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Preface
This third edition expands on the first and second editions as a compilation of statis-
tical topics relevant to cancer research in general, and to oncology clinical trials and 
translational research in particular. Since the last edition, published in 2006, many 
new challenges have arisen in this area. New cancer therapies are often based on 
cytostatic or targeted agents, which pose new challenges in the design and analysis 
of all phases of oncology clinical trials. New chapters specifically addressing trial 
design issues pertaining to targeted agents have been added. The literature on adap-
tive trial designs and early stopping has been exploding, and new chapters on these 
topics have been added. Inclusion of high-dimensional data and imaging techniques 
have become common practice in oncology clinical trials, and statistical methods 
on how to analyze such data have been refined in this area. Many tools have become 
available to help statisticians design clinical trials, and a chapter has been added 
to review these tools and to provide a reference on where to find them. In addition, 
previous sections of the second edition have been revised to reflect the current state 
of the art. As in the first two editions, the intended audience is primarily statisticians 
and other researchers involved in designing and analyzing cancer clinical trials. 
Experts in the field have contributed individual chapters making this an invaluable 
reference.

This third edition is divided into four parts:

	 1.	Phase I Trials. Updated recommendations regarding the standard 3 + 3 and 
continual reassessment approaches along with new chapters on phase 0 tri-
als and on phase I trial design for targeted agents are provided.

	 2.	Phase II Trials. Current experience in single-arm and randomized phase 
II trial designs has been updated. New chapters added to this part include 
phase II designs with multiple strata and phase II/III designs.

	 3.	Phase III Trials. Many new chapters have been added to this part, includ-
ing interim analyses and early stopping considerations, phase III trial 
designs for targeted agents and for testing the ability of markers, adaptive 
trial designs, cure-rate survival models, statistical methods of imaging, as 
well as a thorough review of software for the design and analysis of clinical 
trials.

	 4.	Exploratory and High-Dimensional Data Analyses. All chapters in this 
part have been thoroughly updated since the last edition. New chapters have 
been added to address methods for analyzing SNP data and for developing 
a score based on gene expression data. In addition, chapters on risk calcula-
tors and forensic bioinformatics have been added to this part.
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1 Choosing a 
Phase I Design

Barry E. Storer

1.1  INTRODUCTION AND BACKGROUND

Although the term phase I is sometimes applied generically to almost any “early” 
trial, in cancer drug development, it usually refers specifically to a dose finding trial 
whose major endpoint is toxicity. The goal is to find the highest dose of a poten-
tial therapeutic agent that has acceptable toxicity; this dose is referred to as the 
MTD (“maximum tolerable dose”), and is presumably the dose that will be used in 
subsequent phase II trials evaluating efficacy. Occasionally, one may encounter tri-
als that are intermediate between phase I and phase II and are referred to as phase 
IB trials. This is a more heterogeneous group, but typically includes trials that are 
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evaluating some measure of biologic efficacy over a range of doses that have been 
found to have acceptable toxicity in a phase I trial. In that context, the trial determin-
ing the MTD may be referred to as a phase IA trial. This chapter will focus exclu-
sively on phase I trials with a toxicity endpoint.

What constitutes acceptable toxicity of course depends on the potential thera-
peutic benefit of the drug. There is an implicit assumption with most anticancer 
agents that there is a positive correlation between toxicity and efficacy, but most 
drugs that will be evaluated in phase I trials will prove ineffective at any dose. 
The problem of defining an acceptably toxic dose is complicated by the fact that 
patient response is heterogeneous: at a given dose, some patients may experience 
little or no toxicity, while others may have severe or even fatal toxicity. Since the 
response of the patient will be unknown before the drug is given, acceptable toxic-
ity is typically defined with respect to the frequency of toxicity in the population as 
a whole. For example, given a toxicity grading scheme ranging from 0 to 5 (none, 
mild, moderate, severe, life-threatening, fatal), one might define the MTD as the 
dose where, on average, one out of three patients would be expected to experience 
a grade 3 or worse toxicity. In that case, grade 3 or worse toxicity in an individual 
patient would be referred to as “dose limiting toxicity” (DLT). The definition of 
DLT may vary from one trial to another depending on what toxicities are expected 
and how manageable they are.

When defined in terms of the presence or absence of DLT, the MTD can be repre-
sented as a quantile of a dose–response curve. By notation, if Y is a random variable 
whose possible values are 1 and 0, respectively, depending on whether a patient does 
or does not experience DLT, and for dose d we have ψ(d) = Pr(Y = 1|d), then the MTD 
is defined by ψ(dMTD) = θ, where θ is the desired probability of toxicity. Alternately, 
one could define Y to be the random variable representing the threshold dose at which 
a patient would experience DLT. The distribution of Y is referred to as a tolerance 
distribution and the dose–response curve is the cumulative distribution function for 
Y, so that the MTD would be defined by Pr(Y ≤ dMTD) = θ. For a given sample size, the 
most effective way of estimating this quantile would be from a sample of threshold 
doses. Such data are nearly impossible to gather, however, as it is impractical to give 
each patient more than a small number of discrete doses. Further, the data obtained 
from sequential administration of different doses to the same patient would almost 
surely be biased, as one could not practicably distinguish the cumulative effects of 
the different doses from the acute effects of the current dose level. For this reason, 
almost all phase I trials involve the administration of only a single dose level to each 
patient and the observation of the frequency of occurrence of DLT in all patients 
treated at the same dose level.

There are two significant constraints on the design of a phase I trial. The first is 
the ethical requirement to approach the MTD from below, so that one must start at 
a dose level believed almost certainly to be below the MTD and gradually escalate 
upward. The second is the fact that the number of patients typically available for a 
phase I trial is relatively small, say 15–30, and is not driven traditionally by rigorous 
statistical considerations requiring a specified degree of precision in the estimate of 
MTD. The pressure to use only small numbers of patients is large—literally doz-
ens of drugs per year may come forward for evaluation, and each combination with 
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other drugs, each schedule, and each route of administration requires a separate trial. 
Furthermore, the number of patients for whom it is considered ethically justified to 
participate in a trial with little evidence of efficacy is limited. The latter limitation 
also has implications for the relevance of the MTD in subsequent phase II trials 
of efficacy. Since the patient populations are different, it is not clear that the MTD 
estimated in one population will yield the same result when implemented in another.

1.2  DESIGNS FOR PHASE I TRIALS

As a consequence of the previous considerations, the traditional phase I trial 
design utilizes a set of fixed dose levels that have been specified in advance, that is 
d ∈ {d1, d2,…, dK}. The choice of the initial dose level d1, and the dose spacing, are 
discussed in more detail hereafter. Beginning at the first dose level, small numbers of 
patients are entered, typically 3–6, and the decision to escalate or not depends on a 
prespecified algorithm related to the occurrence of DLT. When a dose level is reached 
with unacceptable toxicity, then the trial is stopped.

1.2.1  Initial Dose Level and Dose Spacing

The initial dose level is generally derived either from animal experiments, if the 
agent in question is completely novel, or by conservative consideration of previous 
human experience, if the agent in question has been used before but with a differ-
ent schedule, route of administration, or with other concomitant drugs. A common 
starting point based on the former is from 1/10 to 1/3 of the mouse LD10, the dose 
that kills 10% of mice, adjusted for the size of the animal on a per kilogram basis or 
by some other method.

Subsequent dose levels are determined by increasing the preceding dose level by 
decreasing multiples, a typical sequence being {d1, d2 = 2d1, d3 = 1.67d2, d4 = 1.4d3,…, 
dk = 1.33dk − 1}. Such sequences are often referred to as “modified Fibonacci,” 
although in a true Fibonacci sequence the increments would be approximately 2, 1.5, 
1.67, 1.60, 1.63, and then 1.62 thereafter, converging on the golden ratio. Note that 
after the first few increments, the dose levels are equally spaced on a log scale. With 
some agents, particularly biological agents, the dose levels may be determined by log 
spacing, that is, {d1, d2 = 10d1,…, dk = 10dk − 1}, or approximate half-log spacing, that 
is, {d1, d2 = 3d1, d3 = 10d1,…, dk = 10dk − 2}.

1.2.2  Traditional Escalation Algorithms

A wide variety of dose escalation rules may be used. For purposes of illustration, 
we describe the following, which is often referred to as the traditional “3 + 3” design. 
Beginning at k = 1,

	 [A]	 Evaluate three patients at dk:
	 [A1]	 If zero of three patients have DLT, then increase dose to dk + 1 and go to [A].
	 [A2]	 If one of three patients has DLT, then go to [B].
	 [A3]	 If ≥ two of three patients have DLT, then go to [C].
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	 [B]	 Evaluate an additional three patients at dk:
	 [B1]	 If one of six patients has DLT, then increase dose to dk + 1 and go to [A].
	 [B2] 	 If ≥ two of six patients have DLT, then go to [C].
	 [C]	 Discontinue dose escalation.

If the trial is stopped, then the dose level below that at which excessive DLT was 
observed is the MTD. Some protocols may specify that if only three patients were 
evaluated at that dose level, then an additional three should be entered, for a total 
of six, and that process should proceed downward, if necessary, so that the MTD 
becomes the highest dose level where no more than one toxicity is observed in six 
patients. The actual θ that is desired is generally not defined when such algorithms 
are used, but implicitly 0.17 ≤ θ ≤ 0.33, so we could take θ ≈ 0.25.

Another example of a dose escalation algorithm, referred to as the “best-of-5” 
design, is described here. Again, the value of θ is not explicitly defined, but one could 
take θ ≈ 0.40. Beginning at k = 1,

	 [A]	 Evaluate three patients at dk:
	 [A1]	 If zero of three patients have DLT, then increase dose to dk + 1 and go to [A].
	 [A2]	 If one or two of three patients have DLT, then go to [B].
	 [A3]	 If three of three patients have DLT, then go to [D].
	 [B]	 Evaluate an additional patient at dk:
	 [B1]	 If one of four patients has DLT, then increase dose to dk + 1 and go to [A].
	 [B2]	 If two of four patients have DLT, then go to [C].
	 [B3]	 If three of four patients have DLT, then go to [D].
	 [C]	 Evaluate an additional patient at dk:
	 [C1]	 If two of five patients have DLT, then increase dose to dk + 1 and go to [A].
	 [C2]	 If three of five patients have DLT, then go to [D].
	 [D]	 Discontinue dose escalation.

Although traditional designs reflect an empirical common sense approach to the 
problem of estimating the MTD under the noted constraints, only brief reflection 
is needed to see that the determination of MTD will have a rather tenuous statisti-
cal basis. Consider the outcome of a trial employing the “3 + 3” design where the 
frequency of DLT for dose levels d1, d2, and d3 is zero of three, one of six, and two 
of six, respectively. Ignoring the sequential nature of the escalation procedure, the 
pointwise 80% confidence intervals for the rate of DLT at the three dose levels are, 
respectively, 0–0.54, 0.02–0.51, and 0.09–0.67. Although the middle dose would 
be taken as the estimated MTD, there is not even reasonably precise evidence that 
the toxicity rate for any of the three doses is either above or below the implied θ of 
approximately 0.25.

Crude comparisons among traditional dose escalation algorithms can be made 
by examining the level-wise operating characteristics of the design, that is, the 
probability of escalating to the next dose level given an assumption regarding the 
underlying probability of DLT at the current dose level. Usually this calculation is a 
function of simple binomial success probabilities. For example, in the “3 + 3” algo-
rithm described earlier, the probability of escalation is Bin(0, 3;ψ(d)) + Bin(1, 3;ψ(d))
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Bin(1, 3;ψ(d)), where Bin(r, n;ψ(d)) is the binomial probability of r successes (toxici-
ties) out of n trials (patients) with underlying success probability at the current dose 
level ψ(d). The probability of escalation can then be plotted over a range of ψ(d), 
as is done in Figure 1.1 for the two algorithms described previously. Although it is 
obvious from such a display that one algorithm is considerably more aggressive than 
another, the level-wise operating characteristics do not provide much useful insight 
into whether or not a particular design will tend to select an MTD that is close to the 
target. More useful approaches to choosing among traditional designs and the other 
designs described hereafter are discussed in Section 1.3.

1.2.3  Bayesian Approach: The Continual Reassessment Method

The small sample size and low information content in the data derived from tra-
ditional methods have suggested to some the usefulness of Bayesian methods to 
estimate the MTD. In principle, this approach allows one to combine any prior infor-
mation available regarding the value of the MTD with subsequent data collected in 
the phase I trial to obtain an updated estimate reflecting both.

The most clearly developed Bayesian approach to phase I design is the continual 
reassessment method (CRM) proposed by O’Quigley and colleagues (O’Quigley 
et al. 1990, O’Quigley and Chevret 1991). From among a small set of possible dose 
levels, say {d1,…, d6}, experimentation begins at the dose level which the investiga-
tors believe, based on all available information, is the most likely to have an associ-
ated probability of DLT equal to the desired θ. It is assumed that there is a simple 
family of monotone dose–response functions ψ such that for any dose d and prob-
ability of toxicity p there exists a unique a where ψ(d, a) = p, in particular ψ(dMTD, 
a0) = θ. An example of such a function is ψ(d, a) = [(tanh d + 1)/2]a. Note that ψ is not 
assumed to be necessarily a dose–response function relating a characteristic of the 
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FIGURE 1.1  Level-wise operating characteristics of two traditional dose escalation algo-
rithms. The probability of escalating to the next higher dose level is plotted as a function of 
the true probability of DLT at the current dose.
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dose levels to the probability of toxicity. That is, d does not need to correspond liter-
ally to the dose of a drug. In fact, the treatments at each of the dose levels may be 
completely unrelated, as long as the probability of toxicity increases from each dose 
level to the next; in this case d could be just the index of the dose levels. The unique-
ness constraint implies in general the use of one-parameter models, and explicitly 
eliminates popular two-parameter dose–response models like the logistic. In prac-
tice, the latter have a tendency to become “stuck” and oscillate between dose levels 
when any data configuration leads to a large estimate for the slope parameter.

A prior distribution g(a) is assumed for the parameter a such that for the initial 

dose level, for example, d3, either ψ θ( , ) ( )d a g a da3
0

=
∞

∫  or, alternatively, ψ(d3, μa) = θ, 

where μa ag a da=
∞

∫ ( )
0

. The particular prior used should also reflect the degree of 
uncertainly present regarding the probability of toxicity at the starting dose level; in 
general this will be quite vague.

After each patient is treated and the presence or absence of toxicity observed, the 
current distribution g(a) is updated along with the estimated probabilities of toxic-
ity at each dose level, calculated by either of the previous methods (O’Quigley et al. 
1990). The next patient is then treated at the dose level minimizing some measure 
of the distance between the current estimate of the probability of toxicity and θ. 
After a fixed number n of patients has been entered sequentially in this fashion, the 
dose level selected as the MTD is the one which would be chosen for a hypothetical 
n + 1 th patient.

An advantage of the CRM design is that it makes full use of all the data at hand in 
order to choose the next dose level. Even if the dose–response model used in updat-
ing is misspecified, CRM will tend eventually to select the dose level which has a 
probability of toxicity closest to θ (Shen and O’Quigley 1996), although its practical 
performance should be evaluated in the small sample setting typical of phase I tri-
als. A further advantage is that, unlike traditional algorithms, the design is easily 
adapted to different values of θ.

In spite of these advantages, some practitioners object philosophically to the 
Bayesian approach, and it is clear in the phase I setting that the choice of prior can have 
a measurable effect on the estimate of MTD (Gatsonis and Greenhouse 1992). On 
the other hand, the basic framework of CRM can easily be adapted to a non-Bayesian 
setting and can conform in practice more closely to traditional methods (O’Quigley 
and Shen 1996). For example, there is nothing in the approach that prohibits one 
from starting at the same low initial dose as would be common in traditional trials, 
or from updating after groups of three patients rather than single patients. In fact, the 
Bayesian prior can be abandoned entirely and the updating after each patient can be 
fully likelihood based. Without a prior, however, the dose–response model cannot be 
fit to the data until there is some heterogeneity in outcome, that is, at least one patient 
with DLT and one patient without DLT. Thus, some simple rules are needed to guide 
the dose escalation until heterogeneity is achieved. A number of other modifications 
to the CRM design have been proposed that address practical issues of implementa-
tion. These include limiting the rate of dose escalation (Goodman et al. 1995), stop-
ping rules based on the width of the posterior probability interval (Heyd and Carlin 
1999), and interpolation between doses (Piantadosi and Liu 1996).
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1.2.4  Storer’s Two-Stage Design

Storer (1989, 1993) has explored a combination of more traditional methods imple-
mented in such a way as to minimize the numbers of patients treated at low dose 
levels and to focus sampling around the MTD; these methods also utilize an explicit 
dose–response framework to estimate the MTD.

The design has two stages and uses a combination of simple dose–escalation 
algorithms. The first stage assigns single patients at each dose level, and escalates 
upward until a patient has DLT, or downward until a patient does not have DLT. 
Algorithmically, beginning at k = 1,

	 [A]	 Evaluate one patient at dk:
	 [A1]	 If no patient has had DLT, then increase dose to dk + 1 and go to [A].
	 [A2]	 If all patients have had DLT, then decrease dose to dk − 1 and go to [A].
	 [A3]	 If at least one patient has had DLT and at least one patient has not had 

DLT, then if the current patient has not had DLT, go to [B], otherwise 
decrease the dose to dk − 1 and go to [B].

Note that the first stage meets the requirement for heterogeneity in response needed 
to start off a likelihood-based CRM design, and could be used for that purpose. The 
second stage incorporates a fixed number of cohorts of patients. If θ = 1/3, then it is 
natural to use cohorts of size three, as follows:

	 [B]	 Evaluate three patients at dk:
	 [B1]	 If zero of three patients have DLT, then increase dose to dk + 1 and go 

to [B].
	 [B2]	 If one of three patients has DLT, then go to [B].
	 [B3]	 If ≥ two of three patients have DLT, then decrease dose to dk − 1 and go 

to [B].

After completion of the second stage a dose–response model is fit to the data and 
the MTD estimated by maximum likelihood or other method. For example, one 
could use a logistic model where logit[ψ(d)] = α + β log(d), whence the estimated 
MTD is determined from log(d̂MTD) = (logit(θ) − α̂)/β̂. A two-parameter model is 
used here in order to make fullest use of the final sample of data; however, as noted 
earlier, two-parameter models have undesirable properties for purposes of dose 
escalation. In order to obtain a meaningful estimate of the MTD, one must have 
0 < β̂ < ∞. If this is not the case, then one needs either to add additional cohorts of 
patients or substitute a more empirical estimate, such as the last dose level or hypo-
thetical next dose level.

As noted, the algorithm described previously is designed with a target θ = 1/3 in 
mind. Although other quantiles could be estimated from the same estimated dose–
response curve, a target θ different from 1/3 would probably lead one to use a modi-
fied second stage algorithm.

Extensive simulation experiments using this trial design in comparison to more 
traditional designs demonstrated the possibility of reducing the variability of point 
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estimates of the MTD, and reducing the proportion of patients treated at very low 
dose levels, without markedly increasing the proportion of patients treated at dose 
levels where the probability of DLT is excessive. Storer (1993) also evaluated dif-
ferent methods of providing confidence intervals for the MTD, and found that stan-
dard likelihood-based methods that ignore the sequential sampling scheme are often 
markedly anticonservative; these methods included the delta method, a method 
based on Fieller’s theorem, and a likelihood ratio method. More accurate confidence 
sets can be constructed by simulating the distribution of any of those test statistics 
at trial values of the MTD; however, the resulting confidence intervals are often 
extremely wide. Furthermore, the methodology is purely frequentist, and may be 
unable to account for minor variations in the implementation of the design when a 
trial is conducted.

With some practical modifications, the two-stage design described earlier has 
been implemented in a real phase I trial (Berlin et al. 1998). The major modifications 
included: (a) a provision to add additional cohorts of three patients, if necessary, until 
the estimate of β in the fitted logistic model becomes positive and finite; (b) a provi-
sion that if the estimated MTD is higher than the highest dose level at which patients 
have actually been treated, the latter will be used as the MTD; and (c) a provision 
to add additional intermediate dose levels if, in the judgment of the protocol chair, 
the nature or frequency of toxicity at a dose level precludes further patient accrual 
at that dose level.

1.2.5  Other Approaches

1.2.5.1  Accelerated Titration
If the starting dose level has been chosen too conservatively, then the 3 + 3 design 
may use large numbers of patients before reaching a dose level where the probability 
of toxicity is nonnegligible. Although one cannot know in advance that the start-
ing dose level is far below the MTD, a feature of the CRM and two-stage designs 
described previously is that they have the potential to escalate the dose level using 
smaller numbers of patients than a traditional 3 + 3 design. Naturally, there is a trade-
off with the potential to escalate above the MTD, but the ability to escalate quickly 
could be an attractive feature of the design if the toxicity profile of the drug is reason-
ably well understood and the dose limiting toxicities are thought to be manageable 
even at doses above the MTD.

An example of a design that is more similar to the 3 + 3 design but also permits 
more rapid dose escalation is the “accelerated titration” design proposed by Simon 
et al. (1997). This design permits dose escalation using single patient cohorts, but 
then reverts to the traditional 3 + 3 design at a dose level where a patient experiences 
DLT or a second patient experiences grade 2 toxicity (or other specified level of 
toxicity less than a DLT). The original description of this design also allowed for 
intra-patient dose escalation and a final model fitting procedure using all patients at 
all dose levels, although this component is generally not implemented in actual trials 
using this design framework.
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1.2.5.2  Another Bayesian Approach (EWOC)
Another Bayesian approach to phase I design has been described by Babb et al. 
(1996) and Tighiouart et al. (2005). The approach is referred to as EWOC (escala-
tion with overdose control). The general framework is similar to that of CRM, and 
the MTD has the usual definition in terms of the probability of DLT; however, in 
contrast to CRM the MTD is related explicitly to an underlying continuous tolerance 
distribution. The dose for each patient is selected such that, based on all available 
information, the posterior probability that the dose exceeds the MTD is equal to α. 
The feasibility bound α controls the aggressiveness of the escalation; a typical value 
would be α ≈ 0.25. In the usual case that there are a few fixed dose levels available for 
testing, additional tolerance parameters are used to select one that is closest to the 
optimal exact dose. Note that, unlike CRM, the dose chosen during dose escalation 
is not necessarily the one estimated to be closest to the MTD. After a predetermined 
number of patients have been evaluated, the final estimate of MTD is determined by 
minimizing the posterior expected loss with respect to some loss function.

1.2.5.3  Late Toxicity
In the majority of phase I settings dose escalation is based on the evaluation of DLT 
within a relatively limited period of observation, typically no more than 4–6 weeks. 
This is acceptable in the usual case that the toxicities of interest are expected to 
occur acutely; however, there may be other settings where toxicities may not be 
manifest immediately but may occur after chronic dosing over an extended period of 
time, or are simply delayed in appearance. Any of the designs mentioned earlier can 
be implemented in such a setting, but obviously will extend the duration of the trial 
if cohorts of patients must be observed for an extended period of time before dose 
escalation is permitted.

Relatively little attention has been paid to this design situation, the most notable 
exception being the TITE (time to event)—CRM design (Cheung and Chappell 1996; 
Braun 2006). This is a weighted version of CRM, with the weights related in some 
way to the amount of time that patients have been observed relative to the maximum 
period of time where the occurrence of DLT is of interest. For example, if T is the 
maximum time (e.g., 6 months), and ui is the amount of time the ith patient has been 
observed, then a very simple weighting scheme might take wi = ui/T for patients that 
have not experienced DLT, and wi = 1 for patients that have. The Bayesian updating 
is performed in the usual manner, but patients who have not experienced DLT do not 
contribute fully until they have been observed until T. More complex versions of the 
weighting can also be devised, for example, by making some assumptions about the 
distribution of the time to DLT during the interval up to T. As with the basic CRM 
design, similar weighting schemes could also be applied to likelihood-based updating.

1.2.5.4  MTD Defined by a Continuous Parameter
Although not common in practice, it is useful to consider the case where the major 
outcome defining toxicity is a continuous measurement, for example, the nadir 
WBC. This may or may not involve a fundamentally different definition of the MTD 
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in terms of the occurrence of DLT. For example, suppose that DLT is determined by 
the outcome Y < c, where c is a constant, and we have Y ∼ Normal(α + βd, σ2). Then 
dMTD = (c − α − Φ−1(θ)σ)/β has the traditional definition that the probability of DLT is 
θ. The use of such a model in studies with small sample size makes some distribu-
tional assumption imperative. Some sequential design strategies in this context have 
been described by Eichhorn and Zacks (1973).

Alternatively, the MTD might be defined in terms of the mean response, that 
is, the dose where E(Y) = c. For the same simple linear model, we then have that 
dMTD = (c − α)/β. An example of a two-stage design using a regression model for WBC 
is given in Mick and Ratain (1993). Fewer distributional assumptions are needed 
to estimate dMTD, and stochastic approximation techniques might be applied in the 
design of trials with such an endpoint (Anbar 1984). Nevertheless, the use of a mean 
response to define MTD is not generalizable across drugs with different or multiple 
toxicities, and consequently has received little attention in practice.

1.3  CHOOSING A PHASE I DESIGN

As noted previously, only limited information regarding the suitability of a phase I 
design can be gained from the level-wise operating characteristics shown in Figure 1.1. 
Furthermore, for designs like CRM, which depend on data from prior dose levels to 
determine the next dose level, it is not even possible to specify a level-wise operating 
characteristic.

Useful evaluations of phase I designs must involve the entire dose–response curve, 
which of course is unknown. Many simple designs for which the level-wise operating 
characteristics can be specified can be formulated as discrete Markov chains (Storer 
1989). The states in the chain refer to treatment of a patient or group of patients 
at a dose level, with an absorbing state corresponding to the stopping of the trial. 
For various assumptions about the true dose–response curve, one can then calculate 
exactly many quantities of interest, such as the number of patients treated at each 
dose level, from the appropriate quantities determined from successive powers of the 
transition probability matrix P. Such calculations are fairly tedious, however, and do 
not accommodate designs with nonstationary transition probabilities, such as CRM. 
Nor do they allow one to evaluate any quantity derived from all of the data, such as 
the MTD estimated after following Storer’s two-stage design.

For these reasons, simulations studies are the only practical tool for evaluating 
phase I designs. As with exact computations, one needs to specify a range of possible 
dose–response scenarios, and then simulate the outcome of a large number of trials 
under each scenario. Here we give an example of such a study, in order to illustrate 
the kinds of information that can be used in the evaluation and some of the consid-
erations involved in the design of the study. This study has also been presented in 
Storer (2001). Other examples of simulation studies comparing phase I designs are 
Korn et al. (1994) and Ahn (1998).

1.3.1  Specifying the Dose–Response Curve

We follow the modified Fibonacci spacing described in Section 1.2. For example, 
in arbitrary units, {d1 = 100.0, d2 = 200.0, d3 = 333.3, d4 = 500.0, d5 = 700.0, d6 = 933.3, 
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d7 = 1244.4,…}. We also define hypothetical dose levels below d1 that successively 
halve the dose above, that is, {d0 = 50.0, d−1 = 25.0,…}. The starting dose is always 
d1, and we assume that the true MTD is four dose levels higher, at d5, with θ = 1/3. 
In order to define a range of dose–response scenarios, we vary the probability of 
toxicity at d1 from 0.01 to 0.20 in increments of 0.01, and graph our results as a 
function of that probability. The true dose–response curve is determined by assum-
ing that a logistic model holds on the log scale. In the usual formulation one would 
have logit[ψ(d)] = α + β log(d). In the present setup, we specify d1, ψ(d1), and that 
ψ(d5) = 1/3, whence β = logit(1/3) − logit[ψ(d1)]/Δ, where Δ = log(d5) − log(d1), and 
α = logit[ψ(d1)] − β log(d1).

Varying the probability of DLT at d1 while holding the probability at d5 fixed 
at θ results in a sequence of dose–response curves ranging from relatively steep 
to relatively flat. An even greater range could be encompassed by also varying the 
number of dose levels between the starting dose and the true MTD, which of course 
need not be exactly at one of the predetermined dose levels. The point is to study the 
sensitivity of the designs to features of the underlying dose–response curve, which 
obviously is unknown.

1.3.2  Specifying the Designs

This simulation will evaluate the two traditional designs described earlier, Storer’s 
two-stage design, and a non-Bayesian CRM design. It is important to make the simu-
lation as realistic as possible in terms of how an actual clinical protocol would be 
implemented, or at least to recognize what differences might exist. For example, the 
simulation does not place a practical limit on the highest dose level, although it is 
rare for any design to escalate beyond d10.

An actual protocol might have an upper limit on the number of dose levels, with 
a provision for how to define the MTD if that limit is reached. Similarly, the simula-
tion always evaluates a full cohort of patients, whereas in practice, where patients are 
more likely entered sequentially than simultaneously, a 3 + 3 design might, for exam-
ple, forego the last patient in a cohort of three if the first two patients had experienced 
DLT. Specifics of the designs used in the simulation study are given hereafter.

1.3.2.1  Traditional 3 + 3 Design
This design is implemented as described in Section 1.2. In the event that excessive 
toxicity occurs at d1, the MTD is taken to be d0. Although this is an unlikely occur-
rence in practice, a clinical protocol should specify any provision to decrease dose if 
the stopping criteria are met at the first dose level.

1.3.2.2  Traditional Best-of-5 Design
This design is implemented as described in Section 1.2, with the same rules applied 
to stopping at d1.

1.3.2.3  Storer’s Two-Stage Design
This design is implemented as described in Section 1.2, using a second stage sample 
size of 24 patients. A standard logistic model is fit to the data. If it is not the case that 
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0 < β̂ < ∞, then the geometric mean of the last dose level used and the dose level that 
would have been assigned to the next cohort is used as the MTD. In either case, if 
that dose is higher than the highest dose at which patients have actually been treated, 
then the latter is taken as the MTD.

1.3.2.4  Non-Bayesian CRM Design
We start the design using the first stage of the two-stage design as described earlier. 
Once heterogeneity has been achieved, 24 patients are entered in cohorts of three. 
The first cohort is entered at the same dose level as for the second stage of the two-
stage design; after that, successive cohorts are entered using likelihood based updat-
ing of the dose–response curve. For this purpose we use a single parameter logistic 
model—a two parameter model with β fixed at 0.75. This value does have to be 
tuned to the actual dose scale, but is not particularly sensitive to the precise value. 
That is, similar results would be obtained with β in the range 0.5–1.0. For reference, 
on the natural log scale the distance log(dMTD) − log(d1) ≈ 2, and the true value of β 
in the simulation ranges from 2.01 to 0.37 as ψ(d1) ranges from 0.01 to 0.20. After 
each updating, the next cohort is treated at the dose level with estimated probability 
of DLT closest in absolute value to θ; however, the next level cannot be more than 
one dose level higher than the current highest level at which any patients have been 
treated. The level that would be chosen for a hypothetical additional cohort is the 
MTD; however, if this dose is above the highest dose at which patients have been 
treated, the latter is taken as the MTD.

1.3.3  Simulation and Results

The simulation is performed by generating 5000 sequences of patients and applying 
each of the designs to each sequence for each of the dose–response curves being 
evaluated. The sequence of “patients” is really a sequence of pseudo-random num-
bers generated to be uniform (0,1). Each patient’s number is compared to the hypo-
thetical true probability of DLT at the dose level the patient is entered at for the 
dose–response curve being evaluated. If the number is less than that probability, then 
the patient is taken to have experienced DLT.

Figure 1.2 displays results of the aforementioned simulation study which relate to 
the estimate d̂MTD. Since the dose scale is arbitrary, the results are presented in terms 
of ψ(d̂MTD). Panel (a) displays the mean probability of DLT at the estimated MTD. 
The horizontal line at 1/3 is a point of reference for the target θ. Although none of 
the designs is unbiased, all except the conservative 3 + 3 design perform fairly well 
across the range of dose–response curves. The precision of the estimates, taken as 
the root MSE of the probabilities ψ(d̂MTD), is shown in panel (b). In this regard the 
CRM and two-stage designs perform better than the best-of-5 design over most set-
tings of the dose–response curve. One should also note that, in absolute terms, the 
precision of the estimates is not high even for the best designs.

In addition to the average properties of the estimates, it is also relevant to look 
at the extremes. Panels (c) and (d) present the fraction of trials where ψ(d̂MTD) < 0.20 
or ψ(d̂MTD) > 0.50, respectively. The seesaw pattern observed for all but the two-
stage design is caused by changes in the underlying dose–response curve, as the 
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probability of DLT at particular dose levels moves over or under the limit under 
consideration. Since the three designs select discrete dose levels as d̂MTD, this will 
result in a corresponding decrease in the fraction of estimates beyond the limit. The 
cutoff of 0.20 is the level at which the odds of DLT are half that of θ. Although this 
may not be an important consideration, to the extent that the target θ defines a dose 
with some efficacy in addition to toxicity, the fraction of trials below this arbitrary 
limit may represent cases in which the dose selected for subsequent evaluation in 
efficacy trials is “too low.” Because of their common first stage design that uses 
single patients at the initial dose levels, the two-stage and CRM designs do best in 
this regard. Conversely, the cutoff used in panel (d) is the level at which the odds of 
toxicity are twice that of θ. Although the occurrence of DLT in and of itself is not 
necessarily undesirable, as the probability of DLT increases there is likely a corre-
sponding increase in the probability of very severe or even fatal toxicity. Hence, the 
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FIGURE 1.2  Results of 5000 simulated phase I trials according to four designs, plotted 
as a function of the probability of DLT at the starting dose level. The true MTD is fixed 
at four dose levels above the starting dose, with θ = 1/3. Results are expressed in terms of 
pMTD = ψ(d̂MTD).
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trials where the probability of DLT is above this arbitrary level may represent cases 
in which the dose selected as the MTD is “too high.” In this case there are not large 
differences among the designs, and in particular we find that the two designs that 
perform the best in panel (c) do not carry an unduly large penalty. One could easily 
evaluate other limits if desired.

Some results related to the outcome of the trials themselves are presented in 
Figure 1.3. Panels (a) and (b) present the overall fraction of patients that are treated 
below and above, respectively, the same limits as for the estimates in Figure 1.2. The 
two-stage and CRM designs perform best at avoiding treating patients at the lower 
dose levels; the two-stage design is somewhat better than the CRM design at avoid-
ing treating patients at higher dose levels, although of course it does not do as well as 
the very conservative 3 + 3 design.
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FIGURE 1.3  Results of 5000 simulated phase I trials according to four designs, plotted as 
a function of the probability of DLT at the starting dose level. The true MTD is fixed at four 
dose levels above the starting dose, with θ = 1/3.
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Sample size considerations are evaluated in panels (c) and (d). Panel (c) shows 
the mean number of patients treated. Because they share a common first stage and 
use the same fixed number of patients in the second stage, the two-stage and CRM 
designs yield identical results. The 3 + 3 design uses the smallest number of patients, 
but this is because it tends to stop well below the target. On average, the best-of-5 
design uses six to eight fewer patients than the two-stage or CRM design. Panel (d) 
displays the mean number of “cycles” of treatment that are needed to complete the 
trial, where a cycle is the period of time over which a patient or group of patients 
needs to be treated and evaluated before a decision can be made as to the dose level 
for the next patient or group. For example, the second stage in the two-stage or CRM 
designs always uses eight cycles; each dose level in the 3 + 3 design uses one or two 
cycles, etc. This is a consideration only for situations where the time needed to com-
plete a phase I trial is not limited by the rate of patient accrual but by the time needed 
to treat and evaluate each group of patients. In this case the results are qualitatively 
similar to that of panel (e).

1.4  SUMMARY AND CONCLUSION

Based only on the previous results, one would likely eliminate the 3 + 3 design from 
consideration. The best-of-5 design would probably also be eliminated as well, owing 
to the lower precision and greater likelihood that the MTD will be well below the 
target. On the other hand, the best-of-5 design uses fewer patients. If small patient 
numbers are a priority, it would be reasonable to consider an additional simulation in 
which the second stage sample size for the two-stage and CRM designs is reduced 
to, say, 18 patients. This would put the average sample size for those designs closer 
to that of the best-of-5, and one could see whether they continued to maintain an 
advantage in the other aspects. Between the two-stage and CRM designs, there is 
perhaps a slight advantage to the former in terms of greater precision and a smaller 
chance that the estimate will be too far above the target; however, the difference is 
likely not important in practical terms and might vary under other dose–response 
conditions. The advantage of the two-stage design may seem surprising, given that 
the next dose level is selected only on the basis of the outcome at the current dose 
level, and ignores the information that CRM uses from all prior patients. However, 
the two-stage design also incorporates a final estimation procedure for the MTD that 
utilizes all the data, and uses a richer family of dose–response models. This issue is 
examined in Storer (2001).

A desirable feature of the results shown is that both the relative and absolute 
properties of the designs do not differ much over the range of dose–response curves. 
Additional simulations could be carried out which would vary also the distance 
between the starting dose and the true MTD, or place the true MTD between dose 
levels instead of exactly at a dose level.

To illustrate further some of the features of phase I designs, and the necessity of 
studying each situation on a case by case basis, we repeated the simulation study 
using a target θ = 0.20. Exactly the same dose–response settings are used, so that 
the results for the two traditional designs are identical to those shown previously. 
The two-stage design is modified to use five cohorts of five patients, but follows 
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essentially the same rule for selecting the next level described earlier with “3” 
replaced by “5”. Additionally, the final fitted model estimates the MTD associated 
with the new target; and of course the CRM design selects the next dose level based 
on the new target.

The results for this simulation are presented in Figures 1.4 and 1.5. In this case 
the best-of-5 design is clearly eliminated as too aggressive. However, and perhaps 
surprisingly, the 3 + 3 design performs nearly as well, or better, than the supposedly 
more sophisticated two-stage and CRM designs. There is a slight disadvantage in 
terms of precision, but given that the mean sample size with the 3 + 3 design is nearly 
half that of the other two, this may be a reasonable trade-off. Of course, it could also 
be the case in this setting that using a smaller second stage sample size would not 
adversely affect the two-stage and CRM designs.
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Finally, we reiterate the point that the purpose of this simulation was to dem-
onstrate some of the properties of phase I designs and of the process of simulation 
itself, not to advocate any particular design. Depending on the particulars of the trial 
at hand, any one of the four designs might be a reasonable choice. An important 
point to bear in mind is that traditional designs must be matched to the desired target 
quantile, and will perform poorly for other quantiles. CRM designs are particularly 
flexible in this regard; the two-stage design can be modified to a lesser extent.
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2.1  OVERVIEW

This review describes the basic ideas behind the continual reassessment method 
(CRM), as it is used in Phase I and Phase I/II dose finding. We recall some impor-
tant technical considerations, some key properties of the method, and the possibility 
for substantial generalization, specifically, the use of graded information on toxici-
ties, the incorporation of a stopping rule leading to potential reductions in sample 
size, the incorporation of information on patient heterogeneity, the incorporation 
of pharmacokinetics, and the possibility of modeling in the presence of drug com-
binations. In its most classical setting the CRM is used to identify the maximum 
tolerated dose (MTD) where only information on toxicities is used. For Phase I/II 
designs, in which information on efficacy can be obtained within a comparable time 
frame as that on toxicity, we can use the CRM structure, together with the sequential 
probability ratio test, to construct very effective designs to locate the dose producing 
the greatest rate of success. We consider more involved CRM designs, for example, 
designs that account for low-grade toxicities, pharmacokinetic endpoints, patient 
heterogeneity, partial ordering in drug combinations and model averaging tech-
niques. The theory that backs up this extra complexity comes under the umbrella of 
Bayesian model choice.

2.2  GOALS AND OPERATING CHARACTERISTICS

We describe here the clinical goals for these studies and the method’s operating 
characteristics. Essentially, the clinical goals correspond to the basic properties we 
would wish a suitable method to possess. The operating characteristics describe what 
we actually have, that is, how the method will behave in practice.

2.2.1  Clinical Goals

Storer (1989) made explicit the goal of a Phase I dose finding study in chronic ill-
ness such as cancer, as being the identification of some dose corresponding to an 
acceptable rate of undesirable side effects, usually called toxicities. This would be 
the context for cytotoxic drugs in which we might view toxicity as a surrogate for 
longer-term efficacy. For Phase I/II studies we observe in a similar time frame both 
toxicity and some measure of effect. For these studies the goal is usually to maxi-
mize the overall success rate. O’Quigley et al. (1990) argued that, for a Phase I study, 
in addition to the goal of targeting some percentile, an acceptable design should aim 
to incorporate the following restrictions:

	 1.	We should minimize the number of under-treated patients, that is, patients 
treated at unacceptably low dose levels.

	 2.	We should minimize the number of patients treated at unacceptably high 
dose levels.

	 3.	We should minimize the number of patients needed to complete the study 
(efficiency).
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	 4.	The method should respond quickly to inevitable errors in initial guesses, 
rapidly escalating in the absence of indication of drug activity (toxicity) 
and rapidly de-escalating in the presence of unacceptably high levels of 
observed toxicity.

Before describing just how the CRM meets the aforementioned requirements we 
will first look at the requirements themselves in the context of Phase I cancer dose 
finding studies.

Most Phase I cancer clinical trials are carried out on patients for whom all cur-
rently available therapies have failed. There will always be hope in the therapeutic 
potential of the new experimental treatment but such hope will often be tempered 
by the almost inevitable life-threatening toxicity accompanying the treatment. Given 
that candidates for these trials have no other options concerning treatment, their 
inclusion appears contingent upon maintaining some acceptable degree of control 
over the toxic side effects as well as trying to maximize treatment efficacy, which 
in the absence of information on efficacy itself translates as dose. Too high a dose, 
while offering in general better hope for treatment effect, will be accompanied by 
too high a probability of encountering unacceptable toxicity. Too low a dose, while 
avoiding this risk, may offer too little chance of seeing any benefit at all.

Given this context, the first two of the earlier numbered requirements appear 
immediate. The third requirement, a concern for all types of clinical studies, becomes 
of paramount importance here where very small sample sizes are inevitable. This is 
because of the understandable desire to proceed quickly with a potentially promis-
ing treatment to the Phase II stage. At the Phase II stage the probability of observing 
treatment efficacy is almost certainly higher than that for the Phase I population of 
patients. We have to do the very best we can with the relatively few patients avail-
able and the statistician involved in such studies should also provide some idea as to 
the error of our estimates, translating the uncertainty of our final recommendations 
based on such small samples. The fourth requirement is not an independent require-
ment and can be viewed as a partial reexpression of requirements 1 and 2, taking 
timeliness also into account.

Taken together, the requirements point toward a method where we converge 
quickly to the correct level, the correct level being defined as the one having a prob-
ability of toxicity as close as possible to some prespecified value θ. The value is cho-
sen by the investigator such that he or she considers probabilities of toxicity higher 
than θ (to be unacceptably high), while those lower than θ unacceptably low in that 
they indicate, indirectly, the likelihood of too weak an antitumor effect.

Figure 2.1 illustrates the comparative behavior of CRM with a fixed sample up 
and down design (Storer 1989) in which level 7 is the correct level. How does CRM 
work? The essential idea is similar to that of stochastic approximation, the main 
differences being the use of a nonlinear under-parameterized model, belonging to 
a particular class of models, and a small number of discrete dose levels rather than 
a continuum. Patients enter sequentially. The working dose–toxicity curve, taken 
from the CRM class (described hereafter), is refitted after observing each patient’s 
outcome. The curve is then inverted to identify which of the available levels has an 
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associated estimated probability as close as we can get to the targeted acceptable 
toxicity level. The next patient is then treated at this level. The cycle is continued 
until a fixed number of subjects have been treated or until we apply some stopping 
rule (see Section 2.4.1). Typical behavior is that shown in Figure 2.1.

2.2.2  Operating Characteristics

A large sample study (Shen and O’Quigley 1996) showed that, under certain con-
ditions, the level to which a CRM design converges will indeed be the level with 
respective estimated toxicity probability closest to the target. As pointed out by Storer 
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(1998) large sample properties themselves will not be wholly convincing since, in 
practice, we are inevitably faced with small to moderate sample sizes. Nonetheless, 
if any scheme fails to meet such basic statistical criteria as large sample convergence, 
we need to investigate with great care its finite sample properties. The tool to use 
here is mostly that of simulation although for the standard up and down schemes, 
the theory of Markov chains enables us to carry out exact probabilistic calculations 
(Storer 1993, Reiner et al. 1998).

Whether Bayesian or likelihood based, once the scheme is under way, then it is 
readily shown that a nontoxicity always points in the direction of higher levels and a 
toxicity in the direction of lower levels, the absolute value of the change diminishing 
with the number of included patients. For the case of non-monotone likelihood it is 
impossible to be at some level, observe a toxicity and then for the model to recom-
mend a higher level as claimed by some authors, unless pushed in such a direction 
by a strong prior. Furthermore, when targeting lower percentiles such as 0.2, it can 
be calculated, and follows our intuition, that a toxicity, occurring with a frequency, 
a factor of 4 less than that for the nontoxicities, will have a much greater impact on 
the likelihood or posterior density. This translates directly into an operating charac-
teristic whereby model-based escalation is relatively cautious and de-escalation more 
rapid, particularly early on where little information is available. In the model and 
examples of O’Quigley et al. (1990) dose levels could never be skipped when escalat-
ing. However, if the first patient, treated at level 3, suffered a toxic side effect, the 
method skipped when de-escalating, recommending level 1 for the subsequent two 
entered patients before, assuming no further toxicities were seen, escalating to level 2.

Simulations in O’Quigley et al. (1990), O’Quigley and Chevret (1991, 1993), 
Goodman et al. (1995), Korn et al. (1994), and O’Quigley (2006) show the operat-
ing characteristics of CRM to be good, in terms of accuracy of final recommenda-
tion while simultaneously minimizing the numbers of overtreated and undertreated 
patients. As long as strong priors are not used in the Bayesian framework, and the 
model requirements are not violated, the method behaves very well (Cheung and 
Chappell 2002).

2.2.3  Safety

Safety is a concern for all clinical trials. Concern for safety in Phase I trials has been 
expressed because these are the first inhuman trials and the dose–toxicity profile 
obtained from preclinical studies may no longer be valid in the clinical context. 
Some investigators have expressed a worry that CRM may tend to treat the early 
included patients in a study at high dose levels. This can be seen to not be the case 
but the concern alone convinced many investigators that without some modification 
CRM was not “safe” to use routinely. Safety is in fact a statistical property of any 
method. When faced with some potential realities or classes of realities, we can ask 
ourselves questions such as: what is the probability of toxicity for a randomly chosen 
patient that has been included in the study or, say, what is the probability of toxicity 
for those patients entered into the study at the very beginning.

Once we know the realities or classes of realities we are facing, the operating 
rules of the method—obvious and transparent for up and down schemes and less 
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transparent for model based schemes such as CRM—then, in principle, we can cal-
culate the probability of toxicity for a randomly chosen patient or for those patients 
entered into the study at the very beginning. Theoretical work as well as extensive 
simulations (O’Quigley et al. 1990, O’Quigley and Chevret 1991, O’Quigley and 
Shen 1996, Ahn 1998, Reiner et al. 1998, O’Quigley 1999) indicates CRM to be 
a safer design than any of the commonly used up and down schemes, in that, for 
targets of less than (θ = 0.30, the probability that a randomly chosen patient suffers 
a toxicity is lower. In practice, these calculations are involved and we may simply 
prefer to estimate them to any desired degree of accuracy via simulation.

Were the definition of safety to be widened to include the concept of treating 
patients at unacceptably low levels where the probability of toxicity is deemed too 
close to zero, then CRM does very much better than the standard designs. This find-
ing is logical given that the purpose of CRM is to concentrate as much experimenta-
tion as possible around the prespecified target. In addition, it ought be emphasized 
that we can adjust the CRM to make it as safe as we require by changing the target 
level. For instance, were we to decrease the target from 0.20 to 0.10, the observed 
number of toxicities will, on average, be reduced and, in many cases, halved. This is 
an important point since it highlights the main advantages of the CRM over the stan-
dard designs in terms of flexibility and the ability to be adapted to potentially dif-
ferent situations. An alternative way to enhance conservatism is, rather than choose 
the closest available dose to the target, systematically take the dose immediately 
lower than the target or change the distance measure used to select the next level 
to recommend. This idea has been studied by Babb et al. (1998) who introduced 
criteria that control overdosing. The issue of safety has been further addressed by 
modified CRM designs that start at the lowest dose level, and do not allow skipping 
levels. Simulation studies have shown that the impact of such modifications on the 
reliability of final estimation is negligible (Garrett-Mayer 2006, Iasonos et al. 2008). 
In addition, in the Bayesian setting, we are at liberty to assign heavier priors to lower 
dose levels if those levels should be preferred.

2.3  TECHNICAL ASPECTS

The aim of CRM is to locate the most appropriate dose, the so-called target dose, 
the precise definition of which is provided as follows. This dose is taken from some 
given range of available doses. Dose spacing for single drug combinations is often 
addressed via a modified Fibonacci design, preclinical or earlier clinical studies. For 
the purposes of CRM we do not generally address the issue of dose spacing and 
we assume that we have available K preselected fixed doses; d1, …, dk. The need 
to add doses may arise in practice when the toxicity frequency is deemed too low 
at one level but the next highest level is considered too toxic. CRM can help with 
this affirmation but as far as extrapolation or interpolation of dose is concerned, the 
relevant insights will come from pharmacokinetics. These doses are not necessarily 
ordered directly in terms of the di themselves, in particular, since each di may be a 
vector, being a combination of different treatments, but rather in terms of the prob-
ability R(di) of encountering toxicity at each dose di. We take monotonicity to mean 
that the dose levels, equally well identified by their integer subscripts i (i = 1, …, k), 
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are ordered whereby the probability of toxicity at level i is greater than that at level 
i'(whenever i > i'). The monotonicity requirement or the assumption that we can so 
order our available dose levels in terms of toxicity is thus important. Currently all the 
dose information required to run a CRM trial is contained in the dose levels. Without 
wishing to preclude the possibility of exploiting information contained in the doses di 
and not in the dose levels i, at present we lose no information when we replace di by i.

The actual amount of drug therefore, so many mg/m2 say, is typically not used. 
For a single agent trial it is in principle possible to work with the actual dose (see 
Piantadosi et al. 1998). This requires care, in particular, if working with Bayesian 
priors, and, generally, we advise working with conceptual dose levels. For multidrug 
or treatment combination studies there is no obvious univariate measure. We work 
instead with some conceptual dose, increasing when one of the constituent ingre-
dients increases, and under our monotonicity assumption, translating itself as an 
increase in the probability of a toxic reaction. Choosing the dose levels amounts to 
selecting levels (treatment combinations) such that the lowest level hopefully has an 
associated toxic probability less than the target and the highest level possibly close 
or higher than the target.

The most appropriate dose, the “target” dose, is that dose having an associated 
probability of toxicity as close as we can get to the target “acceptable” toxicity θ. 
Values for the target toxicity level, θ, might typically be 0.2, 0.25, 0.3, 0.35, although 
there are studies in which this can be as high as 0.4 (Moller 1995). The value depends 
on the context and the nature of the toxic side effects.

The dose for the jth entered patient Xj can be viewed as random taking values xj, 
most often discrete in which case xj ∈{d1,…, dk} but possibly continuous where Xj = x; 
x ∈+. In light of the remarks of the previous two paragraphs we can, if desired, 
entirely suppress the notion of dose and retain only information pertaining to dose 
level. This is all we need and we may prefer to write xj ∈{1,…, k}. Let Yj be a binary 
random variable (0,1) where 1 denotes severe toxic response for the jth entered 
patient ( j = 1,…, n). We model R(xj), the true probability of toxic response at Xj = xj; 
xj ∈{d1,…dk} or xj ∈{1,…k} via

	
R x Y X x E Y x x aj j j j j j j( ) ( ) ( ) ( )= = = = = ,Pr 1 ψ

for some one-parameter model ψ(xj,a).
For the most common case of a single homogeneous group of patients we are 

obliged to work with an under-parameterized model, notably a one-parameter model. 
Although a two-parameter model may appear more flexible, the sequential nature 
of CRM together with its aim to put the included patients at a single correct level 
means that we will not obtain information needed to fit two parameters. We are close 
to something like non-identifiability. A likelihood procedure will be unstable and 
may even break down, whereas a two-parameter fully Bayesian approach (O’Quigley 
et al. 1990, Gatsonis and Greenhouse 1992, Whitehead and Williamson 1998) may 
work initially, by virtue of the cohesion and structure created by the prior, but may 
become less stable as the sample size increases (Shu and O’Quigley 2008). The goal 
of CRM in not to fit an overall model to the full range of data, but is rather to identify 
some target percentile from the dose–toxicity curve.
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2.3.1  Model Requirements

The restrictions on ψ(x,a) were described by O’Quigley et al. (1990). For given 
fixed x we require that ψ(x,a) be strictly monotonic in a. For fixed a we require 
that ψ(x,a) be monotonic increasing in x or, in the usual case of discrete dose 
levels di, i = 1, …, k, that ψ(di,a) > ψ(dm,a) whenever i > m. The true probability 
of toxicity at whatever treatment combination has been coded by x, is given by 
R(x) and we require that, for the specific doses under study (d1, …, dk) there exists 
values of a, say a1,…, ak such that ψ(di,ai) = R(di),(i = 1, …, k). In other words, our 
one-parameter model has to be rich enough to model the true probability of tox-
icity at any given level. We call this a working model since we do not anticipate 
a single value of a to work precisely at every level, that is, we do not anticipate 
a1 = a2 = ⋯ = ak = a. Many choices are possible. We have obtained excellent results 
with the simple choice:

	 ψ α( ) ( )d a i ki i
a, = , = , ...,1 	 (2.1)

where 0 < α1 < ⋯ αk < 1 and 0 < a < ∞. For the six levels studied in the simulations by 
O’Quigley et al. (1990) the working model had α1 = 0.05, α2 = 0.10, α3 = 0.20, α4 = 0.30, 
α5 = 0.50, and α6 = 0.70. In that paper this was expressed a little differently in terms 
of conceptual dose di where d1 = −1.47, d2 = −1.10, d3 = −0.69, d4 = −0.42, d5 = 0.0, and 
d6 = 0.42 obtained from a model in which

	
αi

id i k=
+

= ,...,
(tanh )1

2
1 	 (2.2)

The preceding “tanh” model was first introduced in this context by O’Quigley et al. 
(1990), the idea being that tanh(x) increases monotonically from 0 to 1 as x increases 
from −∞ to ∞. This extra generality is not usually needed since attention is focused 
on the few fixed di. Note that, at least as far as maximum likelihood estimation is 
concerned (see Section 2.3.2), working with model (1) is equivalent to working with 

a model in which αi, i = 1,…,k is replaced by αi i k∗ = , ...,( )1  where α αi i
m∗ =  for any 

real m > 0. Thus, we cannot really attach any concrete meaning to the αi. The spac-
ing, however, between adjacent αi will impact operating characteristics. Working 
with real doses corresponds to using some fixed dose spacing, although not neces-
sarily one with nice properties. The spacings chosen here have proved satisfactory in 
terms of performance across a broad range of situations. An investigation into how 
to choose the αi with the specific aim of improving certain aspects of performance 
has been carried out by Lee and Cheung (2009).

Some obvious choices for a model can fail the previous conditions leading 
to potentially poor operating characteristics. The one-parameter logistic model, 
ψ(x,a) = w/(1 + w), in which b is fixed and where w = exp(b + ax) can be seen to 
fail the previous requirements (Shen and O’Quigley 1996). On the other hand the 
less  intuitive model obtained by w so that w = exp(a + bx), b ≠ 0, belongs to the 
CRM class.
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2.3.2  Maximum Likelihood Estimation

Once a model has been chosen and we have data in the form of the set Ωj−1 = {y1,x1,…,​
yj − 1,xj − 1}, the outcomes of the first j − 1 patients we obtain estimates R̂ (di), (i = 1,…, k) 
of the true unknown probabilities R(di), (i = 1,…,k) at the k dose levels (see the fol-
lowing). The target dose level is that level having associated with it a probability 
of toxicity as close as we can get to θ. The dose or dose level xj assigned to the jth 
included patient is such that

	
| − |<| − |, = , , ; ≠ˆ ( ) ˆ ( ) ( )R x R d i k x dj i j iθ θ 1…

Thus, xj is the closest level to the target level in the previous precise sense. Other 
choices of closeness could be made, incorporating cost or other considerations. We 
could also weight the distance, for example, multiply |R̂ (xj) − θ| by some constant 
greater than 1 when R̂ (xj) > θ. This would favor conservatism, such a design tending 
to experiment more often below the target than a design without weights. Similar 
ideas have been pursued by Babb et al. (1998).

The estimates R̂ (xj) are obtained from the one-parameter working model. Two 
questions dealt with in this section arise: (1) How do we estimate R(xj) on the basis 
of Ωj−1? and (2) how do we obtain the initial data, in particular since the first entered 
patient or group of patients must be treated in the absence of any data-based esti-
mates of R(x1)? Even though our model is under-parameterized, leading us into the 
area of mis-specified models, it turns out that standard procedures of estimation 
work. Some care is needed to show this and we look at this in Section 2.4. The proce-
dures themselves are described later. Obtaining the initial data is partially described 
in these same sections as well as being the subject of its own Section 2.4.2.

In order to decide, on the basis of available information and previous observa-
tions, the appropriate level at which to treat a patient, we need some estimate of 
the probability of toxic response at dose level di, (i = 1,…,k). We would currently 
recommend use of the maximum likelihood estimator (O’Quigley and Shen 1996) 
described in Section 2.3.1. The Bayesian estimator, developed in the original paper 
by O’Quigley et al. (1990) will perform very similarly unless priors are strong. The 
use of strong priors in the context of an under-parameterized and mis-specified 
model may require deeper study. Bayesian ideas can nonetheless be very useful in 
addressing more complex questions such as patient heterogeneity and drug combina-
tions. We return to this in the Section 2.8. After the inclusion of the first j patients, 
the log-likelihood can be written as

	

Lj

j j

a y x a y x a( ) log ( ) ( ) log( ( ))= , + − − ,
= =
∑ ∑
�
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�
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1 1

1 1ψ ψ 	 (2.3)

and is maximized at a = âj. Maximization of j(a) can easily be achieved with a 
Newton–Raphson algorithm. Once we have calculated âj, we can next obtain an 
estimate of the probability of toxicity at each dose level di via

	
ˆ ( ) ( ˆ ) ( )R d d a i ki i j= , , = , ,ψ 1…
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On the basis of this formula the dose to be given to the (j + 1)th patient, xj + 1 is deter-
mined as already mentioned.

A requirement to be able to maximize the log-likelihood on the interior of the 
parameter space is that we have heterogeneity among the responses, that is, at least one 
toxic and one nontoxic response (Silvapulle 1981). Otherwise the likelihood is maxi-
mized on the boundary of the parameter space and our estimates of R(di), (i = 1,…,k) 
are trivially either zero, one, or, depending on the model we are working with, may 
not even be defined. Thus, the experiment is considered as not being fully underway 
until we have some heterogeneity in the responses. These could arise in a variety of 
different ways: the use of the standard up and down approach, the use of an initial 
Bayesian CRM as outlined in two-stage designs, or the use of a design believed to be 
more appropriate by the investigator. Once we have achieved heterogeneity, the model 
kicks in and we continue as prescribed earlier (estimation–allocation). Achieving the 
necessary heterogeneity to carry out the previous prescription is largely arbitrary.

2.4  IMPLEMENTATION

2.4.1  Fixed Sample or Stopping Rules

CRM can be implemented on the basis of a fixed sample or by making use of a 
stopping rule. If a fixed sample n is used, then the recommended dose level is the 
level that would be recommended to patient n + 1. However, given the convergence 
properties of CRM, it may occur in practice that we appear to have settled on a level 
before having included the full sample size n of anticipated patients. In such a case 
we may wish to bring the study to an early close, thereby enabling the Phase II study 
to be undertaken more quickly. One possible approach suggested by O’Quigley et al. 
(1990) would be to use the estimated confidence interval for the probability of toxic-
ity, ψ(xj + 1, âj), at the currently recommended level and when this interval falls within 
some prespecified range; then we stop the study.

We can calculate an approximate 100(1 − α)% confidence interval for ψ(xj + 1, âj) 

as ( )ψ ψj j
− +,  where
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where
zα is the αth percentile of a standard normal distribution
v(âj) is an estimate of the variance of âj

For the model of Equation 2.1 this turns out to be particularly simple and we can write
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Although based on a mis-specified model these intervals turn out to be quite accu-
rate, even for sample sizes as small as 12 and thus helpful in practice (Natarajan and 
O’Quigley 2003). Another approach would be to stop after some fixed number of 
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subjects have been treated at the same level. Such designs were used by Goodman 
et al. (1995) and Korn et al. (1994) and have the advantage of great simplicity. These 
modifications have been evaluated through simulations and they appear to work well 
in terms of MTD estimation (Goodman et al. 1995, Iasonos et al. 2008) if the sample 
size is no less than 20, but their theoretical properties remain to be studied.

One stopping rule that has been studied in detail (O’Quigley and Reiner 1998) is 
based on the convergence of CRM so that, as we appear to settle at some level, the 
accumulating information can enable us to quantify this notion. Specifically, given 
the data of j patients, Ωj, we would like to be able to say something about the levels 
at which the remaining patients, j + 1 to n, are likely to be treated. The quantity we 
are interested in is

	
Pj n j j n jx x x, + + +

⎧
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= = = =Pr 1 2 1� Ω

In other words, j,n is the probability that xj + 1 is the dose recommended to all 
remaining patients in the trial as well as being the final recommended dose. Thus, 
to find j,n one needs to determine all the possible outcomes of the trial based on 
the results known for the first j patients. Details regarding estimating j,n are given 
in O’Quigley and Reiner (1998). The rule, based on precise probabilistic calcula-
tion, is quite involved. A much simpler rule was constructed based on the idea of 
having settled at some level in O’Quigley (2002) where the operating characteristics 
were more closely evaluated. In addition, Zohar and Chevret (2001) compared vari-
ous Bayesian stopping rules and confirmed the requirement of including at least 20 
patients to reach an accurate estimate of MTD when testing 5–6 dose levels.

2.4.2  Two-Stage Designs

It may be felt that we know so little before undertaking a given study that it is worth-
while splitting the design into two stages, an initial exploratory escalation followed 
by a more refined homing in on the target. Such an idea was first proposed by Storer 
(1989) in the context of the more classical up and down schemes. His idea was to 
enable more rapid escalation in the early part of the trial where we may be quite 
far from a level at which treatment activity could be anticipated. Moller (1995) was 
the first to use this idea in the context of CRM designs. Her idea was to allow the 
first stage to be based on some variant of the usual up and down procedures. In 
the context of sequential likelihood estimation, the necessity of an initial stage was 
pointed out by O’Quigley and Shen (1996) since the likelihood equation fails to have 
a solution on the interior of the parameter space unless some heterogeneity in the 
responses has been observed. Their suggestion was to work with any initial scheme, 
Bayesian CRM or up and down, and, for any reasonable scheme, the operating char-
acteristics appear relatively insensitive to this choice.

However, we believe there is something very natural and desirable in two-stage 
designs and that currently they could be taken as the designs of choice. The rea-
son is the following: Early behavior of the method, in the absence of heterogeneity, 
appears to be rather arbitrary. A decision to escalate after inclusion of three patients 
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tolerating some level, or after a single patient tolerating a level or according to some 
Bayesian prior corresponds to the simple desire to try a higher dose. This follows 
some kind of evidence of a low rate of toxicity at the current level. Rather than lead 
the clinician into thinking that something subtle and carefully analytic is taking 
place, our belief is that it is preferable that he or she be involved in the design of 
the initial phase. Operating characteristics that do not depend on data ought to be 
driven by clinical rather than statistical concerns. More importantly, the initial phase 
of the design, in which no toxicity has yet been observed, can be made much more 
efficient, from both the statistical and ethical angles, by allowing information on 
toxicity grade to determine the rapidity of escalation.

The simplest example of a two-stage design would be to include an initial esca-
lation stage which exactly replicates the old standard design: starting at the lowest 
level, three patients are treated and only if all three tolerate the dose do we escalate 
to a higher level. As soon as the first dose limiting toxicity (DLT) is encountered, we 
close the first stage and open the second stage based on CRM modeling and using all 
the available data. Such a scheme could be varied in many ways, for example, includ-
ing only a single patient at the lowest, then two patients at the second lowest and then 
as before. Another simple design, using information on toxicity severity (Table 2.1), 
enables rapid escalation through the lower levels. Assume there were many dose 
levels and the first included patient was treated at a low level. As long as we observe 
very low–grade toxicities then we escalate quickly, including only a single patient at 
each level. As soon as we encounter more serious toxicities then escalation is slowed 
down. Ultimately, we encounter dose limiting toxicities at which time the second 
stage, based on fitting a CRM model, comes fully into play. This is done by integrat-
ing this information and that obtained on all the earlier non-dose-limiting toxicities 
to estimate the most appropriate dose level.

It was decided to use information on low-grade toxicities in the first stage of a 
two-stage design in order to allow rapid initial escalation since it is possible that we 
could be far below the target level. Specifically, we define a grade severity variable 
S(i) to be the average toxicity severity observed at dose level i, in this case the sum 
of the severities at that level divided by the number of patients treated at that level.

The rule is to escalate providing S(i) is less than two. Furthermore, once we have 
included three patients at some level then escalation to higher levels only occurs if 
each cohort of three patients does not experience DLT. This scheme means that, in 

TABLE 2.1
Toxicity “Grades” (Severities) for Trial

Severity Degree of Toxicity

0 No toxicity

1 Mild toxicity (non-dose limiting)

2 Moderate toxicity (non-dose limiting)

3 Severe toxicity (non-dose limiting)

4 DLT
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practice, if we see toxicities of severities coded 0 or 1, then we escalate. The first 
severity, coded 2, necessitates a further inclusion at this same level and, anything 
other than a 0 severity for this inclusion, would require yet a further inclusion and 
a non-dose-limiting toxicity before being able to escalate. This design also has the 
advantage that, should we be slowed down by a severe (severity 3), albeit non-dose-
limiting toxicity, we retain the capability of picking up speed (in escalation) should 
subsequent toxicities be of low degree (0 or 1). This can be helpful in avoiding being 
handicapped by an outlier or an unanticipated and possibly not drug related toxic-
ity. Once DLT is encountered, this phase of the study (the initial escalation scheme) 
comes to a close and we proceed on the basis of CRM recommendation. Although 
the initial phase is closed, the information on both dose limiting and non-dose-
limiting toxicities thereby obtained is used in the second stage.

2.4.3  Grouped Designs

O’Quigley et al. (1990) describe the situation of delayed response in which new patients 
become available to be included in the study while we are still awaiting the toxicity 
results on already entered patients. The suggestion was, in the absence of information 
on such recently included patients, that the logical course to take was to treat at the 
most recent recommended level. This is the level indicated by all the currently avail-
able information. The likelihood for this situation was written down by O’Quigley 
et al. (1990) and, apart from a constant term not involving the unknown parameter, 
is just the likelihood we obtain had the subjects been included one by one. There is 
therefore, operationally, no additional work required to deal with such situations.

The question does arise, however, as to the performance of CRM in such cases. 
The delayed response can lead to grouping or we can simply decide upon the group-
ing by design. Three papers (Goodman et al. 1995, O’Quigley and Shen 1996, 
Iasonos et al. 2008) have studied the effects of grouping. The more thorough study 
was that of Goodman et al. in which cohorts of sizes 1, 2, and 3 were evaluated. 
Broadly speaking the cohort size had little impact upon operating characteristics and 
the accuracy of final recommendation. O’Quigley and Shen (1996) indicated that for 
groups of three, and relatively few patients (16), when the correct level was the high-
est available level and we started out at the lowest or a low level, we might anticipate 
some marked drop in performance when contrasted with, say, one-by-one inclusion, 
but the differences disappeared for samples of size 25. One-by-one inclusion tends 
to maximize efficiency but, should stability throughout the study be an issue, then 
this extra stability can be obtained through grouping. The cost of this extra stability 
in terms of efficiency loss appears to be generally small. The findings of Goodman 
et al. (1995), O’Quigley and Shen (1996), O’Quigley (1999), and Iasonos et al. (2008) 
show that grouping would not lead to any noticeable efficiency losses, a finding 
which contradicts the fears expressed by some workers in the field.

2.4.4  Illustration

This brief illustration is recalled from O’Quigley and Shen (1996). The study con-
cerned 16 patients and there was no stopping rule in effect. Their toxic responses 
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were simulated from the known dose–toxicity curve. There were six levels in the 
study, maximum likelihood was used, and the first entered patients were treated 
at the lowest level. The design was two stage. The true toxic probabilities were 
R(d1) = 0.03, R(d2) = 0.22, R(d3) = 0.45, R(d4) = 0.6, R(d5) = 0.8, and R(d6) = 0.95. The 
working model was that given by Equation 2.1 where α1 = 0.04, α2 = 0.07, α3 = 0.20, 
α4 = 0.35, α5 = 0.55, and α6 = 0.70. The targeted toxicity was given by θ = 0.2 indicat-
ing that the best level for the MTD is given by level 2 where the true probability of 
toxicity is 0.22. A grouped design was used until heterogeneity in toxic responses 
was observed, patients being included, as for the classical schemes, in groups of 
three. The first three patients experienced no toxicity at level 1. Escalation then 
took place to level 2 and the next three patients treated at this level did not experi-
ence any toxicity either. Subsequently two out of the three patients treated at level 
3 experienced toxicity. Given this heterogeneity in the responses the maximum 
likelihood estimator for a now exists and, following a few iterations, could be seen 
to be equal to 0.715. We then have that R̂ (d1) = 0.101, R̂ (d2) = 0.149, R̂ (d3) = 0.316, 
R̂ (d4) = 0.472, R̂ (d5) = 0.652, and R̂ (d6) = 0.775. Table 2.2 shows the visited dose 
levels, the toxicity outcomes, the estimated parameter â, and the estimated prob-
abilities of toxicity at each of the six dose level for each inclusion. Note that the 
modeling stage begins after observing the outcome from the ninth patient. The 10th 
entered patient is then treated at level 2 for which R̂ (d2) = 0.149 since, from the 

TABLE 2.2
Sequential Trial for 16 Patients. The 3 + 3 
Design Is Followed for the First Nine 
Patients. CRM Estimation Starts after 
Observing the Ninth Patient

j xj yj âj R̂ (dj)

1 1 0

2 1 0

3 1 0

4 2 0

5 2 0

6 2 0

7 3 0

8 3 1

9 3 1 0.7151 0.10, 0.15, 0.32, 0.47, 0.65, 0.77

10 2 0 0.7592 0.09, 0.13, 0.29, 0.45, 0.64, 0.76

11 2 1 0.5711 0.16, 0.22, 0.40, 0.55, 0.71, 0.82

12 2 0 0.6066 0.14, 0.20, 0.38, 0.53, 0.70, 0.81

13 2 0 0.6391 0.13, 0.18, 0.36, 0.51, 0.68, 0.80

14 2 0 0.6691 0.12, 0.17, 0.34, 0.50, 0.67, 0.79

15 2 1 0.5563 0.17, 0.23, 0.41, 0.56, 0.72, 0.82

16 2 0 0.582 0.15, 0.21, 0.39, 0.54, 0.71, 0.81
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available estimates, this is the closest to the target θ = 0.2. The 10th included patient 
does not suffer toxic effects and the new maximum likelihood estimator becomes 
0.759. Level 2 remains the level with an estimated probability of toxicity closest to 
the target. This same level is in fact recommended to the remaining patients so that 
after 16 inclusions the recommended MTD is level 2. The estimated probability of 
toxicity at this level is 0.212 and a 90% confidence interval for this probability is 
estimated as (0.07, 0.39).

2.5  STATISTICAL PROPERTIES

Recall that CRM is a class of methods rather than a single method, the members of 
the class depending on arbitrary quantities chosen by the investigator such as the 
form of the model, the spacing between the doses, the starting dose, whether single 
or grouped inclusions, the initial dose escalation scheme in two-stage designs, or the 
prior density chosen for Bayesian formulations. The statistical properties described 
in this section apply broadly to all members of the class, the members nonetheless 
maintaining some of their own particularities.

2.5.1  Convergence

Convergence arguments obtain from considerations of the likelihood. The same 
arguments apply to Bayesian estimation as long as the prior is other than degener-
ate. Usual likelihood arguments based on large sample theory break down since 
our models are mis-specified. The maximum likelihood estimate, R̂ (di) = ψ(di, âj), 
exists as soon as we have some heterogeneity in the responses (Silvapulle 1981). 
We need to assume that the dose toxicity function, ψ(x,a), satisfies the condi-
tions described in Shen and O’Quigley (1996); in particular the condition that, for 
i = 1,…,k, there exists a unique ai such that ψ(di,ai) = R(di). Note that the ais depend 
on the actual probabilities of toxicity and are therefore unknown. We also require 
the following:

	 1.	For each 0 < t < 1 and each x, the function
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is continuous and is strictly monotone in a.
	 2.	The parameter a belongs to a finite interval [A,B].

The first condition is standard for estimating equations to have unique solutions. The 
second imposes no real practical restriction. We will also require the true unknown 
dose toxicity function, R(x), to satisfy the following conditions:

	 1.	The probabilities of toxicity at d1,…,dk satisfy 0 < R(d1)<,…,R(dk) < 1.
	 2.	The target dose level is x0∈{d1,…,dk} where |R̂ (x0) − θ| < |R̂ (di) − θ|, (i = 1,…, 

k;x0 ≠ di).
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	 3.	Before writing down the third condition, note that, since our model is mis-
specified, it will generally not be true that ψ(di,a0) ≡ R(di) for i = 1,…,k. We 
will nonetheless require that the working model be not “too distant” from 
the true underlying dose toxicity curve and this can be made precise with 
the help of the set

	 S a a x a x a d xi i( ) { ( ) ( ) }0 0 0= :| , − |<| , − |, ≠ψ θ ψ θ for all 	 (2.4)

The condition we require is that for i = 1,…,k, ai ∈ S(a0).
At the target level x0 we have R(x0) = θ0 and a0 is defined as the value of a so that 

ψ(x0,a0) = R(x0). Under these conditions, Shen and O’Quigley (1996) showed that the 

estimator ân converges to an and that the asymptotic distribution of n a an( )ˆ − 0  is 
N(0,σ2), with σ2 = {ψ′(x0, a0)}−2θ0(1 − θ0).

2.5.2  Efficiency

We can use θ̂n = ψ(xn + 1, ân) to estimate the probability of toxicity at the recommended 
level xn+1, where ân is the maximum likelihood estimate (O’Quigley 1992). An appli-

cation of the δ-method shows that the asymptotic distribution of n R xn{ ( )}θ̂ − 0  is 
N{0,θ0(1 − θ0)}. The estimate then provided by CRM is fully efficient. This is what our 
intuition would suggest given the convergence properties of CRM and the variance of 
a binomial variate. What actually takes place in finite samples needs to be investigated 
on a case-by-case basis. Nonetheless the relatively broad range of cases studied by 
O’Quigley (1992) show a mean squared error for the estimated probability of toxicity 
at the recommended level under CRM to correspond well with the theoretical variance 
for samples of size n, were all subjects to be experimented at the correct level. Some 
of the cases studied showed evidence of superefficiency, translating nonnegligible bias 
that happens to be in the right direction while a few others indicated efficiency losses 
large enough to suggest the potential for improvement.

Large sample results are helpful in as much as they provide some assurance as 
to the basic statistical soundness of the approach. For instance, some suggested 
approaches using richer parametric models turn out to be not only inefficient but 
also inconsistent. However, in practice, we are typically interested in behavior at 
small sample sizes. For some arbitrarily chosen true dose–toxicity relations, authors 
have studied the relative behavior of competing schemes, case by case, in terms of 
percentage of final recommendation, in-trial allocation, probability of toxicity, aver-
age number of subjects included etc. The operating characteristics are to some extent 
dependent upon the true dose–toxicity relation (Gooley et al. 1994). The choice then 
of such relations and their influence on the evaluation of the performance of the 
method under study raises questions of generalizability.

Nonetheless, it can be seen (O’Quigley et al. 2002) that there does exist an opti-
mal scheme making the fullest use of all the information in the experiment. The 
scheme is optimal in that the mean squared error of estimate of the probability of 
toxicity at the recommended dose is less than or equal to all other asymptotically 
unbiased estimates. Of course, Bayesian schemes could outperform the optimal 
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design by including accurate information. It is also helpful to think in terms of the 
complementary idea, suboptimality, since we will see that suboptimality can be seen 
to be equivalent to the concept of incomplete information.

Most experiments have incomplete information in that it is not usually possible to 
replicate experiments for each subject at each level. Were it possible to experiment 
each subject independently at each level then such a scheme would in fact be equiva-
lent to the nonparametric optimal method. In a real experiment each patient provides 
partial or incomplete information. The monotonicity of toxicity assumption implies 
that if a subject had a toxic reaction at level dk(k ≤ 6), then he or she would necessarily 
have had a toxic reaction at dℓ(k ≤ ℓ ≤ 6). As for his or her response at levels below dk, 
we have no information on this. The information is partial or incomplete. For instance, 
a subject experiencing a toxicity at d5 provides the information shown in Table 2.3 
where a “*” indicates missing or incomplete information. On the other hand, should 
the subject tolerate the treatment at level dk(1 ≤ k ≤ 6) then he or she would necessarily 
tolerate the treatment at all levels dℓ(1 ≤ ℓ ≤ k). Thus, if a subject had been included at 
d3 without a toxic response, the experiment would provide the tabulated information 
as in Table 2.4. The preceding considerations help us understand in a precise way 
why we describe our data as being incomplete. If all the information were available, 
for each patient, we would know the response at every dose level. In other words, the 
highest tolerated dose level would be known. For instance, instead of the previous 
two tables, we could imagine a table for a subject for whom DLT appears from dose 
level 3. The complete information would be as shown in Table 2.5.

Of course in a real trial, such information is not available. However, in the 
framework of simulations or probabilistic calculation, complete information can be 
obtained. As an illustration we take the dose–toxicity relation from O’Quigley et al. 
(2002). We carried out 5000 simulations of the two procedures. Table 2.6 gives the 
recommendation distribution when the target is 0.2. We denote by qk(16) the propor-
tion of times that the optimal method recommends level k based on 16 patients and 
pk(16) the analogous quantity for a CRM design.

TABLE 2.3
Incomplete Information for a 
Subject with a Toxicity

Dose d1 d2 d3 d4 d5 d6

Yk * * * * 1 1

TABLE 2.4
Incomplete Information for a 
Subject without a Toxicity

Dose d1 d2 d3 d4 d5 d6

Yk 0 0 0 * * *
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Only 16 patients were available for study and we might imagine that, for such 
a small sample, we could hope for large gains were we to work with the correct 
model instead of an under-parameterized working model. However, there appears 
to be very little room for improvement over the CRM model used since the opti-
mal method only performs slightly better. The improvement would be worth having 
nonetheless, but we would need quite good evidence that any model that we use is 
justified. For larger sample sizes the difference between the CRM and the optimal 
method quickly diminishes to the point at which they can be neglected.

2.6  MORE COMPLEX CRM DESIGNS

The different up and down designs amount to a collection of ad hoc rules for making 
decisions when faced with accumulating observations. The CRM leans on a model 
which, although not providing a broad summary of the true underlying probabilistic 
phenomenon, in view of its being under-parameterized, does nonetheless provide 
structure enabling better control in an experimental situation. In principle at least, a 
model enables us to go further and accommodate greater complexity. Care is needed, 
but it has been shown that within the CRM framework we can capture some of the 
more complex aspects of dose-finding studies, that are necessarily ignored by the 
rule-based designs. The following sections consider some examples.

2.6.1  Pharmacokinetic Studies

Statistical modeling of Phase I dose finding studies, such as the modeling that takes 
place with the CRM, has been introduced in the last two decades. Much more fully 

TABLE 2.5
Complete Information for a 
Given Patient

Dose d1 d2 d3 d4 d5 d6

Yk 0 0 1 1 1 1

TABLE 2.6
Compared Frequency of Final 
Recommendations of the Optimal Method 
and the CRM for Simulated Examples 
Based on the Probabilities Given on Line 2
dk 1 2 3 4 5 6

Rk 0.05 0.11 0.22 0.35 0.45 0.60

pk(16) 0.05 0.26 0.42 0.21 0.06 0.0

qk(16) 0.04 0.27 0.48 0.17 0.04 0.0
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studied in the Phase I context are pharmacokinetics and pharmacodynamics (see 
Chapter 3). Roughly speaking, pharmacokinetics deals with the study of concentra-
tion and elimination characteristics of given compounds in specified organ systems, 
most often blood plasma, whereas pharmacodynamics focuses on how the com-
pounds affect the body. This is a vast subject referred to as PK/PD modeling. Clearly 
such information will have a bearing on whether or not a given patient is likely to 
encounter DLT or, in retrospect, why some patients and not others were able to toler-
ate some given dose. There are many parameters of interest to the pharmacologist, 
for example, the area under the concentration time curve, the rate of clearance of the 
drug, and the peak concentration.

For our purposes, a particular practical difficulty arises in the Phase I context, in 
which any such information only becomes available once the dose has been adminis-
tered. Most often then the information will be of most use in terms of retrospectively 
explaining the toxicities. However, it is possible to have pharmacodynamic informa-
tion and other patient characteristics relating to the patient’s ability to synthesize 
the drugs, available before selecting the level at which the patient should be treated.

The strength of CRM is to locate with relatively few patients the target dose level. 
The remaining patients are then treated at this same level. A recommendation is 
made for this level. Further studies, following the Phase I clinical study, can now 
be made and this is where we see the main advantage of pharmacokinetics. Most 
patients will have been studied at the recommended level and a smaller amount at 
adjacent levels. At any of these levels we will have responses and a great deal of 
pharmacokinetic information. The usual models, in particular the logistic model, 
can be used to see if this information helps explain the toxicities. If so we may be 
encouraged to carry out further studies at higher or lower levels for certain patient 
profiles, indicated by the retrospective analysis to have probabilities of toxicity much 
lower or much higher than suggested by the average estimate. This can be viewed 
as the fine tuning and may itself give rise to new more highly focused Phase I stud-
ies. At this point, we do not see the utility of a model in which all the different fac-
tors are included as regressors. These further analyses are necessarily very delicate, 
requiring great statistical and/or pharmacological skill, and a mechanistic approach 
based on a global umbrella model is probably unrealistic. In principle we can write 
down any model, say one including all the relevant factors believed to influence the 
probability of encountering toxicity. We can then proceed to estimate the param-
eters. However, we must remain realistic in terms of what can be achieved given the 
maximum obtainable sample size. Some pioneering work has been carried out here 
by Piantadosi and Liu (1996), indicating the potential for improved precision by the 
incorporation of pharmacokinetic information.

Recently, O’Quigley et al. (2010) introduced a dose-finding algorithm to be used 
to identify a level of dose that corresponds to some given targeted response, where 
the response is a continuously measured quantity, typically some pharmacokinetic 
parameter. Consider the case where an agreed level of response has been determined 
from earlier studies on some population and the purpose of the current trial is to 
obtain the same, or a comparable, level of response in a new population. This relates 
to bridging studies. The example came from studies on drugs for HIV that have 
already been evaluated in adults and where the new studies are to be carried out in 
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children. These drugs have the ability to produce some given mean pharmacokinetic 
response in the adult population, and the goal is to calibrate the dose in order to 
obtain a comparable response in the childhood population. In practice, it may turn 
out that the dose producing some desired mean response is also associated with 
an unacceptable rate of toxicity. In this case, we may need to reevaluate the target 
response and this is readily achieved. In simulations, the algorithm can be seen to 
work very well. In the most challenging situations for the method, those where the 
targeted response corresponds to a region of the dose–response curve that is rela-
tively flat, the algorithm can still perform satisfactorily. This is a large field awaiting 
further exploration.

2.6.2  Graded Toxicities

Although we refer to dose limiting toxicities as a binary (0,1) variable, most stud-
ies record information on the degree of toxicity, from 0, complete absence of side 
effects, to 4, life threatening toxicity. The natural reaction for a statistician is to con-
sider that the response variable, toxicity, has been simplified when going from 5 lev-
els to 2 and that it may help to employ models accommodating multilevel responses. 
The issue is not that of modeling a response (toxicity) at 5 levels but of controlling 
DLT, mostly grade 4 but possibly also certain kinds of grade 3. Lower grades are 
helpful in that their occurrence indicates that we are approaching a zone in which 
the probability of encountering a DLT is becoming large enough to be of concern. 
This idea is used implicitly in the two-stage designs described in Section 2.4. If we 
are to proceed more formally and hopefully extract yet more information from the 
observations, then we need models relating the occurrence of dose limiting toxicities 
to the occurrence of lower-grade toxicities. In the unrealistic situation in which we 
can accurately model the ratio of the probabilities of the different types of toxicity, 
we can make small gains in efficiency since the more frequently observed lower-
grade toxicities carry some information on the potential occurrence of dose limiting 
toxicities. Such a situation would also allow gains in safety since it would allow the 
method to concentrate the experimentation at the MTD even faster and result in a 
smaller variance in the estimation of the parameter of interest. At the opposite end of 
the model/hypothesis spectrum we might decide we know nothing about the relative 
rates of occurrence of the different toxicity types and simply allow the accumulat-
ing observations to provide the necessary estimates. In this case it turns out that we 
neither lose nor gain efficiency, and the method behaves identically to one in which 
the only information we obtain is whether or not the toxicity is dose limiting. These 
two situations suggest there may be a middle road, using a Bayesian prescription, in 
which very careful modeling can lead to efficiency improvements, if only moderate, 
without making strong assumptions.

To make this more precise let us consider the case of three toxicity levels, the 
highest being dose limiting, the middle level indicating moderate toxicities, and the 
lowest level indicating no toxicities at all. Let Yj denote the toxic response for patient 
j who is treated at level xj, and let Yj take three values 1, 2, 3. The goal of the trial is 
still to identify a level of dose whose probability of DLT is closest to a given percen-
tile of the dose–toxicity curve. A working model for the CRM could be
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The contributions to the likelihood are 1 − ψ2(xj,a,b) when Yj = 1, ψ1(xj,a) when Yj = 3 
and ψ2(xj,a,b) − ψ1(xj,a) when Yj = 2. To begin with, we make the (generally unre-
alistic) assumption that the parameter b is known precisely. The model need not 
be correctly specified although b should maintain interpretation outside the model, 
for instance some simple function of the ratio of dose-limiting toxicities Pr(Y = 3) to 
moderate toxicities Pr(Y = 2). The known value might have been obtained from other 
data although, mostly, the use of a known value is for theoretical purposes, provid-
ing us with some kind of a bound when compared with the more realistic situation 
in which b is not known precisely. Such imprecise knowledge could be characterized 
by an appropriate prior. With no prior information, and being able to maximize the 
likelihood that can involve two unknown parameters, we obtain the same results as 
with the more usual one-parameter CRM. This is due to the parameter orthogonal-
ity. There is therefore no efficiency gain although there is the advantage of learning 
about the relationship between the different toxicity types. For more details about the 
simulation study refer to Iasonos and Zohar (2011).

2.7  COMBINED TOXICITY-EFFICACY STUDIES

An interesting aspect of clinical trial design is the definition of composite endpoints. 
In the context of Phase I/II trials, investigators are interested in finding a dose that 
is safe and, in addition, meets some threshold for efficacy. Information on efficacy is 
obtained during the trial and may be as important as that relating to toxicity. Thall et 
al. (2001) have used the CRM framework to identify a feasible MTD based on infus-
ibility and toxicity in the context of T-cell infusion trials. Braun (2002) has also illus-
trated the bivariate CRM in the presence of two competing outcomes. The designs 
proposed by O’Quigley et al. (2001) incorporate a bivariate outcome since they aim 
to control toxicity and viral reduction at the recommended dose level for early dose 
finding studies in HIV. The ideas extend immediately to the cancer setting in which, 
instead of viral reduction, we have some other objective measure of response. Initial 
doses are given, from some fixed range of dose regimens. The doses are ordered in 
terms of their toxic potential. At any dose, a patient can have one of three outcomes: 
toxicity (whether or not the treatment is otherwise effective), nontoxicity together 
with an insufficient response, and, thirdly, nontoxicity in the presence of an adequate 
response. The goal of the study is the identification of the dose leading to the greatest 
percentage of successes. This dose is called the MSD (most successful dose).

One simple approach with encouraging results was the following. A CRM design 
is used to target some low toxicity level. Information is simultaneously accrued on 
efficacy. Whenever efficacy is deemed too low at the target toxicity level, that level 
and all levels lower than it are removed from investigation. The target toxicity is then 
increased. Whenever efficacy is sufficiently high for the treatment to be considered 
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successful, the trial is brought to a close. Rules for making decisions on efficacy 
are based on the sequential probability ratio test. This class of designs has great 
flexibility. Starting with the inclusion of the first patient, information on the rate of 
successes among those patients not suffering toxic side effects is gathered. A true 
rate of success of p0 or lower is considered unsatisfactory. A rate p1 or higher of suc-
cesses is considered a promising treatment. A model free approach would allow us to 
determine, on the basis of empirical observations, which of the aforementioned rates 
is more likely. This is expensive in terms of patient numbers required. A strong mod-
eling approach uses under-parameterized models. These create a structure around 
which we can home in quickly on the best level. This parallels the use of the CRM 
for the simpler situation of Phase I toxicity studies. Failure to distinguish between 
the previous two hypotheses leads to further experimentation. The experimentation 
is carried out at a level guided by the toxicity criterion. A conclusion in favor of a 
success rate greater than p1 at some level brings the trial to a close with a recommen-
dation for that level. A conclusion in favor of a success rate lower than p0, at some 
level, leads to that level, and all lower levels, being removed from further study. At 
the same time we increase the target “acceptable toxicity” from θ to θ + Δθ. The 
trial then continues at those remaining levels. Values for the target toxicity level will 
start out low, for example, θ = 0.1, and this value may be increased subsequently. The 
amount Δθ by which θ increases and the highest value that is allowed are parameters 
that can be fixed by the investigator. A special case would be Δθ = 0.

Specifically, consider a trial in which j = 1,…,n patients may be entered and n is the 
greatest number of patients that we are prepared to enter. As before, Yj is a binary ran-
dom variable (0.1) where 1 denotes a toxic response. Let Vj be a binary random vari-
able (0.1) where 1 denotes a response to treatment for the jth patient (j = 1,…,n). The 
probability of acceptable treatment response, given no toxicity, at Xj = xj is given by

	
Q x V X x Yj j j j j( ) ( )= = = , =Pr 1 0 	 (2.5)

so that P(di) = Q(di){1 − R(di)} is the probability of success at dose di. The goal of the 
experiment is to identify the dose level ℓ such that P(dℓ) > P(di) for all i not equal to ℓ.

As for toxicity only experiments, we take R(xj) = Pr(Yj = 1|Xj = xj) = ψ(xj, a). We 
introduce an additional modeling assumption which concerns the conditional prob-
ability of success given absence of toxic side effects. We express this as

	
Q x V X x Y E V x Y x bj j j j j j j j j( ) ( ) ( ) ( )= = = , = = , = = ,Pr 1 0 0 φ 	 (2.6)

where ϕ(x,b) is a one-parameter working model. Thus, we assume that Q(x) is also 
monotonic in x. Since it is possible to construct, relatively plausible, counterexamples 
to this assumption, in contrast to the monotonicity assumption for ψ(x), we should 
consider this to be a stronger assumption. Nonetheless such an assumption may often 
be reasonable, at least as an approximation. Under these models the success rate can 
be expressed, in terms of the parameters a and b, as

	 P d d b d ai i i( ) ( ){ ( )}= , − ,φ ψ1 	 (2.7)
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Once we have at least one toxicity and one nontoxicity together with at least one suc-
cess and one nonsuccess, then we are in a position to estimate the parameters a and 
b. The next dose to be used is the one which maximizes P(dl), i = 1,…,k.

2.8  ADDED FLEXIBILITY BASED ON BAYESIAN MODEL CHOICE

Extra flexibility can be obtained by relaxing some of the model’s rigidity. Useful 
gains can be made but care is needed. For example, our usual intuition might lead 
us to believe that the simple added flexibility provided by a two-parameter model, 
for example, a logistic model, would improve performance when compared to a 
one-parameter model. This is not so (see Section 2.3) and, in general, we can only 
increase the dimension of the parameter space when we wish to include some added 
information of an orthogonal nature, such as group heterogeneity for which we have 
available an indicator variable designating the different groups. However, rather than 
making the full step of increasing the parameter space from, say, 1 to 2, we could, 
instead, choose a small finite set of models to work with, choosing the one that 
“best fits” the observations. Such an approach can be formalized under the heading 
of Bayesian model choice (Gelfand and Ghosh 1998) so that large sample theory, 
for example, becomes available to us. Suppose that instead of the single model of 
Equation 2.1, we have some class of models of interest and we denote these models 
as ψm(xj,a) for m = 1,…, M where there are a total of M possible models. In particular, 
we might consider

	 ψ αm i mi
ad a i k m M( ) ( )exp( ), = , = , ..., ; = , ...,1 1 	 (2.8)

where 0 < αm1 < ⋯ < αmk < 1 and −∞ < a < ∞, as an immediate generalization of the 
single model described in Section 2.3.1. Further, we may wish to take account of 
any prior information concerning the plausibility of each model and thus introduce 
π(m), m = 1,…, M where π(m) ≥ 0 and where Σmπ(m) = 1. In the simplest case where 
each model is weighted equally, we would take π(m) = 1/M. Here, we consider some 
examples.

2.8.1  Patient Heterogeneity

Since patients differ in the way they may react to a treatment, we may sometimes 
be in a position to specifically address the issue of patient heterogeneity. One exam-
ple occurs in patients with acute leukemia where it has been observed that children 
will better tolerate more aggressive doses (standardized by their weight) than adults. 
Likewise, heavily pretreated patients are often more likely to suffer from toxic side 
effects than lightly pretreated patients. In such situations we may wish to carry out 
separate trials for the different groups in order to identify the appropriate MTD 
for each group. Otherwise we run the risk of recommending an “average” compro-
mise dose level, too toxic for a part of the population and suboptimal for the other. 
Usually, clinicians carry out two separate trials or split a trial into two arms after 
encountering the first DLT when it is believed that there are two distinct prognostic 
groups. This has the disadvantage of failing to utilize information common to both 
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groups. A two-sample CRM, essentially two separate CRM designs, joined by an 
association parameter, has been developed so that only one trial is carried out based 
on information from both groups (see Figure 2.2 for illustration). A multi-sample 
CRM is a direct generalization although we must remain realistic in terms of what is 
achievable in the light of the available sample sizes.

Let z be the binary indicator variable for the two groups. Otherwise, we use the 
same notation as previously defined. For clarity, we suppose that the targeted prob-
ability is the same in both groups and is denoted by θ, although this assumption is not 
essential to our conclusions. The papers by O’Quigley et al. (1999) and O’Quigley and 
Paoletti (2003) focus mostly on models for the two-group case, since this case is the 
most common and there are not usually enough resources, in terms of patient num-
bers, to deal with more complex structures. Elaborating higher dimensional models, 
at least conceptually, is straightforward. The dose toxicity model is written as

	 Pr( ) ( )Y d z d a bi i= | , = , ,1 ψ 	 (2.9)

where the parameter b measures to some extent the difference between the groups. 
An obvious example which has been used successfully is

	 ψ α( ) ( )exp( )d a b i ki i
a bz, , = , = , ...,+ 1 	 (2.10)

where, again, 0 < α1 < ⋯ < αk < 1; −∞ < a < ∞, −∞ < b < ∞ and z is a binary group indi-
cator. Asymptotic theory is cumbersome for these models but consistency can be 
shown under restrictive assumptions as shown by O’Quigley et al. (1999).
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FIGURE 2.2  Simulated trial for two groups.
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An alternative approach, in harmony with the underlying CRM idea of exploit-
ing under-parameterized models, is to be even more restrictive than allowed by the 
aforementioned regression models. Rather than allow for a large, possibly infinite, 
range of potential values for the second parameter b, measuring differences between 
the groups, the differences themselves are taken from a very small finite set.

If the recommended MTD for the first group is some level, say, d0, then the other 
group will be recommended either the same level or some level, one, two, or more, 
steps away from it. The idea is to parameterize these steps directly. The indices 
themselves are modeled and the model is less cluttered if we work with logψ(di,a) 
rather than ψ(di,a) writing

	 log ( ) exp( ) log ( ) ( )( )ψ α φφd a a i i zh ti i i, = ; = + 	 (2.11)

where

	 h t tI i t k kI i t k I i t ti( ) ( ) ( ) ( )= ≤ + ≤ + + > + + < , = , , , ,1 1 0 1 2 … 	 (2.12)

the second two terms in the previous expression taking care of edge effects. It is easy 
to put a discrete prior on t, possibly giving the most weight to t = 0 and only allowing 
one or two dose level shifts if the evidence of the accumulating data points strongly 
in that direction. For example, the following formulation allows up to a single differ-
ence in dose levels between the groups:
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	 2.	Model 2: m = 2
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	 3.	Model 3: m = 3
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This difference can be in either direction, corresponding to a situation in which we 
do not know, or we are not certain which of the two groups is likely to fare the worst. 
At the same time we rule out the possibility that any difference, should one exist, be 
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greater than a single level. It is obviously very straightforward to construct models 
which would allow for differences up to two or more levels, again in either direction. 
Also, we can allow differences in one direction to be limited to one level at most 
whereas, in the other direction, we may allow greater differences than one level. We 
could even decide that we allow differences of one or more levels in only one direc-
tion, and no differences at all in the other direction. This would correspond to the 
case where we know that should any difference exist it can only be in a given direc-
tion. In practice this is likely to be the most common situation, a well known example 
being heavily pretreated and lightly pre-treated patients. The MTD for the heavily 
pretreated patients will be no higher than that for the lightly pretreated patients. 
Given the specifics of the particular study, and whatever information we have on 
orderings, or group spacings, we then can write down the model, following which 
we use Bayesian model choice to select that model which is “closest” to the observa-
tions. The number of potential models is small and, in practice, we work through the 
indices m, maximizing, for each value of m, the likelihood or the posterior density as 
a function of a. The overall maximum is the one we choose.

2.8.2  Partial Ordering in Dose Levels

A fundamental assumption thus far is the monotonicity of the dose–toxicity curve. 
This is a reasonable assumption for single agent trials in which the administration of 
greater doses of the agent is expected to produce a higher proportion of patients with 
dose-limiting toxicities. When studying multiple agents or a combination of agents 
this assumption may not hold since some of the orderings of the toxicity probabilities 
between combinations of agents are not known prior to the study. Conaway et al. 
(2004) and Wages et al. (2011) proposed methods for Phase I trials involving multiple 
agents in which some of the orderings are unknown. As an example, these papers 
cite a study by Patnaik et al. (2000) involving paclitaxel and carboplatin adminis-
tered in the combinations shown in Table 2.7. The ordering for combinations 3 and 
5 is not known since combination 3 has a greater dose of paclitaxel but a lower dose 
of carboplatin than combination 5. Many of the orderings are known. For example, 
combination 2 has a greater probability of a toxicity than combination 1 because 
combination 2 has the same dose of paclitaxel and the same dose of carboplatin as 
combination 1.

The papers by Conaway et al. (2004) and Wages et al. (2011) consider all possible 
“simple orders” consistent with the known orderings. A simple order is one in which 

TABLE 2.7
Illustrating Drug Combinations

Combination

Agent 1 2 3 4 5 6

Paclitaxel 54 67.5 81 94.5 67.5 67.5

Carboplatin 6 6 6 6 7.5 9
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all orderings between pairs of treatment combinations are known. In the Patnaik et 
al. (2000) study, there are six possible simple orders for the toxicity probabilities 
associated with the treatment combinations:

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤1 1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( )

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤2 1 2 3 5 6 4( ) ( ) ( ) ( ) ( ) ( )

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤3 1 2 5 6 3 4( ) ( ) ( ) ( ) ( ) ( )

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤4 1 2 5 3 4 6( ) ( ) ( ) ( ) ( ) ( )

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤5 1 2 3 5 4 6( ) ( ) ( ) ( ) ( ) ( )

	 m R x R x R x R x R x R x= : ≤ ≤ ≤ ≤ ≤6 1 2 5 3 6 4( ) ( ) ( ) ( ) ( ) ( )

Each of the simple orders can be thought of as one of M = 6 possible models.
Using the accumulated data from j patients, Ωj, the maximum likelihood esti-

mate âm of the parameter am in Equation 2.8 can be computed for each ordering 
m, m = 1,…, M, along with the value of the log-likelihood at âm. Wages et al. (2011) 
propose an escalation method that first chooses the ordering with the largest maxi-
mized log-likelihood value, m(âm). If we denote this ordering by m*, the authors use 
the estimate of a

m*  to estimate the toxicity probabilities for each treatment combi-

nation under ordering m*, ˆ ( ) ( ˆ ) ( )R d d a i ki m i m= , , = , ,∗ ∗ψ 1… . The next patient is then 
allocated to the dose combination with the estimated toxicity probability closest to 
the target. Wages et al. (in press) investigate several variations of this basic design, 
including two-stage designs and designs that incorporate randomization among the 
different possible orderings and describe the operating characteristics of their pro-
posed design.

2.8.3  �Bayesian Averaging and Maximization 
for Working Model Selection

The choice of the working model, that is, the αi in the setting up of any CRM design 
is largely arbitrary. Cheung and Chappell (2002) describe how operating charac-
teristics can be less sensitive to certain working model choices. O’Quigley and 
Zohar (2010) indicate that an “unreasonable” choice may have a negative impact 
on operating characteristics. Unfortunately it is not easy to provide a sharp and 
precise definition as to what we mean by “reasonable” and the only operationally 
useful definition of a reasonable model would be one that exhibits good robustness 
properties. Some working models, while respecting the constraints of Shen and 
O’Quigley (1996) required for convergence, might be anticipated to be not reason-
able in this sense. Lee and Cheung (2009) provide algorithms which can furnish 
a satisfactory, if not optimal, working model. Their approach is based on that of 
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indifference intervals described in Cheung and Chappell (2002). A somewhat dif-
ferent strategy for tackling the same question was adopted by Yin and Yuan (2009). 
These authors suggested that, rather than identify a single working model, we work 
with a class of working models and make progress by appealing to the technique of 
Bayesian model averaging (BMA). This technique makes use of the posterior esti-
mates for the relevant toxic probabilities and these are then weighted with respect 
to the corresponding posterior model probabilities. Daimon et al. (2011) also con-
sidered making use of several working models, selecting one model via an adap-
tive technique based on different criteria. Yin and Yuan (2009) showed that their 
approach leads to some gains in robustness and can therefore provide some added 
assurance that the results of a study are not unduly influenced by arbitrary design 
features.

2.9  DISCUSSION

The CRM is often referred to as the Bayesian alternative to the classic up and down 
designs used in Phase I studies. This is quite an inaccurate description since, as 
seen here, there is nothing particularly Bayesian about the CRM. Furthermore, the 
driving ideas and algorithms are very different from those behind the standard up 
and down design. In O’Quigley et al. (1990), for the sake of simplicity, Bayesian 
estimators and vague priors were proposed. However, there is nothing to prevent us 
working with other estimators, in particular the maximum likelihood estimator as 
described in Section 2.3.

More fully Bayesian approaches, and not simply a Bayesian estimator, have been 
suggested for use in the context of Phase I trial designs. By more fully we mean more 
in the Bayesian spirit of inference, in which we quantify prior information, observed 
from outside the trial as well as that solicited from clinicians and/or pharmacolo-
gists. Decisions are made more formally using tools from decision theory. Any prior 
information can subsequently be incorporated via the Bayesian formula into a pos-
terior density that also involves the actual current observations. Given the typically 
small sample sizes often used, a fully Bayesian approach has some appeal in that we 
would not wish to waste any relevant information at hand. Gatsonis and Greenhouse 
(1992) consider two-parameter probit and logit models for dose response and study 
the effect of different prior distributions.

Whitehead and Williamson (1998) carried out similar studies but with atten-
tion focusing on logistic models and beta priors. Whitehead and Williamson (1998) 
worked with some of the more classical notions from optimal design for choosing the 
dose levels in a bid to establish whether much is lost by using suboptimal designs. 
O’Quigley et al. (1990) ruled out criteria based on optimal design due to the ethical 
criterion of the need to attempt to assign the sequentially included patients at the most 
appropriate level for the patient. This same point was also emphasized by Whitehead 
and Williamson (1998) where they suggest that the CRM could be viewed as a spe-
cial case of their designs with their second parameter being assigned a degener-
ate prior and thereby behaving as a constant. This view is technically correct but 
does not give the full story in that, for the single sample case, two-parameter CRM 
and one-parameter CRM have a more important difference relating to consistency. 
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Two-parameter CRM was seen to behave poorly (O’Quigley et al. 1990) and is gen-
erally inconsistent (Shen and O’Quigley 1996). We have to view the single parameter 
as necessary in the homogeneous case because, unless we violate the allocation rule 
(for example, by introducing some randomization into the design), the model is oth-
erwise overspecified. Two parameters are not identifiable.

A quite different Bayesian approach has been proposed by Babb et al. (1998). The 
context is fully Bayesian. Rather than aim to concentrate experimentation at some 
target level as does CRM, the aim here is to escalate as fast as possible toward the 
MTD, while sequentially safeguarding against overdosing. This is interesting in that 
it could be argued that the aim of the approach translates in some ways more directly 
the clinician’s objective than does CRM. Model mis-specification within the context 
of overdose control was further investigated by Chu et al. (2009). The approach 
appears promising and the methodology may be a useful modification of CRM when 
primary concern is on avoiding overdosing and we are in a position to have a prior 
on a two-parameter function.
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3 Pharmacokinetics in 
Clinical Oncology
Statistical Issues

Gary L. Rosner, Peter Müller, Simon 
Lunagomez, and Patrick A. Thompson

3.1  INTRODUCTION

All drugs share the feature that they are formulated to have an effect on some body 
system. In oncology, that effect may be to shrink the size of a tumor, reduce the 
growth rate of the tumor, or protect noncancer cells from potentially harmful effects 
of the chemotherapy, to name a few examples. Pharmacokinetics (PK) is the study 
of what happens to drugs once they enter the body. The study of a drug’s PK will 
often entail drawing blood samples to measure the concentration of the compound, 
possibly along with metabolites, over time. In some instances, it is even possible to 
measure the amount of the drug or metabolite in the tumor tissue itself, such as in 
leukemia, or in the microenvironment in which the cancer resides, such as through 
the use of microdialysis (Brunner and Müller 2002).

It is generally not enough to know the PK of the drug, since we are most inter-
ested in the clinical effect of the drug. Pharmacodynamics (PD) is the study of how 
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PK relates to measured outcomes, such as clinical response, risk of toxicity, or even 
some in vitro measure of cellular response to a drug. A perhaps overly simplistic, 
though useful, characterization of PK and PD is that PK measures what happens to 
the drug after it enters the body and PD measures what happens to the body after the 
introduction of the drug.

As with other aspects of biomedical science and clinical research in the begin-
ning of the twenty-first century, researchers have begun to look into genetic vari-
ation and associations with the PK and PD of drugs. Although there do not yet 
appear to be firm definitions, the terms pharmacogenetics and pharmacogenomics 
describe such studies. We will differentiate these two areas of study with the fol-
lowing definitions. Pharmacogenetics studies the heritable factors that contribute to 
PK and PD variation in a population. That is, how does genetic variation within and 
between populations contribute to clinical differences in how individuals react or 
respond to drugs? Pharmacogenomics, on the other hand, examines how mutations 
and other differences at the level of the genome might provide useful targets for 
drug development. The National Institutes of Health of the United States is sup-
porting a large effort to aid research into pharmacogenetics and pharmacogenomics 
(Klein et al. 2001).

The statistical issues that arise in pharmacogenetic studies are similar to the 
issues that arise in most genetic epidemiology studies. For example, if one has 
identified a gene associated with the metabolism of an anticancer drug and one 
wishes to see if genetic variation at this allele is associated with different risks 
of toxicity, one may wish to carry out a study prospectively or retrospectively. 
The prospective study design might call for blood samples at entry to the study, 
with genotyping. Then one would look for associations between genotype and 
whether or not a patient experienced toxicity. For a retrospective study, one 
might identify patients who have experienced toxicity and find an appropriate 
control group, perhaps with matching. Then one would only have to genotype 
this subset of the study’s patients for analysis of the association between toxicity 
and genotype. Obviously, if some genetic variants put the patient at risk of fatal 
toxicity, the retrospective design may well miss these patients without banked 
blood samples.

Some of the other statistical issues that arise in pharmacogenetic studies include 
single nucleotide polymorphism (SNP) studies and determination of haplotypes. With 
the many variants at specific loci within a gene, there exists the potential for carry-
ing out many hypothesis tests and declaring false positive associations. Furthermore, 
many SNPs are in linkage disequilibrium, meaning they tend to move together and 
be highly correlated. One can gain some extra power by grouping SNPs together if 
they are highly correlated with each other. Statistical techniques to group SNPs into 
such groups, called haplotype blocks, are an endeavor carried out in pharmacoge-
netic studies, as well as other genetic-based studies. More information is contained 
in the chapter on haplotypes in this volume. Also, information about pharmacoge-
nomics, in general, and oncology-specific issues are contained in recent edited vol-
umes (Licinio and Wong 2002; Innocenti 2008).
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In this chapter, we will explore some of the main statistical issues in the study of 
PK and PD in clinical oncology. Most of these same issues arise in clinical research 
relating to other diseases, but our focus is cancer.

3.2  �PHARMACOKINETICS AND PHARMACODYNAMICS 
OF ANTICANCER AGENTS

The most common basis for determining a drug’s PK is measured drug concentra-
tion in the blood. PK studies call for drawing blood samples during and/or after an 
infusion and assaying the concentration of the compound in the blood. The relation-
ship between the drug’s concentrations and time is characterized by a system of dif-
ferential equations that defines a pharmacokinetic model (Gibaldi and Perrier 1982). 
Quite often, the differential equations incorporate the so-called compartments to 
allow for changes in the loglinear decay of the drug after the end of the infusion. 
These differential equations describe the instantaneous change in concentration of 
the drug or its metabolites within each compartment, with direct or indirect com-
munication between compartments.

We often use compartmental models to characterize the relationship between 
plasma concentration and time, primarily because they seem to fit and have a physi-
ologic interpretation. The compartments in these models are based on the notion that 
the drug circulates through the body in the blood stream and may visit other parts 
of the body before it is eliminated. The plasma or blood compartment may be con-
sidered the central compartment for a drug that is infused intravenously, but the drug 
will likely pass through the liver, kidneys, and, hopefully, the tumor. Eventually, most 
of the drug returns to the compartment from which it is eliminated, which may be the 
central compartment. The transit between the plasma and these other organs or “com-
partments” forms part of the system of differential equations characterizing the change 
in concentration over time. Figure 3.1 illustrates a simple two-compartment model.

Depending on the form of the differential equation describing the instantaneous 
rate of change of a compartment’s concentration, the kinetics may be linear or non-
linear. A drug is said to have linear kinetics if, for two different doses, the concen-
trations that result from each dose are proportional to the doses. If, however, the 

Drug
infusion

Main
compartment

Peripheral
compartment

k12

k21

k10

V1 V2

FIGURE 3.1  Simple two-compartment model characterizing the disposition of a drug given 
by continuous infusion.
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concentrations arising from different doses are not proportional to doses, then the 
drug exhibits nonlinear kinetics. Nonlinear kinetics can occur if a process gets satu-
rated, so that no matter what the concentration, the rate of change remains constant. 
At the risk of over simplification, the drug exhibits linear kinetics if one can take the 
concentration–time curve associated with one dose of the drug, rescale and, perhaps, 
shift it and end up with the concentration–time curve associated with another dose. 
Modeling nonlinear kinetics is more difficult computationally, because there is no 
analytic solution to the differential equations. Instead, one has to find the solution 
numerically.

Generally, one has to use a nonlinear regression package, such as the nls() func-
tion in R, to estimate an individual’s PK model parameters. When analyzing a series 
of data for individuals in a study, one has to use more specialized computer programs 
to deal with the nonlinear repeated measurements. Discovering algorithms for fitting 
nonlinear repeated-measurements data continues to be an area of active research, 
with some development relating to modeling HIV dynamics (Delyon et al. 1999; 
Huang et al. 2006; Samson et al. 2006). There are software packages specifically 
for fitting PK models. Please see the end of this chapter for a list of several noncom-
mercial packages for fitting pharmacokinetic models. In the compartmental model, 
the unknown parameters to estimate include the volumes of the compartments and 
the rate constants for the movement of drug between compartments and out of the 
body. The volume of distribution, labeled V1 in Figure 3.1, is the hypothetical vol-
ume of the main compartment from which we measure the concentrations over time. 
Being a parameter in the PK model, the volume of distribution is hypothetical in the 
sense that it is generally not interpretable as the volume of plasma, say, in the body. 
Patient-specific estimates of volumes of distribution often exhibit greater variability 
and sometimes much larger values than one would expect for the volume of blood in 
human bodies. In essence, the compartment-specific volumes of distribution and rate 
parameters are model parameters that have a theoretical interpretation loosely based 
on physiologic considerations.

Some of the basic parameters that describe the PK of a drug include clearance, 
area-under-the-concentration–time curve (AUC), steady-state concentration (Css), 
the elimination half-life, volume of distribution, the elimination rate parameter, 
and bioavailability for drugs administered via a route other than directly into the 
blood stream. These characteristics of the PK of a drug are either explicit param-
eters in the concentration–time function or are functions of the model parameters. 
Clearance, measured in volume per unit time (e.g., L/h), is most often used to 
characterize a drug or to compare a drug’s PK in different populations. By clear-
ance, one generally means total body clearance, that is, the sum of the individual 
clearances of the drug from all organs. Another important measure is the AUC, 
which is a measure of systemic exposure to the drug. The AUC is usually given 
in units of concentration times time (e.g., μg × h/mL). If a drug is given by intra-
venous infusion, clearance (CL) and AUC are inversely proportional, with the 
proportionality being the infused dose. That is, CL = di.v. /AUC, where di.v. is the 
administered dose.

Many anticancer drugs are given by constant continuous intravenous infusion 
over an extended period of time. During the infusion, plasma concentrations of the 
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drug increase but eventually reach a constant value if the infusion lasts long enough. 
The Css is, as the name implies, the plateau concentration reached in the plasma dur-
ing continuous infusion at a constant rate. Steady-state concentration and clearance 
are inversely proportional to each other. The proportionality constant is the infusion 
rate, that is, CL = InfRate/Css.

The elimination half-life is the time it takes for half of the administered dose to 
be eliminated from the body. Usually, the plasma concentration is within 10% of the 
Css after an infusion lasting four half-lives of the drug.

These PK-derived parameters are functions of the compartmental model’s param-
eters. Thus, once one has fit the model, one can estimate these derived parameters. 
One can estimate some PK parameters without fitting a compartmental model. As 
indicated earlier, one can estimate total-body clearance if one has an estimate of 
the Css during a continuous infusion at a constant infusion rate. Another example is 
a so-called noncompartmental estimate of the AUC. If one has enough concentra-
tion–time pairs for a patient, one can use the trapezoidal rule to compute the area 
under the concentration–time curve. If the final concentration is not zero, a reason-
able approximation might be a simple exponential decay with slope based on the 
logarithm of the last two concentrations. This estimate for the AUC is attractive, 
since it does not depend on any model assumptions. Usually, however, authors report 
the estimated AUC without any attempt to attach a measure of uncertainty to the 
estimate.

Many anticancer drugs are available in oral form, which is more convenient in 
case of chronic dosing or for patients who may find it difficult to get to a clinic. 
When drugs are taken orally, they pass through and are disseminated from the 
gut. Ultimately, the drug reaches the circulation system, from which it will get 
to the rest of the body. Bioavailability relates to the biological availability of the 
active compound in the drug. Estimation often derives from individual estimates 
of PK relating the amount of drug or active metabolite in the blood stream after 
oral administration to the amount of the drug in the blood stream after intrave-
nous administration. Bioavailability will typically be between 0 and 1. Variation 
in bioavailability, which has to be estimated, contributes to PK and PD variability. 
Estimates of bioavailability derive from PK studies in which each subject receives 
the drug via different administration, usually in a crossover study. Bioequivalence, 
a related concept, refers to the evaluation of two different formulations of the same 
drug, such as comparing a generic formulation to the original formulation. If two 
formulations are bioequivalent, then one assumes they will act the same way and 
have the same effectiveness. Statistical issues include designing crossover studies 
and modeling within-subject and between-subject sources of variation (Chow and 
Liu 2009).

The disposition of a drug in the plasma or tissue may be affected by many factors, 
including genetic factors, environmental factors, diet, age, and other drugs being 
taken or foods being digested at the same time the drug is in the body. As part of 
the learning about a drug’s PK, one will often look for associations between patient 
characteristics and patient-specific PK parameters. A common approach is to fit 
separate models to each patient’s concentration–time data and then carry out statisti-
cal inference on the patient-specific PK model parameter estimates. This two-stage 
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approach ignores uncertainty in the parameter estimates, and may thereby lead to 
false declarations of significant differences. For example, one might regress each 
patient-specific AUC or clearance on age or smoking status or genotype to look for 
patterns or potentially significant differences. Analyses of patient-specific model 
estimates and covariates are exploratory, since they typically ignore the uncertainty 
in the PK-derived parameters. Inference that accounts for all sources of uncertainty 
is preferable.

PK modelers have long realized that there is heterogeneity between individu-
als in terms of subject-specific model parameters. This realization led to the use of 
mixed-effects models and hierarchical modeling, allowing for between and within 
variation. Sheiner et al. (1972, 1977, 1979a) were among the first to recognize the 
usefulness of these models for predicting the time course of a drug’s concentration 
for individuals. Other researchers followed up on these ideas, and this research led to 
a general approach to studying variation of the PK of a drug in a population, called 
population modeling (Racine-Poon and Smith 1990). Population modeling is, essen-
tially, a hierarchical model, as in Equation 3.1:
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In this equation, yij is the jth concentration of the drug at time tij for the ith patient. 
The patient’s own model parameters are denoted by θi, which are assumed randomly 
distributed in the population. The population distribution of these individual param-
eters θi is characterized by G and indexed by parameter θ0, corresponding to the 
mean of the θi in Equation 3.1. The population distribution, G, may involve other 
unknown parameters, such as the variance or regression-type parameters relating 
subject-specific means to covariates. We express our uncertainty about the mean 
parameter value in the population through the hyperprior distribution denoted H. 
The residual difference between the measured concentrations for the ith patient at 
time tij and the modeled concentrations is a random variable eij having zero mean 
and distribution F.

Typically, the distribution of the residuals is considered normal or lognormal. 
The variance may be a function of the mean concentration level, such as when 
one wishes to fit a constant coefficient of variation model. The distribution of 
subject-specific model parameters is also often treated as normal or lognormal. 
A frequentist analysis would typically stop at the level of the population distribu-
tion. A Bayesian analysis, on the other hand, will also specify a distribution for the 
parameters in the population distribution via a hyperprior distribution. The inclu-
sion of a hyperprior and hyperparameters allows for between-individual variation 
while learning about the distribution of subject-specific parameters. A Bayesian 
hierarchical model also makes prediction for a new patient straightforward. The 
book by Davidian and Giltinan describes well many of the frequentist and Bayesian 
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methods for analyzing repeated measures having a nonlinear relationship with time 
(Davidian and Giltinan 1995).

3.2.1  Example

As an example, we consider the analysis of the anticancer agent methotrexate in 
infants (children less than 1 year old) with leukemia. The clinical prognosis for chil-
dren younger than 1 year old who are diagnosed with acute lymphoblastic leukemia 
(ALL) is worse than for older children. It may be that the disease is different or, 
perhaps, the infant’s organs, particularly the kidneys, are not yet fully developed, 
causing the PK of anticancer drugs to be different in the infants.

Children with ALL often receive methotrexate as part of their chemotherapeutic 
treatment regimen. Methotrexate is cleared from the body by the kidneys, and vari-
ability in the drug’s PK may be associated with key measures of renal function, such 
as glomerular filtration rate (GFR), tubular secretion, and renal blood flow. Each of 
these characteristics of renal function change as the kidneys mature during the first 
few months after birth. Additionally, the liver may continue to develop after birth, 
leading to altered drug metabolism during the first few months of life. Thus, as 
infants develop, there may be changes in the drug’s absorption, distribution, metabo-
lism, and elimination.

Little is known about the PK of methotrexate in very young children. Therefore, 
pediatric oncologists were interested to learn what they could by collecting data as 
part of a larger study carried out by the Children’s Oncology Group (COG). In this 
study, infants with ALL received methotrexate as a high-dose infusion (4 g/m2) over 
24 h on weeks 4, 5, 11, and 12 from the start of the treatment regimen. The infusion 
was divided into an initial 200 mg/m2 loading dose given over 20 min, followed by 
3.8 g/m2 infused over 23 h and 40 min, the remainder of the 24 h infusion duration. 
The patients received 24 h infusions of methotrexate a week apart and again 7 and 8 
weeks after the first infusion of the drug.

The PK study combined data from two sources. As part of routine monitor-
ing of the infants on the study, some blood samples allowed the measurement of 
methotrexate concentration levels. The patient charts held these data, allowing for 
retrospective collection. The remaining patients in our sample underwent more 
extensive sampling. Aside from the dose of methotrexate actually received and 
concentration–time data, the dataset also included patient characteristics, such as 
age, height, weight, body-surface area, and serum creatinine. The protocol called 
for measuring methotrexate levels within each course of therapy at the end of the 
24 h infusion and every 24 h following the end of the infusion until the concentration 
was less than 0.18 μM. The 18 patients who underwent more extensive sampling had 
their additional blood draws during their first methotrexate infusion. Sample collec-
tion for this subset of the patients was at 1, 6, 12, and 23 h after the start of the first 
methotrexate infusion.

Altogether, the dataset included 70 patients with enough information to model at 
least one course of methotrexate. We could analyze data during the first course of ther-
apy for 62 patients. The dataset contained a total of 686 methotrexate concentration–
time pairs measured during 199 doses of methotrexate given to the 70 infants.
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The primary measure of kidney function in the dataset was an estimate of the 
GFR. The estimate is a function of the infant’s length and the creatinine measured in 
the infant’s plasma (Schwartz et al. 1984, 1987).

Figure 3.2 shows the concentration–time data for two of the more extensively 
sampled patients during their first course of methotrexate. One sees in the figures 
how the concentrations approach a plateau corresponding the Css over the course of 
the 24 h infusion. The figures also show that these two patients have quite different 
Css (around 52 μmol/(mL × m2) versus around 35 μmol/(mL × m2)).

As indicated earlier, one can estimate the total-body clearance of a drug from the 
Css and the infusion rate. Even though the infusion rate was not constant over the 
24 h infusion, it was constant after the first 20 min. Therefore, it seemed reasonable 
to estimate the clearance at steady state from these data.

If one estimates clearance from the end-of-infusion or 23 and 24 h concentra-
tions and uses these estimates in a regression analyses with patient covariates, 
then one is ignoring the uncertainty associated with these estimates. Ignoring this 
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FIGURE 3.2  Observed and fitted methotrexate concentrations for two infants in the study. 
The lines are based on point-wise posterior means.
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uncertainty may result in a false-positive finding of an association between clear-
ance and patient characteristics. Instead, we chose to fit a population or hierar-
chical model. We used the program PKBugs (Lunn et al. 1999), which runs in 
WinBUGS (Lunn et al. 2000). We fit a model for the log concentrations having a 
normal residual, with the subject-specific parameters also being lognormal. The 
full hierarchical model is
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Here, yi,j is the concentration measured on patient i at time ti,j. In the model, N(μ, τ) 
denotes a normal distribution with mean μ and variance τ, while a multivariate nor-
mal distribution with mean vector m and variance–covariance matrix Ω is denoted 
MVN(m, Ω). The compartmental model is denoted C(ti,j, θi, di), which is a function 
of time, model parameters, and dose di. The function relating concentration to time, 
parameters, and dose for a two-compartment model (see Figure 3.1) can be written 
as a sum of two exponential functions (Gibaldi and Perrier 1982; Lunn et al. 1999).
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The two parameters λ1 and λ2 are functions of the rate parameters shown in Figure 3.1. 
They satisfy the following two equations, in terms of the rate constants:

	 λ λ λ λ λ λ1 1and with by definition+ = + + = >2 10 12 21 2 10 21 1 2k k k k k

The patient-specific model parameters are θi. This vector includes the four param-
eters in the pharmacokinetic model, namely, log(CL), log(Q), log(V1), and log(V2), 
recalling that each patient has his or her own set of parameters. Here, V1 and V2 
are the respective volumes of the central and peripheral compartments shown in 
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Figure 3.1. The CL equals V1 times k10. The parameter Q is called the distributional 
clearance between the two compartments, which is assumed to be the same. That is, 
Q satisfies Q = k12V1 = k21V2.

Returning to the hierarchical model, the hyperparameters had the following 
values. The variance matrix for the patient-specific parameters (Ω) had an inverse-
Wishart prior with ρ = 4 degrees of freedom and scale matrix R corresponding to 50% 
coefficient of variation for each parameter. The parameters, in turn, may depend on 
patient characteristics Xi (e.g., the age or GFR for child i) through a linear regression 
with coefficients ψ. These regression coefficients had a multivariate normal prior 
with variance matrix C equal to 104 times the identity matrix. The hypermean ψ0 for 
the regression coefficients was a vector with nonzero values for the PK parameter-
specific intercepts and zero for the covariate effects. The nonzero hypermeans came 
from an analysis of related data.

Figure 3.2 shows the PKBugs fits to the data as the solid line. These are the 
piecewise posterior mean concentrations for the patients over time. Having fit the 
model, we examined potential relationships with covariates by plotting the posterior 
means of the parameters or functions of the parameters against the potential covari-
ates (Wakefield 1996). We did not find a strong relationship between age (0 and 12 
months) and clearance, given the large amount of noise in these data. Nevertheless, 
since the primary question motivating this study concerned an association between 
age and clearance among the infants, we modeled the logarithm of clearance as a 
function of age in the population PK (hierarchical) model. The posterior mean of 
the coefficient was 0.034 (posterior standard deviation = 0.038). We did not find any 
strong associations between the covariates available to us and PK in this dataset. 
Further modeling based on exploratory plots mentioned in the previous paragraph 
suggested an association between the model-derived parameters GFR and clearance.

3.2.2  Nonparametric Model

In the previous example, we assumed a parametric distribution for the subject-
specific parameters in the model. Assuming a normal or lognormal distribution may 
be restrictive in some cases. Some investigators have sought to incorporate nonpara-
metric estimation of the population distribution (Mallet 1986; Mallet et al. 1988b; 
Schumitzky 1991, 1993). Bayesian nonparametric modeling removes the assump-
tion that subject-specific PK parameters vary in a population according to a normal 
distribution. In particular, knowledge that potential effect modifiers exist, such as 
genetics, different diets, etc., means that there might be multi-modal distributions of 
the PK parameters in a study population. The earliest attempts to be nonparametric 
in the population distribution built up mass at discrete locations, according to the 
data. In this approach (Mallet 1986), the distribution of θi in Equation 3.1 is left 
completely unspecified (i.e., θi ∼ F). The likelihood function becomes a function of 
the unknown distribution function F, and the problem becomes one of maximum 
likelihood estimation of a mixing distribution (Laird 1978; Lindsay 1983). One can 
show that the maximum likelihood estimate is a discrete distribution with support 
on at most n points, where n is the number of patients in the sample (Laird 1978; 
Mallet 1986).
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If one wants to include continuous covariates in the population model, one has 
to finesse the problem a bit to make it work with the nonparametric approaches 
discussed in the previous paragraph (Mallet et al. 1988a). Furthermore, one would 
typically consider modeling the model parameters with a continuous distribution. 
Davidian and Gallant used smooth nonparametric maximum likelihood to allow 
for a family of continuous distributions that can incorporate continuous covari-
ates explicitly. The smooth nonparametric maximum likelihood solution to the 
problem estimates the underlying distribution of a k-variate random vector from a 
class of densities that are at least k/2 times differentiable. A density in the speci-
fied class may be represented for all practical purposes as a series expansion of a 
polynomial times a normal density function (Gallant and Nychka 1987; Davidian 
and Gallant 1993).

None of these nonparametric or semi-parametric methods are Bayesian, however. 
Instead, they are mixed-effects models with unspecified distributions for the ran-
dom effects. One can, however, carry out full Bayesian inference in a hierarchical 
model with nonlinear regression functions and still be nonparametric. Wakefield and 
Walker (1997) used a Dirichlet process (Ferguson 1973) prior for the distribution of 
the subject-specific parameters in a hierarchical model with a nonlinear regression, 
such as a compartmental PK model. The Dirichlet process (DP) is a distribution 
on the space of distributions, allowing inference on the underlying distribution of 
parameters and, thereby, greater flexibility. With a DP prior for the subject-specific 
parameters, however, the posterior is necessarily discrete.

We have found that a Dirichlet process mixture allows for nonparametric and 
semiparametric modeling for these problems (West et al. 1994; Escobar and West 
1995; Müller and Rosner 1998). Instead of the subject-specific parameters having a 
DP prior, they have a parametric prior (e.g., normal or other distributional family) 
with a DP prior on the parameters of that distribution. Simply put, with a normal 
prior at the population level with random subject-specific means and a DP prior on 
those means, the prior model for the subject-specific parameters becomes a mix-
ture of normals, with the weights and locations coming from a Dirichlet process 
hyperprior. The distribution of subject-specific parameters in the population is a 
mixture of continuous densities, such as normal densities, with mixing (i.e., random 
weights) over the random locations (means). The Dirichlet process is the prior mix-
ing measure. The discrete nature of the posterior from a Dirichlet process prior is 
not a problem, since this prior is on the locations of a continuous density. Thus, the 
posterior distribution is continuous with this model. Covariates are incorporated via 
the conditional distribution of the parameters, given the covariates. The result is a 
semi-parametric regression yielding a smooth curve as a weighted mixture of linear 
regressions over the range of the covariates.

3.2.2.1  Nonparametric Example
We first applied a Dirichlet process mixture model to a dataset consisting of white 
blood cell counts measured while patients are receiving increasing doses of a che-
motherapeutic drug in a phase I study (Müller and Rosner 1997, 1998; Rosner and 
Müller 1997). For cytotoxic cancer chemotherapy, myelosuppression (lowered blood 
counts) is a common side effect, getting more severe as doses increase. Thus, there is 
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great interest in monitoring patients’ blood counts as a pharmacodynamic end point, 
especially when escalating doses in a phase I study.

The analysis of blood count data for cancer patients receiving myelosuppressive 
doses of chemotherapy is an example of a pharmacodynamic analysis of a nonlinear 
model for repeated measurement data. We implemented the Dirichlet process mix-
ture model to analyze these data, with the dose of the drug serving as the pharmaco-
logic covariate. The model can also be fit to other repeated measurements, including 
drug concentrations measured over time.

Non-Bayesian analyses of the time-course of blood count data using nonlinear 
models for repeated measurements data have also appeared in the pharmacodynam-
ics literature. Karlsson et al. (1995) used a spline-based model to analyze similar 
data, although with splines they had to constrain each patient’s profile to return 
to baseline at the end of the course of chemotherapy. There are also models that 
incorporate PK and PD simultaneously by hypothesizing an “effect” compartment 
(Sheiner et al. 1979b; Unadkat et al. 1986; Verotta and Sheiner 1987). These analy-
ses via a so-called indirect-response model have not yet been much studied in the 
statistical literature. Minami et al. (1998, 2001) used this approach to model blood 
count data collected on cancer patients receiving different chemotherapeutic drugs. 
Recently, a mechanistic model based on physiologic considerations of neutrophil 
formation has found application in modeling myelosuppression by anticancer agents 
(Friberg et al. 2002; Friberg and Karlsson 2003).

3.2.2.2  Combining Data
Another statistical issue in studies of population PK of drugs concerns combining 
data from multiple sources. Combining analyses across different population pharma-
cokinetic or pharmacodynamic studies would seem to be a good way to learn more 
about the distribution of PK parameters in the general population, or to allow for 
more precise inference on the effects of patient characteristics on PK. With mixture 
priors, it is not at all obvious how to combine data in a sensible way that leads to bor-
rowing strength across the studies but still allows for each study to maintain its own 
idiosyncrasies as characterized through the flexible mixture model. We have devel-
oped a method for use with finite mixtures, allowing for a common measure and 
study-specific mixtures (Lopes et al. 2003). We have also developed an ANOVA-
like decomposition of the random locations in a Dirichlet process via the dependent 
Dirichlet process (De Iorio et al. 2004). This appears to be a useful modeling strat-
egy for such meta-analyses, since they maintain flexibility in the inference and allow 
for different degrees of exchangeability.

3.2.2.3  Dose Individualization
With the ability to model a drug’s PK and, simultaneously account for between-
individual variation, came the realization of the potential to predict a person’s 
individual PK if given the drug. This realization then led to the possibility of 
PK-guided dosing, meaning that physicians and clinical pharmacologists can tailor 
the dose of a drug for an individual to that individual’s own ability to handle the 
drug. Other areas of clinical medicine benefited from the use of PK-guided dosing, 
including the use of antibiotics (Jelliffe 1986; Jelliffe et al. 1991, 1993). Several 
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researchers called for PK-guided dosing in medical oncology, recognizing that the 
of ten narrow therapeutic window (i.e., the narrow range of doses that are neither 
too toxic nor too low to allow for clinical efficacy) might be made wider if patients 
received doses that would be expected to lead to systemic exposure in some target 
range. Attempts to use PK to guide dosing in cancer have also appeared but have 
not yet been put into practice (Collins 1990; Ratain et al. 1991; D’Argenio and 
Rodman 1993).

3.2.2.4  Dose Individualization Example
An example of a fully Bayesian design for pharmacologically guided dosing in 
cancer is given by a study from the University of Texas MD Anderson Cancer 
Center. Our clinical collaborator treats patients with leukemia using bone marrow 
transplantation. With this form of anticancer therapy, the patient receives ultrahigh 
doses of chemotherapy. The drugs are highly toxic, and at these doses, the patient’s 
blood cells are virtually wiped out. Without circulating white blood cells, people 
are subject to potentially fatal infection from pathogens that would otherwise not 
cause much of a reaction. In order to help the patient’s body recover its ability to 
produce white blood cells, the transplant oncologist infuses either bone marrow or 
peripheral blood stem cells. An allogeneic transplant is one in which the patient 
receives cells from a donor, one who matches the patient in some way. Autologous 
transplants reinfuse cells removed from the patient prior to the ultrahigh-dose 
chemotherapy.

In transplant therapy, the medical oncologist seeks to treat the patient with doses 
that are high enough to kill any and all cancer cells but not so high that the drugs kill 
the patient. Most transplant regimens give the drugs at fixed doses that are a function 
of body size as measured by the body-surface area (Chabner and Collins 1990). If 
there are sources of pharmacokinetic and pharmacodynamic variation beyond body 
size, some patients may well receive a dose that is either too high or too low.

One might instead define a target range of exposure to the drug, such as via the 
area-under-the-concentration–time curve or AUC. In fact, our clinical collaborator 
told us that he had a target range for the AUC of the drug busulfan when given intra-
venously. He wanted to design a study in which patients first received a small, non-
therapeutic dose of the drug, with blood draws to allow pharmacokinetic analysis. 
With the pharmacokinetic model fit to the concentration–time data for the test dose, 
he thought that one could predict the dose that would achieve the desired AUC. We 
agreed and set about to design this study.

We chose to determine a fully Bayesian design for the study. There was clearly a 
loss function, namely, achieving an AUC that is either too low or too high, with greater 
loss as the AUC was farther away from the ends of the target interval. Furthermore, 
the study called for prediction, for which the Bayesian approach excels. Among other 
advantages, Bayesian modeling offers the ability to incorporate sources of uncer-
tainty in the algorithm. Finally, we already had data from earlier studies without the 
test dose. Thus, we could incorporate historical information as prior information to 
improve precision.

We did not assume that the patients in the two historical studies were fully 
exchangeable, choosing instead to keep the studies separate in a hierarchical model. 
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We did, however, want to allow for a Bayesian nonparametric prior distribution in 
our inference. Therefore, we chose to use the so-called dependent Dirichlet process 
prior in our model (De Iorio et al. 2004). This model allows for some borrowing of 
strength across the studies, while still retaining study-specific differences within a 
larger nonparametric model.

Our utility function consisted of two straight lines on either end of the target AUC 
range (Figure 3.3A). The slopes of the two lines differed, in that the loss would rise 
more steeply for exceeding the range than for falling short of it. The reason for the 
lack of symmetry is that too high a dose might lead to death, whereas too low a dose 
might still provide some therapeutic benefit to the patient.

