yn are observed, we can only sum from t = 2 to t = n. Let

(7.2.2)

This is usually called the conditional sum-of-squares function. (The reason for the
term conditional will become apparent later on.) According to the principle of least
squares, we estimate φ and μ by the respective values that minimize Sc(φ,μ) given the
observed values of Y1, Y2,…, Yn.

Consider the equation . We have

or, simplifying and solving for μ,

(7.2.3)

Yt( )log Yt 1–( )log et 0.222et 1–+ +=

Yt μ– φ Yt 1– μ–( ) et+=

Yt μ–( ) φ Yt 1– μ–( )–

Sc φ μ,( ) Yt μ–( ) φ Yt 1– μ–( )–[ ]2
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n

∑=

Sc∂ μ∂⁄ 0=
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μ 1
n 1–( ) 1 φ–( )

---------------------------------- Yt
t 2=
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∑ φ Yt 1–
t 2=

n

∑–=



7.2  Least Squares Estimation 155

Now, for large n,

Thus, regardless of the value of φ, Equation (7.2.3) reduces to

(7.2.4)

We sometimes say, except for end effects, .
Consider now the minimization of with respect to φ. We have

Setting this equal to zero and solving for φ yields

Except for one term missing in the denominator, namely , this is the same as
r1. The lone missing term is negligible for stationary processes, and thus the least
squares and method-of-moments estimators are nearly identical, especially for large
samples.

For the general AR(p) process, the methods used to obtain Equations (7.2.3) and
(7.2.4) can easily be extended to yield the same result, namely

(7.2.5)

To generalize the estimation of the φ’s, we consider the second-order model. In accor-
dance with Equation (7.2.5), we replace μ by  in the conditional sum-of-squares func-
tion, so

(7.2.6)

Setting , we have

(7.2.7)

which we can rewrite as
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(7.2.8)

The sum of the lagged products is very nearly the numerator of

r1— we are missing one product, . A similar situation exists for

, but here we are missing . If we divide

both sides of Equation (7.2.8) by , then, except for end effects, which are

negligible under the stationarity assumption, we obtain

(7.2.9)

Approximating in a similar way with the equation leads to

(7.2.10)

But Equations (7.2.9) and (7.2.10) are just the sample Yule-Walker equations for an
AR(2) model.

Entirely analogous results follow for the general stationary AR(p) case: To an
excellent approximation, the conditional least squares estimates of the φ’s are obtained
by solving the sample Yule-Walker equations (7.1.3).†

Moving Average Models

Consider now the least-squares estimation of θ in the MA(1) model:

(7.2.11)

At first glance, it is not apparent how a least squares or regression method can be
applied to such models. However, recall from Equation (4.4.2) on page 77 that invert-
ible MA(1) models can be expressed as

an autoregressive model but of infinite order. Thus least squares can be meaningfully
carried out by choosing a value of θ that minimizes

† We note that Lai and Wei (1983) established that the conditional least squares estimators
are consistent even for nonstationary autoregressive models where the Yule-Walker equa-
tions do not apply.
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(7.2.12)

where, implicitly, et = et(θ) is a function of the observed series and the unknown param-
eter θ.

It is clear from Equation (7.2.12) that the least squares problem is nonlinear in the
parameters. We will not be able to minimize Sc(θ) by taking a derivative with respect to
θ, setting it to zero, and solving. Thus, even for the simple MA(1) model, we must resort
to techniques of numerical optimization. Other problems exist in this case: We have not
shown explicit limits on the summation in Equation (7.2.12) nor have we said how to
deal with the infinite series under the summation sign.

To address these issues, consider evaluating Sc(θ) for a single given value of θ. The
only Y’s we have available are our observed series, Y1, Y2,…, Yn. Rewrite Equation
(7.2.11) as

(7.2.13)

Using this equation, e1, e2,…, en can be calculated recursively if we have the initial
value e0. A common approximation is to set e0 = 0—its expected value. Then, condi-
tional on e0 = 0, we can obtain

(7.2.14)

and thus calculate , conditional on e0 = 0, for that single given value of
θ.

For the simple case of one parameter, we could carry out a grid search over the
invertible range (−1,+1) for θ to find the minimum sum of squares. For more general
MA(q) models, a numerical optimization algorithm, such as Gauss-Newton or Nelder-
Mead, will be needed. 

For higher-order moving average models, the ideas are analogous and no new diffi-
culties arise. We compute et = et(θ1, θ2,…, θq) recursively from

(7.2.15)

with e0 = e−1 = = e− q = 0. The sum of squares is minimized jointly in θ1, θ2,…, θq
using a multivariate numerical method.

Mixed Models

Consider the ARMA(1,1) case

(7.2.16)
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As in the pure MA case, we consider et = et(φ,θ) and wish to minimize  .
We can rewrite Equation (7.2.16) as

(7.2.17)

To obtain e1, we now have an additional “startup” problem, namely Y0. One approach is
to set Y0 = 0 or to  if our model contains a nonzero mean. However, a better approach
is to begin the recursion at t = 2, thus avoiding Y0 altogether, and simply minimize

For the general ARMA(p,q) model, we compute

(7.2.18)

with ep = ep − 1 = = ep + 1 − q = 0 and then minimize Sc(φ1,φ2,…,φp,θ1,θ2,…,θq)
numerically to obtain the conditional least squares estimates of all the parameters.

For parameter sets θ1, θ2,…, θq corresponding to invertible models, the start-up val-
ues ep, ep − 1,…, ep + 1 − q will have very little influence on the final estimates of the
parameters for large samples.

7.3 Maximum Likelihood and Unconditional Least Squares

For series of moderate length and also for stochastic seasonal models to be discussed in
Chapter 10, the start-up values ep = ep − 1 = = ep + 1 − q = 0 will have a more pro-
nounced effect on the final estimates for the parameters. Thus we are led to consider the
more difficult problem of maximum likelihood estimation.

The advantage of the method of maximum likelihood is that all of the information
in the data is used rather than just the first and second moments, as is the case with least
squares. Another advantage is that many large-sample results are known under very
general conditions. One disadvantage is that we must for the first time work specifically
with the joint probability density function of the process.

Maximum Likelihood Estimation

For any set of observations, Y1, Y2,…, Yn, time series or not, the likelihood function L is
defined to be the joint probability density of obtaining the data actually observed. How-
ever, it is considered as a function of the unknown parameters in the model with the
observed data held fixed. For ARIMA models, L will be a function of the φ’s, θ’s, μ, and

 given the observations Y1, Y2,…, Yn. The maximum likelihood estimators are then
defined as those values of the parameters for which the data actually observed are most
likely, that is, the values that maximize the likelihood function.

We begin by looking in detail at the AR(1) model. The most common assumption is
that the white noise terms are independent, normally distributed random variables with
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zero means and common standard deviation . The probability density function (pdf)
of each et is then

and, by independence, the joint pdf for e2, e3,…, en is

(7.3.1)

Now consider

(7.3.2)

If we condition on Y1 = y1, Equation (7.3.2) defines a linear transformation between e2,
e3,…, en and Y2, Y3,…, Yn (with Jacobian equal to 1). Thus the joint pdf of Y2, Y3,…, Yn
given Y1 = y1 can be obtained by using Equation (7.3.2) to substitute for the e’s in terms
of the Y’s in Equation (7.3.1). Thus we get

(7.3.3)

Now consider the (marginal) distribution of Y1. It follows from the linear process repre-
sentation of the AR(1) process (Equation (4.3.8) on page 70) that Y1 will have a normal
distribution with mean μ and variance . Multiplying the conditional pdf in
Equation (7.3.3) by the marginal pdf of Y1 gives us the joint pdf of Y1, Y2,…, Yn that we
require. Interpreted as a function of the parameters φ, μ, and , the likelihood function
for an AR(1) model is given by

(7.3.4)

where

(7.3.5)

The function S(φ,μ) is called the unconditional sum-of-squares function.
As a general rule, the logarithm of the likelihood function is more convenient to
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work with than the likelihood itself. For the AR(1) case, the log-likelihood function,
denoted , is given by

(7.3.6)

For given values of φ and μ,  can be maximized analytically with respect
to  in terms of the yet-to-be-determined estimators of φ and μ. We obtain

(7.3.7)

As in many other similar contexts, we usually divide by n − 2 rather than n (since we are
estimating two parameters, φ and μ) to obtain an estimator with less bias. For typical
time series sample sizes, there will be very little difference.

Consider now the estimation of φ and μ. A comparison of the unconditional
sum-of-squares function S(φ,μ) with the earlier conditional sum-of-squares function
Sc(φ,μ) of Equation (7.2.2) on page 154, reveals one simple difference:

(7.3.8)

Since Sc(φ,μ) involves a sum of n − 1 components, whereas  does not
involve n, we shall have . Thus the values of φ and μ that minimize
S(φ,μ) or Sc(φ,μ) should be very similar, at least for larger sample sizes. The effect of
the rightmost term in Equation (7.3.8) will be more substantial when the minimum for φ
occurs near the stationarity boundary of ±1.

Unconditional Least Squares

As a compromise between conditional least squares estimates and full maximum likeli-
hood estimates, we might consider obtaining unconditional least squares estimates; that
is, estimates minimizing S(φ,μ). Unfortunately, the term  causes the
equations  and to be nonlinear in φ and μ, and reparameteriza-
tion to a constant term θ0 = μ(1 − φ) does not improve the situation substantially. Thus
minimization must be carried out numerically. The resulting estimates are called uncon-
ditional least squares estimates.

The derivation of the likelihood function for more general ARMA models is con-
siderably more involved. One derivation may be found in Appendix H: State Space
Models on page 222. We refer the reader to Brockwell and Davis (1991) or Shumway
and Stoffer (2006) for even more details.

7.4 Properties of the Estimates

The large-sample properties of the maximum likelihood and least squares (conditional
or unconditional) estimators are identical and can be obtained by modifying standard
maximum likelihood theory. Details can be found in Shumway and Stoffer (2006, pp.
125–129). We shall look at the results and their implications for simple ARMA models.
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For large n, the estimators are approximately unbiased and normally distributed.
The variances and correlations are as follows:

AR(1): (7.4.9)

AR(2): (7.4.10)

MA(1): (7.4.11)

MA(2): (7.4.12)

ARMA(1,1): (7.4.13)

Notice that, in the AR(1) case, the variance of the estimator of φ decreases as φ
approaches ±1. Also notice that even though an AR(1) model is a special case of an
AR(2) model, the variance of shown in Equations (7.4.10) shows that our estimation
of φ1 will generally suffer if we erroneously fit an AR(2) model when, in fact, φ2 = 0.
Similar comments could be made about fitting an MA(2) model when an MA(1) would
suffice or fitting an ARMA(1,1) when an AR(1) or an MA(1) is adequate.

For the ARMA(1,1) case, note the denominator of φ − θ in the variances in Equa-
tions (7.4.13). If φ and θ are nearly equal, the variability in the estimators of φ and θ can
be extremely large.

Note that in all of the two-parameter models, the estimates can be highly correlated,
even for very large sample sizes.

The table shown in Exhibit 7.2 gives numerical values for the large-sample approx-
imate standard deviations of the estimates of φ in an AR(1) model for several values of
φ and several sample sizes. Since the values in the table are equal to , they
apply equally well to standard deviations computed according to Equations (7.4.10),
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(7.4.11), and (7.4.12). 
Thus, in estimating an AR(1) model with, for example, n = 100 and φ = 0.7, we can

be about 95% confident that our estimate of φ is in error by no more than ±2(0.07) =
±0.14.

Exhibit 7.2 AR(1) Model Large-Sample Standard Deviations of 

For stationary autoregressive models, the method of moments yields estimators
equivalent to least squares and maximum likelihood, at least for large samples. For mod-
els containing moving average terms, such is not the case. For an MA(1) model, it can
be shown that the large-sample variance of the method-of-moments estimator of θ is
equal to

(7.4.14)

Comparing Equation (7.4.14) with that of Equation (7.4.11), we see that the variance for
the method-of-moments estimator is always larger than the variance of the maximum
likelihood estimator. The table in Exhibit 7.3 displays the ratio of the large-sample stan-
dard deviations for the two methods for several values of θ. For example, if θ is 0.5, the
method-of-moments estimator has a large-sample standard deviation that is 42% larger
than the standard deviation of the estimator obtained using maximum likelihood. It is
clear from these ratios that the method-of-moments estimator should not be used for the
MA(1) model. This same advice applies to all models that contain moving average
terms.

Exhibit 7.3 Method of Moments (MM) vs. Maximum Likelihood (MLE) in 
MA(1) Models

n

φ 50 100 200
0.4 0.13 0.09 0.06

0.7 0.10 0.07 0.05

0.9 0.06 0.04 0.03

θ SDMM/SDMLE

0.25 1.07

0.50 1.42

0.75 2.66

0.90 5.33

φ̂

Var θ̂( ) 1 θ2 4θ4 θ6 θ8+ + + +

n 1 θ2–( )2
-------------------------------------------------------≈
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7.5 Illustrations of Parameter Estimation

Consider the simulated MA(1) series with θ = −0.9. The series was displayed in Exhibit
4.2 on page 59, and we found the method-of-moments estimate of θ to be a rather poor
−0.554; see Exhibit 7.1 on page 152. In contrast, the maximum likelihood estimate is
−0.915, the unconditional sum-of-squares estimate is −0.923, and the conditional least
squares estimate is −0.879. For this series, the maximum likelihood estimate of −0.915
is closest to the true value used in the simulation. Using Equation (7.4.11) on page 161
and replacing θ by its estimate, we have a standard error of about 

so none of the maximum likelihood, conditional sum-of-squares, or unconditional
sum-of-squares estimates are significantly far from the true value of −0.9.

The second MA(1) simulation with θ = 0.9 produced the method-of-moments esti-
mate of 0.719 shown in Exhibit 7.1. The conditional sum-of-squares estimate is 0.958,
the unconditional sum-of-squares estimate is 0.983, and the maximum likelihood esti-
mate is 1.000. These all have a standard error of about 0.04 as above. Here the maxi-
mum likelihood estimate of is a little disconcerting since it corresponds to a
noninvertible model.

The third MA(1) simulation with θ = −0.9 produced a method-of-moments estimate
of −0.719 (see Exhibit 7.1). The maximum likelihood estimate here is −0.894 with a
standard error of about

For these data, the conditional sum-of-squares estimate is −0.979 and the unconditional
sum-of-squares estimate is −0.961. Of course, with a standard error of this magnitude, it
is unwise to report digits in the estimates of θ beyond the tenths place.

For our simulated autoregressive models, the results are reported in Exhibits 7.4
and 7.5.

Exhibit 7.4 Parameter Estimation for Simulated AR(1) Models

> data(ar1.s); data(ar1.2.s)
> ar(ar1.s,order.max=1,AIC=F,method='yw')
> ar(ar1.s,order.max=1,AIC=F,method='ols')
> ar(ar1.s,order.max=1,AIC=F,method='mle')

Parameter φ

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

0.9 0.831 0.857 0.911 0.892 60

0.4 0.470 0.473 0.473 0.465 60

Var̂ θ̂( )
1 θ̂2–

n
--------------≈ 1 0.91( )2–

120
--------------------------- 0.04≈=

θ̂ 1=

Var̂ θ̂( ) 1 0.894( )2–
60

------------------------------ 0.06≈ ≈
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> ar(ar1.2.s,order.max=1,AIC=F,method='yw')
> ar(ar1.2.s,order.max=1,AIC=F,method='ols')
> ar(ar1.2.s,order.max=1,AIC=F,method='mle')

From Equation (7.4.9) on page 161, the standard errors for the estimates are

and

respectively. Considering the magnitude of these standard errors, all four methods esti-
mate reasonably well for AR(1) models.

Exhibit 7.5 Parameter Estimation for a Simulated AR(2) Model

> data(ar2.s)
> ar(ar2.s,order.max=2,AIC=F,method='yw')
> ar(ar2.s,order.max=2,AIC=F,method='ols')
> ar(ar2.s,order.max=2,AIC=F,method='mle')

From Equation (7.4.10) on page 161, the standard errors for the estimates are

Again, considering the size of the standard errors, all four methods estimate reasonably
well for AR(2) models.

As a final example using simulated data, consider the ARMA(1,1) shown in Exhibit
6.14 on page 123. Here φ = 0.6, θ = −0.3, and n = 100. Estimates using the various
methods are shown in Exhibit 7.6.

Parameters

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

φ1 = 1.5 1.472 1.5137 1.5183 1.5061 120

φ2 = −0.75 −0.767 −0.8050 −0.8093 −0.7965 120

Var̂ φ̂( ) 1 φ̂2–
n

--------------≈ 1 0.831( )2–
60

------------------------------ 0.07≈=

Var̂ φ̂( ) 1 0.470( )2–
60

------------------------------ 0.11≈=

Var̂ φ̂1( ) Var̂ φ̂2( )
1 φ2

2–

n
---------------≈ ≈ 1 0.75( )2–

120
--------------------------- 0.06≈=
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Exhibit 7.6 Parameter Estimation for a Simulated ARMA(1,1) Model

> data(arma11.s)
> arima(arma11.s, order=c(1,0,1),method='CSS')
> arima(arma11.s, order=c(1,0,1),method='ML')

Now let’s look at some real time series. The industrial chemical property time series
was first shown in Exhibit 1.3 on page 3. The sample PACF displayed in Exhibit 6.26
on page 135, strongly suggested an AR(1) model for this series. Exhibit 7.7 shows the
various estimates of the φ parameter using four different methods of estimation.

Exhibit 7.7 Parameter Estimation for the Color Property Series

> data(color)
> ar(color,order.max=1,AIC=F,method='yw')
> ar(color,order.max=1,AIC=F,method='ols')
> ar(color,order.max=1,AIC=F,method='mle')

Here the standard error of the estimates is about

so all of the estimates are comparable.
As a second example, consider again the Canadian hare abundance series. As

before, we base all modeling on the square root of the original abundance numbers.
Based on the partial autocorrelation function shown in Exhibit 6.29 on page 137, we
will estimate an AR(3) model. For this illustration, we use maximum likelihood estima-
tion and show the results obtained from the R software in Exhibit 7.8.

Parameters

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

φ = 0.6 0.637 0.5586 0.5691 0.5647 100

θ = −0.3 −0.2066 −0.3669 −0.3618 −0.3557 100

Parameter

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

φ 0.5282 0.5549 0.5890 0.5703 35

Var̂ φ̂( ) 1 0.57( )2–
35

--------------------------- 0.14≈ ≈



166 Parameter Estimation

Exhibit 7.8 Maximum Likelihood Estimates from R Software: Hare 
Series

> data(hare)
> arima(sqrt(hare),order=c(3,0,0))

Here we see that = 1.0519, = −0.2292, and = −0.3930. We also see that the
estimated noise variance is = 1.066. Noting the standard errors, the estimates of the
lag 1 and lag 3 autoregressive coefficients are significantly different from zero, as is the
intercept term, but the lag 2 autoregressive parameter estimate is not significant.

The estimated model would be written

or

where Yt is the hare abundance in year t in original terms. Since the lag 2 autoregressive
term is insignificant, we might drop that term (that is, set φ2 = 0) and obtain new esti-
mates of φ1 and φ3 with this subset model.

As a last example, we return to the oil price series. The sample ACF shown in
Exhibit 6.32 on page 140, suggested an MA(1) model on the differences of the logs of
the prices. Exhibit 7.9 gives the estimates of θ by the various methods and, as we have
seen earlier, the method-of-moments estimate differs quite a bit from the others. The
others are nearly equal given their standard errors of about 0.07.

Exhibit 7.9 Estimation for the Difference of Logs of the Oil Price Series

> data(oil.price)
> arima(log(oil.price),order=c(0,1,1),method='CSS')
> arima(log(oil.price),order=c(0,1,1),method='ML')

Coefficients: ar1 ar2 ar3 Intercept†

† The intercept here is the estimate of the process mean μ—not of θ0.

1.0519 −0.2292 −0.3931 5.6923

s.e. 0.1877 0.2942 0.1915 0.3371

sigma^2 estimated as 1.066: log-likelihood = -46.54, AIC = 101.08

Parameter

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

θ −0.2225 −0.2731 −0.2954 −0.2956 241

φ̂1 φ̂2 φ̂3
σ̂e2

Yt 5.6923– 1.0519 Yt 1– 5.6923–( ) 0.2292 Yt 2– 5.6923–( )–=

0.3930 Yt 3– 5.6923–( )– et+

Yt 3.25 1.0519 Yt 1– 0.2292 Yt 2–– 0.3930 Yt 3–– et+ +=



7.6  Bootstrapping ARIMA Models 167

7.6 Bootstrapping ARIMA Models

In Section 7.4, we summarized some approximate normal distribution results for the
estimator , where γ is the vector consisting of all the ARMA parameters. These normal
approximations are accurate for large samples, and statistical software generally uses
those results in calculating and reporting standard errors. The standard error of some
complex function of the model parameters, for example the quasi-period of the model, if
it exists, is then usually obtained by the delta method. However, the general theory pro-
vides no practical guidance on how large the sample size should be for the normal
approximation to be reliable. Bootstrap methods (Efron and Tibshirani, 1993; Davison
and Hinkley, 2003) provide an alternative approach to assessing the uncertainty of an
estimator and may be more accurate for small samples. There are several variants of the
bootstrap method for dependent data—see Politis (2003). We shall confine our discus-
sion to the parametric bootstrap that generates the bootstrap time series , 
by simulation from the fitted ARIMA(p,d,q) model. (The bootstrap may be done by fix-
ing the first p + d initial values of Y* to those of the observed data. For stationary mod-
els, an alternative procedure is to simulate stationary realizations from the fitted model,
which can be done approximately by simulating a long time series from the fitted model
and then deleting the transient initial segment of the simulated data—the so-called
burn-in.) If the errors are assumed to be normally distributed, the errors may be drawn
randomly and with replacement from . For the case of an unknown error distri-
bution, the errors can be drawn randomly and with replacement from the residuals of the
fitted model. For each bootstrap series, let be the estimator computed based on the
bootstrap time series data using the method of full maximum likelihood estimation
assuming stationarity. (Other estimation methods may be used.) The bootstrap is repli-
cated, say, B times. (For example, B = 1000.) From the B bootstrap parameter estimates,
we can form an empirical distribution and use it to calibrate the uncertainty in . Sup-
pose we are interested in estimating some function of γ, say h(γ)—for example, the
AR(1) coefficient. Using the percentile method, a 95% bootstrap confidence interval for
h(γ) can be obtained as the interval from the 2.5 percentile to the 97.5 percentile of the
bootstrap distribution of . 

We illustrate the bootstrap method with the hare data. The bootstrap 95% confi-
dence intervals reported in the first row of the table in Exhibit 7.10 are based on the
bootstrap obtained by conditioning on the initial three observations and assuming nor-
mal errors. Those in the second row are obtained using the same method except that the
errors are drawn from the residuals. The third and fourth rows report the confidence
intervals based on the stationary bootstrap with a normal error distribution for the third
row and the empirical residual distribution for the fourth row. The fifth row in the table
shows the theoretical 95% confidence intervals based on the large-sample distribution
results for the estimators. In particular, the bootstrap time series for the first bootstrap
method is generated recursively using the equation

(7.6.1)

γ̂

Y1
* Y2

* … Yn
*, ,

N 0 σ̂e2,( )

γ̂ *

γ̂

h γ̂*( )

Yt
* φ̂1Yt 1–

* φ̂2Yt 2–
* φ̂3Yt 3–

*––– θ̂0 et
*+=
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for t = 4, 5,…, 31, where the  are chosen independently from , ,
, ; and the parameters are set to be the estimates from the AR(3)

model fitted to the (square root transformed) hare data with .
All results are based on about 1000 bootstrap replications, but full maximum likelihood
estimation fails for 6.3%, 6.3%, 3.8%, and 4.8% of 1000 cases for the four bootstrap
methods I, II, III, and IV, respectively.

Exhibit 7.10 Bootstrap and Theoretical Confidence Intervals for the AR(3) 
Model Fitted to the Hare Data

> See the Chapter 7 R scripts file for the extensive code 
required to generate these results.

All four methods yield similar bootstrap confidence intervals, although the condi-
tional bootstrap approach generally yields slightly narrower confidence intervals. This is
expected, as the conditional bootstrap time series bear more resemblance to each other
because all are subject to identical initial conditions. The bootstrap confidence intervals
are generally slightly wider than their theoretical counterparts that are derived from the
large-sample results. Overall, we can draw the inference that the φ2 coefficient estimate
is insignificant, whereas both the φ1 and φ3 coefficient estimates are significant at the
5% significance level. 

The bootstrap method has the advantage of allowing easy construction of confi-
dence intervals for a model characteristic that is a nonlinear function of the model
parameters. For example, the characteristic AR polynomial of the fitted AR(3) model
for the hare data admits a pair of complex roots. Indeed, the roots are 0.84 ± 0.647i and
−2.26, where . The two complex roots can be written in polar form: 1.06exp(±
0.657i). As in the discussion of the quasi-period for the AR(2) model on page 74, the
quasi-period of the fitted AR(3) model can be defined as 2π/0.657 = 9.57. Thus, the fit-
ted model suggests that the hare abundance underwent cyclical fluctuation with a period
of about 9.57 years. The interesting question of constructing a 95% confidence interval
for the quasi-period could be studied using the delta method. However, this will be quite
complex, as the quasi-period is a complicated function of the parameters. But the boot-
strap provides a simple solution: For each set of bootstrap parameter estimates, we can
compute the quasi-period and hence obtain the bootstrap distribution of the
quasi-period. Confidence intervals for the quasi-period can then be constructed using
the percentile method, and the shape of the distribution can be explored via the histo-
gram of the bootstrap quasi-period estimates. (Note that the quasi-period will be unde-

Method ar1 ar2 ar3 intercept noise var. 

I (0.593, 1.269) (−0.655, 0.237) (−0.666, −0.018) (5.115, 6.394) (0.551, 1.546) 

II (0.612, 1.296) (−0.702, 0.243) (−0.669, −0.026) (5.004, 6.324) (0.510, 1.510) 

III (0.699, 1.369) (−0.746, 0.195) (−0.666, −0.021) (5.056, 6.379) (0.499, 1.515) 

IV (0.674, 1.389) (−0.769, 0.194) (−0.665, −0.002) (4.995, 6.312) (0.477, 1.530) 

Theoretical (0.684, 1.42) (−0.8058, 0.3474) (−0.7684,−0.01776) (5.032, 6.353) (0.536, 1.597) 

et
* N 0 σ̂e2,( ) Y1

* Y1=
Y2

* Y2= Y3
* Y3=

θ̂0 μ̂ 1 φ̂1 φ̂2 φ̂3–––( )=

i 1–=



7.6  Bootstrapping ARIMA Models 169

fined whenever the roots of the AR characteristic equation are all real numbers.) Among
the 1000 stationary bootstrap time series obtained by simulating from the fitted model
with the errors drawn randomly from the residuals with replacement, 952 series lead to
successful full maximum likelihood estimation. All but one of the 952 series have
well-defined quasi-periods, and the histogram of these is shown in Exhibit 7.11. The
histogram shows that the sampling distribution of the quasi-period estimate is slightly
skewed to the right.† The Q-Q normal plot (Exhibit 7.12) suggests that the quasi-period
estimator has, furthermore, a thick-tailed distribution. Thus, the delta method and the
corresponding normal distribution approximation may be inappropriate for approximat-
ing the sampling distribution of the quasi-period estimator. Finally, using the percentile
method, a 95% confidence interval of the quasi-period is found to be (7.84,11.34).

Exhibit 7.11 Histogram of Bootstrap Quasi-period Estimates

> win.graph(width=3.9,height=3.8,pointsize=8)
> hist(period.replace,prob=T,xlab='Quasi-period',axes=F, 

xlim=c(5,16))
> axis(2); axis(1,c(4,6,8,10,12,14,16),c(4,6,8,10,12,14,NA))

† However, see the discussion below Equation (13.5.9) on page 338 where it is argued that,
from the perspective of frequency domain, there is a small parametric region correspond-
ing to complex roots and yet the associated quasi-period may not be physically meaning-
ful. This illustrates the subtlety of the concept of quasi-period.
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Exhibit 7.12 Q-Q Normal Plot of Bootstrap Quasi-period Estimates

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(period.replace); qqline(period.replace)

7.7 Summary

This chapter delved into the estimation of the parameters of ARIMA models. We con-
sidered estimation criteria based on the method of moments, various types of least
squares, and maximizing the likelihood function. The properties of the various estima-
tors were given, and the estimators were illustrated both with simulated and actual time
series data. Bootstrapping with ARIMA models was also discussed and illustrated.

EXERCISES

7.1 From a series of length 100, we have computed r1 = 0.8, r2 = 0.5, r3 = 0.4, = 2,
and a sample variance of 5. If we assume that an AR(2) model with a constant
term is appropriate, how can we get (simple) estimates of φ1, φ2, θ0, and ?

7.2 Assuming that the following data arise from a stationary process, calculate
method-of-moments estimates of μ, γ0, and ρ1: 6, 5, 4, 6, 4.

7.3 If {Yt} satisfies an AR(1) model with φ of about 0.7, how long of a series do we
need to estimate φ = ρ1 with 95% confidence that our estimation error is no more
than ±0.1?

7.4 Consider an MA(1) process for which it is known that the process mean is zero.
Based on a series of length n = 3, we observe Y1 = 0, Y2 = −1, and Y3 = ½.
(a) Show that the conditional least-squares estimate of θ is ½.
(b) Find an estimate of the noise variance. (Hint: Iterative methods are not needed

in this simple case.)
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7.5 Given the data Y1 = 10, Y2 = 9, and Y3 = 9.5, we wish to fit an IMA(1,1) model
without a constant term.
(a) Find the conditional least squares estimate of θ. (Hint: Do Exercise 7.4 first.)
(b) Estimate .

7.6 Consider two different parameterizations of the AR(1) process with nonzero
mean:

Model I. Yt − μ = φ(Yt−1 − μ) + et.

Model II. Yt = φYt−1 + θ0 + et.

We want to estimate φ and μ or φ and θ0 using conditional least squares conditional
on Y1. Show that with Model I we are led to solve nonlinear equations to obtain the
estimates, while with Model II we need only solve linear equations.

7.7 Verify Equation (7.1.4) on page 150.
7.8 Consider an ARMA(1,1) model with φ = 0.5 and θ = 0.45.

(a) For n = 48, evaluate the variances and correlation of the maximum likelihood
estimators of φ and θ using Equations (7.4.13) on page 161. Comment on the
results.

(b) Repeat part (a) but now with n = 120. Comment on the new results.
7.9 Simulate an MA(1) series with θ = 0.8 and n = 48.

(a) Find the method-of-moments estimate of θ.
(b) Find the conditional least squares estimate of θ and compare it with part (a).
(c) Find the maximum likelihood estimate of θ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.10 Simulate an MA(1) series with θ = −0.6 and n = 36.
(a) Find the method-of-moments estimate of θ.
(b) Find the conditional least squares estimate of θ and compare it with part (a).
(c) Find the maximum likelihood estimate of θ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.11 Simulate an MA(1) series with θ = −0.6 and n = 48.
(a) Find the maximum likelihood estimate of θ.
(b) If your software permits, repeat part (a) many times with a new simulated

series using the same parameters and same sample size.
(c) Form the sampling distribution of the maximum likelihood estimates of θ.
(d) Are the estimates (approximately) unbiased?
(e) Calculate the variance of your sampling distribution and compare it with the

large-sample result in Equation (7.4.11) on page 161.
7.12 Repeat Exercise 7.11 using a sample size of n = 120.

σe2
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7.13 Simulate an AR(1) series with φ = 0.8 and n = 48.
(a) Find the method-of-moments estimate of φ.
(b) Find the conditional least squares estimate of φ and compare it with part (a).
(c) Find the maximum likelihood estimate of φ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.14 Simulate an AR(1) series with φ = −0.5 and n = 60.
(a) Find the method-of-moments estimate of φ.
(b) Find the conditional least squares estimate of φ and compare it with part (a).
(c) Find the maximum likelihood estimate of φ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.15 Simulate an AR(1) series with φ = 0.7 and n = 100.
(a) Find the maximum likelihood estimate of φ.
(b) If your software permits, repeat part (a) many times with a new simulated

series using the same parameters and same sample size.
(c) Form the sampling distribution of the maximum likelihood estimates of φ.
(d) Are the estimates (approximately) unbiased?
(e) Calculate the variance of your sampling distribution and compare it with the

large-sample result in Equation (7.4.9) on page 161.
7.16 Simulate an AR(2) series with φ1 = 0.6, φ2 = 0.3, and n = 60.

(a) Find the method-of-moments estimates of φ1 and φ2.
(b) Find the conditional least squares estimates of φ1 and φ2 and compare them

with part (a).
(c) Find the maximum likelihood estimates of φ1 and φ2 and compare them with

parts (a) and (b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare these results to your results from
the first simulation.

7.17 Simulate an ARMA(1,1) series with φ = 0.7, θ = 0.4, and n = 72.
(a) Find the method-of-moments estimates of φ and θ.
(b) Find the conditional least squares estimates of φ and θ and compare them with

part (a).
(c) Find the maximum likelihood estimates of φ and θ and compare them with

parts (a) and (b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your new results with your results
from the first simulation.

7.18 Simulate an AR(1) series with φ = 0.6, n = 36 but with error terms from a t-distri-
bution with 3 degrees of freedom.
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(a) Display the sample PACF of the series. Is an AR(1) model suggested?
(b) Estimate φ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.19 Simulate an MA(1) series with θ = −0.8, n = 60 but with error terms from a t-dis-

tribution with 4 degrees of freedom.
(a) Display the sample ACF of the series. Is an MA(1) model suggested?
(b) Estimate θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.20 Simulate an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms

from a t-distribution with 5 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(2) model suggested?
(b) Estimate φ1 and φ2 from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.21 Simulate an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms

from a t-distribution with 6 degrees of freedom.
(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?
(b) Estimate φ and θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.22 Simulate an AR(1) series with φ = 0.6, n = 36 but with error terms from a

chi-square distribution with 6 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(1) model suggested?
(b) Estimate φ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.23 Simulate an MA(1) series with θ = −0.8, n = 60 but with error terms from a

chi-square distribution with 7 degrees of freedom.
(a) Display the sample ACF of the series. Is an MA(1) model suggested?
(b) Estimate θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.24 Simulate an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms

from a chi-square distribution with 8 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(2) model suggested?
(b) Estimate φ1 and φ2 from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.25 Simulate an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms

from a chi-square distribution with 9 degrees of freedom.
(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?
(b) Estimate φ and θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new series under the same conditions.
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7.26 Consider the AR(1) model specified for the color property time series displayed
in Exhibit 1.3 on page 3. The data are in the file named color. 
(a) Find the method-of-moments estimate of φ.
(b) Find the maximum likelihood estimate of φ and compare it with part (a).

7.27 Exhibit 6.31 on page 139 suggested specifying either an AR(1) or possibly an
AR(4) model for the difference of the logarithms of the oil price series. The data
are in the file named oil.price.
(a) Estimate both of these models using maximum likelihood and compare it with

the results using the AIC criteria.
(b) Exhibit 6.32 on page 140 suggested specifying an MA(1) model for the differ-

ence of the logs. Estimate this model by maximum likelihood and compare to
your results in part (a).

7.28 The data file named deere3 contains 57 consecutive values from a complex
machine tool at Deere & Co. The values given are deviations from a target value
in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced.
(a) Estimate the parameters of an AR(1) model for this series.
(b) Estimate the parameters of an AR(2) model for this series and compare the

results with those in part (a).
7.29 The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a
desired ending point was recorded in inches. This was repeated 324 times to form
the time series.
(a) Estimate the parameters of an AR(1) model for these data.
(b) Estimate the parameters of an IMA(1,1) model for these data.
(c) Compare the results from parts (a) and (b) in terms of AIC.

7.30 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
The time series contains outliers that are quite obvious in the time series plot.
(a) Replace each of the unusual values with a value of 35 days, a much more typ-

ical value, and then estimate the parameters of an MA(2) model.
(b) Now assume an MA(5) model and estimate the parameters. Compare these

results with those obtained in part (a).
7.31 Simulate a time series of length n = 48 from an AR(1) model with φ = 0.7. Use

that series as if it were real data. Now compare the theoretical asymptotic distri-
bution of the estimator of φ with the distribution of the bootstrap estimator of φ.

7.32 The industrial color property time series was fitted quite well by an AR(1) model.
However, the series is rather short, with n = 35. Compare the theoretical asymp-
totic distribution of the estimator of φ with the distribution of the bootstrap esti-
mator of φ. The data are in the file named color.
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CHAPTER 8

MODEL DIAGNOSTICS

We have now discussed methods for specifying models and for efficiently estimating the
parameters in those models. Model diagnostics, or model criticism, is concerned with
testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate mod-
ifications. We shall present two complementary approaches: analysis of residuals from
the fitted model and analysis of overparameterized models; that is, models that are more
general than the proposed model but that contain the proposed model as a special case.

8.1 Residual Analysis

We already used the basic ideas of residual analysis in Section 3.6 on page 42 when we
checked the adequacy of fitted deterministic trend models. With autoregressive models,
residuals are defined in direct analogy to that earlier work. Consider in particular an
AR(2) model with a constant term:

(8.1.1)

Having estimated φ1, φ2, and θ0, the residuals are defined as

(8.1.2)

For general ARMA models containing moving average terms, we use the inverted,
infinite autoregressive form of the model to define residuals. For simplicity, we assume
that θ0 is zero. From the inverted form of the model, Equation (4.5.5) on page 80, we
have

so that the residuals are defined as

(8.1.3)

Here the π’s are not estimated directly but rather implicitly as functions of the φ’s and
θ’s. In fact, the residuals are not calculated using this equation but as a by-product of the
estimation of the φ’s and θ’s. In Chapter 9, we shall argue, that

Yt φ1Yt 1– φ2Yt 2– θ0 et+ + +=

ê t Yt φ̂1Yt 1– φ̂2Yt 2––– θ̂0–=

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=

ê t Yt π̂1Yt 1– π̂2Yt 2––– π̂3Yt 3–– …–=

Ŷ t π̂1Yt 1– π̂2Yt 2– π̂3Yt 3–
…+ + +=
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is the best forecast of Yt based on Yt − 1, Yt − 2, Yt − 3,… . Thus Equation (8.1.3) can be
rewritten as

residual = actual − predicted

in direct analogy with regression models. Compare this with Section 3.6 on page 42.
If the model is correctly specified and the parameter estimates are reasonably close

to the true values, then the residuals should have nearly the properties of white noise.
They should behave roughly like independent, identically distributed normal variables
with zero means and common standard deviations. Deviations from these properties can
help us discover a more appropriate model.

Plots of the Residuals

Our first diagnostic check is to inspect a plot of the residuals over time. If the model is
adequate, we expect the plot to suggest a rectangular scatter around a zero horizontal
level with no trends whatsoever.

Exhibit 8.1 shows such a plot for the standardized residuals from the AR(1) model
fitted to the industrial color property series. Standardization allows us to see residuals of
unusual size much more easily. The parameters were estimated using maximum likeli-
hood. This plot supports the model, as no trends are present.

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

> win.graph(width=4.875,height=3,pointsize=8)
> data(color)
> m1.color=arima(color,order=c(1,0,0)); m1.color
> plot(rstandard(m1.color),ylab ='Standardized Residuals', 

type='o'); abline(h=0)

As a second example, we consider the Canadian hare abundance series. We esti-
mate a subset AR(3) model with φ2 set to zero, as suggested by the discussion following
Exhibit 7.8 on page 166. The estimated model is
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(8.1.4)

and the time series plot of the standardized residuals from this model is shown in
Exhibit 8.2. Here we see possible reduced variation in the middle of the series and
increased variation near the end of the series—not exactly an ideal plot of residuals.†

Exhibit 8.2 Standardized Residuals from AR(3) Model for Sqrt(Hare)

> data(hare)
> m1.hare=arima(sqrt(hare),order=c(3,0,0)); m1.hare
> m2.hare=arima(sqrt(hare),order=c(3,0,0),fixed=c(NA,0,NA,NA)) 
> m2.hare
> # Note that the intercept term given in R is actually the mean 

in the centered form of the ARMA model; that is, if 
y(t)=sqrt(hare)-intercept, then the model is 
y(t)=0.919*y(t-1)-0.5313*y(t-3)+e(t) 

> # So the 'true' intercept equals 5.6889*(1-0.919+0.5313)=3.483
> plot(rstandard(m2.hare),ylab='Standardized Residuals',type='o')
> abline(h=0)

Exhibit 8.3 displays the time series plot of the standardized residuals from the
IMA(1,1) model estimated for the logarithms of the oil price time series. The model was
fitted using maximum likelihood estimation. There are at least two or three residuals
early in the series with magnitudes larger than 3—very unusual in a standard normal
distribution.‡ Ideally, we should go back to those months and try to learn what outside
factors may have influenced unusually large drops or unusually large increases in the
price of oil.

† The seemingly large negative standardized residuals are not outliers according to the Bon-
ferroni outlier criterion with critical values ±3.15.

‡ The Bonferroni critical values with n = 241 and α = 0.05 are ±3.71, so the outliers do
appear to be real. We will model them in Chapter 11.

Yt 3.483 0.919 Yt 1– 0.5313 Yt 3–– et++=
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Exhibit 8.3 Standardized Residuals from Log Oil Price IMA(1,1) Model

> data(oil.price)
> m1.oil=arima(log(oil.price),order=c(0,1,1))
> plot(rstandard(m1.oil),ylab='Standardized residuals',type='l')
> abline(h=0)

Normality of the Residuals

As we saw in Chapter 3, quantile-quantile plots are an effective tool for assessing nor-
mality. Here we apply them to residuals.

A quantile-quantile plot of the residuals from the AR(1) model estimated for the
industrial color property series is shown in Exhibit 8.4. The points seem to follow the
straight line fairly closely—especially the extreme values. This graph would not lead us
to reject normality of the error terms in this model. In addition, the Shapiro-Wilk nor-
mality test applied to the residuals produces a test statistic of W = 0.9754, which corre-
sponds to a p-value of 0.6057, and we would not reject normality based on this test.
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Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(residuals(m1.color)); qqline(residuals(m1.color))

The quantile-quantile plot for the residuals from the AR(3) model for the square
root of the hare abundance time series is displayed in Exhibit 8.5. Here the extreme val-
ues look suspect. However, the sample is small (n = 31) and, as stated earlier, the Bon-
ferroni criteria for outliers do not indicate cause for alarm.

Exhibit 8.5 Quantile-Quantile Plot: Residuals from AR(3) for Hare

> qqnorm(residuals(m1.hare)); qqline(residuals(m1.hare))

Exhibit 8.6 gives the quantile-quantile plot for the residuals from the IMA(1,1)
model that was used to model the logarithms of the oil price series. Here the outliers are
quite prominent, and we will deal with them in Chapter 11.
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Exhibit 8.6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for 
Oil

> qqnorm(residuals(m1.oil)); qqline(residuals(m1.oil))

Autocorrelation of the Residuals

To check on the independence of the noise terms in the model, we consider the sample
autocorrelation function of the residuals, denoted . From Equation (6.1.3) on
page 110, we know that for true white noise and large n, the sample autocorrelations are
approximately uncorrelated and normally distributed with zero means and variance 1/n.
Unfortunately, even residuals from a correctly specified model with efficiently esti-
mated parameters have somewhat different properties. This was first explored for multi-
ple- regression models in a series of papers by Durbin and Watson (1950, 1951, 1971)
and for autoregressive models in Durbin (1970). The key reference on the distribution of
residual autocorrelations in ARIMA models is Box and Pierce (1970), the results of
which were generalized in McLeod (1978).

Generally speaking, the residuals are approximately normally distributed with zero
means; however, for small lags k and j, the variance of can be substantially less than
1/n and the estimates and can be highly correlated. For larger lags, the approxi-
mate variance 1/n does apply, and further and  are approximately uncorrelated.

As an example of these results, consider a correctly specified and efficiently esti-
mated AR(1) model. It can be shown that, for large n,

(8.1.5)

(8.1.6)

(8.1.7)
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r̂ k

r̂ k
r̂ k r̂ j

r̂ k r̂ j

Var r̂ 1( ) φ2

n
-----≈

Var r̂ k( ) 1 1 φ2–( )φ2k 2––
n

--------------------------------------------  for  k 1>≈

Corr r̂ 1 r̂ k,( ) sign φ( ) 1 φ2–( )φk 2–

1 1 φ2–( )φ2k 2––
--------------------------------------------  for  k 1>–≈
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where

The table in Exhibit 8.7 illustrates these formulas for a variety of values of φ and k.
Notice that is a reasonable approximation for k ≥ 2 over a wide range of
φ-values.

Exhibit 8.7 Approximations for Residual Autocorrelations in AR(1) 
Models

If we apply these results to the AR(1) model that was estimated for the industrial
color property time series with = 0.57 and n = 35, we obtain the results shown in
Exhibit 8.8. 

Exhibit 8.8 Approximate Standard Deviations of Residual ACF values

A graph of the sample ACF of these residuals is shown in Exhibit 8.9. The dashed
horizontal lines plotted are based on the large lag standard error of ± . There is no
evidence of autocorrelation in the residuals of this model.

φ 0.3 0.5 0.7 0.9 φ 0.3 0.5 0.7 0.9

k Standard deviation of 
times 

Correlation  with 

1 0.30 0.50 0.70 0.90 1.00 1.00 1.00 1.00

2 0.96 0.90 0.87 0.92 −0.95 −0.83 −0.59 −0.21

3 1.00 0.98 0.94 0.94 −0.27 −0.38 −0.38 −0.18

4 1.00 0.99 0.97 0.95 −0.08 −0.19 −0.26 −0.16

5 1.00 1.00 0.99 0.96 −0.02 −0.09 −0.18 −0.14

6 1.00 1.00 0.99 0.97 −0.01 −0.05 −0.12 −0.13

7 1.00 1.00 1.00 0.97 −0.00 −0.02 −0.09 −0.12

8 1.00 1.00 1.00 0.98 −0.00 −0.01 −0.06 −0.10

9 1.00 1.00 1.00 0.99 −0.00 −0.00 −0.03 −0.08

Lag k 1 2 3 4 5 > 5

0.096 0.149 0.163 0.167 0.168 0.169

sign φ( )
  1   if  φ 0>
  0   if  φ 0=

1   if  φ 0<–⎩
⎪
⎨
⎪
⎧

=

Var r̂ 1( ) 1 n⁄≈

r̂ k
n

r̂ 1 r̂ k

φ̂

Var̂ r̂ k( )

2 n⁄
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Exhibit 8.9 Sample ACF of Residuals from AR(1) Model for Color

> win.graph(width=4.875,height=3,pointsize=8)
> acf(residuals(m1.color))

For an AR(2) model, it can be shown that

(8.1.8)

and

(8.1.9)

If the AR(2) parameters are not too close to the stationarity boundary shown in Exhibit
4.17 on page 72, then

(8.1.10)

If we fit an AR(2) model† by maximum likelihood to the square root of the hare
abundance series, we find that = 1.351 and = −0.776. Thus we have

† The AR(2) model is not quite as good as the AR(3) model that we estimated earlier, but it
still fits quite well and serves as a reasonable example here.
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Exhibit 8.10 displays the sample ACF of the residuals from the AR(2) model of the
square root of the hare abundance. The lag 1 autocorrelation here equals −0.261, which
is close to 2 standard errors below zero but not quite. The lag 4 autocorrelation equals
−0.318, but its standard error is 0.169. We conclude that the graph does not show statis-
tically significant evidence of nonzero autocorrelation in the residuals.†

Exhibit 8.10 Sample ACF of Residuals from AR(2) Model for Hare

> acf(residuals(arima(sqrt(hare),order=c(2,0,0))))

With monthly data, we would pay special attention to possible excessive autocorre-
lation in the residuals at lags 12, 24, and so forth. With quarterly series, lags 4, 8, and so
forth would merit special attention. Chapter 10 contains examples of these ideas.

It can be shown that results analogous to those for AR models hold for MA models.
In particular, replacing φ by θ in Equations (8.1.5), (8.1.6), and( 8.1.7) gives the results
for the MA(1) case. Similarly, results for the MA(2) case can be stated by replacing φ1
and φ2 by θ1 and θ2, respectively, in Equations (8.1.8), (8.1.9), and (8.1.10). Results for
general ARMA models may be found in Box and Pierce (1970) and McLeod (1978).

The Ljung-Box Test

In addition to looking at residual correlations at individual lags, it is useful to have a test
that takes into account their magnitudes as a group. For example, it may be that most of
the residual autocorrelations are moderate, some even close to their critical values, but,
taken together, they seem excessive. Box and Pierce (1970) proposed the statistic

(8.1.11)

to address this possibility. They showed that if the correct ARMA(p,q) model is esti-
mated, then, for large n, Q has an approximate chi-square distribution with K − p − q

† Recall that an AR(3) model fits these data even better and has even less autocorrelation in
its residuals, see Exercise 8.7.
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degrees of freedom. Fitting an erroneous model would tend to inflate Q. Thus, a general
“portmanteau” test would reject the ARMA(p,q) model if the observed value of Q
exceeded an appropriate critical value in a chi-square distribution with K − p − q degrees
of freedom. (Here the maximum lag K is selected somewhat arbitrarily but large enough
that the ψ-weights are negligible for j > K.)

The chi-square distribution for Q is based on a limit theorem as , but Ljung
and Box (1978) subsequently discovered that even for n = 100, the approximation is not
satisfactory. By modifying the Q statistic slightly, they defined a test statistic whose null
distribution is much closer to chi-square for typical sample sizes. The modified
Box-Pierce, or Ljung-Box, statistic is given by

(8.1.12)

Notice that since (n + 2)/(n − k) > 1 for every k ≥ 1, we have Q* > Q, which partly
explains why the original statistic Q tended to overlook inadequate models. More details
on the exact distributions of Q* and Q for finite samples can be found in Ljung and Box
(1978), see also Davies, Triggs, and Newbold (1977).

Exhibit 8.11 lists the first six autocorrelations of the residuals from the AR(1) fitted
model for the color property series. Here n = 35.

Exhibit 8.11 Residual Autocorrelation Values from AR(1) Model for Color

> acf(residuals(m1.color),plot=F)$acf
> signif(acf(residuals(m1.color),plot=F)$acf[1:6],2)
> # display the first 6 acf values to 2 significant digits

The Ljung-Box test statistic with K = 6 is equal to

This is referred to a chi-square distribution with 6 − 1 = 5 degrees of freedom. This leads
to a p-value of 0.998, so we have no evidence to reject the null hypothesis that the error
terms are uncorrelated.

Exhibit 8.12 shows three of our diagnostic tools in one display—a sequence plot of
the standardized residuals, the sample ACF of the residuals, and p-values for the
Ljung-Box test statistic for a whole range of values of K from 5 to 15. The horizontal
dashed line at 5% helps judge the size of the p-values. In this instance, everything looks
very good. The estimated AR(1) model seems to be capturing the dependence structure
of the color property time series quite well.
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Exhibit 8.12 Diagnostic Display for the AR(1) Model of Color Property

> win.graph(width=4.875,height=4.5)
> tsdiag(m1.color,gof=15,omit.initial=F)

As in Chapter 3, the runs test may also be used to assess dependence in error terms
via the residuals. Applying the test to the residuals from the AR(3) model for the Cana-
dian hare abundance series, we obtain expected runs of 16.09677 versus observed runs
of 18. The corresponding p-value is 0.602, so we do not have statistically significant
evidence against independence of the error terms in this model.

8.2 Overfitting and Parameter Redundancy

Our second basic diagnostic tool is that of overfitting. After specifying and fitting what
we believe to be an adequate model, we fit a slightly more general model; that is, a
model “close by” that contains the original model as a special case. For example, if an
AR(2) model seems appropriate, we might overfit with an AR(3) model. The original
AR(2) model would be confirmed if:

1. the estimate of the additional parameter, φ3, is not significantly different from
zero, and

2. the estimates for the parameters in common, φ1 and φ2, do not change signifi-
cantly from their original estimates.
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As an example, we have specified, fitted, and examined the residuals of an AR(1)
model for the industrial color property time series. Exhibit 8.13 displays the output from
the R software from fitting the AR(1) model, and Exhibit 8.14 shows the results from
fitting an AR(2) model to the same series. First note that, in Exhibit 8.14, the estimate of
φ2 is not statistically different from zero. This fact supports the choice of the AR(1)
model. Secondly, we note that the two estimates of φ1 are quite close—especially when
we take into account the magnitude of their standard errors. Finally, note that while the
AR(2) model has a slightly larger log-likelihood value, the AR(1) fit has a smaller AIC
value. The penalty for fitting the more complex AR(2) model is sufficient to choose the
simpler AR(1) model.

Exhibit 8.13 AR(1) Model Results for the Color Property Series

Exhibit 8.14 AR(2) Model Results for the Color Property Series

> arima(color,order=c(2,0,0))

A different overfit for this series would be to try an ARMA(1,1) model. Exhibit
8.15 displays the results of this fit. Notice that the standard errors of the estimated coef-
ficients for this fit are rather larger than what we see in Exhibits 8.13 and 8.14. Regard-
less, the estimate of φ1 from this fit is not significantly different from the estimate in
Exhibit 8.13. Furthermore, as before, the estimate of the new parameter, θ, is not signif-
icantly different from zero. This adds further support to the AR(1) model.

Coefficients:†

† m1.color # R code to obtain table

ar1 Intercept‡

‡ Recall that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435  1.9151

sigma^2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

Coefficients: ar1 ar2 Intercept

0.5173 0.1005 74.1551

s.e. 0.1717 0.1815 2.1463

sigma^2 estimated as 24.6: log-likelihood = -105.92, AIC = 217.84
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Exhibit 8.15 Overfit of an ARMA(1,1) Model for the Color Series

> arima(color,order=c(1,0,1))

As we have noted, any ARMA(p,q) model can be considered as a special case of a
more general ARMA model with the additional parameters equal to zero. However,
when generalizing ARMA models, we must be aware of the problem of parameter
redundancy or lack of identifiability.

To make these points clear, consider an ARMA(1,2) model:

(8.2.1)

Now replace t by t − 1 to obtain

(8.2.2)

If we multiply both sides of Equation (8.2.2) by any constant c and then subtract it from
Equation (8.2.1), we obtain (after rearranging)

This apparently defines an ARMA(2,3) process. But notice that we have the factoriza-
tions

and

Thus the AR and MA characteristic polynomials in the ARMA(2,3) process have a
common factor of (1 − cx). Even though Yt does satisfy the ARMA(2,3) model, clearly
the parameters in that model are not unique—the constant c is completely arbitrary. We
say that we have parameter redundancy in the ARMA(2,3) model.†

The implications for fitting and overfitting models are as follows:

1. Specify the original model carefully. If a simple model seems at all promising,
check it out before trying a more complicated model.

2. When overfitting, do not increase the orders of both the AR and MA parts of the
model simultaneously.

Coefficients: ar1 ma1 Intercept

0.6721 −0.1467 74.1730

s.e. 0.2147 0.2742 2.1357

sigma^2 estimated as 24.63: log-likelihood = -105.94, AIC = 219.88

† In backshift notation, if is a correct model, then so is  =
for any constant c. To have unique parameterization in an ARMA model,

we must cancel any common factors in the AR and MA characteristic polynomials.

Yt φYt 1– et θ1et 1–– θ2et 2––+=

Yt 1– φYt 2– et 1– θ1et 2–– θ2et 3––+=

Yt φ c+( )Yt 1–– φcYt 2–+ et θ1 c+( )et 1–– θ2 θ1c–( )et 2–– cθ2et 3–+=

1 φ c+( )x– φcx2+ 1 φx–( ) 1 cx–( )=

1 θ1 c+( )x– θ2 cθ1–( )x2– cθ2x3+ 1 θ1x– θ2x2–( ) 1 cx–( )=

φ B( )Yt θ B( )et= 1 cB–( )φ B( )Yt
1 cB–( )θ B( )et
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3. Extend the model in directions suggested by the analysis of the residuals. For
example, if after fitting an MA(1) model, substantial correlation remains at lag 2
in the residuals, try an MA(2), not an ARMA(1,1).

As an example, consider the color property series once more. We have seen that an
AR(1) model fits quite well. Suppose we try an ARMA(2,1) model. The results of this
fit are shown in Exhibit 8.16. Notice that even though the estimate of and the
log-likelihood and AIC values are not too far from their best values, the estimates of φ1,
φ2, and θ are way off, and none would be considered different from zero statistically.

Exhibit 8.16 Overfitted ARMA(2,1) Model for the Color Property Series

> arima(color,order=c(2,0,1))

8.3 Summary

The ideas of residual analysis begun in Chapter 3 were considerably expanded in this
chapter. We looked at various plots of the residuals, checking the error terms for con-
stant variance, normality, and independence. The properties of the sample autocorrela-
tion of the residuals play a significant role in these diagnostics. The Ljung-Box statistic
portmanteau test was discussed as a summary of the autocorrelation in the residuals.
Lastly, the ideas of overfitting and parameter redundancy were presented.

EXERCISES

8.1 For an AR(1) model with and n = 100, the lag 1 sample autocorrelation of
the residuals is 0.5. Should we consider this unusual? Why or why not?

8.2 Repeat Exercise 8.1 for an MA(1) model with and n = 100.
8.3 Based on a series of length n = 200, we fit an AR(2) model and obtain residual

autocorrelations of = 0.13, = 0.13, and = 0.12. If = 1.1 and = −0.8,
do these residual autocorrelations support the AR(2) specification? Individually?
Jointly?

Coefficients: ar1 ar2 ma1 Intercept

0.2189 0.2735 0.3036 74.1653

s.e. 2.0056 1.1376 2.0650 2.1121

sigma^2 estimated as 24.58: log-likelihood = −105.91, AIC = 219.82

σe
2

φ 0.5≈

θ 0.5≈

r̂ 1 r̂ 2 r̂ 3 φ̂1 φ̂2
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8.4 Simulate an AR(1) model with n = 30 and φ = 0.5.
(a) Fit the correctly specified AR(1) model and look at a time series plot of the

residuals. Does the plot support the AR(1) specification?
(b) Display a normal quantile-quantile plot of the standardized residuals. Does

the plot support the AR(1) specification?
(c) Display the sample ACF of the residuals. Does the plot support the AR(1)

specification?
(d) Calculate the Ljung-Box statistic summing to K = 8. Does this statistic sup-

port the AR(1) specification?
8.5 Simulate an MA(1) model with n = 36 and θ = −0.5.

(a) Fit the correctly specified MA(1) model and look at a time series plot of the
residuals. Does the plot support the MA(1) specification?

(b) Display a normal quantile-quantile plot of the standardized residuals. Does
the plot support the MA(1) specification?

(c) Display the sample ACF of the residuals. Does the plot support the MA(1)
specification?

(d) Calculate the Ljung-Box statistic summing to K = 6. Does this statistic sup-
port the MA(1) specification?

8.6 Simulate an AR(2) model with n = 48, φ1 = 1.5, and φ2 = −0.75.
(a) Fit the correctly specified AR(2) model and look at a time series plot of the

residuals. Does the plot support the AR(2) specification?
(b) Display a normal quantile-quantile plot of the standardized residuals. Does

the plot support the AR(2) specification?
(c) Display the sample ACF of the residuals. Does the plot support the AR(2)

specification?
(d) Calculate the Ljung-Box statistic summing to K = 12. Does this statistic sup-

port the AR(2) specification?
8.7 Fit an AR(3) model by maximum likelihood to the square root of the hare abun-

dance series (filename hare).
(a) Plot the sample ACF of the residuals. Comment on the size of the correlations.
(b) Calculate the Ljung-Box statistic summing to K = 9. Does this statistic sup-

port the AR(3) specification?
(c) Perform a runs test on the residuals and comment on the results.
(d) Display the quantile-quantile normal plot of the residuals. Comment on the

plot.
(e) Perform the Shapiro-Wilk test of normality on the residuals.

8.8 Consider the oil filter sales data shown in Exhibit 1.8 on page 7. The data are in
the file named oilfilters.
(a) Fit an AR(1) model to this series. Is the estimate of the φ parameter signifi-

cantly different from zero statistically?
(b) Display the sample ACF of the residuals from the AR(1) fitted model. Com-

ment on the display.
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8.9 The data file named robot contains a time series obtained from an industrial robot.
The robot was put through a sequence of maneuvers, and the distance from a
desired ending point was recorded in inches. This was repeated 324 times to form
the time series. Compare the fits of an AR(1) model and an IMA(1,1) model for
these data in terms of the diagnostic tests discussed in this chapter.

8.10 The data file named deere3 contains 57 consecutive values from a complex
machine tool at Deere & Co. The values given are deviations from a target value
in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced. Diagnose the fit of an
AR(1) model for these data in terms of the tests discussed in this chapter.

8.11 Exhibit 6.31 on page 139, suggested specifying either an AR(1) or possibly an
AR(4) model for the difference of the logarithms of the oil price series. (The file-
name is oil.price).
(a) Estimate both of these models using maximum likelihood and compare the

results using the diagnostic tests considered in this chapter.
(b) Exhibit 6.32 on page 140, suggested specifying an MA(1) model for the dif-

ference of the logs. Estimate this model by maximum likelihood and perform
the diagnostic tests considered in this chapter.

(c) Which of the three models AR(1), AR(4), or MA(1) would you prefer given
the results of parts (a) and (b)?
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CHAPTER 9

FORECASTING

One of the primary objectives of building a model for a time series is to be able to fore-
cast the values for that series at future times. Of equal importance is the assessment of
the precision of those forecasts. In this chapter, we shall consider the calculation of fore-
casts and their properties for both deterministic trend models and ARIMA models. Fore-
casts for models that combine deterministic trends with ARIMA stochastic components
are considered also.

For the most part, we shall assume that the model is known exactly, including spe-
cific values for all the parameters. Although this is never true in practice, the use of esti-
mated parameters for large sample sizes does not seriously affect the results.

9.1 Minimum Mean Square Error Forecasting

Based on the available history of the series up to time t, namely Y1, Y2,…, Yt − 1, Yt, we
would like to forecast the value of Yt + l that will occur l time units into the future. We
call time t the forecast origin and l the lead time for the forecast, and denote the fore-
cast itself as .

As shown in Appendix F, the minimum mean square error forecast is given by

(9.1.1)

(Appendices E and F on page 218 review the properties of conditional expectation and
minimum mean square error prediction.)

The computation and properties of this conditional expectation as related to fore-
casting will be our concern for the remainder of this chapter.

9.2 Deterministic Trends

Consider once more the deterministic trend model of Chapter 3,

(9.2.1)

where the stochastic component, Xt, has a mean of zero. For this section, we shall
assume that {Xt} is in fact white noise with variance γ0. For the model in Equation
(9.2.1), we have

Ŷ t l( )

Ŷ t l( ) E Y
t l+

 |Y1 Y2 … Yt, , ,( )=

Yt μt Xt+=
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or

(9.2.2)

since for l ≥ 1, Xt + l is independent of Y1, Y2,…, Yt − 1, Yt and has expected value zero.
Thus, in this simple case, forecasting amounts to extrapolating the deterministic time
trend into the future.

For the linear trend case, μt = β0 + β1t, the forecast is

(9.2.3)

As we emphasized in Chapter 3, this model assumes that the same linear time trend per-
sists into the future, and the forecast reflects that assumption. Note that it is the lack of
statistical dependence between Yt + l and Y1, Y2,…, Yt − 1, Yt that prevents us from
improving on μt + l as a forecast.

For seasonal models where, say, , our forecast is  =
. Thus the forecast will also be periodic, as desired.

The forecast error, et(l), is given by

so that

That is, the forecasts are unbiased. Also

(9.2.4)

is the forecast error variance for all lead times l.
The cosine trend model for the average monthly temperature series was estimated

in Chapter 3 on page 35 as

Here time is measured in years with a starting value of January 1964, frequency f = 1 per
year, and the final observed value is for December 1975. To forecast the June 1976 tem-
perature value, we use t = 1976.41667 as the time value† and obtain

† June is the fifth month of the year, and 5/12 ≈ 0.416666666… .

Ŷ t l( ) E μ
t l+

X
t l+
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t l+
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1

Y2 … Yt, , ,( )+=

μ
t l+

E X
t l+

( )+=

Ŷ t l( ) μ
t l+

=

Ŷ t l( ) β0 β1 t l+( )+=

μt μt 12+= Ŷ t l( ) μ
t 12 l+ +
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Ŷ t l 12+( )
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μ
t l+

–+=
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=

E et l( )( ) E X
t l+

( ) 0= =

Var et l( )( ) Var X
t l+

( ) γ0= =

μ̂t 46.2660 26.7079–( ) 2πt( )cos 2.1697–( ) 2πt( )sin+ +=
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Forecasts for other months are obtained similarly.

9.3 ARIMA Forecasting

For ARIMA models, the forecasts can be expressed in several different ways. Each
expression contributes to our understanding of the overall forecasting procedure with
respect to computing, updating, assessing precision, or long-term forecasting behavior.

AR(1)

We shall first illustrate many of the ideas with the simple AR(1) process with a nonzero
mean that satisfies

(9.3.1)

Consider the problem of forecasting one time unit into the future. Replacing t by t + 1 in
Equation (9.3.1), we have

(9.3.2)

Given Y1, Y2,…, Yt − 1, Yt, we take the conditional expectations of both sides of Equation
(9.3.2) and obtain

(9.3.3)

Now, from the properties of conditional expectation, we have

(9.3.4)

Also, since et + 1 is independent of Y1, Y2, …, Yt − 1, Yt, we obtain

(9.3.5)

Thus, Equation (9.3.3) can be written as

(9.3.6)

In words, a proportion φ of the current deviation from the process mean is added to the
process mean to forecast the next process value.

Now consider a general lead time l. Replacing t by t + l in Equation (9.3.1) and tak-
ing the conditional expectations of both sides produces

(9.3.7)

since and, for l ≥ 1, et + l is independent of Y1,

Y2, …, Yt − 1, Yt.

μ̂t 46.2660 26.7079–( ) 2π 1976.41667( )( )cos 2.1697–( ) 2π 1976.41667( )( )sin+ +=

68.3 °F=

Yt μ– φ Yt 1– μ–( ) et+=

Yt 1+ μ– φ Yt μ–( ) et 1++=

Ŷ t 1( ) μ– φ E Yt |Y1 Y2 … Yt, , ,( ) μ–[ ] E et 1+ |Y1 Y2 … Yt, , ,( )+=

E Yt |Y1 Y2 … Yt, , ,( ) Yt=

E et 1+ |Y1 Y2 … Yt, , ,( ) E et 1+( ) 0= =

Ŷ t 1( ) μ φ Yt μ–( )+=

Ŷ t l( ) μ φ Ŷ t l 1–( ) μ–[ ]+=    for l 1≥

E Yt l 1–+ |Y1 Y2 … Yt, , ,( ) Ŷ t l 1–( )=
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Equation (9.3.7), which is recursive in the lead time l, shows how the forecast for
any lead time l can be built up from the forecasts for shorter lead times by starting with
the initial forecast computed using Equation (9.3.6). The forecast is then
obtained from , then from , and so on until the
desired is found. Equation (9.3.7) and its generalizations for other ARIMA models
are most convenient for actually computing the forecasts. Equation (9.3.7) is sometimes
called the difference equation form of the forecasts.

However, Equation (9.3.7) can also be solved to yield an explicit expression for the
forecasts in terms of the observed history of the series. Iterating backward on l in Equa-
tion (9.3.7), we have

or

(9.3.8)

The current deviation from the mean is discounted by a factor φl, whose magnitude
decreases with increasing lead time. The discounted deviation is then added to the pro-
cess mean to produce the lead l forecast.

As a numerical example, consider the AR(1) model that we have fitted to the indus-
trial color property time series. The maximum likelihood estimation results were par-
tially shown in Exhibit 7.7 on page 165, but more complete results are shown in Exhibit
9.1.

Exhibit 9.1 Maximum Likelihood Estimation of an AR(1) Model for Color

> data(color)
> m1.color=arima(color,order=c(1,0,0))
> m1.color

For illustration purposes, we assume that the estimates φ = 0.5705 and μ = 74.3293 are
true values. The final forecasts may then be rounded.

Coefficients: ar1 intercept†

†Remember that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435 1.9151

sigma^2 estimated as 24.8: log-likelihood = −106.07, AIC = 216.15

Ŷ t 1( ) Ŷ t 2( )
Ŷ t 2( ) μ φ Ŷ t 1( ) μ–[ ]+= Ŷ t 3( ) Ŷ t 2( )

Ŷ t l( )

Ŷ t l( ) φ Ŷ t l 1–( ) μ–[ ] μ+=

φ φ Ŷ t l 2–( ) μ–[ ]{ } μ+=
...

φl 1– Ŷ t 1( ) μ–[ ] μ+=

Ŷ t l( ) μ φl Yt μ–( )+=
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The last observed value of the color property is 67, so we would forecast one time
period ahead as†

For lead time 2, we have from Equation (9.3.7)

Alternatively, we can use Equation (9.3.8):

At lead 5, we have

and by lead 10 the forecast is

which is very nearly μ (= 74.3293). In reporting these forecasts we would probably
round to the nearest tenth.

In general, since |φ| < 1, we have simply

(9.3.9)

Later we shall see that Equation (9.3.9) holds for all stationary ARMA models.
Consider now the one-step-ahead forecast error, . From Equations (9.3.2)

and (9.3.6), we have

or
(9.3.10)

† As round off error will accumulate, you should use many decimal places when performing
recursive calculations.

Ŷ t 1( ) 74.3293 0.5705( ) 67 74.3293–( )+=

74.3293 4.181366–=

70.14793=

Ŷ t 2( ) 74.3293 0.5705 70.14793 74.3293–( )+=

74.3293 2.385472–=

71.94383=

Ŷ t 2( ) 74.3293 0.5705( )2 67 74.3293–( )+=

71.92823=

Ŷ t 5( ) 74.3293 0.5705( )5 67 74.3293–( )+=

73.88636=

Ŷ t 10( ) 74.30253=

Ŷ t l( ) μ  for large l≈

et 1( )

et 1( ) Yt 1+ Ŷ t 1( )–=

φ Yt μ–( ) μ et 1++ +[ ] φ Yt μ–( ) μ+[ ]–=

et 1( ) et 1+=
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The white noise process {et} can now be reinterpreted as a sequence of one-step-ahead
forecast errors. We shall see that Equation (9.3.10) persists for completely general
ARIMA models. Note also that Equation (9.3.10) implies that the forecast error  is
independent of the history of the process Y1, Y2, …, Yt − 1, Yt up to time t. If this were
not so, the dependence could be exploited to improve our forecast.

Equation (9.3.10) also implies that our one-step-ahead forecast error variance is
given by

(9.3.11)

To investigate the properties of the forecast errors for longer leads, it is convenient to
express the AR(1) model in general linear process, or MA( ), form. From Equation
(4.3.8) on page 70, we recall that

(9.3.12)

Then Equations (9.3.8) and (9.3.12) together yield

so that

(9.3.13)

which can also be written as

(9.3.14)

Equation (9.3.14) will be shown to hold for all ARIMA models (see Equation (9.3.43)
on page 202).

Note that ; thus the forecasts are unbiased. Furthermore, from Equa-
tion (9.3.14), we have

(9.3.15)

We see that the forecast error variance increases as the lead l increases. Contrast this
with the result given in Equation (9.2.4) on page 192, for deterministic trend models.

In particular, for the AR(1) case,

(9.3.16)

which we obtain by summing a finite geometric series.
For long lead times, we have

et 1( )

Var et 1( )( ) σe
2=

∞

Yt et φet 1– φ2et 2– φ3et 3–
…+ + + +=

et l( ) Y
t l+

μ– φl Yt μ–( )–=

e
t l+

φe
t l 1–+

… φl 1– et 1+ φlet+ + + +=

… φl et φet 1–
…+ +( )–+ 

et l( ) e
t l+

φe
t l 1–+

… φl 1– et 1++ + +=

et l( ) e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1++ + + +=

E et l( )( ) 0=

Var et l( )( ) σe
2 1 ψ1

2 ψ2
2 … ψl 1–

2+ + + +( )=

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=
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(9.3.17)

or, by Equation (4.3.3), page 66,

(9.3.18)

Equation (9.3.18) will be shown to be valid for all stationary ARMA processes (see
Equation (9.3.39) on page 201).

MA(1)

To illustrate how to solve the problems that arise in forecasting moving average or
mixed models, consider the MA(1) case with nonzero mean:

Again replacing t by t + 1 and taking conditional expectations of both sides, we have

(9.3.19)

However, for an invertible model, Equation (4.5.2) on page 80 shows that et is a function
of Y1, Y2, …, Yt and so

(9.3.20)

In fact, an approximation is involved in this equation since we are conditioning only on
Y1, Y2, …, Yt and not on the infinite history of the process. However, if, as in practice, t
is large and the model is invertible, the error in the approximation will be very small. If
the model is not invertible—for example, if we have overdifferenced the data—then
Equation (9.3.20) is not even approximately valid; see Harvey (1981c, p.161).

Using Equations (9.3.19) and (9.3.20), we have the one-step-ahead forecast for an
invertible MA(1) expressed as

(9.3.21)

The computation of et will be a by-product of estimating the parameters in the model.
Notice once more that the one-step-ahead forecast error is

as in Equation (9.3.10), and thus Equation (9.3.11) also obtains.
For longer lead times, we have

Var et l( )( )
σe

2

1 φ2–
--------------  for large l≈

Var et l( )( ) Var Yt( ) γ0   for large l=≈

Yt μ et θet 1––+=

Ŷ t 1( ) μ θE et|Y1 Y2 … Yt, , ,( )–=

E et |Y1 Y2 … Yt, , ,( ) et=

Ŷ t 1( ) μ θet–=

et 1( ) Yt 1+ Ŷ t 1( )–=

μ et 1+ θet–+( ) μ θet–( )–=

et 1+=

Ŷ t l( ) μ E e
t l+

|Y1 Y2 … Yt, , ,( )+ θE e
t l 1–+

|Y1 Y2 … Yt, , ,( )–=
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But, for l > 1, both et + l and et + l − 1 are independent of Y1, Y2,…, Yt. Consequently,
these conditional expected values are the unconditional expected values, namely zero,
and we have

(9.3.22)

Notice here that Equation (9.3.9) on page 195 holds exactly for the MA(1) case when l >
1. Since for this model we trivially have ψ1 = −θ and ψj = 0 for j > 1, Equations (9.3.14)
and (9.3.15) also hold.

The Random Walk with Drift

To illustrate forecasting with nonstationary ARIMA series, consider the random walk
with drift defined by

(9.3.23)

Here

so that

(9.3.24)

Similarly, the difference equation form for the lead l forecast is

(9.3.25)

and iterating backward on l yields the explicit expression

(9.3.26)

In contrast to Equation (9.3.9) on page 195, if θ0 ≠ 0, the forecast does not converge for
long leads but rather follows a straight line with slope θ0 for all l.

Note that the presence or absence of the constant term θ0 significantly alters the
nature of the forecast. For this reason, constant terms should not be included in nonsta-
tionary ARIMA models unless the evidence is clear that the mean of the differenced
series is significantly different from zero. Equation (3.2.3) on page 28 for the variance
of the sample mean will help assess this significance.

However, as we have seen in the AR(1) and MA(1) cases, the one-step-ahead fore-
cast error is

Also

Ŷ t l( ) μ  for l 1>=

Yt Yt 1– θ0 et+ +=

Ŷ t 1( ) E Yt|Y1 Y2 … Yt, , ,( ) θ0 E et 1+ |Y1 Y2 … Yt, , ,( )+ +=

Ŷ t 1( ) Yt θ0+=

Ŷ t l( ) Ŷ t l 1–( ) θ0  for l 1≥+=

Ŷ t l( ) Yt θ0l  for l 1≥+=

et 1( ) Yt 1+ Ŷ t 1( )– et 1+= =
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which agrees with Equation (9.3.14) on page 196 since in this model ψj = 1 for all j.
(See Equation (5.2.6) on page 93 with θ = 0.)

So, as in Equation (9.3.15), we have

(9.3.27)

In contrast to the stationary case, here grows without limit as the forecast
lead time l increases. We shall see that this property is characteristic of the forecast error
variance for all nonstationary ARIMA processes.

ARMA(p,q)

For the general stationary ARMA(p,q) model, the difference equation form for comput-
ing forecasts is given by

(9.3.28)

where

(9.3.29)

We note that is a true forecast for j > 0, but for j ≤ 0, . As in Equa-
tion (9.3.20) on page 197, Equation (9.3.29) involves some minor approximation. For an
invertible model, Equation (4.5.5) on page 80 shows that, using the π-weights, et can be
expressed as a linear combination of the infinite sequence Yt, Yt − 1, Yt − 2,…. However,
the π-weights die out exponentially fast, and the approximation assumes that πj is negli-
gible for j > t − q.

As an example, consider an ARMA(1,1) model. We have

(9.3.30)

with

and, more generally,

et l( ) Y
t l+

Ŷ t l( )–=

Yt lθ0 et 1+
… e

t l+
+ + + +( ) Yt lθ0+( )–=

et 1+ et 2+
… e

t l+
+ + +=

Var et l( )( ) σe
2 ψj

2

j 0=

l 1–

∑ lσe
2= =

Var et l( )( )

Ŷ t l( ) φ1Ŷ t l 1–( ) φ2Ŷ t l 2–( ) … φpŶ t l p–( ) θ0+ + + +=

θ1E e
t l 1–+

|Y1 Y2 … Yt, , ,( )– θ2E e
t l 2–+

|Y1 Y2 … Yt, , ,( )–

…– θqE e
t l q–+

|Y1 Y2 … Yt, , ,( )–

E et j+ |Y1 Y2 … Yt, , ,( )
0

et j+⎩
⎨
⎧

=
for j 0>
for j 0≤

Ŷ t j( ) Ŷ t j( ) Yt j+=

Ŷ t 1( ) φYt θ0 θet–+=

Ŷ t 2( ) φŶ t 1( ) θ0+=
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(9.3.31)

using Equation (9.3.30) to get the recursion started.
Equations (9.3.30) and (9.3.31) can be rewritten in terms of the process mean and

then solved by iteration to get the alternative explicit expression

(9.3.32)

As Equations (9.3.28) and (9.3.29) indicate, the noise terms et − (q − 1),…, et − 1, et
appear directly in the computation of the forecasts for leads l = 1, 2,…, q. However, for
l > q, the autoregressive portion of the difference equation takes over, and we have

(9.3.33)

Thus the general nature of the forecast for long lead times will be determined by the
autoregressive parameters φ1, φ2,…, φp (and the constant term, θ0, which is related to
the mean of the process).

Recalling from Equation (5.3.17) on page 97 that ,
we can rewrite Equation (9.3.33) in terms of deviations from μ as 

(9.3.34)

As a function of lead time l, follows the same Yule-Walker recursion as the
autocorrelation function ρk of the process (see Equation (4.4.8), page 79). Thus, as in
Section 4.3 on page 66 and Section 4.4 on page 77, the roots of the characteristic equa-
tion will determine the general behavior of for large lead times. In particular,

 can be expressed as a linear combination of exponentially decaying terms in l
(corresponding to the real roots) and damped sine wave terms (corresponding to the
pairs of complex roots).

Thus, for any stationary ARMA model,  decays to zero as l increases, and
the long-term forecast is simply the process mean μ as given in Equation (9.3.9) on
page 195. This agrees with common sense since for stationary ARMA models the
dependence dies out as the time span between observations increases, and this depen-
dence is the only reason we can improve on the “naive” forecast of using μ alone.

To argue the validity of Equation (9.3.15) for in the present generality, we
need to consider a new representation for ARIMA processes. Appendix G shows that
any ARIMA model can be written in truncated linear process form as

(9.3.35)

where, for our present purposes, we need only know that Ct(l) is a certain function of Yt,
Yt−1,… and

(9.3.36)

Ŷ t l( ) φŶ t l 1–( ) θ0  for l 2≥+=

Ŷ t l( ) μ φl Yt μ–( ) φl 1– et  for l 1≥–+=

Ŷ t l( ) φ1Ŷ t l 1–( ) φ2Ŷ t l 2–( ) … φpŶ t l p–( ) θ0  for l q>+ + + +=

θ0 μ 1 φ1 φ2– …– φp––( )=

Ŷ t l( ) μ– φ1 Ŷ t l 1–( ) μ–[ ] φ2 Ŷ t l 2–( ) μ–[ ] …+ +=

φp Ŷ t l p–( ) μ–[ ]  for l q>+ 

Ŷ t l( ) μ–

Ŷ t l( ) μ–
Ŷ t l( ) μ–

Ŷ t l( ) μ–

et l( )

Y
t l+

Ct l( ) It l( )  for l 1>+=

It l( ) e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1+   for l 1≥+ + + +=
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Furthermore, for invertible models with t reasonably large, Ct(l) is a certain function of
the finite history Yt, Yt − 1,…, Y1. Thus we have

Finally,

Thus, for a general invertible ARIMA process,

(9.3.37)

and

(9.3.38)

From Equations (4.1.4) and (9.3.38), we see that for long lead times in stationary
ARMA models, we have

or
(9.3.39)

Nonstationary Models

As the random walk shows, forecasting for nonstationary ARIMA models is quite simi-
lar to forecasting for stationary ARMA models, but there are some striking differences.
Recall from Equation (5.2.2) on page 92 that an ARIMA(p,1,q) model can be written as
a nonstationary ARMA(p+1,q) model, We shall write this as

(9.3.40)

where the script coefficients ϕ are directly related to the block φ coefficients. In particu-
lar,

Ŷ t l( ) E Ct l( )|Y1 Y2 … Yt, , ,( ) E It l( ) |Y1 Y2 … Yt, , ,( )+=

Ct l( )=

et l( ) Y
t l+

Ŷ t l( )–=

Ct l( ) It l( )+[ ] Ct l( )–=

It l( )=

e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1++ + + +=

E et l( )[ ] 0  for l 1≥=

Var et l( )( ) σe
2 ψj

2  for l 1≥
j 0=

l 1–

∑=

Var et l( )( ) σe
2 ψj

2

j 0=

∞
∑≈

Var et l( )( ) γ0  for large l≈

Yt ϕ1Yt 1– ϕ2Yt 2– ϕ3Yt 3–
… ϕpYt p– ϕp 1+ Yt p– 1–+ + + + +=

et θ1et 1– θ2et 2–– …– θqet q–––+ 
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(9.3.41)

For a general order of differencing d, we would have p + d of the ϕ coefficients.
From this representation, we can immediately extend Equations (9.3.28), (9.3.29),

and (9.3.30) on page 199 to cover the nonstationary cases by replacing p by p + d and φj
by ϕj.

As an example of the necessary calculations, consider the ARIMA(1,1,1) case.
Here

so that

Thus

(9.3.42)

For the general invertible ARIMA model, the truncated linear process representation
given in Equations (9.3.35) and (9.3.36) and the calculations following these equations
show that we can write

(9.3.43)

and so
(9.3.44)

and

(9.3.45)

However, for nonstationary series, the ψj-weights do not decay to zero as j increases.
For example, for the random walk model, ψj = 1 for all j; for the IMA(1,1) model, ψj =
1− θ for j ≥ 1; for the IMA(2,2) case, ψj = 1 + θ2 + (1 − θ1 − θ2)j for j ≥ 1; and for the
ARI(1,1) model, ψj = (1 − φ j+1)/(1 − φ) for j ≥ 1 (see Chapter 5).

Thus, for any nonstationary model, Equation (9.3.45) shows that the forecast error
variance will grow without bound as the lead time l increases. This fact should not be
too surprising since with nonstationary series the distant future is quite uncertain.

ϕ1 1 φ1 ϕj φj φj 1–   for j– 1 2 … p, , ,= =,+=

and

ϕp 1+ φp–= ⎭
⎪
⎬
⎪
⎫

Yt Yt 1–– φ Yt 1– Yt 2––( ) θ0 et θet 1––+ +=

Yt 1 φ+( )Yt 1– φYt 2–– θ0 et θet 1––+ +=

Ŷ t 1( ) 1 φ+( )Yt φYt 1–– θ0 θet–+=

Ŷ t 2( ) 1 φ+( )Ŷ t 1( ) φYt– θ0+=

and

Ŷ t l( ) 1 φ+( )Ŷ t l 1–( ) φŶ t l 2–( )– θ0+= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

et l( ) e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1+   for l 1≥+ + + +=

E et l( )( ) 0  for l 1≥=

Var et l( )( ) σe
2 ψj

2  for l 1≥
j 0=

l 1–

∑=
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9.4 Prediction Limits

As in all statistical endeavors, in addition to forecasting or predicting the unknown Yt + l ,
we would like to assess the precision of our predictions.

Deterministic Trends

For the deterministic trend model with a white noise stochastic component {Xt}, we
recall that

and

If the stochastic component is normally distributed, then the forecast error

(9.4.1)

is also normally distributed. Thus, for a given confidence level 1 − α, we could use a
standard normal percentile, z1 − α/2, to claim that

or, equivalently,

Thus we may be (1 − α)100% confident that the future observation Yt + l  will be
contained within the prediction limits

(9.4.2)

As a numerical example, consider the monthly average temperature series once
more. On page 192, we used the cosine model to predict the June 1976 average temper-
ature as 68.3°F. The estimate of for this model is 3.7°F. Thus 95%
prediction limits for the average June 1976 temperature are

Readers who are familiar with standard regression analysis will recall that since the
forecast involves estimated regression parameters, the correct forecast error variance is
given by γ0[1 + (1/n) +cn, l], where cn, l is a certain function of the sample size n and the
lead time l. However, it may be shown that for the types of trends that we are consider-
ing (namely, cosines and polynomials in time) and for large sample sizes n, the 1/n and
cn, l are both negligible relative to 1. For example, with a cosine trend of period 12 over
N = n/12 years, we have that cn, l = 2/n; thus the correct forecast error variance is

Ŷ t l( ) μ
t l+

=

Var et l( )( ) Var X
t l+

( ) γ0= =

et l( ) Y
t l+

Ŷ t l( )– X
t l+

= =

P z1 α 2⁄––
Y

t l+
Ŷ t l( )–

Var et l( )( )
----------------------------- z1 α 2⁄–< < 1 α–=

P Ŷ t l( ) z1 α 2⁄– Var et l( )( )– Y
t l+

Ŷ t l( ) z1 α 2⁄– Var et l( )( )+< <[ ] 1 α–=

Ŷ t l( ) z1 α 2⁄– Var et l( )( )±

Var et l( )( ) γ0=

68.3 1.96 3.7( )± 68.3 7.252  or  61.05°F  to  75.55°F±=
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γ0[1 + (3/n)] rather than our approximate γ0. For the linear time trend model, it can be
shown that cn, l = 3(n + 2l − 1)2/[n(n2 − 1)] ≈ 3/n for moderate lead l and large n. Thus,
again our approximation seems justified.

ARIMA Models

If the white noise terms {et} in a general ARIMA series each arise independently from a
normal distribution, then from Equation (9.3.43) on page 202, the forecast error

will also have a normal distribution, and the steps leading to Equation (9.4.2)
remain valid. However, in contrast to the deterministic trend model, recall that in the
present case

In practice, will be unknown and must be estimated from the observed time series.
The necessary ψ-weights are, of course, also unknown since they are certain functions
of the unknown φ’s and θ’s. For large sample sizes, these estimations will have little
effect on the actual prediction limits given above.

As a numerical example, consider the AR(1) model that we estimated for the indus-
trial color property series. From Exhibit 9.1 on page 194, we use φ = 0.5705, μ =
74.3293, and = 24.8. For an AR(1) model, we recall Equation (9.3.16) on page 196

For a one-step-ahead prediction, we have

Two steps ahead, we obtain

Notice that this prediction interval is wider than the previous interval. Forecasting ten
steps ahead leads to

By lead 10, both the forecast and the forecast limits have settled down to their long-lead
values.

9.5 Forecasting Illustrations

Rather than showing forecast and forecast limit calculations, it is often more instructive
to display appropriate plots of the forecasts and their limits.

et l( )

Var et l( )( ) σe
2 ψj

2

j 0=

l 1–

∑=

σe
2

σe
2

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=

70.14793 1.96 24.8± 70.14793 9.760721  or  60.39  to  79.91±=

71.86072 11.88343  or  60.71  to  83.18±

74.173934 11.88451  or  62.42  to  86.19±
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Deterministic Trends

Exhibit 9.2 displays the last four years of the average monthly temperature time series
together with forecasts and 95% forecast limits for two additional years. Since the
model fits quite well with a relatively small error variance, the forecast limits are quite
close to the fitted trend forecast.

Exhibit 9.2 Forecasts and Limits for the Temperature Cosine Trend

> data(tempdub)
> tempdub1=ts(c(tempdub,rep(NA,24)),start=start(tempdub), 

freq=frequency(tempdub)) 
> har.=harmonic(tempdub,1)
> m5.tempdub=arima(tempdub,order=c(0,0,0),xreg=har.)
> newhar.=harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)
> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(m5.tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar., 

type='b',ylab='Temperature',xlab='Year')

ARIMA Models

We use the industrial color property series as our first illustration of ARIMA forecast-
ing. Exhibit 9.3 displays this series together with forecasts out to lead time 12 with the
upper and lower 95% prediction limits for those forecasts. In addition, a horizontal line
at the estimate for the process mean is shown. Notice how the forecasts approach the
mean exponentially as the lead time increases. Also note how the prediction limits
increase in width.
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Exhibit 9.3 Forecasts and Forecast Limits for the AR(1) Model for Color

> data(color)
> m1.color=arima(color,order=c(1,0,0))
> plot(m1.color,n.ahead=12,type='b',xlab='Time',

ylab='Color Property')
> abline(h=coef(m1.color)[names(coef(m1.color))=='intercept'])

The Canadian hare abundance series was fitted by working with the square root of
the abundance numbers and then fitting an AR(3) model. Notice how the forecasts
mimic the approximate cycle in the actual series even when we forecast with a lead time
out to 25 years in Exhibit 9.4.

Exhibit 9.4 Forecasts from an AR(3) Model for Sqrt(Hare)

> data(hare)
> m1.hare=arima(sqrt(hare),order=c(3,0,0))
> plot(m1.hare, n.ahead=25,type='b', 

xlab='Year',ylab='Sqrt(hare)')
> abline(h=coef(m1.hare)[names(coef(m1.hare))=='intercept'])
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9.6 Updating ARIMA Forecasts

Suppose we are forecasting a monthly time series. Our last observation is, say, for Feb-
ruary, and we forecast for March, April, and May. As time goes by, the actual value for
March becomes available. With this new value in hand, we would like to update or
revise (and, one hopes, improve) our forecasts for April and May. Of course, we could
compute new forecasts from scratch. However, there is a simpler way.

For a general forecast origin t and lead time l + 1, our original forecast is denoted
. Once the observation at time t + 1 becomes available, we would like to update

our forecast as . Equations (9.3.35) and (9.3.36) on page 200 yield

Since Ct(l+1) and et + 1 are functions of Yt + 1, Yt,…, whereas et + l + 1, et + l,…, et + 2 are
independent of Yt + 1, Yt,…, we quickly obtain the expression

However, , and, of course, . Thus we have
the general updating equation

(9.6.1)

Notice that is the actual forecast error at time t + 1 once has been
observed.

As a numerical example, consider the industrial color property time series. Follow-
ing Exhibit 9.1 on page 194, we fit an AR(1) model to forecast one step ahead as

 and two steps ahead as . If now the next color
value becomes available as Yt + 1 = Y36 = 65, then we update the forecast for time t = 37
as

9.7 Forecast Weights and Exponentially Weighted
Moving Averages

For ARIMA models without moving average terms, it is clear how the forecasts are
explicitly determined from the observed series Yt, Yt − 1,…, Y1. However, for any model
with q > 0, the noise terms appear in the forecasts, and the nature of the forecasts explic-
itly in terms of Yt, Yt − 1,…, Y1 is hidden. To bring out this aspect of the forecasts, we
return to the inverted form of any invertible ARIMA process, namely

(See Equation (4.5.5) on page 80.) Thus we can also write

Ŷ t l 1+( )
Ŷ t 1+ l( )

Y
t l 1+ +

Ct l 1+( ) e
t l 1+ +

ψ1e
t l+

ψ2e
t l 1–+

… ψl et 1++ + + + +=

Ŷ t 1+ l( ) Ct l 1+( ) ψlet 1++=

Ŷ t l 1+( ) Ct l 1+( )= et 1+ Yt 1+ Ŷ t 1( )–=

Ŷ t 1+ l( ) Ŷ t l 1+( ) ψl Yt 1+ Ŷ t 1( )–[ ]+=

Yt 1+ Ŷ t 1( )–[ ] Yt 1+

Ŷ35 1( ) 70.096= Ŷ 35 2( ) 71.86072=

Ŷ t 1+ 1( ) Ŷ36 1( ) 71.86072 0.5705 65 70.096–( )+ 68.953452= = =
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… et+ + + +=
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Taking conditional expectations of both sides, given Yt, Yt − 1, …, Y1, we obtain

(9.7.1)

(We are assuming the t is sufficiently large and/or that the π-weights die out sufficiently
quickly so that πt, πt + 1,… are all negligible.)

For any invertible ARIMA model, the π-weights can be calculated recursively from
the expressions

(9.7.2)

with initial value π0 = −1. (Compare this with Equations (4.4.7) on page 79 for the
ψ-weights.)

Consider in particular the nonstationary IMA(1,1) model

Here p = 0, d = 1, q = 1, with ϕ1 = 1; thus

and, generally,

Thus we have explicitly

(9.7.3)

so that, from Equation (9.7.1), we can write

(9.7.4)

In this case, the π-weights decrease exponentially, and furthermore,

Thus is called an exponentially weighted moving average (EWMA).
Simple algebra shows that we can also write

(9.7.5)
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Ŷ t 1( ) π1Yt π2Yt 1– π3Yt 2–
…+ + +=

πj

θiπj i–
i 1=

min j q,( )

∑ ϕj  for  1 j p d+≤ ≤+

θiπj i–   for j p d+>
i 1=

min j q,( )

∑
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

Yt Yt 1– et θet 1––+=

π1 θπ0 1+ 1 θ–= =

π2 θπ1 θ 1 θ–( )= =

πj θπj 1–   for j 1>=

πj 1 θ–( )θ j 1–   for j 1≥=
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and

(9.7.6)

Equations (9.7.5) and (9.7.6) show how to update forecasts from origin t − 1 to origin t,
and they express the result as a linear combination of the new observation and the old
forecast or in terms of the old forecast and the last observed forecast error.

Using EWMA to forecast time series has been advocated, mostly on an ad hoc
basis, for a number of years; see Brown (1962) and Montgomery and Johnson (1976).

The parameter 1 − θ is called the smoothing constant in EWMA literature, and its
selection (estimation) is often quite arbitrary. From the ARIMA model-building
approach, we let the data indicate whether an IMA(1,1) model is appropriate for the
series under consideration. If so, we then estimate θ in an efficient manner and compute
an EWMA forecast that we are confident is the minimum mean square error forecast. A
comprehensive treatment of exponential smoothing methods and their relationships with
ARIMA models is given in Abraham and Ledolter (1983).

9.8 Forecasting Transformed Series

Differencing

Suppose we are interested in forecasting a series whose model involves a first difference
to achieve stationarity. Two methods of forecasting can be considered:

1. forecasting the original nonstationary series, for example by using the difference 
equation form of Equation (9.3.28) on page 199, with φ’s replaced by ϕ’s 
throughout, or

2. forecasting the stationary differenced series Wt = Yt − Yt − 1 and then “undoing” 
the difference by summing to obtain the forecast in original terms.

We shall show that both methods lead to the same forecasts. This follows essentially
because differencing is a linear operation and because conditional expectation of a lin-
ear combination is the same linear combination of the conditional expectations.

Consider in particular the IMA(1,1) model. Basing our work on the original nonsta-
tionary series, we forecast as

(9.8.1)

and

(9.8.2)

Consider now the differenced stationary MA(1) series Wt = Yt − Yt − 1. We would fore-
cast Wt + l as

(9.8.3)

and

(9.8.4)

Ŷ t 1( ) Ŷ t 1– 1( ) 1 θ–( ) Yt Ŷ t 1– 1( )–[ ]+=

Ŷ t 1( ) Yt θet–=

Ŷ t l( ) Ŷ t l 1–( )  for l 1>=

Ŵt 1( ) θet–=

Ŵt l( ) 0  for l 1>=
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However, ; thus  is equivalent to 

as before. Similarly, , and Equation (9.8.4) becomes Equation
(9.8.2), as we have claimed.

The same result would apply to any model involving differences of any order and
indeed to any type of linear transformation with constant coefficients. (Certain linear
transformations other than differencing may be applicable to seasonal time series. See
Chapter 10.)

Log Transformations

As we saw earlier, it is frequently appropriate to model the logarithms of the original
series—a nonlinear transformation. Let Yt denote the original series value and let Zt =
log(Yt). It can be shown that we always have

(9.8.5)

with equality holding only in trivial cases. Thus, the naive forecast  is not the
minimum mean square error forecast of Yt + l. To evaluate the minimum mean square
error forecast in original terms, we shall find the following fact useful: If X has a normal
distribution with mean μ and variance , then

(This follows, for example, from the moment-generating function for X.) In our applica-
tion

and

These follow from Equations (9.3.35) and (9.3.36) (applied to Zt) and the fact that 
is a function of Zt, Zt − 1,…, whereas et(l) is independent of Zt, Zt − 1,… . Thus the mini-
mum mean square error forecast in the original series is given by

(9.8.6)

Throughout our discussion of forecasting, we have assumed that minimum mean square
forecast error is the criterion of choice. For normally distributed variables, this is an
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excellent criterion. However, if Zt has a normal distribution, then Yt = exp(Zt) has a log-
normal distribution, for which a different criterion may be desirable. In particular, since
the log-normal distribution is asymmetric and has a long right tail, a criterion based on
the mean absolute error may be more appropriate. For this criterion, the optimal forecast
is the median of the distribution of Zt+ l conditional on Zt, Zt − 1,…, Z1. Since the log
transformation preserves medians and since, for a normal distribution, the mean and
median are identical, the naive forecast  is the optimal forecast for Yt + l in
the sense that it minimizes the mean absolute forecast error.

9.9 Summary of Forecasting with Certain ARIMA Models

Here we bring together various forecasting results for special ARIMA models.

AR(1): 

MA(1): 

Ẑ t l( )[ ]exp
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Ŷ t l( ) μ  for l 1>=

et 1( ) et 1+=

et l( ) e
t l+

θe
t l 1–+

  for l 1>–=

Var et l( )( )
σe

2  for l 1=

σe
2 1 θ2+( )  for l 1>⎩

⎨
⎧

=



212 Forecasting

IMA (1,1) with Constant Term: 

Note that if θ0 ≠ 0, the forecasts follow a straight line with slope θ0, but if θ0 = 0, which
is the usual case, then the forecast is the same for all lead times, namely

IMA(2,2): 

(9.9.1)

(9.9.2)

where

(9.9.3)

and

(9.9.4)

If θ0 ≠ 0, the forecasts follow a quadratic curve in l, but if θ0 = 0, the forecasts form a
straight line with slope  and will pass through the two initial forecasts

and . It can be shown that is a certain cubic function of l ; see
Box, Jenkins, and Reinsel (1994, p. 156). We also have

(9.9.5)
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Ŷ t l( ) A Bl
θ0

2
----- l2+ +=
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It can also be shown that forecasting the special case with θ1 = 2ω and θ2 = −ω2 is
equivalent to so-called double exponential smoothing with smoothing constant 1 − ω;
see Abraham and Ledolter (1983).

9.10 Summary

Forecasting or predicting future as yet unobserved values is one of the main reasons for
developing time series models. Methods discussed in this chapter are all based on mini-
mizing the mean square forecasting error. When the model is simply deterministic trend
plus zero mean white noise error, forecasting amounts to extrapolating the trend. How-
ever, if the model contains autocorrelation, the forecasts exploit the correlation to pro-
duce better forecasts than would otherwise be obtained. We showed how to do this with
ARIMA models and investigated the computation and properties of the forecasts. In
special cases, the computation and properties of the forecasts are especially interesting
and we presented them separately. Prediction limits are especially important to assess
the potential accuracy (or otherwise) of the forecasts. Finally, we addressed the problem
of forecasting time series for which the models involve transformation of the original
series.

EXERCISES

9.1 For an AR(1) model with Yt = 12.2, φ = −0.5, and μ = 10.8,
(a) Find .
(b) Calculate  in two different ways.
(c) Calculate .

9.2 Suppose that annual sales (in millions of dollars) of the Acme Corporation follow
the AR(2) model  with .
(a) If sales for 2005, 2006, and 2007 were $9 million, $11 million, and $10 mil-

lion, respectively, forecast sales for 2008 and 2009.
(b) Show that  for this model.
(c) Calculate 95% prediction limits for your forecast in part (a) for 2008.
(d) If sales in 2008 turn out to be $12 million, update your forecast for 2009.

9.3 Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.719°F.)
(c) What is the forecast for April, 1977? For April 2009?

9.4 Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for May 1976. 
(b) Find a 95% prediction interval for that May 1976 forecast. (The estimate of

 for this model is 3.719°F.)

Ŷ t 1( )
Ŷ t 2( )
Ŷ t 10( )

Yt 5 1.1Yt 1– 0.5Yt 2–– et+ += σe
2 2=

ψ1 1.1=
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9.5 Using the seasonal means model without an intercept shown in Exhibit 3.3 on
page 32:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April, 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.419°F.)
(c) Compare your forecast with the one obtained in Exercise 9.3.
(d) What is the forecast for April 1977? April 2009?

9.6 Using the seasonal means model with an intercept shown in Exhibit 3.4 on page
33:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.419°F.)
(c) Compare your forecast with the one obtained in Exercise 9.5.

9.7 Using the seasonal means model with an intercept shown in Exhibit 3.4 on page
33 
(a) Forecast the average monthly temperature in Dubuque, Iowa, for January

1976. 
(b) Find a 95% prediction interval for that January forecast. (The estimate of 

for this model is 3.419°F.)
9.8 Consider the monthly electricity generation time series shown in Exhibit 5.8 on

page 99. The data are in the file named electricity.
(a) Fit a deterministic trend model containing seasonal means together with a lin-

ear time trend to the logarithms of the electricity values.
(b) Plot the last five years of the series together with two years of forecasts and

the 95% forecast limits. Interpret the plot.
9.9 Simulate an AR(1) process with φ = 0.8 and μ = 100. Simulate 48 values but set

aside the last 8 values to compare forecasts to actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of φ and μ.
(b) Using the estimated model, forecast the next eight values of the series. Plot

the series together with the eight forecasts. Place a horizontal line at the esti-
mate of the process mean.

(c) Compare the eight forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and the same sample size.
9.10 Simulate an AR(2) process with φ1 = 1.5, φ2 = −0.75, and μ = 100. Simulate 52

values but set aside the last 12 values to compare forecasts to actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of the φ’s and μ.
(b) Using the estimated model, forecast the next 12 values of the series. Plot the

series together with the 12 forecasts. Place a horizontal line at the estimate of

γ0

γ0

γ0
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the process mean.
(c) Compare the 12 forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.11 Simulate an MA(1) process with θ = 0.6 and μ = 100. Simulate 36 values but set

aside the last 4 values to compare forecasts to actual values.
(a) Using the first 32 values of the series, find the values for the maximum likeli-

hood estimates of the θ and μ.
(b) Using the estimated model, forecast the next four values of the series. Plot the

series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(c) Compare the four forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.12 Simulate an MA(2) process with θ1 = 1, θ2 = −0.6, and μ = 100. Simulate 36 val-

ues but set aside the last 4 values with compare forecasts to actual values.
(a) Using the first 32 values of the series, find the values for the maximum likeli-

hood estimates of the θ’s and μ.
(b) Using the estimated model, forecast the next four values of the series. Plot the

series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(c) What is special about the forecasts at lead times 3 and 4?
(d) Compare the four forecasts with the actual values that you set aside.
(e) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(f) Repeat parts (a) through (e) with a new simulated series using the same values

of the parameters and same sample size.
9.13 Simulate an ARMA(1,1) process with φ = 0.7, θ = −0.5, and μ = 100. Simulate 50

values but set aside the last 10 values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of φ, θ, and μ.
(b) Using the estimated model, forecast the next ten values of the series. Plot the

series together with the ten forecasts. Place a horizontal line at the estimate of
the process mean.

(c) Compare the ten forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
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9.14 Simulate an IMA(1,1) process with θ = 0.8 and θ0 = 0. Simulate 35 values, but set
aside the last five values to compare forecasts with actual values.
(a) Using the first 30 values of the series, find the value for the maximum likeli-

hood estimate of θ.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about the forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.15 Simulate an IMA(1,1) process with θ = 0.8 and θ0 = 10. Simulate 35 values, but

set aside the last five values to compare forecasts to actual values.
(a) Using the first 30 values of the series, find the values for the maximum likeli-

hood estimates of θ and θ0.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about these forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.16 Simulate an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 0. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the value for the maximum likeli-

hood estimate of θ1 and θ2.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about the forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.17 Simulate an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 10. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of θ1, θ2, and θ0.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about these forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
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9.18 Consider the model , where . We assume
that β0, β1, and φ are known. Show that the minimum mean square error forecast l
steps ahead can be written as .

9.19 Verify Equation (9.3.16) on page 196.
9.20 Verify Equation (9.3.32) on page 200.
9.21 The data file named deere3 contains 57 consecutive values from a complex

machine tool process at Deere & Co. The values given are deviations from a tar-
get value in units of ten millionths of an inch. The process employs a control
mechanism that resets some of the parameters of the machine tool depending on
the magnitude of deviation from target of the last item produced.
(a) Using an AR(1) model for this series, forecast the next ten values.
(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

9.22 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
The time series contains outliers that are quite obvious in the time series plot.
Replace each of the unusual values at “times” 63, 106, and 129 with the much
more typical value of 35 days.
(a) Use an MA(2) model to forecast the next ten values of this modified series.
(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

9.23 The time series in the data file robot gives the final position in the “x-direction”
after an industrial robot has finished a planned set of exercises. The measure-
ments are expressed as deviations from a target position. The robot is put through
this planned set of exercises in the hope that its behavior is repeatable and thus
predictable.
(a) Use an IMA(1,1) model to forecast five values ahead. Obtain 95% forecast

limits also.
(b) Display the forecasts, forecast limits, and actual values in a graph and inter-

pret the results.
(c) Now use an ARMA(1,1) model to forecast five values ahead and obtain 95%

forecast limits. Compare these results with those obtained in part (a).
9.24 Exhibit 9.4 on page 206 displayed the forecasts and 95% forecast limits for the

square root of the Canadian hare abundance. The data are in the file named hare.
Produce a similar plot in original terms. That is, plot the original abundance val-
ues together with the squares of the forecasts and squares of the forecast limits.

9.25 Consider the seasonal means plus linear time trend model for the logarithms of
the monthly electricity generation time series in Exercise 9.8. (The data are in the
file named electricity.)
(a) Find the two-year forecasts and forecast limits in original terms. That is, expo-

nentiate (antilog) the results obtained in Exercise 9.8.
(b) Plot the last five years of the original time series together with two years of

forecasts and the 95% forecast limits, all in original terms. Interpret the plot.

Yt β0 β1t Xt+ += Xt φXt 1– et+=

Ŷ t l( ) β0 β1 t l+( ) φl Yt β0– β1t–( )+ +=
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Appendix E: Conditional Expectation

If X and Y have joint pdf f(x,y) and we denote the marginal pdf of X by f(x), then the
conditional pdf of Y given X = x is given by

For a given value of x, the conditional pdf has all of the usual properties of a pdf. In par-
ticular, the conditional expectation of Y given X = x is defined as

As an expected value or mean, the conditional expectation of Y given X = x has all of
the usual properties. For example,

(9.E.1)

and

(9.E.2)

In addition, several new properties arise:

(9.E.3)

That is, given X = x, the random variable h(X) can be treated like a constant h(x). More
generally,

(9.E.4)

If we set , then g(X) is a random variable and we can consider
E[g(X)]. It can be shown that

which is often written as
(9.E.5)

If Y and X are independent, then

(9.E.6)

Appendix F: Minimum Mean Square Error Prediction

Suppose Y is a random variable with mean μY and variance . If our object is to pre-
dict Y using only a constant c, what is the best choice for c? Clearly, we must first define
best. A common (and convenient) criterion is to choose c to minimize the mean square
error of prediction, that is, to minimize

f y x( ) f x y,( )
f x( )

---------------=

E Y X=x( ) yf y x( ) yd
∞–
∞∫=
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2

g c( ) E Y c–( )2[ ]=



Appendix F: Minimum Mean Square Error Prediction 219

If we expand g(c), we have

Since g(c) is quadratic in c and opens upward, solving will produce the
required minimum. We have

so that the optimal c is
(9.F.1)

Note also that

(9.F.2)

Now consider the situation where a second random variable X is available and we
wish to use the observed value of X to help predict Y. Let ρ = Corr (X,Y). We first sup-
pose, for simplicity, that only linear functions a + bX can be used for the prediction. The
mean square error is then given by

and expanding we gave

This is also quadratic in a and b and opens upward. Thus we can find the point of mini-
mum by solving simultaneous linear equations  and  = 0.
We have

which we rewrite as

Multiplying the first equation by E(X) and subtracting yields

(9.F.3)

Then

(9.F.4)

If we let be the minimum mean square error prediction of Y based on a linear
function of X, then we can write

(9.F.5)

or
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(9.F.6)

In terms of standardized variables and , we have simply .
Also, using Equations (9.F.3) and (9.F.4), we find

(9.F.7)

which provides a proof that −1 ≤ ρ ≤ +1 since g(a,b) ≥ 0.
If we compare Equation (9.F.7) with Equation (9.F.2), we see that the minimum

mean square error obtained when we use a linear function of X to predict Y is reduced by
a factor of 1 − ρ2 compared with that obtained by ignoring X and simply using the con-
stant μY for our prediction.

Let us now consider the more general problem of predicting Y with an arbitrary
function of X. Once more our criterion will be to minimize the mean square error of pre-
diction. We need to choose the function h(X), say, that minimizes

(9.F.8)

Using Equation (9.E.5), we can write this as

(9.F.9)

Using Equation (9.E.4), the inner expectation can be written as

(9.F.10)

For each value of x, h(x) is a constant, and we can apply the result of Equation (9.F.1) to
the conditional distribution of Y given X = x. Thus, for each x, the best choice of h(x) is

(9.F.11)

Since this choice of h(x) minimizes the inner expectation in Equation (9.F.9), it must
also provide the overall minimum of Equation (9.F.8). Thus

(9.F.12)

is the best predictor of Y of all functions of X.
If X and Y have a bivariate normal distribution, it is well-known that

so that the solutions given in Equations (9.F.12) and (9.F.5) coincide. In this case, the
linear predictor is the best of all functions.

More generally, if Y is to be predicted by a function of X1, X2,…, Xn, then it can be
easily argued that the minimum square error predictor is given by

(9.F.13)
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Appendix G: The Truncated Linear Process

Suppose {Yt} satisfies the general ARIMA(p,d,q) model with AR characteristic polyno-
mial φ(x), MA characteristic polynomial θ(x), and constant term θ0. Then the truncated
linear process representation for {Yt} is given by

(9.G.1)

where

(9.G.2)

(9.G.3)

and Ai , Bi j , i = 1, 2,…, r, j = 1, 2,…, pi , are constant in l and depend only on Yt,
Yt − 1,… .† As always, the ψ-weights are defined by the identity

(9.G.4)

or

(9.G.5)

We shall show that the representation given by Equation (9.G.1) is valid by arguing
that, for fixed t, is essentially the complementary function of the defining differ-
ence equation, that is,

(9.G.6)

and that is a particular solution (without θ0):

(9.G.7)

Since contains p + d arbitrary constants (the A’s and the B’s), summing  and
 yields the general solution of the ARIMA equation. Specific values for the A’s and

B’s will be determined by initial conditions on the {Yt} process.
We note that Ad is not arbitrary. We have

(9.G.8)

The proof that  as given by Equation (9.G.2) is the complementary function and
satisfies Equation (9.G.6) is a standard result from the theory of difference equations

† The only property of the Ct(l) that we need is that it depends only on Yt, Yt − 1,… .
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(see, for example, Goldberg, 1958). We shall show that the particular solution 
defined by Equation (9.G.2) does satisfy Equation (9.G.7).

For convenience of notation, we let  = 0 for j > p + d. Consider the left-hand side
of Equation (9.G.7). It can be written as:

(9.G.9)

Now grouping together common et terms and picking off their coefficients, we obtain

Coefficient of et + l − 1 : 
Coefficient of et + l − 2 : 
Coefficient of et + l − 3 : 

Coefficient of et + 1 : 

If l > q, we can match these coefficients to the corresponding coefficients on the
right-hand side of Equation (9.G.7) to obtain the relationships

(9.G.10)

However, by comparing these relationships with Equation (9.G.5), we see that Equa-
tions (9.G.10) are precisely the equations defining the ψ-weights and thus Equation
(9.G.7) is established as required.

Appendix H: State Space Models

Control theory engineers have developed and successfully used so-called state space
models and Kalman filtering since Kalman published his seminal work in 1960.
Recent references include Durbin and Koopman (2001) and Harvey et al. (2004). 

Consider a general stationary and invertible ARMA(p,q) process {Zt}. Put m =
max(p, q + 1) and define the state of the process at time t as the column vector of
length m whose jth element is the forecast for j = 0, 1, 2,…, m − 1, based on Zt,
Zt − 1,… . Note that the lead element of is just = Zt. 

Recall the updating Equation (9.6.1) on page 207, which in the present context can
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be written

(9.H.1)

We shall use this expression directly for l = 0, 1, 2,…, m − 2. For l = m − 1, we have

(9.H.2)

where the last expression comes from Equation (9.3.34) on page 200, with μ = 0.
The matrix formulation of Equations (9.H.1) and (9.H.2) relating  to 

and , called the equations of state (or Akaike’s Markovian representation), is
given as

(9.H.3)

where

(9.H.4)

and

(9.H.5)

with for j > p. Note that the simplicity of Equation (9.H.3) is obtained at the
expense of having to deal with vector-valued processes. Because the state space formu-
lation also usually allows for measurement error, we do not observe Zt directly but only
observe Yt through the observational equation

(9.H.6)

where = [1, 0, 0,…, 0] and is another zero-mean white noise process indepen-
dent of . The special case of no measurement error is obtained by setting in
Equation (9.H.6). Equivalently, this case is obtained by taking  in subsequent
equations. More general state space models allow , , and to be more general, pos-
sibly also depending on time.
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Evaluation of the Likelihood Function and Kalman Filtering

First a definition: The covariance matrix for a vector of random variables X of dimen-
sion n×1 is defined to be the n×n matrix whose ij th element is the covariance between
the ith and jth components of X.

If Y = AX + B, then it is easily shown that the covariance matrix for Y is AVAT,
where V is the covariance matrix for X and the superscript T denotes matrix transpose.

Getting back to the Kalman filter, we let denote the m×1 vector whose
j th component is for j = 0, 1, 2,…, m − 1. Similarly, let

 be the vector whose j th component is for j = 0, 1,
2,…, m − 1.

Then, since et + 1 is independent of Zt, Zt − 1,…, and hence also of Yt, Yt − 1,…, we
see from Equation (9.H.3) that

(9.H.7)

Also letting  be the covariance matrix for the “forecast error” −
 and  be the covariance matrix for the “forecast error” ,

we have from Equation (9.H.3) that

(9.H.8)

From the observational equation (Equation (9.H.6)) and then replacing t + 1 by t,

(9.H.9)

where .
It can now be shown that the following relationships hold (see, for example, Har-

vey, 1981c):
(9.H.10)

where

(9.H.11)

and
(9.H.12)

Collectively, Equations (9.H.10), (9.H.11), and (9.H.12) are referred to as the Kalman
filter equations. The quantity

(9.H.13)

in Equation (9.H.10) is the prediction error and is independent of (or at least uncorre-
lated with) the past observations Yt, Yt − 1,… . Since we are allowing for measurement
error, is not, in general, the same as .

From Equations (9.H.13) and (9.H.6), we have
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Now consider the likelihood function for the observed series Y1, Y2,…, Yn. From the
definition of the conditional probability density function, we can write

or, by taking logs,

(9.H.15)

Assume now that we are dealing with normal distributions, that is, that and
are normal white noise processes. Then it is known that the distribution of Yn con-

ditional on Y1 = y1, Y2 = y2,…, Yn − 1 = yn − 1, is also normal with mean and
variance vn. In the remainder of this section and the next, we write  for the
observed value of .The second term on the right-hand side of Equation
(9.H.15) can then be written

Furthermore, the first term on the right-hand side of Equation (9.H.15) can be
decomposed similarly again and again until we have

(9.H.16)

which then becomes the prediction error decomposition of the likelihood, namely

(9.H.17)

with and v1 = Var(Y1).
The overall strategy for computing the likelihood for a given set of parameter val-

ues is to use the Kalman filter equations to generate recursively the prediction errors and
their variances and then use the prediction error decomposition of the likelihood func-
tion. Only one point remains: We need initial values and to get the recur-
sions started.

The Initial State Covariance Matrix

The initial state vector will be a vector of zeros for a zero-mean process, and
is the covariance matrix for . Now, because is the

column vector with elements , it is necessary for us to evalu-
ate
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(9.H.18)

Multiplying Equation (9.H.18) by Z0 and taking expected values yields

(9.H.19)

Now multiply Equation (9.H.18) by itself with j replaced by i and take expected values.
Recalling that the e’s are independent of past Z’s and assuming 0 < i ≤ j, we obtain

(9.H.20)

Combining Equations (9.H.19) and (9.H.20), we have as the required elements of

(9.H.21)

where the ψ-weights are obtained from the recursion of Equation (4.4.7) on page 79,
and γk , the autocovariance function for the {Zt} process, is obtained as in Appendix C
on page 85.

The variance  can be removed from the problem by dividing  by . The
prediction error variance vt is then replaced by  in the log-likelihood of Equation
(9.H.17), and we set in Equation (9.H.8). Dropping unneeded constants, we get
the new log-likelihood

(9.H.22)

which can be minimized analytically with respect to . We obtain

(9.H.23)

Substituting this back into Equation (9.H.22), we now find that

(9.H.24)

which must be minimized numerically with respect to φ1, φ2,…, φp, θ1, θ2,…, θq, and
. Having done so, we return to Equation (9.H.23) to estimate . The function

defined by Equation (9.H.24) is sometimes called the concentrated log-likelihood
function.
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CHAPTER 10

SEASONAL MODELS

In Chapter 3, we saw how seasonal deterministic trends might be modeled. However, in
many areas in which time series are used, particularly business and economics, the
assumption of any deterministic trend is quite suspect even though cyclical tendencies
are very common in such series.

Here is an example: Levels of carbon dioxide (CO2) are monitored at several sites
around the world to investigate atmospheric changes. One of the sites is at Alert, North-
west Territories, Canada, near the Arctic Circle.

Exhibit 10.1 displays the monthly CO2 levels from January 1994 through Decem-
ber 2004. There is a strong upward trend but also a seasonality that can be seen better in
the more detailed Exhibit 10.2, where only the last few years are graphed using monthly
plotting symbols.

Exhibit 10.1 Monthly Carbon Dioxide Levels at Alert, NWT, Canada

> data(co2)
> win.graph(width=4.875,height=3,pointsize=8)
> plot(co2,ylab='CO2')
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As we see in the displays, carbon dioxide levels are higher during the winter
months and much lower in the summer. Deterministic seasonal models such as seasonal
means plus linear time trend or sums of cosine curves at various frequencies plus linear
time trend as we investigated in Chapter 3 could certainly be considered here. But we
discover that such models do not explain the behavior of this time series. For this series
and many others, it can be shown that the residuals from a seasonal means plus linear
time trend model are highly autocorrelated at many lags.† In contrast, we will see that
the stochastic seasonal models developed in this chapter do work well for this series.

Exhibit 10.2 Carbon Dioxide Levels with Monthly Symbols

> plot(window(co2,start=c(2000,1)),ylab='CO2')
> Month=c('J','F','M','A','M','J','J','A','S','O','N','D')
> points(window(co2,start=c(2000,1)),pch=Month)

10.1 Seasonal ARIMA Models

We begin by studying stationary models and then consider nonstationary generalizations
in Section 10.3. We let s denote the known seasonal period; for monthly series s = 12
and for quarterly series s = 4.

Consider the time series generated according to

Notice that

but that

† We ask you to verify this in Exercise 10.8.
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It is easy to see that such a series is stationary and has nonzero autocorrelations only at
lag 12.

Generalizing these ideas, we define a seasonal MA(Q) model of order Q with sea-
sonal period s by

(10.1.1)

with seasonal MA characteristic polynomial

(10.1.2)

It is evident that such a series is always stationary and that the autocorrelation function
will be nonzero only at the seasonal lags of s, 2s, 3s,…, Qs. In particular,

(10.1.3)

(Compare this with Equation (4.2.5) on page 65 for the nonseasonal MA process.) For
the model to be invertible, the roots of Θ(x) = 0 must all exceed 1 in absolute value.

It is useful to note that the seasonal MA(Q) model can also be viewed as a special
case of a nonseasonal MA model of order q = Qs but with all θ-values zero except at the
seasonal lags s, 2s, 3s,…, Qs.

Seasonal autoregressive models can also be defined. Consider

(10.1.4)

where |Φ| < 1 and et is independent of Yt − 1, Yt − 2,… . It can be shown that |Φ| < 1
ensures stationarity. Thus it is easy to argue that E(Yt) = 0; multiplying Equation
(10.1.4) by Yt − k , taking expectations, and dividing by γ0 yields

(10.1.5)

Clearly

More generally,

(10.1.6)

Furthermore, setting k = 1 and then k = 11 in Equation (10.1.5) and using ρk = ρ−k gives
us

which implies that ρ1 = ρ11 = 0. Similarly, one can show that ρk = 0 except at the sea-
sonal lags 12, 24, 36,… . At those lags, the autocorrelation function decays exponen-
tially like an AR(1) model.

Cov Yt Yt 12–,( ) Cov et Θet 12–– et 12– Θet 24––,( )=

Θσe
2–=

Yt et Θ1et s–– Θ2et 2s–– …– ΘQet Qs––=

Θ x( ) 1 Θ1xs– Θ2x2s– …– ΘQxQs–=

ρks

Θk– Θ1Θk 1+ Θ2Θk 2+
… ΘQ k– ΘQ+ + + +

1 Θ1
2 Θ2

2 … ΘQ
2+ + + +

-------------------------------------------------------------------------------------------------------------  for k 1 2 … Q, , ,= =

Yt ΦYt 12– et+=

ρk Φρk 12–=   for k 1≥

ρ12 Φρ0 Φ  and  ρ24 Φρ12 Φ2= = = =

ρ12k Φk  for k 1 2 …, ,= =

ρ1 Φρ11  and  ρ11 Φρ1= =



230 Seasonal Models

With this example in mind, we define a seasonal AR(P) model of order P and
seasonal period s by

(10.1.7)

with seasonal characteristic polynomial

(10.1.8)

As always, we require et to be independent of Yt − 1, Yt − 2,…, and, for stationarity, that
the roots of Φ(x) = 0 be greater than 1 in absolute value. Again, Equation (10.1.7) can be
seen as a special AR(p) model of order p = Ps with nonzero φ-coefficients only at the
seasonal lags s, 2s, 3s,…, Ps.

It can be shown that the autocorrelation function is nonzero only at lags s, 2s, 3s,
…, where it behaves like a combination of decaying exponentials and damped sine func-
tions. In particular, Equations (10.1.4), (10.1.5), and (10.1.6) easily generalize to the
general seasonal AR(1) model to give

(10.1.9)

with zero correlation at other lags.

10.2 Multiplicative Seasonal ARMA Models

Rarely shall we need models that incorporate autocorrelation only at the seasonal lags.
By combining the ideas of seasonal and nonseasonal ARMA models, we can develop
parsimonious models that contain autocorrelation for the seasonal lags but also for low
lags of neighboring series values.

Consider a model whose MA characteristic polynomial is given by

Multiplying out, we have . Thus the corresponding time series
satisfies

(10.2.1)

For this model, we can check that the autocorrelation function is nonzero only at lags 1,
11, 12, and 13. We find

(10.2.2)

(10.2.3)

(10.2.4)

and

Yt Φ1Yt s– Φ2Yt 2s–
… ΦPYt Ps– et+ + + +=

Φ x( ) 1 Φ1xs Φ2x2s– …– ΦPxPs––=

ρks Φk  for k 1 2 …, ,= =

1 θx–( ) 1 Θx12–( )

1 θx– Θx12 θΘx13+–

Yt et θet 1–– Θet 12–– θΘet 13–+=

γ0 1 θ2+( ) 1 Θ2+( )σe
2=

ρ1
θ

1 θ2+
---------------–=

ρ11 ρ13
θΘ

1 θ2+( ) 1 Θ2+( )
-----------------------------------------= =
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(10.2.5)

Exhibit 10.3 displays the autocorrelation functions for the model of Equation (10.2.1)
with θ = ±0.5 and Θ = −0.8 as given by Equations (10.2.2)–(10.2.5).

Exhibit 10.3 Autocorrelations from Equations (10.2.2)-(10.2.5)

Of course, we could also introduce both short-term and seasonal autocorrelations
by defining an MA model of order 12 with only θ1 and θ12 nonzero. We shall see in the
next section that the “multiplicative” model arises quite naturally for nonstationary
models that entail differencing.

In general, then, we define a multiplicative seasonal ARMA(p,q)×(P,Q)s model
with seasonal period s as a model with AR characteristic polynomial φ(x)Φ(x) and MA
characteristic polynomial θ(x)Θ(x), where

(10.2.6)

and

(10.2.7)

The model may also contain a constant term θ0. Note once more that we have just a spe-
cial ARMA model with AR order p + Ps and MA order q + Qs, but the coefficients are
not completely general, being determined by only p + P + q + Q coefficients. If s = 12,
p + P + q + Q will be considerably smaller than p + Ps + q + Qs and will allow a much
more parsimonious model.

As another example, suppose P = q =1 and p = Q = 0 with s = 12. The model is then

(10.2.8)

ρ12
Θ

1 Θ2+
----------------–=

Lag k

ρ k

●
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ρ k
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4

θ = −0.5, Θ = −0.8 θ = +0.5, Θ = −0.8

φ x( ) 1 φ1x φ2x2– …– φpxp––=

Φ x( ) 1 Φ1xs Φ2x2s– …– ΦPxPs––= ⎭
⎬
⎫

θ x( ) 1 θ1x θ2x2– …– θqxq––=

Θ x( ) 1 Θ1xs Θ2x2s– …– ΘQxQs––= ⎭
⎬
⎫

Yt ΦYt 12– et θet 1––+=
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Using our standard techniques, we find that

(10.2.9)

and
(10.2.10)

After considering the equations implied by various choices for k, we arrive at

(10.2.11)

with autocorrelations for all other lags equal to zero.
Exhibit 10.4 displays the autocorrelation functions for two of these seasonal

ARIMA processes with period 12: one with Φ = 0.75 and θ = 0.4, the other with Φ =
0.75 and θ = −0.4. The shape of these autocorrelations is somewhat typical of the sam-
ple autocorrelation functions for numerous seasonal time series. The even simpler auto-
correlation function given by Equations (10.2.3), (10.2.4), and (10.2.5) and displayed in
Exhibit 10.3 also seems to occur frequently in practice (perhaps after differencing).

Exhibit 10.4 Autocorrelation Functions from Equation (10.2.11)

γ1 Φγ11 θσe
2–=

γk Φγk 12–   for k 2≥=

γ0
1 θ2+

1 Φ2–
---------------- σe

2=

ρ12k Φk  for k 1≥=

ρ12k 1– ρ12k 1+
θ

1 θ2+
---------------Φk–⎝ ⎠

⎛ ⎞   for k 0 1 2 …, , ,= = =
⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫
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10.3 Nonstationary Seasonal ARIMA Models

An important tool in modeling nonstationary seasonal processes is the seasonal differ-
ence. The seasonal difference of period s for the series {Yt} is denoted ∇sYt and is
defined as

(10.3.1)

For example, for monthly series we consider the changes from January to January, Feb-
ruary to February, and so forth for successive years. Note that for a series of length n,
the seasonal difference series will be of length n − s; that is, s data values are lost due to
seasonal differencing.

As an example where seasonal differencing is appropriate, consider a process gen-
erated according to

(10.3.2)

with
(10.3.3)

where {et} and {εt} are independent white noise series. Here {St} is a “seasonal random
walk,” and if , {St} would model a slowly changing seasonal component.

Due to the nonstationarity of {St}, clearly {Yt} is nonstationary. However, if we sea-
sonally difference {Yt}, as given in Equation (10.3.1), we find

(10.3.4)

An easy calculation shows that ∇sYt is stationary and has the autocorrelation function of
an MA(1)s model.

The model described by Equations (10.3.2) and (10.3.3) could also be generalized
to account for a nonseasonal, slowly changing stochastic trend. Consider

(10.3.5)

with
(10.3.6)

and
(10.3.7)

where {et}, {εt}, and {ξt} are mutually independent white noise series. Here we take
both a seasonal difference and an ordinary nonseasonal difference to obtain†

† It should be noted that ∇sYt will in fact be stationary and ∇∇sYt will be noninvertible. We
use Equations (10.3.5), (10.3.6), and (10.3.7) merely to help motivate multiplicative sea-
sonal ARIMA models.

∇sYt Yt Yt s––=

Yt St et+=

St St s– εt+=

σε σe«

∇sYt St St s–– et et s––+=

εt et et s––+=

Yt Mt St et+ +=

St St s– εt+=

Mt Mt 1– ξt+=
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(10.3.8)

The process defined here is stationary and has nonzero autocorrelation only at lags 1,
s − 1, s, and s + 1, which agrees with the autocorrelation structure of the multiplicative
seasonal model ARMA(0,1)×(0,1) with seasonal period s.

These examples lead to the definition of nonstationary seasonal models. A process
{Yt} is said to be a multiplicative seasonal ARIMA model with nonseasonal (regular)
orders p, d, and q, seasonal orders P, D, and Q, and seasonal period s if the differenced
series

(10.3.9)

satisfies an ARMA(p,q)×(P,Q)s model with seasonal period s.† We say that {Yt} is an
ARIMA(p,d,q)×(P,D,Q)s model with seasonal period s.

Clearly, such models represent a broad, flexible class from which to select an
appropriate model for a particular time series. It has been found empirically that many
series can be adequately fit by these models, usually with a small number of parameters,
say three or four.

10.4 Model Specification, Fitting, and Checking

Model specification, fitting, and diagnostic checking for seasonal models follow the
same general techniques developed in Chapters 6, 7, and 8. Here we shall simply high-
light the application of these ideas specifically to seasonal models and pay special atten-
tion to the seasonal lags.

Model Specification

As always, a careful inspection of the time series plot is the first step. Exhibit 10.1 on
page 227 displays monthly carbon dioxide levels in northern Canada. The upward trend
alone would lead us to specify a nonstationary model. Exhibit 10.5 shows the sample
autocorrelation function for that series. The seasonal autocorrelation relationships are
shown quite prominently in this display. Notice the strong correlation at lags 12, 24, 36,
and so on. In addition, there is substantial other correlation that needs to be modeled.

† Using the backshift operator notation of Appendix D, page 106, we may write the general
ARIMA(p,d,q)×(P,D,Q)s model as φ(B)Φ(B)∇d∇s

DYt = θ(B)Θ(B)et.

∇∇sYt ∇ Mt Mt s–– εt et et s––+ +( )=

ξt εt et+ +( ) εt 1– et 1–+( )– ξt s– et s–+( )– et s– 1–+=

Wt ∇d∇s
DYt=
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Exhibit 10.5 Sample ACF of CO2 Levels

> acf(as.vector(co2),lag.max=36)

Exhibit 10.6 shows the time series plot of the CO2 levels after we take a first differ-
ence.

Exhibit 10.6 Time Series Plot of the First Differences of CO2 Levels

> plot(diff(co2),ylab='First Difference of CO2',xlab='Time')

The general upward trend has now disappeared but the strong seasonality is still
present, as evidenced by the behavior shown in Exhibit 10.7. Perhaps seasonal differ-
encing will bring us to a series that may be modeled parsimoniously.
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Exhibit 10.7 Sample ACF of First Differences of CO2 Levels

> acf(as.vector(diff(co2)),lag.max=36)

Exhibit 10.8 displays the time series plot of the CO2 levels after taking both a first
difference and a seasonal difference. It appears that most, if not all, of the seasonality is
gone now.