Based on the results of the PK analysis of the test dose, along with the information 
contained in the previous studies, we computed the posterior predictive distribution 
of the AUC for a host of possible doses. Figure 3.3B shows an example predictive 
distribution for a hypothetical new patient receiving some fixed dose. The utility 
function u(d, y, θ) in this study is minus the loss associated with a given AUC and is a 
function of the dose of the drug (d), the concentrations over time (y), and the patient’s 
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FIGURE 3.3  (A) The loss function as it relates to the AUC. (B) An example predictive dis-
tribution for the AUC if the next patient receives a particular dose. (C) The expected utility as 
a function of dose, allowing one to determine the optimal dose while incorporating the many 
sources of uncertainty.
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PK parameters (θ). Integrating the utility function with respect to the posterior pre-
dictive distribution of the AUC for a fixed dose gives the expected loss for that dose. 
That is, the optimal dose d* satisfies

	
d u d y p y p dy d
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d
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where pd(y|θ) is the sampling distribution of the future concentrations as a func-
tion of dose (d) and the PK parameters. Of course, the calculations would refer to a 
specific patient, but we have suppressed the subscripts for ease of presentation. Over 
a range of doses and associated expected utilities, one can pick the dose with the 
highest expected utility (or, in our case, the lowest expected loss), as illustrated in 
Figure 3.3C. The study we designed will use the patient’s test data to tailor the dose 
of the high-dose chemotherapy to the specific patient. This study is ongoing.

3.2.2.5  Design
Another important aspect of designing population studies of PK and PD concerns 
the timing of measurements. Quite often, pharmacologists choose sampling times 
based on D-optimality criteria or similar criteria relating to minimizing some func-
tion of the variance–covariance matrix. Bayesian optimal design has generally been 
Bayesian versions of D-optimality and the like (Merlé et al. 1994; Chaloner and 
Verdinelli 1995; Merlé and Mentré 1995). An early example of using information 
theory to design a PK study is given by D’Argenio (1990). For a recent review, see 
Ogungbenro et al. (2009).

3.2.2.6  Design Example
We have proposed a fully Bayesian design with a loss function that incorporates 
inconvenience to the patient (Stroud et al. 2001). The Cancer and Leukemia Group 
B (CALGB) was preparing to carry out a large study of 3 h infusions of paclitaxel 
to treat women with metastatic breast cancer. The proposed sample size was large, 
and the study provided an excellent opportunity to study the pharmacology of this 
important anticancer drug among a large group of women. Investigators had reported 
that the PK parameter with the greatest association with myelosuppression, the pri-
mary toxicity, was the time during which the concentration of the drug is above some 
threshold level (Gianni et al. 1995). Therefore, the CALGB was interested in having 
a good estimate of the time above the threshold concentration and wanted the sam-
pling times to provide for a good estimate.

Estimating the time above some threshold concentration requires drawing sam-
ples around the time when one might expect the concentration to drop below the 
threshold. This requirement means that women would potentially have to stay in 
the clinic longer than clinically necessary, or even return the next day, in order to 
ensure that one gets a sample with the most information about when the concentra-
tion drops below a threshold. A collaborating clinical pharmacologist suggested, 
in fact, that the study require a blood sample 24 h after the start of the infusion. 
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The treating clinicians did not want to require that the women return to the clinic the 
day after the infusion, arguing that such a requirement would be too disruptive for 
the women participating in the study. We decided to approach the design question 
from a decision-theoretic standpoint, by including an increasing cost for times after 
7 h from the start of the infusion, which is the length of time the women would be 
asked to remain in the clinic for routine surveillance. That is, we wanted to find the 
optimal times in order to maximize the precision of estimated PK parameters (in 
particular, AUC and the time above a threshold concentration), accounting for the 
potential cost of requiring women to wait around or even return to the clinic the next 
day. The utility also included a gain as the posterior precision (inverse of the vari-
ance) of the PK characteristic of interest (S(θ), such as AUC or time above a threshold 
concentration) increased. Equation 3.2 shows the utility as a function of the times (t) 
and the data (y). The cost associated with a set of possible sampling times is the sum 
of each time’s cost, and each time’s cost is zero or the squared difference between 
that sampling time and 7 h. The parameter c calibrates a change in cost because of a 
sampling time with improved precision:
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Of course, it is not straightforward to decide how to weigh estimation precision with 
the cost of waiting to draw samples, since these are not on a common metric. Our 
approach called for working with the clinicians to calibrate the relative weights when 
it came time to implement the study design.

We used historical PK data for a prior distribution in our design. Because of the 
nonlinear nature of the mean function, we had to use Markov chain Monte Carlo 
(MCMC) methods for inference (Gamerman 1998). We also used MCMC methods 
to determine the utility surface, treating the problem as one in which we generate 
random samples from some probability distribution known up to a constant of pro-
portionality (Müller and Parmigiani 1995; Müller 1999). In the end, we found that 
the utility surface was relatively flat, and we had to work with a numerically exagger-
ated transformation of the surface to find the times associated with the peak utility. 
Of course, it was highly informative for the clinical pharmacologists to know that the 
utility surface was relatively flat over some range of potential sampling times, since 
this meant that there would not be much loss in using sampling times that might be 
suboptimal yet be appealing for other reasons not captured by the utility function.

3.3  SUMMARY

In this chapter, we have highlighted some of the statistical issues that arise in stud-
ies of the PK and PD of a drug. We used case studies when available to illustrate 
methods. The field is a fascinating one and has the potential to individualize therapy 
for patients, thereby maximizing the chance of clinical benefit while minimizing the 
risk of serious toxicity.
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3.4  SOFTWARE

There are software packages available commercially for fitting pharmacokinetic 
models. There are also some programs that are available free to academic institu-
tions. Here are four software packages in alphabetical order, along with the addresses 
of the associated websites.

ADAPT (http://bmsr.usc.edu/Software/Adapt/adptmenu.html): A suite of pro-
grams for fitting pharmacokinetic and pharmacodynamic models. The web-
site also includes user-supplied functions for fitting complex models. Work 
on a version of the package that will allow population or hierarchical model-
ing is underway.

MCSIM (http://toxi.ineris.fr/activites/toxicologie_quantitative/mcsim/mcsim.
php): A package that allows one to fit one’s own statistical or simulation 
models and carry out Bayesian inference via Markov chain Monte Carlo 
simulations. It is useful for physiologically based pharmacokinetic (or toxi-
cokinetic) modeling.

MONOLIX (http://software.monolix.org/sdoms/software/): Monolix is free soft-
ware that one can use to fit nonlinear repeated measures data. Model fitting is 
based on a stochastic approximation to the EM algorithm. One can download 
related research papers from the website, where one can also find some demos 
and tutorials.

PKBUGS (http://www.med.ic.ac.uk/divisions/60/pkbugs_web/home.html): An 
add-on program for carrying out fully Bayesian pharmacokinetic analyses 
within WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml). 
One can modify the code generated by the program for problem-specific 
analyses.
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4 Statistics of Phase 0 Trials

Larry Rubinstein

4.1  �INTRODUCTION AND STATEMENT OF THE CONCEPT: 
MEASURING BIOLOGICAL EFFECTIVENESS (WITH 
A PD ENDPOINT) AS A VERY EARLY SCREENING 
AND DRUG DEVELOPMENT TOOL

Currently only 5% of investigational new drug (IND) applications to the Food and 
Drug Administration (FDA) in oncology result in clinically approved agents [1,2]. 
This is a very serious problem, since the development of a new agent is a lengthy 
and expensive process and many of these agents fail relatively late in that process. 
The fact that an increasing proportion of IND anticancer agents are molecularly 
targeted suggests testing the agent for effectiveness against the target by means of 
a PD assay very early in the drug development process. This is particularly useful 
and important since the pre-clinical tests of such effectiveness are often mislead-
ing, yielding both false-positive and false-negative results. For this reason, the FDA 
issued a new Exploratory IND (expIND) Guidance in 2006, to allow for such studies 
as small first-in-man trials, conducted at dose levels and administration schedules 
not expected to result in significant clinical toxicity, and generally restricted to at 
most approximately 1 week per patient [1,2]. Conducting studies under this guidance 
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requires substantially less pre-clinical toxicology work than is required for standard 
IND phase 1 studies [1,2]. Therefore, phase 0 studies can be administered while the 
toxicology studies preparatory to filing a standard IND are being conducted, and 
they will not postpone the time until the phase 1 trial can be initiated.

Phase 0 studies can be very effective tools for determining very early in the drug 
development process whether an agent has the anticipated biologic effect. They can 
also be used to prioritize among analogs or agents designed to have the same molec-
ular target by means of comparing pharmacokinetic (e.g., oral bioavailability) and/
or PD characteristics (although we will not deal explicitly with such comparative 
designs). They are an opportunity for developing and validating clinical PD assays 
very early in the drug development process, to enable more reliable usage of such 
assays in phase 1 and phase 2 trials [3]. Finally, they can contribute to better defin-
ing the appropriate dose range or administration schedule to take into phase 1 and 
phase 2 testing.

4.2  STATISTICAL DESIGN OF A PHASE 0 TRIAL

The challenge presented by the PD-driven phase 0 study is to assess the change in 
the PD endpoint effected by the agent, with very few patients, each treated over a 
short period of time, but to maintain a certain amount of statistical rigor. Kummar 
et al. [1] and Murgo et al. [2] give several statistical designs to address this challenge 
in different clinical contexts, three of which we present here, as well as giving a gen-
eral approach to the design of such trials. Typically, a phase 0 trial will encompass 
several escalating dose levels for the experimental agent. In general, the approach 
taken is to mimic the design of a phase 2 study [4], and to design the phase 0 study 
as a phase 2 study in miniature for each separate dose level. Thus, the first step is 
to define what is meant by a PD “response” for each individual patient, which is 
analogous to defining what constitutes an objective tumor response for a patient in a 
phase 2 trial. The second step is to define what constitutes a promising observed PD 
response rate for each dose level—in other words, how many patients must demon-
strate a PD response for the dose level to be declared biologically effective. This is 
analogous to setting a threshold for observed response rate in a phase 2 trial, in order 
that the agent be deemed sufficiently promising for further testing [4]. Further details 
of this approach are given in the following sections.

4.2.1  �Determining Statistical Significance of a PD Effect 
at the Patient Level: Defining a PD Response

In oncology, generally, the PD endpoint is assessed both in tumor tissue and in an 
easily assayed surrogate tissue such as blood (peripheral blood mononuclear cells 
[PBMCs]). The tumor tissue assay is considered to be more reliable with respect to 
reflecting the biological effect of the agent in what is generally the target tissue of 
interest [1,3]. However, the number of tumor biopsies per patient usually is severely 
limited for ethical reasons [1,2]. Therefore, the PBMC assay, for example, is used as 
a surrogate, since multiple PBMC assays can be performed both pre-treatment and 
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post-treatment, thus allowing for assessment of both the pre-treatment variability at 
the patient level and the post-treatment PD effect over time [1–3]. Generally, there 
are only two tumor biopsies, one taken shortly before treatment with the agent, 
and one taken at the post-treatment time point of greatest interest, often when the 
PD effect is anticipated to be at its maximum. The measure of treatment effect for 
the tumor PD assay is the difference between the pre-treatment and post-treatment 
values (often measured on the log scale rather than on the original). Generally, 
there are multiple PBMC assays both pre-treatment and post-treatment. The pri-
mary measure of treatment effect for the PBMC assay is the one that corresponds in 
time to that of the tumor assay—the difference between the most immediately pre-
treatment PBMC assay and the post-treatment PBMC assay closest in time to that 
of the tumor biopsy. The other pre-treatment PBMC assays should, ideally, cover 
a time span comparable to that of the pre-treatment vs. post-treatment biopsies. In 
that way, they provide a measure of the natural variation of the assay, for an indi-
vidual patient, over that time span. The other post-treatment PBMC assays provide 
a means of assessing the post-treatment PD effect over time, as a secondary set of 
PD endpoints.

Defining a PD “response,” both for the tumor assay and for the PBMC assay, 
usually involves both a biologic criterion and a statistical criterion for what is sig-
nificant. The biologic criterion generally depends upon characteristics of the bio-
logic target of the agent. For example, in the recent National Cancer Institute (NCI) 
phase 0 trial of ABT-888 [5,6], the criterion chosen was that the reduction in the 
assay value had to be at least twofold. The statistical criterion may be either 90% 
confidence or 95% confidence (generally one sided, since the anticipated treatment 
effect is generally in one direction) that the observed treatment effect is not a result 
of the sort of natural random variation in the assay, for an individual patient, that 
would be seen in the absence of a true treatment effect. For the PBMC assay, this 
natural variation can be assessed by the pooled intra-patient standard deviation (SD) 
of the pre-treatment values. However, for the tumor assay, multiple pre-treatment 
assays per patient will generally not be available. Therefore, the inter-patient SD 
of the pre-treatment values must be used instead. Details concerning the definition 
of a PD response are illustrated in Figure 4.1. The thresholds for declaring the PD 
effect (pre-treatment value minus post-treatment value, for the case where the agent 
is anticipated to reduce the assay value, as in the NCI phase 0 trial [5,6]) statisti-
cally significant (at the one-sided .10 or .05 significance levels) are calculated from 
the variance of the difference of two normally distributed variables. (If the number 
of samples from which to estimate the pre-treatment variability of the assay is very 
limited (under 20), consideration should be given to using t-distribution, rather than 
normal distribution, cut-off values.)

4.2.2  �Determining Statistical Significance of a 
PD Effect for a Given Dose Level

For each dose level, the investigators may set a threshold for the number of patients, 
among the total, that must demonstrate a PD response, in order for the dose level to 
be judged as yielding a promising biologic effect. Since the false-positive rate for a 
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PD response, for an individual patient, has been determined (as given previously), 
the false-positive rate for declaring a dose level effective, for each assay separately 
and for the two combined, can be calculated from the binomial distribution. (As 
indicated earlier, the tumor tissue assay is generally considered to be more reliable 
than a PBMC, or other surrogate tissue, assay, but the number of biopsies per patient 
is limited for ethical reasons; therefore, PBMC assays are generally used, in addition. 
If the PBMC assay has been established as a reliable surrogate for the tumor assay, 
or if biopsies are impracticable, the PBMC assay may be the only one available.) 
Likewise, for a targeted PD response rate, across patients, the power to declare the 
dose level effective, for each of the two assays, can be calculated. The investigators 
may employ a one-stage or two-stage design to assess the PD response rate at each 
dose level, just as in phase 2 studies [4], and the calculations of power and false-
positive rate are done in an identical fashion. If a dose level proves unpromising, in 
general, escalation to the next dose level will occur. If a dose level proves promising, 
escalation to the next dose level may or may not occur, according to the judgment of 
the investigators. Toxicity may also be a factor in the dose escalation; this will be dis-
cussed further. Examples of designs to target 80%, 60%, or 40% PD response rates, 
across patients are given later. More generally, one may use available online software 
to determine the “Simon optimal” and “minimax” designs [4] (e.g., that supplied by 
the Biometric Research Branch, NCI at http://linus.nci.nih.gov/brb/samplesize/otsd.
html), to be used at each dose level. Likewise, one may use available online software 
to construct a trial design, to be used at each dose level, that is not strictly optimal 
or minimax, or to precisely evaluate such designs (e.g., that supplied by CRAB and 
the SWOG http://www.swogstat.org/stat/public/twostage.htm). We will discuss this 
further in Section 4.2.4.

Defining PD Response at the Patient Level

Calculate the baseline variance and standard deviation (SD) of the PD value
(In surrogate tissue, the baseline variance is the pooled intra-patient baseline 

variance determined by calculating the baseline variances for each patient, 
separately, and then averaging the separate variances across patients. In tumor 
tissue, the baseline variance is the inter-patient baseline variance calculated across 
patients. In either case, the baseline SD is the square root of the baseline variance.)

Measure PD effect as pre-treatment value minus post-treatment value

If the PD effect is greater than 1.8 (2.3) times the baseline SD, then it is statistically 
significant at the .10 (.05) significance level

A statistically significant PD effect, at the patient level, is called a PD response

FIGURE 4.1  This figure illustrates the defining of PD “response” for an individual patient. 
Multipliers of the baseline SD are derived from asymptotic normal distribution theory. 
Significance levels are one sided.
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4.2.3  �Three Phase 0 Trial Designs: Designs to Detect an 80%, 
60%, or 40% PD Response Rate across Patients

To target a true 80% PD response rate at each dose level, a one-stage design may be 
used. Three patients are treated and the dose level is declared effective with respect 
to either PD assay if at least two of the patients demonstrate a PD response which 
is significant at the .10 level. This design yields 90% power to detect a true 80% PD 
response rate, across patients, for either assay, with an overall 6% false-positive rate 
for the two assays combined, under the null hypothesis that the agent has no biologic 
effect. This is the design that was used in the NCI phase 0 trial of ABT-888 [5,6], and 
it is illustrated in Figure 4.2.

To target a true 60% PD response rate at each dose level, a two-stage design may 
be used. Three patients are treated and the cohort is expanded to five patients if 
exactly one patient, for either PD assay, demonstrates a PD response which is sig-
nificant at the .05 level. The dose level is declared effective with respect to either PD 
assay if at least two of the patients demonstrate a PD response which is significant at 
the .05 level. This design yields 89% power to detect a true 60% PD response rate, 
across patients, for either assay, with an overall 4% false-positive rate for the two 
assays combined, under the null hypothesis that the agent has no biologic effect. This 
design is illustrated in Figure 4.3.

To target a true 40% PD response rate at each dose level, a similar two-stage 
design may be used. Five patients are treated and the cohort is expanded to eight 
patients if exactly one patient, for either PD assay, demonstrates a PD response which 
is significant at the .05 level. The dose level is declared effective with respect to 
either PD assay if at least two of the patients demonstrate a PD response which is 
significant at the .05 level. This design yields 87% power to detect a true 40% PD 
response rate, across patients, for either assay, with an overall 10% false-positive rate 
for the two assays combined, under the null hypothesis that the agent has no biologic 
effect. This design is illustrated in Figure 4.4.

Design 1: Defining a Significant PD Effect at the Dose Level when 
the Target PD Response Rate Is 80% Across Patients

Treat three patients

Declare the PD effect statistically significant at the dose level, for 
either endpoint, if at least two of the three patients demonstrate a PD 

response at the .10 significance level 

This yields, for either endpoint, 90% power, at the dose level, to detect 
an 80% PD response rate across patients, with an overall 6% false- 

positive rate for both endpoints combined

FIGURE 4.2  This figure illustrates the defining of what constitutes a promising observed 
response rate for a dose level. The target (true) PD response rate, across patients, is 80%. 
Power and false-positive rate are derived from the binomial distribution.
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4.2.4  Constructing Phase 0 Trial Designs

As mentioned earlier, phase 0 trials can be constructed as a series of miniature 
phase 2 trials, one for each dose level, as the dose levels escalate. Across the dose lev-
els, the investigators must determine what PD response rate is sufficiently promising 
that it should be detected with high probability (generally, at least .90). At each dose 

Design 3: Defining a Significant PD Effect at the Dose Level when 
the Target PD Response Rate Is 60% Across Patients

Treat three patients

Treat an additional two patients if exactly one of the three patients (for 
either endpoint) demonstrates a PD response at the .05 significance level

Declare the PD effect statistically significant at the dose level, for either 
endpoint, if at least two of the three (or five) patients demonstrate a PD 

response at the .05 significance level

This yields, for either endpoint, 89% power, at the dose level, to detect a 
60% PD response rate across patients, with an overall 4% false-positive 

rate for both endpoints combined

FIGURE 4.3  This figure illustrates the defining of what constitutes a promising observed 
response rate for a dose level with a two-stage design. The target (true) PD response rate, across 
patients, is 60%. Power and false-positive rate are derived from the binomial distribution.

Design 3: Defining a Significant PD Effect at the Dose Level when 
the Target PD Response Rate Is 40% Across Patients

Treat five patients

Treat an additional three patients if exactly one of the five patients (for 
either endpoint) demonstrates a PD response at the .05 significance level

Declare the PD effect statistically significant at the dose level, for 
either endpoint, if at least two of the eight patients demonstrate a PD 

response at the .05 significance level

This yields, for either endpoint, 87% power, at the dose level, to detect 
a 40% PD response rate across patients, with an overall 10% false-

positive rate for both endpoints combined

FIGURE 4.4  This figure illustrates the defining of what constitutes a promising observed 
response rate for a dose level with a two-stage design. The target (true) PD response rate, across 
patients, is 40%. Power and false-positive rate are derived from the binomial distribution.
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level, the design must be capable of distinguishing between that target response rate 
and the “null rate” associated with the likelihood of a false-positive PD measure for 
an individual patient (generally, .05–.10). In Section 4.2.3 we gave designs to distin-
guish between PD response rates of 10% vs. 80%, 5% vs. 60%, and 5% vs. 40%, each 
with approximately 90% power to detect the target PD response rate and declare 
the agent promising at a particular dose level, according to either of the two assays 
(tumor and surrogate tissue), and each with overall false-positive rate of 4%–10%. 
These designs, although reasonable, are neither “Simon optimal” nor minimax [4]. 
It would be reasonable to use an optimal design if the dose level (or the agent, in 
general) was unlikely to be effective, to minimize the patients expended for that situ-
ation. On the other hand, it would be reasonable to use a minimax design if the dose 
level was likely to be effective, to minimize the patients expended for that situation.

In Table 4.1, we give optimal and minimax designs for various combinations of 
p0 (the null PD response rate) and p1 (the target PD response rate), along with their 
statistical operating characteristics. These designs are all identical in structure to 
those of Simon [4], except that accrual is terminated at stage 1 if the number of 
responses is at least r + 1, meaning that the dose level has already been proven effec-
tive (this is consistent with the objective to keep the phase 0 trial as small as pos-
sible). For purposes of comparison, we also give the design examples of Section 4.2.3 
(including the one-stage design used in the NCI phase 0 trial, designated as ** in the 
table), which compare quite favorably to their corresponding optimal and minimax 
counterparts. In putting these individual dose-level designs together into a phase 0 
trial with escalating dose levels, the investigators may choose to halt the trial, or not, 
when an effective dose level has been reached (the observed PD rate is adequate). 
Likewise, they may choose to continue dose escalation, or not, until such an effective 
dose level has been reached.

It is interesting to note that the standard 3 + 3 phase 1 dose escalation design can 
also be viewed as a series of miniature phase 2 trials constructed so as to test the rate 
of absence of dose-limiting toxicity (the “DLT-free rate”) at each successive dose 
level, and escalate on that basis. Thus, a phase 0 trial could be designed to test the 
“toxicity-free” rate along with the PD response rate. Here, we are using the term 
toxicity-free somewhat loosely, since, by definition, phase 0 trials should not involve 
clinical toxicity; however, it is possible that the investigators might have a separate 
assay for an unfavorable PD response, which is a biomarker for potential clinical tox-
icity at a higher dose level, along with the assay for the target PD response, which is 
a biomarker for potential clinical benefit at a higher dose level. It is also possible that 
an analog of an effective, but overly toxic, agent would be tested in phase 0, where 
reduction of that toxicity was the primary concern. In Table 4.2, we give examples 
of “Simon optimal” phase 0 trial designs to discriminate between unsatisfactory 
toxicity-free rates p0 (.40–.50), for which we would want to halt the dose escalation 
with high probability (at least .90), and target toxicity-free rates p1 (.80–.90), for which 
we would want to halt the dose escalation with low probability (at most .10), along 
with their statistical operating characteristics. As it happens, these designs are also 
all minimax. All are identical in structure to those of Simon [4], except that accrual 
is terminated at stage 1 if the number of toxicity-free patients is at least r + 1, meaning 
that the dose level has already been proven adequate. For comparison, we also give 
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TABLE 4.1
Simon Optimal and Minimax Designs (Designed to Have 
α = .05 and (1 − β) = .9) to Evaluate PD Response for 
Individual Dose Levels in a Phase 0 Trial

False Positive 
and Target 
Response 
Rates

Dose Level Activity 
Judged Inadequate 
if Response Rate

Probability of 
Positive Result 
for p0 and p1

Prob. of Stage 1 
Determ. of 
Activity for 
p0 and p1

p0 p1 ≤r1/n1 ≤r/n α 1 − β PET0 PET1

.05 .40 0/5 2/14 .024 .900 .775 .395

0/7 2/12 .019 .908 .702 .608
*.05 .40 0/5 1/8 .052 .866 .797 .741

.05 .50 0/4 1/7 .038 .906 .829 .751

Same Same Same Same Same Same

.05 .60 0/3 1/6 .027 .918 .864 .712

0/4 1/5 .023 .913 .829 .847
*.05 .60 0/3 1/5 .020 .890 .864 .712

.10 .70 0/2 2/8 .025 .905 .810 .090

0/3 2/6 .015 .920 .730 .370

.10 .80 0/2 1/4 .019 .951 .820 .680

Same Same Same Same Same Same
** .10 .80 — 1/3 .028 .896 — —

p0 = The false-positive rate associated with determining a PD response for an 
individual patient.

p1 = The target PD response rate, for a dose level, minimally necessary to estab-
lish promise.

r1/n1
 (for stage 1) and r/n (for stage 2) are the maximum number of [responses]/

[the number of patients] for declaring the dose level response rate 
inadequate.

*	 These rows correspond to examples given in Section 4.2.3 and are neither 
optimal nor minimax, but compare favorably to them.

**	 This row corresponds to the one-stage “Design 1” (Figure 4.2), used in the 
NCI phase 0 trial, which is neither optimal nor minimax, but compares favor-
ably to them.

In each row, except * and **, upper numbers relate to the optimal and lower 
numbers to the minimax design. These designs are all identical in structure to 
those of Simon [4] (excluding design **, which has only one stage), except 
that accrual is terminated at stage 1 if the number of responses is at least r + 1, 
meaning that the dose level has already been proven effective.
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the statistical operating characteristics of the standard 3 + 3 phase 1 dose escalation 
design, which can be seen as discriminating between a p0 of .40 and a p1 of .90.

4.3  �EXAMPLE OF A PHASE 0 TRIAL—THE NCI PARP 
INHIBITOR TRIAL—AND FURTHER DISCUSSION 
OF PHASE 0 STATISTICAL ISSUES

The NCI selected ABT-888, an inhibitor of the DNA repair enzyme poly (ADP-
ribose) polymerase (PARP), for the first ever phase 0 trial for two reasons [5,6]. First, 
it was anticipated to have a wide margin of safety relative to target modulating doses 
in pre-clinical models. This is an essential characteristic for a phase 0 agent. Phase 0 
trials cannot promise any benefit for the patients who participate, so there must be 

TABLE 4.2
Simon Optimal (and Minimax) Designs (Designed to 
have α = .1 and (1 − β) = .9) to Continue Dose Escalation 
Based on Toxicity-Free Rate in a Phase 0 Trial

Lower and 
Upper Target 
Toxicity-Free 
Rates

Halt Dose 
Escalation if 
Toxicity-Free 

Rate

Probability of 
Dose 

Escalation for 
p0 and p1

Prob. of Stage 1 
Determ. of 

Escalation for 
p0 and p1

p0 p1 ≤r1/n1 ≤r/n For p0 For p1 PET0 PET1

* .40 .90 1/3 4/6 .082 .906 .712 .757

.40 .90 1/3 3/5 .087 .919 .648 .028

.45 .85 1/3 6/10 .087 .908 .575 .061

.50 .80 3/7 10/16 .099 .905 .500 .033

p0 = The target toxicity-free rate, for a dose level, for which one wants a low 
(<.10) probability of dose escalation.

p1 = The target toxicity-free rate, for a dose level, for which one wants a high 
(>.90) probability of dose escalation.

r1/n1
 (for stage 1) and r/n (for stage 2) are the maximum number of [patients 

with toxicity] /[the number of patients] for declaring the toxicity-free rate 
inadequate.

*	 This row corresponds to the standard 3 + 3 dose escalation design, which is 
neither optimal nor minimax, and includes the additional stipulation that 
dose escalation will occur after stage 1 if all three patients are toxicity-free 
(even though that does not guarantee that, if three additional patients were 
accrued to the dose level, at least four of the six would be toxicity-free).

The rows other than * give two-stage designs, based on toxicity-free rate, 
which are both optimal and, as it happens, minimax. All are identical in 
structure to those of Simon [4], except that accrual is terminated at stage 1 
if the number of patients toxicity-free is at least r + 1, meaning that the dose 
level has already been proven adequate.
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reasonable assurance that toxicity will be minimal. Second, it was anticipated to have 
wide therapeutic applicability if demonstrated effective. Elevated PARP levels are 
characteristic of tumors and can result in resistance to both chemotherapy (CT) and 
radiotherapy (RT). Therefore, PARP inhibitors hold promise of wide applicability as 
CT and RT sensitizers. The NCI trial demonstrated statistically significant reduction 
in PAR levels (a surrogate for PARP inhibition) in both tumor and PBMCs [5,6].

There are a number of statistical issues relating to phase 0 trials that deserve 
further mention:

	 1.	 In the NCI phase 0 trial it was found that the variance of the pre-treatment 
PD assay values was reduced if the logs of the values were used instead. It is 
often appropriate to log-transform PD assay values since geometric, rather 
than arithmetic, changes in value are thought to be qualitatively similar 
along the assay scale.

	 2.	 It will often be the case that assessing the PD treatment effect can be done 
with greater statistical power if the mean effect is measured across patients 
and then a test applied of the null hypothesis that the mean effect is equal 
to 0. Analogously, there have been proposals that phase 2 trials be assessed by 
testing whether the mean tumor shrinkage is statistically significant [7]. The 
problem with this approach is that a statistically significant mean treatment 
effect does not necessarily imply a biologically relevant treatment effect for 
a meaningful proportion of the patients [8]. For this reason, the NCI phase 0 
trial investigators chose to impose the additional criterion of a biologically 
relevant level of PAR reduction for the individual patients. Likewise, it was 
felt appropriate to determine, for the individual patients, whether the PAR 
reduction observed was statistically significant. This follows the standard 
phase 2 model of determining what would constitute a response, for the indi-
vidual patient, suggestive of benefit for that patient, and then assess the pro-
portion of patients demonstrating such a response [8]. There may be phase 0 
situations where this approach is too statistically demanding, and it is appro-
priate to resort to assessing the mean treatment PD effect.

	 3.	For the tumor biopsy assay, multiple pre-treatment assays per patient will 
generally not be available, for ethical reasons. Therefore, the inter-patient 
SD of the pre-treatment values must be used instead of the intra-patient SD, 
which cannot be determined. The inter-patient variability will often be sub-
stantially greater than the intra-patient variability. This can seriously limit 
the ability to declare an observed treatment effect measured by the tumor 
assay to be statistically significant. For example, in the NCI phase 0 trial, 
an observed 95% post-treatment reduction in the tumor assay value was 
required for statistical significance, while an observed 55% post-treatment 
reduction was sufficient for the PBMC assay [2].

4.4  CONCLUSIONS

Phase 0 trials provide an excellent opportunity to establish feasibility and further 
refine target or biomarker assay methodology in a limited number of human samples 
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before initiating larger trials involving patients receiving toxic doses of the study 
agent. We have demonstrated that, despite the small sample size, the nature of the 
PD assay values allow for a reasonable degree of statistical rigor and, especially in 
the case of the surrogate assays (which can be repeated multiple times), a reason-
able degree of statistical power. We have shown how phase 0 trials, with reasonable 
statistical operating characteristics, can be constructed, to determine PD responses 
associated with either potential clinical benefit or potential clinical toxicity. Phase 0 
trials do not replace phase 1 trials conducted to establish dose-limiting toxicities and 
define a recommended phase 2 dose. On the other hand, data from phase 0 trials 
allow phase 1 studies to begin at a higher, potentially more efficacious dose, use a 
more limited and rationally focused schedule for PD sampling, and use a qualified 
PD analytic assay for assessing target modulation. Likewise, phase 0 trials, with 
PD endpoints, will not eliminate the need for phase 2 trials to establish the agent’s 
ability to yield tumor response or clinical benefit; but they will allow for early ter-
mination of development of agents that fail to yield the anticipated biologic effect. 
Therefore, the effort expended to conduct rationally designed phase 0 trials should 
conserve resources in the long run by improving the efficiency and success of subse-
quent clinical development.
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5 CRM Trials for Assessing 
Toxicity and Efficacy

Sumithra J. Mandrekar and Daniel J. Sargent

5.1  INTRODUCTION

Historically, dose-seeking clinical trial designs have geared toward establishing the 
maximum tolerated dose (MTD) of a therapeutic regimen, with safety as the pri-
mary outcome. A fundamental assumption of these designs is that of a monotone 
increasing dose–toxicity and dose–efficacy relationship. Based on this assumption, 
the highest dose found to be safe is also assumed to be the dose most likely to be 
efficacious (Storer, 1989). As such, determining the MTD of a new agent (or com-
bination) was the sole goal of phase I trials. While this paradigm has been success-
ful in oncology for cytotoxic agents, it is not always appropriate for molecularly 
targeted therapies, vaccines, and/or immunotherapy. Targeted therapies including 
monoclonal antibodies have become a major focus of oncology drug development. 
Agents like imatinib, bevacizumab, and trastuzumab have demonstrated clinical 
benefit in several cancers, whereas others like R115777, ISIS 3521, and ZD1839 
have produced negative results (Gelmon et al., 1999; Harris, 2004; Parulekar and 
Eisenhauer, 2004). The proposed mechanisms of action for these agents during the 
phase I testing are not straightforward in that (1) the dose–efficacy curves are usu-
ally unknown and (2) dose–toxicity relationships are expected to be minimal. The 
dose–efficacy curves for these novel therapies may follow a nonmonotone pattern 
such as a quadratic curve or an increasing curve with a plateau. Figure 5.1 depicts 
three possible dose–efficacy curves for such agents, specifically a monotonically 
increasing dose–efficacy curve, an increasing dose–efficacy curve with a plateau, 
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and a unimodal or parabolic dose–efficacy curve. Consider, for example, a thera-
peutic approach based on immunotherapy where an agent is given to a patient in an 
attempt to stimulate the patient’s own immune system to fight the tumor. In such 
cases, overstimulation of the immune system could in fact interfere with efficacy or 
even prove to be harmful (toxic) for the patient (Linsley, 2005). Ideally, dose-finding 
studies for such agents should incorporate both measures of efficacy and toxicity, 
and the primary aim should be to identify the biologically optimal dose (BOD) 
instead of the MTD.

In the setting of combination therapies, there is a further added complexity 
involved with the determination of the MTD (or the BOD). Ideally, an understand-
ing of the underlying biologic rationale for the combination would be available, for 
example, are the toxicity profiles of the agents overlapping or additive? Is the efficacy 
of the two agents’ additive, complementary, or synergistic? Typically, a set of pre-
determined combination dose levels are explored that are based on the single agent 
MTD or preclinical cell lines experiment demonstrating synergy, where the dose of 
one agent under investigation is escalated while the dose of the second agent remains 
constant until a tolerable combination dose level is achieved. Clearly, not all possible 
combination levels can be feasibly tested. In reality, preclinical or clinical data to 
define the optimal dose combination exploration is however lacking, and an efficient 
dose-seeking algorithm thus highly desirable. Despite the increased testing of such 
combination treatments in oncology, few designs for dose escalation of two or more 
agents have been proposed (Simon and Korn, 1991; Thall et al., 2003; Conaway et 
al., 2004; Wang and Ivanova, 2005; Yin and Yuan, 2009; Hamberg et al., 2010). 
A majority of these designs base their dose-finding algorithm on the dose–toxicity 
relationships (with a goal to identify the MTD of the combination), again based on 
the assumption that higher dose level combinations will provide the maximal thera-
peutic efficacy. Designs for dose-finding studies to establish the BOD of two or more 
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agents utilizing both toxicity and efficacy are limited (Huang et al., 2007; Dragalin 
et al., 2008), as the dose–toxicity and dose–efficacy surfaces for combination thera-
pies are inherently more complex.

In this chapter, we review model-based designs that assist with the identifica-
tion of the BOD of a single or dual agent combinations in a phase I setting utiliz-
ing both toxicity and efficacy data. An obvious requirement for such BOD-based 
designs is the existence of a direct or surrogate measure of efficacy. Some pos-
sible efficacy endpoints include the minimum effective blood concentration level 
of the agent, percent target inhibition of a marker, minimum expression level of a 
molecular target (targeted biologic response), tumor response, or pharmacokinetic 
endpoints in addition to toxicity (Gelmon et al., 1999; Parulekar and Eisenhauer, 
2004; Hamberg et al., 2010). The existence of such a surrogate marker of effi-
cacy, particularly one that has been properly validated, is a nontrivial issue. For 
the purposes of the designs considered in this chapter, we will assume that such 
a marker (of efficacy) exists. Thus, this chapter is organized into the following 
sections: Section 5.2 provides a brief overview of the framework of the standard 
continual reassessment method (CRM) as well as some of the extensions to the 
traditional CRM, Section 5.3 reviews the model-based trivariate CRM (TriCRM) 
designs for single and dual agent drug combinations, Section 5.4 discusses a hypo-
thetical example of a dual agent TriCRM design, and Section 5.5 ends with some 
concluding remarks.

5.2  CONTINUAL REASSESSMENT METHOD (CRM)

The CRM design introduced the concept of dose–toxicity models to guide the dose-
finding process (O’Quigley et al., 1990; O’Quigley, 2011). The dose–toxicity model 
represents the investigator’s a priori belief in the likelihood of dose limiting toxicity 
(DLT) according to delivered dose, which thereafter is updated sequentially using 
cumulative patient toxicity data. While the choice of the prior distribution is always 
a concern in the Bayesian framework, CRM designs have proven to be robust to 
model mis-specification (Shen and O’Quigley, 1996) as long as the models them-
selves are selected based upon clinical knowledge. The original version of the CRM 
allowed for skipping of dose levels during escalation, which had the consequence 
that a large proportion of patients could be exposed to unacceptably toxic doses if 
the prespecified model were incorrect. Several modifications to the original CRM 
have been proposed to address these safety concerns, such as starting the trial at 
the lowest dose level, not allowing for skipping of dose levels during escalation, and 
requiring at least three patients at each dose level prior to escalation (Goodman et 
al., 1995; Piantadosi et al., 1998; Heyd and Carlin, 1999). The classical and modified 
CRMs are all model-based adaptive designs that have demonstrated superior oper-
ating characteristics compared to algorithm-based designs (such as the traditional 
3 + 3 design) in simulation settings: A higher proportion of patients are treated at 
levels closer to the optimal dose level, and fewer numbers of patients are required to 
complete the trial.
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5.2.1  Extensions to the CRM Design

Current statistical approaches have extended the standard CRM design discussed 
earlier in two directions to allow the modeling of toxicity and efficacy outcomes in 
a phase I setting. The first approach maintains the bivariate structure of outcomes 
through a joint modeling of toxicity and efficacy, whereas the second approach col-
lapsed the combination of toxicity and efficacy outcomes into an ordinal trinary vari-
able that follows a sequential order: acceptable toxicity (i.e., no DLTs) and no efficacy, 
acceptable toxicity (i.e., no DLTs) but with efficacy, or unacceptable toxicity (i.e., 
DLTs) that renders any efficacy irrelevant. Examples of the first approach include the 
following: the bivariate CRM that utilizes a marginal logit dose–toxicity curve and 
a marginal logit dose–disease progression curve with a flexible bivariate distribution 
of toxicity and progression (Braun, 2002), a dose-finding algorithm based on the effi-
cacy–toxicity trade-offs (Thall and Cook, 2004), a dose-finding design using toxicity 
and efficacy odds ratios (Yin et al., 2006), and bivariate probit models for toxicity 
and efficacy (Bekele and Shen, 2005; Dragalin et al., 2008). In terms of the second 
approach of collapsing the combination of toxicity and efficacy outcomes into an 
ordinal outcome, simple models with a power function were explored by O’Quigley 
et al. (2001) and Wang and Ivanova (2005); more sophisticated models such as the 
proportional odds (PO) model (Thall and Russell, 1998) or continuation ratio (CR) 
models (Zhang et al., 2006; Mandrekar et al., 2007) have also been explored. Here, 
we review the theoretical model framework, the design specifics, and the simulation 
results of the CR model-based trivariate CRM (TriCRM) designs for single and dual 
agent drug combinations in the next section.

5.3  TRIVARIATE CRM (TriCRM) DESIGNS

5.3.1  Theoretical Framework

Let y = (y0, y1, y2) denote a trinary ordinal variable representing the three possible 
outcomes of acceptable toxicity without efficacy, acceptable toxicity with effi-
cacy, and severe toxicity, respectively, with corresponding probabilities denoted by 
ψ(x, θ) = {ψ0(x, θ), ψ1(x, θ), ψ2(x, θ)}. The probability of each outcome is a function 
of the dose of the agent (x) together with the parameter vector (θ), with the following 
assumptions:

•	 ψ0(x, θ), the probability of acceptable toxicity without efficacy is a decreas-
ing function of the dose (x).

•	 ψ2(x, θ), the probability of severe toxicity is an increasing function of the 
dose.

•	 The probability of acceptable toxicity with efficacy, that is, treatment suc-
cess, ψ1(x, θ) can be a nonmonotone function of the dose (x).

Extending this framework to the dual agent setting, x = (x1, x2) is now an indicator 
of dose levels for each agent, and θ is the set of parameters that characterize the 
true toxicity and efficacy curves for each agent, with “no response” as no efficacy 
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and acceptable toxicity, “success” as efficacy and acceptable toxicity, and “toxicity” 
as unacceptable toxicity, defined for each agent, respectively. The probability of no 
response, ψ0(x, θ), is assumed to decrease monotonically with increase in dose level 
of each agent, the probability of toxicity, ψ2(x, θ), is assumed to increase monotoni-
cally with increase in dose level of each agent, and when dose level of one agent is 
fixed, the success probability, ψ1(x, θ), is unimodal (monotone increasing or mono-
tone decreasing or parabolic) in the dose levels of the other agent.

Zhang et al. (2006) proposed the continuation ratio (CR) regression model for a 
single agent TriCRM model as given in the following:
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where θ = (μ, α, β), β1 > 0, and β2 > 0 to ensure the monotonic relationships of ψ1(x, θ)/
ψ0(x, θ) and ψ2(x, θ) with dose (x). If n is the number of cohorts treated at the current 
time, x is an n × 1 dose vector with element xi, and y is an n × 3 outcome matrix with 
yi as the ith row, for i = 1, 2, 3, … n; then given the dose-outcome model and current 
data (x; y), the likelihood function is given by
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where
xi is the dose administered to the ith cohort
yi = (y0i; y1i; y2i) is the trinomial outcome of the ith cohort with size ci = (y0i + y1i + y2i) 

at dose xi

ψj (·), j = 0, 1, 2, are the probabilities as defined earlier

This likelihood function is updated as data from each successive cohort become 
available. If only a binary toxicity outcome measure (toxic versus nontoxic) is avail-
able, then this likelihood function is essentially the same as that for the standard 
CRM model based on a two parameter logistic model using only the dose–toxicity 
relationship. Mandrekar et al. (2007) extended the single agent CR model to accom-
modate two agents by including two additional slope parameters for the second agent 
as given in the following:
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where β1 > 0, β2 > 0, β3 > 0, and β4 > 0 to ensure the monotonic relationship for each 
agent marginally. The likelihood function is constructed similarly to the single agent 
scenario (Equation 5.3), where x ∈ Rn × 2 is the dose matrix with rows xi for each agent, 
and y ∈ Rn × 3 is the outcome matrix, where n is the number of patient cohorts already 
treated in the trial. To facilitate numerical computation within the Bayesian frame-
work, both models utilize independent broad uniform priors for the parameter θ to 
account for potential uncertainties.

5.3.2  Decision Functions and Dose-Finding Algorithm

Let π0 be the maximum tolerable toxicity probability, which is prespecified prior to 
trial initiation. The decision functions δ1(x;θ) and δ2(x;θ) are considered jointly with 
the accumulated toxicity and efficacy data for decision making of dose escalation or 
de-escalation, as outlined in the following:
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Specifically, the toxicity criterion requires δ1(x;θ) = 1, that is, the toxicity probabil-
ity at the single agent or combination dose levels is smaller than the pre-specified 
limit of π0. Given that the toxicity criterion is satisfied, the success criterion 
δ θ ψ θ2 1x x

x c x
; max ;

( )
( ) = ( ){ }

∈
 seeks to maximize the probability of success, that is, 

among all the possible dose levels or dose level combinations, it selects the dose 
level or the combination dose level with the highest estimated success probability. 
In the single agent setting, δ2(x;θ) can also be specified to maximize the difference 
between the success probability and toxicity probability instead of just maximizing 
the success probability as given in (3.5) (Zhang et al., 2006). Specifically,

	 δ θ ψ θ λψ θ λ2 1 2 0 1( ; ) ( ; ) ( ; );x x x= − ≤ ≤

	
δ θ δ θ2 2( *; ) max ( ; )

( )
x x

x c x
=

∈
	 (5.7)

Thus, the success criterion seeks to maximize either the difference between the suc-
cess probability and toxicity probability if λ = 1, or the success probability if λ = 0. 
The value of λ can be varied between 0 and 1 to include toxicity in the efficacy 
criterion.
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A step-by-step approach to conducting a trial using the model-based TriCRM 
designs for single or dual agent combination is given in the following:

	 1.	Treat a cohort of k patients at a time, starting from the lowest dose level in 
the case of a single agent, or to the three lowest dose level combinations for 
the dual agent.

	 2.	Skipping of dose levels is not recommended; thus, doses are escalated only 
by one level at a time but dose de-escalation is not necessarily restricted. 
For a trial with dual agents, the proposed level for the next cohort must be a 
neighbor of one of the combination levels already tested, where a neighbor 
refers to a change in dose level of at most one agent by at most one level.

	 3.	At each interim point, θ̂ is updated and the decision functions given by (3.6) 
are evaluated using the accumulated toxicity and efficacy data.

	 4.	 If δ1(x;θ̂) = 0 for all dose levels (or combinations), and the current dose level 
is the lowest dose level (or combination), the trial is terminated and no dose 
level is recommended.

	 5.	 If δ1(x;θ̂) = 0 for all dose levels, but the current level is not the lowest, then 
treat the next cohort of patients at the lowest dose level (or combination).

	 6.	Otherwise, the next dose level at which δ2(x;θ̂) is maximized among those 
with δ1(x;θ̂) = 1 is chosen for the next cohort of patients.

	 7.	The trial is terminated after at least a minimum number of patients (say 
n1) have been treated, provided at least a prespecified number of patients 
(say m) have been treated at the proposed combination dose level, or until 
a maximum number of patients (say n2) are treated, whichever occurs first. 
As a default, n1 is chosen as 18, m is chosen as 9, and n2 is chosen as 30 and 
45 for the single and dual agent settings.

Extensive simulation studies were carried out to evaluate the performance of the 
TriCRM designs. While the dose–toxicity curves were monotone increasing in 
all the scenarios, the dose–efficacy curves were monotone increasing, monotone 
decreasing, or unimodal. In the single agent setting, the average sample size ranged 
from 16 to 25 patients depending on the location of the BOD, the percentage of 
patients treated at the optimal dose level varied from 25% (unimodal dose-efficacy 
case) to as high as 75%, and the no-recommendation rate was high when the start-
ing dose is too toxic. Zhang et al. (2006) also showed that the TriCRM design is 
more efficient in identifying the optimal dose compared to a design where patients 
are randomly assigned to dose levels, which has been proposed as an approach for 
dose finding for nontoxic agents. The scenarios for the dual agent TriCRM design 
were complicated by the fact that each agent had a different dose–efficacy or a dose–
toxicity curve of its own. In this setting, a dose success region was also defined, in 
addition to the optimal dose combination that included all those dose levels with 
acceptable toxicity that have a success probability within 15% of the highest suc-
cess probability (Mandrekar et al., 2007). The percentages of patients treated at the 
optimal dose level combinations (region) varied from 57% to 71%, with a high non-
recommendation rate for toxic combinations. The average sample size ranged from 
21 to 34 for the six scenarios considered in their simulations. For further details on 
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the simulation settings, and the results, refer to Zhang et al. (2006), Mandrekar et al. 
(2007, 2010).

5.4  �ILLUSTRATION OF THE TRICRM DESIGN FOR 
A SINGLE AGENT DOSE-FINDING TRIAL

Here, we consider the implementation of a TriCRM design in a mock trial in 
the setting of head and neck cancer. Patients with head and neck cancer have a 
global cancer predilection throughout the oropharyngeal mucosa. Oral leuko-
plakia is an established precursor lesion to oropharyngeal cancer. Current man-
agement options include watchful waiting, laser ablation, or aggressive surgical 
resection. Photodynamic therapy (PDT) coupled with a photosensitizing agent 
(Aminolevulinic Acid HCL, ALA) could potentially permit a targeted therapy 
approach to high-risk mucosal lesions. Typically, extremely high energies with spot 
sizes of 1–2 mm are used to coagulate blood vessels in the vocal cord, with no adju-
vant drug. In this mock trial, assume that equivalent or superior clinical outcomes at 
much lower laser energy densities could potentially be obtained through the intro-
duction of the photosensitizing agent, ALA. We describe here a dose-finding clini-
cal trial design that attempts to determine the safety and tolerability of the optimal 
laser dose (PDT) needed to activate ALA in the oral cavity among subjects with 
premalignant oral lesions.

Let the dose levels to be experimented be ALA (60 mg/kg) + 4 J/cm2, ALA (60 mg/
kg) + 6 J/cm2, ALA (60 mg/kg) + 7 J/cm2, and ALA (60 mg/kg) + 8 J/cm2, where a 
higher dose may not necessarily improve efficacy, but could result in increased tox-
icity. Unacceptable adverse events will be defined as third degree burn in the treated 
region as well as any significant side effects (tissue damages) from ALA following 
the common toxicity criteria (CTC). Efficacy is measured in terms of response rate 
defined as either a complete or partial response. A complete response is defined as 
complete regression of treated lesions by clinical imaging, a partial response (PR) is 
defined as 50% or greater regression of the treated lesion area in clinical imaging, 
and no response (NR) is defined as no clinical change or less than 50% regression 
of the treated lesion. The proposed design would then use the continuation ratio 
(CR) model incorporating both adverse events and efficacy to estimate the optimal 
laser dose needed to activate ALA in the oral cavity. The dose-finding algorithm of 
the TriCRM design will use two decision functions: an adverse events criterion that 
requires that the unacceptable adverse events probability at each dose level is less 
than a prespecified rate (say 30%), and an efficacy criterion that maximizes the suc-
cess probability among the dose levels that meet the adverse events criterion. The 
trial would then proceed as follows: (1) assign three patients to the lowest starting 
dose level; (2) based on the accumulated data at any point in the trial, update the 
parameter estimates of the CR model and evaluate the adverse events criterion for 
the dose range to be explored; (3) within the dose ranges that satisfy the adverse 
events criterion, identify the dose level that has the maximum estimated success 
probability; (4) assign the next cohort of three patients to the dose level that has the 
maximum estimated success probability; and (5) repeat the previous steps until at 
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least 9 patients are treated at the optimal dose level combination or until a maximum 
of 18 patients are treated, whichever occurs first. In the event that the entire dose 
range does not satisfy the adverse event criterion, and the current dose level is not 
the starting dose level, this design has the flexibility to start the trial all over again by 
assigning the next three patients to the starting dose level instead of terminating the 
trial based on the premise that additional data might be needed at each dose level for 
a more accurate estimation of the true toxicity and efficacy curves. The trial could 
be designed to allow (or not allow) skipping of dose levels in the dose escalation pro-
cess. An advantage of this design is that it summarizes patient outcomes in terms of 
both adverse events and efficacy. Moreover, the trial would be terminated early if all 
dose levels to be explored are determined to have an unacceptable adverse event rate.

5.5  CONCLUDING REMARKS

The failure of promising agents in randomized studies has prompted a reconsid-
eration of the standard dose-finding paradigm, with the recognition that improved 
drug development strategies for both single agent and dual agent combinations are 
required. While the assumption of a monotonically increasing dose–toxicity curve is 
almost always appropriate from a biological standpoint, a monotonically increasing 
relationship between dose and efficacy has been challenged by the recent develop-
ment of molecularly targeted therapies, vaccines, and immunotherapy. Model-based 
designs are certainly not perfect or recommended for every dose-finding study, but 
they provide an attractive alternative (notwithstanding the previously mentioned 
challenges) compared to the traditional algorithm-based up and down methods when 
one or both of the following is true: (1) Number of dose levels for escalation/de-
escalation is large, that is, six or higher, for example, and (2) agent(s) being tested 
is(are) expected to have unknown dose efficacy outcomes. In the first case, the tra-
ditional designs would typically require a larger number of patients to be treated 
if indeed the optimal dose level is near the highest dose level. In the second case, 
the dose escalation/de-escalation decisions are based not only on safety but also a 
measure of efficacy that is quick and reliable to assess. Despite the favorable char-
acteristics of CRM-based designs for dose-finding studies of targeted therapies 
from a theoretical standpoint, there exists significant scientific and pragmatic rea-
sons for why these designs are not yet “popular” choices for dose-finding studies 
(Rogatko et al., 2007; Zohar and Chevret, 2007; Mandrekar et al., 2010). Some of 
the scientific reasons for not relying on model-based designs for early phase studies 
include (1) lack of validated biomarkers for efficacy, (2) lack of validated assays, 
(3) real-time assessment of the biomarker outcome not possible, (4) dichotomous 
efficacy outcomes inaccurate and suboptimal (model-based designs for time to event 
or other continuous endpoints are limited/nonexistent), and (5) inability of some of 
the designs to accommodate categorical (as opposed to a continuum) dose level com-
binations. Several pragmatic issues have limited the use of these designs in early 
phase clinical trials, including (1) lack of familiarity with the design, (2) fear of 
the “black-box” decision-making framework in comparison to the straightforward 
decision process with the traditional non-model-based designs, (3) perceived loss of 
control of the data and relying on the statistical model to decide where to treat the 
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next cohort of patients, (4) fear of lack of regulatory acceptance, and (5) finally, and 
most importantly, resistance to change and unwilling to be the “first” to try a new 
approach. The challenge of determining an optimal dose for biologic and molecu-
larly targeted agents is considerable from both a clinical and statistical standpoint 
in early phase trials. The model-based designs we present have been shown to have 
considerable promise, at least from a theoretical standpoint, in improving the ability 
to identify the BOD.
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6 Seamless Phase I/II Trial 
Design for Assessing 
Toxicity and Efficacy 
for Targeted Agents

Antje Hoering, Michael LeBlanc, 
and John J. Crowley

6.1  INTRODUCTION

The main goal in phase I trials for traditional cytotoxic agents is to determine the 
maximal tolerated dose (MTD). The underlying premise is that both efficacy and 
toxicity increase monotonically with increasing dose levels. Only toxicity, not effi-
cacy, is monitored during a traditional phase I trial. The standard 3 + 3 design accrues 
three to six patients at a time to a given dose level and then increases the dose level 
until dose limiting toxicity (DLT) is observed. If two or more DLTs are observed in a 
group of six patients at that dose level, dose escalation ceases and the MTD has been 
exceeded. The highest dose where no more than one DLT in six subjects is observed 
is the MTD. Storer reviews the performance of this and other traditional phase I trial 
designs in the first chapter of this handbook [9].

The premise for phase I trials for cytostatic or targeted agents is generally dif-
ferent. Since the targeted agent is designed to specifically interfere with a molecular 
pathway directly related to specific characteristics of the tumor, it is hypothesized to 
be less toxic than a traditional cytotoxic agent. Toxicity does not necessarily increase 
with increasing dose levels. Efficacy does not necessarily increase monotonically 
with increasing dose levels either, but may plateau after it reaches maximal efficacy; 
higher dose levels past this point may no longer yield higher efficacy.
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Thus, the goal for dose-finding trials for targeted agents should be to determine 
the dose level that provides highest efficacy while assuring the safety of that dose 
level. We refer to this dose as the best dose. A variety of continual reassessment mod-
els (CRMs) have been proposed for this purpose. These are summarized in Chapter 5 
of this handbook [7]. Hunsberger et al. [4] recently proposed a dose escalation trial 
for targeted therapies similar to the traditional 3 + 3 phase I trial, but with dose esca-
lation solely based on biomarker response, assuming that no significant toxicity will 
occur. These proposed trial designs address the issue of finding such a dose and have 
good statistical properties. None of these trial designs appears to have found wide-
spread acceptance in the clinical trials community yet. Here we propose a phase I /
II trial design to assess both toxicity and efficacy to find the best dose as well as a 
good dose. In this context the best dose is defined as the dose level that maximizes 
efficacy while assuring safety and a good dose is defined as a dose level where effi-
cacy is above a predefined boundary while maintaining safety. Targeted agents are 
often difficult and expensive to manufacture in larger quantities and a smaller dose 
provides economic benefit. Thus under some circumstances a good dose may even 
be preferable to the best dose. Jain et al. [5] recently evaluated several phase I tri-
als for targeted agents and found evidence that patients on lower dose levels do not 
necessarily fare worse.

This phase I/II design can easily be implemented and interpreted. It allows for 
extended cohorts of patients at dose levels close to the best dose to more precisely 
determine toxicity and efficacy of the new agent. In addition, different patient popu-
lations may be enrolled to the phase I and phase II portion. Traditionally the patient 
population for assessing toxicity is broader than the patient population for the first 
efficacy trials.

6.2  PHASE I/II TRIAL DESIGN FOR TARGETED AGENTS

We recently investigated the operating statistics of this two-step dose-finding trial 
for assessing both toxicity and efficacy for a new targeted agent [3]. Both steps are 
implemented in the same protocol to insure seamless continuation. For the first step 
we use a traditional phase I trial design, such as the 3 + 3, the accelerated titration, 
or the CRM model. This step only assesses toxicity and finds the MTD. This step 
insures that the dose levels at and below the MTD are safe in humans. Even if a new 
agent is not anticipated to have toxicity and has been shown to be safe in animal 
models, it is important to be certain of that fact before exposing a large number of 
humans to a new agent [2].

The goal of the second step is to determine the best dose in terms of efficacy and 
toxicity as a dose level no larger than the MTD. Great care has to be taken in deter-
mining the best efficacy endpoint for this part of the trial. Defining an early efficacy 
endpoint based on tumor biology for these agents is often difficult. In addition, some 
of these targeted agents are not necessarily expected to yield sufficient tumor shrink-
age to achieve a clinical response by standard response criteria (e.g., RECIST). One 
possibility is to use progression-free survival at a single time point or disease control 
rate (clinical response of stable or better).
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For this second step we propose a phase II modified selection design [6] for two 
or three dose levels at and below the MTD to determine efficacy and evaluate a dose 
level for both efficacy and toxicity. We assume that a binary endpoint for efficacy 
such as the ones discussed previously has been determined. We suggest accruing 
approximately 15–20 patients per dose level and assess both toxicity and efficacy for 
those patients. Each dose level is an arm in our phase II trial. We first evaluate each 
arm independently for both efficacy and toxicity. We perform a simple hypothesis 
test to determine efficacy and assess the power of the test statistic by determin-
ing the probability of passing the efficacy boundary independently in each arm. We 
also determine how many patients experience a DLT and define a toxicity boundary, 
which is traditionally 33%. If the percentage of patients experiencing a DLT at a spe-
cific dose level (arm) is larger than or equal to the toxicity boundary, this dose level 
is considered to be too toxic and is not pursued any further. On the other hand, if the 
percentage of patients experiencing a DLT in a specific arm is lower than the toxicity 
boundary, we consider this arm having acceptable toxicity. We next determine the 
probability of picking the arm with the largest efficacy while assuring acceptable 
toxicity and a minimal efficacy level as defined earlier using a slightly modified 
methodology of selection designs. This expanded cohort of 15–20 patients for two 
or three dose levels allows us to get a more precise estimate of toxicity and efficacy 
and thus a higher probability of correctly determining the best dose before launching 
into a larger trial.

6.3  �UNDERLYING MODEL ASSUMPTIONS 
AND SIMULATION STUDIES

We assume that toxicity and efficacy are binary measures. In general, toxicity and 
efficacy are closely linked. Each dose level has a specific average toxicity and effi-
cacy associated with it. We thus simulate the toxicity and efficacy data using a cor-
related bivariate logistic regression model. The correlation can be measured by a 
correlation coefficient or an odds ratio relating the two endpoints. We chose the odds 
ratio as a means to measure the correlation as it has better numerical properties and 
there exists a readily available R-package (VGAM) [10].

Let the marginal probabilities (for toxicity and efficacy) be logistic and depend 
on the parameter β. For an observation with covariate vector x the marginal prob-
abilities are then given by
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Let pij be the joint probability for toxicity i = (0,1) and efficacy j = (0,1). The odds ratio 
ψ is defined by ψ = p11 p00 /p10 p01. For a description of bivariate odds ratio models see 
Ref. [8]. The joint probability p11 can be expressed in terms of the marginal prob-
abilities p1 and p2 as follows [1]:
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where
a = 1 + (p1 + p2)(ψ − 1) and b = −4ψ(ψ − 1)p1p2

p1 and p2 denote the marginal probabilities for toxicity and efficacy, respectively

For our simulation studies we use six dose levels, which is a commonly used num-
ber of dose levels for early therapeutic studies. We assume that the dose–response 
curve is monotonically increasing with increasing dose and remains constant after 
a critical dose is reached. The window of the six dose levels examined may include 
different parts of that dose–response curve. We distinguish three types of efficacy 
scenarios. As discussed earlier, efficacy may be measured in different ways depend-
ing on the underlying mechanism of the agent of interest. Here we refer to all the 
efficacy measures loosely as response measures, keeping in mind, however, that the 
actual efficacy measure may be different from the traditionally defined response. 
Figure 6.1a depicts the three response scenarios as a function of dose level. Response 
scenario R1: This scenario assumes a continuous increase in response with increas-
ing dose level within the dose levels considered. In this case the leveling-off could 
occur outside the dose ranges considered. Response scenario R2: In scenario 2 we 
assume an increase in response for the first four dose levels after which it levels off. 
Response scenario R3: Scenario 3 describes the scenario where the response is inde-
pendent of the dose level within the range considered.

Similarly, we assume three types of toxicity scenarios; for the scenario with 
monotone increase in toxicity we consider two different slopes, so that there is a total 
of 4 toxicity scenarios. More specifically, these scenarios are as follows: Toxicity 
scenario T1: Scenario 1 assumes that toxicity increases until a maximum toxicity is 
achieved after which it levels off. Toxicity scenario T2 and T3: Scenarios T2 and T3 
assume that toxicity increases monotonically with dose level, where the increase is 
steeper for T2 than T3. Toxicity scenario T4: Finally, scenario 4 assumes negligible 
toxicity. Those scenarios are illustrated in Figure 6.1b.

Based on these four toxicity scenarios and three response scenarios there are 
twelve possible combinations of scenarios. The best dose is defined as the one that 
maximizes efficacy while maintaining acceptable toxicity and a minimal efficacy, 
that is, the rate of DLTs is below the toxicity limit and efficacy passes the efficacy 
boundary. In addition, we define a good dose level as a dose level with acceptable 
toxicity and efficacy passing the efficacy boundary. For each of the response and 
toxicity scenario combinations the best dose levels and good dose levels by efficacy 
and toxicity are summarized in Table 6.1.

In our simulation studies we determined the probability of correctly identifying 
the MTD in the phase I trial using a traditional “3 + 3” trial design. A CRM or accel-
erated titration design could also be used for this step. We used 1000 simulations.

For the phase I trial 3 different outcomes for each of the toxicity scenarios can be 
distinguished: The MTD is correctly determined, the MTD is too large, or the MTD 
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is too low. In our simulation studies for the phase II portion we determined the power 
of the efficacy test, the probability of the doses being tested to be too toxic, and the 
probability of correctly determining the best dose. We randomized 40 patients to 
two dose levels, the dose level determined by the phase I part (arm 1) and the dose 
level immediately below the MTD (arm 2). The hypothesis test for response used in 
this example tests H0: p = 0.05 versus HA: p = 0.30. The toxicity limit in our simula-
tions is defined to be 33%. In our simulation studies, arm 1 is chosen if the toxicity is 
below the toxicity boundary, if the efficacy is above the efficacy boundary, and if the 
observed efficacy is larger than the efficacy in arm 2. Arm 2 is chosen if the toxicity 

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1 2
Dose level(a)

Scenario R1
Scenario R2
Scenario R3

Possible response scenarios

3 4 5 6

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1 2
Dose level(b)

3 4 5 6

Possible toxicity scenarios

Scenario T1
Scenario T2
Scenario T3
Scenario T4

FIGURE 6.1  (a) Possible response scenarios as a function of dose level. Plotted are the mar-
ginal probabilities as a function of dose level. (b) Possible toxicity scenarios as a function of 
dose level. Plotted are the marginal probabilities as a function of dose level.
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is below the toxicity boundary, if the efficacy is above the efficacy boundary, and 
if the observed efficacy is larger than or equal to the efficacy in arm 1. These two 
probabilities do not add up to one as neither arm is chosen if the toxicity is too high 
or the efficacy is not large enough.

We also compared our results with a combination of the same phase I trial and a 
traditional single-arm phase II trial at the dose level determined by the phase I trial. 
We used the same total sample size and determine the probability of correctly pick-
ing the best dose level and a good dose level using the previous definitions. We evalu-
ated the overall probability of picking a good and best dose level using our proposed 
design as a sum of the probabilities of the different possible ways to select a good or 
best dose level (Figure 6.2).

6.4  RESULTS AND DISCUSSION

The first four columns of Table 6.1 summarize the twelve toxicity and efficacy sce-
nario combinations and their respective MTD, best and good dose levels as defined 
earlier. For some scenarios there is only one best dose and one good dose, whereas 
for others several or even all dose levels can be considered good. In the scenarios 
R1T1, R1T2, and R1T3, level 4 is the MTD and the only level that crosses the efficacy 

TABLE 6.1
Overall Probability of Selecting the Best or Good Dose Level

Efficacy 
Scenario

Toxicity 
Scenario

Best 
Dose 
Level

Good 
Dose 
Level

Probability 
of Picking 
Best Dose 
with Our 
Proposed 
Design

Probability 
of Picking 

Good Dose 
with Our 
Proposed 
Design

Probability 
of Picking 
Best Dose 

with 
Traditional 

Ph I/II 
Design

Probability 
of Picking 

Good Dose 
with 

Traditional 
Ph I/II 
Design

R1 T1 4 4 0.16 0.16 0.21 0.21

R1 T2 4 4 0.15 0.15 0.18 0.18

R1 T3 4 4 0.29 0.29 0.30 0.30

R1 T4 6 4–6 0.61 0.88 0.84 0.89

R2 T1 4 3, 4 0.20 0.55 0.21 0.51

R2 T2 4 3, 4 0.20 0.52 0.19 0.46

R2 T3 4 3, 4 0.38 0.58 0.31 0.48

R2 T4 4–6 3–6 0.89 0.93 0.89 0.93

R3 T1 1–4 1–4 0.93 0.93 0.86 0.86

R3 T2 1–4 1–4 0.90 0.90 0.80 0.80

R3 T3 1–4 1–4 0.85 0.85 0.78 0.78

R3 T4 1–6 1–6 0.97 0.97 0.97 0.97

Compared are the properties of a traditional phase I design followed by a traditional phase II trial design 
and the seamless phase I/II trial design proposed in this chapter.
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boundary. On the other extreme is scenario R3T4 where all levels are considered safe 
and all levels cross the efficacy boundary.

Detailed results of our simulations of the phase I part of the trial can be found 
in [3]. We chose a high correlation or odds ratio between efficacy and toxicity for 
simulating the efficacy and toxicity data. The log odds ratio we chose for all our 
simulation studies is 4.6. The 3 + 3 design is very conservative. The probability of 
reaching the level above the MTD is in general small. In the scenarios with dose 
level 4 being the MTD, the probability of correctly identifying the MTD or the dose 
level below is similar and in general somewhere between 20% and 30%. Scenarios 
T2 and T3 both assume a monotone increase in toxicity with dose level 4 being the 
MTD. The only difference is that scenario T2 has a steeper increase than scenario 
T3; dose level 5 for T2 is set at 40%, well above the MTD whereas dose level 5 for 
T3 is set at 35%, just slightly above the MTD. As a result, the mass of the probabil-
ity distribution for T3 is moved to the right compared to T2 and the probability of 
correctly reaching the MTD (level 4) or the level above the MTD (level 5) is higher 
than for T2.

Figure 6.2 illustrates the possible ways to reach a good dose or the best dose for 
response scenarios R1 and R2. Again, a good dose is defined as any dose achiev-
ing efficacy above a predefined boundary while maintaining safety, and a best dose 
achieves maximum efficacy while maintaining safety. The schema for scenarios 
R1T1, R1T2, and R1T3 on the top left side of Figure 6.2 illustrates the two possible 
ways to reach dose level 4 (the only level with acceptable toxicity and efficacy). If 

Good dose /  Best dose

Scenario R1T4

Scenario R2T4

Scenarios R1T1, R1T2, R1T3
Phase I

Dose level 6

Dose level 3

Dose level 2

Dose level 1

Dose level 6
Dose level 5

Dose level 2

Dose level 1
Dose level 2

Dose level 2
Dose level 2
Dose level 1

Dose level 5

Dose level 3
Dose level 3

Dose level 3

Dose level 2
Dose level 1

Dose level 5 Dose level 4

Dose level 6
Dose level 6
Dose level 5
Dose level 5
Dose level 4
Dose level 4

Dose level 5

Dose level 4Dose level 4Dose level 4

Dose level 5

Dose level 4
Dose level 4

Dose level 6
Dose level 6
Dose level 5
Dose level 5
Dose level 4
Dose level 4
Dose level 3

Dose level 5

Dose level 4

Dose level 3

Dose level 4
Dose level 3
Dose level 3Dose level 3

Phase II

Phase I Phase II Phase I Phase II

Phase I

Scenarios R2T1, R2T2, R2T3

FIGURE 6.2  Possible ways to select a good dose or the best dose level using our proposed 
design for response scenarios R1 and R2. Good dose levels as defined by toxicity and efficacy 
are listed below the phase II portion. The best dose levels are circled.
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the MTD is correctly identified in phase I, the patients will be randomized between 
dose levels 4 and 3 and there is the possibility to end up with the best dose level. If 
the phase I trial picks level 5 (the dose level right above the MTD), patients will be 
randomized between level 5 and 4 in the phase II portion of the trial and again there 
is the possibility to select the best dose level. The more “best” dose levels there are 
the more ways there are to correctly identify the best dose. For scenario R3T4 (not 
shown) all dose levels are considered “best” levels.

Details of our phase II simulation results for the phase I trial can be found in Ref. 
[3]. In the case that the phase I trial correctly identifies the MTD, patients are being 
randomized to two dose levels: the MTD (arm 1) and the dose level immediately 
below the MTD (arm 2). Similar simulation studies were performed for the case that 
the phase I trial identifies the dose level above or below the MTD as the correct dose. 
In addition to evaluating the power, the probability of more than 33% of patients 
experiencing an MTD in each arm was determined. Finally, we determined the prob-
ability of selecting the better dose level (in our example arm 1) by using our modified 
selection design taking into account both efficacy and toxicity.

We also evaluated the influence of the correlation of efficacy and toxicity. As 
mentioned earlier, we chose a large odds ratio for simulating our data as in general 
efficacy and toxicity are highly correlated. To explore the influence of this correla-
tion we did simulation studies for the case that the phase I trial identifies the MTD 
correctly, but unlike Table 6.1, the odds ratio was chosen to be 1 (log odds = 0), which 
corresponds to no correlation of toxicity and efficacy. The probability of an arm 
being too toxic is slightly lower in the case of no correlation, and thus the probability 
of picking the best dose by efficacy and toxicity is slightly higher compared to the 
same probability calculated using a large correlation.

Table 6.1 compares our results to the traditional sequence of a phase I trial fol-
lowed by a single-arm phase II trial at the dose level determined by the phase I trial 
using the same total sample size. We have to keep in mind that due to the discrete-
ness of the binomial distribution, the alpha levels which are determined by the effi-
cacy boundary in the two examples (single arm with 40 patients versus two-arm with 
20 patients each) are not identical. It is 0.05 for the traditional single-arm trial and 
0.07 for each of the arms in the phase II selection design.

In general, the probability of picking a good or best dose is similar or larger in our 
proposed design than in the traditional design. The traditional design fares better if 
the true efficacy is close to the alternative hypothesis for the MTD (scenario R1). In 
that case doubling the sample size in the phase II portion yields a considerably higher 
power and thus higher probability of the phase II portion having a positive outcome. 
If the underlying toxicity is not uniformly low relative to the maximum toxicity 
cutoff (i.e., excluding T4 in our examples), the difference in probability of picking a 
good or best dose is at most 5% higher than in our proposed design. The only occa-
sion where the traditional design fares considerably better is in determining the best 
dose for the scenario where the true efficacy is close to the alternative hypothesis 
for the MTD (R1) and toxicity is negligible (T4). In all other response scenarios our 
proposed design performs better than the traditional design. This is particularly true 
for finding a good dose in the efficacy scenario R2 and the toxicity scenarios T1–T3 
where toxicity is not negligible.
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The 3 + 3 phase I trial design is designed to be very conservative. For the toxic-
ity scenarios T1 and T2, the probability of determining the dose level above the 
MTD as the correct dose level is 8% or lower. Thus, it is very unlikely for efficacy 
scenarios R1 and R2 to eventually arrive at the best dose level by reaching the dose 
level above the MTD first. On the other hand, the probability of reaching the dose 
level right below the MTD as the correct dose level in a phase I trial is often as high 
as that of reaching the MTD. A possible consideration that would greatly increase 
the probability of reaching the best dose level with our seamless phase I/II trial 
design would be to randomize patients to three dose levels, the dose level determined 
to be the MTD by the phase I trial and the dose levels right below and right above 
that dose. This would be a possibility if there was strong evidence in animal studies 
and the understanding of the pathways of activity that this new agent was not toxic. 
This would obviously require continuous toxicity monitoring in the phase II por-
tion and appropriate toxicity stopping rules for the higher dose levels. Three dose 
levels would also allow simple logistic regression modeling under the assumption 
of smooth dose and toxicity profiles to reduce variance of estimates of response or 
toxicity at a given toxicity level.

In summary, this seamless phase I/II trial design performs in most cases better 
than a traditional design using the same overall sample size. We chose a 3 + 3 trial 
design for the simulation studies of the phase I portion of the trial; other phase I trial 
designs such as a CRM or accelerated titration could have been used instead. A pos-
sibility would be to slightly increase the sample size in the phase II portion of the 
proposed design and thus assuring the highest probability of finding the most effica-
cious and least toxic dose level. This design allows assessing a few dose levels more 
closely for both efficacy and toxicity and greater certainty of having correctly deter-
mined the best dose level before launching into a large efficacy trial. It should thus be 
considered even in the scenarios where a slightly larger sample size may be required.
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7 Overview of Phase II 
Clinical Trials

Stephanie Green

7.1  DESIGN

Standard phase II studies are used to screen new regimens for activity and to decide 
which ones should be tested further. To screen regimens efficiently, the decisions 
generally have been based on single-arm studies using short-term endpoints, typi-
cally tumor response in cancer studies, in limited numbers of patients. The problem 
is formulated as a test of the null hypothesis H0: p = p0 versus the alternative hypoth-
esis HA: p = pA, where p is the probability of response, p0 is the probability that if 
true would mean that the regimen was not worth studying further, and pA is the 
probability that if true would mean it would be important to identify the regimen as 
active and to continue studying it. Typically, p0 is a value at or somewhat below the 
historical probability of response to standard treatment for the same stage of disease, 
and pA is typically somewhat above.

For ethical reasons, studies of new agents usually are designed with two or 
more stages of accrual allowing early stopping due to inactivity of the agent. 
A variety of approaches to early stopping have been proposed. Although several 
of these include options for more than two stages, only the two-stage versions are 
discussed in this chapter. In typical clinical settings, it is difficult to manage more 
than two stages. An early approach due to Gehan (1961) suggested stopping if 0/N 
responses were observed, where the probability of 0/N was less than 0.05 under 
a specific alternative (for p0 = 0.2, N = 14). Otherwise, accrual was to be contin-
ued until the sample size was large enough for estimation at a specified level of 
precision.
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Fleming (1982) proposed stopping when results are inconsistent either with H0 or 
HAA: p = p′, where H0 is tested at level α and p′ is the alternative for which the procedure 
has power 1 − α. The bounds for stopping after the first stage of a two-stage design are 
the nearest integer to N1 p′ − Z1 − α{Np′ (1 − p′)}1/2 for concluding early that the regimen 
should not be tested further, and the nearest integer to N1 p0 + Z1 − α{Np0 (1 − p0)}1/2 + 1 
for concluding early that the regimen is promising, where N1 is the first stage sample 
size and N is the total after the second stage. At the second stage, H0 is accepted or 
rejected according to the normal approximation for a single-stage design. Since then, 
other authors, rather than proposing tests, have proposed choosing stopping boundar-
ies to minimize the expected number of patients required, subject to level and power 
specifications. Chang et al. (1987) proposed minimizing the average expected sample 
size under the null and alternative hypotheses. Simon (1989), recognizing the ethical 
imperative of stopping when the agent is inactive, recommended stopping early only 
for unpromising results and minimizing the expected sample size under the null or, 
alternatively, minimizing the maximum sample size. A problem with these designs is 
that sample size has to be accrued exactly for the optimality properties to hold, so in 
practice they cannot be carried out faithfully in many settings. Particularly, in multi-
institution settings, studies cannot be closed after a specified number of patients have 
been accrued. It takes time to send out and process a closure notice, and, during this 
time, more patients will have been approached to enter the trial. Patients who have 
been asked and have agreed to participate in a trial should be allowed to do so, and 
this means that there is a period of time during which institutions can continue regis-
tering patients even though the study is closing. Furthermore, some patients may be 
found to be ineligible after the study is closed. It is rare to end up with precisely the 
number of patients planned, making application of fixed designs problematic.

To address this problem, Green and Dahlberg (1992) proposed designs allowing 
for variable attained sample sizes. The approach is to accrue patients in two stages 
to have level approximately 0.05 and power approximately 0.9 and to stop early if 
the agent appears unpromising. Specifically, the regimen is concluded unpromising, 
and the trial is stopped early if the alternative HA: p = pA is rejected in favor of p < pA 
at the 0.02 level after the first stage of accrual. The agent is concluded promising 
if H0: p = p0 is rejected in favor of p > p0 at the 0.055 level after the second stage of 
accrual. The level 0.02 was chosen to balance the concern of treating the fewest pos-
sible patients with an inactive agent against the concern of rejecting an active agent 
due to treating a chance series of poor risk patients. Level 0.05 and power 0.9 are 
reasonable for solid tumors due to the modest percent of agents found to be active 
in this setting (Simon, 1987); less conservative values might be appropriate in more 
responsive diseases.

The design has the property that stopping at the first stage occurs when the esti-
mate of the response probability is less than approximately p0, the true value that 
would mean the agent would not be of interest. At the second stage, the agent is con-
cluded to warrant further study if the estimate of the response probability is greater 
than approximately (pA + p0)/2, which typically would be equal to or somewhat 
above the historical probability expected from other agents and a value at which 
one might be expected to be indifferent to the outcome of the trial. However, there 
are no optimality properties. Chen and Ng (1998) proposed a different approach 
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to flexible design by optimizing with respect to expected sample size under p0 
across possible attained sample sizes. They assumed a uniform distribution over 
sets of eight consecutive N1s; presumably, if information is available on the actual 
distribution in a particular setting, then the approach could be used for a better 
optimization. To address the problem of temporary closure of studies, Herndon 
(1998) proposed an alternative approach that allows patient accrual to continue 
while results of the first stage are reviewed. Temporary closures are disruptive, so 
this approach might be reasonable for cases where accrual is relatively slow with 
respect to submission of information. If too rapid, the ethical aim of stopping early 
due to inactivity is lost.

Table 7.1 illustrates several of the design approaches mentioned earlier for level 
0.05 and power 0.9 tests including Fleming designs, Simon minimax designs, Green 
and Dahlberg designs, and Chen and Ng optimal design sets. Powers and levels are 
reasonable for all approaches. Chen and Ng designs have the correct level on average, 
although individual realizations have levels up to 0.075 among the tabled designs. 
Of the four approaches, Green and Dahlberg designs are the most conservative with 
respect to early stopping for level 0.05 and power 0.9, whereas Chen and Ng designs 
are the least.

In another approach to phase II design, Storer (1992) suggested a procedure simi-
lar to two-sided testing instead of the standard one-sided test. In this approach, two 
hypothesis tests, one for H0 and one for HA are performed. The phase II is considered 
negative (HA: p = pA is rejected) if the number of responses is sufficiently low, posi-
tive (H0: p = p0 is rejected) if sufficiently high, and equivocal if intermediate (neither 
hypothesis rejected). For a value pm between p0 and pA, upper and lower rejection 
bounds are chosen such that the probability of concluding the trial is positive is less 
than γ when p = pm, and the probability of concluding the trial is negative is also less 
than γ when p = pm. The sample size and pm are chosen to have adequate power to 
reject HA under p0 or H0 under pA. When p0 = 0.1 and pA = 0.3, an example of a Storer 
design is to test pm = 0.193 with γ = 0.33 and power 0.8 under p0 and pA. For a two-
stage design, N1, N, rL1, rU1, rL2, and rU2 are 18, 29, 1, 6, 4, and 7, respectively, where 
N1 is the sample size for the first stage, N is the total sample size, and rLi and rUi are 
upper and lower rejection bounds for stage i, i = 1, 2. If the final result is equivocal 
(5 or 6 responses in 29 for this example), the conclusion is that other information is 
necessary to make the decision. Hong and Wang (2007) discuss a three conclusion 
approach for small randomized phase IIs.

Other proposals for single-arm phase II studies include designs with multino-
mial outcomes. Zee et al. (1999) and Chang et al. (2007) consider three possible 
outcomes—response, stability, and early progression—with a goal of recommend-
ing further testing if the number of responses is sufficiently high and number of 
early progressions is sufficiently low. Following Chang et al., the null hypothesis 
is H0: pR ≤ pR0 or pF ≥ pF0, where R refers to response and failure F refers to early 
progression, and the study is designed to have power for the alternative pR = pR0 + ΔR 
and pF = pF0 − ΔF. The rejection region for a single-stage design of fixed sample size 
is of the form R ≥ r and F ≤ f, where R and F are the number of responses and early 
progressions, respectively. The sample size will be larger than that required for indi-
vidual binomial tests of response or failure since both the response and failure nulls 
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must be rejected. For example, if Δ is 0.2 for each of response and early progression, 
pR0 is 0.3, pF0 is 0.4, level is 0.05, and power is 0.8, then a sample size of 49 patients 
is required. For a positive trial, at least 21 responses and at most 13 early progres-
sions must be observed. For a trial with only response as the endpoint, 39 patients 
would be required. Optimal two-stage designs are also described in the Chang et al. 
article; for the same example, 48 patients are accrued in two stages of 24, and the 
trial is stopped early if R ≥ 14 and F ≤ 4 (H0 rejected) or if either R ≤ 8 or F ≥ 9 (H0 
accepted). However, it is noted that some of these designs optimized for minimum 

TABLE 7.1
Examples of Designs

H0 versus HA N1 a1 b1 N a2 b2

Level 
(Average 

and Range 
for Chen)

Power 
(Average 

and 
Range for 

Chen)

Fleming 0.05 versus 0.2 20 0 4 40 4 5 0.052 0.92

0.1 versus 0.3 20 2 6 35 6 7 0.053 0.92

0.2 versus 0.4 25 5 10 45 13 14 0.055 0.91

0.3 versus 0.5 30 9 16 55 22 23 0.042 0.91

Simon 0.05 versus 0.2 29 1 — 38 4 5 0.039 0.90

0.1 versus 0.3 22 2 — 33 6 7 0.041 0.90

0.2 versus 0.4 24 5 — 45 13 14 0.048 0.90

0.3 versus 0.5 24 7 — 53 21 22 0.047 0.90

Green 0.05 versus 0.2 20 0 — 40 4 5 0.047 0.92

0.1 versus 0.3 20 1 — 35 7 8 0.020 0.87

0.2 versus 0.4 25 4 — 45 13 14 0.052 0.91

0.3 versus 0.5 30 8 — 55 22 23 0.041 0.91

Chen 0.05 versus 0.2 17–24 1 — 41–46 4 5 0.046 0.90

47–48 5 6 0.022–0.069 0.845–0.946

0.1 versus 0.3 12–14 1 — 36–39 6 7 0.050 0.90

15–19 2 40–43 7 8 0.029–0.075 0.848–0.938

0.2 versus 0.4 18–20 4 — 48 13 14 0.050 0.90

21–24 5 49–51 14 15 0.034–0.073 0.868–0.937

25 6 52–55 15 16

0.3 versus 0.5 19–20 6 — 55 21 22 0.050 0.90

21–23 7 56–58 22 23 0.035–0.064 0.872–0.929

24–26 8 59–60 23 24

61–62 24 25

N1
 is the sample size for the first stage of accrual, N is the total sample size after the second stage of 
accrual, ai

 is the bound for accepting H0 at stage i, and bi
 is the bound for rejecting H0

 at stage i for 
i = 1, 2. Designs are listed for Fleming (1982), Simon (1989), Green and Dahlberg (1992); the optimal 
design set is listed for Chen and Ng (1998).
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sample size may not be ideal for other reasons (e.g., early stopping rule insufficiently 
conservative) so some adjustment might be in order.

Panageas et al. (2002) address a similar design, where both complete response 
and partial response are of interest. For this setting, the hypotheses of interest are 
H0: pCR ≤ p0CR and pPR ≤ p0PR versus H0: pCR > p0CR or pPR > p0PR. As for Chang et al. 
(2007) designs, the outcome is multinomial (CR, PR, and No Response); but, in this 
case, the number of CRs and PRs are the statistics of interest rather than CRs and 
failures (no response). Lin et al. (2008) consider a similar trinomial outcome consist-
ing of response, prolonged stable, and failure. Here, the hypotheses of interest are H0: 
pR ≤ p0R and pC ≤ p0C versus H0: pR > p0R or pC > p0C, where C is clinical benefit response 
(objective response or prolonged stable; note p0R must be < p0C). In this case, the sta-
tistics of interest are R and R + S (R is the number of responses and S is the number of 
prolonged stable disease). This arises in settings where it is thought a new agent might 
provide benefit through long term disease control not fully reflected by response.

Window designs are another option of recent interest. These involve treatment 
of newly diagnosed patients with a new regimen for a short period prior to start of 
standard therapy. This allows testing in patients not compromised by prior treatment 
so may improve the chance of identifying active regimens. On the other hand, delay 
of standard treatment may put patients at risk so settings in which such trials are 
used should be considered carefully. Another potential concern with window designs 
is that the short-term endpoint chosen (4–12 weeks) may not be sufficiently predic-
tive of the longer term outcomes of primary interest. Trinomial outcomes (response, 
stable, and early failure) are common for these designs (Chang et al., 2007).

Stratified designs addressing the issue of heterogeneity in phase II populations have 
also gained recent interest. If subpopulations of patients have different underlying 
response probabilities, the usual approach of specifying a single value for the null may 
not be applicable to the population accrued. If the subpopulations are well understood, 
then designs that depend on the mix of patient types accrued may be advantageous. 
London and Chang (2005) propose the following single-stage statistic conditional on 
the number of patients accrued in each stratum. Here, pi0 is the null probability of 
response for stratum i and Ni is the sample size accrued to stratum i, i = 1 − k:
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P(R > r0|Ni, pi0, i = 1…k) is approximately equal to α. Sample size calculations require 
estimates of the relative accrual rates of the strata. If the estimates are off, then 
power might be different from the calculation. For instance, if there are three strata 
with p0s of 0.4, 0.2, and 0.1, Δs for the alternative are 0.2 for each stratum, level and 
power are specified as 0.05 and 0.8, and the expected proportion of patients from 
the three strata are 50%, 30%, and 20%, then 36 patients are sufficient. If the final 
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sample sizes are 18, 10, and 8, then 14 responses are required to reject the null, and 
conditional level and power are on target at 0.04 and 0.82; if 24, 8 and 4 are accrued, 
then 16 responses are required and power drops to 0.78; while if 12 are accrued in 
each, then 12 responses are required and power is 0.86. Two-stage designs in this 
setting are discussed in the article and in more detail in Sposto and Gaynon (2009). 
A caveat with this approach is that conclusions cannot be drawn for each subpopula-
tion. A different approach should be used if an answer in each group is of primary 
interest. See also Chapters 11, 28, and 32.

7.2  ANALYSIS OF STANDARD PHASE II DESIGNS

As noted in Storer (1992), the hypothesis testing framework typically used in phase 
II studies is useful for developing designs and determining sample size. The result-
ing decision rules are not always meaningful, however, except as tied to hypothetical 
follow-up trials that in practice may or may not be done. Thus, it is important to 
present confidence intervals for phase II results that can be interpreted appropriately 
regardless of the nominal decision made at the end of the trial as to whether further 
study of the regimen is warranted. The main analysis issue is estimation after a mul-
tistage trial, since the usual estimation procedures assuming a single-stage design are 
biased. Various approaches to generating confidence intervals have been proposed. 
These involve ordering the outcome space and inverting tail probabilities or test 
acceptance regions, as in estimation following single-stage designs; however, with 
multistage designs, the outcome space does not lend itself to any simple ordering.

Jennison and Turnbull (1983) order the outcome space by which boundary is 
reached, by the stage stopped at, and by the number of successes. Stopping at stage 
i is considered more extreme than stopping at stage i + 1 regardless of the number of 
successes. A value p is not in the 1 − 2α confidence interval if the probability under p 
of the observed result or one more extreme according to this ordering is less than α in 
either direction. Chang and O’Brien (1986) order the sample space instead based on 
the likelihood principle. For each p, the sample space for a two-stage design is ordered 
according to L x N x N p p N x Nx N x x N x( , *) [( / *) ( ) ] /[ {( * ) / *} ]* *= − −− −1  , where N* is 
N1 if the number of responses x can only be observed at the first stage and N if at 
the second. A value p is in the confidence interval if one half of the probability of 
the observed outcome plus the probability of a more extreme outcome according to 
this ordering is α or less. The confidence set is not always strictly an interval, but the 
authors state that the effect of discontinuous points is negligible. Chang and O’Brien 
intervals are shorter than those of Jennison and Turnbull, although this in part would 
be because Jennison and Turnbull did not adjust for discreteness by assigning only 
one half of the probability of the observed value to the tail as Chang and O’Brien did. 
Duffy and Santner (1987) recommend ordering the sample space by success percent 
and also develop intervals of shorter length than Jennison and Turnbull intervals. 
Koyama and Chen (2008) describe methods for testing, estimation, and confidence 
intervals for two-stage Simon (1989) designs assuming the first stage sample size is 
fixed but allowing for the second stage to be variable. The method involves speci-
fying conditional testing levels given results at the first stage. If the second stage 
is fixed, the confidence interval is based on ordering the sample space by number 
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of successes, while for a sample size not equal to planned number, ordering of the 
sample space is defined to be consistent with the testing procedure.

Although they produce shorter intervals, Chang and O’Brien and Duffy and 
Santner approaches have the major disadvantage of requiring knowledge of the final 
sample size in order to calculate an interval for a study stopped at the first stage; as 
noted earlier, this typically will be random. The Jennison and Turnbull approach can 
be used, because it only requires knowledge up to the stopping time. The Koyama 
and Chen approach has the disadvantage of not using all of the information from the 
first stage if this stage over-accrues, but advantages in controlling conditional level 
and in allowing for variable second-stage accrual.

However, it is not entirely clear how important it is to adjust confidence inter-
vals for the multistage nature of the design. From the point of view of appropriately 
reflecting the activity of the agent tested, the usual interval assuming a single-stage 
design may be sufficient. In this setting, the length of the confidence interval is not 
of primary importance because sample sizes are small and all intervals are long. 
Similar to Storer’s idea, it is assumed that if the confidence interval excludes p0, the 
regimen is considered active, and if it excludes pA, the regimen is considered insuf-
ficiently active. If it excludes neither, results are equivocal. This seems reasonable 
whether or not continued testing is recommended for the better equivocal results.

For Green and Dahlberg designs, the differences between Jennison and Turnbull 
and unadjusted tail probabilities are 0 if the trial stops at the first stage, and are
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where a1 is the stopping bound for accepting H0 at the first stage. Both the upper and 
lower confidence bounds are shifted to the right for Jennison and Turnbull intervals. 
These therefore will more often appropriately exclude p0 when pA is true and inap-
propriately include pA when p0 is true compared to the unadjusted interval. However, 
the tail differences are generally small resulting in small differences in the intervals. 
Based on the normal approximation, the absolute value of the upper tail difference is 
less than approximately 0.003 when the lower bound of the unadjusted interval is p0, 
whereas the lower tail difference is constrained to be <0.02 for p > pA due to the early 
stopping rule. Generally, the shift in a Jennison and Turnbull interval is noticeable 
only for small x at the second stage. As Rosner and Tsiatis (1998) note, such results, 
indicating activity in the first stage and no activity in the second, are unlikely, pos-
sibly suggesting the independent identically distributed assumption was incorrect.
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For example, consider a common design for testing H0: p = 0.1 versus HA: p = 0.3: 
stop in favor of H0 at the first stage if 0 or 1 responses are observed in 20 patients 
and otherwise continue to a total of 35. Of the 36 possible trial outcomes if planned 
sample sizes are achieved, the largest discrepancy in the 95% confidence intervals 
occurs if two responses are observed in the first stage and none in the second. For 
this outcome, the Jennison and Turnbull 95% confidence interval is from 0.02 to 
0.25, while the unadjusted interval is from 0.01 to 0.19. Although not identical, both 
intervals lead to the same conclusions: the alternative is ruled out. For the Fleming 
and Green and Dahlberg designs listed in Table 7.1, Table 7.2 lists the probabilities 
that the 95% confidence intervals lie above p0 (evidence the regimen is active), below 
pA (evidence the agent has insufficient activity to pursue), or cover both p0 and pA 
(inconclusive). In no case are p0 and pA both excluded. Probabilities are calculated 
for p = pA and p = p0, both for unadjusted and for Jennison and Turnbull adjusted 
intervals. For the Green and Dahlberg designs considered, probabilities for the unad-
justed and for the Jennison and Turnbull adjusted intervals are the same in most 
cases. The only discrepancy occurs for the 0.2 versus 0.4 design when the final out-
come is 11/45 responses. In this case, the unadjusted interval is from 0.129 to 0.395, 
while the Jennison and Turnbull interval is from 0.131 to 0.402. There are more 
differences between adjusted and unadjusted probabilities for Fleming designs, the 
largest for ruling out pA in the 0.2 versus 0.4 and 0.1 versus 0.3 designs. In these 

TABLE 7.2
Probabilities under p0 and pA for Unadjusted and Jennison–Turnbull (J–T) 
Adjusted 95% Confidence Intervals

Probability 95% 
CI is above p0 

When p =

Probability 95% 
CI is below pA 

When p =

Probability 95% 
CI Includes p0 

and pA When p =

p0 pA p0 pA p0 pA

0.05 versus 0.2 Green J–T 0.014 0.836 0.704 0.017 0.282 0.147

Unadjusted 0.014 0.836 0.704 0.017 0.282 0.147

Fleming J–T 0.024 0.854 0.704 0.017 0.272 0.129

Unadjusted 0.024 0.854 0.704 0.017 0.272 0.129

0.1 versus 0.3 Green J–T 0.020 0.866 0.747 0.014 0.233 0.120

Unadjusted 0.020 0.866 0.747 0.014 0.233 0.120

Fleming J–T 0.025 0.866 0.39 0.008 0.583 0.126

Unadjusted 0.025 0.866 0.515 0.011 0.460 0.123

0.2 versus 0.4 Green J–T 0.025 0.856 0.742 0.016 0.233 0.128

Unadjusted 0.025 0.856 0.833 0.027 0.142 0.117

Fleming J–T 0.023 0.802 0.421 0.009 0.556 0.189

Unadjusted 0.034 0.862 0.654 0.022 0.312 0.116

0.3 versus 0.5 Green J–T 0.022 0.859 0.822 0.020 0.156 0.121

Unadjusted 0.022 0.859 0.822 0.020 0.156 0.121

Fleming J–T 0.025 0.860 0.778 0.025 0.197 0.115

Unadjusted 0.025 0.860 0.837 0.030 0.138 0.110
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designs, no second-stage Jennison and Turnbull interval excludes the alternative, 
making this probability unacceptably low under p0.

The examples presented suggest that adjusted confidence intervals do not neces-
sarily result in more sensible intervals in phase II designs and, in some cases, are 
worse than not adjusting.

7.3  OTHER PHASE II DESIGNS

7.3.1  Multiarm Phase II Designs

Occasionally, the aim of a phase II study is not to decide whether a particular regi-
men should be studied further but to decide which of several new regimens should 
be taken to the next phase of testing. In these cases, selection designs are used, 
often formulated as follows: take on to further testing the treatment arm observed 
to be best by any amount, where the number of patients per arm is chosen to be 
large enough such that if one treatment is superior by Δ and the rest are equivalent, 
the probability of choosing the superior treatment is p. Simon et al. (1985) pub-
lished sample sizes for selection designs with response endpoints, and Steinberg and 
Venzon (2002) proposed an approach to early selection in this setting. After the first 
stage of accrual for a two-arm trial, one of the treatments is chosen for further study 
if the number of responses is higher by at least a specified amount dE, where dE is 
chosen such that the probability of choosing an arm inferior by Δ is small. The pro-
cedure can be extended to three or more arms.

Liu et al. (1993) provide sample sizes for selection designs with survival end-
points. For survival, the approach is to choose the arm with the smallest estimated 
β in a Cox model. Sample size is chosen such that if one treatment is superior with 
β = ln (1 + Δ) and the others have the same survival, then the superior treatment will 
be chosen with probability p.

Theoretically, selection designs are reasonable, but, in reality, the designs are 
not strictly followed. If response is poor in all arms, the conclusion should be to 
pursue none of the regimens, which is not an option for these designs. If a striking 
difference is observed, then the temptation is to bypass the confirmatory phase 
III trial. In a follow-up to the survival selection paper, Liu et al. (1999) noted that 
the probability of an observed β better than ln (1.7), which cancer investigators 
consider striking, is not negligible. With two to four arms, the probabilities are 
0.07–0.08 when, in fact, there are no differences in the treatment arms. See also 
Chapter 10, which includes a discussion of selection designs with a minimum effi-
cacy bounds.

With treatment advancements and more segmentation of patient populations, his-
torical control estimates may be unreliable and preliminary comparative informa-
tion may be necessary. Thus, randomized phase II trials with control arms have 
become substantially more common over the last several years. These are sometimes 
described as “non-comparative” but this is disingenuous; an informal comparison is 
always done and acted upon, with no way of judging the suitability of the conclusion. 
It is best to understand the properties of the design, so that results are less likely to 
be overinterpreted.
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Although small randomized phase IIs with high level and low power have been 
suggested (e.g., Rubinstein et al., 2005), it should be kept in mind that a small ran-
domized controlled phase II does not necessarily provide better conclusions than a 
single arm trial if the null is well characterized. Consider a trial of a new regimen for 
which the control probability is estimated to be 0.4. A single arm trial requires about 
40 patients to test H0: p = 0.4 versus the alternative hypothesis HA: p = 0.65 with level 
0.05 and power 0.9. A randomized trial with level 0.2 and power 0.8 for a difference 
of 0.25 requires about 60. If the null of 0.4 is correct, the single-arm trial will have 
a substantially lower chance of false-positive and false-negative results than the ran-
domized trial despite requiring fewer patients. If the null was incorrectly specified 
and should have been in the range of 0.36 to 0.47, the single arm trial still will have 
a lower chance of false-positive and false-negative errors than the randomized trial. 
Outside of this range, the single-arm trial will be better with respect to one type of 
error and worse with respect to the other. If a randomized phase II is judged neces-
sary, then to have the same level and power as a single arm study, a standard two-arm 
randomized trial will need to be about four times the size of the single-arm trial. See 
also Chapter 9.

Randomized discontinuation designs are a variation on a standard randomized 
controlled phase II. For discontinuation designs, patients are treated with standard of 
care plus a new agent and after a specified time on treatment patients who have not 
progressed are randomized to continue with the new agent or to receive standard of 
care only. If randomized patients who do not continue with the new agent do worse 
than those who do continue, then the new agent is concluded active. Although this 
approach has been used successfully, the number of patients required to start on 
treatment in order to have a reasonable number of randomized patients on trial is 
often prohibitively large. In addition, Capra (2004) notes that for realistic situations, 
power is better if all patients are randomized. He also notes it may be of concern that 
half of patients doing well on treatment will be required to stop.

7.3.2  Phase II Designs with Multiple Endpoints

The selected primary endpoint of a phase II trial is just one consideration in the deci-
sion to pursue a new regimen. If response is primary, secondary endpoints such as 
survival and toxicity must also be considered. For instance, a trial with a sufficient 
number of responses to be considered active may still not be of interest if too many 
patients experience life-threatening toxicity or if they all die quickly. On the other 
hand, a trial with an insufficient number of responses but a good toxicity profile and 
promising survival might still be considered for future trials.

Designs have been proposed to incorporate multiple endpoints explicitly into 
phase II studies. Bryant and Day (1995) proposed an extension of Simon’s approach, 
identifying designs that minimize the expected accrual when the regimen is unac-
ceptable either with respect to response or toxicity. Their designs are terminated 
at the first stage if either the number of responses is CR1 or less, or the number of 
patients without toxicity is CT1 or less, or both. The regimen is concluded useful if 
the number of patients with responses, and the number without toxicity are greater 
than CR2 and CT2, respectively, at the second stage. N1, N, CR1, CT1, CR2, and CT2 are 
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chosen such that the probability of recommending the regimen when the probability 
of no toxicity is acceptable (pT ≥ pT1) but response is unacceptable (pR ≤ pR0) is less 
than or equal to αR, the probability of recommending the regimen when response is 
acceptable (pR ≥ pR1) but toxicity is unacceptable (pT ≤ pT0) is less than or equal to αT, 
and the probability of recommending the regimen when both are acceptable is 1 − β 
or better. The constraints are applied either uniformly over all possible correlations 
between toxicity and response or assuming independence of toxicity and response. 
Minimization is done subject to the constraints. For many practical situations, min-
imization assuming independence produces designs that perform reasonably well 
when the assumption is incorrect.

Conaway and Petroni (1995) proposed similar designs assuming a particular rela-
tionship between toxicity and response, an optimality criterion, and a fixed total 
sample size are all specified. Design constraints proposed include limiting the prob-
ability of recommending the regimen to α or less when both response and toxicity 
are unacceptable and to γ or less anywhere else in the null region (response or tox-
icity unacceptable but not both). The following year, Conaway and Petroni (1996) 
proposed boundaries allowing for tradeoffs between toxicity and response. Instead 
of dividing the parameter space as in Figure 7.1a, it is divided according to investiga-
tor specifications, as in Figure 7.1b, allowing for fewer patients with no toxicity when 
the response probability is higher and the reverse.

Their proposed test accepts H0 when a statistic T(x) is less than c1 at the first stage 
or is less than c2 at the second, subject to maximum level α over the null region and 
power at least 1 − β when pR = pR1 and pT = pT1 for an assumed value for the associa-

tion between response and toxicity. The statistic T(x) is P P Pij ij ij
* *ln / ˆ( )∑ , where ij 

indexes the cells of the 2 × 2 response-toxicity table, P̂ijs are the usual probability 
estimates, and Pij

*s are the values achieving inf ln( )P P Pij ij ij/ ˆ• .

T(x) can be interpreted in some sense as a distance from the result to H0. Interim 
stopping bounds are chosen to satisfy optimality criteria. The authors’ preference is 
minimization of the expected sample size under the null. See also Chapter 8.

Thall and Cheng (2001) proposed another approach to multiendpoint design. 
Parameters of interest are Δ = (ΔR, ΔT), where ΔR = g(pR1) − g(pR0) is the difference 
between probability of response on experimental treatment (pR1) and probability 
of historical response (pR0), and ΔT = g(pT1) − g(pT0) is the difference between the 

(a) (b)

pR
pR

H0H0

HA HA

pTpT

FIGURE 7.1  Division of parameter space for two approaches to bivariate phase II design. 
(a) An acceptable probability of response and an acceptable probability of no toxicity are 
each specified. (b) Acceptable probabilities are not fixed at one value for each but instead 
allow for trade-off between toxicity and response. pR is the probability of response and pT is 
the probability of acceptable toxicity.
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probability of acceptable toxicity on experimental treatment (pT1) and the probability 
of acceptable toxicity historically (pT0), after arcsine square square root transfor-
mation. Target parameters (ξR, ξT) are identified and the alternative region is the 
set of all Δs at least as desirable as the target, that is, {Δ: ΔR ≥ ξR and ΔT ≥ ξT}. If 
multiple targets are identified, the alternative ΩA is the convex hull of these regions. 
Trial outcome is Δ ˆ   = (g(p̂RI) − g(p̂R0), g(p̂TI) − g(p̂T0) ). The rejection region R(x) is 
{(y − x, z − x)|(y, z) ∈ ΩA}, where the sample size n and a number x are chosen such 
that Pr{Δ  ̂  ∈ R(x)|Δ = (0, 0)} ≤ α and Pr{Δ  ̂  ∈ R(x)|Δ = (ξR, ξT)} ≥ 1 − β for each target. 
The test is based on approximate bivariate normality of 4n ( )Δ Δˆ − . Interim stop-
ping boundaries are based on optimality criteria.

There are a number of practical problems with these designs. As for other designs 
relying on optimality criteria, they generally cannot be done faithfully in realistic 
settings. Even when they can be carried out, defining toxicity as a single yes–no 
variable is problematic, because typically several toxicities of various grades are of 
interest. Perhaps the most important issue is that of the response-toxicity trade-off. 
Any function specified is subjective and cannot be assumed to reflect the preferences 
of either investigators or patients in general.

7.3.3  Bayesian Phase II Designs

Bayesian approaches provide another formulation of phase II designs. As described 
in Estey and Thall (2003), prior probability distributions are assigned to πH, the true 
historical probability of response, and to πE, the true probability of response of the 
regimen under study. The prior for πH is informative, whereas the prior for πE gener-
ally is not. After each specified interim analysis time the posterior distribution of 
πE, which also serves as the prior for the next stage of accrual, is calculated given 
the data. The distribution of πH is also updated if there is a randomized control arm, 
which the authors recommend. Accrual is stopped if the posterior probability that πE 
is greater than πH is small. The maximum sample size is chosen such that the final 
posterior distribution for πE if accrual completes is sufficiently precise, and the regi-
men under study is considered worth further study if there is a reasonable probability 
that πE is better than πH. As with any Bayesian designs, care must be taken that the 
a priori assumptions do not unduly influence the conclusion and that stopping criteria 
are sufficiently conservative.

The Bayesian framework has been used to address other phase II issues. For exam-
ple, Cheung and Thall (2002) addressed the problem of temporary study closure for 
certain types of response endpoints by proposing an adaptive Bayesian method. At 
each interim analysis time, an approximate posterior distribution is calculated using 
all of the event time data available including data from patients still on treatment for 
whom final endpoint determination is unknown. Nuisance parameters in the likeli-
hood are replaced by consistent estimates. The design may reduce trial duration, 
but practical difficulties include the need for current follow-up and the numerous 
analyses. Case and Morgan (2003) describe a non-Bayesian two-stage approach to 
this problem when the outcome is survival status at X months.

Other examples of Bayesian applications include Sambucini (2010) who describes 
an adaptive two-stage phase II, where the second-stage sample size is not chosen 
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until results from the first stage are known and Ding et al. (2008), who suggest that 
combining information across several related single-arm phase II trials done in 
sequence using Bayesian decision theoretic methods has potential for more efficient 
screening of new agents than the usual one at a time approach.

7.4  DISCUSSION

Despite the precise formulation of decision rules, phase II trials are not as objec-
tive as we would like. The small sample sizes used cannot support decision-making 
based on all aspects of interest in a trial. Trials combining more than one aspect, 
such as toxicity and response, are fairly arbitrary with respect to the relative impor-
tance placed on each endpoint, including the 0 weight placed on the endpoints not 
included, and so are subject to about as much imprecision in interpretation as results 
of single endpoint trials. Furthermore, a phase II trial would rarely be considered on 
its own. By the time a regimen is taken to phase III testing, multiple phase II trials 
have been done and the outcomes of the various trials weighed and discussed.

For practical reasons, optimality considerations both with respect to design and 
confidence intervals are not particularly compelling in phase II trials. Sample sizes 
in the typical clinical setting are small and variable, making it more important to 
use procedures that work reasonably well across a variety of circumstances rather 
than optimally in one. Also, there are various characteristics that it would be useful 
to optimize; compromise is usually in order. Perhaps statistical considerations in a 
phase II design are most useful in keeping investigators realistic about how limited 
such designs are.

Randomization in itself does not guarantee a phase II will be reliable. Small sam-
ple sizes will still mean the probability of error is high. If a new population is being 
studied a larger randomized phase II may be worth the investment, both for learning 
about the new target population and to better assess the potential of the new regimen.

As a final note, keep in mind that for many cancers phase II studies with tumor 
response as the primary endpoint have not proven to be reliable in predicting success 
in phase III. For instance, Zia et al. (2005) describe 43 phase III trials done after the 
ideal case of phase IIs with the same regimen in the same population—with only a 
28% success rate in phase III. Although response may be useful for demonstrating 
biologic activity, the primary endpoint used to assess efficacy should be considered 
carefully to best reflect potential for long-term benefit.

Detailed discussion of various phase II design issues introduced in this chapter 
are discussed in following chapters.
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8 Designs Based on 
Toxicity and Response

Gina R. Petroni and Mark R. Conaway

8.1  INTRODUCTION

In principle, phase II trials evaluate whether a new agent is sufficiently promising to 
warrant a comparison with the current standard of treatment. An agent is considered 
sufficiently promising based on the proportion of patients who “respond,” that is, 
experience some objective measure of disease improvement. The toxicity of the new 
agent, usually defined in terms of the proportion of patients experiencing severe side 
effects, has been established in a previous phase I trial.

In practice, the separation between establishing the toxicity of a new agent in a 
phase I trial and establishing the response rate in a phase II trial is artificial. Most 
phase II trials are conducted not only to establish the response rate, but also to gather 
additional information about the toxicity associated with the new agent. Conaway 
and Petroni1 and Bryant and Day2 cite several reasons why toxicity considerations 
are important for phase II trials:

	 1.	Sample sizes in phase I trials. The number of patients in a phase I trial is 
small and the toxicity profile of the new agent is estimated with little preci-
sion. As a result, there is a need to gather more information about toxicity 
rates before proceeding to a large comparative trial.

	 2.	Ethical considerations. Most phase II trials are designed to terminate the 
study early if it does not appear that the new agent is sufficiently promising 
to warrant a comparative trial. These designs are meant to protect patients 
from receiving substandard therapy. Patients should be protected also from 
receiving agents with excessive rates of toxicity and consequently, phase 
II trials should be designed with the possibility of early termination of the 
study if an excessive number of toxicities are observed. This consideration 
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is particularly important in studies of intensive chemotherapy regimens, 
where it is hypothesized that a more intensive therapy induces a greater 
chance of a response but also a greater chance of toxicity.

	 3.	The characteristics of the patients enrolled in the previous phase I trials 
may be different than those of the patients to be enrolled in the phase II 
trial. For example, phase I trials often enroll patients for whom all standard 
therapies have failed. These patients are likely to have a greater extent of 
disease than patients who will be accrued to the phase II trial.

With these considerations, several proposals have been made for designing phase II 
trials that formally incorporate both response and toxicity endpoints. Conaway and 
Petroni1 and Bryant and Day2 propose methods that extend the two-stage designs of 
Simon.3 In each of these methods, a new agent is considered sufficiently promising 
if it exhibits both a response rate that is greater than that of the standard therapy and 
a toxicity rate that does not exceed that of the standard therapy. Examples of these 
designs used in practice include Artz et al.,4 Meropol et al.,5 and Foon et al.6 Jin,7 
and Wu and Liu8 propose modifications to the procedure of Conaway and Petroni.1

Conaway and Petroni9 present designs that allow for a trade-off between response 
and toxicity rates. In these designs, a new agent with a greater toxicity rate might be 
considered sufficiently promising if it also has a much greater response rate than the 
standard therapy. Thall et al.,10,11 Thall and Sung,12 Chen and Smith,13 and Thall14 
propose Bayesian methods for monitoring response and toxicity that can also incor-
porate a trade-off between response and toxicity rates.

8.2  DESIGNS FOR RESPONSE AND TOXICITY

Conaway and Petroni1 and Bryant and Day2 present multi-stage designs that for-
mally monitor response and toxicity. As a motivation for the multi-stage designs, we 
first describe the methods for a fixed sample design, using the notation in Conaway 
and Petroni.1 In this setting, binary variables representing response and toxicity are 
observed in each of N patients. The data are summarized in a 2 × 2 table where Xij 
is the number of patients with response classification i and toxicity classification j 
(Table 8.1). The observed number of responses is XR = X11 + X12 and the observed num-
ber of patients experiencing a severe toxicity is XT = X11 + X21. It is assumed that the 
cell counts in this table (X11, X12, X21, X22) have a multinomial distribution with 
underlying probabilities (p11, p12, p21, p22). That is, in the population of patients to be 
treated with this new agent, a proportion, pij, would have response classification i and 
toxicity classification j (Table 8.2). With this notation, the probability of a response is 
pR = p11 + p12 and the probability of a toxicity is pT = p11 + p21.

The design is based on having sufficient power to test the null hypothesis that 
the new treatment is “not sufficiently promising” to warrant further study against 
the alternative hypothesis that the new agent is sufficiently promising to warrant 
a comparative trial. Conaway and Petroni1 and Bryant and Day2 interpret the term 
“sufficiently promising” to mean that the new treatment has a greater response rate 
than the standard and that the toxicity rate with the new treatment is no greater than 
that of the standard treatment. Defining pR0 as the response rate with the standard 
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treatment and pT0 as the toxicity rate for the standard treatment, the null hypothesis 
can be written as

	 H p p p pR R T T0 0 0:  or ≤ ≥

	 H p p p pa R R T T:  and > <0 0

The null and alternative regions are displayed in Figure 8.1.
A statistic for testing H0 versus Ha is (XR, XT), with a critical region of the form 

C = {(XR, XT):XR ≥ cR and XT ≤ cT}. We reject the null hypothesis and declare the 
treatment sufficiently promising if we observe many responses and little toxicity. 
We do not reject the null hypothesis if we observe too few responses or too much 
toxicity. Conaway and Petroni1 choose the sample size, N, and critical values (cR, cT) 
to constrain three error probabilities to be less than pre-specified levels α, γ, and β, 
respectively. The three error probabilities are as follows:

	 1.	The probability of incorrectly declaring the treatment promising when the 
response and toxicity rates for the new therapy are the same as those of the 
standard therapy.

	 2.	The probability of incorrectly declaring the treatment promising when the 
response rate for the new therapy is no greater than that of the standard 
or the toxicity rate for the new therapy is greater than that of the standard 
therapy.

TABLE 8.1
Classification of Patients by Response 
and Toxicity

Toxicity

Yes No Total

Response Yes X11 X12 XR

No X21 X22 N − XR

Total XT N − XT N

TABLE 8.2
Population Proportions for Response 
and Toxicity Classifications

Toxicity

Yes No Total

Response Yes p11 p12 pR

No p21 p22 1 − pR

Total pT 1 − pT 1
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	 3.	The probability of declaring the treatment not promising at a particular 
point in the alternative region. The design should yield sufficient power to 
reject the null hypothesis for a specific response and toxicity rate, where the 
response rate is greater than that of the standard therapy and the toxicity 
rate is less than that of the standard therapy.

Mathematically, these error probabilities are expressed as

	 1.	P(XR ≥ cR, XT ≤ cT | pR = pR0, pT = pT0, θ) ≤ α
	 2.	 sup

  
pR pR pT pT

R R T T R TP X c X c p p
≤ ≥

≥ ≤ ≤
0 0or

( , | , , )θ γ

	 3.	P(XR ≥ cR, XT ≤ cT | pR = pRa, pT = pTa, θ) > β

where these probabilities are computed for a pre-specified value of the odds ratio, 
θ = (p11 p22)/(p12 p21), in Table 8.2. The point (pRa, pTa) is a pre-specified point in the 
alternative region, with pRa > pR0 and pTa < pT0.

Conaway and Petroni1 compute the sample size and critical values by enumerat-
ing the distribution of (XR, XT) under particular values for (pR, pT, θ). As an example, 
Conaway and Petroni1 present a proposed phase II trial of high-dose chemotherapy for 
patients with non-Hodgkin’s lymphoma. Results from earlier studies for this patient 
population have indicated that standard therapy results in an estimated response rate 
of 50% with approximately 30% of patients experiencing life-threatening toxicities. 
In addition, previous results indicated that approximately 35%–40% of the patients 
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FIGURE 8.1  Null and alternative regions for a bivariate design.
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who experienced a complete response also experienced life-threatening toxicities. 
The odds ratio, θ, is determined by the assumed response rate, toxicity rate, and the 
conditional probability of experiencing a life-threatening toxicity given that patient 
had a complete response. Therefore, (pR0, pT0) is assumed to be (0.50, 0.30) and the 
odds ratio is assumed to be 2.0. Conaway and Petroni1 chose values α = 0.05, γ = 0.30 
and β = 0.10. The trial is designed to have approximately 90% power at the alternative 
determined by (pRa, pTa) = (0.75, 0.15).

The extension to multi-stage designs is straightforward. The multi-stage designs 
allow for the early termination of a study if early results indicate that the treatment is 
not sufficiently effective or is too toxic. Although most phase II trials are carried out in 
at most two stages, for the general discussion, Conaway and Petroni1 assume that the 
study is to be carried out in K stages. At the end of the kth stage, a decision is made 
whether to enroll patients for the next stage or to stop the trial. If the trial is stopped 
early, the treatment is declared not sufficiently promising to warrant further study. At 
the end of the kth stage, the decision to continue or terminate the study is governed by 
the boundaries (cRk, cTk), k = 1,…, K. The study continues to the next stage if the total 
number of responses observed up to and including the kth stage is at least as great as 
cRk and the total number of toxicities up to and including the kth stage is no greater than 
cTk. At the final stage, the null hypothesis that the treatment is not sufficiently promis-
ing to warrant further study is rejected if there are a sufficient number of observed 
responses (at least cRK) and sufficiently few observed toxicities (no more than cTK).

In designing the study, the goal is to choose sample sizes for the stages m1, m2,…, 
mK and boundaries (cR1, cT1), (cR2, cT2),…, (cRK, cTK) satisfying the error constraints 
listed earlier. For a fixed total sample size, N = Σkmk, there may be many designs 
that satisfy the error requirements. An additional criterion, such as one of those 
proposed by Simon3 in the context of two-stage trials with a single binary endpoint, 
can be used to select a design. The stage sample sizes and boundaries can be chosen 
to give the minimum expected sample size at the response and toxicity rates for the 
standard therapy (pR0, pT0) among all designs that satisfy the error requirements. 
Alternatively, one could choose the design that minimizes the maximum expected 
sample size over the entire null hypothesis region. Conaway and Petroni1 compute 
the “optimal” designs for these criteria for two-stage and three-stage designs using 
a fixed pre-specified value for the odds ratio, θ. Through simulations, they evaluate 
the sensitivity of the designs to a misspecification of the value for the odds ratio.

Bryant and Day2 also consider the problem of monitoring binary endpoints rep-
resenting response and toxicity. They present “optimal” designs for two-stage trials 
that extend the designs of Simon.3 In the first stage, N1 patients are accrued and clas-
sified by response and toxicity; YR1 patients respond and YT1 patients do not experi-
ence toxicity. At the end of the first stage, a decision to continue to the next stage or 
to terminate the study is made according to the following rules, where N1, CR1, and 
CT1 are parameters to be chosen as part of the design specification:

	 1.	 If YR1 ≤ CR1 and YT1 > CT1, terminate due to inadequate response.
	 2.	 If YR1 > CR1 and YT1 ≤ CT1, terminate due to excessive toxicity.
	 3.	 If YR1 ≤ CR1 and YT1 ≤ CT1, terminate due to both factors.
	 4.	 If YR1 > CR1 and YT1 > CT1, continue to the second stage.
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In the second stage, N2–N1 patients are accrued. At the end of this stage, the follow-
ing rules govern the decision whether or not the new agent is sufficiently promising, 
where N2, CR2, and CT2 are parameters to be determined by the design:

	 1.	 If YR2 ≤ CR2 and YT2 > CT2, “not promising” due to inadequate response
	 2.	 If YR2 > CR2 and YT2 ≤ CT2, “not promising” due to excessive toxicity
	 3.	 If YR2 ≤ CR2 and YT2 ≤ CT2, “not promising” due to both factors
	 4.	 If YR2 > CR2 and YT2 > CT2, “sufficiently promising”

The principle for choosing the stage sample sizes and stage boundaries is the same as 
in Conaway and Petroni.1 The design parameters are determined from pre-specified 
error constraints. Although the papers differ in the particular constraints consid-
ered, the motivation for these error constraints is the same. One would like to limit 
the probability of recommending a treatment that has an insufficient response rate 
or excessive toxicity rate. Similarly, one would like to constrain the probability of 
failing to recommend a treatment that is superior to the standard treatment in terms 
of both response and toxicity rates. Finally, among all designs meeting the error 
criteria, the optimal design is the one that minimizes the average number of patients 
treated with an ineffective therapy.

In choosing the design parameters, Q = (N1, N2, CR1, CR2, CT1, CT2), Bryant and 
Day2 specify an acceptable (PR1) and an unacceptable (PR0) response rate along with 
an acceptable (PT1) and unacceptable (PT0) rate of non-toxicity. Under any of the 
four combinations of acceptable or unacceptable rates of response and non-toxicity, 
Bryant and Day2 assume that the association between response and toxicity is con-
stant. The association between response and toxicity is determined by the odds ratio, 
φ, in the 2 × 2 table cross-classifying response and toxicity,

	
ϕ =

∗P P
P

(no response, toxicity) (response, no toxicity)
(no responsee, no toxicity) (response, toxicity)∗P

Bryant and Day2 parameterize the odds ratio in terms of response and no toxicity 
so φ corresponds to 1/θ in the notation of Conaway and Petroni.1 For a design, Q, 
and an odds ratio, φ, let αij(Q, φ) be the probability of recommending the treatment, 
given that the true response rate equals PRi and the true non-toxicity rate equals PTj, 
i = 0, 1; j = 0, 1. Constraining the probability of recommending a treatment with an 
insufficient response rate leads to α01(Q, φ) ≤ αR, where αR is a pre-specified con-
stant. Constraining the probability of recommending a treatment with an insufficient 
response rate leads to α10(Q, φ) ≤ αT, and ensuring a sufficiently high probability 
of recommending a truly superior treatment requires α11(Q, φ) ≥ 1 − β, where αT 
and β are pre-specified constants. Bryant and Day2 note that α00(Q, φ) is less than 
either α01(Q, φ) or α10(Q, φ), so that an upper bound on α00(Q, φ) is implicit in these 
constraints.

There can be many designs that meet these specifications. Among these designs, 
Bryant and Day2 define the optimal design to be the one that minimizes the expected 
number of patients in a study of a treatment with an unacceptable response or toxicity 



131Designs Based on Toxicity and Response

rate. Specifically, Bryant and Day2 choose the design, Q, that minimizes the maxi-
mum of E01(Q, φ) and E10(Q, φ), where Eij is the expected number of patients accrued 
when the true response rate equals PRi and the true non-toxicity rate equals PTj, 
i = 0, 1; j = 0, 1. The expected value E00(Q, φ) does not play a role in the calculation of 
the optimal design because it is less than both E01(Q, φ) and E10(Q, φ).

The stage sample sizes and boundaries for the optimal design depend on the value 
of the nuisance parameter, φ. For an unspecified odds ratio, among all designs that 
meet the error constraints, the optimal design minimizes the maximum expected 
patient accruals under a treatment with an unacceptable response or toxicity rate, 
maxφ{max(E01(Q, φ), E10(Q, φ) )}. Assumptions about a fixed value of the odds ratio 
lead to a simpler computational problem; this is particularly true if response and 
toxicity are assumed to be independent (φ = 1). Bryant and Day2 provide bounds that 
indicate that the characteristics of the optimal design for an unspecified odds ratio do 
not differ greatly from the optimal design found by assuming that response and tox-
icity are independent. By considering a number of examples, Conaway and Petroni1 
came to a similar conclusion, although they did note that the properties of the design, 
particularly the overall type I error, can be affected by a poor specification of the 
odds ratio. They suggested that a number of odds ratio values be considered in creat-
ing the design.

Jin7, and Wu and Liu8 propose methods to limit the dependence of the Conaway 
and Petroni1 design on the specification of the odds ratio. Jin7 shows that the type I 
error criteria used by Conaway and Petroni1:

	

sup
( )

orpR pR pT pT
R R T T R TP X c X c p p

≤ ≥
≥ ≤ ≤

0 0

, | , ,θ γ

is equivalent to max{P(XR ≥ cR | pR = pR0), P(XT ≤ cT | pT = pT0)} ≤ γ}. The design of Jin7 
controls each of these probabilities separately, constraining P(XR ≥ cR | pR = pR0) ≤ γR 
and P(XT ≤ cT | pT = pT0) ≤ γT. In addition to giving additional flexibility in the speci-
fication of type I error control for response or toxicity, the properties of this design 
depend on the assumed odds ratio only through the type II error, making the 
design more robust against misspecification of the odds ratio. The cost of the addi-
tional flexibility and protection against misspecification is a greater sample size 
requirement.

Wu and Liu8 use an adaptive approach which reestimates the sample size based 
on an estimated odds ratio. Specifically, they set a maximum sample size, nmax, and 
choose a sample size n1 ≤ nmax from which the odds ratio will be estimated. From this 
estimated odds ratio, a new sample size, n, will be computed. Wu and Liu8 outline 
several choices that can be made depending on n, n1, and nmax. The study might be 
stopped if the recomputed sample size, n, is less than the number of patients already 
enrolled, or the investigators may choose to continue enrolling up to nmax patients. 
If n1 < n < nmax, the investigators can use either the recomputed sample size, n, or 
the maximum sample size, nmax. Wu and Liu8 note that with either of these cases, 
with n < nmax, the error requirements are preserved. If the recomputed sample size n 
exceeds nmax, the investigators can use a sample size of n or nmax. Choosing a sample 
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size of n preserves the error requirements, but it may not be feasible to enroll these 
many patients.

8.3  �DESIGNS THAT ALLOW A TRADE-OFF 
BETWEEN RESPONSE AND TOXICITY

The designs for response and toxicity proposed by Conaway and Petroni1 and Bryant 
and Day2 share a number of common features, including the form for the alternative 
region. In these designs, a new treatment must show evidence of a greater response 
rate and a lesser toxicity rate than the standard treatment. In practice, a trade-off 
could be considered in the design, since one may be willing to allow greater toxicity 
to achieve a greater response rate, or be willing to accept a slightly lower response rate 
if lower toxicity can be obtained. Conaway and Petroni9 propose two-stage designs 
for phase II trials that allow for early termination of the study if the new therapy is 
not sufficiently promising and allow for a trade-off between response and toxicity.

The hypotheses are the same as those considered for the bivariate designs of the 
previous section. The null hypothesis is that the new treatment is not sufficiently 
promising to warrant further study, either due to an insufficient response rate or 
excessive toxicity. The alternative hypothesis is that the new treatment is sufficiently 
effective and safe to warrant further study. The terms “sufficiently safe” and “suf-
ficiently effective” are relative to the response rate, pR0, and the toxicity rate, pT0, for 
the standard treatment.

One of the primary issues in the design is how to elicit the trade-off specification. 
Ideally, the trade-off between safety and efficacy would be summarized as a function 
of toxicity and response rates that defines a treatment as “worthy of further study.” In 
practice, this can be difficult to elicit. A simpler method for obtaining the trade-off 
information is for the investigator to specify the maximum toxicity rate, pT,max, that 
would be acceptable if the new treatment were to produce responses in all patients. 
Similarly, the investigator would be asked to specify the minimum response rate, 
pR,min, that would be acceptable if the treatment produced no toxicities.

Figure 8.2 illustrates the set of values for the true response rate (pR) and true tox-
icity rate (pT), which satisfy the null and alternative hypotheses. The values chosen 
for Figure 8.2 are pR0 = 0.5, pT0 = 0.2, pR,min = 0.4, and pT,max = 0.7. The line connecting 
the point (pR0, pT0) and (1, pT,max) is given by the equation pT = pT0 + tan(ψT)(pR − pR0), 
where tan(ψT) = (pT,max − pT0)/(1 − pR0). Similarly, the equation of the line connecting 
(pR0, pT0) and (1, pR,min) is given by the equation

	 p p p pT T R R R= + −0 0tan( )( )ψ

where tan(ψR) = pT0 /(pR0 − pR,min). With ψT ≤ ψR the null hypothesis is

	 H p p p p p p p pT T T R R T T R R R0 0 0 0 0:  or ≥ + − ≥ + −tan( )( ) tan( )( )ψ ψ

and the alternative hypothesis is

	 H p p p p p p p pa T T T R R T T R R R:  and < + − < + −0 0 0 0tan( )( ) tan( )( )ψ ψ
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The forms of the null and alternative are different for the case where ψT ≥ ψR, although 
the basic principles in constructing the design and specifying the trade-off informa-
tion remain the same (cf. Conaway and Petroni9). Special cases of these hypotheses 
have been used previously: ψT = 0 and ψR = π/2 yield the critical regions of Conaway 
and Petroni1 and Bryant and Day2; ψR = ψT = 0 yield hypotheses in terms of toxicity 
alone; and ψR = ψT = π/2 yield hypotheses in terms of response alone.

To describe the trade-off designs for a fixed sample size, we use the notation and 
assumptions for the fixed sample size design described in Section 8.2. As in their 
earlier work, Conaway and Petroni9 determine sample size and critical values under 
an assumed value for the odds ratio between response and toxicity. The sample size 
calculations require a specification of a level of type I error, α, and power, 1 − β, at 
a particular point pR = pRa and pT = pTa. The point (pRa, pTa) satisfies the constraints 
defining the alternative hypothesis and represents the response and toxicity rates for 
a treatment considered to be superior to the standard treatment. The test statistic is 
denoted by T(p̂), where p̂ = (1/N)(X11, X12, X21, X22) is the vector of sample proportions 
in the four cells of Table 8.1, and is based on computing an “I-divergence measure” 
(cf. Robertson et al.15).
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134 Handbook of Statistics in Clinical Oncology

The test statistic has the intuitively appealing property of being roughly analo-
gous to a “distance” from p̂ to the region H0. Rejection of the null hypothesis results 
when the observed value of T(p̂) is “too far” from the null hypothesis region. A vec-
tor of observed proportions p̂ leads to rejection of the null hypothesis if T(p̂) ≥ c. For 
an appropriate choice of sample size (N), significance level (α) and power (1 − β), the 
value c can be chosen to (1) constrain the probability of recommending a treatment 
that has an insufficient response rate relative to the toxicity rate and (2) ensure that 
there is a high probability of recommending a treatment with response rate pRa and 
toxicity rate pTa. The critical value c is chosen to meet the error criteria:

	 1.	
sup

(
( , )

( ) | , , )
pR pT Ho

R TP T p c p p
∈

≥ ≤ˆ θ α

	 2.	P(T(p̂) ≥ c | pRa, pTa, θ) ≥ 1 − β

These probabilities are computed for a fixed value of the odds ratio, θ, by enumerat-
ing the value of T(p̂) for all possible realizations of the multinomial vector (X11, X12, 
X21, X22).

The trade-off designs can be extended to two-stage designs that allow for early 
termination of the study if the new treatment does not appear to be sufficiently prom-
ising. In designing the study, the goal is to choose the stage sample sizes (m1, m2) and 
decision boundaries (c1, c2) to satisfy error probability constraints similar to those in 
the fixed sample size trade-off design:

	 1.	
sup

1 1 2 2
( , )

( ( ) , ( , ) | , , )
pR pT Ho

R TP T p c T p p c p p
∈

≥ ≤ˆ ˆ ˆ1 1 2 ≥ θ α

	 2.	P(T1(p̂1) ≥ c1, T2(p̂1, p̂2) ≥ c2 | pRa, pTa, θ) ≥ 1 − β

where
T1 is the test statistic computed on the stage 1 observations
T2 is the test statistic computed on the accumulated data in stages 1 and 2

As in the fixed sample size design, these probabilities are computed for a fixed value 
of the odds ratio and are found by enumerating all possible outcomes of the trial.

In cases where many designs meet the error requirements, an “optimal” design is 
found according to the criterion in Bryant and Day2 and Simon.3 Among all designs 
that meet the error constraints, the chosen design minimizes the maximum expected 
sample size under the null hypothesis. Through simulations, Conaway and Petroni9 
investigate the effect of fixing the odds ratio on the choice of the optimal design. 
They conclude that unless the odds ratio is badly misspecified, the choice of the odds 
ratio has little effect on the properties of the optimal design.

The critical values for the test statistic are much harder to interpret than the criti-
cal values in Conaway and Petroni1 or Bryant and Day,2 which are counts of the 
number of observed responses and toxicities. We recommend two plots, similar to 
Figures 2 and 3 in Conaway and Petroni,9 to illustrate the characteristics of the trade-
off designs. The first is a display of the power of the test, so that the investigators can 



135Designs Based on Toxicity and Response

see the probability of recommending a treatment with true response rate pR and true 
toxicity rate pT. The second plot displays the rejection region, so that the investiga-
tors can see the decision about the treatment that will be made for specific numbers 
of observed responses and toxicities. With these plots, the investigators can better 
understand the implications of the trade-off being proposed.

The trade-off designs of Conaway and Petroni9 were motivated by the idea that 
a new treatment could be considered acceptable even if the toxicity rate for the new 
treatment is greater than that of the standard treatment, provided the response rate 
improvement is sufficiently large. This idea also motivated the Bayesian monitoring 
method of Thall et al.,10,11 They note that, for example, a treatment that improves the 
response rate by 15% points might be considered promising, even if its toxicity rate 
is 5% points greater than the standard therapy. If, however, the new therapy increases 
the toxicity rate by 10% points, it might not be considered an acceptable therapy.

Thall et al.10,11 outline a strategy for monitoring each endpoint in the trial. They 
define, for each endpoint in the trial, a monitoring boundary based on pre-specified 
targets for an improvement in efficacy and an unacceptable increase in the rate of 
adverse events. In the example given earlier for a trial with a single response end-
point and a single toxicity endpoint, the targeted improvement in response rate is 
15% and the allowance for increased toxicity is 5%.

Thall et al.10,11 take a Bayesian approach that allows for monitoring each endpoint 
on a patient by patient basis. Although their methods allow for a number of efficacy 
and adverse event endpoints, we will simplify the discussion by considering only a 
single efficacy event (response) and a single adverse event endpoint (toxicity). Before 
the trial begins, they elicit a prior distribution on the cell probabilities in Table 8.2. 
Under the standard therapy, the cell probabilities are denoted PS = (pS11, pS12, pS21, 
pS22); under the new experimental therapy, the cell probabilities are denoted PE = (pE11, 
pE12, pE21, pE22). Putting a prior distribution on the cell probabilities (pG11, pG12, pG21, 
pG22) induces a prior distribution on pGR = pG11 + pG12 and on pGT = pG11 + pG21, where G 
stands for either S or E. A Dirichlet prior for the cell probabilities is particularly con-
venient in this setting, since this induces a Beta prior on pGR and pGT, for G = S or E.

In addition to the prior distribution, Thall et al.10,11 specify a target improvement, 
δ(R), for response, and a maximum allowable difference, δ(T), for toxicity. The mon-
itoring of the endpoints begins after a minimum number of patients, m, have been 
observed. It continues until either a maximum number of patients, M, have been 
accrued, or a monitoring boundary has been crossed.