Exhibit 10.8 Time Series Plot of First and Seasonal Differences of CO2

> plot(diff(diff(co2),lag=12),xlab='Time', 
ylab='First and Seasonal Difference of CO2')

Exhibit 10.9 confirms that very little autocorrelation remains in the series after
these two differences have been taken. This plot also suggests that a simple model
which incorporates the lag 1 and lag 12 autocorrelations might be adequate.

We will consider specifying the multiplicative, seasonal ARIMA(0,1,1)×(0,1,1)12
model
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(10.4.10)

which incorporates many of these requirements. As usual, all models are tentative and
subject to revision at the diagnostics stage of model building.

Exhibit 10.9 Sample ACF of First and Seasonal Differences of CO2

> acf(as.vector(diff(diff(co2),lag=12)),lag.max=36,ci.type='ma')

Model Fitting

Having specified a tentative seasonal model for a particular time series, we proceed to
estimate the parameters of that model as efficiently as possible. As we have remarked
earlier, multiplicative seasonal ARIMA models are just special cases of our general
ARIMA models. As such, all of our work on parameter estimation in Chapter 7 carries
over to the seasonal case.

Exhibit 10.10 gives the maximum likelihood estimates and their standard errors for
the ARIMA(0,1,1)×(0,1,1)12 model for CO2 levels.

Exhibit 10.10 Parameter Estimates for the CO2 Model

> m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 

period=12))
> m1.co2

Coefficient θ Θ

Estimate 0.5792 0.8206

Standard error 0.0791 0.1137

 = 0.5446: log-likelihood = −139.54, AIC = 283.08

∇12∇Y
t

et θet 1–– Θet 12–– θΘet 13–+=
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The coefficient estimates are all highly significant, and we proceed to check further on
this model.

Diagnostic Checking

To check the estimated the ARIMA(0,1,1)×(0,1,1)12 model, we first look at the time
series plot of the residuals. Exhibit 10.11 gives this plot for standardized residuals.
Other than some strange behavior in the middle of the series, this plot does not suggest
any major irregularities with the model, although we may need to investigate the model
further for outliers, as the standardized residual at September 1998 looks suspicious. We
investigate this further in Chapter 11.

Exhibit 10.11 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> plot(window(rstandard(m1.co2),start=c(1995,2)), 
ylab='Standardized Residuals',type='o')

> abline(h=0)

To look further, we graph the sample ACF of the residuals in Exhibit 10.12. The
only “statistically significant” correlation is at lag 22, and this correlation has a value of
only −0.17, a very small correlation. Furthermore, we can think of no reasonable inter-
pretation for dependence at lag 22. Finally, we should not be surprised that one autocor-
relation out of the 36 displayed is statistically significant. This could easily happen by
chance alone. Except for marginal significance at lag 22, the model seems to have cap-
tured the essence of the dependence in the series.
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Exhibit 10.12 ACF of Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> acf(as.vector(window(rstandard(m1.co2),start=c(1995,2))), 
lag.max=36)

The Ljung-Box test for this model gives a chi-squared value of 25.59 with 22
degrees of freedom, leading to a p-value of 0.27—a further indication that the model
has captured the dependence in the time series.

Next we investigate the question of normality of the error terms via the residuals.
Exhibit 10.13 displays the histogram of the residuals. The shape is somewhat
“bell-shaped” but certainly not ideal. Perhaps a quantile-quantile plot will tell us more.

Exhibit 10.13 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> win.graph(width=3, height=3,pointsize=8)
> hist(window(rstandard(m1.co2),start=c(1995,2)), 

xlab='Standardized Residuals')
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Exhibit 10.14 displays the QQ-normal plot for the residuals.

Exhibit 10.14 Residuals: ARIMA(0,1,1)×(0,1,1)12 Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(window(rstandard(m1.co2),start=c(1995,2)))
> qqline(window(rstandard(m1.co2),start=c(1995,2)))

Here we again see the one outlier in the upper tail, but the Shapiro-Wilk test of nor-
mality has a test statistic of W = 0.982, leading to a p-value of 0.11, and normality is not
rejected at any of the usual significance levels.

As one further check on the model, we consider overfitting with an ARIMA(0,1,2)
×(0,1,1)12 model with the results shown in Exhibit 10.15.

Exhibit 10.15 ARIMA(0,1,2)×(0,1,1)12 Overfitted Model

> m2.co2=arima(co2,order=c(0,1,2),seasonal=list(order=c(0,1,1), 
period=12))

> m2.co2

When we compare these results with those reported in Exhibit 10.10 on page 237,
we see that the estimates of θ1 and Θ have changed very little—especially when the size
of the standard errors is taken into consideration. In addition, the estimate of the new
parameter, θ2, is not statistically different from zero. Note also that the estimate and
the log-likelihood have not changed much while the AIC has actually increased. 

The ARIMA(0,1,1)×(0,1,1)12 model was popularized in the first edition of the sem-
inal book of Box and Jenkins (1976) when it was found to characterize the logarithms of

Coefficient θ1 θ2 Θ

Estimate 0.5714 0.0165 0.8274

Standard error 0.0897 0.0948 0.1224

 = 0.5427: log-likelihood = −139.52, AIC = 285.05
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a monthly airline passenger time series. This model has come to be known as the airline
model. We ask you to analyze the original airline data in the exercises.

10.5 Forecasting Seasonal Models

Computing forecasts with seasonal ARIMA models is, as expected, most easily carried
out recursively using the difference equation form for the model, as in Equations
(9.3.28), (9.3.29) on page 199 and (9.3.40) on page 201. For example, consider the
model ARIMA(0,1,1)×(1,0,1)12.

(10.5.1)

which we rewrite as

(10.5.2)

The one-step-ahead forecast from origin t is then

(10.5.3)

and the next one is

(10.5.4)

and so forth. The noise terms et − 13, et − 12, et − 11,…, et (as residuals) will enter into the
forecasts for lead times l = 1, 2,…, 13, but for l > 13 the autoregressive part of the model
takes over and we have

(10.5.5)

To understand the general nature of the forecasts, we consider several special cases.

Seasonal AR(1)12

The seasonal AR(1)12 model is

(10.5.6)

Clearly, we have

(10.5.7)

However, iterating back on l, we can also write

(10.5.8)

where k and r are defined by l = 12k + r + 1 with 0 ≤ r < 12 and k = 0, 1, 2,… . In other
words, k is the integer part of (l − 1)/12 and r/12 is the fractional part of (l − 1)/12. If our
last observation is in December, then the next January value is forecast as Φ times the
last observed January value, February is forecast as Φ times the last observed February

Yt Yt 1–– Φ Yt 12– Yt 13––( ) et θet 1–– Θet 12–– θΘet 13–+ +=

Yt Yt 1– ΦYt 12– ΦYt 13–– et θet 1–– Θet 12–– θΘet 13–+ + +=

Ŷ t 1( ) Yt ΦYt 11– ΦYt 12–– θet– Θet 11–– θΘet 12–+ +=

Ŷ t 2( ) Ŷ t 1( ) ΦYt 10– ΦYt 11–– Θet 10–– θΘet 11–+ +=

Ŷ t l( ) Ŷ t l 1–( ) ΦŶ t l 12–( ) ΦŶ t l 13–( )  for  l 13>–+=

Yt ΦYt 12– et+=

Ŷ t l( ) ΦŶ t l 12–( )=

Ŷ t l( ) Φ k 1+ Yt r 11–+=
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value, and so on. Two Januarys ahead is forecast as Φ2 times the last observed January.
Looking just at January values, the forecasts into the future will decay exponentially at a
rate determined by the magnitude of Φ. All of the forecasts for each month will behave
similarly but with different initial forecasts depending on the particular month under
consideration.

Using Equation (9.3.38) on page 201 and the fact that the ψ-weights are nonzero
only for multiple of 12, namely,

(10.5.9)

we have that the forecast error variance can be written as

(10.5.10)

where, as before, k is the integer part of (l − 1)/12.

Seasonal MA(1)12

For the seasonal MA(1)12 model, we have

(10.5.11)

In this case, we see that

(10.5.12)

and

(10.5.13)

Here we obtain different forecasts for the months of the first year, but from then on all
forecasts are given by the process mean.

For this model, ψ0 = 1, ψ12 = −Θ, and ψj = 0 otherwise. Thus, from Equation
(9.3.38) on page 201, 

(10.5.14)

ARIMA(0,0,0)×(0,1,1)12

The ARIMA(0,0,0)×(0,1,1)12 model is

(10.5.15)

ψj
Φ j 12/ for j 0 12 24 …, , ,=

0         otherwise⎩
⎨
⎧

=

Var et l( )( ) 1 Φ2k 2+–
1 Φ2–

-------------------------- σe
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or

so that

(10.5.16)

and then

(10.5.17)

It follows that all Januarys will forecast identically, all Februarys identically, and so
forth.

If we invert this model, we find that

Consequently, we can write

(10.5.18)

From this representation, we see that the forecast for each January is an exponentially
weighted moving average of all observed Januarys, and similarly for each of the other
months.

In this case, we have ψj = 1 − Θ for j = 12, 24,…, and zero otherwise. The forecast
error variance is then

(10.5.19)

where k is the integer part of (l − 1)/12.

ARIMA(0,1,1)×(0,1,1)12

For the ARIMA(0,1,1)×(0,1,1)12 model

(10.5.20)
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the forecasts satisfy

(10.5.21)

and

(10.5.22)

To understand the general pattern of these forecasts, we can use the representation

(10.5.23)

where the A’s and B’s are dependent on Yt, Yt − 1,…, or, alternatively, determined from
the initial forecasts , ,…, . This result follows from the general the-
ory of difference equations and involves the roots of (1 − x)(1 − x12) = 0.

Notice that Equation (10.5.23) reveals that the forecasts are composed of a linear
trend in the lead time plus a sum of periodic components. However, the coefficients Ai
and Bij are more dependent on recent data than on past data and will adapt to changes in
the process as our forecast origin changes and the forecasts are updated. This is in stark
contrast to forecasting with deterministic time trend plus seasonal components, where
the coefficients depend rather equally on both recent and past data and remain the same
for all future forecasts.

Prediction Limits

Prediction limits are obtained precisely as in the nonseasonal case. We illustrate this
with the carbon dioxide time series. Exhibit 10.16 shows the forecasts and 95% forecast
limits for a lead time of two years for the ARIMA(0,1,1)×(0,1,1)12 model that we fit.
The last two years of observed data are also shown. The forecasts mimic the stochastic
periodicity in the data quite well, and the forecast limits give a good feeling for the pre-
cision of the forecasts.

Ŷ t 1( ) Yt=
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Ŷ t 13( ) Ŷ t 12( )=
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Exhibit 10.16 Forecasts and Forecast Limits for the CO2 Model

> win.graph(width=4.875,height=3,pointsize=8)
> plot(m1.co2,n1=c(2003,1),n.ahead=24,xlab='Year',type='o', 

ylab='CO2 Levels')

Exhibit 10.17 displays the last year of observed data and forecasts out four years.
At this lead time, it is easy to see that the forecast limits are getting wider, as there is
more uncertainty in the forecasts.

Exhibit 10.17 Long-Term Forecasts for the CO2 Model

> plot(m1.co2,n1=c(2004,1),n.ahead=48,xlab='Year',type='b', 
ylab='CO2 Levels')
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10.6 Summary

Multiplicative seasonal ARIMA models provide an economical way to model time
series whose seasonal tendencies are not as regular as we would have with a determinis-
tic seasonal trend model which we covered in Chapter 3. Fortunately, these models are
simply special ARIMA models so that no new theory is needed to investigate their prop-
erties. We illustrated the special nature of these models with a thorough modeling of an
actual time series.

EXERCISES

10.1 Based on quarterly data, a seasonal model of the form

has been fit to a certain time series.
(a) Find the first four ψ-weights for this model.
(b) Suppose that θ1 = 0.5, θ2 = −0.25, and σe = 1. Find forecasts for the next four

quarters if data for the last four quarters are

(c) Find 95% prediction intervals for the forecasts in part (b).
10.2 An AR model has AR characteristic polynomial

(a) Is the model stationary?
(b) Identify the model as a certain seasonal ARIMA model.

10.3 Suppose that {Yt} satisfies

where St is deterministic and periodic with period s and {Xt} is a seasonal
ARIMA(p,0,q)×(P,1,Q)s series. What is the model for Wt = Yt −Yt − s?

10.4 For the seasonal model with |Φ| < 1, find γ0 and ρk.
10.5 Identify the following as certain multiplicative seasonal ARIMA models:

(a) .
(b) .

10.6 Verify Equations (10.2.11) on page 232.

Quarter I II III IV

Series 25 20 25 40

Residual 2 1 2 3

Yt Yt 4– et θ1et 1–– θ2et 2––+=

1 1.6x– 0.7x2+( ) 1 0.8x12–( )

Yt a bt St Xt+ + +=

Yt ΦYt 4– ee θet 1––+=

Yt 0.5Yt 1– Yt 4– 0.5Yt 5–– et 0.3et 1––+ +=
Yt Yt 1– Yt 12– Yt 13– et 0.5et 1–– 0.5et 12–– 0.25et 13–+ +–+=
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10.7 Suppose that the process {Yt} develops according to  with Yt = et
for t = 1, 2, 3, and 4.
(a) Find the variance function for {Yt}.
(b) Find the autocorrelation function for {Yt}.
(c) Identify the model for {Yt} as a certain seasonal ARIMA model.

10.8 Consider the Alert, Canada, monthly carbon dioxide time series shown in Exhibit
10.1 on page 227. The data are in the file named co2.
(a) Fit a deterministic seasonal means plus linear time trend model to these data.

Are any of the regression coefficients “statistically significant”?
(b) What is the multiple R-squared for this model?
(c) Now calculate the sample autocorrelation of the residuals from this model.

Interpret the results.
10.9 The monthly airline passenger time series, first investigated in Box and Jenkins

(1976), is considered a classic time series. The data are in the file named airpass.
(a) Display the time series plots of both the original series and the logarithms of

the series. Argue that taking logs is an appropriate transformation.
(b) Display and interpret the time series plots of the first difference of the logged

series.
(c) Display and interpret the time series plot of the seasonal difference of the first

difference of the logged series.
(d) Calculate and interpret the sample ACF of the seasonal difference of the first

difference of the logged series.
(e) Fit the “airline model” (ARIMA(0,1,1)×(0,1,1)12 ) to the logged series.
(f) Investigate diagnostics for this model, including autocorrelation and normality

of the residuals.
(g) Produce forecasts for this series with a lead time of two years. Be sure to

include forecast limits.
10.10 Exhibit 5.8 on page 99 displayed the monthly electricity generated in the United

States. We argued there that taking logarithms was appropriate for modeling.
Exhibit 5.10 on page 100 showed the time series plot of the first differences for
this series. The filename is electricity.
(a) Calculate the sample ACF of the first difference of the logged series. Is the

seasonality visible in this display?
(b) Plot the time series of seasonal difference and first difference of the logged

series. Does a stationary model seem appropriate now?
(c) Display the sample ACF of the series after a seasonal difference and a first

difference have been taken of the logged series. What model(s) might you
consider for the electricity series?

Yt Yt 4– et+=
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10.11 The quarterly earnings per share for 1960–1980 of the U.S. company Johnson &
Johnson, are saved in the file named JJ. 
(a) Plot the time series and also the logarithm of the series. Argue that we should

transform by logs to model this series.
(b) The series is clearly not stationary. Take first differences and plot that series.

Does stationarity now seem reasonable?
(c) Calculate and graph the sample ACF of the first differences. Interpret the

results.
(d) Display the plot of seasonal differences and the first differences. Interpret the

plot. Recall that for quarterly data, a season is of length 4.
(e) Graph and interpret the sample ACF of seasonal differences with the first dif-

ferences.
(f) Fit the model ARIMA(0,1,1)×(0,1,1)4, and assess the significance of the esti-

mated coefficients.
(g) Perform all of the diagnostic tests on the residuals.
(h) Calculate and plot forecasts for the next two years of the series. Be sure to

include forecast limits.
10.12 The file named boardings contains monthly data on the number of people who

boarded transit vehicles (mostly light rail trains and city buses) in the Denver,
Colorado, region for August 2000 through December 2005.
(a) Produce the time series plot for these data. Be sure to use plotting symbols

that will help you assess seasonality. Does a stationary model seem reason-
able?

(b) Calculate and plot the sample ACF for this series. At which lags do you have
significant autocorrelation?

(c) Fit an ARMA(0,3)×(1,0)12 model to these data. Assess the significance of the
estimated coefficients.

(d) Overfit with an ARMA(0,4)×(1,0)12 model. Interpret the results.
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CHAPTER 11

TIME SERIES REGRESSION MODELS

In this chapter, we introduce several useful ideas that incorporate external information
into time series modeling. We start with models that include the effects of interventions
on time series’ normal behavior. We also consider models that assimilate the effects of
outliers—observations, either in the observed series or in the error terms, that are highly
unusual relative to normal behavior. Lastly, we develop methods to look for and deal
with spurious correlation—correlation between series that is artificial and will not help
model or understand the time series of interest. We will see that prewhitening of series
helps us find meaningful relationships.

11.1 Intervention Analysis 

Exhibit 11.1 shows the time plot of the logarithms of monthly airline passenger-miles in
the United States from January 1996 through May 2005. The time series is highly sea-
sonal, displaying the fact that air traffic is generally higher during the summer months
and the December holidays and lower in the winter months.† Also, air traffic was
increasing somewhat linearly overall until it had a sudden drop in September 2001. The
sudden drop in the number of air passengers in September 2001 and several months
thereafter was triggered by the terrorist acts on September 11, 2001, when four planes
were hijacked, three of which were crashed into the twin towers of the World Trade
Center and the Pentagon and the fourth into a rural field in Pennsylvania. The terrorist
attacks of September 2001 deeply depressed air traffic around that period, but air traffic
gradually regained the losses as time went on. This is an example of an intervention that
results in a change in the trend of a time series.

Intervention analysis, introduced by Box and Tiao (1975), provides a framework
for assessing the effect of an intervention on a time series under study. It is assumed that
the intervention affects the process by changing the mean function or trend of a time
series. Interventions can be natural or man-made. For example, some animal population
levels crashed to a very low level in a particular year because of extreme climate in that
year. The postcrash annual population level may then be expected to be different from
that in the precrash period. Another example is the increase of the speed limit from 65
miles per hour to 70 miles per hour on an interstate highway. This may make driving on

† In the exercises, we ask you to display the time series plot using seasonal plotting symbols
on a full-screen graph, where the seasonality is quite easy to see.
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the highway more dangerous. On the other hand, drivers may stay on the highway for a
shorter length of time because of the faster speed, so the net effect of the increased
speed limit change is unclear. The effect of the increase in speed limit may be studied by
analyzing the mean function of some accident time series data; for example, the quar-
terly number of fatal car accidents on some segment of an interstate highway. (Note that
the autocovariance function of the time series might also be changed by the intervention,
but this possibility will not be pursued here.)

Exhibit 11.1 Monthly U.S. Airline Miles: January 1996 through May 2005

> win.graph(width=4.875,height=2.5,pointsize=8)
> data(airmiles)
> plot(log(airmiles),ylab='Log(airmiles)',xlab='Year')

We first consider the simple case of a single intervention. The general model for the
time series {Yt}, perhaps after suitable transformation, is given by

(11.1.1)

where mt is the change in the mean function and Nt is modeled as some ARIMA pro-
cess, possibly seasonal. The process {Nt} represents the underlying time series were
there no intervention. It is referred to as the natural or unperturbed process, and it may
be stationary or nonstationary, seasonal or nonseasonal. Suppose the time series is sub-
ject to an intervention that takes place at time T. Before T, mt is assumed to be identi-
cally zero. The time series {Yt, t < T} is referred to as the preintervention data and can
be used to specify the model for the unperturbed process Nt.

Based on subject matter considerations, the effect of the intervention on the mean
function can often be specified up to some parameters. A useful function in this specifi-
cation is the step function

(11.1.2)
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that is 0 during the preintervention period and 1 throughout the postintervention period.
The pulse function

(11.1.3)

equals 1 at t = T and 0 otherwise. That is,  is the indicator or dummy variable flag-
ging the time that the intervention takes place. If the intervention results in an immedi-
ate and permanent shift in the mean function, the shift can be modeled as

(11.1.4)

where ω is the unknown permanent change in the mean due to the intervention. Testing
whether ω = 0 or not is similar to testing whether the population means are the same
with data in the form of two independent random samples from the two populations.
However, the major difference here is that the pre- and postintervention data cannot gen-
erally be assumed to be independent and identically distributed. The inherent serial cor-
relation in the data makes the problem more interesting but at the same time more
difficult. If there is a delay of d time units before the intervention takes effect and d is
known, then we can specify

(11.1.5)

In practice, the intervention may affect the mean function gradually, with its full force
reflected only in the long run. This can be modeled by specifying mt as an AR(1)-type
model with the error term replaced by a multiple of the lag 1 of :

(11.1.6)

with the initial condition m0 = 0. After some algebra, it can be shown that

(11.1.7)

Often δ is selected in the range 1 > δ > 0. In that case, mt approaches ω/(1 − δ) for
large t, which is the ultimate change (gain or loss) for the mean function. Half of the
ultimate change is attained when 1 − δ t−T = 0.5; that is, when t = T + log(0.5)/log(δ).
The duration log(0.5)/log(δ) is called the half-life of the intervention effect, and the
shorter it is, the quicker the ultimate change is felt by the system. Exhibit 11.2 displays
the half-life as a function of δ, which shows that the half-life increases with δ. Indeed,
the half-life becomes infinitely large when δ approaches 1.

Exhibit 11.2 Half-life based on an AR(1) Process with Step Function Input
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It is interesting to note the limiting case when δ = 1. Then mt = ω(T − t) for t ≥ T and
0 otherwise. The time sequence plot of mt displays the shape of a ramp with slope ω.
This specification implies that the intervention changes the mean function linearly in the
postintervention period. This ramp effect (with a one time unit delay) is shown in
Exhibit 11.3 (c).

Short-lived intervention effects may be specified using the pulse dummy variable

(11.1.8)

For example, if the intervention impacts the mean function only at t = T, then

(11.1.9)

Intervention effects that die out gradually may be specified via the AR(1)-type specifi-
cation

(11.1.10)

That is, mt = ωδT− t for t ≥ T so that the mean changes immediately by an amount ω and
subsequently the change in the mean decreases geometrically by the common factor of
δ; see Exhibit 11.4 (a). Delayed changes can be incorporated by lagging the pulse func-
tion. For example, if the change in the mean takes place after a delay of one time unit
and the effect dies out gradually, we can specify

(11.1.11)

Again, we assume the initial condition m0 = 0.
It is useful to write† the preceding model in terms of the backshift operator B,

where Bmt = mt − 1 and . Then . Or, we can write

(11.1.12)

Recall , which can be rewritten as .

† The remainder of this chapter makes use of the backshift operator introduced in Appendix
D on page 106. You may want to review that appendix before proceeding further.
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Exhibit 11.3 Some Common Models for Step Response Interventions 
(All are shown with a delay of 1 time unit)

Several specifications can be combined to model more sophisticated intervention
effects. 

For example,

(11.1.13)

depicts the situation displayed in Exhibit 11.4 (b) where ω1 and ω2 are both greater than
zero, and

(11.1.14)

may model situations like Exhibit 11.4 (c) with ω1 and ω2 both negative. This last case
may model the interesting situation where a special sale may cause strong rush buying,
initially so much so that the sale is followed by depressed demand. More generally, we
can model the change in the mean function by an ARMA-type specification

(11.1.15)

where ω(B) and δ(B) are some polynomials in B. Because , the
model for mt can be specified in terms of either the pulse or step dummy variable.
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Exhibit 11.4 Some Common Models for Pulse Response Interventions 
(All are shown with a delay of 1 time unit)

Estimation of the parameters of an intervention model may be carried out by the
method of maximum likelihood estimation. Indeed, Yt − mt is a seasonal ARIMA pro-
cess so that the likelihood function equals the joint pdf of Yt − mt, t = 1, 2,…, n, which
can be computed by methods studied in Chapter 7 or else by the state space modeling
methods of Appendix H on page 222.

We now revisit the monthly passenger-airmiles data. Recall that the terrorist acts in
September 2001 had lingering depressing effects on air traffic. The intervention may be
specified as an AR(1) process with the pulse input at September 2001. But the unex-
pected turn of events in September 2001 had a strong instantaneous chilling effect on air
traffic. Thus, we model the intervention effect (the 9/11 effect) as

where T denotes September 2001. In this specification, ω0 + ω1 represents the instanta-
neous 9/11 effect, and, for k ≥ 1,  gives the 9/11 effect k months afterward. It
remains to specify the seasonal ARIMA structure of the underlying unperturbed pro-
cess. Based on the preintervention data, an ARIMA(0,1,1)×(0,1,0)12 model was tenta-
tively specified for the unperturbed process; see Exhibit 11.5.
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Exhibit 11.5 Sample ACF for (1−B)(1−B12) Log(Air Passenger Miles) Over 
the Preintervention Period

> acf(as.vector(diff(diff(window(log(airmiles),end=c(2001,8)), 
12))),lag.max=48)

Model diagnostics of the fitted model suggested that a seasonal MA(1) coefficient
was needed and the existence of some additive outliers occurring in December 1996,
January 1997, and December 2002. (Outliers will be discussed in more detail later; here
additive outliers may be regarded as interventions of unknown nature that have a pulse
response function.) Hence, the model is specified as an ARIMA(0,1,1)×(0,1,1)12 plus
the 9/11 intervention and three additive outliers. The fitted model is summarized in
Exhibit 11.6.

Exhibit 11.6 Estimation of Intervention Model for Logarithms of Air Miles 
(Standard errors are shown below the estimates)

> air.m1=arimax(log(airmiles),order=c(0,1,1), 
seasonal=list(order=c(0,1,1),period=12), 
xtransf=data.frame(I911=1*(seq(airmiles)==69), 
I911=1*(seq(airmiles)==69)),transfer=list(c(0,0),c(1,0)), 
xreg=data.frame(Dec96=1*(seq(airmiles)==12), 
Jan97=1*(seq(airmiles)==13),Dec02=1*(seq(airmiles)==84)), 
method='ML')

> air.m1
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Model diagnostics suggested that the fitted model above provides a good fit to the
data. The open circles in the time series plot shown in Exhibit 11.7 represent the fitted
values from the final estimated model. They indicate generally good agreement between
the model and the data.

Exhibit 11.7 Logs of Air Passenger Miles and Fitted Values

> plot(log(airmiles),ylab='Log(airmiles)')
> points(fitted(air.m1)) 

The fitted model estimates that the 9/11 intervention reduced air traffic by 31% =
{1 − exp(−0.0949−0.2715)}×100% in September 2001, and air traffic k months later
was lowered by {1 − exp(−0.2715×0.8139k )}×100%. Exhibit 11.8 graphs the estimated
9/11 effects on air traffic, which indicate that air traffic regained its losses toward the
end of 2003.

Exhibit 11.8 The Estimated 9/11 Effects for the Air Passenger Series

> Nine11p=1*(seq(airmiles)==69)
> plot(ts(Nine11p*(-0.0949)+ 
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filter(Nine11p,filter=.8139,method='recursive', side=1)* 
(-0.2715),frequency=12,start=1996),ylab='9/11 Effects', 
type='h'); abline(h=0)

11.2 Outliers 

Outliers refer to atypical observations that may arise because of measurement and/or
copying errors or because of abrupt, short-term changes in the underlying process. For
time series, two kinds of outliers can be distinguished, namely additive outliers and
innovative outliers. These two kinds of outliers are often abbreviated as AO and IO,
respectively. An additive outlier occurs at time T if the underlying process is perturbed
additively at time T so that the data equal

(11.2.1)

where {Yt} is the unperturbed process. Henceforth in this section, Y ′ denotes the
observed process that may be affected by some outliers and Y the unperturbed process
should there be no outliers. Thus,  but  otherwise, so the time
series is only affected at time T if it has an additive outlier at T. An additive outlier can
also be treated as an intervention that has a pulse response at T so that .

On the other hand, an innovative outlier occurs at time t if the error (also known as
an innovation) at time t is perturbed (that is, the errors equal , where et
is a zero-mean white noise process). So,  but  otherwise. Suppose
that the unperturbed process is stationary and admits an MA(∞) representation

Consequently, the perturbed process can be written

or

(11.2.2)

where ψ0 = 1 and ψj = 0 for negative j. Thus, an innovative outlier at T perturbs all
observations on and after T, although with diminishing effect, as the observation is fur-
ther away from the origin of the outlier.

To detect whether an observation is an AO or IO, we use the AR(∞) representation
of the unperturbed process to define the residuals:

(11.2.3)

For simplicity, we assume the process has zero mean and that the parameters are known.
In practice, the unknown parameter values are replaced by their estimates from the pos-
sibly perturbed data. Under the null hypothesis of no outliers and for large samples, this
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has a negligible effect on the properties of the test procedures described below. If the
series has exactly one IO at time T, then the residual aT = ωI + eT but at = et otherwise.
So ωI can be estimated by  with variance equal to σ2. Thus, a test statistic for
testing for an IO at T is

(11.2.4)

which has (approximately) a standard normal distribution under the null hypothesis that
there are no outliers in the time series. When T is known beforehand, the observation in
question is declared an outlier if the corresponding standardized residual exceeds 1.96
in magnitude at the 5% significance level. In practice, there is often no prior knowledge
about T, and the test is applied to all observations. In addition, σ will need to be esti-
mated. A simple conservative procedure is to use the Bonferroni rule for controlling the
overall error rate of multiple tests. Let

λ1 = max1≤ t≤n |λ1,t | (11.2.5)

be attained at t = T. Then the T th observation is deemed an IO if λ1 exceeds the upper
0.025/n×100 percentile of the standard normal distribution. This procedure guarantees
that there is at most a 5% probability of a false detection of an IO. Note that an outlier
will inflate the maximum likelihood estimate of σ, so if there is no adjustment for outli-
ers, the power of most tests is usually reduced. A robust estimate of the noise standard
deviation may be used in lieu of the maximum likelihood estimate to increase the power
of the test. For example, σ can be more robustly estimated by the mean absolute residual
times .

The detection of an AO is more complex. Suppose that the process admits an AO at
T and is otherwise free of outliers. Then it can be shown that

(11.2.6)

where π0 = −1 and πj = 0 for negative j. Hence, at = et for t < T, aT = ωA + eT,
aT+1 = −ωAπ1 + eT+1, aT+2 = −ωAπ2 + eT+2, and so forth. A least squares estimator of ωA
is

(11.2.7)

where , with the variance of the estimate being
equal to ρ2σ2. We can then define

(11.2.8)

as the test statistic for testing the null hypothesis that the time series has no outliers ver-
sus the alternative hypothesis of an AO at T. As before, ρ and σ will need to be esti-
mated. The test statistic λ2,T is approximately distributed as N(0,1) under the null
hypothesis. Again, T is often unknown, and the test is applied repeatedly to each time
point. The Bonferroni rule may again be applied to control the overall error rate. Fur-
thermore, the nature of an outlier is not known beforehand. In the case where an outlier
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is detected at T, it may be classified to be an IO if |λ1,T| > | λ2,T| and an AO otherwise.
See Chang et al. (1988) for another approach to classifying the nature of an outlier.
When an outlier is found, it can be incorporated into the model, and the outlier-detection
procedure can then be repeated with the refined model until no more outliers are found.

As a first example, we simulated a time series of length n = 100 from the
ARIMA(1,0,1) model with φ = 0.8 and θ = −0.5. We then changed the 10th observation
from −2.13 to 10 (that is, ωA = 12.13); see Exhibit 11.9. Based on the sample ACF,
PACF and EACF, an AR(1) model was tentatively identified. Based on the Bonferroni
rule, the 9th, 10th, and 11th observations were found to be possible additive outliers
with the corresponding robustified test statistics being −3.54, 9.55, and −5.20. The test
for IO revealed that the 10th and 11th observations may be IO, with the corresponding
robustified test statistics being 7.11 and −6.64. Because among the tests for AO and IO
the largest magnitude occurs for the test for AO at T = 10, the 10th observation was ten-
tatively marked as an AO. Note that the nonrobustified test statistic for AO at T = 10
equals 7.49, which is substantially less than the more robust test value of 9.55, showing
that robustifying the estimate of the noise standard deviation does increase the power of
the test. After incorporating the AO in the model, no more outliers were found. How-
ever, the lag 1 residual ACF was significant, suggesting the need for an MA(1) compo-
nent. Hence, an ARIMA(1,0,1) + AO at T = 10 model was fitted to the data. This model
was found to have no additional outliers and passed all model diagnostic checks.

Exhibit 11.9 Simulated ARIMA(1,0,1) Process with an Additive Outlier

> The extensive R code for the simulation and analysis of this 
example may be found in the R code script file for Chapter 11.

For a real example, we return to the seasonal ARIMA(0,1,1)×(0,1,1)12 model that
we fitted to the carbon dioxide time series in Chapter 10. The time series plot of the
standardized residuals from this model, shown in Exhibit 10.11 on page 238, showed a
suspiciously large standardized residual in September 1998. Calculation shows that
there is no evidence of an additive outlier, as λ2, t is not significantly large for any t.
However, the robustified λ1 = max1≤ t≤n |λ1, t | = 3.7527, which is attained at t = 57, cor-
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responding to September 1998. The Bonferroni critical value with α = 5% and n = 132
is 3.5544. So our observed λ1 is large enough to claim significance for an innovation
outlier in September 1998. Exhibit 11.10 shows the results of fitting the ARIMA(0,1,1)
×(0,1,1)12 model with an IO at t = 57 to the CO2 time series. These results should be
compared with the earlier results shown in Exhibit 10.10 on page 237, where the outlier
was not taken into account. Notice that the estimates of θ and Θ have not changed very
much, the AIC is better (that is, smaller), and the IO effect is highly significant. Diag-
nostics based on this model turn out to be excellent, no further outliers are detected, and
we have a very adequate model for this seasonal time series.

Exhibit 11.10 ARIMA(0,1,1)×(0,1,1)12 Model with IO at t = 57 for CO2 Series

> m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 
period=12)); m1.co2

> detectAO(m1.co2); detectIO(m1.co2)
> m4.co2=arimax(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 

period=12),io=c(57)); m4.co2

11.3 Spurious Correlation

A main purpose of building a time series model is for forecasting, and the ARIMA
model does this by exploiting the autocorrelation pattern in the data. Often, the time
series under study may be related to, or led by, some other covariate time series. For
example, Stige et al. (2006) found that pasture production in Africa is generally related
to some climatic indices. In such cases, better understanding of the underlying process
and/or more accurate forecasts may be achieved by incorporating relevant covariates
into the time series model.

Let Y = {Yt} be the time series of the response variable and X = {Xt} be a covariate
time series that we hope will help explain or forecast Y. To explore the correlation struc-
ture between X and Y and their lead-led relationship, we define the cross-covariance
function γt,s(X,Y) = Cov(Xt,Ys) for each pair of integers t and s. Stationarity of a univari-
ate time series can be easily extended to the case of multivariate time series. For exam-
ple, X and Y are jointly (weakly) stationary if their means are constant and the
covariance γt,s(X,Y) is a function of the time difference t − s. For jointly stationary pro-
cesses, the cross-correlation function between X and Y at lag k can then be defined by
ρk(X,Y) = Corr(Xt ,Yt − k) = Corr(Xt + k ,Yt). Note that if Y = X, the cross-correlation
becomes the autocorrelation of Y at lag k. The coefficient ρ0(Y,X) measures the contem-
poraneous linear association between X and Y, whereas ρk(X,Y) measures the linear
association between Xt and that of Yt − k. Recall that the autocorrelation function is an

Coefficient θ Θ IO-57

Estimate 0.5925 0.8274 2.6770

Standard Error 0.0775 0.1016 0.7246

 = 0.4869: log-likelihood = −133.08, AIC = 272.16σ̂e
2
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even function, that is, ρk(Y,Y) = ρ−k(Y,Y). (This is because Corr(Yt,Yt − k) =
Corr(Yt − k ,Yt) = Corr(Yt ,Yt + k), by stationarity.) However, the cross-correlation function
is generally not an even function since Corr(Xt,Yt − k) need not equal Corr(Xt ,Yt + k).

As an illustration, consider the regression model

(11.3.1)

where the X’s are independent, identically distributed random variables with variance
and the e’s are also white noise with variance  and are independent of the X’s. It

can be checked that the cross-correlation function (CCF) ρk(X,Y) is identically zero
except for lag k = −d, where

(11.3.2)

In this case, the theoretical CCF is nonzero only at lag −d, reflecting the fact that X is
“leading” Y by d units of time. The CCF can be estimated by the sample cross-correla-
tion function (sample CCF) defined by

(11.3.3)

where the summations are done over all data where the summands are available. The
sample CCF becomes the sample ACF when Y = X. The covariate X is independent of Y
if and only if β1 = 0, in which case the sample autocorrelation rk(X,Y) is approximately
normally distributed with zero mean and variance 1/n, where n is the sample size—the
number of pairs of (Xt,Yt) available. Sample cross-correlations that are larger than

 in magnitude are then deemed significantly different from zero.
We have simulated 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) with d

= 2, β0 = 0, and β1 = 1. The X’s and e’s are generated as normal random variables dis-
tributed as N(0,1) and N(0,0.25), respectively. Theoretically, the CCF should then be
zero except at lag −2, where it equals = 0.8944. Exhibit
11.11 shows the sample CCF of the simulated data, which is significant at lags −2 and 3.
But the sample CCF at lag 3 is quite small and only marginally significant. Such a false
alarm is not unexpected as the exhibit displays a total of 33 sample CCF values out of
which we may expect 33×0.05 = 1.65 false alarms on average.
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Exhibit 11.11 Sample Cross-Correlation from Equation (11.3.1) with d = 2

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(12345); X=rnorm(105); Y=zlag(X,2)+.5*rnorm(105)
> X=ts(X[-(1:5)],start=1,freq=1); Y=ts(Y[-(1:5)],start=1,freq=1)
> ccf(X,Y,ylab='CCF')

Even though Xt − 2 correlates with Yt , the regression model considered above is
rather restrictive, as X and Y are each white noise series. For stationary time series, the
response variable and the covariate are each generally autocorrelated, and the error term
of the regression model is also generally autocorrelated. Hence a more useful regression
model is given by

(11.3.4)

where Zt may follow some ARIMA(p,d,q) model. Even if the processes X and Y are
independent of each other (β1 = 0), the autocorrelations in Y and X have the unfortunate
consequence of implying that the sample CCF is no longer approximately N(0,1/n).
Under the assumption that both X and Y are stationary and that they are independent of
each other, it turns out that the sample variance tends to be different from 1/n. Indeed, it
may be shown that the variance of is approximately

(11.3.5)

where ρk(X) is the autocorrelation of X at lag k and ρk(Y) is similarly defined for the
Y-process. For refinement of this asymptotic result, see Box et al. (1994, p. 413). Sup-
pose X and Y are both AR(1) processes with AR(1) coefficients φX and φY, respectively.
Then rk(X,Y) is approximately normally distributed with zero mean, but the variance is
now approximately equal to

(11.3.6)
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When both AR(1) coefficients are close to 1, the ratio of the sampling variance of
rk(X,Y) to the nominal value of 1/n approaches infinity. Thus, the unquestioned use of
the 1/n rule in deciding the significance of the sample CCF may lead to many more false
positives than the nominal 5% error rate, even though the response and covariate time
series are independent of each other. Exhibit 11.12 shows some numerical results for the
case where φX = φY = φ.

Exhibit 11.12 Asymptotic Error Rates of a Nominal 5% Test of 
Independence for a Pair of AR(1) Processes

> phi=seq(0,.95,.15)
> rejection=2*(1-pnorm(1.96*sqrt((1-phi^2)/(1+phi^2))))
> M=signif(rbind(phi,rejection),2)
> rownames(M)=c('phi', 'Error Rate')
> M

The problem of inflated variance of the sample cross-correlation coefficients
becomes more acute for nonstationary data. In fact, the sample cross-correlation coeffi-
cients may no longer be approximately normally distributed even with a large sample
size. Exhibit 11.13 displays the histogram of 1000 simulated lag zero cross-correlations
between two independent IMA(1,1) processes each of size 500. An MA(1) coefficient
of θ = 0.8 was used for both simulated processes. Note that the distribution of r0(X,Y) is
far from normal and widely dispersed between −1 and 1. See Phillips (1998) for a rele-
vant theoretical discussion.

Exhibit 11.13 Histogram of 1000 Sample Lag Zero Cross-Correlations of 
Two Independent IMA(1,1) Processes Each of Size 500

φ = φX = φY 0.00 0.15 0.30 0.45 0.60 0.75 0.90

Error Rate 5% 6% 7% 11% 18% 30% 53%
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> set.seed(23457)
> correlation.v=NULL; B=1000; n=500
> for (i in 1:B) {x=cumsum(arima.sim(model=list(ma=.8),n=n))
> y=cumsum(arima.sim(model=list(ma=.8),n=n))
> correlation.v=c(correlation.v,ccf(x,y,lag.max=1, 

plot=F)$acf[2])}
> hist(correlation.v,prob=T,xlab=expression(r[0](X,Y)))

These results provide insight into why we sometimes obtain nonsense (spurious)
correlation between time series variables. The phenomenon of spurious correlation was
first studied systematically by Yule (1926).

As an example, the monthly milk production and the logarithms of monthly elec-
tricity production in the United States from January 1994 to December 2005 are shown
in Exhibit 11.14. Both series have an upward trend and are highly seasonal.

Exhibit 11.14 Monthly Milk Production and Logarithms of Monthly 
Electricity Production in the U.S.

> data(milk); data(electricity)
> milk.electricity=ts.intersect(milk,log(electricity))
> plot(milk.electricity,yax.flip=T)

Calculation shows that these series have a cross-correlation coefficient at lag zero
of 0.54, which is “statistically significantly different from zero” as judged against the
standard error criterion of . Exhibit 11.15 displays the strong cross-
correlations between these two variables at a large number of lags.

Needless to say, it is difficult to come up with a plausible reason for the relationship
between monthly electricity production and monthly milk production. The nonstationar-
ity in the milk production series and in the electricity series is more likely the cause of
the spurious correlations found between the two series. The following section contains
further discussion of this example.
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Exhibit 11.15 Sample Cross-Correlation Between Monthly Milk Production 
and Logarithm of Monthly Electricity Production in the U.S.

> ccf(as.vector(milk.electricity[,1]), 
as.vector(milk.electricity[,2]),ylab='CCF')

11.4 Prewhitening and Stochastic Regression

In the preceding section, we found that with strongly autocorrelated data it is difficult to
assess the dependence between the two processes. Thus, it is pertinent to disentangle the
linear association between X and Y, say, from their autocorrelation. A useful device for
doing this is prewhitening. Recall that, for the case of stationary X and Y that are inde-
pendent of each other, the variance of is approximately

(11.4.1)

An examination of this formula reveals that the approximate variance is 1/n if either one
(or both) of X or Y is a white noise process. In practice, the data may be nonstationary,
but they may be transformed to approximately white noise by replacing the data by the
residuals from a fitted ARIMA model. For example, if X follows an ARIMA(1,1,0)
model with no intercept term, then

(11.4.2)

is white noise. More generally, if Xt follows some invertible ARIMA(p,d,q) model, then
it admits an AR(∞) representation

where the ’s are white noise. The process of transforming the X’s to the ’s via the fil-
ter π(B) = 1 − π1B − π2B2 −  is known as whitening or prewhitening. We now can
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study the CCF between X and Y by prewhitening the Y and X using the same filter based
on the X process and then computing the CCF of  and ; that is, the prewhitened Y
and X. Since prewhitening is a linear operation, any linear relationships between the
original series will be preserved after prewhitening. Note that we have abused the termi-
nology, as  need not be white noise because the filter π(B) is tailor-made only to trans-
form X to a white noise process—not Y. We assume, furthermore, that  is stationary.
This approach has two advantages: (i) the statistical significance of the sample CCF of
the prewhitened data can be assessed using the cutoff , and (ii) the theoretical
counterpart of the CCF so estimated is proportional to certain regression coefficients.

To see (ii), consider a more general regression model relating X to Y and, without
loss of generality, assume both processes have zero mean:

(11.4.3)

where X is independent of Z and the coefficients β are such that the process is
well-defined. In this model, the coefficients βk could be nonzero for any integer k. How-
ever, in real applications, the doubly infinite sum is often a finite sum so that the model
simplifies to

(11.4.4)

which will be assumed below even though we retain the doubly infinite summation
notation for ease of exposition. If the summation ranges only over a finite set of positive
indices, then X leads Y and the covariate X serves as a useful leading indicator for
future Y’s. Applying the filter π(B) to both sides of this model, we get

(11.4.5)

where .The prewhitening procedure thus orthogonal-
izes the various lags of X in the original regression model. Because  is a white noise
sequence and  is independent of , the theoretical cross-correlation coefficient
between  and  at lag k equals . In other words, the theoretical cross-
correlation of the prewhitened processes at lag k is proportional to the regression coeffi-
cient β−k.

For a quick preliminary analysis, an approximate prewhitening can be done easily
by first differencing the data (if needed) and then fitting an approximate AR model with
the order determined by minimizing the AIC. For example, for the milk production and
electricity consumption data, both are highly seasonal and contain trends. Consequently,
they can be differenced with both regular differencing and seasonal differencing, and
then the prewhitening can be carried out by filtering both differenced series by an AR
model fitted to the differenced milk data. Exhibit 11.16 shows the sample CCF between
the prewhitened series. None of the cross-correlations are now significant except for lag
−3, which is just marginally significant. The lone significant cross-correlation is likely a
false alarm since we expect about 1.75 false alarms out of the 35 sample cross-correla-
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tions examined. Thus, it seems that milk production and electricity consumption are in
fact largely uncorrelated, and the strong cross-correlation pattern found between the raw
data series is indeed spurious.

Exhibit 11.16 Sample CCF of Prewhitened Milk and Electricity Production

> me.dif=ts.intersect(diff(diff(milk,12)), 
diff(diff(log(electricity),12)))

> prewhiten(as.vector(me.dif[,1]),as.vector(me.dif[,2]), 
ylab='CCF')

The model defined by Equation (11.3.4) on page 262 is known variously as the
transfer-function model, the distributed-lag model, or the dynamic regression model.
The specification of which lags of the covariate enter into the model is often done by
inspecting the sample cross-correlation function based on the prewhitened data. When
the model appears to require a fair number of lags of the covariate, the regression coeffi-
cients may be parsimoniously specified via an ARMA specification similar to the case
of intervention analysis; see Box et al. (1994, Chapter 11) for some details. We illustrate
the method below with two examples where only one lag of the covariate appears to be
needed. The specification of the stochastic noise process Zt can be done by examining
the residuals from an ordinary least squares (OLS) fit of Y on X using the techniques
learned in earlier chapters.

Our first example of this section is a sales and price dataset of a certain potato chip
from Bluebird Foods Ltd., New Zealand. The data consist of the log-transformed
weekly unit sales of large packages of standard potato chips sold and the weekly aver-
age price over a period of 104 weeks from September 20, 1998 through September 10,
2000; see Exhibit 11.17. The logarithmic transformation is needed because the sales
data are highly skewed to the right. These data are clearly nonstationary. Exhibit 11.18
shows that, after differencing and using prewhitened data, the CCF is significant only at
lag 0, suggesting a strong contemporaneous negative relationship between lag 1 of price
and sales. Higher prices are associated with lower sales.
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Exhibit 11.17  Weekly Log(Sales) and Price for Bluebird Potato Chips

> data(bluebird)
> plot(bluebird,yax.flip=T)

Exhibit 11.18 Sample Cross Correlation Between Prewhitened Differenced 
Log(Sales) and Price of Bluebird Potato Chips

> prewhiten(y=diff(bluebird)[,1],x=diff(bluebird)[,2],ylab='CCF')

Exhibit 11.19 reports the estimates from the OLS regression of log(sales) on price.
The residuals are, however, autocorrelated, as can be seen from their sample ACF and
PACF displayed in Exhibits 11.20 and 11.21, respectively. Indeed, the sample autocor-
relations of the residuals are significant for the first four lags, whereas the sample partial
autocorrelations are significant at lags 1, 2, 4, and 14.
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Exhibit 11.19 OLS Regression Estimates of Log(Sales) on Price

> sales=bluebird[,1]; price=bluebird[,2]
> chip.m1=lm(sales~price,data=bluebird)
> summary(chip.m1)

Exhibit 11.20 Sample ACF of Residuals from OLS Regression of 
Log(Sales) on Price

> acf(residuals(chip.m1),ci.type='ma')

Exhibit 11.21 Sample PACF of Residuals from OLS Regression of 
Log(Sales) on Price

> pacf(residuals(chip.m1))

 Estimate Std. Error t value Pr(>)

Intercept 15.90 0.2170 73.22 < 0.0001

Price −2.489 0.1260 −19.75 < 0.0001
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The sample EACF of the residuals, shown in Exhibit 11.22, contains a triangle of
zeros with a vertex at (1,4), thereby suggesting an ARMA(1,4) model. Hence, we fit a
regression model of log(sales) on price with an ARMA(1,4) error.

Exhibit 11.22 The Sample EACF of the Residuals from the OLS 
Regression of Log(Sales) on Price

> eacf(residuals(chip.m1))

It turns out that the estimates of the AR(1) coefficient and the MA coefficients θ1
and θ3 are not significant, and hence a model fixing these coefficients to be zero was
subsequently fitted and reported in Exhibit 11.23.

Exhibit 11.23 Maximum Likelihood Estimates of a Regression Model of 
Log(sales) on Price with a Subset MA(4) for the Errors

> chip.m2=arima(sales,order=c(1,0,4),xreg=data.frame(price))
> chip.m2
> chip.m3=arima(sales,order=c(1,0,4),xreg=data.frame(price), 

fixed=c(NA,0,NA,0,NA,NA,NA)); chip.m3
> chip.m4=arima(sales,order=c(0,0,4),xreg=data.frame(price), 

fixed=c(0,NA,0,NA,NA,NA)); chip.m4

Note that the regression coefficient estimate on Price is similar to that from the OLS
regression fit earlier, but the standard error of the estimate is about 10% lower than that
from the simple OLS regression. This illustrates the general result that the simple OLS
estimator is consistent but the associated standard error is generally not trustworthy.

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 x x x x 0 0 x x 0 0 0 0 0 0 

1 x 0 0 x 0 0 0 0 0 0 0 0 0 0 

2 x x 0 x 0 0 0 0 0 0 0 0 0 0 

3 x x 0 x 0 0 0 0 0 0 0 0 0 0 

4 0 x x 0 0 0 0 0 0 0 0 0 0 0 

5 x x x 0 x 0 0 0 0 0 0 0 0 0 

6 x x 0 x x x 0 0 0 0 0 0 0 0 

7 x 0 x 0 0 0 0 0 0 0 0 0 0 0 

 Parameter θ1 θ2 θ3 θ4 Intercept Price 

Estimate 0 −0.2884 0 −0.5416 15.86 −2.468

Standard Error 0 0.0794 0 0 0.1167 0.1909 0.1100

σ2 estimated as 0.02623: log likelihood = 41.02, AIC = −70.05 
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The residuals from this fitted model by and large pass various model diagnostic
tests except that the residual ACF is significant at lag 14. As a result, some Box-Ljung
test statistics have p-values bordering on 0.05 when 14 or more lags of the residual auto-
correlations are included in the test. Even though the significant ACF at lag 14 may sug-
gest a quarterly effect, we do not report a more complex model including lag 14 because
(1) 14 weeks do not exactly make a quarter and (2) adding a seasonal MA(1) component
of period 14 only results in marginal improvement in terms of model diagnostics.

For a second example, we study the impact of higher gasoline price on public trans-
portation usage. The dataset consists of the monthly number of boardings on public
transportation in the Denver, Colorado, region together with the average monthly gaso-
line prices in Denver from August 2000 through March 2006. Both variables are skewed
to the right and hence are log-transformed. As we shall see below, the logarithmic trans-
formation also makes the final fitted model more interpretable. The time series plots,
shown in Exhibit 11.24, display the increasing trends for both variables and the seasonal
fluctuation in the number of boardings. Based on the sample ACF and PACF, an
ARIMA(2,1,0) model was fitted to the gasoline price data. This fitted model was then
used to filter the boardings data before computing their sample CCF which is shown in
Exhibit 11.25. The sample CCF is significant at lags 0 and 15, suggesting positive con-
temporaneous correlation between gasoline price and public transportation usage. The
significant CCF at lag 15, however, is unlikely to be real, as it is hard to imagine why the
number of boardings might lead the gasoline price with a lag of 15 months. In this case,
the quick preliminary approach of prewhitening the series by fitting a long AR model,
however, showed that none of the CCFs are significant. It turns out that even after differ-
encing the data, the AIC selects an AR(16) model. The higher order selected coupled
with the relatively short time span may substantially weaken the power to detect correla-
tions between the two variables. Incidentally, this example warns against simply relying
on the AIC to select a high-order AR model to do prewhitening, especially with rela-
tively short time series data.

Exhibit 11.24 Logarithms of Monthly Public Transit Boardings and 
Gasoline Prices in Denver, August 2000 through March 2006

> data(boardings)
> plot(boardings,yax.flip=T)
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Exhibit 11.25 Sample CCF of Prewhitened Log(Boardings) and Log(Price)

> m1=arima(boardings[,2],order=c(2,1,0))
> prewhiten(x=boardings[,2],y=boardings[,1],x.model=m1)

Based on the sample ACF, PACF, and EACF of the residuals from a linear model of
boardings on gasoline price, a seasonal ARIMA(2,0,0)×(1,0 ,0)12 model was tentatively
specified for the error process in the regression model. However, the φ2 coefficient esti-
mate was not significant, and hence the AR order was reduced to p = 1. Using the outlier
detection techniques discussed in Section 11.2, we found an additive outlier for March
2003 and an innovative outlier for March 2004. Because the test statistic for the additive
outlier had a larger magnitude than that of the innovative outlier (−4.09 vs. 3.65), we
incorporated the additive outlier in the model.† Diagnostics of the subsequent fitted
model reveals that the residual ACF was significant at lag 3, which suggests the error
process is a seasonal ARIMA(1,0,3)×(1,0,0)12 + outlier process. As the estimates of
the coefficients θ1 and θ2 were found to be insignificant, they were suppressed from the
final fitted model that is reported in Exhibit 11.26.

Diagnostics of the final fitted model suggest a good fit to the data. Also, no further
outliers were detected. A 95% confidence interval for the regression coefficient on
Log(Price) is (0.0249, 0.139). Note the interpretation of the fitted model: a 100%
increase in the price of gasoline will lead to about an 8.2% increase in public transporta-
tion usage.

† Subsequent investigation revealed that a 30 inch snowstorm in March 2003 completely shut
down Denver for one full day. It remained partially shut down for a few more days.
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Exhibit 11.26 Maximum Likelihood Estimates of the Regression Model of 
Log(Boardings) on Log(Price) with ARMA Errors

> log.boardings=boardings[,1]
> log.price=boardings[,2]
> boardings.m1=arima(log.boardings,order=c(1,0,0), 

seasonal=list(order=c(1,0,0),period=12), 
xreg=data.frame(log.price))

> boardings.m1
> detectAO(boardings.m1); detectIO(boardings.m1)
> boardings.m2=arima(log.boardings,order=c(1,0,3), 

seasonal=list(order=c(1,0,0),period=12), 
xreg=data.frame(log.price,outlier=c(rep(0,31),1,rep(0,36))), 
fixed=c(NA,0,0,rep(NA,5)))

> boardings.m2
> detectAO(boardings.m2); detectIO(boardings.m2)
> tsdiag(boardings.m2,tol=.15,gof.lag=24)

It is also of interest to note that dropping the outlier term from the model results in
a new regression estimate on Log(Price) of 0.0619 with a standard error of 0.0372.
Thus, when the outlier is not properly modeled, the regression coefficient ceases to be
significant at the 5% level. As demonstrated by this example, the presence of an outlier
can adversely affect inference in time series modeling.

11.5 Summary

In this chapter, we used information from other events or other time series to help model
the time series of main interest. We began with the so-called intervention models, which
attempt to incorporate known external events that we believe have a significant effect on
the time series of interest. Various simple but useful ways of modeling the effects of
these interventions were discussed. Outliers are observations that deviate rather substan-
tially from the general pattern of the data. Models were developed to detect and incorpo-
rate outliers in time series. The material in the section on spurious correlation illustrates
how difficult it is to assess relationships between two time series, but methods involving
prewhitening were shown to help in this regard. Several substantial examples were used
to illustrate the methods and techniques discussed.

Parameter φ1 θ3 Φ1 Intercept Log(Price) Outlier 

Estimate 0.8782 0.3836 0.8987 12.12 0.0819 −0.0643

Standard Error 0.0645 0.1475 0.0395 0.1638 0.0291 0.0109

 σ2 estimated as 0.0004094: log-likelihood = 158.02, AIC = −304.05
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EXERCISES

11.1 Produce a time series plot of the air passenger miles over the period January 1996
through May 2005 using seasonal plotting symbols. Display the graph full-screen
and discuss the seasonality that is displayed. The data are in the file named
airmiles.

11.2 Show that the expression given for mt in Equation (11.1.7) on page 251 satisfies
the “AR(1)” recursion given in Equation (11.1.6) with the initial condition m0 = 0.

11.3 Find the “half-life” for the intervention effect specified in Equation (11.1.6) on
page 251 when δ = 0.7.

11.4 Show that the “half-life” for the intervention effect specified in Equation (11.1.6)
on page 251 increases without bound as δ increases to 1.

11.5 Show that for the intervention effect specified by Equation (11.1.6) on page 251

11.6 Consider the intervention effect displayed in Exhibit 11.3, (b), page 253.
(a) Show that the jump at time T + 1 is of height ω as displayed.
(b) Show that, as displayed, the intervention effect tends to ω/(1 − δ) as t

increases without bound.
11.7 Consider the intervention effect displayed in Exhibit 11.3, (c), page 253. Show

that the effect increases linearly starting at time T + 1 with slope ω as displayed.
11.8 Consider the intervention effect displayed in Exhibit 11.4, (a), page 254.

(a) Show that the jump at time T + 1 is of height ω as displayed.
(b) Show that, as displayed, the intervention effect tends to go back to 0 as t

increases without bound.
11.9 Consider the intervention effect displayed in Exhibit 11.4, (b), page 254.

(a) Show that the jump at time T + 1 is of height ω1 + ω2 as displayed.
(b) Show that, as displayed, the intervention effect tends to ω2 as t increases with-

out bound.
11.10 Consider the intervention effect displayed in Exhibit 11.4, (c), page 254.

(a) Show that the jump at time T is of height ω0 as displayed.
(a) Show that the jump at time T + 1 is of height ω1 + ω2 as displayed.
(b) Show that, as displayed, the intervention effect tends to ω2 as t increases with-

out bound.
11.11 Simulate 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) on page 261

with d = 3, β0 = 0, and β1 = 1. Use σX = 2 and σe = 1. Display and interpret the
sample CCF between these two series.

11.12 Show that when the X and Y are independent AR(1) time series with parameters
φX and φY, respectively, Equation (11.3.5) on page 262 reduces to give Equation
(11.3.6).

11.13 Show that for the process defined by Equation (11.4.5) on page 266, the
cross-correlation between  and  at lag k is given by .

mtδ 1→
lim

ω T t–( ) for t T≥,
0 otherwise,⎩

⎨
⎧

=

X̃ Ỹ β k– σ
X̃

σ
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11.14 Simulate an AR time series with φ = 0.7, μ = 0, = 1, and of length n = 48. Plot
the time series, and inspect the sample ACF and PACF of the series.
(a) Now add a step function response of ω = 1 unit height at time t = 36 to the

simulated series. The series now has a theoretical mean of zero from t = 1 to
35 and a mean of 1 from t = 36 on. Plot the new time series and calculate the
sample ACF and PACF for the new series. Compare these with the results for
the original series.

(b) Repeat part (a) but with an impulse response at time t = 36 of unit height, ω =
1. Plot the new time series, and calculate the sample ACF and PACF for the
new series. Compare these with the results for the original series. See if you
can detect the additive outlier at time t = 36 assuming that you do not know
where the outlier might occur.

11.15 Consider the air passenger miles time series discussed in this chapter. The file is
named airmiles. Use only the preintervention data (that is, data prior to September
2001) for this exercise.
(a) Verify that the sample ACF for the twice differenced series of the logarithms

of the preintervention data is as shown in Exhibit 11.5 on page 255.
(b) The plot created in part (a) suggests an ARIMA(0,1,1)×(0,1,0)12. Fit this

model and assess its adequacy. In particular, verify that additive outliers are
detected in December 1996, January 1997, and December 2002.

(c) Now fit an ARIMA(0,1,1)×(0,1,0)12 + three outliers model and assess its ade-
quacy.

(d) Finally, fit an ARIMA(0,1,1)×(0,1,1)12 + three outliers model and assess its
adequacy.

11.16 Use the logarithms of the Denver region public transportation boardings and Den-
ver gasoline price series. The data are in the file named boardings.
(a) Display the time series plot of the monthly boardings using seasonal plotting

symbols. Interpret the plot.
(b) Display the time series plot of the monthly average gasoline prices using sea-

sonal plotting symbols. Interpret the plot.
11.17 The data file named deere1 contains 82 consecutive values for the amount of

deviation (in 0.000025 inch units) from a specified target value that an industrial
machining process at Deere & Co. produced under certain specified operating
conditions. These data were first used in Exercise 6.33, page 146, where we
observed an obvious outlier at time t = 27.
(a) Fit an AR(2) model using the original data including the outlier.
(b) Test the fitted AR(2) model of part (a) for both AO and IO outliers.
(c) Now fit the AR(2) model incorporating a term in the model for the outlier.
(d) Assess the fit of the model in part (c) using all of our diagnostic tools. In par-

ticular, compare the properties of this model with the one obtained in part (a).

σe



276 Time Series Regression Models

11.18 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
These data were first investigated in Exercise 6.39, page 147, but several outliers
were observed. When the observed outliers were replaced by more typical values,
an MA(2) model was suggested.
(a) Fit an MA(2) model to the original data, and test the fitted model for both AO

and IO outliers.
(b) Now fit the MA(2) model incorporating the outliers into the model.
(c) Assess the fit of the model obtained in part (b). In particular, are any more out-

liers indicated?
(d) Fit another MA(2) model incorporating any additional outliers found in part

(c), and assess the fit of this model.
11.19 The data file named bluebirdlite contains weekly sales and price data for Bluebird

Lite potato chips. Carry out an analysis similar to that for Bluebird Standard
potato chips that was begun on page 267.

11.20 The file named units contains annual unit sales of a certain product from a widely
known international company over the years 1983 through 2005. (The name of
the company must remain anonymous for proprietary reasons.)
(a) Plot the time series of units and describe the general features of the plot.
(b) Use ordinary least squares regression to fit a straight line in time to the series.
(c) Display the sample PACF of the residuals from this model, and specify an

ARIMA model for the residuals.
(d) Now fit the model unit sales = AR(2) + time. Interpret the output. In particu-

lar, compare the estimated regression coefficient on the time variable obtained
here with the one you obtained in part (b).

(e) Perform a thorough analysis of the residuals from this last model.
(f) Repeat parts (d) and (e) using the logarithms of unit sales as the response vari-

able. Compare these results witjh those obtained in parts (d) and (e).
11.21 In Chapters 5–8, we investigated an IMA(1,1) model for the logarithms of

monthly oil prices. Exhibit 8.3 on page 178 suggested that there may be several
outliers in this series. Investigate the IMA(1,1) model for this series for outliers
using the techniques developed in this chapter. Be sure to compare your results
with those obtained earlier that ignored the outliers. The data are in the file named
oil.



277

CHAPTER 12

TIME SERIES MODELS OF 
HETEROSCEDASTICITY

The models discussed so far concern the conditional mean structure of time series data.
However, more recently, there has been much work on modeling the conditional vari-
ance structure of time series data—mainly motivated by the needs for financial model-
ing. Let {Yt} be a time series of interest. The conditional variance of Yt given the past Y
values, Yt − 1,Yt − 2,…, measures the uncertainty in the deviation of Yt from its condi-
tional mean E(Yt|Yt − 1,Yt − 2,…). If {Yt} follows some ARIMA model, the (one-step-
ahead) conditional variance is always equal to the noise variance for any present and
past values of the process. Indeed, the constancy of the conditional variance is true for
predictions of any fixed number of steps ahead for an ARIMA process. In practice, the
(one-step-ahead) conditional variance may vary with the current and past values of the
process, and, as such, the conditional variance is itself a random process, often referred
to as the conditional variance process. For example, daily returns of stocks are often
observed to have larger conditional variance following a period of violent price move-
ment than a relatively stable period. The development of models for the conditional
variance process with which we can predict the variability of future values based on cur-
rent and past data is the main concern of the present chapter. In contrast, the ARIMA
models studied in earlier chapters focus on how to predict the conditional mean of future
values based on current and past data.

In finance, the conditional variance of the return of a financial asset is often adopted
as a measure of the risk of the asset. This is a key component in the mathematical theory
of pricing a financial asset and the VaR (Value at Risk) calculations; see, for example,
Tsay (2005). In an efficient market, the expected return (conditional mean) should be
zero, and hence the return series should be white noise. Such series have the simplest
autocorrelation structure. Thus, for ease of exposition, we shall assume in the first few
sections of this chapter that the data are returns of some financial asset and are white
noise; that is, serially uncorrelated data. By doing so, we can concentrate initially on
studying how to model the conditional variance structure of a time series. By the end of
the chapter, we discuss some simple schemes for simultaneously modeling the condi-
tional mean and conditional variance structure by combining an ARIMA model with a
model of conditional heteroscedasticity.
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12.1 Some Common Features of Financial Time Series

As an example of financial time series, we consider the daily values of a unit of the
CREF stock fund over the period from August 26, 2004 to August 15, 2006. The CREF
stock fund is a fund of several thousand stocks and is not openly traded in the stock mar-
ket.† Since stocks are not traded over weekends or on holidays, only on so-called trad-
ing days, the CREF data do not change over weekends and holidays. For simplicity, we
will analyze the data as if they were equally spaced. Exhibit 12.1 shows the time series
plot of the CREF data. It shows a generally increasing trend with a hint of higher vari-
ability with higher level of the stock value. Let {pt} be the time series of, say, the daily
price of some financial asset. The (continuously compounded) return on the tth day is
defined as

(12.1.1)

Sometimes the returns are then multiplied by 100 so that they can be interpreted as per-
centage changes in the price. The multiplication may also reduce numerical errors as the
raw returns could be very small numbers and render large rounding errors in some cal-
culations.