In a typical phase II trial, in which only the new therapy is used, the distribution 
on the probabilities under the standard therapy remains constant throughout the trial, 
while the distribution on the probabilities under the new therapy is updated each 
time a patient’s outcomes are observed. After the response and toxicity classification 
on j patients, Xj, have been observed, there are several possible decisions one could 
make. If there is strong evidence that the new therapy does not meet the targeted 
improvement in response rate, then the trial should be stopped and the new treat-
ment declared “not sufficiently promising.” Alternatively, if there is strong evidence 
that the new treatment is superior to the standard treatment in terms of response the 
targeted improvement for response, the trial should be stopped and the treatment 
declared “sufficiently promising.” In terms of toxicity, the trial should be stopped if 
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there is strong evidence of an excessive toxicity rate with the new treatment. Thall 
et al.10,11 translate these rules into statements about the updated (posterior) distribu-
tion [pE|Xj] and the prior distribution pS, using pre-specified cut-off for what consti-
tutes “strong evidence.” For m ≤ j ≤ M, the monitoring boundaries are as follows:

	 1.	P[pER − pSR > δ(R)|Xj] ≤ pL(R)
	 2.	P[pER > pSR|Xj] ≥ pU(R)
	 3.	P[pET − pST > δ(T)|Xj] ≥ pU(T)

where pL(R), pU(R), and pU(T) are pre-specified probability levels. Numerical inte-
gration is required to compute these probabilities, but the choice of the Dirichlet 
prior makes the computations relatively easy. Extensions to the method that allows 
for mixture priors and monitoring cohorts of size greater than one are given in Thall 
and Sung.12

Thall and Russell16 present Bayesian methods for combined phase I/II trials. 
These designs can be used for dose finding based on response and toxicity crite-
ria. The models impose an ordering on a combined response–toxicity endpoint and 
monitor the trial by updating the probability of response and toxicity.

Thall14 proposes a design in which contours of “equally desirable outcomes” in 
terms of the probability of response and toxicity are specified in advance of the trial. 
To illustrate, Thall14 gives a numerical example where the historical probabilities 
of response and toxicity with the standard treatment are represented by the ordered 
pair (pR, pT) = (0.4, 0.3). Examples of “equally desirable outcomes” might be (0.55, 
0.4), (0.60, 0.45), and (0.40, 0.15). The pair (0.55, 0.4) trades a 10% point increase in 
the toxicity probability for an improvement of 15% points in the response probabil-
ity. Thall14 describes two ways of eliciting families of contours. One way is for the 
investigators to specify a set of pairs, {(pR1, pT1), (pR2, pT2),…, (pRK, pTK)} along with 
numerical values {δ1, δ2,…, δK} for the desirability of the kth pair, k = 1,…, K. The 
other is for the investigators to specify pairs of response and toxicity probabilities 
that are equally desirable. These contours are then used to define a region, E, such 
that each pair of response and toxicity probabilities, (pR, pT), in the region are more 
desirable than points outside the region, which includes the response and toxicity 
probabilities associated with the current standard. Decisions about the treatment are 
made from the posterior probability, P[(pR, pT) ∈ E|data], with sufficiently large val-
ues of this posterior probability indicative of a treatment with response and toxicity 
probabilities that are more desirable than the current standard.

Chen and Smith13 use a Bayesian theoretic decision approach to design trials for 
correlated binary endpoints for response and toxicity. They define a “zone of trade-
off” by specifying a rectangle defined by the response probability in the interval 
(pR0 − δR−, pR0 + δR+), and the toxicity probability in the interval (pT0 − δT−, pT0 + δT+), 
where pR0 and pT0 are the response and toxicity rates for the current standard treat-
ment, and δR−, δR+, δT− and δT+ are pre-specified constants. Inside this rectangle, 
the new therapy is considered inferior to the standard therapy if θE < θs, where θE = 
pR * (1 − pT)/[(1 − pR) * pT)] and θs = pR0 * (1 − pT0)/[(1 − pR0) * pT0)]. In a single-arm 
phase II study, θs is assumed known. At any interim evaluation, the Bayes risk is 
computed for each of three possible decisions: (1) stop the trial and declare the 
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new therapy not worthy of further study, (2) stop the trial and recommend the new 
therapy for evaluation in a phase III trial, or (3) continue to enroll patients in the 
phase II trial. The Bayes risk is computed from a loss function that incorporates 
the loss in conducting the current trial and the loss in making an incorrect decision 
about the new therapy.

8.4  SUMMARY

All of the methods discussed in this chapter have advantages in monitoring toxicity 
in phase II trials. None of the methods use asymptotic approximations for distribu-
tions and are well-suited for the small sample sizes encountered typically in phase 
II trials. The bivariate designs of Conaway and Petroni,1 Bryant and Day,2 Jin,7 and 
Wu and Liu8 have critical values that are based on the observed number of responses 
and the observed number of toxicities; these statistics are easily calculated and inter-
preted by the investigators.

The trade-off designs of Conaway and Petroni9 have a trade-off strategy that per-
mits the allowable level of toxicity to increase with the response rate. In contrast, 
in the trade-off example of Thall et al.10,11, a 5% increase in toxicity would be con-
sidered acceptable for a treatment with a 15% increase in response. Because the 
allowance in toxicity is pre-specified, this means that only a 5% increase in toxicity 
is allowable even if the response rate with the new treatment is as much as 30%. 
With the trade-off of Conaway and Petroni,9 the standard for “allowable toxicity” is 
greater for a treatment with a 30% improvement than for one with a 15% improve-
ment. The methods of Thall et al.10,11 have advantages in terms of being able to moni-
tor outcomes on a patient-by-patient basis. At each monitoring point, the method can 
provide graphical representations of the probability associated with each of the deci-
sion rules. The designs of Thall,14 and Chen and Smith13 give additional flexibility in 
how response and toxicity are traded.

Although the methods presented are discussed in terms of toxicity and response, 
where toxicity is a predefined measure of adverse events related to protocol treat-
ment and response is a predefined measure of efficacy, the designs apply to any 
bivariate endpoints. For example, in vaccine trials assessing immune response, the 
efficacy response parameter could be replaced with an earlier measure of immune 
response.
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 9 Designs Using Time-to-
Event Endpoints/Single-
Arm versus Randomized 
Phase II Designs

Catherine M. Tangen and John J. Crowley

The objective of a phase II study is to evaluate whether a particular regimen has 
enough biologic activity in a given disease to warrant further investigation. We 
would like to have a mechanism in which the candidate agents or regimens can 
be screened relatively quickly, and for practical and ethical reasons, we would like 
to expose the minimal number of patients in order to evaluate activity. To plan an 
efficient phase II trial, there need to be at least three key considerations: What is the 
most appropriate endpoint? What is the optimal patient population, and what is the 
most reasonable statistical design?
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9.1  CHOOSING AN APPROPRIATE ENDPOINT

Previously, phase II cancer clinical trials predominantly used response rate as the 
primary endpoint, where in the solid tumor setting, response usually involves a reduc-
tion in the dimensions of the measurable disease. However, there are shortcomings to 
using response rate as the primary endpoint for evaluating efficacy: (1) Response has 
not been shown to be strongly correlated with survival across a number of disease 
sites (Forastiere et al. 1992, Durie et al. 2004), (2) there are challenges to evaluat-
ing response (Kimura and Tominaga 2002, Erasmus et al. 2003, McHugh and Kao 
2003), and (3) there are new classes of agents that are being tested which are not 
expected to be cytotoxic (tumor reducing), but instead they are cytostatic; that is, 
the agents may delay disease progression but not reduce the tumor size. For these 
reasons, other endpoints such as survival and progression-free survival (PFS) are 
more frequently becoming the primary endpoint of choice for evaluating phase II 
drugs (Markham 1997).

One endpoint that has drawn some attention in the cytostatic era is disease control 
rate (DCR). DCR is the proportion of patients who have a best response of stable 
disease or better with a particular regimen. The DCR has been shown to be more 
strongly correlated with survival that response rate in some disease settings (Lara 
et al. 2008).

9.1.1  Progression-Free Survival

PFS is defined as the interval from start of the trial to date of progression, or in the 
absence of progression, death due to any cause. Using PFS as the primary endpoint 
of a phase II study has appeal because it measures (or more closely measures) a clini-
cally meaningful endpoint that impacts a patient’s life. It also provides consistency 
with planned phase III trials that would also use survival or PFS as the primary 
endpoint. Two arguments that have been made in support of using response as an 
endpoint are that (1) subsequent treatments do not impact it and (2) response status is 
evaluated more quickly than progression or survival status. However, by using PFS 
as the primary endpoint, it is not necessary to wait until all patients have progressed 
or died or even until the median has been estimated. It is possible to specify the null 
and alternative hypotheses in terms of a shorter interval of time, such as the expected 
event rate at a landmark such as 6 months; thus, the interval needed to assess the PFS 
endpoint is in line with that needed for response, and like response, PFS should not 
be impacted by subsequent treatments.

There are some drawbacks to using PFS as the primary endpoint. PFS can be 
difficult to measure reliably and is sensitive to the timing of disease assessment 
(Panageas et al. 2007). Any variation in disease assessment schedule between arms 
can make PFS look artificially different. Infrequent disease assessment can cause an 
overestimation of the progression-free interval. Secondly, PFS is not always predic-
tive of survival, that is, PFS may not be an adequate surrogate marker for survival in 
many disease settings. Showing an improvement in PFS without an improvement in 
survival may also not be clinically relevant, particularly if the experimental regimen 
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is more toxic or expensive than the current standard. Finally, in some disease set-
tings, the definition of progression is not standardized. For example, in hormone 
refractory prostate cancer, which is primarily a disease of the bone, the role of PSA 
kinetics, pain, and the optimal measure of bone progression is unclear (Scher et al. 
2008).

It is interesting to note that some clinical trialists feel that using response or DCR 
as the primary endpoint allows one to design a phase II trial with a single-arm, 
whereas the specification of PFS as the endpoint requires randomization. However, 
DCR and PFS at a fixed landmark are essentially the complement of each other. 
In the absence of progression or death, the best response must be stable or better 
disease.

9.1.2  Overall Survival

Overall survival (OS) has also been considered as a phase II endpoint. However, it 
also has drawbacks. Subsequent therapies may affect OS and confound the interpre-
tation of treatment effect, and time to death takes longer to obtain, thus requiring 
a longer trial than one which employs PFS, disease control, or response. Using OS 
in a randomized phase II trial can also complicate the ability to mount a random-
ized phase III trial using survival, as some may perceive the treatment comparison 
already answered. For diseases with very short median OS and lack of effective 
salvage treatment, or where PFS cannot be reliably measured, OS may be a preferred 
endpoint for phase II trials (Rubinstein et al. 2009).

9.2  CHOOSING THE TARGET POPULATION

The study population should be the one to which we wish to generalize the results 
of the trial when it is completed. It has been hypothesized that common tumors 
may be common because many mutations can cause them, and a targeted agent may 
only work against tumors with specific mutations. Depending on how well under-
stood the mechanism of action is for a study regimen, enriching the trial population 
for those with the hypothesized target of interest may increase the likelihood of 
observing activity if the agent is active (Stewart 2010). An argument for random-
ized phase II trials is that the design allows for the distinction between prognostic 
factors and predictive factors. Additionally, there may not be good historical data 
for the relevant subsets of patients, and so a one-arm trial may be difficult to design. 
However, unless the marker is quite prevalent, there is no statistical power to evalu-
ate a marker by treatment interaction for the endpoint of interest in a randomized 
phase II trial. Despite the logic of enriching the patient population with those most 
likely to respond, prospective enrichment based upon molecular markers has rarely 
been used in cancer drug development. Often there are not credentialed assays for 
evaluating individual patients prior to enrollment into the phase II trial. However, 
the situation might be different by the time the phase III trial is ready for enrollment. 
Chapter 17 deals with phase III study designs using targeted agents.
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9.3  STUDY DESIGN

There are strong and diverging opinions about the use of single-arm versus random-
ized phase II trials. However, most would agree that it depends on the circumstances 
of the trial. With the shift in phase II endpoints away from response and more toward 
PFS, there has been concern raised that prognostic factors may impact these end-
points in a way that was not thought to impact response. This has led to a concern 
that the outcome of a small phase II trial may be highly dependent on the patient 
population selected and the mix of prognostic factors in a given study population. To 
address such concerns, there has been a trend toward the use of randomized phase II 
trials to better ensure a less biased comparison between a standard and experimen-
tal treatment group. However, introducing a second arm as a comparator also adds 
substantial variability to the comparison. Essentially, that is the quandary—concern 
about bias or concern about variability.

9.3.1  Single-Arm Phase II Designs

9.3.1.1  Comparisons with Historical Experience
This strategy is typically used for phase II studies that have response as the primary 
endpoint, but as previously mentioned this design can also be used for time-to-event 
measures like PFS. Based on previous experience, one would specify the level at which 
there would not be interest in an agent (null hypothesis) versus the alternative hypoth-
esis which is the level at which one would consider pursuing an agent in a phase III 
study. For example, one might specify a 20% versus 40% response rate for an agent 
where there was some modest level of activity using standard treatment. A two-stage 
design is then typically employed where, if adequate activity is observed in the first 
group of patients, the study will continue to the second stage of accrual (Fleming 1982, 
Simon 1989); see also Chapter 7. If the regimen being studied consists of agents already 
shown to be active, a single-stage (or pilot) design may be appropriate. Because there is 
already experience with the agents being studied there is less concern about exposing 
patients to an ineffective treatment, so a one-stage design is usually used with a sample 
size of typically 50–100 patients, avoiding the delays of a multi-stage design.

A similar design strategy could be used in the phase II setting by substituting PFS 
or survival for response rate. One could specify a 6 month PFS estimate of 20% ver-
sus 40%, for example, where if only 20% of the patients are alive and free of progres-
sion at 6 months, there would be no interest in the regimen, whereas if 40% or more 
of the patients are free of progression, then there would be considerable interest in 
pursuing the agent if other considerations such as toxicity were also favorable. This 
could be tested in a one- or two-stage design.

One design that has been proposed to avoid temporary closure was proposed by 
Herndon (1998), where a slight over-accrual to the first stage is allowed while assess-
ing the endpoint on patients in the first cohort. In a similar vein, it may be reason-
able to conduct an interim analysis of a phase II study in order to avoid temporary 
closure. The alternative hypothesis is tested at the alpha 0.005 level or at some other 
appropriate level at the approximate mid-point, and the study would be closed only 
for the case where there is lack of adequate activity.
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One straightforward design option for conducting a pilot study would be to spec-
ify the null and alternative hypothesis in terms of median PFS or OS. For example, 
in the advanced disease setting, a median survival of 9 months might not be of inter-
est while a median survival of 12 months or greater would be of further interest. By 
assuming uniform accrual and an exponential distribution, it is straightforward to 
calculate the sample size needed. If a study is to have 90% power and take 2 years 
of accrual with one additional year of follow-up and a one-sided α = 0.05, then 134 
patients or 67 per year would be needed. With this one-stage design, it is also pos-
sible to specify an interim analysis to test for lack of biologic activity.

One of the challenges of  implementing a historical control phase II trial is choos-
ing the appropriate null and alternative hypothesis levels. As recommended by Korn 
et al. (2001), there must be sufficient historical data on a patient population, untreated 
or treated with active agents that are similar to the patient population being consid-
ered for treatment with the experimental agent. The historical data would need to be 
the survival or PFS experience for a group of patients with the same stage of disease 
and amount of prior treatment, similar organ function and performance status, and 
the procedures used for monitoring progression should be the same. Another impor-
tant recommendation is that patients should come from the same type of institutions 
with the same referral patterns in a recent era so diagnostic measures and supportive 
care would be similar. For example, using the results of a single institution study in 
order to define the level of interest and disinterest in a regimen might not be readily 
translatable to a large, diverse cooperative group phase II trial. These considerations 
are not unique to trials using a PFS endpoint as these are essentially the same factors 
that need to be considered when designing a phase II response study using historical 
experience as a comparison.

Even if historical control outcome data are known to vary, that does not neces-
sitate a randomized trial design. If there are known risk factors that are strongly 
correlated with the endpoint of interest and they explain a substantial portion of the 
variability of the outcome (e.g., response, PFS), then an algorithm can be developed 
to predict what the historical outcome level would have been for a current cohort of 
patients. This would serve as the historical control null hypothesis. Activity beyond 
that would be attributable to the experimental treatment regimen. This statistical 
method was recently applied to metastatic melanoma (Korn et al. 2008), and algo-
rithms for other cancer populations are also being explored. However, this modeling 
approach cannot be employed in settings in which strong prognostic factors have yet 
to be identified.

9.3.1.2  Each Patient as His Own Control
With this type of design, in a single group of patients who have progressive disease, 
we want to evaluate whether an agent is able to slow down the rate of progression 
relative to their pretreatment rate of progression.

Mick et al. (2000) have proposed a methodology for evaluating time-to-progres-
sion as the primary endpoint in a one-stage design. Typically, patients being offered 
phase II studies of new agents have failed a previous regimen. The prior time to 
progression interval is referred to as TTP1 and is not censored; that is, all progres-
sions are observed. Time to progression after the experimental agent, TTP2, may or 
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may not be censored at analysis. They propose that the “growth modulation index” 
(TTP2 / TTP1) will have a null ratio value (HR0) of 1.0, and the index needs to be 
greater than 1.33 if a new regimen is to be considered effective at delaying progres-
sion. The degree of correlation between the paired failure times is a key feature of 
this design since the patient serves as his own historical control, a concept that was 
originally suggested by Von Hoff (1998). The authors note that in some cases it may 
be reasonable to hypothesize that, by the natural history of the disease, one would 
expect TTP2 to be shorter than TTP1, which would indicate a null value less than 1.0. 
Hypothesis tests about the hazard ratio from paired data may be conducted under a 
log-linear model.

Von Hoff (2010) employed a similar design for their pilot study. They used 
a sign test to evaluate whether (TTP2 / TTP1) > 1.3 in 15% of patients as the null 
hypothesis.

One can propose a range of null and alternative hypotheses based on disease and 
treatment considerations. However, this design approach can be difficult to imple-
ment because patients must be enrolled for both intervals of progression; that is, 
patients are enrolled prior to their first-line treatment for a trial of second-line treat-
ment. As pointed out by Korn et al. (2001), enrolling patients after they progress on 
first-line treatment avoids these problems but leads to potential bias in the selection 
of the patients included in the trial.

9.3.2  Multiarm Designs

9.3.2.1  Randomized Selection Designs
In some cases, the aim of a phase II trial is not to identify whether an agent has 
biologic activity, but instead to select which agent of several should be chosen to be 
tested in the phase III setting. This is known as a selection trial. The intent is not 
to definitively compare each of the regimens with one another, but to pick the most 
promising agent to carry forward. The endpoint can be based on response rates, 
but also survival or PFS is typically used as the criterion for picking the best arm. 
Selection designs are covered in detail in Chapter 10.

9.3.2.2  �Randomized Phase II: Comparison of 
Regimen with a Control Group

There have been a number of review papers published on the merits and shortcom-
ings of randomized phase II comparison trial designs (Van Glabbeke et al. 2002, 
Wieand 2005, Taylor et al. 2006, Redman and Crowley 2007, Gan et al. 2010, 
Mandrekar and Sargent 2010, Seymour et al. 2010). Newer drugs are expected to 
prolong the progression-free interval but not necessarily result in disease response. 
PFS is perceived to be a more heterogeneous outcome, which is more dependent on 
the mix of prognostic factors in the patient pool than is the case with tumor response. 
If the endpoint has not been assessed consistently over time or is not available from 
historical trials, there may be a compelling reason to conduct a randomized trial. 
Several statisticians have published their take on designing randomized phase II 
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trials (Korn et al. 2001, Rubinstein et al. 2005). The goal is to assess activity of a new 
regimen compared to a standard in a preliminary fashion by specifying effect sizes 
and statistical error rates which keep the sample size in the range of an expected 
phase II trial. Table 9.1 illustrates the total number of events that must be observed in 
the combined arms with the specified treatment effect size and statistical error rates 
when the logrank test is used. In this example, we are specifying PFS endpoints but 
the same holds true for a survival endpoint as well. The total sample size will be 
impacted by the accrual and event rate.

A typical trial might involve a standard regimen as the control and a standard + a 
new targeted agent as the experimental treatment. This design can only be conducted 
successfully if patients are willing to accept being randomized to either arm. Korn et 
al. (2001) recommend a moderate one-sided alpha of 0.10 or 0.20, which reduces the 
required sample size. Conducting a randomized design in the phase II setting with a 
control arm establishes some legitimacy for comparison between the arms. Hence, 
there is a great temptation to interpret the results literally and not carry the agent 
forward to proper phase III testing. Liu et al. (1999) calculated the probabilities of 
observing a hazard ratio greater than 1.3, 1.5, and 1.7 when the true hazard ratio is 
1 between all treatments in a randomized phase II trial. In a two-arm trial with 40 
patients per arm, the probabilities were 0.37, 0.17, and 0.07 for detecting the respec-
tive hazard ratios. Thus, the false-positive rates are very high if one treats random-
ized phase II trial results as conclusive.

Randomized trials have been viewed favorably because they tend to reduce the 
bias between the control and experimental treatment groups. However, in small ran-
domized studies with significant patient heterogeneity, fairly large imbalances can 
still occur by chance. Careful selection of stratification factors can help to ensure 
balance of important prognostic variables. However, small studies can support only 
minimal stratification, and there may also be important unmeasured prognostic fac-
tors that are not balanced in small randomized trials.

TABLE 9.1
Approximate Number of Total Events for a 
Randomized Phase II Trial with PFS as an 
Endpoint

Hazard Ratios (Δ)

Error Rates (α, β) Δ = 1.3 Δ = 1.5 Δ = 1.7

10%, 10% 384 161 94

10%, 20%, or 20%, 10% 264 110 64

20%, 20% 166 69 41

Using the formula: L = {(Z1 − α + Z1 − β)/(0.5 * ln(Δ) )}2 
where L is the total number of events and which assumes 
a logrank test with a one-sided α (Fleming and 
Harrington 1991).
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9.3.2.3  Randomization Discontinuation Design
There can be substantial heterogeneity of tumor growth rates in patient populations. 
Some patients’ tumors will grow slowly naturally. In order to distinguish anti-pro-
liferative activity of a novel agent from indolent disease, Rosner et al. (2002) pro-
posed what they call a “randomized discontinuation design” (RDT). A generic study 
schema can be seen in Figure 9.1. All patients are initially treated with the experi-
mental agent (part I of trial), and these patients can be thought of as coming from 
a target population of patients with a given disease and stage. Patients without pro-
gression are randomized in a double-blind fashion to continuing therapy or placebo 
(part II). Patients who are non-compliant or experience adverse events are also typi-
cally not randomized. This allows the investigators to assess if apparent slow tumor 
growth is attributable to the drug or to the selection of patients with slow-growing 
tumors. By selecting a more homogeneous population, the randomized portion of the 
study may require fewer patients than would a study randomizing all patients.

Kopec et al. (1993) have reviewed the advantages and limitations of discontinu-
ation studies, and compared the RDT design to the classic randomized clinical trial 
(RCT) design in terms of clinical utility and efficiency (sample size). What they found 
is that one sees the greatest gain in efficiency with the RDT design when the placebo 
response rate is low and the relative response rate is modest. They concluded that the 
RDT design is quite useful for studying the effect of long-term, non-curative thera-
pies, when the definition of “clinically important effect” is relatively small, and the 
use of a placebo should be minimized for ethical or feasibility reasons. On the other 
hand, the RDT design is limited if the objective of the study is to estimate the treat-
ment effect and toxicity within the target population of patients with the disease of 
interest, or if the treatment is potentially curative. The relative efficiency of the RDT 
design depends on the accuracy of the selection criteria with respect to identifying 
true treatment responders and to some degree those with good compliance and lack of 
limiting toxicities. As pointed out by Friedman et al. (1985), because the RDT evalu-
ates a highly selected sample, this design can overestimate benefit and underestimate 
toxicity. The RDT design, which can end up requiring a fairly large sample size, may 
be answering an irrelevant hypothesis; namely, given that one initially responds to a 
new agent, is more of the drug better than stopping at the time of response?
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FIGURE 9.1  RDT schema.
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9.4  DESIGNING INFORMATIVE PHASE II TRIALS

It is not uncommon for results from a positive phase II trial not to be confirmed with 
a subsequent phase III trial. There can be a number of reasons why two trials provide 
conflicting conclusions. The phase II trial may have used an intermediate endpoint 
that did not adequately capture treatment effect relative to survival, the patient popu-
lation may differ with regard to known (or unknown) predictive factors, or the phase 
II trial results may have been a false positive (Table 9.2).

There are two ways that a phase II trial can be declared positive at its conclusion. 
Either it is a truly active regimen that has been correctly identified or it is an inac-
tive regimen that has been incorrectly identified as being active (i.e., false positive). 
Table 9.3 shows the fraction of positive trials that are expected to be “false positives” 
depending on the assumed underlying prevalence of truly active regimens. In this 
example, we are assuming that 10% (or 20%) of all regimens studied in phase II trials 
are active. Simon (1987) estimated that 10% of phase II agents are active. Here, the 
term “active” means that the treatment under investigation has the level of activity 
specified by the alternative hypothesis if it could be measured perfectly.

By specifying small error rates like what are typically used in phase III trials and 
single-arm phase II trials (α = 0.05, β = 0.10), for every three-phase II trials that are 
concluded to be positive, on average one of them would be a false positive. As error 
rates are relaxed in order to reduce the sample size, the chance that a trial concluded 

TABLE 9.2
Statistical Error Rates

Truth

Conclusion Based on Trial Agent is Not Active Agent is Active

Agent is not active Correct conclusion Type II error = β, “false negative”

1 − β = statistical power

Agent is active Type I error = α, “false positive” Correct conclusion

TABLE 9.3
Impact of Error Rates on the False-Positive Rate among Phase II Trials 
Concluded to be Positive

Error Rates, 
α and β

Percentage of Active 
Agents Correctly 

Identified (1 − β) (%)

Percentage False 
Positive Assuming 

10% of Regimens Are 
Truly Active (%)

Percentage False 
Positive Assuming 

20% of Regimens Are 
Truly Active (%)

0.05, 0.10 90 33 18

0.10, 0.10 90 50 31

0.10, 0.20 80 53 33

0.20, 0.20 80 69 50
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to be positive is actually a false positive increases. If the type I error rate is doubled 
from 5% to 10% (typical of randomized phase II trials) and the statistical power 
remains 90% (β = 0.10), then half of positive phase II trials would be expected to be 
false positives. If a greater proportion of truly active regimens are tested as is shown 
in the last column, the chance of a false positive decreases from 50% to 31%. Based 
on this table, it should not come as a surprise that a significant number of phase III 
trials will not confirm the results of a positive phase II trial. Randomization does 
not solve the problem. Both one-arm and randomized two-arm trials require the 
specification of type I and II error rates, and in fact, randomized phase II trials typi-
cally allow error rates to be larger than their single-arm counterpart in order to keep 
sample size at an attainable level.

The best way to increase the chance of making the correct conclusion at the end 
of a phase II trial is to design the trial with smaller error rates (which also means 
increasing the sample size). This is often not feasible or desirable, and researchers 
are willing to make a trade-off between making an incorrect conclusion and having 
a smaller trial. The other way to reduce false positives in phase II trials is to test 
better drugs.

9.5  CONCLUDING COMMENTS

With the development of cytostatic agents, attention has been given to developing 
new phase II trial designs to address the expected lack of cytoreductive activity 
with these regimens. Endpoints that incorporate information about progression or 
survival are reasonable choices that can be straightforward to conduct. There is no 
single phase II study design that fits all situations. In settings where adequate histori-
cal controls exist, historically controlled phase II trials are more efficient. In other 
cases where there is substantial heterogeneity and a lack of good historical control 
data, a randomized design is likely the better design choice. Identification of the 
appropriate study population is just as important as the actual study design, particu-
larly in the setting of targeted study drugs.
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10 Phase II Selection 
Designs

P.Y. Liu, James Moon, and Michael LeBlanc

10.1  BASIC CONCEPT

When there are multiple promising new therapies in a disease setting, it may not 
be feasible to test all of them against the standard treatment in a definitive phase 
III trial. The sample sizes required for a phase III study with more than three arms 
could be prohibitive [1]. In addition, the analysis can be highly complex and prone 
to errors due to the large number of possible comparisons in a multi-arm study. 
An alternative strategy is to screen the new therapies first in a phase II setting and 
choose one to test against a standard treatment in a simple two-arm phase III trial. 
Selection designs can be used in such circumstances.

Simon et al. [2] first introduced statistical methods for ranking and selection to 
the oncology literature. In a selection design, patients are randomized to treatments 
involving new combinations or schedules of known active agents, or new agents for 
which activity against the disease in question has already been demonstrated in some 
setting. In other words, the regimens under testing have already shown promise. Now 
the aim is to narrow down the choice for formal comparisons to the standard therapy. 
With this approach, one always selects the observed best treatment for further study, 

CONTENTS

10.1	 Basic Concept................................................................................................ 151
10.2	 Sample Size Requirements............................................................................ 152

10.2.1	 Binary Outcomes............................................................................... 152
10.2.2	 Survival Outcomes............................................................................ 153

10.3	 Variations of the Design................................................................................ 154
10.3.1	 Designs with Minimum Activity Requirements................................ 154

10.3.1.1	 Binary Outcomes................................................................ 155
10.3.1.2	 Survival Outcomes.............................................................. 157

10.3.2	 Designs with Minimum Advantage Requirements........................... 157
10.3.3	 Designs in Which One or More Arms Are Favored.......................... 158
10.3.4	 Designs for Ordered Treatments........................................................ 159

10.4	 Concluding Remarks..................................................................................... 160
Acknowledgment.................................................................................................... 160
References............................................................................................................... 160



152 Handbook of Statistics in Clinical Oncology

however small the advantage over the others may appear to be. Hypothesis tests are not 
performed. Sample size requirements are established so that, should there exist a supe-
rior treatment, it will be selected with a high probability. The necessary sample sizes 
are usually similar to those associated with pilot phase II trials before phase III testing.

Before proceeding further, it is important to note that although the statistical prin-
ciples for selection designs are simple, its proper application can be slippery. Falsely 
justified by the randomized treatment assignment, the major pitfall of the design is 
to treat the observed ranking as conclusive and forego the required phase III testing. 
This practice is especially dangerous when a control arm is included as the basis 
for selection, or when all treatment arms are experimental but a standard treatment 
does not exist for the particular disease. A “treatment of choice” can be declared 
with false justifications in these situations. If such a conclusion is desired, phase III 
studies with appropriately planned type I and type II errors should be conducted. 
Regarding a two-arm selection design, Sargent and Goldberg [3–5] states the fol-
lowing: “The goal of the randomized phase II trial is to ensure that if one treatment 
is clearly inferior to the other, there is a small probability that the inferior treatment 
will be carried forward to a phase III trial.” Because of the design’s moderate sample 
sizes and lack of type I error control for false positive findings, the results are error 
prone when treated as ends in themselves [6]. There must be a plan for a definitive 
Phase III study following the phase II selection study. Prior to embarking on a selec-
tion study, it is vital that the investigators understand the design’s limitations and the 
proper interpretation of upcoming results.

10.2  SAMPLE SIZE REQUIREMENTS

10.2.1  Binary Outcomes

Table 10.1 is reproduced from Simon et al. [2] for binary outcomes with K = 2, 3, and 
4 groups.

The sample sizes were presumably derived by normal approximations to bino-
mial distributions. With the listed N per group and true response rates, the correct 
selection probability should be approximately 0.90. A check by exact probabilities 
indicates that the actual correct selection probability ranges from 0.88 in most cases 
down to 0.86 when N is small. Increasing the sample size per group by six raises the 
correct selection probability to 0.90 in all cases and may be worth considering when 
N is less than 30.

Except in extreme cases, Table 10.1 indicates the sample size to be relatively 
insensitive to baseline response rates (i.e., response rates of groups 1 through K − 1). 
Since precise knowledge of the baseline rates is often not available, a conservative 
approach is to use always the largest sample size for each K, that is, 37, 55, and 67 
patients per group for K = 2, 3, and 4, respectively. While a total N of 74 for two 
groups is in line with large phase II studies, the total number of patients required 
for four groups, that is, close to 270, could render the design impractical for many 
applications. Obviously the sample size can be reduced for differences greater than 
the 15% used for Table 10.1. However, if tumor response rate is the outcome of inter-
est, it is generally low (e.g., 10%–20%) for many types of cancer and an absolute 15% 
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increase would certainly indicate a superior response rate. Such a treatment should 
not be missed in the selection process by inadequate sample sizes. Similarly, a cor-
rect selection probability of 0.90 should also be treated as the standard since a lower 
probability would result in too many false negative trials.

10.2.2  Survival Outcomes

For censored survival data, Liu et al. [7] suggested fitting the Cox proportional haz-
ards model, h(t, z) = h0(t)exp(β′z), to the data where z is the (K − 1) dimensional vector 
of treatment group indicators and β = (β1, K, βK − 1) is the vector of log hazard ratios. 
We proposed selecting the treatment with the smallest β̂1 (where β̂K ≡ 0) for further 
testing. Sample sizes for 0.90 correct selection probability were calculated based on 
the asymptotic normality of the β̂. The requirements for exponential survival and 
uniform censoring are reproduced in Table 10.2. Simulation studies of robustness of 
the proportional hazards assumption found the correct selection probabilities to be 
above 0.80 for moderate departures from the assumption.

As with binary outcomes, the sample sizes become less practical when there are 
more than three groups or the hazard ratio between the worst and the best groups is 
smaller than 1.5.

Table 10.2 covers scenarios where the patient enrollment period is similar to the 
median survival of the worst groups. It does not encompass situations where these two 
quantities are quite different. Since the effective sample size for exponential survival 
distributions is the number of uncensored observations, the actual numbers of expected 
events are the same for the different rows in Table 10.2. For a 0.90 correct selection 
probability, Table 10.3 gives the approximate number of events needed per group for 
the worst groups. With ∫I dF as the proportion of censored observations, where I and F 

TABLE 10.1
Sample Size per Treatment for Binary 
Outcomes and 0.90 Correct Selection 
Probability

Response Rates N per Group

P1,…,PK − 1 PK K = 2 K = 3 K = 4
10% 25% 21 31 37

20% 35% 29 44 52

30% 45% 35 52 62

40% 55% 37 55 67

50% 65% 36 54 65

60% 75% 32 49 59

70% 85% 26 39 47

80% 95% 16 24 29

Source:	 Simon, R. et al., Cancer Treat. Rep., 69, 
1375, 1985.
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are the respective cumulative distribution functions for censoring and survival times, 
readers may find the expected event count more flexible for planning purposes.

10.3  VARIATIONS OF THE DESIGN

10.3.1  Designs with Minimum Activity Requirements

Though the selection design is most appropriate when adequate therapeutic effect is 
no longer in question, the idea of selection is sometimes applied to randomized phase 

TABLE 10.2
Sample Size per Treatment for Exponential Survival Outcomes with 
1 Year Accrual and 0.90 Correct Selection Probability

K = 2 K = 3 K = 4

Median Follow
HR = 
1.3

HR = 
1.4

HR = 
1.5

HR = 
1.3

HR = 
1.4

HR = 
1.5

HR = 
1.3

HR = 
1.4

HR = 
1.5

0.5 0 115 72 51 171 107 76 206 128 91

0.5 71 44 31 106 66 46 127 79 56

1 59 36 26 88 54 38 106 65 46

0.75 0 153 96 69 229 143 102 275 172 122

0.5 89 56 40 133 83 59 160 100 70

1 70 44 31 104 65 46 125 78 55

1 0 192 121 87 287 180 128 345 216 153

0.5 108 68 48 161 101 72 194 121 86

1 82 51 36 122 76 54 147 92 65

Source:	 Liu, P.Y. et al., Biometrics, 49, 391, 1993.
Median = Median survival in years for groups 1 through K − 1; Follow = Additional follow-up in years 

after accrual completion; HR = Hazard ratio of groups 1 through K − 1 vs. group K.

TABLE 10.3
Expected Event Count per 
Group for the Worst Groups for 
Exponential Survival and 0.90 
Correct Selection Probability

HR

K 1.3 1.4 1.5

2 54 34 24

3 80 50 36

4 96 60 43

HR = Hazard ratio of groups 1 through K − 1 
vs. group K.
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II trials when anti-cancer activities have not been previously established for the treat-
ments involved. Alternatively, the side effects of the treatments could be substantial 
that a certain activity level must be met in order to justify the therapy. In such cases, 
each treatment arm is designed as a stand-alone phase II trial with the same accep-
tance criterion for all arms. When more than one treatment arms are accepted, the 
observed best arm is selected for further study [8,9]. The design typically specifies 
a null activity level which does not justify the further pursuit of a treatment, and an 
alternative activity level that would definitely render a treatment worthy of more 
investigation. The sample size and an end-of-study acceptance criterion signifying 
rejection of the null hypothesis are then specified, with the one-sided type I error 
rate and power often set at 0.05 and 0.90, respectively. When there are K arms with 
selection as the end goal, we recommend Bonferoni adjustment of the individual 
arm’s type I error rate in order to maintain the study-wide type I error at 0.05. In the 
following sections, we examine the correct selection probability from these designs.

10.3.1.1  Binary Outcomes
For binary outcomes, standard designs without a selection component have been 
well developed; see overview of phase II designs by Green in Chapters 7 and 16. 
Table 10.4 lists three such designs.

Designs B1 and B2 represent typical situations in new agent testing for cancer 
treatment, where moderate tumor response rates in the 20%–30% range already war-
rant further investigations. Design B3 is more for theoretical interest when response 
rates are near 50%.

TABLE 10.4
Three Phase II Designs for Binary Data

K
Nominal 

α per Arm
N per 
Arm

Acceptance 
Levela Exact α Exact Power

Design B1: Null level = 5%, alternative level = 20%
2 0.025 45 ≥6/45 0.0239 0.91

3 0.0167 50 ≥7/50 0.0118 0.90

4 0.0125 50 ≥7/50 0.0118 0.90

Design B2: Null level = 10%, alternative level = 30%
2 0.025 36 ≥8/36 0.0235 0.89

3 0.0167 40 ≥9/40 0.0155 0.89

4 0.0125 45 ≥10/45 0.0120 0.91

Design B3: Null level = 40%, alternative level = 60%
2 0.025 62 ≥33/62 0.0239 0.89

3 0.0167 69 ≥37/69 0.0151 0.89

4 0.0125 75 ≥40/75 0.0133 0.90

a	 Response rates signifying treatment worthy of further investigation.
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Assume the same true response rate configuration as in Table 10.1, that is, P1 =…= 
PK − 1 < PK, for designs B1–B3. Table 10.5 indicates that, when the true P1 and PK val-
ues are the same as the null and alternative design parameters respectively, that is, 
5%/20% for Design B1, 10%/30% for Design B2, and 40%/60% for Design B3, the 
chance of a correct selection result is approximately the same as the design power, 
0.90, in all three cases. In other words, the operating characteristics of the phase II 
design dominate in this case and the chance of an inferior arm’s passing the accep-
tance level and further surpassing the best arm is negligible. When the true P1 and PK 
are far higher than the null and alternative levels of the phase II design, all arms will 

TABLE 10.5
Correct Selection Probabilities for Binary Data Designs with 
Minimum Acceptance Levela (3000 Simulations)

Design B1, testing 5% vs. 20%, true PK − P1 = 15%

True P1/PK
b 5%/20% 10%/25% 15%/30% 20%/35% 30%/45%

K = 2 0.91 0.96 0.95 0.94 0.91

K = 3 0.89 0.95 0.92 0.90 0.87

K = 4 0.90 0.92 0.90 0.88 0.84

Design B2, testing 10% vs. 30%, true PK − P1 = 15%
True P1/PK 10%/25% 15%/30% 20%/35% 30%/45% 40%/55%
K = 2 0.71 0.86 0.90 0.89 0.88

K = 3 0.69 0.85 0.87 0.83 0.82

K = 4 0.71 0.85 0.85 0.80 0.80

Design B2, testing 10% vs. 30%, true PK − P1 = 20%
True P1/PK 10%/30% 15%/35% 20%/40% 30%/50% 40%/60%
K = 2 0.89 0.95 0.96 0.95 0.94

K = 3 0.88 0.94 0.94 0.91 0.93

K = 4 0.90 0.95 0.93 0.93 0.92

Design B3, testing 40% vs. 60%, true PK − P1 = 15%
True P1/PK 40%/55% 45%/60% 50%/65% 55%/70% 60%/75%
K = 2 0.66 0.88 0.95 0.95 0.96

K = 3 0.62 0.86 0.92 0.92 0.94

K = 4 0.65 0.88 0.90 0.93 0.93

Design B3, testing 40% vs. 60%, true PK − P1 = 20%
True P1/PK 40%/60% 45%/65% 50%/70% 55%/75% 60%/80%
K = 2 0.88 0.97 0.98 0.99 0.99

K = 3 0.88 0.96 0.98 0.98 0.99

K = 4 0.90 0.97 0.98 0.99 0.99

a	 Probability of the true best arm passing the acceptance level and being the observed 
best arm.

b	 P1 = … = PK − 1
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meet the acceptance requirement and selection design properties take over. When 
PK − P1 = 15%, Table 10.1 results can be used as a general guide for correct selection 
probability. For example, when K = 2, the per arm sample sizes of 45, 36, and 62 in 
Table 10.4 compare favorably with the highest N of 37 from Table 10.1; therefore, the 
correct selection probabilities are generally 0.88 or higher when minimum accep-
tance level is easily met by the best arm. However, when P1 = 30%, PK = 45%, and 
K = 4, per Table 10.1, the N required per arm is 62 for an approximate 0.90 correct 
selection probability. The corresponding N for K = 4 in Designs B1 and B2 are 50 and 
45, respectively; therefore, the correct selection probabilities in Table 10.5 are less 
than 0.90. When PK − P1 = 20%, as is the distance between the alternative and null 
values for Designs B2 and B3, correct selection probabilities are approximately 0.90 
or higher in all cases examined.

In general, applying Bonferoni adjustment to per-arm type I errors performs ade-
quately with respect to correct selection probabilities in the situations examined, of 
which the parameter ranges cover most cancer trial applications. The approach is 
appropriate when the emphasis is on the initial step of screening the treatments for 
minimum acceptable anti-tumor activities. If meeting the minimum activity level is 
relatively assured and the emphasis is on selection, it would be more appropriate to 
design the trial with the larger sample size between what is required for the phase II 
and the selection portions.

10.3.1.2  Survival Outcomes
The approach for binary outcomes can be applied to survival outcomes as well. 
With Bonferoni adjustment for type I errors, phase II designs with null and alter-
native hypotheses are used first to test the minimum acceptance level. Selection 
ensues when two or more arms are accepted. Assuming exponential survival and 
uniform censoring, Table 10.6 lists correct selection probabilities for one scenario 
from Table 10.2. The results are generalizable to other accrual and follow-up length 
combinations since the event count, hazard ratio, and the number of arms, which are 
represented here, are the determinants for power or selection probability under the 
exponential assumption.

Similar to binary data results, when the null median m1 = 0.75 and mK/m1 = 1.5 as 
designed, the phase II operating characteristics dominate and the correct selection 
probability is approximately 0.90—the same as the individual arm’s planned power. 
The correct selection probability is poor when m1 = 0.75 and mK/m1 = 1.3. When the 
worst median is higher than the null level of 0.75, selection properties begin to apply. 
For example, for Design S3, K = 4, N = 147 per arm and the worst median is 0.95, the 
expected exponential event count is 75 with 1 year accrual and an additional 0.5 year 
follow-up. Compared to Table 10.3, the event count required for 0.90 correct selection 
probability is 96, 60, and 43 for mK/m1 = 1.3, 1.4, and 1.5, respectively, thus explaining 
the corresponding correct selection probabilities of 0.86, 0.93, and 0.97 in Table 10.6.

10.3.2  Designs with Minimum Advantage Requirements

Some authors propose changing the selection criterion so that the observed best treat-
ment will be further studied only when its minimum advantage over all other treatments 
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is greater than some positive Δ; otherwise, the selection will be based on other factors. 
Table 10.7 gives some binary data sample size requirements [3–5] for Δ = 0.05.

While this approach is appealing because the decision rule is easier to carry out in 
practice, the sample sizes required generally more than double those in Table 10.1. For 
example, for K = 2, P1 = 35%, P2 = 50%, and 0.90 correct selection probability, it can be 
interpolated from Table 10.1 that 36 patients per treatment are required for Δ = 0. With 
the same configuration, the required number of patients is 75 per group for Δ = 5%. 
Clearly when Δ > 5%, the sample size requirement would be impractical. Even with 
Δ = 5% and 75 patients per group, the results are by no means definitive when a greater 
than 5% difference is seen. When P1 = P2 = 35% and N = 75, the chance of observing 
|p1 − p2| > 5% is approximately 52% (where p1 and p2 are the observed proportions; P1 
and P2 are the true proportions). On the other hand, with Δ = 0 and N = 36 per Table 10.1, 
the chance of observing |p2 − p1| > 5% is approximately 0.81 when the true P1 = 35% and 
P2 = 50%. Therefore, with an incremental gain in the probability of correctly observing 
a Δ > 5% but double the sample size, this approach may only be practical when patient 
resource is plentiful. While precision is improved with the larger sample sizes, the 
results are nevertheless non-definitive.

10.3.3  Designs in Which One or More Arms Are Favored

In some situations, it might not be appropriate to allow all of the arms an equal chance 
of being selected. An example might be a selection between two experimental arms 

TABLE 10.6
Correct Selection Probabilities for Exponential Survival Designa with 1 Year 
Accrual, 0.5 Year Follow-Up and Minimum Acceptance Level (3000 
Simulations)

Correct Selection Probability for mK/m1
b =

True m1 1.3 1.4 1.5

Design S1: K = 2, N = 124 per arm, observed median acceptable if >0.95
0.75 0.57 0.78 0.91

0.85 0.84 0.94 0.97

0.95 0.90 0.96 0.98

Design S2: K = 3, N = 137 per arm, observed median acceptable if >0.96
0.75 0.53 0.77 0.89

0.85 0.84 0.93 0.97

0.95 0.88 0.95 0.98

Design S3: K = 4, N = 147 per arm, observed median acceptable if >0.96
0.75 0.54 0.77 0.90

0.85 0.83 0.93 0.97

0.95 0.86 0.93 0.97

a	 All designs are for detecting a hazard ratio of 1.5 over the null median of 0.75 with one-sided 0.05/K 
type I error and 0.90 power for each arm.

b	 m1 = … = mK − 1 < mK.
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where one of the arms is known to have much more severe side effects. In such a 
case, a variation on the design with a minimum advantage requirement as described 
earlier could be utilized. Although this design can be applied to more than two arms, 
for the sake of simplicity this discussion will be limited to the two-arm case. In this 
design, one arm is favored over the other. That arm is always chosen unless the non-
favored arm has an observed positive advantage ≥Δ. That is, to be selected, the non-
favored arm must not only perform better but also “beat the point spread.” This is not 
to be confused with a randomized phase II design, in which a formal hypothesis test 
between the two arms is performed.

10.3.4  Designs for Ordered Treatments

When the K (≥3) treatments under consideration consist of increasing dose sched-
ules of the same agents, the design can take advantage of this inherent order. A 
simple method is to fit regression models to the outcomes with treatment groups 
coded in an ordered manner. Logistic regression for binary outcomes and the Cox 
model for survival are obvious choices. A single independent variable with equally 
spaced scores for the treatments could be included in the regression. If the sign of 
the observed slope is in the expected direction, the highest dose with acceptable 
toxicity is selected for further study. Otherwise, the lowest dose schedule would 
be selected.

Compared to the non-ordered design, this approach should require smaller sam-
ple sizes for the same correct selection probability. Limited simulations were con-
ducted with the following results. For binary data with K = 3, P1 = 40%, P3 = 55%, 
P1 ≤ P2 ≤ P3, approximately N = 35 per arm is needed for a 0.90 chance that the slope 
from the logistic regression is positive. Compared to N = 55 given in Table 10.1, this 
is a substantial reduction in sample size. Similarly, for K = 4, P1 = 40%, P4 = 55%, P1 ≤ 
P2 ≤ P3 ≤ P4, 40 patients per arm are needed instead of 67. For exponential survival 

TABLE 10.7
Sample Size per Treatment for Binary 
Outcomes and 0.90 Correct Selection 
Probability When Requiring an Absolute 
5% Minimum Advantage for Selection
Response Rates (%) N per Group

P1,…, PK − 1 PK K = 2 K = 3 K = 4

5 20 32 39 53

15 30 53 77 95

25 40 71 98 119

35 50 75 115 147

Sources:	 Sargent, D.J. and Goldberg, R.M., Stat. Med., 
20, 1051, 2001; Lui, K.J., Stat. Med., 21, 625, 
2002; Sargent, D.J., Stat. Med., 21, 628, 2002.
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data with a 1.5 hazard ratio between the worst groups and the best group, approxi-
mately 28 and 32 events per group are needed for the worst groups for K = 3 and 4, 
respectively, as compared to 36 and 43 given in Table 10.3.

10.4  CONCLUDING REMARKS

The statistical principles of selection design are simple and adaptable to various situ-
ations in cancer clinical research. Applied correctly, the design can serve a useful 
function in the long and arduous process of new treatment discovery. However, as 
mentioned in the beginning, the principal misuse of the design is to treat the results 
as ends in themselves without the required phase III investigations. We previously 
published the false positive rates of this misapplication [6]. It was shown that impres-
sive looking differences arise with high frequencies purely by chance with selection 
design sample sizes. We also pointed out that performing hypothesis tests post-hoc 
changes the purpose of the design. If the goal is to reach definitive answers, then a 
phase III comparison should be designed with appropriate analyses and error rates. 
Testing hypotheses with selection sample sizes can be likened to conducting the 
initial interim analysis for phase III trials. It is well known that small sample type I 
error assessments are unstable and extremely stringent p-values are required to “stop 
the trial” at this early stage.

Finally, when historical benchmarks are not available for setting a minimum 
acceptance activity level, the inclusion of a standard or control treatment in a selec-
tion design should be utilized with caution. Without a control arm, any comparison 
between the current standard and the observed best treatment from a selection trial is 
recognized as informal because the limitations of historical comparisons are widely 
accepted. When a control arm is included for randomization, the legitimacy for com-
parison is established and there can be great temptation to interpret the results lit-
erally and “move on.” If there are no efficacy differences between treatments, the 
chance of observing an experimental treatment better than the control is (K − 1)/K, 
that is, 1/2 for K = 2, 2/3 for K = 3, etc. Again, an observed advantage for an experi-
mental treatment simply means its substantial inferiority is unlikely so that further 
testing may be warranted and must be conducted for definitive comparisons.
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11 Phase II with Multiple 
Subgroups
Designs Incorporating 
Disease Subtype or 
Genetic Heterogeneity

Michael LeBlanc, Cathryn Rankin, 
and John J. Crowley

11.1  INTRODUCTION

Patients registered to a Phase II study often are heterogeneous and may not be 
expected to respond equally to a new treatment. Tumors can consist of multiple sub-
types diagnosed either histologically or by molecular methods. For example, soft 
tissue sarcomas or non-Hodgkin lymphomas have multiple subtypes that can be 
identified by microscopic inspection of the tumor sample. Similarly, newer genomic 
measurements such as gene expression or comparative genomic hybridization on 
these tumors can now lead to refinement or regrouping of patients for clinical stud-
ies. For instance, expression of measures of HER2, EGFR, VEGF may influence the 
expectation of response by certain drugs in some tumors. While we are specifically 
interested in Phase II studies in oncology, our ideas relate more broadly to the use of 
biomarker or subtype information in the design of clinical experiments.
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In this chapter we present a simple strategy for dealing with tumors with multiple 
subgroups or histologies. We build our proposal on a traditional design for simple 
one-arm study in oncology. For such studies, activity is often not fully understood, 
and for ethical and patient resource reasons the designs have multiple stages (often 
two stages) where one can stop earlier and declare futility if insufficient activity is 
seen (Simon 1989; Green and Dahlberg 1992; Green et al. 2002). At the end of the 
first stage, typically accrual is halted until sufficient data have been submitted and 
analyzed at the statistical office to determine if the study should be re-opened to 
accrue to the next stage.

A problem with a single stratum Phase II study is that it uses the overall response 
rate (or another summary statistic), and if efficacy truly varies among subgroups 
of patients, strata with good efficacy will be combined with those with limited or 
no activity and may falsely lead to an overall negative conclusion. A schematic of 
single-arm study that includes multiple subtypes of disease, A, B, or C, is included 
in Figure 11.1. Alternatively, one can conduct multiple strata specific studies, with 
each strata having its own accrual goal and efficacy estimate with no mechanism 
for “joint learning” across the strata. However, it may be clear that there is overall 
limited activity in all strata at some point, but separate individual analyses may not 
lead to enough evidence to stop each stratum and hence accrual will continue. An 
example of a published clinical study for soft tissue sarcoma in the literature using a 
“joint learning” via Bayesian methods is Chugh et al. (2009).

Our goal is to present flexible frequentist Phase II strategies that are inclusive 
with respect to the patient population, but with appropriate subgroups acknowledged 
in the designed hypothesis testing and subsequent analyses. Figure 11.2 shows two 
options. Where the relative expected activity is not known between the strata, we 
would run a Phase II study with multiple subgroups, but with testing that includes 
both the subgroups and a combined test. This is represented by the left panel. In the 
situation where there is an expected ordering, for instance decreasing expression 
of some tumor based on a drug target, we propose an alternative testing strategy, 
represented by a sequence of nested sets or circles in the right panel of Figure 11.2.

A

A

One study Three subgroup specific studies

B
C

B C

FIGURE 11.1  Representation of a single phase II study versus several subgroup specific 
studies.
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We demonstrate the properties of our multiple subgroup Phase II method in 
terms of simulations motivated by a multi-histology sarcoma study with clinical 
response as the primary endpoint. While we choose to implement the design with 
multiple interim futility analyses, the strategy is more general; the essential idea is 
that for Phase II studies there are potential gains (in expected sample size or power) 
for using a combination of subgroup and overall analyses while appropriately char-
acterizing the overall design statistical error rates. While much of our proposal 
appeared in LeBlanc et al. (2009), here we clarify the futility testing and p-value 
calculations and provide additional simulations to better understand the properties 
of the strategy.

11.2  PHASE II DESIGN WITH MULTIPLE SUBTYPES

We consider a strategy that tests both within each subtype and combined across 
subtypes. The design is presented in terms of binary response data or disease con-
trol rate at some specific time point, but the same methods could easily be extended 
to time-to-event patient outcomes. For instance, the parameter estimates given in 
Section 11.2.1 could be hazard estimates or non-parametric estimates appropriate 
for survival data.

Denote a clinical response model for the outcome of interest for K subgroups 
or disease subtypes Rk:k = 1,…, K, where individuals in subgroup k with outcomes 
(responses) are modeled as

	

Yik k

k

=

−

1

0 1

with probability

with probability

θ

θ

We assume that that different subtypes of patients register to the study at a rate pro-
portional to the frequencies of the subtypes of the disease υk. Simple estimates of the 
response rates for each stratum are estimated proportions (fraction of patients with 

A

A

B

B

C

Multi-subgroup study Targeted subgroup study

C

FIGURE 11.2  Representation of a multiple disjoint subgroup phase II study versus nested 
targeted study.
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response Yik = 1 for each stratum θ̂k) and the overall estimate is the fraction of patients 
with Yik = 1 over all k strata θ̂ .

We propose a sequential design, motivated by traditional two-stage Phase II 
designs, and assume that at least ns

min patients will be accrued to any stratum before 
considering testing for futility against the alternative hypothesis θA and that a maxi-
mum number of patients, ns

max, can be accrued to any stratum. In addition to the 
subgroup analysis, the patients on study as a whole are combined and the design tests 
for futility when a minimum nmin patients have been accrued. The maximum size of 
the study is nmax patients, where nmax is less than or equal to the number of patients 
which would be accrued at full accrual for all strata, Kns

max.
As a practical issue, even in a single-arm study, a temporary closure while waiting 

for patient outcome (response) information to be forwarded to the statistical office 
can lead to diminished enthusiasm and subsequent accrual rates. Given the assump-
tion of multiple strata, we focus on the case where responses are assumed to be 
available relatively quickly, as temporary closures on multiple strata would likely 
exacerbate the problems seen in single stratum studies. Therefore, we will also pro-
pose to analyze the data when each group of q (say 5 or 10 patients) is registered to 
the study after achieving some minimum sample size. An alternative would be to 
analyze after each fixed number of patients are evaluated for response (say 4 months 
after registration) rather than just based on accrual. We note that this idea works with 
response, short-term disease control rates or short-term (≤4 month) progression-free 
survival. Furthermore, even if multiple interim analyses are not feasible for a given 
disease, a design with a single interim analysis using the combined and subgroup 
testing would still have some attractive sample size and power properties relative to 
separate Phase II studies for each subtype of the disease.

11.2.1  Unordered Subgroups

We test the alternative hypothesis within each subgroup. The p-value for the alterna-
tive hypothesis is the chance of observing success rate as small as or smaller than the 
observed rate under the alternative hypothesis θA

	
pk
A

jk jk A= ≤( )Pr θ θ θ∗ |� ˆ

The success proportion is defined as θ̂jk = rjk/njk where rjk is the number of successes 

when njk patients are assessed for response at analysis time j where n njk s≥ min. If the 
subgroup test is rejected at an analysis, pk

A
A< α , testing at level αA, then accrual to 

that stratum is discontinued, but continues for the remaining strata. To improve the 
probability of stopping early in the event of limited (or no) activity, the data are also 
combined across the subtypes and we test the overall alternative hypothesis. The 
p-value for the overall test is calculated, as the chance or probability the combined 
rate would be as small as or smaller than the observed success rate

	
pA j j A= ≤( )Pr |*θ θ θ� ˆ
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where rj is the total number of successes across all strata when nj patients are assessed 
for response at analysis time j. As in the subgroup tests, the alternative overall test is 
calculated only after a prespecified number of patients are accrued, nmin. Therefore, 
all overall tests of the alternative are conducted with sample sizes, nj ≥ nmin. If the 
overall test of the alternative is rejected, pA < αA, then accrual to the entire study is 
terminated. We think it is sensible for the overall alternative to be set closer to the 
null hypothesis than the alternative of interest for a subgroup or histology, θ̄A < θA. 
For instance, while a subgroup alternative value for response probability could be 
θA = 0.3 (for a null response probability θ0 = 0.1), a smaller treatment activity may be 
of interest for the study as a whole; hence, in this case, an alternative of θ̄A = 0.2 may 
be appropriate. Therefore, one could pick the θ̄A = γθA + (1 − γ)θ0 where γ is a fraction 
between 0 and 1 where that is thought of as the minimum fraction of patients achiev-
ing the subgroup alternative to be of interest in an overall comparison. For example, 
if we choose γ = 0.5 or moving 50% of patients to the subgroup, this motivates the 
θ̄A = 0.2 alternative hypothesis (0.2 = 0.5 × 0.3 + (1 − 0.5) × 0.1.

After completing accrual, the p-value corresponding to the test of the null hypoth-
esis is

	
pk jk jk

0
0= ≥ |( )Pr *θ θ θ� �

for each stratum and the p-value of the null hypothesis test is

	
p j j

0
0= ≥ |( )Pr *θ θ θ� �

for the combined group. The subgroup null hypothesis would be rejected if pk s
0

0< α  
or the overall patient group rejected if p0 < α0; we think it will usually be sufficient 
to keep the subgroup and overall Type 1 specification equal, α0s = α0 if one sets 
α0 = 0.05, leading to a larger overall experiment-wise Type 1 error rate greater than 
α0; but we calculate it for a given design.

An important aspect of the design is the selection of sample sizes per stratum, ns
min 

and ns
max, corresponding to a possible first test of the alternative hypothesis and maxi-

mum stratum sample size for each stratum s, and similar sample sizes for the entire 
study, nmin and nmax. We propose using a standard two-stage design to pick ns

min and 
ns
max as done by Green and Dahlberg (1992), or Green et al. (2002). The same strategy 

is used to pick the overall sizes based on null and alternative hypotheses θ0 and θ̄A.
We think a desirable property of the method is that a single stratum is stopped 

only for futility outcome data associated with that stratum. Negative results in one 
stratum lead to stopping accrual of patients to other strata only if the combined 
results cause rejection of the alternative hypothesis. However, more complex bor-
rowing or learning could potentially reduce variance and lead to greater savings in 
sample size. This has been done in the literature using Bayesian methods such as 
those implemented by Thall et al. (2003) and Thall and Wathen (2008). The poste-
rior probability of the stratum specific response rates can be used to guide stopping 
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accrual. However, we believe non-Bayesian borrowing strategies could also be uti-
lized. For instance, simple ridge regression shrinkage could be used as a bridge 
between the single stratum analysis and combined analysis. One could replace the 
aforementioned individual stratum estimates with

	 θ θ γ θ�� � �
jk j jk= + −γ ( )1

for each subgroup and the p-values for futility testing could be evaluated as done 
previously. While the shrinkage factor γ needs to be chosen, one or a small number 
of values (say 0.2 and 0.5) might be reasonable to encourage borrowing for futility 
testing. While ad hoc, the full frequentist properties can be evaluated.

11.2.2  Ordered or Targeted Subgroup

For some drug and disease combinations, it is strongly suspected that the drug will 
have greatest activity within a subtype of disease or a group of patients expressing 
a marker or combination of markers. In that case, a special subgroup and overall 
design can be used. Of course there still needs some belief of the potential efficacy 
for the drug outside the targeted subgroup to make it appropriate to include a broader 
group of patients. Targeted or nested subgroup design and analyses in the Phase III 
setting were developed by Hoering et al. (2008).

In this case, one may focus on accrual both within the subgroup and total for the 
study. Consider the target test of the alternative hypothesis

	
pt
A

jt jt At= ≤ |( )Pr *θ θ θ� �

where θ̂jt is the success or response estimate in the targeted subgroup consisting 
the njt patients in the strata k ∈ S, where S is the set of strata indicating the tar-
get or most promising biologic group. In this case, the alternative hypothesis of 
interest, θAt, corresponds to the targeted subgroup. Once sufficient patients are 
accrued to the target group, the test of the targeted subgroup alternative hypothesis 
is conducted. If the target test is rejected, then entire study is closed. There is an 
important difference between this study design and the unordered subgroup case 
described in the previous section. Here, given sufficient understanding or of the 
target and drug, one may be willing to infer that lack of efficacy for the targeted 
subgroup implies overall futility, and not just for a subgroup of patients. Given that 
ordered hypothesis, the design will lead to smaller sample sizes under the null than 
the unordered design. At the end of accrual, there are tests of the null hypothesis 
for both the targeted group:

	
pt jt jt

0
0= ≥ |( )Pr *θ θ θ� �



169Phase II with Multiple Subgroups

and the test for the overall group with p-value defined as p0. The overall experimen-
tal null hypothesis is rejected if either of the two p-values is less than α. This leads 
to the potential for improved power when there is substantial activity in the targeted 
subgroup but little or no improved activity in the other strata. The sample size for 
testing the null hypothesis in targeted group can be set using (Green and Dahlberg 
1992); however, if the targeted null hypothesis is rejected (and drug assumed to be 
promising), one would likely want to have reasonable stratum specific estimates of 
response rates. Therefore, one may also want to allow the targeted group to accrue to 
the total of the stratum specific sample sizes, unless there is a decision to stop early 
for futility.

11.3  SIMULATIONS BASED ON SOFT TISSUE SARCOMA

11.3.1  Unordered Subgroups

We will use simulations based on a prior SWOG cooperative group soft tissue sar-
coma study (von Mehrun et al. 2011). The study was conducted to test sorafenib, 
which is an agent with multiple molecular targets that may be of relevance in soft 
tissue sarcomas. The drug was potentially interesting because several subtypes of 
adult high-grade soft tissue sarcomas were known to express VEGFR and PDGFR 
in these tumor types.

The primary objective of the Phase II study was to assess the clinical response 
probability (confirmed complete response and partial response) in patients soft tis-
sue sarcoma, with the most frequent histologies assumed to be high-grade leiomyo-
sarcoma or high-grade liposarcoma, and several other histologies (angiosarcoma, 
hemangiosarcoma, and hemangiopericytoma) combined into the third stratum. Our 
design-specified response would be assessed within histologic subtypes as well as 
combined over all subtypes. We note that the design actually used in the SWOG 
study only assessed clinical responses at a limited number of times.

Each hypothetical Phase II multi-subtype clinical trial was generated with sub-
type frequencies: Subgroup 1 leiomyosarcoma (50%), Subgroup 2 liposarcoma (30%), 
and Subgroup 3 angiosarcoma/hemangiosarcoma/hemangiopericytoma (20%). We 
assumed that the probability of response for all three strata was θ0 = 0.05 under the null 
hypothesis and the alternative hypothesis of subgroup alternative response probability 
was θA = 0.25. The overall alternative hypothesis response rate was set at θ̄A = 0.15.

We generated simulated data where each of the three strata had a maximum sam-
ple size of 25 patients. Futility testing is first conducted after 15 patients have been 
accrued to any stratum. Overall futility testing (testing the alternative hypothesis) 
is first done after 30 patients have been accrued in total. An overall maximum of 
75 patients that can be accrued was set for the study design. The Type 1 error for 
the futility analyses based on testing of the alternative hypotheses was αA = 0.02, 
similar to that of Green and Dalhberg (1992), and testing of the null was specified 
with α0 = 0.05. To encourage a smaller overall expected sample size when there is 
limited activity, futility analyses were conducted after every five patients accrued. In 
practice, this will be done after five patients are assessable for response rather than 
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accrued. To estimate properties of the design, we generated 5000 simulated clinical 
trials and we evaluated following four hypothetical scenarios:

	 1.	No improved activity: θ1 = θ2 = θ3 = 0.05.
	 2.	 Improved activity in frequent subtype: θ1 = 0.25, θ2 = θ3 = 0.05.
	 3.	 Improved activity in infrequent subtype: θ1 = θ2 = 0.05, θ3 = 0.25.
	 4.	Limited activity in all subtypes θ1 = θ2 = θ3 = 0.15.

We evaluated some important aspects of Phase II designs, the expected sample 
size for the new design N(SubT), the expected sample size for the simple Phase II 
study in each stratum N(Simple), power for stratum specific studies Power(Simple), 
and power for new design Power(SubT). Therefore, N(SubT) is the sample size using 
subgroup efficacy testing but with combined or overall group futility testing and 
Power(SubT) is power for subgroup efficacy test with combined futility testing. An 
additional piece of information provided in the tables is the conditional probability 
of rejecting the null hypothesis for the specific stratum, given either the overall or the 
stratum-specific hypotheses have been rejected. We include the target accrual and 
the experiment-wise power in the individual figure captions.

Under the null hypothesis that the response rate is 5% in all three strata, as pre-
sented in Table 11.1, there is considerable reduction in the expected sample size 
by using the additional combined futility testing. Overall, the reduction is approxi-
mately 18% with the biggest reductions in expected sample size observed for the 
infrequent histologies. Table 11.1 shows that the Type 1 error for each stratum is 
less than α0 = 0.05 due to the futility testing. While one could modify the individual 
stratum tests to control the overall Type 1 error, we choose to just report the overall 
error. The experiment-wise Type 1 error is inflated due to the multiple strata, with 
the separate stratum analysis of 10% and with the combined (SubT) strategy 8.4%. 
The slightly smaller Type 1 error is due to combined group futility testing.

The second scenario (Table 11.2) investigates the case where the compound was 
only effective in the frequent subgroup (which we assume to be 50% of the patients 
with soft tissue sarcoma). The strategy of using multiple strata specific Phase IIs and 
the combined strategy yield similar expected sample sizes. Importantly, under the 
alternative, the conditional probability of rejecting the null hypothesis for that stratum 

TABLE 11.1
No Improved Activity

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.05 20.10 0.04 18.74 0.03 0.31

2 0.30 0.05 20.10 0.03 16.69 0.03 0.37

3 0.20 0.05 20.69 0.04 14.70 0.02 0.28

Min stratum = 15, max stratum = 25, min combined = 30, max combined = 75. Experiment-wise power 
(Simp) = 0.0996, experiment-wise power (SubT) = 0.0842.
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given any rejection of the null for the combined method is 99%. In Table 11.3, the 
case where the improvement is limited to the infrequent subtype (20% frequency), the 
experiment-wise power for the combined strategy is 90% which is again approximately 
the same as the individual subgroup trials strategy. The false study terminations for 
overall futility also lead to a smaller sample size for the infrequent group. While the 
comparisons for the simple method and new strategies are quite close for these two 
scenarios, the comparison to a single combined study is striking. Even with sample 

TABLE 11.4
Limited Improved Activity in All Subtypes

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.15 24.00 0.53 23.94 0.53 0.62

2 0.30 0.15 24.11 0.54 23.81 0.53 0.60

3 0.20 0.15 24.05 0.53 23.79 0.52 0.58

Min stratum = 15, max stratum = 25, min combined = 30, max combined = 75. Experiment-wise power 
(Simp) = 0.897, Experiment-wise power (SubT) = 0.9076.

TABLE 11.2
Improved Activity in the Frequent Subtype

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.25 24.86 0.89 24.66 0.89 0.99

2 0.30 0.05 19.94 0.04 19.82 0.03 0.04

3 0.20 0.05 20.53 0.03 20.19 0.04 0.05

Min stratum = 15, max stratum = 25, min combined = 30, max combined = 75. Experiment-wise power 
(Simp) = 0.8998, experiment-wise power (SubT) = 0.903.

TABLE 11.3
Improved Activity in the Infrequent Subtype

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.05 19.97 0.03 19.73 0.03 0.06

2 0.30 0.05 19.99 0.03 19.55 0.03 0.05

3 0.20 0.25 24.89 0.90 23.27 0.83 0.99

Min stratum = 15, max stratum = 25, min combined = 30, max combined = 75. Experiment-wise power 
(Simp) = 0.8998, Experiment-wise power (SubT) = 0.903.
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size equal to the total sample size of the study (75 patients), a single combined analysis 
for improved activity in an infrequent histology would only have power of 39%.

Finally, Table 11.4 shows that if sorafinib were approximately equally effective 
in all subgroups, the combined strategy yields a power of 91% which is only slightly 
higher than the probability of rejecting at least one of the individual strata (90%). 
However, for a given stratum there is only an approximately 53%–54% chance of 
rejecting the null hypothesis, potentially leading to falsely concluding negative 
results for one or more subgroups. In summary, for the sarcoma study, the subgroup/
combined Phase II strategy leads to smaller sample sizes under the null and improved 
power when there was limited efficacy across subtypes.

11.3.2  Ordered or Targeted Subgroup

We also used the same trial characteristics to study the impact of a design where effi-
cacy is expected to be best within one or more subtypes. We assumed that the most 
frequent and most infrequent subgroups were combined to make a targeted subgroup 
containing about 70% of patients. Such a design would be useful if it were known (or 
strongly believed) that those histologies or genetically defined subgroups were most 
biologically suited to a particular treatment. For instance, tumors in those subgroups 
might express the target molecule most highly among all histologies. Under this design, 
given that we assume that the efficacy will be greatest in the targeted group, evidence 
of a lack of efficacy for the targeted group implies overall futility, not just subgroup 
futility. Therefore, the entire study would be closed if the targeted subgroup alternative 
hypothesis is rejected. Note, while one could limit the total sample size of the subgroups 
or combined subgroups expected to have greatest efficacy, we choose only to focus on 
futility testing. Therefore, the targeted test of the null will be based on full accrual to the 
stratum or strata representing the targeted group. A motivation for not stopping for the 
potentially smaller sample size is that would likely still want to have good response rates 
estimates within each of the subtype strata if the targeted null hypothesis is rejected.

Testing of the alternative hypothesis within the subgroup was conducted as 
described in Section 11.2.2, with alternative response probability of θAt = 0.20. Under 
the null hypothesis, the targeted design further reduced the sample size compared to 
either of the individual subgroup analyses as shown in Table 11.5 (a 27% reduction 

TABLE 11.5
No Improved Activity: Simple Subgroups or Targeted Method

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.05 20.01 0.04 17.95 0.03 0.44

2 0.30 0.05 20.13 0.03 14.09 0.02 0.28

3 0.20 0.05 20.72 0.04 12.46 0.02 0.32

Min stratum = 15, max stratum = 25, min target = 20, max target = 50. Experiment-wise power 
(Simp) = 0.0988, experiment-wise power (Comb) = 0.0788. Target power = 0.0288.
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in overall sample size). In addition, in Table 11.6, if the targeted strata had response 
probability of 0.20 and remaining strata had a response rate of 0.05, the simulation 
study showed that the targeted hypothesis significantly increased power (92%) (Type 
1 error of 0.02) over individual subgroup analyses (approximately 77%) (Type 1 errors 
of 3% or 4%) for the two strata corresponding promising subgroups. The experiment-
wise power of rejecting at least one of the strata was modestly higher than the exper-
iment-wise power of the strategy including targeting. But this was, in part, due to the 
larger Type 1 error of the untargeted strategy compared to targeted 9.9% versus 2.9%. 
The reduction in Type 1 error for the targeted method is a result of the more directed 
futility testing that stops overall accrual if there is futility in the target subgroup, 
compared to considering each stratum separately in the untargeted strategy.

11.4  DISCUSSION

The Phase II strategies presented in this chapter fit into the class of recently developed 
methods for incorporating biologic subgroup variation into designed experiments. Our 
proposed Phase II method for unordered subgroups can be a useful alternative to either 
combining all groups to do a single Phase II study with a single endpoint evaluation 
or conducting multiple separate studies each with separate analyses. The former has 
the drawback of not acknowledging potential variation in activity in disease subtypes 
which are likely to occur, and the latter strategy may be logistically difficult if diseases 
are rare and the relative frequencies of subgroups cannot be well predicted before 
activating the study. We conduct individual subgroup tests and the overall combined 
tests all the while acknowledging the multiple testing properties of the design. The 
combination strategy yields smaller sample sizes when the drug is inactive across all 
strata and more power in cases when there is some activity across all strata compared 
to conducting individual Phase II studies in the subgroups. In addition, by retaining 
the stratum-specific tests, the design allows active subgroups to be identified.

While there are many variations for the Phase II design and implementation, we 
believe our results support the general proposal of appropriate “borrowing” of infor-
mation in the Phase II setting where there are multiple biologic or histologic sub-
groups. For instance, for some diseases it may not be feasible to conduct as frequent 
futility testing (e.g., after every 5–10 patients are accrued). We believe the combined 

TABLE 11.6
Active within Subgroup: Simple Subgroups or Targeted Method

Stratum Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT)
Cond. 
Prob.

1 0.50 0.20 24.60 0.76 24.44 0.75 0.84

2 0.30 0.05 19.86 0.04 19.75 0.03 0.04

3 0.20 0.20 24.64 0.75 24.24 0.74 0.82

Min stratum = 15, max stratum = 25, min target = 20, max target = 50. Experiment-wise power 
(Simp) = 0.9404, experiment-wise power (Comb) = 0.9416. Target power = 0.920.
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subgroup and overall analyses would still be useful even if only one interim analysis 
was possible. Furthermore, even in a single stage one-arm pilot study, the use of the 
either the unordered or targeted tests of the null hypotheses for efficacy testing could 
lead to improved overall power and insights into activity.

We have also chosen to use a method where futility stopping of a stratum only 
depends on stratum specific data. We only borrow information across strata for futil-
ity testing for the entire study. As noted earlier in the chapter, one could choose to 
borrow even for the stratum specific tests using the Bayesian proposals for multiple 
histology Phase II studies (Thall et al. 2003; Thall and Wathen 2008), but we prefer 
to evaluate the frequentist properties of any borrowing or shrinking method.

Another extension includes the use of time-to-event data. To evaluate progres-
sion-free survival and overall survival, one will typically need larger studies to 
achieve sufficient power and increase the promise that large sample results hold. 
Such studies may also be practically limited to a single interim or even no interim 
analysis. One could consider parametric survival estimates hazard ratio estimates or 
non-parametric estimates following work by Lin et al. (1996).

Software implementing this procedure is for response data available from the first 
author.
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12 Phase II/III Designs

Sally Hunsberger

12.1  INTRODUCTION

Phase II/III, seamless phase II/III, and integrated II/III designs are terms that are used 
interchangeably and refer to study designs that combine aspects of phase II drug devel-
opment and phase III drug development into one study. Phase II/III designs randomize 
patients in the phase II component and then include these patients in the phase III com-
ponent of the study. An intermediate end point is evaluated in the phase II component.

Historically, phase II studies have been designed to have a single arm and are 
independent of a phase III. Phase II studies are used to screen agents for activity 
before launching a large phase III study. Since there are many agents to screen and 
many of the agents will provide no benefit, it is important to keep phase II studies as 
small as possible. Traditionally, the sample size for phase II studies has been 15–40 
patients. As described in other chapters, phase III studies require large sample sizes 
since clinical benefit defined as overall survival (OS) or disease-free survival (DFS) 
is the endpoint of interest.

Although there has been more interest in using phase II/III designs recently 
(Goldman et al. 2008; Hunsberger et al. 2009; Parmar et al. 2008), the concept is not 
new. For example, Ellenberg and Eisenberger (1985) and Schaid et al. (1990) both 
proposed study designs that use the same patients to answer phase II and III ques-
tions, but the designs have rarely been used in practice in oncology. The renewed 
interest in phase II/III studies has occurred because of the need to perform more 
randomized phase II studies.

12.2  MOTIVATION FOR PHASE II/III DESIGNS

The need for randomized phase II studies is a result of significant changes in the drug 
development landscape in oncology. First, there are now agents known to extend 
survival in many types of cancer. Along with studying the single agent activity of a 
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new agent, it is also of interest to study new agents in combination with agents that 
are known to be beneficial. Single-arm studies are less appropriate when studying 
combinations that include an established active agent. Due to heterogeneity of the 
population, some patients will respond to the active agent and some will not. An 
increase in an observed response rate over a value defined by the historical single 
agent response rate is difficult to interpret. The increase could be a result of accruing 
more patients to the study who respond to the active single agent or it could be due 
to the new agent. The only way to determine the population benefit of the addition of 
the new agent is through a randomized study.

Second, new molecularly targeted agents are being developed with different 
hypothesized mechanisms of action. Historically, antitumor activity has been evalu-
ated by using an endpoint such as tumor shrinkage. Currently, many new agents are 
not expected to shrink tumors. It is thought that the molecularly targeted agents will 
inhibit tumor growth and stabilize disease. Therefore, progression-free survival (PFS) 
is often the endpoint of interest for phase II studies of molecularly targeted agents. 
This endpoint is preferred to OS for phase II studies, since it may occur significantly 
sooner than OS. Even when OS occurs early, it may not be a good endpoint for phase 
II studies, since often after progression patients are changed to a different therapy, 
thereby potentially diluting effects on OS and leading to the need for large sample 
sizes. Although PFS is a phase II endpoint of interest, it can be difficult to measure 
accurately and is more affected by population heterogeneity than tumor shrinkage. 
PFS can vary depending on individual patient characteristics; therefore, the median 
PFS for a study can be influenced greatly by patient selection. Consequently, studies 
involving molecularly targeted agents with PFS as the endpoint must be randomized 
in order to really learn if PFS has been increased with the new agent. Also, with 
molecularly targeted agents, patients may be selected based on having a positive or 
negative marker. If a population is selected based on a marker, there may be no his-
torical data for the response rate or PFS rate in that population (McShane et al. 2009).

Third, molecularly targeted agents often have nonoverlapping toxicities with che-
motherapeutic agents or very little toxicity, so it is of interest to study combina-
tions of molecularly targeted agents along with combinations of molecularly targeted 
agents and cytotoxic chemotherapy. For all these reasons, an increasing number of 
phase II trials are needed, and many of them will require randomization.

Randomized phase II studies require at least two times more patients than single-
arm phase II studies (Rubinstein et al. 2005). Given the increased number of regi-
mens to study, efficient use of patients is required. For some experimental regimens, 
the same control arm would be used in a randomized phase II study and the phase 
III study. In this situation, an obvious efficient use of patients would be to include 
patients from the phase II study in the phase III study. A practical approach is to 
consider phase II/III designs, where patients in phase II can also be used in phase III.

12.3  SPECIFICS OF II/III DESIGNS

The elements of a phase II/III design are as follows: the overall sample size (total 
number of patients) is calculated based on the phase III endpoint. The phase II com-
ponent of the study can be viewed as an interim futility analysis with an intermediate 
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endpoint (Goldman et al. 2008). That is, patients are accrued to the study until a 
specified number of patients are on study. At that point, an analysis based on an 
intermediate endpoint (response or PFS) is performed. If a prespecified activity cri-
terion is met, accrual is continued to the study until the overall sample size is met. 
All patients are then used in the phase III analysis (final analysis).

Challenges in designing phase II/III studies are the choice of the intermediate 
endpoint (or phase II endpoint), the decision criterion for stopping, and timing of 
the interim analysis. The intermediate endpoint should be related to the primary 
endpoint in such a way that at a minimum, lack of effect on the intermediate 
endpoint is a reliable indication of there being no effect on the primary endpoint. 
(This is the standard assumption that has historically been made when using PFS 
or response rate in single-arm phase II studies or randomized phase II studies.) 
The intermediate outcome should be observed earlier than the primary endpoint. 
If the intermediate endpoint is obtained late (or at a time that is not much different 
from the primary endpoint), then the benefit of the interim analysis (or the chance 
to stop the study early and save patients entering into the study) will be lost. The 
stopping criterion should be such that there is a high probability of stopping the 
study under the null hypothesis while having little impact on the overall power 
of the study to detect a true benefit on the primary endpoint. The timing of the 
interim analysis should be such that if the regimen is inactive, the study will stop 
as early as possible during accrual but late enough, so that a reliable decision can 
be made.

12.4  EXAMPLE

As a case study consider a Cancer and Leukemia Group B (CALGB) study of renal 
cell carcinoma (RCC). It is a placebo-controlled randomized study of bevacizumab 
in advanced RCC patients who have progressed after treatment with a tyrosine 
kinase inhibitor. The combination of everolimus (mTOR inhibitor) and bevaci-
zumab (VEGFR inhibitor) is being compared to everolimus. Everolimus is approved 
for second line treatment of RCC based on a PFS endpoint (Motzer et al. 2008). 
Bevacizumab with interferon was shown to be an active combination in first line 
RCC (Escudier et al. 2007; Rini et al. 2008). Due to nonoverlapping toxicities of 
everolimus and bevacizumab, it was of interest to combine the two agents. A phase 
II/III design is of interest for the following reasons.

	 1.	 If the addition of bevacizumab to everolimus were shown to increase activ-
ity in a randomized phase II study, a phase III study with the same arms 
would definitely be designed.

	 2.	Although both agents have been shown to increase PFS neither has demon-
strated benefit on OS. Ultimately, the combination is only of interest if OS 
is shown to be increased.

	 3.	The primary endpoint of interest is OS, but there is no data to indicate 
the addition of bevacizumab to everolimus increases activity. Obtaining the 
activity data before investing in a large phase III study is essential.
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The actual phase II/III study design is as follows. The total study size is 676 patients 
with the primary endpoint being OS. With an accrual rate of 23 patients per month, 
the study will need to accrue for 30 months. The minimum follow-up will be 34 
months. An interim analysis based on PFS will be performed after 100 patients 
have been followed for 4 months (since accrual will continue to the study while 
the patients are being followed for 4 months, approximately 191 patients will be 
on study). Patient accrual will continue if at the interim analysis, the estimate of 
4 month PFS in the combination arm is at least 6% higher than the estimate in the 
everolimus alone arm.

The total sample size was chosen, so that βs, the probability of incorrectly con-
cluding no improvement in OS, would be less than 0.1 if the true median OS is 
improved from 12 to 15.6 months (hazard ratio, HR = 1.3). The calculation of the 
total sample size did not take into account the interim analysis on PFS. At the end of 
the study, a one-sided p-value less than 0.025 would be considered significant.

When the null hypothesis of no treatment effect on PFS is true, the study will 
stop with probability 0.76. If the combination truly improves median PFS from 4 to 
8 months (hazard ratio of 2) and improves OS from 12 to 15.6 months, the overall 
probability of concluding a benefit of the combination is at least 0.855.

The choice of the phase II analysis time and criteria for continuing the study is 
critical to phase II/III studies and will be explored further for this example. The tim-
ing of the analysis will be determined by the type I and II error rates for the inter-
mediate analysis, αi and βi, respectively. Here, αi is the probability of continuing the 
study when the experimental agent is not active on the intermediate endpoint, and βi 
is the probability of not continuing the study when the experimental agent is active 
on the intermediate endpoint. Accrual to the study will continue if the p-value of the 
test comparing PFS in the two arms is less than αi. The selected αi defines (and lim-
its) the probability of continuing on to the phase III portion of the study when there 
is no benefit of the experimental agent on the intermediate endpoint. When there is 
no benefit on the intermediate endpoint, it is desirable to stop accrual to the study 
early to avoid continuing on to a foreseeable negative phase III study (assuming the 
predictive value of the intermediate endpoint). A measure of the impact of αi is the 
expected sample size, E[S], or the average sample size if the study were repeated 
many times when the intermediate endpoint null hypothesis is true. It is given by 
E[S] = ni + αi(N − ni) where ni is sample size at the interim analysis and N is the total 
sample size. Under the null hypothesis, we would like E[S] to be minimized; how-
ever, as αi decreases, ni increases for fixed βi and N, so the relationship between αi 
and E(S) is not monotonic. Figure 12.1 shows the relationship between E[S], ni, and 
αi for a specific example under the null hypothesis.

In Figure 12.1, N = 676, βi = 0.05 (the unusually small choice of βi will be described 
later), and ni is calculated assuming PFS is the intermediate endpoint and follows an 
exponential distribution with median of 4 months. The calculations use an accrual 
rate of 23 patients per month and target a hazard ratio of 1.5 or 2 (this is equivalent 
to an increase in median PFS to 6 or 8 months).

In Figure 12.1, the solid line is used to show E[S] and the dashed line to show ni, 
as αi varies. The figure shows that for small αi, ni is large and this increases E[S]. 
For the curves with HR = 1.5, αi = 0.2 minimizes E[S]. For αi = 0.2, E[S] = 365 and 
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ni = 287. The E[S] curve is relatively flat for values of αi between 0.2 and 0.3 but ni 
decreases rapidly. For example, for αi = 0.3, E[S] = 372 and ni = 241, which means 
that ni has decreased by 46 patients while E[S] has only increased by 7. Therefore, 
αi = 0.3 is also a good choice for the interim analysis given the small increase in E[S] 
and large decrease in ni. For the curves with HR = 2, αi = 0.10 minimizes E[S] with 
E[S] = 244 and ni = 196. Again, the E[S] curve is relatively flat for an interval around 
αi = 0.1. For αi = 0.15, E[S] = 252 and ni = 177. Here, αi = 0.15 is also an adequate choice 
for the stopping criteria.

The overall power is the probability of correctly concluding that the experimen-
tal treatment improves OS (given an interim analysis of PFS has occurred). In the 
phase II/III setting, this probability depends on βi, the probability of incorrectly 
stopping a study when there is a true benefit on the intermediate endpoint and βs 
(the probability of concluding no benefit on OS if no interim analysis is performed). 
A simple calculation assuming the intermediate endpoint and the final endpoint are 
independent gives a lower bound on the overall power of the study. The overall power 
is the probability of rejecting the null hypothesis at the interim analysis multiplied 
by the probability of rejecting the null hypothesis at the end of the study given you 
rejected the null hypothesis at the interim analysis, that is (1 − βs)(1 − βi), which, in 
our example, is (1 − 0.1) (1 − 0.05) = 0.855. By examining this equation, it can be seen 
that as βi decreases, the overall power increases. Typically, the intermediate endpoint 
and the final endpoint will be positively correlated (not independent), so the overall 
power will be between 0.9 and 0.855. We always assume that the treatment effects on 
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FIGURE 12.1  Relationship between expected sample size, E[S], the sample size in phase II 
portion of study, ni (or before interim analysis), and αi for the RCC study example. The solid 
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ping based on the PFS endpoint for different hazard ratios (HR). The lines labeled OS HR are 
for futility monitoring based on OS. The total sample size is fixed at 676 and βi = 0.05.
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the two variables are very highly correlated; otherwise, the intermediate endpoint is 
not a good surrogate for the primary endpoint.

Although there is a loss in power by using the phase II/III design rather than a 
phase III design with no interim analysis based on an intermediate endpoint, the 
power comparisons must be interpreted carefully. If a phase III design with no inter-
mediate endpoint monitoring was performed, there would typically be an indepen-
dent randomized phase II study based on the intermediate endpoint. Therefore, the 
correct comparison of power is to account for the phase II study before proceeding to 
the phase III study. If the phase II study was designed to have power of 0.95 and the 
phase III study to have power of 0.9, the overall probability of correctly concluding 
a benefit on OS would also be 0.855.

In the example, an overall power of 85% was specified, if instead, an overall 
power of 90% was desired, βs would need to be decreased from 0.10 to 0.05, since 
power would be (1 − βs) (1 − βs) = (1 − 0.05) (1 − 0.05) = 0.90. Now, βs is used in the 
calculation of the overall sample size and as βs decreases sample size increases. In 
this example, if we use the same type I error rate (0.025), hazard ratio (1.3), mini-
mum follow-up (34 months), and accrual rate (23 patients per month), the overall 
sample size would be 826 (rather than 676). A figure similar to Figure 12.1 could 
be created for this new overall sample size. The αi’s that give the smallest E[S] are 
smaller (0.1–0.2). This is due to the larger overall sample size. If αi is large, the study 
continues to the full size more often, which increases E[S] more dramatically. Thus, 
continuing to the full study size is more costly and should be done with a lower prob-
ability of erroneously moving forward.

A variant of the phase II/III design with an interim analysis based on an interme-
diate endpoint is to perform an aggressive futility analysis on the primary endpoint. 
This design does not work nearly as well for cases such as the one given, where the 
median time to the primary endpoint is much longer than that to the intermediate 
endpoint. In order to not impact power, the analysis must be performed late in the 
study, and due to the much later event times, the continuation criteria must be very 
low so that the study only stops in extreme cases. This is demonstrated in Figure 
12.1, which shows the E[S] and ni as αi varies for the futility design based on OS. 
In the Figure 12.1, the overall power is maintained at 0.855. Again, the solid line is 
E[S], and the dashed line is ni. In this case, the null hypothesis involves OS. The fig-
ure indicates that αi = 0.54 minimizes E[S]. For this criteria E[S] = 520, ni = 330. The 
study will continue with an observed hazard ratio of 0.979 (or 11.8 month median 
OS in the experimental arm), indicating that the placebo arm is performing slightly 
better than the experimental arm. The E[S] curve is relatively flat until about αi = 0.6, 
with this criteria E[S] = 523, ni = 294, HR = 0.931, 11.18 median OS for the experi-
mental arm. For both criteria, E[S] is 77% of the total sample size, whereas for the 
designs, using the intermediate endpoint, E[S] was 36% of the total sample size.

12.5  DISCUSSION

Phase II/III designs can be valuable designs in drug development, but they should 
not be used for all studies. Several issues should be evaluated when considering 
whether a phase II/III design is appropriate. A phase II/III study can be considered 
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when there is an intermediate endpoint that is related to the phase III endpoint, and 
the intermediate endpoint can be obtained much earlier than the primary endpoint. 
If such an endpoint is not available, then there would be no savings in doing a II/III 
design.

A phase II/III design could be considered if a positive randomized phase II result 
(even using a relatively high αi, such as 0.2 or 0.3, as suggested in the example) would 
ensure moving to a phase III study. Typically, positive data from several single arm 
studies in a specific disease type are required before a phase III study is launched. 
For the phase II/III design, this may be the only phase II study in this disease type 
or stage. Therefore, there should be other types of data that would provide justifica-
tion for a phase II/III study. For example, there may be evidence from other disease 
types, strong evidence from phase I studies, strong evidence from a different stage 
of disease, or a known molecular target that has shown activity in other settings with 
this regimen.

The key assumption in the phase II screening component of oncologic drug devel-
opment for the past 50 years has been that a lack of effect on the intermediate end-
point is a reliable indication of there being no effect on the primary endpoint. This 
assumption is also crucial for phase II/III designs. If this assumption is not valid, the 
phase II component (either as an independent study or as part of a phase III study) 
will substantially reduce the probability of finding a treatment benefit on OS.

There is little savings in terms of the expected sample size, E[S], for the design 
with a futility analysis based on OS. However, the power does not depend on the 
experimental treatment affecting an intermediate endpoint. Therefore, this design 
could be considered when there is no intermediate endpoint that meets the previous 
assumption.

There are disadvantages of the phase II/III designs. Developing the protocol for a 
phase II/III design is complex and time consuming. It essentially requires develop-
ing a phase III protocol that requires more work than a phase II protocol. A phase III 
study often requires more sites to commit to the study since potentially more patients 
will be required. It may be possible to begin the study in a subset of sites for the 
phase II component and then expand to more sites for the phase III component but 
often this can lead to problems with sites not feeling invested in the study when they 
did not have much say in the development of the study. Thus, accrual to the phase III 
component may not increase as much as expected.

An unresolved issue is whether positive results from the phase II portion of the 
study should be published before the end of the phase III study (note accrual and 
treatment of patients would still be occurring). Typically, data from an interim analy-
sis of an ongoing study are not published. This practice has been established so that 
doctors and patients will not base treatment decisions on unreliable information. For 
phase II/III studies, if αi were chosen to be small, the phase II data may be the most 
reliable data available and one could argue that these should be published. Then 
again, publishing the data may negatively impact accrual to the study, since patients 
would want to be treated with the most promising regimen. A similar issue arises 
when an independent randomized phase II study is performed. Positive results from 
the study will be published potentially making it impossible to perform a phase III 
study. In a phase II/III study, if αi were 0.2 or 0.3, publishing a positive phase II result 
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early may result in treating patients with an experimental regimen when the prob-
ability of falsely concluding the regimen is active is high. The decision as to when 
positive phase II results could be published should be considered carefully for each 
study and clearly addressed in the protocol.

Although there are disadvantages and concerns to address, there are situations 
where phase II/III study designs should be considered.
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13 Use of Covariates in 
Randomization and 
Analysis of Clinical Trials

Garnet L. Anderson, Michael LeBlanc, 
P.Y. Liu, and John J. Crowley

13.1  INTRODUCTION

Randomization provides the basis for determining causality in scientific experi-
ments. While there are settings in medicine and public health where convincing 
evidence may be obtained from nonrandomized studies, there is a clear shift toward 
requiring the higher quality evidence obtained from well-designed randomized tri-
als. Rapidly changing diagnostic and disease assessment tools, the use of more sub-
jective endpoints, requirements for diverse patient populations, and modest effect 
sizes all tend to weaken the inference from uncontrolled experiments. In oncology, 
where historically a single-arm phase II trial has often been adequately informative, 
randomized phase II trials are increasingly common.

Pure randomization, such as a simple coin flip, is almost never used in practice. 
Such a procedure assures balance between arms only in expectation. Given that clin-
ical trials are almost never repeated, most researchers want to avoid the risk of a loss 
of power that would arise with a noteworthy imbalance in the number of patients on 
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each arm by restricting the randomization to assure some degree of balance. Equal 
numbers in each arm are easily achieved but also considered insufficient, except 
in large trials, since imbalance on important prognostic factors may also diminish 
confidence in trial results. Hence the adage “block what you can and randomize what 
you cannot” (Box et al. 1978) is often invoked in trial design.

Multiple strategies exist to incorporate covariate information in randomization 
schemes. Kalish and Begg (1985) review a comprehensive list of treatment allocation 
strategies. These allocation rules generally fall into three categories based on their 
use of covariates: (1) rules that are independent of covariates, (2) rules that promote 
balance marginally for each covariate, and (3) rules that balance the treatment arms 
within each stratum. Another class of treatment allocation approaches, known as 
“response adaptive” randomization schemes (Hu and Rosenburg 2006), have been 
developed, which alter the probability of assignment to each arm over time based on 
interim results of the trial. We elected not to consider these here, because they are 
not well suited to the long-term and complex nature of randomized phase III trials in 
oncology (but see Chapter 18).

Any constrained randomization scheme can be applied overall, ignoring covariate 
information, or within strata defined by covariates (Hill 1951). Furthermore, a strati-
fied randomization approach that does not constrain the treatment assignments to be 
approximately equal within strata does not introduce any true stratification. When 
the ratio of sample size to strata is small, however, stratified randomization may 
actually increase the potential for imbalance if balance is not adequately achieved in 
each cell of the design. For these settings, covariate-adaptive randomization schemes 
were developed to promote balance for each factor marginally (Taves 1974, Pocock 
and Simon 1975) or to optimize an objective function defined by a linear model 
(Begg and Iglewicz 1980).

The use of covariates in the analysis of randomized experiments is often guided 
by our understanding of linear models. In this setting, the model need not control for 
covariates to produce unbiased estimates of effect or a valid test (acceptable type I 
error), but may be used to improve power by reducing variance. In nonlinear models, 
however, omitting predictive covariates may reduce efficiency because the treatment 
effect estimators are biased toward zero (Gail et al. 1984, Lagakos and Schoenfeld 
1984, Struthers and Kalbfleisch 1986, Anderson and Fleming 1995).

The choice of analytic approach in clinical trials is less clear when the randomiza-
tion uses covariates (Peto et al. 1976, Friedman et al. 1981, Meinert 1986). Green and 
Byar (1978) demonstrated that an unstratified analysis of binary data generated from 
a trial using important prognostic covariates in a stratified treatment allocation rule 
yields a conservative test with noticeably reduced power. A stratified analysis in this 
setting preserves the nominal size of a test (Green and Byar 1978). For more complex 
randomization strategies, such as the adaptive designs, however, there is no direct 
link between the covariate structure in the design and the test statistic.

The Southwest Oncology Group (SWOG), an NCI-funded cooperative group, 
conducts numerous randomized trials of cancer therapeutics. These trials are 
designed to test the effects of specific treatment regimens on failure-time endpoints 
such as survival or progression-free survival. Baseline information on disease status 
and patient characteristics is often used in randomization. SWOG has adopted the 
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biased-coin adaptive randomization rule proposed by Pocock and Simon (1975) to 
assure balance on the margins for key covariates. In reporting results, the majority of 
these studies use stratified logrank statistics or Cox proportional hazards regression 
to incorporate these covariates. It is of interest to know if there is a preferred analysis 
approach in this setting.

Here, we characterize the performance of the most commonly used survival anal-
ysis-based tests when applied to trials employing randomization strategies that differ 
in their use of covariates using simulations. Several factors come into play in these 
settings: the number of strata or covariates and their distribution in the sample, the 
magnitude of the covariate and treatment effects, and the degree of censoring. Though 
we cannot be comprehensive in examining these factors, we examined a variety of set-
tings, some specifically chosen to violate model assumptions or create instability, with 
the hope that these would provide useful insight into the robustness of each approach.

13.2  RANDOMIZATION SCHEMES

We selected one allocation rule from each of the three categories defined earlier 
based on their use of covariate information to investigate.

13.2.1  Randomization Independent of Covariates

Permuted blocks (PB) is the simplest and most commonly used randomization strat-
egy (Rubin 1977, 1978). In this approach, a list or block of treatment assignments is 
generated in advance with each treatment arm appearing in random order in the prede-
termined proportion. The treatments are assigned sequentially to patients as they enter 
the trial. For the case of block size N, where N is the total sample size for the study, a 
PB approach merely assures that the desired proportions on each treatment arm are 
reached. Typically multiple, smaller block are used (e.g., block sizes of 2, 4, 6, and 8 
for two-armed trials). Table 13.1 gives an example of PB of size 4 and a simple method 
for their application. Since balance is attained at the completion of each block, smaller 
block sizes promote balance on the implicit covariate of time of entry, an important 
feature if there is a significant possibility of drift in patient characteristics over time 
or if interim analyses will be conducted. In unblinded trials, however, small block 
sizes increase the probability that the next treatment assignment can be accurately pre-
dicted, which may introduce selection bias. To reduce this problem, randomized PB 
algorithms have been proposed. Here, variable block sizes are used, with block size 
randomly selected from a few preselected sizes. More sophisticated algorithms, such 
as constrained block randomization (Berger et al. 2003) have been proposed to reduce 
the potential for selection bias while assuring reasonable balance over time. For this 
purpose, however, we examine a PB design with block size N, a method that imposes 
the fewest constraints on the randomization.

13.2.2  Covariate Adaptive Algorithms

The Pocock–Simon (PS; Pocock and Simon 1975) or minimization (Taves 1974) 
approach uses the covariate stream and a measure of covariate imbalance to determine 
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treatment assignment. Imbalance is defined as a function of the treatment imbalance 
for each covariate of interest, weighted by a measure of the importance of the covari-
ate, if desired. If Aij and Bij represent the number of individuals currently assigned 
to arm A and B, respectively, for the jth value of covariate i, then a typical measure 
of imbalance would be Δ = Σ abs( Aij − Bij ), where the sum is over all i and j values. 
To emphasize balance for selected covariates, weights (wij) can be assigned to these 
covariates and incorporated into the measure of imbalance, as given by Δ = Σ wij abs( Aij 
− Bij ). This function measure may be generalized to ensure balance within strata by 
summing the absolute differences between arms within combinations of covariates.

In adaptive randomizations, treatment arms are usually assigned at random with 
equal probability when there is perfect balance (Δ = 0). When there is imbalance 
(Δ > 0), minimization automatically assigns the next patient to the arm that mini-
mizes Δ. In many circumstances, then, minimization may not truly randomize. To 
introduce a stochastic component, Pocock and Simon (1975) proposed the biased 
coin design, where the next patient is randomized to the arm that minimizes Δ with 
probability greater than 0.5. Our simulations used the SWOG standard probability 
of 0.75. Figure 13.1 illustrates how the next assignment would be determined when 
balance on two covariates, in this case age and sex, is of interest. Here, the algorithm 
is designed to ensure approximately the same proportions of males and females on 
each arm and the same age distribution on each arm, but it does not assure balance 
between arms within each age by sex combination.

13.2.3  Stratified Randomization

For a stratified randomization, the intent is to assure balance in treatment arm 
assignments within each cell defined by the covariates. We evaluated the stratified 

TABLE 13.1
Permuted Blocks Example

Block Randomization Assignments

1 A A B B

2 A B A B

3 A B B A

4 B A B A

5 B A A B

6 B B A A

Assume 100 patients are to be randomized 
to two arms, designated A and B, using 
block size of 4. There are six potential 
blocks. One can generate a list of assign-
ments by randomly sampling with 
replacement 25 times from these 6 blocks, 
and then assign patients to treatment in 
the order generated.
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block (SB) algorithm that applies PB within each stratum. This approach is easy 
to implement and common in multicenter studies where blocking within centers 
is recommended whenever sample size per center permits. Under well-controlled 
conditions, such as animal and agricultural studies, where the covariate distribu-
tion may be under the control of the researcher, this approach best assures balance 
on the design covariates. In clinical trials, where the distribution of covariates is 
unpredictable, balance within a block may not be achieved because the final block 
is incomplete.

13.3  BASIS FOR INFERENCE

Randomized experiments afford two options for interpreting results: randomization 
tests or population models. While randomization tests are free from assumptions 
about the sampling frame, they lack some appeal in that, strictly speaking, the con-
clusions have narrow applicability. If one were to use a randomization test as the 
basis for inference in a randomized clinical trial, there is a general agreement that the 
structure of the allocation scheme must be incorporated in the analysis to preserve 
power. The implementation of this is straightforward for PB and SB randomizations. 
The observed test statistic is compared to the distribution of test statistics obtained 
from a large number of simulations where each simulation merely generates a new 
sequence of PB under the original randomization structure. For nondeterministic 
adaptive designs, randomization tests can be similarly obtained through simulation 

Age group

50–59 60–69 70–79 Total

A A A AB B B B

Sex M 7 9 13 12 7 5 27 26

F 5 4 88 14 16 27 28 1

1

Total 12 13 21 20 21 21

011δij

δij

FIGURE 13.1  Example of an adaptive randomization. Assume there are two treatment 
arms (A,B) and two stratification factors: Age (50–59, 60–69, 70–79) and Sex (M,F) of equal 
importance. For each possible value j of covariate i, let δij = abs( Aij − Bij ), the absolute value 
of the difference in the numbers currently assigned to A and B among patients with covariate 
i value j. Then define the measure of total imbalance to be Δ = Σδij. If the current allocation 
by age and sex is given as shown, then the present value of Δ = 4. If the next patient is a male, 
age 60–69, the only δ values that would change are those for males and for 60–69 year olds. 
Assignment to A would result in Δ = 6 whereas assignment to B would result in Δ = 2. Under 
minimization, this patient would be assigned to arm B. Under a PS approach, this assignment 
would be made with probability 0.75. If the next patient is a female, age 50–59, assignment to 
A or B would result in Δ = 2 and Δ = 6, respectively. Again minimization would automatically 
assign this patient to arm A; PS would assign arm A with probability 0.75.
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by conditioning on the covariate stream and generating a new assignment with 
appropriate probability at each point of imbalance. We are not aware of anyone who 
has used this in published applications, however. For minimization designs, where a 
large fraction of the assignments are dictated by the preceding assignments and the 
cumulative covariate history, the proper specification of a randomization test is not 
clear.

Inference based on population models assumes that the sample under test is repre-
sentative of a larger population to which the results apply. This assumption does not 
strictly hold for most clinical trials in the sense that the study population represents 
volunteers rather than a probability sample. Nevertheless, this approach is simpler to 
implement in that it allows us to rely on usual distribution theory for test statistics. 
Issues of generalizability are typically dealt with in the interpretation of results by 
considering eligibility and actual study subject characteristics. Because of its popu-
larity, we evaluated this approach to inference.

13.4  ANALYTIC APPROACHES

Analyses of survival data from clinical trials are typically based on either unstrati-
fied or stratified logrank tests or on a test for the treatment assignment variable from 
a Cox proportional hazards regression model (Cox 1972). Each of these can be devel-
oped in the context of a Cox model given by h( t; x,z) = h0( t;z2 ) exp(βx + αz1), where 
t is time from randomization, x represents a binary treatment assignment variable, 
z = ( z1, z2 ) is a vector of covariates where z1 corresponds to those covariates used in 
the regression function, z2 covariates used for model stratification and h0( t;z2 ) is the 
baseline hazard function for z2.

The logrank test, a commonly employed test statistic for comparing survival 
curves, can be obtained from a Cox model as a maximum partial likelihood score 
test for β = 0 in a model were no other covariates are included (Kalbfleisch and 
Prentice 2002). The natural generalization to accommodate covariate information is 
the analogous score statistic in a Cox model where covariates are used as regressors 
in the model with a single baseline hazard function h0. This model is of particular 
interest for the covariate adaptive randomization schemes because it uses the covari-
ate information in the same manner—controlling for their main effects. A fully 
stratified logrank test or generalized score statistic can be computed in a similar 
fashion, where each stratum has a separate baseline hazard function.

13.5  DESIGN OF SIMULATION STUDIES

We evaluated the impact of randomization strategies on the size and power of these 
analytic strategies in simulated clinical trials using both purely hypothetical trial 
scenarios as well as several derived from completed SWOG trials.

For each hypothetical trial, the basic setting was a two-arm trial with 400 patients, 
200 per arm. The underlying survival models were derived from Cox models assum-
ing the existence of up to three binary covariates using the hazard models

	 h t x z h t x( ; , ) ( ) exp( )= 0 β 	 (A)



191Use of Covariates in Randomization and Analysis of Clinical Trials

	 h t x z h t x z z z( ; , ) ( ) exp( )= + + +0 1 1 2 2 3 3β α α α 	 (B)

	 h t x z h t z x( ; , ) ( ; ) exp( )= 0 1β 	 (C)

where h0(t) is the hazard function from the exponential distribution for models A 
and B. For all models, x = 0, 1 represents the randomization assignment and z is 
the vector of binary covariates that jointly define membership into eight strata. For 
model C, with nonproportional covariate effects, the eight baseline hazard func-
tions h0(t; z1,z2,z3) were generated from Weibull (λj,κj) distribution functions where 
λj and κj are the scale and shape parameters for stratum j, j = 1,…, 8. The Weibull 
family of distributions was chosen because of the degree of flexibility it allows in 
describing nonproportional hazard functions. Values of (λj,κj) used were (0.2, 0.7), 
(0.2, 0.8), (0.6, 1), (0.1, 1.2), (0.2, 1.5), (0.5, 2), and (0.2, 3). Note that for κj = 1, the 
Weibull model reduces to the exponential (λj) distribution (constant hazard), and all 
covariate effects are proportional. When κ > 1 (κ < 1), the baseline hazard functions 
are decreasing (increasing) with time. Hazard functions associated with a covari-
ate will be nonproportional when values of κj differ across levels of the covariates. 
Moderate covariate effects were defined as α1 = ln(0.33), α2 = ln(1.5), and α3 = ln(2.0). 
Larger covariate effects used hazard ratios of α1 = ln(0.2), α2 = ln(3), and α3 = ln(4). To 
examine the setting of highly stratified allocation, model B was expanded to include 
five independent binary covariates (32 strata) with coefficients in the data generating 
model of ln(0.33), ln(1.5), ln(2), ln (0.67), and ln(1.5).

For each simulated trial, patient level covariates were generated with all combi-
nations having equal probability. Two potential survival times were generated for 
each patient, one associated with each potential treatment assignment. Censoring 
times and the corresponding order of patient presentation were randomly generated 
from a uniform distribution to represent constant accrual over a designated interval. 
The two corresponding censored survival times and indicators were determined by 
comparing the survival times associated with each potential treatment assignment 
and the censoring time for each patient.

Three treatment allocation rules (PB, PS, and SB) were applied to this same 
patient dataset to simulate three trials in the same set of patients. As each patient in 
a trial was randomized, the appropriate censored survival time and indicator was 
selected from the source dataset to form the simulated trial data. All the test statis-
tics (logrank, Cox regression, and stratified logrank) were then calculated for that 
trial. For each configuration, 5000 trials were simulated. Performance of each test 
statistic was assessed by calculating the proportion of test statistics exceeding 1.96, 
corresponding to a one-sided, 0.025-level test, to estimate size (under β = 0) and 
power (under the alternative β = βA).

We conducted a similar set of simulations motivated by five completed SWOG 
trials known by protocol numbers SWOG-8516, SWOG-8501, SWOG-9210, SWOG-
9308, and SWOG-8738 (Fisher et al. 1993, Gandara et al. 1993, Albert et al. 1996, 
Wozniak et al. 1998, Berenson et al. 2001). Key features of these trials extracted for 
the simulations are shown in Table 13.2. The number of design strata in these studies 
ranged from 4 to 38. For each stratum j where sample size permitted, we estimated 
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the scale and shape parameters of a censored Weibull (λj,κj) distribution. These 
Weibull hazard functions then formed the basis of the survival times for patients 
generated under model C.

SWOG trial-based simulations were conducted using the same general plan 
described for the hypothetical trials while preserving as much of the underlying 
data structures of the original trials as possible. The sample size (N) was the same 
as the original trial and covariates for the N patients were obtained by sampling with 
replacement from the observed covariate vectors. The simulated treatment effect 
βA was calculated separately for each trial to provide approximately 80% power for 
a one-sided 0.025-level test: ln(1.4) for SWOG-8516 and SWOG-8501; ln(1.65) for 
SWOG-9210; ln(1.4) for SWOG-9308; and ln(1.6) for SWOG-8738). Censoring was 
chosen to be uniform over an interval that varied between studies, yielding 15%–60% 
censoring, depending on the survival distributions. Results are summarized with 
estimated size and power, as described earlier.

TABLE 13.2
Selected Parameters from Five SWOG Studies Used as the Basis for 
Simulation Studies

Protocol Cancer Site N
No. of 

Covariatesa Strata Weibull Parameter (λ,κ)

8516 Non-
Hodgkin’s 
lymphoma

435 5/3 38 27 cells with (0.185 and 0.845), 11 
remaining cells have

λ = (0.205, 0.125, 0.097, 0.118, 0.070, 
0.207, 0.570, 0.155, 0.096, 0.222, and 
0.171)

κ = (1.46, 0.915, 0.865, 1.38, 0.796, 0.615, 
0.840, 0.573, 0.566, 0.652, and 0.637)

8501 Ovary 546 4/2 29 20 cells with (0.192 and 1.231), 9 
remaining cells with

λ = (0.110, 0.182, 0.267, 0.191, 0.284, 
0.168, 0.070, 0.208, and 0.255)

κ = (0.943, 1.239, 1.366, 1.218, 1.38, 
1.256, 0.89, 1.506, and 1.283)

9210 Multiple 
myeloma

247 2/0 6 λ = (0.309, 0.309, 0.286, 0.262, 0.343, 
and 0.344)

κ = (1.30, 1.30, 1.33, 1.148, 1.454, and 
1.268)

9308 Non-small 
cell lung

414 2/2 4 λ = (1.029, 0.605, 1.643, and 1.092)
κ = (1.213,1.209, 1.031, and 1.151)

8738 Non-small 
cell lung

356 2/2 6 λ = (1.079, 2.248, 0.914, 1.379, 1.737, 
and 1.471)

κ = (1.086, 1.55, 0.903, 0.922, 1.483, and 
1.19)

a	 Number of covariates used in the randomization scheme/number found to be significant (p < 0.05) in 
a Cox proportional hazards model analysis.
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13.6  RESULTS

In the hypothetical trials, all combinations of randomization schemes and test statis-
tics provided statistically valid tests. The estimated size was never significantly above 
the nominal 0.025 level (Table 13.3), even in the settings where some of the underly-
ing assumptions were violated (i.e., nonproportional covariate effects). Evidence of 
conservatism in the logrank statistics is seen under randomization schemes that use 
covariate information, however. In each scenario, where covariates were predictive 
of survival, the trials that used either covariate information in the design (PS or SB) 
show estimated type I error rates less than 0.025 and in some cases as low as 0.005. 

TABLE 13.3
Estimated Size and Powera for Three Randomization 
Strategies and Three Analytic Approaches Based on 
5000 Simulated Trials Derived from Models A–C

Model and 
Allocation 
Ruleb

Analysis
Logrank Cox Model Stratified Logrank

Size Power Size Power Size Power

8 strata, no covariate effects
PB 0.023 0.923 0.026 0.923 0.026 0.902

PS 0.025 0.914 0.027 0.916 0.025 0.896

SB 0.025 0.920 0.025 0.918 0.025 0.912

8 strata, moderate PH covariate effects
PB 0.025 0.755 0.027 0.904 0.022 0.889

PS 0.012 0.790 0.023 0.908 0.024 0.890

SB 0.009 0.790 0.023 0.905 0.023 0.889

8 strata, large PH covariate effects
PB 0.025 0.579 0.025 0.930 0.026 0.915

PS 0.004 0.610 0.026 0.929 0.028 0.913

SB 0.005 0.584 0.029 0.926 0.026 0.926

8 strata, non-PH covariate effects
PB 0.027 0.654 0.026 0.820 0.024 0.857

PS 0.013 0.676 0.025 0.824 0.027 0.855

SB 0.013 0.697 0.027 0.841 0.027 0.874

32 strata, PH covariate effects
PB 0.027 0.764 0.027 0.905 0.026 0.825

PS 0.014 0.799 0.024 0.914 0.027 0.843

SB 0.015 0.792 0.027 0.908 0.026 0.853

Estimated type I error significantly less than 0.025

Estimated power significantly lower than the best 
performing approach

a	 SE (estimated size) = 0.002; SE (estimated power) = 0.0055.
b	 PB, permuted block; PS, Pocock–Simon adaptive allocation; SB, strati-

fied permuted block.
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Under the simple PB scheme, however, the size of the logrank statistic was unaf-
fected by the presence of predictive covariates. The estimated type I error rates for 
the Cox model-based or stratified logrank tests appear unaffected by differences in 
randomization strategies.

Using covariates in the randomization appears to have a very modest effect on 
power throughout these simulations. Within any trial scenario and analytic approach, 
the differences in the estimated power between allocation strategies are less than 5% 
and are negligible for both the Cox model and stratified logrank tests.

The choice of analytic approach is more important. When covariates were not pre-
dictive of outcome, all tests were equally powerful. When there were predictive covari-
ates, however, power for the Cox model and the stratified logrank test was higher than 
for the logrank test, regardless of whether these covariates were used in treatment allo-
cation. With nonproportional covariate effects, the stratified logrank statistic improved 
power by 3% over the Cox model but in the setting of many covariates conforming to 
the proportional hazards assumption, the Cox model was more powerful. In all other 
cases examined, the Cox model and stratified logrank tests appear comparable.

Similar patterns are evident in the results simulated from the five SWOG trials 
(Table 13.4). The estimated size did not significantly exceed 0.025 in any of these 
simulated trials. In fact, the estimated type I errors observed in these simulations 
derived from actual trials more closely cluster around 0.025 than we observed in the 
hypothetical trials described earlier (Table 13.3). The estimate power for each com-
bination of randomization scheme and test statistic yielded at most a 5% increment 
in power over the least favorable combination. For the majority of scenarios, the 
PH regression model performed slightly better than either the logrank or the strati-
fied logrank, although the differences were generally quite small. In some settings, 
particularly, SWOG-8516 and SWOG-8501, there is a suggestion that the stratified 
logrank test does not provide as much power as the PH model based test, possibly 
related to the highly stratified nature of these trials.

In earlier work, we examined the effect of the number of covariates, their distri-
bution in the study population, and the size of covariate effects on treatment effect 
inference (Anderson 1989). These simulations indicated that the number of covari-
ates and their distribution have a smaller effect on the performance of these test 
statistics than the factors examined here. The magnitude of covariate effects was 
the key in determining the best analytic approach—the larger the effect, the more 
important it is to include that covariate in the analysis and to do so correctly.

13.7  DISCUSSION

The motivation behind this study was to examine the performance of various ana-
lytic strategies for clinical trials with failure time endpoints that employ random-
ization strategies that may or may not use important covariates. The approaches 
and scenarios examined via simulation were based on practical examples in which 
these very decisions are regularly made. Though not comprehensive in examining 
the many parameters that may influence the findings, these simulations provide a 
useful description of the magnitude of impact of the key aspects related to covariates 
in the design and analysis.
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All combinations of randomization schemes and test statistics produced statisti-
cally valid tests but analyses that ignored predictive covariates, particularly if they 
were used in the design, produced smaller than expected type I error rates and sig-
nificantly reduced power.

In realistic settings, the use of covariate information in treatment allocation may 
slightly improve power, but we found little evidence to suggest the superiority of one 
constrained allocation rule over another. With this knowledge, the choice of random-
ization scheme can be based primarily on other considerations including logistics 
and concern for selection bias associated with the predictability of the treatment 
assignment.

TABLE 13.4
Estimated Size and Powera for Three Randomization 
Strategies and Three Analytic Approaches Based on 5000 
Simulated Trials Derived from Five Swog Randomized Trials

Protocol and 
Allocation 
Ruleb

Analysis
Logrank Cox Model Stratified Logrank

Size Power Size Power Size Power

SWOG-8516
PB 0.022 0.834 0.023 0.843 0.022 0.812

PS 0.024 0.835 0.027 0.850 0.026 0.816

SB 0.020 0.847 0.023 0.859 0.024 0.834

SWOG-8501
PB 0.025 0.836 0.026 0.841 0.026 0.821

PS 0.023 0.844 0.023 0.852 0.024 0.827

SB 0.027 0.831 0.027 0.832 0.027 0.819

SWOG-9210
PB 0.023 0.788 0.024 0.791 0.024 0.773

PS 0.021 0.793 0.021 0.799 0.022 0.780

SB 0.023 0.803 0.024 0.809 0.024 0.794

SWOG-9308
PB 0.019 0.836 0.024 0.884 0.022 0.871

PS 0.019 0.853 0.025 0.886 0.022 0.876

SB 0.023 0.843 0.028 0.886 0.027 0.875

SWOG-8738
PB 0.023 0.842 0.026 0.851 0.021 0.871

PS 0.019 0.843 0.025 0.860 0.026 0.878

SB 0.023 0.848 0.024 0.860 0.026 0.877

Estimated type I error significantly less than 0.025

Estimated power significantly lower than the best 
performing approach

a	 SE (estimated size) = 0.002; SE (estimated power) = 0.0055.
b	 PB, permuted block; PS, Pocock–Simon adaptive allocation; SB, stratified 

permuted block.
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This work indicates that statistical power may be improved by including strongly 
predictive covariates in the analysis, regardless of their use in the randomization. 
Furthermore, there can be a substantial loss in power when highly predictive covari-
ates were not accounted for in the analysis, consistent with previous work on omitted 
covariates, especially if they were used in the randomization. Where proportional 
hazards assumptions for the covariates are reasonable, a Cox model–based test is 
expected to provide better power than a stratified analysis. In most settings exam-
ined, however, there was little to distinguish these two approaches. Even when pro-
portional hazards assumptions were known to be violated, the Cox model results 
were valid and nearly as powerful as the correct, stratified logrank tests.

In summary, the value of using of covariates in the randomization schemes is 
driven by their effect on the outcome variable. In most settings, covariate effects 
are relatively small, and their use in the treatment allocation or analysis will have a 
similarly modest effect. These simulations suggest that only when highly predictive 
covariates are used in the randomization but not in the analysis would we expect a 
marked degradation in performance (conservative type I error rates and a significant 
loss of power). In both the hypothetical trials and those derived from completed 
SWOG studies, we found that PS adaptive randomization and stratified PB schemes, 
paired with either tests from Cox regression models adjusting for important covari-
ates or stratified logrank tests, provided similar operating characteristics.
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14 Factorial Designs with 
Time-to-Event Endpoints

Stephanie Green

14.1  INTRODUCTION

The frequent use of the standard two-arm randomized clinical trial is due in part to 
its relative simplicity of design and interpretation. Conclusions are straightforward: 
either the two arms are shown to be different or they are not. Complexities arise with 
more than two arms; with four arms, there are 6 possible pairwise comparisons, 19 
ways of pooling and comparing two groups, 24 ways of ordering the arms, plus the 
global test of equality of all four arms. Some subset of these comparisons must be 
identified as of interest; each comparison has power, level, and magnitude consider-
ations; the problems of multiple testing must be addressed; and conclusions can be 
difficult, particularly if the comparisons specified to be of interest turn out to be the 
wrong ones.

Factorial designs are sometimes considered when two or more treatments, each 
of which has two or more dose levels, possibly including level 0 or no treatment, 
are of interest alone or in combination. A factorial design assigns patients equally 
to each possible combination of levels of each treatment. If treatment i, i = 1, … K, 
has Ji levels, the result is a J1 × J2 … × JK factorial. Generally, the aim is to study the 
effect of levels of each treatment separately by pooling across all other treatments. 
The assumption often is made that each treatment has the same effect regardless 
of assignment to the other treatments. Statistically, an assumption of no interaction 
is made.

The use of factorial designs in clinical trials has become more common, as 
noted in McAlister et al. (2003). Statistical papers on the topic include a theoretical 
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discussion of factorials in the context of the proportional hazards model presented 
by Slud (1994). Other contributions to the topic include those by Byar (1990), who 
suggested potential benefit in the use of factorials for studies with low event rates 
such as screening studies; Simon and Freedman (1997), who discussed Bayesian 
design and analysis of 2 × 2 factorials, allowing for some uncertainty in the assump-
tion of no interaction; Hung (1993), who discussed testing first for interaction when 
outcomes are normally distributed and interactions occur only if there are effects 
of both treatment arms; another by Hung (2000) concerning testing for unbalanced 
factorial clinical trials; and by Akritas and Brunner (1997), who proposed a non-
parametric approach to the analysis of factorial designs with censored data making 
no assumptions about interaction. On the applied side, Green et al. (2002) discussed 
limitations of factorial designs and McAlister et al. (2003) discussed the quality of 
analysis and reporting in recently published factorial trials.

The multiple comparisons problem is one of the issues that must be considered in 
factorial designs. If tests of each treatment are performed at level α, which is typical 
for factorial designs (Gail et al. 1998), then the experiment-wide level, defined as the 
probability that at least one comparison will be significant under the null hypothesis, 
is greater than α. There is a disagreement on the issue of whether all primary questions 
should each be tested at level α or whether the experiment-wide level across all primary 
questions should be level α, but clearly if the probability of at least one false-positive 
result is high, a single positive result from the experiment will be difficult to interpret 
and may well be dismissed by many as inconclusive. Starting with global testing fol-
lowed by pairwise tests only if the global test is significant is a common approach to 
limit the probability of false-positive results. A Bonferroni approach where each of T 
primary tests is performed at α/T is also an option. For comprehensive discussions of 
testing strategies in multiple testing settings, see Dmitrienko et al. (2010).

Power issues also must be considered. From the point of view of individual tests, 
power calculations are straightforward under the assumption of no interaction—cal-
culate power according to the number of patients in the combined groups. A concern 
even in this ideal case may be the joint power. For instance, in a 2 × 2 trial of observa-
tion (O) versus treatment A versus treatment B versus the combination AB, if power 
to detect a specified effect of A is 1 − β and power to detect a specified effect of B is 
also 1 − β, the joint power to detect the effects of both is closer to 1 − 2β.

From the point of view of choosing the best arm, power considerations are consid-
erably more complicated. The best arm must be specified for the possible true con-
figurations; the procedures for designating the preferred arm at the end of the trial, 
which generally is the point of a clinical trial, must be specified; and the probabilities 
of choosing the best arm under alternatives of interest must be calculated. Various 
approaches can be considered in the context of a 2 × 2 trial. Three possibilities are 
considered in this chapter.

Approach 1

The first approach is to perform the analysis assuming there are no interactions, 
using two one-sided tests, A versus not-A and B versus not-B. For example, test α = 0 
and β = 0 in a two-parameter proportional hazards model λ = λ0exp(αzA + βzB), where 
λ is the survival hazard rate and zA and zB are treatment indicators. If neither test is 
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significant, O is assumed to be the preferred arm. If A is better than not-A and B ver-
sus not-B is not significant, then A is assumed to be the preferred arm. B is assumed 
best if the reverse is true. If A is better than not-A and B is better than not-B, then 
AB is preferred.

Approach 2

The second approach is to first perform a two-sided test for interaction using the 
model λ = λ0exp(αzA + βzB + γ zAzB). If the interaction term γ is not significant, then 
base conclusions on the tests of A versus not-A and B versus not-B as in Approach 1. 
If it is significant, then base conclusions on tests of the three terms in the model and 
on appropriate subset tests. The treatment of choice is as follows:

Arm O if
	 1.	γ is not significant, A versus not-A is not significant, and B versus not-B is 

not significant
	 2.	γ is significant and negative (favorable interaction), α and β are not sig-

nificant in the three-parameter model, and the test of O versus AB is not 
significant

	 3.	γ is significant and positive (unfavorable interaction) and α and β are not 
significant in the three-parameter model

Arm AB if
	 1.	γ is not significant, and A versus not-A and B versus not-B are both 

significant
	 2.	γ is significant and favorable and α and β are both significant in the three-

parameter model
	 3.	γ is significant and favorable, α is significant and β is not significant in the 

three-parameter model, and the test of A versus AB is significant
	 4.	γ is significant and favorable, β is significant and α is not significant in the 

three-parameter model, and the test of B versus AB is significant
	 5.	γ is significant and favorable, α is not significant and β is not significant in 

the three-parameter model, and the test of O versus AB is significant

Arm A if
	 1.	γ is not significant, B versus not-B is not significant, and A versus not-A is 

significant
	 2.	γ is significant and favorable, α is significant and β is not significant in the 

three-parameter model, and the test of A versus AB is not significant
	 3.	γ is significant and unfavorable, α is significant and β is not significant in 

the three-parameter model
	 4.	γ is significant and unfavorable, α and β are significant in the three-

parameter model, and the test of A versus B is significant in favor of A

Arm B if
	 1.	Results are similar to A presented earlier but with the results for A and B 

reversed
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Arm A or Arm B if
	 2.	γ is significant and unfavorable, α and β are significant in the three param-

eter model, and the test of A versus B is not significant

Approach 3

The third approach is to control the overall level of the experiment by first doing an 
overall test of differences among the four arms, for example, the four-arm logrank 
test. Proceed with Approach 2 only if this test is significant. If the overall test is not 
significant, then arm O is concluded to be the treatment of choice.

14.2  SIMULATION STUDY

To illustrate the issues in factorial designs, a simulation of a 2 × 2 factorial trial will be 
used. The simulated trial had 125 patients per arm accrued over 3 years with 3 addi-
tional years of follow-up. Survival was exponentially distributed on each arm, and 
median survival was 1.5 years on the control arm. The sample size was sufficient for 
a one-sided 0.05 level test of A versus no-A to have power 0.9 with no effect of B, no 
interaction, and an A/O hazard ratio of 1/1.33. Various cases were considered using 
the model λ = λ0exp(αzA + βzB + γzAzB): neither A nor B effective (α and β = 0), A effec-
tive (α = −ln(1.33) ) with no effect of B, A effective and B detrimental (β = ln(1.5) ), and 
both A and B effective (α and β both = −ln(1.33) ). Each of these was considered with no 
interaction (γ = 0), favorable interaction (AB hazard improved compared to expected, 
γ = −ln(1.33) ), and unfavorable interaction (worse, γ = ln(1.33) ). For each case, 2500 
realizations were used for estimating characteristics of the three approaches outlined 
previously. Table 14.1 summarizes the cases considered.

The possible outcomes of a trial of O versus A versus B versus AB are to recom-
mend one of O, A, B, AB, or A or B, but not AB. Tables 14.2 through 14.4 show 
the simulated probabilities of making each of the conclusions in the 12 cases of 

TABLE 14.1

Median Survival Times from Arms 0 A

B AB

⎛

⎝⎜
⎞

⎠⎟
 Used in the Simulation

Interaction

Case

1: Null
2: Effect of A and 

No Effect of B
3: Effect of A 

and Effect of B

4: Effect of A and 
Detrimental Effect of B

None 1.5 1.5 1.5 2 1.5 2 1.5 2
1.5 1.5 1.5 2 2 2.67 1 1.33

Unfavorable 1.5 1.5 1.5 2 1.5 2 1.5 2
1.5 1.13 1.5 1.5 2 2 1 1

Favorable 1.5 1.5 1.5 1.5 1.5 2 1.5 2
1.5 2 1.5 2.67 2 3.55 1 1.77

Each case has the median of the best arm in bold.
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TABLE 14.2
Simulated Probability of Conclusion with 
Approach 1: No Test of Interaction

Case, Interaction

Conclusion

O A B AB A or B

1, none 0.890 0.055 0.053 0.002 0

1, unfavorable 0.999 0.001 0 0 0

1, favorable 0.311 0.243 0.259 0.187 0

2, none 0.078 0.867 0.007 0.049 0

2, unfavorable 0.562 0.437 0 0.001 0

2, favorable 0.002 0.627 0.002 0.369 0

3, none 0.010 0.104 0.095 0.791 0

3, unfavorable 0.316 0.244 0.231 0.208 0
3, favorable 0 0.009 0.006 0.985 0

4, none 0.078 0.922 0 0 0

4, unfavorable 0.578 0.422 0 0 0

4, favorable 0.002 0.998 0 0 0

Each case has the median of the best arm in bold.

TABLE 14.3
Probability of Conclusion with Approach 2: Test of Interaction

Case, Interaction
Conclusion Test for Interaction, 

Probability of RejectionO A B AB A or B
1, none 0.865 0.060 0.062 0.005 0.008 0.116

1, unfavorable 0.914 0.036 0.033 0 0.017 0.467

1, favorable 0.309 0.128 0.138 0.424 0 0.463

2, none 0.086 0.810 0.006 0.078 0.019 0.114

2, unfavorable 0.349 0.601 0.001 0.001 0.048 0.446

2, favorable 0.003 0.384 0.002 0.612 0 0.426

3, none 0.009 0.089 0.089 0.752 0.061 0.122

3, unfavorable 0.185 0.172 0.167 0.123 0.353 0.434

3, favorable 0 0.004 0.003 0.990 0.002 0.418

4, none 0.117 0.883 0 0 0 0.110

4, unfavorable 0.341 0.659 0 0 0 0.472

4, favorable 0.198 0.756 0 0.046 0 0.441

Each case has the median of the best arm in bold.
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Table 14.1, for the approach of ignoring interaction, for the approach of testing for 
interaction, and for the approach of doing a global test before testing for interaction. 
The global test was done at the two-sided 0.05 level. Other tests were done at the 
one-sided 0.05 level, with the exception of tests of A versus B and γ = 0, which were 
done at the two-sided 0.1 level. For each table the probability of drawing the correct 
conclusion is in bold.

Tables 14.2 through 14.4 illustrate several points. In the best case of using 
Approach 1, when in fact there is no interaction, the experiment level is 0.11, and 
the power when both A and B are effective is 0.79, about as anticipated and possibly 
insufficiently conservative. Apart from that, Approach 1 is best if there is no interac-
tion. The probability of choosing the correct arm is reduced if Approach 2 testing 
first for interaction is used instead of Approach 1 in all four cases with no interaction.

If there is an interaction, Approach 2 may or may not be superior. If the inter-
action masks the effectiveness of the best regimen, it is better to test for interac-
tion. See, for example, Case 4 with an unfavorable interaction, where the difference 
between A and not-A is diminished due to the interaction. If the interaction enhances 
the effectiveness of the best arm, testing is detrimental; see Case 4 with favorable 
interaction, where the difference between A and not-A is larger due to the interaction 
while B is still clearly ineffective. In all cases the power for detecting interactions 
is poor. Even using 0.1 level tests, the interactions were detected at most 47% of the 
time in these simulations.

Approach 3 does restrict the overall level, but this is at the expense of a reduced 
probability of choosing the correct arm when the four arms are not sufficiently dif-
ferent for the overall test to have high power.

TABLE 14.4
Simulated Probability of Conclusion with Approach 3: Global Test 
Followed by Approach 2

Case, Interaction

Conclusion Global Test, Probability 
of RejectionO A B AB A or B

1, none 0.972 0.011 0.010 0.003 0.004 0.052

1, unfavorable 0.926 0.032 0.026 0 0.015 0.578

1, favorable 0.503 0.049 0.057 0.390 0 0.558

2, none 0.329 0.578 0.001 0.074 0.018 0.684

2, unfavorable 0.528 0.432 0 0 0.039 0.541

2, favorable 0.014 0.374 0.001 0.611 0 0.987

3, none 0.068 0.069 0.063 0.741 0.059 0.932

3, unfavorable 0.466 0.067 0.072 0.109 0.286 0.535

3, favorable 0 0.004 0.003 0.990 0.002 1.00

4, none 0.117 0.882 0 0 0 0.997

4, unfavorable 0.341 0.659 0 0 0 1.00

4, favorable 0.198 0.756 0 0.046 0 0.999

Each case has the median of the best arm in bold.
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Unfavorable interactions are particularly detrimental to a study. The probabil-
ity of identifying the correct regimen is poor for all methods if the correct arm 
is not the control arm. Approach 1, assuming there is no interaction, is particu-
larly poor.

14.3  EXAMPLES

14.3.1  Southwest Oncology Group Study 8300

As an illustration of how the use of a factorial design may compromise a study, 
consider Southwest Oncology Group Study 8300, which is similar to Case 4 with 
an unfavorable interaction, reported by Miller et al. (1998). In this study, in limited 
nonsmall cell lung cancer, the roles of both chemotherapy and prophylactic radia-
tion to the brain were of interest. All 226 eligible patients received radiation to the 
chest and were randomized to receive prophylactic brain irradiation (PBI) versus 
chemotherapy versus both PBI and chemotherapy versus no additional treatment. 
PBI was to be tested by combining across the chemotherapy arms and chemotherapy 
was to be tested by combining across PBI arms. Investigators chose a Bonferroni 
approach to limit Type I error. The trial design specified level 0.025 for two tests, a 
test of whether PBI was superior to no PBI and a test of whether chemotherapy was 
superior to no chemotherapy. No other tests were specified. It was assumed that PBI 
and chemotherapy would not affect each other. Unfortunately, PBI was found to be 
detrimental to patient survival. Although the interaction term was not significant, 
the worst arm was PBI plus chemotherapy, followed by PBI, then no additional treat-
ment, then chemotherapy alone. Using the design criteria, one would conclude that 
neither PBI nor chemotherapy should be used. With this outcome, however, it was 
clear that the comparison of no further treatment versus chemotherapy was critical, 
but the study had seriously inadequate power for this test, and no definitive conclu-
sion could be made concerning chemotherapy.

14.3.2  North American Breast Cancer Intergroup Trial E1199

Another example is a 2 × 2 trial of docetaxel versus paclitaxel and weekly versus 
every 3 week administration as adjuvant treatment for breast cancer. Bria et al. 
(2006) in a letter to the editor in Annals of Oncology questioned whether it was rea-
sonable to assume the effect of weekly versus every 3 week schedule would be the 
same for two different taxanes. They pointed to current evidence that weekly treat-
ment might be beneficial for paclitaxel but not for docetaxel, expressed concern that 
ability to address each question within the trial might be compromised, and noted 
that preliminary results (Sparano et al. 2005) suggested the risk was real. They con-
cluded “when planning such a trial, if a significant interaction is expected, it should 
be kept in mind that its occurrence could make the primary result of the trial practi-
cally useless, and the unique useful information could come from secondary, less 
powered analyses.” In fact, as designed, the trial was negative for both of the primary 
comparisons, paclitaxel versus docetaxel and weekly versus every 3 weeks (Sparano 
et al. 2008). Unlike the previous example, however, this trial was designed to be 
large enough (4950 patients, 1038 events) to examine comparisons between control 
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treatment (every 3 week paclitaxel) and the other three arms as secondary analyses. 
Both weekly paclitaxel and every 3 week docetaxel were observed to be beneficial 
with respect to disease-free survival, with weekly paclitaxel also showing a survival 
benefit. Significant interactions were also observed. The primary conclusion of the 
study was that weekly paclitaxel was beneficial. But as noted by Montgomery et al. 
(2003), “presentation of results should reflect the analytical strategy with an empha-
sis on the principal research questions.” In the absence of difference in primary 
comparisons, secondary comparisons generally should be considered nondefinitive 
due to inflated Type I error. For this trial more emphasis on the planned primary 
comparisons might have been expected, with more cautionary interpretation of the 
secondary analyses. The results elicited a letter to the editor commenting that clini-
cians would have difficulty in drawing definitive conclusions due to the disparity of 
overall results with subset results (Tsubokura et al. 2008).

Once a K × J factorial study is recognized as not one K arm study and one J arm 
study that happen to be in the same patients but rather a K × J arm study with small 
numbers of patients per arm, the difficulties become evident. Perhaps in studies where 
A and B have unrelated mechanisms of action and are being used to affect different 
outcomes, assumptions of no biologic interaction may not be unreasonable. However, 
in general A cannot be assumed to behave the same way in the presence of B as in 
the absence of B. Potential drug interactions, overlapping toxicities, differences in 
compliance, and other confounding factors all make it more reasonable to assume 
there will be differences. Furthermore, interaction may occur simply as an artifact 
of the particular model chosen. In the simulation, no interaction meant the O/A and 
B/AB hazard ratios were equal. If instead, equally effective is defined as equal abso-
lute increase in median, then two of the no interaction cases in Table 14.1 turn into 
interaction cases. There is no biologic reason that compels any particular mathemati-
cal formulation of equally effective to be correct. Thus, lack of biologic rationale does 
not necessarily provide reassurance with respect to interaction according to the model 
identified for analysis. Models are rarely completely correct, so statistical interactions 
of modest size are likely even if there is no evidence of biologic interactions.

14.4  OTHER APPROACHES TO MULTIARM STUDIES

Various approaches to multiarm studies are available. If the example study could be 
formulated as O versus A, B, and AB, as might be the case if lower doses of A and 
B are used for the combination, the problem of comparing control versus multiple 
experimental arms would apply. There is a long history of papers on this problem 
(e.g., Dunnet 1955, Marcus et al. 1976, Tang and Lin 1997) focusing on appropriate 
global tests or tests for subhypotheses. Liu and Dahlberg (1995) discussed design and 
provided sample size estimates based on the least favorable alternative for the global 
test for K-arm trials with time-to-event endpoints. Their procedure, a K-sample 
logrank test performed at level α followed by α level pairwise tests if the global test 
is significant, has good power for detecting the difference between a control arm and 
the best treatment. These authors emphasized the problems when power is consid-
ered in the broader sense of drawing the correct conclusions. Properties are good for 
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this approach when each experimental arm is similar either to the control arm or the 
best arm, but not when survival times are more evenly spread out among the control 
arm and other arms.

Designs for ordered alternatives are another possibility. For example, suppose 
there are theoretical reasons to hypothesize superiority of A over B resulting in the 
alternative O < B < A < AB. Liu et al. (1998) proposed a modified logrank test for 
ordered alternatives,
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where L(i) is the numerator of the one-sided logrank test between the pooled groups 
1, …, i and pooled groups i + 1, …, K. This test is used as the global test before pair-
wise comparisons. Similar comments apply as to the more general case discussed 
earlier, with the additional problem that the test will not work well if the ordering 
is mis-specified. A related approach includes a preference ordering, say by expense 
of the regimens, which at least has a good chance of being specified correctly, and 
application of a bubble sort analysis. For example, the most costly treatment is pre-
ferred only if significantly better than the rest, the second most costly only if sig-
nificantly better than the less costly arms and if the most costly is not significantly 
better, and so on. This approach is discussed by Chen and Simon (1994).

Any model assumption that is incorrect can result in problems. As with testing 
for interactions, testing any assumptions can either be beneficial or detrimental, 
with no way of ascertaining beforehand which is the case. If assumptions are tested, 
procedures must be specified for when the assumptions are shown not to be met, 
which changes the properties of the experiment and complicates sample size consid-
erations. Southwest Oncology Group study S8738 (Gandara et al. 1993) provides an 
example of incorrect assumptions. This trial randomized patients to low-dose CDDP 
versus high-dose CDDP versus high-dose CDDP plus Mitomycin-C, with the obvi-
ous hypothesized ordering. The trial was closed approximately halfway through the 
planned accrual because survival on high-dose CDDP was convincingly shown not 
to be superior to standard dose CDDP by the hypothesized 25%. In fact, it appeared 
to be worse. A beneficial effect of adding Mitomycin-C to high-dose CDDP could 
not be ruled out at the time, but this comparison became meaningless in view of the 
standard-dose versus high-dose comparison.

14.5  CONCLUSION

The motivation for simplifying assumptions in multiarm trials is clear. The sample 
size required to have adequate power for multiple plausible alternatives, while at the 
same time limiting the overall level of the experiment, is large. If power for specific 
pairwise comparisons is important for any outcome, then the required sample size is 
larger. An even larger sample size is needed if detection of interaction is of interest. 
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To detect an interaction of the same magnitude as the main effects in a 2 × 2 trial, 
four times the sample size is required (Peterson and George 1993), thereby eliminat-
ing what most view as the primary advantage to factorial designs.

Likely not all simplifying assumptions are wrong, but disappointing experience 
tells us the risk is not negligible. Unfortunately, the reduced sample sizes resulting 
from oversimplification may lead to unacceptable chances of inconclusive results. 
The correct balance between conservative assumptions versus possible efficiencies is 
rarely clear. In the case of factorial designs, combining treatment arms seems to be a 
neat trick, yielding multiple answers for the price of one, until one starts to consider 
how to protect against the possibility that the assumptions underlying the trick are 
incorrect.

The conclusion of the Montgomery et al. (2003) paper is apt. “Difficulties in 
interpreting the results of factorial trials if an influential interaction is observed 
should be recognized as the cost of the potential for efficient, simultaneous consid-
eration of two or more interventions … factorial design does enable investigation of 
interactions in the analysis, albeit with limited power. Researchers should be aware 
of such issues.”
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15 Early Stopping of 
Clinical Trials

Mary W. Redman

15.1  INTRODUCTION

Monitoring of accumulating information on efficacy and toxicity data in a clini-
cal trial is an important aspect of human subjects protection. The primary goal of 
monitoring a clinical trial is to protect patients while allowing sufficient information 
to be accumulated so that the study objectives can be addressed. Addressing study 
objectives may include stopping a trial as soon as there is sufficient evidence to 
demonstrate efficacy, harm, or even lack of benefit. The standards for these objec-
tives may well depend on the disease setting, type of treatment, or other factors 
(Freidlin and Korn 2009). The objective of an interim monitoring plan is define 
pre-specified stopping rules that define when a study will be analyzed and under 
what conditions the trial will be stopped early, while controlling for the study design 
properties. A well-designed trial is the one in which the analyst has investigated and 
understands the properties of the trial design. In particular, it is important to have an 
understanding of when a trial may be stopped either for evidence of activity or for 
lack of benefit or harm.
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Most treatments being developed in cancer are expected to work by acting on a 
biologic target: inhibiting some aspect of cell proliferation or some other mechanism 
within the host or tumor cell. In order for the drug to have some efficacy the patient 
must then have this target to inhibit, therefore this newer class of agents are called 
targeted agents. Patients who were once thought of as a homogenous group (e.g., a 
diagnosis with advanced non-small cell lung cancer with adenocarcinoma) are now 
being further stratified by more refined biologic markers. With the exception of a 
treatment with a known, validated, and reliably measured biomarker, an additional 
objective in drug development is to determine what patients may derive benefit or 
the most benefit from a drug. Therefore, it is generally expected that a clinical trial 
will answer a question about the experimental treatment and biomarker either as a 
primary objective or a secondary objective. Broadly speaking, there are four choices 
of clinical trial designs to address these objectives: (1) the all-comers design with sec-
ondary biomarker objectives, (2) a targeted design that restricts the patient population 
to “marker positive” patients, (3) a strategy design that randomizes patients to receive 
marker-based or non-marker-based treatments, and (4) a composite of the targeted 
and all-comers designs that address multiple hypotheses as co-primary objectives. 
As discussed by Hoering et al. (2008) and Mandrekar and Sargent (2009), the choice 
of a study design for evaluation of a targeted therapy with a potentially predictive 
biomarker depends on the specific scenario (see also Chapter 17). The objective of 
this chapter is to discuss considerations in the choice of an interim monitoring plan 
for different types of designs involving targeted therapies.

Throughout the chapter, the trial SWOG S0819 will be used to facilitate discus-
sion of interim monitoring considerations for different trial designs. In 2009, SWOG 
(formally the Southwest Oncology Group) initiated a trial in first-line advanced non-
small cell lung cancer to evaluate if the addition of cetuximab to chemoradiotherapy 
with or without bevacizumab improved progression-free survival (PFS). Support for 
the trial was based on two phase II trials, S0342 and S0536 (Gandara et al. 2009; 
Herbst et al. 2010). The first study evaluated the addition of cetuximab alone to 
chemoradiotherapy and the second evaluated cetuximab and bevacizumab added to 
chemoradiotherapy. Both of these studies met their pre-specified benchmarks indi-
cating that cetuximab may improve PFS in this patient population. A retrospective 
analysis of tumor tissue in S0342 evaluated the predictive role of increased gene 
copy number of epidermal growth factor receptor (EGFR) measured by fluorescence 
in situ hybridization (FISH) (Hirsch et al. 2008). Tumors with four or more copies 
of the EGFR gene in ≥40% of the cells (high polysomy) or tumors with EGFR gene 
amplification (gene-to-chromosome ratio ≥2 or presence of gene cluster or ≥15 gene 
copies in ≥10% of the cells) were considered to be EGFR FISH positive, whereas 
all other tumors were considered to be EGFR FISH negative. This study found a 
near doubling of median PFS among EGFR FISH positive patients relative to EGFR 
FISH negative patients. Previous studies had found EGFR FISH to either be nega-
tively prognostic or not prognostic (S0126). Therefore, in addition to evidence of 
improved PFS in the unselected population, based on these data, there was evidence 
that EGFR FISH could be a predictive biomarker for cetuximab.

While this chapter is not intended to be a comprehensive overview of group 
sequential designs, we now provide a brief overview of some relevant considerations. 
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For an extensive discussion of interim monitoring procedures and considerations, 
see, for example, Jennison and Turnbull (2000), Friedman et al. (1996), and Green 
et al. (2002).

15.2  INTERIM MONITORING CONSIDERATIONS

The typical goal in cancer clinical trials is to demonstrate that a regimen is either 
superior or equivalent (when the new regimen has other benefits such as being less 
toxic) to the standard of care. Therefore, the associated hypotheses are usually one-
sided. Early stopping in this setting would then either be due to evidence of (1) ben-
efit or (2) lack of benefit or harm. Throughout we will refer to the early closure of a 
study for evidence of benefit as stopping for efficacy and early closure due to lack of 
benefit or harm as stopping for futility.

15.2.1  Interim Monitoring

A test statistic commonly used to compare survival distributions is the log-rank 
test statistic. Under the proportional hazards assumption, the sequence of log-rank 
statistics is approximated by a multivariate normal and therefore group sequential 
procedures can be applied as developed for normally distributed data. Letting T rep-
resent survival time with probability density function f(t), then the survival function 
is defined as
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experimental treatment arm E and defining θ = log(λ), then testing λ = 1 is equivalent 
to testing θ = log(λ) = 0. For i indexing the discrete event times (assuming no ties), 
k = 1,…, K indexing the analyses and letting dk denote the number of uncensored 
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Here δEki = 1 if the ith event occurred on the experimental arm, rEki is the number of 
participants on the experimental treatment arm at risk just before the ith event, and 
rki is the total number of participants at risk. When θ is close to zero, the variance of 
Sk, which is equal to the observed information Ik can be estimated by d/4 and further, 

it has been shown that Z S Ik k k= /  follows a standard normal distribution.
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Interim monitoring rules in the context of one-sided hypotheses for testing 
H0:θ = 0 against HA:θ > 0 define rules based on pairs of constants (ak,bk), ak < bk for 
k = 1,…, K − 1 and ak = bk such that if Zk ≤ ak the study is stopped for futility and if 
Zk ≥ bk the study is stopped for efficacy, otherwise the study is continued to the next 
stage. While originally proposed in the context of two-sided testing, two commonly 
used approaches to determine the critical values (ak,bk) were proposed by Pocock 
(1977) and O’Brien and Fleming (1979).

15.2.1.1  Stopping for Efficacy
The approach of Pocock is to determine the critical value bk = Cp(K,α) for all 
k = 1,…, K that preserves the overall type I error rate at α, spending equal amounts 
of error across all analysis times, including the final analysis. The approach of 

O’Brien-Fleming (OBF) is to determine the critical value b C K K kk B= ( , )α /  for 
all k = 1,…, K, which also preserves type I error rates. Since the boundaries for OBF 
are a function of the percentage of information, relative to the Pocock boundaries, 
the OBF boundaries are quite conservative at earlier time points (less information) 
and become increasingly more aggressive with more information. There are numer-
ous other approaches to determining the boundaries for group sequential testing. 
One other approach regularly used by SWOG is a modified Haybittle-Peto approach 
(Haybittle 1971). This approach is similar to the Pocock bounds in that for k = 1,…, 
K − 1 the same critical value is used; however, the critical value at the final analysis 
is different. The bounds are specified on the fixed sample p-value scale by testing 
the null hypothesis at level α/10 and then the final analysis is tested conservatively 
at α − K × (α/10). We note that the exact level can be determined exactly by simula-
tion or in some software packages.

15.2.1.2  Stopping for Futility
As a result of the asymmetry of one-sided testing, formulation of the boundaries for 
futility testing can be specified in terms of testing the alternative hypothesis with 
boundaries determined to preserve the study type I and type II error rates. For test-
ing the alternative hypothesis, the log-rank statistic is evaluated at θ = δ and critical 
values are determined as for efficacy testing to spend a certain amount of error over 
the analysis times. The futility bound is a function of the alternative hypothesis δ, the 
observed information Ik, and a critical value which now depends on both the type I 
error α and the type II error β (Harrington et al. 1982). Specifically, the general form 
of the futility boundary ak is

	 a I C K k Kk k k= − =δ α β( , , ), , , .1 …

As before, the Pocock-style boundaries use a critical value that is constant across 
analysis times; the OBF-style boundaries are a function of the amount of informa-
tion and are more aggressive as the study continues. The SWOG boundaries again 
are specified on the fixed sample p-value scale by testing the alternative hypothesis 

at level α/10. The lower boundary is crossed in this set-up if Z Ik k− δ  is less than 
the critical value.
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An alternative to idea to specification of boundaries based on critical values as 
described earlier was proposed by Wieand et al. (1994). Their proposal is that once 
a study has reached at least 50% of the planned events, if the observed hazard ratio 
is greater than 1, then the study should be stopped for futility. This idea was further 
refined by Freidlin et al. (2010a) to provide boundaries that retain study design prop-
erties. While intuitively appealing, the simulations presented in their paper indicated 
that this approach was not that dissimilar from the SWOG approach, but is not as 
easily implemented and also results in a greater loss of power.

15.2.1.3  Other Considerations for Early Stopping
Emerson (2000) demonstrated that various approaches to error spending and stochas-
tic curtailment approaches can all be mapped to each other one-to-one. Therefore, 
for this discussion of early stopping, the focus is on the use of error spending func-
tions to determine the interim monitoring plan/boundaries. Clearly stopping early 
for evidence of benefit has an impact on the study-wide type I error rate and stopping 
early for evidence of no benefit or harm has an impact on the study-wide power.

Barber and Jennison (2002) demonstrated that minimizing the sample size under 
the null typically results in a larger sample size under the alternative (and vice versa) 
for asymmetric designs. It follows that designs with conservative stopping rules are 
closest to the fixed sample design; they spend less type I and II error at the interim 
analyses and therefore have smaller maximal sample sizes than designs with more 
aggressive stopping rules. Designs with more aggressive stopping rules are more 
likely to stop early for either efficacy or futility and therefore have smaller average 
sample sizes. However, these designs spend more type I and type II error at the 
interim analyses. It is possible that the associated increase in sample size to retain 
power may counteract the benefit to aggressive monitoring.

The timing of interim analyses in a clinical trial is usually based on the percentage 
of information accumulated. In cancer clinical trials, the number of events such as 
deaths or progression events is the typical measure of information. Protocol-specified 
stopping rules are defined in terms of the exact number of events. Deviations from 
the planned analysis schedule can have an impact on the operating characteristics 
of a trial. Even with careful and close monitoring of trial data, the interim analyses 
may not performed at precisely the protocol-specified number of events. This may be 
due to a variety of reasons. For example, in the cooperative group setting, coopera-
tive groups typically have one DSMB for all studies within in the group that require 
monitoring. As such, these DSMBs usually have a set meeting schedule and meet 
for example on a biannual basis. The likelihood that accumulation of events in a 
study will follow the meeting schedule exactly is highly unlikely. Alternatively, an 
unplanned interim analysis may be called for given outside information. For exam-
ple, due to safety concerns with the experimental drug arising from other studies, 
an unplanned interim analysis was performed in the SWOG trial S0023. This trial 
randomized stage III non-small cell lung cancer patients to receive either gefitinib or 
placebo for maintenance therapy following systemic chemotherapy. The unplanned 
analysis resulted in early closure of the trial (Kelly et al. 2008).

The Pocock and OBF boundaries were developed under the assumption of equal 
increments of information and analyses being performed exactly at the specified 
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amounts of information. Lan and DeMets (1983) developed a method to adjust the test-
ing thresholds to preserve the overall type I error. The SWOG boundaries do not deter-
mine the bounds based on the amount of information and use a conservatively adjusted 
p-value at the end of study and therefore does not need to be adjusted. Moreover, if the 
study investigators are willing to modify the maximal sample size, the design power 
can be maintained (Pampallona and Tsiatis 1994). These adjustments can be made to 
maintain the study properties accounting for both planned and unplanned analyses as 
long as the analyses do not depend on treatment effects at interim analyses.

Designs with multiple hypotheses have multiple groups on which to base the 
scheduling of interim analyses. Despite well-thought-out trial designs, it is almost 
a certainty that interim analyses will take place outside of the planned number of 
events for at least one of the groups. Therefore, the need to consider design properties 
resulting from analyses at non-pre-specified times may arise more often in designs 
with multiple hypotheses.

15.3  APPLICATIONS TO STUDY DESIGNS

Using the S0819 trial setting as a guide, we now evaluate and discuss the properties 
of different monitoring approaches for the all-comers, targeted, strategy, and multi-
ple hypothesis designs. Design assumptions include an assumed prevalence of EGFR 
FISH positivity to be around 50% and the median PFS is estimated to be approxi-
mately 5–6 months. It is assumed that 80% of patients will have an EGFR FISH 
result and therefore 40% of the total population will be determined to be EGFR 
FISH positive. For designs that include the unselected population, it may be reason-
able to include patients with unknown marker status. In this case, patients are classi-
fied as marker positive and marker non-positive. All designs will have 90% power for 
the primary hypothesis and 2.5% type I error based on one-sided testing. The target 
hazard ratio in the EGFR FISH positive group is a 33% improvement in median PFS. 
The target hazard ratio in the overall study population is a 20% improvement in 
median PFS. Further, accruals to the study are distributed uniformly over the accrual 
period, the accrual rate in the unselected population is 35 patients per month, and the 
follow-up time is 12 months. The interim monitoring plan considered for all designs 
will be interim analyses at 40%, 60%, and 80% of the expected PFS events.

15.3.1  Designs with a Single Hypothesis

The all-comers, targeted, and strategy designs evaluate one primary hypothesis. 
Referring to the motivating example S0819, the all-comers and targeted designs are 
based on the design assumptions stated earlier. The strategy design that would ran-
domize patients to marker-based treatment or to receive the standard of care irrespec-
tive of marker value would then have a target hazard ratio equal to a 13% improvement 
in median PFS. The fixed-design sample sizes for these three designs are 1314 patients 
for the all-comers design, 1345 patients screened to achieve 538 marker-positive 
patients for the targeted design, and 2784 patients for the strategy design.

A comparison of properties of the all-comers, targeted, and strategy design for 
designs under the three monitoring approaches is presented in Table 15.1. While the 
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sample size in the all-comers design is about 2.5 times that of the targeted design, 
accounting for the number needed to be screened, the two designs would take about 
the same amount of time to complete accrual. The ratio of the maximal and aver-
age sample sizes under the null and alternative hypotheses for the three monitoring 
approaches is constant across all scenarios. The strategy design requires approxi-
mately twice as many patients as the all-comers design and would take at least twice 
as long to complete. The strategy design requires about five times the number of 
patients needed for the targeted design and essentially performs the same compari-
son. The ratios of the average sample sizes under the null and alternative hypotheses 
are essentially the same for the different monitoring plans indicating that the fraction 
of times that the studies are stopped early is essentially the same, the strategy design 
just would take twice as long to get to the interim analyses.

The use of the all-comers design in this setting will likely include evaluation of 
a biomarker and a secondary objective. An important consideration in this setting is 
the power to look for subgroups deriving benefit when the overall null hypothesis is 
true. In this case, maximizing the sample size under the null is key indicating that a 
monitoring plan with conservative bounds is the most appropriate. Figure 15.1 dem-
onstrates the properties of the boundaries for the all-comers design. The boundaries 
presented are based on OBF, Pocock, and the standard SWOG approach. The SWOG 
approach is the most conservative and the Pocock approach is the most aggressive.

15.3.2  Designs with Multiple Hypotheses

In the context of designs for targeted therapies, multiple hypothesis designs usu-
ally involve the specification of a hypothesis in the target population defined to be 

TABLE 15.1
Properties of All-Comers, Targeted, and Strategy Designs 
under Pocock, OBF and SWOG Stopping Rules

Study Time (If 
Continues to 
Full Accrual) Events

Maximal 
Sample Size

Average Sample Size

Under 
Null

Under 
Alternative

All-comers design: Ha = 1.2
Pocock 62 1678 1728 789 888

OBF 52 1333 1382 827 936

SWOG 51 1283 1334 950 963

Targeted design: Ha = 1.33
Pocock 63 686 706 323 363

OBF 53 545 566 338 382

SWOG 51 525 546 388 394

Strategy design: Ha = 1.13
Pocock 118 3627 3676 1707 1921

OBF 96 2881 2930 1787 2023

SWOG 93 2774 2824 2070 2083
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biomarker-positive and in either the overall study population or in the biomarker-negative 
population (Chapter 17). These hypotheses are treated as “co-primary” and control the 
overall study false-positive rate; a fraction of the type I error is portioned to each of 
the hypotheses. Functionally, the study is designed around one of the hypotheses at 
the specified type I error rate and then the design associated with the other hypothesis 
is defined based on the sample size for the population associated with that hypothesis.

The specification of a design with multiple hypotheses not only has an impact on 
the design of the study itself, it has impact on the interim monitoring plan. No longer 
is there one hypothesis on which to base the monitoring plan. Decisions to stop a 
trial early for either efficacy or futility based on the evaluation of one hypothesis can 
have an impact on the ability to evaluate the other (or multiple other) hypotheses. 
Our primary driving framework for interim monitoring considerations for designs 
with multiple hypotheses is that the study design, study hypotheses, and the prioriti-
zation of the hypotheses should dictate the interim monitoring plan. Moreover, there 
has to be a trade-off between answering one question and answering multiple ques-
tions within the same study. Not only will the maximal sample size for these mul-
tiple hypothesis designs be larger than the standard phase III design, but the average 
sample size under the null and alternative hypotheses will be larger. Regular moni-
toring for safety and feasibility should not change significantly but the formal rules 
to guide under what conditions stopping the study should be considered.

We divide the scenarios for these multiple hypothesis designs into three categories: 
(1) subgroup-focused, (2) overall-population-focused, and (3) discrete-hypothesis 
designs. Subgroup-focused and overall-population-focused designs are trial designs 
where one of the hypotheses is nested within the other. Whereas discrete hypothesis 
designs are essentially parallel clinical trials with no overlap in hypotheses, sub-
group-focused designs are designs where the subgroup drives the study design and 
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is allotted the majority of the type I error. Design properties within the overall study 
population are based on the residual type I error to achieve the desired study type 
I error and the number of patients needed to be screened to achieve the number for 
the subgroup. Overall-population-focused designs are simply the opposite of the sub-
group-focused design; the study design is based on the hypothesis within the overall 
study population and this hypothesis is allotted the majority of the type I error.

When deciding upon an interim monitoring plan in a study that has multiple pri-
mary objectives, all of the various scenarios should be taken into consideration. At 
each analysis time, one could decide to continue or stop the study in the overall study 
population or continue the study in one subgroup but not the other (e.g., continue in 
marker positive patients but stop in marker non-positive patients). Decisions regarding 
whether or not to continue the study in the marker non-positive group could be based 
on an evaluation within that subgroup or on the joint evaluation of the marker-positive 
group and the overall study population.

15.3.2.1  Subgroup-Focused Designs
In a subgroup-focused design, the hypothesis within the subgroup is the primary driver 
of the study design and this hypothesis is allotted the majority of the type I error. For 
example, Simon et al. (2005) recommend using 80% of the type I error for the sub-
group hypothesis. An appropriate use of this design is when it is thought that the most 
likely group to benefit from the experimental regimen is the subgroup, but that it is 
also possible that the unselected population may also benefit from the experimental 
regimen, a likely scenario when the biomarker or biomarkers have not been validated.

The relationship between the subgroup-focused design versus a targeted design is 
depicted in Figure 15.2. In comparison to the targeted design, the subgroup-focused 
design requires more marker-positive patients and the analysis times are later, 
although these differences are very minor. The boundaries on the hazard ratio scale 
are essentially the same.

Therefore, in the scenario presented here, the relative cost of a subgroup-focused 
design to a targeted design is minimal, and the gains are that the treatment effect can 
be assessed in the entire study population.

The underlying implication of this study design is that the primary goal of the 
study is to monitor for efficacy in the subgroup. If the null hypothesis is rejected 
within the marker-positive group, then trial is a success and has demonstrated effi-
cacy of the experimental regimen. However, the trade-off in this scenario is that by 
stopping a trial early for efficacy in the subgroup, the properties of the design in the 
overall study population are altered. The result of stopping a trial in the subgroup 
is that there is a loss of power to evaluate the hypothesis within the overall study 
population. Stopping the trial early can also reduce the false-positive rate within the 
overall study population because stopping the trial early could preempt studies that 
would have rejected the null hypothesis at full accrual. Additionally, if the study is 
stopped for efficacy in the marker positive group, a decision has to be made about 
whether or not to continue the trial in the marker non-positive group.

Determination of the rules for stopping a trial for futility is more complicated. In 
subgroup-focused designs, a clear component of futility monitoring is an evaluation 
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within the target subgroup. However, if the biomarker or a set of biomarkers is not a 
predictive biomarker, then subgroup hypothesis is either not true or overly optimis-
tic, but it is still possible that the overall study population hypothesis is true. In this 
scenario, one would not want the trial discontinued for lack of efficacy based on the 
target subgroup alone; the evaluation should also consider the overall study popula-
tion. This scenario highlights that in these multiple hypothesis designs the trade-off 
for hedging your bets with multiple hypotheses is that more conservative stopping 
rules are needed to be able to address all of the trial objectives.

Futility monitoring could either occur separately within the marker positive and 
the marker negative groups or jointly within the marker positive group and in the 
overall study population. The subgroup-focused design specifies the target alter-
native hazard ratios for the subgroup and the overall study population. In order to 
define a monitoring plan for the marker negative group, the alternative hazard ratio 
for the negative subgroup needs to be determined based on the design hypotheses. 
If the data can be assumed to follow the exponential distribution, then the overall 
population hazard rate is simply a weighted average of the hazard rate in the marker-
positive group and the marker-negative group. Moreover, if the marker is not prog-
nostic, then the alternative hazard ratio is a weighted average of the hazard ratios for 
the marker positive and negative groups.

Referring to our example with EGFR FISH and cetuximab, if the objective within 
the EGFR FISH positive population was determined to be of greater importance 
than the objective within the unselected population, then a subgroup-focused design 

1.
6

1.
5

1.
4

1.
3

1.
2

H
az

ar
d 

ra
tio

 (c
on

tr
ol

:t
re

at
m

en
t)

1.
1

1.
0

0.
9

0.
8

40 60
30 36
31 37

420 504
434

Information (%)
Time (target)

Time (subgroup)
Accrual (target)

Accrual (subgroup) 518

80
40
42

560
588

100
53
55

566
594

Subgroup-focused design
Targeted design

FIGURE 15.2  The targeted design versus the subgroup-focused design with OBF 
boundaries.



221Early Stopping of Clinical Trials

would be most appropriate. Based on the target hazard ratios for the EGFR FISH 
positive group and the overall study population, the associated alternative hypoth-
esis within the EGFR FISH non-positive group is an 11% improvement in median 
PFS. Allocating 80% of the type I error to the subgroup results in a design with 
one-sided 0.02 type I error for the subgroup hypothesis. The residual type I error is 
conservatively 0.005; however, as the hypotheses are nested, the exact level can be 
determined to be greater than this level. Using simulations the exact residual type I 
error for this study was to use a one-sided p-value equal to 0.008 in the overall study 
population to achieve an overall study type I error rate of 2.5%. The sample size for 
this subgroup-focused design is a target accrual of 1440 patients needed to achieve 
572 EGFR FISH positive patients. The power within the overall study population to 
detect a 20% improvement in median PFS is 83%.

Using the standard SWOG approach to interim monitoring, Figure 15.3 depicts 
stopping boundaries for the EGFR FISH positive group, the overall study popula-
tion and the EGFR FISH non-positive group at 40%, 60% and 80% of PFS events. 
Futility boundaries for bounds based on monitoring the overall study (gray line) and 
the EGFR FISH non-positive group (dashed line) are presented. Boundaries in the 
EGFR FISH non-positive group are based on testing the alternative at the same level 
as the EGFR FISH positive group (overall level = 0.02).

This Figure 15.3 demonstrates that the underpowered aspect of the evaluation 
within the non-positive group is much more conservative than using an approach that 
uses an evaluation within the target subgroup and the overall population to deter-
mine if the study should be stopped for futility, even though the non-positive group is 
tested at a higher level than the overall study population. In fact, at the earlier interim 

1.
6

1.
5

1.
4

1.
3

1.
2

H
az

ar
d 

ra
tio

 (c
on

tr
ol

:t
re

at
m

en
t)

1.
1

1.
0

0.
9

0.
8

40
30

Information (%)
Time

60
36

80
41

100
54

EGFR FISH positive
Overall population
EGFR FISH non-positive

FIGURE 15.3  Stopping boundaries for subgroup-focused design example using the SWOG 
boundaries.



222 Handbook of Statistics in Clinical Oncology

analyses, the futility boundary for the overall population is actually larger than that 
of the target subgroup due to the greater number of events in the entire study.

Given the complexity of a trial with multiple hypotheses, we recommend defin-
ing stopping rules for a limited set of conditions that are relatively conservative. In 
this example, the planned futility rules are to stop the trial for futility if both the 
alternative in the target subgroup and the overall study population are rejected. In 
addition, the plan includes stopping the trial for futility in the non-target subgroup if 
the alternative in the overall study population is rejected and the target subgroup is 
not rejected. This does result in a trial design with average sample size under the null 
that is not too dissimilar to the fixed design sample size. But again, the trade-off for 
complexity is conservatism, and conservatism results in a smaller maximal sample 
size but larger average sample size.

15.3.2.2  Overall-Population-Focused Designs
Designs that are overall-population-focused can be thought of as designs which add a 
safety net to the general all-comers design. Examples of designs which were overall 
population focused are the Sequential Tarceva in Unresectable NSCLC (SATURN) 
and INTEREST trials (Capuzzo et al. 2010; Kim et al. 2008). The INTEREST trial 
compared gefitinib, a tyrosine kinase inhibitor, which targets the EGFR recep-
tor with docetaxel in previously treated non-small-cell lung cancer patients. The 
SATURN trial evaluated the role of erlotinib as maintenance therapy relative to no 
maintenance therapy (placebo) in advanced non-small-cell lung cancer patients. The 
biomarker used in the INTEREST trial was EGFR FISH and in the SATURN trial 
was EGFR measured by immunohistochemistry (IHC).

The interpretation of such a design is that the investigators believe that there 
is good evidence that an unselected population will benefit from the experimen-
tal regimen. However, it is possible that efficacy may be limited to a subset of the 
patients defined based on a biomarker or set of biomarker values. Given this set of 
suppositions, it makes sense that monitoring a study for early signs of efficacy would 
be based on the overall study population. If the null hypothesis is rejected within 
this population, then the trial is a success and has demonstrated the efficacy of the 
experimental regimen. The trade-off in this scenario is that by stopping a trial early 
for efficacy in the overall study population, there is a loss of power to evaluate the 
hypothesis within the subgroup. It is possible that the subgroup is the primary group 
that benefits and the rest of the patient population derives little or no benefit from the 
experimental drug. That said, if this is the case one hopes that the subgroup effect is 
so large that it is still well powered with the reduced sample size given that the trial 
is stopping early for large effect sizes.

Relative to the all-comers design, a consequence of smaller type I error is that 
the overall-population-focused design will stop less often under the null than the 
all-comers design. Futility monitoring in this setting is also more similar to the 
all-comers design except that it too is slightly more conservative than the all-comers 
design. A reasonable approach to futility monitoring may or may not include an 
evaluation of the subgroup. If the subgroup is known a priori and is evaluated, 
then stopping the trial for futility in the target subgroup would occur if both the 
overall-population and target subgroup futility boundary is crossed. If only the 
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overall-population hypothesis is rejected, it may still be of interest to continue the 
trial in the target subgroup alone.

Referring again to the example study S0819, an overall-population-focused design 
would be based on the target 20% improvement in median PFS and a type I error 
rate of 0.02. Under the design assumptions, the sample size is 1154 patients, 462 
of them expected to be EGFR FISH positive. The split of type I error is the same 
for the overall-population-focused design as it was for the subgroup-focused design. 
Therefore, the power to detect a 33% improvement in median PFS in the EGFR FISH 
positive population is 38% using the 0.008 level. The stopping boundaries for this 
example are depicted in Figure 15.4.

As can be seen in Figure 15.4, the futility boundaries for both hypotheses are 
pretty conservative with stopping only for harm, and the boundaries for the EGFR 
FISH positive group will almost never be crossed. Any early closures for futility will 
almost certainly be based on the overall study population alone.

The overall-population-focused design can also be used in the situation where the 
biomarker or biomarker set is unknown, or where the exact threshold is unknown. 
For example, Freidlin and Simon (2005) proposed the adaptive signature design. This 
design can be used to both discover and validate a set of biomarker values that defines a 
subgroup most likely to benefit from treatment. Clearly, as the subgroup is not defined 
until the end of study, interim analyses will not include an evaluation of the subgroup.

15.3.2.3  Discrete Hypothesis Designs
Discrete hypothesis designs seem most appropriate when completely different hypoth-
eses are to be evaluated within each subgroup. As the S0819 example is not appropriate 
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for this type of design, a different setting is used to motivate the discussion of this 
design. An example of a trial where the hypotheses are specified for discrete study 
populations is the MARVEL trial (Wakelee et al. 2008). The North Central Cancer 
Treatment Group initiated a trial in second-line advanced non-small cell lung cancer 
initiated a trial called MARVEL (marker validation for erlotinib in lung cancer). The 
study aimed to compare two drugs, both of which had been approved for treatment 
in the disease setting. This trial employed a biomarker-stratified design with separate 
hypotheses in each of the strata defined based on EGFR FISH status. The two hypoth-
eses were that (1) erlotinib, an EGFR tyrosine kinase inhibitor was superior to peme-
trexed, a multitargeted antifolate in patients who were EGFR FISH positive and (2) 
that pemetrexed was superior to erlotinib in EGFR FISH negative patients. The study 
was designed with 90% power to detect a 50% improvement with erlotinib in median 
PFS among EGFR FISH positive patients and to detect a 30% improvement with 
pemetrexed among EGFR FISH negative patients. They assumed that the proportion 
of patients determined to be EGFR FISH positive would be 30%. Interim analyses 
were specified to occur when 50% and 75% of the expected events had occurred 
within each stratum. For the purposes of this example, we assumed that the accrual 
rate was 15 patients per month and that the null median PFS was 3 months.

In contrast to the designs discussed earlier, the hypotheses for this trial were com-
pletely independent for the two strata; this trial design is one of two parallel phase 
III designs. Accordingly, the type I error levels were not split between the hypoth-
eses. While a secondary objective was to test the interaction between EGFR FISH 
status and treatment effect, this objective was not the primary objective. Therefore, 
it makes sense that the interim analysis plan for this trial was specified separately for 
the two groups and any decision to stop early in one stratum would have no impact 
on the other stratum (Freidlin et al. 2010b). Part of this plan is an acceptance that the 
interim analyses may preclude the ability for the study to test the interaction (with 
much power). But in reality, if either group is stopped early either for efficacy or 
harm, the value of being able to definitely prove that the marker is prognostic is small 
relative to the overall benefit of determining one treatment is either more efficacious 
or more harmful within that subgroup.

The role of the biomarker in this trial is different from the other multiple hypoth-
esis designs. In this setting, completely different questions are being asked of the 
subgroups defined by the biomarker and in fact, different monitoring approaches 
could be used for the studies within subgroups. In choosing the boundary shape 
parameters in this setting, on might want to take into consideration of the secondary 
objective to test the interaction and choose a more conservative monitoring plan. 
Table 15.2 details the trade-off between more or less aggressive monitoring and 
its impact on the maximal sample size and average sample sizes. As expected, the 
SWOG approach has the smallest maximal sample size and shortest time to study 
completion (if it goes to full accrual); the Pocock approach has the largest maximal 
sample size and longest time; and the OBF approach is in the middle. The average 
sample sizes for the OBF and Pocock boundaries are essentially the same under the 
null and the SWOG and OBF average sample sizes are essentially the same under the 
alternative hypothesis (Table 15.2).
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15.4  DISCUSSION

In all the designs discussed in this chapter, a biomarker or set of biomarkers is evalu-
ated either to establish eligibility to stratify for treatment assignment or to be evalu-
ated during the course of the trial to determine subgroup membership (similar to 
stratify with prospective evaluation). Consideration of the operating characteristics 
of the interim monitoring plans is important to ensure that clinical trials, which 
are a huge undertaking, provide us with the necessary data to answer the pertinent 
scientific questions. Interim monitoring plans are best when they correspond to the 
setting. In particular, more complex trials designs may need less aggressive monitor-
ing plans in order to address multiple objectives.

The evaluation of an interim monitoring plan includes the evaluation of all aspects. 
In settings where biomarker-driven hypothesis are primary, it is also important to 
monitor the study for the quality of biomarker data. Typically, the study design will 
specify the assumed marker prevalence, specimen submission rates, rates of ade-
quate specimen submission, and assay failure rates. Therefore, in addition to evalu-
ating clinical outcomes and adverse events, interim monitoring of the study should 
also include an evaluation of these assumptions. Incorrectly specified assumptions 
may require modification of screening and/or accrual targets or demonstrate a lack 
of feasibility to perform the biomarker-driven study. In any case, a carefully thought 
out plan should provide a good basis to evaluate accumulating information in a trial, 
with the goal to balance the risks and benefits for patients while addressing the sci-
entific questions at hand.
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TABLE 15.2
Properties of the Discrete Hypothesis Design Example

Study Time (If 
Continues to 
Full Accrual) Events

Maximal 
Sample 

Size

Average Sample Size

Under 
Null

Under 
Alternative

FISH positive
Pocock 78 321 324 176 191

OBF 67 267 272 174 195

SWOG 65 258 262 202 203

FISH negative
Pocock 80 765 774 420 457

OBF 68 637 646 415 465

SWOG 66 616 624 482 485
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16 Noninferiority Trials

Kenneth J. Kopecky and Stephanie Green

16.1  INTRODUCTION

Phase III therapeutic trials in oncology are conducted to compare the effectiveness 
of treatment regimens. In most settings, an accepted standard therapy exists and the 
motivation is the hope that a new treatment regimen (E) will prove to be superior 
to the standard therapy (S) in some respect, for example, survival or response rate. 
Such trials are called “superiority trials.” Let ρ(X,Y) denote a parameter that char-
acterizes the difference between outcomes with treatments X and Y. Without loss 
of generality, we assume that ρ(E,S) is parameterized so that ρ(E,S) = 0 if E and 
S are equally effective and ρ(E,S) > 0 if E is superior to S. For example, for com-
parisons of response rates, ρ(E,S) might be rate difference PE − PS or the log odds 
ratio ln{PE(1−PS)/[PS(1−PE)]}, where PX denotes the response rate for arm X = S or 
E. Similarly ρ(E,S) might be the log hazard ratio for S relative to E in comparing 
censored outcomes such as overall or progression-free survival, or ρ(E,S) might be 
the difference in mean values of a continuous outcome variable measured without 
censoring, such as a quantitative measure of molecular response. In the hypothesis 
testing context, a superiority trial tests the null hypothesis H0:ρ(E,S) ≤ 0 against the 
one-sided alternative HA:ρ(E,S) > 0.

In some circumstances, however, a trial is motivated by the hope that E is nearly 
as effective as S in some respect. In cancer trials, such studies can be of particular 
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interest since many treatment regimens have significant detrimental consequences, 
for example, severe and even life-threatening toxicity, high cost, or inconvenience or 
difficulty of administration that reduces adherence to the regimen. A new regimen 
that is less toxic, expensive, or difficult but nearly as effective as the standard regi-
men may therefore be the preferred treatment approach. Trials in this setting can be 
classified as either equivalence trials or noninferiority trials.

The term “equivalence trial” has generally come to refer to trials for which the 
hypothesis of interest is that results with E are similar to S, that is, neither better nor 
worse beyond reasonable limits. In general, such trials are of little value for studies 
of the effectiveness of new treatments, since there would be little reason to reject E if 
it proved significantly more effective than S. Equivalence trials will not be discussed 
in this chapter.

Noninferiority trials, in contrast, are inherently one-sided. The hypothesis of 
interest is that E is, at worst, inferior to S by a defined margin. In the hypothesis test-
ing context, the null hypothesis for a noninferiority trial is therefore H0:ρ(E,S) ≤ M 
against the one-sided alternative HA:ρ(E,S) > M where M < 0 is the allowable margin 
of inferiority, that is, the maximum loss of effectiveness that is considered accept-
able. M, referred to herein as the noninferiority margin, is sometimes called the 
equivalence limit or irrelevant difference (Wiens 2002, Lange and Freitag 2005).

Recent years have seen a great deal of research into the methods for designing, 
analyzing, and interpreting noninferiority trials; see, for example, the January 30, 
2003 issue of Statistics in Medicine (volume 22, number 2), the December, 2004 
issue of the Journal of Biopharmaceutical Statistics (volume 14, number 2), and the 
February 15, 2005 issue of Biometric Journal (volume 47, number 1). Standards for 
reporting results of noninferiority trials have been established (Piaggio et al. 2006). 
In this chapter, we address some practical issues regarding noninferiority trials in the 
setting of cancer therapy research.

16.2  HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

There are two general approaches to analyzing the results of noninferiority trials: 
significance testing and confidence interval (CI) estimation. The distinction between 
the two approaches is to some extent artificial. Although these are sometimes viewed 
as alternative approaches to statistical analysis, they provide complementary infor-
mation and are indeed often used together. Nevertheless the design and analysis of 
noninferiority trials is generally presented in terms of one or the other approach.

In the hypothesis testing approach, the aim is to perform a significance test of the 
null hypothesis of unacceptable inferiority, H0:ρ(E,S) ≤ M (recall M < 0 is the largest 
allowable margin of inferiority), against the one-sided alternative HA:ρ(E,S) > M. If 
the null hypothesis is rejected, then noninferiority is concluded. The study’s statisti-
cal power is the probability of correctly rejecting the null hypothesis of unacceptable 
inferiority. Ordinarily the study’s sample size is determined to ensure that this test 
has a high level of power, typically 90% or 80%, if E and S are indeed equally effec-
tive, that is, under the specific alternative hypothesis HA:ρ(E,S) = 0.

The aim of the CI approach is to calculate a lower confidence limit ρ̂L(E, S) 
for ρ(E,S). In this chapter, we assume ρ̂L(E, S) is the lower limit of a two-sided 
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100(1 − α)% CI. If M < ρ̂L(E, S), then the study’s results are inconsistent with unac-
ceptable inferiority, and noninferiority within the margin M is concluded. If, on 
the other hand, ρ̂L(E, S) ≤ M, then the possibility of unacceptable inferiority cannot 
be ruled out. The sample size is determined to ensure a high level of power, in 
other words, a high probability that ρ̂L(E, S) will exceed M if in fact E is not infe-
rior to S. As in the hypothesis testing approach, it is usually reasonable to calculate 
sample size under the assumption that ρ(E,S) = 0, that is, that E and S are equally 
effective.

As is generally the case, the two approaches are closely related, for example, one 
can define significance tests on the basis of CIs including or excluding hypothesized 
values. Nevertheless the CI approach provides more information than the simple 
result of the hypothesis test, since it gives a range of plausible values for the treat-
ment difference parameter ρ(E,S). Therefore, the following development is based on 
the CI approach.

In some circumstances, it may be appropriate to test both superiority and non-
inferiority hypotheses in a single trial, since this allows three possibilities: reject-
ing the superiority null hypothesis H0:ρ(E,S) ≤ 0 might suggest that E should replace 
S as the standard therapy; otherwise rejecting the noninferiority null hypothesis 
H0:ρ(E,S) ≤ M might support a recommendation that E may be used as an alterna-
tive to S, while failing to reject the latter hypothesis would support a conclusion that 
E is unacceptably inferior to S and should not be used (Dunnett and Tamhane 1997, 
Friedlin et al. 2007). As in simple noninferiority trials without superiority testing, 
the general approach based on CIs can be applied to both hypotheses in this setting 
(Tsong and Zhang 2005).

In the following sections, sample size formulas are presented for simple noninfe-
riority trials, without superiority testing, in which the treatments are compared with 
respect to a binary outcome such as response to therapy, a time-to-event outcome 
subject to censoring such as overall or disease-free survival, or a continuous outcome 
variable not subject to censoring such as a quantitative measure of response. These 
relatively simple models may be appropriate for noninferiority trials of cancer thera-
pies in many if not most settings. Indeed models of such simplicity have been used 
to design a number of published cancer trials although, as described in the following 
examples, they have not always been used with sufficient attention to the selection of 
appropriate design specifications.

16.3  SAMPLE SIZE DETERMINATION

16.3.1  Noninferiority Trial with Binary Outcome

For a binary outcome variable such as complete response (CR), a noninferiority 
trial can be based on the difference in outcome probabilities: ρ(E,S) = PE − PS. The 
100(1 − α)% two-sided confidence limits for PE − PS are given by
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where
Nx and P̂x are the number of patients and proportion of patients with the outcome, 

respectively, in arm x = E or S
zp denotes the 100pth percentile of the standard normal distribution

For a noninferiority trial comparing E and S, one wants a high probability (power) 
that the lower confidence limit will be greater than the noninferiority margin M 
if E is indeed not inferior. The sample size required to ensure statistical power of 
100(1 − β)% if the true event probabilities are PE and PS may therefore be calculated 
using the formula
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where
N is the total number of patients
KE is the proportion randomized to E

Ordinarily trials are designed to have adequate power to reject inferiority if the 
regimens are equally effective, that is if PE = PS = P for a value of P specified by the 
investigators. Also for any fixed P, M, α, and β, N is minimized when KE = 0.5. With 
these assumptions, Equation 16.1 simplifies to
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Table 16.1 displays the numbers of patients required for various combinations of P, 
M, α, and β, calculated using Equation 16.2.

Alternatively, the difference in event rates can be expressed as the log odds ratio: 
ρ(E,S) = ln{PE(1 − PS)/[PS(1 − PE)]} (Wang et al. 2002a). The estimated log odds 
ratio is
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For inferiority margin M, now expressed as the log odds ratio, the sample size for-
mula analogous to Equation 16.1 is
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where ln(OR) = ln[PE/(1 − PE)] − ln[PS /(1 − PS)] is defined by the values of PE and PS 
under the alternative hypothesis. If this is chosen as the hypothesis of equivalence 
(PE = PS = P) and KE = 0.5, then Equation 16.3 simplifies to
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Table 16.2 displays the numbers of patients required for selected values of P, M, α, 
and β, calculated using Equation 16.4. If PS > 0.5, and therefore P > 0.5, then for any 
fixed values of M, α, and β, the sample size increases with increasing P. This occurs 
because the absolute difference between PE and PS corresponding to the log odds 
ratio M decreases.

16.3.2  Noninferiority Trial with Time-To-Event Outcome

For cancer clinical trials in which the outcome of interest is time until some event 
such as death or disease progression, it is often reasonable for sample size calcula-
tions to assume that times to events are exponentially distributed. Assume N patients 
will accrue at a uniform rate from time 0 until A, and that follow-up will continue 
for an additional period of duration F, at which point observation will be censored 
for all patients remaining alive (censoring at time A + F). Assuming E and S are 

TABLE 16.1
Study Sizes Required for Noninferiority Comparison of Binary 
Outcome, Based on Arithmetic Difference in Outcome Probabilities

Probability of 
Outcome with 
Standard Therapy

Noninferiority Margin M, 
Expressed as Additive Change 

in Outcome Probability

Confidence Levela

95% 90%

Statistical Power

90% 80% 90% 80%
0.50 −0.05 4204 3140 3426 2474

−0.10 1052 786 858 620

0.75 −0.05 3154 2356 2570 1856

−0.10 790 590 644 464

0.90 −0.05 1514 1132 1234 892

−0.10 380 284 310 224

a	 Confidence level for two-sided confidence interval.
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exponentially distributed, the hazard rates can be parameterized as λE = eα and 
λS = eα + ρ(E,S), respectively, so that the log hazard ratio for S relative to E, ρ(E,S) is 
greater than 0 if E is superior to S, and the noninferiority hypothesis is H0:ρ(E,S) ≤ M 
for a specified M < 0. For example, in Southwest Oncology Group study SWOG-
8412, which compared carboplatin plus cyclophosphamide to the standard therapy 
of cisplatin plus cyclophosphamide with respect to overall survival of patients with 
stage III or IV ovarian cancer, the margin was chosen to correspond to a mortal-
ity hazard ratio (E relative to S) of 1.3, corresponding to a noninferiority margin 
M = −ln(1.3) = −0.262 (Alberts et al. 1992).

Letting ρ = ρ(E,S), the maximum likelihood estimator of the log hazard ratio is
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where dx and Tx are the number of events and total observation time (sum of all times 
from study entry until observation of the event or censoring), respectively observed 
on arm x = E or S. Thus the 100(1 − α)% confidence limits are given by
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TABLE 16.2
Study Sizes Required for Noninferiority Comparison of Binary 
Outcome, Based on Odds Ratio

Probability of 
Outcome with 
Standard Therapy (PS)

Noninferiority Margin, 
Expressed as Odds Ratio 

[M = Log Odds Ratio] (PE
a)

Confidence Levelb

95% 90%

Statistical Power

90% 80% 90% 80%

0.50 0.80 [−0.22] (0.44) 3377 2523 2752 1987

0.70 [−0.36] (0.41) 1322 988 1078 778

0.75 0.80 [−0.22] (0.71) 4502 3363 3670 2649

0.70 [−0.36] (0.68) 1763 1317 1437 1037

0.90 0.80 [−0.22] (0.88) 9379 7006 7644 5519

0.70 [−0.36] (0.86) 3671 2743 2992 2160

a	 Event probability for arm E assuming probability PS for arm S and the indicated E:S odds 
ratio.

b	 Confidence level for two-sided confidence interval.
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The total number of patients required to ensure at least 100(1 − β)% probability that 
the lower limit of the two-sided 100(1 − α)% CI will exceed M when the true value of 
the log hazard ratio is ρ(E,S) can be calculated as
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where
KE is the proportion of patients randomized to E and QE

QS are the expected proportions of patients whose deaths will be observed in the 
two arms

For exponentially distributed times to events,
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for x = E or S. Typically the study requires adequate power under the alternative 
hypothesis ρ(E,S) = 0, in which case λE = λS, N is again minimized if KE = 0.5 and 
Equation 16.5 simplifies to
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The value of λS, and of λE, if needed, can be determined from parameters of the 
anticipated true exponential distributions. For example, if the median event time is 
predicted to be T0.5, then λx = ln(2)/T0.5. Note from Equation 16.6 that the required 
number of patients depends on the accrual and follow-up times through their ratios to 
the median event time, A/T0.5 and F/T0.5. A JavaScript program that calculates N using 
Equation 16.5 for the alternative hypothesis that the true value of ρ(E,S) is 0 and for 
arbitrary QE and QS is available at http://www.swogstat.org/stat/public/equivsurv.htm.

Table 16.3 displays examples of the sample size required for various combinations 
of M, α, and β, calculated using Equations 16.6 and 16.7, assuming A/T0.5 = 4 and 
F/T0.5 = 1. Whether an accrual goal can be met within an accrual period depends, of 
course, on the accrual rate. For example, if the noninferiority margin is set at 1.10, 
and the study uses the two-sided 95% confidence level and requires 90% power if 
the true hazard ratio is 1.0, the study must accrue 5569 patients in a period that is 
four times the median survival time with standard therapy. If the median is 1.5 years, 
then an accrual rate of about 929 per year is required for 6 years. Having specified 
the noninferiority margin, confidence level, and power, a combination of A, F, and 
accrual rate, if any is indeed feasible, can be found by trial and error.

In general, increasing the duration of follow-up will not reduce the study size 
greatly. For example, with margin 1.10, confidence level 95%, and power 90% for 
true hazard ratio 1.0, increasing the follow-up from one to four times the median 



236 Handbook of Statistics in Clinical Oncology

survival with standard therapy decreases the required number of patients to from 
5569 to 4727. This is because the power depends heavily on NQS, the expected num-
ber of patients whose events will be observed. For the specifications in Table 16.3, QS 
increases from 0.83 if F = 1 to 0.98 if F = 4, a modest increase. Note that increasing F 
further above four would clearly yield little additional power. Shortening the accrual 
interval increases the necessary number of patients and consequently the required 
accrual rate. For example, under the same specifications that were discussed earlier, 
total accrual of 6343 would be required for the study to complete accrual in a period 
twice, rather than four times, as long as the median event time. Note that this more 
than doubles the required accrual rate.

The results in Table 16.3 show that the sample sizes required to demonstrate non-
inferiority within reasonable margins may be very large. For outcomes such as death 
or, for highly lethal diseases, disease progression, it may be difficult to justify a 30% 
or even 10% increase in mortality as an acceptable trade-off for some other benefit 
such as decreased toxicity or cost. Moreover, allowing a large noninferiority margin 
increases the risk that an apparently noninferior E will not be significantly superior 
to no treatment. However, it may not be possible to conduct an adequately powered 
noninferiority trial targeting a smaller margin. The likelihood that the accrual period 
will need to extend for several multiples of the median time to event may render a 
noninferiority trial impractical. This is especially true for studies of patients with 
good prognosis for long median event times, a circumstance in which noninferiority 
questions may be most likely to arise. Shorter accrual periods may be appropriate 
for studies in patients with poor prognosis, however in such settings superiority tri-
als aimed at improving treatment outcomes are likely to have much higher research 
priority than noninferiority trials.

16.3.3  Noninferiority Trial with Uncensored Continuous Outcome

In cancer trials, the primary endpoints have commonly been either binary outcomes 
such as CR to remission induction therapy, or time-to-event outcomes that are subject 

TABLE 16.3
Study Sizes Required for Noninferiority Comparison of Exponentially 
Distributed Time-To-Event Outcome, Based on Hazard Ratio

Noninferiority 
Margin, Expressed 
as E:S Hazard Ratio 
(Corresponding M)

Duration of Study 
Periods, Expressed 
as Ratios to Median 
Event Time with S

Confidence Levela

95% 90%

Statistical Power

Accrual Follow-Up 90% 80% 90% 80%

1.05 (−0.049) 4 1 21249 15873 17319 12503

1.10 (−0.095) 4 1 5569 4160 4539 3277

1.30 (−0.262) 4 1 735 549 599 433

a	 Confidence level for two-sided confidence interval.
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to censoring such as overall or progression-free survival. However, continuous vari-
ables that are not subject to censoring can also serve as outcomes of interest. For 
example, assays that produce quantitative results such as real-time polymerase chain 
reaction (RT-PCR) or flow cytometry might be used to measure an impact of treat-
ment. A noninferiority trial for such an outcome might be based on the difference in 
mean values of a continuous outcome variable. Let Y denote the outcome variable, 
with larger values of Y corresponding to better results, and let μE = EEY and μS = ESY 
be the mean values of Y for the experimental and standard regimens, respectively. 
Then a noninferiority trial might be based on the difference ρ(E,S) = μE − μS, with 
noninferiority margin M < 0 representing the absolute decrease in the mean value of 
Y that is considered acceptable. If the variance of Y, σ2, is the same for both E and S, 
then under suitable regularity conditions, the asymptotic 100(1 − α)% CI for the true 
difference μE − μS is
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where
NE and NS are the numbers of patients
s2 is the pooled estimate of the common variance σ2

The total sample size N = NE + NS required to ensure statistical power of 100(1 − β)% 
if the true event means are μE and μS may therefore be calculated using the formula
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where KE is the proportion of patients randomized to E. If the goal is to ensure 
adequate power when E and S are in fact equivalent, that is, under the alternative 
hypothesis ρ(E,S) = μE − μS = 0, and if KE = 0.5, Equation 16.9 simplifies to
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Note that N is a function of [M − (μE − μS)]/σ in (16.9) and simply M/σ in (16.10). Thus 
N depends only on M measured in units of the standard deviation. For example, if 
σ = 12, then a noninferiority margin M = −3 corresponds to a decrease of 0.25 stan-
dard deviations: M = −0.25σ. Table 16.4 shows the numbers of patients required for 
various combinations of M (expressed as a multiple of σ), α, and β based on Equation 
16.10. Expressing the noninferiority margin as a multiple of the true standard devia-
tion σ may be a useful approach to defining M for a given study, since it represents 
the loss of benefit in relation to the variability of the response variable.

If Y is positive, that is, cannot have values ≤ 0, an alternative approach is to 
define a noninferiority margin for the ratio of the means, that is, E is unacceptable 
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if μE/μS ≤ RM < 1 where RM is close to 1.0. Note that 100(1 − RM)% corresponds to a 
proportional decrease in the mean of Y. For example, if RM = 0.95, then the noninfe-
riority margin corresponds to a 5% decrease in the mean. This may be a useful way 
to express the magnitude of the noninferiority margin. Laster and Johnson, noting 
that μE/μS ≤ RM is equivalent to μE − RMμS ≤ 0, described testing for noninferiority by, 
in effect, calculating the asymptotic 100(1 − α)% CI for μE − RMμS:
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where s is the pooled estimate of the common variance as in Equation 16.8 (Laster 
and Johnson 2003).

If the lower confidence limit for μE − RMμS is greater than 0, then the null hypoth-
esis of unacceptable inferiority can be rejected. In this approach, sometimes called 
“ratio-based” noninferiority testing, the total sample size to ensure 100(1 − β)% 
power under the alternative hypothesis of equivalence, μE/μS = 1 for a study with 
NE = NS = N/2 is
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Note that this ratio-based approach differs from the general formulation described 
earlier, in which ρ(E,S) does not involve the noninferiority margin M, but the null 
hypothesis does: ρ(E,S) ≤ M. In the ratio-based approach the measure of difference 
between E and S, μE − RMμS, includes RM, a defined constant analogous to the non-
inferiority margin, while its value under null hypothesis does not: μE − RMμS = 0. As 

TABLE 16.4
Study Sizes Required for Noninferiority 
Comparison of Uncensored Continuous Outcome, 
Based on Arithmetic Difference in Means

Noninferiority Margin, M, 
Expressed as a Multiple of the 
Standard Deviation σ

Confidence Levela

95% 90%

Statistical Power

90% 80% 90% 80%

−0.10σ 4203 3140 3426 2474

−0.25σ 673 503 549 396

−0.50σ 169 126 138 99

a	 Confidence level for two-sided confidence interval.
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a result, the power of the ratio-based test using (16.12) depends not only on RM but 
also on μS/σ. This occurs because, under the noninferiority alternative hypothesis 
μE = μS, the expected value of μ̂E − RMμ̂S in (16.11) is μS(1 − RM), while the expected 
value of μ̂E − μ̂S in (16.8) is 0 for any value of μS. However, as Laster and Johnson 
pointed out, for a given value of the noninferiority ratio RM, the corresponding abso-
lute noninferiority margin in (16.10) is simply M = μE − μS = −μS (1 − RM). Substituting 
this expression for M in (16.10), it follows that for any given M and corresponding RM, 
the ratio-based test requires fewer patients (Laster and Johnson 2003). Specifically, 
comparing (16.12) and (16.10), N N RRB M/ /= +( )1 22 . Since RM < 1, NRB will always 
be less than N for any α and β. For example, if RM = 0.95, which corresponds to an 
absolute noninferiority margin of M = −0.05 μS, the ratio-based noninferiority com-
parison using (16.11) will require only 95.1% as many patients as the comparison 
based on absolute differences as in (16.8).

In general, the decision to base a trial on an absolute specification of the nonin-
feriority margin (Equations 16.8 through 16.10), as opposed to a ratio-based speci-
fication (Equations 16.11 and 16.12) cannot be based solely on the greater efficiency 
(smaller sample size) of the ratio-based design. The ratio-based approach is appro-
priate for positive outcome variables (after reparameterization if necessary). If μE 
and μS have different signs, the ratio is no longer a useful characterization of non-
inferiority. Also the sample size formulas (16.10) and (16.12) assume that the vari-
ance of Y is the same for both E and S, which may be untrue for a positive outcome 
variable. Often, the variance of a positive outcome variable Y is positively related to 
its mean. Generalizations of (16.10) allowing for the variance of Y to differ between 
E and S are possible, but applying a variance-stabilizing transformation to Y, for 
example, logarithmic transformation, may be more appropriate. The transformed 
variable in such cases may also be more nearly symmetrically distributed than Y, 
thereby improving the accuracy of the large-sample approximations in Equations 
16.8 through 16.12.

16.4  EXAMPLE

Two recent papers provide interesting examples of noninferiority trials (Major et al. 
2001, Rosen et al. 2001). Each study compared the experimental treatment zole-
dronic acid (E = Zol) to the standard therapy, pamidronate (S = Pam), with respect to 
skeletal-related events (SREs, i.e., skeletal metastases or osteolytic lesions) in cancer 
patients, or hypercalcemia related to malignancy (HCM). The primary endpoints for 
the noninferiority comparisons were binary outcomes: avoidance of SRE (exclud-
ing HCM) during treatment and follow-up in the first trial (the “SRE trial”), and 
complete response (CR) of HCM in the second trial (the “HCM trial”). Since these 
two trials did not address the same endpoint, they cannot be compared directly. 
Nevertheless, they present an interesting contrast.

Both studies were designed to test noninferiority of Zol by comparing the upper 
limit of a two-sided 100(1 − α)% CI for the difference in event rates (PZol − PPam) to a 
specified margin M. For the SRE trial, the upper limit of the 90% CI for PZol − PPam 
was required to exceed −0.08 in order to conclude noninferiority of Zol, that is, 
α = 0.1 and M = −0.08. The trial was designed to ensure 80% power (β = 0.2) if the 
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true probabilities were PZol = PPam = 0.5 and therefore from Equation 16.2 required 
N = 968 patients. The HCM trial was designed with very different specifications 
that led to a much smaller study size: the criterion for noninferiority of Zol required 
that the upper limit of the 95% CI exceed a margin of M = −0.10 and the trial was 
designed to ensure 80% power if the true event probabilities were PZol = 0.92 and 
PPam = 0.90. Consequently from Equation 16.1 the HCM trial had a goal of only 
N = 180 patients.

Ordinarily noninferiority trials are designed to have adequate power to reject 
inferiority if the two regimens are equivalent. However, the HCM trial was designed 
to have adequate power if Zol was in fact slightly superior to Pam. Had the power 
been targeted to the conventional alternative hypothesis that Zol is equivalent to 
Pam, that is, PZol = PPam = 0.90, the study would have required N = 284 patients (Table 
16.1) rather than 180. Therefore, the HCM trial was seriously underpowered and had 
an unacceptably high probability of failing to reject the hypothesis of Zol’s inferior-
ity if it was in fact equivalent to Pam.

16.5  DETERMINING THE NONINFERIORITY MARGIN

Determining an appropriate value for the noninferiority margin M requires careful 
clinical and statistical consideration. Wiens (2002) described general approaches for 
selecting noninferiority margins. One is to choose a margin small enough to ensure 
that if E is nearly as effective as S, then it is reasonable to conclude that E is superior 
to no treatment or placebo (P). To do this, one might try to choose a specific value of 
M, which is “close enough” to 0 to provide assurance of E’s benefit; this appears to be 
the approach taken in the two Zol vs. Pam trials described earlier. Alternatively, one 
may choose to define M as a fraction of the benefit of S compared to P: M = −φρ(S,P) 
where 0 < φ < 1. This way of defining M has an appealingly intuitive interpretation: 
the noninferiority margin corresponds to preserving 100(1 − φ)% of the benefit of S 
relative to P. Note that the latter approach corresponds to the formulation of ratio-
based testing described earlier. The general problem of assessing benefits of S and/
or E relative to P is discussed further below. In either case, this may be a useful 
approach when there is very strong evidence that S is very effective. However, if the 
statistical significance or the magnitude of the benefit of S is modest, then a noninfe-
riority margin chosen solely by this approach may not provide the desired assurance 
that E has some benefit.

A second approach described by Wiens is to choose a margin based solely on 
clinical importance, that is, a difference that is judged to be clinically unimportant. 
Choosing a margin in this way is clearly fraught with subjectivity and uncertainty. 
Nevertheless, it may be a reasonable approach when there is little information avail-
able from which to predict the likely benefit of S compared to P in the planned trial. 
For example, Michallet et al. designed a noninferiority comparison of E = pegylated 
interferon alpha-2b (rIFN-α2b) compared to S = rIFN-α2b as therapy for chronic 
myelogenous leukemia (CML) in chronic phase (Michallet et al. 2004). They speci-
fied a 20% decrease in the odds of major cytogenetic response (MCR) as the non-
inferiority margin. Although the authors did not describe their rationale for this 
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specification, it was perhaps justified by a combination of the two approaches men-
tioned earlier. In particular, regarding Wiens’ first approach, it is plausible to assume 
that spontaneous MCR is a very unlikely event, so if S is clearly beneficial relative 
to P and the trial showed that E preserved a large proportion of the benefit of S, 
then it might be reasonable to conclude that E is sufficiently beneficial to replace 
S. However, the trial was unlikely to reach such a conclusion for two reasons. First, 
the rate of MCR with S was not very high: 20% in the investigators’ assumption for 
design purposes. Thus even if E could be shown to preserve a large proportion of 
the benefit of S, it would probably remain unclear whether E had sufficient benefit 
compared to no treatment to warrant its use. Moreover, the study as designed was 
badly underpowered. The sample size was calculated to ensure that the lower limit 
of a two-sided 95% CI for the log odds ratio had 80% probability of exceeding a 
noninferiority margin corresponding to an odds ratio of 0.8 if the true MCR rates 
were 20% with S and 30% with E, that is, if under an alternative hypothesis that E 
was substantially superior to S. Using Equation 16.3 or a similar formula, the study 
was designed to include 300 patients, although 344 were actually included. The trial 
was therefore badly underpowered: a total of 3941 patients would be required to have 
80% power if E and S are in fact equivalent with MCR rates of 20%. As it turned out, 
the study failed to reject the hypothesis of inferiority. However, due to the study’s low 
power, this result is in fact inconclusive.

The third approach described by Wiens is to select a margin that ensures the dis-
tributions of outcomes for patients on the E and S arms are similar in some respect 
other than the parameter for which they are being compared (Wiens 2002). A simple 
example of this is the use of the difference in rates to determine the noninferior-
ity margin for the odds ratio in trials with binary outcome variables: the differ-
ence in rates may be more readily understood by clinicians than the odds ratio. For 
example, in the CML trial described earlier, the noninferiority margin corresponded 
to a 20% decrease in the odds of MCR, and the MCR rate was assumed to be 20% 
with S (Michallet et al. 2004). The noninferiority margin therefore corresponds to a 
decrease in the MCR rate from 20% with S to 17% with E, which is easy to interpret 
clinically.

16.6  BENEFIT OF E COMPARED TO NO TREATMENT

In order for E to be a suitable replacement for S on the basis of noninferiority, it 
is important to consider not only (1) whether E is nearly as effective as S, but also 
(2) whether E is superior to no treatment or placebo (P), that is, whether ρ(E,P) > 0. 
The ideal equivalence trial would randomize to all three approaches, P, S, and E, 
provided it is ethical to randomize to P. This might be the case if evidence support-
ing S is weak, such as the lower bound of CI being close to 0, uncertainty due to 
poorly conducted previous trials, changes over time, short-term effects, or highly 
variable differences in treatment effect across previous studies. Koch and Röhmel 
describe conduct of “gold standard” non-inferiority trials (Koch and Röhmel 2004). 
The experimental regimen E is accepted if E is significantly better than P and if 
it is non-inferior to S. S itself need not be significantly better than P. Hypotheses 
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are ordered hierarchically. H01:ρ(E,P)= 0 vs. ρ(E,P) > 0 is tested in step one and, if 
rejected, H02: ρ(E,S) = M vs. ρ(E,S) > M is tested in step two, each typically at the 
0.025 level. If both hypotheses are rejected, the trial is concluded successful. If the 
trial is successful, further tests can be done to address questions about superiority 
of S compared to P and of E compared to S without compromising family-wise 
type-one error.

If a treatment of established effectiveness exists (i.e., S), it would be unethical to 
randomize patients to the nontreatment arm P. In this circumstance, only histori-
cal experience may be available to address (2). Therefore, the benefit of E relative 
to P must be inferred from the current trial comparing E to S and from whatever 
information is available regarding the benefit of S relative to P. The latter inference 
typically relies on the assumption of some kind of “constancy condition,” that is, that 
the benefit of S compared to P observed in prior studies carries over to the current 
noninferiority trial (Jones et al. 1996, D’Agostino et al. 2003). If the noninferiority 
margin is defined as a fraction of the benefit of S compared to P, M = −φρ(S,P) for 
a specified value of φ, then the need to infer ρ(S,P) from historical experience also 
affects the inference regarding (1).

Some approaches to estimating or testing ρ(E,P) are described briefly in the fol-
lowing. First, however, it is important to recognize that the validity of inferences 
concerning the benefit of E relative to P in a trial with no P arm can be very sensi-
tive to the validity of the constancy condition (Wang et al. 2002b, Hung et al. 2003, 
Rothman et al. 2003, Fleming 2008). Therefore, the constancy condition requires 
careful, critical consideration. Any number of effects may operate to violate the con-
stancy condition: patterns of referral of patients to study centers may change, diag-
nostic criteria may change, or supportive care may become more effective. Moreover, 
variations in the design and conduct of the current and prior trials may invalidate the 
constancy condition: differences in eligibility criteria, response criteria, adherence 
to treatment regimens and follow-up requirements, subsequent “rescue” therapy for 
treatment failures, and many other factors may reduce the actual effect of S com-
pared to P (Rothman et al. 2003). These are basically the same pitfalls that arise in 
any comparison of current to historical data. The potential for error in this extrapola-
tion is of particular concern in studies of cancer therapies, since there may be few or 
even no historical studies that can provide a solid basis for estimating the benefit of 
S compared to no treatment.

To reduce the bias that can arise from imputing the standard regimen’s effec-
tiveness using historical placebo-controlled studies, the current study should be 
as similar as possible to the prior successful trials (Jones et al. 1996). However, a 
high degree of similarity may be difficult to achieve. For example, in adult AML 
(excluding AML-M3), the most widely used remission induction regimens, includ-
ing ara-C and an anthracycline such as daunorubicin or idarubicin, have been argu-
ably standard therapy for two decades or more. During that time there have been 
no placebo-controlled trials of AML remission induction chemotherapy. Moreover, 
it has recently been proposed to revise the diagnostic criteria for AML to include a 
condition, RAEB-T, which was previously classified as one of the myelodysplastic 
syndromes. This reclassification was based on evidence that RAEB-T and AML 
patients under age 60 have similar prognoses for overall survival (Bennett 2000). 
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Such a revision makes it even more difficult for future noninferiority trials of che-
motherapy for AML, if any are attempted, to infer reliably the benefits of S and E 
relative to P.

Simon has argued that noninferiority trials cannot produce reliable results unless 
there is very strong evidence that the benefit of S compared to P is large (Simon 
2001). This would not be the case if, for example, the benefit of S was established in 
placebo-controlled trials with marginal levels of statistical significance or, equiva-
lently, CIs for the magnitude of the benefit barely excluded zero. Similarly, suppose 
S is the latest in a series of two or more standard therapies that have been adopted 
sequentially based on trials, without placebo controls, that have each demonstrated 
marginally significant incremental superiority over the previous standard regimen. 
In such situations, it may be extremely difficult to infer the benefit of S relative to no 
treatment. In particular, if the current S was adopted on the basis of a noninferiority 
trial, or perhaps a series of noninferiority trials, then its benefit relative to P may be 
diminished, a phenomenon that has been called “biocreep” (D’Agostino et al. 2003). 
D’Agostino et al. suggest dealing with biocreep by always using the “best” regimen 
as the active control arm, however this may not be practical: selection of the best 
arm may need to rely on nonrandomized historical comparisons and a new trial in 
which standard care is a therapy that is no longer widely used may fail to accrue 
patients. Moreover, biocreep in the opposite direction might also occur in a series 
of superiority trials as a result of publication bias: if superiority trials with statisti-
cally significant results are more likely to be published than those with significant 
results, then the benefit of S may be overestimated. This kind of biocreep would be 
less likely if positive results of superiority trials were routinely investigated in con-
firmatory trials.

Several approaches have been proposed for what is sometimes called “putative 
placebo analysis,” used for inferring the comparison of E to P from the current 
noninferiority trial of E vs. S and historical data regarding the benefit of S rela-
tive to P.

Fisher (1998) and Hasselblad and Kong (2001) exploited the fact that if treatment 
differences can be represented on an additive scale, then

	 ρ ρ ρ( , ) ( , ) ( , )E P E S S P= + 	 (16.13)

Note that this may require transformation to an additive scale, for example, to log 
odds ratios or log hazard ratios. If the two terms on the right side of Equation 16.13 
are estimated from independent studies, we also have

	
var , var , var ,ρ ρ ρˆ ˆ ˆE P E S S P( )⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦ + ( )⎡⎣ ⎤⎦ 	 (16.14)

The terms on the right sides of Equations 16.13 and 16.14 can be estimated from 
the current noninferiority trial [ρ(E,S)] and the historical data [ρ(S,P)]. For exam-
ple, ρ(S,P) and var[ρ̂(S,P)] might be estimated from a meta-analysis of prior trials 
of S vs. P. Thus, ρ(E,P) and its variance can be estimated, and the hypothesis 
H0:ρ(E,P) ≤ 0 can be tested against the one-sided alternative HA:ρ(E,P) > 0, or a CI 
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for ρ(E,P) can be calculated to support inference regarding the benefit of E com-
pared to P.

Rothman described a “two confidence interval” approach in which a lower confi-
dence limit for the effect of E relative to S, ρ̂L(E,S), is compared to a multiple of an 
upper confidence limit for the benefit of S relative to P, δρ̂U(S,P), based on historical 
data. The confidence level of the latter interval must be chosen to ensure the desired 
probability of type I error (Rothman et al. 2003).

Simon described a Bayesian approach to analysis after a trial of E vs. S in which 
the expected responses for P, S, and E are μ, μ + η, and μ + θ, respectively. In terms 
of Equation 16.13, θ = ρ(E,P) and η = ρ(S,P) (Simon 1999, 2001). Thus, since posi-
tive values of η and θ indicate benefit, E would be of interest if η > 0 (S has ben-
efit) and θ > (1 − φ)η for a specified value of φ between 0 and 1 (E preserves at least 
100(1 − φ)% of S’s benefit). Note that the latter condition corresponds to θ − η > −φη, 
and the noninferiority margin for ρ(E,S) = θ − η is therefore M = −φη, which is pro-
portional to η = ρ(S,P). Through straightforward Bayesian analysis, the posterior 
joint distribution of (μ, η, θ) is estimated, allowing in turn estimation of the posterior 
probabilities of the events {η > 0} and {θ > (1 − φ)η}, and perhaps more usefully of the 
event {η > 0 and θ > (1 − φ)η}. Simon also describes a variation of this model for the 
proportional hazards regression model assuming the hazard ratios for S and E rela-
tive to P are exp(η) and exp(θ), respectively (Simon 1999, 2001).

Note that in Simon’s approach, there is no attempt to compare E to P directly 
as in the approach of Hasselblad and Kong. Instead the benefit of E compared to 
P is inferred from the findings that (1) S is superior to P, and (2) E retains at least 
100(1 − φ)% of the benefit of S. If the results do not favor (1), that is if the posterior 
probability of {η > 0} is small, then inference regarding (2) is of little interest and 
the validity of the constancy condition is in doubt, however the posterior probabil-
ity of {θ > 0} may still provide useful information about the benefit of E. Allowing 
for uncertainty in μ and η is appealing, but as always with Bayesian approaches, 
care must be taken that choice of priors does not unduly influence the conclusion 
concerning E.

16.7  EXAMPLE, CONTINUED

For neither the SRE trial nor the HCM trial did the study’s reported design or imple-
mentation provide for testing or estimating the benefit of Zol compared to a putative 
untreated control. No rationale for this omission was provided. The investigators 
may have assumed that the benefits of Pam are sufficiently large and precisely esti-
mated that showing Zol is almost as effective as Pam would ensure that it must have 
benefit compared to no treatment. The risk in this assumption was clearly shown by 
the results of the HCM trial, in which the CR rate with Pam (69.7%) was markedly 
lower than had been expected based on earlier HCM trials (Major et al. 2001). Had 
the trial been designed to have 80% power if PZol = PPam = 0.7, it would have required 
N = 660 patients, rather than the 180 required by targeting the power to PZol = 0.92 
and PPam = 0.90.

In further analysis of the SRE results, an estimate of Pam’s benefit was derived 
from three prior placebo-controlled studies (Ibrahim et al. 2003). It was estimated 
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that Pam increased the rate of SRE avoidance from the placebo’s 48.0% to 61.1%, an 
improvement of 13.1% with 95% CI (7.3%, 18.9%). In the SRE trial, the estimated 
event rates were 56% with Zol and 54% with Pam, for a difference of 2% with 95% 
CI (−3.7%, 7.9%). Comparing these confidence intervals, it was concluded that Zol 
retained at least (7.3 − 3.7)/7.3 = 49.3% of Pam’s benefit relative to placebo. Had the 
lower confidence limit for Zol’s inferiority been less than −7.3%, the study could not 
have ruled out the possibility that Zol had no benefit compared to placebo. Again it 
was noteworthy that Pam was less effective in the SRE trial (54%) than might have 
been predicted from the earlier placebo-controlled trials (61.1%), raising doubt about 
the validity the constancy condition.

As it turned out, the proportions of patients with favorable outcomes were higher 
with Zol than with Pam in both of the SRE and HCM trials. While this may obvi-
ate some of the concerns about these trials’ limitations as noninferiority studies, it 
must be emphasized that these trials were at risk of producing inconclusive or even 
misleading results concerning their stated noninferiority objectives.

16.8  INTENTION-TO-TREAT VS. PER-PROTOCOL

The principle of making treatment comparisons on the basis of intention to treat 
(ITT) is widely accepted for superiority trials, since the inclusion of ineligible or 
untreated patients, lack of adherence to treatment regimens, and other inevitable 
“flaws” in study conduct are generally expected to increase the noise in the study and 
may reduce the apparent benefit, if any, of the experimental treatment. That is, com-
parisons of treatment groups based on ITT are expected to be conservative in supe-
riority trials. In contrast, “per-protocol” (PP) analysis is limited to eligible patients 
who received treatment according to protocol. PP analysis, which may be unbiased 
with regard to treatment differences, may have severely limited generalizability. For 
noninferiority trials, however, the situation regarding ITT analysis may be reversed: 
the “flaws” in study conduct, by increasing the noise and reducing the apparent dif-
ference between E and S, may bias the study toward a conclusion of noninferiority 
(Jones et al. 1996, CDER/CBER 1998). Thus ITT may be anticonservative for non-
inferiority trials. Jones et al. recommend carrying out both ITT and PP analyses and 
careful examination of the patients who are excluded from PP analysis, in order to 
investigate the impact on the anticonservatism of ITT analysis (Jones et al. 1996).

16.9  DISCUSSION

It is widely understood that failure to reject the null hypothesis that two regimens 
have equivalent effectiveness does not constitute proof that they are equivalent. 
However, this understanding is not universal. One still hears, for example, estimated 
survival curves that are quite close together (described sometimes as “superimpos-
able”) interpreted as evidence of equivalence, with no mention of the variability 
inherent in the estimates. In a similar vein, a large p-value for a test of the hypothesis 
of equality may also be taken inappropriately to imply equivalence, for example, 
p = 0.9 may be misinterpreted to mean that there is a 90% chance the null hypothesis 
is true. Krysan and Kemper reviewed 25 randomized controlled trials that claimed 
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equivalence of case mortality between treatments for bacterial meningitis in chil-
dren, and found that the claim was based on absence of significant superiority in 
23 trials, and that only 3 of the 25 trials had adequate power to rule out a 10% 
difference in mortality (Krysan and Kemper 2002). Others have reported similar 
results (Greene et al. 2000). While noninferiority questions may frequently arise in 
cancer therapy research, the questions of whether and how such questions should be 
addressed require careful consideration.

The conduct, analysis, and interpretation of noninferiority trials have been the 
subject of extensive methodological research in recent years, and a number of valu-
able insights and methods have resulted. However, in the context of cancer therapy 
trials, relatively simple methods may be adequate and even preferred. Much of the 
recent methodological research has addressed the problem of inferring whether E is 
superior to P, and the validity of this inference is heavily dependent on the validity 
of a constancy condition that permits extrapolation from prior studies comparing 
S to P. In the setting of cancer therapy trials, it may be very difficult to justify this 
extrapolation. In that setting, if a noninferiority trial is necessary and appropriate, 
a practical approach may be the following: define a fixed noninferiority margin 
M that preserves a sufficient fraction of the benefit of S relative to P, based on the 
best judgment of the magnitude of that benefit and the best clinical opinion as to 
the fraction of that benefit that must be preserved; and then perform an adequately 
powered trial to produce a hypothesis test or CI to support an inference about 
whether E is or is not inferior to S. See the commentaries by Hung et al. (2005) and 
Fleming (2008) for further discussion of issues regarding the selection of M.

The requirement that noninferiority trials be adequately powered would seem to 
be self-evident. And yet, as the previous examples illustrate, even published studies 
have failed to meet this minimal quality requirement. Adequate power may require 
extraordinarily large study sizes, especially for studies of highly significant out-
comes such as survival or, for some diseases, response to therapy. Reducing these 
sample sizes can be achieved in either of two ways. First the margin of noninferior-
ity, M (or RM for a ratio-based comparison), can be chosen to have a comparatively 
large magnitude. However, such a value of M may represent an unacceptable trade-
off for the benefits that the experimental treatment offers. The other way to reduce 
study size is to require that the study only have adequate power to reject inferiority if 
E is in fact superior to S, as was done in the HCM and CML trials described earlier. 
However, this requires one to accept less than adequate power to conclude noninfe-
riority if the two treatments are in fact equivalent. In other words, it has too large a 
probability of missing the benefits that accrue from using E in place of S if E and S 
are in fact equivalent.

In studies of cancer therapy, most superiority trials include interim analyses to 
permit early stopping if sufficiently conclusive results are obtained before the trial is 
completed. Several approaches have been developed to ensure that the study main-
tains the intended probabilities of Type I and II error when interim analyses are 
performed. These approaches generally carry over to the setting of simple noninfe-
riority trials, that is, to trials that do not also include tests for superiority. However 
as mentioned earlier, some trials may be designed to test both noninferiority and 
superiority of E compared to S. In such trials, the superiority comparison may only 
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require sufficient statistical power to detect an improvement that is substantially 
larger in magnitude than the noninferiority margin M. In other words, the superior-
ity comparison may require many fewer patients than the noninferiority comparison. 
A number ways to conduct interim analyses for studies with both noninferiority and 
superiority comparisons have been proposed in recent years, and research in this 
area is ongoing (see, e.g., Dunnett and Tamhane 1997, Wang et al. 2001, Lai et al. 
2006, Öhrn and Jennison 2010).

It should also be noted that the requirements for reporting results of noninferior-
ity trials differ somewhat from requirements for superiority trials. A version of the 
CONSORT (Consolidated Standards of Reporting Trials) statement for noninferior-
ity trials, published in 2006, provides a useful guide to the information that should 
be reported, including the predefined noninferiority margin “with the rationale for 
its choice” (Piaggio et al. 2006). Notably, in a 2005 review, Lange and Freitag found 
that the rationale for choice of the noninferiority margin was reported for only 43% 
of 314 published noninferiority trials not limited to cancer trials (Lange and Freitag 
2005). A review of 162 reports (116 noninferiority trials and 46 equivalence trials) 
found frequent and serious deficiencies in the descriptions of study design and results 
(Le Hananff et al. 2006).

Noninferiority trials requiring large numbers of patients may be difficult to com-
plete; however, smaller trials having insufficient statistical power should be avoided 
since, as is true of any statistical study, they are too likely to produce inconclusive 
results. It remains true, as Simon pointed out in the first edition of this handbook 
(Simon 2001), that superiority trials remain the preferred means to improve cancer 
therapy whenever possible.
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17 Phase III Trials for 
Targeted Agents

Antje Hoering, Michael LeBlanc, 
and John J. Crowley

17.1  INTRODUCTION

The paradigm of cancer research has been changing and cancer therapies with 
new mechanisms of action from conventional chemotherapies are being developed. 
Conventional chemotherapies are also often known as cytotoxic agents and utilize 
various mechanisms important in mitosis to kill dividing cells, such as tumor cells. 
Cytostatic agents, on the other hand, exploit alternate mechanisms, such as inhibit-
ing the formation of new blood vessels (antiangiogenic agents), initiating tumor cell 
death (proapoptotic agents), or inhibiting tumor cell division (epidermal growth fac-
tor inhibitors). Many newer therapies (including both cytostatic and cytotoxic agents) 
are also often referred to as targeted, as they target specific molecules or pathways 
important to cancer cells. It is expected that by focusing treatment on important 
molecules or mechanisms, the therapies will be more effective and result in less 
toxicity than many traditional treatments. While many of these compounds are at 
a preclinical stage or in early clinical testing, there are already some well-known 
targeted therapies.

Gleevec (imatinib mesylate) is a small-molecule drug approved by the FDA 
to treat CML. Gleevec interferes with the protein produced by the bcr/abl onco-
gene. Velcade (bortezomib) is a proteasome directed drug approved by the FDA 
to treat multiple myeloma and is being tested in other cancers. Another approved 
targeted agent is Herceptin (trastuzumab), which blocks the effects of the growth 
factor protein Her-2, which transmits growth signals to breast cancer cells. Iressa 
(gefitinib) and Tarceva (erlotinib) both target the epidermal growth factor receptor 
(EGFR). Recent phase III studies do not support the use of Iressa but a phase III 
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trial of Tarceva showed a significant improvement in survival in non-small cell 
lung cancer (NSCLC) [12].

The story for EGFR inhibitors is complicated because there may be benefits in the 
subgroup of patients who are nonsmokers due to genetic differences in the tumors. It 
is not clear if the survival benefit may be due to mutations, gene copy number, or pro-
tein expression [5]. The results for these EGFR inhibitors motivate several more gen-
eral targeted therapy questions: Is there a genetic subgroup where such treatments 
are effective (or more effective) and how should study designs be modified where 
feasible? Should all patients of a particular tumor type be treated with a targeted 
agent or should only those patients who are positive for the target (or marker) be so 
treated? As mentioned earlier, traditional cytotoxic agents “target” dividing cells, 
thus killing tumor cells but at the cost of collateral damage (toxicity), especially for 
other organs with a high proliferative fraction. Also, targeted agents can have col-
lateral benefit, in that they can be effective in patients classified as negative for the 
target, either because there is a weak signal for the target in such patients, or because 
the agent hits a different target. For example, there is now evidence that trastuzumab 
has some effect on Her-2 neu negative breast cancer patients [9]. Another example is 
imatinib, which was developed to target the CML defining bcr-abl translocation but 
also destroys tumor cells that are c-kit positive (which virtually defines GI stromal 
tumors) [4].

Technological and scientific advances in fields such as gene expression profil-
ing and proteomics have made it possible to detect possible tumor markers very 
efficiently. Research laboratories at universities and pharmaceutical companies have 
been very productive in developing targeted agents specifically for those tumor 
markers. The next challenge then is to validate such biomarkers in the clinical trial 
setting and to determine the subgroup of patients with good prognosis and the sub-
group of patients most likely to benefit from a new therapy as a function of these 
biomarkers. Hoering and Crowley [6] recently discussed some general issues with 
respect to targeted therapies and cytostatic agents in the context of clinical trials for 
multiple myeloma.

Two classes of biomarkers can be distinguished. Prognostic markers give infor-
mation about a likely disease outcome independent of a treatment, and can be used 
for risk stratification. For example, high-risk patients, who do poorly with conven-
tional approaches, may be treated more aggressively, or may be reserved for highly 
experimental regimens. Other markers, on the other hand, give information on a 
likely disease outcome based on a specific treatment. These therefore represent 
treatment by marker interactions, and are now known in some clinical literature as 
“predictive” markers [11]. Predictive markers can be used to indicate which patients 
should be treated with a particular targeted agent, developed to attack that marker. 
In general, a prognostic marker is not necessarily a predictive marker, but the hope 
is that some of the prognostic markers may be predictive as well.

Such markers are often based on levels of a specific chemical in the blood or in 
other tissue compartments, on the abundance of certain proteins or peptides, or on a 
combination of gene expression levels. Thus, in practice, the underlying marker dis-
tribution, and the response probability as a function of the marker value, is often con-
tinuous. The actual cut-point to distinguish marker-positive from marker-negative 
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patients may not be able to be determined precisely, or the best cut-point among 
various possibilities may be unknown. In that scenario it is advantageous to take the 
actual marker distribution into account when designing the trial. In this chapter we 
investigate the performance of several phase III clinical trial designs, both for test-
ing the overall efficacy of a new regimen and for testing its efficacy in a subgroup of 
patients with a tumor marker. We recently studied the impact of designs assuming 
continuous markers to assess the trade-off between the number of patients on study 
and the effectiveness of treatment in the subgroup [7]. This formulation also allows 
us to explore the effect of marker prevalence in the patient population, and the effect 
of marker misclassification if the actual cut-point that distinguishes the group of 
patients associated with the greatest potential treatment effect is not known. Here we 
evaluate possible trial designs for predictive markers, but we also consider scenarios 
with an underlying prognostic marker, as it is often unknown whether or not a novel 
marker is prognostic or predictive. The results of this investigation can serve as a 
guide in the decision as to which trial design to use in a specific situation. While we 
present the results for binary outcome data, the same strategy can be easily imple-
mented for other outcomes including survival data.

17.2  PHASE III TRIAL DESIGNS FOR TARGETED AGENTS

A variety of designs for assessing targeted treatments using biomarkers have been 
proposed. Figure 17.1 illustrates three such phase III trial designs for predictive 
markers. For illustration purposes, we restrict our discussion to two treatments: T1 
and T2, where T1 could be the standard of care and T2 the new therapy of interest. 
These do not have to be limited to single agents but can include entire treatment 
strategies, as is common for many cancers. We also assume that the marker distin-
guishes between two groups—marker-positive patients (M+) and marker-negative 

Randomize-all design: Randomize all patients, measure marker.

Targeted design: Randomize marker-positive patients only

Strategy design: Randomize to marker-based versus not marker-based.
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FIGURE 17.1  Possible clinical trial designs for targeted therapy: randomize-all design, 
targeted design, and strategy design.
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patients (M−). It is conjectured that the new therapy to be studied, T2, benefits M+ 
patients. For this illustration we also assume that for continuous markers, a cut-point 
has been determined to distinguish these two groups.

In the randomize-all design, the marker status of the patient is assessed and all 
patients are randomized to one of two treatments. The treatment assignment for 
patients can also be stratified by observed marker status. If stratification is deemed 
not necessary, assessing the marker status of the patient can occur after random-
ization, which may speed up the start of treatment. If we hypothesize that the 
treatment is mostly efficacious in marker-positive patients, but it is unclear whether 
the therapy is beneficial (possibly to a lesser extent) for marker-negative patients 
as well, this is a good design to test for overall benefit, regardless of marker status, 
and to explore the M− and M+ subsets. One possibility is to use this design and 
power it for the subgroup of marker positive patients. This will then allow us to 
determine, with appropriate power, whether or not the treatment is effective over-
all and in the subgroup of M+ patients. A similar procedure in the context of haz-
ard ratios was recently discussed by Jiang et al. [8]. SWOG has recently adopted 
this trial design for an NSCLC trial (S0819). In this trial, patients with advanced 
NSCLC are randomized to carboplatin and pacitaxel plus or minus cetuximab. 
Two hypotheses are being tested. The overall hypothesis tests whether cetuximab 
increases the efficacy of concurrent chemotherapy (carboplatin and pacitaxel) in 
patients with advanced NSCLC. The targeted hypothesis tests whether EGFR 
FISH+ patients benefit to a larger degree. More specifically, the hazard ratio to be 
tested in the EGFR FISH+ group was chosen to be larger than that of the hazard 
ratio to be tested in the entire study population.

Simon and Manitournam [13] evaluated the efficiency of a targeted trial design. 
In this design, patients are first assessed for their marker value and only marker-pos-
itive patients are enrolled in the trial and randomized to the two treatment options. 
They evaluated the effectiveness of the targeted design versus the randomize-all 
design with respect to the number of patients required for screening and the number 
of patients needed for randomization. A targeted design proves to be a good design 
if the underlying pathways and biology are well enough understood, so that it is 
clear that the therapy under investigation only works for a specific subset of patients, 
namely marker-positive patients. Such a targeted design generally requires a smaller 
number of patients to be randomized than the randomize-all design to determine 
the efficaciousness of a new treatment in M+ patients; however, no insight is gained 
on the efficaciousness of the new treatment in M− patients, and a large number of 
patients still needs to be assessed for their marker status. Freidlin and Simon [2] also 
proposed an adaptive two-stage trial design specifically for developing and assessing 
markers using gene expression profiling. We do not evaluate this trial design here as 
we focus our discussion on one-stage designs.

Hayes et al. [3] suggested a trial design for predictive markers, where patients 
are randomized between marker-based treatment (M+ patients getting new therapy, 
M− patients getting standard of care) and every patient, independent of their marker 
status, getting standard of care. Such a trial is designed to test whether marker-based 
treatment strategy is superior to standard therapy. We refer to this trial design as the 
strategy design. Sargent [10] suggested an augmented strategy design, extending this 
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strategy design to the case where patients are randomized between marker-based 
treatment (as in the strategy design) and treatment independent of marker, where in 
the latter arm a second randomization to new versus standard therapy is added. We 
evaluate the strategy design rather than the augmented strategy design since the for-
mer is more frequently used. As an example, the strategy design was recently used 
in an NSCLC trial to test individualized cisplatin-based chemotherapy dependent on 
the patients ERCC1 mRNA [1].

These various trial designs test different hypotheses. The randomize-all design 
addresses the question whether the treatment is beneficial for all patients, with the 
possibility of testing whether or not the new treatment is beneficial in the subset 
of marker-positive patients. We also investigate testing both the targeted and the 
overall hypothesis in the randomize-all design with appropriate adjustment for 
multiple comparisons. The targeted design tests whether or not the treatment is 
beneficial for marker-positive patients. The strategy design addresses the question 
of whether the marker-based treatment strategy is better than everyone receiving 
standard of care (T1) regardless of marker status. The strategy design does not 
directly address the question of whether treatment T2 is more efficacious than treat-
ment T1; however, it is frequently used in that context and we thus felt it important 
to assess its properties.

In this chapter we evaluate the effectiveness of the randomize-all, the targeted and 
the strategy phase III trial designs under several scenarios. These scenarios include 
the presence of a prognostic marker, several possible scenarios for the presence of 
a predictive marker, and no valid marker. We assume that the underlying distribu-
tion of the biomarker is continuous in nature. We further assume that a cut-point is 
used to distinguish patients with marker values above (below) such a threshold, who 
are then referred to as marker-positive (negative) patients. We recently investigated 
the performance of several test statistics for the different trial designs discussed in 
this section as a function of the marker distribution and the marker cut-off [7]. The 
performance was evaluated as a function of the cut-point, the number of patients 
screened, and the number of patients randomized to obtain a certain power and sig-
nificance for the various test statistics. We studied these designs under some simple 
marker and effect assumptions.

17.3  UNDERLYING MODEL ASSUMPTIONS AND SIMULATIONS

In practice, the underlying marker distribution, and the response probability as a 
function of the marker value, are often continuous. Assume that the log-transformed 
marker value X is normally distributed, X ∼ N(μ, σ2) and its density function is 
denoted by f( X ). Other distributional assumptions may be used instead. If multiple 
markers are of interest, a combined distribution of a linear combination of the mark-
ers can be used. We assume that two treatments T1 and T2 are being investigated 
and that the treatment assignment has been determined using one of the various trial 
designs discussed in Section 17.2. The treatment assignment is indexed by j = 1, 2 
and we focus our analysis on binary outcomes. However, this approach can be easily 
extended to a survival outcome. The expected outcome for the subgroup M+ patients, 
M+ = {X:X > c}, can be written, assuming a logit link, as
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negative fraction by vM−(c) = 1 − vM+(c). Analogous calculations for the M− patients 
give the summary measures, gj (c, M−) for those groups. We study design properties 
indexed by the cut-point c. Therefore, important parameters in the design assess-
ments are (gj (c, M+), gj (c, M−), vM+(c) ), which constitute the outcome and the frac-
tions of patients in the M+ group.

Figure 17.2 presents several scenarios based on this simple marker treatment 
model. Scenario 1 is the scenario where the marker under investigation is a false 
marker, that is, it has no effect on the outcome. Scenarios 2 through 4 are different 
scenarios for a predictive marker. In Scenario 2 the new treatment (T2) does not 
help M− patients more than the standard treatment (T1), but has additional benefit 
for marker positive patients, increasing with the marker value. In Scenario 3 the 
two treatment curves are diverging with increasing marker value. The marker does 
not have any effect on Treatment 1, but the effect of Treatment 2 is increasing with 
increasing marker value. In scenario 4 the new therapy benefits M+ patients, but 
has a negative impact on M− patients. Finally, for a prognostic marker, where T2 is 
overall better than T1, both are increasing with increasing marker value (scenario 5). 
All these graphs are on a logit scale.

We investigated the overall performance of the different designs in the various 
scenarios presented in Figure 17.2 [7]. We simulate the underlying log-marker dis-
tribution from a normal distribution X ∼ N(μ, σ2). We then evaluated the response 
probability to the marker using the distribution functions discussed previously for 
the various scenarios. The actual parameters used to evaluate the response prob-
abilities for the five different scenarios can be found in [7]. We performed 5000 
simulations to calculate gj(c, M−) and gj(c, M+). These derived quantities were 
then used to evaluate power or sample size for the different scenarios assuming an 
underlying binomial distribution. For the power calculations we used a one-sided 
significance level α of 0.05.

17.4  RESULTS

Figure 17.3 shows the power of the three designs as a function of the sample size of 
patients randomized for each of the five scenarios discussed earlier. In Scenario 1, 
which is the scenario with no valid marker, the randomize-all and the targeted design 
achieve the same power for all sample sizes, as response to treatment is independent 
of the marker status. The lowest power is achieved with the strategy design as this 
design assigns subsets of patients in both of the randomized arms to the identical 
treatment, and is thus inefficient if there is no true underlying marker. For Scenario 
2, in which the new treatment T2 only helps patients with the marker, the targeted 
design outperforms both the randomize-all and the strategy design, as this is the 
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scenario of a true marker for which this trial has been designed. The randomize-all 
design and the strategy design achieve the same power. This is due to the fact that 
in the experimental arm the same fraction of marker-positive patients are treated 
with the effective treatment T2 and the same fraction of marker-negative patients 
are treated with T1 (in the strategy design) or T2 (in the randomize-all design), and 
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the effect of both treatments is the same for marker-negative patients. Scenario 3 is 
the scenario in which M− patients benefit less than M+ patients. In that scenario the 
targeted design performs the best, followed by the randomize-all design, and then 
the strategy design. In this case the efficacy is the largest in the M+ patients and 
thus best picked up by the targeted design. However, the new therapy also helps M− 
patients. This fact is missed by the targeted design, since no information is obtained 
on M− patients. In the strategy design the M− patients in the experimental arm are 
treated with the less effective treatment T1 and the power of that design is thus lower 
than that of the other two designs. In Scenario 4, where the new therapy is beneficial 
for M+ patients, but is actually harmful for M− patients, the targeted design outper-
forms the others. The randomize-all design does the worst, as the two effects in this 
example cancel each other out. Lastly, in Scenario 5, the example for a purely prog-
nostic marker, the targeted design performs the best, followed by the randomize-all 
design and lastly the strategy design.

For a new marker or a new assay that has not been thoroughly tested yet, the 
cut-point corresponding to the strongest therapeutic effect is often not known pre-
cisely. Using an underlying continuous marker model makes it possible to investigate 
this effect on power and sample size for the various scenarios. We thus performed 
simulation studies in which we vary the cut-point c, which distinguishes M+ from 
M− patients. Shifting the cut-point results in some patients being incorrectly (or 
inappropriately) classified as M+, when treatment T2 is not more effective for this 
patient and vice versa. We investigated the effect on the power for a fixed sample size 
in the three designs. Moving the cut-point does not affect power in the randomize-all 
design, as all patients are being randomized independent of their marker status and 
the underlying marker distribution is not affected by moving the cut-point. Moving 
the cut-point has an effect on whether a subject is classified as being marker positive 
or being marker negative and thus has a large effect on power for the targeted and 
the strategy design.

We found that overall the improvements in power for the targeted design are 
impressive for most scenarios. Only in the case in which there is a constant odds ratio 
between treatment arms is there a decrease in power for the targeted design, and then 
only for the most extreme marker group. The worst case for the randomize-all design 
is the hypothetical total interaction model of Scenario 4, where the overall treatment 
effect is null. This is also the only case in which the strategy design performs slightly 
better than the randomize-all design.

We also explored the effect of maker prevalence in the patient population on 
power for the different designs and scenarios. In our simulations we achieve this 
by shifting the marker distribution, but leaving the cut-point at X = 0.5. Shifting the 
marker distribution increases or decreases the fraction of M+ and M− patients. We 
evaluated the effect of marker prevalence on power and sample size. The targeted 
design performs the best in all scenarios with an underlying true predictive marker 
(Scenarios 2–4). In those scenarios the treatment benefit for M+ patients is diluted 
in the randomize-all and the strategy design and many more patients are needed to 
test the respective hypothesis. However, the targeted design misses the benefit of the 
T2 for marker-negative patients in Scenario 3. In the case of a prognostic marker 
(Scenario 5) with a constant odds ratio between treatment arms the targeted design 
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has smaller power than the randomize-all design but only for the extreme marker 
values when the cut-point is shifted such that most patients are marker negative. 
The randomize-all design performs as well or in most cases better than the strategy 
design except for the hypothetical total interaction model of Scenario 4, where the 
overall treatment effect is null.

We also studied the feasibility and performance of testing both the overall and 
the targeted hypothesis in the randomize-all design with appropriate adjustment 
for multiple comparisons. We split the significance level α and test the overall 
hypothesis at α = 0.04 and the targeted hypothesis at α = 0.01. Other splits of the 
significance level can be considered, but the outcome would qualitatively stay 
the same. In general, there is little change in power for the overall hypothesis for 
α = 0.04 versus α = 0.05 [7]. The change in power for the targeted hypothesis for 
α = 0.01 versus α = 0.05 is slightly larger since there is a larger difference in alpha. 
The main question, however, is whether it is feasible to test both the targeted and 
the overall hypothesis in the scenarios with a predictive marker using this trial 
design. In the scenarios with a predictive marker (Scenarios 2–4), with exception 
of the scenario of total interaction (Scenario 4), the power for the two hypotheses 
(with Bonferroni adjusted alpha-levels) is comparable and only a modest increase 
of sample size (compared to the randomize-all design with just the overall hypoth-
esis and α = 0.05) is needed to test both hypotheses. We note that in the context of 
a given real study, one can simulate from the large sample joint normal distribu-
tion of the two test statistics to less conservatively control for the overall type-1 
error. For instance, if the overall hypothesis is fixed at α = 0.04, then by using this 
calculation one could increase alpha for subgroup test to greater than 0.01, yet have 
overall α = 0.05.

This approach was recently used in the SWOG trial S0819, a randomized, 
phase  III study comparing carboplatin/paclitaxel or carboplatin/paclitaxel/beva-
cizumab with or without concurrent cetuximab in patients with advanced NSCLC. 
This study was designed to have two primary objectives. The primary objective 
for the entire study population is to compare overall survival in advanced NSCLC 
patients treated with chemotherapy plus bevacizumab (if appropriate) versus 
chemotherapy and bevacizumab (if appropriate) and cetuximab. The addition of 
cetuximab will be judged to be superior if the true increase in median OS is 20% 
(overall hypothesis). The second primary objective is to compare progression-
free survival (PFS) by institutional review in EGFR FISH–positive patients with 
advanced NSCLC treated with chemotherapy plus bevacizumab (if appropriate) 
versus chemotherapy and bevacizumab (if appropriate) and cetuximab. The addi-
tion of cetuximab will be judged to be superior in this subset of patients if the 
true increase in median PFS is 33% (targeted hypothesis). The overall sample size 
for this study is 1546 patients, which includes approximately 618 EGFR FISH+ 
patients. The overall one-sided significance level, α, was chosen to be 0.025. The 
overall hypothesis was tested at α = 0.015 and the targeted hypothesis at α = 0.020; 
the split of α was determined using simulation studies. The power for the overall 
hypothesis is 86% and the power for the targeted hypothesis is 92%. These calcula-
tions are based on 4 year accrual and 1 year follow-up. The estimate for the overall 
survival in the EGFR FISH+ subgroup and the entire patient population for the 
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control arm were determined by estimating the proportion of patients deemed to be 
in the bevacizumab-appropriate versus the bevacizumab-inappropriate. A targeted 
design, testing the targeted hypothesis only with the same statistical properties as 
used in S0819 (except for using a one-sided α = 0.025) would take 582 patients. The 
strategy design testing the marker-based treatment (only EGFR FISH+ patients 
receiving the addition of cetuximab) versus treatment not based on marker (none 
of the patients receiving cetuximab independent of marker status) results in testing 
a hazard ratio of 1.14 and would require approximately 2580 patients. These calcu-
lations are based on using the preceding parameters and statistical assumption for 
the overall hypothesis and a one-sided α = 0.025.

We investigated the effect of the marker prevalence on the ratio of the number of 
patients randomized in the randomize-all design and the number of patients screened 
in the targeted design [7]. The number of patients required to be screened in the tar-
geted design is given by the ratio of the number of patients randomized in the targeted 
design divided by the fraction of M+ patients. If the fraction of M+ patients is equal 
to one, the targeted and the randomize-all design are equivalent. For a small fraction 
of M+ patients the mass of the marker distribution is centered at very low marker 
values. Scenarios 1 and 5 are similar. In the case of no marker (Scenario 1) and a 
constant difference in treatment efficacy independent of the marker value, this ratio 
increases linearly with the fraction of M+ patients. In Scenario 5 this ratio increases 
too, but is not linear as the difference in response is not constant. Scenarios 2, 3, 
and 4, the scenarios with an underlying predictive marker, are also similar. The ratio 
of the number of patients randomized in the randomize-all design and the number 
of patients screened in the targeted design gets larger with smaller M+ prevalence. 
If the marker prevalence is small in those scenarios we have to screen more patients 
in the targeted design. However, we have to randomize even more patients in the 
randomize-all design than screen in the targeted design, as the treatment effect gets 
diluted.

17.5  DISCUSSION

We evaluated three different trial designs commonly considered for situations when 
an underlying predictive marker is hypothesized. We consider the randomize-all 
design, the targeted design and the strategy design. We also evaluate testing both, 
the overall and the targeted hypothesis in the randomize-all design. Even if a prom-
ising marker is found in the laboratory, it is not clear that this marker is an actual 
predictive marker for the treatment of patients or that the new treatment under inves-
tigation only helps marker-positive patients. We investigated five realistic scenarios, 
considering several different types of predictive markers, a prognostic marker, and 
no marker. Since many biologic markers are continuous in nature, we assume an 
underlying continuous marker distribution rather than a discrete distribution as has 
been used in the current literature. This is more realistic for most markers and thus 
allows for a more precise design and analysis of clinical trial data. It also allows 
us to determine the effect of range of cut-points on the performance of the various 
designs. For a newly developed marker or assay the cut-point has often not been 
determined precisely. This formulation also allows us to take into account marker 
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prevalence in the patient population by shifting the underlying marker distribution. 
Finally, while the results are stated for a single continuous marker, the same strategy 
holds for a linear combination potentially based on two or more biologic markers. 
For instance, the continuous marker could be a linear combination of gene expres-
sion measurements.

The large impact on power we have observed due to differences in treatment effi-
cacy as a function of marker values and fraction of selected marker positive patients 
highlights the need for a thorough investigation of properties prior to committing to 
a specific design and initiating a phase III study with targeted agents. If the actual 
underlying scenario (marker response distribution) is known, it is easy to decide 
on the most appropriate trial design using our results. In reality, however, the true 
underlying marker response distribution is often unknown and we have to consider 
several possibilities.

The SWOG trial S1007 provides a recent example when using a continuous 
marker is essential. S1007 is a phase III randomized clinical trial of standard adju-
vant endocrine therapy ± chemotherapy in patients with 1–3 positive nodes, hormone 
receptor positive and HER2-negative breast cancer with recurrence score (RS) of 25 
or less. Women who have been diagnosed with node-positive (1–3 positive nodes), 
HER2-negative, endocrine-responsive breast cancer who meet the eligibility crite-
ria will undergo testing by the 21-gene RS assay (OncotypeDX®). Enough patients 
will initially be tested to obtain a total of 4000 eligible women with RS of 25 or 
less accepting to be randomized. The primary question is to test whether chemo-
therapy benefit (if it exists) depends on the RS. Thus, the underlying hypothesis 
is that there is an interaction of chemotherapy and RS. This trial tests Scenario 4 
(interaction) versus Scenario 5 (prognostic marker). The interaction is tested in a 
Cox regression model of disease-free survival. If the interaction of chemotherapy 
and the linear RS term is statistically significant (two-sided α) and there is a point of 
equivalence between the two randomized treatments for some RS value in the range 
0–25, then additional steps are undertaken. Based on simulation studies, power to 
find a significant interaction with an equivalence point is 81%. Assuming there is 
a significant predictive effect of RS on chemotherapy benefit, a clinical cut-point 
for recommending chemotherapy will be estimated. This estimated cut-point is the 
upper bound of the 95% confidence interval on the point of equivalence. If there is no 
statistical interaction between linear RS and chemotherapy, then chemotherapy will 
be tested in a Cox model adjusting for RS, but without an interaction term. This test 
will be conducted at a one-sided α = 0.025 since chemotherapy would be expected to 
improve outcomes. Chapter 19 in this handbook describes this trial in greater detail.

We suggest some general guidelines to help with the decision on which trial design 
is most appropriate. In general, the targeted design performs the best in all scenarios 
with an underlying true predictive marker. There is only one exception which is in 
the case of a prognostic marker with constant odds ratio between treatment arms 
(Scenario 5) when the targeted design has less power than the randomize-all design, 
but only for the extreme marker values when the cut-point is shifted such that most 
patients are marker negative. In addition, more patients still need to be assessed for 
their marker status compared to the randomize-all and the strategy designs. If the 
new treatment may also help marker-negative patients there is the question whether 
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the targeted design is appropriate. The strategy design tends to be inefficient to com-
pare the efficacy difference of two treatments as patients in different randomized 
arms are treated with the same therapy. The randomize-all design performs as well 
or in most cases better than the strategy design except for the hypothetical total 
interaction model on Scenario 4, where the overall treatment effect is null. We thus 
recommend using the randomize-all design over the strategy design except for cases 
where the actual strategy hypothesis is of greater interest than the efficacy hypoth-
esis or if almost all patients in the marker-based treatment arm receive the experi-
mental treatment T2.

We recommend using the targeted design if it is known with little uncertainty 
that the new treatment does not help all patients to some degree, if the marker preva-
lence (indicating patients helped by the new therapy) is small, and if the cut-point 
of marker-positive and marker-negative patients is relatively well established. If the 
cut-point is not well established yet, the power of the study can be severely compro-
mised. Likewise, if only the most extreme marker values are classified as marker 
positive, but if the treatment is more broadly effective, then some patients who are 
classified as marker-negative will not get randomized even though they would have 
benefited from the new treatment.

Scenario 3 is a very likely scenario. In this scenario the treatment works better 
for M+ subjects but also benefits M− subjects, for instance to a lesser extent. Even 
if one pathway of action is well understood for M+ patients, there is always the pos-
sibility that the new agent works via a different pathway for the M− patient. This has 
recently been observed in the case of Her-2 over-expression in breast cancer, there 
is still the possibility that the new therapy under investigation works through other 
pathways not yet investigated [9]. If there is the possibility that the new treatment 
helps marker-negative patients, that the cut-point determining marker status has not 
yet been well established, and if the marker prevalence is large enough to make 
the study effective, we recommend using the randomize-all design with the power 
adjusted for multiple comparison such that both the overall and the targeted hypoth-
esis can be tested. Our results show that if there is an underlying predictive marker 
and if the cut-point determining marker status is not too far off the correct cut-point, 
the targeted hypothesis and the overall hypotheses (with split alpha-level) achieve 
similar power as the overall hypothesis tested at α = 0.05 and thus both hypotheses 
can be tested with only a modest increase in sample size compared to testing the 
overall hypothesis alone in the randomize-all design. In addition, we found that even 
in the case of extreme (large or small) marker prevalence both the targeted and the 
overall hypotheses (with split alpha-level) achieve comparable power as the overall 
hypothesis tested at α = 0.05 and again both hypotheses can be tested with only a 
modest increase in sample size compared to testing the overall hypothesis only in 
the randomize-all design.
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18 Adaptive Trial Designs

Brian P. Hobbs and J. Jack Lee

18.1  INTRODUCTION

Adaptive designs can be broadly defined as all designs that allow mid-trial modifica-
tions based on interim information from sources both internal and external to the 
trial. Methodology has been proposed to facilitate adaptivity for prospective modifi-
cation to many features of clinic trial design.1–3 For example, eligibility criteria can be 
modified to enrich the study population and enhance the chance of success. Adaptive 
randomization (AR) methods have been proposed based upon baseline covariates,4–6 
outcomes,7–12 and biomarkers.13–16 Several authors have proposed designs for phase I 
trials that use methods for adaptively allocating patients to dose levels.17–23 Methods 
have been proposed for adding or dropping study arms (or doses) or sequential stop-
ping,24–33 for adaptive sample size reestimation,34–40 adaptively modifying study end-
points or hypotheses,41–43 and “seamless” designs that even adaptively alter the trial’s 
phase.44–49

The use of adaptive designs has gained much attention lately thanks to its poten-
tial for improving study efficiency by reducing sample size, facilitating higher statis-
tical power for identifying efficacious drugs or important biomarkers associated with 
the drug efficacy, and treating more patients with more effective treatments during 
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the trial. As the data accrue, these designs allow learning about the efficacy and 
safety profiles of the experimental treatment under study to guide the ongoing trial, 
which reflects actual clinical practice. Both the Center for Biologics Evaluation and 
Research (CBER) and the Center for Drug Evaluation and Research (CDER) at the 
U.S. FDA have issued guidance documents for the use of adaptive methods in clini-
cal trials.3 In addition, the Center for Devices and Radiological Health (CDRH) also 
issued guidance for applying Bayesian methods to the design and analysis of clinical 
trials,50 which is closely related to the use of adaptive designs.

The main part of this chapter is divided into three sections. In Section 18.2 we 
discuss frequentist methods for sequential analysis and sample size reestimation. 
Then in Section 18.3 we consider Bayesian approaches for interim monitoring, AR, 
seamless phase II/III designs, and hypothesis testing. In addition, we describe two 
recent high profile large scale clinical trials that highlight the potential impact of 
new innovative adaptive clinical trial designs that use Bayesian methods. Finally, 
Section 18.4 briefly discusses practical issues that arise when implementing adaptive 
design methods in clinical trials.

18.2  FREQUENTIST PERSPECTIVE

Classical analysis of outcomes observed in a randomized controlled trial is based 
upon the frequentist perspective of probability as long-run frequency behavior. To 
ensure a high probability of making correct inference, a clinical trial must enroll 
sufficient number of patients to satisfy the prespecified Type I and Type II error 
constraints. The frequentist approach regards parameters as fixed and not subject 
to probability distributions. Probability is assigned on the space of the observed 
data through a model (or likelihood) by assuming fixed values of the unknown 
parameters. In the frequentist hypothesis-testing framework, the P-value is defined 
as the probability of observing events as extreme as or more extreme than the 
observed data, given that the null hypothesis (H0) is true. The P-value is not the 
probability that the null hypothesis is true, but rather a measure of evidence against 
the null hypothesis, with smaller P-values corresponding to stronger evidence. 
Conventionally, P ≤ 0.05, has been used to indicate that the data provide a sta-
tistically significant result. However, if analyses of two distinct designs (e.g., dif-
ferent sample sizes) testing the same null hypothesis result in identical P-values, 
the amount of “evidence” against the null hypothesis supplied by the two studies 
need not be equivalent.51 Since P-values are computed conditionally with respect 
to possible, yet unobserved, values of the experimental data, they depend upon the 
experimental design. Consequently, frequentist designs lack flexibility. This lack of 
design flexibility exposes a fundamental limitation of frequentist-based methods, 
because statistical inferences are made by computing the probability of observing 
data conditioned on a particular design and sampling plan. When there is a dispar-
ity between the proposed design and the actual trial conduct (more the norm than an 
exception in clinical trials), adjustments must be made to all statistical inferences.

In Section 18.2.1 we consider sequential approaches that enable stopping at interim 
analyses while maintaining Type I error at the preplanned rate. Frequentist sample 
size calculations depend upon the accurate assessment of uncertain parameters, but 
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potential inaccuracies in these assessments are not formally acknowledged with 
prior distributions as in the Bayesian framework. Section 18.2.2 considers methods 
for reassessing these parameters at interim stages of the trial in order to achieve the 
preplanned operating characteristics. Many authors have compared Bayesian and 
frequentist approaches to clinical trial design.52–58

18.2.1  Sequential Analysis

Most clinical trials are designed with a fixed sample size (or expected number of 
events for time-to-event studies). This is in contrast to sequential designs in which 
the sample size is not fixed by design but depends on the accumulating results of 
the study. Sequential designs are used to minimize the number of patients enrolled 
into the trial by stopping early if interim analysis of the primary outcome suggests 
unequivocal evidence of treatment benefit or harm, or clear absence of treatment 
differences (i.e., equivalence). Often these designs assume that the outcomes can 
be assessed quickly relative to patient accrual and the duration of the trial. Trials 
may also be stopped early by data safety monitoring board for reasons unrelated to 
interim analysis of the primary outcome, such as unexpected toxicities that prevent 
the treatment from being used, poor enrollment, insufficient follow-up, or poor com-
pliance to one or more of the treatments.

The simplest sequential trial designs24 involve patients enrolling into the trial in 
pairs and randomly allocated to each of two treatments (A or B). The pairs need not 
necessarily be matched. After the outcomes are observed for each pair of patients, 
a decision is made to continue randomizing or stop the study. This is referred to 
as an “open” sequential plan since, in theory, randomization continues indefinitely. 
A subsequent variation or “closed” plan59 restricts the maximum enrollment. A con-
sequences of repeated interim analyses of accumulating trial data is Type I error 
inflation. Both the “open” and “closed” plans involve the determination of boundary 
lines based on the Type I and Type II error rates and the proportion of untied pairs 
with preference for one of the treatments.

Given the limitations of the simple sequential designs, several alternative group 
sequential approaches to interim monitoring that control for the Type I error rate have 
been proposed. These designs require that interim analyses occur at predetermined 
sample sizes. Consider a trial designed to test the null hypothesis H0:δ = 0, and let α 
denote the desired overall Type I error rate. Suppose the trial is designed to conduct 
J interim analyses after outcomes for nj patients have been observed and denote the 
associated critical value for the jth analysis by Zj, j = 1,…, J. The frequentist approach 
to group sequential trial design in essence involves methods for bounding the critical 
values at each interim analysis by scalars c1,…, cJ, such that

	 f c Z c Z cJ J( )| |< ,| |< , ,| |< | = = − .Z1 1 2 2 0 1… δ α 	 (18.1)

That is H0 is rejected and the trial is terminated at the jth interim analysis if |Zj| ≥ cj.
Haybittle25 and Peto et al.26 propose requiring very large critical value, such as 

cj = 3.3 for stopping the trial at interim, j < J, then using the conventional cJ = 1.96 
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at the final analysis. Pocock27 proposed dividing the sample size into J equal-sized 
groups and testing the null hypothesis using the same critical value at each interim 
analysis, cj = c*(α,j), where c*(α,j), a function of the number of interim analyses 
and α, preserves the overall Type I error rate at α. O’Brien and Fleming28 propose 
using a declining critical value, c b J jj = * / , where b* is a scalar that preserves 
the overall Type I error rate at α. Stopping the trial at an earlier interim analysis 
requires stronger evidence against the null hypothesis since c cj jʹ >  for all j′ < j. For 
the final analysis, after outcomes are observed for all planned nJ patients, cJ is very 
close to 1.96.

To provide flexibility in monitoring, Lan and DeMets60 proposed the “alpha 
spending function” approach to interim analyses which does not require that the 
number of interim analysis be prespecified nor that an equal number of outcomes 
are observed between each analysis; also see DeMets and Lan.29 The spending func-
tion defines the rate at which the overall Type I error is used up at repeated interim 
analyses. To use this approach, one has to define the scale on which information is 
accumulated. In trials with morbidity/mortality outcomes in which time-to-event 
methods will be used for analysis, the information accumulated corresponds to the 
number of events observed, not the number of patients under follow-up. For further 
discussion of group sequential methods see Friedman et al.5 A number of authors 
have recently proposed modifications to the conventional approach to group sequen-
tial analysis.61–63

18.2.2  Adaptive Sample Size Reestimation

Traditional methods for clinical trial design fix the sample size (or target number 
of events) to deliver a prespecified power to detect a clinically meaningfully treat-
ment effect size for fixed values of “nuisance” parameters. The nuisance param-
eters are usually estimates of the variability of the outcome or the underlying event 
rate. These are assessed using available pretrial information in the design stage. 
Sample size formulation in the frequentist paradigm is based upon the convergence 
of various test statistics to standard (typically normal) probability distributions for 
large sample sizes. For example, for continuous, approximately normally distrib-
uted responses and a test of H0:μ1 = μ2 versus H1:μ1 ≠ μ2, the sample size per group 
required by a standard frequentist design to deliver power 1 − β and Type I error rate 
α satisfies
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where
Δ = μ1 − μ2, the true change in mean response between the treatment and control 

groups
σ2 is the common variance of the assumed distributions of responses to which 

observations from both groups belong
Zγ denotes the 1 − γ-quantile of the standard normal probability distribution function
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Since we do not know σ2, it must be assumed or estimated in some capacity from 
prior data. Similarly, since Δ is also unknown, one typically chooses a value that 
is pragmatically attainable, yet small enough to distinguish between groups with 
truly disparate conditions. A frequentist design would fix Δ at the minimally clin-
ically significant difference (i.e., the smallest improvement the clinician would 
consider meaningful), and “powers” the trial to detect a true effect difference of 
Δ or greater.

At interim stages of the trial, investigators would have gained additional informa-
tion to assess these parameters. To avoid sample size under- or overestimation several 
proposals for sample size reestimation based on interim estimates of the variability 
have been offered.35,37–39 The general intention of these methods is to preserve the 
prespecified power/Type I error in case of a priori misspecification of the “nuisance” 
parameters. The final analysis must account for the reassessment procedure in order 
to avoid inflating the Type I error rate.

Posch and Bauer38 propose an adaptive procedure for sample size reassessment 
that incorporates sequential stopping rules for early rejection and acceptance of the 
null hypothesis in a two-stage design. Consider a two-stage test of the one-sided 
hypothesis H0:Δ = μ1 − μ2 = 0 versus H1:Δ > 0 for the difference of means from two 
independent normal populations assuming a common unknown variance σ2. Denote 
the sample sizes in each treatment arm for the first and second stages by n1, n2 (bal-
anced over treatment arms). Denote the one-sided P-values calculated before and 
after the adaptive interim analysis by p1 and p2. Suppose that the trial proceeds to 
the second stage, only if α1 ≤ p1 < α0, where the null hypothesis is rejected at the first 
stage if p1 < α1, and accepted if p1 ≥ α0. At the second stage, the null hypothesis is 
rejected only if p c p2 12< α / , where cα2 is based on Fisher’s product criterion. To obtain 
an α level test, α0, α1, and α2 must satisfy

	 α α α αα1 0 12+ − = ,c {log( ) log( )} 	 (18.3)

where cα αχ2 0 5 4 1
2= − . , −exp( ) and χ α4 1

2
, −  denote the 1 − α quantile of the χ2 distribution 

with 4 degrees of freedom. For fixed α2, α0 can be expressed as a monotonically 
decreasing function of α1,
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where α α0 2 1( )c =  and α0(α) = α
The product test may reject the null hypothesis after the second stage even if a 

fixed sample test of the pooled data at the same α-level does not. Posch and Bauer38 
suggest aiming at a prespecified conditional power, (power of the remainder of the 
trial given the observed information in the first stage), 1 − β, at the final analysis by 
choosing the sample size for the second stage using fixed sample size calculations 
with modified significance level equal to c pα2 1/ . Therefore, if α1 < p1 < α0 after the 
first stage, then n2 can be chosen to satisfy
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where 1
2σ̂  is the estimated variance from the first stage. Therefore, the sample size in 

the second stage depends on the prespecified treatment effect size under the alterna-

tive hypothesis Δ, the observed variance in the first stage 1
2σ̂ , and the P-value from 

the first stage such that the power conditional on the event that the second stage is 
necessary is near 1 − β. For n1 → ∞ such that σ̂1 converges to σ almost surely, the 
conditional power for the second stage converges almost surely to 1 − β.

In order to obtain an overall power of 1 − β, the power conditional on stopping 
at the first stage has to be equivalent to the conditional power for the second stage 
analysis, 1 − β. Therefore, under the alternative hypothesis β must satisfy
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For given α0 and α1, the sample size for stage 1 follows from (18.6). Denote the dif-
ference between the sample means in the two groups at the first stage by Δ̂ . For large 
n1, (18.6) is approximated by
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Let ξ = Δ(n1)1/2/(21/2σ). Then ξ satisfies
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where Φ(μ,σ)() denotes the cumulative distribution function of the normal dis-
tribution with mean μ and standard deviation σ. Posch and Bauer38 denote the 
unique solution of (18.8) (solved numerically) by function ξ(α0,α1), defined for all 
α α α α αα α α1 0 1 12 0 1 1∈ , , ∈ , − ,,{ } { }( )c  and fixed β < 1/2, such that if the sample size for 
the first stage is chosen by
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where σ̂0 denotes the fixed prestudy estimate of σ. The power conditional on stop-
ping in at the first stage is 1 − β, given that the variance estimate is indeed correct. 
If early stopping after the first stage is not allowed (α0 = 1), applying the sample size 



271Adaptive Trial Designs

reestimation procedure based on the conditional power of 1 − β leads to an expected 
overall power that is greater than 1 − β.

Fisher34 and Shen and Fisher36 propose so-called self-designing clinical trials 
based on a sequential monitoring method that uses the trial’s accumulating data to 
assign a “weight” to the next patient. The method uses the interim results to expand 
or contract the implicit sample size in stages while maintaining the Type I error 
rate. The approach does not require that the maximum sample size is specified in 
the design stage. Yin and Shen40 expand the approach to correlated data using the 
general estimating equations framework.

18.3  BAYESIAN METHODS

The general Bayesian approach involves combining prior knowledge about the distri-
butions of the unknown model parameters with the observed data to provide direct 
estimation of “evidence” for the parameter of interest using posterior probabilities. 
In contrast, frequentist hypothesis tests based on P-values offer indirect evidence for 
the parameters of interest that is based on conditional probabilities of the observed 
data given a fixed values of the parameters. The Bayesian approach to inference 
enables relevant existing information to be formally incorporated into the statis-
tical analysis. This is done through the specification of prior distributions, which 
summarize our preexisting understanding or beliefs regarding any unknown model 
parameters θ = (θ1,…, θK)′. Inference is conducted on the posterior distribution of θ 
given the observed data y = (y1,…, yN)′, via the Bayes rule as
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This simple formulation assumes the prior p(θ) is fully specified. However, when 
we are less certain about p(θ), or when model variability must be allocated to 
multiple sources (say, centers and patients within centers), a hierarchical model 
may be more appropriate. One of the greatest contributions of Bayesian statistics 
to biomedical research is the use of hierarchical models to borrow strength across 
related subpopulations. This approach places prior distributions on the unknown 
parameters of previously specified priors in stages. Posterior distributions are 
again derived by Bayes theorem, where the integral in the denominator is more 
difficult to compute, but remains feasible using modern Markov chain Monte Carlo 
(MCMC) methods.54,57,64

Another advantage of the Bayesian approach is the ability to find probability dis-
tributions of as yet unobserved results. Often the goal of a statistical analysis is to 
predict how the system under study will behave in the future. Let yN + 1 denote a future 
observation that is conditionally independent of y given the model parameters θ. The 
posterior predictive distribution for yN + 1 follows as

	
p y f y p dN N( ) ( ) ( )+ +| = | | .∫1 1y yq q q



272 Handbook of Statistics in Clinical Oncology

The posterior predictive distribution synthesizes information concerning the likely 
value of a new observation, given the likelihood, prior, and the data observed so far.

Generally speaking, the goal for conducting clinical trials is to provide evidence 
for estimating or making inference on the unknown parameter of interest, for exam-
ple, the treatment efficacy. Bayesian methods assume that all unknown parameters 
follow certain statistical distributions. Before the trial begins, available informa-
tion on the parameter can be incorporated into the prior distribution. By conducting 
a clinical trial, new data are collected to refine the estimate of the parameter by 
computing the posterior distribution which can be used for the updated estimator 
or inference making. Clinical trials can be considered as an iterative learning pro-
cess. The Bayesian framework is adaptive in nature and ideal for learning. Recently 
there have been several articles 51,55,65,66 discussing fundamental concepts of applying 
Bayesian methods in the design and analysis of clinical trials. Specific examples are 
given hereafter.

Over the past two decades many authors have proposed various Bayesian clinical 
trial designs that incorporate adaptive features. The continual reassessment method 
(CRM)18 seems to have been the first Bayesian model-based phase I design intro-
duced in the literature. Details of the CRM23 and other seminal works in this area 
have been thoroughly investigated in the literature.7,8,30,31,67,68 The proposed method-
ologies differ widely by complexity, attention to practical details, use of predictive 
probabilities, inclusion of decision theoretic arguments, sequential decisions, and 
more. Bayesian methods offer a different approach for designing and monitoring 
clinical trials by permitting calculation of the posterior probability of various events 
given the data. Bayesian design conforms to the likelihood principle,69 which states 
that all information pertinent to the parameters is contained in the data and is not 
constrained by the design. Bayesian methods are particularly appealing in clinical 
trial design because they inherently allow for flexibility in trial conduct and impart 
the ability to examine interim data, update the posterior probability of parameters, 
and accordingly make relevant predictions and sensible decisions.66 Furthermore, 
the pioneers of Bayesian methods in medical research argue that in addition provid-
ing more efficient designs of trials and of drug development programs, the Bayesian 
approach is more ethical for physicians who participate in randomized clinical tri-
als.52,53 Given the aforementioned advantages, the Bayesian approach has become a 
standard in designing clinical trials at the University of Texas MD Anderson Cancer 
Center70 and have generated considerable interest elsewhere.

Many Bayesian clinical trial designs can be described as follows. The parameter of 
interest is defined based on the primary objective of the clinical trial. Relevant prior 
distributions of the parameters should be elicited before the trial. Data are collected 
during the trial. Posterior probabilities of clinically meaningful events are computed. 
Thresholds on these posterior probabilities are constructed to define decision rules. 
The thresholds are calibrated to attain certain desired frequentist properties, such as 
the control of Type I and Type II error rates, mean sample size, etc. In the context 
of clinical trial design such frequentist summaries, that is, probabilities and means 
under repeat experimentation of the design quantities of interest, are also known as 
frequentist operating characteristics. Berry et al.58 discuss the frequentist operating 
characteristics of many Bayesian designs. In summary, posterior probabilities can 
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be used to construct a valid inference with desirable frequentist properties. Such 
approaches are sometimes referred to as “proper Bayes” methods and are widely 
used. The proper Bayes approach uses informative prior distributions based on 
available evidence and summaries of the posterior distributions to reach conclusions 
without explicit incorporation of utility functions, as in the decision-theoretic frame-
work.54 A typical example is sequential stopping for futility and efficacy30,31 which 
is discussed in Section 18.3.1. Bayesian methods are also used to assign patients to 
better performing treatments, as discussed in Section 18.3.2. Seamless phase II/III 
designs are discussed in Section 18.3.3. Bayesian hypothesis testing methodology 
is introduced in Section 18.3.4. In Section 18.3.5 we discuss two recent high profile 
large-scale clinical trials that highlight the potential impact of new innovative adap-
tive clinical trial designs that use Bayesian methods.

18.3.1  Interim Monitoring

One of the advantages of the Bayesian approach to inference is its flexibility to 
include sequential stopping compared to the more restrictive requirements under a 
frequentist approach. Stopping rules do not affect a Bayesian inference given that 
they are a priori independent of the parameters. In this case posterior inference 
remains unchanged regardless of the reason why a trial is stopped.

18.3.1.1  Posterior Inference
Thall and Simon30 and Thall et al.31 introduce a class of phase II Bayesian clinical 
trial designs that include stopping rules based on decision boundaries for clinically 
meaningful events. To illustrate, let yi ∈ {0,1} denote an indicator for response for 
the ith patient. Let θE and θS denote the probability of response for the experimental 
therapy (E) and standard of care (S), respectively. Many phase IIA studies do not 
include randomization to control. In such cases we assume that either θS is known, 
or at least that an informative prior distribution p(θS) is available. Let y = (y1,…, yn) 
denote all data up to patient n. Bayes rule allows for the direct evaluation of the 
posterior probability that the response probability under the experimental therapy 
exceeds that under the standard of care by at least δ, which follows as

	
π θ θ δn E Sp= > + .( )y 	 (18.10)

The offset δ is fixed by the investigator, and should reflect the minimum clinically 
meaningful improvement. It also depends on the nature of the response, the dis-
ease, and the range of θS. The probability πn is updated after each patient (or patient 
cohort), and is subsequently used to define sequential stopping rules reminiscent of 
the form
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The decision boundaries {(Ln,Un), n = 1,2,…} are parameters of the design. They deter-
mine the design’s frequentist operating characteristics. For example, a “symmetric” 
rule could use Ln ≡ 0.05 and Un ≡ 0.95 for all n.