Exhibit 12.1 Daily CREF Stock Values: August 26, 2004 to August 15, 
2006

> win.graph(width=4.875,height=2.5,pointsize=8)
> data(CREF); plot(CREF)

Exhibit 12.2 plots the CREF return series (sample size = 500). The plot shows that
the returns were more volatile over some time periods and became very volatile toward
the end of the study period. This observation may be more clearly seen by plotting the
time sequence plot of the absolute or squared returns; see Exercise 12.1, page 316.

† CREF stands for College Retirement Equities Fund—a group of stock and bond funds cru-
cial to many college faculty retirement plans.

rt log pt( ) log pt 1–( )–=

Time

C
R

E
F

0 100 200 300 400 500

17
0

19
0

21
0

Time

C
R

E
F

0 100 200 300 400 500

17
0

19
0

21
0



12.1  Some Common Features of Financial Time Series 279

These results might be triggered by the instability in the Middle East due to a war in
southern Lebanon from July 12 to August 14, 2006, the period that is shaded in gray in
Exhibits 12.1 and 12.2. This pattern of alternating quiet and volatile periods of substan-
tial duration is referred to as volatility clustering in the literature. Volatility in a time
series refers to the phenomenon where the conditional variance of the time series varies
over time. The study of the dynamical pattern in the volatility of a time series (that is,
the conditional variance process of the time series) constitutes the main subject of this
chapter.

Exhibit 12.2 Daily CREF Stock Returns: August 26, 2004 to August 15, 
2006

> r.cref=diff(log(CREF))*100
> plot(r.cref); abline(h=0)

The sample ACF and PACF of the daily CREF returns (multiplied by 100), shown
in Exhibits 12.3 and 12.4, suggest that the returns have little serial correlation at all. The
sample EACF (not shown) also suggests that a white noise model is appropriate for
these data. The average CREF return equals 0.0493 with a standard error of 0.02885.
Thus the mean of the return process is not statistically significantly different from zero.
This is expected based on the efficient-market hypothesis alluded to in the introduction
to this chapter.
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Exhibit 12.3 Sample ACF of Daily CREF Returns: 8/26/04 to 8/15/06

> acf(r.cref)

Exhibit 12.4 Sample PACF of Daily CREF Returns: 8/26/04 to 8/15/06

> pacf(r.cref)

However, the volatility clustering observed in the CREF return data gives us a hint
that they may not be independently and identically distributed—otherwise the variance
would be constant over time. This is the first occasion in our study of time series models
where we need to distinguish between series values being uncorrelated and series values
being independent. If series values are truly independent, then nonlinear instantaneous
transformations such as taking logarithms, absolute values, or squaring preserves inde-
pendence. However, the same is not true of correlation, as correlation is only a measure
of linear dependence. Higher-order serial dependence structure in data can be explored
by studying the autocorrelation structure of the absolute returns (of lesser sampling vari-
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ability with less mathematical tractability) or that of the squared returns (of greater sam-
pling variability but with more manageability in terms of statistical theory). If the
returns are independently and identically distributed, then so are the absolute returns (as
are the squared returns), and hence they will be white noise as well. Hence, if the abso-
lute or squared returns admit some significant autocorrelations, then these autocorrela-
tions furnish some evidence against the hypothesis that the returns are independently
and identically distributed. Indeed, the sample ACF and PACF of the absolute returns
and those of the squared returns in Exhibits 12.5 through 12.8 display some significant
autocorrelations and hence provide some evidence that the daily CREF returns are not
independently and identically distributed.

Exhibit 12.5 Sample ACF of the Absolute Daily CREF Returns

> acf(abs(r.cref))

Exhibit 12.6 Sample PACF of the Absolute Daily CREF Returns

> pacf(abs(r.cref))
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Exhibit 12.7 Sample ACF of the Squared Daily CREF Returns

> acf(r.cref^2)

Exhibit 12.8 Sample PACF of the Squared Daily CREF Returns

> pacf(r.cref^2)

These visual tools are often supplemented by formally testing whether the squared
data are autocorrelated using the Box-Ljung test. Because no model fitting is required,
the degrees of freedom of the approximating chi-square distribution for the Box-Ljung
statistic equals the number of correlations used in the test. Hence, if we use m autocorre-
lations of the squared data in the test, the test statistic is approximately chi-square dis-
tributed with m degrees of freedom, if there is no ARCH. This approach can be extended
to the case when the conditional mean of the process is non-zero and if an ARMA
model is adequate in describing the autocorrelation structure of the data. In which case,
the first m autocorrelations of the squared residuals from this model can be used to test
for the presence of ARCH. The corresponding Box-Ljung statistic will have a
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chi-square distribution with m degrees of freedom under the assumption of no ARCH
effect, see McLeod and Li (1983) and Li(2004). Below, we shall refer to the test for
ARCH effects using the Box-Ljung statistic with the squared residuals or data as the
McLeod- Li test.

In practice, it is useful to apply the McLeod-Li test for ARCH using a number of
lags and plot the p-values of the test. Exhibit 12.9 shows that the McLeod-Li tests are all
significant at the 5% significance level when more than 3 lags are included in the test.
This is broadly consistent with the visual pattern in Exhibit 12.7 and formally shows
strong evidence for ARCH in this data.

Exhibit 12.9 McLeod-Li Test Statistics for Daily CREF Returns

> win.graph(width=4.875, height=3,pointsize=8)
> McLeod.Li.test(y=r.cref)

The distributional shape of the CREF returns can be explored by constructing a QQ
normal scores plot—see Exhibit 12.10. The QQ plot suggests that the distribution of
returns may have a tail thicker than that of a normal distribution and may be somewhat
skewed to the right. Indeed, the Shapiro-Wilk test statistic for testing normality equals
0.9932 with p-value equal to 0.024, and hence we reject the normality hypothesis at the
usual significance levels.
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Exhibit 12.10 QQ Normal Plot of Daily CREF Returns

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(r.cref); qqline(r.cref)

The skewness of a random variable, say Y, is defined by E(Y−μ)3/σ3, where μ and σ
are the mean and standard deviation of Y, respectively. It can be estimated by the sample
skewness

(12.1.2)

where  is the sample variance. The sample skewness of the CREF
returns equals 0.116. The thickness of the tail of a distribution relative to that of a nor-
mal distribution is often measured by the (excess) kurtosis, defined as E(Y − μ)4/σ4 − 3.
For normal distributions, the kurtosis is always equal to zero. A distribution with posi-
tive kurtosis is called a heavy-tailed distribution, whereas it is called light-tailed if its
kurtosis is negative. The kurtosis can be estimated by the sample kurtosis

(12.1.3)

The sample kurtosis of the CREF returns equals 0.6274. An alternative definition of
kurtosis modifies the formula and uses E(rt − μ)4/σ4; that is, it does not subtract three
from the ratio. We shall always use the former definition for kurtosis.

Another test for normality is the Jarque-Bera test, which is based on the fact that a
normal distribution has zero skewness and zero kurtosis. Assuming independently and
identically distributed data Y1,Y2,…,Yn, the Jarque-Bera test statistic is defined as 

(12.1.4)

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●●

●●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

g1  = (Yi Y
 _

)
3

nσ̂3( )⁄–
i 1=

n

∑

σ̂2
 = Σ(Yi Y

 _
)
2

n⁄–

g2  = (Yi Y
 _

)
4

nσ̂4( ) 3–⁄–
i 1=

n

∑

JB
ng1

2

6
--------

ng2
2

24
--------+=



12.2  The ARCH(1) Model 285

where g1 is the sample skewness and g2 is the sample kurtosis. Under the null hypothe-
sis of normality, the Jarque-Bera test statistic is approximately distributed as χ2 with
two degrees of freedom. In fact, under the normality assumption, each summand defin-
ing the Jarque-Bera statistic is approximately χ2 with 1 degree of freedom. The
Jarque-Bera test rejects the normality assumption if the test statistic is too large. For the
CREF returns, JB = 500×0.1162/6 + 500×0.62742/24 = 1.12 + 8.20 = 9.32 with a
p-value equal to 0.011. Recall that the upper 5 percentage point of a χ2 distribution with
unit degree of freedom equals 3.84. Hence, the data appear not to be skewed but do have
a relatively heavy tail. In particular, the normality assumption is inconsistent with the
CREF return data—a conclusion that is also consistent with the finding of the Sha-
piro-Wilk test.

In summary, the CREF return data are found to be serially uncorrelated but admit a
higher-order dependence structure, namely volatility clustering, and a heavy-tailed dis-
tribution. It is commonly observed that such characteristics are rather prevalent among
financial time series data. The GARCH models introduced in the next sections attempt
to provide a framework for modeling and analyzing time series that display some of
these characteristics.

12.2 The ARCH(1) Model

Engle (1982) first proposed the autoregressive conditional heteroscedasticity (ARCH)
model for modeling the changing variance of a time series. As discussed in the previous
section, the return series of a financial asset, say {rt}, is often a serially uncorrelated
sequence with zero mean, even as it exhibits volatility clustering. This suggests that the
conditional variance of rt given past returns is not constant. The conditional variance,
also referred to as the conditional volatility, of rt will be denoted by , with the
subscript t − 1 signifying that the conditioning is upon returns through time t − 1. When
rt is available, the squared return  provides an unbiased estimator of . A series
of large squared returns may foretell a relatively volatile period. Conversely, a series of
small squared returns may foretell a relatively quiet period. The ARCH model is for-
mally a regression model with the conditional volatility as the response variable and the
past lags of the squared return as the covariates. For example, the ARCH(1) model
assumes that the return series {rt} is generated as follows:

(12.2.1)

(12.2.2)

where α and ω are unknown parameters, {εt} is a sequence of independently and identi-
cally distributed random variables each with zero mean and unit variance (also known
as the innovations), and εt is independent of rt − j , j = 1 , 2,… . The innovation εt is pre-
sumed to have unit variance so that the conditional variance of rt equals . This
follows from

σt |t 1–
2

rt
2 σt |t 1–

2

rt σt |t 1– εt=

σt |t 1–
2 ω αrt 1–

2
+=

σt |t 1–
2
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(12.2.3)

The second equality follows because σt|t − 1 is known given the past returns, the third
equality holds because εt is independent of past returns, and the last equality results
from the assumption that the variance of εt equals 1.

Exhibit 12.11 shows the time series plot of a simulated series of size 500 from an
ARCH(1) model with ω = 0.01 and α = 0.9. Volatility clustering is evident in the data as
larger fluctuations cluster together, although the series is able to recover from large fluc-
tuations quickly because of the very short memory in the conditional variance process.†

Exhibit 12.11 Simulated ARCH(1) Model with ω = 0.01 and α1 = 0.9

> set.seed(1235678); library(tseries)
> garch01.sim=garch.sim(alpha=c(.01,.9),n=500)
> plot(garch01.sim,type='l',ylab=expression(r[t]), xlab='t')

While the ARCH model resembles a regression model, the fact that the conditional
variance is not directly observable (and hence is called a latent variable) introduces
some subtlety in the use of ARCH models in data analysis. For example, it is not obvi-
ous how to explore the regression relationship graphically. To do so, it is pertinent to
replace the conditional variance by some observable in Equation (12.2.2). Let

† The R package named tseries is reqired for this chapter. We assume that the reader has
downloaded and installed it.
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(12.2.4)

It can be verified that {ηt} is a serially uncorrelated series with zero mean. Moreover, ηt
is uncorrelated with past returns. Substituting  into Equation (12.2.2)
it is obvious that

(12.2.5)

Thus, the squared return series satisfies an AR(1) model under the assumption of an
ARCH(1) model for the return series! Based on this useful observation, an ARCH(1)
model may be specified if an AR(1) specification for the squared returns is warranted by
techniques learned from earlier chapters.

Besides its value in terms of data analysis, the deduced AR(1) model for the
squared returns can be exploited to gain theoretical insights on the parameterization of
the ARCH model. For example, because the squared returns must be nonnegative, it
makes sense to always restrict the parameters ω and α to be nonnegative. Also, if the
return series is stationary with variance σ2, then taking expectation on both sides of
Equation (12.2.5) yields

(12.2.6)

That is,  and hence 0 ≤ α < 1. Indeed, it can be shown (Ling and
McAleer, 2002) that the condition 0 ≤ α < 1 is necessary and sufficient for the (weak)
stationarity of the ARCH(1) model. At first sight, it seems that the concepts of stationar-
ity and conditional heteroscedasticity may be incompatible. However, recall that weak
stationarity of a process requires that the mean of the process be constant and the covari-
ance of the process at any two epochs be finite and identical whenever the lags of the
two epochs are the same. In particular, the variance is constant for a weakly stationary
process. The condition 0 ≤ α < 1 implies that there exists an initial distribution for r0
such that rt defined by Equations (12.2.1) and (12.2.2) for t ≥ 1 is weakly stationary in
the sense above. It is interesting to observe that weak stationarity does not preclude the
possibility of a nonconstant conditional variance process, as is the case for the ARCH(1)
model! It can be checked that the ARCH(1) process is white noise. Hence, it is an exam-
ple of a white noise that admits a nonconstant conditional variance process as defined
by Equation (12.2.2) that varies with the lag one of the squared process.

A satisfying feature of the ARCH(1) model is that, even if the innovation ηt has a
normal distribution, the stationary distribution of an ARCH(1) model with 1 > α > 0 has
fat tails; that is, its kurtosis, , is greater than zero. (Recall that the kurtosis
of a normal distribution is always equal to 0, and a distribution with positive kurtosis is
said to be fat-tailed, while one with a negative kurtosis is called a light-tailed distribu-
tion.) To see the validity of this claim, consider the case where the {εt} are indepen-
dently and identically distributed as standard normal variables. Raising both sides of
Equation (12.2.1) on page 285 to the fourth power and taking expectations gives

ηt rt
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(12.2.7)

The first equality follows from the iterated-expectation formula, which, in the simple
case of two random variables X, Y, states that E[E(X|Y)] = E(X). [See Equation (9.E.5) on
page 218 for a review.] The second equality results from the fact that σt|t − 1 is known
given past returns. The third equality is a result of the independence between εt and past
returns, and the final equality follows from the normality assumption. It remains to cal-
culate . Now, it is unclear whether the preceding expectation exists as a finite
number. For the moment, assume it does and, assuming stationarity, let it be denoted by
τ. Below, we shall derive a condition for this assumption to be valid. Raising both sides
of Equation (12.2.2) to the second power and taking expectation yields

(12.2.8)

which implies

(12.2.9)

This equality shows that a necessary (and, in fact, also sufficient) condition for the
finiteness of τ is that , in which case the ARCH(1) process has finite
fourth moment. Incidentally, this shows that a stationary ARCH(1) model need not have
finite fourth moments. The existence of finite higher moments will further restrict the
parameter range—a feature also shared by higher-order analogues of the ARCH model
and its variants. Returning to the calculation of the kurtosis of an ARCH(1) process, it
can be shown by tedious algebra that Equation (12.2.1) implies that τ > σ4 and hence

. Thus the kurtosis of a stationary ARCH(1) process is greater than zero.
This verifies our earlier statement that an ARCH(1) process has fat tails even with nor-
mal innovations. In other words, the fat tail is a result of the volatility clustering as spec-
ified by Equation (12.2.2).

A main use of the ARCH model is to predict the future conditional variances. For
example, one might be interested in forecasting the h-step-ahead conditional variance

(12.2.10)

For h = 1, the ARCH(1) model implies that

(12.2.11)

which is a weighted average of the long-run variance and the current squared return.
Similarly, using the iterated expectation formula, we have
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(12.2.12)

where we adopt the convention that  for h < 0. The formula above pro-
vides a recursive recipe for computing the h-step-ahead conditional variance.

12.3 GARCH Models

The forecasting formulas derived in the previous section show both the strengths and
weaknesses of an ARCH(1) model, as the forecasting of the future conditional variances
only involves the most recent squared return. In practice, one may expect that the accu-
racy of forecasting may improve by including all past squared returns with lesser weight
for more distant volatilities. One approach is to include further lagged squared returns in
the model. The ARCH(q) model, proposed by Engle (1982), generalizes Equation
(12.2.2) on page 285, by specifying that

(12.3.1)

Here, q is referred to as the ARCH order. Another approach, proposed by Bollerslev
(1986) and Taylor (1986), introduces p lags of the conditional variance in the model,
where p is referred to as the GARCH order. The combined model is called the general-
ized autoregressive conditional heteroscedasticity, GARCH(p,q), model.

(12.3.2)

In terms of the backshift B notation, the model can be expressed as

(12.3.3)

We note that in some of the literature, the notation GARCH(p,q) is written as
GARCH(q,p); that is, the orders are switched. It can be rather confusing but true that the
two different sets of conventions are used in different software! A reader must find out
which convention is used by the software on hand before fitting or interpreting a
GARCH model.
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Because conditional variances must be nonnegative, the coefficients in a GARCH
model are often constrained to be nonnegative. However, the nonnegative parameter
constraints are not necessary for a GARCH model to have nonnegative conditional vari-
ances with probability 1; see Nelson and Cao (1992) and Tsai and Chan (2006). Allow-
ing the parameter values to be negative may increase the dynamical patterns that can be
captured by the GARCH model. We shall return to this issue later. Henceforth, within
this section, we shall assume the nonnegative constraint for the GARCH parameters.

Exhibit 12.12 shows the time series plot of a time series, of size 500, simulated
from a GARCH(1,1) model with standard normal innovations and parameter values
ω = 0.02, α = 0.05, and β = 0.9. Volatility clustering is evident in the plot, as large
(small) fluctuations are usually succeeded by large (small) fluctuations. Moreover, the
inclusion of the lag 1 of the conditional variance in the model successfully enhances the
memory in the volatility.

Exhibit 12.12 Simulated GARCH(1,1) Process

> set.seed(1234567)
> garch11.sim=garch.sim(alpha=c(0.02,0.05),beta=.9,n=500)
> plot(garch11.sim,type='l',ylab=expression(r[t]), xlab='t')

Except for lags 3 and 20, which are mildly significant, the sample ACF and PACF
of the simulated data, shown in Exhibits 12.13 and 12.14, do not show significant corre-
lations. Hence, the simulated process seems to be basically serially uncorrelated as it is.
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Exhibit 12.13 Sample ACF of Simulated GARCH(1,1) Process

> acf(garch11.sim)

Exhibit 12.14 Sample PACF of Simulated GARCH(1,1) Process

> pacf(garch11.sim)

Exhibits 12.15 through 12.18 show the sample ACF and PACF of the absolute val-
ues and the squares of the simulated data.
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Exhibit 12.15 Sample ACF of the Absolute Values of the Simulated 
GARCH(1,1) Process

> acf(abs(garch11.sim))

Exhibit 12.16 Sample PACF of the Absolute Values of the Simulated 
GARCH(1,1) Process

> pacf(abs(garch11.sim))

These plots indicate the existence of significant autocorrelation patterns in the
absolute and squared data and indicate that the simulated process is in fact serially
dependent. Interestingly, the lag 1 autocorrelations are not significant in any of these last
four plots.
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Exhibit 12.17 Sample ACF of the Squared Values of the Simulated 
GARCH(1,1) Process

> acf(garch11.sim^2)

Exhibit 12.18 Sample PACF of the Squared Values of the Simulated 
GARCH(1,1) Process

> pacf(garch11.sim^2)

For model identification of the GARCH orders, it is again advantageous to express
the model for the conditional variances in terms of the squared returns. Recall the defi-
nition . Similar to the ARCH(1) model, we can show that {ηt} is a
serially uncorrelated sequence. Moreover, ηt is uncorrelated with past squared returns.
Substituting the expression  into Equation (12.3.2) yields
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(12.3.4)

where βk = 0 for all integers k > p and αk = 0 for k > q. This shows that the GARCH(p,q)
model for the return series implies that the model for the squared returns is an
ARMA(max(p, q),p) model. Thus, we can apply the model identification techniques for
ARMA models to the squared return series to identify p and max(p,q). Notice that if q is
smaller than p, it will be masked in the model identification. In such cases, we can first
fit a GARCH(p,p) model and then estimate q by examining the significance of the
resulting ARCH coefficient estimates.

As an illustration, Exhibit 12.19 shows the sample EACF of the squared values
from the simulated GARCH(1,1) series.

Exhibit 12.19 Sample EACF for the Squared Simulated GARCH(1,1) Series

> eacf((garch11.sim)^2)

The pattern in the EACF table is not very clear, although an ARMA(2,2) model
seems to be suggested. The fuzziness of the signal in the EACF table is likely caused by
the larger sampling variability when we deal with higher moments. Shin and Kang
(2001) argued that, to a first-order approximation, a power transformation preserves the
theoretical autocorrelation function and hence the order of a stationary ARMA process.
Their result suggests that the GARCH order may also be identified by studying the
absolute returns. Indeed, the sample EACF table for the absolute returns, shown in
Exhibit 12.20, more convincingly suggests an ARMA(1,1) model, and therefore a
GARCH(1,1) model for the original data, although there is also a hint of a GARCH(2,2)
model.

rt
2 ω β1 α1+( )rt 1–

2 … βmax p q,( ) αmax p q,( )+( )rt max p q,( )–
2

+ + +=

η+ t β1ηt 1–
… βpηt p––––

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 o o x x o o x o o o o o o o

1 x o o o x o x x o o o o o o

2 x o o o o o x o o o o o o o

3 x x x o o x o o o o o o o o

4 x x o x x o o o o o o o o o

5 x o x x o o o o o o o o o o

6 x o x x o x o o o o o o o o

7 x x x x x x o o o o o o o o
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Exhibit 12.20 Sample EACF for Absolute Simulated GARCH(1,1) Series

> eacf(abs(garch11.sim))

For the absolute CREF daily return data, the sample EACF table is reported in
Exhibit 12.21, which suggests a GARCH(1,1) model. The corresponding EACF table
for the squared CREF returns (not shown) is, however, less clear and may suggest a
GARCH(2,2) model.

Exhibit 12.21 Sample EACF for the Absolute Daily CREF Returns

> eacf(abs(r.cref))

Furthermore, the parameter estimates of the fitted ARMA model for the absolute
data may yield initial estimates for maximum likelihood estimation of the GARCH
model. For example, Exhibit 12.22 reports the estimated parameters of the fitted
ARMA(1,1) model for the absolute simulated GARCH(1,1) process.

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 o o x x o o x o o o o o o o

1 x o o o x o o o o o o o o o

2 x x o o o o o o o o o o o o

3 x x o o o x o o o o o o o o

4 x x o x o x o o o o o o o o

5 x o x x x o o o o o o o o o

6 x o x x x x o o o o o o o o

7 x x x x x o x o o o o o o o

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 o o o o o o o o o x x o o o

1 x o o o o o o o o o o o o o

2 x o o o o o o o o o o o o o

3 x o x o o o o o o o o o o o

4 x o x o o o o o o o o o o o

5 x x x x o o o o o o o o o o

6 x x x x o o o o o o o o o o

7 x x x x o o o o o o o o o o
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Exhibit 12.22 Parameter Estimates with ARMA(1,1) Model for the Absolute 
Simulated GARCH(1,1) Series

> arima(abs(garch11.sim),order=c(1,0,1))

Using Equation (12.3.4), it can be seen that β is estimated by 0.9445, α is estimated
by 0.9821 − 0.9445 = 0.03763, and ω can be estimated as the variance of the original
data times the estimate of 1 − α − β, which equals 0.0073. Amazingly, these estimates
turn out to be quite close to the maximum likelihood estimates reported in the next sec-
tion!

We now derive the condition for a GARCH model to be weakly stationary. Assume
for the moment that the return process is weakly stationary. Taking expectations on both
sides of Equation (12.3.4) gives an equation for the unconditional variance σ2

(12.3.5)

so that

(12.3.6)

which is finite if

(12.3.7)

This condition can be shown to be necessary and sufficient for the weak stationarity of a
GARCH(p,q) model. (Recall that we have implicitly assumed that α1 ≥ 0,…, αp ≥ 0,
and β1 ≥ 0,…, βq ≥ 0.) Henceforth, we assume p = q for ease of notation.

As in the case of an ARCH(1) model, finiteness of higher moments of the GARCH
model requires further stringent conditions on the coefficients; see Ling and McAleer
(2002). Also, the stationary distribution of a GARCH model is generally fat-tailed even
if the innovations are normal.

In terms of forecasting the h-step-ahead conditional variance , we can repeat
the arguments used in the preceding section to derive the recursive formula that for h > p

(12.3.8)

More generally, for arbitrary h ≥ 1, the formula is more complex, as

Coefficient ar1 ma1 Intercept

Estimate 0.9821 −0.9445 0.5077

s.e. 0.0134 0.0220 0.0499

σ2 ω σ2
+= βi αi+( )

i 1=

max p q,( )

∑

σ2 ω

1 βi αi+( )
i 1=

max p q,( )

∑–

---------------------------------------------------=

βi αi+( ) 1<
i 1=

max p q,( )

∑

σt h |t+
2

σt h |t+
2 ω  += αi βi+( )σt h i |t–+

2

i 1=

p

∑
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(12.3.9)

where

(12.3.10)

and

(12.3.11)

The computation of the conditional variances may be best illustrated using the
GARCH(1,1) model. Suppose that there are n observations r1, r2,…, rn and

(12.3.12)

To compute the conditional variances for 2 ≤ t ≤ n, we need to set the initial value .
This may be set to the stationary unconditional variance σ2 = ω/(1 − α1 − β1) under the
stationarity assumption or simply as . Thereafter, we can compute by the for-
mula defining the GARCH model. It is interesting to observe that

(12.3.13)

so that the estimate of the one-step-ahead conditional volatility is a weighted average of
the long-run variance, the current squared return, and the current estimate of the condi-
tional volatility. Further, the MA(∞) representation of the conditional variance implies
that

(12.3.14)

an infinite moving average of past squared returns. The formula shows that the squared
returns in the distant past receive exponentially diminishing weights. In contrast, simple
moving averages of the squared returns are sometimes used to estimate the conditional
variance. These, however, suffer much larger bias.

If α1 + β1 = 1, then the GARCH(1,1) model is nonstationary and instead is called an
IGARCH(1,1) model with the letter I standing for integrated. In such a case, we shall
drop the subscript from the notation and let α = 1 − β. Suppose that ω = 0. Then

, (12.3.15)

an exponentially weighted average of the past squared returns. The famed Riskmetrics
software in finance employs the IGARCH(1,1) model with β = 0.94 for estimating con-
ditional variances; see Andersen et al. (2006).
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12.4 Maximum Likelihood Estimation

The likelihood function of a GARCH model can be readily derived for the case of nor-
mal innovations. We illustrate the computation for the case of a stationary GARCH(1,1)
model. Extension to the general case is straightforward. Given the parameters ω, α, and
β, the conditional variances can be computed recursively by the formula

(12.4.1)

for t ≥ 2, with the initial value, , set under the stationarity assumption as the sta-
tionary unconditional variance σ2 = ω/(1 − α − β). We use the conditional pdf

(12.4.2)

and the joint pdf

(12.4.3)

Iterating this last formula and taking logs gives the following formula for the log-likeli-
hood function:

(12.4.4)

There is no closed-form solution for the maximum likelihood estimators of ω, α, and β,
but they can be computed by maximizing the log-likelihood function numerically. The
maximum likelihood estimators can be shown to be approximately normally distributed
with the true parameter values as their means. Their covariances may be collected into a
matrix denoted by Λ, which can be obtained as follows. Let

(12.4.5)

be the vector of parameters. Write the ith component of θ as θi so that θ1 = ω, θ2 = α,
and θ3 = β. The diagonal elements of Λ are the approximate variances of the estimators,
whereas the off-diagonal elements are their approximate covariances. So, the first diag-
onal element of Λ is the approximate variance of , the (1,2)th element of Λ is the
approximate covariance between  and , and so forth. We now outline the computa-
tion of Λ. Readers not interested in the mathematical details may skip the rest of this
paragraph. The 3×3 matrix Λ is approximately equal to the inverse matrix of the 3×3
matrix whose (i, j)th element equals
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(12.4.6)

The partial derivatives in this expression can be obtained recursively by differentiating
Equation (12.4.1). For example, differentiating both sides of Equation (12.4.1) with
respect to ω yields the recursive formula

(12.4.7)

Other partial derivatives can be computed similarly.
Recall that, in the previous section, the simulated GARCH(1,1) series was identi-

fied to be either a GARCH(1,1) model or a GARCH(2,2) model. The model fit of the
GARCH(2,2) model is reported in Exhibit 12.23, where the estimate of ω is denoted by
a0, that of α1 by a1, that of β1 by b1, and so forth. Note that none of the coefficients is
significant, although a2 is close to being significant. The model fit for the GARCH(1,1)
model is given in Exhibit 12.24.

Exhibit 12.23 Estimates for GARCH(2,2) Model of a Simulated 
GARCH(1,1) Series

> g1=garch(garch11.sim,order=c(2,2))
> summary(g1)

Exhibit 12.24 Estimates for GARCH(1,1) Model of a Simulated 
GARCH(1,1) Series

> g2=garch(garch11.sim,order=c(1,1))
> summary(g2)

Coefficient Estimate Std. Error t-value Pr(>|t|)

a0 1.835e-02 1.515e-02 1.211 0.2257

a1 4.09e-15 4.723e-02 8.7e-14 1.0000

a2 1.136e-01 5.855e-02 1.940 0.0524

b1 3.369e-01 3.696e-01 0.911 0.3621

b2 5.100e-01 3.575e-01 1.426 0.1538

Coefficient Estimate Std. Error t-value Pr(>|t|)

a0 0.007575 0.007590 0.998 0.3183

a1 0.047184 0.022308 2.115 0.0344

b1 0.935377 0.035839 26.100 < 0.0001

1
2
--- 1

σt |t 1–
4

---------------
σt |t 1–

2∂
θi∂

------------------
σt |t 1–

2∂
θj∂

------------------
t 1=

n

∑

σt |t 1–
2∂
ω∂

------------------ 1 β
σt 1|t 2––

2∂
ω∂

-------------------------+=



300 Time Series Models of Heteroscedasticity

Now all coefficient estimates (except a0) are significant. The AIC of the fitted
GARCH(2,2) model is 961.0, while that of the fitted GARCH(1,1) model is 958.0,and
thus the GARCH(1,1) model provides a better fit to the data. (Here, AIC is defined as
minus two times the log-likelihood of the fitted model plus twice the number of param-
eters. As in the case of ARIMA models, a smaller AIC is preferable.) A 95% confidence
interval for a parameter is given (approximately) by the estimate ±1.96 times its stan-
dard error. So, an approximate 95% confidence interval for ω equals (−0.0073, 0.022),
that of α1 equals (0.00345, 0.0909), and that of β1 equals (0.865,1.01). These all contain
their true values of 0.02, 0.05, and 0.9, respectively. Note that the standard error of b1 is
0.0358. Since the standard error is approximately proportional to , the standard
error of b1 is expected to be about 0.0566 (0.0462) if the sample size n is 200 (300).
Indeed, fitting the GARCH(1,1) model to the first 200 simulated data, b1 was found to
equal 0.0603 with standard error equal to 50.39! When the sample size was increased to
300, b1 became 0.935 with standard error equal to 0.0449. This example illustrates that
fitting a GARCH model generally requires a large sample size for the theoretical sam-
pling distribution to be valid and useful; see Shephard (1996, p. 10) for a relevant dis-
cussion.

For the CREF return data, we earlier identified either a GARCH(1,1) or
GARCH(2,2) model. The AIC of the fitted GARCH(1,1) model is 969.6, whereas that
of the GARCH(2,2) model is 970.3. Hence the GARCH(1,1) model provides a margin-
ally better fit to the data. Maximum likelihood estimates of the fitted GARCH(1,1)
model are reported in Exhibit 12.25.

Exhibit 12.25 Maximum Likelihood Estimates of the GARCH(1,1) Model for 
the CREF Stock Returns

> m1=garch(x=r.cref,order=c(1,1))
> summary(m1)

Note that the long-term variance of the GARCH(1,1) model is estimated to be

(12.4.8)

which is very close to the sample variance of 0.4161.
In practice, the innovations need not be normally distributed. In fact, many financial

time series appear to have nonnormal innovations. Nonetheless, we can proceed to esti-

Parameter Estimate†

† As remarked earlier, the analysis depends on the scale of measurement. In par-
ticular, a GARCH(1,1) model based on the raw CREF stock returns yields
estimates a0 = 0.00000511, a1 = 0.0941, and b1 = 0.789.

Std. Error t-value Pr(>|t|)

a0 0.01633 0.01237 1.320 0.1869

a1 0.04414 0.02097 2.105 0.0353

b1 0.91704 0.04570 20.066 < 0.0001

1 n⁄

ω̂ 1 α̂ β̂––( )⁄ 0.01633 1 0.04414 0.91704––( )⁄ 0.4206= =
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mate the GARCH model by pretending that the innovations are normal. The resulting
likelihood function is called the Gaussian likelihood, and estimators maximizing the
Gaussian likelihood are called the quasi-maximum likelihood estimators (QMLEs). It
can be shown that, under some mild regularity conditions, including stationarity, the
quasi-maximum likelihood estimators are approximately normal, centered at the true
parameter values, and their covariance matrix equals , where κ is the
(excess) kurtosis of the innovations and Λ is the covariance matrix assuming the innova-
tions are normally distributed—see the discussion above for the normal case. Note that
the heavy-tailedness of the innovations will inflate the covariance matrix and hence
result in less reliable parameter estimates. In the case where the innovations are deemed
nonnormal, this result suggests a simple way to adjust the standard errors of the
quasi-maximum likelihood estimates by multiplying the standard errors of the Gaussian
likelihood estimates from a routine that assumes normal innovations by ,
where κ can be substituted with the sample kurtosis of the standardized residuals that
are defined below. It should be noted that one disadvantage of QMLE is that the AIC is
not strictly applicable.

Let the estimated conditional standard deviation be denoted by . The stan-
dardized residuals are then defined as

(12.4.9)

The standardized residuals from the fitted model are proxies for the innovations and can
be examined to cast light on the distributional form of the innovations. Once a (parame-
terized) distribution for the innovations is specified, for example a t-distribution, the
corresponding likelihood function can be derived and optimized to obtain maximum
likelihood estimators; see Tsay (2005) for details. The price of not correctly specifying
the distributional form of the innovation is a loss in efficiency of estimation, although,
with large datasets, the computational convenience of the Gaussian likelihood approach
may outweigh the loss of estimation efficiency.

12.5 Model Diagnostics

Before we accept a fitted model and interpret its findings, it is essential to check
whether the model is correctly specified, that is, whether the model assumptions are
supported by the data. If some key model assumptions seem to be violated, then a new
model should be specified; fitted, and checked again until a model is found that provides
an adequate fit to the data. Recall that the standardized residuals are defined as

(12.5.1)

which are approximately independently and identically distributed if the model is cor-
rectly specified. As in the case of model diagnostics for ARIMA models, the standard-
ized residuals are very useful for checking the model specification. The normality
assumption of the innovations can be explored by plotting the QQ normal scores plot.
Deviations from a straight line pattern in the QQ plot furnish evidence against normality
and may provide clues on the distributional form of the innovations. The Shapiro-Wilk

κ 2+( ) 2⁄[ ]Λ

κ 2+( ) 2⁄

σ̂t |t 1–

ε̂ t rt σ̂t |t 1–⁄=

ε̂ t rt σ̂t |t 1–⁄=
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test and the Jarque-Bera test are helpful for formally testing the normality of the innova-
tions.†

For the GARCH(1,1) model fitted to the simulated GARCH(1,1) process, the sam-
ple skewness and kurtosis of the standardized residuals equal −0.0882 and −0.104,
respectively. Moreover, both the Shapiro-Wilk test and the Jarque-Bera test suggest that
the standardized residuals are normal.

For the GARCH(1,1) model fitted to the CREF return data, the standardized residu-
als are plotted in Exhibit 12.26. There is some tendency for the residuals to be larger in
magnitude towards the end of the study period, perhaps suggesting that there is some
residual pattern in the volatility. The QQ plot of the standardized residuals is shown in
Exhibit 12.27. The QQ plot shows a largely straight-line pattern. The skewness and the
kurtosis of the standardized residuals are 0.0341 and 0.205, respectively. The p-value of
the Jarque-Bera test equals 0.58 and that of the Shapiro-Wilk test is 0.34. Hence, the
normality assumption cannot be rejected.

Exhibit 12.26 Standardized Residuals from the Fitted GARCH(1,1) Model 
of Daily CREF Returns

> plot(residuals(m1),type='h',ylab='Standardized Residuals')

† Chen and Kuan (2006) have shown that the Jarque-Bera test with the residuals from a
GARCH model is no longer approximately chi-square distributed under the null hypothesis
of normal innovations. Their simulation results suggest that, in such cases, the Jarque-Bera
test tends to be liberal; that is, it rejects the normality hypothesis more often than its nomi-
nal significance level. The authors have proposed a modification of the Jarque-Bera test
that retains the chi-square null distribution approximately. Similarly, it can be expected that
the Shapiro-Wilk test may require modification when it is applied to residuals from a
GARCH model, although the problem seems open.
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Exhibit 12.27 QQ Normal Scores Plot of Standardized Residuals from the 
Fitted GARCH(1,1) Model of Daily CREF Returns

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(residuals(m1)); qqline(residuals(m1))

If the GARCH model is correctly specified, then the standardized residuals 
should be close to independently and identically distributed. The independently and
identically distributed assumption of the innovations can be checked by examining their
sample acf. Recall that the portmanteau statistic equals 

where  is the lag k autocorrelation of the standardized residuals and n is the sample
size. (Recall that the same statistic is also known as the Box-Pierce statistic and, in a
modified version, the Ljung-Box statistic.) Furthermore, it can be shown that the test
statistic is approximately χ2 distributed with m degrees of freedom under the null
hypothesis that the model is correctly specified. This result relies on the fact that the
sample autocorrelations of nonzero lags from an independently and identically distrib-
uted sequence are approximately independent and normally distributed with zero mean
and variance 1/n, and this result holds approximately also for the sample autocorrela-
tions of the standardized residuals if the data are truly generated by a GARCH model of
the same orders as those of the fitted model. However, the portmanteau test does not
have strong power against uncorrelated and yet serially dependent innovations. In fact,
we start out with the assumption that the return data are uncorrelated, so the preceding
test is of little interest.

More useful tests may be devised by studying the autocorrelation structure of the
absolute standardized residuals or the squared standardized residuals. Let the lag k auto-
correlation of the absolute standardized residuals be denoted by and that of the
squared standardized residuals by . Unfortunately, the approximate χ2 distribution
with m degrees of freedom for the corresponding portmanteau statistics based on 
( ) is no longer valid, the reason being that the estimation of the unknown parame-
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ters induces a nonnegligible effect on the tests. Li and Mak (1994) showed that the χ2

approximate distribution may be preserved by replacing the sum of squared autocorrela-
tions by a quadratic form in the autocorrelations; see also Li (2003). For the absolute
standardized residuals, the test statistic takes the form

(12.5.2)

We shall call this modified test statistic the generalized portmanteau test statistic. How-
ever, the q’s depend on m, the number of lags, and they are specific to the underlying
true model and so must be estimated from the data. For the squared residuals, the q’s
take different values. See Appendix I on page 318 for the formulas for the q’s.

We illustrate the generalized portmanteau test with the CREF data. Exhibit 12.28,
plots the sample ACF of the squared standardized residuals from the fitted GARCH(1,1)
model. The (individual) critical limits in the figure are based on the 1/n nominal vari-
ance under the assumption of independently and identically distributed data. As dis-
cussed above, this nominal value could be very different from the actual variance of the
autocorrelations of the squared residuals even when the model is correctly specified.
Nonetheless, the general impression from the figure is that the squared residuals are
serially uncorrelated.

Exhibit 12.28 Sample ACF of Squared Standardized Residuals from the 
GARCH(1,1) Model of the Daily CREF Returns

> acf(residuals(m1)^2,na.action=na.omit)

Exhibit 12.29 displays the p-values of the generalized portmanteau tests with the
squared standardized residuals from the fitted GARCH(1,1) model of the CREF data for
m = 1 to 20. All p-values are higher than 5%, suggesting that the squared residuals are
uncorrelated over time, and hence the standardized residuals may be independent.
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Exhibit 12.29 Generalized Portmanteau Test p-Values for the Squared 
Standardized Residuals for the GARCH(1,1) Model of the 
Daily CREF Returns

> gBox(m1,method='squared')

We repeated checking the model using the absolute standardized residuals—see
Exhibits 12.30 and 12.31. The lag 2 autocorrelation of the absolute residuals is signifi-
cant according to the nominal critical limits shown. Furthermore, the generalized port-
manteau tests are significant when m = 2 and 3 and marginally not significant at m = 4.
The sample EACF table (not shown) of the absolute standardized residuals suggests an
AR(2) model for the absolute residuals and hence points to the possibility that the CREF
returns may be identified as a GARCH(1,2) process. However, the fitted GARCH(1,2)
model to the CREF data did not improve the fit, as its AIC was 978.2—much higher
than 969.6, that of the GARCH(1,1) model. Therefore, we conclude that the fitted
GARCH(1,1) model provides a good fit to the CREF data.
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Exhibit 12.30 Sample ACF of the Absolute Standardized Residuals from 
the GARCH(1,1) Model for the Daily CREF Returns

> acf(abs(residuals(m1)),na.action=na.omit)

Exhibit 12.31 Generalized Portmanteau Test p-Values for the Absolute 
Standardized Residuals for the GARCH(1,1) Model of the 
Daily CREF Returns

> gBox(m1,method='absolute')

Given that the GARCH(1,1) model provides a good fit to the CREF data, we may
use it to forecast the future conditional variances. Exhibit 12.32 shows the within-sam-
ple estimates of the conditional variances, which capture several periods of high volatil-
ity, especially the one at the end of the study period. At the final time point, the squared
return equals 2.159, and the conditional variance is estimated to be 0.4411. These values
combined with Equations (12.3.8) and (12.3.9) can be used to compute the forecasts of
future conditional variances. For example, the one-step-ahead forecast of the condi-
tional variance equals 0.01633 + 0.04414*2.159 + 0.91704*0.4411 = 0.5161. The
two-step forecast of the conditional variance equals 0.01633 + 0.04414*0.5161 +
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0.91704*0.5161 = 0.5124, and so forth, with the longer lead forecasts eventually
approaching 0.42066, the long-run variance of the model. The conditional variances
may be useful for pricing financial assets through the Black-Scholes formula and calcu-
lation of the value at risk (VaR); see Tsay (2005) and Andersen et al. (2006).

It is interesting to note that the need for incorporating ARCH in the data is also
supported by the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
see Exhibit (12.9), page 283.

Exhibit 12.32 Estimated Conditional Variances of the Daily CREF Returns

> plot((fitted(m1)[,1])^2,type='l',ylab='Conditional Variance', 
xlab='t')

12.6 Conditions for the Nonnegativity of the
Conditional Variances

Because the conditional variance must be nonnegative, the GARCH parameters
are often constrained to be nonnegative. However, the nonnegativity parameter con-
straints need not be necessary for the nonnegativity of the conditional variances. This
issue was first explored by Nelson and Cao (1992) and more recently by Tsai and Chan
(2006). To better understand the problem, first consider the case of an ARCH(q) model.
Then the conditional variance is given by the formula

(12.6.1)

Assume that q consecutive returns can take on any arbitrary set of real numbers. If one
of the α’s is negative, say α1 < 0, then will be negative if is sufficiently
large and the other r’s are sufficiently close to zero. Hence, it is clear that all α’s must be
nonnegative for the conditional variances to be nonnegative. Similarly, by letting the
returns be close to zero, it can be seen that ω must be nonnegative—otherwise the con-
ditional variance may become negative. Thus, it is clear that for an ARCH model, the
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non-negativity of all ARCH coefficients is necessary and sufficient for the conditional
variances  to be always nonnegative.

The corresponding problem for a GARCH(p,q) model can be studied by expressing
the GARCH model as an infinite-order ARCH model. The conditional variance process
{ } is an ARMA(p,q) model with the squared returns playing the role of the noise
process. Recall that an ARMA(p,q) model can be expressed as an MA(∞) model if all
the roots of the AR characteristic polynomial lie outside the unit circle. Hence, assum-
ing that all the roots of 1 − β1x − β2x2 −…− βpx p = 0 have magnitude greater than 1, the
conditional variances satisfy the equation

(12.6.2)

where

(12.6.3)

It can be similarly shown that the conditional variances are all nonnegative if and
only if ω* and ψj ≥ 0 for all integers j ≥ 1. The coefficients in the ARCH(∞) representa-
tion relate to the parameters of the GARCH model through the equality

(12.6.4)

If p = 1, then it can be easily checked that ψk = β1ψk − 1 for k > q. Thus, ψj ≥ 0 for
all j ≥ 1 if and only if β1 ≥ 0 and ψ1 ≥ 0,…, ψq ≥ 0. For higher GARCH order, the situa-
tion is more complex. Let λj, 1 ≤ j ≤ p, be the roots of the characteristic equation

(12.6.5)

With no loss of generality, we can and shall henceforth assume the convention that

(12.6.6)

Let  and  denote the complex conjugate of λ, B(x) = 1 − β1x −…− βpxp,
and B(1) be the first derivative of B. We then have the following result.

Result 1: Consider a GARCH(p,q) model where p ≥ 2. Assume A1, that all the roots of
the equation

(12.6.7)

have magnitude greater than 1, and A2, that none of these roots satisfy the equation

(12.6.8)

Then the following hold:

(a) ω* ≥ 0 if and only if ω ≥ 0.
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(b) Assuming the roots λ1,…, λp are distinct, and |λ1| < |λ2|, then the conditions
given in Equation (12.6.9) are necessary and sufficient for ψk ≥ 0 for all positive
integers k:

(12.6.9)

where k* is the smallest integer greater than or equal to

,

(12.6.10)

For p = 2, the k* defined in Result 1 can be shown to be q + 1; see Theorem 2 of Nelson
and Cao (1992). If the k* defined in Equations (12.6.10) is a negative number, then it
can be seen from the proof given in Tsai and Chan (2006) that ψk ≥ 0 for all positive k.

Tsai and Chan (2006) have also derived some more readily verifiable conditions for
the conditional variances to be always nonnegative.

Result 2: Let the assumptions of Result 1 be satisfied. Then the following hold: 

(a) For a GARCH(p,1) model, if λj is real and λj > 1, for j = 1,..., p, and α1 ≥ 0,
then ψk ≥ 0 for all positive integers k.

(b) For a GARCH(p,1) model, if ψk ≥ 0 for all positive integers k, then α1 ≥ 0,

, λ1 is real, and λ1 > 1.

(c) For a GARCH(3,1) model, ψk ≥ 0 for all positive integers k if and only if α1
≥ 0 and either of the following cases hold:

Case 1. All the λj’s are real numbers, λ1 > 1, and . 

Case 2. λ1 > 1, and , where a and b are real num-
bers, b > 0, and 0 < θ < π:

Case 2.1. θ = 2π/r for some integer r ≥ 3, and 1 < λ1 ≤ |λ2|.

Case 2.2. θ ∉{2π/r | r = 3, 4,...}, and |λ2|/λ1 ≥ x0 > 1, where x0 is the largest real
root of fn,θ(x) = 0, and

(12.6.11)

where n is the smallest positive integer such that sin((n+1)θ) < 0 and sin((n+2)θ)
> 0.
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(d) For a GARCH(3,1) model, if , where a and b
are real numbers, b > 0, and a ≥ λ1 > 1, then ψk ≥ 0 for all positive integers k.

(e) For a GARCH(4,1) model, if the λj’s are real for 1 ≤ j ≤ 4, then a necessary
and sufficient condition for  to be nonnegative is that α1 ≥ 0,

, and λ1 > 1.

Note that x0 is the only real root of Equation (12.6.11) that is greater than or equal to 1.
Also, Tsai and Chan (2006) proved that if the ARCH coefficients (α’s) of a
GARCH(p,q) model are all nonnegative, the model has nonnegative conditional vari-
ances if the nonnegativity property holds for the associated GARCH(p,1) models with a
nonnegative α1 coefficient.

12.7 Some Extensions of the GARCH Model 

The GARCH model may be generalized in several directions. First, the GARCH model
assumes that the conditional mean of the time series is zero. Even for financial time
series, this strong assumption need not always hold. In the more general case, the condi-
tional mean structure may be modeled by some ARMA(u,v) model, with the white noise
term of the ARMA model modeled by some GARCH(p, q) model. Specifically, let {Yt}
be a time series given by (now we switch to using the notation Yt to denote a general
time series)

(12.7.1)

and where we have used the plus convention in the MA parts of the model. The ARMA
orders can be identified based on the time series {Yt}, whereas the GARCH orders may
be identified based on the squared residuals from the fitted ARMA model. Once the
orders are identified, full maximum likelihood estimation for the ARMA + GARCH
model can be carried out by maximizing the likelihood function as defined in Equation
(12.4.4) on page 298 but with rt there replaced by et that are recursively computed
according to Equation (12.7.1). The maximum likelihood estimators of the ARMA
parameters are approximately independent of their GARCH counterparts if the innova-
tions εt have a symmetric distribution (for example, a normal or t-distribution) and their
standard errors are approximately given by those in the pure ARMA case. Likewise, the
GARCH parameter estimators enjoy distributional results similar to those for the pure
GARCH case. However, the ARMA estimators and the GARCH estimators are corre-
lated if the innovations have a skewed distribution. In the next section, we illustrate the
ARMA + GARCH model with the daily exchange rates of the U.S. dollar to the Hong
Kong dollar.

Another direction of generalization concerns nonlinearity in the volatility process.
For financial data, this is motivated by a possible asymmetric market response that may,
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for example, react more strongly to a negative return than a positive return of the same
magnitude. The idea can be simply illustrated in the setting of an ARCH(1) model,
where the asymmetry can be modeled by specifying that

(12.7.2)

Such a model is known as a GJR model—a variant of which allows the threshold to be
unknown and other than 0. See Tsay (2005) for other useful extensions of the GARCH
models.

12.8 Another Example: The Daily USD/HKD Exchange Rates

As an illustration for the ARIMA + GARCH model, we consider the daily USD/HKD
(U.S. dollar to Hong Kong dollar) exchange rate from January 1, 2005 to March 7,
2006, altogether 431 days of data. The returns of the daily exchange rates are shown in
Exhibit 12.33 and appear to be stationary, although volatility clustering is evident in the
plot. 

Exhibit 12.33 Daily Returns of USD/HKD Exchange Rate: 1/1/05–3/7/06

> data(usd.hkd)
> plot(ts(usd.hkd$hkrate,freq=1),type='l',xlab='Day',

ylab='Return')

It is interesting to note that the need for incorporating ARCH in the data is also
supported by the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
see below for further discussion of the additive outlier. Exhibit 12.34 shows that the tests
are all significant when the number of lags of the autocorrelations of the squared residu-
als ranges from 1 to 26, displaying strong evidence of conditional heteroscedascity.
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Exhibit 12.34 McLeod-Li Test Statistics for the USD/HKD Exchange Rate

> attach(usd.hkd)
> McLeod.Li.test(arima(hkrate,order=c(1,0,0), 

xreg=data.frame(outlier1)))

An AR(1) + GARCH(3,1) model was fitted to the (raw) return data with an additive
outlier one day after July 22, 2005, the date when China revalued the yuan by 2.1% and
adopted a floating-rate system for it. The outlier is shaded in gray in Exhibit 12.33. The
intercept term in the conditional mean function was found to be insignificantly different
from zero and hence is omitted from the model. Thus we take the returns to have zero
mean unconditionally. The fitted model has an AIC = −2070.9, being smallest among
various competing (weakly) stationary models—see Exhibit 12.35. Interestingly, for
lower GARCH orders (p ≤ 2), the fitted models are nonstationary, but the fitted models
are largely stationary when the GARCH order is higher than 2. As the data appear to be
stationary, we choose the AR(1) + GARCH(3,1) model as the final model.

The AR + GARCH models partially reported in Exhibit 12.35 were fitted using the
Proc Autoreg routine in the SAS software.† We used the default option of imposing that
the Nelson-Cao inequality constraints for the GARCH conditional variance process be
nonnegative. However, the inequality constraints so imposed are only necessary and suf-
ficient for the nonnegativity of the conditional variances of a GARCH(p,q) model for p
≤ 2. For higher-order GARCH models, Proc Autoreg imposes the constraints that (1) ψk
≥ 0, 1 ≤ k ≤ max(q − 1, p) + 1 and (2) the nonnegativity of the in-sample conditional
variances; see the SAS 9.1.3 Help and Documentation manual. Hence, higher-order
GARCH models estimated by Proc Autoreg with the Nelson-Cao option need not have
nonnegative conditional variances with probability one. 

† Proc Autoreg of SAS has the option of imposing the Nelson-Cao inequality constraint in
the GARCH model, hence it is used here.
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Exhibit 12.35 AIC Values for Various Fitted Models for the Daily Returns of 
the USD/HKD Exchange Rate

AR order
GARCH 
order (p)

ARCH 
order (q)

AIC Stationarity

0 3 1 −1915.3 nonstationary

1 1 1 −2054.3 nonstationary

1 1 2 −2072.5 nonstationary

1 1 3 −2051.0 nonstationary

1 2 1 −2062.2 nonstationary

1 2 2 −2070.5 nonstationary

1 2 3 −2059.2 nonstationary

1 3 1 −2070.9 stationary

1 3 2 −2064.8 stationary

1 3 3 −2062.8 stationary

1 4 1 −2061.7 nonstationary

1 4 2 −2054.8 stationary

1 4 3 −2062.4 stationary

2 3 1 −2066.6 stationary
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For the Hong Kong exchange rate data, the fitted model from Proc Autoreg is listed
in Exhibit 12.37 with the estimated conditional variances shown in Exhibit 12.36. Note
that the GARCH2 (β2) coefficient estimate is negative.

Exhibit 12.36 Estimated Conditional Variances of the Daily Returns of 
USD/HKD Exchange Rate from the Fitted
AR(1) + GARCH(3,1) Model

> plot(ts(usd.hkd$v,freq=1),type='l',xlab='Day',
ylab='Conditional Variance')

Since both the intercept and the ARCH coefficient are positive, we can apply part
(c) of Result 2 to check whether or not the conditional variance process defined by the
fitted model is always nonnegative. The characteristic equation 1 − β1x − β2x2 − β3x3 = 0
admits three roots equal to 1.153728 and −0.483294±1.221474i. Thus λ1 = 1.153728
and |λ2|/λ1 = 1.138579. Based on numerical computations, n in Equation (12.6.11) turns
out to be 2 and Equation (12.6.11) has one real root equal to 1.1385751 which is strictly
less than 1.138579 = |λ2|/λ1. Hence, we can conclude that the fitted model always
results in nonnegative conditional variances.
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Exhibit 12.37 Fitted AR(1) + ARCH(3,1) Model for Daily Returns of 
USD/HKD Exchange Rate

> SAS code: data hkex; infile 'hkrate.dat'; input hkrate;
outlier1=0;
day+1; if day=203 then outlier1=1;
proc autoreg data=hkex;

model hkrate=outlier1 /noint nlag=1 garch=(p=3,q=1) 
maxiter=200 archtest;

/*hetero outlier /link=linear;*/
output out=a cev=v residual=r;

run;

12.9 Summary

This chapter began with a brief description of some terms and issues associated with
financial time series. Autoregressive conditional heteroscedasticity (ARCH) models
were then introduced in an attempt to model the changing variance of a time series. The
ARCH model of order 1 was thoroughly explored from identification through parameter
estimation and prediction. These models were then generalized to the generalized
autoregressive conditional heteroscedasticity, GARCH(p,q), model. The GARCH mod-
els were also thoroughly explored with respect to identification, maximum likelihood
estimation, prediction, and model diagnostics. Examples with both simulated and real
time series data were used to illustrate the ideas.

Coefficient Estimate Std. error t-ratio p-value

AR1 0.1635 0.005892 21.29 0.0022

ARCH0 (ω) 2.374×10−5 6.93×10−6 3.42 0.0006

ARCH1 (α1) 0.2521 0.0277 9.09 < 0.0001

GARCH1 (β1) 0.3066 0.0637 4.81 < 0.0001

GARCH2 (β2) −0.09400 0.0391 −2.41 0.0161

GARCH3 (β3) 0.5023 0.0305 16.50 < 0.0001

Outlier −0.1255 0.00589 −21.29 < 0.0001
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EXERCISES

12.1 Display the time sequence plot of the absolute returns for the CREF data. Repeat
the plot with the squared returns. Comment on the volatility patterns observed in
these plots. (The data are in file named CREF.)

12.2 Plot the time sequence plot of the absolute returns for the USD/HKD exchange
rate data. Repeat the plot with the squared returns. Comment on the volatility pat-
terns observed in these plots. (The data are in the file named usd.hkd.)

12.3 Use the definition  [Equation (12.2.4) on page 287] and show
that {ηt} is a serially uncorrelated sequence. Show also that ηt is uncorrelated
with past squared returns, that is, show that  for k > 0.

12.4 Substituting  into Equation (12.2.2) on page 285 show the alge-
bra that leads to Equation (12.2.5) on page 287.

12.5 Verify Equation (12.2.8) on page 288.
12.6 Without doing any theoretical calculations, order the kurtosis values of the fol-

lowing four distributions in ascending order: the t-distribution with 10 DF, the
t-distribution with 30 DF, the uniform distribution on [−1,1], and the normal dis-
tribution with mean 0 and variance 4. Explain your answer.

12.7 Simulate a GARCH(1,1) process with α = 0.1 and β = 0.8 and of length 500. Plot
the time series and inspect its sample ACF, PACF, and EACF. Are the data consis-
tent with the assumption of white noise? 
(a) Square the data and identify a GARCH model for the raw data based on the

sample ACF, PACF, and EACF of the squared data. 
(b) Identify a GARCH model for the raw data based on the sample ACF, PACF

and EACF of the absolute data. Discuss and reconcile any discrepancy
between the tentative model identified with the squared data and that with the
absolute data.

(c) Perform the McLeod-Li test on your simulated series. What do you conclude?
(d) Repeat the exercise but now using only the first 200 simulated data. Discuss

your findings. 
12.8 The file cref.bond contains the daily price of the CREF bond fund from August

26, 2004 to August, 15, 2006. These data are available only on trading days, but
proceed to analyze the data as if they were sampled regularly. 
(a) Display the time sequence plot of the daily bond price data and comment on

the main features in the data. 
(b) Compute the daily bond returns by log-transforming the data and then com-

puting the first differences of the transformed data. Plot the daily bond returns,
and comment on the result.

(c) Perform the McLeod-Li test on the returns series. What do you conclude?
(d) Show that the returns of the CREF bond price series appear to be indepen-

dently and identically distributed and not just serially uncorrelated; that is,
there is no discernible volatility clustering.
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12.9 The daily returns of Google stock from August 20, 2004 to September 13, 2006
are stored in the file named google. 
(a) Display the time sequence plot for the return data and show that the data are

essentially uncorrelated over time. 
(b) Compute the mean of the Google daily returns. Does it appear to be signifi-

cantly different from 0?
(c) Perform the McLeod-Li test on the Google daily returns series. What do you

conclude?
(d) Identify a GARCH model for the Google daily return data. Estimate the iden-

tified model and perform model diagnostics with the fitted model. 
(e) Draw and comment on the time sequence plot of the estimated conditional

variances. 
(f) Plot the QQ normal plot for the standardized residuals from the fitted model.

Do the residuals appear to be normal? Discuss the effects of the normality on
the model fit, for example, regarding the computation of the confidence inter-
val. 

(g) Construct a 95% confidence interval for b1. 
(h) What are the stationary mean and variance according to the fitted GARCH

model? Compare them with those of the data. 
(i) Based on the GARCH model, construct the 95% prediction intervals for

h-step-ahead forecast, for h = 1, 2,…, 5.
12.10 In Exercise 11.21 on page 276, we investigated the existence of outliers with the

logarithms of monthly oil prices within the framework of an IMA(1,1) model.
Here, we explore the effects of “outliers” on the GARCH specification. The data
are in the file named oil.price.
(a) Based on the sample ACF, PACF, and EACF of the absolute and squared

residuals from the fitted IMA(1,1) model (without outlier adjustment), show
that a GARCH(1,1) model may be appropriate for the residuals. 

(b) Fit an IMA(1,1) + GARCH(1,1) model to the logarithms of monthly oil
prices. 

(c) Draw the time sequence plot for the standardized residuals from the fitted
IMA(1,1) + GARCH(1,1) model. Are there any outliers? 

(d) For the log oil prices, fit an IMA(1,1) model with two IOs at t = 2 and t = 56
and an AO at t = 8. Show that the residuals from the IMA plus outlier model
appear to be independently and identically distributed and not just serially
uncorrelated; that is, there is no discernible volatility clustering. 

(e) Between the outlier and the GARCH model, which one do you think is more
appropriate for the oil price data? Explain your answer.
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Appendix I: Formulas for the Generalized Portmanteau Tests

We first present the formula for Q = (qi, j ) for the case where the portmanteau test is
based on the squared standardized residuals. Readers may consult Li and Mak (1994)
for proofs of the formulas. Let θ denote the vector of GARCH parameters. For example,
for a GARCH(1,1) model,

(12.I.1)

Write the i th component of θ as θi so that θ1 = ω, θ2 = α, and θ3 = β for the GARCH(1,1)
model. In the general case, let k = p + q + 1 be the number of GARCH parameters. Let J
be an m×k matrix whose (i, j)th element equals

(12.I.2)

and Λ be the k×k covariance matrix of the approximate normal distribution of the maxi-
mum likelihood estimator of θ for the model assuming normal innovations; see
Section 12.4. Let Q = (qi, j ) be the matrix of the q’s appearing in the quadratic form of
the generalized portmanteau test. It can be shown that the matrix Q equals

12.I.3)

where I is the m×m identity matrix, κ is the (excess) kurtosis of the innovations, JΤ is
the transpose of J, and the superscript −1 denotes the matrix inverse.

Next, we present the formulas for the case where the tests are computed based on
the absolute standardized residuals. In this case, the (i, j )th element of the J matrix
equals

(12.I.4)

where τ = E(|εt|), and Q equals 

(12.I.5)
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CHAPTER 13

INTRODUCTION TO SPECTRAL ANALYSIS

Historically, spectral analysis began with the search for “hidden periodicities” in time
series data. Chapter 3 discussed fitting cosine trends at various known frequencies to
series with strong cyclical trends. In addition, the random cosine wave example in
Chapter 2 on page 18, showed that it is possible for a stationary process to look very
much like a deterministic cosine wave. We hinted in Chapter 3 that by using enough dif-
ferent frequencies with enough different amplitudes (and phases) we might be able to
model nearly any stationary series.† This chapter pursues those ideas further with an
introduction to spectral analysis. Previous to this chapter, we concentrated on analyzing
the correlation properties of time series. Such analysis is often called time domain anal-
ysis. When we analyze frequency properties of time series, we say that we are working
in the frequency domain. Frequency domain analysis or spectral analysis has been
found to be especially useful in acoustics, communications engineering, geophysical
science, and biomedical science, for example. 

13.1 Introduction

Recall from Chapter 3 the cosine curve with equation‡

(13.1.1)

Remember that R (> 0) is the amplitude, f the frequency, and Φ the phase of the curve.
Since the curve repeats itself exactly every 1/f time units, 1/f is called the period of the
cosine wave.

Exhibit 13.1 displays two discrete-time cosine curves with time running from 1 to
96. We would only see the discrete points, but the connecting line segments are added to
help our eyes follow the pattern. The frequencies are 4/96 and 14/96, respectively. The
lower-frequency curve has a phase of zero, but the higher-frequency curve is shifted by a
phase of 0.6π.

Exhibit 13.2 shows the graph of a linear combination of the two cosine curves with
a multiplier of 2 on the low-frequency curve and a multiplier of 3 on the higher-fre-
quency curve and a phase of 0.6π; that is,

† See Exercise 2.25 on page 23, in particular.
‡ In this chapter, we use notation slightly different from that in Chapter 3.

R 2πft Φ+( )cos
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Exhibit 13.1 Cosine Curves with n = 96 and Two Frequencies and Phases

> win.graph(width=4.875,height=2.5,pointsize=8)
> t=1:96; cos1=cos(2*pi*t*4/96); cos2=cos(2*pi*(t*14/96+.3))
> plot(t,cos1, type='o', ylab='Cosines')
> lines(t,cos2,lty='dotted',type='o',pch=4)

(13.1.2)

Now the periodicity is somewhat hidden. Spectral analysis provides tools for dis-
covering the “hidden” periodicities quite easily. Of course, there is nothing random in
this time series.

Exhibit 13.2 Linear Combination of Two Cosine Curves

> y=2*cos1+3*cos2; plot(t,y,type='o',ylab=expression(y[t]))

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●

0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

t

C
os

in
es

Yt 2 2πt
4

96
------⎝ ⎠

⎛ ⎞cos 3 2π t
14
96
------ 0.3+⎝ ⎠

⎛ ⎞cos+=

●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

0 20 40 60 80

−
4

−
2

0
2

4

t

y t



13.1  Introduction 321

As we saw earlier, Equation (13.1.1) is not convenient for estimation because the
parameters R and Φ do not enter the expression linearly. Instead, we use a trigonometric
identity to reparameterize Equation (13.1.1) as

(13.1.3)

where

(13.1.4)

and, conversely,
(13.1.5)

Then, for a fixed frequency f, we can use cos(2πft) and sin(2πft) as predictor variables
and fit the A’s and B’s from the data using ordinary least squares regression.

A general linear combination of m cosine curves with arbitrary amplitudes, fre-
quencies, and phases could be written as†

(13.1.6)

Ordinary least squares regression can be used to fit the A’s and B’s, but when the
frequencies of interest are of a special form, the regressions are especially easy. Suppose
that n is odd and write n = 2k + 1. Then the frequencies of the form 1/n, 2/n,…, k/n
(= 1/2 − 1/(2n)) are called the Fourier frequencies. The cosine and sine predictor vari-
ables at these frequencies (and at f = 0) are known to be orthogonal,‡ and the least
squares estimates are simply

(13.1.7)

 and (13.1.8)

If the sample size is even, say n = 2k, Equations (13.1.7) and (13.1.8) still apply for
j = 1, 2,…, k − 1, but

 and (13.1.9)

Note that here fk = k/n = ½.
If we were to apply these formulas to the series shown in Exhibit 13.2, we would

obtain perfect results. That is, at frequency f4 = 4/96, we obtain 4 = 2 and 4 = 0, and
at frequency f14 = 14/96, we obtain 14 = −0.927051 and 14 = −2.85317. We would
obtain estimates of zero for the regression coefficients at all other frequencies. These

† The A0 term can be thought of as the coefficient of the cosine curve at zero frequency,
which is identically one, and the B0 can be thought of as the coefficient on the sine curve at
frequency zero, which is identically zero and hence does not appear.

‡ See Appendix J on page 349 for more information on the orthogonality properties of the
cosines and sines.
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Âk
1
n
--- 1–( )tYt

t 1=

n

∑= B̂k 0=
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results obtain because there is no randomness in this series and the cosine-sine fits are
exact.

Note also that any series of any length n, whether deterministic or stochastic and
with or without any true periodicities, can be fit perfectly by the model in Equation
(13.1.6) by choosing m = n/2 if n is even and m = (n − 1)/2 if n is odd. There are then n
parameters to adjust (estimate) to fit the series of length n.

13.2 The Periodogram

For odd sample sizes with n = 2k + 1, the periodogram I at frequency f = j/n for j =1,
2,…, k, is defined to be

(13.2.1)

If the sample size is even and n = 2k, Equations (13.1.7) and (13.1.8) still give the ’s
and ’s and Equation (13.2.1) gives the periodogram for j = 1, 2,…, k − 1. However, at
the extreme frequency f = k/n = ½, Equations (13.1.9) apply and

(13.2.2)

Since the periodogram is proportional to the sum of squares of the regression coeffi-
cients associated with frequency f = j/n, the height of the periodogram shows the relative
strength of cosine-sine pairs at various frequencies in the overall behavior of the series.
Another interpretation is in terms of an analysis of variance. The periodogram I(j/n) is
the sum of squares with two degrees of freedom associated with the coefficient pair
(Aj,Bj) at frequency j/n, so we have

(13.2.3)

when n = 2k + 1 is odd. A similar result holds when n is even but there is a further term
in the sum, I(½), with one degree of freedom.

For long series, the computation of a large number of regression coefficients might
be intensive. Fortunately, quick, efficient numerical methods based on the fast Fourier
transform (FFT) have been developed that make the computations feasible for very long
time series.†

Exhibit 13.3 displays a graph of the periodogram for the time series in Exhibit 13.2.
The heights show the presence and relative strengths of the two cosine-sine components
quite clearly. Note also that the frequencies 4/96 ≈ 0.04167 and 14/96 ≈ 0.14583 have
been marked on the frequency axis.

† Often based on the Cooley-Tukey FFT algorithm; see Gentleman and Sande (1966).
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Yj Y
 _

–( )2

j 1=

n

∑ I
j
n
---⎝ ⎠

⎛ ⎞
j 1=

k

∑=



13.2  The Periodogram 323

Exhibit 13.3 Periodogram of the Series in Exhibit 13.2

> periodogram(y); abline(h=0); axis(1,at=c(0.04167,.14583))

Does the periodogram work just as well when we do not know where or even if
there are cosines in the series? What if the series contains additional “noise”? To illus-
trate, we generate a time series using randomness to select the frequencies, amplitudes,
and phases and with additional additive white noise. The two frequencies are randomly
chosen without replacement from among 1/96, 2/96,…, 47/96. The A’s and B’s are
selected independently from normal distributions with means of zero and standard devi-
ations of 2 for the first component and 3 for the second. Finally, a normal white noise
series, {Wt}, with zero mean and standard deviation 1, is chosen independently of the
A’s and B’s and added on. The model is†

(13.2.4)

and Exhibit 13.4 displays a time series of length 96 simulated from this model. Once
more, the periodicities are not obvious until we view the periodogram shown in Exhibit
13.5.

† This model is often described as a signal plus noise model. The signal could be determinis-
tic (with unknown parameters) or stochastic.
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Exhibit 13.4 Time Series with “Hidden” Periodicities

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(134); t=1:96; integer=sample(48,2)
> freq1=integer[1]/96; freq2=integer[2]/96
> A1=rnorm(1,0,2); B1=rnorm(1,0,2)
> A2=rnorm(1,0,3); B2=rnorm(1,0,3); w=2*pi*t
> y=A1*cos(w*freq1)+B1*sin(w*freq1)+A2*cos(w*freq2)+

B2*sin(w*freq2)+rnorm(96,0,1)
> plot(t,y,type='o',ylab=expression(y[t]))

The periodogram clearly shows that the series contains two cosine-sine pairs at fre-
quencies of about 0.11 and 0.32 and that the higher-frequency component is much stron-
ger. There are some other very small spikes in the periodogram, apparently caused by
the additive white noise component. (When we checked the simulation in detail, we
found that one frequency was chosen as 10/96 ≈ 0.1042 and the other was selected as
30/96 = 0.3125.)

Exhibit 13.5 Periodogram of the Time Series Shown in Exhibit 13.4

> periodogram(y);abline(h=0)
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Here is an example of the periodogram for a classic time series from Whittaker and
Robinson (1924).† Exhibit 13.6 displays the time series plot of the brightness (magni-
tude) of a particular star at midnight on 600 consecutive nights.

Exhibit 13.6 Variable Star Brightness on 600 Consecutive Nights

> data(star)
> plot(star,xlab='Day',ylab='Brightness')

Exhibit 13.7 shows the periodogram for this time series. There are two very promi-
nent peaks in the periodogram. When we inspect the actual numerical values, we find
that the larger peak occurs at frequency f = 21/600 = 0.035. This frequency corresponds
to a period of 600/21 ≈ 28.57, or nearly 29 days. The secondary peak occurs at f =
25/600 ≈ 0.04167, which corresponds to a period of 24 days. The much more modest
nonzero periodogram values near the major peak are likely caused by leakage.

The two sharp peaks suggest a model for this series with just two cosine-sine pairs
with the appropriate frequencies or periods, namely

(13.2.5)

where f1 = 1/29 and f2 = 1/24. If we estimate this regression model as in Chapter 3, we
obtain highly statistically significant regression coefficients for all five parameters and a
multiple R-square value of 99.9%.

We will return to this time series in Section 14.5 on page 358, where we discuss
more about leakage and tapering.

† An extensive analysis of this series appears throughout Bloomfield (2000).
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Exhibit 13.7 Periodogram of the Variable Star Brightness Time Series

> periodogram(star,ylab='Variable Star Periodogram');abline(h=0)

Although the Fourier frequencies are special, we extend the definition of the peri-
odogram to all frequencies in the interval 0 to ½ through the Equations (13.1.8) and
(13.2.1). Thus we have for 0 ≤ f ≤ ½

(13.2.6)

where

 and (13.2.7)

When viewed in this way, the periodogram is often calculated at a grid of frequencies
finer than the Fourier frequencies, and the plotted points are connected by line segments
to display a somewhat smooth curve.

Why do we only consider positive frequencies? Because by the even and odd nature
of cosines and sines, any cosine-sine curve with negative frequency, say −f, could just as
well be expressed as a cosine-sine curve with frequency +f. No generality is lost by
using positive frequencies.†

Secondly, why do we restrict frequencies to the interval from 0 to ½? Consider the
graph shown in Exhibit 13.8. Here we have plotted two cosine curves, one with fre-
quency f = ¼ and the one shown with dashed lines at frequency f = ¾. If we only
observe the series at the discrete-time points 0, 1, 2, 3,…, the two series are identical.
With discrete-time observations, we could never distinguish between these two curves.
We say that the two frequencies ¼ and ¾ are aliased with one another. In general, each
frequency f within the interval 0 to ½ will be aliased with each frequency of the form

† The definition of Equation (13.2.6) is often used for −½ < f < +½, but the resulting function
is symmetric about zero and no new information is gained from the negative frequencies.
Later in this chapter, we will use both positive and negative frequencies so that certain nice
mathematical relationships hold.
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Âf
2
n
--- Yt 2πtf( )cos

t 1=

n

∑= B̂f
2
n
--- Yt 2πtf( )sin

t 1=

n

∑=



13.3  The Spectral Representation and Spectral Distribution 327

f + k(½) for any positive integer k, and it suffices to limit attention to frequencies within
the interval from 0 to ½.

Exhibit 13.8 Illustration of Aliasing

> win.graph(width=4.875, height=2.5,pointsize=8)
> t=seq(0,8,by=.05)
> plot(t,cos(2*pi*t/4),axes=F,type='l',ylab=expression(Y[t]), 

xlab='Discrete Time t')
> axis(1,at=c(1,2,3,4,5,6,7));axis(1); axis(2); box()
> lines(t,cos(2*pi*t*3/4),lty='dashed',type='l'); abline(h=0)
> points(x=c(0:8),y=cos(2*pi*c(0:8)/4),pch=19)

13.3 The Spectral Representation and Spectral Distribution

Consider a time series represented as

(13.3.1)

where the frequencies 0 < f1 < f2 <…< fm < ½ are fixed and Aj and Bj are independent
normal random variables with zero means and Var(Aj) = Var(Bj) = . Then a straight-
forward calculation shows that {Yt} is stationary† with mean zero and

(13.3.2)

In particular, the process variance, γ0, is a sum of the variances due to each component
at the various fixed frequencies:

† Compare this with Exercise 2.29 on page 24.
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(13.3.3)

If for 0 < f < ½ we define two random step functions by

 and (13.3.4)

then we can write Equation (13.3.1) as

(13.3.5)

It turns out that any zero-mean stationary process may be represented as in Equation
(13.3.5).† It shows how stationary processes may be represented as linear combinations
of infinitely many cosine-sine pairs over a continuous frequency band. In general, a(f)
and b(f) are zero-mean stochastic processes indexed by frequency on 0 ≤ f ≤ ½, each
with uncorrelated‡ increments, and the increments of a(f) are uncorrelated with the
increments of b(f). Furthermore, we have

, say. (13.3.6)

Equation (13.3.5) is called the spectral representation of the process. The nondecreas-
ing function F(f) defined on 0 ≤ f ≤ ½ is called the spectral distribution function of the
process.

We say that the special process defined by Equation (13.3.1) has a purely discrete
(or line) spectrum and, for 0 ≤ f ≤ ½,

(13.3.7)

Here the heights of the jumps in the spectral distribution give the variances associated
with the various periodic components, and the positions of the jumps indicate the fre-
quencies of the periodic components.

In general, a spectral distribution function has the properties

† The proof is beyond the scope of this book. See Cramér and Leadbetter (1967, pp. 128
–138), for example. You do not need to understand stochastic Riemann-Stieltjes integrals to
appreciate the rest of the discussion of spectral analysis.

‡ Uncorrelated increments are usually called orthogonal increments.

γ0 σj
2

j 1=

m

∑=

a f( ) Aj
j fj f≤{ }
∑= b f( ) Bj

j fj f≤{ }
∑=

Yt 2πft( )cos a f( )d
0

½

∫ 2πft( )sin b f( )d
0

½

∫+=

Var a f( )d
f1

f2
∫⎝ ⎠

⎛ ⎞ Var b f( )d
f1

f2
∫⎝ ⎠

⎛ ⎞ F f2( ) F f1( )–= =

F f( ) σj
2

j fj f≤{ }
∑=



13.3  The Spectral Representation and Spectral Distribution 329

(13.3.8)

If we consider the scaled spectral distribution function F(f)/γ0, we have a function with
the same mathematical properties as a cumulative distribution function (CDF) for a ran-
dom variable on the interval 0 to ½ since now F(½)/γ0 = 1.

We interpret the spectral distribution by saying that, for 0 ≤ f1 < f2 ≤ ½, the integral

(13.3.9)

gives the portion of the (total) process variance F(½) = γ0 that is attributable to frequen-
cies in the range f1 to f2.

Sample Spectral Density

In spectral analysis, it is customary to first remove the sample mean from the series. For
the remainder of this chapter, we assume that in the definition of the periodogram, Yt
represents deviations from its sample mean. Furthermore, for mathematical conve-
nience, we now let various functions of frequency, such as the periodogram, be defined
on the interval (−½,½]. In particular, we define the sample spectral density or sample
spectrum as = ½I(f) for all frequencies in (−½,½) and = I(½). Using straight-
forward but somewhat tedious algebra, we can show that the sample spectral density can
also be expressed as

(13.3.10)

where is the sample or estimated covariance function at lag k (k = 0, 1, 2,…, n − 1)
given by

(13.3.11)

In Fourier analysis terms, the sample spectral density is the (discrete-time) Fourier
transform of the sample covariance function. From Fourier analysis theory, it follows
that there is an inverse relationship, namely†

(13.3.12)

† This may be proved using the orthogonality relationships shown in Appendix J on
page 349.
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In particular, notice that the total area under the sample spectral density is the sample
variance of the time series.

(13.3.13)

Since each can be obtained from the other, the sample spectral density and the sample
covariance function contain the same information about the observed time series but it is
expressed in different ways. For some purposes, one is more convenient or useful, and
for other purposes the other is more convenient or useful.

13.4 The Spectral Density

For many processes, such as all stationary ARMA processes, the covariance functions
decay rapidly with increasing lag.† When that is the case, it seems reasonable to con-
sider the expression formed by replacing sample quantities in the sample spectral den-
sity of Equation (13.3.10) with the corresponding theoretical quantities. To be precise, if
the covariance function γk is absolutely summable, we define the theoretical (or popula-
tion) spectral density for −½ < f ≤ ½ as

(13.4.1)

Once more, there is an inverse relationship, given by

(13.4.2)

Mathematically, S(f) is the (discrete-time) Fourier transform of the sequence …,γ−2, γ−1,
γ0, γ1, γ2,…, and {γk} is the inverse Fourier transform‡ of the spectral density S(f)
defined on −½ < f ≤ ½.

A spectral density has all of the mathematical properties of a probability density
function on the interval (−½,½], with the exception that the total area is γ0 rather than 1.
Moreover, it can be shown that

† Of course, this is not the case for the processes defined in Equations (13.2.4) on page 323
and (13.3.1) on page 327. Those processes have discrete components in their spectra.

‡ Notice that since γk = γ−k and the cosine function is also even, we could write

where is the imaginary unit for complex numbers. This looks more like a standard
discrete-time Fourier transform. In a similar way, Equation (13.4.2) may be rewritten as

.
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 for 0 ≤ f ≤ ½ (13.4.3)

Thus, twice the area under the spectral density between frequencies f1 and f2 with 0 ≤ f1
< f2 ≤ ½ is interpreted as the portion of the variance of the process that is attributable to
cosine-sine pairs in that frequency interval that compose the process.

Time-Invariant Linear Filters

A time-invariant linear filter is defined by a sequence of absolutely summable constants
…, c−1, c0, c1, c2, c3,… . If {Xt} is a time series, we use these constants to filter {Xt} and
produce a new time series {Yt} using the expression

(13.4.4)

If ck = 0 for k < 0, we say that the filter is causal. In this case, the filtering at time t
involves only present and past data values and can be carried out in “real time.”

We have already seen many examples of time-invariant linear filters in previous
chapters. Differencing (nonseasonal or seasonal) is an example. A combination of one
seasonal difference with one nonseasonal difference is another example. Any moving
average process can be considered as a linear filtering of a white noise sequence and in
fact every general linear process defined by Equation (4.1.1) on page 55 is a linear filter-
ing of white noise.

The expression on the right-hand side of Equation (13.4.4) is frequently called the
(discrete-time) convolution of the two sequences {ct} and {Xt}. An extremely useful
property of Fourier transforms is that the somewhat complicated operation of convolu-
tion in the time domain is transformed into the very simple operation of multiplication
in the frequency domain.†

In particular, let SX(f) be the spectral density for the {Xt} process and let SY(f) be the
spectral density for the {Yt} process. In addition, let 

(13.4.5)

Then

† You may have already seen this with moment-generating functions. The density of the sum
of two independent random variables, discrete or continuous, is the convolution of their
respective densities, but the moment-generating function for the sum is the product of their
respective moment-generating functions.
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So

(13.4.6)

But

(13.4.7)

so we must have

(13.4.8)

This expression is invaluable for investigating the effect of time-invariant linear filters
on spectra. In particular, it helps us find the form of the spectral densities for ARMA
processes. The function is often called the (power) transfer function of the
filter.

13.5 Spectral Densities for ARMA Processes

White Noise

From Equation (13.4.1), it is easy to see that the theoretical spectral density for a white
noise process is constant for all frequencies in −½ < f ≤ ½ and, in particular,

(13.5.1)

All frequencies receive equal weight in the spectral representation of white noise. This
is directly analogous to the spectrum of white light in physics—all colors (that is, all
frequencies) enter equally in white light. Finally, we understand the origin of the name
white noise!

MA(1) Spectral Density

An MA(1) process is a simple filtering of white noise with c0 = 1 and c1 = −θ and so

(13.5.2)
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(13.5.3)

When θ > 0, you can show that this spectral density is an increasing function of nonneg-
ative frequency, while for θ < 0 the function decreases.

Exhibit 13.9 displays the spectral density for an MA(1) process with θ = 0.9.† Since
spectral densities are symmetric about zero frequency, we will only plot them for posi-
tive frequencies. Recall that this MA(1) process has a relatively large negative correla-
tion at lag 1 but all other correlations are zero. This is reflected in the spectrum. We see
that the density is much stronger for higher frequencies than for low frequencies. The
process has a tendency to oscillate back and forth across its mean level. This rapid oscil-
lation is high-frequency behavior. We might say that the moving average suppresses the
lower-frequency components of the white noise process. Researchers sometimes refer to
this type of spectrum as a blue spectrum since it emphasizes the higher frequencies (that
is, those with lower period or wavelength), which correspond to blue light in the spec-
trum of visible light.

Exhibit 13.9 Spectral Density of MA(1) Process with θ = 0.9

> win.graph(width=4.875,height=2.5,pointsize=8)
> theta=.9 # Reset theta for other MA(1) plots
> ARMAspec(model=list(ma=-theta))

Exhibit 13.10 displays the spectral density for an MA(1) process with θ = −0.9.
This process has positive correlation at lag 1 with all other correlations zero. Such a pro-
cess will tend to change slowly from one time instance to the next. This is low-fre-
quency behavior and is reflected in the shape of the spectrum. The density is much
stronger for lower frequencies than for high frequencies. Researchers sometimes call
this a red spectrum.

† In all of the plots of ARMA spectral densities that follow in this section, we take = 1.
This only affects the vertical scale of the graphs, not their shape.
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Exhibit 13.10 Spectral Density of MA(1) Process with θ = −0.9

MA(2) Spectral Density

The spectral density for an MA(2) model may be obtained similarly. The algebra is a lit-
tle longer, but the final expression is

(13.5.4)

Exhibit 13.11 shows a graph of such a density when θ1 = 1 and θ2 = −0.6. The frequen-
cies between about 0.1 and 0.18 have especially small density and there is very little
density below the frequency of 0.1. Higher frequencies enter into the picture gradually,
with the strongest periodic components at the highest frequencies.

Exhibit 13.11 Spectral Density of MA(2) Process with θ1 = 1 and θ2 = −0.6

> theta1=1; theta2=-0.6
> ARMAspec(model=list(ma=-c(theta1,theta2)))
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AR(1) Spectral Density

To find the spectral density for AR models, we use Equation (13.4.8) “backwards.” That
is, we view the white noise process as being a linear filtering of the AR process. Recall-
ing the spectral density of the MA(1) series, this gives

(13.5.5)

which we solve to obtain

(13.5.6)

As the next two exhibits illustrate, this spectral density is a decreasing function of fre-
quency when φ > 0, while the spectral density increases for φ < 0.

Exhibit 13.12 Spectral Density of an AR(1) Process with φ = 0.9

> phi=0.9 # Reset value of phi for other AR(1) models
> ARMAspec(model=list(ar=phi))
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Exhibit 13.13 Spectral Density of an AR(1) Process with φ = −0.6

AR(2) Spectral Density

For the AR(2) spectral density, we again use Equation (13.4.8) backwards together with
the MA(2) result to obtain

(13.5.7)

Just as with the correlation properties, the spectral density for an AR(2) model can
exhibit a variety of behaviors depending on the actual values of the two φ parameters.

Exhibits 13.14 and 13.15 display two AR(2) spectral densities that show very dif-
ferent behavior of peak in one case and trough in another.

Exhibit 13.14 Spectral Density of AR(2) Process: φ1 = 1.5 and φ2 = −0.75

> phi1=1.5; phi2=-.75
> # Reset values of phi1 & phi2 for other AR(2) models
> ARMAspec(model=list(ar=c(phi1,phi2)))
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Jenkins and Watts (1968, p. 229), have noted that the different spectral shapes for
an AR(2) spectrum are determined by the inequality

(13.5.8)

and the results are best summarized in the display in Exhibit 13.16. In this display, the
dashed curve is the border between the regions of real roots and complex roots of the
AR(2) characteristic equation. The solid curves are determined from the inequality
given in Equation (13.5.8).

Exhibit 13.15 Spectral Density of AR(2) Process with φ1 = 0.1 and φ2 = 0.4

Exhibit 13.16 AR(2) Parameter Values for Various Spectral Density Shapes
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Note that Jenkins and Watts also showed that the frequency f0 at which the peak or
trough occurs will satisfy

(13.5.9)

It is commonly thought that complex roots are associated with a peak spectrum. But
notice that there is a small region of parameter values where the roots are complex but
the spectrum is of either high or low frequency with no intermediate peak. 

ARMA(1,1) Spectral Density

Combining what we know for MA(1) and AR(1) models, we can easily obtain the spec-
tral density for the ARMA(1,1) mixed model

(13.5.10)

Exhibit 13.17 provides an example of the spectrum for an ARMA(1,1) model with φ =
0.5 and θ = 0.8.

Exhibit 13.17 Spectral Density of ARMA(1,1) with φ = 0.5 and θ = 0.8

> phi=0.5; theta=0.8
> ARMAspec(model=list(ar=phi,ma=-theta))

ARMA(p ,q)

For the general ARMA(p,q) case, the spectral density may be expressed in terms of the
AR and MA characteristic polynomials as

(13.5.11)
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This may be further expressed in terms of the reciprocal roots of these polynomials, but
we will not pursue those expressions here. This type of spectral density is often referred
to as a rational spectral density.

Seasonal ARMA Processes

Since seasonal ARMA processes are just special ARMA processes, all of our previous
work will carry over here. Multiplicative seasonal models can be thought of as applying
two linear filters consecutively. We will just give two examples.

Consider the process defined by the seasonal AR model

(13.5.12)

Manipulating the two factors separately yields

(13.5.13)

An example of this spectrum is shown in Exhibit 13.18, where φ = 0.5, Φ = 0.9, and s =
12. The seasonality is reflected in the many spikes of decreasing magnitude at frequen-
cies of 0, 1/12, 2/12, 3/12, 4/12, 5/12, and 6/12.

As a second example, consider a seasonal MA process

(13.5.14)

The corresponding spectral density is given by

(13.5.15)

Exhibit 13.19 shows this spectral density for parameter values θ = 0.4 and Θ = 0.9.

Exhibit 13.18 Spectral Density of Seasonal AR with φ = 0.5, Φ = 0.9, s =12

> phi=.5; PHI=.9
> ARMAspec(model=list(ar=phi,seasonal=list(sar=PHI,period=12)))
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Exhibit 13.19 Spectral Density of Seasonal MA with θ = 0.4, Θ = 0.9, s =12

> theta=.4; Theta=.9
> ARMAspec(model=list(ma=-theta,seasonal=list(sma=-Theta, 

period=12)))

13.6 Sampling Properties of the Sample Spectral Density

To introduce this section, we consider a time series with known properties. Suppose that
we simulate an AR(1) model with φ = −0.6 of length n = 200. Exhibit 13.13 on page
336, shows the theoretical spectral density for such a series. The sample spectral density
for our simulated series is displayed in Exhibit 13.20, with the smooth theoretical spec-
tral density shown as a dotted line. Even with a sample of size 200, the sample spectral
density is extremely variable from one frequency point to the next. This is surely not an
acceptable estimate of the theoretical spectrum for this process. We must investigate the
sampling properties of the sample spectral density to understand the behavior that we
see here.

To investigate the sampling properties of the sample spectral density, we begin with
the simplest case, where the time series {Yt} is zero-mean normal white noise with vari-
ance γ0. Recall that

and (13.6.1)

For now, consider only nonzero Fourier frequencies f = j/n < ½. Since  and 
are linear functions of the time series {Yt}, they each have a normal distribution. We can
evaluate the means and variances using the orthogonality properties of the cosines and
sines.† We find that  and  each have mean zero and variance 2γ0/n. We can also use
the orthogonality properties to show that  and  are uncorrelated and thus indepen-

† See Appendix J on page 349.
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dent since they are jointly bivariate normal. Similarly, it can be shown that for any two
distinct Fourier frequencies f1 and f2, , , , and  are jointly independent.

Exhibit 13.20 Sample Spectral Density for a Simulated AR(1) Process

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(271435); n=200; phi=-0.6
> y=arima.sim(model=list(ar=phi),n=n)
> sp=spec(y,log='no',xlab='Frequency',

ylab='Sample Spectral Density',sub='')
> lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 

plot=F)$spec,lty='dotted'); abline(h=0)

Furthermore, we know that the square of a standard normal has a chi-square distri-
bution with one degree of freedom and that the sum of independent chi-square variables
is chi-square distributed with degrees of freedom added together. Since S(f) = γ0 , we
have

(13.6.2)

has a chi-square distribution with two degrees of freedom.
Recall that a chi-square variable has a mean equal to its degrees of freedom and a

variance equal to twice its degrees of freedom. With these facts, we quickly discover
that

and are independent for f1 ≠ f2 (13.6.3)

(13.6.4)
and

(13.6.5)
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Equation (13.6.4) expresses the desirable fact that the sample spectral density is an unbi-
ased estimator of the theoretical spectral density.

Unfortunately, Equation (13.6.5) shows that the variance in no way depends on the
sample size n. Even in this simple case, the sample spectral density is not a consistent
estimator of the theoretical spectral density. It does not get better (that is, have smaller
variance) as the sample size increases. The reason the sample spectral density is incon-
sistent is basically this: Even if we only consider Fourier frequencies, 1/n, 2/n,…, we are
trying to estimate more and more “parameters”; that is, S(1/n), S(2/n),… . As the sample
size increases, there are not enough data points per parameter to produce consistent esti-
mates.

The results expressed in Equations (13.6.3)–(13.6.5) in fact hold more generally. In
the exercises, we ask you to argue that for any white noise—not necessarily normal—
the mean result holds exactly and the  and  that make up and are at
least uncorrelated for f1 ≠ f2.

To state more general results, suppose {Yt} is any linear process

(13.6.6)

where the e’s are independent and identically distributed with zero mean and common
variance. Suppose that the ψ-coefficients are absolutely summable, and let f1 ≠ f2 be any
frequencies in 0 to ½. Then it may be shown† that as the sample size increases without
limit

 and (13.6.7)

converge in distribution to independent chi-square random variables, each with two
degrees of freedom.

To investigate the usefulness of approximations based on Equations (13.6.7),
(13.6.4), and (13.6.5), we will display results from two simulations. We first simulated
1000 replications of an MA(1) time series with θ = 0.9, each of length n = 48. The white
noise series used to create each MA(1) series was selected independently from a t-distri-
bution with five degrees of freedom scaled to unit variance. From the 1000 series, we
calculated 1000 sample spectral densities.

Exhibit 13.21 shows the average of the 1000 sample spectral densities evaluated at
the 24 Fourier frequencies associated with n = 48. The solid line is the theoretical spec-
tral density. It appears that the sample spectral densities are unbiased to a useful approx-
imation in this case.

† See, for example, Fuller (1996, pp. 360–361).
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Exhibit 13.21 Average Sample Spectral Density: 
Simulated MA(1), θ = 0.9, n = 48

For the extensive R code to produce Exhibits 13.21 through 13.26, 
please see the Chapter 13 script file associated with this book.

Exhibit 13.22 plots the standard deviations of the sample spectral densities over the
1000 replications. According to Equation (13.6.5), we hope that they match the theoret-
ical spectral density at the Fourier frequencies. Again the approximation seems to be
quite acceptable.

Exhibit 13.22 Standard Deviation of Sample Spectral Density: 
Simulated MA(1), θ = 0.9, n = 48

To check on the shape of the sample spectral density distribution, we constructed a
QQ plot comparing the observed quantiles with those of a chi-square distribution with
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two degrees of freedom. Of course, we could do those for any of the Fourier frequen-
cies. Exhibit 13.23 shows the results at the frequency 15/48. The agreement with the
chi-square distribution appears to be acceptable.

Exhibit 13.23 QQ Plot of Spectral Distribution at f = 15/48

We repeated similar displays and calculations when the true model was an AR(2)
with φ1 = 1.5, φ2 = −0.75, and n = 96. Here we used normal white noise. The results are
displayed in Exhibits 13.24, 13.25, and 13.26. Once more the simulation results with n =
96 and 1000 replications seem to follow those suggested by limit theory quite remark-
ably.

Exhibit 13.24 Average Sample Spectral Density: 
Simulated AR(2), φ1 = 1.5, φ2 = −0.75, n = 96
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Exhibit 13.25 Standard Deviation of Sample Spectral Density: 
Simulated AR(2), φ1 = 1.5, φ2 = −0.75, n = 96

Exhibit 13.26 QQ Plot of Spectral Distribution at f = 40/96

Of course, none of these results tell us that the sample spectral density is an accept-
able estimator of the underlying theoretical spectral density. The sample spectral density
is quite generally approximately unbiased but also inconsistent, with way too much vari-
ability to be a useful estimator as it stands. The approximate independence at the Fourier
frequencies also helps explain the extreme variability in the behavior of the sample
spectral density.
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13.7 Summary

The chapter introduces the ideas of modeling time series as linear combinations of sines
and cosines—so-called spectral analysis. The periodogram was introduced as a tool for
finding the contribution of the various frequencies in the spectral representation of the
series. The ideas were then extended to modeling with a continuous range of frequen-
cies. Spectral densities of the ARMA models were explored. Finally, the sampling prop-
erties of the sample spectral density were presented. Since the sample spectral density is
not a consistent estimator of the theoretical spectral density, we must search further for
an acceptable estimator. That is the subject of the next chapter.

EXERCISES

13.1 Find A and B so that .
13.2 Find R and Φ so that .
13.3 Consider the series displayed in Exhibit 13.2 on page 320.

(a) Verify that regressing the series on cos(2πft) and sin(2πft) for f = 4/96 pro-
vides perfect estimates of A and B.

(b) Use Equations (13.1.5) on page 321 to obtain the relationship between R, Φ, A
and B for the cosine component at frequency f = 14/96. (For this component,
the amplitude is 1 and the phase is 0.6π.)

(c) Verify that regressing the series on cos(2πft) and sin(2πft) for f = 14/96 pro-
vides perfect estimates of A and B.

(d) Verify that regressing the series on cos(2πft) and sin(2πft) for both f = 4/96
and f = 14/96 together provides perfect estimates of A4, B4, A14, and B14.

(e) Verify that regressing the series on cos(2πft) and sin(2πft) for f = 3/96 and f =
13/96 together provides perfect estimates of A3, B3, A13, and B13.

(f) Repeat part (d) but add a third pair of cosine-sine predictor variables at any
other Fourier frequency. Verify that all of the regression coefficients are still
estimated perfectly.

13.4 Generate or choose any series of length n = 10. Show that the series may be fit
exactly by a linear combination of enough cosine-sine curves at the Fourier fre-
quencies.

13.5 Simulate a signal + noise time series from the model in Equation (13.2.4) on page
323. Use the same parameter values used in Exhibit 13.4 on page 324.
(a) Plot the time series and look for the periodicities. Can you see them?

(b) Plot the periodogram for the simulated series. Are the periodicities clear now?
13.6 Show that the covariance function for the series defined by Equation (13.3.1) on

page 327 is given by the expression in Equation (13.3.2).
13.7 Display the algebra that establishes Equation (13.3.10) on page 329.

3 2πft 0.4+( )cos A 2πft( )cos B 2πft( )sin+=
R 2πft Φ+( )cos 2πft( )cos 3 2πft( )sin+=
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13.8 Show that if {Xt} and {Yt} are independent stationary series, then the spectral
density of {Xt + Yt} is the sum of the spectral densities of {Xt} and {Yt}.

13.9 Show that when θ > 0 the spectral density for an MA(1) process is an increasing
function of frequency, while for θ < 0 this function decreases.

13.10 Graph the theoretical spectral density for an MA(1) process with θ = 0.6. Interpret
the implications of the shape of the spectrum on the possible plots of the time
series values.

13.11 Graph the theoretical spectral density for an MA(1) process with θ = −0.8. Inter-
pret the implications of the shape of the spectrum on the possible plots of the time
series values.

13.12 Show that when φ > 0 the spectral density for an AR(1) process is a decreasing
function of frequency, while for φ < 0 the spectral density increases.

13.13 Graph the theoretical spectral density for an AR(1) time series with φ = 0.7. Inter-
pret the implications of the shape of the spectrum on the possible plots of the time
series values.

13.14 Graph the theoretical spectral density for an AR(1) time series with φ = −0.4.
Interpret the implications of the shape of the spectrum on the possible plots of the
time series values.

13.15 Graph the theoretical spectral density for an MA(2) time series with θ1 = −0.5 and
θ2 = 0.9. Interpret the implications of the shape of the spectrum on the possible
time series plots of the series values.

13.16 Graph the theoretical spectral density for an MA(2) time series with θ1 = 0.5 and
θ2 = −0.9. Interpret the implications of the shape of the spectrum on the possible
time series plots of the series values.

13.17 Graph the theoretical spectral density for an AR(2) time series with φ1 = −0.1 and
φ2 = −0.9. Interpret the implications of the shape of the spectrum on the possible
time series plots of the series values.

13.18 Graph the theoretical spectral density for an AR(2) process with φ1 = 1.8 and φ2 =
−0.9. Interpret the implications of the shape of the spectrum on the possible plots
of the time series values.

13.19 Graph the theoretical spectral density for an AR(2) process with φ1 = −1 and φ2 =
−0.8. Interpret the implications of the shape of the spectrum on the possible plots
of the time series values.

13.20 Graph the theoretical spectral density for an AR(2) process with φ1 = 0.5 and φ2 =
0.4. Interpret the implications of the shape of the spectrum on the possible plots of
the time series values.

13.21 Graph the theoretical spectral density for an AR(2) process with φ1 = 0 and φ2 =
0.8. Interpret the implications of the shape of the spectrum on the possible plots of
the time series values.

13.22 Graph the theoretical spectral density for an AR(2) process with φ1 = 0.8 and φ2 =
−0.2. Interpret the implications of the shape of the spectrum on the possible plots
of the time series values.

13.23 Graph the theoretical spectral density for an ARMA(1,1) time series with φ = 0.5
and θ = 0.8. Interpret the implications of the shape of the spectrum on the possible
plots of the time series values.
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13.24 Graph the theoretical spectral density for an ARMA(1,1) process with φ = 0.95
and θ = 0.8. Interpret the implications of the shape of the spectrum on the possible
plots of the time series values.

13.25 Let {Xt} be a stationary time series and {Yt} be defined by Yt = .
(a) Find the power transfer function for this linear filter.

(b) Is this a causal filter?

(c) Graph the power transfer function and describe the effect of using this filter.
That is, what frequencies will be retained (emphasized) and what frequencies
will be deemphasized (attenuated) by this filtering?

13.26 Let {Xt} be a stationary time series and let {Yt} be defined by Yt = .
(a) Find the power transfer function for this linear filter.

(b) Is this a causal filter?

(c) Graph the power transfer function and describe the effect of using this filter.
That is, what frequencies will be retained (emphasized) and what frequencies
will be deemphasized (attenuated) by this filtering?

13.27 Let {Xt} be a stationary time series and let Yt =  define
{Yt}.
(a) Find the power transfer function for this linear filter.

(b) Is this a causal filter?

(c) Graph the power transfer function and describe the effect of using this filter.
That is, what frequencies will be retained (emphasized) and what frequencies
will be deemphasized (attenuated) by this filtering?

13.28 Let {Xt} be a stationary time series and let Yt =  define
{Yt}.
(a) Show that the power transfer function of this filter is the same as the power

transfer function of the filter defined in Exercise 13.27.

(b) Is this a causal filter?
13.29 Let {Xt} be a stationary time series and let Yt =  define {Yt}.

(a) Find the power transfer function for this linear filter.

(b) Graph the power transfer function and describe the effect of using this filter.
That is, what frequencies will be retained (emphasized) and what frequencies
will be deemphasized (attenuated) by this filtering?

13.30 Let {Xt} be a stationary time series and let {Yt} be defined by Yt =
.

(a) Find the power transfer function for this linear filter.

(b) Graph the power transfer function and describe the effect of using this filter.
That is, what frequencies will be retained (emphasized) and what frequencies
will be deemphasized (attenuated) by this filtering?

Xt Xt 1–+( ) 2⁄

Xt Xt 1––

Xt 1+ Xt Xt 1–+ +( ) 3⁄

Xt Xt 1– Xt 2–+ +( ) 3⁄

Xt Xt 4––

Xt 1+ 2Xt– Xt 1–+( ) 3⁄
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13.31 Suppose that {Yt} is a white noise process not necessarily normal. Use the orthog-
onality properties given in Appendix J to establish the following at the Fourier
frequencies.
(a) The sample spectral density is an unbiased estimator of the theoretical spectral

density.

(b) The variables  and  are uncorrelated for any Fourier frequencies f1, f2.

(c) If the Fourier frequencies f1 ≠ f2, the variables  and  are uncorrelated.
13.32 Carry out a simulation analysis similar to those reported in Exhibits 13.21, 13.22,

13.23, and 13.24. Use an AR(2) model with φ1 = 0.5, φ2 = −0.8, and n = 48. Rep-
licate the series 1000 times.
(a) Display the average sample spectral density by frequency and compare it with

large sample theory.

(b) Display the standard deviation of the sample spectral density by frequency
and compare it with large sample theory.

(c) Display the QQ plot of the appropriately scaled sample spectral density com-
pared with large sample theory at several frequencies. Discuss your results.

13.33 Carry out a simulation analysis similar to those reported in Exhibits 13.21, 13.22,
13.23, and 13.24. Use an AR(2) model with φ1 = −1, φ2 = −0.75, and n = 96. Rep-
licate the time series 1000 times.
(a) Display the average sample spectral density by frequency and compare it with

the results predicted by large sample theory.

(b) Display the standard deviation of the sample spectral density by frequency
and compare it with the results predicted by large sample theory.

(c) Display the QQ plot of the appropriately scaled sample spectral density and
compare with the results predicted by large sample theory at several frequen-
cies. Discuss your results.

13.34 Simulate a zero-mean, unit-variance, normal white noise time series of length n =
1000. Display the periodogram of the series, and comment on the results.

Appendix J: Orthogonality of Cosine and Sine Sequences

For j, k = 0, 1, 2,…, n/2, we have

(13.J.1)

(13.J.2)

(13.J.3)
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(13.J.4)

(13.J.5)

These are most easily proved using DeMoivre’s theorem

(13.J.6)

or, equivalently, Euler’s formulas,

 and (13.J.7)

together with the result for the sum of a finite geometric series, namely

(13.J.8)

for real or complex r ≠ 1.
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CHAPTER 14

ESTIMATING THE SPECTRUM

Several alternative methods for constructing reasonable estimators of the spectral den-
sity have been proposed and investigated over the years. We will highlight just a few of
them that have gained the most acceptance in light of present-day computing power.
So-called nonparametric estimation of the spectral density (that is, smoothing of the
sample spectral density) assumes very little about the shape of the “true” spectral den-
sity. Parametric estimation assumes that an autoregressive model—perhaps of high
order—provides an adequate fit to the time series. The estimated spectral density is then
based on the theoretical spectral density of the fitted AR model. Some other methods are
touched on briefly.

14.1 Smoothing the Spectral Density

The basic idea here is that most spectral densities will change very little over small
intervals of frequencies. As such, we should be able to average the values of the sample
spectral density over small intervals of frequencies to gain reduced variability. In doing
so, we must keep in mind that we may introduce bias into the estimates if, in fact, the
theoretical spectral density does change substantially over that interval. There will
always be a trade-off between reducing variability and introducing bias. We will be
required to use judgment to decide how much averaging to perform in a particular case.

Let f be a Fourier frequency. Consider taking a simple average of the neighboring
sample spectral density values centered on frequency f and extending m Fourier fre-
quencies on either side of f. We are averaging 2m + 1 values of the sample spectrum, and
the smoothed sample spectral density is given by

(14.1.1)

(When averaging for frequencies near the end points of 0 and ½, we treat the peri-
odogram as symmetric about 0 and ½.)

More generally, we may smooth the sample spectrum with a weight function or
spectral window Wm(f) with the properties

S
_

f( ) 1
2m 1+
----------------- Ŝ f j

n
---+⎝ ⎠

⎛ ⎞

j m–=

m

∑=
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(14.1.2)

and obtain a smoothed estimator of the spectral density as

(14.1.3)

The simple averaging shown in Equation (14.1.1) corresponds to the rectangular spec-
tral window

 for −m ≤ k ≤ m (14.1.4)

For historical reasons, this spectral window is usually called the Daniell spectral win-
dow after P. J. Daniell, who first used it in the 1940s.

As an example, consider the simulated AR(1) series whose sample spectral density
was shown in Exhibit 13.20 on page 341. Exhibit 14.1 displays the smoothed sample
spectrum using the Daniell window with m = 5. The true spectrum is again shown as a
dotted line. The smoothing did reduce some of the variability that we saw in the sample
spectrum.

Exhibit 14.1 Smoothed Spectrum Using the Daniell Window With m = 5

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(271435); n=200; phi=-0.6
> y=arima.sim(model=list(ar=phi),n=n)
> k=kernel('daniell',m=5)
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> sp=spec(y,kernel=k,log='no',sub='',xlab='Frequency', 
ylab='Smoothed Sample Spectral Density')

> lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
plot=F)$spec,lty='dotted')

If we make the smoothing window wider (that is, increase m) we will reduce the
variability even further. Exhibit 14.2 shows the smoothed spectrum with a choice of m =
15. The danger with more and more smoothing is that we may lose important details in
the spectrum and introduce bias. The amount of smoothing needed will always be a mat-
ter of judgmental trial and error, recognizing the trade-off between reducing variability
at the expense of introducing bias.

Exhibit 14.2 Smoothed Spectrum Using the Daniell Window With m = 15

> k=kernel('daniell',m=15)
> sp=spec(y,kernel=k,log='no',sub='',xlab='Frequency', 

ylab='Smoothed Sample Spectral Density')
> lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 

plot=F)$spec,lty='dotted')

Other Spectral Windows

Many other spectral windows have been suggested over the years. In particular, the
abrupt change at the end points of the Daniell window could be softened by making the
weights decrease at the extremes. The so-called modified Daniell spectral window sim-
ply defines the two extreme weights as half of the other weights still retaining the prop-
erty that the weights sum to 1. The leftmost graph in Exhibit 14.3 shows the modified
Daniell spectral window for m = 3.

0.0 0.1 0.2 0.3 0.4 0.5

1
2

3
4

5
6

7

Frequency

S
m

oo
th

ed
 S

am
pl

e 
S

pe
ct

ra
l D

en
si

ty



354 Estimating the Spectrum

Exhibit 14.3 The Modified Daniell Spectral Window and Its Convolutions

Another common way to modify spectral windows is to use them to smooth the
periodogram more than once. Mathematically, this amounts to using the convolution of
the spectral windows. If the modified Daniell spectral window with m = 3 is used twice
(convolved with itself), we in fact are using the (almost) triangular-shaped window
shown in the middle display of Exhibit 14.3. A third smoothing (with m = 3) is equiva-
lent to using the spectral window shown in the rightmost panel. This spectral window
appears much like a normal curve. We could also use different values of m in the various
components of the convolutions.

Most researchers agree that the shape of the spectral window is not nearly as impor-
tant as the choice of m (or the bandwidth—see below). We will use the modified Daniell
spectral window—possibly with one or two convolutions—in our examples.†

14.2 Bias and Variance

If the theoretical spectral density does not change much over the range of frequencies
that the smoothing window covers, we expect the smoothed estimator to be approxi-
mately unbiased. A calculation using this approximation, the spectral window properties
in Equations (14.1.2), and a short Taylor expansion produces

or

(14.2.1)

† In R, the modified Daniell kernel is the default kernel for smoothing sample spectra, and m
may be specified by simply specifying span = 2m + 1 in the spec function where span is an
abbreviation of the spans argument.
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So an approximate value for the bias in the smoothed spectral density is given by

(14.2.2)

For the Daniell rectangular spectral window, we have

(14.2.3)

and thus the bias tends to zero as n → ∞ as long as m/n → 0.
Using the fact that the sample spectral density values at the Fourier frequencies are

approximately uncorrelated and Equation (13.6.5) on page 341, we may also obtain a
useful approximation for the variance of the smoothed spectral density as

so that

(14.2.4)

Note that for the Daniell or rectangular spectral window , so
that as long as m → ∞ (as n → ∞) we have consistency.

In general, we require that as n → ∞ we have m/n → 0 to reduce bias and m → ∞ to
reduce variance. As a practical matter, the sample size n is usually fixed and we must
choose m to balance bias and variance considerations.

Jenkins and Watts (1968) suggest trying three different values of m. A small value
will give an idea where the large peaks in S(f) are but may show a large number of
peaks, many of which are spurious. A large value of m may produce a curve that is
likely to be too smooth. A compromise may then be achieved with the third value of m.
Chatfield (2004, p. 135) suggests using . Often trying values for m of 2 ,

, and ½  will give you some insight into the shape of the true spectrum. Since the
width of the window decreases as m decreases, this is sometimes called window closing.
As Hannan (1973, p. 311) says, “Experience is the real teacher and cannot be got from a
book.”

14.3 Bandwidth

In the approximate bias given by Equation (14.2.2), notice that the factor  depends
on the curvature of the true spectral density and will be large in magnitude if there is a
sharp peak in S(f) near f but will be small when S(f) is relatively flat near f. This makes
intuitive sense, as the motivation for the smoothing of the sample spectral density
assumed that the true density changed very little over the range of frequencies used in
the spectral window. The square root of the other factor in the approximate bias from

bias
1
n2
-----S ′ ′ f( )

2
------------ k2Wm k( )

k m–=

m

∑≈

1

n2
----- k2Wm k( )

k m–=

m

∑
2

n2 2m 1+( )
---------------------------- m3

3
------- m2

2
------- m

6
----+ +⎝ ⎠

⎛ ⎞=

Var S
_

f( )[ ] Wm
2 k( )Var Ŝ f k
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Equation (14.2.2) is sometimes called the bandwidth, BW, of the spectral window,
namely

(14.3.1)

As we noted in Equation (14.2.3), for the Daniell window this BW will tend to zero as n
→ ∞ as long as m/n → 0. From Equations (14.1.2) on page 352 a spectral window has
the mathematical properties of a discrete zero-mean probability density function, so the
BW defined here may be viewed as proportional to the standard deviation of the spectral
window. As such, it is one way to measure the width of the spectral window. It is inter-
preted as a measure of width of the band of frequencies used in smoothing the sample
spectral density. If the true spectrum contains two peaks that are close relative to the
bandwidth of the spectral window, those peaks will be smoothed together when we cal-
culate  and they will not be seen as separate peaks. It should be noted that there are
many alternative definitions of bandwidth given in the time series literature. Priestley
(1981, pp. 513–528) spends considerable time discussing the advantages and disadvan-
tages of the various definitions.

14.4 Confidence Intervals for the Spectrum

The approximate distributional properties of the smoothed spectral density may be eas-
ily used to obtain confidence intervals for the spectrum. The smoothed sample spectral
density is a linear combination of quantities that have approximate chi-square distribu-
tions. A common approximation in such a case is to use some multiple of another
chi-square distribution with degrees of freedom obtained by matching means and vari-
ances. Assuming to be roughly unbiased with variance given by Equation (14.2.4),
matching means and variances leads to approximating the distribution of

(14.4.1)

by a chi-square distribution with degrees of freedom given by

(14.4.2)

Letting  be the 100(α/2)th percentile of a chi-square distribution with ν
degrees of freedom, the inequality

can be converted into a 100(1 − α)% confidence statement for S(f) as

BW
1
n
--- k2Wm k( )

k m–=

m

∑=

S
_

f( )

S
_

f( )

νS
_

f( )
S f( )

--------------

ν 2

Wm
2 k( )

k m–=

m

∑
-------------------------------=

χν α 2⁄,
2

χν α 2⁄,
2 νS

_
f( )

S f( )
-------------- χν 1 α 2⁄–,

2< <



14.4  Confidence Intervals for the Spectrum 357

(14.4.3)

In this formulation, the width of the confidence interval will vary with frequency. A
review of Equation (14.2.4) on page 355 shows that the variance of is roughly pro-
portional to the square of its mean. As we saw earlier in Equations (5.4.1) and (5.4.2) on
page 98, this suggests that we take the logarithm of the smoothed sample spectral den-
sity to stabilize the variance and obtain confidence intervals with width independent of
frequency as follows:

(14.4.4)

For these reasons it is common practice to plot the logarithms of estimated spectra. If we
redo Exhibit 14.2 on page 353 in logarithm terms, we obtain the display shown in
Exhibit 14.4, where we have also drawn in the 95% confidence limits (dotted) and the
true spectral density (dashed) from the AR(1) model. With a few exceptions, the confi-
dence limits capture the true spectral density.

Exhibit 14.4 Confidence Limits from the Smoothed Spectral Density

> set.seed(271435); n=200; phi=-0.6
> y=arima.sim(model=list(ar=phi),n=n)
> k=kernel('daniell',m=15)
> sp=spec(y,kernel=k,sub='',xlab='Frequency',

ylab='Log(Smoothed Spectral Density)', ci.plot=T,ci.col=NULL)
> lines(sp$freq,ARMAspec(model=list(ar=phi),sp$freq,plot=F)$spec,

lty='dashed')

Exhibit 14.5 shows a less cluttered display of confidence limits. Here a 95% confi-
dence interval and bandwidth guide is displayed in the upper right-hand corner—the
“crosshairs.” The vertical length gives the length (width) of a confidence interval, while
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the horizontal line segment indicates the central point† of the confidence interval, and its
width (length) matches the bandwidth of the spectral window. If you visualize the guide
repositioned with the crosshairs centered on the smoothed spectrum above any fre-
quency, you have a visual display of a vertical confidence interval for the “true” spectral
density at that frequency and a rough guide of the extent of the smoothing. In this simu-
lated example, we also show the true spectrum as a dotted line.

Exhibit 14.5 Logarithm of Smoothed Spectrum from Exhibit 14.2

> sp=spec(y,span=31,sub='',xlab='Frequency', 
ylab='Log(Smoothed Sample Spectrum)')

> lines(sp$freq,ARMAspec(model=list(ar=phi),sp$freq, 
plot=F)$spec,lty='dotted')

14.5 Leakage and Tapering

Much of the previous discussion has assumed that the frequencies of interest are the
Fourier frequencies. What happens if that is not the case? Exhibit 14.6 displays the peri-
odogram of a series of length n = 96 with two pure cosine-sine components at frequen-
cies f = 0.088 and f = 14/96. The model is simply

(14.5.1)

Note that with n = 96, f = 0.088 is not a Fourier frequency. The peak with lower power at
the Fourier frequency f = 14/96 is clearly indicated. However, the peak at f = 0.088 is not

† The central point is not, in general, halfway between the endpoints, as Equation (14.4.4)
determines asymmetric confidence intervals. In this example, using the modified Daniell
window with m = 15, we have ν = 61 degrees of freedom, so the chi-square distribution
used is effectively a normal distribution, and the confidence intervals are nearly symmetric.
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there. Rather, the power at this frequency is blurred across several nearby frequencies,
giving the appearance of a much wider peak.

Exhibit 14.6 Periodogram of Series with Peaks at f = 0.088 and f = 14/96

> win.graph(width=4.875,height=2.5,pointsize=8)
> t=1:96; f1=0.088; f2=14/96
> y=3*cos(f1*2*pi*t)+sin(f2*2*pi*t) 
> periodogram(y); abline(h=0)

An algebraic analysis† shows that we may view the periodogram as a “smoothed”
spectral density formed with the Dirichlet kernel spectral window given by

(14.5.2)

Note that for all Fourier frequencies f = j/n, D(f) = 0, so this window has no effect what-
soever at those frequencies. However, the plot of D(f) given on the left-hand side of
Exhibit 14.7 shows significant “side lobes” on either side of the main peak. This will
cause power at non-Fourier frequencies to leak into the supposed power at the nearby
Fourier frequencies, as we see in Exhibit 14.6.

Tapering is one method used to improve the issue with the side lobes. Tapering
involves decreasing the data magnitudes at both ends of the series so that the values
move gradually toward the data mean of zero. The basic idea is to reduce the end effects
of computing a Fourier transform on a series of finite length. If we calculate the peri-
odogram after tapering the series, the effect is to use the modified Dirichlet kernel
shown on the right-hand side of Exhibit 14.7 for n = 100. Now the side lobes have
essentially disappeared.

† Appendix K on page 381 gives some of the details.
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Exhibit 14.7 Dirichlet Kernel and Dirichlet Kernel after Tapering

The most common form of tapering is based on a cosine bell. We replace the origi-
nal series Yt by , with

(14.5.3)

where, for example, ht is the cosine bell given by

(14.5.4)

A graph of the cosine bell with n = 100 is given on the left-hand side of Exhibit 14.8. A
much more common taper is given by a split cosine bell that applies the cosine taper
only to the extremes of the time series. The split cosine bell taper is given by

(14.5.5)

which is called a 100p% cosine bell taper with p = 2m/n. A 10% split cosine bell taper is
shown on the right-hand side of Exhibit 14.8 again with n = 100. Notice that there is a
10% taper on each end, resulting in a total taper of 20%. In practice, split cosine bell
tapers of 10% or 20% are in common use.

−0.10 −0.05 0.00 0.05 0.10

−
0.

2
0.

2
0.

6
1.

0

Frequency

D
iri

ch
le

t K
er

ne
l

−0.10 −0.05 0.00 0.05 0.10

−
0.

2
0.

2
0.

6
1.

0

Frequency

D
T

Ỹt
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Exhibit 14.8 Cosine Bell and 10% Taper Split Cosine Bell for n = 100

We return to the variable star brightness data first explored on page 325. Exhibit
14.9 displays four periodograms of this series, each with a different amount of tapering.
Judging by the length of the 95% confidence intervals displayed in the respective
“crosshairs”, we see that the two peaks found earlier in the raw untapered periodogram
at frequencies f1 = 21/600 and f 2= 25/600 are clearly real. A more detailed analysis of
the minor peaks shown best in the bottom periodogram are all in fact harmonics of the
frequencies f1 and f 2. There is much more on the topic of leakage reduction and taper-
ing in Bloomfield (2000).
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Exhibit 14.9 Variable Star Spectra with Tapers of 0%, 10%, 20%, and 50%
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14.6 Autoregressive Spectrum Estimation

In the preceding sections on spectral density estimation, we did not make any assump-
tions about the parametric form of the true spectral density. However, an alternative
method for estimating the spectral density would be to consider fitting an AR, MA, or
ARMA model to a time series and then use the spectral density of that model with esti-
mated parameters as our estimated spectral density. (Section 13.5, page 332, discussed
the spectral densities of ARMA models.) Often AR models are used with possibly large
order chosen to minimize the AIC criterion.

As an example, consider the simulated AR series with φ = −0.6 and n = 200 that we
used in Exhibits 13.20, 14.1, 14.2, and 14.5. If we fit an AR model, choosing the order
to minimize the AIC, and then plot the estimated spectral density for that model, we
obtain the results shown in Exhibit 14.10. 

Exhibit 14.10 Autoregressive Estimation of the Spectral Density

> sp=spec(y,method='ar',sub='',xlab='Frequency',
ylab='Log(AR Spectral Density Estimate')

> lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
plot=F)$spec,lty='dotted')

Since these are simulated data, we also show the true spectral density as a dotted
line. In this case, the order was chosen as p = 1 and the estimated spectral density fol-
lows the true density very well. We will show some examples with real time series in
Section 14.8.

0.0 0.1 0.2 0.3 0.4 0.5

0.
5

1.
0

2.
0

5.
0

10
.0

Frequency

Lo
g(

A
R

 S
pe

ct
ra

l D
en

si
ty

 E
st

im
at

e)



364 Estimating the Spectrum

14.7 Examples with Simulated Data

A useful way to get a feel for spectral analysis is with simulated data. Here we know
what the answers are and can see what the consequences are when we make choices of
spectral window and bandwidth. We begin with an AR(2) model that contains a fairly
strong peak in its spectrum.

AR(2) with φ1 = 1.5, φ2 = −0.75: A Peak Spectrum

The spectral density for this model contained a peak at about f = 0.08, as displayed in
Exhibit 13.14 on page 336. We simulated a time series from this AR(2) model with nor-
mal white noise terms with unit variance and sample size n = 100. Exhibit 14.11 shows
three estimated spectral densities and the true density as a solid line. We used the modi-
fied Daniell spectral window with three different values for span = 2m + 1 of 3, 9, and
15. A span of 3 gives the least amount of smoothing and is shown as a dotted line. A
span of 9 is shown as a dashed line. With span = 15, we obtain the most smoothing, and
this curve is displayed with a dot-dash pattern. The bandwidths of these three spectral
windows are 0.018, 0.052, and 0.087, respectively. The confidence interval and band-
width guide displayed apply only to the dotted curve estimate. The two others have
wider bandwidths and shorter confidence intervals. The estimate based on span = 9 is
probably the best one, but it does not represent the peak very well.

Exhibit 14.11 Estimated Spectral Densities

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(271435); n=100; phi1=1.5; phi2=-.75
> y=arima.sim(model=list(ar=c(phi1,phi2)),n=n)
> sp1=spec(y,spans=3,sub='',lty='dotted',xlab='Frequency', 

ylab='Log(Estimated Spectral Density)')
> sp2=spec(y,spans=9,plot=F); sp3=spec(y,spans=15,plot=F)
> lines(sp2$freq,sp2$spec,lty='dashed')
> lines(sp3$freq,sp3$spec,lty='dotdash')
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> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 

plot=F)$spec,lty='solid')

We also used the parametric spectral estimation idea and let the software choose the
best AR model based on the smallest AIC. The result was an estimated AR(2) model
with the spectrum shown in Exhibit 14.12. This is a very good representation of the
underlying spectrum, but of course the model was indeed AR(2).

Exhibit 14.12 AR Spectral Estimation: Estimated (dotted), True (solid)

> sp4=spec(y,method='ar',lty='dotted', 
xlab='Frequency',ylab='Log(Estimated AR Spectral Density)')

> f=seq(0.001,0.5, by 0.001)
> lines(f,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 

plot=F)$spec,lty='solid')
> sp4$method # This will tell you order of the AR model selected

AR(2) with φ1 = 0.1, φ2 = 0.4: A Trough Spectrum

Next we look at an AR(2) model with a trough spectrum and a larger sample size. The
true spectrum is displayed in Exhibit 13.15 on page 337. We simulated this model with
n = 200 and unit-variance normal white noise. The three smoothed spectral estimates
shown are based on spans of 7, 15, and 31. As before, the confidence limits and band-
width guide correspond to the smallest span of 7 and hence give the narrowest band-
width and longest confidence intervals. In our opinion, the middle value of span = 15,
which is about , gives a reasonable estimate of the spectrum.
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Exhibit 14.13 Estimated Spectrum for AR(2) Trough Spectrum Model

> Use the R code for Exhibit 14.11 with new values for the
> parameters.

Exhibit 14.14 shows the AR spectral density estimate. The minimum AIC was
achieved at the true order of the underlying model, AR(2), and the estimated spectral
density is quite good.

Exhibit 14.14 AR Spectral Estimation: Estimated (dotted), True (solid)

> Use the R code for Exhibits 14.11 and 14.12 with new values
> for the parameters.

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
5

1.
0

2.
0

5.
0

Frequency

Lo
g(

E
st

im
at

ed
 S

pe
ct

ra
l D

en
si

ty
)

0.0 0.1 0.2 0.3 0.4 0.5

0.
5

1.
0

2.
0

5.
0

Frequency

Lo
g(

E
st

im
at

ed
 A

R
 S

pe
ct

ra
l D

en
si

ty
)



14.7  Examples with Simulated Data 367

ARMA(1,1) with φ = 0.5, θ = 0.8

The true spectral density of the mixed model ARMA(1,1) with φ = 0.5 and θ = 0.8 was
shown in Exhibit 13.17 on page 338. This model has substantial medium- and high-fre-
quency content but very little power at low frequencies. We simulated this model with a
sample size of n = 500 and unit-variance normal white noise. Using  ≈ 22 as a guide
for choosing m, we show three estimates with m of 11, 23, and 45 in Exhibit 14.15. The
confidence interval guide indicates that the many peaks produced when m = 11 are
likely spurious (which, in fact, they are). With such a smooth underlying spectrum, the
maximum smoothing shown with m = 45 produces a rather good estimate.

Exhibit 14.15 Spectral Estimates for an ARMA(1,1) Process

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(324135); n=500; phi=.5; theta=.8
> y=arima.sim(model=list(ar=phi,ma=-theta),n=n)
> sp1=spec(y,spans=11,sub='',lty='dotted', 

xlab='Frequency',ylab='Log(Estimated Spectral Density)')
> sp2=spec(y,spans=23,plot=F); sp3=spec(y,spans=45,plot=F)
> lines(sp2$freq,sp2$spec,lty='dashed')
> lines(sp3$freq,sp3$spec,lty='dotdash')
> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ar=phi,ma=-theta),f, 

plot=F)$spec,lty='solid')
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In this case, a parametric spectral estimate based on AR models does not work well,
as shown in Exhibit 14.16. The software selected an AR(3) model, but the resulting
spectral density (dotted) does not reproduce the true density (solid) well at all.

Exhibit 14.16 AR Spectral Estimate for an ARMA(1,1) Process

> sp4=spec(y,method='ar',lty='dotted',ylim=c(.15,1.9), 
xlab='Frequency',ylab='Log(Estimated AR Spectral Density)')

> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ar=phi,ma=-theta),f, 

plot=F)$spec,lty='solid')

Seasonal MA with θ = 0.4, Θ = 0.9, and s = 12

For our final example with simulated data, we choose a seasonal process. The theoreti-
cal spectral density is displayed in Exhibit 13.19 on page 340. We simulated n = 144
data points with unit-variance normal white noise. We may think of this as 12 years of
monthly data. We used modified Daniell spectral windows with span = 6, 12, and 24
based on  ≈ 12.

This spectrum contains a lot of detail and is difficult to estimate with only 144
observations. The narrowest spectral window hints at the seasonality, but the two other
estimates essentially smooth out the seasonality. The confidence interval widths (corre-
sponding to m = 6) do seem to confirm the presence of real seasonal peaks.
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Exhibit 14.17 Spectral Estimates for a Seasonal Process

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(247135); n=144; theta=.4;THETA=.9
> y=arima.sim(model=list(ma=c(-theta,rep(0,10),-THETA,theta*THETA

)),n=n)
> sp1=spec(y,spans=7,sub='',lty='dotted',ylim=c(.15,9), 

xlab='Frequency',ylab='Log(Estimated Spectral Density)')
> sp2=spec(y,spans=13,plot=F); sp3=spec(y,spans=25,plot=F)
> lines(sp2$freq,sp2$spec,lty='dashed')
> lines(sp3$freq,sp3$spec,lty='dotdash')
> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,

period=12)),freq=f,plot=F)$spec,lty='solid')

Exhibit 14.18 AR Spectral Estimates for a Seasonal Process

> sp4=spec(y,method='ar',ylim=c(.15,15),lty='dotted', 
xlab='Frequency',ylab='Log(Estimated AR Spectral Density)')
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> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,

period=12)),freq=f,plot=F)$spec,lty='solid')

Exhibit 14.18 shows the estimated spectrum based on the best AR model. An order
of 13 was chosen based on the minimum AIC, and the seasonality does show up quite
well. However, the peaks are misplaced at the higher frequencies. Perhaps looking at
both Exhibit 14.17 and Exhibit 14.18 we could conclude that the seasonality is real and
that a narrow spectral window provides the best estimate of the underlying spectral den-
sity given the sample size available.

As a final estimate of the spectrum, we use a convolution of two modified Daniell
spectral windows each with span = 3, as displayed in the middle of Exhibit 14.3 on page
354. The estimated spectrum is shown in Exhibit 14.19. This is perhaps the best of the
estimates that we have shown.

Exhibit 14.19 Estimated Seasonal Spectrum with Convolution Window

> sp5=spec(y,spans=c(3,3),sub='',lty='dotted', 
xlab='Frequency',ylab='Log(Estimated Spectral Density)')

> f=seq(0.001,.5,by=.001)
> lines(f,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,

period=12)),freq=f,plot=F)$spec,lty='solid')

14.8 Examples with Actual Data

An Industrial Robot

An industrial robot was put through a sequence of maneuvers, and the distance from a
desired target end position was recorded in inches. This was repeated 324 times to form
the time series shown in Exhibit 14.20.
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Exhibit 14.20 Industrial Robot End Position Time Series

> data(robot)
> plot(robot,ylab='End Position Offset',xlab='Time')

Estimates of the spectrum are displayed in Exhibit 14.21 using the convolution of
two modified Daniell spectral windows with m = 7 (solid) and with a 10% taper on each
end of the series. A plot of this spectral window is shown in the middle of Exhibit 14.3
on page 354. The spectrum was also estimated using a fitted AR(7) model (dotted), the
order of which was chosen to minimize the AIC. Given the length of the 95% confi-
dence interval shown, we can conclude that the peak at around a frequency of 0.15 in
both estimates is probably real, but those shown at higher frequencies may well be spu-
rious. There is a lot of power shown at very low frequencies, and this agrees with the
slowly drifting nature of the series that may be seen in the time series plot in Exhibit
14.20.

Exhibit 14.21 Estimated Spectrum for the Industrial Robot
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372 Estimating the Spectrum

> spec(robot,spans=c(7,7),taper=.1,sub='',xlab='Frequency', 
ylab='Log(Spectrum)')

> s=spec(robot,method='ar',plot=F)
> lines(s$freq,s$spec,lty='dotted')

River Flow

Exhibit 14.22 shows monthly river flow for the Iowa River measured at Wapello, Iowa,
for the period September 1958 through August 2006. The data are quite skewed toward
the high values, but this was greatly improved by taking logarithms for the analysis.