The considerations for choosing stopping boundaries in the frequentist group 
sequential designs discussed in Section 18.2.1 apply when designing a clinical trial 
from the Bayesian perspective. In practice, one starts with a reasonable first choice, 
evaluates frequentist operating characteristics, and iteratively adjusts the decision 
boundaries until desired operating characteristics are achieved. For example, we might 
start with Ln = 0.1 and Un = 0.8. Next we compute operating characteristics. We might 
consider two scenarios: a null scenario S0 with θE = θS and an alternative scenario S1 
with θE > θS + δ as the simulation truth. Type I error is then the probability with respect 
to repeat experimentation under S0 of ending the trial with the conclusion that E is 
promising, while power is the probability, with respect to repeated simulation of pos-
sible trial histories under S1, that the trial ends with the conclusion that E is promis-
ing. Suppose that the Type I error implied by rule (18.11) is 0.08, thus larger than the 
desired. The upper bound Un needs to be increased (e.g., to Un = 0.85) to reduce the 
Type I error. Now we might find an acceptable Type I error under S0, but a power of 
only 0.7 under S1. To increase power we might now try to reduce the upper bound, say 
to Un = 0.825 for example. A sequence of such iterative corrections on Ln, Un, and N 
will eventually lead to a set of bounds that achieve desirable operating characteristics.

Thall et al.31 extend the design from a single outcome to multiple outcomes, 
including, for example, an efficacy and a toxicity outcome. This allows us to con-
sider the phase II analog of phase I–II dose-finding trials that trade off efficacy and 
toxicity following the approach of Thall and Simon.21 In our present context, let CR 
denote an efficacy event (e.g., complete response) and TOX a toxicity event. Thall 
and Simon30 describe an example with K = 4 elementary events {A1 = (CR,TOX), 
A2 = (noCR,TOX), A3 = (CR,noTOX), A4(noCR,noTOX)}. Efficacy is CR = A1 ∪ A3, 
while toxicity is TOX = A1 ∪ A2, etc. The design again involves stopping boundaries 
as in (18.11), but now using posterior probabilities of CR and TOX.

Let {pT(A1), pT(A2), pT(A3), pT(A4)} denote the (unknown) probabilities of the four 
elementary events A1, A2, A3, and A4 under treatment T, where T ∈ {E,S} (experi-
mental or standard therapy). Suppose we assume a Dirichlet prior for these prob-
abilities. Under standard therapy, we assume a priori that (ps1,…, ps4) ∼ Dir(θs1,…, 
θs4). Similarly, under experimental therapy we assume (pE1,…, pE4) ∼ Dir(θE1,…, θE4), 
where θs and θE are fixed hyperparameters. Let yi

n denote the number of patients 
among the first n who report event Ai and let y y yn n n= , ,( )1 4… . The conjugate Dirichlet 
prior allows for easy posterior updating, since
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Here we used the fact that the beta is the special case of a Dirichlet distribution having 
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just two probabilities. Similarly, p TOX yE
n
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n
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distributions for ηS(.) remain unchanged throughout as p{ηS(TOX)} = Beta(θS1 + θS2, 
θS3 + θS4), and similarly for p{ηS(CR)}.

As before, thresholds on posterior probabilities determine sequential stopping. 
We track the two posterior probabilities
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After each patient cohort, the posterior probabilities πn(·) are updated and compared 
against thresholds (in this sequence):
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The evaluation of πn(CR) requires integration with respect to the two independent 
beta-distributed random variables ηE(CR) and ηS(CR), and similarly for πn(TOX).

The stopping rules discussed previously are based on a binary response variable. 
The nature of a response of this sort varies across studies. For example, a typical 
response might be an indicator for patient survival beyond 6 months. Response 
variables based on a dichotomized continuous outcome involve a loss of informa-
tion compared to the original data. Their main advantage is increased robustness; 
it is easy to be very general about a probability model for a binary outcome. By 
contrast, inference is often very sensitive with respect to the choice of a specific 
parametric form for the distribution of a continuous outcome and the correspond-
ing cutoff values. On the other hand, the likelihood function for the continuous out-
come is more informative (i.e., more peaked) and allows more decisive inference 
with fewer observations. In other words, we achieve faster learning with the same 
number of patients. Also, in some studies it is scientifically inappropriate to reduce 
the outcome to a dichotomized binary variable, for example, a quadratic dose–
response curve. Another limitation of binary outcomes is their inherent delays. For 
example, we might have to wait up to 100 days after treatment to record a response 
when the binary outcome is defined as transplant rejection within 100 days.

Thall et al.32 propose study designs that allow early stopping for futility and/or 
efficacy based on a time-to-event outcome. Assume that an event time Ti is recorded 
for each patient, say, time to disease progression (TTP). We assume a parametric 
model for the sampling distribution, say, an exponential distribution. Let μS denote 
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the mean event time under the standard of care, and let μE denote the unknown mean 
event time under the experimental therapy. Rather than reducing Ti to a binary out-
come (such as TTP > 6), the authors replace the posterior probabilities πn in (18.10) 
with corresponding probabilities on the μ scale, for example,

	
π μ μ δn E Sp= > + .( )y

On the basis of πn they define stopping rules similar to (18.11): for example, stop for 
futility when πn < Ln, stop for efficacy when πn > Un, and continue enrollment other-
wise. As before, the tuning parameters δ and {(Ln,Un),n = 1,2,…} are chosen to achieve 
desired operating characteristics. A public domain software implementation of this 
approach is available from http://biostatistics.mdanderson.org/SoftwareDownload/. 
Thall et al.32 also discuss extensions to multiple event times, such as TTP, severe 
adverse event, and death.

18.3.1.2  Predictive Probability*
Given the observed data and assuming that the current trend continues, the predic-
tive probability of concluding superiority/inferiority at the end of the trial can be 
computed should the trial continue to enroll patients until it reaches the planned 
sample size. Computing predictive probability can be a useful tool for interim moni-
toring during the trial such that an informative decision can be made based on the 
observed data. The concept of predictive probability can also be applied to clinical 
trial design, for example, consider a phase IIA trial designed to evaluate the response 
rate p for a new drug by testing the hypothesis H0:p ≤ p0 versus H1:p ≥ p1. Suppose 
we assume that the prior distribution of the response rate, π(p), follows a Beta(a0,b0) 
distribution. The beta family of densities has mean equal to a0/(a0 + b0). The quantity 
a0 + b0 characterizes “informativeness.” Since the quantities a0 and b0 can be con-
sidered as the numbers of effective prior responses and nonresponses, respectively, 
a0 + b0 can be thought of as a measure of prior precision, a larger sum results in a 
more informative the prior.

Suppose we set a maximum number of accrued patients Nmax and assume 
that the number of responses X among the current n patients (n < Nmax) follows a 
binomial(n,p) distribution. By the conjugacy of the beta prior and binomial likeli-
hood, the posterior distribution of the response rate follows another a beta distribu-
tion, p|x ∼ Beta(a0 + x,b0 + n − x). The predictive probability approach is based upon 
interim assessment of the future probability of a positive conclusion at the end of 
study given the current observed data. Let Y be the number of responses in the poten-
tial m = Nmax − n future patients. Suppose our design is to declare superiority (efficacy) 
if the posterior probability of p exceeding some prespecified level p0 is greater than 
some threshold θT . Marginalizing p out of the binomial likelihood, it is well known that 
Y follows a beta-binomial distribution, Y ∼ Beta-Binomial(m,a0 + x, b0 + n − x). When 
Y = i, the posterior distribution of p|(X = x,Y = i) is Beta(a0 + x + i,b0 + Nmax −  x − i). 

*	J. J. Lee and D. D. Liu, A predictive probability design for phase II cancer clinical trials, Clinical 
Trials, 5(2):93–106, 2008. SAGE Publications pp. 96 and 97 (section titled: Predictive probability 
approach in a Bayesian setting), 2008.
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The predictive probability (PP) of trial success can then be calculated as follows.56 
Letting Bi = Pr(p > p0|x,Y = i) and Ii = (Bi > θT), we have
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The quantity Bi is the probability that the response rate is larger than p0 given x 
responses in n patients in the current data and i responses in m future patients. 
Comparing Bi to a threshold value θT yields an indicator Ii for considering if the 
treatment is efficacious at the end of the trial given the current data and the potential 
outcome of Y = i. The weighted sum of indicators Ii yields the predictive probabil-
ity of concluding a positive result by the end of the trial based on the cumulative 
information in the current stage. A high PP means that the treatment is likely to be 
efficacious by the end of the study, given the current data, whereas a low PP sug-
gests that the treatment may not be efficacious. Therefore, PP can be used to deter-
mine whether the trial should be stopped early due to efficacy/futility or continued 
because the current data are not yet conclusive.

Lee and Liu56 define a decision rule by introducing two thresholds on PP as fol-
lows: if PP < θL, stop the trial and reject the alternative hypothesis; if PP > θU, stop 
the trial and reject the null hypothesis; otherwise continue to the next stage until 
reaching Nmax patients.

Typically, θL is chosen as a small positive number and θU as a large positive 
number, both between 0 and 1 (inclusive). PP < θL indicates that it is unlikely the 
response rate will be larger than p0 at the end of the trial given the current infor-
mation. When this happens, we may as well stop the trial and reject the alternative 
hypothesis at that point. On the other hand, when PP > θU, the current data suggest 
that, if the same trend continues, we will have a high probability of concluding 
that the treatment is efficacious at the end of the study. This result, then, provides 
evidence to stop the trial early due to efficacy. By choosing θL > 0 and θU < 1.0, 
the trial can terminate early due to either futility or efficacy. For phase IIA trials, 
we often allow for early stopping due to futility (θL > 0), but not due to efficacy 
(θU = 1.0).56

Following Lee and Liu,56 suppose an investigator plans to enroll a maximum of 
Nmax = 40 patients into a phase II study. At a given time, x = 16 responses are observed 
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in n = 23 patients. What is P(response rate > 60%)? Assuming a vague Beta(0.6,0.4) 
prior distribution on the response rate p and letting Y be the number of responses in a 
future m = 17 patients, Y’s marginal distribution is beta-binomial(17,16.6,7.4). At each 
possible value of Y = i, the conditional posterior of p follows a beta distribution, p|x, 
Y = i ∼ Beta(16.6 + i,24.4 − i). In this example we can set θT = 0.90.

Table 18.1 shows that when Y lies in [0,11], the resulting P(response rate > 0.60) 
ranges from 0.0059 to 0.8415. Therefore, one would conclude H0 for Y ≤ 11. On the 
other hand, when Y lies in [12,17], the resulting P(response rate > 0.60) ranges from 
0.9089 to 0.9990. In these cases we would instead decide in favor of H1. The pre-
dictive probability is then the weighted average (weighted by the probability of the 
realization of each Y) of the indicator of a positive trial should the current trend 
continue and the trial be conducted until the end of the study. The calculation yields 
PP = 0.5656. If we were to choose θL = 0.10, the trial would not be stopped due to 
futility because PP is greater than θL. Similarly, if we were to choose θU = 0.95, the 
trial would not be stopped due to efficacy either. Therefore, based on the interim 
data, the trial should continue because the evidence is not yet sufficient to draw a 
definitive conclusion.

TABLE 18.1
Bayesian Predictive Probability Calculation for 
p0 = 0.60, θT = 0.90, Nmax = 40, x = 16, n = 23, and a 
Beta(0.6,0.4) Prior Distribution on p

Y = i Pr(Y = i | x) Bi = Pr(p > 0.60 | x, Y = i) I(Bi > 0.90)

0 0.0000 0.0059 0

1 0.0000 0.0138 0

2 0.0001 0.0296 0

3 0.0006 0.0581 0

4 0.0021 0.1049 0

5 0.0058 0.1743 0

6 0.0135 0.2679 0

7 0.0276 0.3822 0

8 0.0497 0.5085 0

9 0.0794 0.6349 0

10 0.1129 0.7489 0

11 0.1426 0.8415 0

12 0.1587 0.9089 1

13 0.1532 0.9528 1

14 0.1246 0.9781 1

15 0.0811 0.9910 1

16 0.0381 0.9968 1

17 0.0099 0.9990 1

Source:	 Lee, J.J. and Liu, D.D., Clin. Trials, 5(2), 97, 2008. With 
permission.
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18.3.2  Adaptive Randomization

Randomization ensures that on average, the effects of the unknown dependent 
variables will be balanced among all treatment arms, thus providing unbiased 
comparisons. Many authors have written on the advantages and disadvantages of 
randomization.7,8,11,58,71 Friedman et al.5 broadly refer to randomization procedures 
that adjust the allocation ratio as the study progresses as adaptive. Two types of 
the AR designs are commonly used in clinical trials. Baseline AR designs are used 
to balance prognostic factors available at baseline among the treatment arms.4,6 
Response adaptive or outcome-adaptive designs were developed for the purpose of 
assigning more patients to the better treatments based on the interim data.

One of the goals of the outcome AR designs is to minimize the expected number of 
treatment failures for patients enrolled in the trial. Such designs have been proposed 
to mitigate the ethical dilemma of equally allocating patients to treatments when the 
evidence available during the trial with respect to the comparative treatment efficacy 
violates the requirement of equipoise. In this section we consider applying outcome 
response adaptive randomization to phase IIB multiarm clinical trials. The multiple 
arms could be different treatments (possibly including a control arm), different doses 
or schedules of the same agent, or any combination of such comparisons.

Thall and Wathen11 propose Bayesian adaptive randomization (BAR) in the con-
text of a multicenter trial comparing two chemotherapy regimens in patients with 
advanced/metastatic unresectable soft tissue sarcoma. Let A1 and A2 denote the two 
treatment arms. Let p1<2 denote the posterior probability that arm A2 is better than 
arm A1. For example, assume that the outcome is a binary efficacy response, and let θ1 
and θ2 denote the probability of response under each treatment arm. Let y generically 
denote the currently available data. Then p1<2 = p(θ1 < θ2|y). One proposal is to allo-
cate patients to treatments A2 and A1 with probability proportional to r2(y) = {p1<2(y)}c/
[{p1<2(y)}c + {1 − p1<2(y)}c] and r1(y) = {1 − p1<2(y)}c/[{p1<2(y)}c + {1 − p1<2(y)}c], where c > 0 
is a tuning parameter. In general, for K arms (K> = 2),
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Notice that when c = 0, (18.14) corresponds to equal randomization (ER). When c = ∞, 
(18.14) yields the “play-the-winner” design. That is, the process is deterministic 
since the next patient is assigned to the current winning treatment. The randomiza-
tion ratio becomes more “imbalanced” as c increases.

Thall and Wathen11 propose using c = n/(2N), where N is the maximum number 
of patients and n is the number of currently enrolled patients. This recommenda-
tion is based on empirical evidence under typical scenarios. The results of extensive 
simulations studies and specific recommendations for the implementation of BAR 
can be found in Wathen and Cook.72 Thall and Wathen9 apply the approach to a 
study where the probability model for an ordinal outcome includes a covariate. The 
outcome is ternary (response, stable, failure), while the covariates are two binary 
patient-specific baseline values. The definition of (18.14) remains unchanged; only 
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the relevant probability model with respect to which the posterior probabilities are 
evaluated changes. Cheung et al.10 apply the method with rj based on posterior prob-
abilities of survival beyond day 50 under three competing treatment regimens.

Lee et al.16 propose response adaptive randomization (RAR) using a ratio that is 
based upon the posterior mean probability of success of the jth treatment, denoted 
θ̂j, in each group. In the simple case of testing the response rates of only two treat-
ments the authors propose randomization ratios of the form, r c c c

2 2 1 2( ) [ ]y = / +θ θ θˆ ˆ ˆ  and 
r c c c
1 1 1 2( ) [ ]y = / +θ θ θˆ ˆ ˆ .

Figure 18.1 compares the randomization probabilities and the observed response 
rates (plotted by assignment) of the RAR and ER designs for five simulated trials 
of n = 80 patients, where θ1 = 0.1 and θ2 = 0.3. It is assumed that patients are enrolled 
sequentially and that the patient outcomes are observed instantaneously.

For ER, the plots show that the randomization probabilities converge to 0.5 as the 
trial progresses (upper left). Furthermore, the observed response rates converge to 
their corresponding true values, 0.1 and 0.3, for treatments 1 and 2, respectively (bot-
tom left). The right panels show the performance of RAR. This procedure random-
izes the first 20 patients equally, then adaptively assigns the last 60. After 20 patients, 
the randomization ratio decreases for treatment 1 and increases for treatment 2, and 
therefore more patients are randomized into the better treatment. The plots show that 
resulting observed response rates also converge to their corresponding true values 
as the trial continues.

Adaptive designs enable the investigators to learn about the clinical activities of 
novel treatments during the trial. We can apply this knowledge to better treat patients 
in real time by implementing an AR design that randomizes more patients to the 
more effective treatments. AR designs preserve Type I and Type II error rates at the 
cost of a slight increase in sample size when compared to ER.16 However, decision 
rules can be implemented to stop the trial at interim when sufficient evidence for 
futility and/or efficacy has accumulated. Lee et al.16 also consider AR designs that 
facilitate simultaneous evaluation of the effects of treatment and biomarkers for the 
purpose of treating more patients with more effective treatments according to their 
biomarker profiles.

Strategies for accruing patients into clinical trials are integral parts of adaptive trial 
design. This is especially important because adaptive rules based on the outcomes of 
patients who have been treated previously are used to assign patients to treatments. 
But there often is a time lag between treatment and evaluation of outcome. Efficient 
patient accrual is especially vital in oncology, where the full effects of radiation ther-
apy or toxicities from chemotherapy are often observed months after treatment.73

For this reason it is customary in cancer phase II studies to use a proxy early out-
come in place of the ultimate outcome. The ultimate outcome is overall survival, or 
at least progression-free survival. To avoid the long delay involved in recording these 
event times, many phase II studies use instead tumor response as an intermediate 
endpoint. For solid tumors, response might be defined in terms of tumor size after a 
fixed number of days after treatment. Thall et al.31 provide another example of a phase 
II trial of a post transplant prophylaxis for graft versus host disease (GVHD) in which 
patients were monitored for 100 days post transplant before outcome was determined.
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In a recent publication Korn and Freidlin74 argue that for two-arm trials response 
AR is inferior to 1:1 randomization in terms of acquiring information for the general 
clinical community, and that the benefits to the patients on the trial are modest at 
best and do not justify the added complexity required for implementing designs that 
incorporate AR schemes in practice. The authors recommend a fixed 1:1 randomiza-
tion given no differential rates in patient accrual because of the trial design, and 2:1 
randomization if assigning more patients to the experimental arm can increase the 
study’s accrual rate. In the corresponding editorial, Berry44 acknowledges the added 
complexities involving implementation of designs that incorporate response AR, but 
argues that the disadvantages should be considered along with the potential advan-
tages. Berry contends that while the benefits of AR are limited but real in two-arm 
trials, they can be more evident in trials with more than two arms. Furthermore, 
Berry suggests that AR can shorten the time of cancer drug development and bet-
ter identify responding patient populations. Further discussions on this issue can be 
found in Yuan and Yin87 and Lee et al.88

18.3.3  Seamless Phase II/III Designs

In traditional cancer drug development, phase II addresses tumor response. Sufficient 
success in phase II leads to phase III, which is designed to determine if the drug pro-
vides an improvement in survival. Seamless phase II/III designs refer to multi-stage 
clinical trials that begin with multiple doses of one or more experimental agents. 
In the first stage a pre-specified dose arm is graduated to a second stage wherin the 
experimental agent undergoes a more traditional comparision to a control arm at the 
graduated close.

Seamless phase II/III trials combine phase II and phase III into a single trial con-
sisting of a phase II stage and a phase III stage. Phase II trials generally require more 
than 18 months, after which phase III generally requires at least another 2 years.58 
In contrast, seamless phase II/III trials allow for moving from phase II to phase III 
without stopping patient accrual, which accelerates the drug development process. 
Inoue et al.45 compared the seamless design with more conventional designs hav-
ing the same frequentist operating characteristics and found reductions in average 
sample size ranging from 30% to 50%, in both the null and alternative hypothesis 
cases. In addition, the total time of the trial was similarly reduced. Several phase 
II/III clinical designs have been proposed more recently. Kimani et al.47 propose a 
dose-selection procedure in an adaptive phase II/III trial that incorporates the dose–
response relationship when the experimental treatments are different dose levels of 
the same drug for binary outcomes. Stallard49 considers strong control of the fam-
ily wise Type I error rate when short-term endpoint data are used for the treatment 
selection at the phase II stage. Bischoff and Miller48 compare an adaptive two-stage 
test procedure to a seamless phase II/III trial design and provide formulae for the 
expected sample size of the design.

One of the major challenges of drug development is the high failure rate of phase 
III confirmatory studies. More than 50% of phase III studies in cancer are reported 
to fail,75 despite the promising results in the preceding phase II studies. Huang et al.12 
speculate that one of the reasons for this disconnect is that often, an improvement 
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in response rate does not necessarily translate into an improvement in survival. The 
main reason why investigators nevertheless continue to use tumor shrinkage are the 
practical considerations arising from the substantial lag between treatment assign-
ment and reporting of a delayed survival response. To mitigate the problem they 
propose a novel clinical trial design that explicitly includes the delayed survival 
response, in addition to tumor response for adaptive treatment allocation. They con-
sider a phase IIB trial with two treatment arms, A and B.

The key feature of the design is a joint probability model for tumor response 
(S) and survival (T). Let xi ∈ {A,B} denote the treatment assignment for the ith 
patient, and let (Si,Ti,δi) denote the outcome for the ith patient, with Si denoting tumor 
response (i.e., tumor shrinkage), Ti denoting the survival time, and δi ∈ {0,1} a binary 
indicator with δi = 1 when Ti is observed and δi = 0 when only a censored time ti ≤ Ti is 
recorded. In other words, at calendar time t the recorded response for a patient who 
was recruited at (calendar) time ti

0 is t T t ti i i= , −min( )0 , with δi indicating whether ti 
is an observed survival time. The authors assume that tumor response is reported as 
a categorical outcome with four possibilities, Si ∈ {1,2,3,4}, referring to resistance to 
treatment or death (Si = 1), stable disease (Si = 2), partial remission (Si = 3), and com-
plete remission (CR; Si = 4). The joint probability model for (Si,Ti) is

	
P S j x x p P T S j x xi i xj i i i xj( ) ( ) ( )= = = = , = = ,and Exp λ 	 (18.15)

where Exp(λ) indicates an exponential distribution with mean μ = 1/λ. The model is 
completed with a prior

	
( ) ( ) ( )p p IGx x x x xj

xj
xj xj1 4 1 4

1
, , , , , ≡ ,… …∼ ∼Dir andγ γ μ

λ
α β 	 (18.16)

independently for x ∈ {A,B}. Here Dir(a1,…, a4) denotes a Dirichlet distribu-
tion with parameters (a1,…, a4) and IG(a,b) is an inverse gamma distribution with 
mean b/(a − 1). The model is chosen to allow closed-form posterior inference. Let 

n I S j x xxj
i

n

i i= = =
=∑ 1

( )and  denote the number of patients with response j under 
treatment x, let t denote the current calendar time, let γ γxj xj xjn

ʹ = + , and let
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with t T t ti i i= , −min{ }0  denoting the observed survival time Ti if δi = 1, and the cen-
soring time t ti− 0 if δi = 0. Letting Y generically denote the observed data, we have

	
p p p Y p Y IGx x x x xj xj xj( ) ( ) ( ) ( )1 4 1 4, , = , , = , .ʹ ʹ ʹ ʹ… …Dir andγ γ μ α β 	 (18.18)

Huang et al.12 propose a trial design that includes continuous updating of the pos-
terior distributions (18.18), adaptive allocation based on current posterior inference 
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and early stopping for futility and for superiority. For adaptive allocation they con-
sider the posterior probability

	
p P YA B= > ,( )μ μ

with μ μx xj xjp=∑  for x ∈ {A,B} indicating the mean progression-free survival 
on treatment arm x. By allocating patients to arm A with probability p, the design 
increases the probability that patients receive the best treatment. The same posterior 
probability is used to define early stopping for futility when p < pL and for superiority 
when p > pU, using, for example, pL = 0.025 and pU = 1 − pL. The authors discuss an 
application of the proposed design to a phase II trial for acute myelogenous leukemia.

18.3.4  Bayesian Hypothesis Testing

Johnson and Cook33 argue that Bayesian clinical trial designs should use decision 
rules based upon formal Bayesian hypothesis tests instead of posterior credible 
intervals, which result in a loss of efficiency and involve unnecessary subjectivity. 
Consider two competing models and let θ ∈ Θ denote the parameter of interest. Let 
H0 and H1 denote the null and alternative hypotheses, respectively, and x denote the 
current observable trial data. Classical tests of two hypotheses typically involve par-
titioning the parameter space into two disjoint subspaces, H0:θ ∈ Θ0 and H1:θ ∈ Θ1, 
such that Θ0 ∪ Θ1 = Θ. Hypothesis testing in the Bayesian paradigm involves comput-
ing the posterior odds in favor of the alternative hypothesis. This requires that prior 
distributions are specified on θ under the alternative and null hypotheses π1(θ), π0(θ), 
respectively, and that the prior probabilities are assigned to the hypotheses them-
selves. Let γ denote the prior probability assigned to the alternative hypothesis, and 
f1(x|θ) and f0(x|θ) denote the sampling distributions of the data under the alternative 
and null models. The posterior odds in favor of the alternative hypothesis is equal 
to the product of the Bayes factor (BF)76 and the prior odds in favor of the alterna-
tive hypothesis. The BF is defined as the ratio of the marginal densities of the data 
defined under the alternative and null hypotheses
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Thus, the posterior odds follow as
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Bayesians use the logarithm of the BF, or “weight of evidence,” to summarize the 
result of a hypothesis test.33
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In an effort to be “objective,” there is a temptation to specify improper vague prior 
densities on model parameters under the alternative hypothesis. Yet, BFs for two com-
peting hypotheses are only defined for proper prior distributions, π1(θ) and π0(θ). This 
fact has precluded widespread use of Bayesian testing methodology in clinical trial 
design.77 However, Johnson and Cook33 show that these concerns about objectivity are 
in fact misguided since misspecification of the prior density under the alternative model 
in single-arm clinical trials can only decrease the expected weight of evidence in favor 
of the alternative model. In other words, there is no danger that proponents of an experi-
mental treatment can bias the results of a Bayesian test-based trial in favor of the alter-
native model by specifying an overly optimistic alternative model. In fact, they show 
that prior distributions on the parameters for the alternative model, π1(θ), that assign 
positive probability to regions of the parameter space that are consistent with the null 
hypothesis, referred to as “local alternative” prior densities, dramatically decreases the 
rate at which a trial can accumulate evidence in favor of a true null hypothesis because 
parameter values under the alternative model are then also consistent with the observed 
data. Instead, they propose formal test-based designs that use a class of “nonlocal” prior 
densities for specifying alternative hypotheses, referred to as inverse moment densities 
and argue that these designs provide better operating characteristics, use fewer patients 
per correct decision, and provide more directly interpretable results than other com-
monly used Bayesian and frequentist designs of phase II single-arm trials.

18.3.5  Examples

In this section we briefly describe two recent high profile large-scale clinical trials 
that highlight the potential impact of new innovative adaptive clinical trial designs 
that use Bayesian methods. Both trials use AR schemes that account for heteroge-
neity with respect to treatment response relative to biomarker profiles and decision 
rules for interim monitoring of treatment arms.

18.3.5.1  BATTLE
The BATTLE trial14,78 is a phase II trial for patients with advanced non-small cell 
lung cancer (NSCLC) that considers five subpopulations defined by biomarker pro-
files. BATTLE stands for “biomarker-integrated approaches of targeted therapy for 
lung cancer elimination.” Biomarker profiles include EGFR mutation/amplifica-
tion, K-ras and B-raf mutation, VEGF and VEGFR expression and Cyclin D1/RXR 
expressions. Four targeted therapies are evaluated with one therapy targeting each 
one of the four biomarker profiles. The primary outcome is the disease control rate 
at 8 weeks. The outcome is reported as a binary response. We refer to the binary out-
come as “disease control.” The design calls for adaptive treatment allocation based 
on a patient’s biomarker profile. Let γjk denote the current posterior mean probability 
of disease control for a patient in biomarker group k under treatment j. The next 
patient in biomarker group k is assigned to treatment j with probability

	

rj
jk

jk
i

≡ .
∑
γ

γ
	 (18.21)
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Posterior probabilities are with respect to a hierarchical probit model. The probit 
model is written in terms of latent probit scores zjki for patient i under treatment j in 
biomarker group k. The model assumes a hierarchical normal/normal model for zjki. 
The model includes mean effects μjk of treatment j in biomarker group k, and mean 
effects for treatment j.

The hierarchical probit model79 is used to borrow strength across related subpop-
ulations. The model is also used to define early stopping of a treatment arm j for the 
kth disease group. An arm is dropped for futility when the posterior probability for 
disease control being beyond θ1 is less than δL. Here, θ1 would naturally be chosen 
to be the probability of disease control under the experimental treatment. Similarly, 
treatment j is recommended for biomarker group k if the posterior probability of 
mean probability for disease control being greater than θ0 is greater than δU. Here 
θ0 > θ1 and the difference would indicate a clinically meaningful improvement from 
the standard therapy. The BATTLE trial enrolled 341 patients and randomized 255 
of them under the proposed AR scheme. The trial confirmed several prespecified 
hypotheses and identified interesting subgroups of patients for further study.78

18.3.5.2  I-SPY-2
ISPY-215 is an adaptive phase II clinical trial of neoadjuvant treatments for women 
with locally advanced breast cancer. The trial title is an acronym for “investigation 
of serial studies to predict your therapeutic response with imaging and molecu-
lar analysis.” The little word “your” in the name signifies revolution. The trial 
evaluates a large number of potential treatments but considers up to five different 
experimental therapies at any given time. All are given in combination with stan-
dard chemotherapy, before surgery (thus “neoadjuvant”). In the case of I-SPY-2 the 
adaptation includes changing probabilities of assigning patients to the treatment 
arms, the possibility of dropping arms early for futility or graduating an arm for  
efficacy. In the latter case, the protocol recommends a following small phase III 
study. These decisions are based on posterior predictive probabilities of being suc-
cessful in a (future) phase III study. These probabilities can only be meaningfully 
accurately reported under a Bayesian framework with a complete description of all 
underlying uncertainties.

In contrast to common practice the trial is designed to allocate patients to the 
therapy that is best for them. To achieve this goal the trial explicitly allows for 
population heterogeneity, considering up to 256 different subpopulations (although 
only about 14 remain as practically interesting, due to prevalence and biologic con-
straints). For each patient the investigators record presence or absence of a list of 
biomarkers, including presence of hormone receptors (estrogen and progesterone), 
human epidermal growth factor receptor 2 (HER2), and MammaPrint risk score. 
These biomarkers are recorded from core biopsies taken during screening. Patients 
are allocated to the competing treatment arms using AR. Let π(z,t) denote the prob-
ability of pCR for a patient characterized by biomarkers z under treatment t. I-SPY 2 
uses adaptive allocation probabilities proportional to

	
P z t z t t t( ( ) ( ) )π π, > , , ≠ ,ʹ ʹ data
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that is, the posterior probability of treatment t being optimal for subgroup z. As usual 
the randomization is restricted to some minimum allocation probability for all active 
treatment arms. In addition, to increase the study efficiency, the results of a series 
of MRI scans are used to inform the probability of pCR. The trial is a collabora-
tion of the U.S. National Cancer Institute, the U.S. Food and Drug Administration, 
pharmaceutical companies and academic investigators. See http://www.ispy2.org for 
more details.

18.4  PRACTICAL CONSIDERATIONS

Success of clinical investigation requires that trials are properly designed and metic-
ulously implemented. There are many available computer software tools to facilitate 
the trial design and conduct.80 Compared to the standard, fixed designs, adaptive 
designs demand more attention in both the study design and trial conduct phases. 
The operating characteristics of the trial design need to be thoroughly examined 
under a spectrum of plausible conditions. Special tools need to be developed to 
implement adaptive designs such that data can be timely updated to allow interim 
statistical monitoring.

Requesting interim data frequently from the trial creates additional pressure on 
data collection. Response AR requires that responses are assessed accurately in a 
relatively short time period. This requires that robust infrastructure be put into place 
to allow timely and more frequent monitoring of interim results. Adaptive designs 
also require more frequent involvement of statisticians since they will be asked to 
provide calculations to assess the strength of the available data for interim deci-
sion making. Another consideration for the adaptive design is that because changes 
in patient characteristics over the course of the trial can lead to biased treatment 
comparisons, all clinical trial designs should adhere to strict eligibility criteria to 
ensure homogeneity in the patient population as patients enroll over time. Designs 
that incorporate outcome AR are more sensitive to population drifts74 than standard 
designs that utilize 1:1 randomization among the study arms. However, regression 
analysis can be used to adjust for an imbalance of prognostic factors between the 
treatment groups. There are several recent articles81–86 that discuss many practical 
issues that arise when implementing adaptive design methods in clinical trials.
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19 Design of a Clinical Trial 
for Testing the Ability of 
a Continuous Marker to 
Predict Therapy Benefit

William E. Barlow

19.1  INTRODUCTION

19.1.1  Background

Biologic markers are commonly used as prognostic indicators of outcome following a 
diagnosis of disease and subsequent treatment. In oncology, tumor-based markers are 
used to suggest the potential for cancer to recur or to cause death. These markers are 
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regarded as “prognostic” in that they provide information to patients about what they 
might expect in the future, but the markers may not help choose appropriate treatment 
(Schumacher et al., 2006). On the other hand, “predictive” markers do suggest that a 
particular therapy is optimal and may reflect that the prognostic effect of the marker 
differs by treatment or that the efficacy of a particular treatment depends on the 
marker. The distinction between prognostic and predictive factors is usually attrib-
uted to the late William McGuire (McGuire et al., 1992). Marker discovery begins 
by noting the important prognostic effect of a marker, which may in turn be found 
to be predictive upon greater examination of the prognostic effect conditional on dif-
ferent treatment choices. Ideally, treatment has been randomized, thus providing an 
unbiased assessment of predictive ability of a marker with regard to treatment choice.

19.1.2  Statistical Modeling of Prognosis and Prediction

Prognostic effects are typically coded as a main effect in statistical models, since 
their effect is present for all patients regardless of treatment choice. On occasion, 
prognostic effects will be considered only within patients treated in a uniform 
fashion or even in untreated patients to determine the natural course of disease. In 
contrast, predictive effects are often represented as interactions of the marker with 
treatment. Suppose we have treatment (trt) and a marker Z. A simple Cox regression 
model of survival at time t on the log hazard rate scale would be the following:

	 log ( ; , ) log ( )λ λ β β βt trt z t trt z trt z= + + +0 1 2 3∗ 	 (19.1)

The treatment is considered to be dichotomous for simplicity, and the marker Z could 
be either dichotomous or continuous. A typical approach is to test whether the inter-
action term adds significantly to a statistical model, which has only the two main 
effects of treatment and the marker. A significant interaction may imply that the 
effect of treatment differs by the value of the marker. It can also imply that the prog-
nostic effect of the marker Z is conditional on the choice of treatment.

19.1.3  Qualitative versus Quantitative Interactions

Interaction terms can be described as quantitative or qualitative. A “quantitative” 
interaction describes an interaction that is in a consistent direction even though the 
magnitude may vary. Thus, even though the magnitude of the treatment effect may 
depend on the covariate z, one treatment is always superior to the other treatment for 
all choices of z. For example, in Model (19.1), β1 + z β3 < 0 for all z implies that treat-
ment is always effective in increasing survival even though the magnitude of benefit 
may depend on the marker z. In this case, the marker may not guide the choice of 
treatment, since a particular treatment is always dominant. Thus, an interaction of 
treatment and the marker may be necessary for a predictive effect, but it is not suf-
ficient. The work by Janes et al. (2011) gives other examples within this context. On 
the other hand, a qualitative interaction implies that the benefit of treatment may 
differ for different values of the marker such that the treatment is beneficial in some 
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situations, but not others. In terms of the model, it implies that that there is a cutoff 
z0, such that β1 + z β3 ≤ 0 for z ≥ z0 and that β1 + z β3 ≥ 0 for z < z0. Thus, treatment may 
be valuable for high values of the marker, but may not be effective (or even harmful) 
for low values of the marker. In this situation, we would term the marker as “predic-
tive” since it may suggest treatment strategy depends on the value of the marker.

19.1.4  Retrospective Evaluation of Markers as Predictive

Often, predictive markers are tested in the context of a more general comparative 
trial of two treatments or the addition of an experimental treatment compared to 
standard treatment. In most cases, the trial was powered to find an overall differ-
ence between two treatments despite the possible presence of subgroups who may 
not have benefitted from treatment. Consequently, analyses of interaction terms will 
often be inadequately powered to find a statistically significant difference unless the 
interaction is large. Even in the presence of a statistically nonsignificant interaction, 
separate analyses of treatment by a marker may demonstrate an effect of treatment 
in one group, but not another. These apparent effects can then lead to a new trial 
with sufficient power or to similar analyses in other trials to validate the original 
findings. On the other hand, separate analyses of treatment by marker values may 
be convincing that there is little predictive effect of the marker. For example, forest 
plots of treatment by marker values may show strong concordance of the treatment 
difference across subgroups suggesting little predictive effect of the markers.

19.2  CONTINUOUS MARKERS

19.2.1  Cutpoints for Continuous Markers

In many cases, marker values are dichotomous or cutpoints are designated to divide 
the marker into positive or negative values. Well-known examples of predictive mark-
ers in breast cancer include hormone-receptor status as a guide to using endocrine 
therapy and HER2-status as a determinant of trastuzumab efficacy. Both markers 
are viewed as positive or negative for decision making, but in fact often arise from 
continuous or ordinal values. Testing of dichotomous markers and associated trial 
designs are discussed by Hoering et al. (2008) and Sargent et al. (2005). It is well 
known that categorization of continuous markers may lose power (Royston et al., 
2006). In this work, we will focus on continuous markers and attempts to categorize 
the marker when needed for final clinical decision making.

19.2.2  Statistical Model for Continuous Markers

We assume that we have a continuous marker Z ≥ 0 and use a standard Cox regression 
model that included an interaction term

	 log ( ; , ) log ( )λ λ β β βt trt z t trt z trt z= + + +0 1 2 3∗

For the purpose of illustration, we define treatment as being a comparison of che-
motherapy to no chemotherapy, and the continuous marker is labeled as recurrence 
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score (RS) for recurrence score. Figure 19.1 illustrates a quantitative interaction 
between RS, a continuous marker, and treatment with chemotherapy. The log hazard 
ratio (HR) for no chemotherapy is always higher than that for chemotherapy at all RS 
values, so chemotherapy is always the preferred therapy. Within each therapy, higher 
RS is a predictor of worse prognosis with slope β2 and (β2 + β3) per unit increase in 
RS for no chemotherapy and chemotherapy, respectively. Clinically, chemotherapy is 
always more efficacious, though some patients may still feel that the gain is too small 
to overweigh the adverse effects of treatment.

For a qualitative interaction, the appropriate illustration may be more like that 
in Figure 19.2. There is a point at approximately RS = 12.5 for which the benefit of 
treatment would change. Below this value, no chemotherapy is the preferred choice, 
but above this point, chemotherapy would have a lower failure rate. In both cases, 
RS appears to be prognostic within its treatment group though the slope for chemo-
therapy is much less pronounced. Note that if one started with a simple model with 
only main effects in this scenario log λ(t;trt, z) = log λ0(t) + trt β1 + z β2, then the treat-
ment parameter estimate β̂1 would be close to zero due to the interaction masking 
the impact of treatment. Thus, a significant treatment effect is not a precondition to 
investigate a predictive effect, particularly when there is an a priori hypothesis that 
the interaction exists. Finally, we note that we describe the crossover point in the 
model as a fixed point, but it is of course subject to sampling error as we consider later.

19.2.3  Example from SWOG Trial S8814

To illustrate this approach, we use SWOG study S8814, which compared no chemo-
therapy to chemotherapy for node-positive hormone-receptor positive breast cancer 
(Albain et al., 2009). The overall trial showed a significant benefit of chemotherapy 
particularly if delivered before tamoxifen therapy commenced (Albain et al., 2009). 
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FIGURE 19.1  Modeled relationship of the Cox regression log hazard ratio (HR) relating 
survival to Recurrence Score (RS) and therapy. In this model chemotheraphy has a lower 
failure rate than no chemotheraphy for all values of RS.
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For available tumor samples, the 21-gene assay (OncotypeDX) was evaluated (Albain 
et al., 2010). This assay yields RS on a scale of 0–100 indicating likelihood of a recur-
rence. It had previously been shown to be predictive in node-negative disease (Paik 
et al., 2006), but not yet in node-positive disease. For disease-free survival up to 5 years, 
there was a significant interaction of chemotherapy and continuous RS (p = 0.029) with 
adjustment for the main effects of chemotherapy, RS, and number of positive nodes 
(1–3 versus 4+). The estimated model leads to a crossing of the log HRs at an approxi-
mate RS value of 19. Above this value, the model suggests that chemotherapy has 
better outcomes than no chemotherapy, though the sampling variability around this 
point is large. The model also indicates that below this value, chemotherapy may not 
be beneficial despite the results of the overall trial. We did assume that the impact of 
RS on the log hazard rate was linear. The assumption of linearity was supported by 
testing with fractional polynomials as described by Royston and Sauerbrei (2004). 
This retrospective study has limitations including the small sample size, evolution of 
chemotherapy since the original trial was conducted, and addition of new endocrine 
therapies. Therefore, a prospective trial is necessary to confirm that chemotherapy 
may not be beneficial for some values of RS and to establish the correct cutoff.

19.3  TRIAL DESIGN FOR TESTING A PREDICTIVE MARKER

19.3.1  Statistical Model

Designing a trial to test prediction of treatment benefit using a continuous marker 
requires categorizing the marker (e.g., as positive or negative based on the cutoff) 
or using the marker as a continuous value. Preservation of the marker as continuous 
will increase power compared to using cutpoints (Royston et al., 2006). A continu-
ous marker can be used directly in the model or the marker can be converted into 
percentile values based on a known distribution of the marker values in a population 

25201510
RS

No chemotherapy
Chemotherapy

50

0
0.

5
Lo

g 
H
R

1
1.

5

FIGURE 19.2  Modeled relationship of the Cox regression log HR relating survival to RS 
and therapy. In this model chemotherapy has a lower failure rate than no chemotherapy only 
for higher values of RS.
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and modeled directly on the percentile scale (Huang et al., 2007). In the absence of 
a known distribution, one may have to model the marker directly. Again, we assume 
an underlying model using the interaction term

	 log ( ; , ) log ( )λ λ β β βt trt z t trt z trt z= + + +0 1 2 3∗

The first requirement is that power be sufficient so that testing of the estimate of 
β3 has high probability of rejecting the null hypothesis that β3 = 0. A significant 
interaction will suggest that the value of the marker may determine the efficacy 
of treatment for patient with that marker value. The second requirement is that the 
log HRs for the two treatment groups cross for some value of the marker inter-
nal to the range of values for the marker (Figure 19.2). This point of equivalence 
is designated as θ. If the model is correct, then equivalence between treatments is 
achieved at marker value θ = −β1/β3 estimated by θ̂  = −β̂1/β̂3 from the fitted Cox model. 
However, the crossover point has estimated variance based on the delta method of 

Var /ˆ ˆ ˆ ˆθ β θ θ( ) = + +⎡
⎣

⎤
⎦1 23

2
11 13

2
33V V V  using the appropriate covariance terms from the 

fitted model. Before a treatment is designated as beneficial, it must be convincingly 
superior to no treatment, not just equivalent. For that reason, we take the upper limit 
of the 95% CI on θ̂ as the point for which there is convincing evidence of benefit. 
This cutpoint can be based on the upper limit of a 1-sided Wald confidence interval 
for the point of equivalence:

	
c = +( )ˆ . (ˆ )θ θ1 645∗ Var

This is illustrated in Figure 19.3. The actual value of the HR at the upper limit of the 
confidence interval will vary, but may provide a reasonable estimate of a clinically 
meaningful difference. One can see that the variance depends on the strength of 
the interaction term and the individual variances of the treatment effect, interaction 
effect, and their covariance. The Wald confidence interval assumes asymptotic nor-
mality of the estimate of the point of equivalence, θ̂ . Alternatively, one can determine 
the upper bound of the interval using profile likelihood methods. Let ll(β) be the 
partial log-likelihood at β. We would search for the upper bound θ̃ that satisfies the 
following 2 12ll ll df( ) ( ) ( )β β χαˆ −[ ]= , where

	 log ( ; , ) log ( )λ λ β β βt trt z t trt z trt z= + + +0 1 2 3∗

is maximized subject to the constraint that β1 = −θβ3 defining an upper bound on the 
range of equivalency.

19.3.2  Sample Size, Power, and Hypothesis Testing

Sample sizes for testing interaction terms are often larger than sample sizes for test-
ing constant treatment effects. However, testing a continuous interaction may not 
require the huge sample sizes that a dichotomized marker would require. Simulation 
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is probably required in most complex situations. The goal is to choose a sample 
size that gives 80%–90% power to reject the null hypothesis of no interaction when 
comparing the model with an interaction of marker and treatment to a reduced model 
without the interaction term. If the interaction is statistically significant, then one 
would determine if the point of equivalency is interior to the range of marker values. 
This would then be followed by construction of a one-sided confidence limit on the 
point of equivalence that will allow estimation of the cutoff point for recommending 
therapy. Should the interaction term not be statistically significant, then step-down 
testing would suggest that the interaction term be dropped and that the treatment 
effect be tested using the marker as a prognostic term only (main effect). We assume 
that there is already sufficient evidence that the marker is prognostic, so testing the 
marker per se may not be of interest. To summarize the steps:

	 1.	Test the interaction term in the model

	 log ( ; , ) log ( ) *λ λ β β βt trt z t trt z trt z= + + +0 1 2 3

		  versus

	 log ( ; , ) log ( )λ λ β βt trt z t trt z= + +0 1 2

	 2.	
	 a.	 If the interaction term is significant, establish the cutoff point based on
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FIGURE 19.3  Modeled relationship of the Cox regression log HR relating survival to RS 
and therapy. The short dashed line indicates the RS value where treatments are equivalent. 
The long dash line indicates the upper bound of the 95% confidence interval on the point of 
equivalence.
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c = + ( )⎛

⎝⎜
⎞
⎠⎟

ˆ . ˆθ θ1 645∗ Var

	 b.	 If the interaction term is not significant, test the treatment effect overall 
using

	 log ( ; , ) log ( )λ λ β βt trt z t trt z= + +0 1 2

		  versus

	 log ( ; , ) log ( )λ λ βt trt z t z= +0 2

In the presence of a significant interaction with crossing HRs, a cutpoint for use of 
therapy can be derived, and one can give predicted benefit from either treatment at 
each value of the marker. In the absence of a significant interaction, the effect of 
treatment can be estimated as a single HR over the entire range of marker values 
tested.

19.3.3  Model Diagnostics

The assertion that the marker acts linearly on the log HR may be a strong assump-
tion. After testing the primary hypotheses, secondary analyses can consider model 
form. There are several methods available for checking this assumption. The first 
method would be a fractional polynomial model of degree 2 that would allow depar-
ture from linearity and provide a direct likelihood-based test of the linearity assump-
tion (Royston and Sauerbrei, 2004). A second method would be the subpopulation 
treatment effect pattern plot (STEPP)—a nonparametric approach described by 
Bonetti and Gelber (2000). A third method would be derived from a model fit based 
on log λ(t;trt,z) = log λ0(t) + trt β1 without inclusion of the marker at all. After fitting 
the model, delta beta diagnostics for treatment would be computed assessing each 
individual’s effect on the treatment coefficient. A plot of these delta betas against the 
marker z can indicate the nature of the functional association of the marker and log 
hazard rate separately by treatment group (Barlow and Prentice, 1988). Finally, one 
may wish to use the ranks of the marker values, rather than the actual marker val-
ues, to test the model log λ(t;trt,z) = log λ0(t) + trt β1 + rank(z) β2 + trt*rank(z) β3. This 
approach is very similar to that described by Janes et al. (2011) who use the marker 
percentile as the predictor where the percentiles are known from external data, but 
could be generated from internal data using the ranked data.

19.4  APPLICATION TO TRIAL DESIGN

19.4.1  SWOG Trial S1007

The earlier results of SWOG trial S8814 suggested that chemotherapy was ben-
eficial, but only for higher values of the RS. Giving chemotherapy to women with 
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node-positive breast cancer has become standard of care, but clearly some women 
may not benefit if they have a low risk for recurrence. The recently launched S1007 
RxPONDER trial will test the efficacy of chemotherapy in women with low RSs 
(0–25) who have only one to three positive nodes and who have endocrine-respon-
sive disease. This group is at low risk for recurrence and did not seem to benefit 
from chemotherapy in the retrospective evaluation of S8114. The sample size is 
constructed on finding a significant interaction of RS and randomized treatment 
(chemotherapy or no chemotherapy; two-sided α = 0.05) with 80% power followed 
by the identification of the cutoff using the aforementioned procedure. Note that this 
is not a test of the 21-gene assay directly, which might be directly tested by random-
ization to its use or not. Instead, we assume that women with RS > 25 need chemo-
therapy and only examine the relationship of RS to the efficacy of chemotherapy for 
women with RS in the range 0–25.

19.4.2  Power Calculations

While there may be closed form sample size estimation procedures for estimation of 
interaction terms (Schmoor et al., 2000), we believed that this situation was complex 
enough to use simulation. Parameter estimates were derived from the S8814 study 
restricting consideration to women with 1–3 positive nodes and RS in the range 0–25. 
A Weibull model provided a better fit than the exponential model, so this model was 
used to simulate 10,000 replications of the trial. For each replication, we used a Cox 
model to test the interaction term. Empirical power was determined by the probabil-
ity of rejection of the null hypothesis for the interaction term. If it was significant and 
the point of equivalence was interior to the range 0–25, then the upper bound of the 
95% Wald CI was computed to determine the cutpoint. In some cases, the upper cut-
point would exceed 25, and therefore the clinical interpretation is that chemotherapy 
is not needed for the entire range 0–25. If the interaction was not significant, then a 
main effect of chemotherapy was tested over the entire range.

Other parameter configurations were tested beyond using the direct estimates 
from the S8814 trial. For example, under the null hypothesis of no interaction, the 
correct test size of 5% was obtained. If the model is further simplified and thus there 
is no treatment effect, again the correct test size is obtained. Examination of the 
95% confidence interval for the point of equivalence showed 95% of the obtained 
intervals included the true equivalence point. Other simulations showed remarkable 
robustness to some violations of the linearity assumption. There was a concern that 
the linearity assumption may lead to an optimistic sample size estimate if the rela-
tionship was monotonic in RS, but not linear. Simulations showed that these con-
cerns were not warranted. Departures from linearity tend to depress the magnitude 
of the interaction term thus resulting in more conservative estimates. Furthermore, 
while estimates at the extremes are affected, estimation of the point of equivalence 
and its confidence interval is less affected, thus making the calculations somewhat 
robust to misspecification.

It was also expected that there will be treatment crossovers from patients who 
do not want to comply with their treatment assignment and get the opposite treat-
ment from that randomized with a probability depending on the RS. This inflates 
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the sample size since the analysis is intent-to-treat and patients are analyzed by 
randomization assignment. The actual simulated population was 3800 (including 
5% treatment crossovers), but the sample size goal was increased to 4000 to allow 
for dropouts and ineligibility. The final sample size of 4000 will require screening 
approximately 9000 women to determine if their RS value is ≤25 since the 21-gene 
assay is not routinely done.

19.4.3  Planned Analyses

The protocol includes interim analyses of the interaction as well as safety analyses 
that could indicate the no chemotherapy group has lower survival than expected 
compared to the chemotherapy group early on. The primary analysis of the inter-
action is consistent with how the simulations were performed. Nonetheless, the 
underlying model assumes that the effect of RS on the log hazards ratio is linear 
with different slopes for each treatment group. This assumption will be tested in 
the analysis using alternative models such as fractional polynomials. A successful 
trial would include (1) a statistically significant linear interaction, (2) an estimated 
cutpoint below the upper bound of 25, (3) Kaplan–Meier displays showing no ben-
efit of chemotherapy below the cutpoint, but benefit above the cutpoint, and (4) 
estimated benefit of treatment at each value on the range 0–25 with 95% confidence 
intervals. The last goal may require a departure from the linearity assumption if 
the diagnostic tools indicate that the linear model does not provide a sufficient 
description.

19.5  CONCLUSIONS

While methods to test prediction of treatment benefit for dichotomous markers 
are available, there has been less development using continuous markers. We are 
unaware of any clinical trials that have been designed to primarily test prediction 
using linear markers. Testing the ability of a continuous marker to optimize treat-
ment assignment can be done by a sequence of steps. The first is to demonstrate 
a significant interaction of the marker value with treatment assignment, followed 
by a determination of a point of equivalence and its associated confidence inter-
val. The upper bound of that confidence interval can mark a cutoff for choosing a 
treatment. The same logic can be applied to designing a trial to test marker pre-
diction. While sample sizes can be large, the sample size is moderated by using a 
continuous marker in a linear prediction model. Use of cutpoints to design the trial 
will require larger sample sizes and thus imperil the likelihood of the trial going 
forward.
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20.1  INTRODUCTION

Recent advances in molecular biology, genomics, and targeted agent development 
have fueled the rapid progress in clinical oncology. In parallel, developments in sta-
tistical theory and computation have continued to provide better methods and tools 
for dealing with complex problems. All these efforts lead to more advanced, yet 
complicated study design, conduct, and analysis, which depend more and more heav-
ily on computing resources from both the software and hardware points of view. 
Because a wide range of complex calculation methods are involved, it is difficult 
and complicated for statisticians to develop their own codes from scratch every 
time when a new design is implemented or an analysis is performed. Moreover, the 
emerging Bayesian methods and adaptive trial designs (Berry 2006, Biswas et al. 
2009, Berry et al. 2010, Lee et al. 2010), which introduced many new concepts and 
calculation methods, pose new challenges for software development. Developing 
and debugging codes could take a huge amount of time, and, without thoroughly 
being tested, the best effort from any individual is also subject to errors. Fortunately, 
many useful and valuable computer software and resources are now available from 
both research and commercial entities. Instead of developing their own codes from 
scratch every time, statisticians and clinical trial researchers will benefit much from 
using available design and analysis software that has been developed and tested. In 
this chapter, we will give a broad overview on selected software resources relevant to 
cancer clinical trials. It is impossible to do a comprehensive review in this knowledge 
explosion era. The choice of the software is limited by the authors’ knowledge and 
experience. Undoubtedly, many valuable tools could be omitted and not covered. 
However, we hope the information provided in this chapter can be used as a starting 
point for the quest of identifying and developing more and better software for cancer 
clinical trials.

In the recent literature, there are some reviews on software packages relevant to 
clinical trials. Tai and Seldrup (2000) reviewed software packages on data manage-
ment, design, and analysis of clinical trials. Some clinical trial packages (nQuery, 
PEST, and POWER) and analysis tools (SAS, SPSS, and STATA) were discussed 
in the review. Arena and Rockette (2005) provided an overview of software that 
is related to the design, management, and analysis of clinical trials. Wassmer 
and Vandemeulebroecke (2006) reviewed many popular group sequential and 
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adaptive design software packages for clinical trials. They evaluated packages such 
as ADDPLAN, EAST, PASS, and PEST and some source code for SAS, Fortran, 
and R. A comprehensive review on nQuery and PASS is given by Lane (2002). This 
review listed the features for each software package and provided a detailed com-
parison between them. However, this review was published in 2002, and many new 
features have been developed in nQuery and PASS since then.

Most reviews discussed earlier focused on a specific field (i.e., group sequential 
designs) and included much calculation details. In this review, our intent is to give 
readers a brief introduction of popular software packages for clinical trial designs. 
However, due to the space limit, we are not able to discuss the calculation in detail in 
this review, which can be easily found in the related literature.

Most previous reviews are based on frequentist methods, and almost no Bayesian 
method–based software is discussed. In the past decade, at the MD Anderson Cancer 
Center, many Bayesian clinical trial designs have been developed and applied due 
to their unique strength and flexibility of handling complex designs (Biswas et al. 
2009). Many software packages for implementing such designs have been devel-
oped, and users can download them for free from the software downloading website 
(https://biostatistics.mdanderson.org/SoftwareDownload/). In this review, we will 
also introduce some Bayesian clinical trial design software to the readers who are 
interested. The source of all the software described below can be found in Table 20.1.

20.2  �SOFTWARE PACKAGES FOR POWER/SAMPLE 
SIZE CALCULATION

20.2.1  Power Analysis and Sample Size

Power analysis and sample size (PASS) is a commercial software package for power 
analysis and sample size calculation based on frequentist methods. Its power and 
sample size calculation procedure library includes analysis of mean and proportion 
of one or two groups, correlated or paired, cross-over design, ANOVA, regression/
correlation, survival analysis, noninferiority, group sequential analysis, equivalence 
tools, and many other procedures. The package comes with a detailed manual con-
taining tutorials, examples, references, and instructions; users can easily become 
familiar with its usage. Each procedure in PASS is validated using published docu-
ment examples, and the validation examples are attached with the manual. It has a 
very good graphic user interface (GUI) on the Windows platform (Figure 20.1) and 
a detailed help system, making its usage convenient and straightforward.

20.2.2  nQuery

nQuery is a commercial software package for sample size and power calculation 
for a wide range of frequentist analysis. It calculates the sample size and power for 
means, proportions, agreements, regression, survival analysis, and nonparametric 
test and offers analysis for more than 90 different tests. It has a function for gener-
ating randomization lists for patient treatment allocation, and one can use this tool 
for patient treatment assignment in a randomized trial. It has a user-friendly GUI 
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TABLE 20.1
Software Packages for Clinical Trial Design and Analysis

Name URL
Free or 

Commerciala

Power and Sample Size
nQuery http://www.statistical-solutions-software.com/

products-page/nquery-advisor-sample-size-software/
C

PASS http://www.ncss.com/pass.html C

STPLAN https://biostatistics.mdanderson.org/
SoftwareDownload/

F

StudySize http://www.studysize.com/ F

Phase I
CRM simulator https://biostatistics.mdanderson.org/softwaredownload F

EffTox https://biostatistics.mdanderson.org/softwaredownload/ F

BMA-CRM https://biostatistics.mdanderson.org/softwaredownload/ F

TITE-CRM http://roadrunner.cancer.med.umich.edu/wiki/index.
php/TITE-CRM

F

ATDPH1 http://linus.nci.nih.gov/∼brb/Methodologic.htm F

Modified CRM v2.0 http://www.cancerbiostats.onc.jhmi.edu/software.cfm F

JLB design http://odin.mdacc.tmc.edu/∼yuanj/software.htm F

EWOC https://apps.winship.emory.edu/biostatistics/
software_ewoc.php

F

Phase II
Simon two-stage design http://linus.nci.nih.gov/∼brb/Opt.htm F

Green-Benedetti-Crowely http://www.swogstat.org/stat/public/TwoStage/2stage1.
htm

F

Bryant-Day design http://www.upci.upmc.edu/bf/ClinicalStudyDesign/
Phase 2 BryantDay.cfm

F

Predictive probability 
design

https://biostatistics.mdanderson.org/softwaredownload F

BFDesigner https://biostatistics.mdanderson.org/softwaredownload F

Multc99 https://biostatistics.mdanderson.org/softwaredownload F

CTD system http://www.cancer.duke.edu/modules/CTDSystems54/
index.php?id = 3

F

One-arm binomial http://www.swogstat.org/stat/public/one_binomial.htm F

One-arm survival http://www.swogstat.org/stat/public/one_survival.htm F

Two-arm survival http://www.swogstat.org/stat/public/survival_twoarm.
htm

F

Biomarker-targeted 
randomized design

http://linus.nci.nih.gov/brb/samplesize/td.html F

Biomarker-stratified 
randomized design

http://linus.nci.nih.gov/brb/samplesize/sdpap.html F

Optimal Two-stage designs 
for phase II clinical trials

http://linus.nci.nih.gov/brb/samplesize/otsd.html F

Sample size for integrated 
phase II/III trial

http://linus.nci.nih.gov/brb/samplesize/ip23study1.
html

F
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TABLE 20.1 (continued)
Software Packages for Clinical Trial Design and Analysis

Name URL
Free or 

Commerciala

Phase III
EAST http://www.cytel.com/software/east.aspx C

PEST http://www.maths.lancs.ac.uk/department/research/
statistics/mps/pest

C

gsDesign R package F

ADDPLAN http://www.addplan.com/ C

S + SeqTrial http://spotfire.tibco.com/products/splus-seqtrial.aspx C

Expected death on a study http://www.swogstat.org/stat/public/expdeath.htm F

Tools and Others
Adaptive randomization https://biostatistics.mdanderson.org/softwaredownload F

Parameter solver https://biostatistics.mdanderson.org/softwaredownload F

Predictive probability 
calculation

https://biostatistics.mdanderson.org/softwaredownload F

TTEDesigner https://biostatistics.mdanderson.org/softwaredownload F

Interaction survival http://www.swogstat.org/stat/public/int_survival.htm F

Web-based Calculators and Resources
Biometric research of NCI http://linus.nci.nih.gov/∼brb/ F

Power and sample size http://www.epibiostat.ucsf.edu/biostat/sampsize.html F

Sample size http://www.swogstat.org/statoolsout.html F

Simon’s two-stage design http://www.upci.upmc.edu/bf/resources.cfm F

MD Anderson https://biostatistics.mdanderson.org/
SoftwareDownload/

F

Sidney Kimmel 
Comprehensive Cancer 
Center in Johns Hopkins

http://www.cancerbiostats.onc.jhmi.edu/software.cfm F

MGH biostatistics center at 
Harvard University

http://hedwig.mgh.harvard.edu/biostatistics/
software?tid_1 = All

F

SAS http://www.sas.com/ C

R http://www.r-project.org/ F

SPlus http://spotfire.tibco.com/products/s-plus/statistical-
analysis-software.aspx

F

SPSS http://www.spss.com/ C

Stata http://www.stata.com/ C

GraphPad Prism http://www.graphpad.com/prism/prism.htm C

BUGS, WinBUGS, and 
JAGS

http://www.mrc-bsu.com.ac.uk/bugs/ F

a	 F, Free; C, Commercial.
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(Figure 20.2) and detailed help documents, making sample size and power calcula-
tion straightforward. A new module nTerim is shipped with the nQuery Advisor 7 
for group sequential trial designs, and it includes the spending functions of Pocock 
(1977), O’Brien and Fleming (1979), Hwang et al. (1990), and other functions.

20.2.3  STPLAN

STPLAN is a software package for designing frequentist clinical trial. It covers a 
wide range of frequentist tests and performs power, sample size, and significance 
calculation for different types of analysis. It offers tests for binomial distribution, 
Poisson distribution, normal distribution, exponential distribution, and survival time 
analysis. Most common frequentist one-sample and two-sample tests are included 

FIGURE 20.1  Screenshot of software PASS.

FIGURE 20.2  Screenshot of software nQuery.
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in the package. For a practical test, users need to set an unknown variable from 
distribution parameters, significance level, power, and sample size, and the package 
then calculates the value of the unknown variable from other specified parameters. 
The program is useful and free for downloading. It is easy to use and has a simple 
command line tool, running on DOS/Windows operating systems, but lacks a more 
sophisticated user interface.

20.2.4  StudySize

StudySize is a commercial software package for performing most standard hypoth-
esis testing, point estimation, and confidence interval calculation. It includes equiva-
lence and noninferiority tests. It also can perform nonparametric tests (Wilcoxon 
test and Sign test). It can run group sequential interim analyses for most tests and 
confidence interval calculation. It has a user-friendly Windows GUI.

20.3  PHASE I CLINICAL TRIAL SOFTWARE

20.3.1  CRM Simulator

Continual reassessment method (CRM) simulator is a useful tool for phase I clinical 
trial based on the CRM (O’Quigley et al. 1990). It can be used for trial planning and 
implementation. Using this software package, one can simulate trials with differ-
ent parameter values, observing the operating characteristics for different scenarios. 
Input parameters include the prior mean probability of toxicity at each dose level, 
target probability of toxicity, different scenarios (true probability of toxicity at each 
dose level), and simulation setting parameters (e.g., repeat numbers of the simula-
tions). The software package simulates each trial with a different random number 
sequence and at the end collects all data to produce the output. The output includes 
the selection probability at each dose level, average number of patients treated at 
each dose level, average toxicities for each simulated trial, and other information. 
It has a user-friendly graphical GUI on Windows platforms (Figure 20.3), and users 
can easily adjust each parameter and analyze output data.

20.3.2  BMA-CRM

This software package implements the Bayesian model average continual reassess-
ment method (Yin and Yuan 2009) for dose finding in the phase I clinical trial, and 
it can be used for clinical trial design and trial conduct. The difference between the 
BMA-CRM and the CRM is that the BMA-CRM utilizes the Bayesian model aver-
age method for dose level selection based on multiple sets of probability of prior 
mean of toxicity and the traditional CRM uses only one set of prior mean of toxicity 
for the dose level selection. Usually, the BMA-CRM gives more robust results than 
the traditional CRM. Parameters for the BMA-CRM are similar to that of the CRM 
except that multisets of prior are needed. This package has a user-friendly GUI and 
runs on Windows platforms (Figure 20.4).
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20.3.3  TITE-CRM

The TITE-CRM (Cheung and Chappell 2000) software is used for dose finding in 
the situation that patient outcomes are not instantaneous and late-onset effects play 
an important role. It is based on the time-to-event continual reassessment method 
and a weighted dose model to extend the CRM method. For ongoing trials, it has the 
functions of estimating the probability of toxicities, selecting dose level for the suc-
cessive patient based on current data. With this software package, one can perform 
trial simulations with different scenarios and calculate the operating characteristics 
for phase I trial design planning. This package is an SAS program but does not have 
a GUI. It has a detailed user guide for users to run the program.

FIGURE 20.4  Screenshot of software BMA-CRM.

FIGURE 20.3  Screenshot of software CRM simulator.
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20.3.4  EWOC

EWOC (escalation with overdose control) is a software tool for conducting cancer 
phase I clinical trial based on such design (Babb et al. 1998). It calculates the maxi-
mum tolerated dose level by utilizing an adaptive escalation scheme with all infor-
mation available at the time of dose assignment. The design reaches the maximum 
tolerated dose level at a fast rate, while still subject to the constraints of the prespeci-
fied overdose proportion. Compared with the CRM, this method demonstrates lower 
overdose rates, fewer toxicities, and comparable accuracy. This software tool is based 
on windows platforms. It has a user-friendly GUI and well-organized introduction 
documents.

20.3.5  JLB Design

The software package for the JLB design (Ji et al. 2007) is distributed in the form 
of an Excel macro, and one can easily use it to carry out the phase I trial if he/she 
has some basic knowledge of the Excel macro. The calculation method has two 
important components: a beta/binomial model and a dose-assignment rule based 
on posterior toxicity probability. Two parameters are required for running the 
macro: target toxicity probability and the maximum sample size. Once the param-
eters are specified, the macro will generate a spreadsheet to guide users for trial 
monitoring and dose assignment for each patient enrolled. This software is not 
compatible with Mac OS, Unix, or Linux; it works only on the Excel Windows 
version.

20.3.6  EffTox

Software package EffTox is a dose-finding tool for phase I/II trial designs based on 
trade-offs between treatment efficacy and toxicity (Thall and Cook 2004, 2006). It 
can handle trinary or bivariate binary patient outcomes for both efficacy and toxicity. 
One can adjust different parameter combinations to balance the drug efficacy and 
toxicity for patient dose level assignment. The dose level for the successive patients 
is determined by the current outcome and the efficacy-toxicity contour. One can use 
this package to design trials by performing trial simulations or to conduct real trial 
by enrolling patients, recording their outcomes, and determining the dose for treat-
ing subsequent patients. The package has a user-friendly GUI and runs on Windows 
platforms (Figure 20.5).

20.4  PHASE II TRIAL DESIGN SOFTWARE

20.4.1  Simon Two-Stage Design

Simon two-stage design (Simon 1989) is a small program for the popular two-stage 
optimal and minimax designs. The optimal design minimizes the expected sample 
size under the null hypothesis, and the minimax design attains the smallest total 
sample size that satisfies the error constraints. The usage of the program is very 
simple, and only several parameters (null and alternative response rates, maximum 
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sample size, and Type I and II error constraints) are required. It calculates the total 
sample size, the interim sample size, and the stopping boundary. It runs very fast on 
a DOS platform (or using a command line console on Windows). However, in the 
latest Windows 7 OS, it has a compatibility problem, but running the program in a 
DOS simulator (i.e., DOSBox) can easily solve the problem.

20.4.2  Web-Based Two-Stage Design

A very useful two-stage phase II trial design tool is based on a web-application at 
SWOG (http://www.swogstat.org/stat/public/TwoStage/2stage1.htm). The calcula-
tor can estimate the sample size, interim analysis points, stopping boundaries, and 
power values for a two-stage Green–Benedetti–Crowely design (Green et al. 1997). 
It allows both futility and efficacy stopping after the first stage of the trial. It has two 
versions: The JavaScript version can be saved as a web-page, and one can run it in a 
web-browser without internet connection. The server version is provided in case the 
user’s web-browser does not support JavaScript.

CTD system (clinical trial design system), developed at Duke Cancer Institute, 
is a user-friendly web-based two-stage design tool. It plots the expected sample size 
versus total sample size curve and indicates the points corresponding to the optimal 
and minimax designs. It supports two types of two-stage designs: allowing only 
futility stopping (Simon’s two-stage design) or allowing both futility and efficacy 
stopping.

Another free web-based two-stage phase II calculator is for Bryant-Day design 
(Bryant and Day 1995) calculation. The toxicity is incorporated into the Simon’s 
two-stage design, and a trial will be stopped either by unacceptable clinical response 
or toxicity. Probabilities of accepting poor responses, accepting toxic drug, rejecting 
good drug, and other parameters are required for the calculation. The application 

FIGURE 20.5  Screenshot of software EffTox.
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calculates the stopping boundaries based on patients’ response and toxicity. It is 
web-based and users can easily run the application from their web-browser.

20.4.3  Predictive Probability Design

Predictive probability design (Lee and Liu 2008) is a useful tool for designing 
single-arm phase II trial based on the predictive probability calculation. Stopping 
boundaries at each interim look are calculated based on the predictive probability of 
the final inference decision. The software package helps users find the cut-off values 
of the predictive probability and the corresponding stopping boundary calculation. 
Users need to specify the type I and type II error constraints, interim look points, the 
search domain of the cut-off values and priors, the program will search the param-
eter domain to find whether a solution exists to satisfy both type I and type II error 
constraints. If a solution is found, the cut-off value, stopping boundaries, and the cor-
responding operating characteristics will be calculated and displayed. The software 
has a user-friendly GUI on Windows platforms, and one can easily use it with the 
assistance from the embedded user guide (Figure 20.6).

20.4.4  Multc99

Multc99 (Thall et al. 1995) is a program for designing single-arm phase I/II trial 
with multiple outcomes, typically, efficacy and toxicity. A Dirichlet-multinomial 
model is applied to describe discrete multivariate outcomes, and Bayesian stopping 
rules are set for high rates of adverse outcomes or low rates of desirable outcomes. 
Users can use this software to calculate the operating characteristics of different 
scenarios and stopping boundaries. The software is a command line DOS program 
and a simplified Windows version covers only the basic features.

FIGURE 20.6  Screenshot of software predictive probability designer.
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20.4.5  BFDesigner

BFDesigner is a useful tool for single-arm phase II clinical trial design. The soft-
ware package is based on the method of Bayesian hypothesis tests via Bayes factor 
and nonlocal alternative prior density proposed by Johnson and Cook (2009). This 
method provides more efficient stopping rules than the commonly used Bayesian 
posterior credible interval and frequentist methods. The software package is a com-
mand line tool, but a detailed manual is attached with the package, making the usage 
of this tool straightforward.

20.5  PHASE III CLINICAL TRIAL SOFTWARE

20.5.1  EAST

EAST is a widely used commercial package for group sequential trial planning and 
analysis. It supports normal, binomial, survival, and other type of end points and can 
be applied for superiority, noninferiority, and equivalence trial designs. Its spending 
function family includes Pocock, O’Brien–Fleming, Wang–Tsiatis, and other func-
tions. Calculation results include stopping boundaries, power, expected number of 
events, and sample size with different scenarios. The software (Figure 20.7) comes 
with a user-friendly wizard system to help one design a group sequential trial in a 
very convenient way. A detailed manual includes many software usage tutorials and 
examples.

20.5.2  PEST

The PEST (“planning and evaluation of sequential trials”) is a commercial soft-
ware package for sequential trial design and analysis. PEST offers a wide range of 
response types including binary, normal, survival, and interval censored survival 

FIGURE 20.7  Screenshot of software EAST.
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times. It includes five modules: design, simulator, monitor, analyze, and view for dif-
ferent purposes of usage. Using this package, one can calculate stopping boundary 
and sample size in the design stage and perform analysis such as significance level 
and interval estimation at the end of the trial. The package is developed using C and 
SAS and runs within an SAS session on Windows platforms, making communicat-
ing with other SAS codes easy.

20.5.3  gsDesign (R Package)

gsDesign is an R package for group sequential design, and it can be installed using the 
R installation function. It supports common spending functions including Pocock, 
O’Brien–Fleming, and Hwang–Shih–DeCani types. For a standard group sequential 
design, it is not as convenient as the commercial packages such as the EAST pack-
age, but it is free and offers flexibility for accommodating nonstandard designs in 
the R environment.

20.5.4  ADDPLAN

The ADDPLAN (adaptive designs-plan and analysis) is a commercial software pack-
age for adaptive clinical trial designs. It offers a comprehensive design planning 
tools for means, proportions and survivals, one-sided and two-sided, noninferiority, 
and equivalence tests. At interim monitoring points, it can recalculate the sample 
size for the ongoing trial based on the current data and adaptively adjust the trial 
based on the patient outcomes.

20.5.5  S + SeqTrial

S + SeqTrial is a S-Plus software library for designing, monitoring, and analyzing 
the group sequential trials. It is integrated into the S-Plus software and allows users 
to directly use or extend the package functions for their designs. It includes many 
spending functions such as Pocock, O’Brien–Fleming, Whiteheard triangular and 
double triangular, Wang–Tsiatis, and others. It can evaluate design operating charac-
teristics including power curve, average sample size calculation, sample size distri-
bution, stopping probabilities, and maximum sample size.

20.5.6  Expected Death on a Study

Expected death on a study is a useful web-based tool to estimate the expected num-
ber of death at specific time point in a time-to-event trial design. The program can 
be used to plan various types of phase III trials. The program assumes the uniform 
accrual and the time to death follows an exponential distribution. Users need to spec-
ify the accrual time, follow-up time, hazard rate, and sample size, and the program 
calculates the expected number of deaths at a specific time point. The program can 
also calculate the time at which a given potion of deaths has occurred. The program 
is developed using JavaScript, and one can run it from a web-browser.
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20.6  TOOLS AND OTHERS

20.6.1  Adaptive Randomization

Adaptive randomization is a software package for helping statisticians design adap-
tive randomization-based Bayesian clinical trials. Users can study operating charac-
teristics of different scenarios and randomization rates by running trial simulations 
in this software. For binary outcome cases, treatment response rates are described 
with a Beta distribution. For time-to-event cases, survival times are described with 
an inverse Gamma distribution. Users can easily adjust parameters including trial 
sample size, tuning parameters for adaptive randomizations, early stopping rules, 
threshold values, and final decision rules. Users can also input multiple scenarios 
simultaneously, and the software carries out all scenario simulations as a batch job. 
The output includes expected sample size, rejection rates, allocation rates, early stop-
ping rates, and other useful operating characteristics. Users can modify and improve 
trial designs based on software output. The software runs on Window platforms with 
a user-friendly GUI (Figure 20.8).

20.6.2  Parameter Solver

Parameter solver (Figure 20.9) is a useful tool for understanding properties of com-
mon distributions and for studying Bayesian statistics and inference. This application 
calculates properties of a given distribution determined by mean and variance or 
other combinations of two parameters. It supports beta, gamma, inverse gamma, log 
normal, normal, and Weibull distributions. It is a very useful tool for studying the 
properties of the distributions of random variables.

20.6.3  Predictive Probability Calculation

The predictive probability calculation (Figure 20.10) program is a useful tool for cal-
culating the predictive probability based on the current patient outcomes and future 

FIGURE 20.8  Screenshot of software adaptive randomization.
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sample size. This software includes the parameter solver and the inequality calcula-
tor to help users adjust distribution parameters and compare distributions. The pro-
gram runs on Windows platforms and has a user-friendly GUI.

The difference between this program and the predictive probability design soft-
ware is that this one calculates predictive probability for both binary and survival 

FIGURE 20.10  Screenshot of software predictive probability calculation.

FIGURE 20.9  Screenshot of software parameter solver.
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endpoints. Users can use this tool as a tutorial to understand how the predictive prob-
ability works. Predictive probability calculation can also be used by the Data Safety 
and Monitoring Board for monitoring the study based on the interim outcomes and 
making decision on whether to stop or continue the trial.

On the other hand, the predictive probability design calculates the stopping bound-
aries and sample sizes for designing trials based on a binary endpoint. One can use 
the predictive probability design tool for planning a single-arm phase II trial design.

20.6.4  Other Tools for Bayesian and Non-Bayesian Adaptive Designs

Traditional frequentist clinical trial methodology is known to be more rigid and 
less adaptive. On the other hand, Bayesian framework naturally incorporates prior 
knowledge to current data to make proper inference. Bayesian methods are adaptive 
in nature and are ideal for learning. Methods and software tools for Bayesian adap-
tive designs can be found in a recent book by Berry et al. (2010). Discussions on non-
Bayesian adaptive designs are covered by books by Chow and Chang (2006,2007).

20.6.5  Other Programs

There are many other well-known programs that are frequently used in clinical trial 
design, conduct, and analysis. Many statisticians rely heavily on those packages such 
as SAS, R, SPlus, SPSS, Stata, and others in their daily work. There are also many 
user-developed add-on’s such as SAS macros, R libraries, and Stata ado files that are 
helpful for clinical trial design and analysis. In addition, Graphpad Prism is a very 
useful tool for curve fitting, statistical comparison, column statistics, linear regres-
sion and correlation, clinical lab statistics, and other functions. It also provides a lot 
of scientific graphing functions to draw and edit scientific plots. Lastly, the develop-
ments of BUGS, WINBUGS, and JAGS have greatly enhanced the implementation 
of computations using Bayesian approaches.

20.7  WEB-BASED CALCULATORS AND RESOURCES

20.7.1  http://www.swogstat.org/statoolsout.html

Online calculators for sample size calculation of one-arm, two-arm, normal, bino-
mial, and survival clinical trials. It also includes the Fisher’s exact test and some 
probability calculations for common distributions.

20.7.2  http://www.upci.upmc.edu/bf/resources.cfm

University of Pittsburgh Cancer Institute website includes online calculators for 
Simon’s and Bryant-Day two-stage designs.

20.7.3  https://biostatistics.mdanderson.org/softwaredownload/

MD Anderson statistical software download site offers many software packages 
for a wide variety of statistical calculations and clinical trial designs. It has many 
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packages for Bayesian clinical trial design including adaptive randomization, CRM 
packages, predictive probability designs, Multc design, EffTox design, and some 
frequentist packages as well, such as STPLAN.

20.7.4  http://calculators.stat.ucla.edu/

This website, developed by UCLA, offers online calculation for distribution, graphic 
chart, and statistical analysis.

20.7.5  http://www.cancerbiostats.onc.jhmi.edu/software.cfm

This website, developed by Sidney Kimmel Comprehensive Cancer Center in Johns 
Hopkins, offers some statistical software packages for clinical trials, including ran-
domization, CRM, optimization, and power/sample size calculation.

20.7.6  �http://hedwig.mgh.harvard.edu/biostatistics/software?tid _ 1 = all

This website, developed by MGH biostatistics center at Harvard University, pro-
vides some software packages for clinical trials including sample size, model fitting, 
sequential boundaries, failure time analysis, power/sample size for logistic, and Cox 
models and others.

20.7.7  http://www.bettycjung.net/statpgms.htm

This website, developed by Berry C. Jung, covers a large variety of online statistical 
resources. It includes statistical software sites, online calculator sites, specific data 
management software sites, and general software (R, SAS, SPSS, and STATA).

20.7.8  http://statpages.org/#comparisons

This page includes many useful links for performing statistical analyses and tests. 
Users can find most common statistical test software packages and many useful sta-
tistical analysis resources.

20.8  SUMMARY

In the last few decades, significant progress in clinical trial design software has been 
made, thanks to the efforts of statisticians and software developers. Statisticians and 
end users have many software options (Table 20.1) for implementing their designs: 
commercial packages, free software, online tools, and R-packages, etc. Finding and 
learning clinical trial software usages has become an important component of stat-
isticians’ routine responsibilities, which can save them a large amount of time rather 
than developing their own codes for trial design and conduct.

With the development of statistical methods and information technology, clinical 
trial software will become more convenient and powerful for users to design sophis-
ticated trials and perform complex analyses. For instance, high-speed computers 
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make the MCMC sampling much faster than before, resulting in rapid progress in 
Bayesian clinical trial methods. Cloud computing technology provides a very conve-
nient environment for users to run calculation from a web-browser, without install-
ing any software on their computers. We can expect continual advance in clinical 
trial software design in future with the development of computation and computer 
technologies. More powerful and user-friendly software will be available and used 
to facilitate clinical trial design, conduct, and analysis.
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21 Cure-Rate Survival 
Models in Clinical Trials

Megan Othus, John J. Crowley, and Bart Barlogie

21.1  INTRODUCTION

Advances in therapy have made cure a possibility for some cancers. For example, 
multiple myeloma (MM) is generally considered an incurable disease [14], but recent 
research suggests that some MM patients could be cured. Investigators at the University 
of Arkansas for Medical Sciences (UAMS) have developed an approach called total 
therapy (TT) that has recently been shown to cure up to 30% of MM patients [13].

The most common regression model for survival data, the proportional hazards 
(PH) model [12], is often not appropriate for heterogeneous patient populations 
including both cured and uncured patients because the PH assumptions fails [37]. In 
this situation, alternative models are needed, and a number of cure regression models 
have been proposed for this type of data.

Cure models can be useful for applications where patients are not technically 
“cured,” but rather there is a proportion of patients who will not fail during the 
follow-up of the study. These patients can be referred to as long-term survivors rather 
than cured. Cure models often can more adequately describe survival trends when 
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there is a non-negligible proportion of patients alive at the end of follow-up with a 
plateau at the end of the survival curve. In this case, the “cured” proportion from 
cure models provides an estimate of the proportion of patients who will not fail dur-
ing follow-up, which may be a clinically relevant value.

This chapter is organized as follows: Section 21.2 reviews cure models proposed 
in the statistical literature; Section 21.3 summarizes important assumptions common 
to cure models; Section 21.4 outlines cure modeling options available in R, SAS, 
and Stata; Section 21.5 outlines design considerations for clinical trials where some 
patients may be cured; and Section 21.6 summarizes an analysis of the UMAS MM 
data by several cure models to highlight differences, common features, and interpre-
tations of models.

21.2  MODEL OPTIONS

Cure models can be classified into two groups: mixture and non-mixture. Each group 
will be reviewed in the following.

21.2.1  Mixture Cure Models

Mixture cure models assume that the underlying population includes both cured and 
uncured patients. The first cure models were motivated by cancer survival trends and 
assumed that survival for cured patients was different and better than survival for 
uncured patients [7]. The authors assumed a simple parametric model:

	 S t pS p S t t( ) ( ) ( ) ( )exp( )= + − − ,0 01t λ 	 (21.1)

where
p denotes the proportion of cured patients
S0(t) denotes the survival of the “general” or “normal” population
λ denotes the death rate due to cancer [7]

The authors were “surprised as well as gratified” to find that such a simple formula-
tion with only two parameters fit observed data quite well.

Further research on mixture cure models has focused on developing more gen-
eral and flexible formulations of Equation 21.1. Most mixture cure models can be 
written as

	
S t X X p X S t X( ) + − ( ),= p( ) ( ( ))1 0 	 (21.2)

where
X is a set of covariates
p(X) is a model for the probability that an individual is cured
S0(t|X) is the survival function for patients who are not cured

Most mixture cure models use a logistic model for p(X). Proposed models for S0(t|X) 
include the exponential and Weibull distributions [16], the PH model [20,34,38], a 
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semiparametric accelerated failure time model [24], and a semiparametric transfor-
mation model that includes both the PH and proportional odds [6] models as special 
cases [28].

Recent research on mixture cure models has focused on more complicated sur-
vival data including interval censoring [27], dependent censoring [26,32], longitudi-
nal data [23,36,44], current status data [29], and grouped survival data [45].

21.2.2  Non-Mixture Cure Models

Most non-mixture cure models parametrize the survival function as

	 S t F t( ) ( ( ))= − .exp θ 	 (21.3)

where F(t) is the distribution function for a non-negative random variable. In this 
model, the cumulative hazard function θF(t) is bounded, and so the survival function 
is an improper survival function in the sense that limt→∞S(t) > 0. In Equation 21.3, the 
proportion of cured patients is equal to exp(−θ). When F(t) does not depend on covari-
ates, Model (21.3) has a PH structure. Covariates are incorporated into this model 
through both θ and F(t). Often θ is modeled with the relationship θ(X) = exp(β′X). 
Common parametric forms for F(t) include the Weibull, lognormal, logistic, and 
gamma distributions.

Parametric forms for F(t) can incorporate covariates and have been considered by 
a number of authors [8,37,40]. Models with semiparametric F(t) have also been pro-
posed [41]. Some work has been done for non-mixture cure models with alternative 
transformations of θF(t) [39,46].

Non-mixture cure models are a popular framework for Bayesian cure models 
because mixture cure models yield improper posterior distributions for many non-
informative priors, and the PH structure is computationally convenient [8,18,41]. 
Proposals for Bayesian extensions to Equation 21.3 include models for multivariate 
survival data [9], models for spatial data with interval censoring [1], and general 
transformations of θF(t) into survival functions [42,43].

21.2.3  Differences between Mixture and Non-Mixture Cure Models

Choosing between mixture and non-mixture models is a matter of preference. 
Frequentist results are available for both mixture and non-mixture models, but 
Bayesian work has focused on non-mixture models due to computational ease. 
Because in mixture models the probability of being cured is modeled separately 
from the survival for those who are not cured, mixture models allow for separate 
covariate relationships for cured and uncured patients.

21.3  ASSUMPTIONS AND IDENTIFIABILITY

All cure models, parametric, semiparametric, mixture, and non-mixture, assume 
that that a cured fraction exists. This assumption ensures that there is enough 
data to estimate parameters related the cure proportion. This assumption can be 
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checked in a dataset by looking at empirical survival curves. Survival functions 
for populations with cured patients exhibit a plateau at the end of the curve beyond 
which there are no more failures and the survival curve is flat. Given this feature 
of cure survival curves, Kaplan–Meier plots that exhibit plateaus at the end of the 
curve are often interpreted to describe cured populations and that shape of curve 
is often taken as evidence that a cure model may be appropriate. For mixture cure 
models, a test of the existence of a cure fraction based on the tail of the Kaplan–
Meier curve has been proposed [30], though it is not straightforward to implement 
the test.

Additionally, care needs to be taken to ensure that semiparametric models are 
identifiable. Proofs of identifiability or nonidentifiability exist for some general 
classes of semiparametric mixture and non-mixture cure models. For example, the 
logistic-PH model and Equation 21.3 with log(θ) linear in covariates without an 
intercept and F(t) unspecified are both identifiable [25]. The mixture cure model 
(Equation 21.2) with survival for those not cured modeled nonparametrically and 
assuming a constant probability of cure [p(x) = p for all x] is not identifiable [25].

Although common semiparametric mixture models have been proved to be iden-
tifiable, in finite samples, the models can exhibit “near-nonidentifiability” in which 
the likelihood for cure parameters can be flat. To address this issue in mixture 
cure models, authors have proposed setting the survival function for patients who 
are not cured S0(t) in Equation 21.2 equal to zero after the last observed failure 
time [28,34,38]. The justification for this computational adjustment is that cure 
models are only appropriate when some patients are cured and that long follow-up 
is required to identify the plateau of the tail of a survival curve. If there is suf-
ficient follow-up to support the assumption of a cured proportion, authors argue 
that it is reasonable to set the survival function to zero after the last failure. If there 
is not sufficient follow-up or there is no rational for why a cure might exist, the 
model should not be used. Similarly, semiparametric non-mixture survival mod-
els usually assume that F(t) from Equation 21.3 is equal to zero at the last failure. 
Many Bayesian models can control the degree to which a model is semiparametric. 
Bayesian semiparametric non-mixture models often model F(t) as having a piece-
wise constant hazard. The number of pieces controls the “nonparametricity” of the 
model, and so small-to-moderate numbers of pieces are required to have the models 
behave well [9].

21.4  COMPUTATIONAL IMPLEMENTATION

One barrier to implementation of cure models is that there are limited computational 
resources available. Cure models are not standard functions in most statistical pack-
ages. Some authors have made personal code available for their methods, but for the 
most part interested parties would need to hand code complicated formulae. Some 
methods only require a straightforward implementation of built-in optimization rou-
tines, but many methods propose EM algorithms that require more work on the part 
of the user. Later, we review the limited R packages, SAS macros, and Stata modules 
available for cure analyses.
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21.4.1  R

There is one package for cure modeling in R. The package nltm provides frequen-
tist estimates for non-mixture PH and proportional odds models based on [39]. 
Additionally, some authors have made R code available on personal websites. There 
is S-PLUS and R code available for an implementation of the logistic-PH mixture 
cure model [20,33,34,38] using an EM algorithm. The website for the code is http://
www.math.mun.ca/∼ypeng/research/semicure/, and details of the method are pro-
vided in [33]. S-PLUS code for evaluating a generalized F mixture cure model 
using a simulated annealing algorithm [35] is available at http://www.math.mun.
ca/∼ypeng/research/.

WinBUGS code is available for a Bayesian hierarchical model that includes mod-
els of the form (21.2) and (21.3) as special cases. The method proposed in [10] has 
code available at http://www.biostat.umn.edu/∼sudiptob/Software.html. The book 
[19] has a chapter on Bayesian cure survival models. Code for the book can be found 
on the website http://www.stat.uconn.edu/∼mhchen/survbook/.

21.4.2  SAS

A SAS macro was published that fits some frequentist parametric and semiparamet-
ric mixture cure survival models [11].

21.4.3  Stata

There is a Stata module available to fit a frequentist parametric non-mixture cure 
model as detailed in ref. [37]. The module can be downloaded from http://ideas.
repec.org/c/boc/bocode/s446901.html. Details on Stata commands to fit cure models 
that incorporate expected background mortality and that can estimate relative moral-
ity have been published [21].

21.5  DESIGN CONSIDERATIONS

Limited work has been done for power and sample size calculations assuming a 
proportion of patients have been cured. All of the work as focused on mixture cure 
survival models and most of that work has focused on power of tests of the cure 
proportion. Gray and Tsiatis [17] proposed a linear rank test derived to focus power 
at the alternative that cure proportions are different but that survival among those 
not cured is the same between the two groups. This test has improved power over 
the log-rank test when less than 50% of the population is cured. Laska and Meisner 
[22] proposed a test of cure proportions based on the tails of the Kaplan–Meier 
curves. Ewell and Ibrahim extended the results of [17] to cases in which the sur-
vival distributions for non-cured populations may differ [15]. There currently do not 
exist calculators to determine power and sample size for clinical trials assuming a 
cure proportion, and so simulations are the most straightforward way to determine 
sample size.
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21.6  ANALYSIS OF MULTIPLE MYELOMA DATA

In an effort to distinguish between the available models, we will evaluate sev-
eral models on the MM dataset mentioned in the introduction of this chapter. The 
UAMS has developed three TT protocols since 1989 with the intent of curing some 
MM patients. The first protocol, TT1, used a tandem autotransplant approach [3,5]. 
The second protocol intensified induction, added posttransplant consolidation, 
and randomized between the addition of thalidomide, TT2+, or no thalidomide, 
TT2− [4]. The most recent protocol, TT3, incorporated thalidomide and bortezomib 
for induction [2,31]. Patient outcomes have improved over the protocols, so we will 
investigate the trends in progression-free survival (PFS) over the protocols using 
several cure models. PFS is defined from the time of registration to the first of death 
or progression, with patients last known to be alive without progression censored at 
the date of last contact.

First, we look at the survival curves for the four groups to evaluate whether cure 
models are appropriate for this data. Figure 21.1 shows Kaplan–Meier plots of PFS 
stratified by TT protocol. PFS has improved over time, and each PFS curve has a 
plateau at the tail indicating the potential that some patients may be cured.

Table 21.1 summarizes estimates and standard errors (SEs) for a mixture cure 
model (Equation 21.2) with a constant probability of cure, p(X) = p, and exponen-
tial survival, S0 (t|X) = exp (−λt) fit to each protocol. The estimated cure propor-
tions increase over the protocols, as Figure 21.1 indicated. The proportion of cured 
patients more than doubled between TT1 and TT2+/TT3. Survival for patients who 
are not cured has also improved over the TT protocols. Based on the exponential 
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FIGURE 21.1  Kaplan–Meier plots for PFS.
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assumption, median survival for patients who were not cured was 2.3 years in TT1 
and 3.2 years in TT3. Survival among those not cured in TT2−, TT2+, and TT3 was 
relatively stable.

We can incorporate covariates into a parametric mixture cure model though a 
logistic-Weibull cure model. In this model, the probability of being cured, p(X), fol-
lows a logistic distribution, and the survival for those who are not cured, S (t|X), 
follows a Weibull distribution. We incorporate covariates into the Weibull survival 
function by S (t|X) = exp (−exp(β′X)λt γ), where β is a vector of parameters corre-
sponding to the covariate matrix X, λ is the Weibull shape parameter, and γ is the 
Weibull scale parameter. Table 21.2 summarizes results (odds ratios [ORs], hazard 
ratios [HRs], and 95% confidence intervals [CIs]) from a model with covariates for 
protocol, age at diagnosis, and an indicator of presence of metaphase cytogenetic 
abnormalities (CA) at diagnosis. The conclusions from the logistic-Weibull models 
are similar to the conclusions from the simple cure model summarized in Table 
21.1; the probability of cure increased over the protocols. Survival among those not 
cured in TT2+ was significantly improved over TT1, though survival among those 
not cured in TT2−, and TT3 was not significantly improved over TT1. Additionally, 
we have information on age and CA. Both increased age and presence of CAs were 
associated with a decreased probability of being cured and an increased hazard of 

TABLE 21.1
Exponential Cure Model Regression Results

Cure 
Proportion (%) SE

Survival 
Parameter λ SE

TT1 9.4 2.1 0.30 0.02

TT2− 10.3 6.1 0.20 0.03

TT2+ 23.2 7.8 0.17 0.03

TT3 52.7 11.5 0.22 0.08

TABLE 21.2
Logistic-Weibull Regression Results

Cure Model Weibull Model

OR 95% CI HR 95% CI
TT1 (ref)

TT2− 1.51 (1.06, 5.26) 0.65 (0.57, 1.00)

TT2+ 4.75 (2.22, 10.18) 0.64 (0.44, 0.91)

TT3 20.23 (9.11, 44.90) 0.91 (0.48, 1.73)

Age 1.03 (1.00, 1.05) 1.01 (1.00, 1.02)

CA 2.38 (1.43, 4.00) 1.46 (1.17, 1.83)

λ (shape) 0.16 (0.09, 0.30)

γ (scale) 1.11 (1.02, 1.19)
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failure. The exponential distribution is a special case of the Weibull distribution 
when γ = 1. In this model, the 95% CI for γ excludes 1 implying the model does not 
simplify to the exponential case.

The PH model can be more flexible than the Weibull model because it does not 
assume a parametric form for the hazard function. Table 21.3 summarizes results 
from a logistic-PH model, where S (t|X) = exp (−exp(β′X) Δ(t) ) and Δ(t) is an unspeci-
fied cumulative hazard function. The point estimates for the ORs and HRs from the 
logistic-PH model are fairly similar to the estimates from the logistic-Weibull model. 
In contrast to the logistic-Weibull model, the survival among those not cured with 
TT2− was significantly improved over TT1, and the HR for CA is not significantly 
different from 1.

An alternative semiparametric model is a non-mixture model (Equation 21.3) 
with an unspecified F(t) and θ = exp (β′X). Results for this model were summarized 
in Table 21.4. The results for the PH non-mixture model indicate that there was con-
tinued improvement in survival for all patients, on average, from TT1 through TT3. 
Older age and presence of CAs are associated with decreased survival.

TABLE 21.3
Logistic-Proportional Hazards Regression 
Results

Cure Model PH Model

OR 95% CI HR 95% CI
TT1 (ref)

TT2− 1.90 (1.08, 3.34) 0.69 (0.57, 0.84)

TT2+ 3.97 (2.31, 6.82) 0.57 (0.46, 0.70)

TT3 21.35 (12.32, 37.03) 0.87 (0.67, 1.24)

Age 1.031 (1.05, 1.02) 1.01 (1.00, 1.01)

CA 2.48 (1.86, 3.69) 1.44 (0.89, 1.21)

TABLE 21.4
PH Non-Mixture Model 
Regression Results

HR 95% CI

TT1 (ref)

TT2− 0.64 (0.53, 0.78)

TT2+ 0.45 (0.36, 0.55)

TT3 0.29 (0.22, 0.37)

Age 1.03 (1.01, 1.05)

CA 1.72 (1.47, 2.01)
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The non-mixture model can also take use parametric forms for F(t). Table 21.5 
summarizes results for F(t) following the Weibull distribution with the covariate 
age and letting θ = exp(β′X). The results for this model are virtually identical to the 
results form the semiparametric model.

As a final comparison, the standard survival model, the PH model, is summarized 
in Table 21.6. The PH model has very similar estimates as the non-mixture cure 
models.

Given the number of different models applied to the data, we were interested 
in how the estimates of cured fractions differed between the models. Table 21.7 
summarizes estimates of cure fractions for each of the protocols from the five cure 
models summarized earlier. Each model was fit with only covariates for the proto-
cols. Estimates were fairly stables between the models even though each model had 

TABLE 21.5
Weibull Non-Mixture 
Model Regression Results

HR 95% CI

TT1 (ref)
TT2− 0.64 (0.53, 0.78)

TT2+ 0.45 (0.36, 0.55)

TT3 0.29 (0.22, 0.37)

Age 1.03 (1.01, 1.05)

CA 1.72 (1.47, 2.01)

Scale
Intercept −7.03 (−8.24, −5.83)

Age −0.02 (−0.04, 0.01)

Shape
Intercept 0.56 (0.18, 0.94)

Age −0.01 (−0.01, −0.001)

TABLE 21.6
Proportional Hazards 
Model Regression Results

HR 95% CI

TT1 (ref)

TT2− 0.65 (0.53, 0.79)

TT2+ 0.45 (0.36, 0.55)

TT3 0.29 (0.22, 0.37)

Age 1.02 (1.01, 1.02)

CA 1.72 (1.48, 2.01)
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different modeling assumptions. TT1 had the smallest range in estimates, and TT3 
had the largest range of estimates, reflecting that there is more follow-up for TT1 
than TT3 and so more information for estimating the cure proportion.

As highlighted in the interpretation of the results, one main difference between 
mixture and non-mixture models is that the mixture models explicitly model sepa-
rately the probability of being cured and the survival for those not cured. This allows 
for covariates to have distinct relationships for cured and uncured patients. In con-
trast, the interpretation of covariates within the non-mixture model is for survival 
averaged across patients, while functionally allowing some patients to be cured. In 
this application, the mixture model picked out different trends in the cure and sur-
vival functions. The proportion of cured patients has increased continuously from 
TT1 to TT3, while survival in TT2+/− and TT3 for those not cured was fairly similar 
(and better than TT1).

As a final note, the exponential cure model and the logistic-Weibull models 
were fit using personal code. The logistic-PH model was fit in SAS using the macro 
described in Section 21.4. The Weibull non-mixture was fit in Stata using the module 
cureregr. The semiparametric non-mixture model was fit using the R package ntlm, 
and the PH model was fit using the R package survival.

21.7  CONCLUDING THOUGHTS

While cure survival models have been a popular topic of methodologic work, 
straightforward implementation of the models is constrained by the limited soft-
ware available. Currently, someone interested in using a cure survival model will 
likely need to put some effort into writing new code or adapting available code to 
their application. Incorporating cure models into standard survival packages will 
be important to encourage more widespread use of such models in applications. 
Additionally, more work on design considerations for cure models would be useful.
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TABLE 21.7
Estimates of Cure Proportions for Mixture and Non-Mixture 
Models

Exponential 
Mixture

Weibull 
Mixture

PH 
Mixture

Weibull 
Non-Mixture

PH 
Non-Mixture

TT1 9.4 9.4 9.6 6.0 8.9

TT2− 10.3 15.7 10.2 15.5 18.7

TT2+ 23.2 28.8 22.8 27.3 31.0

TT3 52.7 59.0 58.7 42.9 45.5
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22.1  INTRODUCTION

The objective of this chapter is to inform those engaged in clinical trials research 
about the special statistical issues involved in analyzing longitudinal quality-of-life 
(QOL) outcome data. Since these data are collected in trials for patients with a life 
threatening disease, it is common to see a drop-off in submission rates for patient-
reported questionnaire data, often due to death and deteriorating health. Data sets 
with such missing data must be analyzed appropriately in order not to arrive at mis-
guided conclusions regarding change in QOL over the treatment course. Methods 
will be suggested for complete or near-complete datasets as well as for those where 
missing data are a concern.

22.1.1  Organization of Chapter

The inclusion of QOL endpoints in clinical trials must be treated as seriously as 
any clinical outcome. The first section of the chapter addresses QOL assessment 
methods, both traditional questionnaires and newer measurement approaches. Most 
design issues important for obtaining a credible evaluation of clinical endpoints are 
also important for QOL outcomes. For example, optimal timing of assessments may 
vary according to the treatment schedule, disease site, and other factors. Issues of 
clinical significance, which in turn inform sample size and power considerations, 
are the same, but the databases used to determine clinical significance are not as 
familiar to clinicians and are still being developed by QOL researchers. The use of 
composite variables, gaining popularity but associated with difficulties in interpre-
tation, has also been suggested for QOL outcomes. These subjects are discussed in 
more detail in Section 22.3.

When QOL research is conducted in many and often widely differing institu-
tions, quality control is critical to ensure clean, complete data. The first step is 
to make completion of a baseline QOL assessment a trial eligibility criterion. 
Enforcement of the same requirements for both clinical and QOL follow-up data 
communicates the importance of the QOL data for the trial. Even with the best 
quality control procedures, submission rates for follow-up QOL questionnaires 
can be less than desirable, particularly in the advanced stage disease setting. It 
is precisely in the treatment of advanced disease, however, that QOL data often 
provide key information about the extent of palliation achieved by an experimental 
treatment. While this is a rich source of information, data analysis is often com-
plicated by problems of missing information. Patients sometimes fail to complete 
QOL assessments because of negative events they experience, such as treatment 
toxicities, disease progression, or death. Because not all patients are subject to these 
missing observations at the same rate, especially when treatment failure or survival 
rates differ between arms, the set of complete observations is not always represen-
tative of the total group; analyses using only complete observations are therefore 
potentially biased.

Several methods have been developed to address this problem. They range in 
emphasis from the data collection stage, where attention focuses on obtaining 
the missing values, to the analysis stage, where the goal is adjustment to properly 
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account for the missing values. In Section 22.4, we first describe different types of 
missing data. Section 22.5 describes methods that are appropriate for complete or 
nearly complete data. Section 22.6 presents several methods that have been used 
to address incomplete datasets and informative missing data, including sensitivity 
analyses. Section 22.7 examines approaches for substituting scores for missing data, 
imputation, and methods for combining survival and QOL outcomes.

22.2  WHAT IS QOL AND HOW IS IT MEASURED?

22.2.1  General Assessment Methods

In randomized treatment trials for cancer or other chronic diseases, the primary 
reason for assessing QOL is to broaden the scope of treatment evaluation. We some-
times characterize QOL and cost outcomes as alternative or complementary, because 
they add to information provided by traditional clinical trials’ endpoints such as 
survival, disease-free survival, tumor response, and toxicity. The challenge lies 
in combining this information in the treatment evaluation context. There is fairly 
strong consensus that, at least in the Phase III setting, QOL should be measured 
comprehensively [1–3]. Although a total or summary score is desirable for the QOL 
measure, it is equally important to have separate measures of basic domains of func-
tioning, such as physical, emotional, social, and role functioning, as well as symptom 
status. Symptoms specific to the cancer site and/or the treatments under evaluation 
are also usually included to monitor for toxicities and to gauge the palliative effect of 
the treatment on disease-related symptoms. In some trials, investigators may study 
additional areas such as financial concerns, spirituality, family well-being, and satis-
faction with care. Specific components of QOL not only provide information on spe-
cific interpretation of treatment effects but also can identify areas in which cancer 
survivors need assistance in their return to daily functioning. Data on specific areas 
of functioning can also help suggest ways to improve cancer treatments; Sugarbaker 
et al. [4] conducted a study in which the radiotherapy regimen was modified as a 
result of QOL data.

QOL data should be generated by patients in a systematic, standardized fashion. 
Interviews can be used to obtain these data, but self-administered questionnaires are 
usually more practical in the multi-institution setting of clinical trials. Selected ques-
tionnaires must be reliable and valid [5] and sensitive to change over time [6,7]; good 
measurement properties, along with appropriate item content, help ensure a more 
accurate picture of the patient’s QOL. There are four QOL questionnaires that meet 
these measurement criteria, provide comprehensive measures of domains or areas of 
QOL, and are frequently used in cancer clinical trials. The Functional Assessment 
of Chronic Illness Therapy (FACIT), the newer name for the Functional Assessment 
of Cancer Therapy (FACT, version 4) [8–12], and the European Organization of 
Research and Therapy for Cancer (EORTC) Quality-of-Life Questionnaire-Core 30 
(QLQ-C30) [13–17] are two QOL questionnaires that measure general domains or 
areas of QOL, the core component, along with symptom modules specific to the 
disease or type of treatment; see websites for currently available modules [18,19]. 
Others, like the Cancer Rehabilitation Evaluation System-Short Form (CARES-SF) 
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[20–23] and the Short Form Health Survey (SF-36, SF-12, and SF-8) [24–35], can 
be used with any cancer site but may require supplementation with a separate symp-
tom measure to address concerns about prominent symptoms and side effects. The 
large normative database available for the SF-36 is very useful in interpreting score 
changes and differences; see the website for information on accessing this measure 
and its databases [36]. This questionnaire has been used successfully in cancer clini-
cal trials to detect differences in treatment regimens [37].

22.2.2  New Quality-of-Life Assessment Approaches

PROMIS. A new QOL assessment initiative is the Patient-Reported Outcomes 
Measurement Information System (PROMIS) (http://www.nihpromis.org/default.
aspx). This National Institutes of Health (NIH)-supported effort developed banks of 
items that can be used to measure QOL more precisely (by minimizing error in the 
estimates) and efficiently (by requiring fewer items) across a broad range of chronic 
diseases including cancer [38,39]. These item banks incorporate items from exist-
ing measures (e.g., the SF-36 [40]). PROMIS domains address three main areas of 
health based on the World Health Organization framework [41], physical, mental, 
and social domains; this breakdown has been used in the development of countless 
QOL questionnaires. Thirty-eight subordinate domains exist under the three main 
areas (e.g., pain interference, emotional distress-anxiety, and discretionary social 
activities); new domains and subdomains are currently under development. Each 
domain/subdomain has a bank of items, with each item calibrated, so that scores 
generated by different sets of items answered by different people can be interpreted 
the same with respect to a person’s level on the QOL domain/subdomain of interest. 
This domain is described as a latent trait, because we cannot measure it perfectly; 
item response theory methods used to create the item banks minimize error and 
maximize precision of measurement [42]. That is, regardless of which items a person 
completes from a specific bank, high scores reflect a higher level for that trait and 
low scores reflect a lower level for the trait. An item bank allows three general types 
of measurement [39,43]: static short forms, which are currently being validated by 
PROMIS researchers; a computer-adaptive test (CAT) [44]; and customized short 
forms from the item banks tailored to specific research questions. After the first 
item, a CAT measure determines subsequent items based on a person’s response to 
the previous item, which allows for the most precision in measuring the latent trait 
with the fewest items [42,44]. Finally, part of the PROMIS technical services avail-
able to users of PROMIS measures is an assessment center, which allows individual 
researchers to set up studies using both PROMIS measures and non-PROMIS mea-
sures and administer these items online to study participants [45]. The assessment 
center is supported with NIH funding and meets all standards for protecting privacy 
of respondent information.

PRO-CTCAE. The National Cancer Institute (NCI) recently supported the devel-
opment of a patient-reported outcomes (PRO) version of the Common Toxicity and 
Clinical Adverse Events rating system, the PRO-CTCAE (http://outcomes.cancer.
gov/tools/pro-ctcae.html). The PRO-CTCAE ratings are being developed by Dr. 
Ethan Basch and colleagues at Memorial Sloan Kettering Cancer Institute.
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22.3  DESIGN ISSUES

22.3.1  Timing of Assessments

When adding QOL to a cancer clinical trial, it is important to think carefully about 
possible assessment times. Table 22.1 summarizes some of the factors that should be 
considered in order to select clinically meaningful time points as well as time points 
that are “fair” for all treatment arms under study. Most factors require discussion 
with clinicians involved in the trial. For example, one might want to document QOL 
status at known points of remission or deterioration for the particular cancer site or 
assess patient QOL at the earliest point when an agent could be expected to have a 
positive effect on the disease to see if there would be a comparable effect on QOL. 
The clinicians involved in the trial have likely had previous experience with the 
agent and can be a good source of suggestions for meaningful time points. The table 
notes factors affecting compliance with the QOL assessment schedule and quality 
control procedures. Specifying acceptable windows for the QOL assessment times 
in the protocol helps with quality control procedures downstream. Finally, one can 
base QOL assessments on events, such as the beginning of new treatment cycles, as 
opposed to the number of days from randomization. This decision can have implica-
tions for systems used to monitor timely submission of questionnaires. Information 
about delays in treatment administration often does not reach the data center in time 
to revise expected due dates for questionnaires; in addition, some systems may not 
be able to accommodate ongoing demands for due date revisions.

22.3.2  Clinical Significance and Power

There is an increasing emphasis on the importance of addressing the clinical sig-
nificance of QOL scores in cancer clinical trials and of helping clinicians and clini-
cal trialists interpret what scores and changes in scores mean. A series of seven 
papers published in the Mayo Clinic Proceedings in 2002 addressed these subjects 
[48–54]. A protocol that includes a QOL outcome should stipulate the number of 
points that reflects a clinically significant difference or change for that questionnaire. 
Fortunately, this task is feasible using the large databases that exist for some of the 
more frequently used questionnaires. For example, the Functional Assessment of 
Cancer Therapy-Lung Cancer (FACT-L) has a separate score for the Trial Outcome 
Index (TOI), a measure of physical and functional well-being and symptoms/con-
cerns. A change of 5–7 points for the TOI has been associated with differences in 
other clinical measures such as performance status as well as with the amount of 
change over time in patients with better versus worse prognosis [55]. If physical 
and symptom status are of primary interest in the trial, then a measure such as the 
TOI might be designated the primary QOL outcome variable and sample size deter-
mined based on the 5–7-point improvement for one arm versus the other. Given a 
trial for advanced stage disease patients, investigators might be interested in seeing 
if patients in one arm deteriorated by a clinically important amount such as 5–7 
FACT TOI points, while the other arm remained relatively stable. Clinically impor-
tant change for the EORTC QLQ-C30 varies with the subscale of interest and other 
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TABLE 22.1
Important Variables in the Determination of QOL Assessment Schedules

Variable Example/Rationale

Baseline assessment is mandatory Cannot measure change without an assessment prior 
to the initiation of treatment.

Data collection prior to the administration of 
treatment and/or discussions with clinical staff

Compare patient experience with different regimens 
after recovery from previous cycle. Avoid biasing 
patient report based on feedback from medical 
staff.

Timing of HRQL assessments should be similar 
for all treatment arms

Comparable assessment times for arms problematic 
when regimens have different administration 
schedules (e.g., 3 versus 4 week cycles). 
Assessment time can be based on time (e.g., every 
2 weeks from randomization/registration) or on 
event (e.g., every two treatment cycles).

Natural course of the disease Known points of remission and deterioration.

Disease stage 1. �Early stage disease: longer follow-up to address 
survivorship issues, monitor late effects (both 
positive and negative), and see if patients are able 
to return to “normal” activities.

2. �Late stage disease: shorter follow-up period 
because of the potential for missing data. Median 
survival one basis for length of QOL follow-up.

Effects associated with the treatment course or 
administration

1. �Documentation of acute, short-term side effects or 
cumulative side effects such as at the end of 
radiotherapy (XRT).

2. �Minimum number of cycles required to see an 
effect of treatment on QOL.

Timing of important clinical events or 
monitoring

1. �Can assess QOL when patients go off treatment, 
such as at progression, but results in patient-
specific measurement times based on event timing 
and the possibility of no data for patients who do 
not experience the event.

2. �Pair QOL assessments with clinical monitoring 
(e.g., tumor measurements) to enhance forms 
compliance.

Completion of treatment and/or a short time 
after completion of treatment

For example, resolution of mucositis may require 
2–4 weeks postcompletion of XRT. Treatment arms 
might be compared at the end of XRT and 2–4 
weeks later to see how much better/sooner 
palliation occurs.

Scheduling issues for special populations
Example: end-of-life care

Four factors ⇒ suggested weekly assessment 
schedule [46]: (1) length of survival (∼30 days for 
terminal patients); (2) variability in deterioration 
(more pronounced 1–3 weeks prior to death); (3) 
length of time required to observe effect of 
intervention; (4) burden issues.
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variables such as stage of disease [56]; Osoba et al. [57] suggest that a change of 
10–20 QLQ-C30 points on a 0–100 scale reflects a moderate effect.

If change for a particular questionnaire has not been documented, it is possible 
to use effect size as a basis for determining a clinically important difference. Effect 
size [58] is a measure of the change or difference in scores relative to variability in 
the scores. It is calculated in a number of different ways but can be summarized as 
follows: δ (effect size) = Mean [μ] Arm 2 − Mean [μ] Arm 1/Standard Deviation [σ] Arm 1. 
In this case, one has access to means and standard deviations for this questionnaire. 
The denominator can also be the standard deviation of the control arm, of a stable 
group, or of the difference, to name a few variations. See Sprangers et al. [48] for a 
summary of these formulas. Cohen [58] has described effect sizes of 0.2 as small, 
0.5 as moderate, and 0.8 as large. If the number of points reflecting clinically signifi-
cant change is not available, sample sizes can be estimated from standard software 
using effect size parameters: μ1 = 0; μ2 = the minimum δ of interest; σ = 1; α = 0.05; 
and power = 0.80. One half of a standard deviation is often used as a benchmark for 
a moderate-sized effect or change [58,59]. However, Hays et al. [60] caution that 
distribution-based methods such as the standard deviation do not inform us about 
minimally or clinically important change for group or individual change; they only 
provide a standardized metric for observed change. Sloan et al. [59] noted that a dif-
ference of 10 on a 0–100 scale generally reflects a moderate effect.

If there are normative data for a questionnaire, one can characterize the meaning 
of a score by comparing the difference in points observed in the trial to differences 
reported for other groups of patients. Moinpour et al. [37] reported that a median dif-
ference of eight points was found for the SF-36 Mental Health Inventory (MHI) [25] 
for men receiving orchiectomy plus the antiandrogen flutamide with a median score 

TABLE 22.1 (continued)
Important Variables in the Determination of QOL Assessment Schedules

Variable Example/Rationale

Compliance with assessment schedule 1. �Respondent burden: too many assessments are 
burdensome and affect the patient’s adherence to 
the QOL assessment schedule.

2. Institution staff burden can also affect compliance.
3. �Data collection and management resources: 

frequent assessments require more personnel and 
data management effort and can compromise 
quality control procedures.

4. �Specification of acceptable time windows: even 
with specified times of assessment, variability 
occurs in completion dates. This can affect how 
QOL is rated and possibly the interpretation of 
treatment arm comparisons [47].

Source:	 Adaptation from Sprangers, M.A.G. et al., the Clinical Significance Consensus Meeting 
Group, Mayo Clin. Proc., 77, 564, 2002, Table 2.
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of 76 compared to the arm treated with orchiectomy alone with a median score of 84, 
where a lower score reflects worse emotional well-being. Normative data for the MHI 
indicate that men with benign prostatic hyperplasia and hypertension had a median 
score of 88 while men with congestive heart failure had a median score of 80 [27]. 
The severity of these two medical conditions clearly differs, with men with conges-
tive heart failure reporting more compromised emotional well-being. These data help 
establish the clinical meaningfulness of an eight-point difference. Even a three-point 
difference on the MHI is clinically important since it is associated with decreases in 
scores reported by individuals who have just lost their jobs [28]. It is also possible to 
include a single item rating of change in QOL and use this anchor to determine the 
number of points required for clinical significance [50].

22.3.3  Clinical Significance Benchmarks for Individual Change

Clinicians and QOL researchers are naturally interested in extending the use of 
PROs from clinical trials to monitoring of QOL in the clinic setting. However, 
we know much less about the application of the benchmarks described earlier 
for meaningful differences for an individual patient at one or two points in time. 
Donaldson [61] notes that the 95% confidence interval for a 5-point change bench-
mark for group comparisons would be 4.5–7.8; the 95% confidence interval for 
the same benchmark at the individual level would be 15–20 points. The reason is 
the increase in measurement error, given less information (e.g., change for other 
similar individuals and multiple longitudinal measures), and we are less confident 
that the benchmark was met. Increasing the sample size in group comparisons 
improves precision, as does increasing the number of longitudinal assessments 
for the individual; the reliability of the measure is also an important factor. The 
reliability of measures used at the individual level should be at least 0.90 [62,63], 
which is not met by all measures in use for group comparisons (where the rec-
ommendation is ≥0.70). For individual change, “…the error variabilities of the 
two measurements combine, increasing the standard error by a factor of √2” [61]. 
However, while additional research to validate benchmarks for individual change 
continues, PRO measures can be used to improve patient/physician communica-
tion regarding QOL issues of interest to both parties.

22.3.4  Composite Variables

Another issue that arises in cancer clinical trials with multiple traditional clinical 
endpoints is the advisability of creating composite variables to examine effective-
ness; these composite variables can include outcomes such as hospital days, patient-
reported symptoms, or general QOL (PROs). For example, Freemantle et al. [64] 
specified a composite variable including all-cause mortality, nonfatal myocardial 
infarction, and refractory ischemia. They reported that the composite variable in 
the four trials favored treatment with the inhibitor; however, all-cause mortality, 
a critical component of the composite variable, did not favor the new treatment. 
This shows the importance of describing effects for all components of a composite 
variable, so that a composite variable does not mask negative or null effects of a 
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more clinically salient outcome. Johnson et al. [65] noted that all components of a 
composite variable need to be related and should have similar clinical importance in 
order to reflect clinical benefit. Composite variables can increase the statistical pre-
cision and efficiency of a trial when the individual components behave in the same 
direction. However, the results are not clinically helpful when components differ in 
the size and direction of the treatment effect. Freemantle et al. [64] suggested that 
interpretation of results for a composite variable should make clear that these results 
apply to the combination and not necessarily to individual components. The authors 
also note that the components should be treated as secondary outcomes with results 
reported separately for each.

22.3.5  Comparative Effectiveness Research

PRO measures are an important component of comparative effectiveness research 
(CER). CER documents benefit and harm associated with medical interventions that 
span the full continuum from prevention and screening, diagnosis, treatment, and 
survivorship [66,67]. CER usually has a more comprehensive battery of outcome 
measures than most clinical trials including measures of cost and health state utili-
ties to address cost-effectiveness, resource utilization, and QOL. PRO measures (the 
QOL and utility outcomes) add to the information provided by more traditional mea-
sures of cost effectiveness. An example of a CER study is SWOG 1007: A Phase III, 
Randomized Clinical Trial of Standard Adjuvant Endocrine Therapy ± Chemotherapy 
in patients with one to three positive nodes, hormone receptor-positive, and HER2-
Negative Breast Cancer with Recurrence Score (RS) of 25 or less. The study coor-
dinator is Ana M. Gonzalez-Angulo, M.D. This study addresses the role of gene 
expression profile tests on decision making for the treatment of breast cancer for 
these patients. It evaluates the impact of the testing on patient levels of anxiety and 
decision making conflicts. The randomized trial evaluates the impact of hormonal 
therapy alone versus with chemotherapy for women identified as low risk for recur-
rence on the basis of the OncoType DX® RS. Table 22.2 and Figure 22.1 describe the 
study and how patients will progress through its two steps or phases. The random-
ized trial will evaluate whether or not women with low risk for recurrence need 
chemotherapy in addition to hormonal therapy.

22.4  TYPES OF MISSING DATA

As mentioned briefly earlier, QOL data are often subject to missingness. Depending 
on the nature of the mechanism producing the missing data, analyses must be 
adjusted differently. In the following, we list three broad classes of missing data 
mechanisms and provide their general descriptions along with their more formal 
technical names and terms.

The least problematic type of missing data is missing completely at random data 
(MCAR); this mechanism is sometimes termed “sporadic.” Missing data probabili-
ties are independent of both observable and unobservable quantities; observed data 
are a random subsample of complete data. This type of mechanism rarely obtains in 
real data.
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TABLE 22.2
Example of SWOG Trial with PRO and CER Outcomes

Study

CANCERGEN: Center for Comparative Effectiveness Research in SWOG

Intervention PRO Measures

Genomics testing 
to guide cancer 
treatment for 
women with one 
to three positive 
nodes, 
HR-positive, 
Her2-negative 
breast cancer

Step 1: SWOG institutions are enrolling 
women who discuss testing with MD, 
agree to receive the Oncotype DX test, and 
then meet with MD to learn the 
Recurrence Score (RS) results: a PRO 
assessment occurs before RS testing and 
after results are shared with the patient. 
Women with RS ≤ 25 who do not agree to 
randomization are administered a second 
PRO assessment with extra questions on 
their decision not to have treatment based 
on randomization; they receive no further 
follow-up. Those with RS > 25 complete a 
second PRO assessment and receive 
treatment for higher risk disease. These 
women receive no additional PRO 
follow-up.

All women, Step 1: PROMIS 
Anxiety SF,a,b Decisional 
Conflict Scale,c Survivor 
Concerns,d Oncotype DX 
testing questions,e and EQ-5Df 
(assessments pre and post 
Oncotype DX testing when 
results known).

Step 2: Those with Recurrence Score (RS) 
≤ 25 (low-risk) who agree to 
randomization receive either chemotherapy 
followed by hormonal treatment or 
hormonal treatment alone. PRO follow-up 
occurs at 6, 12, and 36 months. Cost of 
care will be determined on a subset of 
patients who are Medicare eligible or who 
have commercial health insurance from 
one of four health insurance groups.

Randomized study, Step 2: 
PROMIS Anxiety,a,b Fatigue,a,b 
Cognitive Concerns,a,b 
Decisional Conflict Scale,c 
Survivor Concerns,d Oncotype 
DX testing questions,e and 
EQ-5Df (four total 
assessments).

a	 Garcia SF, Cella D, Clauser SB, Flynn KE, Lai J-S, Reeve BB, Wilder Smith A, Stone AA, Weinfurt 
K. Standardizing patient-reported outcomes assessment in cancer clinical trials: A patient-reported 
outcomes measurement information system initiative. J Clin Oncol 2007; 25:5106–5112.

b	 Personal Communications, D Cella, S Garcia, J-S Lai, 2010 and draft project summaries for the 
Cancer PROMIS Supplement.

c	 O’Connor AM, User Manual. Decisional Conflict Scale 1993 (updated 2005). Available from 
www.ohri.ca/decisionaid.

d	 Gotay CC, Pagano IS. Assessment of Survivor Concerns (ASC): A newly proposed brief question-
naire. Health Qual Life Outcomes 2007; 5:15 (http://www.hqlocom/content/5/1/15).

e	 Lo SS, Mumby PB, Norton J, Tychlik K, Smerage J, Kash J, Chew HK et al. Prospective multicenter 
study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant 
breast cancer treatment selection. J Clin Oncol 2010; 28:1671–1676.

f	 Pickard AS, Wilke CT, Lin H-W, Lloyd A. Health utilities using the EQ-5D in studies of cancer. 
Pharmacoeconomics 2007; 25(5):365–384.
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Data are said to be missing at random (MAR) when the missing data probabilities 
are dependent on observable quantities, such as previously measured QOL outcomes 
or covariates like age, sex, and stage of disease, and the analysis can generally be 
adjusted by weighting schemes or stratification. This type of mechanism can hold if 
subjects with poor baseline QOL scores are more prone to missing values later in the 
trial, or if an external measure of health, such as the Karnofsky performance status, 
completely explains the propensity to be missing. Because the missingness mecha-
nism depends on observed data, analyses can be conducted that adjust properly for 
the missing observations.

The most difficult type of missing data to handle is termed nonrandom, miss-
ing not at random (MNAR), or nonignorable (NI). Here, missing data probabili-
ties are dependent on unobservable quantities, such as missing outcome values or 

SCHEMA: HRQL Sample

RS > 25 RS ≤ 25 

Accept

Refuse

Node-positive (1–3 nodes) HR-positive and HER2-negative breast cancer

RS already available and ≤25.
Physician and patient discuss

randomization knowing the RS
10% of full sample = 60

Recurrence
score

Discuss
alternative trials

for high risk
patients

40% of 1000 = 400

Physician and
patient discuss
randomization
knowing the RS

N = 600

Step 2 Registration/
randomization stratified

by:
1.  RS 0 – 13 vs. 14 – 25
2.  Menopausal

3.  Axillary node
dissection vs.
sentinel node
biopsy

HRQL sample = 440 + 60
= 500

Chemotherapy;
endocrine therapy

No chemotherapy;
endocrine therapy

Patients consent to Recurrence Score (RS) testing,
discussion of potential randomization on this trial.

2nd HRQL time point
Observational study form

No further follow-up

Step 1 Registration and tumor tissue submission
for RS testing 1000 of 8800 approached for HRQL

study
1st HRQL Time point: enrollment form

2nd HRQL Time point/1st for women who
enter with Recurrence Score: Randomized

Study Form
HRQL follow-up: months 6, 12, 36

Step 1
Registration

Step 1

Step 1 

Step 2 

status

FIGURE 22.1  SWOG1007: SCHEMA for HRWL sample.
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unobserved latent variables describing outcomes such as general health and well-
being. This type of mechanism is fairly common in QOL research. One example is 
treatment-based differences in QOL compliance, due to worse survival on one arm 
of the trial. Another is when subjects having great difficulty coping with disease 
and treatment are more likely to refuse to complete a QOL assessment.

To determine which methods of statistical analysis will be appropriate, the analyst 
must first determine the patterns and amount of missing data and identify potential 
mechanisms that could have generated missing data. In general, there is no reliable 
way to test for a given type of missing data mechanism, and thus sensitivity analyses 
are a crucial component of any analysis; this is discussed in more detail in the fol-
lowing. Rubin [68] addressed the assumptions necessary to justify ignoring the miss-
ing data mechanism and established that the extent of ignorability depends on the 
inferential framework and the research question of interest. Under likelihood-based 
and Bayesian inference, the missing data are said to be ignorable if the missing data 
mechanism is MAR, and the parameters of the missing data model are distinct from 
those of the model of interest for the outcome. Identification of missing data mecha-
nisms in QOL research proceeds through two complementary avenues: (1) collecting 
as much additional patient information as possible and applying simple graphical 
techniques and (2) using hypothesis testing to distinguish missing data processes, 
subject to modeling assumptions about the missingness mechanism.

22.4.1  Graphical Description of Missing Data Mechanisms

Graphical presentations can be crucial as a first step in elucidating the relationship 
of missing data to the outcome of interest and providing an overall summary of 
results that is easily understood by nonstatisticians. A clear picture of the extent 
of missing QOL assessments is necessary both for the selection of the appropriate 
methods of analysis and for honest reporting of the trial with respect to reliability 
and generalizability. In clinical trials, this means summarizing the proportions of 
patients in whom assessment is possible, such as surviving patients still on study, 
and then the pattern of assessments among these patients. Machin and Weeden [69] 
combine these two concepts in Figure 22.2, using the familiar Kaplan–Meier plot to 
indicate survival rates and a simple table describing QOL assessment compliance. 
For this study of palliative treatment for patients with small-cell lung cancer (SCLC) 
and poor prognosis, the Kaplan–Meier plot illustrates why the expected number of 
assessments is reduced by 60% at the time of the final assessment. The table further 
indicates the increase in missing data even among surviving subjects, from 25% at 
baseline to 71% among the evaluable patients at 6 months. If the reasons for missing 
assessments differ over time or across treatment groups, it may be necessary to pres-
ent additional details about the missing data.

A second step is describing the missing data mechanism, especially in relation 
to the patients’ QOL. A useful technique is to present the available data separately 
for patients with different amounts of and reasons for dropout. This is illustrated 
by Figure 22.3, due to Troxel [70], where estimates of average symptom distress in 
patients with advanced colorectal cancer are presented by reason for dropout and 
duration of follow-up. Patients who drop out due to death or illness report higher 
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symptom distress and the worsening of symptom status over time is more severe for 
these patients as well. Patients with a decreasing QOL score may also be more likely 
to drop out, as demonstrated by Curran et al. [71], where a change score between two 
previous assessments was predictive of dropout.

22.4.2  Comparing Missing Data Mechanisms

Assuming a monotone pattern of missing data, Diggle [72] and Ridout [73] have pro-
posed methods to compare MCAR and MAR dropout. The former proposal involves 
testing whether scores from patients who drop out immediately after a given time 
point are a random sample of scores from all available patients at that assessment. 
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for the presentation of quality-of-life data from clinical trials. Stat. Med. 1998. 17. 711–724. 
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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The latter proposal centers on logistic regression analysis to test whether observed 
covariates affect the probability of dropout.

Testing the assumptions of MAR against a hypothesis of MNAR is not trivial; such 
a procedure rests on strong assumptions that are themselves untestable [71]. When 
fitting an NI model, certain assumptions are made in the specification of the model 
about the relationship between the missing data process and unobserved data. These 
assumptions are fundamentally untestable. Molenberghs et al. [74] provide examples 
where different models produce almost similar fits to the observed data, but yield 
very different predictions for the unobserved data. Little [75], discussing pattern-
mixture models, suggests that underidentifiability is a serious problem with MNAR 
missing data models and that problems may arise when estimating the parameters of 
the missing data mechanism simultaneously with the parameters of the underlying 
data model. Similar problems may exist in the selection model framework [76].

22.5  �LONGITUDINAL ANALYSIS OPTIONS 
FOR “COMPLETE” DATA SETS

In general, the methods described later are applicable to both repeated measures on 
an individual over time and measurements of different scales or scores on a given 
individual at the same point in time. Many studies of course utilize both of these 
designs, asking patients to fill out questionnaires comprising several subscales at 
repeated intervals over the course of the study.

22.5.1  Normal Linear Mixed Models

The normal linear mixed model [77] is widely used in longitudinal analysis. For 
i = 1, …, n individuals, the repeated QOL measurements are organized into outcome 
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vectors yi, which are assumed to be normally distributed, and a linear function of 
both fixed effects Xi and random effects Zi, as follows:

	 y Z b ei i i i i= + +X α

where
α is a vector of parameters linking the outcomes to the fixed effects
The random parameters bi follow k-variate normal distributions with mean zero 

and variance-covariance matrix D
ei follow multivariate normal distributions with mean zero and variance-covari-

ance matrix Si

Here, D is a positive-definite covariance matrix of dimension k, and Si is a positive-
definite covariance matrix of dimension ni whose parameters do not depend on i. The 
model can be formulated using either a classical likelihood approach or Bayesian 
methodology; in both cases, the EM algorithm [78] can be used for estimation. When 
the variance parameters in Si and D are unknown, they can be estimated using either 
maximum likelihood (ML) or restricted maximum likelihood (REML). REML esti-
mates avoid the downward bias of the ML estimates, which occurs because they fail 
to account for the degrees of freedom lost in estimating the regression parameters. 
Software is available to fit this model in many standard packages, including SAS and 
Splus [79,80].

The linear mixed model is very appealing, as it allows for individual effects on 
QOL in addition to fixed effects for treatment, time, and clinical variables. These 
effects can describe individual variation around the average outcome at different times 
or they can take the form of growth curve parameters for individuals. Furthermore, 
more traditional analysis of variance (ANOVA) and covariance (ANCOVA) models 
are simply special cases of the model stated here in which the bi = 0.

22.5.2  Generalized Linear Models

A second general class of models is the likelihood-based generalized linear model 
(GLM) [81]. This framework is attractive since it accommodates a whole class of 
data, rather than being restricted to continuous Gaussian measurements; it allows a 
unified treatment of measurements of different types, with specification of an appro-
priate link function that determines the form of the mean and variance. For example, 
binary data can be evaluated using a logistic link function, in order to evaluate the 
proportion of subjects experiencing a particular outcome. Estimation proceeds by 
solving the likelihood score equations, usually using iteratively reweighted least 
squares or Newton–Raphson algorithms. GLMs can be fit with GLIM [82], with 
Splus using the GLM function [83], or with SAS using the GLM or mixed procedures 
[84]. If missing data are MAR, unbiased estimates will be obtained. Generalized lin-
ear mixed models are a useful extension, allowing for the inclusion of random effects 
in the GLM framework. Most widely used software packages have routines available 
to fit these models [79,85,86].
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22.5.3  Generalized Estimating Equations

Like GLMs, generalized estimating equations (GEEs) [87] provide a framework 
to treat disparate kinds of data in a unified way. In addition, they require speci-
fication of only the first two moments of the repeated measures, rather than the 
likelihood. Estimates are obtained by solving an estimating equation of the fol-
lowing form:
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where
μi = E(Yi|Xi, β) and Di = ∂μi / ∂β are the usual mean and derivative functions
Vi is a working correlation matrix

For Gaussian measurements, the estimating equations resulting from the GEE are 
equivalent to the usual score equations obtained from a multivariate normal maxi-
mum likelihood model; the same estimates will be obtained from either method. 
Software is again widely available [85–88].

22.5.4  Change-Score Analysis

Analysis of individual or group changes in QOL scores over time is often of 
great importance in longitudinal studies. The simplest and most commonly used 
type of change-score analysis is to take the difference of QOL outcomes at two 
time points and apply a t-test or nonparametric test to compare treatment groups. 
Alternatively, one can assess the extent of change by applying a paired t-test to 
repeated measurements within a population. Change-score analysis has the advan-
tage of inherently adjusting for the baseline score, but must also be undertaken 
with caution, as it is by nature sensitive to problems of regression to the mean [89]. 
In QOL studies in particular, a large amount of individual subject variation can 
overwhelm a statistically significant but small effect; changes in means scores by 
treatment group must be interpreted with great caution before being applied to 
individual patients [90].

22.5.5  Time-to-Event Analysis

If attainment of a particular QOL score or milestone is the basis of the experi-
ment, time-to-event or survival analysis methods can be applied. Once the event 
has been clearly defined, the analysis tools can be directly applied. These include 
Kaplan–Meier estimates of “survival” functions [91], Cox proportional hazard 
regression models [92] to relate covariates to the probability of the event, and 
logrank and other tests for differences in the event history among comparison 
groups. The QOL database, however, supports few such milestones at this point 
in time.
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22.6  METHODS FOR ANALYSIS WITH MISSING DATA

22.6.1  Joint Modeling of Measurement and Missingness Processes

One can model the joint distribution of the underlying complete data Yi and the 
missingness indicators Ri. If conditioning arguments are used, two types of mod-
els can result; the selection model is concerned with f(Yi) f (Ri|Yi), while the pattern 
mixture model is concerned with f(Ri) f (Yi|Ri). The two approaches are discussed and 
compared in detail by Little [75]. Pattern mixture models proceed by estimating the 
parameters of interest within strata defined by patterns of and/or reasons for miss-
ingness and then by combining the estimates. Selection models proceed by modeling 
the complete data and then modeling the behavior of the missingness probabilities 
conditional on the outcome data.