Exhibit 14.22 River Flow Time Series

> data(flow); plot(flow,ylab='River Flow')

The sample size for these data is 576 with a square root of 24. The bandwidth of a
modified Daniell spectral window is about 0.01. After some experimentation with sev-
eral spectral window bandwidths, we decided that such a window smoothed too much
and we instead used a convolution of two such windows, each with span = 7. The band-
width of this convolved window is about 0.0044. The smoothed spectral density esti-
mate is shown as a solid curve in Exhibit 14.23 together with an estimate based on an
AR(7) model (dotted) chosen to minimize the AIC. The prominent peak at frequency
1/12 represents the strong annual seasonality. There are smaller secondary peaks at
about f ≈ 0.17 and f ≈ 0.25 that correspond to multiples of the fundamental frequency of
1/12. They are higher harmonics of the annual frequency.
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Exhibit 14.23 Log(Spectrum) of Log(Flow)

> spec(log(flow),spans=c(7,7),ylim=c(.02,13),sub='', 
ylab='Log(Spectrum)',xlab='Frequency')

> s=spec(log(flow),method='ar',plot=F)
> lines(s$freq,s$spec,lty='dotted')
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Monthly Milk Production

The top portion of Exhibit 11.14 on page 264, showed U.S. monthly milk production
from January 1994 through December of 2005. There is a substantial upward trend
together with seasonality. We first remove the upward trend with a simple linear time
trend model and consider the residuals from that regression—the seasonals. After trying
several spectral bandwidths, we decided to use a convolution of two modified Daniell
windows, each with span = 3. We believe that otherwise there was too much smoothing.
This was confirmed by estimating an AR spectrum that ended up fitting an AR of order
15 with peaks at the same frequencies. Notice that the peaks shown in Exhibit 14.24 are
located at frequencies 1/12, 2/12,…, 6/12, with the peak at 1/12 showing the most
power.

Exhibit 14.24 Estimated Spectrum for Milk Production Seasonals

> data(milk)
> spec(milk,spans=c(3,3),detrend=T,sub='', 

ylab='Estimated Log(Spectrum)',xlab='Frequency')
> abline(v=seq(1:6)/12,lty='dotted')

For a final example in this section, consider the time series shown in Exhibit 14.25.
These plots display the first 400 points of two time series of lengths 4423 and 4417,
respectively. The complete series were created by recording a trombonist and a eupho-
niumist each sustaining a B flat (just below middle C) for about 0.4 seconds. The origi-
nal recording produced data sampled at 44.1 MHz, but this was reduced by subsampling
every fourth data point for the analysis shown. Trombones and euphonia are both brass
wind instruments that play in the same range, but they have different sized and shaped
tubing. The euphonium has larger tubing (a larger bore) that is mostly conical in shape,
while the tenor trombone is mostly cylindrical in shape and has a smaller bore. The
euphonium sound is considered more mellow than the bright, brassy sound of the trom-
bone. When one listens to these notes being played, they sound rather similar. Our ques-
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tion is: Does the tubing shape and size affect the harmonics (overtones) enough that the
differences may be seen in the spectra of these sounds?

Exhibit 14.25 Trombone and Euphonium Playing Bb

> win.graph(width=4.875,height=4,pointsize=8)
> data(tbone); data(euph); oldpar=par; par(mfrow=(c(2,1)))
> trombone=(tbone-mean(tbone))/sd(tbone)
> euphonium=(euph-mean(euph))/sd(euph)
> plot(window(trombone,end=400),main='Trombone Bb', 

ylab='Waveform',yaxp=c(-1,+1,2))
> plot(window(euphonium,end=400),main='Euphonium Bb', 

ylab='Waveform',yaxp=c(-1,+1,2)); par=oldpar

Exhibit 14.26 displays the estimated spectra for the two waveforms. The solid curve
is for the euphonium, and the dotted curve is for the trombone. We used the convolution
of two modified Daniell spectral windows, each with span = 11, on both series. Since
both series are essentially the same length, the bandwidths will both be about 0.0009
and barely perceptible on the bandwidth/confidence interval crosshair shown on the
graph.

The first four major peaks occur at the same frequencies, but clearly the trombone
has much more spectral power at distinct higher harmonic frequencies. It is suggested
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that this may account for the more brassy nature of the trombone sound as opposed to
the more mellow sound of the euphonium.

Exhibit 14.26 Spectra for Trombone (dotted) and Euphonium (solid)

> win.graph(width=4.875,height=2.5,pointsize=8)
> spec(euph,spans=c(11,11),ylab='Log Spectra', 

xlab='Frequency',sub='')
> s=spec(tbone,spans=c(11,11),plot=F)
> lines(s$freq,s$spec,lty='dotted')

14.9 Other Methods of Spectral Estimation

Prior to widespread use of the fast Fourier transform, computing and smoothing the
sample spectrum was extremely intensive computationally —especially for long time
series. Lag window estimators were used to partially mitigate the computational diffi-
culties.

Lag Window Estimators

Consider the sample spectrum and smoothed sample spectrum. We have

(14.9.1)
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or

(14.9.2)

where

(14.9.3)

Equation (14.9.2) suggests defining and investigating a class of spectral estimators
defined as

(14.9.4)

where the function w(x) has the properties

(14.9.5)

The function w(x) is called a lag window and determines how much weight is given to
the sample autocovariance at each lag.

The rectangular lag window is defined by

(14.9.6)

and the corresponding lag window spectral estimator is simply the sample spectrum.
This estimator clearly gives too much weight to large lags where the sample autocovari-
ances are based on too few data points and are unreliable.

The next simplest lag window is the truncated rectangular lag window, which sim-
ply omits large lags from the computation. It is defined as

(14.9.7)

where the computational advantage is achieved by choosing m much smaller than n.
The triangular, or Bartlett, lag window downweights higher lags linearly and is

defined as

(14.9.8)

Other common lag windows are associated with the names of Parzen, Tukey-Ham-
ming, and Tukey-Hanning. We will not pursue these further here, but much more infor-
mation on the lag window approach to spectral estimation may be found in the books of
Bloomfield (2000), Brillinger (2001), Brockwell and Davis (1991), and Priestley
(1981).
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Other Smoothing Methods

Other methods for smoothing the sample spectrum have been proposed. Kooperberg et
al. (1995) proposed using splines to estimate the spectral distribution. Fan and
Kreutzberger (1998) investigated local smoothing polynomials and Whittle's likelihood
for spectral estimation. This approach uses automatic bandwidth selection to smooth the
sample spectrum. See also Yoshihide (2006), Jiang and Hui (2004), and Fay et al.
(2002).

14.10 Summary

Given the undesirable characteristics of the sample spectral density, we introduced the
smoothed sample spectral density and showed that it could be constructed to improve
the properties. The important topics of bias, variance, leakage, bandwidth, and tapering
were investigated. A procedure for forming confidence intervals was discussed, and all
of the ideas were illustrated with both real and simulated time series data.

EXERCISES

14.1 Consider the variance of  with the Daniell spectral window. Instead of using
Equation (14.2.4) on page 355, use the fact that  has approximately a
chi-square distribution with two degrees of freedom to show that the smoothed
sample spectral density has an approximate variance of .

14.2 Consider various convolutions of the simple Daniell rectangular spectral window.
(a) Construct a panel of three plots similar to those shown in Exhibit 14.3 on page

354 but with the Daniell spectral window and with m = 5. The middle graph
should be the convolution of two Daniell windows and the leftmost graph the
convolution of three Daniell windows.

(b) Evaluate the bandwidths and degrees of freedom for each of the spectral win-
dows constructed in part (a). Use n =100.

(c) Construct another panel of three plots similar to those shown in Exhibit 14.3
but with the modified Daniell spectral window. This time use m = 5 for the
first graph and convolve two with m = 5 and m = 7 for the second. Convolve
three windows with m’s of 5, 7, and 11 for the third graph.

(d) Evaluate the bandwidths and degrees of freedom for each of the spectral win-
dows constructed in part (c). Use n =100.
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14.3 For the Daniell rectangular spectral window show that

(a)

(b) Show that if m is chosen as m = c  for any constant c, then the right-hand
side of the expression in part (a) tends to zero as n goes to infinity.

(c) Show that if m = c  for any constant c, then the approximate variance of the
smoothed spectral density given by the right-hand side of Equation (14.2.4) on
page 355 tends to zero as n tends to infinity.

14.4 Suppose that the distribution of  is to be approximated by a multiple of a
chi-square variable with degrees of freedom ν, so that  ≈ . Using the
approximate variance of  given in Equation (14.2.4) on page 355 and the fact
that  is approximately unbiased, equate means and variances and find the
values for c and ν (thus establishing Equation (14.4.2) on page 356).

14.5 Construct a time series of length n = 48 according to the expression 
 = 

Display the periodogram of the series and explain its appearance.
14.6 Estimate the spectrum of the Los Angeles annual rainfall time series. The data are

in the file named larain. Because of the skewness in the series, use the logarithms
of the raw rainfall values. The square root of the series length suggests a value for
the span of about 11. Use the modified Daniell spectral window, and be sure to set
the vertical limits of the plot so that you can see the whole confidence interval
guide. Comment on the estimated spectrum.

14.7 The file named spots1 contains annual sunspot numbers for 306 years from 1700
through 2005.
(a) Display the time series plot of these data. Does stationarity seem reasonable

for this series?
(b) Estimate the spectrum using a modified Daniell spectral window convoluted

with itself and a span of 3 for both. Interpret the plot.
(c) Estimate the spectrum using an AR model with the order chosen to minimize

the AIC. Interpret the plot. What order was selected?
(d) Overlay the estimates obtained in parts (b) and (c) above onto one plot. Do

they agree to a reasonable degree?
14.8 Consider the time series of average monthly temperatures in Dubuque, Iowa. The

data are in the file named tempdub and cover from January 1964 to December
1975 for an n of 144.
(a) Estimate the spectrum using a variety of span values for the modified Daniell

spectral window.
(b) In your opinion, which of the estimates in part (a) best represents the spectrum

of the process? Be sure to use bandwidth considerations and confidence limits
to back up your argument.
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14.9 An EEG (electroencephalogram) time series is given in the data file named eeg.
An electroencephalogram is a noninvasive test used to detect and record the elec-
trical activity generated in the brain. These data were measured at a sampling rate
of 256 per second and came from a patient suffering a seizure. The total record
length is n = 13,000—or slightly less than one minute.
(a) Display the time series plot and decide if stationarity seems reasonable.
(b) Estimate the spectrum using a modified Daniell spectral window convolved

with itself and a span of 51 for both components of the convolution. Interpret
the plot.

(c) Estimate the spectrum using an AR model with the order chosen to minimize
the AIC. Interpret the plot. What order was selected?

(d) Overlay the estimates obtained in parts (b) and (c) above onto one plot. Do
they agree to a reasonable degree?

14.10 The file named electricity contains monthly U. S. electricity production values
from January 1994 to December 2005. A time series plot of the logarithms of
these values is shown in Exhibit 11.14 on page 264. Since there is an upward
trend and increasing variability at higher levels in these data, use the first differ-
ence of the logarithms for the remaining analysis.
(a) Construct a time series plot of the first difference of the logarithms of the elec-

tricity values. Does a stationary model seem warranted at this point?
(b) Display the smoothed spectrum of the first difference of the logarithms using

a modified Daniell spectral window and span values of 25, 13, and 7. Interpret
the results.

(c) Now use a spectral window that is a convolution of two modified Daniell win-
dows each with span = 3. Also use a 10% taper. Interpret the results.

(d) Estimate the spectrum using an AR model with the order chosen to minimize
the AIC. Interpret the plot. What order was selected?

(e) Overlay the estimates obtained in parts (c) and (d) above onto one plot. Do
they agree to a reasonable degree?

14.11 Consider the monthly milk production time series used in Exhibit 14.24 on page
374. The data are in the file named milk. 
(a) Estimate the spectrum using a spectral window that is a convolution of two

modified Daniell windows each with span = 7. Compare these results with
those shown in Exhibit 14.24.

(b) Estimate the spectrum using a single modified Daniell spectral window with
span = 7. Compare these results with those shown in Exhibit 14.24 and those
in part (a).

(c) Finally, estimate the spectrum using a single modified Daniell spectral win-
dow with span = 11. Compare these results with those shown in Exhibit 14.24
and those in parts (a) and (b).

(d) Among the four different estimates considered here, which do you prefer and
why?
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14.12 Consider the river flow series displayed in Exhibit 14.22 on page 372. An esti-
mate of the spectrum is shown in Exhibit 14.23 on page 373. The data are in the
file named flow.
(a) Here n = 576 and  = 24. Estimate the spectrum using span = 25 with the

modified Daniell spectral window. Compare your results with those shown in
Exhibit 14.23.

(b) Estimate the spectrum using span = 13 with the modified Daniell spectral
window and compare your results to those obtained in part (a) and in Exhibit
14.23.

14.13 The time series in the file named tuba contains about 0.4 seconds of digitized
sound from a tuba playing a B flat one octave and one note below middle C.
(a) Display a time series plot of the first 400 of these data and compare your

results with those shown in Exhibit 14.25 on page 375, for the trombone and
euphonium.

(b) Estimate the spectrum of the tuba time series using a convolution of two mod-
ified Daniell spectral windows, each with span = 11.

(c) Compare the estimated spectrum obtained in part (b) with those of the trom-
bone and euphonium shown in Exhibit 14.26 on page 376. (You may want to
overlay several of these spectra.) Remember that the tuba is playing one
octave lower than the two other instruments.

(d) Do the higher-frequency components of the spectrum for the tuba look more
like those of the trombone or those of the euphonium? (Hint: The euphonium
is sometimes called a tenor tuba!)

Appendix K: Tapering and the Dirichlet Kernel

Suppose  for t = 1, 2,…, n, where f0 is not necessarily a Fourier
frequency. Since it will not affect the periodogram, we will actually suppose that 

(14.K.1)

in order to simplify the mathematics. Then the discrete-time Fourier transform of this
sequence is given by

(14.K.2)

By Equations (13.J.7) and (13.J.8) on page 350, for any z,
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so that

(14.K.3)

The function

(14.K.4)

is the Dirichlet kernel shown on the left-hand side of Exhibit 14.7 on page 360 for n =
100. These results lead to the following relationship for the periodogram of Yt:

(14.K.5)

Remember that for all Fourier frequencies D(f) = 0, so that this window has no effect at
those frequencies. Leakage occurs when there is substantial power at non-Fourier fre-
quencies. Now consider tapering Yt with a cosine bell. We have

(14.K.6)

and after some more algebra we obtain

(14.K.7)

The function

(14.K.8)

is the tapered or modified Dirichlet kernel that is plotted on the right-hand side of
Exhibit 14.7 on page 360 for n = 100. The periodogram of the tapered series is propor-
tional to , and the side lobe problem is substantially mitigated.
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CHAPTER 15

THRESHOLD MODELS

It can be shown (Wold, 1948) that any weakly stationary process {Yt} admits the Wold
decomposition

where et equals the deviation of Yt from the best linear predictor based on all past Y val-
ues, and {Ut} is a purely deterministic stationary process, with et being uncorrelated
with Us, for any t and s.   A purely deterministic process is a process that can be pre-
dicted to arbitrary accuracy; (that is, with arbitrarily small mean squared error) by some
linear predictors of finitely many past lags of the process. A simple example of a purely
deterministic process is Ut ≡ μ, a constant. A more subtle example is the random cosine
wave model introduced on page 18. In essence, {Ut} represents the stochastic, station-
ary “trend” in the data. The prediction errors {et} are a white noise sequence, and et rep-
resents the “new” component making up Yt and hence is often called the innovation of
the process. The Wold decomposition then states that any weakly stationary process is
the sum of a (possibly infinite-order) MA process and a deterministic trend. Thus, we
can compute the best linear predictor within the framework of MA(∞) processes that
can further be approximated by finite-order ARMA processes. The Wold decomposition
thus guarantees the versatility of the ARMA models in prediction with stationary pro-
cesses. 

However, except for convenience, there is no reason for restricting to linear predic-
tors. If we allow nonlinear predictors and seek the best predictor of Yt based on past val-
ues of Y that minimizes the mean squared prediction error, then the best predictor need
no longer be the best linear predictor. The solution is simply the conditional mean of Yt
given all past Y values. The Wold decomposition makes it clear that the best one-step-
ahead linear predictor is the best one-step-ahead predictor if and only if {et} in the Wold
decomposition satisfies the condition that the conditional mean of et given past e’s is
identically equal to 0. The {et} satisfying the latter condition is called a sequence of
martingale differences, so the condition will be referred to as the martingale difference
condition. The martingale difference condition holds if, for example, {et} is a sequence
of independent, identically distributed random variables with zero mean. But it also
holds if {et} is some GARCH process. Nonetheless, when the martingale difference
condition fails, nonlinear prediction will lead to a more accurate prediction. Hannan
(1973) defines a linear process to be one where the best one-step-ahead linear predictor
is the best one-step-ahead predictor. 

Yt Ut et ψ1et 1– ψ2et 2–
…+ + + +=
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The time series models discussed so far are essentially linear models in the sense
that, after suitable instantaneous transformation, the one-step-ahead conditional mean is
a linear function of the current and past values of the time series variable. If the errors
are normally distributed, as is commonly assumed, a linear ARIMA model results in a
normally distributed process. Linear time series methods have proved to be very useful
in practice. However, linear, normal processes do suffer from some limitations. For
example, a stationary normal process is completely characterized by its mean and auto-
covariance function; hence the process reversed in time has the same distribution as the
original process. The latter property is known as time reversibility. Yet, many real pro-
cesses appear to be time-irreversible. For example, the historical daily closing price of a
stock generally rose gradually but, if it crashed, it did so precipitously, signifying a
time-irreversible data mechanism. Moreover, the one-step-ahead conditional mean may
be nonlinear rather than linear in the current and past values. For example, animal abun-
dance processes may be nonlinear due to finite-resource constraints. Specifically, while
moderately high abundance in one period is likely to be followed by higher abundance
in the next period, extremely high abundance may lead to a population crash in the ensu-
ing periods. Nonlinear time series models generally display rich dynamical structure.
Indeed, May (1976) showed that a very simple nonlinear deterministic difference equa-
tion may admit chaotic solutions in the sense that its time series solutions are sensitive
to the initial values, which may appear to be indistinguishable from a white noise
sequence based on correlation analysis. Nonlinear time series analysis thus may provide
more accurate predictions, which can be very substantial in certain parts of the state
space, and shed novel insights on the underlying dynamics of the data. Nonlinear time
series analysis was earnestly initiated around the late 1970s, prompted by the need for
modeling the nonlinear dynamics shown by real data; see Tong (2007). Except for cases
with well-developed theory accounting for the underlying mechanism of an observed
time series, the nonlinear data mechanism is generally unknown. Thus, a fundamental
problem of empirical nonlinear time series analysis concerns the choice of a general
nonlinear class of models. Here, our goal is rather modest in that we introduce the
threshold model, which is one of the most important classes of nonlinear time series
models. For a systematic account of nonlinear time series analysis and chaos, see Tong
(1990) and Chan and Tong (2001). 

15.1 Graphically Exploring Nonlinearity 

In ARIMA modeling, the innovation (error) process is often specified as independent
and identically normally distributed. The normal error assumption implies that the sta-
tionary time series is also a normal process; that is, any finite set of time series observa-
tions are jointly normal. For example, the pair (Y1, Y2) has a bivariate normal
distribution and so does any pair of Y’s; the triple (Y1,Y2,Y3) has a trivariate normal dis-
tribution and so does any triple of Y’s, and so forth. When data are nonnormal, instanta-
neous transformation of the form h(Yt), for example, , may be applied to
the data in the hope that a normal ARIMA model can serve as a good approximation to
the underlying data-generating mechanism. The normality assumption is mainly

h Yt( ) Yt=
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adopted for convenience in statistical inference. In practice, an ARIMA model with
nonnormal innovations may be entertained. Indeed, such processes have very rich and
sometimes exotic dynamics; see Tong (1990). If the normal error assumption is main-
tained, then a nonlinear time series is generally not normally distributed. Nonlinearity
may then be explored by checking whether or not a finite set of time series observations
are jointly normal; for example, whether or not the two-dimensional distribution of pairs
of Y’s is normal. This can be checked by plotting the scatter diagram of Yt against Yt − 1
or Yt − 2, and so forth. For a bivariate normal distribution, the scatter diagram should
resemble an elliptical data cloud with decreasing density from its center. Departure from
such a pattern (for example, existence of a large hole in the data cloud) may signify that
the data are nonnormal and the underlying process may be nonlinear. 

Exhibit 15.1 shows the scatter diagrams of Yt versus its lag 1 to lag 6, where we
simulated data from the ARIMA(2,1) model

(15.1.1)

with the innovations being standard normal. Note that the data clouds in the scatter dia-
grams are roughly elliptically shaped.

To help us visualize the relationship between the response and its lags, we draw fit-
ted nonparametric regression lines on each scatter diagram. For example, on the scatter
diagram of Yt against Yt − 1, a nonparametric estimate of the conditional mean function
of Yt given Yt − 1, also referred to as the lag 1 regression function, is superimposed. (Spe-
cifically, the lag 1 regression function equals m1(y) = E(Yt|Yt − 1=y) as a function of y.) If
the underlying process is linear and normal, the true lag 1 regression function must be
linear and so we expect the nonparametric estimate of it to be close to a straight line. On
the other hand, a curved lag 1 regression estimate may suggest that the underlying pro-
cess is nonlinear. Similarly, one can explore the lag 2 regression function (that is, the
conditional mean of Yt given Yt − 2 = y) as a function of y and higher-lag analogues. In
the case of strong departure from linearity, the shape of these regression functions may
provide some clue as to what nonlinear model may be appropriate for the data. Note that
all lagged regression curves in Exhibit 15.1 are fairly straight, suggesting that the under-
lying process is linear, which indeed we know is the case.

Yt 1.6Yt 1– 0.94Yt 2–– et 0.64et 1––+=



386 Threshold Models

Exhibit 15.1 Lagged Regression Plots for a Simulated ARMA(2,1) 
Process. Solid lines are fitted regression curves.

> win.graph(width=4.875, height=6.5,pointsize=8)
> set.seed(2534567); par(mfrow=c(3,2))
> y=arima.sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))
> lagplot(y)

We now illustrate the technique of a lagged regression plot with a real example.
Exhibit 15.2 plots an experimental time series response as the number of individuals
(Didinium natsutum, a protozoan) per ml measured every twelve hours over a period of
35 days; see Veilleux (1976) and Jost and Ellner (2000). The experiment studied the
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population fluctuation of a prey-predator system; the prey is Paramecium aurelia, a uni-
cellular ciliate protozon, whereas the predator species is Didinium natsutum. The initial
part of the data appears to be nonstationary owing to transient effects. It can be seen that
the increasing phase of the series is generally longer than that of the decreasing phase,
suggesting that the time series is time-irreversible. Below, we shall omit the first 14 data
points from the analysis; that is, only the (log-transformed) data corresponding to the
solid curve in Exhibit 15.2 are used in subsequent analysis. 

Exhibit 15.2 Logarithmically Transformed Number of Predators. The 
stationary part of the time series is displayed as a solid line. 
Solid circles indicate data in the lower regime of a fitted 
threshold autoregressive model.

> data(veilleux); predator=veilleux[,1]
> win.graph(width=4.875,height=2.5,pointsize=8)
> plot(log(predator),lty=2,type='o',xlab='Day', 

ylab='Log(predator)')
> predator.eq=window(predator,start=c(7,1))
> lines(log(predator.eq))
> index1=zlag(log(predator.eq),3)<=4.661
> points(y=log(predator.eq)[index1],(time(predator.eq))[index1], 

pch=19)

Exhibit 15.3 shows the lagged regression plots of the predator series. Notice that
several scatter diagrams have a large hole in the center, hinting that the data need to be
nonnormal. Also, the regression function estimates appear to be strongly nonlinear for
lags 2 to 4, suggesting a nonlinear data mechanism; in fact, the histogram (not shown)
suggests that the series is bimodal.
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Exhibit 15.3 Lagged Regression Plots for the Predator Series

> win.graph(width=4.875,height=6.5,pointsize=8)
> data(predator.eq)
> lagplot(log(predator.eq)) # libraries mgcv and locfit required

We now elaborate on how the regression curves are estimated nonparametrically.
Readers not interested in the technical details may skip to the next section. For concrete-
ness, suppose we want to estimate the lag 1 regression function. (The extension to other
lags is straightforward.) Nonparametric estimation of the lag 1 regression function gen-
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erally makes use of the idea of estimating the conditional mean m1(y) = E(Yt|Yt − 1 = y)
by averaging those Y’s whose lag 1 values are close to y. Clearly, the averaging may be
rendered more accurate by giving more weight to those Y’s whose lag 1 value is closer
to y. The weights are usually assigned systematically via some probability density func-
tion k(y) and a bandwidth parameter h > 0. The data pair (Yt,Yt − 1) is assigned the
weight

(15.1.2)

Hereafter we assume that k( .) is the standard normal probability density function. Note
that then the right-hand side of Equation (15.1.2) is the normal probability density func-
tion with mean y and variance h2. Finally, we define the Nadaraya-Watson estimator†

(15.1.3)

(The meaning of the superscript 0 will become clear later on.) Since the normal proba-
bility density function is negligible for values that differ from the mean by more than
three standard deviations, the Nadaraya-Watson estimator essentially averages the Yt
whose Yt − 1 is within 3h units from y, and the averaging is weighted with more weight
to those observations whose lag 1 values are closer to y. The use of the Nadaraya-Wat-
son estimator of the lag 1 regression function requires us to specify the bandwidth.
There are several methods, including cross-validation for determining h. However, for
an exploratory analysis, we can always use some default bandwidth value and vary it a
bit to get some feel of the shape of the lag 1 regression function. 

A more efficient nonparametric estimator may be obtained by assuming that the
underlying regression function can be well-approximated locally by a linear function;
see Fan and Gijbels (1996). The local linear estimator of the lag 1 regression function at
y equals , which is obtained by minimizing the local weighted residual
sum of squares: 

(15.1.4)

The reader may now guess that the superscript k in the notation  refers to
the degree of the local polynomial. Often, data are unevenly spaced, in which case a sin-
gle bandwidth may not work well. Instead, a variable bandwidth tied to the density of
the data may be more efficient. A simple scheme is the nearest-neighbor scheme that
varies the window width so that it covers a fixed fraction of data nearest to the center of
the window. We set the fraction to be 70% for all our reported lagged regression plots.

† See Nadaraya (1964) and Watson (1964).
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It is important to remember that the local polynomial approach assumes that the
true lag 1 regression function is a smooth function. If the true lag 1 regression function
is discontinuous, then the local polynomial approach may yield misleading estimates.
However, a sharp turn in the estimated regression function may serve as a warning that
the smoothness condition may not hold for the true lag 1 regression function. 

15.2 Tests for Nonlinearity 

Several tests have been proposed for assessing the need for nonlinear modeling in time
series analysis. Some of these tests, such as those studied by Keenan (1985), Tsay
(1986), and Luukkonen et al. (1988), can be interpreted as Lagrange multiplier tests for
specific nonlinear alternatives. 

Keenan (1985) derived a test for nonlinearity analogous to Tukey’s one degree of
freedom for nonadditivity test (see Tukey, 1949). Keenan’s test is motivated by approxi-
mating a nonlinear stationary time series by a second-order Volterra expansion (Wiener,
1958) 

(15.2.1)

where {εt, −∞ < t < ∞} is a sequence of independent and identically distributed
zero-mean random variables. The process {Yt} is linear if the double sum on the right-
hand side of (15.2.1) vanishes. Thus, we can test the linearity of the time series by test-
ing whether or not the double sum vanishes. In practice, the infinite series expansion has
to be truncated to a finite sum. Let Y1,…,Yn denote the observations. Keenan’s test can
be implemented as follows: 

(i) Regress Yt on Yt − 1,…,Yt − m, including an intercept term, where m is some pre-

specified positive integer; calculate the fitted values and the residuals ,

for t = m + 1,…,n; and set , the residual sum of squares. 

(ii) Regress  on Yt − 1,…,Yt − m, including an intercept term, and calculate the

residuals  for t = m + 1,…, n.

(iii) Regress  on the residuals  without an intercept for t = m + 1,…, n, and

Keenan’s test statistic, denoted by , is obtained by multiplying (n − 2m − 2)/
(n − m − 1) to the F-statistic for testing that the last regression function is identi-

cally zero. Specifically, let

(15.2.2)

where η0 is the regression coefficient. Form the test statistic 

(15.2.3)
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Ŷ t
2

ξ̂t{ }
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Under the null hypothesis of linearity, the test statistic  is approximately distrib-
uted as an F-distribution with degrees of freedom 1 and n − 2m − 2. 

Keenan’s test can be derived heuristically as follows. Consider the following model.

(15.2.4)

where are independent and normally distributed with zero mean and finite vari-
ance. If η = 0, the exponential term becomes 1 and can be absorbed into the intercept
term so that the preceding model becomes an AR(m) model. On the other hand, for non-
zero η, the preceding model is nonlinear. Using the expansion exp(x) ≈ 1 + x, which
holds for x of small magnitude, it can be seen that, for small η, Yt follows approximately
a quadratic AR model: 

(15.2.5)

This is a restricted linear model in that the last covariate is the square of the linear term
φ1Yt − 1 +…+ φmYt − m, which is replaced by the fitted values  under the null hypothe-
sis. Keenan’s test is equivalent to testing η = 0 in the multiple regression model (with
the constant 1 being absorbed into θ0): 

(15.2.6)

which can be carried out in the manner described in the beginning of this section. Note
that the fitted values are only available for n ≥ t ≥ m + 1. Keenan’s test is the same as the
F-test for testing whether or not η = 0. A more formal approach is facilitated by the
Lagrange multiplier test; see Tong (1990). 

Keenan’s test is both conceptually and computationally simple and only has one
degree of freedom, which makes the test very useful for small samples. However,
Keenan’s test is powerful only for detecting nonlinearity in the form of the square of the
approximating linear conditional mean function. Tsay (1986) extended Keenan’s
approach by considering more general nonlinear alternatives. A more general alternative
to nonlinearity may be formulated by replacing the term

(15.2.7)

by 

(15.2.8)
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 δ2 2, Yt 2–
2 δ2 3, Yt 2– Yt 3–

… δ2 m, Yt 2– Yt m–
…+ + + + +
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2 δm 1– m, Yt m– 1+ Yt m– δm m, Yt m–
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Using the approximation exp(x) ≈ 1 + x, we see that the nonlinear model is approxi-
mately a quadratic AR model. But the coefficients of the quadratic terms are now
unconstrained. Tsay’s test is equivalent to considering the following quadratic regres-
sion model: 

(15.2.9)

and testing whether or not all the m(m + 1)/2 coefficients δi,j are zero. Again, this can be
carried out by an F-test that all δi, j’s are zero in the preceding equation. For a rigorous
derivation of Tsay’s test as a Lagrange multiplier test, see Tong (1990). 

We now illustrate these tests with two real datasets. In the first application, we use
the annual American (relative) sunspot numbers collected from 1945 to 2007. The
annual (relative) sunspot number is a weighted average of solar activities measured from
a network of observatories. Historically, the daily sunspot number was computed as
some weighted sum of the count of visible, distinct spots and that of clusters of spots on
the solar surface. The sunspot number reflects the intensity of solar activity. Below, the
sunspot data are square root transformed to make them more normally distributed; see
Exhibit 15.4. The time series plot shows that the sunspot series tends to rise up more
quickly than when it declines, suggesting that it is time-irreversible.

Exhibit 15.4 Annual American Relative Sunspot Numbers

> win.graph(width=4.875,height=2.5,pointsize=8)
> data(spots)
> plot(sqrt(spots),type='o',xlab='Year',

ylab='Sqrt Sunspot Number')
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 δ2 2, Yt 2–
2 δ2 3, Yt 2– Yt 3–

… δ2 m, Yt 2– Yt m–
…+ + + + +

 δm 1– m 1–, Yt m– 1+
2 δm 1– m, Yt m– 1+ Yt m– δm m, Yt m–

2 εt+ + + + ⎭
⎪
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To carry out the tests for nonlinearity, we have to specify m, the working autore-
gressive order. Under the null hypothesis that the process is linear, the order can be spec-
ified by using some information criterion, for example, the AIC. For the sunspot data, m
= 5 based on the AIC. Both the Keenan test and the Tsay test reject linearity, with
p-values being 0.0002 and 0.0009, respectively.

For the second example, we consider the predator series discussed in the preceding
section. The working AR order is found to be 4. Both the Keenan test and the Tsay test
reject linearity, with p-values being 0.00001 and 0.03, respectively, which is consistent
with the inference drawn from the lagged regression plots reported earlier. 

There are some other tests, such as the BDS test developed by Brock, Deckert and
Seheinkman (1996), based on concepts that arise in the theory of chaos, and the neu-
ral-network test, proposed by White (1989) for testing “neglected nonlinearity.” For a
recent review of tests for nonlinearity, see Tong (1990) and Granger and Teräsvirta
(1993). We shall introduce one more test later. 

15.3 Polynomial Models Are Generally Explosive 

In nonlinear regression analysis, polynomial regression models of higher degrees are
sometimes employed, even though they are deemed not useful for extrapolation because
of their quick blowup to infinity. For this reason, polynomial regression models are of
limited practical use. Based on the same reasoning, polynomial time series models may
be expected to do poorly in prediction. Indeed, polynomial time series models of degree
higher than 1 and with Gaussian errors are invariably explosive. To see this, consider the
following simple quadratic AR(1) model. 

(15.3.1)

where {et} are independent and identically distributed standard normal random vari-
ables. Let φ > 0 and let c be a large number that is greater than 3/φ. If Y1 > c (which may
happen with positive probability due to the normality of the errors), then Y2 > 3Y1 + e2
and hence Y2 > 2c with some nonzero probability. With careful probability analysis, it
can be shown that, with positive probability, the quadratic AR(1) process satisfies the
inequality Yt > 2tc for t = 1, 2, 3,… and hence blows up to +∞. Indeed, the quadratic
AR(1) process, with normal errors, goes to infinity with probability 1. 

As an example, Exhibit 15.5 displays a realization from a quadratic AR(1) model
with φ = 0.5 and standard normal errors that takes off to infinity at t = 15.

Note that the quadratic AR(1) process becomes explosive only when the process
takes some value of sufficiently large magnitude. If the coefficient φ is small, it may
take much longer for the quadratic AR(1) process to take off to infinity. Normal errors
can take arbitrarily large values, although rather rarely, but when this happens, the pro-
cess becomes explosive. Thus, any noise distribution that is unbounded will guarantee
the explosiveness of the quadratic AR(1) model. Chan and Tong (1994) further showed
that this explosive behavior is true for any polynomial autoregressive process of degree
higher than 1 and of any finite order when the noise distribution is unbounded.

Yt φYt 1–
2

et+=
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Exhibit 15.5 A Simulated Quadratic AR(1) Process with φ = 0.5

> set.seed(1234567)
> plot(y=qar.sim(n=15,phi1=.5,sigma=1),x=1:15,type='o', 

ylab=expression(Y[t]),xlab='t')

It is interesting to note that, for bounded errors, a polynomial autoregressive model
may admit a stationary distribution that could be useful for modeling nonlinear time
series data; see Chan and Tong (1994). For example, Exhibit 15.6 displays the time
series solution of a deterministic logistic map, namely Yt = 3.97Yt − 1(1 − Yt − 1), t = 2,
3,… with the initial value Y1 = 0.377. Its corresponding sample ACF is shown in Exhibit
15.7, which, except for the mildly significant lag 4, resembles that of white noise. Note
that, for a sufficiently large initial value, the solution of the logistic map will explode to
infinity.

Exhibit 15.6 The Trajectory of the Logistic Map with Parameter 3.97 and 
Initial Value Y1 = 0.377

> y=qar.sim(n=100,const=0.0,phi0=3.97,phi1=-3.97,sigma=0, 
init=.377)
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> plot(x=1:100,y=y,type='l',ylab=expression(Y[t]),xlab='t')

Exhibit 15.7 Sample ACF of the Logistic Time Series

> acf(y)

However, the bound on the noise distribution necessary for the existence of a sta-
tionary polynomial autoregressive model varies with the model parameters and the ini-
tial value, which greatly complicates the modeling task. Henceforth, we shall not pursue
the use of polynomial models in time series analysis. 

15.4 First-Order Threshold Autoregressive Models

The discussion in the preceding section provides an important insight that for a nonlin-
ear time series model to be stationary, it must be either linear or approaching linearity in
the “tail.” From this perspective, piecewise linear models, more widely known as
threshold models, constitute the simplest class of nonlinear model. Indeed, the useful-
ness of threshold models in nonlinear time series analysis was well-documented by the
seminal work of Tong (1978, 1983, 1990) and Tong and Lim (1980), resulting in an
extensive literature of ongoing theoretical innovations and applications in various fields. 

The specification of a threshold model requires specifying the number of linear
submodels and the mechanism dictating which of them is operational. Consequently,
there exist many variants of the threshold model. Here, we focus on the two-regime
self-exciting threshold autoregressive (SETAR) model introduced by Tong, for which
the switching between the two linear submodels depends solely on the position of the
threshold variable. For the SETAR model (simply referred to as the TAR model below),
the threshold variable is a certain lagged value of the process itself; hence the adjective
self-exciting. (More generally, the threshold variable may be some vector covariate pro-
cess or even some latent process, but this extension will not be pursued here.) To fix
ideas, consider the following first-order TAR model: 
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(15.4.1)

where the φ’s are autoregressive parameters, σ’s are noise standard deviations, r is the
threshold parameter, and {et} is a sequence of independent and identically distributed
random variables with zero mean and unit variance. Thus, if the lag 1 value of Yt is not
greater than the threshold, the conditional distribution of Yt is the same as that of an
AR(1) process with intercept φ1,0, autoregressive coefficient φ1,1, and error variance

, in which case we may say that the first AR(1) submodel is operational. On the other
hand, when the lag 1 value of Yt exceeds the threshold r, the second AR(1) process with
parameters is operational. Thus, the process switches between two lin-
ear mechanisms dependent on the position of the lag 1 value of the process. When the
lag 1 value does not exceed the threshold, we say that the process is in the lower (first)
regime, and otherwise it is in the upper regime. Note that the error variance need not be
identical for the two regimes, so that the TAR model can account for some conditional
heteroscedasticity in the data. 

As a concrete example, we simulate some data from the following first-order TAR
model: 

(15.4.2)

Exhibit 15.8 shows the time series plot of the simulated data of size n = 100. A notable
feature of the plot is that the time series is somewhat cyclical, with asymmetrical cycles
where the series tends to drop rather sharply but rises relatively slowly. This asymmetry
means that the probabilistic structure of the process will be different if we reverse the
direction of time. One way to see this is to make a transparency of the time series plot
and flip the transparency over to see the time series plot with time reversed. In this case,
the simulated data will rise sharply and drop slowly with time reversed. Recall that this
phenomenon is known as time irreversibility. For a stationary Gaussian ARMA process,
the probabilistic structure is determined by its first and second moments, which are
invariant with respect to time reversal, hence the process must be time-reversible. Many
real time series, for example the predator series and the relative sunspot series, appear to
be time-irreversible, suggesting that the underlying process is nonlinear. Exhibit 15.9
shows the QQ normal score plot for the simulated data. It shows that the distribution of
simulated data has a thicker tail than a normal distribution, despite the fact that the
errors are normally distributed. 

Yt

φ1,0 φ1,1Yt 1– σ1et+ +  , if Yt 1– r≤

φ2 0, φ2 1, Yt 1– σ2et+ +  , if Yt 1– r>
⎩
⎪
⎨
⎪
⎧

=

σ1
2

φ2 0, φ2 1, σ2
2, ,( )

Yt
0.5Yt 1– et+  , if Yt 1– 1–≤

1.8Yt 1–– 2et+  , if Yt 1– 1–>
⎩
⎪
⎨
⎪
⎧

=
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Exhibit 15.8 A Simulated First-Order TAR Process

> set.seed(1234579)
> y=tar.sim(n=100,Phi1=c(0,0.5),Phi2=c(0,-1.8),p=1,d=1,sigma1=1, 

thd=-1,sigma2=2)$y
> plot(y=y,x=1:100,type='o',xlab='t',ylab=expression(Y[t]))

Exhibit 15.9 QQ Normal Plot for the Simulated TAR Process

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(y); qqline(y)

The autoregressive coefficient of the submodel in the upper regime equals −1.8, yet
the simulated data appear to be stationary, which may be unexpected from a linear per-
spective, as an AR(1) model cannot be stationary if the autoregressive coefficient
exceeds 1 in magnitude. This puzzle may be better understood by considering the case
of no noise terms in either regime; that is, σ1 = σ2 = 0. The deterministic process thus
defined is referred to as the skeleton of the TAR model. We show below that, for any ini-
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tial value, the skeleton is eventually a bounded process; the stability of the skeleton
underlies the stationarity of the TAR model. Readers not interested in the detailed anal-
ysis verifying the ultimate boundedness of the skeleton may skip to the next paragraph.
Let the initial value y1 be some large number, say 10, a value falling in the upper regime.
So, the next value is y2 = (−1.8)×10 = −18, which is in the lower regime. Therefore, the
third value equals y3 = 0.5×(−18) = −9. As the third value is in the lower regime, the
fourth value equals y4 = 0.5×(−9) = −4.5, which remains in the lower regime, so that the
fifth value equals y5 = 0.5×(−4.5) = −2.25. It is clear that once the data remain in the
lower regime, they will be halved in the next iterate and this process continues until
some future iterate crosses the threshold −1, which occurs for y7 = −0.5625. Now the
second linear submodel is operational, so that y8 = (−1.8)×(−0.5625) = 1.0125 and y9 =
(−1.8)×1.0125 = −1.8225, which is again in the lower regime. In conclusion, if some
iterate is in the lower regime, the next iterate is obtained by halving the previous iterate
until some future iterate exceeds −1. On the other hand, if some iterate exceeds 1, the
next iterate must be less than −1 and hence in the lower regime. By routine analysis, it
can be checked that the process is eventually trapped between −1 and 1.8 and hence is a
bounded process. 

A bounded skeleton is stable in some sense. Chan and Tong (1985), showed that
under some mild conditions, a TAR model is asymptotically stationary if its skeleton is
stable. In fact, stability of the skeleton together with some regularity conditions imply
the stronger property of ergodicity; namely, the process admits a stationary distribution
and for any function h(Yt) having a finite stationary first moment (which holds if h is a
bounded function),

(15.4.3)

converges to the stationary mean of h(Yt), computed according to the stationary distribu-
tion. See Cline and Pu (2001) for a recent survey on the linkage between stability and
ergodicity and counterexamples when this linkage may fail to hold. 

The stability analysis of the skeleton can be much simplified by the fact that the
ergodicity of a TAR model can be inferred from the stability of an associated skeleton
defined by a difference equation obtained by modifying the equation defining the TAR
model by suppressing the noise terms and the intercepts (that is, zero errors and zero
intercepts) and setting the threshold to 0. For the simulated example, the associated skel-
eton is then defined by the following difference equation:

(15.4.4)

Now, the solution to the skeleton above can be readily obtained: Given a positive value
for y1, yt = (−1.8)×0.5 t−2×y1, for all t ≥ 2. For negative y1, yt = 0.5 t−1×y1. In both cases,
yt → 0, as t → ∞. The origin is said to be an equilibrium point as yt ≡ 0, for all t, if y1 =
0. The origin is then said to be a globally exponentially stable limit point, as the skeleton
approaches it exponentially fast for any nonzero initial value. It can be shown (Chan and

1
n
--- h Yt( )

t 1=

n

∑

Yt
0.5Yt 1–  , if Yt 1– 0≤

1.8Yt 1––  , if Yt 1– 0>
⎩
⎪
⎨
⎪
⎧

=
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Tong, 1985) that the origin is a globally exponentially stable limit point for the skeleton
if the parameters satisfy the constraints 

(15.4.5)

in which case the first-order TAR model is ergodic and hence stationary. Exhibit 15.10
shows the region of stationarity shaded in gray. Note that the region of stationarity is
substantially larger than the region defined by the linear time series inspired constraints
|φ1,1| < 1, |φ2,1| < 1, corresponding to the region bounded by the inner square in Exhibit
15.10. For parameters lying strictly outside the region defined by the constraints (Equa-
tions (15.4.5)), the skeleton is unstable and the TAR model is nonstationary. For exam-
ple, if φ2,1>1, then the skeleton will escape to positive infinity for all sufficiently large
initial values. On the boundary of the parametric region defined by (15.4.5), the inter-
cept terms of the TAR model are pivotal in determining the stability of the skeleton and
the stationarity of the TAR models; see Chan et al. (1985). In practice, we can check if
the skeleton is stable numerically by using several different initial values. A stable skel-
eton gives us more confidence in assuming that the model is stationary.

Exhibit 15.10 Stationarity Region for the First-Order TAR Model (Shaded)

15.5 Threshold Models 

The first-order (self-exciting) threshold autoregressive model can be readily extended to
higher order and with a general integer delay: 
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(15.5.1)

Note that the autoregressive orders p1 and p2 of the two submodels need not be identi-
cal, and the delay parameter d may be larger than the maximum autoregressive orders.
However, by including zero coefficients if necessary, we may and shall henceforth
assume that p1 = p2 = p and 1 ≤ d ≤ p, which simplifies the notation. The TAR model
defined by Equation (15.5.1) is denoted as the TAR(2;p1, p2) model with delay d. 

Again, the stability of the associated skeleton, obtained by setting the threshold to
zero and suppressing the noise terms and the intercepts, implies that the TAR model is
ergodic and stationary. However, the stability of the associated skeleton is now much
more complex in the higher-order case so much so that the necessary and sufficient
parametric conditions for the stationarity of the TAR model are still unknown. Nonethe-
less, there exist some simple sufficient conditions for the stationarity of a TAR model.
For example, the TAR model is ergodic and hence asymptotically stationary if |φ1,1|
+…+ |φ1,p| < 1 and |φ2,1| +…+ |φ2,p| < 1; see Chan and Tong (1985). 

So far, we have considered the case of two regimes defined by the partition −∞ < r <
∞ of the real line, so that the first (second) submodel is operational if Yt − d lies in the
first (second) interval. The extension to the case of m regimes is straightforward and
effected by partitioning the real line into −∞ < r1 < r2 <…< rm − 1 < ∞, and the position
of Yt − d relative to these thresholds determines which linear submodel is operational.
We shall not pursue this topic further but shall restrict our discussion to the case of two
regimes. 

15.6 Testing for Threshold Nonlinearity

While Keenan’s test and Tsay’s test for nonlinearity are designed for detecting quadratic
nonlinearity, they may not be sensitive to threshold nonlinearity. Here, we discuss a like-
lihood ratio test with the threshold model as the specific alternative. The null hypothesis
is an AR(p) model versus the alternative hypothesis of a two-regime TAR model of
order p and with constant noise variance, that is; σ1 = σ2 = σ. With these assumptions,
the general model can be rewritten as

(15.6.1)

where the notation I(⋅) is an indicator variable that equals 1 if and only if the enclosed
expression is true. Moreover, in this formulation, the coefficient φ2,0 represents the
change in the intercept in the upper regime relative to that of the lower regime, and sim-
ilarly interpreted are φ2,1,…,φ2,p. The null hypothesis states that φ2,0 = φ2,1 =…= φ2,p =
0. While the delay may be theoretically larger than the autoregressive order, this is sel-
dom the case in practice. Hence, it is assumed that d ≤ p throughout this section, and

Yt

φ1,0 φ1,1Yt 1–
… φ1,p1

Yt p1– σ1et+ + + +  , if Yt d– r≤

φ2 0, φ2 1, Yt 1–
… φ2 p2, Yt p2– σ2et+ + + +  , if Yt d– r>

⎩
⎪
⎨
⎪
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Yt φ1 0, φ1 1, Yt 1–
… φ1 p, Yt p–+ + +=
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under this assumption and assuming the validity of linearity, the large-sample distribu-
tion of the test does not depend on d. 

In practice, the test is carried out with fixed p and d. The likelihood ratio test statis-
tic can be shown to be equivalent to

(15.6.2)

where n − p is the effective sample size,  is the maximum likelihood estimator
of the noise variance from the linear AR(p) fit and  from the TAR fit with the
threshold searched over some finite interval. See the next section for a detailed discus-
sion on estimating a TAR model. Under the null hypothesis that φ2,0 = φ2,1 =…= φ2,p =
0, the (nuisance) parameter r is absent. Hence, the sampling distribution of the likeli-
hood ratio test under H0 is no longer approximately χ2 with p degrees of freedom.
Instead, it has a nonstandard sampling distribution; see Chan (1991) and Tong (1990).
Chan (1991) derived an approximation method for computing the p-values of the test
that is highly accurate for small p-values. The test depends on the interval over which
the threshold parameter is searched. Typically, the interval is defined to be from the
a×100th percentile to the b×100th percentile of {Yt}, say from the 25th percentile to the
75th percentile. The choice of a and b must ensure that there are adequate data falling
into each of the two regimes for fitting the linear submodels. 

The reader may wonder why the search of the threshold is restricted to some finite
interval. Intuitively, such a restriction is desirable, as we want enough data to estimate
the parameters for the two regimes under the alternative hypothesis. A deeper reason is
mathematical in nature. This restriction is necessary because if the true model is linear,
the threshold parameter is undefined, in which case an unrestricted search may result in
the threshold estimator being close to the minimum or maximum data values, making
the large-sample approximation ineffective. 

We illustrate the likelihood ratio test for threshold nonlinearity using the (square-
root-transformed) relative sunspot data and the (log-transformed) predator data. Recall
that both Keenan’s test and Tsay’s test suggested that these data are nonlinear. Setting p
= 5, a = 0.25, and b = 0.75 for the sunspot data, we tried the likelihood ratio test for
threshold nonlinearity with different delays from 1 to 5, resulting in the test statistics
being 46.9, 111.3, 99.1, 85.0, and 45.1, respectively.† Repeating the test with a = 0.1 and
b = 0.9 yields identical results for this case. All the tests above have p-values less than
0.000, suggesting that the data-generating mechanism is highly nonlinear. Notice that
the test statistic attains the largest value when d = 2; hence we may tentatively estimate

† The R code to carry out these calculations is as follows:
> pvaluem=NULL
> for (d in 1:5) { res=tlrt(sqrt(spots),p=5,d=d,a=0.25,b=0.75)
> pvaluem= cbind( pvaluem, c(d,res$test.statistic,res$p.value)) }
> rownames(pvaluem)=c('d','test statistic','p-value')
> round(pvaluem,3)

Tn n p–( )log
σ̂2 H0( )

σ̂2 H1( )
------------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

σ̂2 H0( )
σ̂2 H1( )
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the delay to be 2. But delay 3 is very competitive.
Next, consider the predator series, with p = 4, a = 0.25, b = 0.75, and 1 ≤ d ≤ 4. The

test statistics and their p-values, enclosed in parentheses, are found to equal 19.3
(0.026), 28.0 (0.001), 32.0 (0.000), and 16.2 (0.073), respectively. Thus, there is some
evidence that the predator series is nonlinear, with the delay likely to be 2 or 3. Note that
the test is not significant for d = 4 at the 5% significance level.†

15.7 Estimation of a TAR Model

Because the stationary distribution of a TAR model does not have a closed-form solu-
tion, estimation is often carried out conditional on the max(p,d) initial values, where p is
the order of the process and d the delay parameter. Moreover, the noise series is often
assumed to be normally distributed, and we will make this assumption throughout this
section. The normal error assumption implies that the response is conditionally normal,
but see Samia, Chan and Stenseth (2007) for some recent work on the nonnormal case.
If the threshold parameter r and the delay parameter d are known, then the data cases
can be split into two parts according to whether or not Yt − d ≤ r. Let there be n1 data
cases in the lower regime. With the data in the lower regime, we can regress Yt on its
lags 1 to p to find the estimates of  and the maximum likelihood
noise variance estimate ; that is, the sum of squared residuals divided by n1. The
number n1 and the parameter estimates for the lower regime generally depend on r and
d; we sometimes write the more explicit notation, for example n1(r,d), below for clarity.
Similarly, using the data, say n2 of them, falling in the upper regime, we can obtain the
parameter estimates  and . Clearly, n1 + n2 = n − p, where n is
the sample size. Substituting these estimates into the log-likelihood function yields the
so-called profile log-likelihood function of (r,d):

(15.7.1)

The estimates of r and d can be obtained by maximizing the profile likelihood func-
tion above. The optimization need only be searched with r over the observed Y’s and
integer d between 1 and p. This is because, for fixed d, the function above is constant
between two consecutive observations. 

However, without some restrictions on the threshold parameter, the (conditional)
maximum likelihood method discussed above will not work. For example, if the lower
regime contains only one data case, the noise variance  so that the conditional
log-likelihood function equals ∞, in which case the conditional maximum likelihood
estimator is clearly inconsistent. This problem may be circumvented by restricting the

† The R code for this calculation is similar to that shown on the previous page. The details
may be found in the R code scripts for Chapter 15 available on the textbook Website.

φ̂1 0, φ̂1 1, … φ̂1 p,, , ,
σ̂1

2

φ̂2 0, φ̂2 1, … φ̂2 p,, , , σ̂2
2

l r d,( ) n p–
2

------------ 1 log 2π( )+{ }–
n1 r d,( )

2
------------------- σ̂1 r d,( )( )2( )log–=

n2 r d,( )
2

------------------- σ̂2 r d,( )( )2( )log–

σ̂1
2 0=
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search of the threshold to be between two predetermined percentiles of Y; for example,
between the tenth and ninetieth percentiles. 

Another approach to handle the aforementioned difficulty is to estimate the param-
eters using the conditional least squares (CLS) approach. The CLS approach estimates
the parameters by minimizing the predictive sum of squared errors, or equivalently con-
ditional maximum likelihood estimation for the case of homoscedastic (constant-vari-
ance) Gaussian errors; that is, σ1 = σ2 = σ so that maximizing the log-likelihood
function is equivalent to minimizing the conditional residual sum of squares: 

(15.7.2)

where I(Yt − d ≤ r) equals 1 if Yt − d ≤ r and 0 otherwise; the expression I(Yt − d > r) is
similarly defined. Again, the optimization need only be done with r searched over the
observed Y’s and d an integer between 1 and p. The conditional least squares approach
has the advantage that the threshold parameter can be searched without any constraints.
Under mild conditions, including stationarity and that the true conditional mean func-
tion is a discontinuous function, Chan (1993) showed that the CLS method is consistent;
that is, the estimator approaches the true value with increasing sample size. As the delay
is an integer, the consistency property implies that the delay estimator is eventually
equal to the true value with very large sample size. Furthermore, the sampling error of
the threshold estimator is of the order 1/n, whereas the sampling error of the other
parameters is of order . The faster convergence of the threshold parameter and the
delay parameter to their true values implies that in assessing the uncertainty of the
autoregressive parameter estimates, the threshold and the delay may be treated as if they
were known. Consequently, the autoregressive parameter estimators from the two
regimes are approximately independent of each other, and their sampling distributions
are approximately the same as those from the ordinary least squares regression with data
from the corresponding true regimes. These large-sample distribution results can be
lifted to the case of the conditional maximum likelihood estimator provided the true
parameter satisfies the regularity conditions alluded to before. Finally, we note that the
preceding large-sample properties of the estimator are radically different if the true con-
ditional mean function is continuous; see Chan and Tsay (1998).

In practice, the AR orders in the two regimes need not be identical or known. Thus,
an efficient estimation procedure that also estimates the orders is essential. Recall that
for linear ARMA models, the AR orders can be estimated by minimizing the AIC. For
fixed r and d, the TAR model is essentially fitting two AR models of orders p1 and p2,
respectively, so that the AIC becomes 

(15.7.3)

where the number of parameters, excluding r, d, σ1, and σ2, equals p1 + p2 + 2. Now, the
minimum AIC (MAIC) estimation method estimates the parameters by minimizing the
AIC subject to the constraint that the threshold parameter be searched over some inter-

L r d,( )  = {(Yt φ1 0, φ1 1, Yt 1–
… φ1 p, Yt p– )

2
I Yt d– r≤( )––––

t p 1+=

n

∑

(Yt φ2 0, φ2 1, Yt 1–
… φ2 p, Yt p– )

2
I Yt d– r>( )}––––+ 

1 n⁄

AIC p1 p2 r d, , ,( ) 2l r d,( )– 2 p1 p2 2+ +( )+=
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val that guarantees any regimes have adequate data for estimation. Adding 2 to the min-
imum AIC so found is defined as the nominal AIC of the estimated threshold model,
based on the naive idea of counting the threshold parameter as one additional parameter.
Since the threshold parameter generally adds much flexibility to the model, it is likely to
add more than one degree of freedom to the model. An asymptotic argument suggests
that it may be equivalent to adding three degrees of freedom to the model; see Tong
(1990, p. 248). 

We illustrate the estimation methods with the predator series. In the estimation, the
maximum order is set to be p = 4 and 1 ≤ d ≤ 4. This maximum order is the AR order
determined by AIC, which is likely to be not smaller than the order of the true TAR
model. Alternatively, the order may be determined by cross-validation, which is com-
puter-intensive; see Cheng and Tong (1992). Using the MAIC method with the search of
threshold roughly between the tenth and ninetieth percentiles, the table in Exhibit 15.11
displays the nominal AIC value of the estimated TAR model for 1 ≤ d ≤ 4. The nominal
AIC is smallest when d = 3, so we estimate the delay to be 3. The table in Exhibit 15.12
summarizes the corresponding model fit.

Exhibit 15.11 Nominal AIC of the TAR Models Fitted to the Log(predator) 
Series for 1 ≤ d ≤ 4

> AICM=NULL
> for(d in 1:4) 

{predator.tar=tar(y=log(predator.eq),p1=4,p2=4,d=d,a=.1,b=.9)
> AICM=rbind(AICM, 

c(d,predator.tar$AIC,signif(predator.tar$thd,4), 
predator.tar$p1,predator.tar$p2))}

> colnames(AICM)=c('d','nominal AIC','r','p1','p2')
> rownames(AICM)=NULL
> AICM

Although the maximum autoregressive order is 4, the MAIC method selects order 1
for the lower regime and order 4 for the upper regime. The submodel in each regime is
estimated by ordinary least squares (OLS) using the data falling in that regime. Hence a
less biased estimator of the noise variance may be estimated by the within-regime resid-
ual sum of squared errors normalized by the effective sample size which equals the
number of data in that regime minus the number of autoregressive parameters (including
the intercept) of the corresponding submodel. The “unbiased” noise variance  of the
ith regime relates to its maximum likelihood counterpart by the formula 

d AIC

1 19.04 4.15 2 1

2 12.15 4.048 1 4

3 10.92 4.661 1 4

4 18.42 5.096 3 4

r̂ p̂1 p̂2

σ~i
2
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(15.7.4)

where pi is the autoregressive order of the ith submodel. Moreover, 
is approximately distributed as χ2 with ni − pi − 1 degrees of freedom. For each regime,
the t-statistics and corresponding p-values reported in Exhibit 15.12 are identical with
the computer output for the case of fitting an autoregressive model with the data falling
in that regime. Notice that the coefficients of lags 2 and 3 in the upper regime are not
significant, while that of lag 4 is mildly significant at the 5% significance level. Hence,
the model for the upper regime may be approximated by a first-order autoregressive
model. We shall return to this point later.

Exhibit 15.12 Fitted TAR(2;1,4) Model for the Predator Data: MAIC Method

> predator.tar.1=tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1,b=.9, 
print=T)

> tar(y=log(predator.eq),p1=1,p2=4,d=3,a=.1,b=.9,print=T, 
method='CLS') # re-do the estimation using the CLS method

> tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=T, 
method='CLS') # the CLS method does not estimate the AR orders

The threshold estimate is 4.661, roughly the 57th percentile. In general, a threshold
estimate that is too close to the minimum or the maximum observation may be unreli-
able due to small sample size in one of the regimes, which, fortunately, is not the case

Estimate Std. Error t-statistic p-value

3

4.661

Lower Regime (n1 = 30)

0.262 0.316 0.831 0.41 

1.02 0.0704 14.4 0.00 

0.0548

Upper Regime (n2 = 23)

4.20 1.28 3.27 0.00 

0.708 0.202 3.50 0.00 

−0.301 0.312 −0.965 0.35 

0.279 0.406 0.686 0.50

−0.611 0.273 −2.24 0.04

0.0560

σ~i
2 ni

ni pi 1––
------------------------σ̂i

2
 ,=

ni pi 1––( )σ~i
2 σi

2⁄

d̂

r̂

φ̂1 0,

φ̂1 1,

σ~1
2

φ̂2 0,

φ̂2 1,

φ̂2 2,

φ̂2 3,

φ̂2 4,

σ~2
2
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here. Exhibit 15.12 does not report the standard error of the threshold estimate because
its sampling distribution is nonstandard and rather complex. Similarly, the discreteness
of the delay estimator renders its standard error useless. However, a parametric boot-
strap may be employed to draw inferences on the threshold and the delay parameters.
An alternative is to adopt the Bayesian approach of Geweke and Terui (1993). In con-
trast, the fitted AR(4) model has the coefficient estimates of lags 1 to 4 equal to 0.943
(0.136),  −0.171 (0.188), −0.1621 (0.186), and −0.238 (0.136), respectively, with their
standard errors enclosed in parentheses; the noise variance is estimated to be 0.0852,
which is substantially larger than the noise variances of the TAR(2;1,4) model. Notice
that the AR(4) coefficient estimate is close to being nonsignificant, and the AR(2) and
AR(3) coefficient estimates are not significant.

An interesting question concerns the interpretation of the two regimes. One way to
explore the nature of the regimes is to identify which data value falls in which regime in
the time series plot of the observed process. In the time series plot in Exhibit 15.2 on
page 387, data falling in the lower regime (that is, those whose lag 3 values are less than
4.661) are drawn as solid circles, whereas those in the upper regime are displayed as
open circles. The plot reveals that the estimated lower regime corresponds to the
increasing phase of the predator cycles and the upper regime corresponds to the decreas-
ing phase of the predator cycles. A biological interpretation is the following. When the
predator number was low one and a half days earlier, the prey species would have been
able to increase in the intervening period so that the predator species would begin to
thrive. On the other hand, when the predator numbered more than 106 ≈ exp(4.661) one
and a half days earlier, the prey species crashed in the intervening period so that the
predator species would begin to crash. The increasing phase (lower regime) of the pred-
ator population tends to be associated with a robust growth of the prey series that may
be less affected by other environmental conditions. On the other hand, during the
decreasing phase (upper regime), the predator species would be more susceptible to
environmental conditions, as they were already weakened by having less food around.
This may explain why the lower regime has a slightly smaller noise variance than the
upper regime; hence the slight conditional heteroscedasticity. The difference of the
noise variance in the two regimes is unlikely to be significant, although the conditional
heteroscedasticity is more apparent in the TAR(2;1,1) model to be discussed below. In
general, the regimes defined by the relative position of the lag d values of the response
are proxies for some underlying latent process that effects the switching between the lin-
ear submodels. With more substantive knowledge of the switching mechanism, the
threshold mechanism may, however, be explicitly modeled. 

While the interpretation of the regimes above is based on the time series plot, it may
be confirmed by examining the fitted submodels. The fitted model of the lower regime
implies that on the logarithmic scale

(15.7.5)

The lag 1 coefficient is essentially equal to 1 and suggests that the predator species
had a (median) growth rate of (exp(0.262) − 1)100% ≈ 30% every half day, although the
intercept is not significant at the 5% level. This submodel is explosive because Yt → ∞
as t → ∞ if left unchecked. 

Yt 0.262 1.02Yt 1– 0.234et+ +=
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Interpretation of the fitted model of the upper regime is less straightforward
because it is an order 4 model. However, it was suggested earlier that it may be approxi-
mated by an AR(1) model. Taking up this suggestion, we reestimated the TAR model
with the maximum order being 1 for both regimes.† The threshold estimate is
unchanged. The lower regime gains one data case, with less of an initial data require-
ment, but the autoregressive coefficients are almost unchanged. The fitted model of the
upper regime becomes 

(15.7.6)

which is a stationary submodel. The growth rate on the logarithmic scale equals 

(15.7.7)

which has a negative median since Yt − 1 > 4.661 on the upper regime. Notice that the
conditional heteroscedasticity is more apparent now than the fitted TAR(2;1,4) model.
The (nominal) AIC of the TAR(2;1,1) model with d = 3 equals 14.78, which is, however,
not directly comparable with 10.92 of the TAR(2;1,4) model because of the difference
in sample size. Models with different sample sizes may be compared by their nominal
AIC per observation. In this case, the normalized AIC increases from 0.206 = 10.92/53
to 0.274 = 14.78/54 when the order is decreased from 4 to 1, suggesting that the
TAR(2;1,4) model is preferable to the TAR(2;1,1) model. 

Another way to assess a nonlinear model is to examine the long-term (asymptotic)
behavior of its skeleton. Recall that the skeleton of a model is obtained by suppressing
the noise term from the model; that is, replacing the noise term by 0. The skeleton may
diverge to infinity, or it may converge to a limit point, a limit cycle, or a strange attrac-
tor; see Chan and Tong (2001) for definitions and further discussion. The skeleton of a
stationary ARMA model always converges to some limit point. On the other hand, the
skeleton of a stationary nonlinear model may display the full complexity of dynamics
alluded to earlier. The skeleton of the fitted TAR(2;1,4) model appears to converge to a
limit cycle of period 10, as shown in Exhibit 15.13. The limit cycle is symmetric in the
sense that its increase phase and decrease phase are of the same length. The apparent
long-run stability of the skeleton suggests that the fitted TAR(2;1,4) model with d = 3 is
stationary. In general, with the noise term in the model, the dynamic behavior of the
model may be studied by simulating some series from the stochastic model. Exhibit
15.14 shows a typical realization from the fitted TAR(2;1,4) model.

† predator.tar.2=tar(log(predator.eq),p1=1,p2=1,d=3,a=.1,
b=.9, print=T)

Yt 0.517 0.807Yt 1– 0.989et+ +=

Yt Yt 1–– 0.517 0.193Yt 1–– 0.989et+=
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Exhibit 15.13 Skeleton of the TAR(2;1,4) Model for the Predator Series

> tar.skeleton(predator.tar.1)

Exhibit 15.14 Simulated TAR(2;1,4) Series

> set.seed(356813)
> plot(y=tar.sim(n=57,object=predator.tar.1)$y,x=1:57, 

ylab=expression(Y[t]),xlab=expression(t),type='o')

The limit cycle of the skeleton of the fitted TAR(2;1,1) model with d = 3 is asym-
metric, with the increase phase of length 5 and the decrease phase of length 4; see
Exhibit 15.15. A realization of the fitted TAR(2;1,1) model is shown in Exhibit 15.16. 
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Exhibit 15.15 Skeleton of the First-Order TAR Model for the Predator 
Series

> predator.tar.2=tar(log(predator.eq),p1=1,p2=1,d=3,a=.1,b=.9, 
print=T)

> tar.skeleton(predator.tar.2)

Exhibit 15.16 Simulation of the Fitted TAR(2;1,1) Model

> set.seed(356813)
> plot(y=tar.sim(n=57,object=predator.tar.2)$y,x=1:57, 

ylab=expression(Y[t]),xlab=expression(t),type='o')

For the predator data, excluding the two initial transient cycles and the last incom-
plete cycle, the table in Exhibit 15.17 lists the length of the successive increasing and
decreasing phases. Observe that the mean length of the increasing phases is 5.4 and that
of the decreasing phases is 4.6. 
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Exhibit 15.17 Length of the Increasing and Decreasing Phases of the 
Predator Series

There is some evidence of asymmetry with a longer increase phase than the
decrease phase. Based on the cycle length analysis, the TAR(2;1,1) model appears to
pick up the asymmetric cycle property better than the TAR(2;1,4) model, but the latter
model gets the cycle length better matched to the observed average cycle length. A more
rigorous comparison between the cyclical behavior of a fitted model and that of the data
can be done by comparing the spectral density of the data with that of a long realization
from the fitted model. Exhibit 15.18 plots the spectrum of the data using a modified
Daniell window with a (3,3) span. Also plotted is the spectrum of the fitted TAR(2;1,4)
model (dashed line) and that of the fitted TAR(2;1,1) model (dotted line), both of which
are based on a simulated realization of size 10,000, a modified Daniell window with a
(200,200) span, and 10% tapering. It can be seen that the spectrum of the TAR(2;1,4)
model follows that of the predator series quite closely and is slightly better than the sim-
plified TAR(2;1,1) model. 

Exhibit 15.18 Spectra of Log(predator) Series, Dashed Line for TAR(2;1,1), 
Dotted Line for TAR(2;1,4)

> set.seed(2357125)
> yy.1.4=tar.sim(predator.tar.1,n=10000)$y
> yy.1=tar.sim(predator.tar.2,n=10000)$y
> spec.1.4=spec(yy.1.4,taper=.1, span=c(200,200),plot=F)
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> spec.1=spec(yy.1,taper=.1, span=c(200,200),plot=F)
> spec.predator=spec(log(predator.eq),taper=.1, 

span=c(3,3),plot=F)
> spec.predator=spec(log(predator.eq),taper=.1,span=c(3,3), 

ylim=range(c(spec.1.4$spec,spec.1$spec,spec.predator$spec)))
> lines(y=spec.1.4$spec,x=spec.1.4$freq,lty=2)
> lines(y=spec.1$spec,x=spec.1$freq,lty=3)

We note that the conditional least squares method with the predator data yields the
same threshold estimate for d = 3 and hence also the other parameter estimates, although
this need not always be the case. Finally, a couple of clarifying remarks on the predator
series analysis are in order. As the experimental prey series is also available, a bivariate
time series analysis may be studied. But it is not pursued here since nonlinear time
series analysis with multiple time series is not a well-charted area. Moreover, real bio-
logical data are often observational, and abundance data of the prey population are often
much noisier than those of the predator population because the predator population
tends to be fewer in number than the prey population. Furthermore, predators may
switch from their favorite prey food to other available prey species when the former
becomes scarce, rendering a more complex prey-predator system. For example, in a
good year, hares may be seen hopping around in every corner in the neighborhood,
whereas it is rare to spot a lynx, their predator! Thus, biological analysis often focuses
on the abundance data of the predator population. Nonetheless, univariate time series
analysis of the abundance of the predator species may shed valuable biological insights
on the prey-predator interaction; see Stenseth et al. (1998, 1999) for some relevant dis-
cussion on a panel of Canadian lynx series. For the lynx data, a TAR(2;2,2) model with
delay equal to 2 is the prototypical model, with delay 2 lending some nice biological
interpretations. We note that, for the predator series, delay 2 is very competitive; see
Exhibit 15.11, and hence may be preferred on biological grounds. In one exercise, we
ask the reader to fit a TAR model for the predator series with delay set to 2 and interpret
the findings by making use of the framework studied in Stenseth et al. (1998, 1999).

15.8 Model Diagnostics

In Section 15.7, we introduced some model diagnostic techniques; for example, skele-
ton analysis and simulation. Here, we discuss some formal statistical approaches to
model diagnostics via residual analysis. The raw residuals are defined as subtracting the
fitted value from the data, where the tth fitted value is the estimated conditional mean of
Yt given past values of Y’s; that is, the residuals  are given by

(15.8.1)

These are the same as the raw residuals from the fitted submodels. The standardized
residuals are obtained by normalizing the raw residuals by their appropriate standard
deviations: 

ε̂ t

ε̂ t Yt φ̂1 0, φ̂1 1, Yt 1–
… φ̂1 p, Yt p–+ + +{ }I Yt d̂– r̂≤( )–=

φ̂2 0, φ̂2 1, Yt 1–
… φ̂2 p, Yt p–+ + +{ }I Yt d̂– r̂>( )–
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(15.8.2)

that is, raw residuals from the lower (upper) regime are normalized by the noise stan-
dard deviation estimate of the lower (upper) regime. As in the linear case, the time series
plot of the standardized residuals should look random, as they should be approximately
independent and identically distributed if the TAR model is the true data mechanism;
that is, if the TAR model is correctly specified. As before, we look for the presence of
outliers and any systematic pattern in such a plot, in which case it may provide a clue for
specifying a more appropriate model. The independence assumption of the standardized
errors can be checked by examining the sample ACF of the standardized residuals. Non-
constant variance may be checked by examining the sample ACF of the squared stan-
dardized residuals or that of the absolute standardized residuals. 

Here, we consider the generalization of the portmanteau test based on some overall
measure of the magnitude of the residual autocorrelations. The reader may want to
review the discussion in Section 12.5 on page 301, where we explain that even if the
model is correctly specified, the residuals are generally dependent and so are their sam-
ple autocorrelations. Unlike the case of linear ARIMA models, the dependence of the
residuals necessitates the employment of a (complex) quadratic form of the residual
autocorrelations: 

(15.8.3)

where neff = n − max(p1,p2,d) is the effective sample size,  the ith-lag sample auto-
correlation of the standardized residuals, and qi,j some model-dependent constants given
in Appendix L on page 421. If the true model is a TAR model,  are likely close to
zero and so is Bm, but Bm tends to be large if the model specification is incorrect. The
quadratic form is designed so that Bm is approximately distributed as χ2 with m degrees
of freedom. Mathematical theory predicts that the χ2 distribution approximation is gen-
erally more accurate with larger sample size and relatively small m as compared with
the sample size. 

In practice, the p-value of Bm may be plotted against m over a range of m values to
provide a more comprehensive assessment of the independence assumption on the stan-
dardized errors. The bottom figure of Exhibit 15.19 reports the portmanteau test of the
TAR(2;1,1) model fitted to the predator series discussed earlier for 1 ≤ m ≤ 12. The top
figure there is the time series plot of the standardized residuals. Except for a possible
outlier, the plot shows no particular pattern. The middle figure is the ACF plot of the
standardized residuals. The confidence band is based on the simple  rule and
should be regarded as a rough guide on the significance of the residual ACF. It suggests
that the lag 1 residual autocorrelation is significant. The more rigorous portmanteau
tests are all significant for m ≤ 6, suggesting a lack of fit for the TAR(2;1,1) model. Sim-
ilar diagnostics for the TAR(2;1,4) model are shown in Exhibit 15.20. Now, the only
potential problem is a possible outlier. However, the fitted model changed little upon
deleting the last four data points, including the potential outlier; hence we conclude that

ê t

ε̂ t

σ̂1I Yt d̂– r̂≤( ) σ̂2I Yt d̂– r̂>( )+
------------------------------------------------------------------------------=

Bm neff= qi j, ρ̂iρ̂j
j 1=

m

∑
i 1=

m

∑
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the fitted TAR(2;1,4) model is fairly robust. Exhibit 15.21 displays the QQ normal score
plot of the standardized residuals, which is apparently straight and hence the errors
appear to be normally distributed. In summary, the fitted TAR(2;1,4) model provides a
good fit to the predator series. 

Exhibit 15.19 Model Diagnostics of the First-Order TAR Model: Predator 
Series

> win.graph(width=4.875,height=4.5)
> tsdiag(predator.tar.2,gof.lag=20)
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Exhibit 15.20 Model Diagnostics for the TAR(2;1,4) Model: Predator Series

> tsdiag(predator.tar.1,gof.lag=20)
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Exhibit 15.21 QQ Normal Plot of the Standardized Residuals

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(predator.tar.1$std.res); qqline(predator.tar.1$std.res)

15.9 Prediction

In this section, we consider the problem of predicting future values from a TAR process.
In practice, prediction is based on an estimated TAR model. But, as in the case of
ARIMA models, the uncertainty due to parameter estimation is generally small com-
pared with the natural variation of the underlying process. So, we shall proceed below as
if the fitted model were the true model. The uncertainty of a future value, say Yt + l , is
completely characterized by its conditional probability distribution given the current and
past data Yt, Yt − 1,…, referred to as the l-step-ahead predictive distribution below. For
ARIMA models with normal errors, all predictive distributions are normal, which
greatly simplifies the computation of a predictive interval, as it suffices to find the mean
and variance of the predictive distribution. However, for nonlinear models, the predic-
tive distributions are generally nonnormal and often intractable. Hence, a prediction
interval may have to be computed by brute force via simulation. The simulation
approach may be best explained in the context of a first-order nonlinear autoregressive
model: 

(15.9.1)

Given Yt = yt, Yt − 1 = yt − 1,…, we have Yt + 1 = h(yt,et + 1) so a realization of Yt + 1 from
the one-step-ahead predictive distribution can be obtained by drawing et + 1 from the
error distribution and computing h(yt,et + 1). Repeating this procedure independently B
times, say 1000 times, we get a random sample of B values from the one-step-ahead pre-
dictive distribution. The one-step-ahead predictive mean may be estimated by the sam-
ple mean of these B values. However, it is important to inspect the shape of the
one-step-ahead predictive distribution in order to decide how best to summarize the pre-
dictive information. For example, if the predictive distribution is multimodal or very
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skewed, the one-step-ahead predictive mean need not be an appropriate point predictor.
A generally useful approach is to construct a 95% prediction interval for Yt + 1; for
example, the interval defined by the 2.5th percentile to the 97.5th percentile of the simu-
lated B values. 

The simulation approach can be readily extended to finding the l-step-ahead predic-
tive distribution for any integer l ≥ 2 by iterating the nonlinear autoregression. 

(15.9.2)

where Yt = yt and {et + 1,…,et + l} is a random sample of l values drawn from the error
distribution. This procedure may be repeated B times to yield a random sample from the
l-step-ahead predictive distribution, with which we can compute prediction intervals of
Yt + l or any other predictive summary statistic. 

Indeed, the l-tuple (Yt + 1,…,Yt + l) is a realization from the joint predictive distribu-
tion of the first l-step-ahead predictions. So, the procedure above actually yields a ran-
dom sample of B vectors from the joint predictive distribution of the first l-step-ahead
predictions. 

Henceforth in this section, we focus on the prediction problem when the true model
is a TAR model. Fortunately, the simulation approach is not needed for computing the
one-step-ahead predictive distribution in the case of a TAR model. To see this, consider
the simple case of a first-order TAR model. In this case, Yt + 1 − d is known, so that the
regime for Yt + 1 is known. If Yt + 1 − d ≤ r, then Yt + 1 follows the AR(1) model

(15.9.3)

Because Yt = yt is fixed, the conditional distribution of Yt + 1 is normal with mean equal
to φ1,0 + φ1,1yt and variance . Similarly, if Yt > r, Yt + 1 follows the AR(1) model of
the upper regime so that, conditionally, it is normal with mean φ2,0 + φ2,1yt and variance

. A similar argument shows that, for any TAR model, the one-step-ahead predictive
distribution is normal. The predictive mean is, however, a piecewise linear function, and
the predictive standard deviation is piecewise constant. 

Similarly, it can be shown that if l ≤ d, then the l-step-ahead predictive distribution
of a TAR model is also normal. But if l > d, the l-step-ahead predictive distribution is no
longer normal. The problem can be illustrated in the simple case of a first-order TAR
model with d = 1 and l = 2. While Yt + 1 follows a fixed linear model determined by the
observed value of Yt, Yt + 2 may be in the lower or upper regime, depending on the ran-
dom value of Yt + 1. Suppose that yt ≤ r. Now, Yt + 1 falls in the lower regime if Yt + 1 =
σ1et + 1 + φ1,0 + φ1,1yt ≤ r, which happens with probability pt = Pr(σ1et + 1 + φ1,0 + φ1,1yt
≤ r) and in which case 

Yt 1+ h Yt et 1+,( )=

Yt 2+ h Yt 1+ et 2+,( )=
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(15.9.4)

which is a normal distribution with mean equal to and vari-
ance . On the other hand, with probability 1 − pt, Yt + 1 falls in the upper
regime, in which case the conditional distribution of Yt + 2 is normal but with mean
φ2,1(φ1,0 + φ1,1yt) + φ2,0 and variance . Therefore, the conditional distribu-
tion of Yt+2 is a mixture of two normal distributions. Note that the mixture probability pt
depends on yt. In particular, the higher-step-ahead predictive distributions are nonnor-
mal for a TAR model if l > d, and so we have to resort to simulation to find the predictive
distributions. 

As an example, we compute the prediction intervals for the logarithmically trans-
formed predator data based on the fitted TAR(2;1,4) model with d = 3; see Exhibit
15.22, where the middle dashed line is the median of the predictive distribution and the
other dashed lines are the 2.5th and 97.5th percentiles of the predictive distribution.

Exhibit 15.22 Prediction of the Predator Series

> set.seed(2357125)
> win.graph(width=4.875,height=2.5,pointsize=8)
> pred.predator=predict(predator.tar.1,n.ahead=60,n.sim=10000)
> yy=ts(c(log(predator.eq),pred.predator$fit),frequency=2, 

start=start(predator.eq))
> plot(yy,type='n',ylim=range(c(yy,pred.predator$pred.interval)), 

ylab='Log Predator',xlab=expression(t))
> lines(log(predator.eq))
> lines(window(yy, start=end(predator.eq)+c(0,1)),lty=2)
> lines(ts(pred.predator$pred.interval[2,], 

start=end(predator.eq)+c(0,1),freq=2),lty=2)
> lines(ts(pred.predator$pred.interval[1,], 

start=end(predator.eq)+c(0,1),freq=2),lty=2)
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The simulation size here is 10,000. In practice, a smaller size such as 1000 may be
adequate. The median of the predictive distribution can serve as a point predictor.
Notice that the predictive medians display the cyclical pattern of the predator data ini-
tially and then approach the long-run median with increasing number of steps ahead.
Similarly, the predictive intervals approach the interval defined by the 2.5th and 97.5th
percentiles of the stationary distribution of the fitted TAR model. However, a new fea-
ture is that prediction need not be less certain with increasing number of steps ahead, as
the length of the prediction intervals does not increase monotonically with increasing
number of steps ahead; see Exhibit 15.23. This is radically different from the case of
ARIMA models, for which the prediction variance always increases with the number of
prediction steps ahead.

Exhibit 15.23 Width of the 95% Prediction Intervals Against Lead Time

> plot(ts(apply(pred.predator$pred.interval,2, 
function(x){x[2]-x[1]})),
ylab='Length of Prediction Intervals',
xlab='Number of Steps Ahead')

Recall that, for the TAR model, the prediction distribution is normal if and only if
the number of steps ahead l ≤ d. Exhibit 15.24 shows the QQ normal score plot of the
three-step-ahead predictive distribution, which is fairly straight. On the other hand, the
QQ normal score plot of the six-step-ahead predictive distribution (Exhibit 15.25) is
consistent with nonnormality.
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Exhibit 15.24 QQ Normal Plot of the Three-Step-Ahead Predictive 
Distribution

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(pred.predator$pred.matrix[,3])
> qqline(pred.predator$pred.matrix[,3])

Exhibit 15.25 QQ Normal Plot of the Six-Step-Ahead Predictive 
Distribution

> qqnorm(pred.predator$pred.matrix[,6])
> qqline(pred.predator$pred.matrix[,6])
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15.10 Summary

In this chapter, we have introduced an important nonlinear times serie model—the
threshold model. We have shown how to test for nonlinearity and, in particular, for
threshold nonlinearity. We then proceeded to consider the estimation of the unknown
parameters in these models using both the minimum AIC (MAIC) criterion and the con-
ditional least squares approach. As with all models, we learned how to criticize them
through various model diagnostics, including an extended portmanteau test. Finally, we
demonstrated how to form predictions from threshold models, including the calculation
and display of prediction intervals. Several substantial examples were used to illustrate
the methods and techniques discussed.

EXERCISES

15.1 Fit a TAR model for the predator series with delay set to 2, and interpret the find-
ings by making use of the framework studied in Stenseth et al. (1998, 1999). (You
may first want to check whether or not their framework is approximately valid for
the TAR model.) Also, compare the fitted model with the TAR(2;1,4) model with
delay 3 reported in the text. (The data file is named veilleux.)

15.2 Fit a TAR model to the square-root-transformed relative sunspot data, and exam-
ine its goodness of fit. Interpret the fitted TAR model. (The data file is named
spots.)

15.3 Predict the annual relative sunspot numbers for ten years using the fitted model
obtained in Exercise 15.2. Draw the prediction intervals and the predicted medi-
ans. (The data file is named spots.)

15.4 Examine the long-run behavior of the skeleton of the fitted model for the relative
sunspot data. Is the fitted model likely to be stationary? Explain your answer. 

15.5 Simulate a series of size 1000 from the TAR model fitted to the relative sunspot
data. Compute the spectrum of the simulated realization and compare it with the
spectrum of the data. Does the fitted model capture the correlation structure of the
data? 

15.6 Draw the lagged regression plots for the square-root-transformed hare data. Is
there any evidence that the hare data are nonlinear? (The data file is named hare.)

15.7 Carry out formal tests (Keenan’s test, Tsay’s test, and threshold likelihood ratio
test) for nonlinearity for the hare data. Is the hare abundance process nonlinear?
Explain your answer. (The data file is named hare.)

15.8 Assuming that the hare data are nonlinear, fit a TAR model to the hare data and
examine the goodness of fit. (The data file is named hare.)
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15.9 This exercise assumes that the reader is familiar with Markov chain theory. Con-
sider a simple TAR model that is piecewise constant: 

where {et} are independent standard normal random variables. Let Rt = 1 if Yt ≤ r
and 2 otherwise, which is a Markov chain.
(a) Find the transition probability matrix of Rt and its stationary distribution. 
(b) Derive the stationary distribution of {Yt}. 
(c) Find the lag 1 autocovariance of the TAR process. 

Appendix L: The Generalized Portmanteau Test for TAR

The basis of the portmanteau test is the result that, if the TAR model is correctly speci-
fied, are approximately jointly normally distributed with zero mean and
covariances , where Q is an m×m matrix whose (i, j) element equals
qij and whose formula is given below; See Chan (2008) for a proof of this result. It can
be shown that Q = I − UV−1UT where I is an m×m identity matrix, 

where It = I(Yt − d ≤ r), the expectation of a matrix is taken elementwise, and

Yt
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These expectations can be approximated by sample averages computed with the true
errors replaced by the standardized residuals and the unknown parameters by their esti-
mates. For example, E{et − 1I(Yt − d ≤ r)} can be approximated by

 

where the initial standardized residuals  for t ≤ max(p1,p2, ). 

1
n
--- ê t 1– I Yt d̂– r̂≤( )

t 1=

n

∑

ê t 0= d̂
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APPENDIX: AN INTRODUCTION TO R

Introduction

All of the plots and numerical output displayed in this book were produced with the R
software, which is available at no cost from the R Project for Statistical Computing. The
software is available under the terms of the Free Software Foundation's GNU General
Public License in source code form. It runs on a wide variety of operating systems,
including Windows, Mac OS, UNIX, and similar systems, including FreeBSD and
Linux. R is a language and environment for statistical computing and graphics, provides
a wide variety of statistical methods (time series analysis, linear and nonlinear model-
ing, classical statistical tests, and so forth) and graphical techniques, and is highly exten-
sible. In particular, one of the authors (KSC) has produced a large number of new or
enhanced R functions specifically tailored to the methods described in this book. They
are available for download in an R package named TSA on the R Project Website at
www.r-project.org. The TSA functions are listed on page 468.

Important references for learning much more about R are also available at the
R-Project Website, including An Introduction to R: Notes on R, a Programming Envi-
ronment for Data Analysis and Graphics. Version 2.4.1 (2006-12-18), by W. N. Ven-
ables, D. M. Smith, and the R Development Core Team, (2006), and R: A Language and
Environment for Statistical Computing Reference Index, Version 2.4.1 (2006-12-18), by
The R Development Core Team (2006a).

The R software is the GNU implementation of the famed S language. It has been
under active development by the R team, with contributions from many statisticians all
over the world. R has become a versatile and powerful platform for doing statistical
analysis. We shall confine our discussion to the Windows version of R. To obtain the
software, visit the Website at www.r-project.org. Click on CRAN on the left-side of the
screen under Download. Scroll down the list of CRAN Mirror sites and click on one of
them nearest to you geographically. Click on the link for Windows (or Linux or MacOS
X as appropriate) and click on the link named base. Finally, click on the link labeled
R-2.6.1-win32.exe. (This file indicates release 2.6.1, the latest available release as of
this writing. Newer versions come out frequently.) Save the file somewhere convenient,
for example, on your desktop. When the download finishes, double-click the program
icon and proceed with installing the software. (The discussion that follows assumes that
you accept all of the defaults during installation.) At the end of this appendix, on
page 468, you will find a listing and brief description of all the new or enhanced func-
tions that are contained in the TSA package.

Before you start the R software for the first time, you should create a folder or
directory, say Rwork, to hold data files that you will use with R for this project or
course. This will be the working directory whenever you use R for this particular project
or course. This directory is to contain the workspace, a file that contains all the
objects (variables and functions) created in an R session. You should create separate
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working directories for different projects or different courses.† After R is
successfully installed on your computer, there will be an R shortcut icon on
your desktop. If you have created your working directory, start R by clicking
the R icon (shown at the right). When the software has loaded, you will have
a console window similar to the one shown in Exhibit 1 with a bottom line that reads >
followed by a large rectangular cursor (probably in red). This is the R prompt. You may
enter commands at this prompt, and they will be carried out when you press the Enter
key. Several tasks are available through the menus.

The first task is to save your workspace in the working
directory you created. To do so, select the File menu and
then click on the choice Save workspace… .‡ You now
may either browse to the directory Rwork that you created
(which may take many steps) or type in the full path name; for
example “C: \Documents and Se t t ings \ JoeStuden t \
My Documents\Course156\Rwork”. If your working direc-
tory is on a USB flash drive designated as drive E, you might
simply enter “E:Rwork”. Click OK, and from this point on in
this session, R will use the folder Rwork as its working direc-
tory.

You exit R by selecting Exit on the File menu. Every
time you exit R, you will receive a message as to whether or
not to Save the workspace image. Click Yes to save
the workspace, and it will be saved in your current working
directory. The next time you want to resume work on that
same project, simply navigate to that working directory and
locate the R icon there attached to the file named .RData. If you double-click this icon,
R will start with this directory already selected as the working directory and you can get
right to work on that project. Furthermore, you will receive the message [Previ-
ously saved workspace restored].

Exhibit 1 shows a possible screen display after you have started R, produced two
different graphs, and worked with R commands in a script window using the R editor.
Numerical results in R are displayed in the console window. Commands may be entered
(keyed) in either the console window and executed immediately or (better) in a script
window (the R editor) and then submitted to be run in R. The Menu bar and buttons will
change depending on which window is currently the “focus.”

† If you work in a shared computer lab, check with the lab supervisor for information about
starting R and about where you may save your work.

‡ If you neglected to create a working directory before starting R, you may do so at
this point. Navigate to a suitable place, click the Create new folder button, and
create the folder Rwork now.
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Exhibit 1 Windows Graphical User Interface for the R Software

A particularly useful feature of R is its ease of
including supplementary tools in the form of
libraries or packages. For example, all the
datasets and the new or enhanced R functions
used in this book are collected into a package
called TSA that can be downloaded and installed
in R. This can be done by clicking the Packages
menu and then selecting Set CRAN mirror.
Again select a mirror site that is closest to you
geographically, and a window containing the
names of all available packages will pop up.

In addition to our TSA package, you will
need to install packages named leaps, locfit,
MASS, mgcv, tseries, and uroot. Click the
Packages menu once more, click Install
package(s), and scroll through the window.
Hold down the Ctrl key and click on each of these
seven package names. When you have all seven
selected, click OK, and they will be installed on
your system by R. You only have to install them

script window

console window

(inactive) graph window

(active) graph window

Menu bar and buttons
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once (but, of course, they may be updated in the future and some of them may be incor-
porated into the core of R and not need to be installed separately).

 We will go over commands selected from the various chapters as a tutorial for R,
but before delving into those, we first present an overview of R. R is an object-oriented
language. The two main objects in R are data and functions. R admits many data struc-
tures. The simplest data structure is a vector that contains raw data. To create a data vec-
tor named Dat containing, say, 31, 4, 15, and 93, after the > prompt in the console
window, enter the following command 

Dat=c(31,4,15,93)

and then press the Enter key. The equal sign symbol signifies assigning the object on its
right-hand side to the object on its left-hand side. The expression c(31,4,15,93)
stands for concatenating the numbers within the parentheses to make a vector. So, the
command creates an object named Dat that is a vector containing the numbers 31, 4,
15, and 93. R is case-sensitive, so the objects named Dat and DAt are different. To
reveal the contents of an object, simply type the name of the object and press the Enter
key. So, typing Dat in the R console window (and pressing the Enter key) will display
the contents of Dat. If you subsequently enter DAt at the R prompt, it will complain by
returning an error message saying that object "DAt" is not found. The name of an object
is a string of characters that may contain letters, numerals, and the period sign, but the
leading character is required to be a letter.† For example, Abc123.a is a valid name for
an R object but 12a is not. R has some useful built-in objects, for example pi, which
contains the numerical value of π required for trigonometric operations such as comput-
ing the area of a circle.

For us, the most useful data structure is a time series. A time series is a vector with
additional information on the epoch of the first datum and the number of data per a basic
unit of time interval. For example, suppose we have quarterly data starting from the sec-
ond quarter of 2006: 12, 31, 22, 24, 30. This time series can be created as follows:

> Dat2=ts(c(12,31,22,24,30), start=c(2006,2), frequency=4)

Its content can be verified by the command

> Dat2

Qtr1 Qtr2 Qtr3 Qtr4
2006 12 31 22 
2007 24 30 

Larger datasets already in a data file (raw data separated by spaces, tabs, or line breaks)
can be loaded into R by the command

> Dat2=ts(scan('file1'), start=c(2006,2), frequency=4)

where it is assumed that the data are contained in the file named file1 in the same
directory where you start up R (or the one changed into via the change dir com-
mand). Notice that the file name, file1, is surrounded by single quotes ('). In R, all

† Certain names should be avoided, as they have special meanings in R. For example, the let-
ter T is short for true, F for false, and c for concatenate or combine.
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character variables must be so enclosed. You may, however, use either single quotes or
double quotes (") as long as you use them in pairs.

Datasets with several variables may be read into R by the read.table function.
The data must be stored in a table form: The first row contains the variable names, and
starting from the second line, the data are stored so that data from each case make up a
row in the order of the variable names. The relevant command is

Dat3=read.table('file2',header=T)

where file2 is the name of the file containing the data. The argument header=T
specifies that the variable names are in the first line of the file. For example, let the con-
tents of a file named file2 in your working directory be as follows:

Y X
1 2
3 7
4 8
5 9 

> Dat3=read.table('file2',header=T)
> Dat3
  Y X
1 1 2
2 3 7
3 4 8
4 5 9

Note that in displaying Dat3, R adds the row labels, defaulted to be from 1 to the num-
ber of data cases. The output of read.table is a data.frame, which is a data
structure for a table of data. More discussion on data.frame can be found below.
Presently, it suffices to remember that the variables inside a data.frame are not
accessible. Think of Dat3 as a closed suitcase. It has to be opened before its variables
are accessible in an R session. The command to “open” a data.frame is to attach
it:

> Y
Error: object "Y" not found
> attach(Dat3)
> Y
[1] 1 3 4 5
> X
[1] 2 7 8 9

R can also read in data from an Excel file saved in the csv (comma-separated values)
format, with the first row containing the variable names. Suppose file2.csv contains
a spreadsheet containing the same information as in file2. The commands for reading
in the data from file2.csv are similar to the one for a text file.

> Dat4=read.csv('file2.csv',header=T)
> Dat4
  Y X
1 1 2
2 3 7
3 4 8
4 5 9 
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The functions scan, read.table, and read.csv have many other useful options.
Use R Help to learn more about them. For example, run the command ?read.table,
and a window showing detailed information for the read.table command will open.
Remember that prefacing the question mark to any function name will display the func-
tion's details in a new Help window. 

Functions in R are similar to functions in the programming language C. A function
is invoked by typing its name followed by a list of arguments enclosed by parentheses.
For example, the concatenate function has the name “c” and its purpose is to create a
vector obtained by concatenating the arguments supplied to the function.

> c(12,31,22,24,30)

Note that there can be no space between the left parenthesis and the function name.
Even if the argument list is empty, the parentheses must be included in invoking a func-
tion. Try the command 

> c

R now sees the name of an object and will simply display its contents by printing the
entire set of commands making up the function in the console window. R has many use-
ful built-in functions, including abs, log, log10, exp, sin, cos, sqrt, and so
forth, that are useful for manipulating data. (The function abs computes the absolute
value; log does the log-transformation with base e, while log10 uses base 10; exp is
the exponentiation function, sin and cos are the trigonometric functions; and sqrt
computes the square root.)    These functions are applied to a vector or a time series ele-
ment by element. For example, log(Dat2) log-transforms each element of the time
series Dat2 and transfers the time series structure to the transformed data.

> Dat2=ts(c(12,31,22,24,30), start=c(2006,2), frequency=4)
> log(Dat2)
         Qtr1     Qtr2     Qtr3     Qtr4
2006          2.484907 3.433987 3.091042
2007 3.178054 3.401197 

Furthermore, vectors and time series can be manipulated algebraically with the usual
addition (+), subtraction (-), multiplication (*), division (/), or power (^ or **) carried
out element by element. For example, applying the transformation y = 2x^3 − x + 7 to
Dat2 and saving the transformed data to a new time series named new.Dat2 can be
easily carried out by the command

new.Dat2= 2*Dat2^3-Dat2+7 
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Chapter 1 R Commands

Now, we are ready to check out selected R commands used in
Chapter 1 of the book. Script files of the commands used in
each of the fifteen chapters are available for download at
www.stat.uiowa.edu/~kchan/TSA.htm. The script files contain
the R commands needed to carry out the analyses shown in the
chapters. They also contain a limited amount of additional
explanation. Download the scripts and save them in your work-
ing directory. You may then open them within R in an R editor
(script) window and you will save much typing! Once they are
downloaded, script files may be opened by either clicking the
open file button  or by using the file menu shown at the
left.

Exhibit 2 A Script Window with Chapter 1 Scripts Displayed

Exhibit 2 shows a portion of the script file for Chapter 1
in a script window. The first four commands have been
highlighted by dragging the mouse pointer across them.
They can now all be executed by either pressing Con-
trol-R (Ctrl-R) or by right-clicking the highlighted group
and choosing Run from the choices displayed, as shown
at the left. If the cursor is in a single command line with
no highlighting, that one command may be executed
similarly.
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At the beginning of each session with R, you need to load the TSA library. The fol-
lowing command will accomplish this (but you may wish to investigate the .First
function that can automate some startup tasks).

library(TSA)

The TSA package contains all datasets and functions needed for repeating the analyses
and doing the exercises. 

# Exhibit 1.1 on page 2.
win.graph(width=4.875,height=2.5,pointsize=8)

Comments may be interspersed  in the R codes to improve their readability. The # sign
in a R command signifies that what follows the sign are comments, and hence ignored
by R. The first R command opening with the # sign is therefore a comment. The second
R command opens a window for graphics that is 4.875 inches wide and 2.5 inches tall
with characters printed with point size 8. The chosen setting and similar settings pro-
duce time sequence plots that are appropriate for inclusion in the book. Other settings
will be appropriate for other purposes. For example, quantile-quantile plots are best
viewed with a 1:1 aspect ratio (height = width). For exploratory data analysis, you will
want larger graphics windows to use the full resolution of your computer screen to see
more detail. The command win.graph can be safely omitted altogether. If there is
currently no open graphics window, R will open a graphics window whenever a graph-
ics command is issued. You can resize this window in the usual ways by dragging edges
or corners.

data(larain)

This loads the time series larain into the R session and makes it available for further
analysis such as

plot(larain,ylab='Inches',xlab='Year',type='o')

Plot is a function. It draws the time sequence plot for larain. The argument
ylab='Inches' specifies “Inches” as the label for the y-axis. Similarly, the label for
the x-axis is “Year.” The argument type indicates how the data are displayed in the
plot. For type='o', the individual data points are overplotted on the curve;
type='b' (for both) is another option that superimposes the data points on the curve,
but with the curve broken around the data points. For type='l', only the line seg-
ments connecting the points are shown. (Note: This character (l) is an “el,” not a one.)
To show only the data points, supply the argument type='p'. To learn more about the
plot function and the full options for the type argument, run the command
?plot
A Help window on the plot function will then pop up for your browsing. Try it now.
What will be plotted if the option type='h' is used instead of type='o'? All
graphs may be saved (File > Save as > …) in any of several graphics formats: jpeg, pdf,
etc. Saved graphs may then be imported into most word-processing programs to create
high-quality reports.

# Exhibit 1.2 on page 2.
win.graph(width=3,height=3,pointsize=8)
plot(y=larain,x=zlag(larain),ylab='Inches',
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xlab='Previous Year Inches')

The plot function is a multipurpose function. It can do many different kinds of plots,
depending on the set of arguments passed to it and their attributes. Here, it draws the
scatter diagram of larain against its lag 1 values through the arguments y=larain
(that is, larain on the y-axis) and x=zlag(larain) (that is, the lag 1 of larain
is on the x-axis). Note that zlag is a function in the TSA package. Run the command
?zlag to learn what you can do with it.

# Exhibit 1.3 on page 3.
data(color)
plot(color,ylab='Color Property',xlab='Batch',type='o')

Here we have supplied four arguments to the plot function to draw the time sequence
plot of the time series color. The first argument is simply color, but the other sup-
plied arguments are of the form name of the argument = argument value so the
first supplied argument is an unnamed argument, while the other arguments are named
arguments. You may wonder how an unnamed argument is interpreted by R. To under-
stand this, use the ?plot command to check that the argument list of the plot func-
tion is x, y, and … . You may guess that the x argument represents the x-variable, and
the y argument for the y-variable in a plot. The ellipsis (…) argument stands for all other
allowable arguments, which must, however, be specified with the name of the argument.
(Again, consult the pages of the plot function to figure out which other arguments
besides x and y may be passed to plot.) Any unnamed argument is interpreted to be
the value for the argument whose order matches that of the unnamed argument supplied
to the function. For example, color appears as the first argument supplied to the plot
function, so R interprets it as the value for the x argument. Now there is no value sup-
plied to the y argument. In this case, plot will examine the nature of the x-variable to
determine what actions to be taken. Since color is a time series, plot draws a time
sequence plot of color. To reinforce understanding, now try the following command
in which color appears twice in the argument list, as the first and second arguments. 

plot(color, color, ylab='Color Property', 
xlab='Batch',type='o')

Guess what will be drawn by R? Now, color is interpreted as the x-variable and also
the y-variable; hence a 45 degree line is drawn. However, the line seems to be of nonuni-
form thickness. (Can you see this?) Why? It is because seeing that the variables are time
series, plot draws the line by connecting data points in the order they are recorded,
with the order of the data points marked in the plot. This feature can be useful in some
analyses but in this case this feature is distracting. A remedy is to strip the time series
attribute from the x-variables before plotting. (Plot takes the clue of how to do the plot
from the attribute of the x-variable.) To temporarily turn color into a raw data vector,
use the command

as.vector(color)

Now, try the command

plot(as.vector(color), color, ylab='Color Property', 
xlab='Batch',type='o')
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# Exhibit 1.4 on page 4.
plot(y=color,x=zlag(color),ylab='Color Property', 

xlab='Previous Batch Color Property')

The zlag function outputs an ordinary vector; that is, zlag(color) is the lag 1 of
color, but with its time series attribute stripped. 

# Exhibit 1.9 on page 7.
plot(oilfilters,type='l',ylab='Sales')

Plot is a high-level graphics function and, as such, it will replace what is currently in
the graphics window or create a new graphics window if none exists. Recall that the
argument type='l' instructs plot to just draw the line segments connecting the
individual time series points. 

Month=c('J','A','S','O','N','D','J','F','M','A','M','J')

creates a vector named Month that contains 12 elements that represent the 12 months of
the year beginning with July. 

points(oilfilters,pch=Month)

Points is a low-level graphics function that draws on top of an existing graph. Since
oilfilters is a time series, points plots oilfilters against time order, but the
argument pch=Month instructs the points function to plot the data points using the
successive values of the Month vector as plotting symbols. So, the first point plotted is
plotted as a J, the second as an A, and so forth. When the values of Month are used up,
they are recycled; think of Month being replicated as Month, Month, Month,…, to
make up any deficiency. So, the 13th data point is plotted as a J and the 14th as an A.
What letter is used for the 30th data point?

Alternatively, the exhibit can be reproduced by the following commands

plot(oilfilters,type='l',ylab='Sales')
points(y=oilfilters,x=time(oilfilters), 

pch=as.vector(season(oilfilters)))

The time function outputs the epochs when the time series values were collected. The
season function returns the month of the data in oilfilters; season is a smart
function, as it returns the quarter of the data for quarterly data and so forth. The pch
argument expects a vector as its value, but the output of the season function has been
designed to be a factor object; hence the application of the as.vector function to
season(oilfilters) strips its factor attribute. (See more about factor objects
on page 435.)

A good way to appreciate the natural variation in a stochastic process is draw real-
izations from the process and plot them in a time sequence plot. For example, the inde-
pendent and identically normally distributed process is often used as a data generating
mechanism for completely random data; that is, data with no temporal structure. In
other words, such data constitute a random sample from a normal distribution that are
drawn sequentially over time. Simulating data from such a process and viewing their
time sequence plots is a valuable exercise that can train our eyes to differentiate whether
a time series is random or dependent over time, c.f. Exercise 1.3. The R command for
simulating and storing in a variable named y a random sample of size, say n = 48, from
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a standard normal distribution is 
y=rnorm(48)

The data can then be plotted using the command 

plot(y, type='p', ylab='IID Normal Data')

Try the type='o' option in the above command. Which plotting option do you find
better to see the randomness in the data? Notice that executing the command
y=rnorm(48) again will yield a different time series realization of the random pro-
cess. The set.seed command discussed below addresses the issue of how to make
simulations in R “reproducible.”

Data can be simulated from other distributions. For example, the command
rt(n=48,df=5) simulates 48 independent observations from a t-distribution with 5
degrees of freedom. Similarly, rchisq(n=48,df=2) simulates a realization of size
48 from the chi-square distribution with 2 degrees of freedom.

Chapter 2 R Commands

We show some R code to simulate your own random walk with, say, 60 independent
standard normal errors.

# Exhibit 2.1 on page 14.
n=60

This assigns the value of 60 to the object named n.

set.seed(12345)

This initializes the random number generator so that the simulation is reproducible if
needed.

sim.random.walk=ts(cumsum(rnorm(n)),freq=1,start=1)

The expression rnorm(n) generates n independent values from the standard normal
distribution. The function cumsum then computes the vector of cumulative sums of the
normally distributed sample, resulting in a random walk realization. The random walk
realization is then given the attribute of a time series and saved into the object named
sim.random.walk. 

plot(sim.random.walk,type='o',ylab='Another Random Walk')

plots the simulated random walk.

Chapter 3 R Commands

We now move to discuss some of the R commands appearing in Chapter 3. 

# Exhibit 3.1 on page 31.
data(rwalk)

This command loads the time series rwalk, which is a random walk realization. 

model1=lm(rwalk~time(rwalk))
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The function lm fits a linear model (a regression model) with its first argument being a
formula. A formula is an expression including a tilde sign (~), the left-hand side of
which is the response variable and the right-hand side are the covariates or explanatory
variables (separated by plus signs if there are two or more covariates). By default, the
intercept term is included in the model. The intercept can be removed by including the
term ‘‘−1’’ on the right-hand side of the tilde sign. Recall that time(rwalk) yields a
time series of the time epochs at which the random walk was sampled. So the command
lm(rwalk~time(rwalk)) fits a time trend regression model to the rwalk series.
The model fit is saved as the object named model1.

summary(model1)

The function summary prints out a summary of the fitted model passed to it. Hence the
command above prints out the fitted time trend regression model for rwalk.

# Exhibit 3.2 on page 31.
plot(rwalk,type='o',ylab='y')
abline(model1)

The function abline is a low-level graphics function. If a fitted simple regression
model is passed to it, it adds the fitted straight line to an existing graph. Any straight line
of the form y = β0 + β1x can be superimposed on the graph by running the command

abline(a=beta0,b=beta1)

For example, the following command adds a 45 degree line on the current graph. 

abline(a=0,b=1)

Recall the lm function can fit multiple regression models, with the covariates or
explanatory variables specified one by one, on the right side of the tilde sign (~) in the
formula. The covariates must be separated with a plus sign (+). Suppose we want to fit a
quadratic time trend model to the rwalk series. We need to create a new covariate that
contains the square of the time indices. The quadratic variable may be created before
invoking the lm function. Or it may be created on the fly when invoking the lm func-
tion. The latter approach is illustrated here.

model1a=lm(rwalk~time(rwalk)+I(time(rwalk)^2))

Notice that the expression time(rwalk)^2 is enclosed within the I function which
instructs R to create a new variable by executing the command passed into the I func-
tion. The fitted quadratic trend model can be inspected with the summary function. 

> summary(model1a)
Call:
lm(formula = rwalk ~ time(rwalk) + I(time(rwalk)^2))
Residuals:
      Min        1Q    Median        3Q       Max
-2.696232 -0.768018  0.008256  0.853365  2.344685
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -1.4272911  0.4534893  -3.147  0.00262 ** 
time(rwalk)       0.1746746  0.0343028   5.092 4.16e-06 *** 
I(time(rwalk)^2) -0.0006654  0.0005451  -1.221  0.22721    
--- 
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.132 on 57 degrees of freedom
Multiple R-Squared: 0.8167, Adjusted R-squared: 0.8102
F-statistic:   127 on 2 and 57 DF,  p-value: < 2.2e-16

The summary function repeats the function call to the lm function. It then prints
out the five-number numerical summary of the residuals, followed by a table of the
parameter estimates with their standard errors, t-values and p-values. All significant
covariates are marked with asterisks (*); more asterisks means higher significance, that
is, smaller p-value, as explained in the line labeled as Signif. codes. Finally, it outputs
the residual standard error, that is, the noise standard deviation estimate, and the multi-
ple R-squared of the fitted model. Clearly, the quadratic term is not significant so that it
is not needed, as is also obvious from the time plot of the series. 

The reader may wonder why the I function is needed. This is because without the I
function, R interprets the term time(rwalk)+time(rwalk)^2 using the formula
convention (run ?formula to learn more about the formula convention), which results
in fitting the linear trend model! Refit the quadratic trend model but now omit the I
function in the R command, and compare the model fit with those of the linear and qua-
dratic trend models. 

# Exhibit 3.3 on page 32.
data(tempdub)

This loads the tempdub series. You can learn more about the dataset tempdub by run-
ning the command ?tempdub.
month.=season(tempdub)

The expression season(tempdub) outputs the monthly index of tempdub as a
factor, and saves it into the object month.. The first period sign (.) is part of the
name (month.) and is included to make the printout from later commands more clear.

We now digress to explain what a factor is. A factor is a kind of data structure
for handling qualitative (nominal) data that do not have a natural ordering like numbers
do. However, for purposes of summary and graphics, the user may supply the levels
argument to indicate an ordering among the factor values. For example, the following
command creates a factor containing the qualitative variable sex, with the default
ordering using the dictionary order. 

> sex=factor(c('M','F','M','M','F'))
> sex
[1] M F M M F
Levels: F M

We can change the ordering as follows: 

> sex=factor(c('M','F','M','M','F'),levels=c('M','F')) 
> sex
[1] M F M M F
Levels: M F

Note the swap of F and M in the levels. The function table counts the frequencies of
the two sexes.
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> table(sex)
sex M F

3 2

The printout lists the frequencies of the values according to the order supplied in the
level argument. Now, we return to the R scripts in Chapter 3.

model2=lm(tempdub~month.-1)

Recall that month is a factor containing the month of the data. When a formula con-
tains a factor covariate, the function lm replaces the factor variable by a set of indicator
variables corresponding to each distinct level (value) of the factor. Here, month. has
12 distinct levels: Jan, Feb,…, and so forth. So, in place of month., lm creates 12
monthly indicator variables and replaces month. by the 12 indicator variables.
Because these 12 indicator variables are linearly dependent (they add up to a vector of
all ones), the intercept term has to be removed to avoid multicollinearity. The expression
‘‘-1’’ in the formula takes care of this. The fitted model corresponds to fitting a mean
separately for each month. If the expression ‘‘-1’’ is omitted, lm deals with the multi-
collinearity by omitting the first indicator variable; that is, the indicator variable for Jan-
uary will be deleted. In such a fitted model, the intercept represents the overall January
mean and the coefficients for other months are the deviations of their means from the
January mean.

summary(model2)

A summary of the fitted regression model is printed out with this command. Many vari-
ables derived from the fitted model can also be easily obtained. For example, the fitted
values can be printed as

fitted(model2) 

whereas residuals are obtained by using

residuals(model2)

# Exhibit 3.4 on page 33.
model3=lm(tempdub~month.) # intercept is automatically 

included so one month (January) is dropped
summary(model3)

# Exhibit 3.5 on page 35.
har.=harmonic(tempdub,1)

The first pair of harmonic functions (sine and cosine pairs) can be constructed by the
harmonic function, which takes a time series as its first argument and the number of
harmonic pairs as its second argument. Run ?harmonic to learn more about this func-
tion. The output of the harmonic function is a matrix that is saved into an object named
har.. Again, the first period is part of the name and included to make the later print-
outs clearer.

model4=lm(tempdub~har.)
summary(model4)

We now briefly discuss the use of matrices in R. A matrix is a rectangular array of num-
bers. It can be created by the matrix function. Here is an example:
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> M=matrix(1:6,ncol=2)
> M
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6

The matrix function expects a vector as its first argument, and it uses the values in the
supplied vector to fill up a matrix column by column. The column dimension of a matrix
is specified by the ncol argument and the row dimension by the nrow argument. The
expression 1:6 stands for the vector containing the integers from 1 to 6. So the matrix
function creates a matrix consisting of two columns using the six numbers 1, 2, 3, 4, 5,
and 6. Since the row dimension is missing, R assumes that the matrix has six elements
and hence the missing row dimension is set to 2. The dimensions of a matrix can be
extracted using the dim function. 

> dim(M)
[1] 3 2

This displays the row and column dimensions of M as a vector. The function apply
can process a matrix column by column, with each column operated by a supplied func-
tion. For example, the column means of M can be computed as follows:

> apply(M,2,mean)
[1] 2 5

The first argument of the apply function is the matrix on which it processes, and the
second argument is MARGIN, which should be set to 1 for row processing or 2 for col-
umn processing. The third argument is FUN, which takes the user-specified function.
The example above instructs R to process M column by column and apply the mean
function to each column. How would you modify the preceding R command to compute
the row sums of M?

# Exhibit 3.6 on page 35.
plot(ts(fitted(model4),freq=12,start=c(1964,1)), 

ylab='Temperature',type='l', 
ylim=range(c(fitted(model4),tempdub)))

points(tempdub)

The ylim option ensures that the y-axis has a range that includes both the raw data and
the fitted values.

# Exhibit 3.8 on page 43.
plot(y=rstudent(model3),x=as.vector(time(tempdub)), 

xlab='Time', ylab='Standardized Residuals',type='o')

The expression rstudent(model3) returns the (externally) Studentized residuals
from the fitted model. To compute the (internally) standardized residuals, use the com-
mand rstandard(model3).

# Exhibit 3.11 on page 45.
hist(rstudent(model3),xlab='Standardized Residuals')

The function hist draws a histogram of the data passed to it as the first argument. Note
that the default heading of the histogram says that the plot is a histogram of
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rstudent(model3). While the default main label correctly depicts what is plotted,
it is often desirable to have a less technical but more descriptive label; for example, set-
ting the option main='Histogram of the Standardized Residuals'.

# Exhibit 3.12 on page 45.
qqnorm(rstudent(model3))

The expression rstudent(model3) extracts the standardized residuals of model3.
The qqnorm function then plots the Q-Q normal scores plot of the residuals. A refer-
ence straight line can be superimposed on the Q-Q normal score plot by running the
command qqline(rstudent(model3)).

# Exhibit 3.13 on page 47.
acf(rstudent(model3))

The acf function computes the sample autocorrelation function of the time series sup-
plied to the function. The maximum number of lags is determined automatically based
on the sample size. It can, however, be changed to, say, 30 by setting the option
max.lag=30 when calling the function.

The Shapiro-Wilk test and the runs test on the residuals can be carried out respec-
tively by the following commands. 

shapiro.test(rstudent(model3)) 
runs(rstudent(model3))

These commands compute the test statistics as well as their corresponding p-values. 

Chapter 4 R Commands

# Exhibit 4.2 on page 59.
data(ma1.2.s)
plot(ma1.2.s,ylab=expression(Y[t]),type='o')

The software R can display mathematical symbols in a graph. The option
ylab=expression(Y[t]) specifies that the y label is Y with t as its subscript, all in
math font. Typesetting a formula does require some additional work. Read the help
pages for legend (?legend) and run the command demo(mathplot) to learn
more about this topic.

 An MA(1) series with MA coefficient equal to θ1 = −0.9 and of length n = 100 can
be simulated by the following commands.

set.seed(12345) 

This command initializes the seed of the random number generator so that a simulation
can be reproduced if needed. Without this command, the random generator will initial-
ize “randomly,” and there is no way to reproduce the simulation. The argument 12345
can be replaced by other numbers to obtain different random numbers.

y=arima.sim(model=list(ma=-c(-0.9)),n=100)

The arima.sim function simulates a time series from a given ARIMA model passed
into the function as a list that contains the AR and MA parameters as vectors. The simu-
lated model above is an MA(1) model, so there is no AR part in the model list. The soft-



Chapter 5 R Commands 439

ware R uses a plus convention in parameterizing the MA part, so we have to add a minus
sign before the vector of MA values to agree with our parameterization. The sample size
is determined by the value of the argument n. So, the command above instructs R to
simulate a realization of size 100 from an MA(1) model with θ1 = −0.9. 

 We now digress to explain some pertinent facts about list. A list is the most flex-
ible data structure in R. You may think of a list as a cabinet with many drawers (ele-
ments or components), each of which contains data with possibly different data
structures. For example, an element of a list can be another list! The elements of a list
are ordered according to the order they are entered. Also, elements can be named to
facilitate their easy retrieval. A list can be created by the list function with elements
supplied as its arguments. The elements may be passed into the list function in the
form of name = value, delimited by commas. Below is an example of a list contain-
ing three elements named a, b, and c, where a is a three-dimensional vector, b is a
number, and c is a time series.

> list1=list(a=c(1,2,3),b=4,c=ts(c(5,6,7,8), 
start=c(2006,2),frequency=4))

> list1
$a
[1] 1 2 3
$b
[1] 4
$c Qtr1 Qtr2 Qtr3 Qtr4
2006 5 6 7
2007 8 

To retrieve an element of a list, run the command listname$elementname, for
example

> list1$c
 Qtr1 Qtr2 Qtr3 Qtr4
2006 5 6 7
2007 8 

Data of irregular structure can be stored as a list. The output of a function is often a list.
Simply entering the name of a list may result in dazzling output if the printed list is
large. An alternative is to first explore the structure of a list by the function str (str
stands for structure). An example follows.

> str(list1)
List of 3
 $ a: num [1:3] 1 2 3
 $ b: num 4
 $ c: Time-Series [1:4] from 2006 to 2007: 5 6 7 8

This shows that list1 has three elements and describes these elements briefly.

Chapter 5 R Commands

# Exhibit 5.4 on page 91.
plot(diff(log(oil.price)),ylab='Change in Log(Price)', 

type='l')
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The function diff outputs the first difference of the supplied time series. Higher-order
differences can be computed by supplying the differences argument. For example,
the second difference of log(oil.price) can be computed by the command

diff(log(oil.price), differences=2)

A useful convention of R is that the name of an argument in a function can be abbrevi-
ated if it does not result in ambiguity. For example, the previous command can be short-
ened to

diff(log(oil.price),diff=2)

Note that the second argument of the diff function is the lag argument. By default,
lag=1 and the diff function computes regular differences—first or higher differ-
ences. Later, when we deal with seasonal time series data, it will sometimes be desirable
to consider seasonal differences. For example, we may want to subtract this month’s
number from the number of the same month one year ago; that is, the differences are
computed with a lag of 12 months. This can be done by specifying lag=12. As an illus-
tration, computing the seasonal differences of period 12 can be done by issuing the com-
mand diff(tempdub,lag=12). What will be computed by the command
diff(log(oil.price),2)? One of the authors (KSC) committed a serious error,
more than once, when he tried to compute the second regular differences of some time
series by running a similar command with unnamed arguments. Instead of the second
regular differences, the first seasonal differences of lag 2 were actually computed by the
command with unnamed arguments! Imagine his frustrations of many anxious hours, all
because the data analysis from the flawed computations seriously conflicted with expec-
tations based on theory! The moral is that passing unnamed arguments to a function is
risky unless you know the positions of the relevant arguments very well. It is well to
remember that unnamed arguments, if present, should appear together in the beginning
part of the argument list, and there should be no unnamed argument after a named one.
Indeed, mixed arguments (some named and some unnamed in a haphazard order) may
result in erroneous interpretation by R. The order of the arguments in a function can be
quickly checked by running the command args(function.name)  or
?function.name, where function.name should be replaced by the name of the
function you are checking. 

# Exhibit 5.11 on page 102.
library(MASS)

This loads the library MASS. Run the command library(help=MASS) to see the
content of this library.

boxcox(lm(electricity~1))

The function boxcox computes the maximum likelihood estimate of the power trans-
formation on the response variable to make a linear regression model appropriate for the
data. The first argument is a fitted model by the lm function. By default, the boxcox
function produces a plot of the log-likelihood function of the power parameter. The
MLE of the power parameter is the value that maximizes the plotted likelihood curve.
Here the model is that some power transform of electricity is given by the model of a
constant mean plus normally distributed white noise. But we already know that elec-
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tricity is serially correlated, so this method is not entirely correct, as the autocorre-
lation in the series is not accounted for.

 For time series analysis, a more appropriate model is that some power transform of
the time series variable follows an AR model. The function BoxCox.ar implements
this approach. It has two drawbacks in that it is much more computer-intensive and that
other covariates cannot be included in the model in the current version of the function.
The first argument of BoxCox.ar is the name of the time series variable. The AR
order may be supplied by the user through the order argument. If the AR order is
missing, the function estimates the AR order by minimizing the AIC for the log-trans-
formed data. Both boxcox and BoxCox.ar require the response variable to be posi-
tive. 

BoxCox.ar(electricity)

This plots the log-likelihood function of the power parameter for the model that
accounts for autocorrelation in the data. 

Chapter 6 R Commands

# Exhibit 6.9 on page 120.
acf(ma2.s,ci.type='ma',xaxp=c(0,20,10))

The argument ci.type='ma' instructs R to plot the sample ACF with the confidence
band for the kth lag ACF computed based on the assumption of an MA(k − 1) model.
See Equation (6.1.11) on page 112 for details.

# Exhibit 6.11 on page 121.
pacf(ar1.s,xaxp=c(0,20,10))

This calculates and plots the sample PACF function. Run the command ?par to learn
more about the xaxp argument.

# Exhibit 6.17 on page 124.
eacf(arma11.s)

This computes the sample EACF function (extended autocorrelation function) of the
data arma11.s. The maximum AR and MA orders can be set via the ar.max and
ma.max arguments. Their default values are seven and thirteen, respectively. For exam-
ple, eacf(arma11.s,ar.max=10,ma.max=10) computes the EACF with maxi-
mum AR and MA orders of 10. The EACF function prints a table of symbols with X
standing for a significant value and O a nonsignificant value. 

library(uroot)

This loads the uroot library and the following commands illustrate the computation of
the Dickey-Fuller unit-root test.

ar(diff(rwalk))

This command finds the AR order for the differenced series, which is order 8, by the
minimum AIC criterion.
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ADF.test(rwalk,selectlags=list(mode=c(1,2,3,4,5,6,7,8), 
Pmax=8),itsd=c(1,0,0))

This computes the ADF test for the data rwalk. The selectlags argument takes a
list as its value. The mode argument specifies which lags must be included, and if it is
absent, then the Pmax argument sets the maximum lag and the ADF.test function
determines which lags to include in the test using several methods by setting the mode
to signf, aic, or bic. The option signf is the default value for mode, which esti-
mates a subset AR model by retaining only significant lags. The argument itsd
expects a vector; the first two elements are binary, indicating whether to include a con-
stant term (if the first element is 1) or a linear time trend (if the second element is 1);
and the third element zero if there are no more covariates to include in the model. See
the help pages for the ADF.test function to learn more about it. Hence, the R com-
mand instructs ADF.test to carry out the test with the null hypothesis that the model
has a unit root and an intercept term. The alternative is that the model is stationary, so a
small p-value implies stationarity! 

ADF.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,0,0))

In comparison, the preceding command carries out the ADF test with the null hypothe-
sis being that the model has a unit root, an intercept but no other lags, whereas the alter-
native specifies that the model is a stationary AR(1) model with an intercept. If
itsd=c(0,0,0), then the alternative model is a centered stationary AR(1) model,
that is, with zero mean. Such a hypothesis is not relevant unless the data are already
mean-corrected.

# Exhibit 6.22 on page 132.
set.seed(92397)
test=arima.sim(model=list(ar=c(rep(0,11),.8), 

ma=c(rep(0,11),0.7)),n=120)

This simulates a subset ARMA model. Here rep(0,11) stands for a sequence of 11
zeros.

res=armasubsets(y=test,nar=14,nma=14,y.name='test', 
ar.method='ols')

The armasubsets function computes various subset ARMA models, with the maxi-
mum AR and MA orders specified by the nar and nma arguments, both set as 14 in the
example above. The associated AR models are estimated by the default method of ols
(ordinary least squares).

plot(res)

The plot function is a smart function. Seeing that res is the output from the
armasubsets function, it draws a table indicating several of the best subset ARMA
models.

Chapter 7 R Commands

Below is a function that computes the method-of-moments estimator of the MA(1) coef-
ficient of an MA(1) model. It is a simple example of an R function. Simply copy and
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paste it into the R console. Press the enter key to compile the code, and the function
estimate.ma1.mom will be created and then be available for use in your workspace.
This function only exists in the particular workspace where it was created.

estimate.ma1.mom=function(x){r=acf(x,plot=F)$acf[1]; 
if (abs(r)<0.5) return((-1+sqrt(1-4*r^2))/(2*r))
else return(NA)}

Readers uninterested in the specifics of R programming may skip down to the
material on Exhibit 7.1. The syntax of an R function takes the form

function.name = function(argument list){function body}

where function body is a set of R statements (commands). Normally, complete R
commands are separated by line breaks. Alternatively, they may be separated by the
semicolon symbol (;). If an R command is incomplete, R will assume that it is to be
continued on the next line and so forth until R reads a complete command. So the func-
tion above has a single argument called x and contains two commands. The first one is

r=acf(x,plot=F)$acf[1] 

which instructs R to compute the acf of x without plotting the values, extract the first
element of the computed sample acf function (that is, the lag 1 autocorrelation) and then
save it in an object called r. The object r is a local object; it only exists within the
estimate.ma1.mom function environment. The second command is

if (abs(r)<0.5)
return((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

Note the line break after the if clause and the second half of the command. Since the
if clause alone is incomplete, R assumes that it is to be continued on the next line. With
the second line, R finds a complete R command and so concludes the two lines of com-
mands together as a complete command. In other words, R sees the next command as
equivalent to the following one line:

if (abs(r)<0.5) return((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

The function abs computes the absolute value of the argument passed to it, whereas
sqrt is the function that computes the square root of its argument. Now, we are ready
to interpret the second command: if the absolute value of r, the lag 1 autocorrelation of
x, is less than 0.5 in magnitude, the function returns the number

(−1 + sqrt(1 − 4*r^2))/(2*r)

which is the method-of-moments estimator of the MA(1) coefficient ; otherwise the
function returns NA (see Equation (7.1.4) on page 150). The symbol NA is the code
standing for a missing value in R. (NA stands for not available.) In this example, R is
specifically instructed what value to return to the user. However, the default procedure is
that a function returns the value created by the last command in the function body. R
provides a powerful computer language for doing statistics. Please consult the docu-
ments on the R Website to learn more about R programming.

# Exhibit 7.1 on page 152.
data(ma1.2.s)

This loads a simulated MA(1) series.

θ1
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estimate.ma1.mom(ma1.2.s)

This computes the MA(1) coefficient estimate by the method of moments using the
user-created estime.ma1.mom function above!

data(ar1.s)

This loads a simulated AR(1) series from the TSA package.

ar(ar1.s,order.max=1,AIC=F,method='yw')

This computes the AR coefficient estimates for the ar1.s series. The ar function esti-
mates the AR model for the centered data (that is, mean-corrected data), so the intercept
must be zero and not estimated or printed out in the output. The ar function requires the
user to specify the maximum AR order through the order.max argument. The AR
order may be estimated by choosing the order, between 0 and the maximum order,
whose model has the smallest AIC. This option can be specified by setting the AIC
argument to take the true value, that is, AIC=T. Or we can switch off order selection by
specifying AIC=F. In the latter case, the AR order is set to the maximum AR order. The
ar function can estimate the AR model using a number of methods, including solving
the Yule-Walker equations, ordinary least squares, and maximum likelihood estimation
(assuming normally distributed white noise error terms). These correspond to setting the
option method='yw', method='ols', or method='mle', respectively. In par-
ticular, the preceding R command fits an AR(1) model for the ar1.s series by solving
the Yule-Walker equation. 

 We digress briefly to discuss the concept of a logical variable, which can take the
value TRUE or FALSE. These values can be abbreviated as T and F. In binary represen-
tation, T is also represented by 1 and F by 0. R adopts the useful convention that a logi-
cal variable appearing in an arithmetic expression will be automatically converted to 1 if
it is a T and 0 otherwise. 

# Exhibit 7.6, page 165.
data(arma11.s)
arima(arma11.s, order=c(1,0,1),method='CSS')

The arima function estimates an ARIMA(p,d,q) model for the time series passed to it
as the first argument. The ARIMA order is specified by the order argument,
order=c(p,d,q), so the command above fits an ARMA(1,1) model to the data.
Estimation can be carried out by the conditional sum-of-squares method (method=
'CSS') or maximum likelihood (method='ML'). The default estimation method is
maximum likelihood, with initial values determined by the CSS method. The arima
function prints out a summary of the fitted model. The fitted model may also be saved as
an object that can be further manipulated, for example, for model diagnostics. By
default, if d = 0, a stationary ARMA model will be fitted. Also, the fitted model is in the
centered form; that is, an ARMA model fitted to the series minus its sample mean. The
intercept term reported in the output of the arima function is a misnomer, as it is in fact
the mean! However, the mean so estimated generally differs slightly from the sample
mean. 
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# Exhibit 7.10 on page 168.
res=arima(sqrt(hare),order=c(3,0,0))

This saves the fitted AR(3) model in the object named res. The output of the arima
function is a list. Run the command str(res) to find out what is saved in res.
You will find that most of the things in res are not directly useful. Instead, the output of
the arima function has to be processed by other functions for more informed summa-
ries. For example, (raw) residuals from the fitted model can be computed by the
residuals function via the command residuals(res). Fitted values can be
obtained by running fitted(res). Other useful functions for processing a fitted
ARIMA model from the arima function will be discussed below.