Selection models for continuous and event data have been used by many authors; 
see the following for application to QOL [74,93–95]. While the computations can 
be burdensome, the approach will produce unbiased estimates even in the face of 
MNAR processes, provided that both parts of the model are correctly specified. 
Most selection models assume that the complete underlying responses are multivari-
ate normal; any parametric model, such as the logistic, can be used for the missing 
data probabilities. The type of missingness mechanism is controlled by the covari-
ates and/or responses that are included in the model for the missingness probabilities. 
For example, Troxel et al. [93] posit a multivariate normal model for coping scores in 
a breast cancer trial, assuming an autoregressive covariance structure, along with a 
logistic model for the missing data probabilities that depends on current and possibly 
unobserved values of QOL:
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Rit is an indicator for subject i at time t taking the value 1 if Yit
*  is observed and 

0 otherwise
πit is the probability that Yit

* is missing

Since the probabilities depend on the current, possibly unobserved measurement Yit
*, 

the model can handle MNAR data; it is possible to allow dependence on previous 
values as well. The observed data likelihood is obtained by integrating the complete 
data likelihood over the missing values, as follows:
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where

fi1
*  is the normal density for Yi1

*

ft t|
*
−1  is the conditional normal density for Y Yit i t

*
,
*| −1

πi1 is the probability that the first value for subject i is observed
T is the last assessment time

Estimates are usually obtained through direct maximization of the likelihood sur-
face; numerical integration is generally required. Once estimates are obtained, infer-
ence is straightforward using standard likelihood techniques. This method allows 
analysis of all the data, even when the missingness probabilities depend on poten-
tially unobserved values of the response. The estimates are also likely to depend on 
modeling assumptions, most of which are untestable in the presence of MNAR miss-
ing data. Despite these drawbacks, these models can be very useful for investigation 
and testing of the missingness mechanism. In addition, the bias that results from 
assuming the wrong type of missingness mechanism may well be more severe than 
the bias that results from mis-specification of a full maximum likelihood model. 
Software to fit the Diggle and Kenward [76] model is available [96].

Many authors have proposed pattern-mixture models [97–100]. Pauler et al. [99] 
used a pattern-mixture model approach to model repeated measures conditional on 
death and drop-out times, with a multinomial model for the death times themselves. 
The QOL outcomes follow a normal linear mixed model:
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where
t and z are time and treatment effects, respectively
b0i and b1i are individual-specific intercepts and slopes
σ2 is the conditional within-subject variation

For discrete data, methods allowing for NI missing data have also been proposed 
[101–106]. Often, log-linear models are used for the joint probability of outcome and 
response variables conditional on covariates. The models can be fit using the EM 
algorithm [78] treating the parameters of the missingness model as a nuisance or 
using estimating equations.

Several extensions to standard mixed models have been proposed in the context 
of longitudinal measurements in clinical trials. Zee [107] has proposed growth curve 
models where the parameters relating to the polynomial in time are allowed to differ 
according to the various health states experienced by the patient, for example, on 
treatment, off treatment, and postrelapse. This method requires that the missing data 
be MAR and may be fit with standard packages by simply creating an appropriate 
variable to indicate health state; in essence, it is a type of pattern mixture model.

Schluchter [108] has proposed a joint mixed effects model for the longitudinal 
assessments and the time to dropout, in which a vector of random effects and the log 
of the dropout time are jointly normally distributed. This model allows MNAR data 
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in the sense that the time of dropout is allowed to depend on the rate of change in the 
underlying measurements. More recently, a number of authors have proposed sophis-
ticated joint models for longitudinal and event-time data. Work in HIV/AIDS focused 
on repeated measurements of CD4 counts as predictors of recurrence or other kinds 
of failure and posited a measurement error model for the repeated measurements and 
a Cox model for the survival outcome [109–112]. Because these models account for 
measurement error in the repeated measures, they are readily adaptable to longitudi-
nal values with missing data; in general, the data must be MAR for valid inference, 
but they can be used for MNAR mechanisms if the dropout times are determined by 
survival data. More recent developments include estimation via estimating equations 
[113], relaxation of assumptions of normality [114], and use of Bayesian methods to 
handle longitudinal measures with varying assessment schedules [115].

A number of authors have suggested shared parameter models, in which random 
effects shared between the missing data model and the outcome model accommodate 
NI missing data mechanisms [116–118]. In this case, the complete-data likelihood 

can be written as f Y Y b f R b f b dbo m, | , | , , | .θ θ θ( ) ( ) ( )∫  Here, the outcomes Y 

and the missing data indicators R are assumed to be independent, conditional on 
the random effects b. As noted by [75,119], SPMs are appropriate when missing-
ness can be attributed to some latent process, such as disease progression, that the 
longitudinal outcomes measure imperfectly. The size of the measurement error 
determines the strength of the dependence of the missingness on the latent vari-
able b. A shared parameter model by definition implies MNAR missing data, 
because the previous likelihood implies that the missing data mechanism can be 

written as f R Y Y f R b f b Y Y dbo m o m| , , | , , | , ,θ θ θ( ) = ( ) ( )∫ ; thus, the probability 

of nonresponse depends on the missing values through the posterior distribution of 
the random effects given both the observed and missing outcomes. There are sev-
eral options for handling the random effects b. The simplest approach is to assume 
a multivariate normal distribution, as in the general random-effects framework, but 
several authors have shown that this can result in biased estimates if the assumptions 
are not met [120–123]. More recent work has proposed using mixtures of normal 
distributions [124,125] or leaving the random-effects distribution completely unspeci-
fied [118,126].

22.6.2  Weighted GEEs

GEEs produce unbiased estimates for data that are MCAR. Extensions to the GEE 
exist for data that are MAR: weighted GEEs will produce unbiased estimates 
provided the weights are estimated consistently [127,128]. When the missingness 
probabilities depend only on observed covariates, such as the stage of disease, or 
responses, such as the baseline QOL score, a logistic or probit model can be used to 
estimate missingness probabilities for every subject; the weights used in the analysis 
are then the inverses of these estimated probabilities. Robins et al. [128] discuss 
these equations and their properties in detail; presented simply, the estimating equa-
tion takes the form
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π̂i is an estimate of πi

diag(Q) indicates a matrix of zeroes with the vector Q on the diagonal

Although software exists to fit GEEs, additional programming is usually required to 
fit a weighted version.

22.6.3  Sensitivity Analysis

Even while more sophisticated methods for handling missing data are developed, 
sensitivity analysis remains an integral part of any analysis involving incomplete 
data. Sensitivity analyses, in which the parameters governing the missing data mech-
anism are varied to determine their effect on estimates of the parameters of interest, 
are even more crucial in settings where NI missing data may occur.

Sensitivity analyses can take several forms. Some authors have recommended 
global sensitivity analyses in the context of selection models for likelihood-based 
[56] or semiparametric inference [129]. Others have proposed analogous approaches 
in the context of pattern-mixture models [130,131]. These analyses can be very use-
ful, but can sometimes still involve assumptions about the complete data distribution 
and require difficult computations. Another option is to study sensitivity locally, 
in the neighborhood of the MAR model. Copas and Li [132] describe an approach 
for a normal linear model, in which the correlation of error terms in the model of 
interest and the missing data model is treated as a sensitivity parameter. Others 
have suggested using ideas of local influence and likelihood displacement to assess 
sensitivity due to individual observations or collections of observations [133]. More 
recently, Troxel et al. [134] proposed a more general index of local sensitivity in the 
context of parametric selection models. This approach focuses on the behavior of the 
maximum likelihood estimate (MLE) as the nonignorability parameter moves away 
from its value under the MAR model (usually zero). The idea has been extended 
to longitudinal data, survival data, and many other specialized models [135–138] 
and is appealing since it requires no specialized computations and focuses on the 
neighborhood of the MAR model, since that is the preferred mode of analysis if the 
sensitivity is not extreme.

22.7  AVOIDING PITFALLS: SOME COMMONLY USED SOLUTIONS

22.7.1  Substitution Methods

In general, methods that rely on substitution of some value, determined in a variety 
of ways, are subject to bias and heavily subject to assumptions made in obtaining 
the substituted value. For these reasons, they should not be used to produce a pri-
mary analysis on which treatment or other decisions are based. One problem with 
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substitution methods, especially when the worse score method is used, is that they 
can seriously affect the psychometric properties of a measure. These properties, such 
as reliability and validity, rely on variations in the scores in order to hold. A second 
problem is that in substituting values and then conducting analyses based on those 
data, the variance of estimates will be underestimated, since the missing values, had 
they been observed, would carry with them random variation, which the substituted 
values do not. Substitution methods can be useful, however, in conducting sensitivity 
analyses to determine the extent to which the analysis is swayed by differing data sets.

The worst score method is often used in sensitivity analyses, making the implicit 
assumption that subjects who did not submit an assessment are as worse off as they 
can possibly be with respect to QOL. This is usually an extreme assumption, so an 
analysis robust to worst score substitution has a strong defense.

The last value carried forward (LVCF) substitution method tries to use each 
patient’s score to provide information about the imputed value. It assumes, however, 
that subjects who drop out do not have a changing QOL score, when in practice the 
subjects in rapid decline often tend to drop out prematurely. For this reason, LVCF 
should be always be avoided.

The use of the average score, either within a patient or within a group of patients, 
such as those on the same treatment arm, is more closely related to classic imputation 
methods. Again, it assumes that the imputed values are no different from the observed 
values, but it does not necessarily force each subject’s score to remain constant.

22.7.2  Multiple Imputation

Imputation or “filling-in” of data sets is a valid way of converting an incomplete 
to a complete data set. This method is attractive because once the imputation is 
conducted, the methods for complete data described in Section 22.5 can be applied. 
Unlike ordinary substitution, single imputation consists of substituting a value for 
the missing observations and then adjusting the analysis to account for the fact that 
the substituted value was not obtained with the usual random variation.

Multiple imputation [139] is similar in spirit to single imputation, but with added 
safeguards against underestimation of variance due to substitution. Several data sets 
are imputed, and the analysis in question is conducted on each of them, resulting in a 
set of estimates obtained from each imputed data set. These several results are then 
combined to obtain final estimates based on the multiple sets.

Multiple imputations can be conducted in the presence of all kinds of missingness 
mechanisms. The usual drawback with respect to NI missingness applies, however. 
A model is required to obtain the imputed values, and, in the presence of NI miss-
ingness, the resultant estimates are sensitive to the chosen model; even worse, the 
assumptions governing that model are generally untestable.

22.7.3  Adjusted Survival Analyses

Some authors have proposed analyses in which survival is treated as the primary out-
come, with adjustment for the QOL experience of the patients. This is an extremely 
appealing idea, for it clarifies the inherent trade-off between length and QOL that 
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applies to most patients. It can be difficult to implement satisfactorily in practice, 
however, because of the difficulty of obtaining the appropriate weights for survival 
in different periods. The two methods described later have gained some popularity.

22.7.3.1  Quality Adjusted Life Years
This method consists of estimating a fairly simple weighted average, in which 
designated periods of life are weighted according to some utility describing QOL 
[140–144]. Because utilities are obtained using lengthy interviews or questionnaires 
focusing on time trade-offs or standard gambles, investigators commonly substitute 
utilities obtained from some standard population rather than any information obtained 
directly from the patient. This renders the analysis largely uninterpretable, in our view.

22.7.3.2  Q-TWiST
Q-TWiST [145–149], or quality-adjusted time without symptoms and toxicity, is a 
more detailed method of adjustment, though still one that relies on utilities. The 
patient’s course through time is divided up into intervals in which the patient experi-
ences toxicity due to treatment, toxicity due to disease brought on by relapse, and no 
toxicity. These intervals may be somewhat arbitrary, determined not by the patient’s 
actual experience with toxicity but by predefined averages observed among patients 
with a given disease receiving a given treatment. To compound this arbitrariness, 
utilities for each period are chosen by the analyst, but the impact of different utilities 
can be examined in sensitivity analyses. This results in an analysis that reflects only 
a small amount of patient-derived data, and a large number of parameters chosen 
by the investigator; as with the adjusted life-years approach mentioned earlier, these 
attributes make it very difficult to obtain reliable inference. Indeed, data from patient 
rating scales and Q-TWiST analyses have been shown to differ considerably [150].

22.8  CONCLUSIONS

QOL data are an integral part of modern clinical studies in cancer and can provide 
valuable information about appropriate treatment choices to patients and caregivers. 
For this information to be most useful, care must be taken with every aspect of the QOL 
study, from questionnaire development and design, to setting measurement schedules, 
to minimizing missing data, to using appropriate analytic methods that accommodate 
the variability in individual assessments over time and the potential missing data or 
censoring mechanisms. Continued research into all these areas will add to our ability 
to accurately measure, estimate, and compare QOL in cancer patients, with the goal 
of enhancing their experiences and alleviating their suffering.
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23 Economic Analyses 
alongside Cancer 
Clinical Trials

Dean A. Regier and Scott D. Ramsey

23.1  INTRODUCTION AND RATIONALE

The ever-increasing cost of cancer care, combined with the high prevalence and 
economic burden of cancer in economically developed societies, has fostered 
a strong demand for economic information regarding new technologies aimed at 
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the prevention, detection, and treatment of cancer. As efforts to control health care 
spending become increasingly intense, decision makers are forced to confront the 
reality that adopting new, cost-increasing technologies necessitates spending less in 
other areas of health care, which may adversely affect health outcomes. In this con-
text, some have argued that it is reasonable to consider health outcomes and costs 
for cancer treatments relative to the health outcomes and costs for other medical 
interventions. The most common approach to compare the relative value of different 
interventions in creating better health and/or longer life is cost-effectiveness analysis 
(CEA) [1].

Conducting cost-effectiveness analyses alongside clinical trials has two impor-
tant advantages. First, it is an efficient and timely way to obtain data on clinical, 
economic, and humanistic outcomes simultaneously. Timely economic data will be 
particularly useful to those who are responsible for health care budgets and are often 
critical to formulary considerations. Second, performing a CEA alongside a random-
ized, controlled clinical trial has high internal validity and low potential for bias. 
Because economic considerations are unavoidable in clinical decision making, the 
highest quality economic evidence should be used.

Many countries now require economic information as part of applications for 
listing new products on national formularies. For example, the U.K. National 
Institute for Clinical Excellence has published a guidance document for manufac-
turers and sponsors that outlines best practice recommendations when submitting 
economic information as part of the application materials [2]. In the United States, 
the Academy of Managed Care Pharmacy has published its Format for Formulary 
Submissions, a guidance document for health insurance plans on requesting clinical 
and economic information on new medicines from pharmaceutical manufacturers 
[3]. The “AMCP Format” has been widely adopted by health plans, and many phar-
maceutical companies now routinely prepare AMCP style dossiers for new products 
prior to marketing.

To address the regulatory requirements of many countries and to provide timely 
and highly robust data on economic endpoints, economic analyses are now com-
monly performed alongside clinical trials of new treatments. The rising popularity 
of these so-called piggyback economic studies poses an opportunity and a challenge 
for the field. Moving economic analyses in sync with clinical trials increases their 
value to decision makers, and consequently their influence in clinical practice policy. 
The challenge is for researchers to raise the standards of these analyses so that they 
are considered of equal quality to the trials themselves. Although standard methods 
for conducting and reporting economic evaluations of health care technologies are 
available [4,5], developing a consistent approach for conducting economic evaluation 
alongside clinical trials is a continuing priority for the field.

Despite broad agreement on the principles that underpin cost-effectiveness stud-
ies, there are concerns about the external validity of performing cost-effectiveness 
analyses alongside clinical trials. First, the clinical care which occurs in the trial is 
not representative of care that occurs in typical medical practice [6,7]. This problem 
has several manifestations: (1) the control group often differs from standard practice, 
for example, placebo; (2) protocol-induced procedures such as eligibility screening 
tests artificially raise the cost of care; (3) strict screening and selection criteria mean 
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that trial subjects are much more homogenous and likely to comply with therapy than 
patients typically seen in practice; and (4) investigators conducting the trial have 
particular expertise in the disease.

Second, clinical trials and cost-effectiveness analyses are designed for different 
purposes. In short, clinical trials are designed to test whether a new intervention is 
efficacious (Does it work?) while cost-effectiveness analyses are designed to evalu-
ate if the intervention provides good value for money and how it should be prioritized 
given a constrained health care budget (Is it worth the expenditure?). The distinction 
creates several potential conflicting issues: (1) clinical trials consider very narrowly 
defined patient populations that are treated in a highly controlled and monitored 
environment, while CEAs should consider the care of patients in “real-world” clini-
cal practice settings; (2) some cancer trials are designed to test intermediate end-
points such as progression-free survival, while appropriate outcome measures for 
CEAs include survival and health-related quality of life, where the latter can be 
quantified using preference-based techniques; (3) sample size needs for clinical end-
points are likely to be insufficient for joint clinical/economic trials; and (4) the time 
horizon for clinical trials is usually shorter than the relevant time horizon for CEAs, 
which should consider the entire course of disease.

Finally, including CEA-related endpoints increases the cost of data collection in 
a clinical trial. It can be difficult and expensive to design forms and collect data on 
health care utilization, both trial and nontrial related, and costs. In addition, track-
ing CEA-related endpoints, such as survival, may entail enlarging the sample size or 
extending the period of observation beyond that which is often necessary to establish 
clinical effectiveness. Such additional costs can be difficult to justify when the out-
come of the trial is uncertain.

23.2  �DESIGN ISSUES FOR ECONOMIC ANALYSES 
ALONGSIDE CLINICAL TRIALS

23.2.1  Selecting Trials for Parallel Economic Evaluation

Dozens of cancer-related controlled clinical trials are started each year [8]. Not all of 
them warrant the cost and expense necessary to support a parallel economic evalu-
ation. Given research budget constraints, it is important to be selective and provide 
adequate resources for economic analyses.

23.2.2  Statement of Study Objectives and Hypotheses

Most clinical trials are designed with the goal of assessing the efficacy of an experi-
mental intervention compared to a standard treatment or placebo. Thus, a null 
hypothesis is set forth: H0: μa = μb versus an alternative H1: μa < μb, where μ is a clini-
cal outcome of interest, such as survival, and a and b are the competing therapies. 
In contrast, the aim of cost-effectiveness analyses is to characterize the trade-off 
between the comparative cost and health status of competing interventions; the pri-
mary endpoint of a cost-effectiveness analysis is typically expressed via the incre-
mental cost-effectiveness ratio (ICER):
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In the context of cost-effectiveness studies alongside randomized trials, treatment a 
is the experimental therapy and treatment b is the standard therapy for the condition. 
The most appropriate comparison intervention for a CEA (Effectivenessb) is the most 
effective therapy or therapies for the condition, but unfortunately, the comparison 
for a clinical trial is often placebo in many cases. Costa and Costb are the average 
costs per patient for persons in the intervention and control groups, respectively, and 
include the cost of therapy and other related medical care such as side effects related 
to chemotherapy. Further, when a societal perspective is taken in the analysis, the 
average cost per patient can include the direct costs associated with treatment as 
well as any indirect costs (e.g., lost days from work) borne by other parties, includ-
ing families or informal caregivers. Effectiveness can be measured in ad hoc units, 
such as relapse free survival, or in common metrics that facilitate comparison across 
interventions. The most common metrics of effectiveness are life years or quality-
adjusted life years (QALYs).

In a seminal article, O’Brien et al. [9] suggested that the appropriate null and 
alternative hypotheses for a clinical trial evaluating cost-effectiveness should be 
H0: R = Rmax versus H1: R < Rmax, where R is the incremental cost-effectiveness of the 
experimental intervention, given by Equation 23.1, and Rmax is a prespecified thresh-
old that characterizes decision makers’ willingness to pay for an effectiveness or 
health status gain. A persistent issue that haunts cost-effectiveness researchers is that 
there is no widely agreed upon Rmax. Indeed, it is likely that Rmax varies substantially 
among organizations and governments that fund medical care. The probability that 
R = Rmax is therefore reported at different thresholds of Rmax. As will be discussed in 
the following, the value selected for Rmax will greatly affect the sample size require-
ments for the study.

23.2.3  �Sample Size and Power Estimation for 
Joint Clinical/Economic Trials

With regard to sample size and the appropriate threshold (Rmax) for hypothesis 
testing, research budgetary constraints will usually dictate the number of subjects 
that can be enrolled in the clinical trial. It may be reasonable to take sample size 
as given and solve for Rmax using the usually accepted levels of power (1 − β) and 
significance (α). Decision makers can then decide if the study will achieve adequate 
power to evaluate a cost-effectiveness threshold that is meaningful to their organi-
zation. There are certain technical challenges to calculating the power curves for 
cost-effectiveness studies, because more parameters must be solicited for clinical/
economic trials than for typical clinical trials.

Classical RCTs without economic endpoints often have a single primary end-
point. For example, an RCT for cancer treatment may monitor 5 year survival past 
cancer treatment with an outcome Y = 1 if alive at 5 years and 0 if dead at 5 years, 



373Economic Analyses alongside Cancer Clinical Trials

with effect size estimating the difference or ratio of the survival rates in treatment, 
p1 = E(Yi |Treatment), and control, p0 = E(Yi |Control). With economic outcomes, the 
difference is preferred as an effect size estimator. Power calculations for a traditional 
RCT are a matter of determining an adequate sample size to assure that the differ-
ence in p1 and p0 can be observed.

Economic studies measure the health benefit of the treatment on the total dol-
lars expended. If D refers to the total treatment dollar expenditure, then we could 
summarize the effect of treatment choice on costs alone by the difference in mean 
treatment costs μ1 − μ0 where μ1 = E (D |Treatment) and μ0 = E(D |Control). Evaluating 
the effect of treatment choice on dollars alone would require a simple power analysis 
to detect the difference μ1 − μ0. Solicitation for detecting differences in costs would 
typically also include stating σ1 = StdDev(D|Treated) and σ1 = StdDev(D |Control).

When economic and efficacy endpoints are combined, we summarize their joint 
behavior in the ICER R = (μ1 − μ0)/(p1 − p0). In addition to treatment effects on out-
comes and costs, we must also characterize the correlation of costs and effects, 
ρ = cor(Di, Yi) in order to calculate the sample size for the study. Although the 
correlation between costs and effects is not an explicit part of R or its estimator, 
R̂  = (μ̂1 − μ̂0)/(p̂1 − p̂0), it does have great influence on the sampling behavior and hence 
power calculations. Positive correlations will tend to minimize variability compared 
to negative correlations [10]. Unfortunately, soliciting the correlation between costs 
and outcomes is nonintuitive. Because the sampling behavior of R̂  is most dependent 
on the correlation between costs and outcomes, power calculations for CEA should 
include sensitivity analyses when evaluating power. Relatively straightforward meth-
ods to determine power are available [11].

23.3  DATABASE ISSUES

23.3.1  Selecting Outcome Endpoints

Possible health outcome measures for cost-effectiveness analyses include measures 
of averted morbidity, surrogate clinical markers, life extension, health-related qual-
ity of life, disability-adjusted survival, and quality-adjusted survival. Researchers 
have used treatment-specific measures such as symptom-free time, cases of disease 
prevented, and change in likelihood of progression of disease in the denominator 
of the cost-effectiveness ratio. The problem with these measures is that they are 
intermediate endpoints, that is, they are not linked to a final health outcome, or are 
treatment or disease specific. Although intermediate or treatment-specific effects are 
appropriate from a clinical perspective, from a productive or allocative efficiency 
perspective, the health policy analyst would prefer to have a common and standard 
measure of health outcome that extends across different diseases and treatments to 
facilitate comparability of cost-effectiveness studies.

Although there is no international “gold standard” regarding the outcome measure 
that is most appropriate for cost-effectiveness evaluations, the U.S. Panel on Cost-
effectiveness in Medicine suggests using QALYs, because it links to neoclassical 
welfare theory and fits within a resource allocation framework when a willingness to 
pay for a QALY gain is hypothesized [12,13]. QALYs are defined as the duration of 
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an individual’s life as modified by the changes in health and well-being experienced 
over the lifetime [14]. Well-being is measured as a health state utility value, where 
utility is defined as the quantitative representation of individuals’ preferences over 
different health states, and utility is maximized subject to constraints. The utility 
weights for the health states are anchored on 1 (perfect health) and 0 (death), where 
health states “worse than death” are possible. Figure 23.1 depicts this concept as the 
area under the curve.

There are several methods for obtaining health state utilities, including inter-
viewer administered approaches using, for example, the standard gamble or time 
trade-off preference elicitation techniques [4], or multiattribute “off-the-shelf” sur-
vey instruments using the Health Utilities Index or EuroQoL 5-D [15]. In practice, 
multiattribute instruments are most often used in clinical trials because of their ease 
of administration and low respondent burden. To obtain health state utility weights 
using multiattribute survey methods, it is necessary to survey patients regularly over 
the course of the trial. In addition, if serious sequelae that influence health-related 
quality of life occur sporadically, it may be necessary to sample patients experienc-
ing those outcomes and survey them to obtain utilities for those health states. This 
can become a complex task for clinical trialists wishing to keep the study procedures 
at a minimum. Finally, since trials are of finite duration and treatment effects related 
to cancer treatment can continue for a lifetime, it is important to consider how one 
will estimate these health-related quality of life outcomes after the trial. Most cost-
effectiveness analysts rely on modeling techniques or other indirect methods to esti-
mate life expectancy and health state utilities after the trial has ended [16].

23.3.2  Extrapolating Costs and Outcomes beyond the Trial Period

Often an intervention will affect health outcomes and costs beyond the observation 
period of the clinical study. These costs and outcomes should be included in the 
cost-effectiveness analysis. If effects beyond the observation period are anticipated 
at the time of the trial, steps can be taken to address this issue. It may be useful 
to include in study consent forms a notice that subjects will be contacted weeks, 
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months, or years after the trial to determine how the intervention is affecting them. 
Arrangements can be made to collect billing records after the trial is completed, for 
example, Medicare claims. In most cases, some degree of mathematical modeling 
will be necessary to project costs and outcomes over a plausible range of scenarios. 
Models can be reviewed prior to the trial to determine the most relevant application 
[17,18]. Because many readers are skeptical of models that project outcomes into the 
future, and prefer to see results of the “real” data, presenting both the trial-period 
and lifetime cost-effectiveness ratios allows readers more flexibility in judging the 
outcomes of the trial.

23.3.3  Measuring Costs

Costs are a function of resources that are consumed during the course of care, mul-
tiplied by values or prices of each resource. Costs stemming from a therapy include 
the following costs:

	 1.	Direct medical care costs, including the intervention itself, and follow-up 
care to the condition

	 2.	 Indirect patient nonmedical care related to the treatment, such as the cost of 
traveling to and from the clinic

	 3.	 Indirect societal costs associated with the value of time that family and 
friends spend caring for the patient

	 4.	 Indirect patient costs of the value of the patient’s time in treatment

23.3.3.1  Tracking Resources Consumed in Care
Although much of the direct medical care can be obtained directly from collection 
forms designed for the trial itself, it is sometimes necessary to modify the collection 
forms to collect data that would otherwise not be collected. In cases where clinical 
forms include only minimal health care utilization data, finding all relevant data can 
be problematic. One option is to collect billing or insurance records. This option will 
be viable only if the records are easily obtainable and are comprehensive with regard 
to capturing all relevant health utilization. Often, this is not the case. For example, 
Medicare records do not include drug information and some nursing and home care. 
In cases where billing or insurance records are unobtainable or incomplete, health 
care utilization tracking forms may need to be designed. Research coordinators can 
fill in these forms during interviews at scheduled visits or they can be filled in peri-
odically by subjects themselves. While no study has compared collection methods 
directly, researchers must be aware of the potential for recall bias in either form 
of recording. Short time intervals between collection intervals are necessary to 
minimize recall problems [19]. For economic data, we recommend monthly data 
collection.

Tracking nonmedical care resources related to treatment and the value of time 
lost to treatment, for example, the cost of lost work while seeking medical care, 
can be especially problematic. Many times, these data are imputed; estimates are 
made based on interviews with samples of patients or from national databases such 
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as wage rates from the U.S. Bureau of Labor Statistics. Many researchers choose to 
explicitly delete nonmedical care from the analyses. In this case, the perspective of 
the study is no longer societal, but rather closer to the health insurance payer per-
spective. The U.K. National Institute for Clinical Excellence recommends including 
only direct costs in the primary analysis and both direct and indirect costs in deter-
ministic sensitivity analysis [2].

23.3.3.2  Protocol-Induced Costs
Protocol-induced costs are costs incurred for patient care related to the clinical trial 
that will not be incurred once the intervention is used in practice. There are two 
types of protocol-induced costs: direct and indirect. Direct protocol costs are costs 
incurred for tests that are included in a trial for regulatory, scientific, or other rea-
sons beyond clinical care. Direct protocol-induced costs are relatively easy to iden-
tify and eliminate from the analysis. Leaders from centers involved in the trial can 
be polled to identify resources that are unlikely to be utilized outside the clinical 
trial setting.

Indirect protocol-induced costs are costs incurred when investigators respond to 
abnormalities found during protocol testing, if these abnormalities would not have 
been identified otherwise. For example, if a protocol for a clinical trial of an exer-
cise intervention for emphysema patients calls for preintervention fine resolution 
computed tomography (CT) scanning of the chest, evaluation costs will occur when 
scanning identifies pulmonary nodules that would be missed during screening of 
these patients in nonexperimental settings. Indirect protocol-induced costs can be 
quite difficult to identify ex ante. If such costs are expected, it is useful to first con-
sider whether there will be differences in these costs between study arms. If not, then 
there is less concern, because the costs will be eliminated in the incremental analysis 
(Equation 23.1), although the average cost of treatment in any one arm will be artifi-
cially inflated. If indirect protocol costs are likely to be different between arms, for 
example, due to differences in protocol evaluation for each arm, then special mea-
sures must be taken to identify them. In extreme cases, chart auditing may be neces-
sary to identify the events and associated resources incurred following the trial.

23.3.3.3  Assigning Values to Resources Consumed
After resources are collected, they must be valued, ideally using nationally rep-
resentative price weights. When considering prices, it is important to distinguish 
between charges, reimbursements, and true costs. Charges are the bills that hospi-
tals and health care providers send to payers and patients for health care services. 
Reimbursement is the amount that is actually paid to the health care providers by 
patients and the insurer. True costs are what health care providers actually expend, 
including overhead costs, to provide the services, before markup or profit. Charges, 
reimbursement levels, and true costs can differ substantially. When the perspective 
of the study is societal, true costs are most appropriate. If an insurer’s viewpoint 
is used, reimbursements are most appropriate. In all cases, using charges to value 
health resources is inappropriate, because charges almost always greatly overstate 
the value of the service relative to what it actually costs to provide the service and to 
what most parties in today’s market are willing to pay.
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23.4  ANALYSIS OF FINDINGS

23.4.1  Analysis of Costs

The analysis of medical care costs raises two methodologically challenging 
issues. First, analyses are difficult to perform when the proper interval for the 
cost-effectiveness analysis exceeds the length of the follow-up period for most or 
all of the study subjects. Second, cost data are difficult to analyze using standard 
normality assumptions because of their typically nonstandard statistical distribu-
tion. For example, medical cost distributions often exhibit a mass at zero represent-
ing nonusers of medical resources, and right skewness, representing relatively small 
numbers of extremely high users. Historically, the methods developed to deal with 
costs were not designed to accommodate censored data [20]. In recent years, non-
parametric bootstrapping methods have been described to estimate medical care 
costs. Nonparametric methods do not impose a particular statistical distribution on 
costs. Lin et al. proposed a method for estimating costs as follows [21]:
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where
Cj is the observed mean cost in month j among survivors to month j
Sj is the Kaplan−Meier estimate of survival to month j
the summation is over months or some other interval after the start of the trial

This estimator uses data from every patient during each month for which he or she is 
under observation. For validity, it requires independent censoring in time and repre-
sentativeness of the observed mean monthly cost. A second nonparametric method 
by Bang and Tsiatis [22] does not pose any restrictions on the distribution of censor-
ing times. The estimator uses cost information from uncensored individuals only and 
weights these observations by the inverse of the probability of not being censored at 
the point of death. This estimator is defined as

	

ˆ
( )

,C
n

M
K T

i i

i

n

=
1

1

δ

i=
∑ 	 (23.3)

where
K(Ti) is the probability that the individual i has survived to Ti without being 

censored
Mi denotes the total cost of the patient during the specified time
δ takes the value of 1 when the observation is uncensored and 0 otherwise [22]

Raikou and McGuire find that both the Lin et al. and Bang and Tsiatis meth-
ods produce consistent estimators of average cost; however, the Bang and Tsiatis 
method becomes less stable at very high levels of censoring [23]. The choice of 
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a method therefore should depend on the degree of censoring observed in the 
clinical trial.

Stratification is used in RCTs to reduce potential confounding factors that could 
impact clinical outcomes between the treatment and control groups, but may not 
necessarily address factors that could influence economic outcomes. Multivariate 
methods [24,25] can be employed to produce adjusted cost estimates in cases where 
unequal stratification of factors influencing costs is suspected.

23.4.2  Per Protocol versus Intent to Treat Analyses

To preserve the benefits of the randomization process in RCTs, the “intent-to-treat” 
approach analyzes individuals in their assigned groups regardless of treatment actu-
ally received [26]. In most cases, the intent-to-treat design is also appropriate for 
the economic analysis, but in some cases, special circumstances related to the trial 
or discrepancies between how the intervention is being used in the trial and how 
it is likely to be used in practice may warrant attention during the design phase. 
For example, trial investigators for the National Emphysema Treatment Trial, a ran-
domized trial of lung volume reduction surgery versus medical therapy for patients 
with severe emphysema, expected that some patients who are randomized to the 
medical therapy arm would obtain surgery outside the clinical trial [27]. Including 
these patients as originally randomized for analysis under “intent-to-treat” would 
bias both the final cost and outcome estimates. In this case, out-of-protocol use of 
surgery should be identified and related resource use must be tracked. If the propor-
tion of out-of-protocol use is small, it is reasonable to include costs and outcomes for 
those patients as assigned in the trial. If a substantial proportion of patients in the 
medical therapy arm obtain surgery outside the trial, an additional analysis should be 
performed excluding such patients and compared to results from the intent-to-treat 
analysis.

23.4.3  Missing Data

Missing data are inevitable in clinical trials and can be handled by a variety of 
approaches depending on the type of missingness; see Little and Rubin [28] and 
Chapter 22. Missing data are also common in economic analyses conducted along-
side trials, particularly if researchers for the clinical trial view the extra work of col-
lecting cost or specialized outcome variables as burdensome, or when patients record 
resource utilization as part of a monthly diary. In this case, the degree of missingness 
for the economic information typically exceeds that for the clinical information. 
Recently, researchers have begun to address the issues of missing data in economic 
analyses alongside clinical trials. The issues that one must consider for missing eco-
nomic data are not necessarily different to other forms of missing data, with the 
exception that cost data are often highly skewed. In analyzing datasets with missing 
data, one must determine the nature of the missing data and then define an approach 
for dealing with the missing data.

The researcher can address missing data by imputation, replacing the missing 
field with an estimate of the value. Commonly used methods for imputation include 
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using the mean value from available data, regression analysis using complete vari-
ables, “hot deck” imputation, and maximum likelihood approaches. In a recent 
paper, Briggs et al. outline the advantages and potential problems with these methods 
for cost data [29]. The primary problem with these “deterministic” methods is that 
they reduce the variance of the imputed data set. Missing variables are often from 
severely ill persons on the skewed end of the distribution so that symmetric para-
metric methods yield inappropriate imputations. Multiple imputation approaches 
introduce a random component into each imputed value, reflecting the uncertainty 
that is inherent in missing data [30]. Nonparametric bootstrapping is an attractive 
method for generating such “stochastic” imputed data for costs. Bayesian simulation 
methods are also available to address these issues [31,32]. Most of the commonly 
used statistical software packages include programs for imputation of missing data. 
A review of these programs can be found at Multiple Imputation Online [33,34].

23.4.4  �Adjustment to Constant Dollars and Discounting 
of Future Costs and Outcomes

In cases where costs are collected over a number of years or in several geographic 
regions, prices must be adjusted to constant nationally representative dollars. Prices 
can be adjusted to constant dollars for a year of reference using the medical care 
component of the consumer price index [35].

Costs and outcomes stemming from medical interventions should be discounted 
to a present value to reflect the idea that individuals prefer immediate over delayed 
monetary gains or health benefits. The present value of future costs and outcomes 
can be calculated as follows:
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where
Cpresent represents the cost in current dollars
j is the year of the study (year 1 is the first year of the intervention and year J is 

the final year of observation)
cj is the cost in year j
r is the discount rate

Note that the equation is the same when discounting outcomes (e.g., QALYs), simply 
substitute Opresent for Cpresent and oj for cj.

There is ongoing debate regarding the appropriateness of using the same discount 
rate for health outcomes and costs versus differential discounting for costs and health 
benefits, and in constant versus time-varying discount rates, such as 5% over the first 
5 years and 3% for later years. The discounting approach chosen can have a substan-
tial impact on the cost-effectiveness estimates of health care programs where most 
of the costs are incurred in the near future and health benefits occur in the distant 
future. Uniform discounting of costs and outcomes leads to prioritizing of treatments 
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with immediate benefit over those with effects that occur in the future, for example, 
chemotherapy for cancer versus smoking cessation programs.

Ideally, the discount rate for the costs and health outcomes from health care inter-
ventions should be based on actual measures of the social rate of time preference, 
that is, the rate at which society is willing to trade off present for future consump-
tion. Unfortunately, estimating the actual social time preference is difficult and itself 
controversial [36–38]. As a result, the discount rate is usually chosen by panels. In 
the United States, the U.S. Panel on Cost Effectiveness and Medicine has chosen a 
3% discount rate for costs and outcomes [5].

23.4.5  Summary Measures

Equation 23.1 summarizes the results of a CEA as a ratio of the difference of costs 
to the difference in outcomes. It is common to place bootstrapped ICER estimates 
on the cost-effectiveness (CE) plane shown in Figure 23.2 [39]. The CE plane plots 
the difference in effectiveness per patient against the difference in cost per patient 
on a Cartesian coordinate system. Placing the effectiveness difference on the hori-
zontal axis and the cost difference on the vertical axis allows the slope of a line that 
joins any point on the plane to the origin to be equal to the ICER. Using the four 
quadrants of the plane, the possible trade-offs between cost and consequences are 
depicted. Results in the northeast quadrant (higher costs, greater outcomes) are most 
common. In the positive quadrants, low ICERs are preferred to high ICERs. The 
CE plane was developed because of three potential problems that can arise for the 
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FIGURE 23.2  Cost-effectiveness plane. (From Black, W.C., Med. Decis. Making, 10, 212, 
1990.)
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analyst when only the summary or mean ICER estimate is presented. The first is 
when either the difference in costs or effectiveness is negative, such as lower costs or 
worse outcome for the intervention group. Unlike situations where the difference in 
costs and outcomes are both positive, interpreting negative ratios can be misleading. 
In the northwest quadrant, for example, “less negative” values (smaller difference 
in effects) are preferable, while in the southeast quadrant, “more negative” values 
(greater difference in costs) are preferred.

A second potential problem arises when either the cost difference or the effect 
difference is not statistically significantly different from zero. In either case, it 
is common to focus on one dimension of the CE plane. In the more common 
case where costs are different but the effect is not, such analyses are called cost-
minimization analyses. Briggs and O’Brien have argued that the problem with 
this simple approach to decision making in situations where either cost or effect 
is not statistically significant is that it is based on simple and sequential tests of 
hypotheses [40].

A third problem with summarizing cost-effectiveness results as a ratio involves 
evaluation of the joint uncertainty of costs and effect. While it is straightforward 
to use the bootstrapping technique to create confidence intervals around the ICER, 
problems of interpretation arise when one end of the confidence bounds cross zero. 
As we have discussed earlier, another possible problem can occur when the dif-
ference in effect is very small even when statistically significant. In this case, the 
denominator causes instability in the cost-effectiveness ratio and large or infinite 
confidence intervals are possible [10]. As will be discussed later, methods have been 
developed to address the problems inherent in ratio-based summary measures.

23.4.6  Cost-Effectiveness Acceptability Curves

Cost-effectiveness researchers have addressed the problems with ratio-based sum-
mary measures by replacing the ratio with a decision rule: If the estimated ICER 
lies below some ceiling ratio λ, reflecting the maximum that decision makers (or 
society) are willing to invest to achieve a unit of effectiveness, then the new tech-
nology should be implemented. On the CE plane, we could summarize uncertainty 
by determining the proportion of the bootstrap replications that fall below and to 
the right of a line with slope equal to λ. If there is disagreement about the value 
of λ, one can report the proportion of bootstrap replications falling below λ as it 
is varied across a range. Assuming joint normality of cost and effect differences, 
one can plot the probability that the intervention falls on the cost-effective side of 
the cost-effectiveness plane as λ varies from zero to infinity. Such a plot has been 
termed a cost-effectiveness acceptability curve [41]. Figure 23.3 shows examples of 
these curves for a cost-effectiveness evaluation of lung volume reduction surgery 
for severe emphysema [42]. The curve represents the probability that the interven-
tion is associated with an ICER that is the same or less than the corresponding 
cost-effectiveness ratios displayed on the x-axis. Note that the median value (p = 0.5) 
corresponds to the base-case ICER. The curve thus allows the analyst to determine 
the likelihood that the intervention is cost-effective under a wide range of threshold 
values. The shape of the curve itself also allows the analyst to gauge the level of 
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uncertainty surrounding the results (across all point estimates). Flatter curves denote 
more uncertainty, while more S-shaped curves suggest less uncertainty surrounding 
the estimates.

23.4.7  Net Health Benefit Approach

Another approach analysts have used to address the problem of ratio-based summary 
measures is to eliminate the ratio altogether. Assuming that λ represents a threshold 
ICER, one can rearrange the equation ICER = ΔC/ΔE ≤ λ as follows:

	 NMB E C= λΔ − Δ , 	 (23.5)

where NMB is the net monetary benefit of investing resources in the new tech-
nology rather than the established technology. If the NMB > 0, the new interven-
tion is cost-effective; if NMB < 0, greater health improvement could be attained by 
investing resources elsewhere [43]. The variance for the NHB can be estimated as 
follows:

	 va NMB E C E C .r var( ) var( ) cov( , )= + −λ λ2 2Δ Δ Δ Δ 	 (23.6)
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FIGURE 23.3  Cost-effectiveness acceptability curves for lung volume reduction surgery 
versus medical therapy for all patients and for three subgroups with significantly improved 
clinical outcomes in the lung volume reduction surgery arm (either reduced mortality, 
improved quality of life, or both). The curve represents the probability that lung volume 
reduction surgery is associated with a cost per QALY gained that is lower than the cor-
responding cost-effectiveness ratios displayed on the x-axis. The value of the ceiling ratio 
at a probability of 0.5 is the median cost per QALYs for lung volume reduction surgery. 
Solid horizontal lines denote 95% confidence limits for the projections. Overall (- - - - -) 
upper-lobe emphysema and low exercise capacity; (……..) upper-lobe emphysema and high 
exercise capacity; (—) non-upper-lobe emphysema and low exercise capacity (– –). (From 
Ramsey, S.D. et al., N. Engl. J. Med., 348(21), 2092, 2003.)
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One can compute net benefit statistics as a function of λ, and in this case, the 
interpretation is similar to the cost-effectiveness acceptability curve. In fact, each 
point of the acceptability curve can be calculated from the p-value of the net-benefit 
being positive [44].

23.4.8  Value of Information Analysis

When the decision to adopt a health technology is based on current information 
derived from a single clinical trial, the outcome metric informing the decision will 
be subject to statistical uncertainty. Consequently, there is some probability that the 
wrong course of action will be pursued. Choosing the incorrect course of action will 
impose opportunity costs in the form of health benefit and/or health care resources 
forgone. Conceptually, the “cost” of uncertainty can be considered as jointly deter-
mined by the probability that a decision is incorrect, and the health benefit and 
resource consequences of an incorrect decision. Decision makers may consider col-
lecting additional data to reduce statistical uncertainty, which will reduce the oppor-
tunity cost of making an incorrect decision. Value of information analysis can help 
inform the maximum decision makers that they should be willing to pay to decrease 
uncertainty through collecting additional evidence [45].

A common approach to value of information analysis is the expected value of 
perfect information (EVPI) approach. EVPI is based on the idea that perfect infor-
mation will eliminate the probability of making a wrong decision because the deci-
sion maker knows how any uncertainty is resolved before the decision is made. 
Consequently, the cost of imperfect information in EVPI can be framed as the dif-
ference between making the decision to adopt an alternative j when the uncertainty 
surrounding a vector of parameters, θ, has been resolved, and making the decision to 
pursue the kth alternative based on currently available information and unresolved 
uncertainty around parameters. EVPI is calculated as follows:

	 EVP kI E max NMB k max E NMBk= θ θθ θ( , ) ( , ),− 	 (23.7)

where
maxk Eθ NMB(k,θ) indicates that the best decision under limited information is 

the kth alternative that results in the maximum expected NMB
Eθ max NMB(k,θ) is the expected value of the optimal decision when θ is known 

with certainty [45]

Analytically, Equation 23.7 can be obtained using iterations obtained from the non-
parametric bootstrapping procedure. That is, under the constraint of solely using 
current information, a decision maker’s optimal choice is the alternative with highest 
mean NMB over all bootstrapped iterations (maxk Eθ NMB(k,θ) ), while under per-
fect information, the decision maker could choose the alternative with the maximum 
NMB for each iteration (when the uncertainty for each iteration is resolved). Eθ max 
NMB(k,θ) is simply the average, over all iterations, of the best alternative for each 
bootstrap iteration.
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EVPI estimates the cost of making an incorrect decision each time a decision is 
needed, that is, at the patient level. Population EVPI incorporates the cost of making 
the incorrect decision for all current and future patients:
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where
J is the time horizon over which the technology is used
I is the incidence in each time period of the disease
r is the discount rate [45]

Population EVPI is the metric that commonly informs the potential value of con-
ducting additional research. If Equation 23.8 exceeds the expected costs of collect-
ing additional data, then it may be cost-effective to pursue additional research.
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24.1  �IMAGING DATA IN ONCOLOGY MAY BE QUALITATIVE 
OR QUANTITATIVE, STRUCTURAL OR FUNCTIONAL

Imaging has a long history in cancer diagnosis and staging, and is increasingly 
used to evaluate therapeutic response (Eisenhauer et al., 2009; Wen et al., 2010). 
Molecular imaging is being developed for rapid characterization of response (espe-
cially for targeted therapy), with the long-term goal of more individualized therapies 
(Weber, 2006; Mankoff et al., 2007b).

The use of imaging to help direct and evaluate cancer therapy falls under the 
general category of use as a cancer biomarker. The aims for the use of qualitative 
and quantitative imaging biomarkers are similar to the aims for biomarkers from tis-
sue and serum. To develop and apply appropriate statistical methods for analysis of 
these markers, it is important to understand the similarities and differences between 
tissue and imaging biomarkers (Table 24.1). It is also important to acknowledge 
that in many circumstances for clinical application and for design of clinical trials, 
information from both modalities (tissue and imaging biomarkers) may be available. 
Depending on the nature of overlap between tissue and imaging biomarkers, they 
may be used as confirmatory or complementary.

Imaging biomarkers may be used to overcome two significant limitations of tis-
sue biomarkers (Mankoff et al., 2007b). First, tissue assays are prone to sampling 

24.3	 Novel Approaches and Future Directions......................................................404
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Imaging Biomarkers, and Novel Designs..........................................404
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TABLE 24.1
Overview of Characteristics of Tissue/Blood, Structural Imaging, and 
Functional Imaging as Sources of Biomarker Data

Tissue/Blood
Structural 
Imaging

Functional 
Imaging

Can probe many features with one sample (also allows 
ease of patient and clinician blinding for selected 
results)

Yes No No

Can provide information about multiple disease sites 
with one probe

No Yes Yes

Batch processing available Yes No No

Retrospective studies possible with new probe Yes No No

Can provide information about interactions among drug, 
tumor, transport mechanisms such as the circulatory 
system, and host tissue

No No Yes
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error, especially when minimally invasive procedures are chosen for patient com-
fort. A small portion of a tumor may not be representative of the tumor as a whole. 
Some cancers, such as sarcomas, characteristically display heterogeneity in cellu-
lar characteristics and functional behavior (O’Sullivan et al., 2003). Other cancers, 
such as early stage breast cancer, may be less prone to tissue sampling error (Barry 
et al., 2010). However, when multiple disease sites are present, a single tissue sample 
from one tumor may not fully characterize the burden of disease or the molecular 
and structural properties of other tumors (Fisher et al., 2008; Kurland et al., 2011). 
Second, perturbation by tissue sampling may disturb the complex tumor microen-
vironment. Finally, serial tissue samples will not describe drug metabolism, drug 
delivery, and other key aspects of tumor response to therapy. In vivo imaging can 
address these limitations of tissue biomarkers.

In turn, the limitations of various in vivo imaging modalities, as discussed later 
(Section 24.2.3), may often be compensated for by the use of tissue sampling or 
other imaging modalities. Our goal in this chapter is to alert analysts to the strengths 
and weaknesses of current applications of in vivo imaging, to guide the design and 
analysis of clinical trials using these promising modalities for drug development and 
treatment selection.

24.1.1  Imaging May Yield Structural or Functional Information

Until recently, clinical imaging for cancer has been largely structural (anatomical) in 
nature, designed to identify tumor structural characteristics such as size, shape, and 
density. Tumors are recognized by abnormal shape or density compared to expected 
structures; tumors may also reveal abnormal features after the administration of 
intravenous contrast material. Changes in tumor size measured by structural imag-
ing are commonly used to assess response in clinical trials. More recently, imag-
ing has expanded to include functional and molecular imaging methods such as 
functional magnetic resonance imaging (fMRI) and positron emission tomography 
(PET), which may offer more specific measures of tumor response on the basis of 
change at the molecular and biochemical level. This chapter examines the use of 
both structural and functional imaging in cancer clinical trials. Sample images are 
shown in Figure 24.1.

24.1.2  Structural Imaging Modalities Used in Oncology Clinical Trials

24.1.2.1  Computed Tomography
Computed tomography (CT) scanning measures projections of radiographic density 
(the ability of tissue to attenuate x-rays) at various scanned angles. Since different 
tissues have different radiographic densities, these projections may be reconstructed 
into high-resolution 3D images of bodily structures. Oral or intravenous contrast is 
often used to help delineate normal gastrointestinal organs (the stomach and intes-
tines) as well as other structures, including blood vessels (Barentsz et al., 2006).

CT scanning is relatively rapid (about 5–15 min depending upon the extent of 
the body imaged and protocols used), but exposes the patient to a dose of radia-
tion, as high as 15 mSv for body surveys (Mettler et al., 2008; Spiegelhalter, 2011). 
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By comparison, the ambient radiation dose for U.S. residents has been estimated as 
3 mSv/year (National Research Council, 1990), and therapeutic doses are typically 
1000 mSv or considerably more. Although risks of radiation exposure from medical 
imaging have not been demonstrated, greater use of serial CT for screening (Aberle 
et al., 2011) and restaging have led to the need for refinements in order to reduce 
exposure, especially for children (Hricak et al., 2011).

24.1.2.2  Magnetic Resonance Imaging
Magnetic resonance imaging (MRI), as widely used in medicine, uses magnetic 
fields and radiofrequency waves to perturb and detect signals arising from nuclei, 
mostly hydrogen in water. These signals are translated into a high-resolution image 
of bodily structures. Gadolinium chelates, which affect MRI signal intensity, are 
often injected (akin to contrast for CT), in order to delineate vascular structures and 
tissue perfusion. The use of MRI in cancer has increased considerably in the past 
10–15 years. For example, MRI is becoming established as a valuable tool to screen 
for breast cancer in high-risk women (Warner et al., 2004; Lehman et al., 2007) and 
is the imaging modality of choice for neuro-oncology, given its unique ability to 
image the brain and central nervous system structures (Wen et al., 2010). MRI does 

(A)

(B) (D) 

(C)

#1

#2

FIGURE 24.1  Imaging examples: (A) CT scan to examine extent of disease for a patient 
diagnosed with breast cancer. (B) FDG PET scan paired with CT scan in panel (A). Lesion 
#1, axillary metastases from a breast cancer primary tumor, was visible on CT (arrow in panel 
(A) ). Lesion #2, a mediastinal lesion, was not visible on CT. (C) Breast MRI with gadolinium 
contrast. Morphological characteristics of tumor (arrow) are demonstrated. (D) Map of MRI 
kinetics for the same scan. Shading reflects area under the contrast enhancement curve, show-
ing how contrast signal intensity changes over the time of the scan. Rapid uptake followed by 
washout (arrow) is a characteristic of tumors.
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not expose the patient to ionizing radiation. Although most routine MRI imaging 
focuses on structural information, MRI may also yield functional information such 
as quantitative tumor perfusion, as discussed later (Section 24.1.3.3).

24.1.3  Functional Imaging Modalities Used in Oncology Clinical Trials

Imaging has been extended beyond traditional structural/anatomical imaging to 
measure functional and molecular processes. Functional imaging lacks the regional 
structural precision of anatomical imaging, but carries quantitative information 
about regional physiology and biochemistry. The modalities most frequently used in 
current clinical practice and cancer clinical trials include PET and functional MRI, 
discussed in this section. Other functional molecular imaging modalities, such as 
optical imaging and microbubble ultrasound, are under development (Kelloff et al., 
2005) and will not be discussed in the context of clinical trials.

24.1.3.1  FDG PET
PET is a radionuclide imaging method: the PET scanner detects emissions arising 
from radioactive nuclei in radiopharmaceuticals administered intravenously to the 
patient. PET uses a special class of radioisotopes that emit a positron (antielectron). 
Emitted positrons annihilate with electrons within short distance (typically a few 
mm or less) of the emission site and generate two collinear annihilation photons, 
which are detected by the PET scanner. Detection of these annihilation photon pairs 
yield estimates of projections of positron-emitter concentration, akin to projec-
tion of radiographic density for CT. Using mathematics similar to CT, an image of 
regional radiopharmaceutical concentration is generated. PET has several advan-
tages over other radionuclide imaging methods (such as single-photon emission com-
puted tomography, or SPECT) for applications in oncology: higher spatial resolution 
(though considerably lower than CT or MRI), a wide range of radiopharmaceuticals 
designed to probe biochemical and molecular pathways, and the ability to measure 
absolute regional radiopharmaceutical concentration in 3D. PET tomographs are 
now generally packaged together with CT scanners to yield PET/CT devices, which 
can provide co-registered molecular and structural images. The effective radiation 
dose to the patient for PET scans depends mostly on the injected dose and is gener-
ally 4–6 mSv (Hays et al., 2002; Mankoff et al., 2002). PET/CT scans have higher 
effective doses of radiation (up to 25 mSv) due to increased radiation from the CT 
component, although additional exposure can be reduced to <5 mSv without much 
loss of CT image quality (Brix et al., 2005). Although a patient may spend as few 
as 5 min in the PET scanner (or as long as 120 min), it is sometimes necessary to 
wait between injection and scanning for the injected matter to go through the blood-
stream and be metabolized by tissues, including tumors.

Currently, the most commonly used PET radiotracer is FDG (18F-fluorodeoxy
glucose), which is a radiolabeled glucose analog and a tracer of glucose metabolism. 
Tumors have been shown to be highly glycolytic, with a high rate of glycolysis com-
pared to most normal tissues (Warburg, 1956). FDG is transported into cells using 
the same transport system as glucose, where it undergoes the first committed step 
of glucose metabolism, namely phosphorylation by hexokinase to FDG-6-phosphate 
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(FDG-6-P). However, FDG-6-P cannot continue on the glycolysis pathway, and 
thus is “metabolically trapped” in cells with active glucose metabolism. The rate 
of FDG-6-P (henceforth abbreviated as FDG) accumulation can be measured as a 
quantitative estimate of the regional glucose metabolic rate through kinetic analysis 
of dynamic uptake imaging by PET.

The most common method of quantifying FDG uptake uses a static measure 
obtained at a fixed time after injection (typically 60 min) (Shankar et al., 2006), 
known as the standardized uptake value (SUV):

	

SUV
tissue activity kBq/mL

in ted dose/patient mass MBq/kg
=

[ ]
( )jec [[ ]

. 

Regional tissue activity is measured by the PET scanner, and then normalized by the 
injected radioactivity dose per patient weight. The SUV is a simple uptake ratio. It 
has density units and is unitless under the assumption of water density (1 g/mL), a 
reasonable assumption in most tissues. An SUV of 1 represents uniform distribution 
of the tracer in the tissue region, while values greater than 1 indicate tissue retention 
of FDG and thus glucose metabolism.

While the FDG SUV is the primary quantitative PET measure used in clinical 
practice and under development for use in clinical trials, a more detailed analysis 
is possible by applying tissue compartmental modeling using dynamic FDG PET 
imaging data and the FDG blood clearance curve, instead of relying on injected dose 
and patient mass to approximate distribution of the tracer (Mankoff et al., 2006). 
Dynamic imaging can provide more detailed information on regional biochemical 
kinetics, by separating the contributions of FDG and FDG-6P to the imaging, which 
are indistinguishable on simple static images. This approach can provide a more 
sensitive measure for discerning changes in metabolism in response to therapy (Doot 
et al., 2007), but is considerably more complex than an SUV and requires the patient 
to spend more time in the scanner (although the length of the clinic visit and radia-
tion dose are unchanged).

Further methods for analyzing PET images have also been developed. These 
include parametric imaging methods that provide an image of tracer kinetic param-
eters at the voxel (volumetric pixel) level (O’Sullivan, 2006). In addition, measures 
taking into account the level of FDG uptake and the volume of metabolically active 
tumor have also been investigated as alternative measures of tumor burden (Larson 
et al., 1999).

24.1.3.2  Other PET Tracers
Currently the only approved PET imaging agents for cancer are FDG and 18F-fluoride, 
an agent for imaging bone and bone metastases. A number of other radiopharmaceu-
ticals, currently investigational, hold promise for cancer biomarker imaging (Kelloff 
et al., 2005; Mankoff et al., 2007a). Among these, some are being incorporated into 
multicenter therapy clinical trials. 18F-fluorothymidine (FLT) is a thymidine analog 
used to assess regional cellular proliferation. Like FDG, the FLT tracer is trapped in 
the cell after phosphorylation along the thymidine salvage pathway for incorporation 
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into newly synthesized DNA. Its accumulation is therefore a marker of the rate of 
DNA synthesis and, as such, a measure of cellular proliferation. FLT PET provides 
an in vivo measure of proliferation analogous to the Ki-67 tissue assay, where the 
overall rate of FLT accumulation in tissue has been correlated to Ki-67 levels (Buck 
et al., 2002; Vesselle et al., 2002; Muzi et al., 2005). Measuring changes in cellu-
lar proliferation may be especially advantageous for assessing therapeutic response. 
For example, if a treatment induces cell cycle arrest rather than tumor cell death, 
a successful response to therapy may not be reflected by changes in tumor size or 
metabolism, but may display change in cellular proliferation. Previous studies have 
assessed FLT PET as an early indicator of therapeutic response for both cytotoxic 
and cytostatic cancer drugs (Sohn et al., 2008; Kenny et al., 2009). The American 
College of Radiology Imaging Network (ACRIN) is evaluating FLT PET in an ongo-
ing multicenter trial to measure early response to breast cancer neoadjuvant chemo-
therapy (ACRIN 6688) (Jolles et al., 2011).

24.1.3.3  Functional Applications of MRI in Oncology
Although MRI is used primarily to identify structural features, there are also func-
tional applications for MRI. The kinetics of dynamic contrast-enhanced (DCE) MRI 
in tissue early after injection of MRI contrast agents reflect blood flow and capillary 
permeability. Semiquantitative measures of kinetics are typically incorporated into 
MRI assessments for breast cancer screening (Erguvan-Dogan et al., 2006). A vari-
ety of methods have been used to estimate the rate of early transport of the contrast 
from blood to tissue, often called the Ktrans. This measure provides a quantitative 
indication of capillary transport, related to both blood flow and capillary perme-
ability, since the movement of most MRI contrast agents across the capillary walls 
is limited by capillary permeability. Increased blood flow and capillary permeability 
is a hallmark of the vessels resulting from tumor angiogenesis, and therefore serial 
DCE-MRI has been used in a number of studies to assess the effect of antiangio-
genic drugs (O’Connor et al., 2007). However, pseudoresponse is a concern, since 
the changes to tumor enhancement with antiangiogenic agents may not reflect a true 
antitumor effect (Wen et al., 2010). Serial DCE-MRI may also measure response to 
standard chemotherapy, likely through the direct effects on the tumor and on tumor 
vasculature (Padhani and Khan, 2010).

Other functional MRI measures are under development for use in clinical trials. 
For example, diffusion-weighted imaging (DWI) MRI measures water motility 
through extracellular spaces and therefore can provide a measure of tumor cel-
lularity. Some studies have shown that serial DWI can provide a measure of early 
response to treatment, seen as a decline in tissue cellularity (increase in diffusion) 
accompanying tumor cell death in response to treatment (Theilmann et al., 2004; 
Hamstra et al., 2008). The imaging magnets used for MRI can also be used for 
magnetic resonance spectroscopy (MRS), which provides regional estimates of 
the concentration of specific tissue molecules that may provide an indication of 
active tumor. For example, the ability to measure changes in the level of choline, 
a component of cell membranes found in many tumor cells, appears to provide 
an early measure of response for some tumors, including breast cancer (Meisamy 
et al., 2004).
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24.2  CLINICAL TRIAL DESIGN AND ANALYSIS CONSIDERATIONS

This section is divided based on potential uses of imaging as a quantitative bio-
marker. We first consider imaging as a proxy for clinical response, since this is the 
area where imaging is most widely applied. We next summarize current thinking 
about standardization and calibration, crucial prerequisites for the use of imaging 
modalities in multicenter trials. Finally, we discuss the process of validating molec-
ular imaging biomarkers, and describe a case study of an experimental imaging 
procedure investigated as a predictive assay.

24.2.1  �Imaging May Be Used as a Proxy for Clinical 
Response (Surrogate Endpoints)

24.2.1.1  �RECIST is a Consensus Standard for Response in 
Solid Tumor Oncology

In a phase II trial examining activity of a new therapy or combination of therapies, 
it is often infeasible to wait for a “hard” clinical endpoint such as overall survival 
or even progression-free survival. Objective response criteria were sought for early 
phase clinical trials, for the purpose of comparing therapies and planning follow-up 
studies. The World Health Organization (WHO) published tumor response criteria 
in 1981, using change from baseline in bidimensional tumor measurements (Miller 
et al., 1981). These criteria were refined and simplified by an International Working 
Party, resulting in the original Response Evaluation Criteria in Solid Tumors 
(RECIST) criteria (Therasse et al., 2000), based on unidimensional measurements. 
Further development through data warehouse analyses, simulation studies, and lit-
erature reviews led to the updated RECIST 1.1 guidelines (Eisenhauer et al., 2009).

The underlying concept of response by RECIST is simple: tumors treated effec-
tively will reduce in size. Prior to therapy, radiologists identify target lesions and 
sum their longest diameters to quantify tumor burden at baseline. Objective criteria 
for complete response (CR), partial response (PR), progressive disease (PD), and sta-
ble disease (SD) can then be defined for these target lesions (Table 24.2). Statistical 
analysis of response by RECIST is usually summarized as a binomial proportion 
(with confidence interval): “response” (CR+PR versus SD + PD) or “clinical benefit” 
(CR + PR + SD versus PD) (Shankar et al., 2009).

Several factors complicate the classification of tumor response by RECIST. First, 
a PR at the first follow-up (such as 8 weeks) followed by PD at 16 weeks would 

TABLE 24.2
RECIST 1.1 Criteria for Target Lesions
Complete response Disappearance of all target lesions

Partial response At least 30% decrease in sum of diameters of target lesions

Progressive disease At least 5 mm and 20% increase from the smallest recorded sum of 
diameters of target lesions, or appearance of at least one new lesion

Stable disease Responses that are not categorized as CR, PR, or PD
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generally not be interpreted as a successful therapy. RECIST criteria generally 
require that a response is confirmed by achieving a result in the same class (i.e., PR 
or CR) at least 4 weeks after the previous scan. Once PR and CR in Table 24.2 are 
further classified as confirmed versus unconfirmed, the simplicity of the response 
criteria (their major benefit) is jeopardized. Further, not all lesions are eligible as 
target lesions. Some may be too small, not localized (such as pleural effusion), or 
not easily measurable on imaging modalities used for RECIST criteria (such as bone 
metastases).

Scans are often performed at regular intervals for clinical monitoring and for 
establishing radiographic progression in a clinical trial. Response by RECIST cri-
teria at a specified timepoint may not account for variability in the time until maxi-
mum treatment benefit. Therefore, best overall response is often proposed as a trial 
endpoint. For decision criteria to determine best overall response in the context of all 
patient response data, refer to the RECIST 1.1 guidelines (Eisenhauer et al., 2009).

The burden for radiologists and clinical trial staff involved in measuring and 
tracking multiple lesions is a legitimate reason to investigate limiting the num-
ber of lesions for which data are collected. RECIST 1.0 criteria were based on the 
sum of longest diameters of up to 10 lesions. Simulation studies (Moskowitz et al., 
2009) and reanalysis of clinical trial results (Hillman et al., 2009) both suggest 
that RECIST response criteria will still adequately classify patients as responders 
or non-responders when assessed for no more than five lesions (Moskowitz et al., 
2009) or even two (Hillman et al., 2009). The criteria for RECIST 1.1 are based on 
five lesions for phase II and three lesions for phase III trials, reflecting the partly 
exploratory nature of phase II trials and the need to simplify data collection proce-
dures for randomized phase III trials. However, even if all lesions are not measured 
in detail, all visible lesions must be documented since appearance of new lesions is 
a criterion for PD.

Informatics infrastructure used by radiologists in clinical practice has made it 
feasible to conduct centralized assessment of images such as CT results. Although 
in some settings the increased costs and delays that are likely to occur with cen-
tralized assessment are unlikely to be justified by improved accuracy (Dodd et al., 
2008), centralized review has intuitive appeal for standardization of study protocols 
(Shankar et al., 2009). Centralized imaging core laboratories are worthwhile, but 
may most effectively improve trial data collection through a well-designed audit 
strategy (Dodd et al., 2011).

24.2.1.2  �RECIST Has Limitations, Especially for Tumor-Treatment 
Combinations for Which Response is Not Characterized 
by Tumor Shrinkage

Although reduction in tumor size is attractive as an objective measure, there are 
many limitations to its use as an endpoint in clinical trials. A treatment that is cyto-
static, rather than cytotoxic, may interfere with cell metabolism and proliferation 
without resulting in cancer cell death (Ratain et al., 2006). Even when tumor shrink-
age is an expected result of therapy, cancer cell death and clearance as detected 
by CT/MRI are the result of a cascade of events and are not an early response 
to treatment (Yu and Mankoff, 2007). Volumetric CT may be more sensitive to 
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early changes (Zhao et al., 2010) but is not implemented for clinical practice. The 
RECIST criteria also categorize data (size measurements) that are inherently con-
tinuous. This abstraction may be necessary for phase III trials to guide clinical 
practice; however, in phase II trials, quantitative summaries and waterfall plots of 
percent reduction in tumor diameter or tumor metabolism are complementing or 
replacing overall response by RECIST criteria (Herbst et al., 2007; Karrison et al., 
2007; Tutt et al., 2010).

RECIST response criteria are also clearly impractical to apply without modifi-
cation in specific cases of disease characteristics and/or mechanisms of treatment. 
Gastrointestinal stromal tumors and other sarcomas may result in tumor necrosis 
rather than tumor shrinkage, and long-term response to targeted therapies such as 
imatinib may not be represented well by RECIST criteria (Antoch et al., 2004). 
In response to these limitations, the Choi criteria for response in gastrointestinal 
stromal tumors defined response as a ≥10% decrease in size or a ≥15% decrease 
in density on contrast-enhanced CT (Benjamin et al., 2007). Other extensions 
of or alternatives to RECIST may incorporate functional imaging such as PET, 
for sarcoma (Benz et al., 2009) or for solid tumors in general, as discussed later 
(Wahl et al., 2009).

Another well-characterized example of limitations of RECIST to measure 
response is high-grade gliomas. Clinically relevant changes can occur in the short 
term, so increases or decreases in the use of corticosteroids (to reduce swelling and 
ease symptoms) and changes in neurologic status (alertness, ability to perform daily 
activities, etc.) have been incorporated into response criteria (Macdonald et al., 
1990). Treatments for high-grade gliomas also affect tumor imaging in manners 
that may or may not reflect tumor response. Chemoradiation may cause psuedopro-
gression (transient increase in tumor enhancement), and rapid decrease in contrast 
enhancement under antiangiogenic treatment is due to reduced vascular perme-
ability to contrast agents rather than antitumor effect. Corticosteroids also affect 
enhancement in contrast-enhanced CT and MRI scans. Response Assessment in 
Neuro-Oncology (RANO) response criteria (Wen et al., 2010) acknowledge these 
phenomena when defining criteria for response, mostly by repeated emphasis of 
the requirement that CR and PR be confirmed by a repeat follow-up scan at least 
4 weeks later. The RANO response criteria also clarify that PD can be apparent 
from nonenhancing lesions. The Macdonald criteria and the 2010 RANO updates 
both rely on bidimensional lesion measurements. This is not due to differences in 
brain tumors, but reflects the early adoption of the Macdonald criteria (published 
10 years before RECIST 1.0) and a desire to allow comparisons to historical con-
trols (Wen et al., 2010).

24.2.1.3  �FDG PET is Being Investigated as an Endpoint 
for Chemotherapy Response

Although PET is not widely accepted as a surrogate endpoint in clinical trials, spe-
cific cases have been identified where FDG PET offers advantages over structural 
imaging. For example, in lymphoma, a mass may persist on CT after treatment, 
but not contain viable tumor. This can be detected by PET as an absence of uptake 
post-therapy (often termed a complete metabolic response) (Juweid et al., 2007). 
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Complete metabolic response by FDG PET has been incorporated qualitatively into 
response criteria for lymphoma trials.

The PERCIST criteria (PET Response Criteria in Solid Tumors) are an effort 
to offer response criteria based on functional imaging to complement the RECIST 
criteria based on structural imaging (Wahl et al., 2009). While acknowledging that 
efforts are continuing to standardize and optimize PET measures, the PERCIST 
criteria make evidence-based recommendations for response categories. The SUV 
measure of choice is the “SUL peak,” the mean lean-body-mass adjusted SUV of a 
1.2 cm diameter spherical region of interest in the part of a lesion with the highest 
uptake. Change in FDG uptake is measured as the percentage difference between the 
lesion with the highest SUV peak at baseline, and the lesion with the highest SUV 
peak at follow-up (not necessarily the same lesion). Measures based on the summed 
uptake for several lesions are suggested as exploratory.

In the PERCIST criteria, CR, or “complete metabolic response” is defined as 
the visual disappearance of all metabolically active tumor. PR is defined as a ≥30% 
decrease in uptake and a ≥0.8 SUV unit decrease in the SUL peak. PD is defined as 
confirmed new lesions, a ≥ 30% increase in uptake and a ≥ 0.8 SUV unit increase in 
the SUL peak, or a 75% increase in total lesion glycolysis (mean SUV of tumor times 
total tumor volume in mL) (Larson et al., 1999) for the most active tumor. Other 
responses are categorized as SD.

The cutoff value of 30% change for PR or PD is larger than other thresholds based 
on doubling the test-retest repeatability standard deviation (Weber et al., 1999) or 
retrospective studies of clinical benefit. The rationale for this decision is partly illus-
trated in Figure 24.2, reproduced from the manuscript introducing PERCIST (and 
in turn reproduced from an earlier review [Kasamon et al., 2007]). The assumptions 
of Figure 24.2 are the minimal size of cancers at diagnosis (1010–1011 cells) and that 
cell kill occurs as a percentage of the tumor, not an absolute number of cells. Lines 
A, B, and C represent the cell kill trajectories of effective therapies with “brisk,” 
intermediate, and slower tumor response. Due to the limitations of spatial resolution 
in PET scanners, PET will not be able to discriminate between microscopic residual 
tumor and no tumor burden. This is apparent in Figure 24.2 (which shows a lower 
limit of detection for PET) and from clinical studies (Crippa et al., 2004). However, 
the positive conclusion of Figure 24.2 is that metabolic response due to tumor cell 
death and to more direct effects of treatment will be apparent after 1–3 cycles of che-
motherapy for most promising therapies. Serial FDG PET appears to hold promise 
for monitoring the therapeutic response of individual patients (as will be discussed 
later) and shows promise as a surrogate endpoint for progression-free survival or 
overall survival, with proper validation for specific diseases and classes of therapy. 
Such studies will need to be carried out in prospective trials.

24.2.2  �Standardization and Calibration Procedures Are Prerequisites 
to Multicenter Clinical Trials Using Functional Imaging

Standards to reduce bias and measurement error have been suggested to address 
some known issues in application of PET in clinical trials (Shankar et al., 2006; 
Boellaard, 2009; Boellaard et al., 2010), but the combined impact of these 
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standards has not been evaluated. Standardization of patient preparation proto-
cols (Shankar et al., 2006) may be feasible, but standardization of image acquisi-
tion and analysis is difficult due to inherent differences between brands of PET 
scanners and physiological differences between patients (e.g., it is easier to local-
ize a positron emission in a smaller body). Furthermore, individual institutions 
may use scanner and image analysis settings to optimize performance for cer-
tain clinical or research applications, and changing the settings between scans is 
infeasible. Scanner hardware, reconstruction algorithms, and region of interest 
definition may contribute to additional measurement error or bias (Krak et al., 
2005; Westerterp et al., 2007).

Studies using pseudo-patient phantoms (Fahey et al., 2010) and patient test-retest 
with no intervening treatment (Weber et al., 1999; Velasquez et al., 2009) suggest 
that under ideal conditions (same scanner, same technician), instrumentation is pre-
cise enough to produce <5% measurement error for phantom studies and about 10% 
for the SUV of in vivo tumors. However, even for closely monitored trials, errors 
in recording or transcribing factors such as patient weight and the interval between 
injection and scanning may occur and result in considerable mismeasurement of 
SUVs (Scheuermann et al., 2009). The 10% measurement error estimate for individ-
ual FDG PET SUV values has been cited as a reason to accept 20% change or greater 
as “significant” (Weber et al., 1999). However, it should be noted that Weber’s data 
also supported measurement error as an absolute value (i.e., 0.5 SUV unit) rather 
than a percentage (Weber et al., 1999). Furthermore, even if the same scanner is 

12
11
10
09
08
07
06
05
04
03
02
01
00

0 1 2 3 4 5 6
Cycles of chemotherapy

Cure

N
o.

 o
f c

an
ce

r c
el

ls 
pr

es
en

t (
lo

g)

Usual size at diagnosis

Lower detection
limit of PET

A
B

C

FIGURE 24.2  Kinetics of tumor cell kill and PET limits of detection suggest a role for 
PET in detecting early response to therapy. Lines A and B represent brisk and moderate 
rates of tumor cell kill, leading to cure in four and six cycles of chemotherapy, respectively. 
Line C represents a therapy that is not curative, but has clinical benefit. Metabolic response 
to therapy should be apparent after one to three cycles of chemotherapy for most promising 
therapies. (From Kasamon et al., J. Nucl. Med., 48(Suppl 1), 19S, 2007, Figure 4. Reprinted 
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used for all of one patient’s scans, scanner drift or calibration errors could occur over 
those weeks and months that would not be evident in a test–retest study (Lockhart 
et al., 2011).

Efforts for standardization and harmonization of quantitative imaging biomarkers 
for use in multicenter clinical trials are ongoing (Meyer et al., 2009; Scheuermann 
et al., 2009). Statistical input is needed to design these studies and to interpret and 
implement the results.

24.2.3  Development of Molecular Imaging as a Biomarker

Several steps are necessary for validation as a biomarker before functional imag-
ing such as PET could be used to direct therapy or evaluate response in early stage 
clinical trials (McShane et al., 2005; Krohn et al., 2007; Pepe et al., 2008; Sargent 
et al., 2009; Dancey et al., 2010). Most guidelines for biomarker development were 
developed with the strengths and limitations of blood and tissue biomarkers in mind, 
such as false discovery rate issues for high throughput assays. Also, the focus of 
most consensus statements has been cancer screening or endpoints for pivotal trials. 
Considerations for early phase trials, where molecular imaging shows great promise 
for facilitating drug development, have drawn less attention. Although these guide-
lines for biomarker development are general enough to apply to other modalities 
such as functional imaging, it is incumbent upon researchers who use imaging to 
identify the strengths to exploit and the weaknesses to overcome. This section dis-
cusses technical strengths and limitations of many imaging biomarkers, and explores 
study designs to exploit the promise of these biomarkers.

24.2.3.1  How is Imaging Different from Tissue or Blood Assays?
One strength of functional imaging is the ability to study molecular processes over 
time without disturbing the tumor microenvironment, which allows for creative 
designs using imaging biomarkers in drug development and treatment selection. 
Functional imaging can also characterize the entire disease burden, rather than the 
limited sample from a tissue or blood assay tissue or blood assay (Table 24.1).

A limitation of functional imaging is that there are several irreversible steps in 
image generation that preclude centralized processing for many phases of analysis. 
Thus, standardization of imaging protocols and calibration of imaging technologies 
has been a focus of efforts to validate quantitative imaging for use in multicenter 
clinical trials (see Section 24.2.2). For tissue and blood assays, a single sample may 
yield many clinical results. The treating clinician and patient may not feel anything 
is “missing” if the results from an experimental technique (performed on the avail-
able sample) are omitted from clinical reports. In contrast, blinding of patients and 
clinicians to functional imaging results is challenging. There may be temptation to 
act upon results from experimental techniques, making it difficult to conduct studies 
with objective assessments.

Unlike some tissue assays, which can be validated using banked samples (Pepe 
et al., 2008), molecular imaging must be performed prospectively. Radiation safety 
concerns for novel PET tracers are another barrier to thorough well-powered vali-
dation studies. Additional logistical challenges include the short half-life of many 
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radiopharmaceuticals (the half-life of 18F is 110 min, but the half-life of 15O is only 
2 min), and the availability of an on-site cyclotron to generate novel radiopharmaceu-
ticals and tracers with a very short half-life. These considerations, as well as overall 
cost and patient burden, constrain the size of clinical trials involving novel molecular 
imaging such as FDG PET.

The role of the analyst is to recognize the necessity of limited sample sizes 
for novel molecular imaging, and to participate in planning a design and analysis 
strategy that will make the best use of a limited number of scans. These design 
and analysis considerations are not fundamentally different from considerations 
for any clinical trial, but the goal here is to provide guidance for statisticians 
encountering the challenges that are important, and sometimes unique, to molecu-
lar imaging.

24.2.3.2  Potential Applications for Molecular Imaging as a Biomarker
Imaging may be used to screen patients for study enrollment in an enrichment design 
(Chapter 17; Simon, 2010) (Figure 24.3A). One example is using FDG PET uptake as 
a study entry criterion, to identify thyroid cancer patients with aggressive disease for 
a phase II study of systemic therapy (Carr et al., 2010). If imaging is only used in the 
screening phase, the cost of imaging will be the same as if all patients were enrolled 
and treated. However, if an enrichment (or “targeted”/“marker positive”) design is 
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warranted (see Chapter 17), quantitative or qualitative imaging may be used as part 
of entry criteria.

Imaging may also be used as a predictive marker. A single pretreatment mea-
surement could be used to direct therapy (Figure 24.3Bi), or serial measurements 
over a short period of therapy (Figure 24.3Bii), could inform whether a therapy is 
productive or futile. As an example, evaluation of 18F-fluoroestradiol (FES) PET as a 
predictive marker is described later (Section 24.2.4).

Serial imaging over a short period of time has particular promise in proof of 
mechanism studies (Figure 24.3C). Dramatic changes in tumor metabolism may be 
detected as changes in FDG PET SUV in as few as 8 days, as for the response of 
gastrointestinal stromal tumors to imatinib (Stroobants et al., 2003). These changes 
in tumor metabolism occur more quickly than changes related to cell death, such as 
change in tumor size. Although it is possible that these pharmacodynamic changes 
may not lead to clinically meaningful results, the subsequent success of imatinib in 
randomized trials with sound clinical endpoints such as recurrence-free survival 
(DeMatteo et al., 2009) encourages the exploration of functional imaging as a phar-
macodynamic endpoint. Although serial biopsy is feasible, serial imaging may be 
seen as less invasive, and does not change the tumor as biopsy would.

24.2.4  Example: Development of FES PET Imaging as a Predictive Marker

To illustrate design and analysis considerations for evaluating functional imaging 
as a predictive marker, we describe the development of 18F-fluoroestradiol (FES) 
PET, which produces in vivo quantitative measures of regional estrogen receptor 
(ER) binding in breast cancer tumors. Over 70% of breast cancers are ER positive, 
and ER-directed adjuvant therapy is credited as a key factor in the recent decline 
in breast cancer mortality (EBCTCG, 2005). However, only 50%–85% of newly 
diagnosed patients with ER+ tumors respond to primary endocrine therapy (Ravdin 
et al., 1992), and many patients who initially respond to endocrine therapy later 
become refractory (Buzdar et al., 1996). There is evidence from tissue assays that 
higher quantitative ER expression is associated with a greater chance for response 
to endocrine therapy (Dowsett et al., 2008). However, many patients considering 
endocrine therapy have tumors that make biopsy difficult or painful. FES PET could 
be used to help direct treatment selection for patients with advanced breast can-
cer. Patients with high ER expression could be directed to endocrine therapy, while 
patients with low or absent FES uptake could be directed to alternative treatment, 
such as cytotoxic chemotherapy.

Early studies examined criterion validity of FES PET through comparisons to tis-
sue assays with ER expression measured by immunohistochemistry (IHC) (Mintun 
et al., 1988; Peterson et al., 2008). As a side note, this “validation” was mostly 
assessed as correlation coefficient for the linear relationship between quantitative 
levels of ER functioning by FES PET and tissue assay, demonstrating the need for 
application of more appropriate methods for agreement between assays (Bland and 
Altman, 1986).

Other analyses from these early clinical studies suggested that the response rate 
to endocrine therapy could be improved by selection based on quantitative FES 
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PET SUV (Mortimer et al., 2001; Linden et al., 2006). A simplified version of one 
such analysis (Linden et al., 2006) follows. Clinical records for patients scanned 
under several developmental protocols were examined to identify patients whose 
scans occurred shortly before initiating or changing endocrine therapy (N = 46) 
(Figure 24.4A). FES PET results were summarized by the average SUV for up to 
three lesions. The distribution of FES SUV values is shown in Figure 24.5, separately 
for those who responded and did not respond to endocrine therapy. (We assumed that 
the endpoint “response to endocrine therapy” was a gold standard measured without 
error.) Eleven of 46 patients (24%) were responders. While responders on average 
had higher average FES SUV than non-responders, there is considerable overlap 
between the average FES SUV values for responders and non-responders. However, 
there are many mechanisms of resistance for advanced breast cancer to endocrine 
therapy (Johnston, 2009): FES PET cannot be expected to be a perfect classifier of 
responders from non-responders, just as ER expression by IHC is not. Rather than 
considering overall classification or the positive predictive value (chance of response 
for high values of FES SUV), we examine the negative predictive value (chance of 
non-response for low values of FES SUV). Observing the horizontal line on Figure 
24.5 at SUV = 1.5, we see that the response rate is extremely low for patients with FES 
SUV ≤ 1.5, approximately the threshold distinguishing ER+ and ER− tumors in stud-
ies in which imaging was paired with IHC. None of the 15 patients with an SUV ≤ 1.5 
responded to therapy, whereas 11 of 31 patients (35%) with SUV > 1.5 responded. 
The association between response and FES PET and other categorical predictors was 
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assessed using the mid-P adjustment to Fisher’s exact test (Lancaster, 1961). Both 
one-sided and two-sided (based on minimum likelihood) mid-P values have Type 
I error rates closer to nominal rates than Fisher’s exact test or classical asymptotic 
tests when used to compare binomial probabilities in groups that differ in sample 
size (Hirji et al., 1991; Agresti, 2001). Using a two-sided mid-P test, we concluded 
that the response rate to endocrine therapy was higher in the patients with SUV > 1.5 
(p = 0.006).

We next consider possible studies that might follow the previously published stud-
ies to test FES PET as a means for selecting therapy for breast cancer patients. One 
possible pilot study to test the feasibility of using FES PET to direct patient treat-
ment is illustrated in Figure 24.4B. Participants would have metastatic breast cancer 
from an ER+ primary tumor, and be candidates for endocrine therapy but consider-
ing both endocrine therapy and systemic chemotherapy. Patients with average FES 
SUV higher than the previously measured threshold for response (tentatively FES 
SUV > 1.5) would be directed to endocrine therapy, and patients with low FES SUV 
(tentatively ≤ 1.5) would be directed to alternative therapy such as chemotherapy. 
Since the PET-directed strategy will presumably lead to a change in therapy (chemo-
therapy instead of endocrine therapy) in only about 1/3 of participants, it may be dif-
ficult to demonstrate that the FES-directed population had a higher overall response 
rate. The study would be powered to rule out a low response rate (25%) to endocrine 
therapy in the high-FES-SUV group, and to provide support for a response rate of 
40% or greater. In the range of expected sample size for the FES SUV >1.5 group 
(32–36 patients of n = 50 total), the number of responses to rule out a response rate 
of 25% is the same as the number of responses to achieve an observed rate over 
40%. For example, if 13 of 33 patients with FES SUV > 1.5 respond to endocrine 
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therapy (39%), the 95% Wilson (score) confidence interval for response would be 
(0.25, 0.56). The study power would be about 0.64 if the FES-selected response rate 
is 44% (as observed for HER2-negative patients in preliminary data), and about 0.85 
if the FES-selected response rate is 50%. The study will also provide further pre-
liminary data for the response to chemotherapy in patients with low FES SUV, and 
the percentage of patients with low FES SUV (estimated as 33%).

If preliminary studies provide consistent support for imaging as means for select-
ing endocrine therapy in the salvage setting, a definitive multicenter randomized 
two-arm trial could use a strategy design (Chapter 17), in which therapy is directed 
by imaging in one arm, and by clinical judgment without imaging in the other arm 
(Figure 24.4C). The sample size would have to be about n = 500 to have 90% power to 
detect a 15% point difference in overall response rate between the imaging-directed 
strategy and clinical judgment. Imaging would not be performed in the clinical judg-
ment arm, so the treatment outcomes could not be compared across arms for groups 
defined by FES SUV. However, the definitive trial as proposed in Figure 24.4C 
would effectively compare an imaging-based strategy to the standard of care, and 
could include assessments of cost-effectiveness and patient discomfort and distress 
due to both procedures (imaging and biopsy) and treatment. FES PET may have 
a role as a predictive marker primarily in patients who are unable or unwilling to 
undergo biopsy of metastatic lesions.

In summary, the example of the emerging evaluation of FES PET as a predictive 
marker illustrates the need to keep the next study in mind when designing the cur-
rent study, and taking into account changes in technologies and clinical practice that 
occur during the development of an agent, marker, or modality.

24.3  NOVEL APPROACHES AND FUTURE DIRECTIONS

24.3.1  �Co-Development of Agents, Tissue/Blood Biomarkers, 
and Imaging Biomarkers, and Novel Designs

In the pursuit of personalized medicine, technology to assess biomarkers, proposed 
mechanisms of action described by biomarkers, and therapeutic agents targeted at 
those mechanisms of action are continuously under development. Reassessment is 
also desirable when a marker or agent is proposed for use in a new tumor type, for a 
new purpose (i.e., as a predictive marker to guide therapy, rather than as a response 
measure to a particular therapy), or for a different patient population (such as early 
stage disease for markers or agents developed in late stage settings). In development 
of a new drug or combination of drugs, or a new predictive marker to guide therapy 
selection, study designs to accommodate “co-development” must be considered.

Clearly, co-development of markers and therapies “increases the complexity of all 
stages of the development process” (Simon, 2010). Draft guidance for co-development 
of drugs and in vitro diagnostic markers for Food and Drug Administration (FDA) 
approval (of drugs or markers) emphasize clarity of reporting, validation of instru-
mentation, and prespecification of assay cutoff values (FDA, 2005). A possible area 
for exploration is the use in early phase studies of biomarkers that address simi-
lar targets, but through a different modality (i.e., imaging versus tissue) or as an 
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embedded validation study (Suman et al., 2008; Dancey et al., 2010). To avoid 
“fishing expeditions” that waste resources (Ratain and Glassman, 2007), the studies 
should be designed to ensure that the details of the results will be useful in planning 
future studies.

For example, consider a randomized phase II trial to evaluate different doses 
or schedules of combined antiangiogenic and cytotoxic chemotherapy. The study 
could be designed to evaluate dose−response relationships for both fit-for-purpose 
markers (DCE-MRI perfusion measures, plasma vascular endothelial growth factor 
measures) and for general tumor response markers (FDG PET SUV, response by 
RECIST). If both markers show a dose−response relationship, the mechanism of 
action is as surmised. If the fit-for-purpose marker shows a dose−response relation-
ship but the tumor response marker does not, this is evidence that the antiangiogenic 
target has been hit, but tumor response is limited: perhaps downstream effects must 
also be accounted for in treatment, or the tumor response marker may be inadequate. 
Or, if there is strong tumor response for all dose levels, the extent of action mea-
sured by the fit-for-purpose marker may not be necessary for therapeutic effect. We 
emphasize that the markers must be chosen carefully and the possible outcomes 
considered ahead of time. Specific fit-for-purpose imaging markers are discussed by 
Kelloff et al. (2005), and genomic biomarkers associated with drug development are 
discussed by Chau et al. (2008).

A possible flow chart for including functional imaging in clinical trials is shown 
in Figure 24.6. FDG PET is emerging as a widely applicable marker for measuring 
tumor metabolic response (Wahl et al., 2009). Depending on hypothesized mecha-
nisms of action, additional PET tracers or imaging modalities may be used to mea-
sure effects on perfusion (DCE-MRI or 15O water PET), proliferation (FLT PET), or 
binding to specific receptors.
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FIGURE 24.6  Potential uses for functional imaging in early phase treatment trials.
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24.3.2  �Novel Approaches to the Analysis of Imaging 
Data in Cancer Clinical Trials

Imaging offers the opportunity to analyze the entire tumor burden for a patient. 
This may be achieved by summary measures such as total lesion glycolysis (Larson 
et al., 1999) or summing the FDG SUV from individual lesions (an exploratory end-
point proposed for PERCIST [Wahl et al., 2009]), or by analysis of individual lesions 
within a person as correlated data (Gonen et al., 2001; Kurland et al., 2011). Lesion 
level response to therapy may be analyzed, and within-patient and between-patient 
heterogeneity may be described to gain insight regarding the development of meta-
static lesions.

Data from multiple imaging probes (and/or multiple other biomarkers) may also 
be combined to evaluate tumor characteristics (Krohn et al., 2007; Strauss et al., 
2008). Two examples are examining simple ratio of imaging parameters as novel 
measures. Mismatch of tumor blood flow (measured by 15O water PET or DCE-MRI) 
and tumor metabolism (measured by FDG PET) may identify subsets of tumors 
susceptible and resistant to cytotoxic chemotherapy and identify targets for targeted 
therapy (Specht et al., 2010). A high FES/FDG ratio, indicating high ER activity and 
low tumor glycolytic activity, could identify indolent breast cancer lesions suscep-
tible to endocrine therapy (Mankoff and Dehdashti, 2009).

In summary, incorporation of functional imaging, quantitative imaging measures, 
and other imaging biomarkers into cancer clinical trials is a multidisciplinary effort 
requiring patience and diligence, as well as technical innovation. Statisticians have a 
role in collaboration with physicians, physicists, bioinformaticians, and other clinical 
trialists to develop these promising modalities effectively.
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25.1  INTRODUCTION

Besides investigations on etiology, epidemiology, and the evaluation of therapies, 
the identification and assessment of prognostic factors constitutes one of the major 
tasks in clinical cancer research. Studies on prognostic factors attempt to determine 
survival probabilities, or, more generally, a prediction of the course of the disease for 
groups of patients defined by the values of prognostic factors, and to rank the rela-
tive importance of various factors. In contrast to therapeutic studies, however, where 
statistical principles and methods are well developed and generally accepted, this is 
not the case for the evaluation of prognostic factors. Although some efforts toward 
an improvement of this situation have been undertaken (Infante-Rivard et al. 1989; 
McGuire 1991; Clark 1992; Simon and Altman 1994; Altman and Lyman 1998), 
most of the studies investigating prognostic factors are based on historical data lack-
ing precisely defined selection criteria. Furthermore, sample sizes are often far too 
small to serve as a basis for reliable results. As far as the statistical analysis is con-
cerned, a proper multivariate analysis simultaneously considering the influence of 
various potential prognostic factors on overall or event-free survival (EFS) of the 
patients is not always attempted. Missing values in some or all of the prognostic 
factors constitute a serious problem which is often underestimated.

In general, the evaluation of prognostic factors based on historical data has the 
advantage that baseline and follow-up data of patients might be readily available in a 
database, and that the values of new prognostic factors obtained from stored tissue or 
blood samples may be added retrospectively. However, such studies are particularly 
prone to some of the deficiencies mentioned earlier, including insufficient quality of 
data on prognostic factors and follow-up data and heterogeneity of the patient popu-
lation due to different treatment strategies. These issues are often not considered in 
the publication of prognostic studies but might explain, at least to some extent, why 
prognostic factors are controversial and why prognostic models derived from such 
studies are often not accepted for practical use (Wyatt 1995).

There have been some “classic” articles on statistical aspects of prognostic factors 
in oncology (Armitage and Gehan 1974; Byar 1982, 1984; Simon 1984; George 1988) 
that describe the statistical methods and principles that should be used to analyze 
prognostic factor studies. However, these articles do not fully address the issue that 
statistical methods and principles are not adequately applied when analyzing and pre-
senting the results of a prognostic factor study (Altman et al. 1994, 2004; Simon and 
Altman 1994; Wyatt and Altman 1995). We therefore aim to not only present updated 
statistical methodology but also point out the possible pitfalls when applying these 
methods to prognostic factor studies. Statistical aspects of prognostic factor studies 
are also discussed in the monograph on prognostic factors in cancer (Gospodarowicz 
et al. 2001), in some textbooks on survival analysis (Marubini and Valsecchi 2004; 
Machin et al. 2004; Hosmer et al. 2008) and in some recent monographs (Royston 
and Sauerbrei 2008b; Steyerberg 2009; Andersen and Skovgaard 2010).

Two main aims should be distinguished when creating a prognostic model 
(Sauerbrei et al. 2007a). The first is prediction, with little consideration of the model 
structure; the second is explanation, where researchers try to identify influential pre-
dictors and gain insight into the relationship between the predictors and the outcome 
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through the model structure. In prediction, model fit and mean square prediction 
error are the main criteria for model adequacy. However, more often studies are done 
to investigate whether particular variables are prognostically important. For continu-
ous predictors, the shape of the function is often of interest, for example, whether 
there is an increasing trend or a plateau at high values of the variable. In observa-
tional studies such assessments must be done in a multivariable context. Usually, 
many variables may be considered as potential predictors, but only a few will have 
a relevant effect. The task is to identify them. Often, generalizability and practical 
usefulness are important components of a good model and should be kept in mind 
when developing a model.

In order to illustrate important statistical aspects in the evaluation of prognostic 
factors and to examine the problems associated with such an evaluation in more 
detail, data from two prognostic factor studies in breast cancer shall serve as illustra-
tive examples. Even before the results of gene expression analyses have been reported 
on a large-scale basis, the effects of more than 200 potential prognostic factors were 
controversially discussed; about 1000 papers were published in 2001. This illustrates 
the importance of and the unsatisfactory situation in prognostic factors research. 
An evidence-based approach is clearly needed. It is usually difficult to ascertain the 
benefit of a marker from a single published study, which may be overly optimistic 
owing to small sample size and selective reporting, and a clear view is only likely to 
emerge from examining multiple studies (Riley et al. 2009).

A substantial improvement of this situation is possible only with an improvement 
in the application of statistical methodology, and in better reporting single studies 
(comparable to the CONSORT statement [Altman et al. 2001] for randomized con-
trolled trials) which provides a more suitable basis for a systematic review of studies 
for a specific marker of interest. An international working group has developed the 
REMARK reporting recommendations for prognostic studies (McShane et al. 2005).

As exploratory analyses play an important role, several analyses are usually con-
ducted, only some of which have been completely reported, with the results of oth-
ers mentioned only briefly in the text (and easily overlooked) or not reported at all. 
Therefore, a two-part REMARK profile was proposed whose first part gives details 
about how the marker of interest was handled in the analysis and which further vari-
ables were available for multivariable modeling (Mallett et al. 2010). In the second 
part of the REMARK profile, an overview of all analyses conducted is given. Severe 
weaknesses of reporting methods and results of prognostic factor studies have been 
well known (Altman 2001; Riley et al. 2003, 2009; Mallett et al. 2010). To improve 
future research in prognostic factors several recommendations are given in these 
papers; however, none of them focuses on statistical aspects of single studies.

Throughout this chapter we assume that the reader is familiar with standard sta-
tistical methods for survival data to the extent as is presented in more practically 
oriented textbooks (Harris and Albert 1991; Therneau and Grambsch 2000; Collett 
2003; Lee and Wang 2003; Marubini 2004; Machin et al. 2006; Hosmer et al. 2008). 
For a deeper understanding of those methods, we refer to the more theoretically 
oriented textbooks on survival analysis and counting processes (Andersen et al. 
1993; Kalbfleisch and Prentice 2002; Fleming and Harrington 2005). As compared 
with the previous editions of the handbook, this chapter contains new sections on 
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treatment−covariate interactions and on regularized estimation in the presence of 
high-dimensional predictors. References on reporting standards and on new devel-
opments have been updated where needed.

25.2  “DESIGN” OF PROGNOSTIC FACTOR STUDIES

The American Joint Committee on Cancer (AJCC) has established three major cri-
teria for prognostic factors. Factors must be significant, independent, and clinically 
important (Burke and Henson 1993). According to Gospodarowicz et al. (2001), sig-
nificance implies that the prognostic factor rarely occurs by chance; independent 
means that the prognostic factor retains its prognostic value despite the addition of 
other prognostic factors; and clinically important implies clinical relevance, such 
as being capable (at least in principle) of influencing patient management and thus 
outcome.

From these criteria, it is apparent that statistical aspects will play an important 
role in the investigation of prognostic factors (Fielding et al. 1992; Henson 1992; 
Fielding and Henson 1993; Gospodarowicz et al. 2001). That is also emphasized 
by Simon and Altman (1994) who give a concise and thoughtful review of statisti-
cal aspects of prognostic factor studies in oncology. Recognizing that these will be 
observational studies, the authors argue that they should be carried out in a way that 
the same careful design standards are adopted as are used in clinical trials, except 
for randomization. For confirmatory studies that may be seen comparable to phase 
III studies in therapeutic research, they listed 11 important requirements that are 
given in a somewhat shortened version in Table 25.1. From these requirements, it 
can be deduced that prognostic factors should be investigated in carefully planned, 
prospective studies with sufficient numbers of patients and sufficiently long follow-
up to observe the endpoint of interest (typically event-free or overall survival). Thus, 
a prospective observational study, where treatment is standardized and everything is 
planned in advance, emerges as the most desirable study design. A slightly different 

TABLE 25.1
Requirements for Confirmatory Prognostic Factor Studies 
according to Simon and Altman (1994)

1. Documentation of intra- and inter-laboratory reproducibility of assays

2. Blinded conduct of laboratory assays

3. Definition and description of a clear inception cohort

4. Standardization or randomization of treatment

5. Detailed statement of hypotheses (in advance)

6. Justification of sample size based on power calculations

7. Analysis of additional prognostic value beyond standard prognostic factors

8. Adjustment of analyses for multiple testing

9. Avoidance of outcome-oriented cut-off values

10. Reporting of confidence intervals for effect estimates

11. Demonstration of subset-specific treatment effects by an appropriate statistical test
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design is represented by a randomized controlled clinical trial where in addition to 
some therapeutic modalities various prognostic factors are investigated. It is impor-
tant in such a setting that the prognostic factors of interest are measured either in all 
patients enrolled into the clinical trial or in those patients belonging to a predefined 
subset. Both designs, however, usually require enormous resources and a long time 
until results will be available. Thus, a third type of “design” is used in the vast major-
ity of prognostic factor studies, which can be termed a “retrospectively defined his-
torical cohort,” where stored tumor tissue or blood samples are available and baseline 
as well as follow-up data of the patients is already documented in a database. To meet 
the requirements listed in Table 25.1 in such a situation, it is clear that inclusion and 
exclusion criteria have to be carefully applied. In particular, treatment has to be given 
in a standardized manner, at least to some sufficient extent. Otherwise, patients for 
whom these requirements are not fulfilled have to be excluded from the study. If the 
requirements are followed in a consistent manner, this will usually lead to a drastic 
reduction in the number of patients eligible for the study compared to the number of 
patients available in the original database. In addition, follow-up data are often not of 
sufficient quality as should be the case in a well-conducted clinical trial or prospec-
tive study. Thus, if this “design” is applied, special care is necessary in order to arrive 
at correct and reproducible results regarding the role of potential prognostic factors.

The types of designs described earlier will also be illustrated in the prognostic 
studies in breast cancer that we will use as examples and that will be dealt with in 
more detail in the next section. It is interesting to note that other types of designs, 
for example, nested case-control studies, case-cohort studies, or other study types 
often used in epidemiology (Rothman et al. 2008), have only rarely been used for the 
investigation of prognostic factors. Their role and potential use for prognostic factor 
research has not yet been fully explored. There is one situation where the random-
ized controlled clinical trial should be the design type of choice: the investigation 
of so-called predictive factors that indicate whether a specific treatment works in 
a particular subgroup of patients defined by the predictive factor but not in another 
subgroup of patients, where it may be harmful. Since this is clearly an investigation 
of treatment−covariate interactions, it should ideally be performed in the setting of 
a large-scaled randomized trial where information on the potential predictive factor 
is recorded and analyzed by means of appropriate statistical methods (Simon 1982; 
Byar 1985; Gail and Simon 1985; Schmoor et al. 1993; Royston and Sauerbrei 2004a).

25.3  EXAMPLES: PROGNOSTIC STUDIES IN BREAST CANCER

25.3.1  Freiburg DNA Study

The first study is based on an observational database consisting of data of all patients 
with primary, previously untreated node positive breast cancer who received sur-
gery between 1982 and 1987 in the Department of Gynecology at the University 
of Freiburg and whose tumor material was available for DNA investigations. Some 
exclusion criteria were defined retrospectively, including history of malignoma, 
T4 and/or M1 tumors according to the TNM classification system of the Union for 
International Cancer Control (UICC) (Gospodarowicz et al. 2001), without adjuvant 
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therapy after primary surgery, and older than 80 years. This excluded 139 patients 
of 218 originally investigated for the analysis. This study will be referred to as the 
Freiburg DNA study in the sequel.

Eight patient characteristics were investigated. In addition to age, the number of 
positive lymph nodes and the size of the primary tumor, the grading score according 
to Bloom and Richardson (1957), and estrogen and progesterone receptor status were 
recorded. DNA flow cytometry was used to measure ploidy status of the tumor using a 
cutpoint of 1.1 for the DNA index and S-phase fraction (SPF), which is the percentage 
of tumor cells in the DNA synthesizing phase obtained by cell cycle analysis. The dis-
tribution of these characteristics in the patient population is displayed in Table 25.2.

The median follow-up was 83 months. At the time of analysis, 76 events were 
observed for EFS, which was defined as the time from surgery to the first of the 

TABLE 25.2
Patient Characteristics in the 
Freiburg DNA Breast Cancer Study

Factor Category n (%)

Age ≤50 years 52 (37)

>50 years 87 (63)

No. of positive lymph 
nodes

1–3 66 (48)

4–9 42 (30)

≥10 31 (22)

Tumor size ≤2 cm 25 (19)

2–5 cm 73 (54)

>5 cm 36 (27)

Missing 5

Tumor grade 1 3 (2)

2 81 (59)

3 54 (39)

Missing 1

Estrogen receptor ≤20 fmol 32 (24)

>20 fmol 99 (76)

Missing 8

Progesterone receptor ≤20 fmol 34 (26)

>20 fmol 98 (74)

Missing 7

Ploidy status Diploid 61 (44)

Aneuploid 78 (56)

S-phase fraction <3.1 27 (25)

3.1–8.4 55 (50)

>8.4 27 (25)

Missing 30

Source:	 Pfisterer, J. et al. Anal. Quant. Cytol. 
Histol., 17, 406, 1995.
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following events: occurrence of locoregional recurrence, distant metastasis, second 
malignancy, or death. EFS was estimated as 50% at 5 years. Further details of the 
study can be found in the work of Pfisterer et al. (1995).

25.3.2  GBSG-2-Study

The second study is a prospective controlled clinical trial on the treatment of node 
positive breast cancer patients conducted by the German Breast Cancer Study Group 
(GBSG) (Schumacher et al. 1994); this study will be referred to as the GBSG-2-study 
in the sequel.

The principal eligibility criterion was a histologically verified primary breast 
cancer of stage T1a-3aN+M0, that is, positive regional lymph nodes but no distant 
metastases. Primary local treatment was by a modified radical mastectomy (Patey) 
with en bloc axillary dissection with at least six identifiable lymph nodes. Patients 
were not older than 65 years of age and presented with a Karnofsky index of at least 
60. The study was designed as a comprehensive cohort study (Schmoor et al. 1996). 
That is, randomized as well as nonrandomized patients who fulfilled the entry crite-
ria were included and followed according to the study procedures.

The study had a 2 × 2 factorial design with four adjuvant treatment arms: three 
versus six cycles of chemotherapy with and without hormonal treatment. Prognostic 
factors evaluated in the trial include patient’s age, menopausal status, tumor size, 
estrogen and progesterone receptors, tumor grading according to Bloom and 
Richardson (1957), histological tumor type, and the number of involved lymph 
nodes. Histopathologic classification was reexamined, and grading was performed 
centrally by one reference pathologist for all cases. EFS was defined as time from 
mastectomy to the first occurrence of either locoregional or distant recurrence, con-
tralateral tumor, secondary tumor, or death.

During 6 years 720 patients were recruited, of whom about two-thirds gave 
consent to randomization. Complete data on the seven standard prognostic factors 
as given in Table 25.3 were available for 686 (95.3%) patients, who were taken as 
the basic patient population for this study. After a median follow-up time of nearly 
5 years, 299 events for EFS and 171 deaths were observed. EFS was about 50% at 
5 years. Data of the GBSG-2-study are available from http://www.imbi.uni-freiburg.
de/biom/Royston-Sauerbrei-book/.

25.4  CUTPOINT MODEL

In prognostic factor studies, values of the factors considered are often categorized in 
two or three categories. This may be done according to medical or biological reasons 
or may just reflect some consensus in the scientific community. When a “new” prog-
nostic factor is investigated, the choice of such a categorization represented by one 
or more cutpoints is by no means obvious. Thus, often an attempt is made to derive 
such cutpoints from the data and to take those cutpoints that give the best separation 
in the data at hand. In the Freiburg DNA breast cancer study we consider SPF as a 
“new” prognostic factor, which it indeed was some years ago (Altman et al. 1994). 
For simplicity, we restrict ourselves to the problem of selecting only one cutpoint 
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based on a univariate analysis. Let Z denote the covariate of interest, in the Freiburg 
DNA breast cancer data the SPF, as a potential prognostic factor. If this covariate has 
been measured on a quantitative scale, the proportional hazards (Cox 1972) cutpoint 
model is defined as

	 λ μ β λ μ( | ) exp( ) ( | ),t Z t Z t> = ≤ > 0

where λ t h t T t h T th| lim ( )Pr ,⋅( ) = ≤ < + ≥ ⋅( )→0 1/  denotes the hazard function of 
the EFS time random variable T. The parameter θ = exp(β) is referred to as the 
hazard ratio of observations with Z > μ with respect to observations with Z ≤ μ 
and is estimated by θ̂ = exp(β̂) by maximizing the corresponding partial likeli-
hood (Cox 1972) with given cutpoint μ. The fact that μ is usually unknown makes 
this a problem of model selection where the cutpoint μ also has to be estimated 
from the data. A popular approach for this type of data-dependent categoriza-
tion is the minimum p-value method where, within a certain range of the dis-
tribution of Z called the selection interval, the cutpoint μ̂ is chosen such that 
the p-value for the comparison of observations below and above the cutpoint is 
a minimum. Applying this method to SPF in the Freiburg DNA breast cancer 

TABLE 25.3
Patient Characteristics in GBSG-2-Study

Factor Category n (%)

Age ≤45 years 153 (22)

46–60 years 345 (50)

>60 years 188 (27)

Menopausal status Pre 290 (42)

Post 396 (58)

Tumor size ≤20 mm 180 (26)

21–30 mm 287 (42)

>30 mm 219 (32)

Tumor grade 1 81 (12)

2 444 (65)

3 161 (24)

No. of positive lymph 
nodes

1–3 376 (55)

4–9 207 (30)

≥10 103 (15)

Progesterone receptor <20 fmol 269 (39)

≥20 fmol 417 (61)

Estrogen receptor <20 fmol 262 (38)

≥20 fmol 424 (62)

Source:	 Schumacher M. et al., for the German Breast 
Cancer Study Group, J. Clin. Oncol., 12, 2086, 
1994.



423Prognostic Factor Studies

data we obtain, based on the logrank test, a cutpoint of μ̂ = 10.7 and a minimum 
p-value of pmin = 0.007 when using the range between the 10% and 90% quantile 
of distribution of Z as the selection interval. Figure 25.1A shows the resulting 
p-values as a function of the possible cutpoints considered; Figure 25.1B displays 
the Kaplan–Meier estimates of the EFS functions of the groups defined by the 
estimated cutpoint μ̂ = 10.7. The difference in EFS looks rather impressive and the 
estimated hazard ratio with respect to the dichotomized covariate I(Z > μ̂ ) using 
the “optimal” cutpoint μ̂ = 10.7, θ̂ = 2.37, is quite large; the corresponding 95% 
confidence interval is [1.27; 4.44].

Simulating the null hypothesis of no prognostic relevance of SPF with respect 
to EFS (β = 0), we illustrate that the minimum p-value method may lead to a dras-
tic overestimation of the absolute value of the log-hazard ratio (Schumacher et al. 
1996a). By a random allocation of the observed values of SPF to the observed sur-
vival times, we simulate independence of these two variables, which is equivalent 
to the null hypothesis β = 0. This procedure was repeated a 100 times and in each 
repetition we selected a cutpoint by using the minimum p-value method, which is 
often also referred to as an “optimal” cutpoint. In the 100 repetitions, we obtained 44 
significant (pmin < 0.05) results for the logrank test corresponding well to theoretical 
results outlined in Lausen and Schumacher (1992).

The estimated “optimal” cutpoints of the 100 repetitions and the corresponding 
estimates of the log-hazard ratio are shown in Figure 25.2A. We obtained no esti-
mates near the null hypothesis β = 0 as a result of the optimization process of the 
minimum p-value approach. Due to the well-known problems resulting from mul-
tiple testing, it is obvious that the minimum p-value method cannot lead to correct 
results of the logrank test. However, this problem can be solved by using a corrected 
p-value pcor as proposed in Lausen and Schumacher (1992), developed by taking the 
minimization process into account. The formula reads
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FIGURE 25.1  p-Values of the logrank test as a function of all possible cutpoints for S-phase 
fraction (A) and Kaplan–Meier estimates of event-free survival probabilities by S-phase frac-
tion (B) in the Freiburg DNA study.
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φ denotes the probability density function
u is the (1 − pmin /2) quantile of the standard normal distribution

The selection interval is characterized by the proportion ε of smallest and largest 
values of Z that are not considered as potential cutpoints. It should be mentioned 
that other approaches of correcting the minimum p-value could be applied; a com-
parison of three approaches can be found in a paper by Hilsenbeck and Clark (1996). 
In particular, if there are only a few cutpoints, an improved Bonferroni inequality 
can be applied (Worsley 1982; Lausen et al. 1994; Lausen and Schumacher 1996) or 
the p-value correction can be derived from the exact distribution of the maximally 
selected logrank test (Hothorn et al. 2003). Using the correction formula given pre-
viously in the 100 repetitions of our simulation experiment, we obtained five sig-
nificant results (pcor < 0.05) corresponding to the significance level of α = 0.05. Four 
significant results were obtained with the usual p-value when using the median of the 
empirical distribution of SPF in the original data as a fixed cutpoint in all repetitions.

In order to correct for overestimation, it has been proposed (Verweij and Van 
Houwelingen 1993) to shrink the parameter estimates by a shrinkage factor c. 
Considering the cutpoint model, the log-hazard ratio should then be estimated by

	
ˆ ˆ ˆβ βcor c= ⋅

where
β̂ is based on the minimum p-value method
ĉ is the estimated shrinkage factor
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FIGURE 25.2  Estimates of cutpoints and log-hazard ratio in 100 repetitions of randomly 
allocated observed SPF values to event-free survival times in the Freiburg DNA study 
before (A) and after (B) correction.
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Values of ĉ close to 1 indicate a minor degree of overestimation whereas small val-
ues of ĉ reflect a substantial overestimation of the log-hazard ratio. Obviously, with 
maximum partial likelihood estimation of c in a model

	
λ β λt SPF c SPF| exp( ) t |>( ) = ≤( )μ μˆ

using the original data we get ĉ = 1 since β̂ is the maximum partial likelihood esti-
mate. Schumacher et al. (1997) compared several methods to estimate ĉ. In Figure 
25.2B, the results of the correction process in the 100 simulated studies are dis-
played when a heuristic estimate ĉ = (β̂ 2 − var(β̂))/β̂ 2 was applied where β̂ and var(β̂) 
are resulting from the minimum p-value method (Van Houwelingen and Le Cessie 
1990). This heuristic estimate performed quite well when compared to more elabo-
rated cross-validation and resampling approaches (Schumacher et al. 1997).

In general, minimum p-value method leads to a dramatic inflation of the type I 
error rate. The chance of declaring a quantitative factor as prognostically relevant 
when in fact it does not have any influence on EFS is about 50% when a level of 5% 
has been intended. Thus, correction of p-values is essential but leaves the problem 
of overestimation of the hazard ratio in absolute terms. The latter problem, which is 
especially relevant when sample sizes and/or effect sizes are small to moderate, could 
at least partially be solved by applying some shrinkage method. In the Freiburg DNA 
breast cancer data, we obtain a corrected p-value of pcor = 0.123 that provides no clear 
indication that S-phase is of prognostic relevance for node-positive breast cancer 
patients. The correction of the hazard ratio estimate leads to a value of θ̂cor = 2.1 for 
the heuristic method and to θ̂ 

cor = 2 for the cross-validation and bootstrap approaches. 
Unfortunately, confidence intervals are not straight forward to obtain; bootstrapping 
the whole model building process including the estimation of a shrinkage factor 
would be one possibility (Holländer et al. 2004).

In the 100 repetitions of our simulation experiment, 39 confidence intervals 
calculated from the model after cutpoint selection did not contain the value β = 0 
(Figure 25.3A), corresponding to the number of significant results according to the 
minimum p-value. Although shrinkage is capable of correcting for overestimation 
of the log-hazard ratio (Figure 25.2B), confidence intervals calculated with the esti-
mated model-based standard error do not obtain the desired coverage. In our simula-
tion, there are still 17 out of 100 intervals that do not contain the value β = 0 (Figure 
25.3B). Using the shrunken risk estimate ĉβ̂ and its empirical variance calculated 
from 100 bootstrap samples in each repetition of the simulation experiment instead 
leads to the correct coverage; only five repetitions do not contain β = 0. This agrees 
with the p-value correction and corresponds to the significance level of β = 0.05. It 
should be noted, however, that the optimal cutpoint approach still has disadvantages. 
One of these is that different studies will most likely yield different cutpoints, mak-
ing comparisons across studies extremely difficult or even impossible.

Altman et al. (1994) point out this problem for studies of the prognostic relevance 
of SPF in the breast cancer literature; they identified 19 different cutpoints, some of 
them motivated only as the “optimal” cutpoint in a specific dataset. Although dichot-
omization has advantages such as simplifying an analysis, Royston et al. (2006) 
argue strongly against dichotomization as it may create rather than avoid problems, 
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notably a considerable loss of power, residual confounding, and a serious bias if a 
data derived “optimal” cutpoint is used. Thus, other approaches, such as regression 
modeling, might be preferred. Taking, for example, S-phase as a continuous covari-
ate in a Cox regression model, with baseline hazard function λ0(t):

	 λ λ( | ) ( )exp( )t Z t= 0
�βΖ

yields a p-value of p = 0.061 for testing the null hypothesis β̃ = 0.

25.5  REGRESSION MODELING AND RELATED ASPECTS

The Cox proportional hazards regression model (Cox 1972; Andersen 1991) is the 
standard statistical tool to simultaneously analyze multiple prognostic factors. If we 
denote the prognostic factors under consideration by Z1, Z2, …, Zk then the model is 
given by

	
λ λ( , , ) ( )exp( )t Z Z Z t Z Z Zk k k1 2 0 1 1 2 2… �= + + +β β β

where
λ(t|·) denotes the hazard function of the event-free or overall survival time random 

variable t
λ0(t) is the unspecified baseline hazard

The estimated log-hazard ratios β̂ 
j can then be interpreted as estimated “effects” 

of the factors Zj(j = 1, …, k). If Zj is measured on a quantitative scale, then exp(β̂ 
j) 
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FIGURE 25.3  Ninety-five percent confidence intervals for the log-hazard ratio of the 
S-phase fraction in 100 repetitions of randomly re-allocated S-phase values to the observed 
survival time: estimate based on “optimal” cutpoints, naïve model-based variance (A); shrunk 
estimate, naïve model-based variance (B); and shrunk estimate, empirical variance from 100 
bootstrap samples (C). Confidence intervals not including β = 0 are marked with filled circles, 
and the samples are ordered according to the values of β̂ from smallest to largest.
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represents the increase or decrease in risk if Zj is increased by one unit; if Zj is a 
binary covariate, then exp(β̂j) is simply the hazard ratio of category 1 to the reference 
category (Zj = 0), which is assumed to be constant over the time range considered. It 
has to be noted that the “final” multivariate regression model is often the result of 
a more or less extensive model building process which may involve the categoriza-
tion and/or transformation of covariates as well as the selection of variables in an 
automatic or a subjective manner. This model building process should in principle 
be taken into account when judging the results of a prognostic study; in practice, 
it is often neglected. We will come back to this problem at several occasions later, 
especially in Sections 25.7 and 25.8.

We will demonstrate various approaches with the data of the GBSG-2-study. The 
factors listed in Table 25.3 are investigated with regard to their prognostic relevance. 
Since all patients received adjuvant chemotherapy in a standardized manner and 
there appeared to be no difference between three and six cycles (Schumacher et al. 
1994), chemotherapy is not considered any further. Because of the patients’ prefer-
ence in the nonrandomized part and because of a change in the study protocol con-
cerning premenopausal patients, only about a third of the patients received hormonal 
treatment. Age and menopausal status had a strong influence on whether this therapy 
was administered. Since hormonal treatment was not of primary interest, all analy-
ses were stratified by it. That is, the baseline hazard was allowed to vary between the 
two groups defined by hormonal treatment.

25.5.1  Assuming a Log-Linear Relationship for Continuous Covariates

In a first attempt, all quantitative factors are included as continuous covariates. Age 
is taken in years, tumor size in mm, lymph nodes as the number of involved nodes, 
and progesterone and estrogen receptors in fmol/mL. Menopausal status is a binary 
covariate coded “0” for premenopausal and “1” for postmenopausal. Grade is con-
sidered as a quantitative covariate in this approach, that is, the risk between grade 
categories 1 and 2 is the same as between grade categories 2 and 3. The results of 
this Cox regression model are given in Table 25.4 in terms of estimated hazard ratios 
and p-values of the corresponding Wald tests under the heading “Full model.” In 
a publication, this should at least be accompanied by confidence intervals for the 
hazard ratios that we have omitted here for brevity. From this full model, it can be 
seen that tumor size, tumor grade, the number of positive lymph nodes, and the pro-
gesterone receptor have a significant impact on EFS, when a significance level of 5% 
is used. Age, menopausal status, and the estrogen receptor do not exhibit prognostic 
relevance.

A key issue is the choice between a full, a prespecified, or a selected model. As a 
theoretical construct, the full model avoids several complications and biases intro-
duced by model building. In practice, the full model would require prespecification 
of all aspects of the model. This is possible when analyzing a randomized trial; in an 
observational study, however, prespecifying all aspects of a full model is unrealistic 
(Sauerbrei et al. 2007a; Royston and Sauerbrei 2008). The gain of removing bias by 
avoiding data-dependent model building is offset by the high cost of ignoring mod-
els which may fit the data much better than the prespecified one. Also, what needs 
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to be done if assumptions of the prespecified model are violated, for example, the 
assumed log-linear relationship for quantitative factors may be in sharp contrast to 
the real situation. Another disadvantage is that irrelevant factors are included that 
will not be needed in subsequent steps, for example, in the formation of risk groups 
defined by the prognostic factors. In addition, correlation between various factors 
may lead to undesirable statistical properties of the estimated regression coefficients, 
such as inflation of standard errors or problems of instability caused by multicol-
linearity. That is less critical if the aim is to derive a prediction model; however, for 
explanatory models it is desirable to arrive at a simple and parsimonious final model 
that contains only those prognostic factors that strongly affect EFS (Sauerbrei 1999; 
Sauerbrei et al. 2007a; Royston and Sauerbrei 2008). The other three columns of 
Table 25.4 contain the results of the Cox regression models obtained after backward 
elimination (BE) for three different selection levels (Miller 1990). A single factor BE 
with selection level 15.7% (BE(0.157)) corresponds asymptotically to the well-known 
Akaike information criterion (AIC), whereas selection levels of 5% or even 1% lead 
to a more stringent selection of factors (Teräsvirta and Mellin 1986). In general, 
BE can be recommended because of several advantages compared to other step-
wise variable selection procedures (Mantel 1970; Sauerbrei 1993; Sauerbrei 1999; 
Royston and Sauerbrei 2008).

In the GBSG-2-study, tumor grade, lymph nodes, and progesterone receptor are 
selected for all three selection levels considered; when using 15.7% as the selection 

TABLE 25.4
Estimated Hazard Ratio (HR) and Corresponding p-Value in the Cox 
Regression Models for the GBSG-2-Study; Quantitative Prognostic Factors 
Are Taken as Continuous Covariates Assuming a Log-Linear Relationship

Factor

Full Model BE (0.157) BE (0.05) BE (0.01)

HR p-Value HR p-Value HR p-Value HR p-Value

Age 0.991 0.31 — — — — — —

Menopausal 
status

1.310 0.14 — — — — — —

Tumor size 1.008 0.049 1.007 0.061 — — — —

Tumor grade 1.321 0.009 1.325 0.008 1.340 0.006 1.340 0.006

Lymph nodes 1.051 <0.001 1.051 <0.001 1.057 <0.001 1.057 <0.001

Progesterone 
receptor

0.998 <0.001 0.998 <0.001 0.998 <0.001 0.998 <0.001

Estrogen 
receptor

1.000 0.67 — — — — — —

AIC = −2logL 
+ 2p

3120.18 3116.59 3117.93 3117.93

BIC = −2logL 
+ log(ñ)p

3146.09 3131.39 3129.03 3129.03

p denotes the number of covariates in the model and ñ denotes effective sample size, ñ = 299.



429Prognostic Factor Studies

level, tumor size is included in addition. The AIC or the Bayesian information cri-
terion (BIC) (Schwarz 1978), which depends on sample size and puts more penalty 
on each covariate in the selected model than the AIC, may be used for model assess-
ment. Then, the smallest value of AIC or BIC corresponds to the best model.

For the two different selected models, the values of AIC and BIC and their order 
are similar, and at least for AIC the full model seems to be only slightly worse. Thus, 
the results of the full model and the three BE procedures do not differ too much for 
these data. However, this should not be expected in general. One reason might be 
that there is a relatively clear-cut difference between the three strong factors (and 
perhaps tumor size) and the others that show only a negligible influence on EFS in 
this study.

25.5.2  Categorizing Continuous Covariates

The previous approach implicitly assumes that the influence of a prognostic factor on 
the hazard function follows a log-linear relationship. By taking lymph nodes as the 
covariate Z, for example, this means that the risk is increased by the factor exp(β̂) 
if the number of positive lymph nodes is increased from m to m + 1 for m = 1,2 and 
so on. This could be a questionable assumption at least for large numbers of positive 
lymph nodes. For other factors even monotonicity of the log-hazard ratio may be 
violated which could result in overlooking an important prognostic factor. Because 
of this uncertainty, the prognostic factors under consideration are often categorized 
and replaced by dummy variables for the different categories.

In a second analysis of the GBSG-2-study, the categorizations in Table 25.3 are 
used, which were prespecified in accordance with the literature (Schumacher et al. 
1994). For those factors with three categories, two binary dummy variables were 
defined contrasting the corresponding category with the reference category cho-
sen as that with the lowest values. So, for example, lymph nodes were categorized 
into 1–3, 4–9, and ≥10 positive nodes; 1–3 positive nodes serve as the reference 
category. Table 25.5 displays the results of the Cox regression model for the cat-
egorized covariates, where again, the results of the full model are supplemented by 
those obtained after BE with three selection levels. Elimination of only one dummy 
variable corresponding to a factor with three categories corresponds to an amalga-
mation of categories (Byar 1984). In these analyses, tumor grade, lymph nodes, and 
progesterone receptor again show the strongest effects. Age and menopausal status 
are marginally significant and are included in the BE(0.157) model. For age, there is 
some indication that linearity or even monotonicity of the log-hazard ratio may be 
violated. Grade categories 2 and 3 do not seem well separated as is suggested by the 
previous approaches presented in Table 25.4, where grade was treated as a continu-
ous covariate; compared to grade 1, the latter one would lead to estimated hazard 
ratios of 1.321 and 1.745 = (1.321)2 for grades 2 and 3, respectively, in contrast to val-
ues of 1.723 and 1.746 when using dummy variables. The use of dummy variables 
with the coding used here may also be the reason that grade is no longer included 
by BE with a selection level of 1%. In Table 25.5 we have given the p-values of the 
Wald tests for the two dummy variables separately; alternatively, we could also 
test the two-dimensional vector of corresponding regression coefficients to be zero. 
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In any case, this needs two degrees of freedom whereas when treating grade as a 
quantitative covariate one degree of freedom would be sufficient. The data of the 
GBSG-2-study suggest that grade categories 2 and 3 could be amalgamated into 
one category (grade 2–3); this would lead to an estimated hazard ratio of 1.728 
and a corresponding p-value of 0.019. Investigating goodness of fit in terms of AIC 
and BIC, BE leads to an improvement but differences are rather small. For a more 
detailed discussion on model building with categorical predictors, see Royston and 
Sauerbrei (2008).

25.5.3  Determining Functional Relationships for Continuous Covariates

The results of the two approaches presented in Tables 25.4 and 25.5 show that model 
building within the framework of a prognostic study has to find a compromise 

TABLE 25.5
Estimated Hazard Ratio and Corresponding p-Values in the Cox 
Regression Models for the GBSG-2-Study; Prognostic Factors Are 
Categorized as in Table 25.3

Factor

Full Model BE (0.157) BE (0.05) BE (0.01)

HR p-Value HR p-Value HR p-Value HR p-Value

Age ≤45 1 — 1 — — — — —

45–60 0.672 0.026 0.679 0.030 — — — —

60 0.687 0.103 0.692 0.108 — — — —

Menopausal 
status

Pre 1 — 1 — — — — —

Post 1.307 0.120 1.304 0.120 — — — —

Tumor size ≤20 1 — — — — — — —

21–30 1.240 0.165 — — — — — —

>30 1.316 0.089 — — — — — —

Tumor grade 1 1 — 1 — 1 — — —

2 1.723 0.031 1.718 0.032 1.709 0.033 — —

3 1.746 0.045 1.783 0.036 1.778 0.037 — —

Lymph nodes 1–3 1 — 1 — 1 — 1 —

4–9 1.976 <0.001 2.029 <0.001 2.071 <0.001 2.110 <0.001

≥10 3.512 <0.001 3.687 <0.001 3.661 <0.001 3.741 <0.001

Progesterone 
receptor

<20 1 — 1 — 1 — 1 —

≥20 0.545 <0.001 0.545 <0.001 0.536 <0.001 0.494 <0.001

Estrogen 
receptor

<20 1 — — — — — — —

≥20 0.994 0.97 — — — — — —

AIC = −2logL 
+ 2p

3087.24 3084.49 3083.58 3085.05

BIC = −2logL 
+ log(ñ)p

3128.05 3114.09 3102.09 3096.15

p denotes the number of covariates in the model and ñ denotes effective sample size, ñ = 299.
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between sufficient flexibility with regard to the functional shape of the underlying 
log-hazard ratio functions and simplicity of the derived model to avoid problems 
with serious overfitting and instability. From this point of view, the first approach 
assuming all relationships to be log-linear may be not flexible enough and may not 
capture important features of the relationship between various prognostic factors 
and EFS. On the other hand, the categorization used in the second approach can 
always be criticized because of some degree of arbitrariness and subjectivity con-
cerning the number of categories and the specific cutpoints chosen. In addition, it 
will not fully exploit the information available and will be associated with some loss 
in efficiency. For a more flexible modeling of the functional relationship, a larger 
number of cutpoints and corresponding dummy variables would be needed. We will 
therefore sketch a third approach that will provide more flexibility while preserving 
simplicity of the final model to an acceptable degree.

The method was originally developed by Royston and Altman (1994) and is 
termed the “fractional polynomial (FP)” approach. For a quantitative covariate Z, 
it uses functions β0 + β1ZP + β2Zq to model the log-hazard ratio; the powers p and 
q are taken from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3} and Z0 is defined as log Z. 
For practical purposes, the use of two terms is sufficient and the resulting function 
is termed a FP of degree 2. This simple extension of ordinary polynomials gener-
ates a considerable range of curve shapes while still preserving simplicity when 
compared to smoothing splines or other nonparametric techniques, for example. 
Furthermore, Holländer and Schumacher (2006) showed in a simulation study that 
the data driven selection process, which is used to select the best FP, maintains 
the type I error rate, and generally ends up with a log-linear relationship if it is 
present. This is in contrast to the optimal cutpoint selection procedure outlined in 
Section 25.4.

Sauerbrei et al. (1999) have extended the FP approach, proposing a model building 
strategy consisting of FP-transformations and selection of variables by BE called the 
multivariable FP (MFP) approach. Omitting details of this model building process, 
which are reported elsewhere (Sauerbrei et al. 1999; Royston and Sauerbrei 2008b), 
we have summarized the results in Table 25.6. For age, the powers −2 and −0.5 
have been estimated and provide significant contributions to the log-hazard ratio as 
a function of Z. This function is displayed in Figure 25.4A in comparison with the 
corresponding functions derived from the two other approaches. It provides further 
indication that there is a nonmonotonic relationship that would be overlooked by the 
log-linear approach. Grade categories 2 and 3 have been amalgamated as has been 
pointed out previously. A further restriction has been incorporated for lymph nodes 
by assuming that the relationship should be monotone with an asymptote for large 
numbers of positive nodes. This was achieved by using the simple primary transfor-
mation exp(−0.12* Lymph nodes) where the factor 0.12 was estimated from the data 
(Sauerbrei and Royston 1999). The estimated power for this transformed variable 
was equal to one and a second power was not needed. Likewise, for progesterone 
receptor a power of 0.5 was estimated that gives a significant contribution to the log-
hazard ratio functions. For the latter, an improvement in the log-likelihood of about 
7.47 was achieved as compared to the inclusion of a linear term only. Figures 25.4B 
and C show these functions for lymph nodes and progesterone receptor, respectively, 
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in comparison with those derived from the log-linear and from the categorization 
approach. For lymph nodes, it suggests that the log-linear approach underestimates 
the increase in risk for small numbers of positive nodes whereas it substantially over-
estimates it for very large numbers. The categorization approach seems to provide a 
reasonable compromise for this factor.

TABLE 25.6
Estimated Regression Coefficients and 
Corresponding p-Values in the Final Cox Regression 
Model for the GBSG-2-Study Using the Fractional 
Polynomial Approach

Factor/Function Regression Coefficient p-Value

(Age/50)−2 1.742 —

(Age/50)−0.5 −7.812 <0.001*

Tumor grade 1 0 —

Tumor grade 2–3 0.517 0.026

exp (−0.12 × Lymph nodes) −1.981 <0.001

(Progesterone Receptor + 1)0.5 −0.058 <0.001

*p-Value for both terms of age function.
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FIGURE 25.4  Estimated log-hazard ratios functions for age (A), lymph nodes (B), and pro-
gesterone receptor (C) obtained by the FP, categorization, and log-linear approaches in the 
GBSG-2-study.
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25.5.4  Interactions between Treatment and Continuous Covariates

Rather than assuming that “one-size-fits-all” clinicians aim to improve patient man-
agement by optimized, stratified treatment based on knowledge of markers (Simon 
2005). In statistical terms, that means consideration of interactions between treat-
ment and several variables with differential treatment effects across subgroups. In 
some areas in medicine (mainly in cancer) such factors are termed “predictive” 
markers. The statistical community is generally skeptical of the existence of inter-
actions and often neglects to investigate them; an exception is a small number of 
predefined hypotheses in the protocol of a randomized controlled trial. Tests for 
interaction are necessary (see also the last point in Table 25.1), but often have low 
power. That is due to the fact that a trial is usually powered to test for a main effect 
of interest in all patients, not for an interaction.

Separate analyses of treatment effects in subgroups are popular, not always fol-
lowed by a formal test for an interaction. Analyses in subgroups are appropriately 
criticized and overinterpretation of results is a critical issue (Assmann et al. 2000; 
Rothwell 2005). Caused by searching for “significant” treatment−covariate interac-
tions among many candidates, multiple testing with the correspondingly increased 
type I error is often considered as a major issue. In order to preserve the type I error, 
many statisticians argue to adjust for multiple testing.

The type II error, which means to miss identifying that a treatment effect varies in 
subgroups or depends on the value of a continuous covariate, is rarely discussed as a 
serious deficiency. Furthermore, despite severe weaknesses (e.g., dependence on spe-
cific cutpoints, loss of power, biologically implausible step functions), categorization 
of a continuous covariate into two (sometimes three or four) groups is the standard 
approach to investigate interactions between treatment and continuous covariates 
(Wang et al. 2007). Probably, the main reason for this insufficient technique is the 
simplicity in prespecifying subgroups to investigate for interactions and that a stan-
dard test for an interaction can be used.

Given the enormous amount of resources spent on conducting a large randomized 
trial, it is surprising that greater efforts are not made to try to extract more informa-
tion from these data. Therefore, Sauerbrei and Royston (2007b) consider exploratory 
analyses and the search for interactions between treatment and continuous variables 
as an important activity. To improve power and to overcome the problems caused 
by categorization, Royston and Sauerbrei (2004a) proposed the MFPI algorithm, an 
extension of MFP, to model interactions between treatment and continuous covari-
ates by using FP. They distinguish the two cases with a prespecified hypothesis and 
hypothesis generation. The heart of the MFPI algorithm is the same for the two 
situations, the main difference is the consideration of multiple testing and the inter-
pretation of results.

The MFPI algorithm models the prognostic effect of a continuous covariate Z 
by separate FP transformations within treatment groups, but under the constraint 
of the same powers. It can be used in a univariate setting, or by adjusting for a 
model depending on other covariates. Influence of the covariate Z on the estimated 
treatment effect is determined by the difference between the estimated functions 
for the prognostic effect in the two treatment groups. The resulting plot with the 
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corresponding pointwise confidence interval is called the treatment effect plot. 
Comparing the model with a different function for Z in each treatment group with 
that with the same function in each group constitutes a test of interaction based on 
deviances. A detailed application to the GBSG-2-study, which is not replicated here, 
is given in the original publication (Royston and Sauerbrei 2004a).

A small simulation study showed that the type I error of the MFPI procedure is 
close (5.4% instead of 5%) to its nominal level (Sauerbrei et al. 2007b). MFPI was 
shown in several examples to be able to identify treatment/covariate interactions 
which may be missed by methods which do not use the full information from a 
continuous covariate (Royston and Sauerbrei 2004a). It is obvious that such results 
from data-dependent modeling have to be interpreted carefully and need validation 
in independent data.

Another technique to investigate for treatment interactions with continuous 
covariates is the subpopulation treatment effect pattern plot (STEPP) (Bonetti and 
Gelber 2000, 2004; Lazar et al. 2010). It involves dividing the observations into 
subgroups defined with respect to the covariate Z of interest and estimating the treat-
ment effect separately within each subpopulation. To increase the number of patients 
that contribute to each point estimate, subpopulations are allowed to overlap. To 
create subpopulations, sliding window and tail-oriented variants are used and sev-
eral tests for interactions have been proposed. The influence of a varying number of 
subpopulations, the difference between the two variants, and stability investigations 
using bootstrap replications have been illustrated by re-analysis of a randomized 
trial in kidney cancer. Results are also compared to MFPI. Based on these lim-
ited experiences, Royston and Sauerbrei (2008a) argue in an editorial that STEPP 
is an appropriate exploratory technique and a suitable method to check interactions 
detected by MFPI.