The empirical approach of using the bootstrap to do inference is illustrated below.

set.seed(12345)

This initializes the seed of the random number generator so that the simulation study
can be repeated. 

coefm.cond.norm=arima.boot(res,cond.boot=T,is.normal=T, 
B=1000,init=sqrt(hare))

The arima.boot function carries out a bootstrap analysis based on a fitted ARIMA
model. Its first argument is a fitted ARIMA model, that is, the output from the arima
function. Four different bootstrap methods are available: The bootstrap series can be ini-
tialized by a supplied value (cond.boot=T) or not (cond.boot=F), and a nonpara-
metric bootstrap (is.normal=F) or a parametric bootstrap assuming normal
innovations (is.normal=T) can be used. For a conditional bootstrap, the initial val-
ues can be supplied as a vector (the arima.boot function will use the initial values
from the supplied vector). The bootstrap sample size, say 1000, is specified by the
B=1000 option. The function arima.boot outputs a matrix with each row being the
bootstrap estimate of the ARIMA coefficients obtained by maximum likelihood estima-
tion with the bootstrap data. So, if B=1000 and the model is an AR(3), then the output
is a 1000 by 4 matrix where each row consists of the bootstrap AR(1), AR(2), and
AR(3) coefficients plus the mean estimate in that order ( ). 

signif(apply(coefm.cond.norm,2,function(x)
{quantile(x,c(.025,.975),na.rm=T)}),3)

This is a compound R statement. It is equivalent to the two commands

temp=apply(coefm.cond.norm,2,function(x)
{quantile (x,c(.025,.975),na.rm=T)})

signif(temp,3)

except that the temporary variable temp is not created in the original compound state-
ment. Recall that the apply function is a general-purpose function for processing a
matrix. Here the apply function processes the matrix coefm.cond.norm column
by column, with each column supplied to the no-name user-supplied function 

function(x){quantile(x,c(.025,.975),na.rm=T)}

This no-name function has one input, called x, that is processed by the quantile
function. The quantile function takes a vector and computes the sample quantiles
with the corresponding probability specified in the second argument. The third argu-

φ̂1 φ̂2 φ̂3 μ̂, , ,
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ment of the quantile function is specified as na.rm=T (na stands for not available and
rm means remove), which means that any missing values in the input are discarded
before computing the quantiles. This specification is pivotal because by default any
quantile of a dataset with some missing values is defined to be a missing value (NA) in
R. (Some bootstrap series may have convergence problems upon fitting an ARIMA
model and hence the output of the bootstrap function may contain some missing values.)
To return to the interpretation of the command on the right-hand side of temp, it
instructs R to compute the 2.5th and 97.5th percentiles of each bootstrap coefficient esti-
mate. To enable precise calculations, R maintains many significant digits in the numbers
stored in an object. The printed version, however, usually requires fewer significant dig-
its for clarity. This can be done by the signif function. The signif function outputs
the object passed into it as first argument, but only to the number of significant digits
specified in the second argument, which is three in the example. Altogether, the com-
pound R command computes the 95% bootstrap confidence intervals for each AR coef-
ficient. 
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# Exhibit 8.2 on page 177.
data(hare)
m1.hare=arima(sqrt(hare),order=c(3,0,0))
m1.hare 

This prints the fitted AR(3) model for the square-root-transformed hare data. The AR(2)
coefficient estimate ( ) turns out not to be significant. Note that the AR(2) coefficient
is the second element in the coefficient vector, as shown in the printout of the fitted
model. A constrained ARIMA model with some elements fixed at certain values can be
fitted by using the fixed argument in the arima function. The fixed argument
should be a vector of the same length as the coefficient vector and its elements set to NA
for all of the free elements but set to zero (or another fixed value) for all of the con-
strained coefficients. For example, here the AR(2) coefficient is constrained to be zero
( ) and hence fixed=c(NA,0,NA,NA), that is, the AR(1), AR(3), and the
‘‘intercept’’ term are free parameters, whereas the AR(2) is fixed at 0. Remember that
the ‘‘intercept’’ term is last. Below is the command for fitting the constrained AR(3)
model for the hare data. 

m2.hare=arima(sqrt(hare),order=c(3,0,0), 
fixed=c(NA,0,NA,NA)) 

m2.hare

Note that the intercept term is actually the mean in the centered form of the ARMA
model; that is, if y = sqrt(hare) − intercept, then the model is

so the “true” estimated intercept equals 5.6889*(1 − 0.919 + 0.5313) = 3.483, as stated
in the text!

φ̂2

φ2 0=

yt 0.919yt 1– 0.5313yt 3–– et+=
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plot(rstandard(m2.hare), 
ylab='Standardized Residuals',type='b')

The function rstandard computes the standardized residuals; that is, the raw residu-
als normalized by the estimated noise standard deviation. 

abline(h=0)

adds a horizontal line to the plot with zero y-intercept. Use the help in R to find out how
to add a vertical line with x-intercept = 10.

# Exhibit 8.12 on page 185 (prefaced by some commands in 
Exhibit 8.1 on page 176)

data(color)
m1.color=arima(color,order=c(1,0,0))
tsdiag(m1.color,gof=15,omit.initial=F) 

The tsdiag function in the TSA package has been modified from that in the stats
package of R. It performs model diagnostics on a fitted model. The argument gof spec-
ifies the maximum number of lags in the acf function used in the model diagnostics.
Setting the argument omit.initial=T omits the few initial residuals from the anal-
ysis. This option is especially useful for checking seasonal models where the initial
residuals are close to zero by construction and including them may skew the model
diagnostics. In the example, the omit.initial argument is set to be F so that the
diagnostics are done with all residuals. Recall that the Ljung-Box (portmanteau) test sta-
tistic equals the weighted sum of the squared residual autocorrelations from lags 1 to K,
say; see Equation (8.1.12) on page 184. Assuming that the ARIMA orders are correctly
specified, the validity of the approximate chi-square distribution for the Ljung-Box test
statistic requires that K be larger than the lag beyond which the original time series has
negligible autocorrelation. The modified tsdiag function in the TSA package checks
this requirement; consequently the Ljung-Box test is only computed for sufficiently
large K. If the required K is larger than the specified maximum lag, tsdiag will return
an error message. This problem can be solved by increasing the maximum lag asked for.
Use ?tsdiag to learn more about the modified tsdiag function. 
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# Exhibit 9.2 on page 205.
data(tempdub) 

tempdub1=ts(c(tempdub,rep(NA,24)),start=start(tempdub),
freq=frequency(tempdub)) 

This appends two years of missing values to the tempdub data, as we want to forecast
the temperature for two years into the future. The function start extracts the starting
date of a time series. The function frequency extracts the frequency of the time series
passed to it, here being 12. Hence, tempdub1 contains the Dubuque temperature series
augmented by two years of missing data, with the same starting date and frequency of
sampling per unit time interval. 

har.=harmonic(tempdub,1)

This creates the first pair of harmonic functions. 
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m5.tempdub=arima(tempdub,order=c(0,0,0),xreg=har.)

This fits the harmonic regression model using the arima function. The covariates are
passed to the function through the xreg argument. In the example, har. is the covari-
ate and the arima function fits a linear regression model of the response variable on the
covariate, with the errors assumed to follow an ARIMA model. Because the specified
ARIMA orders p = d = q = 0, the presumed error structure is white noise; that is, the
arima function fits an ordinary linear regression model of tempdub on the first pair
of harmonic functions. Note that the result is the same as that from the fit using the lm
function, which can be verified by the following commands:

har.=harmonic(tempdub,1); model4=lm(tempdub~har.)
summary(model4)

The xreg argument expects the covariate input either as a matrix or a
data.frame. A data.frame can be thought of as a matrix made up by binding
together several covariates column by column. It can be created by the data.frame
function with multiple arguments, each of which takes the form covariate.name =
R statement for computing the covariate. If the covariate.name is omitted, the
R statement becomes the covariate name, which may be undesirable for a complex
defining statement. If the R statement is a matrix, its columns are taken as covariates
with the column names taken as the covariate names. Consider the example of augment-
ing the harmonic regression model above by a linear time trend. The augmented model
can be fitted by the command

arima(tempdub,order=c(0,0,0), 
xreg=data.frame(har.,trend=time(tempdub)))

m5.tempdub

This prints the fitted model.
We now illustrate prediction with an example.

newhar.=harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)

This creates the harmonic functions over two years starting from January 1976. Remem-
ber that the tempdub series ends in December 1975. 

plot(m5.tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar., 
col=’red’, type=’b’,ylab='Temperature',xlab='Year')

This computes and plots the forecasts based on the fitted model passed as the first argu-
ment. Here, we specify a forecast for 24 steps ahead through the argument
n.ahead=24. The covariate values over the period of forecast have to be supplied by
the newxreg argument. The newxreg argument should match the xreg argument in
terms of the covariates except that their values are from different periods. The plot may
be drawn with a starting date different from the start date of the time series data by using
the n1 argument. Here, n1=c(1972,1) specifies January 1972 as the start date for
the plot. For nonseasonal data (that is, frequency = 1), n1 should be a scalar. The col
and type arguments refer to the color and style of the plotted lines.

# Exhibit 9.3 on page 206.
data(color)
m1.color=arima(color,order=c(1,0,0))
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plot(m1.color,n.ahead=12,col='red',type='b',xlab='Year', 
ylab='Temperature')

abline(h=coef(m1.color) 
[names(coef(m1.color))=='intercept'])

The final command adds the horizontal line at the estimated mean (intercept). This is a
complex statement. The expression coef(m1.color) extracts the coefficient vector.
The components of the coefficient vector are named. The names of a vector can be
extracted by the names function, so names(coef(m1.color)) returns the vector of
names of the components of the coefficient vector. The == operator compares the two
vectors on its two sides element by element, resulting in a vector consisting of TRUEs
and FALSEs depending on whether the elements are equal or not. (If the vectors under
comparison are of unequal length, R recycles the shorter one repeatedly to match the
longer one.) Hence, the command

[names(coef(m1.color))== 'intercept']

returns a vector with the TRUE value in the position in which the “intercept” component
lies and with all other elements FALSE. Finally, the intercept coefficient estimate is
extracted by the “bracket” operation:

coef(m1.color)[names(coef(m1.color))=='intercept']

The operation within brackets subsets a vector using one of two mechanisms. Let v be a
vector. A subvector of it can be formed by the command v[s], where s is a Boolean
vector, (that is, consisting of TRUEs and FALSEs) that is of the same length as v. The
vector v[s] is then a sub-vector of v consisting of those elements of v for which the
corresponding element in s is TRUE; elements in v whose corresponding element in s
is FALSE are discarded from v[s].

A second way to subset a vector is to construct s so that it contains the position of
the elements to be retained and v[s] will return the desired subvector. A variation of
this approach is to form a subvector by deletion. Unwanted elements are designated by
giving their positions multiplied by -1. An illustration follows.

> v=1:5

This creates a vector containing the first five positive integers.

> v
[1] 1 2 3 4 5

> names(v)
NULL

By default, the components of v are unnamed, so names(v) returns an empty vector
denoted by the object NULL. 

> names(v)=c('A','B','C','D','E')
This is the method of assigning names to the components of a vector. 

> v
A B C D E
1 2 3 4 5 

The command

> names(v)=='C'
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[1] FALSE FALSE TRUE FALSE FALSE
finds which components of names(v) is “C.”
The command

> v[names(v)=='C'] 
C
3

subsets v by Boolean extraction.
The command

> v[3]
C
3

subsets v by supplying the positions of the retained elements.
The command

> v[-3]
A B D E
1 2 4 5

subsets v by supplying the positions of the unwanted elements. 

Chapter 10 R Commands

The theoretical ACF of a stationary ARMA process can be computed by the ARMAacf
function. The ar parameter vector, if present, is to be passed into the function via the ar
argument. Similarly, the ma parameter vector is passed into the function via the ma
argument. The maximum lag may be specified by the lag.max argument. Setting the
pacf argument to TRUE computes the theoretical pacf; otherwise the function com-
putes the theoretical acf. Consider as an example the seasonal MA model:

Note that (1 + 0.5B)(1 + 0.8B12) = (1 + 0.5B + 0.8B12 + 0.4B13) so the ma coefficients
are specified by the option ma=c(0.5,rep(0,10),0.8,0.4). Its theoretical ACF
is displayed on the left side of Exhibit 10.3, which can be done by the following R com-
mands. 

plot(y=ARMAacf(ma=c(0.5,rep(0,10),0.8,0.4),
lag.max=13)[-1],x=1:13,type='h', 

xlab='Lag k',ylab=expression(rho[k]),axes=F,ylim=c(0,0.6)) 
points(y=ARMAacf(ma=c(0.5,rep(0,10),0.8,0.4),

lag.max=13)[-1],x=1:13,pch=20) 
abline(h=0) 
axis(1,at=1:13, 

labels=c(1,NA,3,NA,5,NA,7,NA,9,NA,11,NA,13)) 
axis(2) 
text(x=7,y=.5,labels=expression(list(theta&=&-0.5, 

Theta&=&-0.8))) 

As the labeling of the figure requires Greek alphabets and subscripts, the label
information has to be passed via the expression function. Run the help menu

Yt 1 0.5B+( ) 1 0.8B
12

+( )et=
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?plotmath to learn more about how to do mathematical annotations in R. 

# Exhibit 10.10 on page 237
m1.co2=arima(co2,order=c(0,1,1), 

seasonal=list(order=c(0,1,1),period=12))

The argument seasonal supplies the information on the seasonal part of the seasonal
ARIMA model. It expects a list with the seasonal order supplied in the component
named order and the seasonal period entered via the period component, so the com-
mand above instructs the arima function to fit a seasonal ARIMA (0,1,1) × (0,1,1)12
model to the co2 series. 

m1.co2

This prints a summary of the fitted seasonal ARIMA model.
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# Exhibit 11.5 on page 255.

acf(as.vector(diff(diff(window(log(airmiles), 
end=c(2001,8)),12))),lag.max=48)

The expression window(log(airmiles),end=c(2001,8)) subsets the
log(airmiles) time series by specifying a new end date of August 2001. The sub-
time series is first seasonally differenced with lag 12 and then regularly differenced. The
doubly differenced series is then passed to the acf function for computing the sample
ACF out to 48 lags.

# Exhibit 11.6 on page 255.
air.m1=arimax(log(airmiles),order=c(0,1,1),seasonal= 

list(order=c(0,1,1),period=12), 
xtransf=data.frame(I911=1*(seq(airmiles)==69), 
I911=1*(seq(airmiles)==69)), 
transfer=list(c(0,0),c(1,0)), 
xreg=data.frame(Dec96=1*(seq(airmiles)==12), 
Jan97=1*(seq(airmiles)==13), 
Dec02=1*(seq(airmiles)==84)),method='ML')

The arimax function extends the arima function so that it can handle intervention
analysis and outliers (both AO and IO) in time series. It is assumed that the intervention
affects the mean function of the process, with the deviation from the unperturbed mean
function modeled as the sum of the outputs of an ARMA filter of a number of covari-
ates; the deviation is known as the transfer function. The covariates making up the trans-
fer function are passed to the arimax function via the xtransf argument in the form
of a matrix or a data.frame. For each such covariate, its contribution to the transfer
function takes the form of a dynamic response given by 

The transfer function is the sum of the dynamic responses, in the form of some ARMA
filter, of all covariates in the xtransf argument. The ARMA order of the filter is

a0 a1B … aqBq+ + +( )

1 b1B– b2B2– … bpBp––( )
---------------------------------------------------------------------covariatet
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denoted by the vector c(p,q). If p = q = 0 (that is, c(p,q) = c(0,0)), the contribu-
tion of the covariate is of the form . If c(p,q) = c(1,0), the output
becomes

The ARMA orders for the dynamic components of the transfer function are supplied via
the transf argument as a list containing the vectors of ARMA orders in the order
of the covariates defined in the xtransf argument. Hence, the options:

xtransf=data.frame(I911=1*(seq(airmiles)==69), 
I911=1*(seq(airmiles)==69)), 
transfer=list(c(0,0),c(1,0))

instruct the arimax function to create two identical covariates called I911, which is
an indicator variable, say Pt, that equals 1 in September 2001 and 0 otherwise, and the
transfer function is the sum of two ARMA filters of the 9/11 indicator variable of
orders c(0,0) and c(1,0) respectively. Hence the transfer function equals

This is equivalent to an ARMA(1,1) filter of the form

which can be specified by the following options

xtransf=data.frame(I911=1*(seq(airmiles)==69)), 
transfer=list(c(1,1))

Additive outliers (AO) in a time series can be incorporated as indicator variables
passed to the xreg argument. For example, three potential AOs are included in the
model by the following supplied argument:

xreg=data.frame(Dec96=1*(seq(airmiles)==12), 
Jan97=1*(seq(airmiles)==13), 
Dec02=1*(seq(airmiles)==84))

Note that the first potential outlier occurs in December 1996. The corresponding indica-
tor variable is labeled as Dec96 and is computed by the formula
1*(seq(airmiles)==12), which results in a vector that equals 0 except its twelfth
element, which equals 1, and the vector is of the same length as airmiles. Some spe-
cifics of this “simple” command follow. The function seq creates a vector consisting of
the first n positive integers, where n is the length of the vector passed to the seq func-
tion. The expression seq(airmiles)==12 creates a vector of the same length as
airmiles, and its elements are all FALSE except that the twelfth element is TRUE.
Then 1*(seq(airmiles)==12) is an arithmetic expression for which R automati-
cally converts any imbedded Boolean vector (seq(airmiles)==12) to a binary
vector. Recall that the TRUE values are converted to 1s and the FALSE values to 0s.

a0covariatet

a0

1 b1B–( )
-----------------------covariatet a0 covariatet b1covariatet 1– b1

2covariatet 2–
…+ + +( )=

ω0Pt

ω1

1 ω2B–( )
------------------------Pt+

ω0 ω1+( ) ω0ω2B–{ }
1 ω2B–( )

-------------------------------------------------------Pt
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Multiplying by 1 does not alter the converted binary vector. Indeed, multiplication is
employed to trigger the conversion from the Boolean values to binary values. 

For this example, the unperturbed process is assumed to be an IMA(1,1) process, as
is evident from the supplied argument order=c(0,1,1). In general, a seasonal
ARIMA unperturbed process is specified in the same way that it is specified for the
arima function. 

air.m1

This prints out the fitted intervention model, as displayed below. 

> air.m1
Call: arimax(x=log(airmiles),order=c(0,1,1),seasonal= 

list(order=c(0,1,1),period=12),xreg=data.frame(Dec96= 
1*(seq(airmiles)==12),Jan97=1*(seq(airmiles)==13), 
Dec02=1*(seq(airmiles)==84)),method='ML',     
xtransf=data.frame(I911=1*(seq(airmiles)==69),I911=1* 
(seq(airmiles)==69)),transfer=list(c(0,0),c(1,0)))

Coefficients:
ma1 sma1 Dec96 Jan97 Dec02 I911-MA0 I911.1-AR1 I911.1-MA0

-0.3825 -0.6499 0.0989 -0.0690 0.0810 -0.0949 0.8139 -0.2715
s.e. 0.0926 0.1189 0.0228 0.0218 0.0202 0.0462 0.0978 0.0439
sigma^2 estimated as 0.000672: log likelihood=219.99, aic=-423.98

Note that the parameter in the transfer-function component defined by the first instance
of the indicator variable I911 is labeled as I911-MA0; that is, the MA(0) coefficient.
The transfer-function components defined by the second instance of the indicator vari-
able I911 are labeled as I911.1-AR1 and I911.1-MA0. These are the AR(1) and
MA(0) coefficient estimates.

We can also try the equivalent parameterization of specifying an ARMA(1,1) filter
on the 9/11 indicator variable.

> air.m1a=arimax(log(airmiles),order=c(0,1,1), 
seasonal=list(order=c(0,1,1),period=12), 
xtransf=data.frame(I911=1*(seq(airmiles)==69)), 
transfer=list(c(1,1)), 
xreg=data.frame(Dec96=1*(seq(airmiles)==12), 
Jan97=1*(seq(airmiles)==13), 
Dec02=1*(seq(airmiles)==84)),method='ML')

> air.m1a
Call: arimax(x=log(airmiles),order=c(0,1,1),seasonal= 

list(order=c(0,1,1),period=12),xreg=data.frame(Dec96=1 
*(seq(airmiles)==12),Jan97=1*(seq(airmiles)==13),Dec02= 
1*(seq(airmiles)==84)),method='ML',xtransf= 
data.frame(I911=1*(seq(airmiles)==69)),transfer= 
list(c(1,1)))

Coefficients:
ma1 sma1 Dec96 Jan97 Dec02 I911-AR1 I911-MA0 I911-MA1

-0.3601 -0.6130 0.0949 -0.0840 0.0802 0.8094 -0.3660 0.0741
s.e. 0.0926 0.1261 0.0222 0.0229 0.0194 0.0924 0.0233 0.0424
sigma^2 estimated as 0.000648: log likelihood=221.76, aic=-427.52
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Note that the parameter estimates of this model are similar to those of the previous
model but this model has a better fit, which may happen as the optimization is done
numerically. 

# Exhibit 11.8 on page 256.
Nine11p=1*(seq(airmiles)==69)

This defines the 9/11 indicator variable.

plot(ts(Nine11p*(-0.0949)+ filter(Nine11p,filter=.8139, 
method='recursive',side=1)*(-0.2715), 
frequency=12,start=1996),type='h',ylab='9/11 Effects')

The command

Nine11p*(-0.0949)+filter(Nine11p,filter=.8139, 
method='recursive',side=1)*(-0.2715)

computes the estimated transfer function. Note that the command

filter(Nine11p,filter=.8139,method=’recursive’,side=1)

computes (1-0.8139*B)Nine11p. The function filter performs an MA or AR
filtering on the input sequence passed to it as the first argument. Suppose the input is a
vector x = c(x1,x2,…,xn). Then the output y = c(y1,y2,…,yn) defined by the MA filter

can be computed by the command

filter(x,filter=c(c0,c1,...,cq),side=1).

The argument side=1 specifies that the MA operator works on current and past values
when computing an output value. To compute y1, the value of x0 is needed. Since the
latter is not observed, the filter sets it to NA, and hence y1 is also NA. In this case, y2,
y3, and so forth can be computed. For an AR filtering with the output defined recur-
sively by the equation

the R command is

filter(x,filter=c(c1,c2,...,cp),method='recursive', 
side=1)

Note that, unlike the case of the MA filter, the filter vector starts with c1 and there is no
c0 in the equation. The argument method='recursive' signifies an AR type of fil-
tering. For the AR filter, the initial values cannot be set to NA, lest all output values be
NA! The default initial values are zeros although other initial values may be specified via
the init argument.

abline(h=0)

adds a horizontal line with zero y-intercept.

# Exhibit 11.9 on page 259.
set.seed(12345)
y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100)

yt c0xt c1xt 1–
… cqxt q–+ + +=

yt xt c1yt 1– … cpyt p–+ + +=
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This simulates an ARMA(1,1) series of sample size 100. To remove transient effects of
the initial values, a burn-in of size 158 is specified. A large burn-in of the order of hun-
dreds should generally ensure that the simulated process is approximately stationary.
The number 158 is chosen for no particular good reason.

y[10]

This prints out the tenth simulated value.

y[10]=10

This alters the tenth value to be 10; that is, it becomes an additive outlier, mimicking the
effect of a clerical recording mistake, for example! 

y=ts(y,freq=1,start=1); plot(y,type=’o’)
acf(y)
pacf(y)
eacf(y)

This exploratory analysis suggests an AR(1) model.

m1=arima(y,order=c(1,0,0)); m1; detectAO(m1)

This detects the presence of any additive outliers (AO) in the fitted AR(1) model. The
test requires an estimate of the standard deviation of the error (innovation) term, which
by default is estimated by a robust estimation scheme, resulting in a more powerful test.
The robust estimation scheme can be switched off by the argument robust=F, as illus-
trated in the command below.

detectAO(m1, robust=F)

This verifies that a nonrobust procedure is less powerful. 

detectIO(m1)

This detects the presence of any innovative outliers (IO) in the fitted AR(1) model. As
an AO is found in the tenth case, it is incorporated as an indicator covariate in the fol-
lowing model. 

m2=arima(y,order=c(1,0,0),xreg=data.frame(AO=seq(y)==10))
m2

# Exhibit 11.10 on page 260
data(co2)
m1.co2=arima(co2,order=c(0,1,1),seasonal=list 

(order=c(0,1,1),period=12))
m1.co2
detectAO(m1.co2)
detectIO(m1.co2)

As an IO is found in the 57th data case, it is incorporated in the model.

m4.co2=arimax(co2,order=c(0,1,1), 
seasonal=list(order=c(0,1,1),period=12),io=c(57))

The epochs of IOs are passed to the arimax function via the io argument, which
expects a list containing the positions of the IOs either as the time index of the IO or
as a vector in the form of c(year,month) that gives the year and month of the IO for
seasonal data; the latter format also works similarly for seasonal data of other types. For
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a single IO, it is not necessary to enclose the single vector of index in a list before pass-
ing it to the io argument. 

# Exhibit 11.11 on page 262.
set.seed(12345)
X=rnorm(105)
Y=zlag(X,2)+.5*rnorm(105)

The command zlag(X,2) computes the second lag of X.

X=ts(X[-(1:5)],start=1,freq=1)

This omits the first five values of X and converts the remaining values to form a time
series.

Y=ts(Y[-(1:5)],start=1,freq=1)
ccf(X,Y,ylab='CCF')

This computes the cross-correlation function of X and Y. The ylab argument is sup-
plied in lieu of the default y-label of the ccf function that is “ACF”. 

# Exhibit 11.14 on page 264.
data(milk)
data(electricity)
milk.electricity=ts.intersect(milk,log(electricity))

The ts.intersect function merges several time series into a matrix (panel) of time
series over the time frame where each series has data. The object milk.electric-
ity is a matrix of two time series, the first column of which is the milk series and the
second the log of electricity, over the time period when these two series overlap.

plot(milk.electricity,yax.flip=T) 

The option yax.flip=T flips the label for the y-axis for the series alternately so as to
make the labeling clearer.

# Exhibit 11.15 on page 265.
ccf(milk.electricity[,1],milk.electricity[,2],

main='milk & electricity',ylab='CCF')

The expression milk.electricity[,1]  extracts the milk series and
milk.electricity[,2] the log electricity series.

The as.vector function strips the time series attribute from the time series. This
is done to nullify the default way that the ccf function plots the cross-correlations. You
may want to repeat the command without the as.vector function to see the default
labels of the lags according to the period of the data.

ccf((milk.electricity[,1]),(milk.electricity[,2]), 
main='milk & electricity',ylab='CCF')

The bracket operator extracts a submatrix from a matrix, say M, in the form of
M[v1,v2], where v1 indicates which rows are kept and v2 indicates which columns
are retained. Consequently, the submatrix M[v1,v2] contains all elements of M in the
intersection of the retained rows and columns. If v1 (v2) is missing, then all rows (col-
umns) are retained. Hence, M[,1] is simply the submatrix consisting of the first col-
umn of M. However, R adopts the convention that a submatrix with a single row or
column is “demoted” to a vector; that is, it loses one dimension. This convention makes
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sense in most cases. However, if you do matrix algebra in R, this convention may result
in strange error messages! To prevent automatic dimension reduction, use
M[v1,v2,drop=F]. Instead of specifying which rows or columns are to be retained
in the submatrix, you can specify which rows or columns are to be deleted by specifying
the negative of their positions. Or v1 (v2) can be specified as a Boolean vector, where
the positions to be retained (eliminated) are denoted by TRUE (FALSE).

# Exhibit 11.16 on page 267.
me.dif=ts.intersect(diff(diff(milk,12)), 

diff(diff(log(electricity),12)))
prewhiten(as.vector(me.dif[,1]),as.vector(me.dif[,2]), 

ylab='CCF')

The prewhiten function expects two time series input via the x and y arguments.
Both series will be filtered according to an ARIMA model. The ARIMA model can be
supplied via the x.model argument and should be the output of the arima function. If
no ARIMA model is supplied, an AR model will be fitted to the x series, with the AR
order selected by minimizing the AIC. The prewhiten function computes and plots
the cross-correlation function (CCF) of the residuals of the x series and those of the y
series from the same (supplied or fitted) model. 

Chapter 12 R Commands

Below, we show how to implement the Jarque-Bera test for normality in two different
ways. First, we show the direct approach.

skewness(r.cref)

This computes the skewness of the r.cref series. 

kurtosis(r.cref)

This computes the kurtosis of the data.

length(r.cref)*skewness(r.cref)^2/6

The function length returns the length of the vector (time series) passed into it, so the
expression above computes the first part of the Jarque-Bera statistic. 

length(r.cref)*kurtosis(r.cref)^2/24

computes the second half of the Jarque-Bera statistic.

JB=length(r.cref)*(skewness(r.cref)^2/6 + 
kurtosis(r.cref)^2/24)

The object JB then contains the Jarque-Bera statistic and the command JB prints out the
statistic. The command 1-pchisq(JB,df=2) computes the p-value of the
Jarque-Bera test for normality. The function pchisq computes the cumulative proba-
bility of a chi-square distribution being less than or equal to the value in the first argu-
ment. The df argument of the pchisq function specifies the degrees of freedom for
the chi-square distribution. Because the p-value equals the right tail area, it equals 1
minus the cumulative probability. Besides pchisq, other functions associated with the
chi-square distribution include qchisq, which computes quantiles; dchisq, which
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computes the probability density; and rchisq, which simulates realizations from the
chi-square distributions. Use Help in R to learn more about these functions. For other
probability distributions, similar functions are available. Associated with the normal
distributions are rnorm, pnorm, dnorm, and qnorm. Check out the usages of the rel-
evant functions for the binomial (binom), Poisson, and other distributions.

library(tseries)

This loads the tseries library, which contains a number of functions needed for the
analysis reported in this chapter. Run library(help=tseries) for more informa-
tion about the tseries package.

jarque.bera.test(r.cref)

This carries out the Jargue-Bera test for normality with the time series r.cref.

# Exhibit 12.9 on page 283.
McLeod.Li.test(y=r.cref)

This performs the McLeod-Li test for presence of ARCH in the daily CREF returns. The
first two arguments of the function are object and y, respectively. For the test with
raw data, the time series is supplied to the function via the y argument. Then, the func-
tion computes the Box-Ljung statistics with the autocorrelations of the squared data to
detect for conditional heteroscedascity. The test is carried out with the first m autocorre-
lations of the squared data, with m ranging from 1 to the maximum lag specified by the
gof.lag argument. If the gof.lag argument is missing, the default is set to
nlog10(n) where n is  the sample size.

The McLeod-Li test can also be applied to residuals from an ARMA model fitted to
the data. For example, the US dollar/Hong Kong dollar exchange rate data was found to
admit an AR(1) + outlier model.  The  need for incorporating ARCH in the model for
the exchange rate data can be tested by the command

McLeod.Li.test(arima(hkrate,order=c(1,0,0), 
xreg=data.frame(outlier1)))

Note that object is the first argument so in the above command, the fitted AR(1) + out-
lier model is passed into the function. The function then computes the test statistics
based on the squared residuals from the fitted AR(1) + outlier model. If the object argu-
ment is supplied explicitly or implicitly, the y argument is ignored by the function even
if it is supplied. Remember that to apply the test to raw data, the y argument must be
supplied and the object argument suppressed.

# Exhibit 12.11 on page 286.
set.seed(1235678)
garch01.sim=garch.sim(alpha=c(.01,.9),n=500)

The garch.sim function simulates a GARCH process, with the ARCH coefficients
supplied via the alpha argument and the GARCH coefficients via the beta argument.
The sample size is passed into the function via the n argument. In the example above,
alpha=c(.01,.9) specifies that the constant term is 0.01 and the ARCH(1) coeffi-
cient equals 0.9. So, garch01.sim saves a realization from an ARCH(1) process.

# Exhibit 12.25 on page 300.
m1=garch(x=r.cref,order=c(1,1))
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This fits a GARCH(1,1) model with the r.cref series. The garch function estimates
a GARCH model by maximum likelihood. The time series is supplied into the function
by the x argument and the GARCH order by the order argument. The order takes
the form c(p,q) where p is the GARCH order and q the ARCH order. 

summary(m1)

This summarizes the fitted GARCH(1,1) model. Ignore the Box-Ljung test results
reported in the summary, as the generalized portmanteau tests should be used; see the
book. 

# Exhibit 12.29 on page 305.
gBox(m1,method='squared')

The gBox function computes the generalized portmanteau test for checking whether or
not there is any residual heteroscedasticity in the residuals of a fitted GARCH model. It
requires supplying the fitted GARCH model from the garch function through the first
argument (the model argument, the first argument of the function). By default, the tests
are carried out with the squared residuals from the fitted GARCH model. To inspect
absolute residuals, use the option method='absolute'. By default, the test is car-
ried out for the ACF for lags from 1 to, say, K, where K runs from 1 to 20. The collection
of K’s can be specified by the lags argument. For example, to carry out the test for K
ranging from 1 to 30, supply the option lags=1:30.

gBox(m1,lags=20,plot=F,x=r.cref, method='squared')$pvalue

prints out the p-values of the generalized portmanteau test with the squared residuals
and K = 20; that is, it tests any residual heteroscedasticity based on the first 20 lags of
residual ACF of the squared residuals from the fitted GARCH model. Plotting is
switched off by the plot=F option. The gBox function returns a list, an element of
which is named pvalue and contains the p-values of the test for each K. Thus, the
command prints out the p-value for the test with K = 20.

# Exhibit 12.30 on page 306.
acf(abs(residuals(m1)),na.action=na.omit)

As the initial residuals from a fitted GARCH model may be missing, it is essential to
instruct the ACF to omit all missing values through the argument na.action=
na.omit (the preferred action when encountering a missing value is to omit it). If this
argument is omitted, the acf function uses all data and will return missing values if
there are any missing data.

Overfitting the GARCH(1,2) model to the CREF returns can be carried out by the
following command

m2=garch(x=r.cref,order=c(1,2))
summary(m2,diagnostics=F) 

The summary is based on the summary.garch function in the tseries package.
Note that the p-values of the Ljung-Box test from the summary are invalid; the general-
ized portmanteau tests should be used instead. Hence, the diagnostics are turned off.

AIC(m2)

This computes the AIC of the fitted GARCH model m1.
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# Exhibit 12.31 on page 306.
gBox(m1,x=r.cref,method='absolute')

This carries out the generalized portmanteau test based on the absolute residuals.

shapiro.test(na.omit(residuals(m1)))

This computes the Shapiro-Wilk test for normality with the residuals from the fitted
model m1. The function na.omit strips all missing values from the residuals. Thus,
the test is carried out with the nonmissing residuals. Without preprocessing the residuals
by the na.omit function, the test may return a missing value if some of the residuals
are missing!

# Exhibit 12.32 on page 307.
plot((fitted(m1)[,1])^2,type='l',

ylab='conditional variance',xlab='t')

The fitted function is a smart function that processes differently depending on the
fitted model passed to it as the first argument. If the fitted model is some output from the
garch function, the default output from the fitted function is a two-column matrix
whose first column contains the one-step-ahead conditional standard deviations. Hence,
their squares are the conditional variances. So (fitted(m1)[,1])^2 computes the
time series of estimated one-step-ahead conditional variances based on the model m1.

Chapter 13 R Commands

# Exhibit 13.3 on page 323.

The periodogram of a time series can be computed and plotted by the function peri-
odogram into which the data are passed as its first argument.

sp=periodogram(y); abline(h=0); 
axis(1,at=c(0.04167,.14583))

The function periodogram has several useful arguments. Setting log='yes' tells
R to plot on a log scale, whereas log='no' (the default) says to plot on a linear scale.
Other arguments for the plot function may be passed into the function to make better
graphs. The function axis draws an axis with the first argument specifying the side on
which the axis is drawn. The sides are labeled from 1 to 4 starting from the bottom in a
clockwise direction. The vector of locations of the tick marks can be specified by the at
argument. The command above instructs R to draw an (additional) axis on the bottom of
the figure with tick marks placed at 0.04167 and 0.14583.

# Exhibit 13.9 on page 333.
theta=.9 # Reset theta for other MA(1) plots
ARMAspec(model=list(ma=-theta))

The function ARMAspec calculates and plots the theoretical spectral density function of
the ARMA model supplied to the function as the first argument. Recall that R uses the
plus convention in the MA specification, so the minus sign is added to theta. The format
of the model is the same as that for the arima function.
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# Exhibit 14.2 on page 353.

The spec function can estimate the spectral density function by locally averaging the
periodogram via some suitable kernel function. The function spec has several useful
arguments. Setting log='yes' tells R to plot on a log scale whereas log='no' says
to plot on a linear scale. Data may be detrended (fitting a linear time trend) by setting
detrend=T, and tapering may be enforced by setting taper to some fraction between 0
and 0.5. The default options are: taper=0 and detrend=F.

k=kernel('daniell',m=15)

Here, the object k contains the Daniell kernel function with halfwidth 15. Use Help in R
to learn more about the kernel function. 

sp=spec(y,kernel=k,log='no',sub='', 
xlab='Frequency',ylab='Smoothed Sample Spectral Density')

Specifying the kernel to be the Daniell kernel function instructs R to compute and plot
the spectral density estimate, where the estimate at a certain frequency is obtained by
averaging the current (raw) periodogram value, the neighboring 15 periodogram values
on its left, and another 15 periodogram values on its right. More or less local averaging
can be specified through the m argument in the kernel function.

lines(sp$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
plot=F)$spec,lty='dotted')

This adds the theoretical spectral density function.

# Exhibits 14.11 and 14.12, page 364.
# Spectral analysis of simulated series
set.seed(271435)
n=100
phi1=1.5; phi2=-.75 # Reset parameter values to obtain 

Exhibits 14.13 & 14.14
y=arima.sim(model=list(ar=c(phi1,phi2)),n=n)

This simulates an AR(2) time series of length 100.

sp1=spec(y,spans=3,sub='',lty='dotted', xlab='Frequency', 
ylab='Log(Estimated Spectral Density)')

This estimates the special density function using the modified Daniell kernel (the
default kernel when the kernel argument is missing and the spans argument is sup-
plied). The spans argument supplies the width of the kernel function; that is, it is twice
the m argument in the kernel function plus 1. Here, spans=3 specifies local averaging
of three consecutive periodogram values. Note that local averaging may be repeated by
passing a vector as the value of spans. For example, setting spans=c(3,5) per-
forms local averaging twice. The estimated function obtained by local averaging with
spans=3 is then averaged again locally with spans=5. Repeated averaging with a
modified Daniell (rectangular) kernel is similar to averaging using a bell-shaped kernel
due to the Central Limit effect.
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sp2=spec(y,spans=9,plot=F)

This computes the spectrum estimate using a wider window encompassing nine peri-
odogram values without plotting via the plot=F argument. The output of the spec
function is saved into an object named sp2.

sp3=spec(y,spans=15,plot=F)

This uses an even wider window. How many periodogram values are included in each
local averaging?

lines(sp2$freq,sp2$spec,lty='dashed')

This plots the smoother spectrum estimate (spans=9) as a dashed line.

lines(sp3$freq,sp3$spec,lty='dotdash')

This plots the smoothest spectrum estimate (spans=15) as a dotdash line.

f=seq(0.001,.5,by=.001)

This creates an arithmetic sequence starting from 0.001 and ending at 0.5, with incre-
ments 0.001, which is then saved into the object f.

lines(f,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 
plot=F)$spec,lty='solid')

This plots the theoretical spectral density function for the specified ARMA model as
connected line segments on top of the estimated spectral density plot.

# Exhibit 14.12 on page 365.
sp4=spec(y,method='ar',lty='dotted', xlab='Frequency', 

ylab='Log(Estimated AR Spectral Density)')

This estimates the spectral density function using the theoretical spectral density func-
tion of an AR model fitted to the data by minimizing the AIC. 

f=seq(0.001,.5,by=.001)
lines(f,ARMAspec(model=list(ar=c(phi1,phi2)), 

freq=f,plot=F)$spec,lty='solid')

This plots the theoretical spectral density function.

sp4$method

This displays the order of the AR model selected.

 Chapter 15 R Commands

# Exhibit 15.1 on page 386.
set.seed(2534567)
par(mfrow=c(3,2))
y=arima.sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))

This simulates an ARMA(2,1) series of sample size 61.

lagplot(y)

This plots the lagged regression plots, where the time series is plotted against its lags
and a smooth curve is superimposed on each scatter diagram. The smooth curves are
obtained by local linear fits to the data. By increasing the value specified in the nn argu-
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ment (default nn=0.7), the local fitting scheme uses more local data, resulting in a
smoother fit that is likely to be more biased but less variable due to more smoothing. On
the contrary, decreasing the value in the nn argument leads to a rougher fit that is less
biased but more variable due to less smoothing. The smooth curve in the scatter diagram
of the time series response versus its lag j estimates the conditional mean response given
its lag j as a function of the value of the lag j of the response. By default, lagplot
plots the lagged regression plot for lags 1 to 6. More lags can be computed via the
lag.max argument. For instance, lag.max=12 computes the lagged regression plots
for lags 1 through 12. Note that the lagplot function requires the installation of the
locfit package of R. 

# Exhibit 15.2 on page 387.
data(veilleux)

The dataset veilleux is a matrix consisting of two time series. Its first column is the
series of Didinium abundance and the second column the series of Paramecium abun-
dance, each counted every 12 hours. The basic time unit is days, so these are series of
frequency 2, as they are sampled twice per day. 

predator=veilleux[,1]

This defines the predator series as the abundance series of Didinium.

plot(log(predator),lty=2,type='b',xlab='Day', 
ylab='Log(predator)')

This plots the entire log-transformed predator series as a dashed line. 

predator.eq=window(predator,start=c(7,1))

This subsets the “stationary” part of the predator series that appears to begin on the sev-
enth day of the experiment. Subsequent analyses of the predator series reported in the
text were done with this log-transformed stationary subseries.

lines(log(predator.eq))

This draws the stationary part as a solid line.

index1=zlag(log(predator.eq),3)<=4.661

The command zlag(log(predator.eq),3) returns the lag 3 of the (log-trans-
formed) predator series. The expression zlag(log(predator.eq),3)<=4.661
computes a Boolean vector whose elements are TRUE if and only if their corresponding
element of the lag 3 of the predator series is less than or equal to 4.661. The Boolean
vector is saved in an object named index1. Other comparison operators, including >=,
>, <, and ==, can be used to compare the vectors on the two sides of the comparison
operator. In the example above, the left-hand side of <= is a vector, but its right-hand
side is a scalar! The discrepancy is resolved by the recycling rule, that R replicates the
shorter vector repeatedly to match its longer part. Note that the equality operator is
denoted by the double equal sign ==, as the single equal sign represents the assignment
operator!
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points(y=log(predator.eq)[index1],(time(predator.eq)) 
[index1],pch=19)

This draws as solid circles (pch=19) those data points whose lag 3 of the predator
abundance is less than or equal to 4.661. Run the command ?points to learn other
styles for plotting data points. 

# Tests for nonlinearity, page 390.
Keenan.test(sqrt(spots))

This carries out Keenan’s test for linearity. The working order of the AR process under
the null hypothesis of linearity can be supplied via the order argument. For example,
order=2 sets the working AR order to 2. If the order argument is missing, the order is
automatically determined by minimizing the AIC via the ar function. The ar function
by default estimates the models by solving the Yule-Walker equations. But other estima-
tion methods may be used by including the method argument when calling the
Keenan.test function; for example, method='mle' specifies using maximum
likelihood in the ar function.

Tsay.test(sqrt(spots)), page 390.

This implements Tsay’s test for linearity; see Tsay (1986). The design of the
Tsay.test function and its arguments are similar to those of the Keenan.test
function. 

# Exhibit 15.6 on page 400.
y=qar.sim(n=100,const=0.0,phi0=3.97, 

phi1=-3.97,sigma=0,init=.377)

The function qar.sim simulates a time series realization from a first-order quadratic
AR model where phi0 is the coefficient of the lag 1 and phi1 is that of the square of
lag 1. The default intercept is zero, otherwise it can be set by the const argument. The
innovation standard deviation is passed into the function via the sigma argument. Here,
sigma=1 sets the standard deviation to be 1. The argument n=15 sets the sample size
to 15. Finally, the argument init=.377 sets the initial value to be 0.377. The default
initial value is 0.

plot(x=1:100,y=y,type='l',ylab=expression(Y[t]),xlab='t')

The output of the qar.sim function is a vector. To draw the time sequence plot, both
the x-variable and the y-variable have to be specified.

# Exhibit 15.8 on page 411.
set.seed(1234579)
y=tar.sim(n=100,Phi1=c(0,0.5),Phi2=c(0,-1.8),p=1,d=1, 

sigma1=1,thd=-1,sigma2=2)$y

The function tar.sim simulates time series realizations from a two-regime TAR
model. The order of the model is specified by the p argument, so p=1 specifies a
first-order model. The delay is passed into the function by the d argument, so d = 1
specifies the delay to be 1. The AR coefficient vector for the lower (upper) regime, with
the intercept being the first component, is supplied via the Phi1 (Phi2) argument. The
thd=-1 argument imposes the threshold parameter of −1. The innovation standard
deviations for the lower and upper regimens are specified via the sigma1 and sigma2



Chapter 15 R Commands 465

arguments, respectively. The simulated TAR model in the example is conditionally het-
eroscedastic, as the innovation standard deviation for the upper regime is twice that for
the lower regime. The sample size is set to 100 by the n=100 argument.

The likelihood ratio test for threshold nonlinearity, assuming normally distributed
innovations, can be carried out by the tlrt function, with which the data enter into the
function as the first argument. Other required information includes the order and
delay arguments. Also, the threshold parameter must be searched over a finite interval
from the a times 100 percentile to the b times 100 percentile of the data. Often, data
have to be transformed before testing for nonlinearity, which can be specified by supply-
ing the transformed data or supplying the raw data with the transform argument set to
one of the available options: 'no' (means no transformation, the default), 'log',
'log10', or 'sqrt'. For example, the following command does the likelihood ratio test
of the null hypothesis that the square root transformation of relative sunspot data is an
AR(5) process versus the alternative that it follows a threshold model with delay 1,
order 5, and with the threshold parameter searched from the first to the third quartile of
the (transformed) data.

tlrt(sqrt(spots),p=5,d=1,a=0.25,b=0.75)

The tlrt function outputs a list containing the test statistic and its p-value. In practice,
the true delay of the threshold model is unknown, although it is likely to be between 1
and the order of the model. (The delay may be specified to some value greater than the
order if this is deemed appropriate.) The command above can be replicated a number of
times for each possible delay value. A more elegant way is to use a for loop as fol-
lows.

# Tests for threshold nonlinearity, page 400.
pvaluem=NULL

This defines an empty object named pvaluem. 

for (d in 1:5) 
{res=tlrt(sqrt(spots),p=5,d=d,a=0.25,b=0.75); pvaluem= 
cbind(pvaluem,c(d,res$test.statistic,res$p.value))}

The statements within the curly brackets are repeated for each value the variable d takes
sequentially from the vector 1:5, which contains the first five positive integers. Thus, d
is first set to 1, and the likelihood ratio test for threshold nonlinearity is carried out, with
its output stored in an object named res. The command c(d,res$test.statis-
tic,res$p.value) creates a vector containing the value 1, the likelihood ratio test
statistic, and its p-value. The vector so created is then augmented to the right-hand side
of pvaluem to form a matrix. So, after the first loop, pvaluem is a matrix consisting
of the test results for d=1. Then the loop sets d to the second value, namely 2; carries
out the threshold likelihood ratio test for d=2; augments the test results for d=2 to the
right-hand side of pvaluem; and so forth until the loop exhausts all possible values for
d and n and then R exits from the loop.   

rownames(pvaluem)=c('d','test statistic','p-value')

This labels the rows of the pvaluem matrix, with the first row labeled as “d”, the sec-
ond “test statistic”, and the third row “p-value”.
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round(pvaluem,3)

This prints out the matrix (table) of test results, with the numbers rounded to three deci-
mal places. Note that the computational efficiency of the R code above can be improved
by declaring pvaluem as a matrix with appropriate dimension (for example, pval-
uem= matrix('NA',nrow=3,ncol=5)) in which the test results are saved. 

# Exhibit 15.12 on page 405.
predator.tar.1=tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1, 

b=.9,print=T)

This fits a threshold model with the (log-transformed) predator.eq series with max-
imum AR order to be 4 for both lower and upper regimes, d=3, and the threshold
parameter searched from the tenth to the ninetieth percentiles. The fitted model is
printed out if the print argument is set to T. By default, the function uses the MAIC
(minimum AIC) method for estimation, with the AR orders estimated as well. Another
method of estimation is conditional least squares, which can be specified by the
method='CLS', as illustrated in the next command.

In the command below, we repeat the estimation but using the CLS method. Note
that the CLS method does not estimate the AR orders of the two regimes. Instead, the
AR orders are set as the maximum orders specified through the p1 and p2 arguments!
That is why the values of p1 and p2 are set differently from the previous command and
in fact set as the orders estimated from the model using the MAIC method.

tar(y=log(predator.eq),p1=1,p2=4,d=3,a=.1,b=.9,print=T, 
method='CLS')

# Exhibit 15.13 on page 408.
tar.skeleton(predator.tar.1)

This computes the skeleton of a TAR model supplied as the first argument, with a
default sample size of 500 values, a burn-in of 500 values, and plots the time sequence
plot of the last 50 values of the skeleton. The TAR model is usually the output of that of
the object argument of the tar function. Alternatively, the model parameters can be
specified in a format similar to the tar.sim function. The function also prints a sum-
mary statement on the long-run behavior of the skeleton.

# Exhibit 15.14 on page 408.
set.seed(356813)
plot(y=tar.sim(n=57,object=predator.tar.1)$y,x=1:57, 

ylab=expression(Y[t]),xlab=expression(t),type='o')

This plots a simulated time series from the fitted TAR(2;1,4) model to the predator
series. The fitted model is supplied via the object argument.

# Exhibit 15.20 on page 414.
tsdiag(predator.tar.1,gof.lag=20)

This carries out several model diagnostics on the fitted TAR(2;1,4) model to the preda-
tor series. The function plots a time sequence plot of the standardized residuals, the
residual ACF, and the p-value plots of the generalized portmanteau tests. The argument
gof.lag=20 specifies that the last two plots use a maximum lag of 20.
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# Exhibit 15.21 on page 415.
qqnorm(predator.tar.1$std.res)

This plots the quantile-quantile normal score plot for the standardized residuals from the
TAR(2;1,4) model fitted to the predator series.

qqline(predator.tar.1$std.res)

adds the reference line on the Q-Q plot. 

# Exhibit 15.22 on page 417.
set.seed(2357125)
pred.predator=predict(predator.tar.1,n.ahead=60, 

n.sim=1000)

This simulates a time series from the conditional distribution of the future values given
the data and a threshold model (usually the output of the tar function, here being
predator.tar.1), with a forecast horizon of a maximum sixty-step-ahead predic-
tions. The point predictors and their 95% prediction limits are computed by simulation.
The simulation size is specified as n.sim=1000. The output of the predict function
is a list that contains the prediction means as a vector in the component (element) named
fit and the lower and upper prediction limits as a matrix in the pred.interval
component. The function predict is a smart function and recognizes that the first
argument is a TAR model, on the basis of which it computes the prediction. To learn
more about the predict function for TAR models, run ?predict.TAR. The exten-
sion TAR signifies the particular predict function for processing prediction based on a
TAR model.

yy=ts(c(log(predator.eq),pred.predator$fit),frequency=2, 
start=start(predator.eq))

This augments the point prediction values to the data. 

plot(yy,type='n', 
ylim=range(c(yy,pred.predator$pred.interval)), 
ylab='Log Prey', xlab=expression(t))

This sets up a plot of the data and the predicted future values without actual plotting
(type='n'). We anticipate superimposing the prediction intervals, so the range of the
y-axis is specified through the ylim argument to the vector containing the minimum
and maximum of the combined vector of the observed + predicted values (yy) and the
prediction limits (pred.predator$pred.interval), computed via the range
function. 

lines(log(predator.eq))

This draws the data as a solid line.

lines(window(yy, start=end(predator.eq)+c(0,1)),lty=2)

This adds the curve of the predicted values as a dashed line.

lines(ts(pred.predator$pred.interval[2,], 
start=end(predator.eq)+c(0,1),freq=2),lty=2)

This adds the upper prediction limits.
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lines(ts(pred.predator$pred.interval[1,], 
start=end(predator.eq)+c(0,1),freq=2),lty=2)

This adds the lower prediction limits.

# Exhibit 15.24 on page 419.
qqnorm(pred.predator$pred.matrix[,3])

The output of the predict function is a list that contains another component, named
pred.matrix, which is a matrix containing all simulated future values, with the first
column consisting of the simulated one-step-ahead values, the second column those of
the two-steps-ahead values, and so forth.

qqnorm(pred.predator$pred.matrix[,3])

This extracts all 1000 simulated three-steps-ahead values, which are then passed into the
qqnorm function to make the Q-Q normal score plot for these data.

qqline(pred.predator$pred.matrix[,6])

This adds the reference straight line for checking the normality of the three-steps-ahead
conditional distribution.

Finally, here is a listing and brief description of all the new or enhanced functions
that are contained in the TSA package.

New or Enhanced Functions in the TSA Library
Function Description

acf Computes and plots the sample autocorrelation function start-
ing with lag 1.

arima This command has been amended to compute the AIC accord-
ing to our definition.

arima.boot Bootstraps time series according to a fitted ARMA(p,d,q)
model.

arimax Extends the arima function, allowing the incorporation of
transfer functions and innovative and additive outliers.

ARMAspec Computes and plots the theoretical spectrum of an ARMA
model.

armasubsets Finds “best subset” ARMA models.

BoxCox.ar Finds a power transformation so that the transformed time
series is approximately an AR process with normal error terms.

detectAO Detects additive outliers in time series.

detectIO Detects innovative outliers in time series.

eacf Computes and displays the extended autocorrelation function
of a time series.

garch.sim Simulates a GARCH process.

gBox Performs a goodness-of-fit test for fitted GARCH models.

harmonic Creates a matrix of the first m pairs of harmonic functions for
fitting a harmonic trend (cosine-sine trend, Fourier regression)
model with a time series response.
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Keenan.test Carries out Keenan's test for nonlinearity against the null
hypothesis that the time series follows some AR process.

kurtosis Calculates the (excess) coefficient of kurtosis.

lagplot Computes and plots nonparametric regression functions of a
time series against its various lags.

periodogram Computes the periodogram of a time series.

LB.test Computes the Ljung-Box or Box-Pierce tests checking whether
or not the residuals from an ARIMA model appear to be white
noise.

McLeod.Li.test Perform the McLeod-Li test for conditional heteroscedascity
(ARCH).

plot.Arima Plots a time series and its predictions (forecasts) with 95% pre-
diction bounds based on a fitted ARIMA model.

predict.TAR Calculates predictions based on a fitted TAR model. The errors
are assumed to be normally distributed and the predictive distri-
butions are approximated by simulation.

prewhiten Bivariate time series are prewhitened according to an AR
model fitted to the x-component of the bivariate series. Alterna-
tively, if an ARIMA model is provided, it is used to prewhiten
both series. The CCF of the prewhitened bivariate series is then
computed and plotted.

qar.sim Simulates a first-order quadratic AR model with normally dis-
tributed white noise error terms.

rstandard.Arima Computes internally standardized residuals from a fitted
ARIMA model.

runs Tests the independence of a sequence of values by checking
whether there are too many or too few runs above (or below)
the median.

season Extracts season information from a time series and creates a
vector of the season information. For example, for monthly
data, the function outputs a vector containing the months of the
data.

skewness Calculates the skewness coefficient of a dataset.

spec Allows the user to invoke either the spec.pgram function or
the spec.ar function in the stats package. The seasonal
attribute of the data, if it exists, is surpressed for our preferred
way of presenting the output. Alters defaults to demean=T,
detrend=F, taper=0, and permits plotting of confidence
interval bands.

summary.armasub-
sets

Summary method for class armasubsets, that is useful for
ARMA subset selection.

tar Estimates a two-regime TAR model.

New or Enhanced Functions in the TSA Library (Continued)
Function Description
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tar.sim Simulates a two-regime TAR model.

tar.skeleton Obtains the skeleton of a TAR model by suppressing the noise
term in the TAR model.

tlrt Carries out the likelihood ratio test for threshold nonlinearity,
with the null hypothesis being a normal AR process and the
alternative hypothesis being a TAR model with homogeneous,
normally distributed errors.

Tsay.test Carries out Tsay’s test for quadratic nonlinearity in a time
series.

tsdiag.Arima Modifies the tsdiag function of the stats package sup-
pressing initial residuals and displaying Bonferroni bounds. It
also checks the condition for the validity of the chi-square
asymptotics for the portmanteau tests.

tsdiag.TAR Displays the time series plot and the sample ACF of the stan-
dardized residuals. Also, portmanteau tests for detecting auto-
correlations in the standardized residuals are computed and
displayed. 

zlag Computes the lag of a vector, with missing elements replaced
by NA.

New or Enhanced Functions in the TSA Library (Continued)
Function Description
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DATASET INFORMATION

Filename/
Variable(s)

Description and Source Page(s)

airmiles Monthly U.S. airline passenger-miles: 01/1996–05/2005. Source: 
www.bts.gov/xml/air_traffic/src/index.xml#MonthlySystem

249

airpass Monthly total international airline passengers from 01/1960- 
12/1971. Source: Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 
Time Series Analysis: Forecasting and Control, second edition, Pren-
tice-Hall, Engelwood Cliffs, NJ, 1994.

104

beersales Monthly U.S. beer sales (in millions of barrels), 01/1975–12/1990. 
Source: Frees, E. W., Data Analysis Using Regression Models, Pren-
tice-Hall, Engelwood Cliffs, NJ, 1996.

51

bluebird: 
(log.sales & 
price)

Weekly unit sales of Bluebird standard potato chips (New Zealand) 
and their price for 104 weeks. From the website of Dr. Andrew 
Balemi. Source: www.stat.auckland.ac.nz/~balemi/Assn3.xls

267

bluebirdlite: 
(log.sales & 
price)

Weekly unit sales of Bluebird Lite potato chips (New Zealand) and 
their price for 104 weeks. From the website of Dr. Andrew Balemi.
Source: www.stat.auckland.ac.nz/~balemi/Assn3.xls

276

boardings: 
(log.boarding
s & log.price)

Monthly public transit boardings (mostly buses and light rail), Den-
ver, Colorado region, 08/2000–03/2006. Source: Personal communi-
cation from Lee Cryer, Project Manager, Regional Transportation 
District, Denver, Colorado. Denver gasoline prices were obtained 
from the Energy Information Administration, U.S. Department of 
Energy, Washington, D.C., at www.eia.doe.gov

248, 271, 
273

co2 Monthly carbon dioxide levels in northern Canada, 01/1994– 
12/2004. Source: http://cdiac.ornl.gov/ftp/trends/co2/altsio.co2

234, 234

color Color properties from 35 consecutive batches of an industrial chemi-
cal process. Source: Cryer, J. D. and Ryan, T. P., “The estimation of 
sigma for an X chart”, Journal of Quality Technology, 22, No. 3, 
187–192.

3, 134, 
147, 165, 
176, 194

CREF Daily values of one unit of the CREF (College Retirement Equity 
Fund) Stock fund, 08/26/04–08/15/06. Source: 
www.tiaa-cref.org/performance/retirement/data/index.html

278

cref.bond Daily values of one unit of the CREF (College Retirement Equity 
Fund) Bond fund, 08/26/04–08/15/06. Source: 
www.tiaa-cref.org/performance/retirement/data/index.html

316

days Accounts receivable data. Number of days until a distributor of Win-
egard Company products pays their account. Source: Personal com-
munication from Mark Selergren, Vice President, Winegard, Inc., 
Burlington, Iowa.

147, 174, 
217, 276
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deere1 82 consecutive values for the amount of deviation (in 0.000025 inch 
units) from a specified target value that an industrial machining pro-
cess at Deere & Co. produced under certain specified operating con-
ditions. Source: Personal communication from William F. Fulkerson, 
Deere & Co. Technical Center, Moline, Illinois.

146, 275

deere2 102 consecutive values for the amount of deviation (in 0.0000025 
inch units) from a specified target value that another industrial 
machining process produced at Deere & Co. Source: Personal com-
munication from William F. Fulkerson, Deere & Co. Technical Cen-
ter, Moline, Illinois.

146

deere3 57 consecutive values from a complex machine tool at Deere & Co. 
The values given are deviations from a target value in units of ten 
millionths of an inch. The process employs a control mechanism that 
resets some of the parameters of the machine tool depending on the 
magnitude of deviation from target of the last item produced. Source: 
Personal communication from William F. Fulkerson, Deere & Co. 
Technical Center, Moline, Illinois.

147, 174, 
190, 217

eeg An electroencephalogram (EEG) is a noninvasive test used to detect 
and record the electrical activity generated in the brain. These data 
were measured at a frequency of 256 per second and came from a 
patient suffering a seizure. This is a portion of a series on the website 
of Professor Richard Smith, University of North Carolina. His 
source: Professors Mike West and Andrew Krystal, Duke University. 
Source:
http://www.stat.unc.edu/faculty/rs/s133/Data/datadoc.html

380

electricity Monthly U.S. electricity generation (in millions of kilowatt hours) of 
all types: coal, natural gas, nuclear, petroleum, and wind, 
01/1973–12/2005. Source: www.eia.doe.gov/emeu/mer/elect.html

99, 214, 
247, 264, 
380

euph A digitized sound file of about 0.4 seconds of a Bb just below middle 
C played on a euphonium by one of the authors (JDC), a member of 
the group Tempered Brass.

374

flow Flow data (in cubic feet per second) for the Iowa River measured at 
Wapello, Iowa, for the period 09/1958–08/2006. 
Source: http://waterdata.usgs.gov/ia/nwis/sw

372, 381

gold Daily price of gold (in U.S. dollars per troy ounce), 01/04/2005– 
12/30/2005. Source: www.lbma.org.uk/2005dailygold.htm

105

google Daily returns of Google stock from 08/20/04 to 09/13/06. Source: 
http://finance.yahoo.com/q/hp?s=GOOG

317

Filename/
Variable(s)

Description and Source (Continued) Page(s)
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hare Annual Canadian hare abundance, 1905–1935. Source: Stenseth, N. 
C., Falck, W., Bjørnstad, O. N. and Krebs. C. J. (1997) “Population 
regulation in snowshoe hare and Canadian lynx: Asymmetric food 
web configurations between hare and lynx.” Proceedings of the 
Natlional Academy of Scinces, USA, 94, 5147–5152.

4, 136, 
152, 176, 
206

hours Monthly average hours worked per week in the U.S. manufacturing 
sector for 07/1982–06/1987. Source: Cryer, J. D. Time Series Analy-
sis, Duxbury Press, Boston, 1986.

51

JJ Quarterly earnings per share for 1960Q1–1980Q4 of the U.S. com-
pany, Johnson & Johnson, Inc. From the web site of David Stoffer.
Source: www.stat.pitt.edu/stoffer/tsa2/

105, 248

larain Annual rainfall totals for Los Angeles, California, 1878–1992. 
Source: Personal communication from Professor Donald Bentley, 
Pomona College, Claremont, California. For more data see 
www.wrh.noaa.gov/lox/climate/cvc.php

1, 49, 105, 
133, 379

milk Monthly U.S. milk production from 01/1994 to 12/2005. Source: 
National Agricultural Statistics Service: usda.mannlib
.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1103

264, 374, 
374

oil.price Monthly spot price for crude oil, Cushing, OK (in U.S. dollars per 
barrel), 01/1986–01/2006. U.S. Energy Information Administration. 
Source: tonto.eia.doe.gov/dnav/pet/hist/rwtcM.htm

87, 125, 
153, 177, 
276, 317

oilfilters Monthly wholesale specialty oil filter sales, Deere & Co., 07/1983– 
06/1987. Source: Personal communication from William F. 
Fulkerson, Deere & Co. Technical Center, Moline, Illinois.

6

prescrip Monthly U.S. average prescription costs for the months 08/1986 - 
03/1992. Source: Frees, E. W., Data Analysis Using Regression 
Models, Prentice-Hall, Engelwood Cliffs,NJ, 1996.

52

retail Monthly total UK (United Kingdom) retail sales (non-food stores in 
billions of pounds), 01/1983–12/1987. 
Source: www.statistics.gov.uk/statbase/TSDdownload1.asp

52

robot Final position in the “x” direction of an industrial robot put through a 
series of planned exercises many times. Source: Personal communi-
cation from William F. Fulkerson, Deere & Co. Technical Center, 
Moline, Illinois.

147, 174, 
190, 217, 
370

SP Quarterly S&P Composite Index, 1936Q1–1977Q4, Source: Frees, 
E. W., Data Analysis Using Regression Models, Prentice-Hall, 
Engelwood Cliffs,NJ, 1996.

104
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spots Annual American (relative) sunspot numbers collected from 1945 to 
2005. The annual (relative) sunspot number is a weighted average of 
solar activity measured from a network of observatories. Source:
www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html#
american

392

spots1 Annual international sunspot numbers, 1700–2005, NOAA National 
Geophysical Data Center. Source: 
ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/
YEARLY.PLT

379

star Brightness of a variable star at midnight on 600 successive nights. 
Source: www.statsci.org/data/general/star.html

325

tbone A digitized sound file of about 0.4 seconds of a Bb just below middle 
C played on a tenor trombone by Chuck Kreeb, a member of Tem-
pered Brass and a friend of one of the authors.

374

tempdub Monthly average temperatures in Dubuque, Iowa, 1/1964–12/1975. 
Source: http://mesonet.agron.iastate.edu/climodat/index.phtml?
station=ia2364&report=16

6, 213, 
379

tuba A digitized sound file of about 0.4 seconds of a Bb an octave and one 
whole step below middle C played on a BBb tuba by Linda Fisher, a 
member of Tempered Brass and a friend of one of the authors.

381

units Annual sales of certain large equipment, 1983–2005. (Proprietary 
sales data from a large international company.)

276

usd.hkd Daily exchange rates of U.S. dollar to Hong Kong dollar, 01/2005– 
03/2006. A data frame with 431 observations on the following six 
variables.
r: daily returns of USD/HKD exchange rates 
v: estimated conditional variances based on an AR(1)+GARCH(3,1) 
hkrate: daily USD/HKD exchange rates 
outlier1: dummy variable of day 203, corresponding to July 22, 2005 
outlier2: dummy variable of day 290, another possible outlier 
day: calendar day 
Source: www.oanda.com/convert/fxhistory

310

veilleux: Day, 
Didinium, 
Paramecium

A bivariate time series from an experiment studying prey-predator 
dynamics. The first time series consists of the number of prey 
individuals (Didinium natsutum) per ml measured every 12 hours 
over a period of 35 days. The second time series consists of the 
corresponding number of predators (Paramecium aurelia) per ml. 
Source: Veilleux, B. G. (1976) “The analysis of a predatory interac-
tion between Didinium and Paramecium.” MSc thesis, University of 
Alberta, Canada. See also www.journals
.royalsoc.ac.uk/content/lekv0yqp2ecpabvd/archive1.pdf

386
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wages Monthly average hourly wages in the U.S. apparel industry: 
07/1981–06/1987. Source: Cryer, J. D. Time Series Analysis, 
Duxbury Press, Boston, 1986.

51

winnebago Monthly unit sales of recreational vehicles from Winnebago, Inc. 
from 11/1966 to 02/1972. Source: Roberts, H. V., Data Analysis for 
Managers with Minitab, second edition, The Scientific Press, Red-
wood City, CA, 1991.

51, 104
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