Approaches to investigate for interactions between treatment and continuous 
covariates are an area of active research. Several others have been proposed recently, 
for example, Cai et al. (2011).

25.5.5  Further Issues

Some other important issues have not been explicitly mentioned so far. One is model 
checking with regard to the specific assumptions to be made; for this issue, we refer 
to textbooks and review articles on survival analysis (Marubini and Valsecchi 1995; 
Harrell et al. 1996; Valsecchi and Silvestri 1996; Therneau and Grambsch 2000; 
Harrell 2001). A second issue is concerned with other flexible statistical methods, 
such as generalized additive models (Hastie and Tibshirani 1990); a comparison of 
such methods and the FP approach using the data of the GBSG-2-study is presented 
in the work of Sauerbrei et al. (1999).

Another issue is stability and addresses the question whether we could replicate 
the selected final model having different data. Bootstrap resampling has been applied 
in order to investigate this issue (Chen and George 1985; Altman and Andersen 1989; 
Hastie and Tibshirani 1990; Sauerbrei and Schumacher 1992). In each bootstrap 
sample, the whole model selection or building process is repeated and the results are 
summarized over the bootstrap samples. We illustrate this procedure for BE with a 
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selection level of 5% in the Cox regression model with quantitative factors included 
as continuous covariates and assuming a log-linear effect (Table 25.4). In Table 25.7, 
the inclusion frequencies over 1000 bootstrap samples are given for the prognostic 
factors under consideration. These frequencies underline that tumor grade, lymph 
nodes, and progesterone receptor are by far the strongest factors; lymph nodes is 
always included, progesterone receptor in 98% and tumor grade in 62% of the boot-
strap samples, respectively. The percentage of bootstrap samples where exactly this 
model—containing these three factors only—is selected is 26.1%. In 60.4% of the 
bootstrap samples, a model is selected that contains these three factors possibly with 
other selected factors. These figures might be much lower in other studies where 
more factors with a weaker effect are investigated. This bootstrap approach has been 
adapted by Royston and Sauerbrei (2003) who investigate the stability of the mul-
tivariable FP approach. It also provides insight into the interdependencies between 
different factors or functions selected by inspecting the bivariate or multivariate 
dependencies between models selected (Sauerbrei and Schumacher 1992; Royston 
and Sauerbrei 2003). These investigations underline the nonlinear effect of age on 
disease-free survival in the GBSG-2-study.

25.6  CLASSIFICATION AND REGRESSION TREES

Hierarchical trees are one approach for nonparametric modeling of the relationship 
between a response variable and several potential prognostic factors. The book 
of Breiman et al. (1984) gives a comprehensive description of the method of clas-
sification and regression trees (CART) that has been modified and extended in 
various directions (Zhang et al. 1998). We concentrate solely on the application to 
survival data (Gordon and Olshen 1985; LeBlanc and Crowley 1992, 1993; Segal 
1988, 1998) and will use the abbreviation CART as a synonym for different types 
of tree-based analyses. CART is a prominent example of so-called machine learn-
ing methods.

TABLE 25.7
Inclusion Frequencies over 1000 Bootstrap 
Samples Using the Backward Elimination 
Method with a Selection Level of 5% 
(BE (0.05)) in the GBSG-2-Study

Factor Inclusion Frequency (%)

Age 18.2

Menopausal status 28.8

Tumor size 38.1

Tumor grade 62.3

Lymph nodes 100

Progesterone receptor 98.1

Estrogen receptor 8.1
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Briefly, the idea of CART is to construct subgroups which are internally as homo-
geneous as possible with regard to the outcome and externally as separated as possi-
ble. Thus, the method leads directly to prognostic subgroups defined by the potential 
prognostic factors. This is achieved by a recursive tree building algorithm. As in 
Section 25.5, we start with k potential prognostic factors Z1, Z2, …, Zk that may have 
an influence on the survival time random variable T. We define a minimum num-
ber of patients within a subgroup, nmin say, and prespecify an upper bound for the 
p-values of the logrank test statistic, pstop. Then the tree building algorithm is defined 
by the following steps (Lausen et al. 1994):

	 1.	The minimal p-value of the logrank statistic is computed for all k factors 
and all allowable splits within the factors. An allowable split is given by a 
cutpoint of a quantitative or an ordinal factor within a given range of the 
distribution of the factor or some bipartition of the classes of a nominal 
factor.

	 2.	The whole group of patients is split into two subgroups based on the factor 
and the corresponding cutpoint with the minimal p-value, if the minimal 
p-value is smaller than or equal to pstop.

	 3.	The partition procedure is stopped if there exists no allowable split, if the 
minimal p-value is greater than pstop or because the size of the subgroup is 
smaller than nmin.

	 4.	For each of the two resulting subgroups the procedure is repeated.

This tree building algorithm yields a binary tree with a set of patients, a splitting 
rule, and the minimal p-value at each interior node. For patients in the resulting 
final nodes, various quantities of interest can be computed, such as Kaplan–Meier 
estimates of EFS or hazard ratios with respect to specific references or amalgamated 
groups.

Since prognostic factors are usually measured on different scales, the number of 
possible partitions will also be different, leading to the problems that have already 
been extensively discussed in Section 25.4. Thus, correction of p-values and/or 
restriction to a set of few prespecified cutpoints may be useful to overcome the prob-
lem that factors allowing more splits have a higher chance of being selected by the 
tree building algorithm. Because of multiple testing, the algorithm may be biased in 
favor of these factors over binary factors with prognostic relevance.

We will illustrate the procedure by means of the GBSG-2-study. If we restrict the 
possible splits to the range between the 10% and 90% quantile of the empirical dis-
tribution of each factor, then the factor age, for example, will allow 25 splits whereas 
the binary factor menopausal status will allow for only one split. Likewise, tumor 
size will allow for 32 possible splits, tumor grade for only 2. Lymph nodes will allow 
for 10 possible splits; progesterone and estrogen receptors offer 182 and 177 possible 
cutpoints, respectively. Thus, we decide to use the p-value correction as outlined in 
Section 25.4, and we define nmin = 20 and pstop = 0.05. As a splitting criterion, we use 
the logrank test statistic; for simplicity, not stratified for hormonal therapy.

The result of the tree-building procedure is summarized in Figure 25.5. In this 
graphical representation, the size of the subgroups is taken proportional to the width 
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of the boxes whilst the centers of the boxes correspond to the observed event rates. 
This presentation allows an immediate visual impression about the resulting prog-
nostic classification obtained by the final nodes of the tree.

We start with the whole group of 686 patients (the “root”) where a total of 299 
events (event rate 43.6%) have been observed. The factor with the smallest corrected 
p-value is the number of lymph nodes and the whole group is split at an estimated 
cutpoint of nine positive lymph nodes (pcor < 0.0001), yielding a subgroup of 583 
patients with less than or equal to nine positive lymph nodes and a subgroup of 103 
patients with more than nine positive lymph nodes. The procedure is then repeated 
with the left and right tree nodes. At this level, in the left tree node, the number 
of lymph nodes again appeared to be the strongest factor, with a cutpoint of three 
positive lymph nodes (pcor < 0.0001). For the right tree node, progesterone receptor 
is associated with the smallest corrected p-value and the cutpoint is obtained as 
23 fmol (Pcor = 0.0003). In these two subgroups, no further splits are possible because 
of the pstop criterion.

In subgroups of patients with 1–3 and 4–9 positive nodes, progesterone recep-
tor is again the strongest factor with cutpoints of 90 fmol (pcor = 0.006) and 55 fmol 
(pcor = 0.0018), respectively. Because of the pstop criterion, no further splits are 
possible.

There exist a variety of definitions of CART-type algorithms that usually consist 
of tree building, pruning, and amalgamation (Breiman et al. 1984; Ciampi et al. 
1992; Tibshirani and LeBlanc 1992; Zhang et al. 1998). In order to protect against 
serious overfitting of the data, which in other algorithms is accomplished by tree 
pruning, we have defined various restrictions, such as the pstop and the nmin criteria, 
and used corrected p-values. Applying these restrictions, we have obtained the tree 
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FIGURE 25.5  Classification and regression tree obtained for the GBSG-2-study; p-value 
correction but no prespecification of cutpoints was used.
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displayed in Figure 25.5, which is parsimonious in the sense that only the stron-
gest factors, lymph nodes and the progesterone receptor, are selected for the splits. 
However, the values of the cutpoints obtained for progesterone receptor (90, 55, and 
23 fmol) are somewhat arbitrary and may not be reproducible or comparable to those 
obtained in other studies. Another useful restriction may be the definition of a set of 
prespecified possible cutpoints for each factor. In the GBSG-2-study, we specified 
35, 40, 45, 50, 55, 60, 65, 70 years for age, 10, 20, 30, 40 mm for tumor size, and 5, 
10, 20, 100, 300 fmol for progesterone and estrogen receptors. The resulting tree is 
displayed in Figure 25.6A. It only differs from the one without this restriction in the 
selected cutpoints for the progesterone receptor in the final nodes. For comparison, 
trees without the p-value correction and with and without prespecification of a set of 
possible cutpoints are presented in Figures 25.6B and C. Since lymph nodes and pro-
gesterone receptor are the dominating prognostic factors in this patient population, 
the resulting trees are identical at the first two levels to those where the p-values have 
been corrected. The final nodes in the latter ones, however, are again split leading 
to a larger number of final nodes. In addition, other factors like age, tumor size, and 
estrogen receptor are now used for the splits at subsequent nodes. A more detailed 
investigation of the influence of p-value correction and prespecification of possible 
cutpoints on resulting trees and their stability is given by Sauerbrei (1997).

To improve the predictive ability of trees, stabilizing methods based on resam-
pling, such as bagging, have been proposed (Breiman 1996; Diettrich 2000; Friedman 
and Hastie 2000; Breiman 2001a; Hothorn et al. 2004). However, interpretation of 
the results is difficult, which limits their value for practical applications. It is impor-
tant to carefully consider advantages and disadvantages of statistical versus machine 
learning methods (Breiman 2001b).

25.7  FORMATION AND VALIDATION OF RISK GROUPS

While the final nodes of a regression tree define a prognostic classification scheme, 
some combination of final nodes to a prognostic subgroup might be indicated. This 
is especially important if the number of final nodes is large and/or if the prognosis 
of patients in different final nodes is comparable. So, for example, from the regres-
sion tree presented in Figure 25.6A the simple prognostic classification given in 
Table 25.8 can be derived, which is broadly in agreement with current knowledge 
about the prognosis of node-positive breast cancer patients. The results in terms of 
estimated EFS are displayed in Figure 25.7A; the Kaplan–Meier curves show a good 
separation of the four prognostic subgroups. Since in other studies or in clinical 
practice progesterone receptor may often be only recorded as positive (PR > 20) or 
negative, the prognostic classification scheme in Table 25.8 may be modified in a way 
that the definition of subgroups I and II are replaced, respectively, by

	 I LN 3 and PR 2* : ( )≤ > 0

and

	 II LN 3 and PR 2 or LN 4 9 and PR 2* : ( ) ( )≤ ≤ −0 0>
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FIGURE 25.6  Classification and regression trees obtained for the GBSG-2-study (p-value 
correction and prespecification of cutpoints (A); no p-value correction with (B) and with-
out (C) prespecification of cutpoints).



440 Handbook of Statistics in Clinical Oncology

where
LN are the lymph nodes
PR is the progesterone receptor

The resulting Kaplan–Meier estimates of EFS are depicted in Figure 25.7B.
For two of the regression approaches in Section 25.5, prognostic subgroups have 

been formed by dividing the distribution of the prognostic index, β̂1Z1 + ⋯ + β̂kZk, 
into quartiles; the stratified EFS curves are displayed in Figures 25.8A (Cox regres-
sion model with continuous factors, BE(0.05), Table 25.4) and 8B (Cox regression 
model with categorized covariates, BE(0.05), Table 25.5). As a reminder, in the defi-
nition of the corresponding subgroups tumor grade also enters in addition to lymph 
nodes and progesterone receptor.

For comparison, Figure 25.8C shows the Kaplan–Meier estimates of EFS for 
the well-known Nottingham Prognostic Index (Haybittle et al. 1982; Galea et al. 
1992), the only prognostic classification scheme based on standard prognostic 
factors that enjoys widespread acceptance (Balslev et al. 1994). This index is 
defined as

TABLE 25.8
Prognostic Classification Scheme Derived from 
the Regression Tree (p-Value Correction and 
Predefined Cutpoints) in the GBSG-2-Study

Prognostic 
Subgroup

Definition of Subgroup

(LN: No. of Positive Lymph Nodes; PR: 
Progesterone Receptor)

I (LN ≤ 3 and PR > 100)

II (LN ≤ 3 and PR ≤ 100) or (LN 4–9 and PR > 20)

III (LN 4–9 and PR ≤ 20) or (LN > 9 and PR > 20)

IV (LN > 9 and PR ≤ 20)
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FIGURE 25.7  Kaplan–Meier estimates of event-free survival probabilities for the prognos-
tic subgroups derived from the CART approach (A) and the modified CART approach (B) in 
the GBSG-2-study.
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	 NPI  2 size in mm   lymph node stage  tumor grade= × + +0 0. ( ) ,

where lymph node stage is equal to 1 for node-negative patients, 2 for patients with 
one to three positive lymph nodes, and 3 if four or more lymph nodes were involved. 
It is usually divided into three prognostic subgroups NPI-I (NPI < 3.4), NPI-II 
(3.4 ≤ NPI ≤ 5.4), and NPI-III (NPI > 5.4). Since it was developed for node-negative 
and node-positive patients, there seems room for improvement by taking other fac-
tors, such as progesterone receptor, into account (Collett et al. 1998).

Since the Nottingham Prognostic Index has been validated in various other stud-
ies (Balslev et al. 1994; Blamey et al. 2007; Van Belle et al. 2010), we can argue 
that the degree of separation that is displayed in Figure 25.8C could be achieved in 
general. This, however, is by no means true for the other proposals derived by regres-
sion modeling or CART techniques, where some shrinkage has to be expected (Van 
Houwelingen and Le Cessie 1990; Copas 1997; Vach 1997a; Sauerbrei 1999). We 
therefore attempted to validate the prognostic classification schemes defined earlier 
with the data of an independent study that in more technical terms is often referred to 
as a “test set” (Ripley 1996). As a test set, we take the Freiburg DNA study that cov-
ers the same patient population and prognostic factors as in the GBSG-2-study. Only 
progesterone and estrogen receptor status (positive: >20 fmol and negative: ≤20 fmol) 
is recorded in the Freiburg DNA study and the original values are not available. 
Thus, only those classification schemes where progesterone receptor enters as posi-
tive or negative can be considered for validation. Furthermore, we restrict ourselves 
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FIGURE 25.8  Kaplan–Meier estimates of event-free survival probabilities for the prognos-
tic subgroups derived from a Cox model with continuous (A) and categorized (B) covariates 
and according to the Nottingham Prognostic Index (C) in the GBSG-2-study.
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to those patients where the required information on prognostic factors is complete. 
Table 25.9 shows the estimated hazard ratios for the prognostic groups derived from 
the categorized Cox model and from the modified CART classifications scheme 
defined earlier. The hazard ratios have been estimated by using dummy variables 
defining the risk groups and by taking the group with the best prognosis as reference. 
When applying the classification schemes to the data of the Freiburg DNA study, the 
definitions and categorization derived in the GBSG-2-study are used. Note that the 
categorization into quartiles of the prognostic index does not yield groups with equal 
number of patients since the prognostic index from the categorized Cox model takes 
only few different values.

From the values given in Table 25.9, it can be seen that there is some shrinkage 
in the hazard ratios when estimated in the Freiburg DNA test set. This shrinkage is 
more pronounced in the modified CART classification scheme (reduction by 47% in 
the relatively small high risk group) as compared with the categorized Cox model 
(reduction by 28% in the high risk group).

In order to get some idea of the amount of shrinkage that has to be anticipated in a 
test set, based on the “training set” (Ripley 1996) where the classification scheme has 
been developed, cross-validation or other resampling methods can be used. Similar 
techniques as in Section 25.4 can be used, which essentially estimate a shrinkage 
factor for the prognostic index (Van Houwelingen and Le Cessie 1990; Verweij and 
Van Houwelingen 1993). The hazard ratios for the prognostic subgroups are then 
estimated by categorizing the shrinked prognostic index according to the cutpoints 
used in the original data. In the GBSG-2-study, we obtained an estimated shrinkage 
factor of ĉ = 0.95 for the prognostic index derived from the categorized Cox model 
indicating that we would not expect a serious shrinkage of the hazard ratios between 
the prognostic subgroups. Compared to the estimated hazard ratios in the Freiburg 

TABLE 25.9
Estimated Hazard Ratios for Various Prognostic 
Classification Schemes Derived in the GBSG-2-Study 
and Validated in the Freiburg DNA Study

Prognostic Groups

Estimated Hazard Ratios (No. of Patients)

GBSG-2-Study Freiburg DNA Study

Cox I 1 (52) 1 (33)

II 2.68 (218) 1.78 (26)

III 3.95 (236) 3.52 (58)

IV 9.92 (180) 7.13 (14)

CART I* 1 (243) 1 (50)

II* 1.82 (253) 1.99 (38)

III 3.48 (133) 3.19 (33)

IV 8.20 (57) 4.34 (11)

NPI II 1 (367) 1 (46)

III 2.15 (301) 2.91 (87)
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DNA study (Table 25.9), it is clear that the shrinkage effect in the test set can only 
be predicted to a limited extent. This deserves at least two comments. First, we have 
used leave-one-out cross-validation that possibly could be improved by bootstrap 
or other resampling methods (Schumacher et al. 1997); second, we did not take the 
variable selection process into account. By doing so, we would expect more real-
istic estimates of the shrinkage effect in an independent study. Similar techniques 
can also be applied to classification schemes derived by CART methods. Further 
approaches to assess the predictive ability of prognostic classification schemes will 
be presented in Section 25.10.

25.8  ARTIFICIAL NEURAL NETWORKS

The application of artificial neural networks (ANNs) for prognostic and diagnostic 
classification in clinical medicine has attracted growing interest in the medical lit-
erature. So, for example, a “mini-series” on neural networks that appeared in the 
Lancet contained three more or less enthusiastic review articles (Baxt 1995; Cross et 
al. 1995; Dybowski and Gant 1995) and an additional commentary expressing some 
scepticism (Wyatt 1995). In particular, feed-forward neural networks have been used 
extensively, often accompanied by exaggerated statements of their potential. In a 
review article (Schwarzer et al. 2000) we identified a substantial number of articles 
with application of ANNs to prognostic classification in oncology.

The relationship between ANNs and statistical methods, especially logistic 
regression models, has been described in several articles (Ripley 1993; Cheng and 
Titterington 1994; Penny and Frost 1996; Schumacher et al. 1996b; Stern 1996; 
Warner and Misra 1996). Briefly, the conditional probability that a binary outcome 
variable Y is equal to 1, given the values of k prognostic factors Z1Z2, …, Zk is given 
by a function f(Z,w). In feed-forward neural networks, this function is defined by
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where
w = (w0, …, wr, w01, …, wkr) are the unknown parameters called “weights”
Λ(·) denotes the logistic function, Λ(u) = (1 + exp(−u))−1, called “activation-function”

The weights w can be estimated from the data via maximum likelihood although 
other optimization procedures are often used in this framework. The ANN is usu-
ally introduced by a graphical representation like that in Figure 25.9. This figure 
illustrates a feed-forward neural network with one hidden layer. The network con-
sists of k input units, r hidden units denoted by h1, …, hr, and one output unit and 
corresponds to the ANN with f(Z,w) defined before. The arrows indicate the “flow of 
information.” The number of weights is (r + 1) + (k + 1) because every input unit is 
connected with every hidden unit and the latter are all connected to the output unit. 
If there is no hidden layer (r = 0), the ANN reduces to a common logistic regression 
model which is also called the “logistic perceptron.”
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In general, feed-forward neural networks with one hidden layer are universal 
approximators (Hornik et al. 1989) and thus can approximate any function defined 
by the conditional probability that Y is equal to one given Z with arbitrary precision 
by increasing the number of hidden units. This flexibility can lead to serious over-
fitting which can again be compensated by introducing some weight decay (Ripley 
1996, 1998), for example, by adding a penalty term
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to the log-likelihood. The smoothness of the resulting function is then controlled by 
the decay parameter λ. It is interesting to note that in our literature review of articles 
published between 1991 and 1995, we have not found any application in oncology 
where weight decay has been used (Schwarzer et al. 2000).

Extension to survival data with censored observations is associated with various 
problems. Although there is a relatively straightforward extension of ANNs to handle 
grouped survival data (Liestøl et al. 1994), several naïve proposals can be found in 
the literature. In order to predict outcome (death or recurrence) of individual breast 
cancer patients, Ravdin et al. (1992) and Ravdin and Clark (1992) use a network with 
only one output unit but using the number j of the time interval as additional input. 
Moreover, they consider the unconditional probability of dying before tj rather than 
the conditional one as output. Their underlying model then reads
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for j = 1, …, J. T denotes the survival time random variable, and the time intervals are 
defined by tj − 1 ≤ t < tj, 0 = t0 < t1 < ⋯ < tJ < ∞. This parameterization not only ensures 
monotonicity of the survival probabilities but also implies a rather stringent and 
unusual shape of the survival distribution, since in the case of no covariates this 
equation reduces to

Z1
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1
1

h1
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Y

wij
Wj

FIGURE 25.9  Graphical representation of an artificial neural network with one input layer, 
one hidden layer, and one output layer.
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P (T < t )= w w jj kΛ +( )0 1+ ⋅

for j = 1, …, J. Obviously, the survival probabilities do not depend on the length of 
the time intervals, which is a rather strange and undesirable feature. Including a hid-
den layer in this expression is a straightforward extension retaining all the features 
summarized previously. De Laurentiis and Ravdin (1994) call this type of neural net-
works “time coded models.” Another form of neural networks that has been applied 
to survival data are the so-called “single time point models” (De Laurentiis and 
Ravdin 1994). Since they are identical to a logistic perceptron or a feed-forward neu-
ral network with a hidden layer, they correspond to fits of logistic regression models 
or their generalizations to survival data. In practice, a single time point t* is fixed and 
the network is trained to predict the survival probability. The corresponding model 
is given by
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or its generalization when introducing a hidden layer. This approach is used by 
Burke (1994) to predict 10 year survival of breast cancer patients based on vari-
ous patient and tumor characteristics at time of primary diagnosis. McGuire et al. 
(1992) utilized this approach to predict 5 year EFS of patients with axillary node-
negative breast cancer based on seven potentially prognostic variables. Kappen and 
Neijt (1993) used it to predict 2 year survival of patients with advanced ovarian can-
cer obtained from 17 pretreatment characteristics. The neural network they actually 
used reduced to a logistic perceptron.

The aforementioned procedure can be repeatedly applied for the prediction of 
survival probabilities at fixed time points t* = t1 < t2 < ⋯ < tj, replacing w0 by w0j and wi 
by wij for j = 1, … ,J (Kappen and Neijt 1993). But without restriction on the param-
eters such an approach does not guarantee that the probabilities P(T < tj|Z) increase 
with j, and hence may result in life-table estimators suggesting a nonmonotone sur-
vival function. Closely related are “multiple time point models” (De Laurentiis and 
Ravdin 1994) where one neural network with J output units with or without a hidden 
layer is used.

A common drawback of these naïve approaches is that they do not allow incor-
porating censored observations in a straightforward manner, which is closely related 
to the fact that they are based on unconditional survival probabilities instead of 
conditional survival probabilities. Neither omission of the censored observations, 
as suggested by Burke (1994), nor treating censored observations as uncensored are 
valid approaches, but a serious source of bias, which is well known in the statistical 
literature. De Laurentiis and Ravdin (1994) and Ripley (1998) propose to impute esti-
mated conditional survival probabilities for the censored cases from a Cox regres-
sion model.

Faraggi and Simon (1995) and others (Biganzoli et al. 1998; Ripley and Ripley 
2001; Biganzoli et al. 2002; Ripley et al. 2004) proposed a neural network general-
ization of the Cox regression model defined by
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Note that the constant W0 is omitted in the framework of the Cox model. Estimation 
of weights is then done by maximizing the partial likelihood. Although the problem 
of censoring is satisfactorily solved in this approach there remain problems with 
potentially serious overfitting of the data, especially if the number r of hidden units 
is large.

For illustration, we consider factors included in the final FP model of the GBSG-
2-study (Section 25.5, Table 25.6). Thus, we used the four factors, age, grade, lymph 
nodes, and progesterone receptor (all scaled to the interval [0;1]), and hormone ther-
apy as inputs for the Faraggi and Simon network. Figure 25.10 shows the results 
for various Faraggi and Simon networks compared to the FP approach in terms of 
Kaplan–Meier estimates of EFS in the prognostic subgroups defined by the quar-
tiles of the corresponding prognostic indices. It should be noted that the Faraggi 
and Simon network contains 5 + (6 × 5) = 35 parameters when five hidden units are 
used and 20 + (6 × 20) = 140 when 20 hidden units are used. The latter one must be 
suspected of serious overfitting with a high chance that the degree of separation 
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FIGURE 25.10  Kaplan–Meier estimates of event-free survival probabilities for the prognos-
tic subgroups derived from various Faraggi and Simon networks and from the FP approach 
in the GBSG-2-study.
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achieved could never be reproduced in other studies. In order to highlight this phe-
nomenon, we trained a slightly different Faraggi and Simon (F&S) network where, 
in addition to age, tumor size, tumor grade, and the number of lymph nodes, estrogen 
and progesterone status (positive: >20 fmol, negative: ≤20 fmol) were used as inputs. 
This network contained 20 hidden units (20 + (7 × 20) = 160 parameters) and showed 
a similar separation to the one where estrogen and progesterone receptors entered 
as quantitative inputs. Table 25.10 contrasts the results from the GBSG-2-study used 
as training set and the Freiburg DNA study used as test set in terms of estimated 
hazard ratios, where the predicted EFS probabilities are categorized in quartiles. In 
the training set, we observe a 20-fold increase in risk between the high-risk and the 
low-risk group. But in the test set, the F&S network turns out to yield a completely 
useless prognostic classification scheme; the estimated hazard ratios are not even 
monotone increasing. It is obvious that some restrictions, either in terms of a maxi-
mum number of parameters or a weight decay, are absolutely necessary to avoid such 
overfitting. The results for a network with five hidden units are comparable to the FP 

TABLE 25.10
Estimated Hazard Ratios for Various Prognostic 
Classification Schemes Based on Faraggi and Simon 
Neural Networks Derived in the GBSG-2-Study and 
Validated in the Freiburg DNA Study

Prognostic Groups

Estimated Hazard Ratios (No. of Patients)

GBSG-2-Study Freiburg DNA Study

F&Sa I 1 (179) 1 (37)

II 3.24 (178) 0.34 (16)

III 7.00 (159) 0.98 (38)

IV 22.03 (170) 1.39 (35)

F&Sb I 1 (171) 1 (23)

II 1.45 (172) 1.57 (25)

III 2.62 (171) 3.09 (32)

IV 5.75 (172) 4.27 (46)

F&Sc I 1 (172) 1 (20)

II 1.64 (171) 1.03 (31)

III 3.27 (171) 1.89 (28)

IV 8.49 (172) 2.72 (47)

F&Sd I 1 (172) 1 (23)

II 1.46 (171) 1.57 (25)

III 2.62 (171) 3.22 (33)

IV 5.77 (172) 4.14 (45)

a	 20 hidden units, weight decay = 0.
b	 20 hidden units, weight decay = 0.1.
c	 5 hidden units, weight decay = 0.
d	 5 hidden units, weight decay = 0.1.
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approach, especially when some weight decay is introduced. It should be noted that 
the FP approach contains at most eight parameters if we ignore the preselection of 
the four factors.

25.9  REGULARIZED ESTIMATION

In recent years, datasets with high-dimensional molecular measurements have 
increasingly become available, resulting in development of regularization techniques 
for estimating prognostic models when the number of candidate prognostic factors 
is larger than the number of observations. Some of these regularization techniques 
have their origin in low-dimensional applications, that is, their relative success in 
high-dimensional applications might lead toward reconsidering them even if the 
number of factors is smaller than the number of observations (Porzelius et al. 2010b). 
Therefore, we will discuss these techniques for both low- and high-dimensional 
applications in the following, at some points hinting toward specific modeling chal-
lenges in the latter setting.

25.9.1  General Principles

In the previous sections, the need for controlling complexity or over-optimism has 
already been hinted at several times. For example, shrinkage factors were introduced 
in Section 25.4 for scaling a prognostic index toward a realistic level, or weight decay 
was used for avoiding overfitting in neural networks. When dealing with a large 
number of covariates, overfitting becomes an even more severe issue. For example, 
a large number of molecular measurements will nowadays often be available for a 
patient, in principle allowing for perfect separation in the training data, while poten-
tially providing only limited prognostic value for new patients. Furthermore, if the 
number of covariates is larger than the number of events, standard maximum likeli-
hood techniques no longer work. A large number of techniques have been developed 
for addressing such modeling problems. For a comprehensive overview see Hastie 
et al. (2009). Common to all these techniques is the need to provide some form of 
regularization, subject to similar statistical principles. In the following, we will first 
review some of these general principles. After that, some exemplary regularization 
techniques will be discussed.

As indicated in Section 25.1, two aims can be distinguished when building a prog-
nostic model: prediction, that is, obtaining good prediction performance, and expla-
nation, that is, identifying important prognostic factors, or identifying a signature, 
that is, a set of factors that appropriately represents the disease process of interest. 
In low-dimensional settings, these two can often be obtained simultaneously. If a 
model provides a prognostic signature, this signature will typically comprise the 
most important factors, and their combination will provide reasonable prediction per-
formance. In contrast, in a high-dimensional setting, typically not all of these goals 
can be obtained simultaneously, and different approaches target different aims. For 
example, a prognostic signature might contain a factor that is only representative for a 
group of highly correlated factors. With slightly different data, a different factor from 
that group might be selected. Therefore, the signature will be rather unstable. While 
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prediction performance may not be affected much, interpretation will be different. 
Consequently, it can no longer be assumed that a signature contains all important 
prognostic factors. For obtaining optimal prediction performance, it may even be rea-
sonable to give up on identifying a signature, but to include all factors to some degree.

For interpreting the effect of a covariate in a prognostic model, confidence inter-
vals for the estimated effect are typically deemed essential. However, whenever 
some kind of variable selection is performed, these confidence intervals may become 
unreliable. In particular, shrinkage approaches are affected that provide variable 
selection, where it may no longer be possible to obtain reasonable confidence inter-
vals (Leeb and Pötscher 2006).

25.9.2  Tuning Parameters/Selection of Tuning Parameters

A common theme to all shrinkage approaches in this context is that some kind of 
tuning parameter is available and needs to be selected for controlling the degree of 
shrinkage. Following the aim of optimizing for prediction performance, these tuning 
parameters are typically selected according to estimates of prediction performance. 
The latter are obtained from resampling approaches, such as cross-validation or the 
bootstrap.

Before describing specific resampling approaches, the number of tuning param-
eters required by a modeling approach should be considered. Besides the main 
tuning parameter that controls the overall degree of shrinkage, more sophisticated 
approaches may introduce further parameters. For example, underestimation of 
effects by the lasso approach (Tibshirani 1997), which uses only one tuning param-
eter, can be corrected by a second tuning parameter (Zou 2006). In principle, the 
same resampling procedure that is employed for selecting the value for one tun-
ing parameter could be extended for several tuning parameters. However, the grid 
search, required for determining an optimal combination of a larger number of tuning 
parameters, is not only computationally expensive but may also stop at suboptimal 
solutions due to the variability of resampling estimates. The difficulty of selecting 
several tuning parameters for translating the theoretical advantages of more sophis-
ticated modeling approaches is, for example, illustrated in Benner et al. (2010). For 
example, underestimation of effects by the lasso approach can only be successfully 
corrected if the data provide enough information for adequately choosing a second 
tuning parameter. Otherwise, the resulting estimates might even be worse.

For cross-validation, the original data are repeatedly split into training and test 
data. The prognostic model is fitted to the training data for each value of the tuning 
parameter, and evaluated in the test data. For the Cox proportional hazards model, the 
predictive partial likelihood is determined, where time structure carefully has to be 
taken into account, as outlined in Verweij and Van Houwelingen (1993). The partial 
likelihood is specific for the Cox proportional hazards model. For other approaches, 
and also for comparing Cox models to other approaches, a different criterion is needed. 
In Section 25.10, the Brier score will be introduced for comparing models regardless 
of the likelihood structure. This criterion, which determines the average square dif-
ference between the predicted survival probability and the true 0/1 survival status at a 
specific time, can also be employed for model selection (Porzelius et al. 2010a).
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While formally the same criteria can be employed for selecting tuning parameters 
and for evaluating and comparing different prognostic models, these two applica-
tions should not be confused. For example, if cross-validation is first employed for 
selecting the value of a tuning parameter that results in an optimal Brier score, the 
value of the latter will no longer be an unbiased estimate of the Brier score for new 
patients. This can only be avoided by a nested approach, for example, performing 
cross-validation for tuning parameter selection nested within the training data sets 
of an outer cross-validation, used for estimating prediction performance. Another 
frequent mistake is to select the tuning parameter only once in the original data and 
then determining prediction performance by resampling using that fixed parameter 
value. The severe bias that can result from such an approach in a high-dimensional 
setting has, for example, been illustrated in Simon et al. (2003): Artificial data were 
generated such that there is no connection between the covariates and the endpoint. 
Despite this, a set of “best” covariates, preselected on the original data, exhibit 
excellent predicting performance in resampling. The true prediction performance 
is only seen when using a nested approach, that is, selecting covariates within each 
resampling training data set.

25.9.3  Post-Estimation Shrinkage

Different strategies have been developed for dealing with large variability and poten-
tial instability, arising, for example, when building prognostic models with high-
dimensional data. Bagging (Breiman 1996), for increasing stability, has already been 
mentioned in previous sections. Briefly, bootstrap samples of the original data are 
generated by drawing from the empirical distribution, that is, by drawing obser-
vations from the original data with replacement. Models are then built in these 
bootstrap data sets. The estimators from these models are then averaged over all 
bootstrap samples. Bagging is a strategy for post-model building modification. In 
principle, this idea is similar to the post-estimation shrinkage factor introduced in 
Section 25.4. Instead of a global shrinkage factor (Van Houwelingen and Le Cessie 
1990), parameterwise shrinkage factors can be determined by a resampling approach 
(Sauerbrei 1999).

The random forest approach (Breiman 2001a) can be considered as a more 
advanced implementation of such post-estimation model modification, where bag-
ging is extended by deliberately introducing random elements into regression tree 
building on the bootstrap samples. At each node, not all covariates, but only a ran-
dom subset is considered for splitting. This increases the variety of trees generated 
for combination after model fitting. The downside of such an approach is that the 
role of a single prognostic factor can no longer easily be seen. While importance 
measures for identifying the most important factors are available (see, e.g., Ishwaran 
et al. 2010), the convenient interpretation of a single tree is lost.

25.9.4  Simultaneous Estimation and Shrinkage

Instead of applying some form of shrinkage after estimation, the shrinkage idea can 
also be directly built into estimation of prognostic models by imposing constraints 
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on the estimates, for example, by attaching a penalty term to the likelihood used for 
estimation. One advantage of doing this is that estimation becomes feasible even in 
settings where the number of covariates is larger than the number of events. For a 
more comprehensive overview of such approaches see Binder et al. (2011). One of 
the earliest of these penalized likelihood approaches is ridge regression (Hoerl and 
Kennard 1970). In this approach, the penalty term comprises the sum of the squared 
regression coefficients. This shrinks parameter estimates toward zero and decreases 
variability. While ridge regression does not provide selection of important prognos-
tic factors, it might provide superior prediction performance (Bøvelstad et al. 2007). 
The garotte (Breiman 1995) is an example of a simultaneous approach that also pro-
vides a shrinkage factor for each single regression coefficient of a prognostic model.

Alternatively, the lasso approach (Tibshirani 1997) uses a penalty term compris-
ing the sum of the absolute values of the regression coefficients. This typically results 
in several estimates equal to zero, thus providing selection of prognostic factors. This 
comes at the cost of no longer being able to determine reliable confidence intervals 
and p-values. This is a more general problem with data-driven model building (Leeb 
and Pötscher 2006), but has specifically been investigated for the lasso, as it is one of 
the most prominent approaches for variable selection by shrinkage. Furthermore, the 
estimated effects will be biased toward zero, even if the true effect of a prognostic 
factor is large. There are several proposals how this bias could be reduced, for exam-
ple, the adaptive lasso (Zou 2006). All of these approaches depend on a second tun-
ing parameter. As already discussed, selection of such a second parameter might be 
difficult. For example, the results in Benner et al. (2010) indicate that the theoretical 
advantage of approaches that improve the lasso might be lost due to empirical tun-
ing parameter selection, and the results might even be worse compared to the lasso.

The nature of the lasso estimates can be illustrated, by reformulating it as a stage-
wise regression approach (Efron et al. 2004). Starting from a model that does not 
contain any prognostic factor, the regression coefficients of the prognostic factors are 
updated, one factor at a time, in a large number of model building steps. In each step, 
that prognostic factor which improves the fit the most receives an update. This update 
comprises only a fraction of the full maximum likelihood estimate, leaving room for 
improvement in later steps. The estimates for all other prognostic factors are kept 
fixed during that step. This is in contrast to the classic stepwise regression approach, 
where after each inclusion or exclusion of a covariate the effects of all prognos-
tic factors are re-estimated. By fixing all other components, variability is reduced. 
Componentwise likelihood-based boosting generalizes this stagewise regression 
idea toward generalized linear models (Tutz and Binder 2007) and the Cox propor-
tional hazards model (Binder and Schumacher 2008). For a comprehensive overview 
of (componentwise) boosting techniques see Bühlmann and Hothorn (2007).

Figure 25.11 shows the coefficient paths obtained by componentwise likelihood-
based boosting for the GBSG-2-study, that is, the stagewise build-up of the regres-
sion coefficients in the course of the model building steps. The boosting steps 
correspond to the degree of regularization, that is, a small number of boosting steps 
correspond to a large degree of regularization, and a large number of boosting 
steps correspond to a small degree of regularization. The coefficient paths show 
the estimated regression coefficients corresponding to these different degrees of 
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regularization. Similar coefficient paths could be obtained from the lasso, where a 
large value of the lasso tuning parameter corresponds to a small number of boost-
ing steps, and a large value of the lasso parameter corresponds to a large number 
of boosting steps. As seen from Figure 25.11, very strong regularization will result 
in a model where all estimates are equal to zero, that is, all factors are excluded 
from the model, while all factors are included for a small degree of regularization. 
Therefore, selecting the degree of regularization is critical for determining which 
factors are important. Often, 10-fold cross-validation is used for selecting the num-
ber of boosting steps, that is, the degree of regularization, for the final prognostic 
model. This approach relies on resampling estimates of prediction performance and 
therefore is subject to random variability. To illustrate this, we repeat cross-valida-
tion five times with different random splits. The models selected in these repetitions 
are indicated by vertical dashed lines in Figure 25.11. The same set of prognostic 
factors with nonzero estimates is seen to be selected in all five repetitions in this 
example. However, slightly more variability could, for example, have led to exclu-
sion of “menostat” (menopausal status). On the other hand, “menostat” might be 
only included because “age” is excluded, potentially due to ignoring its nonlinear 
effect in the present model. This illustrates that careful model checking is needed 

−0
.4

−0
.2

0.
0

0.
2

Boosting step

Es
tim

at
ed

 co
effi

ci
en

ts

0 20 40 60 80 100

Tumorsize
Menostat

Posnodes
Tumorgrade

Progrec

Estrec
Age

Htreat

FIGURE 25.11  Coefficient paths for the GBSG-2-study obtained by componentwise 
likelihood-based boosting for the Cox proportional hazards model. Continuous covariates 
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selected by five repetitions of 10-fold cross-validation are indicated by vertical dashed lines.
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when useful prognostic models are to be developed by regularized approaches, 
where potential nonlinear effects should be considered in low-dimensional as well 
as in high-dimensional settings.

25.10  ASSESSMENT OF PROGNOSTIC CLASSIFICATION SCHEMES

Once a prognostic classification scheme is developed, the question arises as to how 
its predictive ability can be assessed and compared to competitors. There is no com-
monly agreed upon approach and most measures are somewhat ad-hoc. Suppose that 
a prognostic classification scheme consists of g prognostic groups, called risk strata 
or risk group, then one common approach is to present the Kaplan–Meier estimates 
for event-free or overall survival in the g groups. This is the way we presented the 
results of prognostic classification schemes in previous sections. The resulting figures 
are often accompanied by p-values of the logrank test for the null hypothesis that the 
survival functions in the g risk strata are equal. It is clear that a significant result is a 
necessary but not sufficient condition for good predictive ability. Sometimes, a Cox 
model using dummy variates for the risk strata is fitted and the log-likelihood and/
or estimated hazard ratios of risk strata with respect to a reference are given. Based 
on this, we have proposed a summary measure of separation (Sauerbrei et al. 1998) 
defined as
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n j denotes the number of patients in risk stratum j
β̂ 

j is the estimated log-hazard ratio of patients in risk stratum j with respect to a 
baseline reference

Models are favored which have large SEP values. Although SEP was designed for 
use with survival data, it is also applicable to binary data. Algebraically, for survival 
data SEP turns out to be essentially an estimate of the standard deviation of the pre-
dicted log-hazard ratios according to a model with a dummy variable for each group. 
SEP is fairly independent of the number of groups employed. It has the advantage 
that it can be calculated for models which generate only groups and no risk score, 
such as tree-based methods (CART), simple schemes based on counting adverse 
risk factors, or expert subjective opinion. SEP has some drawbacks which motivated 
Royston and Sauerbrei (2004b) to propose improved measures of separation taking 
the risk ordering across individual patients into account.

We now briefly outline another approach complementing the measure of separa-
tion; a detailed description can be found elsewhere (Graf et al. 1999; Schumacher 
et al. 2003). First, it is important to recognize that the time-to-event itself cannot 
adequately be predicted (Parkes 1972; Forster and Lynn 1988; Henderson 1995; 
Henderson and Jones 1995; Maltoni et al. 1995; Henderson and Keiding 2005). The 
best one can do at baseline (t = 0) is to try to estimate the probability that the event 
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of interest will not occur until a prespecified time horizon represented by some time 
point t*. Consequently, a measure of inaccuracy that is aimed to assess the value of 
a given prognostic classification scheme should compare the estimated event-free 
probabilities with the observed ones.

Assume for now there is no censoring. The aim is to compare estimated event-
free probabilities Ŝ (t*|Z = z) for patients with covariates Z = z to observed indicators 
of survival I(T > t*) leading to

	

BS t
n

I T t S t Z zi

i

n

( *) ( *) * | )= > − =( )
=
∑1 2

1

i
ˆ (

where the sum is over all n patients. This quantity is also known as the quadratic score. 
Multiplication by a factor of 2 yields the Brier score, which was originally developed 
for judging the inaccuracy of probabilistic weather forecasts (Brier 1950; Hilden et al. 
1978; Hand 1997). The expected value of the Brier score may be interpreted as a 
mean square error of prediction if the event status at t* is predicted by the estimated 
event-free probabilities. The Brier score takes values between zero and one; a trivial, 
constant prediction Ŝ (t*) = 0.5 for all patients yields a Brier score equal to 0.25.

If some closer relationship to the likelihood is intended, the so-called logarithmic 
score may be preferred, given by

	

LS t
n

I T t S t Z z I T t S t Z zi i i( *) ( *) log ( * | ) ( *) log( ( * | ))= − > = + − =
1

1ˆ ˆ≤{{ }
=
∑

i

n

1

where we adopt conventions “0.log 0=0” and “1.log 0=−∞” (Hand 1997; Shapiro 
1997). Again, models are preferred which minimize this score.

If we do not wish to restrict ourselves to one fixed time point t*, we can consider 
the Brier and logarithmic scores as a function of time for 0 ≤ t ≤ t*. In case of the 
Brier score, we use the term “prediction error curve” for this function. If one wants a 
single number summary, this function can also be averaged over time, by integrating 
it with respect to some weight function W(t) over t ∈ [0,t*] (Graf et al. 1999).

Censoring can be accommodated by reweighting the individual contributions in a 
similar way as in the calculation of the Kaplan–Meier estimator, so that consistency 
of estimates is preserved. The reweighting of uncensored observations and of obser-
vations censored after t is done by the reciprocal of the Kaplan–Meier estimate of the 
censoring distribution, whereas observations censored before t get weight zero. With 
this weighting scheme, a Brier or a logarithmic score under random censorship can be 
defined that enjoys the desirable statistical properties (Graf et al. 1999). R2-type mea-
sures (Korn and Simon 1991; Schemper 1990; Schemper and Stare 1996; Schemper 
and Henderson 2000; Graf and Schumacher 1995) can also be readily defined by 
relating the Brier or logarithmic scores to the pooled Kaplan–Meier estimate, which 
is used as a “universal” prediction for all patients. A R2-type measure based on the 
measure of separation (Sauerbrei et al. 1998) has also been developed.

We calculated the Brier score for the data of the GBSG-2-study. In Figure 25.12A, 
the estimated prediction error curves of the classification schemes considered in 
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Section 25.7 (Table 25.9) are contrasted to the estimated prediction error curve based 
on the pooled Kaplan–Meier estimator. Because the latter prediction ignores all 
covariate information, it yields a benchmark value. It is found that the simplified 
COX index performs better than the NPI, and some further improvement is achieved 
by the CART index. Relative to the prediction with the pooled Kaplan–Meier esti-
mate for all patients, there is only a moderate gain of accuracy.

In general, it has to be acknowledged that measures of inaccuracy tend to be 
large reflecting that predictions are far from being perfect (Ash and Schwartz 1999). 
In addition, it has to be mentioned that there will be overoptimism when a mea-
sure of inaccuracy is calculated from the same data where the prognostic classifi-
cation scheme was derived, such as the case for the curves in Figure 25.12A. To 
demonstrate this, Figure 25.12B shows prediction error curves using the external 
Freiburg DNA study for the same prognostic factors. As already indicated in Table 
25.9, there is almost no discrimination between the various classification schemes in 
this independent test data at least for values of t up to about 3 years. Afterward, the 

Years

Pr
ed

ic
tio

n 
er

ro
r

Kaplan – Meier
Cox (PI)
NPI
CART

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 1 2 3 4 5 6

Years

Pr
ed

ic
tio

n 
er

ro
r

Kaplan – Meier
Cox (PI)
NPI
CART

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 1 2 3 4 5 6

(A)

(B)

FIGURE 25.12  Estimated prediction error curves for various prognostic classification 
schemes derived in the data of the GBSG-2-study (A) and validated in the Freiburg DNA 
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classification scheme based on the COX model has slightly lower prediction error 
than the other ones.

In order to expand on that issue further, we estimated prediction error curves for 
the various neural networks discussed in Section 25.8. The prediction error curves 
corresponding to the neural networks presented in Table 25.10 are displayed in 
Figure 25.13. The neural network with 20 hidden nodes and no weight decay has 
the lowest prediction error (Figure 25.13A), whereas the other three neural networks 
have a prediction error of similar magnitude to the other prognostic classification 
schemes. The resulting overoptimism can best be illustrated by inspection of Figure 
25.13B where the Freiburg DNA study is used for validation. Here, the prediction 
error curve of the neural network with 20 hidden nodes and no weight decay used 
is highest, even exceeding the pooled Kaplan–Meier estimate. The two neural net-
works where weight decay is used have similar prediction error as the other prognos-
tic classification schemes displayed in Figure 25.12B.
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To reduce the inherent overoptimism, cross-validation and resampling techniques 
(Gerds and Schumacher 2007) can be employed in a similar way as for the estima-
tion of error rates (Efron 1983; Efron and Tibshirani 1997; Wehberg and Schumacher 
2004), which can also be used in high-dimensional data situations (Schumacher et al. 
2007). For definitive conclusions, however, the determination of measures of inac-
curacy in an independent test data set is absolutely necessary (Ripley 1996). An 
overview on various approaches to quantify the predictive accuracy of prognostic 
models has recently been given (Gerds et al. 2008; Steyerberg et al. 2010) including 
also the use of ROC curves methodology (Heagerty et al. 2000).

25.11  SAMPLE SIZE CONSIDERATIONS

To investigate the role of a new prognostic factor, careful planning of an appropri-
ate study is required. Sample size and power formulae in survival analysis have been 
developed for randomized treatment comparisons, but in the analysis of prognostic 
factors, the covariates included are expected to be correlated with the factor of primary 
interest. In this situation, the existing sample size and power formulae are not valid 
and may not be applied. In this section, we give an extension of Schoenfeld’s formula 
(Schoenfeld 1983) to the situation where a correlated factor is included in the analysis.

Suppose we wish to study the prognostic relevance of a certain factor, denoted 
by Z1, in the presence of a second factor Z2, where either can be a composite score 
based on several factors. The criterion of interest is overall or EFS of the patients. We 
assume that the analysis of the main effects of Z1 and Z2 is performed with the Cox 
proportional hazards model given by

	 λ β β( | , ) ( )exp( )t 2Z Z t Z Z1 0 1 1 2 2= +λ

where
λ0(t) denotes an unspecified baseline hazard function
β1 and β2 are the unknown regression coefficients representing the effects of Z1 

and Z2

For simplicity, we assume that Z1 and Z2 are binary with p = P (Z1 = 1) denoting the 
prevalence of Z1 = 1. Assume that the effect of Z1 shall be tested by an appropriate 
two-sided test based on the partial likelihood derived from the Cox model with sig-
nificance level α and power 1 − β to detect an effect which is given by a hazard ratio 
of θ1 = exp (β1).

For independent Z1 and Z2, it was shown by Schoenfeld (1983) that the total num-
ber of patients required is given by
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where
ψ is the probability of an uncensored observation
uγ denotes the γ-quantile of the standard normal distribution with y = λ − α/2 and 

y = λ − β, respectively
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This is the same formula as that used by George and Desu (1974), Bernstein and 
Lagakos (1978) and Schoenfeld (1981) in related problems.

The sample size formula depends on p, the prevalence of Z1 = 1. The expected 
number of events, often also called the “effective sample size,” to achieve a prespeci-
fied power is minimal for p = 0.5, the situation of a randomized clinical trial with 
equal probabilities for treatment allocation. By using the same approximations as 
Schoenfeld (1983), one can derive a formula for the case when Z1 and Z2 are cor-
related with correlation coefficient ρ; for details we refer to Schmoor et al. (2000). 
This formula reads
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where the factor 1/(1 − ρ2) is the variance inflation factor (VIF).
This formula is identical to a formula derived by Lui (1992) for the exponential 

regression model in the case of no censoring and to that developed by Palta and 
Amini (1985) for the situation that the effect of Z1 is analyzed by a stratified logrank 
test where Z2 = 0 and Z2 = 1 define the two strata. Table 25.11 gives, for some situa-
tions, the value of the VIF and the effective sample size Nψ, that is, the number of 
events required to obtain a power of 0.8 to detect an effect to Z1 of magnitude θ1. It 
shows that the required number of events for the case of two correlated factors may 
increase up to a factor of 50% in situations realistic in practice.

The aforementioned sample size formulae will now be illustrated by means of 
the GBSG-2-study. Suppose we want to investigate the influence of the progesterone 

TABLE 25.11
Variance Inflation Factors and 
Effective Sample Size Required to 
Detect an Effect of Z1 of Magnitude 
θ1 with Power 0.8 as Calculated by 
the Approximate Sample Size 
Formula for Various Values of p, ρ, 
θ1 (α = 0.05)

Nψ
p ρ VIF θ1 = 1.5 θ1 = 2 θ1 = 4

0.5 0 1 191 65 16

0.2 1.04 199 68 17

0.4 1.19 227 78 19

0.6 1.56 298 102 26

0.3 0 1 227 78 19

0.2 1.04 237 81 20

0.4 1.19 271 93 23

0.6 1.56 355 122 30
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receptor in the presence of tumor grade. The Spearman correlation coefficient of these 
two factors is ρ = −0.377; if they are categorized as binary variables, we obtain ρ = −0.248 
(Table 25.12). Taking the prevalence of progesterone-positive tumors, p = 60%, into 
account, 213 events are required to detect a hazard ratio of 0.67, and 74 events are 
required to detect a hazard ratio of 0.5 with power 80% and significance level α = 5%. In 
this situation, the variance inflation factor is equal to 1.07 indicating that the correlation 
between the two factors has only little influence on power and required sample sizes.

If we want to investigate the prognostic relevance of progesterone receptor in the 
presence of estrogen receptor, a higher correlation must be considered. The Spearman 
correlation coefficient is ρ = 0.598 if both factors are measured on a quantitative scale 
and ρ = 0.536 if they are categorized into positive (>20 fmol) and negative (≤20 fmol) 
as given in Table 25.12. This leads to a variance inflation factor of 1.41 and a number 
of events of 284 and 97 required to detect a hazard ratio of 0.67 and 0.5, respectively 
(power = 80%, significance level α = 5%). This has to be contrasted with the situa-
tion that both factors under consideration are uncorrelated; in this case, the required 
number of events is 201 to detect a hazard ratio of 0.67, and 69 to detect a hazard 
ratio of 0.5, both with a power of 80% at a significance level of 5%.

Based on their calculations, the GBSG-2-study with 299 events does not seem 
too small to investigate the relevance of prognostic factors that exhibit at least a 
moderate effect (hazard ratio of 0.67 or 1.5). The question is whether it is large 
enough to permit the investigation of several prognostic factors. There use some 
recommendations in the literature, based on practical experience or on results from 
simulation studies, regarding the event per variable relationship (Harrell et al. 1984, 
1985, 1996; Concato et al. 1995; Peduzzi et al. 1995). More precisely, it is the number 
of events per model parameter that matters which is often overlooked. These recom-
mendations range from 10 to 25 events per model parameter to ensure stability of 
the selected model and of corresponding parameter estimates and to avoid serious 
overfitting. Sometimes the primary focus is estimation of the marker effect after 
adjustment for a set of standard variables, and correctly identifying which of the 
other variables are really important contributors to the model is of less concern. In 
this situation, sample size need not be as large as the 10–25 events per variable rule 
would recommend (Vittinghoff and McCulloch 2007).

The sample size formula given earlier addresses the situation of two binary fac-
tors. For more general situations, such as factors occurring on several levels or factors 

TABLE 25.12
Distribution of Progesterone Receptor by Tumor Grade 
and Estrogen Receptor in the GBSG-2-Study

Tumor Grade Estrogen Receptor

1 2 + 3 <20 ≥20

Progesterone receptor <20 5 264 190 79

≥20 76 341 72 345

Correlation coefficient −0.248 0.536
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with continuous distributions, the required sample size may be calculated using a 
more general formula that can be developed along the lines of Lubin and Gail (1990). 
The anticipated situation needs then to be specified in terms of the joint distribution 
of the factors under study and the size of corresponding effects on survival. It may 
be more difficult to pose the necessary assumptions than in the situation of only two 
binary factors. Numerical integration techniques are then required to perform the 
necessary calculation.

If there are several factors in the analysis, one practical solution is to prespecify a 
prognostic score based on the existing standard factors as the second covariate to be 
adjusted for. Another possibility would be to adjust for the prognostic factor with the 
largest effect on survival and for which the highest correlation is anticipated. Finally, 
it should be mentioned that a sample size formula for the investigation of interactive 
effects of two prognostic factors is also available (Olschewski et al. 1992; Peterson 
and George 1993; Schmoor et al. 2000).

25.12  CONCLUDING REMARKS

There is a large concern about the quality of prognostic studies, and progress is 
needed to produce clinically relevant results (Hinestrosa et al. 2007). It is evident 
that prognostic marker studies are often badly designed (Simon and Altman 1994; 
Altman and Lyman 1998), inappropriately analyzed (Sauerbrei et al. 2006), poorly 
reported (Riley et al. 2003), and subject to numerous biases, such as selective report-
ing (Kyzas et al. 2007). Bad quality of design, analysis, and reporting of individual 
studies results in confusion regarding the prognostic value of a new marker (Sauerbrei 
2005). To assess the value of a prognostic marker in a systematic review, problems 
from the individual studies will cause critical issues when trying to derive an overall 
estimate of the effect of a marker (Riley et al. 2009). To improve in general upon the 
current situation, a Prognosis Methods Group was established within the Cochrane 
Collaboration (http://prognosismethods.cochrane.org/).

In this chapter we considered statistical aspects of the evaluation of prognostic 
factors. Some general conclusions can be summarized as follows: A multivariate 
approach is absolutely essential. Thoughtful application of model building tech-
niques should help to obtain models that are as simple and parsimonious as pos-
sible and to avoid serious overfitting in order to achieve generalizability for future 
patients. Thus, validation in an independent study is a further essential step. Some 
insight into the stability and generalizability of the derived models can be gained 
by cross-validation and resampling methods; however, these methods cannot com-
pletely replace an independent validation study. For a concrete study, the statistical 
analysis should be carefully planned step by step and the model building process 
should at least in principal be fixed in advance in a statistical analysis plan as is 
required in much more detail for clinical trials according to international guidelines.

There are a number of important topics that have not or have only been mentioned 
in passing in this chapter. One of these topics is concerned with the handling of miss-
ing values in prognostic factors (Robins et al. 1994; Vach 1994, 1997b; Lipsitz and 
Ibrahim 1998; Buuren van et al. 1999; Sterne et al. 2009). We have also assumed that 
effects of prognostic factors are constant over time and that prognostic factors are 
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recorded and known at time of diagnosis. These assumptions do not cover the situa-
tion of time-varying effects and of time-dependent covariates. If multiple endpoints 
or different events are of interest, the use of competing risk and multi-state models 
may be necessary. For these topics, which are also of importance for prognostic fac-
tor studies we refer to more advanced textbooks in survival analysis (Andersen et al. 
1993; Kalbfleisch and Prentice 2002; Klein and Moeschberger 2003; Marubini and 
Valsecchi 2004) and current research papers. In general, the methods and approaches 
presented in this contribution have at least in part been selected and assessed accord-
ing to the subjective views of the authors. Thus, other approaches may be viewed as 
useful and adequate, too. What should not be a matter of controversy, however, is the 
need for a careful planning, conducting and analyzing of prognostic factor studies 
in order to arrive at generalizable and reproducible results that could contribute to 
a better understanding and possibly to an improvement of the prognosis of cancer 
patients.
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26 Predictive Modeling of 
Gene Expression Data

Alexander Hapfelmeier, Waheed Babatunde 
Yahya, Robert Rosenberg, and Kurt Ulm

26.1  INTRODUCTION

The treatment of cancer has changed over the past centuries, moving away from the 
administration of broadly acting cytotoxic drugs toward the use of more specific 
therapies (van’t Veer and Bernards [33]). There is a shift from a “one-size” or “one-
dose-fits-all” approach to a more personalized medicine. The idea behind this is to 
give the right dose of the right drug for the right indication for the right patient in 
the right time. Hamburg and Collins [12] called this approach a path to personalized 
medicine and described the need for the Food and Drug Administration (FDA) and 
National Institutes of Health (NIH) to support its growth. They gave three examples 
of FDA-approved drugs and diagnostics.
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Such an approach requires the discovery and development of biomarkers. The 
identification of prognostic and/or predictive biomarkers is a great challenge for stat-
isticians. For instance, the number of patients available is much smaller than the 
number of biomarkers. In order to evaluate the impact of certain markers, special 
methods of statistical modeling have to be applied.

In the following, we want to present some of the methods available for the selec-
tion of relevant predictive biomarkers by the example of microarray data from a 
study about neoadjuvant radiochemotherapy for colorectal cancer.

26.2  METHODS

26.2.1  Preliminary Variable Selection

Many statistical methods used for classification do not provide intrinsic variable 
selection. Among them are popular approaches like linear discriminant analysis 
(LDA), support vector machines (SVM), k-nearest neighbors (k-NN), and neural 
networks (NN). However, it is well known that the performance and interpretabil-
ity of such methods can benefit from a reduction of the input space (Hastie et al. 
[14]). Therefore, the objective is to find a suitable subset of the entire variable space 
X = {X1, X2, …, Xp} a prediction method of choice should be fitted to. One possibil-
ity is to base this decision on the univariate (marginal) discriminatory power of the 
variables which can be measured by means of t-tests, Mann–Whitney U tests, the 
area under the ROC curve (AUC), Bayesian approaches, among many others. Having 
examined the corresponding statistics or p-values, one is able to rank the variables 
by their strength of association to the response which leads to Xrank = {X(1), X(2), …, 
X(p)}. Assuming a descending order X(1) and X(p) are the variables with the strongest 
and weakest associations, respectively. Based on this ranking, two selection proce-
dures can be differentiated.

One algorithm simply chooses the first r variables, while r denotes a certain 
fraction. The aim is to limit the number of variables to the ones with the largest 
discriminatory power in a marginal, univariate sense. The corresponding subset is 
Xfirst = {X(1), …, X(|p×r|)}t with ‖ being any measure that rounds to an integer. In some 
datasets with highly correlated variables, which is a known feature of microarray 
data, this approach can lead to a profound loss of information. Due to strong rela-
tions, selected variables might only provide very similar information. By contrast, 
the omitted ones, though they are weaker predictors on their own, could very well 
contribute additional information.

Another algorithm suggested by Jaeger et al. [17] tries to overcome this pitfall 
by limiting the selection to variables with correlations below a specified threshold 
r. As it incorporates bivariate correlations, this approach is not termed “univariate” 
but “semi-multivariate.” Following the ranking order and starting with the stron-
gest variable, the selection is built up by sequentially adding variables that have no 
stronger correlation than r with already selected ones. The resulting set of variables 
Xuncor = {X(1), …, X(u)} may not have performed equally well in univariate analysis but 
may contribute different kinds of information. The pseudoalgorithm to determine 
Xuncor is as follows:
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	 1.	Set i = 1 and Xuncor = X(1).
	 2.	 If i = p then stop and return Xuncor , else proceed.
	 3.	Set i = i + 1.
	 4.	 If any ρ(Xuncor ,X(i)) > r then go back to step 2, else proceed.
	 5.	Set Xuncor = {Xuncor ,X(i)} and go back to step 2.

with ρ(Xuncor,X(i)) denoting Pearson’s correlation coefficients between all elements of 
Xuncor and X(i). Step 1 indicates that the entire process starts with the selection of X(1), 
producing a result that highly depends on this particular choice.

The different features of both approaches can be seen as advantageous and 
disadvantageous at the same time depending on the objective of research. Thus, 
Nicodemus et al. [21] stated that in large-scale screening studies like genome-wide 
association studies, a selection of correlated markers may help to uncover physical 
proximities and causal variants. By contrast, when it comes to prediction, it can 
prove beneficial to use uncorrelated predictors as shown by Hapfelmeier and Horsch 
[13] for the example of cancer classification in mammographic screenings. In sum-
mary, one should choose Xfirst to explicitly aim at the identification of correlated 
structures with strong marginal associations to the response. For prediction pur-
poses, Xuncor has shown to lead to a higher accuracy and is therefore considered to be 
more appropriate. As the latter is consistent with the objective of this chapter, it is 
preferred in the following examples.

26.2.2  Dimension Reduction

Roughly speaking, dimension reduction methods like principal component analysis 
(PCA) and partial least squares (PLS) try to reduce the variable space X ∈ ℝPn × p 
by concentrating its information in a few components C ∈ ℝn × q, q ≪ p. These are 
subsequently used for the fitting of classification methods, which could not deal with 
the original high-dimensional variable space. A corresponding example is given by 
Boulesteix and Strimmer [3] who combine PLS with LDA. Prior research of Nguyen 
and Rocke [19,20] has already shown that this combination is well suited for tumor 
classification using microarray data. However, due to the fact that the information 
of all variables is aggregated in a few components, it is difficult to perform vari-
able selection. The latter is known to improve performance as shown by works of 
Statnikov et al. [29] and Lee et al. [18]. Yet it is not an intrinsic property of dimen-
sion reduction. In addition, the amount of components m has to be determined by the 
user. However, a main objective of this chapter is to provide an overview of common 
and popular approaches that enable variable selection and sound prediction perfor-
mances. Thus dimension reduction methods are excluded from further consideration 
in the following.

26.2.2.1  Linear Discriminant Analysis
After the reduction of the variable space, either by preliminary variable selection 
or dimension reduction, many common statistical classification methods, which by 
themselves are not able to deal with the n ≪ p problem, become applicable again. 
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Examples are SVM, NN, logistic regression, and linear discriminant analysis (LDA). 
The latter will be used as a representative of this technique in the following.

The LDA, as described by Hastie et al. [14], provides estimations of class proba-
bilities dependent on the input vector of an observation x ∈ ℝp. Using Bayes theorem, 
the posteriori probability for a class Y can be expressed as
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with πk denoting the prior probability of the class labels k, k = 1, …, K. Thus LDA 
is applicable to a multiclass problem and reduces to k = 0,1 in the case of a binary 
response. The class-conditional density of X,
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is assumed to follow a multivariate Gaussian distribution with a unique covariance 
matrix Σ for all classes. As the true prior class probabilities and parameters of the 
Gaussian distribution are unknown, they have to be estimated by means of their 
empirical analogs. The decision for a class label of a new observation may now be 
based on the maximum posterior probability.

26.2.3  Penalization and Shrinkage

Another approach closely related to regression analysis is given by shrinkage meth-
ods. Corresponding models are estimated under the constraint of a penalty on the 
size of the regression coefficients which enables implicit variable selection. Popular 
examples are ridge regression and least absolute shrinkage and selection operators 
(LASSO). According to Tibshirani [32], the latter produces coefficient estimates 
under the assumption of standardized data xij such that ∑i ijx n/ = 0 and ∑i x nij

2 1/ = . 
For linear regression purposes, the estimation is given by
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Similarly generalized regression models can be constructed by maximizing the log-
likelihood l(β) such that
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By contrast to ridge regression, which uses a constraint of ∑ j β ≤j t2 , the penalty 

• j |βj| ≤ t ensures that some of the coefficients are exactly shrunk to zero, which 
implies an intrinsic variable selection. In equivalence to logistic regression, class 
probabilities can be estimated using its logit-link to the linear predictor XTβ:
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26.2.4  Machine Learning Approaches

A popular machine learning approach, is recursive partitioning. A famous represen-
tative is given by classification and regression trees (CART) of Breiman et al. [7]. 
Its rationale is to repeatedly split data into binary subsets that are as homogeneous 
as possible in respect to the response. The split itself is performed by optimal cut-
points in single variables of the data. There are several criteria for the determination 
of the quality of a split. Thus for binary responses the Gini-Gain, or for regression 
the reduction of the residual sum of squares, can be used to evaluate the improve-
ment of homogeneity between the data and its subsets. The splitting continues until 
a stopping rule is reached. This might be the minimum number of observations in a 
subset, a threshold for the split criterion or a certain size that leads to the best accu-
racy as assessed by cross-validation. An alternative approach for the creation of trees 
given by Hothorn et al. [16] is based on a conditional inference framework. It grows 
trees until the variables in a subset show no significant relation to the response. The 
binary splitting provides decision rules along the corresponding cutpoints, which 
guide an observation xi to a prediction ŷi. The latter is derived from the majority vote 
of classes or the average of responses given in a final subset. Using a (0,1)-vector of 
case weights w(x) that indicates which observation is contained in the same subset as 
x the probability estimate for a binary response becomes
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which is simply the mean. A big advantage of this method is its ability to deal with 
the n ≪ p problem as each variable is assessed individually as a candidate for a split. 
Likewise, it automatically performs variable selection by choosing a certain set of 
variables. The structure of subsequent binary divisions makes it possible to auto-
matically form interacting relations between the variables. This last property is a big 
advantage over regression analysis, for which interaction terms have to be explicitly 
modeled.

Breiman [5] enhanced the tree methodology by “bagging,” which leads to an 
improved prediction accuracy. Trees are fit to bootstrapped samples of the data 
to build an ensemble. Random Forests as introduced by Breiman [6] extend this 
approach by choosing splits in a random selection of variables. Thus even highly 
correlated variables are able to equally contribute to a Random Forest. The single 
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trees are grown to a maximal size until the final subsets are pure (i.e., contain only 
one class) or reach a minimal size. Averaged values or majority votes of the outputs 
given by each single tree are used as predictions:
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Although the property of variable selection gets lost by consolidating several trees 
the strength of a variable’s contribution to a Random Forest can still be measured 
by means of importance measures. For instance, the permutation importance mea-
sure is computed as the error of a tree is compared to the error it produces when a 
variable is randomly permuted. Thus it checks for differences of a tree’s accuracy 
when a variable loses its relation to the response and therefore its predictive value. In 
alignment to a formulation given by Strobl et al. [30], the permutation importance is
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while
πj denotes the random permutation of Xj

I() is a function indicating whether the prediction equals the true response status
( )t

B  is the out of bag sample (OOB) of tree t

The OOB sample is made up of the observations of the bootstrap sample, which are 
not used for the fitting of a tree. It therefore enables an unbiased estimation of a vari-
able’s importance.

26.2.5  Alternative: The k-SS Method

The k-sequential feature selection and response class prediction (k-SS) method 
(Yahya et al. [36]) provides a fast and flexible algorithm that sequentially selects rel-
evant gene predictors to classify tumor conditions in any binary response microarray 
problems. It represents a stepwise feature selection method that adopts the misclas-
sification error rate (MER), which is based on the absolute error loss function:
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where I() is a function indicating whether a prediction ŷi equals the true response 
status with yi

In a preliminary step, the discriminatory power of each gene variable Xj, 
j = 1, …, p, is assessed as logistic regression models (in general any decision rule can 
be applied) are fit and evaluated in a Monte Carlo cross-validation (MCCV) scheme. 
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This resampling technique is adopted by repeatedly drawing (s user specified times) 
a certain fraction (m < n) of samples as training set without replacement. By fitting a 
classifier to these training sets and computing its MER ϑ̂l, l = 1, …, s, on the remain-

ing (n – m) test samples, one is able to assess the average performance �
� of a classifier 

over s repetitions.

The gene variable X(1) that yields the least of the average MER values ( )1ϑ�( ) 
among all values j�� , j = 1, …, p is selected at the first gene selection step as it showed 

the highest discriminatory power. To select the second best gene predictor X(2) at 
the second feature selection and classification step, a set of p − 1 pairs of genes is 
formed with the first selected gene and the remaining p − 1 left out genes. A logistic 
regression model is constructed on each gene pair and the average MER is computed 
following the same MCCV procedure described earlier. At the end of this exercise, 
the gene pair that yielded the least average MER ( )2��  is selected.

In the kth selection step the marginal gain in prediction strength ˆ
( ) ( )Δ =k k kϑ − ϑ +

� �
1  

due to the inclusion of X(k + 1) into the classification model is examined by testing the 
hypothesis H0k:Δk = 0 vs. H1k:Δk > 0 via the test statistic
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while v denotes the empirical variance. Z
k�̂
 follows a skew-normal distribution with 

shape parameter λ = 4.0398. When the null H0k cannot be rejected, the (k + 1)th gene 
X(k + 1) under consideration is dropped from the classification model and the k-SS 
algorithm terminates assuming that no other gene variable among the remaining 
p − k genes is strong enough to improve the prediction strength of the current clas-
sification model. However, if H1k is accepted, this shows that X(k + 1) has significantly 
enhanced the prediction strength of the preceding classification model and should 
therefore be included.

Lastly, the k-SS algorithm performs backward checks at each feature selection 
step. It enables any selected gene to be checked for its redundancy anytime a new 
feature is introduced into the classification model. Therefore, a model is fit by remov-
ing each of the previously selected features at any one time. If 

r ve fullemoϑ ≤ ϑ� � , it shows 
that the removed feature is now redundant in the presence of a newly selected feature, 
and it is subsequently removed from the model. If no gene is rejected this way after 
a terminating forward step the set of k marker genes for classification, for example, 
by logistic regression, becomes the selected k-SS classifiers.

26.3  PERFORMANCE EVALUATION

Investigating a model’s prediction accuracy on the same data it was fit to leads to 
overoptimistic results and thus to a bias. This procedure is also called “resubstitu-
tion” and is prone to overfitting a classifier to the data at hand. Especially when there 
are many predictor variables, which is usually the case for microarray data, it is easy 
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to construct a model that perfectly discriminates the response classes. However, this 
kind of classifier only conforms to the learning data and will hardly perform as well 
on new observations. There are several approaches that try to simulate the latter sce-
nario and are supposed to provide less biased estimates of performance measures. 
An elaborate listing and description of sampling schemes can be found in Boulesteix 
et al. [4]. They give a fast overview of applications to microarray data analysis with-
out limitation of generalizability. A more profound investigation of corresponding 
properties is given by Hastie et al. [14].

A popular approach simply splits the data into a learning and a test set. Now any 
model can be fit to the learning set while the test set is left untouched and is only used 
for validation purposes. Another similar approach is given by f-fold cross-validation, 
which splits the data in f parts. Taking f turns, the fth part is used as the test set 
while the model is fit to the remaining observations. The average performance is 
returned as final result. There are some disadvantages like a high variability and a 
too pessimistic assessment of results as only a fraction of the available information 
is used for the training of the classifier. The latter property also holds for the popular 
bootstrap approach. It repeatedly draws observations with replacement from the data 
to build up the training set. On average this leads to a selection of 1 − (1 − 1/n)n ≈ 1 − 
e−1 = 63.2% of observations. Again the remaining observations are used as evaluation 
set. Facing the problem of biased estimates, Efron and Tibshirani [10] introduced 
the .632+ estimator. It returns a weighted sum of the overoptimistic resubstitution 
estimate and the too pessimistic bootstrap estimate. Thus a less biased estimate of 
the AUC is given by

	 . = . ⋅ ⋅ .632 368 632+ + .AUC AUC AUC� � �
resub boot 	 (26.11)

The .632+ estimator of the AUC will also be used in the following example. 
Measuring the area under the curve (AUC) of the corresponding ROC curve is a 
well-suited means to assess the predictive power of a classification method. For each 
possible cutpoint in a model’s prediction output (e.g., linear predictor, response prob-
abilities), the sensitivity is plotted against 1-specificity and displayed by a step func-
tion to build the ROC curves. The AUC is simply the area between this graph and the 
abscissa. A value that tends to 1 indicates a model with strong discriminative power, 
while a value of .5 indicates no power at all (random guessing). The latter case is 
represented by the diagonal in the coordinate system. As shown by Bamber [2], the 
AUC also equals the probability that the value of a model’s prediction is higher for an 
observation belonging to the response class of concern (e.g., malignant tissue) than 
for an observation belonging to the reference class (e.g., benign tissue).

26.4  RECTAL CANCER EXAMPLE

26.4.1  Description of the Data

The application of neoadjuvant radiochemotherapy is a common treatment of locally 
advanced rectal cancer. It supports a complete resection of the tumor by shrinking its 
size. However, not every patient seems to be responsive to this therapy, which in such 
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a case can be harmful as it induces possible side effects and delays surgery or further 
adjuvant treatment. Consequently, there is a strong need for a personalized treatment 
that is adapted to the response prediction of a patient. The analysis of microarray 
data, containing transcription profiles of responders and nonresponders, can be used 
to identify differentially expressed genes. Furthermore statistical models can be fit 
to obtain estimations of response probabilities.

This study is based on 43 biopsy specimens (observations) of patients treated in 
the Department of Surgery, Klinikum rechts der Isar, Munich, Germany. Expression 
profiles of 24,026 genes were assessed. Tissue samples with less than 10% viable 
tumor cells after radiochemotherapy were classified as responders. There are 29 
responders and 14 nonresponders in the data. More detailed information about 
patient and treatment characteristics as well as tissue and data preparation can be 
found in Rimkus et al. [24] originally using the data for prediction of response 
status.

26.4.2  Analysis Settings

All computations were performed with the R system for statistical computing [23]. 
The analysis of the data is based on four different predictive modeling strategies. 
These are LDA with preliminary variable selection, LASSO, Random Forests, and 
the k-SS approach. The performance of each method is assessed by the .632+AUC�  
estimator using 100 bootstrap samples. For computational reasons, all analyses are 
restricted to 300 genes, which provide the highest AUC values in a univariate analy-
sis. This approach extremely reduces computation time while it is unlikely to affect 
classification performance by a significant extent as shown by Yahya et al. [36].

To examine different kinds of thresholds r for the preliminary variable selec-
tion, a sequence of values between 0 and 1 was chosen to fit several models. 
Generally, a broad span ensures that the resulting variable sets range from as much 
as a few single features up to all available features. However, as the data at hand 
consist of a huge number of variables, low values of r are chosen to produce sparse 
models, which are supposed to yield preferable performance results. In order to 
produce four LDA models, r is set to .1, .2, .3, and .4. An implementation of LDA 
is given by the function lda(), which is part of the package MASS (Venaples and 
Ripley [34]).

The LASSO approach is realized by the function cv.glmnet() belong-
ing to the package glmnet (Friedman et al. [11]). The default settings use 10-fold 
cross-validation to determine the optimal penalization for the construction of the 
model. Following the 1se rule, the sparsest model that provides a cross-validated 
error, which is within a range of one standard error (1se) from the lowest mean error 
given by the best model is chosen.

Random Forests were constructed to contain 100 trees. In each node, a random 
subset of 17 variables is tested to find eligible split criteria. This number equals the 
square root of 300 available variables, which is reported to be optimal in many situ-
ations (Díaz-Uriarte and Alvarez de Andrés [8]). An implementation of conditional 
inference based Random Forests is given by the function cforest(), which is part 
of the package party (Hothorn et al. [15]).
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The k-SS approach was realized by the authors’ own implementation. Within a 
range of 20 values for the alpha error reaching from .001 to .999, it uses 10-fold 
cross-validation to determine a subset of variables leading to the lowest cross-vali-
dated error.

26.4.3  Results

26.4.3.1  Performance
Table 26.1 shows bootstrap-, resubstitution-, and .632+-estimators of the AUC as 
well as the number of selected genes for the investigated classifiers. In terms of 

bootAUC� , these values reach from .747 for the k-SS approach to .910 for LDA (r = .4). 
An examination of the variability is given by corresponding 2.5% and 97.5% percen-
tiles, which, according to extensive studies of the bootstrap by Efron and Tibshirani 
[9], can be used for the computation of 95% confidence intervals. Although there are 
differences in the mean bootstrapped AUC values, the strong overlap of confidence 
intervals makes it difficult to identify a method that acts clearly superior. It has to 
be pointed out that the k-SS approach achieves these results using only 2.4 genes 
on average while the LDA (r = .4) makes use of the information of about 14.3 genes. 
For the computation of the .632+AUC�  (see Equation 26.11) one has to determine the 

resubA CU� , which reflects the performance a classifier achieves on the same data it was 
fit to. The lowest value of .951 can be observed for the LDA (r = .1) meaning that all 
classifiers perform extremely well in this case. Surprisingly even the k-SS approach, 
which tends to produce sparse models and is therefore not prone to overfitting, is 
able to produce an resubAUC�  of 1 with only three genes. Other classifiers like the 

TABLE 26.1
Bootstrap-, Resubstitution- and .632+-Estimators of the AUC for 
the Investigated Classifiers

LDA

LASSO Forest k-SSr = 0.1 r = 0.2 r = 0.3 r = 0.4

bootAUC� 0.816 0.857 0.901 0.910 0.813 0.892 0.747

Percentile 97.5% 0.973 1.000 1.000 1.000 0.987 1.000 0.955

2.5% 0.590 0.619 0.698 0.698 0.621 0.722 0.546

Genes selected 3.0 4.3 7.6 14.3 11.7 300 2.4

resubAUC� 0.951 0.993 0.998 1.000 1.000 1.000 1.000

Genes selected 3 4 9 20 20 300 3

. +632AUC� 0.866 0.907 0.937 0.943 0.882 0.932 0.840

Variability of the bootstrap-estimator is represented by 2.5%- and 97.5%-quantiles. In addi-
tion, the complexity of models is given by the average number of chosen variables based 
on 100 bootstrap samples and for a single fit on the entire data.
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LASSO incorporate 20 genes to reach such a high classification accuracy. Finally 
the .632+-estimators of the AUC reach from .840 for the k-SS approach to .943 for 
the LDA (r = .40).

26.4.3.2  Gene Selection
It is a well-known approach to evaluate the stability of a model by the application of 
variable selection to several bootstrap samples while counting the number of times a 
variable is chosen. Many examples for stepwise selection methods in linear, logistic, 
or Cox regression models have been investigated by Sauerbrei [26] and Austin and 
Tu [1]. Another aim is the improvement of prediction accuracy by fitting models to 
the most frequently chosen variables. Both matters are also addressed in an exten-
sive work about modeling strategies by Sauerbrei et al. [27]. Further examples for 
microarray data can also be found in Qiu et al. [22]. Table 26.2 shows the five most 
frequently selected genes for each classification method.

There are many genes that are commonly chosen by the models (e.g., USP48, 
TMC8 etc.) and thus indicate strong and stable predictors. This even holds for dif-
ferent kinds of model strategies like regression, discriminant analysis, and recur-
sive partitioning. There is also some diversity, pointing to a certain instability of 
the selected gene sets. In summary, the application of bootstrapping as well as 
the comparison of several classifiers renders a broad view on potentially relevant 
genes possible by the assessment of selection frequencies within and between 
models.

TABLE 26.2
Five Highest Selection Frequencies (#) of Genes in 100 Bootstrap 
Samples

1 2 3 4 5

LDA r = 0.1 USP48 MKRN2 SF3A1a SF3A1b DCUN1D2

# 18 11 9 9 8

0.2 USP48 ISCA1 MKRN2 NKTR DCUN1D2

# 18 16 13 13 11

0.3 LZTR ISCA1 USP48 DCUN1D2 NFATC3

# 31 25 21 15 15

0.4 LZTR ISCA1 JUN FAM89A DCUN1D2

# 47 38 36 30 29

LASSO TMC8 RBM18 JUN TFEC MAF

# 55 42 33 31 29

Forest TMC8 SF3A1a SF3A1b USP48 RBM18

VI
4.9e−5 4.7e−5 3.7e−5 3.5e−5 3.3e−5

k-SS USP48 CASP1 SF3A1b TMC8 SF3A1a

# 21 12 12 12 11

The average variable importance (VI ) is given for random forests.



482 Handbook of Statistics in Clinical Oncology

Using the entire data for model fitting ensures that parameter estimation and vari-
able selection is based on as much information as available. Table 26.3 shows the 
corresponding genes. Although each of the selections provides useful information 
on its own, it is also possible to make direct comparisons and assess the agreement. 
Either with or without additional information, for example, about stability, gained by 
bootstrapping, these findings can be used for further investigations.

26.5  CONCLUSION

In this chapter, we propose several methods for the identification of relevant genes 
and predictive models. The former ones can be found by selection methods like 
preliminary variable selection, based on semi-multivariate associations or intrin-
sic variable selection provided by some statistical classifiers. The selection can 
be based on the entire data or checked for consistency by sampling methods like 
bootstrapping.

Predictive modeling can be performed by a preferred application or by a compari-
son of multiple approaches. However, Slawski et al. [28] pointed out that a simultane-
ous evaluation of several models always risks to produce a “severe optimistic bias” 
by “reporting only the best results” as they might represent simple “noise discovery” 
and random findings. They recommend to “report all the obtained results or validate 
the best classifier using independent fresh validation data” instead of “fishing for 
low prediction errors.” Consequently a fair comparison of all models is given in this 
study as all results are presented without excessive ratings. Two options to estimate 
the performance of single models, like the best one, are to evaluate it on new obser-
vations or within a combination of internal and external cross-validation.

TABLE 26.3
Genes Selected by the Classification Models on the Entire Data

Model Gene

LDA r = 0.1 USP48 ISCA1 HERC4

0.2 USP48 AP4S1 LZTR ISCA1

0.3 USP48 RBM18 CCL3 SERINC3 LYRM4

ISCA1 SNRPA1 FA2H GLYATL1

0.4 USP48 M-RIP CCL3 LETM2 LZTR

NKTR RALGPS1 SERINC3 FAM89A PIPOX

LYRM4 TFEC ISCA1 TACC1 ITGB1BP1

DCUN1D2 ACP6 NFATC3 RNF38 TMEM43

LASSO SF3A1a TMC8 BLVRAa SDHC TOE1

MFN1 RBM18 TNFRSF1B KPNB1 AW34207

MAF AA889954 LETM2 LZTR AI370381

JUN LYRM4 TFEC TBC1D4 DCUN1D2

Forest (Top 10 of 300) TMC8 USP48 SF3A1b ZNF652 RBM18

STAT2 ETS2 BLVRAb SDHC MAF

k-SS USP48 ETV6 C21ORF91
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There are some characteristics of the models that need to be pointed out. The k-SS 
approach shows a competitive performance although it uses extremely few genes 
for the model fit. Random Forests perform very well without any variable selec-
tion. Many authors like Tang et al. [31], Yang and Gu [37], Rodenburg et al. [25], 
and Díaz-Uriarte and Alvarez de Andrés [8] have investigated selection approaches 
based on variable importance measures to improve the prediction accuracy of 
Random Forests in the field of genome studies. Similarly, Wu et al. [35] give recom-
mendations for the application of LASSO in genome-wide association studies. They 
discuss model optimization techniques, predictor pre-selection, and the identifica-
tion of interaction effects.

In conclusion, there are diverse ways to find predictive genes and classifiers. The 
rectal cancer example shows that each of them may provide information that differs 
to a certain extend but is equally useful. By contrast, on some occasions, one might 
also observe an exceptionally best performing model. Either way a proper applica-
tion of statistical methods followed by careful investigations are the most important 
steps leading to a valid interpretation and future applications.
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27 Explained Variation and 
Explained Randomness 
for Proportional 
Hazards Models

John O’Quigley and Ronghui Xu

27.1  INTRODUCTION

27.1.1  Goal

The purpose of explained variation and explained randomness is to be able to provide 
a quantifying measure of a model’s predictability. We would like to know how strong 
are predictive effects. Such a measure is immediately available via the regression 
coefficients themselves but, since these depend on the scale of the covariates, it is 
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not possible to make simple comparisons on the basis of their magnitude. We would 
like to be able to make statements such as the following: treatment explains approxi-
mately 20% of survival but that, once we have taken account of some known prog-
nostic factors, this figure drops to 5%, or that adding, say, tumor size to a model in 
which the main prognostic factors are already included the explained variation, or 
explained randomness, increases, say, from 32% to 33%. Simple situations may not 
be describable via nested models, for instance, how much do we lose (or gain) in 
terms of predictability by recoding some continuous prognostic variable into dis-
crete classes on the basis of cutpoints.

The problem is more complex than it may appear and, for most of the suggested 
approaches in the literature, it is not even possible to assert that a population value 
of an explained variation coefficient of 0.57, say, indicates stronger regression 
effects, or indicates stronger predictability, than a value 0.15. This renders their 
use as a tool to order the relative importance of prognostic variables problematic to 
say the least. We can derive measures that reflect predictive strength but we need 
to keep in mind that strength will also depend on the distribution of the covariate 
and not just the covariate’s impact on survival time. When discussing the utility of 
such measures, a fact that is often overlooked is that any index of predictive perfor-
mance will do better when a binary covariate is balanced than when there are more 
in one group than the other. In consequence, for two binary covariates, Z1 and Z2, 
we are unable to state, on the basis of explained variation (called R2) or some simi-
lar measure, which is the more prognostically important without consideration of 
their marginal distributions. Added to this difficulty is the fact that a simple change 
in the response variable itself can affect R2, so that, when studying T, we would 
anticipate T and log T to result in different values of R2. A sharp illustration of this 
is given in Section 27.1.3.

In order to take account of these difficulties where we are unable to even order 
values of R2 in terms of prognostic importance, it can help to consider more than 
explained variation alone. In particular, it is useful to examine how far is one distri-
bution from another, more precisely how far is a model in which regression effects 
are absent from one in which they are present. This can be described in terms 
of explained randomness, a quantity which itself will often be interpretable as a 
measure of explained variation, although not necessarily in terms of the most obvi-
ous response variable. More than one candidate measure may present itself and, 
in the specific case of proportional hazards regression, we may prefer a suitable 
measure to meet certain requirements. We would like the estimated percentages 
to be meaningful and directly related to predictability of the ranks of the failure 
times. Absence of effect should translate as 0%, perfect prediction of the survival 
ranks should translate as 100%, and intermediate values should be interpretable. 
Since the regression coefficient β in the Cox model is unaffected by monotonic 
transformations on time, an appropriate measure would also have such a property. 
The measure introduced by O’Quigley and Flandre (1994), viewable as an index of 
prediction, a correlation measure or a measure of explained variation satisfies these 
properties. However, in order to be able to recommend the measure for general 
use, we establish further properties, both statistical and interpretative. The measure 
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can be viewed as a measure of explained randomness and of explained variation, 
although not for T given Z but rather for Z given T. One interesting and practically 
useful property is the ability to accommodate time-dependent covariates. We study 
more deeply the motivation and interpretation of the index, which besides satisfy-
ing the desirable properties mentioned earlier also has the property that increasing 
values of its population counterpart Ω2 correspond to increasing predictability of 
the ranks of the survival times. It remains invariant to linear transformation of the 
covariates and to increasing monotonic transformations of time and also enjoys a 
concrete interpretation in terms of sums of squares decompositions. Furthermore Ω2 
can be shown not to be affected by independent censorship. Extension to the strati-
fied proportional hazards model and to other relative risk models is straightforward.

27.1.2  Model and Notation

In a survival study, denote T the potential failure time and C the potential censor-
ing time. Let X = min(T,C), δ = I(T < = C) where I(·) is the indicator function and 
Y(t) = I(X >= t). Associated with T is the vector of possibly time-dependent covariates 
Z(t). For our mathematical development, assume (Ti,Ci,Zi(·)), i = 1,2, …, n, to be i.i.d. 
from the distribution of (T,C,Z(·)). We will also use the counting process notation: let 

Ni(t) = I{Ti < = t,Ti < = Ci} and N t N t
n

i( ) ( )=∑1
. For most of this work, we assume a 

conditional independent censorship model. However, under the stronger assumption 
of independent censorship, where C is assumed to be independent of T and Z, we 
obtain further properties and interpretation and these are described in the following. 
The Cox (1972) proportional hazards model assumes that the conditional hazard 
function

	
λ λ βt Z t t Z t|( ) = { },( ) ( )exp ( )0 	 (27.1)

where
λ0(t) is an unknown “baseline” hazard
β is the relative risk parameter
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the conditional probability of subject i being chosen to fail, given all the individuals 
at risk at time t and that one failure occurs. The product of the π’s over the observed 

failure times gives Cox’s (1972, 1975) partial likelihood. When β π= ,{ } =
0 0
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simply the empirical distribution, assigning equal weight to each sample subject in 
the risk set. Denote the expectation of a variable with respect to πi i
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In particular,
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is the expectation of Z(t) with respect to {πi(β,t)}i, and

	
r Z X Z Xi i i i( ) ( ) ( ),β β

� = − |Eˆ 	 (27.4)

for δi = 1 is the Schoenfeld (1982) residual where β̂ is usually obtained by solving 
the estimating equation provided by the first derivative of the log-partial-likelihood, 
U(β) = 0. It is interesting to note that U r

i

n

i i( ) ( )β δ β=
=∑ 1

. Analogous to ordinary 

regression, we make the sum of the residuals equal to zero in order to estimate the 
unknown parameter. We consider the sum of squared residuals to study predictabil-
ity. This sum corresponds to an estimate of the Fisher information, not only a quan-
tity which can be viewed as indicating how much information an observed sample 
conveys about a parameter but also—more importantly from our viewpoint—a 
quantity indicating how great the distance between distributions is. Since, under the 
model, the residuals ri are asymptotically orthogonal to one another (Cox, 1975), we 
can write
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where, again, all quantities are evaluated under the model.

27.1.3  Explained Variation

For the random pair (T,Z),

	
Var Var Var( ) ( ) ( ) .T E T Z E T Z= |{ }+ |{ } 	 (27.5)

This elementary breakdown always holds, only needing the assumption that the vari-
ances exist. The variance of the response variable of interest, in our case usually time 
T, can be expressed in terms of a signal, Var{E(T|Z)} and a remaining, residual vari-
ance, or noise, E{Var(T|Z)}, once the signal has been accounted for. The greater the 
signal or the weaker the residual noise, the stronger the predictive effect. Formally, 
explained variation Ω2 is defined from

	
Ω2 =

− |Var Var

Var

( ) ( )

( )
,

T E T Z

T
	 (27.6)

as the amount of variation in T explained by conditioning upon Z. We sometimes use 
the notation � T Z2 ( )  where the subscript indicates the variable that we are trying to 
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explain, the argument Z then indicates the variable being used to explain the vari-
ability in T. The quantity � Z T

2 ( ) is defined by interchanging the symbols and, inter-
estingly, in the case of a bivariate normal pair (T,Z), we can see that � T Z2 ( ) and 
� Z T

2 ( ) are the same quantity.
When there is no reduction in variance given Z, Var(T) = E{Var(T|Z)} and 

Ω2 = 0. If, given Z = z, T assumes some given value with probability 1, then 
Var(T|Z) = 0 and Ω2 = 1. In general, the more we reduce the variance then the 
greater we might consider the model’s predictability. Unfortunately, things are not 
quite so straightforward when the random variables of interest are linked via some 
type of regression model. When models are assumed to link T and Z, apart from 
the multivariate normal linear model where, as always, pretty much everything 
works out as we would like, it can be very difficult to interpret Ω2. In fact, unless 
we can interpret Ω2 as a measure of explained randomness, it is not really pos-
sible to give it a practical interpretation. As described in the following, explained 
randomness measures how far away the null model (when the regression coef-
ficients are equal to zero) is from the model considered to generate the observa-
tions. In specific cases, explained variation and explained randomness coincide. 
The multivariate normal linear model is one such example. Another example is 
that of Cox regression. However, in this latter case, in order to maintain such an 
interpretation, it is necessary to consider the explained variation in the covariate 
value Z, given T and, not as our intuition may suggest, to consider the explained 
variation of T given Z.

Although it would seem natural to work with the conditional variances of T given 
Z, this can lead us seriously astray, and progress can only be made by taking explicit 
account of any model structure. In order to highlight this point, consider a very 
simple example in which we have two binary variables A and B. Survival is exponen-
tially distributed given that A = a for a = 0,1. The same is the case for B. The regres-
sion coefficient for A is βA = 2.0 whereas for B it is βB = 20, corresponding to relative 
risks of 7.4 and close to 500 million, respectively. Using an obvious notation, we 
find that Ω2(A) = 0.25 whereas Ω2(B) = 0.16. This very unintuitive result is explained 
by the fact that for this model there is an upper bound on Ω2 and this upper bound 
depends heavily on the distribution of the covariate Z. Although it is not realistic to 
want to entirely eliminate the dependence of the covariable, such a strong depen-
dence, and an upper bound that is very sensitive to this distribution is problematic. 
For A, the covariate is balanced leading to an upper bound of 0.33 whereas for B, 
where one of the covariate values occurs in less than 10% of the cases, the upper 
bound is slightly greater than 0.16. Some authors (Nagelkerke, 1991) propose a gen-
eral R2 measure in which we rescale the coefficients to take a maximum value of 1. 
This is a beginning but is not enough since we are still not really able to claim that 
a rescaled value 0.30, for instance, corresponds to greater predictive power than a 
rescaled value 0.25. We obtain greater insight when we consider how “far away” the 
null model is from that generating the observations and, for this, we need to con-
sider appropriate distance measures when dealing with random variables. This leads 
to the concept of explained randomness. The ideal situation is where our measure 
can be given an interpretation in both terms of explained variation and explained 
randomness.
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27.1.4  Explained Randomness

Whereas explained variation contrasts the variance of different models, the idea of 
explained randomness is to measure the distance between different distributions. 
This is more general, although in special cases a measure of explained randomness 
can reduce to a measure of explained variation. The most well-known example is 
the multivariate normal model. There are a number of different possible measures of 
distance between distributions and these give rise to different measures of explained 
randomness. Those most commonly used (Efron, 1977) correspond to the Fisher 
information and the Kullback–Leibler information. The R2 coefficient, presented 
by O’Quigley and Flandre (1994), corresponds to the Fisher information measure 
although that aspect was not brought out or emphasized in that work. The R2 mea-
sure of the next section derives from the Fisher distance, based on E{∂ log f(;β)/∂β}2, 
evaluated at the population value, β = β0 and the value corresponding to absence of 
regression effect, β = 0. Since the measure is based on a measure of information, we 
consider it a measure of explained randomness. However, it can also be interpreted 
as a measure of explained variation albeit in terms of Z given T rather than the other 
way around. We can write the proportional hazards model as

	

f t z t z u uz
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⎧
⎨
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⎫
⎬
⎪
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.∫β λ β λβ

0 0
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( )exp ( )e d 	 (27.7)

The baseline hazard function λ0(t) could be specified to be of a power form or a con-
stant, in which cases the Weibull and exponential models are recovered (Kalbfleisch 
and Prentice, 1980, Cox and Oakes, 1984). These were the first cases studied by Kent 
and O’Quigley (1988). Under the model, when β = 0 there is no association between 
T and Z. Another measure of the strength of association, or the distance between 
the two models indexed by β = 0 and β = β0, can be provided by twice the Kullback–
Leibler information gain given via Γ1(β) = 2{I1(β) − I1(0)}, where

	

I f t z f t z t G z1( ) log ( )θ θ β= ;( ){ } ;( ) .∫∫ d d
TZ

In the previous expression, the domains of definition of T and Z are denoted by  and 
, respectively, and G(z) is the marginal distribution function of Z. Considered as 
a function of β, the asymmetric I1(θ) is maximized at θ = β, a quantity that directly 
reflects the strength of association. Compared though to the regression coefficient 
β, an information gain measure has the advantage of not depending on scale and 
a coefficient of explained randomness is defined by ρ β β1

2
11( ) exp ( )= − −{ }Γ . The 

interpretation of ρ β1
2( ), where in practice β0 will be replaced by a consistent esti-

mate β̂, as the proportion of randomness explained by the regression was given 
by Kent (1983). For normal models and maximum likelihood or least squares 
estimation, ρ β1

2( )ˆ  is the usual coefficient of correlation squared when, instead 
of working with f(t|z; β) dt dG(z), we use the observed empirical distribution of 
(T,Z). Assuming no censoring, a standard estimate of information gain will be 
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provided by n−1 times the usual likelihood ratio statistic. An alternative estimate, 
having similar statistical properties, is provided by the fitted information (Kent 
and O’Quigley, 1988) in which I1(0) and I1(β) are estimated by

	
1

1

1

ˆ ( ) log ( ) ; ˆ
I n f t Z f t Z t

i

n

i iθ θ β= ;{ } ( ) ,−

=
∑∫ d

T

	 (27.8)

with θ = 0 and θ = β̂, a consistent estimate of β, respectively. Earlier, the marginal 
distribution of Z has been replaced by its empirical estimate.

In the context of proportional hazards regression, and the requirement to obtain 
procedures that remain rank invariant to monotonic increasing transformations on 
time, it is more appropriate to consider the distribution of the variable Z given T. We 
can let the information for Z given T be given by (Xu and O’Quigley, 1999)

	

I z2( ) log ( )θ θ β= ;( ){ } ;( ) ,∫∫ g t g z t z F td d
ZT

	 (27.9)

where
F(t) is the marginal distribution function of T
g(z|t) is the conditional density or conditional probability function of Z given T

This alternative information measure has advantages over the earlier definition. 
Censoring is taken to be independent of the failure time. We define Γ2(β) = 2{I2(β) − 
I2(0)} and the explained randomness of Z given T is given by

	
ρ β β2

2
21( ) exp ( )= − −{ }.Γ

The measure extends to multiple covariates, where g(· | ·) would be the joint condi-
tional density or joint conditional probability function of Z given T. We can estimate 
the conditional distribution of Z given T by {πj(β̂, t)} (Xu and O’Quigley 2000a), and 
the marginal distribution of T by the Kaplan–Meier estimate. Take W(Xi) to be the 
step of the Kaplan–Meier curve at time t = Xi. We then have
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The information gain, Γ2(β) can be consistently estimated by
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When the model generates the observations, we would anticipate ρ1
2 and ρ2

2 to be 
close to one another as well as the coefficient of explained randomness based on the 
Fisher information.
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27.2  �EXPLAINED VARIATION/RANDOMNESS 
BASED ON FISHER INFORMATION

Let us first assume Z of dimension one. In (27.3) the expectation εβ
 (Z|Xi) is worked 

out with respect to an exponentially tilted distribution. The stronger the regression 
effects the greater the tilting, and the smaller we might expect, on average, the values 
ri

2( )β  to be when compared with the residuals under the null model β = 0. Based on 
these residuals, a measure of explained randomness based on the Fisher informa-
tion can be defined (O’Quigley and Flandre, 1994). In the absence of censoring, the 

quantity 
i

n

ir n
=∑ 1

2( )β̂ /  is a residual sum of squares and can be viewed as the aver-
age discrepancy between the observed covariate and its expected value under the 

model, whereas i

n

ir n
=∑ 1

2 0( )/  is a total sum of squares, and can be viewed as the 
average discrepancy without a model. Since the semiparametric model leaves infer-
ence depending only on the failure time rankings, and being able to predict failure 
rankings of all the failed subjects is equivalent to being able to predict at each failure 
time which subject is to fail, it is sensible to measure the discrepancy between the 
observed covariate at a given failure time and its expected value under the model. 
Thus we can define I(b) for b = 0,β by
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so that I ( ) ( )β δ βˆ ˆ= ,
=∑ i

n

i ir
1

2  the sum of the squared residuals whereas 

I ( ) ( )0 0
1

2=
=∑ i

n

i irδ  is the sum of the squared “null” residuals, or the total sum of 

squares (made more precise as follows). We then define
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This corresponds to the definition given by O’Quigley and Flandre (1994). For a nor-
mal model, considering the residuals in the previous formula to be the usual normal 
residuals, then this definition coincides exactly with the usual coefficient of cor-
relation, also interpretable as a percentage of explained variation. Generalizing that 
definition is then very natural. For the multivariate case, when Z(t) is a p × 1 vector, 
the dependence of the survival time variable on the covariates is best expressed via 
the prognostic index (Andersen et al., 1983; Altman and Andersen, 1986):

	 η β( ) ( )t Z t= .

Two individuals with possibly different Z values but the same η will have the same 
survival probabilities. So we can imagine that each subject in the study is now labeled 
by η. R2 as a measure of explained variation or, predictive capability, should evalu-
ate how well the model predicts which individual or equivalently, its label, is cho-
sen to fail at each observed failure time. This is equivalent to predicting the failure 
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rankings given the prognostic indices. When p = 1, Z is equivalent to η, therefore we 
can construct the R2 using residuals of the Z values. But for p > 1, the model does not 
distinguish between different vector Z values as long as the corresponding η’s are the 
same. So instead of residuals of Z, we define the multiple coefficient using residuals 
of η. Analogous to the univariate definition, we have, once again, R2(β) = 1 − I(β)/Ι(0) 
where, for the multivariate case,

	

I ( ) ( )b r b
i

n

i i= { } .
=
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1

2
δ β 	 (27.13)

27.2.1  Population Parameter Ω2

The population parameter Ω2(β) of R2(β̂) was originally given in O’Quigley and 
Flandre (1994). However, as discussed in Xu (1996), in order to completely eliminate 
any asymptotic dependence upon censoring, it is necessary to weight the squared 
Schoenfeld residuals by the increments of any consistent estimate of the marginal 
failure time distribution function F. The practical impact of this on numerical values 
would typically be small and, in routine analysis, we might choose to work with 
the simpler calculation. Our main purpose in giving consideration to this weighting 
of the residuals is to provide a mathematically tight framework to the large sample 
theory. Therefore, let F̂ be the left-continuous Kaplan–Meier (KM) estimate of F, and 
define W t S t Y t

n

i( ) ( ) ( )= ∑ˆ /
1

 where Ŝ = 1 − F̂. Then W(t) is a non-negative predictable 
stochastic process and, assuming there are no ties, it is straightforward to verify that 
W(Xi) = F̂(Xi +) − F̂(Xi) at each observed failure time Xi, that is, the jump of the KM 
curve. In practice, ties, if they exist, are split randomly. So, in place of the previous 
definition of (b) for b = 0,β, we use a more general definition in which
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We now define
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The definition given by O’Quigley and Flandre (1994) would be the same as previous 
one if we defined W(t) to be constant and, of course, the two definitions coincide in 
the absence of censoring. The motivation for the introduction of the weight W(t) is to 
obtain large sample properties of R2 that are unaffected by an independent censor-
ing mechanism. Viewing R2 as a function of β turns out to be useful in theoretical 
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studies. In practice, we are mostly interested in R2(β̂), where β̂ is a consistent estimate 
of β such as the partial likelihood estimate. Let
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for r = 0,1,2. Here a⨂2 = a′a and a⨂b = ab′ for vectors a and b. Notice that εβ(Z|t) = S(1) 
(β, t)/S(0) (β, t). Let
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where w(t) = S(t)/s(0)(0,t). Then
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Notice that although (27.18) is not immediately defined for β = 0, the limits exist and 
are equal to zero as β → 0. So we can define R2(0) = Ω2(0) = 0.

It has been shown (Xu, 1996) that Ω2(β) is unaffected by an independent censor-
ship mechanism, that is, when C is independent of T and Z, and in this case it can be 
written (O’Quigley and Flandre, 1994) as
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If, in addition, Z is time-invariant, we will see that Ω2(β) has the interpretation of the 
proportion of explained variation (Section 27.3.2). O’Quigley and Flandre showed 
that, having standardized for the mean and the variance, Ω2(β) depends only rela-
tively weakly on different covariate distributions, and values of Ω2(β) appear to give 
a good reflection of strength of association as measured by β and tend to 1 for high 
but plausible values of β (see also Table 27.1). Their numerical results support the 
conjecture that Ω2 increases with the strength of effect, thereby agreeing with the 
third stipulation of Kendall (1975, p. 4) for a measure of rank correlation. The con-
jecture was proven to be true in Xu (1996); see also Section 27.3.1. The first two 
stipulations were that perfect agreement or disagreement should reflect itself in a 
coefficient of absolute value 1; the third stipulation that for other cases the coef-
ficient should have absolute value less than 1, and in some acceptable sense increas-
ing values of the coefficient should correspond to increasing agreement between the 
ranks. Here we have a squared coefficient, and Kendall’s stipulations are considered 
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in a broader sense because we are not restricted to the ranks of the covariates in the 
semiparametric context.

27.3  PROPERTIES AND INTERPRETATION

In this section, we show that the measure defined earlier has the desired properties 
and the interpretation as a measure of explained variation. We omit all the proofs 
here. They can be found in Xu (1996).

27.3.1  Properties of R2 and Ω2

The R2 defined earlier can be shown to have the following properties:

	 1.	R2(0) = 0.
	 2.	R2(β̂) ≤ 1.
	 3.	R2(β̂) is invariant under linear transformations of Z and monotonically 

increasing transformations of T.
	 4.	R2(β̂) consistently estimates Ω2(β). In particular, I ( )β̂  and (0) consistently 

estimate J(β,β) and J(β,0), respectively.
	 5.	R2(β̂) is asymptotically normal.

Note that in finite samples R2, unlike Ω2, cannot be guaranteed to be non-negative. 
A negative value for R2 would correspond to the unusual case in which the best fit-
ting model, in a least squares sense, provides a poorer fit than the null model. Our 
experience is that R2(β̂) will only be slightly negative in finite samples if β̂ is very 
close to zero.

Similarly, we have the following properties for Ω2:

	 1.	Ω2(0) = 0.
	 2.	0 < = Ω2(β) < = 1.
	 3.	Ω2(β) is invariant under linear transformations of Z and monotonically 

increasing transformations of T.
	 4.	For a scalar β, Ω2(β) as a function of β, increases with |β|; and as |β| → ∞, 

Ω2(β) → 1.

TABLE 27.1
Ω2 as Explained Variation

Covariatea c c d c c c d

β 0 0.7 0.7 1.4 2.8 4.2 4.2

R2(β) 0.0002 0.0990 0.0979 0.2844 0.5887 0.7577 0.8728

Var{E(Z|T)}/Var(Z) 0.0018 0.0998 0.0985 0.2848 0.5889 0.7578 0.8728

a	 Covariate distribution: d—binary, c—uniform. Data are simulated under the same mecha-
nism as in Section 27.4.
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From the last property, one can show that Ω2 increases with the predictability of 
survival rankings, that is, P(Ti > Tj) for given Zi and Zj (assuming without loss of 
generality that β > 0). This corresponds to Kendall’s third stipulation, in the context 
of semiparametric Cox regression.

27.3.2  Interpretation

In order to be completely assured before using R2 in practice, it is important to know 
that R2 is consistent for Ω2, that Ω2(0) = R2(0) = 0, Ω2(∞) = 1, that Ω2 increases as strength 
of effect increases, and that Ω2 is unaffected by an independent censoring mechanism. 
This enables us to state that an Ω2 of 0.4 translates greater predictability than an Ω2 of 
0.3. We do, however, need one more thing. We would like to be able to say precisely 
just what a value such as 0.4 corresponds to. That is the purpose of this subsection.

27.3.2.1  Sum of Squares Decomposition

In definition (27.15) of R2(β), 
i

n

i i iW X r
=∑ { }
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2
δ β β( ) ( )  can be considered as a residual 

sum of squares analogous to the linear regression case, while 
i
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2
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is the total sum of squares. So define
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It can be shown that an asymptotic decomposition holds of the total sum of squares 
into the residual sum of squares and the regression sum of squares, that is,
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.

= + , 	 (27.20)

the difference between the two sides of the equation converging to zero in probabil-
ity as n → ∞. So R2 is asymptotically equivalent to the ratio of the regression sum of 
squares to the total sum of squares.

27.3.2.2  Explained Variation
For time-invariant covariates and independent censoring, the coefficient Ω2(β) has a 
simple interpretation in terms of explained variation, that is,

	
Ω2 1( )

( )

( )

( )

( )
β ≈ −

|{ }
=

|{ }
.

E Z T

Z

E Z T

Z

Var

Var

Var

Var
	 (27.21)
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Here we again omit the technical argument leading to the previous approximation, 
but rather show the simulation results of Table 27.1. Indeed there is nothing to stop 
us defining explained variation as in the right hand side of (27.21), since the marginal 
distribution of Z and T can be estimated by the empirical and the KM estimator, 
while the conditional distribution of Z given T = t by the {πi(β̂, t)}i. However, we 
can see no advantage to this and recommend that all calculations be done via the 
Schoenfeld residuals, evaluated at β = β̂ and β = 0.

27.4  EXTENSIONS

27.4.1  Partial Coefficients

The partial coefficient can be defined via a ratio of multiple coefficients of different 
orders. Specifically, and in an obvious change of notation just for the purposes of this 
subsection, let R2(Z1, …, Zp) and R2(Z1, …, Zq) (q < p) denote the multiple coefficients 
with covariates Z1 to Zp and covariates Z1 to Zq, respectively. Note that R2(Z1, …, Zp) 
is calculated using β̂1, …, β̂p estimated when Z1, …, Zp are included in the model, 
and R2(Z1, …, Zq) using β̂10, …, β̂q0 estimated when only Z1, …, Zq are included. 
Define the partial coefficient R2(Zq + 1, …, Zp |Z1, …, Zq), the correlation after having 
accounted for the effects of Z1 to Zq by

	
1 1 12

1
2

1
2

1 1− , , = − , ,⎡⎣ ⎤⎦ − , , , ,( )⎡
⎣

⎤
⎦ .+R Z Z R Z Z R Z Z Z Zp q q p q( ) ( )… … … …

	
� (27.22)

The previous coefficient, motivated by an analogous expression for the multivari-
ate normal model, makes intuitive sense in that the value of the partial coeffi-
cient increases as the difference between the multiple coefficients increases, and 
takes the value zero should this difference be zero. Partial Ω2 can be defined in 
a similar way.

We can also derive definition (27.22) directly. Following the discussion of mul-
tiple coefficients, we can use the prognostic indices obtained under the model with 
Z1, …, Zp and that with Z1, …, Zq. This would be equivalent to defining 1 − R2 (Zq + 1, 
…, Zp | Z1, …, Zq) as (Z1, …, Zp)/(Z1, …, Zq), the ratio of the numerators of 1 − R2 

(Z1, …, Zp) and 1 − R2(Z1, …, Zq). However, since the two numerators are on different 
scales, being inner products of vectors of different dimensions, their numerical value 
require standardization. One natural way to standardize is to divide these numera-
tors by the denominators of 1 − R2(Z1, …, Zp) and 1 − R2(Z1, …, Zq), respectively. This 
gives definition (27.22).

Partial coefficients in O’Quigley and Flandre (1994) were defined using a single 
component of the covariate vector instead of the prognostic index. Although our 
limited data experience did not show any important discrepancies between that defi-
nition and (27.22), there seems to be some arbitrariness as to which component of 
the vector to use. Furthermore the prognostic index should reflect the best prediction 
a given model can achieve in the sense we described before. Our recommendation is 
to use (27.22) as the partial coefficient.
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27.4.2  Stratified Model

The partial coefficients of the previous section enable us to assess the impact of 
one or more covariates while adjusting for the effects of others. This is carried 
out in the context of the assumed model. It may sometimes be preferable to make 
weaker assumptions than the full model and adjust for the effects of other multi-
level covariates by stratification. Indeed, it can be interesting and informative to 
compare adjusted R2 measures, the adjustments having been made either via the 
model or via stratification. For the stratified model, the definitions of Section 27.2 
follow through readily. To be precise, we define a stratum specific residual for stra-
tum s (s = 1, …, S), where, in the following, a subscript is in place of i means the ith 
subject in stratum s. Thus we have

	
r b s Z X Z Xi is is b is( ) ( ); = − |( ),ε 	 (27.23)

where εb(Z|Xis) is averaged within stratum s over the risk set at time Xis, and we write
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From this we can define
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Note that we do not use a stratum specific W(t) and, as before, we work with an 
assumption of a common underlying marginal survival distribution. The validity of 
this hinges upon an independent, rather than a conditionally independent, censoring 
mechanism. Under a conditionally independent censoring mechanism, a weighted 
Kaplan–Meier estimate (Murray and Tsiatis, 1996) of the marginal survival distribu-
tion may be used instead.

27.4.3  Other Relative Risk Models

It is straightforward to generalize the R2 measure to other relative risk models, with 
the relative risk of forms such as 1 + βz or exp{β(t)z}. Denote r(t;z) a general form 
of the relative risk. Assume that the regression parameters involved have been 

estimated, and define πi i i
j

n

j jt Y t r t Z Y t r t Z( ) ( ) ( ) ( ) ( ).= ; ;
=∑ˆ ˆ

1
 Then we can simi-

larly define εβ(Z|t) and form the residuals, thereby defining an R2 measure similar 
to (27.15). In addition, it can be shown that under an independent censorship, the 
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conditional distribution of Z(t) given T = t is consistently estimated by {πi(t)}i (Xu 
and O’Quigley 2000b), so properties such as being unaffected by an independent 
censorship are maintained.

It is particularly interesting to study the use of such an R2 measure under the 
time-varying regression effects model, where the relative risk is exp{β(t)z}. Different 
approaches have been proposed to estimate β(t) (Sleeper and Harrington, 1990; 
Zucker and Karr, 1990; Murphy and Sen, 1991; Gray, 1992; Hastie and Tibshirani, 
1993; Verweij and Van Houwelingen, 1995; Sargent, 1997; Gustafson, 1998; Xu and 
Adak, 2001). In this case, we can use R2 to compare the predictability of different 
covariates as we do under the proportional hazards model; we can also use it to 
guide the choice of the amount of smoothness, or the “effective degrees of freedom” 
as it is called by the some of the aforementioned authors, in estimating β(t). As a 
brief illustration, suppose that we estimate β(t) as a step function, and that we are to 
choose between two different partitions of the time axis, perhaps one finer than the 
other. Denote the two estimates obtained under these two partitions by β̂1(t) and β̂2(t), 
the latter corresponding to the finer partition. We can measure the extra amount of 
variation explained by fitting β̂2(t) versus fitting β̂1(t), by
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This can be thought of as a partial coefficient, if we look at the “dimension” of 
β(t) through time. The use of Rex

2  in estimating β(t) was adopted in Xu and Adak 
(2001).

27.5  ILLUSTRATION

A Cox model analysis of breast cancer data was carried out, initially based on the 
inclusion of single prognostic factors and, subsequently, based on a multivariate anal-
ysis. These results are summarized in Table 27.2. All variables are highly significant. 
The predictive power though is quite different. Stage and tumor size, as one might 
expect, have reasonably high predictability. Histology grade also has predictive 
power, although this covariate has been shown to have a nonproportional regression 

TABLE 27.2
Breast Cancer—Univariate Analysis
Covariate 𝝱̂ p-Value R2

Age −0.24 <0.01 0.005

Hist 0.37 <0.01 0.12

Stage 0.53 <0.01 0.20

Prog −0.73 <0.01 0.07

Size 0.02 <0.01 0.18
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effect. We investigated a more complex model in which the coefficient for histology 
was allowed to decay with time. The value of R2 increased from 0.12 to 0.24, the 
improvement in explained variation reflecting an improvement in fit. This case also 
underlines the relationship between predictability and goodness-of-fit. On the other 
hand, age has very weak predictive capability, though significant. This estimated 
weak effect could be due to (1) a population weak effect or (2) a suboptimal coding 
of the covariate. We investigated this second possibility via two recoded models. 
The first, making a strong trend assumption, coded age as 1 (0–33), 2 (34–40), and 
3 (41 and above). The second model, making no assumptions about trend, used two 
binary variables to code the three groups. All three models gave very similar values 
of R2. In consequence, only the simplest model is retained for subsequent analysis, 
that is, the age groups 1–3. In addition, we calculated the multiple R2 for a set of 
nested models. These results are illustrated in Table 27.3. Table 27.3 also contains the 
values of the partial R2 defined in (27.22), when each additional covariate is added 
to the existing model. The partial coefficient for tumor size having accounted for the 
other four variables is 0.01, suggesting that the extra amount of variation in survival 
explained by the patient’s tumor size is quite limited.

The example helps illustrate the usefulness of R2 in practice. The analysis is by no 
means a thorough one and, typically, deeper study would be useful. For instance, the 
combinatorial problem of examining all possible subgroups of different sizes raises 
both statistical and computational challenges. The statistical question, also present 
in the earlier limited analyses, is that of bias, or inflation, of multiple R2 away from 
zero, when viewed as an estimate of the corresponding multiple Ω2. This question 
is not specific to the survival setting and arises in the standard case of linear regres-
sion. Bias reduction techniques, such as bootstrap resampling, would also be helpful 
for our application. The described R2 measure, based on explained randomness, can 
be considered a natural analogue to the usual R2 for linear regression. It has the prop-
erties desirable for such a measure, as well as concrete interpretations including pre-
dictability of survival rankings, sums of squares decomposition, and proportion of 
explained variation. The measure naturally accommodates time-dependent covari-
ates, and can be easily computed after the proportional hazards regression model 
has been fitted. All that is required is the squaring and summing of the Schoenfeld 
residuals, under the null and the fitted models. Extensions to other relative risk mod-
els are straightforward. We recommend the measure for routine use.

TABLE 27.3
Breast Cancer: Multivariate Analysis

Covariates R2 Partial R2

Age 0.01

Age and hist 0.12 0.12

Age, hist, and stage 0.26 0.16

Age, hist, stage, and prog 0.33 0.09

Age, hist, stage, prog, and size 0.33 0.01
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28.1  INTRODUCTION

The proportional hazards (PH) model of Cox (1972) has long been used to identify 
prognostic groups of patients by using the linear component of the model (prognos-
tic index), or informally through counting up the number of poor prognostic factors 
corresponding to terms in the fitted model. However, the model does not directly 
lead to an easily interpretable description of patient prognostic groups. An alterna-
tive to using prognostic indices constructed from the PH model is a rule that can be 
expressed as simple logical combinations of covariate values. For example, an indi-
vidual with some hypothetical type of cancer may have a poor prognosis if ((age ≥ 
60) and (serum creatinine ≥ 2)) or (serum calcium < 5). This chapter presents two 
general classes of methodologies for constructing these logical rules for prognosis: 
(1) tree-based methods which partition the data into multiple prognostic groups and 
(2) peeling or extreme regression which both lead to sequential refinement the data 
into patient subsets with either very good or very poor prognosis.

Tree-based partitioning. Tree-based methods were formalized and extensively 
studied by Breiman et al. (1984). Trees have also been of interest in machine learn-
ing; one example is the C4.5 algorithm due to Quinlan (1993). Tree-based methods 
recursively split the data into groups, leading to a fitted model that is piecewise 
constant function approximation over regions of the covariate space. Each region is 
represented by a terminal node in a binary decision tree. Tree-based methods have 
been extended to censored survival data for the goal of finding groups of patients 
with differing prognosis (Gordon and Olshen 1985, Ciampi et al. 1988, Segal 1988, 
LeBlanc and Crowley 1992, 1993, Fan et al. 2006). Further extensions and examples 
for tree-based rules in a wide variety of medical research problems were considered 
by Zhang and Singer (1999). Some examples of tree-based methods for survival 
data in clinical studies are given in (Albain et al. 1990, Lerner et al. 2009, Wiener 
et al. 2010).

Prognostic peeling. Trees are useful methods for constructing multiple prognostic 
groups. However, in some cases the goal is to construct a simple decision rule to 
describe a single patient subset with either very good or very poor prognosis. For 
that objective, complementary techniques to tree-based methods have recently been 
developed. These methods are related to the patient rule induction method (PRIM) 
proposed by Friedman and Fisher (1999). The basic idea of the PRIM algorithm and 
extensions is to describe a region in the covariate space corresponding to the most 
extreme expected outcome. PRIM was developed for uncensored data and works 
best with very large data sets, but has been extended by LeBlanc et al. (2002) to 
better address survival data, and to other low signal applications by LeBlanc et al. 
(2005). The main components of the algorithm are common between the published 
methods. Initially the entire data set is considered and then a fraction α of the data 
is removed from either extreme of a variable distribution among all variables. This 
process, called peeling, is repeated until only small fraction of the data remains. 
The data corresponding to a rule with sufficiently extreme outcome are removed and 
the remaining data are peeled again. The end result is a logical rule representing an 
extreme outcome group.
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Extreme regression. We also discuss another strategy for constructing a poor or 
good prognostic group which we call extreme regression (LeBlanc et al. 2006). This 
method combines the function approximation aspects of trees and can yield prog-
nostic groups where one can control either the level of prognosis in the group or the 
fraction of patients identified. The method obtains prognostic groups by first con-
structing a regression function that consists of minimum and maximum (extreme) 
functions of simple univariate functions of the predictors. Prognostic groups are 
defined by threshold decisions on the regression function η(x) ≥ c, yielding simple 
decision rules analogous to trees. However, unlike trees, which work well with both 
categorical and continuous variables, peeling, and extreme regression are best suited 
for ordered or continuous predictor variables.

In this chapter we discuss the general methodological aspects of these prognostic 
modeling strategies. We illustrate the methods with a subset of patients (n = 2678) 
from the large data set collected by the International Myeloma Foundation (IMF) for 
the goal of constructing a reliable staging system for multiple myeloma (Greipp et al. 
2005). Clinical and laboratory data were gathered on previously untreated myeloma 
patients from 17 institutions, including sites in North America, Europe, and Asia. 
Patient characteristics were typical for symptomatic myeloma, including age, sex, 
and clinical as well as laboratory parameters. Given the results in this chapter are 
only based on a subset of patients for methodologic illustrative purposes, the split 
points differ from the published IMF results.

28.2  NOTATION AND PROGNOSTIC MODELS

We assume that X is the true survival time, C is the random censoring time, and Z is 
a p-vector of covariates. The observed variables are the triple (T = (X,C), Δ = I{X ≤ 
C}, Z ) where T is the time under observation and Δ is an indicator of failure. Given Z 
we assume that X and C are independent. The data consist of a sample of independent 
observations {(ti, δi, zi):i = 1,2, …, N} distributed as the vector (T, Δ, Z). The survival 
probability at time t is denoted by

	
S t z P X t z( )| = > |( ).

28.2.1  Function Approximation

Typically, survival data regression models vary smoothly as a function of the covari-
ates. For instance, the PH model specifies the hazard function as

	
λ λ η( ) ( )exp ( )t z t z| = ( ),0

where
λ0(t) is a baseline hazard function
η(z) is the logarithm of the relative risk

The relative risk function is sometimes referred to as the “prognostic index” and is 
typically a linear function of the covariates η(z) = z′β. More general additive models 
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for the logarithm of the relative risk function are also used for modeling survival data. 
While additive function expansions are useful for variable interpretation, rules describ-
ing patients with differing prognosis, which are typically of the form {z: η(z) ≥ q} or 
{z: η(z) ≤ q} are difficult to describe because they are a weighted combination of patient 
characteristics. A tree-based method is also a function approximation method, except 
that the piecewise constant approximating model is homogeneous over regions of the 
prediction space. For example, a tree, T(x), assigns the same value for all cases within 
each region, x ∈ Tm ⇒ T(x) = ηm. Therefore, tree rules can be described as follows: 
{x: T(x) ≥ q} will just be the union of those regions Tm for which ηm ≥ q. It is this easily 
described as inverse property that makes trees so desirable for constructing prognostic 
rules for clinical applications. A tree-based model for survival can be represented as

	

S t z S t I z B
h

H

h h( ) ( ) { }| = ∈ ,
=
∑

1

where
Bh is a “box”-shaped region in the predictor space, represented by a terminal 

node, h
the function Sh(t) is the survival function corresponding to region Bh

H is the number of overlapping regions

Importantly, each terminal node can be described by a logical rule, for instance, 
(z1 < 3) ∩ (z2 ≥ 6) ∩ (z5 < 2). With the sample sizes typically available for clinical appli-
cations, a piecewise constant model can yield quite poor approximations to the con-
ditional survival function, S(t|z), which is likely a smooth function of the underlying 
covariates. Therefore, methods using smooth models such as linear Cox regression or 
ensembles of trees such as boosted trees (e.g., Buhlmann and Hohorn 2007) or ran-
dom survival forests by Ishwaran et al. (2008) likely yield better approximations than 
piecewise constant tree-based methods. However, the primary motivation for using 
tree-based models is the potentially easy interpretation of decision rules.

28.2.2  Extreme Region Summary

An alternative strategy does not attempt to model the entire regression function, but 
instead describes the survival function in one region, R, S(t|R) = SR(t)I{z ∈ R} cor-
responding to patients expected to have an extreme good or poor outcome. Unlike 
tree-based methods there is no attempt at describing the other regions. However, as 
with trees, R is defined by logic rules. An important attribute is the mass or fraction 
of the sample within the region, R, which can be denoted by

	

β( )R dPz
R

= ,∫

where dPz represents the probability mass function associated with the covariates.
Estimation of the rules will be reviewed in this chapter. One method called 

peeling is a nonparametric strategy that does not use an overall regression model. 
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A second method develops a special regression function that allows simple decision 
rule descriptions of extreme prognostic groups. In summary, tree-based regression 
constructs regions or boxes Bh by repeatedly partitioning the data, and the extreme 
region summaries are obtained via sequentially removing small fractions of data 
along coordinate axes. Figures 28.1 and 28.2 show a schematic of each of the two 
procedures with two covariates.
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FIGURE 28.1  Schematic of partitioning of two-dimensional covariate space.
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FIGURE 28.2  Schematic of peeling of two-dimensional covariate space.
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A third method develops regions similar to that presented in Figure 28.2 but 
it does it by constructing a special “extreme” regression function as displayed in 
Figure 28.3.

The myeloma data from the IMF presented in this chapter are from 2678 patients 
with survival outcome and complete covariate data for calcium (CAL), serum β2 
microglobulin (B2M), platelets (PLT), serum creatinine (CREAT), serum albumin 
(ALB), and percent plasma cells in the bone marrow (BMPC).

28.3  TREE-BASED PARTITIONING

28.3.1  Constructing a Tree Rule

A tree-based model is developed by recursively partitioning the data. At the first 
step, the covariate space is partitioned into two regions and the data are split into two 
groups. The splitting rule is applied recursively to each of the resulting regions until 
a large tree has been grown. Splits along a single covariate are used because they are 
easy to interpret. For an ordered covariate, splits are of the form “Zj < c” or “Zj ≥ c,” 
and for a nominal covariate, splits are of the form “Zj ∈ S” or “Zj ∉ S,” where S is a 
nonempty subset of the set of labels for the nominal predictor Zj. Potential splits are 
evaluated for each of the covariates, and the covariate and the split value resulting in 
the greatest reduction in impurity are chosen.

The improvement for a split at node h into left and right daughter nodes l(h) and 
r(h) is

	
G h R h R l h R r h( ) ( ) ( ) ( )= − ( ) + ( )⎡⎣ ⎤⎦ ,

where R(h) is the residual error at node h. We assume G(h) > 0. For uncensored con-
tinuous response problems, R(h) is typically the mean residual sum of squares or 
mean absolute error. For survival data, it would be reasonable to use deviance cor-
responding to an assumed survival model. For instance, the exponential model devi-
ance for node h is
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FIGURE 28.3  Extreme regression function: sequence of prognostic regions identified from 
function.
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where λ̂ 
h is the maximum likelihood estimate of the hazard rate in node h. Often an 

exponential assumption for survival times is not valid. However, a nonlinear transfor-
mation of the survival times may make the distribution of survival times closer to an 
exponential distribution. LeBlanc and Crowley (1992) investigate a “full-likelihood” 
method which is equivalent to transforming time by the marginal cumulative hazard 
function and using the exponential deviance and then using exponential deviance for 
tree construction.

However, most recursive partitioning schemes for censored survival data use the 
logrank test statistic of Mantel (1966) for G(h) to measure the separation in survival 
times between two groups. Simulation studies of the performance of splitting with 
the logrank and other between-node statistics are given in (LeBlanc and Crowley 
1993) and (Crowley et al. 1995).

Figure 28.4 shows the value of the logrank test statistic for groups defined by 
partitioning on serum β2 microglobulin (B2M), (B2M < c), and (B2M ≥ c) for range of 
cut points in the IMF data set. The largest logrank test statistic corresponds to a split 
at c = 8.89 and would lead to the first split in a tree-based model to be (B2M < 8.89) 
versus (B2M ≥ 8.89).

28.3.2  Splitting

If there are weak associations between the survival times and covariates, splitting 
on a continuous covariate tends to select splits that send almost all the observations 
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to one side of the split. This is called “end-cut” preference by Breiman et al. (1984). 
When growing survival trees, we restrict both the minimum total number of obser-
vations and the minimum number of uncensored observations within any potential 
node. This restriction is also important for prognostic stratification, since very small 
groups of patients are usually not of clinical interest.

It is also important that the splitting statistic can be calculated efficiently for all 
possible split points for continuous covariates. While the logrank test is relatively inex-
pensive to calculate, the statistic must be calculated many times; hence, we improve 
computational efficiency by using a simple approximation to the logrank statistic which 
allows simple updating algorithms to consider all possible splits (Crowley et al. 1995). 
Updating algorithms can also be constructed for exponential deviance; for instance, 
refer to the works of LeBlanc and Crowley (1995) and Davis and Anderson (1989).

Figure 28.5 shows a tree grown on the IMF using the logrank test statistic for 
splitting, with a constraint of a minimum node size of 5% of the sample size. The 
tree has 15 terminal nodes. The logrank test statistic and permutation p-value are 
presented below each split in the tree. The p-value is calculated at each node by 
permuting the responses over the covariates and recalculating the best split at that 
node 1000 times and then calculating the proportion of logrank test statistics greater 
than the observed statistic. At each terminal node, the logarithm of the hazard ratio 
relative to the leftmost node and the number of cases falling into each terminal 
node are presented. The logarithm of the hazard ratio is obtained by fitting a Cox 
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FIGURE 28.5  Unpruned survival tree: Below each split are the logrank test statistic and a 
permutation p-value. Below each terminal node is the logarithm of the hazard ratio relative to 
the leftmost node in the tree and the number of cases in the node.
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(1972) model with dummy variables defined by terminal nodes in the tree. The worst 
prognostic group are patients with very high B2M (B2M ≥ 8.89) and high CREAT 
(CREAT ≥ 3.872) and corresponds to an estimated logarithm of the hazard ratio rela-
tive to the best prognostic group equal to 74. While the minimum node size was set 
to be quite large (5% of the sample or approximately 134 observations), the logrank 
test statistics near the bottom of the tree (and permutation p-values) indicate there 
may be several nodes that should be combined to simplify the model.

28.3.3  Pruning and Selecting a Tree

Two general methods have been proposed for pruning trees for survival data. The 
methods which use within-node error or deviance usually adopt the CART pruning 
algorithm directly.

28.3.3.1  Methods Based on within-Node Deviance
In the CART algorithm, the performance of a tree is based on the cost complexity 
measure

	

R T h
h T

α( ) ( )= +
∈
∑

�
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of the binary tree T, where T
∼

 is the set of terminal nodes, |T
∼

| is the number terminal 
nodes, α is a nonnegative parameter, and R(h) is the cost (often deviance) of node h.

A subtree (a tree obtained by removing branches) T0 is an optimally pruned sub-
tree for any penalty α of the tree T if
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where
“≼” means “is a subtree of”
T0 is the smallest optimally pruned subtree if T0 ≼ T″ for every optimally pruned 

subtree, T″

The cost complexity pruning algorithm obtains the optimally pruned subtree for 
any α. This algorithm finds the sequence of optimally pruned subtrees by repeatedly 
deleting branches of the tree for which the average reduction in impurity per split in 
the branch is small.

The deviance will always decrease for larger trees in the nested sequence based 
on the data used to construct the tree. Therefore, honest estimates of deviance for a 
new sample are required to select a tree that would have small expected deviance. 
If a test sample is available, the deviance for the test sample can be calculated for 
each of the pruned trees in the sequence using the node estimates from the training 
sample. For instance the deviance at a node would be
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where ti
T

i
T,  δ( )  are the test sample survival times and status indicators for test sam-

ple observations falling into node h, z Bi
T

h∈ , for the tree and node estimate λ̂ 
h cal-

culated from the learning sample.
Given that a test sample is usually not available, the selection of the best tree 

can be based on resampling-based estimates of prediction error (or expected devi-
ance). The most popular method for tree-based models is the K-fold cross-validation 
estimate of deviance. The training data, Λ, are divided into K test samples Λk and 
training samples Λ(k) = Λ − Λk, k = 1, …, K of about equal size. Trees are grown with 
each of the training samples Λ(k); each test sample Λk is used to estimate the devi-
ance using the parameter estimates from the training sample Λ(k). The K-fold cross-
validation estimate of deviance is the sum of the test sample estimates. The tree that 
minimizes the cross-validation estimate of deviance (or a slightly smaller tree) is 
selected. While K-fold cross-validation is a standard method for selecting tree size, 
it is subject to considerable variability; this is noted in survival data in simulations 
given in LeBlanc and Crowley (1993). Therefore, other methods such as those based 
on bootstrap resampling may be useful alternatives (Efron and Tibshirani 1997). 
One bootstrap method based on logrank splitting is given in the next section.

28.3.3.2  Methods Based on between-Node Separation
LeBlanc and Crowley (1993) developed an optimal pruning algorithm analogous 
to the cost complexity pruning algorithm of CART for tree performance based on 
between node separation. Between-node pruning has been extended for the use in 
multivariate survival data by Fan et al. (2006). They define the split complexity of 
a tree as

	 G T G T Sα( ) ( )= − ,α⏐⏐

where G(T) is the sum over the standardized splitting statistics G(h) in the tree T:
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where S represents the internal nodes T.
A tree T0 is an optimally pruned subtree of T for complexity parameter α if

	
G T G T

T T
α α( ) max ( )0 = ʹ ,

ʹ�

and it is the smallest optimally pruned subtree if T0 ≼ T′ for every optimally pruned 
subtree. The algorithm repeatedly prunes off branches with smallest average logrank 
test statistics in the branch. An alternative pruning method for trees based on the 
maximum value of the test statistic within any branch was proposed by Segal (1988).

Since the same data are used to select the split point and variable as used to 
calculate the test statistic, we use a bias-corrected version of the split complexity 
described previously:
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where the corrected split statistic is

	 G h G h h∗ ∗= − Δ ,( ) ( ) ( )

and where the bias is denoted by Δ =*
*

*
*

* *( ; , ) ( ; , )( )     h E G h E G hY YΛ Λ Λ Λ– . The 
function G(h; Λ*, Λ) denotes the test statistic where the data Λ* were used to deter-
mine the split variable and value and the data Λ were used to evaluate the statistic. 
The function G(h; Λ*, Λ*) denotes the statistic where the same data were used to pick 
the split variable and value, and to calculate the test statistic. The difference Δ*(h) is 
the optimism due to adaptive splitting of the data. We use the bootstrap to obtain an 
estimate 

∗
Δ� ( )h , then we select trees which minimize the corrected goodness of split
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∑
G̃ α (T) is similar to the bias-corrected version of split complexity used in LeBlanc 
and Crowley (1993) except here we do the correction locally for each split conditional 
on splits higher in the tree. We typically choose a complexity parameter α = 4. Note 
that if splits were not selected adaptively, an α = 4 would correspond approximately 
to the .05 significance level for a split and α = 2 is in the spirit of Akaike information 
criterion (AIC) (Akaike 1974). Permutation sampling methods can also be used to 
add an approximate p-value to each split conditional on the tree structure above the 
split to help the interpretation of individual splits.

Figure 28.6 shows a pruned tree based on the corrected goodness of split using 25 
bootstrap samples with α = 4. There are 8 terminal nodes.

Usually only a small number of prognostic groups are of interest. Therefore, fur-
ther recombination of nodes with a similar prognosis from the pruned tree may be 
required. We select a measure of prognosis (for instance, hazard ratios relative to 
some node in the tree or median survival for each node) and rank each of the termi-
nal nodes in the pruned tree based on the measure of prognosis selected. After rank-
ing the nodes, there are several options for combining nodes in a pruned tree. One 
method is to grow another tree on the ranked nodes and only allow the second tree to 
select three or four nodes; another method is to divide the nodes based on quantiles 
of the data; and a third method is to evaluate all possible recombinations of nodes 
into V groups and choose the partition that yields the largest partial likelihood or 
largest V sample logrank test statistic. The result of recombining to yield the largest 
partial likelihood for a four group combination of the pruned myeloma tree given in 
Figure 28.6 is presented in Figure 28.7.

28.4  PROGNOSTIC DATA PEELING

Tree-based methods are effective for describing multiple prognostic strata. 
However, if the goal is find a single poor or good prognostic group with greater 
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control of the relative outcome for patients in that group, other strategies may be 
useful. In developing a clinical trial for a new aggressive therapy, one often must 
limit the study to only those patients with sufficiently poor prognosis appropriate 
for the toxicity associated with that therapy. Conversely, if a group of patients can 
be identified that has very good prognosis, one may want to investigate less toxic 
therapies for that group. However, the prognostic group must include a sufficient 
proportion of the patients with that disease to make patient accrual to the clinical 
trial feasible. Data peeling is a strategy for defining a prognostic group based on 
several covariates by repeatedly refining rules by removing data along the covari-
ate axes. The method allows one to look at average patient outcome (median sur-
vival or k-year survival probability) as a function of the fraction of the sample 
represented by the rule.

28.4.1  Region Refinement

Interest focuses on a region, R, of the predictor space with extreme patient outcome 
values. Denote the functional of interest, Q, (e.g., mean, median, or 5 year survival 
probability) for that region by

	 Q R Q zz R( ) ( )= .∈
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FIGURE 28.6  Pruned survival tree: Below each split are the logrank test statistic and a per-
mutation p-value. Below each terminal node is the median survival (in years) and underneath 
the number of patients represented by that node.
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We assume a PH model with a conditional hazard function defined by

	
λ λ η( ) ( ) ( )t z t z; = ( ),0 exp

where
λ0(t) is an unknown baseline hazard function
η(z) = ηI{z ∈ R}with I{z ∈ R} equal to 1 if the covariate value is in R or 0 otherwise

To facilitate description, we focus on a region, R, which can be described by a deci-
sion rule. For instance, we construct interpretable models based on boxes in the 
predictor space. If we assume the individual covariates, z1, …, zp, are ordered, then 
univariate rules are of the form Dj = {z: zj ≥ sj} or Dj = {z: zj < sj}, j = 1, …, p. Boxes can 
then be expressed as the intersection of the intervals:

	

B Dk

j
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∩

Quite general regions can be defined using unions of boxes in the predictor space. Such 
rules are sometimes referred to as rules of disjunctive normal form. A model for two 

groups can be represented by η(z) = ηI{z ∈ R}, where R B
k

k=∪  is a union over boxes.
The peeling algorithm constructs rules (boxes) by repeatedly removing small 

amounts of data along the coordinate axes. Initially the entire data set is considered 
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FIGURE 28.7  Survival for four prognostic groups derived from the pruned survival tree. 
The top curve corresponds to survival for Node 3, the next curve corresponds to Nodes 2, 4, 
and 5, the next to Nodes 1 and 6 and the bottom curve to Nodes 7 and 8 (numbered from the 
left on Figure 28.6).
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and then a fraction α of the data is removed along the covariate axis which leaves the 
largest parameter estimate for the remaining data in the box. The removal of data is 
continued until some minimum fraction of the observations remain in the box. The 
fraction of data to be removed at each step is taken to be quite small so that the pro-
cedure can recover from bad local decisions. However, a minimum number of obser-
vations, nmin, must be removed at each step to control the variance of the procedure.

Since survival data tend to have low signal, we have found it advantageous to 
remove data only in one direction for each variable. We refer to this as “directed 
peeling.” The directions for refinement or data removal can be picked based on prior 
knowledge of the impact of the variables on disease outcome, or based on signs of 
the coefficients from a fitted linear PH model or a semiparametric method such as 
local partial likelihood as developed by Gentleman and Crowley (1991).

While k-year survival probability or median survival can be used to guide the 
peeling process, we have found it useful to use the hazard ratio from a Cox model 
since censoring may make those first quantities inestimable within some regions of 
the predictor space. The directed peeling algorithm changes the face of a box that 
maximizes the rate of increase in the estimated hazard ratio parameter associated 
with a box, η(z) = ηI{z ∈ B}. Let
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η η

β β

ˆ ˆ
� �( ) ( )

denote the change in the estimated regression parameter, Bp
η� , from the current value, 

η̂ B, for a given proposed new box Bp obtained by changing a box face along one 
axis. A cut point is changed from sp to �sp  to modify the box B B z sp p p= ∩ <{ }ʹ  or 
B B z sp p p= ∩ ≥{ }ʹ  depending on the direction of the peeling. Because clinical data 
often include tied values for some covariates, one cannot remove an exact fraction α 
of the data at each step. Therefore, we standardize the change in hazard ratio by the 
difference in support between the current and refined box, β̂ (B) − β̂ (Bp).

We note that the peeling process is computationally manageable. An upper bound 
on the number of steps for a peeling algorithm is log(ρ)/log(1 − α) where ρ is the 
minimum fraction of the data of interest in a risk group. For example, for α = .1 and 
ρ = .05 the maximum number of steps is 29. Focusing on the hazard ratio function 
allows a convenient way to select poor prognosis boxes as a function of the mass of 
the box. However, the median survival or proportion of sample in the prognostic 
group are useful summaries and are included as output from our peeling software.

As an example of the directed peeling process, we peel with respect to two vari-
ables B2M and ALB to identify a group of myeloma patients with particularly good 
survival. The first 15 steps of the refinement sequence are given in Table 28.1 for 
rules of the form

	 B M c ALB c2 1 2≤ > .∩
We call sequence of all the survival estimates the trajectory curve of the procedure.
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28.4.2  Variable Selection and Peeling Fraction

To limit the amount of data adaptation, we use variable selection to limit the number 
of variables used in peeling. Options are to select the top r variables based on the 
most significant univariate partial likelihood score tests or to limit peeling to vari-
ables that have been selected by multivariable linear PH modeling. For instance, one 
can use a forward stepwise model building strategy to select the variables to be used 
in the subsequent peeling. This simple filtering strategy also constrains the complex-
ity and yields more easily interpreted rules.

Once the variables have been selected, the only tuning parameters that need 
to be adjusted are the fraction and minimum number of observations to remove 
at each step of the peeling process and the minimum fraction of the data to be 
considered in a smallest final group. As a default, we chose to remove 10% (α = .1) 
of the current number of observations available for peeling (minimum 10 observa-
tions) at each step and set a smallest final group size to 5% (ρ = .05) of the original 
data set.

Simulations have shown that while selecting a small number of covariates for 
peeling dramatically reduces estimation bias due to selection (LeBlanc et al. 2002), 
it is still useful to have less biased estimates for rule selection. Given that one rarely 
has a test sample available to select the rule, we propose selecting rules using K-fold 
cross-validation. Bootstrap bias correction methods would be an alternative as we 
described for tree-based methods.

TABLE 28.1
Sequence of Thresholds for the First 15 
Steps of Peeling of the Myeloma Data Set

Step c1 (B2M) c3 (ALB) Median Survival

1 18.4 −Inf 3.17

2 12.4 −Inf 3.25

3 9.8 −Inf 3.39

4 8.3 −Inf 3.42

5 8.3 2.5 3.53

6 8.3 2.8 3.55

7 8.3 2.9 3.62

8 7.4 2.9 3.70

9 6.6 2.9 3.73

10 6.0 2.9 3.78

11 5.5 2.9 3.82

12 5.2 2.9 3.85

13 4.8 2.9 3.85

14 4.6 2.9 3.92

15 4.6 3.1 3.95

The rules are of the form B2M ≤ c1 ∩ ALB > c2
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We use K-fold cross-validation as previously described for tree-based regression. 
Peeling is applied to each of the training samples Λ(k); each test sample Λk is used to 
estimate the quantity of interest, Qk from the model grown on the training sample Λ(k).

For each training sample Λ(k), the trajectory curve Qk(·) is defined as a piecewise 
constant curve Qk(x) = Qk(β̂ l(k)) for β̂ l(k) + 1 ≤ x < β̂ l(k) where β̂ l(k) is the support of the 
lth box in the kth training sample trajectory. We define β̂ 0 = 1, Qk(1) as the functional 
calculated on the entire kth test sample and β̂ L(k) + 1 = 0, where L(k) is the smallest box 
in the kth trajectory.

The cross-validation estimate is the average over the individual curves indexed as 
a function of the fraction of the sample
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where

β̂ j is the observed support from the entire training sample for box Bj

Qk(·) is functional of the kth test sample applied to the trajectory from the kth 
training sample

It is our experience that K-fold cross-validation can yield quite variable results. 
Therefore, for the peeling method we repeat K-fold cross-validation several times 
and average. The peeling trajectory for the myeloma data set and the 10-fold cross-
validated estimates (averaged five times) are presented in Figure 28.8. In this case, 
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the cross-validation estimates suggest limited selection bias. Here we suppose we 
are interested in patients with at least 4.5 years of median survival. If we apply the 
peeling rule and cross-validation, the resulting rule is

	 RULE 1 : B M ALB2 3 5 3 71≤ . > . ,∩
which corresponds to a cross-validated estimate of median survival equal to 4.5 
years and represents approximately 20% of the patients.

28.4.3  Constructing Multiple Box Rules

We have described the construction of a single box trajectory. The peeling process 
can be applied again to find additional patients with sufficiently extreme (poor or 
good) outcome. Therefore, the rules are refined through the addition (union) of other 
boxes. One removes the data corresponding to the first rule, before the next rule is 
constructed. At the Mth iteration the box is constructed by using data not contained 
in any of the previous boxes:
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The estimated median survival from the Kaplan-Meier estimator (denoted by 
KMMED) for a box at iteration M is
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and the support in the box excluding previous boxes is
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where ave denotes “average.” We applied this strategy to the myeloma data to deter-
mine if additional patients could be identified with a median survival of greater 
than 4.5 years using the 10-fold cross-validation estimates (averaged over five rep-
lications). While no additional group of patients could be identified with a survival 
greater than 4.5 years, the following rule depending on four variables (B2M, PLT, 
CREAT, and ALB) describes the next 10% of patients with best overall survival,

	 RULE 2 : PLT CREAT B M ALB> ≤ . ≤ . > .208 1 43 3 5 3 0∩ ∩ ∩2

Combined with patients identified with RULE 1, the good prognostic group repre-
sents 30% of myeloma patients with estimated median survival of 4.2 years. One can 
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also identify good prognosis patients from the tree-based model. In that case 15% 
patients were identified with a survival better than 4.5 years, but then adding in the 
patients with the next best survival leads to a group with 4.4 year median survival 
consisting of 26% of patients. This somewhat smaller fraction patients compared to 
peeling is mostly due to the discreteness of the tree-based rules which partition the 
data in large fractions.

28.5  EXTREME REGRESSION PROGNOSTIC MODELS

In the last section we showed that nonparametric data peeling can be an effective 
method for constructing a single or sequence of groups of patients corresponding to 
either extreme good or poor prognosis. Here we develop a strategy for finding such 
groups based on estimation of the entire regression function with a goal of improved 
performance in moderate sized clinical trials data sets. If one were to use a smooth 
additive model, even the linear regression model h(x) = x′β leads to complex level set 
rules to describe the cases for which {x: x′β ≥ q}. While prognostic rules developed 
for tree models such as {x: T(x) ≥ q} will result in decision rules, one potential down-
side to tree-based models relates to their discreteness. Consider a tree with only a few 
nodes representing significant fractions of the data. As one changes the threshold q 
the percentage of sample corresponding to T(x) ≥ q often changes in large jumps. 
Therefore, the goal is to identify a different class of regression functions which is 
smooth but leads to logical rules if one considers cutpoints T(x) ≥ q. Such a regres-
sion function exists (we call it extreme regression).

Our strategy is to use extreme functions (maximum and minimum) which yield 
simple interpretations of level sets similar to those from tree-based models. But, sim-
ilar to linear or additive models, these models are a smooth function of the predictors.

Much like the prognostic peeling method, extreme regression focuses on groups 
of very good or poor prognosis (rather than a set of prognostic groups like trees), 
but allows indexing by the size of the prognostic group. Because of the nature of the 
function approximation method, it tends to give less variable solutions than peeling 
or trees. Some advantages to using our underlying function approximation approach 
are that it should work well in situations with a smaller number of cases due to its 
more parametric form, and it allows construction of a nested sequence of rules as the 
threshold q varies.

28.5.1  Extreme Model Form

Our proposal is to replace the usual additive main effect and multiplicative inter-
action regression model with extreme operators of maximum and minimum. An 
example of such a model is

	
η β β β β β β β β( ) max min( ) min( )x x x x x= + , + , + , +( 01 11 1 02 12 2 03 13 3 04 14 4 )).

More generally we can write

	
η( ) max ( ) ( ) ( )x f x f x f x

j
J= , , ,( ),1 2 …
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where each term fj(x) = min(gj,1(x), …, gj,K( j)(x) ). Each of the component functions, 
gj,k(x) depends only on a single predictor. Label k denotes the component model of 
the jth “min” term where j = 1, …, J and k = 1, …, K( j) and where K( j) is the number 
of linear component functions in each “min” term j. We use a simple univariate 
linear predictor

	
g x xj k k k l k, , ,= +( ) ( )β β0 1

where l(k) is the label of the predictor in the kth term of component model j (formally 
we should write l(k,j), β0, j,k, and β1, j,k, but we suppress the j for presentation). The fol-
lowing development for the linear model could easily be extended to gj,k(x) functions 
that are more general smooth univariate functions of predictors.

The overall model is a continuous piecewise linear model that locally depends 
only on a single predictor variable on each partition Rj,k defined as {x: gj,k(x) = f(x)}. 
We denote the data points which fall into region Rj,k as the active set of points associ-
ated with function gj,k(x). Adaptive function approximation methods using piecewise 
linear component functions have been successfully and widely used (e.g., multivari-
ate adaptive regression splines (MARS) Friedman [1991] and Hastie et al. [2009]) 
and for survival analysis in (e.g., Hazard Regression (Kooperberg et al. 1995) and 
other adaptive regression splines (LeBlanc and Crowley 1999). However, the extreme 
function formulation places different constraints on the nature of the piecewise lin-
ear model which are useful for describing the inverse of the regression function.

It is easily seen that the description of any q-level set Ω = {x: f(x) ≥ q} is just

	
Ω = : ≥( ) ≥( ){ }., ,x g x q g x qj j j K jOR AND AND1( ) ( )( )�

This is referred to as a Boolean expression in disjunctive normal form (a union of 
intersections of simple terms). It is critical that each component function gj,k(x) is a 
function of a single predictor for Ω.

28.5.2  Estimation

While the algorithm was originally developed for squared error loss, it has been 
extended to parametric survival models. The estimation problem can be represented 
as of minimization

	
− = − , |( )∑L l T f xi i i( ) ( )β δ

where
the l(·) is a log-likelihood function
the model f(xi) is the particular maximum and minimum form presented earlier

We have implemented the algorithm with exponential likelihood. For estimation, it is 
helpful to note that the objective function can also be represented as a weighted sum 
of likelihood observation components of the M linear models
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− = − , |( ),, , , ,∑L h x l T g xj k i l k i i j k i l k( ) ( ) ( )( ) ( ) ( )β δ

where the weight function is an indicator h( j,k)(xi,l(k)) = I{gj,k(xi,l(k)) = f(xi)}. For a fixed 
partition (or weight function) the ordinary maximum likelihood estimates of the 
coefficients are straightforward to calculate. In addition, given current parameter 
estimates one can determine the observations for which {xi: gj,k(xi,l(k)) = f(xi)} to 
update the partition. An intuitive algorithm can incorporate these two facts as two 
steps: (1) estimation and (2) partition (reassignment of observations to groups). This 
algorithm is similar to the K-means algorithm. However, there is no assurance of 
finding a global optimum. In addition, in our experience during early steps of that 
algorithm, if many observations are reassigned to other partitions/groups at a single 
step of the algorithm, the log likelihood may actually decrease from one iteration to 
the next. This convergence issue can be addressed by introducing a step size Δ to 
the updating.

We note that a sufficiently small step size will always lead to an increase in the log 
likelihood. To see this, for the given partition, we calculate the maximum likelihood 
solution. Movement toward that solution will increase the likelihood. Continue until 
an observation is at the edge of two partitions. At that point, the observation can be 
reassigned to the other partition without any decrease in the likelihood. However, 
now one can obtain maximum likelihood estimates given the new partition; then 
movement toward the new least maximum likelihood estimate will again increase the 
likelihood. For computational reasons such a small step size is typically not practical.

We also constrain the number of observations used to estimate any component 
function. For instance, if Rj,k at any step m identifies fewer than Kn observations, then 
the Kn observations with the smallest absolute values of d = gj,k(x) − f(x) are used for 
estimation. Our default is Kn = min{50, max{.05n, 25}}.

28.5.3  Model Building

Model building and variable selection can be implemented using greedy, semigreedy, 
or stochastic searches. We have implemented a simple stepwise algorithm where the 
model is expanded at each step by adding one additional linear component. This lin-
ear component can be added to an existing “minimum” term or as a new linear com-
ponent in the outer “maximum” term. We rewrite the model at the mth iteration as

	
f x u xm

j

J

j
m

m

( ) max ( )= ( ),
=1

where

	
u x g x g xj
m

j j j K j m( ) min ( ) ( )( ) ( )= , ,( )., , ,1 …

The model size can be chosen using a less biased estimate of the prediction error 
than the residual error on the training data set such as k-fold cross-validation (or resa-
mpled averaged k-fold cross-validation), a low bias method for selecting complexity. 
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We have used a computationally cheap generalized cross-validation (GCV) estimate 
with a penalty parameter to acknowledge selection of terms. We use the default pen-
alty of 1.5 per parameter in the model similar in spirit to the default GCV penalty 
used in the MARS algorithm.

We applied the algorithm to the myeloma data and chose an extreme decision 
rule with two variables B2M and ALB. The rule describing patients with the worst 
survival representing 25% of patients is (ALB < 4.5) AND (B2M ≥ 6.7). The median 
survival for this poor prognostic group is 1.7 years versus 3.6 years for the remaining 
patients. The survival curves are given in Figure 28.9 and the sequence of all rules 
is shown in Figure 28.10.

28.6  DISCUSSION

Both the tree-based and data refinement methods describe prognostic groups using 
decision rules which we believe are useful for interpretation and for use in clini-
cal settings. The primary objective of tree-based methods with censored survival 
data is to provide an easy to understand description of multiple prognostic groups of 
patients. By contrast, the peeling method and extreme regression focus on a single 
extreme outcome group. For problems where one wants to control either the pro-
portion of patients in a poor/good prognostic group or the prognosis (e.g., median 
survival or 5 year survival probability), peeling or extreme regression can be a useful 
complement to tree-based methods, which give more discrete answers.
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FIGURE 28.9  Poor prognostic group identified with extreme regression. Median survival is 
approximately 1.7 years and represents approximately 25% of patients the remaining patients 
have a median survival of approximately 3.6 years.
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We have chosen to focus on methods for constructing prognostic groups for pre-
dictor variables that are ordered. For binary data predictors, for example, including 
single nucleotide polymorphism (SNP) data then other methods are available for 
constructing prognostic decision rules. One related method that has been developed 
for constructing prognostic rules is called logic regression, which is a very general 
technique for constructing logic or Boolean rules for regression models using binary 
covariates (Ruczinski et al. 2003). The algorithm uses stochastic searches to avoid 
getting caught in local optima.

Software implementing tree-based methods based on logrank splitting using 
SPLUSTM are available from the first author. Other software has been written 
for tree-based modeling for survival data. The RPART program implements a 
recursive partitioning based on within-node error which includes exponential 
model-based survival trees (Therneau and Atkinson 1997). Software implement-
ing peeling and for extreme regression are available from the first author and on 
CRAN.
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29 Risk Calculators

Donna Pauler Ankerst and Yuanyuan Liang

29.1  INTRODUCTION

As all roads of modern living, from business, to shopping to making friends, now 
run through the internet, it is not surprising that simple-to-use online tools are avail-
able at the fingertips for addressing almost any medical issue, from the simple ques-
tion of “how long am I going to live?” (enter gender and date of birth at the U.S. 
Social Security life expectation calculator (http://www.ssa.gov/oact/population/
longevity.html) to “what is my 30 day risk of postoperative surgical site infection 
after colorectal surgery?” (input some general information about yourself, including 
whether or not you smoke, pull some information from your medical chart, such as 
your albumin level, find out some specifics on your surgery, such as the duration in 
minutes, and enter at the appropriate calculator on http://www.lerner.ccf.org/qhs/
risk_calculator/).

Two reasonable questions that are never asked but should be are how did these 
calculators get built in the first place and can they be blindly trusted? This chapter 
answers the first question in the context of risk calculators in oncology; the answer 
to the second is the same as with anything posted on the internet, no. Anyone can 
post an online calculator on the internet and there is no regulation of the accuracy 
(for an online tool to make an online tool, click on Make Your Own! at the top 
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of the clinical calculator website http://www.lerner.ccf.org/qhs/risk_calculator/). 
Trustworthy online risk calculators should be accompanied by scientific peer-
reviewed articles, which clearly elucidate the protocol by which they were created. 
They should have been constructed based on analyses from large representative 
cohorts and have had generalizability repeatedly confirmed by multiple external 
validations. After giving a reader-friendly tutorial on how risk calculators are built, 
this chapter reviews validation metrics and then provides a summary of some of 
the most currently widely assessed online risk calculators for oncology available 
on the internet.

29.2  BUILDING RISK CALCULATORS

Risk calculators most typically predict the probability of an event, such as having 
prostate cancer on biopsy, developing infection in a specified period of time, or sur-
viving past 5 years after a treatment, though other types of outcomes can also be 
found, such as entire survival curves showing the probability of survival past indi-
vidual times ranging from short- to long-term or velocities of a cancer biomarker. As 
such, the statistical model underpinning most modern risk models is logistic regres-
sion. Therefore this section describes this statistical model; other statistical models, 
such as Cox’s proportional hazards survival model, might be used and the same 
model selection and validation principles would apply. To make the discussion con-
crete, the Prostate Cancer Prevention Trial (PCPT) risk calculator for prostate cancer 
is used continuously throughout as an example.

In 2006, the PCPT risk calculator was posted on the internet (now located at 
several locations including prostate-cancer-risk-calculator.com) in conjunction with 
simultaneous publication of its algorithm in the Journal of the National Cancer 
Institute (Thompson et al. 2006). The calculator was developed based on analysis 
of data from 5519 placebo arm participants who had undergone annual prostate-
specific antigen (PSA) and digital rectal examination (DRE) screening as part of 
the 7 year PCPT. A noteworthy feature of the PCPT was that all participants were 
requested to undergo prostate biopsy, both during the trial when prompted by a high 
PSA or abnormal DRE and at the end of the trial regardless of PSA and DRE find-
ings. Hence the PCPT cohort was unique among the existing prostate cancer cohorts 
in the world in that it was not prone to verification bias, which is the bias that results 
when only selected members of a population are ascertained for disease status, with 
selection determined by risk factors.

For predicting prostate cancer outcome, all potential risk factors measured on 
participants during the trial were identified, including age, family history of pros-
tate cancer in a first degree relative, whether or not a prior prostate biopsy had been 
performed that was negative for prostate cancer, race, ethnicity, and PSA and DRE 
outcomes within 1 year prior to the biopsy result used in the analysis. Participants 
could have multiple biopsies up until either a positive diagnosis or the end-of-study 
required biopsy; only the last biopsy of each participant was used. The PCPT risk 
calculator additionally provides estimates of the risk of high-grade prostate cancer, 
defined as Gleason grade ≥ 7 disease, but this calculation is not discussed further in 
this chapter.
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29.2.1  Logistic Regression

Logistic regression is a method for relating multiple risk factors to a dichotomous 
outcome. In the context of this chapter, the dichotomous outcome is the presence 
or absence of prostate cancer on biopsy, and the multiple risk factors include PSA, 
DRE, family history of prostate cancer, and any other demographic or clinical vari-
ables that might be hypothesized to be associated with prostate cancer. Denoting 
the dichotomous outcome by Y, with Y = 1 indicating prostate cancer and Y = 0 no 
prostate cancer, and collecting potential risk factors into a vector X, the model for 
logistic regression relates the log odds of prostate cancer to the risk factors X through

	

log ,
P Y X

P Y X
X

=( )
− =( )

= + ʹ
1

1 1

|

|
α β 	 (29.1)

where
log denotes the natural logarithm (base e)
α is an intercept
β is a vector of log odds ratios, one for each risk factor assembled in X

To understand why β defines log odds ratios, it is helpful to consider the simple sce-
nario of just one dichotomous risk factor, X = DRE result, where X = 1 if the DRE test 
is abnormal, suspicious for cancer and 0 otherwise. In this case β is a single number. 
Then, based on the logistic model, the odds of prostate cancer based on DRE is
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where exp denotes the exponential function. This equation implies that for the indi-
vidual with DRE outcome X, the probability of prostate cancer equals exp{α + βX} 
times the probability of no prostate cancer. The odds of prostate cancer for individu-
als with abnormal DRE (X = 1) and normal DRE (X = 0) are given by
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respectively. From these expressions, one might expect β to be greater than 0 since 
individuals with an abnormal DRE should have a higher probability, and hence odds, 
of prostate cancer on biopsy than individuals with a normal DRE. The ratio of odds 
for individuals with abnormal (X = 1) to normal (X = 0) DRE describes the magnitude 
by which the odds of prostate cancer change for an individual with abnormal com-
pared to normal DRE:
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Therefore, exp{β} is the odds ratio (OR) for individuals with abnormal compared to 
normal DRE.

For the case of a single predictor X that is continuous rather than dichotomous, the 
OR gives the ratio of odds of outcome Y for a unit-increase in X (to see this compute 
the OR for X = x + 1 compared to X = x). An OR > 1 implies that an increase in the 
risk factor increases the odds of prostate cancer, OR < 1 means it decreases the odds 
and OR = 1 means it has no impact. From the previous relationship, β = log{exp{β}} is 
the log odds ratio (log OR), and values of β >0, <0, and =0 have the same interpreta-
tions as for OR >1, <1 and =1, respectively.

If X were a categorical risk factor with more than two levels, such as race with 
levels African American, Caucasian, and Other, the logistic model can still be fit 
by choosing one level as a reference (say Caucasian) and then returning two odds 
ratios, one for the comparison of each of the remaining levels, African American 
and Other, to the reference. In many aspects such as this logistic regression operates 
similarly as for linear regression. In the general case of multiple risk factors (29.1), 
β = (β1,β2,…,βp) is the vector of respective log ORs for each of the multiple risk fac-
tors comprising X = (X1, X2, …, Xp):

	

log
P Y X

P Y X
X X Xp p

=( )
− =( )

= + + + +
1

1 1
1 1 2 2

|

|
.α β β β�

The interpretation of each parameter βi is the log OR corresponding to a unit increase 
in the respective risk variable Xi, with all other risk variables in the model held 
constant.

Statistical packages return estimates of log odds ratios (β’s), their standard errors, 
and p-values for tests of the null hypotheses that they equal 0 (no effect) versus 
two-sided alternative hypotheses that they do not equal 0. From these approximate 
95% confidence intervals for log ORs can be constructed as (estimated log OR) ± 
1.96 × (standard error); to obtain estimates and confidence intervals for the ORs, take 
the exponent of the estimates and 95% confidence interval bounds, respectively.

29.2.2  Model Selection

The developer of a risk prediction tool, particularly one that plans to post on the 
internet, should want a model that validates well to external populations. Once the 
calculator is in cyberspace, it is open season for validation by third parties, which is 
a good thing for ensuring the most accurate tool is available for the intended users. 
Contrary to what many think, the most-likely-to-validate calculator is not the one 
that contains all possible risk factors. Models that are over-parameterized, containing 
statistically insignificant effects or statistically significant effects that bring little to 
model fit at the expense of a sizable loss to effective sample size, sometimes referred 
to as degrees of freedom, are not going to validate as well as parsimonious models 
that optimize the balance between good fit to the development dataset and likelihood 
to generalize to completely external datasets. For this purpose, a variety of model 
selection techniques are available in statistical packages, many of which automati-
cally sort through large numbers of models. Some of the most commonly used model 
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selection techniques are based on finding the model with the lowest Akaike’s infor-
mation criterion, AIC = −2 × maximized log likelihood + 2 × number of parameters, 
or the lowest Bayesian information criterion, BIC = −2 × maximized log likelihood 
+ log(sample size) × number of parameters (Akaike 1974, Schwarz 1978). The first 
terms of both criteria seek to find the model maximizing goodness-of-fit to the devel-
opmental data set, while the second terms penalize for over-parameterization, with 
the BIC tending to penalize more, and hence selecting smaller models with fewer 
parameters than the AIC on average. Both criteria were developed in the context 
of choosing between two models, with one nested in the other, and are only techni-
cally applicable for this case. Similarly, extensions to their formulas are required for 
consistency in handling non-(independent and identically distributed) data, such as 
that arising from random effects models, or for high-dimensional predictor problems 
as arising in genomic applications. But this has not prevented these techniques from 
being used as approximate methods for selecting among vast sets of possible models 
in a wide array of contexts.

29.2.3  Internal Validation

Internal validation can be used as a final selection criterion for choosing between a 
small number of preselected risk models or for an evaluation of the external valida-
tion potential of a model-building procedure. One of the simpler forms is K-fold 
cross-validation, which randomly splits the data into K approximately equally sized 
sets, Sk, k = 1,…,K. For each Sk, a validation metric VAL(k), which can be any of the 
external validation metrics described in Section 29.3, is estimated using the risk 
model fit on all observations not in Sk and then applied to all observations in Sk as 
the mock external validation sample. The estimate of validation performance is the 
sample average of the K internal estimates:

	

VAL VAL( )=
=
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k

k

K
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Standard errors for VAL can be approximated by standard errors estimated from the 
developmental dataset (Tian et al. 2007).

Alternatively internal validation can be performed using the bootstrap (Efron 
1979). For a large number of K iterations, a random sample of the same size as the 
developmental dataset is drawn with replacement, the risk model is estimated on the 
random sample and evaluated on the same sample to yield VAL(k) for k = 1,…,K. As 
for cross-validation, the average VAL is the validation performance estimate. The 
bootstrap estimate of the standard error of VAL is simply the standard deviation of 
the VAL(k) for k = 1,…,K (Efron 1981).

Internal validation approaches do not account for the model uncertainty in arriv-
ing at the handful of models under consideration, which contributes to their overop-
timistic bias for estimating potential external validation (Copas and Corbett 2002). 
Instead of application to preselected models, an alternative use of internal validation 
is for estimating the validation potential for the entire model-building process. For 
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each split or random draw of the developmental dataset, a model is built from scratch 
on the training set and then evaluated on the test set. The process is more compu-
tationally intensive and results in several different models, one for each iteration, 
but evaluating similarities among the internal models can be useful in identifying 
risk factors that appear often and hence are most likely to be relevant for external 
prediction. Many algorithms for supervised and machine-based learning for high-
dimensional predictor spaces intrinsically perform some type of internal validation 
in the model fitting process, thus integrating automatic model selection into the final 
product, or average over multiply selected models from different internal validation 
iterations. Some examples include boosting, Bayesian ensembles, bootstrap aggre-
gating (bagging), neural networks, support vector machines, and random forests, all 
available in the statistical package R. While internal validation may provide more 
safeguards to protect against over-fitting than pure likelihood-based model selection 
procedures, it is no substitute for external validation on a completely separate dataset 
to that used to build the model, as described in Section 29.3.

29.2.4  PCPT Risk Calculator

As reported in Thompson et al. (2006), the BIC and average cross-validated area 
underneath the receiver operating characteristic curve (AUC) were used to find the 
optimal multivariable logistic regression model relating potential risk factors to pros-
tate cancer outcome on biopsy on data from the 5519 PCPT placebo arm participants 
used to develop the PCPT risk calculator. The AUC is a rank-based measure of how 
well a risk model discriminates prostate cancer cases from controls and is defined in 
Section 29.3. Specifically, fourfold cross-validation of VAL = average(AUC) was used, 
whereby the developmental dataset of 5519 observations was randomly partitioned 
into four subsets, three of size 1380 and one of size 1379, with randomization strati-
fied to keep the proportion of prostate cancer cases between 20% and 23% in each 
subset. For logistic regression, randomization stratified by outcome ensures adequate 
power for each of the training and test sets. Over 50 models, some including two-way 
interactions, were evaluated by a combination of forward, backward, and stepwise 
selection and subjective measures. BIC and cross-validated AUC values were tabu-
lated for each of the models. The five models with the lowest BIC values additionally 
had the highest AUC values. The AUC values fell within one standard error of each 
other and hence were deemed equivalent according to this metric. The model with 
the lowest BIC value contained only main effects and no interactions among risk 
factors. Therefore, this model was selected to form the PCPT risk calculator. This 
example illustrates the subjectivity that is ultimately exercised in choosing a single 
model among several that are empirically indistinguishable under a variety of criteria.

The equation for the final selected multivariable logistic model can be accessed 
on the PCPT risk calculator website and the list of included risk factors and their 
odds ratio estimates are detailed in Thompson et al. (2006). There are four risk fac-
tors included in the model: PSA (OR = 2.34 for logPSA), DRE (OR = 2.47), family 
history of prostate cancer (OR = 1.31), and history of a prior negative prostate biopsy 
(OR = 0.64). All were statistically significant with a p-value less than .001 except for 
family history with a p-value of .002. As predicted, among the 5519 PCPT placebo 
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arm participants, the risk of prostate cancer increased with increasing PSA, abnor-
mal DRE result, and a positive family history of prostate cancer. More of an initial 
surprise at the time was the decreased risk among participants with a prior biopsy of 
the prostate. Upon retrospection, this could be explained as a screening effect.

29.3  EXTERNAL VALIDATION

Most risk models underpinning online calculators have been constructed from anal-
ysis of data from either a single cohort or a multi-institutional study, and hence may 
suffer from lack of power due to small sample size of the developmental dataset, or 
lack of generalizability due to specificity of the cohort. Performance evaluation on 
a completely distinct population is the only proof of principle for whether or not the 
calculator has been validated, so only online calculators built on sound published 
studies and that have been extensively validated using unbiased methods should be 
trusted. A variety of evaluation methods for risk models have been proposed in the 
literature, and these can be grouped into those that measure discrimination, calibra-
tion, or both. Steyerberg et al. (2010) provide a recent review, detangling the differ-
ent objectives of the many metrics currently employed to evaluate risk prediction 
models. To keep the presentation concrete, the PCPT risk calculator for prostate 
cancer on biopsy will be used throughout as an example. In addition, the presentation 
will be limited to the foundational components of discrimination and calibration. 
Composite measures, such as the Brier score and R2 statistics, combine these two 
concepts into a single measure; newer measures focused on clinical interpretation, 
such as net benefit, are direct functions of discrimination metrics (Nagelkerke 1991; 
Vickers and Elkin 2006; Gerds et al. 2008).

The National Cancer Institute dictionary of cancer terms available on the inter-
net defines a marker as a diagnostic indication that disease may develop. In this 
case, a risk prediction for cancer such as output of the PCPT risk calculator can be 
viewed itself as an integrative marker, which merges risk factors, such as family 
history of prostate cancer with other biomarkers, such as PSA and DRE. As seen in 
(29.1) the weighting of the risk factors is linear on the logit scale. Therefore, all the 
machinery developed for evaluating continuous markers of disease can be applied to 
evaluate outputs of risk models with one important exception. Unlike typical mark-
ers of disease, which are biological quantities measured in bodily fluids or tissues, 
risk predictions have been estimated statistically on a developmental dataset, often 
called the training set. Therefore, evaluation of their accuracy on the same training 
dataset is inherently biased, a fact that unfortunately still goes unnoticed in many 
peer-reviewed scientific articles proposing new prediction models. The metrics for 
evaluating prediction models reviewed in this section should be evaluated on exter-
nal datasets, often referred to as test sets, to those used to develop the model, in order 
to obtain an unbiased assessment of performance.

29.3.1  Discrimination

There are two key aspects that characterize the discriminatory ability of a risk pre-
diction for cancer. First, an accurate prediction should be able to “rule in” those who 
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truly have cancer, since missing or delaying a cancer diagnosis can have grave conse-
quences. Second, an accurate prediction should be able to “rule out” persons that do 
not have cancer, removing potential emotional and financial burdens associated with 
more invasive testing. Discrimination metrics concern themselves only with how 
well the risk prediction operates for hard classification: ruling in the cancer cases 
and ruling out the noncancer cases. They report simply the misclassification error 
for cancers and noncancers separately, with no judgment given to how close the risk 
prediction is to the actual risk in the test set, the target of calibration described later. 
A simple exploratory data analysis tool for investigating how well risk probabilities 
discriminate between cancer cases and noncancer cases in an external dataset is to 
plot histograms of the risk predictions for cancer and noncancer cases on the same 
scale and see the extent to which they overlap. Cancer cases should have notably 
higher risks than noncancer cases; if there are a substantial fraction of cancer cases 
with similar estimated risks to the noncancer cases, then discrimination of the risk 
calculator is poor.

Moving from a risk prediction, which is a probability or percent varying from 0% 
to 100%, to a recommendation that rules in a patient as a cancer diagnosis or rules 
out one requires selection of a threshold c such that a risk above c would correspond 
to ruling in cancer and a risk less than or equal to c, ruling out. This is typically not 
easy to do since no single optimal c will minimize all possible errors and error rates 
will vary by cohort. At the end, some subjectivity is required. Dilemmas on thresh-
old selection have predominated diagnostic medicine based on continuous markers 
of disease. For instance, there is an ongoing debate as to whether to lower the 4.0 ng/
mL threshold of PSA for referral to prostate biopsy to 2.5 ng/mL. As a first pass, 
discrimination is evaluated for all possible thresholds c ranging from 0% to 100%.

How successfully the risk prediction rules in cancer cases is termed sensitivity and 
on the test set is estimated by the percent correct diagnoses among the cancer cases:

	
Sensitivity( )

Number of cancer cases with risk
Number of cancer

c
c

=
>

ccases
,

where sensitivity is indexed by c as a reminder that it depends on the user-selected c. 
How successfully the risk prediction rules out noncancer cases is termed specificity 
and is accordingly estimated by

	
Specificity( )

Number of noncancer cases with risk
Number of non

c
c

=
≤

ccancer cases
.

Ideally a good risk prediction tool would be one for which a threshold c exists that 
yields 100% sensitivity and specificity, which, as remarked earlier, is not typically 
achievable in practice. As seen from the formulas, as the threshold c for a positive 
diagnosis would increase on any given test set, the sensitivity would decrease to the 
limit 0% and specificity would increase to the limit 100%. One minus the sensitivity 
is often referred to as the false-negative rate (FNR) and one minus the specificity, the 
false-positive rate (FPR).



537Risk Calculators

The receiver operating characteristic (ROC) curve provides a summary of sensi-
tivity and specificity for all choices of c ranging from 0% to 100%; it typically dis-
plays sensitivity on the y-axis and FPRs on the x-axis, with both axes ranging from 
0% to 100%. The ROC curve has been widely applied in diagnostic medicine as a 
standard summary of diagnostic accuracy since its origination from signal detection 
theory in psychophysics (Swets and Pickett 1982; Hanley 1989; Begg 1991; Zweg 
and Campbell 1993). There are many appealing features of an ROC curve. First, it 
provides a way to visualize the notion of diagnostic accuracy in a straightforward 
way. The higher the ROC curve, the better its capacity for distinguishing cancer 
from noncancer cases. Second, ROC curves are invariant with respect to measure-
ment scales, for example, risks and the logits of risks (29.1) will yield the same 
ROC curve. This makes ROC curves particularly useful when comparing tests on 
completely different measurement scales, for example, for directly comparing risk 
predictions from a model to the leading biomarker in the model. Finally, as rank-
based measures, ROC curves are by definition independent of disease prevalence 
and hence can be applied to the case-control study situation in addition to prospec-
tive studies.

In addition to showing the ROC curve, it is common to present summary points 
on the curve in a table, such as specificities and sensitivities by selected thresholds 
of the risk predictions, such as 5%, 10%, and 25%. Alternatively since many applica-
tions of diagnostic testing in oncology have maximum allowable FPRs, sensitivities 
for thresholds obtaining a range of specificities are reported. Finally, it is common 
to report a summary measure of the ROC curve, as the area under the curve (AUC), 
which in addition, conveniently holds the intuitive definition as the probability that 
a randomly chosen cancer case has a higher risk prediction than a randomly chosen 
noncancer case.

To estimate the ROC curve nonparametrically suppose there are nD risk predic-
tions from the cancer cases among the test set represented as {YDi: i = 1, …, nD} 
and nH risk predictions from the noncancer cases among the test set represented as 
{YHj: j = 1,…, nH}. Set the collection of thresholds to be C = {YDi: i = 1, …, nD; YHj: 
j = 1,…, nH} and for each c ∈ C, estimate the sensitivity and FPR by

	

Sensitivity
( )

FPR( )
( )

,

D

D

H

H

D

H

( )c
I Y c

n

c
I Y c

n

i
i

n

j
j

n

=
>

=
>

=

=

∑

∑

1

1

where I(YDi > c) equals 1 if YDi > c and 0 otherwise and similarly for I(YHj > c). To 
obtain the empirical ROC curve, plot the collection of (sensitivity(c), FPR(c) ) pairs 
for all c ∈ C. The AUC is calculated from the empirical ROC curve by averaging 
sensitivity(c) across c. Alternatively, as the AUC is by definition is P(YD > YH) where 
YD and YH are risk prediction values from randomly selected cases and controls, 
respectively, it can be calculated by the Mann–Whitney U-statistic:
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Since the Mann–Whitney statistic is a function of the Wilcoxon rank sum statis-
tic, it follows that the nonparametric Wilcoxon test can be used for testing the null 
hypothesis that the AUC equals 0.5 (meaning the risk predictions do no better than 
flipping a two-sided coin in distinguishing cancer from noncancer cases) versus the 
alternative that it exceeds 0.5. These statistics and tests are available in most statisti-
cal packages. The standard deviation of the AUC is more complicated to compute, 
requiring either a U-statistic approach (DeLong et al. 1988), or the bootstrap resam-
pling method (Efron and Tibshirani 1993). Other statistical tests, such as tests of the 
null hypothesis that two risk models have the same AUC on the same dataset versus 
the alternative that they differ can also be programmed by extending these methods.

A recent validation of the PCPT risk calculator illustrates discrimination con-
cepts. In 2009 the generalizability of the PCPT risk calculator for potential appli-
cability to other populations than for which it was developed was investigated. The 
PCPT was developed on a relatively healthy population of predominantly Caucasian 
men. Among the entry requirements were that they be 55 years of age or older, have 
a normal DRE exam, and a PSA level less than or equal to 3.0 ng/mL. As part of the 
study they underwent annual screening for 7 years. In contrast, the Early Detection 
Research Network (EDRN) clinical cohort comprised 645 men who had been 
referred to multiple urology practices across five states in the northeastern United 
States and had received a prostate biopsy due to some clinical indication (Eyre et al. 
2009). Some of the men in the EDRN cohort were younger than 55 years of age 
and as Table 1 of Eyre et al. (2009) showed, the cohort differed statistically signifi-
cantly (p < .0001) in distribution of every risk factor compared to the 5519 manned 
PCPT cohort used to develop the PCPT risk model. PCPT risks were calculated for 
each member of the EDRN cohort and compared to the actual clinical outcome on 
biopsy for assessment of discrimination performance of the PCPT risk calculator. 
The PCPT risk calculator demonstrated statistically significant superior discrimina-
tion for detecting prostate cancer cases compared to PSA (AUC = 69.1% compared to 
65.5%, respectively, p-value = .009), and the ROC curve for the PCPT risk calculator 
consistently fell at or above that for PSA for all FPRs, with the greatest difference 
for FPRs less than 25%. For example, the thresholds of the PCPT risk calculator 
and PSA, which obtained a FPR of 20%, were 48.4% and 6.9 ng/mL, respectively 
(Table 2 of Eyre et al. 2009). One can view these as two competing tests for refer-
ral to further intensive diagnostic testing by prostate biopsy, each with equal speci-
ficities: the PCPT risk calculator refers a patient to prostate biopsy if his PCPT risk 
exceeds approximately 50% and the PSA test if his PSA exceeds 6.9 ng/mL. If these 
two diagnostic tests had been implemented in the EDRN population to “rule in” 
patients who should undergo prostate biopsy and “rule out” patients who should not, 
the PCPT risk calculator would have correctly referred 47.1% of the prostate cancer 
cases (sensitivity) and the PSA test 35.4% of the prostate cancer cases. Although bet-
ter than PSA, the PCPT risk calculator would still have missed 50% of the prostate 
cancer cases. Insisting that 80% of prostate cancer cases get caught for both tests 
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would have meant that the thresholds for referral would have had to be lowered, 
to 38.0% and 4.0 ng/mL, for the PCPT risk calculator and PSA test, respectively 
(Table 3, Eyre et al. 2009). But this would have approximately halved the specific-
ity of both tests, to 40.3% for the PCPT risk calculator and 44.1% for PSA. In other 
words, approximately 60% of the men who did not have prostate cancer would have 
been referred to a prostate biopsy unnecessarily (FPR), an error rate unacceptable 
from a public health perspective.

This example illustrates the poor discrimination performance of the currently rec-
ommended diagnostic tools for prostate cancer, as well as the difficulty in comparing 
tests when there is a wide range of possible thresholds. Unfortunately, currently most 
risk tools across oncology also suffer from poor discrimination performance.

29.3.2  Calibration

Calibration concerns itself with how close risk predictions are to the actual risks 
observed in an external population that is used for validation. For example, the PCPT 
risk calculator returns a 23% risk of finding prostate cancer on biopsy for a 65 year 
old Caucasian man with a PSA 2.0 ng/mL, normal DRE, no family history of pros-
tate cancer, and who has never had a prostate biopsy. If the calculator were properly 
calibrated, then among all such 65 year old Caucasian men with a PSA 2.0 ng/mL, 
normal DRE, no family history of prostate cancer, and who have never had a pros-
tate biopsy, 23% of them would have prostate cancer on biopsy. In other words, the 
observed risk would match the predicted risk among homogenous groups defined by 
the same risk profile. Obtaining a proper external validation set large enough to have 
enough men in each risk category to make comparisons quickly becomes infeasible 
as the number of risk factors increases, hence approximations are made by further 
grouping. To illustrate calibration principles, validation of the PCPT risk calculator 
on the EDRN cohort comprising 645 men is again used.

Eyre et al. (2009) reported that the average PCPT risk over the EDRN cohort was 
45.1%, which is fairly high in keeping with the nature of the cohort as elicited from 
multiple urology practices. As a first indication of calibration, the average PCPT risk 
among the cohort should correspond to the actual percent of the cohort that did have 
prostate cancer on biopsy. This percentage was 43.4%, fairly close to the average 
PCPT risk.

Table 4 of Eyre et al. (2009) provided further descriptive analyses of the degree to 
which the PCPT risk calculator calibrated to actual risks for specific subgroups, such 
as for Caucasians, African Americans, men with a positive family history, and men 
with PSA less than 4.0 ng/mL. Across all subgroups the average PCPT risk never 
varied by more than approximately 5 or 6 percentage points from the observed risk 
but there were some subgroups where PCPT risks were better calibrated to actual 
risks than others. For example, among the 47 African American participants in the 
cohort, 51.1% had prostate cancer but the average PCPT risk among these men was 
only 45.4%. A more systematic method for comparing observed to expected risks 
is to tabulate observed risks obtained in deciles of expected risks for the individu-
als of the validation set as done in Table 5 of Eyre et al. (2009). As an example, the 
minimum PCPT risk observed in the EDRN cohort was 4.1% and 67 of the EDRN 
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participants (10% of 675) had PCPT risks below 30%. Among these 67 participants, 
17.9% had prostate cancer on biopsy, a number falling fairly centrally in the interval 
4.1%–30%. An approximation to Pearson’s chi-square goodness-of-fit test recom-
mended by Lemeshow and Hosmer (1982),
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π

π π
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was performed by comparing the observed numbers of prostate cancer cases Oi to 
expected numbers, calculated as the median PCPT risk πi multiplied by the number 
of observations in each group ni, in each of the k = 10 decile groups, and assuming a 
chi-square distribution with k degrees of freedom. This yielded a p-value of .10, not 
rejecting the null hypothesis of a good fit at the .05 level of statistical significance.

A rather intuitive test for what is termed reliability was proposed by Cox (1958) 
and elaborated upon in Miller et al. (1991). The approach requires logistic regression 
of the cancer outcomes (Yi = 0 no cancer, Yi = 1 cancer) on the logit of the predicted 
risks (πi) as covariates for the i = 1, …, N individuals in the validation set:
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A perfect match of predicted to actual risks would occur when α = 0 and β = 1. 
Therefore, a test of the composite null hypothesis H0: α = 0, β = 1 provides an over-
all reliability test for the predictions. More specifically, the intercept α controls the 
calibration of the model, which is most clearly seen when β = 1. When β = 1, α < 0 
implies the predicted risks are too high and α > 0, too low. When β ≠ 1, noting that 
for πi = 0.5:
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one can interpret the intercept α as a calibration measure at πi = 0.5. The slope param-
eter β is referred to as the refinement parameter: β > 1 implies the predicted risks 
do not vary enough, 0 < β < 1 they vary too much, and β < 0 they show the wrong 
direction. Therefore, additional tests of calibration given appropriate refinement, H0: 
α = 0|β = 1, and of refinement given appropriate calibration, H0: β = 1| α = 0, can be 
performed.

In the analysis of Eyre et al. (2009), a logistic regression of observed prostate can-
cer status on logits of predicted PCPT risks was performed for the 645 men compris-
ing the EDRN validation set. While the exact hypotheses tests reported earlier were 
not performed, the intercept from the logistic regression was estimated by −0.014 
with standard error 0.091 and the slope by 1.291 with standard error 0.159. Separate 
95% confidence intervals for these estimates overlapped with 0 and 1, respectively, 
indicating that PCPT risks were reliable estimates of observed risks in the EDRN 
population.
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29.4  EXAMPLES

In this section, examples of some of the currently most widely accessed and vali-
dated online calculators dedicated to oncology are given. The list is not exhaustive 
and the field is rapidly picking up pace, resulting in a continuous stream of new 
online calculators as they are developed and validated.

29.4.1  Early Prostate Cancer Detection

Numerous studies have developed prostate cancer risk calculators based on different 
cohorts of patients from varying geographical locations and amounts of prior pros-
tate cancer screening, such as by prior prostate biopsy. Shariat and Kattan provided 
a comprehensive overview of prostate cancer predictive tools published during the 
period January 1966 to July 2007 (Shariat and Kattan 2009). As alternatives to risk 
calculators, which hide the calculation in a black box, many of the developed pros-
tate cancer tools are the more old-fashioned yet more transparent nomograms. In its 
simplest form, a nomogram is a graph, usually containing three parallel scales grad-
uated for relating two risk factors to the risk, so that when a straight line connects the 
value of the two risk factor scales, the related risk value may be read directly from 
the third at the point intersected by the line. For more than two risk factors, nomo-
grams can be expanded by assigning points to risk factors, followed by summation 
of the points to determine the risk category. The advantages of nomograms are that 
they are model-free, may be used without a computer, and intuitively disclose how 
each risk factor contributes to the risk. Disadvantages are their lack of accuracy com-
pared to model-based risk calculators. Table 29.1 summarizes a list of online prostate 
cancer risk calculators developed in Europe, North America, and Asia over the past 
3 years. Some risk calculators were developed on clinical cohorts with numerous 
patients with high PSA or abnormal DRE, which are clinical indicators of preexist-
ing conditions, such as benign hyperplastic dysplasia (Nam et al. 2007; Chun et al. 
2009; Cao et al. 2011). In contrast, others were developed on large population-based 
studies comprising primarily healthy symptom-free men with lower PSA distribu-
tions and lower abnormal DRE rates (Thompson et al. 2006, 2007; Ankerst et al. 
2008; Liang et al. 2010; Roobol et al. 2010).

As outlined previously, the PCPT risk calculator requires minimal information 
routinely collected in the clinic (age, race, PSA, DRE, family and prior biopsy his-
tory) for predicting the risk of prostate cancer and the risk of high-grade prostate 
cancer and applies to healthy men with no prior cancer diagnosis and no known 
clinical symptoms of benign prostatic disease. Other available risk calculators 
involve more specialized inputs that are not routinely collected, including pros-
tate volume (Nam et al. 2007; Chun et al. 2009; Robool et al. 2010), the urinary 
prostate cancer gene 3 (PCA3) (Ankerst et al. 2008; Chun et al. 2009; Cao et al. 
2011), and %freePSA (Nam et al. 2007), and were developed for men presenting at 
clinics with symptoms. These calculators, intended for more specialized clinical 
populations and with less commonly collected risk factors, are less applicable for 
the general population of healthy older males that might be targeted for prostate 
cancer screening.
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The original PCPT risk calculator has been extended to (1) patients receiving 
finasteride, whereby PSA values are automatically doubled to account for the fin-
asteride effect (Thompson et al. 2007), (2) patients with PCA3 measured, whereby 
a Bayesian updating algorithm is used to update prior PCPT risks (Ankerst et al. 
2008), and (3) patients who know their body mass index (BMI), whereby PSA val-
ues of overweight and obese men are inflated to account for the inverse relationship 
between PSA and BMI (Liang et al. 2010).

Different tools for predicting prostate cancer risk can produce divergent outcomes 
on the same man (van den Bergh et al. 2008). Even in the absence of tools, a recent 
large meta-analysis of several of the largest contemporary prostate cancer screening 
and clinical cohorts revealed significantly different empirical PSA-prostate cancer 
risk profiles that were only partially explainable by characteristics of the cohort, 
such as the amount of prior screening (Vickers et al. 2010). In the PCPT, there were 
few participants with high PSA values exceeding 4.0 ng/mL because of the inclusion 
criterion PSA ≤ 3 ng/mL, whereas in the European Randomized Study of Screening 
for Prostate Cancer (ERSPC) there were fewer participants with lower PSA val-
ues due to the biopsy criterion PSA ≥ 3 ng/mL. Furthermore, both risk calculators 
have incorporated some variables not shared by the other (Table 29.1). Two recent 
studies compared diagnostic accuracy of the PCPT and ERSPC online calculators 
(Cavadas et al. 2010; Oliveira et al. 2011), with both indicating better performance 
of the ERSPC calculator. However, both studies included patients younger than 
55 years (age range = 44–89 and 42–89 years for Oliveira et al. 2011 and Cavadas et 
al. 2010, respectively), who were outside the validated age range for the PCPT risk 
calculator; and both studies had significantly higher PSA distributions than that of 
the PCPT cohort (mean PSA = 12.5 ng/mL for Oliveira et al. 2011; median PSA = 8.12 
and 1.5 ng/mL for Cavadas et al. 2010 and the PCPT cohort, respectively). Perdonà 
et al. (2011) conducted a head-to-head comparison of the PCA3 adjusted PCPT risk 
calculator (Ankerst et al. 2008) to Chun’s nomogram, which also incorporated PCA3 
(Chun et al. 2009), using a cohort of 218 Italian men with PSA < 10 ng/mL. They 
found that the PCA3-adjusted PCPT risk calculator had significantly better discrimi-
nation than Chun’s nomogram, but Chun’s nomogram displayed slightly better cali-
bration in the 10%–40% risk interval. These examples highlight that for selecting 
the appropriate risk calculator, one must consider the properties of the underlying 
populations on which the calculator was developed and validated, what risk factors 
are available, and the notion that one calculator may outperform another on one set 
of criteria but not on another.

29.4.2  Early Breast Cancer Detection

Over the past two decades, a number of statistical models have been developed for 
predicting the risk of carrying a mutation in a high-risk gene such as the BRCA1 or 
BRCA2 mutation, and the risk of developing breast cancer with or without such a 
mutation. Research has been performed to review and compare these models (Amir 
et al. 2010; Gail and Mai 2010).

The most widely known and commonly used model for breast cancer risk assess-
ment is the Breast Cancer Risk Assessment Tool (BCRAT; Anderson et al. 1992; 
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Costantino et al. 1999). Also referred to as the Gail Model 2, it is available online 
at www.cancer.gov/bcrisktool (Table 29.2). The BCRAT estimates a woman’s risk of 
developing invasive breast cancer during the next 5 year period as well as the life-
time risk up to age 90. As a benchmark for comparison, it also computes the 5 year 
and lifetime risk estimates for a woman of the same age who is at average risk for 
developing breast cancer. The BCRAT originated from Gail Model 1, which was tai-
lored to Caucasian women with both invasive and in situ cancers as the outcome (Gail 
et al. 1989) and later extended for applicability to African American women under 
the names CARE model and Gail Model 2 (Gail et al. 2007, Table 29.2). Both Gail 
Models 1 and 2 use six established breast cancer risk factors, namely, age, age at men-
arche, age at first live birth, number of previous breast biopsies, presence of atypical 
hyperplasia on biopsy, and number of affected first-degree relatives, and only Gail 
Model 2 accounts for competing risks of mortality. Gail Model 2 has been calibrated in 
both the general population (Costantino et al. 1999; Rockhill et al. 2001; Chlebowski 
et al. 2007) and in high-risk clinics (Bondy et al. 1994; Amir et al. 2003). Studies 
have shown that although the BCRAT is well calibrated, it has limited discrimina-
tory accuracy (Euhus et al. 2002; Amir et al. 2003; Pankratz et al. 2008; Cummings 
et al. 2009). That is, although a woman’s risk may be accurately estimated, one cannot 
precisely predict which woman will develop breast cancer. In fact, the distribution of 
risk estimates for women who develop breast cancer overlaps with the distribution 
for women who do not (Amir et al. 2010). In addition, the BCRAT has not been vali-
dated for Hispanic women, Asian women, and other minority populations. Advances 
in radiographic technology since the publication of Gail Model 1 led to the emergence 
of mammographic density as a marker for breast cancer. In back-to-back publications 
in the Journal of the National Cancer Institute, Barlow et al. (2006) and Chen et al. 
(2006) published updates to the BCRAT for incorporating mammographic density into 
the breast cancer risk calculation, but these have not appeared online to our knowledge.

Breast cancer may also be caused by inherited gene mutations. Hereditary breast 
cancers account for approximately 5%–10% of all breast cancers (Thull and Vogel 
2004). Several genetic risk models are available to estimate the probability of car-
rying a mutation. The BRCAPRO model computes the likelihood of carrying an 
autosomal dominant mutation in BRCA1 or BRCA2 (Parmigiani et al. 1998) and 
online software is available to compute the overall risk of breast cancer using Bayes 
rule for determining the probability of a mutation given family history (http://www.
cyrillicsoftware.com/support/cy3brca.htm). Because none of the nonhereditary risk 
factors are included in this model, it is likely to underestimate risk in breast-can-
cer-only families (Amir et al. 2010). The BOADICEA model includes a polygene, 
which allows for familial correlation that is not captured by mutations in BRCA1 or 
BRCA2; most recent updates of the model have been described in Antoniou et al. 
(2008). The model has been validated with respect to the outcome of the germline 
mutation only (Antoniou et al. 2004) as well as for predicting breast cancer risk 
(Antoniou et al. 2008). The IBIS model incorporates as risk factors the presence 
of multiple genes of differing penetrance, including the likelihood of BRCA1 and 
BRCA2 mutations, while allowing for a lower penetrance of BRCAu (Tyrer et al. 
2004). Independent calibration studies are still needed to show that these models 
yield reliable risk estimates (Gail and Mai 2010).
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29.4.3  Clinical Calculators

Numerous risk calculators for predicting all sorts of diagnostic, prognostic and treat-
ment outcomes for many types of cancers are available online. The website http://www.
lerner.ccf.org/qhs/risk_calculator very actively collects, posts and hosts calculators, not 
just calculators developed at the hosting institution, the Cleveland Clinic Foundation, 
but from any institution that would like to provide a calculator. The website provides 
a valuable service since constructing and maintaining an online calculator requires 
ongoing technical support, and hence will encourage the expansion of translational 
research through online calculators. Recently, the site has even provided an online tool 
that allows a user to create their own online tool remotely, further promoting the fast 
expansion of online tools in oncology. The scientific publication supporting each calcu-
lator appears at the bottom of the calculator website page, providing some assurance of 
quality and a reference for further investigation of the validity of the calculator.

A few concrete examples of the various types of calculators on the website give 
an idea of the expansive range of predictions provided there. A group of research-
ers at Baylor College of Medicine developed an online risk calculator for predicting 
the probability that a man with benign prostatic hyperplasia would experience acute 
urinary retention or require surgical intervention within 2 years, with or without 
dutasteride therapy (Kevin et al. 2006). Researchers at the International Bladder 
Cancer Nomogram Consortium developed a bladder cancer nomogram for predict-
ing recurrence risk after radical cystectomy for bladder cancer (Consortium IBCN 
2006). Tools are available to predict the risk of colon cancer recurrence after curative 
surgery (Weiser et al. 2008) and disease-specific survival after hepatic resection for 
metastatic colorectal cancer (Kattan et al. 2008). An online nomogram was devel-
oped to predict 5 year disease-specific survival after R0 resection for gastric cancer 
(Kattan et al. 2003). For kidney cancer, there are risk calculators to predict the likeli-
hood of benign, likely indolent, or potentially aggressive pathological findings based 
only on readily identifiable preoperative factors (Brian et al. 2007; Ganesh et al. 
2008), and on postoperative factors (Kattan et al. 2001; Maximiliano et al. 2005; 
Sorbellini et al. 2006). For oral cancer, a nomogram was developed to predict the 
likelihood of locoregional recurrence–free survival after treatment for oral cavity 
squamous cell carcinoma (Gross et al. 2008). For ovarian cancer, a tool is available 
to predict 5 year disease-specific survival for bulky stage IIIC epithelial ovarian 
carcinoma (Chi et al. 2008). For pancreatic cancer, a tool is available to predict 
12, 24, and 36 month survival after resection for adenocarcinoma of the pancreas 
(Brennan et al. 2004). For penile cancer, an online tool is available for predicting 
5 year survival and lymph-node involvement (Michael et al. 2006; Vincenzo et al. 
2006). Continuing efforts are needed to improve and validate these risk calculators 
so they can play a significant role in reducing the burden of cancer.

29.5  HARMS AND BENEFITS

Online risk calculators are a tremendous step forward for translational medicine. 
One of the biggest advantages they concur is to bring top state-of-the art medicine to 
doctors all over the world, including those in remote and isolated corners. Between 



549Risk Calculators

2007 and 2010, the PCPT risk calculator received 51,000 hits and the helpdesk 
received numerous emails from physicians in Europe, the United States, Africa, and 
Australia. Online tools expedite external validation and fast dissemination to the 
scientific community, which can then more quickly direct research to the right areas, 
thus continually improving upon the state of the art. Most tools, including the PCPT 
risk calculator, have their formulas posted on the website for batch validation at 
local sites. Whereas initially the PCPT statistical team had a hand in all external 
validations of the PCPT risk calculator, now they first hear about them in scien-
tific peer-reviewed journals. Online tools and formulas foster unbiased comparisons 
of competing calculators by independent parties, fostering objectivity and creating 
avenues for research for all members of the oncology community.

But online calculators are not without their potential harms. They should never be 
used in place of a doctor’s opinion nor acted upon without consultation with a health 
professional. Responsible websites make this clear, most by requiring acceptance of 
Terms of Use before proceeding to the calculator. It is also incumbent upon respon-
sible sites to provide detailed support on their use as well as a contact, either email 
or hotline, for questions and concerns.

As with any type of information on the internet, there is no standard regulation and 
technical errors can occur, so that the information produced cannot be blindly trusted. 
One early experience with the PCPT risk calculator was an error with European oper-
ating systems, which use a comma in place of a decimal. This resulted in very high-
risk estimates that were incorrect for European-based users. The error was brought to 
the attention of the calculator helpdesk from a treating physician, whose patient had 
requested a check-up from him after calculating his own high risk. One can imag-
ine the huge psychological and then economic burden to this patient, resulting in an 
unplanned and unnecessary trip to the physician, all because of a computer glitch.

Other experiences from the PCPT risk calculator helpdesk have led to the deci-
sion to not report individual risks or confidence intervals exceeding 75%, but rather 
a generic message that the risk exceeds 75%. There are several reasons for this. The 
first is concern for the patient who might think they have a fast certain risk of a bad 
outcome and take an unfavorable action before consulting a physician. A high risk 
can result from a typo on the input, such as accidentally entering 100 ng/mL instead 
of 10 ng/mL for PSA into the PCPT risk calculator. While the PCPT risk calculator 
repeats the input factors along with the estimated risk output, there is no assurance 
that the user double-checks this information. Also a statistical property of logistic 
regression risk estimates is that the confidence intervals narrow for probabilities 
close to the boundaries at 0% and 100%. After an African American patient with 
several other risk factors for prostate cancer emailed the helpdesk in distress that he 
had a 100% percent risk of high-grade prostate cancer, with a confidence interval 
ranging from 100% to 100%, all risk information exceeding 75% was eliminated 
from the PCPT risk calculator website.
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30 Developing a Score 
Based upon Gene 
Expression Profiling 
and Validation

Pingping Qu, John D. Shaughnessy Jr., 
Bart Barlogie, and John J. Crowley

30.1  INTRODUCTION

DNA microarray technology provides methodology for simultaneously measuring 
tens of thousands of gene expression levels within cellular samples. Gene expres-
sion level profiles so produced provide great insight into the initiation, progression, 
and treatment of many types of cancer. In the last decade, gene expression profiling 
(GEP) has indeed become one of the most widely used and powerful tools in cancer 
research, with applications including subtype discovery [1–5], gene identification, 
and outcome prediction [6–12].

Due to the high-dimensional features of microarray data, where the number 
of predictor variables can be tens to hundreds of times greater than the number 
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of samples, traditional multivariate statistical methods may work poorly or prove 
unsuitable for direct application. Consequently, there has been a proliferation of 
new statistical methods designed specifically for handling high-dimensional data. 
A common approach is to select genes by their marginal association with the clini-
cal outcome followed by selecting a predetermined number of top genes, or a subset 
of genes meeting a prespecified threshold of p-value or false discovery rate [13,14]. 
However, oftentimes, the number of individual genes selected in this manner still 
exceeds the sample size, or is too large to obtain reliable estimates in subsequent 
multivariate regression analysis. In such cases, a linear combination of the selected 
genes would reduce the feature dimension to 1 and be useful for prediction pur-
poses. Such dimension reduction techniques are conceptually related to principal 
component analysis (PCA) and partial least squares, among others. On the other 
hand, by limiting the linear combination to only significant gene expression lev-
els, we may facilitate interpretation over PCA. Such a linear combination of top 
selected genes can be a sensible summary score as the genes selected may come 
from the same pathway, or share similar functions in the cell (co-expression and 
co-regulation).

In the statistical literature, class prediction methods based on linear combinations 
of predictor variables include Fisher’s linear discriminant analysis [15], diagonal 
linear discriminant analysis (DLDA) [16], and Tukey’s compound covariate predic-
tor (CCP) [17], among others [18]. In this chapter, we briefly review several such 
linear approaches and propose another powerful linear approach for class prediction 
using microarray gene expression profiles. We focus here on the 2-class prediction 
problems that are frequently encountered in practice, for example, distinguishing 
two cancer subtypes or treatment responders from nonresponders. We then extend 
this approach to handle prognostic prediction problems with survival outcome where 
we are interested in identifying a high-risk group that has very poor prognosis. We 
also discuss a cross-validation procedure for selecting model parameters. Finally, 
we illustrate the methods under discussion with two multiple myeloma (MM) GEP 
data sets.

30.2  MULTIPLE MYELOMA DATA SETS

MM is a malignancy of terminally differentiated plasma cells in the bone marrow. 
The data sets in this chapter come from newly diagnosed MM patients enrolled on 
Total Therapy 2 (TT2) and Total Therapy 3 (TT3) protocols at the Myeloma Institute 
of Research and Therapy of the University of Arkansas for Medical Sciences 
(MIRT/UAMS). These protocols are the foundations of three clinical trials spon-
sored by the National Institute of Health, where TT3 comprises two consecutive 
trials, TT3a and TT3b, with essentially similar treatment.

At diagnosis, GEP utilizing the Affymetrix U133Plus2 microarrays (www.
affymetrix.com) was performed on purified plasma cells prior to therapy initiation. 
The GEP data were then derived and normalized using the Affymetrix Microarray 
Suite GCOS1.1 software, and log2 transformed before subsequent analysis. Clinical 
data available at diagnosis included treatments, serum LDH, albumin, creatinine, 
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hemoglobin, and cytogenetic abnormalities (CA), and at follow-up, treatment 
response and survival time.

30.2.1  Data Set 1

In the first study, we considered a class prediction problem using GEP data. In MM, 
the adverse consequences of CA at diagnosis have been well established and link to a 
more aggressive clinical behavior. Although the prognosis of MM patients has been 
best captured by a GEP-defined 70-gene model [19], metaphase CAs have remained 
an independent adverse effect. The objective here was to examine whether gene 
expression profiles within tumor plasma cells can identify MM-associated CA. We 
will use 350 TT2 cases and 441 TT3 cases as the training and test sets, respectively, 
for whom both GEP and CA data were available. The proportions of patients with 
chromosome abnormalities in the two data sets were 32% and 37%, respectively.

30.2.2  Data Set 2

In the second study, the goal was to build a prognostic model using baseline GEP 
data to predict patient survival. As briefly mentioned in Data Set 1, the GEP 
70-gene model [19] has successfully identified high-risk groups of MM patients, 
though it was originally developed using baseline TT2 GEP data and validated 
on TT3. Our studies have shown that TT3, utilizing a different drug therapy than 
TT2, achieved better clinical outcome. We hypothesized that the prognostic genes 
for TT3 would be quite different from those for TT2, and so our objective was to 
build a prognostic model using TT3a as the training set (n = 275) and TT3b as the 
test set (n = 166). This study utilized GEP data at diagnosis and the duration of 
progression-free survival (PFS).

30.3  GENE SCORING APPROACHES FOR CLASS PREDICTION

Consider a class predication problem. Assume we are given n training pairs,

	
L x y x yn n= { }( , ),...,( , ) ,1 1

which are independent and identically distributed (iid) realizations of a random vec-
tor (x,y) whose distribution is unknown. The feature vector xj = (x1j, …, xpj) ∈ Rp is the 
gene expression profile for the jth sample where j = 1, …, n and yj = {0, 1} coding for a 
binary response describing two classes such as cancer versus normal, or responders 
versus nonresponders to a treatment. Here we assume the gene expression profiles 
have been properly preprocessed, normalized, and log2 transformed. To predict the 
outcome yj’s, we begin by ordering the genes by their univariate association with the 
outcome y using a t-test or a Wilcoxon rank sum test, followed by selecting a prede-
termined number of top genes or a subset of genes meeting a significance criterion 
(e.g., false discovery rate <.05). Classifiers can then be built based on linear combi-
nations of the significant gene expressions of dimension G (usually G ≪ p).
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30.3.1  Discriminant Analysis and Variants

By performing a linear combination, such as z w xi i
i

G
=

=∑ 1
 with w = (w1, w2, …, wG)′ 

representing weights, the G-dimensional expression profile x = (x1, x2, …, xG)′ can be 
transformed to a scalar or score z. In Fisher’s linear discriminant analysis [15], the 
score can be expressed as

	 z x x S x= − ʹ −( ) ,( ) ( )1 0
1 	 (30.1)

where
x̄(k) is the mean expression profile for class k (=1 or 0)
S is the pooled within-class covariance matrix of the gene expression levels

After each gene expression profile is converted to a score, one can calculate the mean 
score of each class z̄(k) = (x̄(1) − x̄(0))′ S−1 x̄(k), where k = 1 or 0, as well as the midpoint 
value c = (z̄(1) + z̄(0))/2. The weights (x̄(1) − x̄(0))S−1 in (30.1) are designed to maximize 
the absolute difference between z̄(0) and z̄(1). To predict the class of a new sample with 
expression profile xnew = (x1, new, …, xG, new)′, first calculate the score, znew = (x̄(1) − x̄(0))′ 
S−1 xnew, and then examine its proximity to the mean scores of class 1 and class 0. 
If it is closer to the mean score of class 1, the new sample will be assigned to class 
1, otherwise class 0. This classification rule is also equivalent to assigning the new 
sample to class 1 if znew ≥ c and class 0, otherwise.

Fisher’s linear discriminant analysis is a classical nonparametric prediction 
method. However, it requires estimating a large number of unknown quantities. For 
microarray data, the number of significant genes G can easily exceed the sample size, 
making estimating S impossible. For example, if G = 10, the number of unknown 
variances and covariances to be estimated for S is 55, which would require the sam-
ple size to be several times larger than 55 to obtain stable estimates of S. This sample 
size requirement is often unrealistic in practical microarray studies.

DLDA is a good alternative where correlations between genes are taken to be 0; 
therefore the only unknown parameters to be estimated are the class means and vari-
ance of each gene. In DLDA, the score is calculated as

	

z
x x

s
xi i

i
i

i

G

=
−

=
∑ ( ) ( ) ,1 0

2

1

	 (30.2)

where
si

2  is the pooled within-class variance estimate for gene i
x̄i(k) is the mean expression level for gene i in class k (=0 or 1)

The rest of the classification method is the same as Fisher’s linear discriminant anal-
ysis. That is, after each gene expression profile in the training set is transformed to a 
score according to (30.2), one can calculate the mean scores corresponding to class 
1 and class 0. A new sample is assigned to class 1 if its score is closer to the mean 
score of that class, otherwise class 0.
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Although the assumption of zero correlations among genes is untrue biologically, 
DLDA has shown to be a useful approach for making predictions on microarray 
data. With three microarray data sets, Dudoit et al. [16] compared several classifica-
tion methods including Fisher’s linear discriminant analysis, DLDA, nearest neigh-
bor classifiers, and classification trees. They found that DLDA and nearest neighbor 
performed as well as the more advanced methods, such as classification trees, while 
Fisher’s linear discriminant analysis performed the worst.

A variant of DLDA is Tukey’s CCP [15] where the weights are the two sample 
t-statistics of the corresponding genes. The score is calculated as

	

z
x x

s n n
xi i

i
i

i

G

=
−

+
=
∑ ( ) ( ) ,1 0

1 01
1 1/ /

	 (30.3)

where nk is the sample size for class k (=0 or 1), and the rest of the classification 
method is the same as Fisher’s linear discriminant analysis or DLDA.

Another scoring approach closely related to DLDA is Golub’s weighted voting 
scheme [2] where the weight for gene i is

	
w

x x

s s
i

i i

i i

=
−
+

( ) ( )

( ) ( )

,1 0

1 0

	 (30.4)

where si(k) is the standard deviation for class k (=0 or 1) with respect to gene i. An 
equal number of most up- and down-regulated genes according to wi in (30.4) are 

taken to form the score z w xi i
i

G
=

=∑ 1
 where G is an even number. The rest of their 

classification method is the same as Fisher’s linear discriminant analysis or DLDA.

30.3.2  Ratio-Based Scoring Approach

Shaughnessy et al. [19] employed a simpler scoring approach for predicting survival 
that can also be applied to class prediction problems. The score is calculated as the 
mean difference in expression levels of the most up- and down-regulated genes

	

z
R

x
R

xi

i R

i

i R

= −+

∈

−

∈+ −
∑ ∑1 1

| | | |
, 	 (30.5)

where R+ and R− denote the gene sets of most up- and down-regulated genes with 
respect to class 1. Since the expression levels xi are log2-based, this is equiva-
lent to calculating a ratio of the geometric mean of up- and down-regulated gene 
expression on the original scale, followed by taking logarithm of base 2. Two 
major differences exist between this score and the scores for discriminant analysis 
and variants: (1) its weights depend on the numbers of up- and down-regulated 
genes rather than the t-statistic or the like, and (2) its value does not change as the 
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expression profile on the original scale is multiplied by a constant. This second 
feature is attractive when expression profiles from the same biological sample 
processed at two laboratories are not exactly the same but roughly proportional to 
each other—the ratio-based approach has a better chance of producing the same 
scores than the other approaches. It combines expression levels from the most 
up- and down-regulated genes in a simple and intuitive manner. Higher scores 
favor y = 1 and lower scores favor y = 0; thus, it is logical to assign samples with 
higher scores to class 1 and lower scores to class 0. To define a cut point c for class 
predictions, one can use the midpoint of class mean scores such that a new sample 
is assigned to class 1 if its score is greater than c, otherwise 0. Our experience has 
shown that sometimes a more powerful approach is to use an optimal cut point on 
the basis of maximum likelihood. We refer to the former and latter ratio-based 
approaches by GMR.m and GMR.p (where m in GMR.m stands for midpoint and 
p in GMR.p stands for p value), respectively.

30.3.3  Prediction Accuracy Assessment

Common measures to evaluate the accuracy of a prediction model include proportion 
of misclassified samples, sensitivity, and specificity. Accurate estimation of predic-
tive accuracy is particularly important in class prediction with microarray data. As 
in most microarray studies, the majority of genes are not differentially expressed 
and do not contribute to prediction. Overfitting can be a problem where a prediction 
model fits to noise that is specific to a training set, resulting in perfect fitting on the 
training set but validation failure on independent data sets.

Ideally, estimation of predictive accuracy should be conducted on a large inde-
pendent test set. However, in practice, such data sets may not exist, neither may it be 
feasible to split all available data into large training and test sets. In this case, resa-
mpling techniques such as cross validation and the bootstrap are useful methods 
for evaluating the performance of a predictive model (e.g., see Efron and Tibshirani 
[20]). A key concept is to avoid building and evaluating a classifier based on the 
same data set, leading to so called resubstitution error estimate, which is down-
wardly biased. In cross validation, for example, every sample is predicted using 
other samples in the same data set, and the final error estimate is a nearly unbiased 
estimate for the true error. The bootstrap can be thought of as a smoothed ver-
sion of cross validation. See Molinaro et al. [21] for a comparison of resampling-
based methods for error estimation, and Boulesteix et al. [22] for a review of these 
methods.

30.3.4  Illustration Using Data Set 1

We first ranked genes by the two-sample t-statistic on the training set (n = 350) 
and selected the 200 most significant genes to best discriminate between samples 
with and without chromosome abnormalities. Among the 200 genes, 150 were 
up-regulated and 50 were down-regulated with respect to chromosome abnormali-
ties (with false discovery rate < .001). Using the top 4, 8, …, 200 genes we built 
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classifiers using DLDA, CCP, and the two ratio-based scoring methods GMR.m 
and GMR.p. For Golub’s method (Golub), we reordered the genes by Golub’s 
weights (30.4) and selected the top 4, 8, …, 200 genes by Golub’s criterion to com-
pute the scores. Fisher’s linear discriminant analysis was not implemented due to 
its large sample size requirement. To compare the performance of DLDA, CCP, 
Golub, and the ratio-based methods, we estimated their misclassification errors by 
10-fold cross validation on the training set, followed by independent validation on 
the test set (n = 441).

To reduce variation in the error estimates due to choice of data partition, we 
repeated 10-fold cross validation 10 times and took the averaged error estimate 
as the final estimate. This method, denoted by CV10, was examined and recom-
mended by Braga-Neto and Dougherty [23]. The final estimated error rates are 
shown in Figure 30.1 using the top 4, 8, … and 200 genes for each method based 
on the training set. All of the methods behaved similarly in that the error esti-
mate curves begin to drop and flatten as more than approximately 20 genes were 
used to form the scores. The maximum likelihood ratio-based approach GMR.p 
gave the lowest error estimates regardless of the number of genes used, while the 
midpoint ratio-based approach gave the highest error estimates when fewer than 
approximately 100 genes were used and performed closely to the other nonratio-
based approaches when more than 100 genes were used. Figure 30.2 presents the 
box plots of all of the error estimates from top 4, 8, … and 200 genes for each 

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20

CV
10

 er
ro

r r
at

e e
st

im
at

e

DLDA
CCP
Golub
GMR. m
GMR. p

0 50 100 150 200
Number of top genes

FIGURE 30.1  (Based on training set of data set 1) Misclassification error rate estimates 
obtained by using CV10 and the top 4, 8, …, and 200 genes on the training set with DLDA, 
CCP, Golub’s weighted vote method (Golub), and ratio-based approaches, where GMR.m and 
GMR.p refer to the midpoint and maximum likelihood methods for determining cut points, 
respectively.
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method. Table 30.1 summarizes the average error estimates over the top 20, 24, 
…, 200 genes, excluding those from the top 4, 8, 12, and16 genes due to their 
relatively higher estimates, with the GMR.p approach having the lowest error esti-
mate (∼26.3%). When validating the classifiers on the independent test set (n = 441), 
we found that both of the ratio-based methods as well as the CCP method had 
lower error estimates than the DLDA and Golub methods (Table 30.2), and that the 
GMR.m approach gave even lower error rates than the GMR.p approach when more 
than 50 genes were used (Figure 30.3).
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FIGURE 30.2  (Based on training set of data set 1) Box plots of all CV10 error rate esti-
mates using the top 4, 8, …, and 200 genes with DLDA, CCP, Golub’s weighted vote method 
(Golub), and ratio-based approaches, where GMR.m and GMR.p refer to the midpoint and 
maximum likelihood methods for determining cut points, respectively.

TABLE 30.1
Based on Training Set of Data Set 1

DLDA CCP Golub GMR.m GMR.p

Error rate estimate 0.278 0.282 0.280 0.287 0.263

Average error rate estimates obtained using the top 20, 24, …, 200 genes by 
CV10 on the training set with diagonal linear discriminant analysis (DLDA), 
compound covariate predictor (CCP), Golub’s weighted vote method 
(Golub), and ratio-based approaches GMR.m and GMR.p, where GMR.m 
and GMR.p refer to the midpoint and maximum likelihood methods for deter-
mining cut points, respectively.
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30.4  EXTENSIONS TO PROGNOSTIC PREDICTION

In recent years, microarray data have also been linked to survival in clinical trials 
and long-term observational studies [24–29]. The objective in these cases is to select a 
small subset of genes, out of tens of thousands, and build a prognostic model to predict 
patient survival. Cox proportional hazards model [30] can be used to order and select 
genes that are significantly associated with survival in a univariate fashion. Given that, 
for example, a total of G genes have been identified as significant, one can construct a 
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FIGURE 30.3  (Based on test set of data set 1) Error rates obtained from the test set when 
using the top 4, 8, …, 200 genes derived from the training set, with DLDA, CCP, Golub’s 
weighted vote method (Golub), and ratio-based approaches, where GMR.m and GMR.p refer 
to the midpoint and maximum likelihood methods for determining cut points, respectively.

TABLE 30.2
Based on Test Set of Data Set 1

DLDA CCP Golub GMR.m GMR.p

Error rate estimate 0.309 0.301 0.341 0.291 0.301

Average error rate estimates obtained using the top 20, 24, …, 200 training 
genes to make predictions on the test set with diagonal linear discriminant 
analysis (DLDA), compound covariate predictor (CCP), Golub’s weighted 
vote method (Golub), and ratio-based approaches GMR.m and GMR.p, 
where GMR.m and GMR.p refer to the midpoint and maximum likelihood 
methods for determining cut points, respectively.
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prognostic index or score in analogy to compound covariate or the ratio-based score 
described in Section 30.3. Such a score can then be used to classify patients into high- 
and low-risk groups, for example, patients with scores greater than the median are 
assigned to the high-risk group, otherwise low-risk group, as we saw earlier.

However, in some cases, it is desirable to identify a high-risk group with very poor 
prognosis. Using median score as a threshold may not be optimal for that purpose. 
Here we consider a 10-fold cross-validation approach that simultaneously selects the 
number of genes for calculating a score along with an optimal threshold to dichoto-
mize the score. The details of this procedure are presented in Table 30.3. We illus-
trate it by using data set 2 as described in Section 30.2.

30.4.1  Illustration Using Data Set 2

We began by ordering genes with univariate Cox regression analysis. Out of 54,675 
Affymetrix U133Plus2 probes, 304 were significantly associated with PFS with 
p-value <.0001. To select an optimal subset of these probes, we carried out 10-fold 
cross validation following the procedure described in Table 30.3 to select the best 
combination of genes for calculating a ratio-based score, and a threshold for dichoto-
mizing that score. We considered the top 5, 10…and 100 genes and examined the 
10th through 90th percentile with increments of 1. For every combination, all of the 
training samples were predicted to belong to either the high- or low-risk group by 
using some other samples on the training set. Figure 30.4 shows the log rank statis-
tics comparing all of the predicted high- and low-risk groups after cross validation; 
the best prognostic score used 75 genes to compute a score and dichotomized at 
the 84th percentile. The Kaplan–Meier survival curves [31] of the high- and low-
risk cross-validated groups were presented (Figure 30.5) according to the best score. 
After cross validation, a final score was calculated based on the entire training set 
with the top 75 genes dichotomized at the 84th percentile equaling −0.27.

TABLE 30.3
Tenfold Cross Validation for Selecting Gene Complexity and Optimal 
Threshold
Divide the training set randomly into 10 parts of approximately equal size. Given (m,q), where m and q 
are in reasonable ranges, repeat the following steps:

	 1.	 Use nine parts of the data to order genes and calculate the ratio-based gene score based on the top 
m genes as well as the qth percentile of this score, which we denote by w.

	 2.	 Predict the risk group label in the remaining part by calculating the gene scores using the m genes 
identified in step 1 and dichotomizing at w, so that those with scores larger than w are assigned to 
the high-risk group (=1), otherwise low-risk group (=0).

	 3.	 Repeat step 1–2 10 times. Every sample in the training set will now be assigned a label of 0 for 
low risk or 1 for high risk. Compute the log rank statistic between group 0 and 1 and denote it by 
logrank (m,q).

Select (m*,q*) such that ( *, *) arg min
( , )

( , )m q
m q

m q= ( )logrank
.
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To assess the predictive ability of this score, we validated it on the independent 
test set (n = 166). For each sample in the test set, we computed its ratio-based score 
based on the 75 genes and dichotomized it at −0.27 so that patients with higher scores 
were classified as high risk, otherwise low risk. Figure 30.6 shows the Kaplan–Meier 
curves of the predicted risk groups in the test set. Approximately 22% (36 out of 166) 
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FIGURE 30.4 (See color insert.)  A heatmap of log rank statistics comparing survival dis-
tributions of the high- and low-risk groups predicted by cross validation (based on training set 
of data set 2) when using the top 5, 10, …, 100 genes (represented in rows) to calculate scores 
and dichotomize from the 10th through 90th percentile with increments of 1 (represented 
in columns). The color bar on the right shows the colors representing the log rank statistics 
ranging from 0.3 to 47.55, that is, lighter colors correspond to higher log rank statistics. Each 
black circle in the heatmap indicates the percentile to achieve maximum log rank statistic for 
the corresponding gene score, and the single circle highlighted in bold indicates where the 
maximum log rank statistic was achieved among all.
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groups defined by the optimal 75-gene-84th-percentile score from cross validation on the 
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of the patients were classified as high risk with 53% survival probability at 2 years 
after treatment, as opposed to the remaining low-risk patients with 86%. The sur-
vival differences between the two risk groups were highly significant by the log rank 
test [32] with p value < .0001.

30.5  CONCLUDING REMARKS

In this chapter, we discussed some linear approaches to compute a gene score for 
class and prognostic predictions using microarray GEP data. We focused on a 
ratio-based scoring approach and illustrated it with two myeloma data sets. Using 
data set 1, we compared two ratio-based methods with several other classifiers, 
including DLDA, CCP, and Golub’s method, finding that the ratio-based methods 
were comparable to the other methods in terms of error rate estimates by cross 
validation. More data sets would have to be used in order to evaluate their per-
formance thoroughly. Using data set 2, we demonstrated how to employ a cross-
validation approach for simultaneously identifying an optimal subset of genes and 
an associated threshold to classify patients into good and bad prognosis groups. In 
both examples, we tested the methods on independent data sets, as validation is an 
important step when using microarray data to build classifiers. With the number 
of genes tens to hundreds of times greater than the number of samples, overfitting 
can be a serious problem with microarray-based classifiers. The clinical usefulness 
of a microarray-based classifier can only be established after tests on independent 
data sets.

There are many factors involved in the establishment of a clinically useful classi-
fier. Both training and test sets should be based on sufficiently homogeneous groups 
of patients [33]. An optimal situation occurs when training and test sets come from a 
single large clinical trial, as patients in such trials are recruited with strict criterion 
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FIGURE 30.6  Kaplan–Meier estimates of PFS distributions for the high- and low-risk 
groups, predicted on the test set of data set 2, using the optimal 75-gene-84th-percentile score 
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and therefore have a good chance of being homogeneous. However, validation can 
fail if the distribution of a test set is very different from that of the training set. 
The more similar training and test sets are, the more accurate validation will be. 
Sometimes when a test set is significantly different from the training set, one may 
need to seek an understanding of the differences and seek resolution. For example, 
perhaps the genes are predictive but a new cutoff needs to be redefined to accom-
modate the changes in new data, or perhaps certain confounding variables exist and 
need to be adjusted for, and so on. For more discussion on validation considerations 
see Boulesteix et al. [22].
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31 Analysis of DNA 
Microarrays

Shigeyuki Matsui and Hisashi Noma

31.1  INTRODUCTION

Cancer is a highly complex disease caused by altered DNA. Some of these altera-
tions may be inherited from parent by offspring and some somatic resulting from 
mutational and epigenetic events (Ponder 2001). The genomics of cancer cells are 
studied in order to characterize the disease at the molecular level, identify new thera-
peutic targets, and develop new molecular diagnostics for optimizing individual-
ized treatment. The advent of high-throughput DNA microarrays, which allow the 
simultaneous measurements of the level of expression for tens of thousands of genes 
present in a collection of cells, has greatly stimulated these studies.

From previous clinical studies with microarrays, we can identify three types 
of objectives: class discovery, gene identification, and prediction. Class discovery 
refers to discovering novel subclasses of cancer based on tumor gene expression 
profiling (Alizadeh et al. 2000; Bittner et al. 2000; Perou et al. 2000). For example, 
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Alizadeh et al. (2000) identified two previously unrecognized subgroups of diffuse 
large B-cell lymphoma by hierarchical clustering of patients based on gene expres-
sion profiling, and interestingly, these subgroups had different outcomes after chemo-
therapy. Gene identification refers to selecting genes that are differentially expressed 
across predefined classes (Hedenfalk et al. 2001; Sotiriou et al. 2003; Setlur et al. 
2008). Hedenfalk et al. (2001) identified different groups of genes expressed by 
breast tumors with BRCA1 mutations and those with BRCA2 mutations. Prediction 
corresponds to developing expression-based prediction systems for diagnostic clas-
sification (Golub et al. 1999; Setlur et al. 2008; Den Boer et al. 2009), prognostic 
prediction (Rosenwald et al. 2002; van‘t Veer et al. 2002; Shaughnessy et al. 2007), 
and treatment selection (Ayers et al. 2004; Takata et al. 2005). Golub et al. (1999) 
developed predictors for classification of acute leukemia arising from lymphoid and 
myeloid precursors. Shaughnessy et al. (2007) developed a gene expression model 
for predicting high-risk multiple myeloma. Ayers et al. (2004) developed a predictor 
of complete pathologic response to neoadjuvant chemotherapy for breast cancer.

In this chapter, we shall focus on statistical issues in the analysis of microarray 
data from cancer clinical studies. After providing a summary of initial processing 
of microarray data in Section 31.2, we outline statistical methods for class discov-
ery, gene identification, and prediction in Sections 31.3 through 31.5, respectively. 
Concluding remarks appear in Section 31.6.

31.2  INITIAL DATA PROCESSING

Microarrays measure the abundance of messenger RNA (mRNA) transcripts pres-
ent in a cell or set of cells. In many microarray experiments, the mRNA extracted 
from a set of cells is reverse-transcribed into fluorescently labeled complementary 
DNA (cDNA). When the labeled cDNA is placed on a solid surface on which spe-
cific DNA probes composed of nucleotide sequences are immobilized, it will tend 
to form hydrogen bonds with or hybridize to the probes with sufficient sequence 
complementarity. The amount of cDNA bound to each probe is quantified by 
detecting the intensity of fluorescence of each probe on the array using a fluores-
cent scanner. The quantified intensity is considered a measure of the abundance 
of mRNA transcripts or gene expression level for each probe on the array. For an 
introductory overview of biological and technical aspects of microarray assays, see 
Nguyen et al. (2002).

For spotted cDNA arrays, cDNA molecules from a sample of interest and a refer-
ence sample are labeled with two different fluorescent dyes, most commonly cyanine 
molecules Cy 3 (green) and Cy 5 (red). After co-hybridization of two pools of cDNA, 
a measure of abundance of the corresponding probe transcripts in the sample of 
interest relative to the reference sample is obtained. More specifically, after image 
analysis that summarizes the foreground and background intensity measurements 
in each of the two channels for each probe, a log ratio of the background-corrected, 
foreground intensities in the two channels is calculated for each probe (Yang et al. 
2001). The raw data of the relative intensity are processed to remove systematic 
variation due to various technical reasons, including differential incorporation and 
emission properties of the recording device, print-tip variation and wear, and uneven 



571Analysis of DNA Microarrays

hybridization of the cDNA (Kerr and Churchill 2001a; Dudoit et al. 2002b), to ensure 
that the location and spread of intensity levels across dyes and arrays are comparable. 
This process is called normalization. A number of normalization methods have been 
proposed, including global normalization and locally weighted scatterplot smoother 
(Bilban et al. 2002; Yang et al. 2002; Park et al. 2003).

Affymetrix GeneChip arrays use a photolithograph approach to synthesize oligo-
nucleotide probes directly on the silicon surface of the array. A GeneChip array con-
tains several oligonucleotide probes to measure the abundance of a target sequence, 
the perfect match (PM) probes and an equal number of internal controls, the miss 
match (MM) probes. The set of a PM–MM probe pair for a target sequence is called 
a probe set. A single fluorescently labeled sample is hybridized to the array and 
scanned to obtain an absolute measure of the fluorescence intensity for each probe. 
In order to obtain a summary measure of intensity per probe set, various methods 
have been developed. As the Affymetrix default, the MAS5.0 (Affymetrix 2002) 
quantifies this intensity from increased binding to PM over MM probes to adjust 
for the effect of non-specific binding under the assumption of MM measuring the 
expected background on PM probes. It calculates a robust mean of background cor-
rected, log transformed intensities using Tukey’s biweight estimation. However, there 
is considerable debate over the assumption that MM probes detect only non-spe-
cific hybridization, and several authors have proposed model-based methods using 
PM-only measurements to estimate a common mean background for all probes 
through information sharing across probes on an array (Huber et al. 2002; Irizarry 
et al. 2003; Wu et al. 2004). The robust multiarray average (RMA) (Irizarry et al. 
2003) is a popular one for such methods. To make the intensity measures across 
arrays comparable, many normalization methods have been proposed. The simplest 
kind of normalization is to scale the arrays so that each array has the same mean 
or median probe intensity, as performed in MAS5.0. Quantile normalization is an 
expansion of these global methods and makes the empirical distribution of intensi-
ties constant across arrays after normalization (Bolstad et al. 2003). All these meth-
ods assume that the variation across arrays is affected by only technical factors, not 
true biological effects. An alternative approach if this assumption is not appropriate 
is to consider normalization based on a set of probes, such as housekeeping genes 
or some least variant genes, which is expected to be uniformly expressed for the 
samples under study (Li and Wong 2001; Calza et al. 2008). The initial data pro-
cessing methods for oligonucleotide arrays are reviewed by several authors (Irizarry 
et al. 2006; Wu 2009).

Normalized log-ratios from two-color spotted cDNA arrays or normalized log 
signals from oligonucleotide arrays are considered the gene expression levels that 
will be subject to further statistical analysis for class discovery, gene identification, 
or prediction.

31.3  CLASS DISCOVERY

This section discusses unsupervised clustering and dimension reduction techniques 
for exploring a group of samples with similar gene expression profiles or a group of 
co-regulated genes in the same pathway to discover gene function.
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31.3.1  Clustering

The goal of clustering is to group together objects (genes or samples) in such a way 
that expression patterns within a group are more alike than patterns across groups. 
Two main types of clustering algorithms can be distinguished: hierarchical cluster-
ing and partitioning clustering (Gordon 1999).

Hierarchical clustering works by producing a series of successively nested clus-
ters, organizing a tree structure or dendrogram, for a prespecified matrix of pair-
wise dissimilarity or distance between objects (such as one minus the correlation 
coefficient between two objects), and distance between clusters that is specified by 
a linkage method (such as average, complete, or single linkage) (Eisen et al. 1998). 
Agglomerative clustering operates by iteratively joining closest objects and groups 
of objects, whereas divisive clustering operates by iteratively dividing up groups 
of objects into subgroups. Agglomerative hierarchical clustering is the most widely 
applied clustering algorithm for class discovery, mainly because of its simple imple-
mentation. However, a major limitation of hierarchical clustering derives from its 
sequential nature, which may result in a high risk of clustering on noise. For example, 
agglomerative clustering cannot recover from bad merges that occur at earlier stages 
and the error is magnified at later stages that handle larger clusters. This problem is 
exacerbated in microarray data where there are a large number of noisy variables.

Partitioning clustering algorithms produce a single collection of non-nested 
disjoint clusters for a prespecified number of clusters and initial partitioning. 
The k-means clustering (MacQueen 1967), k-medoids clustering (Kaufman and 
Rousseeuw 1990), and self-organizing maps (SOM) (Tamayo et al. 1999) are such 
algorithms that have been applied to microarray data. For a given number of clusters 
k and initial cluster centers, k-means clustering partitions the objects so that the sum 
of squared distances of each object to its closest cluster center is minimized. The 
k-medoids clustering uses medoids instead of centroids for the centers of clusters, 
which is more robust to outliers than k-means. SOM is a neural network procedure 
that can be viewed as a constrained version of k-means clustering that forces the 
cluster centers to lie in a discrete two-dimensional space to aid interpretation. An 
advantage of partitioning clustering is that, through utilizing the prior information 
on the number of clusters, they reduce the risk of clustering on noise, a weakness of 
hierarchical clustering, although one does not typically know the number of clusters 
and the prior information can be incorrect. Partitioning clustering is less computa-
tionally demanding than hierarchical clustering, which is particularly advantageous 
for clustering thousands of genes. An important practical issue is how to choose the 
initial partitioning, which can largely impact the final result. It is generally recom-
mended that a partitioning procedure is repeatedly run for different sets of initial 
cluster centers and the partition that minimizes the within-cluster sum of square is 
chosen for a given number of clusters.

Unlike the clustering algorithms described earlier, model-based clustering 
assumes some underlying probabilistic model for microarray data, which provides 
a rigorous statistical framework for the clustering problem. Finite mixture models 
are commonly assumed, where each cluster is represented by a probability distri-
bution (typically, Gaussian) component and the data are viewed as a realization of 
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a mixture distribution of the components (Yeung et al. 2001a; Fraley and Raftery 
2002; McLachlan et al. 2002; Pan et al. 2002; Pan 2006).

In clustering microarray data, some dimension reduction is warranted to reduce the 
impact of noise genes on the clustering result and to aid interpretation. One common, 
but heuristic approach is filtering out genes with low intensity or minimal variation 
across samples prior to clustering. Another approach is to apply dimension reduc-
tion techniques, such as principal component analysis (PCA) (see Section 31.3.2), 
before clustering (Ghosh and Chinnaiyan 2002). A different approach is to assign 
objects different weights in hierarchical clustering, so that the algorism preferen-
tially clusters on subsets of the attribute objects (Friedman and Meulman 2004). In 
the model-based clustering, the problem can be formulated as a variable selection 
problem within the Bayesian approach (Liu et al. 2003; Tadesse et al. 2005) and 
penalized likelihood approach (Pan and Shen 2007). For gene clustering, a compo-
nent representing a set of noise genes can be introduced in model-based clustering 
(Fraley and Raftery 2002). See Thalamuthu et al. (2006) for a comparison study of 
some gene clustering methods for microarray data.

When the gene function related to a particular phonotype is of interest, it is 
common to explore clustering of genes selected from a gene identification analysis 
described in Section 31.4 for the phenotype. However, clustering of samples using 
a set of genes correlated with a phonotype will usually result in clusters associated 
with the phenotype. This supervised clustering of samples has been erroneously 
used as evidence on the clinical relevance of the identified clusters (Dupuy and 
Simon 2007).

Biclustering or two-way clustering, simultaneously, cluster genes and samples 
with the goal of identifying groups of genes involved in multiple biological activities 
in subsets of samples. A simple two-way clustering could be found by reordering 
the genes and samples after independently clustering them, such as available in the 
Eisen software (Eisen et al. 1998). More complex methods include coupled cluster-
ing (Getz et al. 2000), block clustering (Alon et al. 1999), the plaid model (Lazzeroni 
and Owen 2002), and Bayesian biclustering (Sheng et al. 2003). See Madeira and 
Oliveira (2004) for a review of biclustering algorithms.

Objective assessment of the validity of clustering is particularly important in 
clustering high-dimensional data. A number of estimation methods for determin-
ing the number of clusters have been proposed in statistical literature (Milligan and 
Cooper 1985), although it is even more difficult for clustering high-dimensional data 
(Yeung et al. 2001b; Thalamuthu et al. 2006). In model-based clustering with under-
lying mixture models, the number of clusters (components) can be selected on the 
basis of model selection criteria such as the Bayesian information criterion (BIC) 
and the integrated classification likelihood (ICL) criterion (McLachlan et al. 2004). 
Dudoit and Fridlyand (2002) proposed a prediction-based resampling method to esti-
mate the number of clusters. Other prediction-based resampling methods include a 
jackknife-type method (Yeung et al. 2001b) and a stability-based validation (Lange 
et al. 2004). Another aspect of cluster validation is the assessment of stability or 
reproducibility of individual clusters. In data perturbation methods, artificial ran-
dom noise is added to the observed data, the data are re-clustered, and the differ-
ence with the original clustering results is evaluated (Kerr and Churchill 2001b; 
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McShane et al. 2002). A review of cluster validation methods for genomic data is 
given by Handl et al. (2005).

31.3.2  Alternative Dimension Reduction Techniques

PCA, sometimes referred to as singular value decomposition, and multidimensional 
scaling (MDS) are prototype dimension reduction techniques that have been widely 
used in microarray studies (Alter et al. 2000; Bittner et al. 2000; Yeung and Ruzzo 
2001; Ghosh and Chinnaiyan 2002). However, a drawback to PCA is that summary 
variables, which are the orthogonal linear combinations of a potentially large numbers 
of genes showing the greatest variability across samples, do not necessarily have a 
clear biological interpretation. In addition, the use of first few principal components in 
clustering may destroy the clustering structure of the original data (Yeung and Ruzzo 
2001), and there is generally no guarantee that the data will cluster along the dimen-
sions identified by these techniques when there are a large number of noisy variables.

31.4  GENE IDENTIFICATION

Screening for differentially expressed genes among different clinical subtypes or 
prognostic classes is often a primary aim in microarray experiments in clinical 
oncology. Typically separate statistical tests are made for each gene for comparing 
expression levels between two phenotypic classes. To be specific, for gene j from a 
pool of m genes, we perform a two-sample t-test with a type I error rate α. For the 
two-sample t-statistic Yj, the null hypothesis on gene j is rejected if |Yj| ≥ Cα, the cor-
responding threshold for α. Suppose that, of the m tests, m0 are true null and the rest 
m1 are non-null. The outcomes of the m tests are summarized in Table 31.1. However, 
examination of many hypotheses greatly increases the number of false positives.

31.4.1  Multiple Testing

One of the multiple testing approaches applied in earlier microarray experiments is 
to control the probability of at least one false positive in multiple testing, that is, the 
family-wise error rate (FWER). (Westfall and Young 1993). The Bonferroni proce-
dure is the simplest approach. More efficient procedures can be developed by using 
multivariate permutation methods to take correlation between genes into account 

TABLE 31.1
Outcomes of Multiple Testing

True Hypothesis Reject H0 Accept H0 Total

H0 is true R0(Cα ) m0 − R0(Cα ) m0

H1 is true R1(Cα ) m1 − R1(Cα ) m1

Total R(Cα ) m − R(Cα ) m
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(Westfall and Young 1993; Dudoit et al. 2003). However, the criterion of controlling 
the FWER is typically very conservative for testing a large number of hypotheses.

Another criterion is based on the false discovery rate (FDR) (Benjamini and 
Hochberg 1995), defined as the expected proportion of false positives among the 
genes declared significant or the expected value of false discovery proportion, 
FDR = E{FDP}, where FDP = R0(Cx)/R(Cx), using the notation in Table 31.1. When 
R(Cx) = 0, the FDP is defined to be 0, since no null hypothesis is rejected. The FDR 
offers a less stringent multiple testing criterion than the FWER, thus more acceptable 
for microarray gene screening. Benjamini and Hochberg (1995) proposed a proce-
dure to control FDR to be less than or equal to the prespecified level, γ say, by find-
ing a data-dependent thresholding rule. In this procedure, for the ordered p-values 
of the m tests, p(1) ≤ p(2) … ≤ p(m), the quantities r( j) = p( j)/( j/m) and q( j) = min h ≥ j {r(h)} 
are calculated ( j = 1, …, m), and then the jth null hypothesis is rejected if q( j) ≤ γ. It 
can be shown that FDR ≤ γm0 /m for positively correlated tests as well, indicating the 
procedure is conservative (Benjamini and Yekutieli 2001). An alternative approach 
is to first fix the thresholding rule and then estimate the FDR (Storey 2002). This 
approach of estimating the FDR is more flexible in practice because it is often dif-
ficult to specify the level of FDR before exploratory gene screening analysis. In this 
approach, multivariate permutation methods, which take into account the correlation 
between genes, can be used for estimating the FDR, as in the popular significance 
analysis of microarrays (SAM) method (Tusher et al. 2001). The permutation meth-
ods are to obtain an average of the number of false positive for a given threshold 
Cx from a large number of datasets with permutations of the class labels under the 
complete null hypothesis with m0 = m, thus yielding a conservative estimate of the 
FDR. For controlling or estimating the FDR more accurately, assessment of the pro-
portion of the null genes, π = m0/m, is warranted. For example, in the Benjamini and 
Hochberg’s procedure, we could use γ* = γ/π instead of γ, if π is known. A simple 
conservative estimate of π is obtained by considering that null statistics are much 
more abundant than alternatives at large p-values close to one (Storey 2002). Many 
other methods for estimating π and the FDR have also been proposed (Langaas et al. 
2005; Pounds 2006).

Control of the FDR can provide a false sense of security, because the discrepancy 
between the FDR and the actual FDP can be substantial when the correlation across 
genes increases (Korn et al. 2004). Several authors therefore considered controlling 
actual FDP (Korn et al. 2004, 2007; Genovese and Wasserman 2006).

The efficacy of multiple testing can be improved by modifying the test statistics. 
One possibility is to borrow the strength across genes to obtain more reliable vari-
ance estimates (see Section 31.4.2) (Baldi and Long 2001; Efron et al. 2001; Tusher 
et al. 2001; Lönnstedt and Speed 2002; Wright and Simon 2003; Smyth 2004). 
Another possibility is to use an optimal test that maximizes the expected number 
of true positives for a given expected number of false positives (Storey 2007). The 
test can also be modified for detecting particular differential patterns, for example, 
differentially expressed genes in a subset of cancer samples (Tomlins et al. 2005; 
Tibshirani and Hastie 2007; Hu 2008; Lian 2008) and multiple association patterns 
for multiple clinical phenotypes (Matsui et al. 2007).
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The genes selected from the gene identification analysis are usually annotated 
for biological interpretation using software packages and genomic websites, such as 
Gene Ontology (www.geneontology.org) and KEGG pathways (http://www.genome.
jp/kegg/pathway.html). However, this approach using the gene sets that pass through 
a stringent FDR criterion is not necessarily effective for elucidating biological mech-
anism. A popular alternative approach is to evaluate association of pre-defined bio-
logically meaningful gene sets with the phenotype, which can improve the power 
in multiple testing through reduction of the number of hypothesis tested, as well as 
aid biological interpretation. Many such gene set enrichment methods that provide 
a score for summary statistics on differential expression for each gene set have been 
proposed (Nam and Kim 2008; Dinu et al. 2009; Irizarry et al. 2009).

31.4.2  Model-Based Approach

The model-based approach utilizes information sharing across genes by assuming 
exchangeability across comparable genes and some structure on gene expression 
data. One commonly assumed structure is a mixture model with two components; 
one of which represents the “null” genes with no differential expression and the 
other represents the “non-null” genes with differential expression. This is a mix-
ture prior in the Bayesian framework. The mixture structure is commonly assumed 
for the parameter of interest (e.g., the difference in gene expression between two 
classes) in the model of gene expression levels (Lönnstedt and Speed 2002; Newton 
et al. 2004; Smyth 2004; Do et al. 2005; Gottardo et al. 2006; Lo and Gottardo 
2007) or for gene-specific summary statistics of the parameter of interest, such as 
test statistics used in multiple testing (Efron et al. 2001; McLachlan et al. 2006; 
Efron 2009; Noma et al. 2010; Matsui and Noma 2011a,b). Another structure is 
a hierarchical model that incorporates gene-specific effects, in conjunction with 
the mixture prior (Lönnstedt and Speed 2002; Newton et al. 2004; Smyth 2004; 
Do et al. 2005; Gottardo et al. 2006; Lo and Gottardo 2007; Efron 2009; Noma 
et al. 2010; Matsui and Noma 2011a,b) or an unstructured prior (Baldi and Long 
2001; Lewin et al. 2006). The hierarchical structure provides a basis for develop-
ing efficient methods for gene ranking (Noma et al. 2010) and estimation of the 
gene-specific effects (Efron 2009; Matsui and Noma 2011a), as well as estimation 
of the FDR.

The hierarchical mixture models for gene-specific summary statistics (Efron 2009; 
Noma et al. 2010; Matsui and Noma 2011a,b) need less modeling assumption (without 
modeling the other nuisance parameters); hence, it is more robust. One example of 
this type of hierarchical mixture modeling for two-class comparison

 
(Matsui and 

Noma 2011b) is to model the two sample t-statistic, Yj j j= ˆ ˆ ˆ( ) ( )μ μ σj
1 2−( ) / , aside from 

the sample size constant τ =n
2

1 2n n n/( ), where ˆ )� j
(1  and ˆ ( )� j

2  are the mean expression 

levels for classes 1 and 2, respectively, and σ̂j is the usual pooled estimate of standard 
deviation for gene j (j = 1, …, m). We assume a hierarchical mixture model for the 
distribution of Yj,

	
f y f y yj j j( ) ( ) ( ) ( ),= π + − π0 1 1f 	 (31.1)
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where the component for the null genes, f0, is a normal distribution, N( )0, 2τn , and the 
component for the non-null genes, f1, is specified as

	
Y N gj j jj n| andδ ∼ τ ∼( , ) .δ δ2

1

The Yj follows the normal distribution with gene-specific mean δj and constant vari-
ance of random variation τn

2 in the first level, and δj follows the distribution g1 in 
the second level. The form of g1 is unspecified. In an empirical Bayes framework, 
we estimate π and g1 via an EM algorithm from the data, where the non-parametric 
estimates of the prior distribution g1 are supported by fixed discrete mass points like 
the non-parametric estimation method by Shen and Louis (1999). An application of 
this method to a leukemia dataset is provided in Section 31.4.4.

31.4.3  Sample Size Estimation

While it is important to eliminate as many nuisance genes from further consideration 
as possible, it is also important to remove as few relevant genes from consideration 
prematurely. As the statistical power of the gene identification analysis is generally 
determined by the number of biological replicates, rather than technical replicates 
(Simon et al. 2002), determination of the number of biological samples is important. 
Many methods for sample size estimation have been developed for controlling FDR 
(Dobbin and Simon 2005; Pawitan et al. 2005; Tsai et al. 2005; Shao and Tseng 2007; 
Tong and Zhao 2008; Matsui and Noma 2011b) or actual FDP (Oura et al. 2009) or 
for gene ranking (Pepe et al. 2003; Matsui et al. 2008b). In practical application of 
these methods, accurate assessment of the strength of “signal” contained in the data, 
represented by the parameters, such as the proportion of null genes, π, and the effect 
size distribution for non-null genes (e.g., g1 in the hierarchical mixture model (31.1) ), 
is crucial because these parameters can largely impact the sample size estimates. An 
illustration based on the hierarchical mixture model (31.1) is provided in Section 31.4.4.

31.4.4  Illustration

Kirschner-Schwabe et al. (2006) reported a microarray experiment for childhood 
acute lymphoblastic leukemia (ALL) that examined underlying biological deter-
minants of early relapse after treatment, which is known to be a prognostic factor 
related with poor survival. Gene expression analysis using Affymetrix HG-U133A 
microarrays (Affymetrix, Santa Clara, CA) was performed for 42 patients from the 
trial, ALL-REZ BFM 2002, of the Berlin-Frankfurt-Münster study group (The data 
are available from the NCBI GEO database; Accession code: GSE4698). We com-
pared 14 very early relapsed patients with 28 late relapsed patients based on the 
expression data from m = 22,283 probe sets (Kirschner-Schwabe et al. 2006).

We fit the hierarchical mixture model (31.1) (Matsui and Noma 2011b) to the dis-
tribution of the two-sample t-statistic, Y, and performed the EM algorithm for param-
eter estimation. The estimate of π was 0.68, and Figure 31.1a shows the estimate of 
the effect size distribution, g1. As shown in Figure 31.1b, the estimate of the marginal 
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distribution, f, fit well to the empirical distribution (histogram) of Y. The FDR for a 
given threshold Cα on |Yj| is estimated as

	
FDR c

F c F c

F c F c
ˆ ( )

ˆ ( ) ( )
ˆ ( ) ˆ ( )

,α
α α

α
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− + −α
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where
F0 is the cumulative distribution of f0

F̂ = π̂F0 + (1 − π̂)F̂1

For FDR of 5%, 289 genes were significant. In the estimation method based on 
the hierarchical mixture model (31.1), we can estimate the overall power, Ψ(Cx), 

0.
02

0
0.

01
5

0.
01

0
0.

00
5

0.
00

0

–1.5 –1.0 –1.5 –1.0 0.5 1.0 1.5
Delta

Re
la

tiv
e f

re
qu

en
cy

(a)

0.
01

2
0.

00
8

0.
00

4
0.

00
0

–1.5 –1.0 –1.5 0.0 0.5 1.0 1.5
Delta

Re
la

tiv
e f

re
qu

en
cy

(b)

f0
(1–    ) f1

f= 0.68

FIGURE 31.1  The estimate of g1 (a) and the estimates of the marginal distribution f and the 
two components, πf0 and (1–π)f1, (b) for the ALL dataset.
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which is the average power for all the non-null genes for a given threshold Cx, as 
Ψ̂(Cx) = F̂1(−Cx) + 1 − F̂1(Cx). Figure 31.2 shows a curve that plots Ψ̂(Cx) versus FD̂R(Cx) 
for various values of Cx, which allows simultaneous monitoring of true positives and 
false positives in gene screening. We can also conduct sample size estimation of 
future microarray experiments. In designing a new, similar or full-scale microarray 
experiment with sample size n*, we can estimate the power curve based on the esti-
mation results with the sample size term, τn*, instead of τn, in the standard deviation 
in f0 and f1. Figure 31.2 also shows how the larger sample sizes, for example, n* = 80 
or 160, improve the overall power.

31.5  PREDICTION

Another clinical application of DNA microarrays is the development of expression-
based prediction systems that predict diagnosis classes or outcomes after treatment. 
A supervised approach is generally more powerful than an unsupervised approach. 
There are three important components in supervised prediction: selection of relevant 
genes for prediction, development of prediction models, and assessment of predictive 
accuracy. Because the number of gene features is much larger than the number of 
samples, special consideration is needed to avoid overfitting.

31.5.1  Selection of Genes

The simplest, but most common approach is a univariate filtering based on mar-
ginal association between each gene expression and the response variable as outlined 
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FIGURE 31.2  The curve that plots the overall power versus FDR for various values of 
threshold Cα. In addition to the power curve for n = 42, the original sample size of the ALL 
dataset, the predicted curves when n* = 80 and 160 are also given.
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in Section 31.4. Although more complex, computationally demanding multivariate 
methods were also developed (Saeys et al. 2007), recent studies found that the per-
formance of univariate filtering methods was comparable to that of multivariate 
methods for microarray datasets with small sample sizes (Lai et al. 2006; Lecocke 
and Hess 2007).

31.5.2  Development of Prediction Models

A variety of class prediction analyses have been applied to microarray data, includ-
ing linear discriminant analysis (LDA), support vector machines (SVMs), nearest-
neighbors, aggregating classifiers (Dudoit and Fridlyand 2003; Simon et al. 2004).

Suppose one has a new sample with the vector of gene expression x x xG* = ( , , )* *
1 … ʹ 

for G selected genes and wishes to assign the sample to one of 2 classes, 1 and 2. The 
LDA method calculates

	 l x x x S x( ) ( ) ,* *= − −
1 2

1ʹ 	 (31.2)

where
x̄r = (x̄r,1, …, x̄r,G)′  is the mean expression profile for the training set samples with 

class r for r = 1, 2
S is an estimate of the pooled within-class covariance matrix of the expression 

levels of the genes

The new sample is predicted to be of the class which has the closer average of the 
linear combination in the training set to l(x*). A simpler form of LDA is a diago-
nal linear discriminant analysis (DLDA), in which the diagonal matrix of S is used 
instead of S, resulting in the linear combination,

	

l x u xD g g

g

G

( ) ,* *=
=1
∑ 	 (31.3)

where u x x sg g g g= −( ), ,1 2
2/  for g = 1, …, G. The DLDA is one approach to overcome 

the singularity problem of the sample covariance matrix S when G is large relative 
to the number of samples. By ignoring correlations among genes, the DLDA reduces 
the number of parameters to be estimated. Some authors proposed variants of the 
DLDA, such as the compound covariates predictors (CCP) with the standardized 
t-statistic for ug (Simon et al. 2004) and empirical Bayes predictors with a shrinkage 
estimate (such as posterior mean), δ̂g /sg, obtained from the hierarchical modeling in 
Section 31.4.2 for ug (Efron 2009; Matsui and Noma 2011a). The nearest shrunken 
centroid predictor is another shrinkage-based method, but the amount of shrinkage 
is determined based on the cross-validated prediction error (Tibshirani et al. 2003; 
Guo et al. 2007).

SVMs are popular machine learning algorithms for classification. Linear ker-
nel SVMs construct a hyperplane for the decision surface as is done in LDA, 
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but the hyperplane is determined such that the margin of separation between the 
classes is maximized with a penalty for the number of misclassification, where the 
margin represents distance from the hyperplane to the closest correctly classified 
samples.

The k-nearest-neighbors (k-NN) approach is a simple non-parametric method that 
finds the k-nearest neighbors in the training set closest to the gene expressions on a 
new sample and then decides the classification of this sample by majority vote. The 
value of k is prespecified or chosen so that the cross-validated predictive error is 
minimized.

Aggregating predictors are an approach to improve the predictive capability, in 
which slightly perturbed predictors from the training set are produced by resam-
pling and then aggregated to produce a composite predictor by voting. Bootstrap 
aggregating or bagging (Breiman 1996) and boosting (Freund and Schapire 1997) 
are methods for generating perturbed versions of the training set. The AdaBoost, 
the most well-known boosting algorithm, sequentially fits weak predictors via a for-
ward-stagewise additive modeling, with optimization of an exponential loss function 
(e.g., Hastie et al. 2009).

Several comparison studies for class prediction methods reported that simple 
methods such as DLDA and k-NN performed well in terms of predictive accuracy 
compared with more complex methods such as aggregated classification trees for 
microarray datasets with small to moderate sample sizes (Ben-Dor et al. 2000; 
Dudoit et al. 2002a; Shi et al. 2010).

For predicting continuous survival outcomes, various methods to avoid overfitting 
have been considered in the framework of regression analysis such as Cox propor-
tional hazards regression, including compound covariates (Simon et al. 2004; Matsui 
2006), application of dimension reduction techniques such as clustering (Hastie et al. 
2001; Matsui et al. 2008a), PCA (Bair and Tibshirani 2004), partial least squares 
(Li and Gui 2004), and regularized regressions (van Houwelingen et al. 2006; Park 
and Hastie 2007).

31.5.3  Assessment of Predictive Accuracy

Unbiased estimation of the predictive accuracy is particularly important when 
performing prediction analysis in high dimensions. For class prediction problems, 
the proportion of correct classification (PCC), sensitivity, and specificity are com-
mon measures of predictive accuracy. Measures of accuracy for predicting sur-
vival outcomes include separation of survival curves and time-dependent ROC 
curves (Heagerty et al. 2000). For further discussion about assessment of accu-
racy in survival risk prediction using microarray data, see, for example, Simon 
et al. (2011).

For evaluation of internal validity, resampling techniques such as cross-validation 
and bootstrap are useful, particularly when the sample size is small (Molinaro et al. 
2005; Jiang and Simon 2007). When using these techniques, it is critical that all 
aspects of model building including gene selection are re-performed for each round 
in resampling (Ambroise and McLachlan 2002; Simon et al. 2003). When selection 
of genes and prediction models are optimized based on cross-validated predictive 
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accuracy, the optimization process should be included in the cross-validation proce-
dure or an independent validation set is needed to have an unbiased estimate of the 
predictive accuracy (Dudoit and Fridlyand 2003; Varma and Simon 2006).

For a two-class comparison, another approach is to estimate the PCC directly 
under some probability model without using resampling techniques (Efron 2009; 
Matsui and Noma 2011a). Under the assumption that genes have a Gaussian distribu-
tion within each class with a common within-class covariance between two classes, 

the PCC in the DLDA can be estimated by PCCˆ ˆ ˆ ˆ ˆ ˆ= Φ δ δ δ Ωδʹ ʹ⎛
⎝

⎞
⎠/2 , where Φ is the 

cumulative distribution of the standard normal distribution and Ω̂ is an estimate of 
the common correlation matrix, and δ̂ = (δ̂1, …, δ̂G)′ is a vector of shrinkage estimates 
(posterior means) of the standardized mean difference between classes derived from 
a hierarchical model such as (31.1) in Section 31.4.2 for the set of G genes selected 
using the entire samples. The shrinkage estimates incorporate the selection bias 
by (non-randomly) selecting the top G genes and the possibility that some of the 
selected genes are true null (Matsui and Noma 2011a).

When the model building process is complex and not easily specified in an algo-
rithmic manner, an independent validation set would be needed (Simon et al. 2004). 
Some authors discussed determination of sample sizes for the training and validation 
sets (Dobbin and Simon 2007).

It is also important to establish that the predictive accuracy is statistically 
higher than that expected when there is no relation between expression profile and 
the response variable. A permutation procedure is proposed to assess the statisti-
cal significance of cross-validated predictive accuracy (Radmacher et al. 2002). 
Confidence intervals for cross-validated predictive accuracy can be calculated via 
a bootstrap resampling scheme (Jiang et al. 2008). Confidence intervals of the PCC 
under the Gaussian model with common within-class covariance can be obtained by 
a parametric bootstrap method under the estimated hierarchical model (Laird and 
Louis 1987).

31.5.4  Illustration

We performed a two-class prediction on early relapse using gene expression data 
from the 42 ALL patients presented in Section 31.4.4. We adopted the four predic-
tors, LDA, DLDA, 3-NN based on Euclidean distance, and linear SVM. We selected 
the 50 genes with the largest absolute t-statistics (univariate filtering) for the three 
predictors, DLDA, 3-NN, and SVM. The estimated predictive accuracy was gener-
ally insensitive to the number of selected genes (data not shown). For the LDA, we 
limited the number of top genes to be 10 to avoid the singularity problem. We esti-
mated the PCC by a leave-one-out cross validation (LOOCV). In LOOCV, for each 
training set with one sample left out, we selected the specified number of genes from 
scratch to obtain an unbiased estimate. The estimated PCC for LDA, DLDA, 3-NN, 
and SVM were 71.4%, 83.3%, 78.6%, and 78.6%, respectively. The LDA performed 
the worst, while the performance of the other predictors was comparable. For DLDA, 
the 95% confidence interval of PCC using a bootstrap resampling method with bias 
reduction proposed by Jiang et al. (2008) was 73.8%–97.6%. We also estimated the 
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PCC of the DLDA without using LOOCV under the Gaussian model with common 
within-class covariance. We used posterior means obtained by fitting the hierarchi-
cal mixture model (31.1) in Section 31.4.2 for δ̂ for the top 50 genes selected for all 
42 samples. The estimated PCC by this method was 76.6%, which was somewhat 
smaller than the cross-validated estimate for the DLDA, 83.3%. The 95% confidence 
interval by a parametric bootstrap method was 72.3%–81.8%, which was much nar-
rower than that by Jiang et al. (2008).

31.6  CONCLUDING REMARKS

In this chapter, we have outlined statistical methods for the analysis of microar-
ray gene expression data in clinical oncology. Many methods can be implemented 
using free packages. For example, the Bioconductor (http://www.bioconductor.org/), 
which is a free, open source and open development software project for the analysis 
and comprehension of genomic data, provides hundreds of packages for analysis 
of microarray gene expression data. The BRB-ArrayTools (http://linus.nci.nih.gov/
BRB-ArrayTools.html) is an integrated package for the visualization and statisti-
cal analysis of microarray gene expression data. R-codes for implementing the esti-
mation methods using the hierarchical mixture model described in Sections 31.4.2, 
31.4.4, and 31.5.4 are available upon request from the authors.

The rapid development of high-throughput technologies, which has reduced the 
cost of microarrays, and infrastructure development for genomic analysis, includ-
ing embedding of tissue collection in large clinical studies or randomized trials, 
have allowed the conduction of cancer genomic studies with several hundred of 
samples. The tendency toward large-scale genomic clinical studies would enhance 
the potential of statistical analysis of microarray gene expression data, including 
more powerful detection of cancer heterogeneity and development of expression-
based predictive markers for a particular treatment in randomized trials, possibly 
with some adaptive design (Freidlin et al. 2010). This tendency also emphasizes 
the importance of designing more efficient genomic studies with multiple phases, 
involving gene screening, prediction modeling, and validation. The opportunity for 
serious statistical engagement still increases in this important field for elucidating 
the mechanisms of oncogenesis and for developing optimized medicine for indi-
vidual patients.
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32 Methods for SNP 
Regression Analysis 
in Clinical Studies
Selection, Shrinkage, 
and Logic

Michael LeBlanc, Bryan Goldman, and 
Charles Kooperberg

32.1  INTRODUCTION

Investigations of the association of patient outcome with a few candidate single 
nucleotide polymorphisms (SNPs) or much larger numbers of SNPs have been 
undertaken in various therapeutic studies in oncology (e.g., Durie et al. 2009, Song 
et al. 2010). Since the genomic material often consists of germline DNA, not tumor 
DNA, the primary associations to therapeutic efficacy are typically not expected to 
be as strong as those seen for tumor gene expression. However, even with non-tumor 
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DNA, there could potentially be some strong correlations with disease symptoms at 
diagnosis, measures of drug metabolism and patient adverse events due to treatment.

While primarily outside the therapeutic setting, there have been many high-
dimensional SNP studies which can be useful in defining good statistical strategies. 
For instance, there are an increasing number of validated associations seen from 
high throughput SNP studies including genome wide association studies (GWAS) 
(e.g., Hindorff et al. 2009, Peterson et al. 2010, Thomas et al. 2009). Often these 
are case-control studies and may include subject level meta-analyses on multiple 
cohorts to arrive at total numbers in the multiple thousands of cases and controls to 
achieve power to detect at least modest individual SNP associations with outcome. 
In addition, there has been some development of multi-SNP risk models from GWAS 
including Miyake et al. (2009), Zheng et al. (2008), Yang et al. (2010).

In most therapeutic clinical trials, the number of patients are typically only sev-
eral hundreds, even when combining across studies. These sample sizes are modest 
enough to make it far more challenging to conduct well powered tests of association 
or risk modeling. Realistically, only large effects will be reliably identified in these 
moderately sized studies. However, given sufficient signal, SNP association stud-
ies are feasible; therefore, this chapter will consider model building strategies to 
construct prognostic or disease risk models, trading off variance control as well as 
interpretation. A good statistical strategy for risk modeling with GWAS data was 
outlined in Kooperberg et al. (2010) but we think it applies more broadly to smaller 
scale SNP analyses more typical of cancer therapeutic studies. Our proposal for a 
straight-forward statistical regression modeling approach can be outlined as follows: 
(1) data cleaning, (2) selection of a smaller number SNPs (if there are initially a large 
number under consideration), (3) modeling in some parsimonious fashion; shrinkage 
methods are one possibility or using a method that combines features in some logical 
fashion (such as logic regression or regression trees) and (4) a strategy to avoid draw-
ing false positive associations or building models that are overly complex.

We note that there are many options for modeling in this context. Our focus is on 
SNP regression; we do not address alternatives here in terms of haplotype recon-
struction, although algorithms have been developed for that purpose (for instance, 
see SNP-Haplotype Adaptive Regression [SHARE]) (Dai et al. 2009). Other than 
direct haplotype methods, there are methods to reduce dimensionality by using 
regularization to combine SNPs within gene as a component of the modeling pro-
cedure (Chen et al. 2010).

We illustrate the methods with a SNP data set from a clinical trial of multiple 
myeloma patients from the University of Arkansas generated as part of the Bank on 
a Cure project.

32.2  SIMPLE GENOTYPE DATA

Humans have two copies of each autosomal chromosome. The total length is about 
three billion base pairs. The most common variation between humans are variations 
in a single locus, known as SNPs. SNPs are typically coded as 0,1, or 2, the number 
of minor (variant) alleles at a particular locus. These data can be re-coded as a vari-
able for the dominant effect by labeling 1 if SNP = {1,2} or 0 otherwise and for the 
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recessive effect as a 1 if SNP = {2} or 0 otherwise. Often, given such a large number 
of SNPs, and hope for mostly cumulative association with subject outcome, the addi-
tive code {0,1,2} is used in many statistical testing and regression strategies. This 
coding is often the most powerful in detecting SNP disease associations.

Data quality is, of course, a fundamental issue in any analysis. However, in this 
chapter we will not address steps to assess the quality of the genotyping calls. These 
issues are platform dependent and checking quality would likely involve investiga-
tion of control and replication samples. In addition, in some cases, depending on the 
platform, it could involve returning to the images of relative intensities to re-evaluate 
the calls. Other quality control techniques involve inspection of QQ plots of the asso-
ciations (where there are sufficient numbers of SNPs being investigated) to check 
for more global departures from the 45° line than what would be expected for the 
hypothesized scenarios where only a few SNPs are thought to be associated with 
patient outcome or toxicity.

Additional filtering of samples and SNPs for subsequent analysis also typically 
involves removal based on a sufficient number of observed called genotypes. For 
instance, often all samples with a call rate smaller than some value (say 97% for 
large arrays, but often this is set somewhat lower for smaller scale genotyping tech-
nologies) will be removed for consideration for further analysis. In addition SNPs 
that substantially fail the assumption of Hardy–Weinberg (HW) equilibrium, for 
instance, with a p-value of 10−3–10−5, are not considered. The extremeness of the 
p-value would need to depend on the number of SNPs under consideration. We note 
that typically the check of HW is done in control samples only; in our clinical trial 
settings all patients typically have disease. So while checking HW plays a role in 
data cleaning, it is not clear that HW equilibrium needs to be valid for all SNPs in 
the therapeutic “all case” setting. Another filtering option used primarily for power 
considerations, is to remove SNPs with a low minor allele frequency (say .05) prior 
to any formal model building.

32.3  EXAMPLE: MYELOMA SNP ANALYSIS

To demonstrate methods in this chapter, we use data based on patients with pre-
viously untreated multiple myeloma enrolled in the TT2 trial at the University of 
Arkansas between October 1998 and February 2004. Details of patient characteris-
tics plus treatment and clinical outcomes have been reported previously (Durie et al. 
2009). The multiple myeloma baseline evaluation included serum and urine protein 
electrophoresis, quantitative immunoglobulin measurements, total 24 h urine protein 
excretion and serum beta-2 microglobulin. The outcome was defined as extensive 
bone disease defined by x-ray criteria.

While the original study had data on 282 patients, we construct a larger simulated 
data set which we think is a more appropriate size for demonstrating regression mod-
eling methods in this chapter. In addition to the observed data cases, 118 additional 
cases were drawn as a simple bootstrap sample to augment the real sample to yield 
a total of 400 real and simulated patients for analysis. Given the data set we used is 
partially simulated, the results presented in this chapter do not agree with the prior 
published results for this data set.
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32.4  ASSESSING ASSOCIATIONS

Continuous, binary, or survival endpoints are potentially of interest in the SNP asso-
ciation studies in the context of cancer clinical trials. Therefore, to keep the discus-
sion general, we present the models in terms of the regression component of each of 
the outcome models.

32.4.1  Univariate Associations

Most SNP association studies involve, at a minimum, a report of single SNP associ-
ations, potentially after adjusting for population heterogeneity; the adjustments may 
be based on reported race, genomic measurements of racial variation, and/or base-
line clinical factors in a therapeutic study. As noted earlier, a single SNP has three 
levels, so common coding for assessment of association can be as linear X = {0,1,2}, 
dominant X = 1 if SNP is 1 or 2, 0 otherwise recessive X = 1 if SNP = 2 or 0 otherwise.

Consider a regression setting, where there are n observations on variables includ-
ing non-genomic Z1:l = 1, …, L and genomic Xk:k = 1, …, K. To simplify presentation, 
assume only a single adjustment variable denoted as Z. Then testing individual SNPs 
can be reduced to assessing score or likelihood test statistics of βk = 0 in the regres-
sion model for coded SNP k

	 η β γ β( )X Z, = + + .0 Z Xk k

Nominal p-values can be calculated for all k = 1, …, K tests of association. If the 
goal is to identify univariate associations, then strategies to control the error rates 
for false positives are of primary importance. The simplest way to control the fam-
ily wise error rate (FWER) is to use a Bonferroni correction. However, it is often 
preferable with moderate numbers of SNPs (some chosen that may have relatively 
high correlation with each other—high linkage disequilibrium) to acknowledge 
the correlation structure. A simple way to incorporate the correlation structure 
in testings is by permutation sampling and to compare the observed statistics to 
those observed from a sample from the permutation distribution. Where the model 
includes adjustment variables, permutation of the score residuals and recalculating 
the test statistics is a more relevant null distribution. If the primary objective focuses 
on risk or prognostic modeling based on multiple SNPs, then the selection of a set 
of SNPs for further modeling does not require such a stringent selection of SNPs. 
One may select some limited number regardless of their overall significance. For 
instance, with a 3000 SNP study, one may select the SNPs with the top 1% or 5% of 
p-values to reduce overall variability of the subsequent modeling method. However, 
as described later, additional strategies for model selection (such as cross-validation) 
will ultimately be needed.

32.4.1.1  Example: Univariate Statistics
After filtering for low allele frequency and call rate, 1903 out of 3404 geno-
typed SNPs remained in the myeloma data set. We calculated univariate statistics 
for each of the SNPs displayed in Figure 32.1, testing the SNP associations with 
bone disease. While one could assess significance via permutation sampling here, 
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Bonferroni-corrected .05 level corresponds to the log10 p-value of −4.58 which only 
includes one SNP. The labels on the plot correspond to the SNPs selected as part of 
the regularized regression method (least absolute and selection operator [LASSO]) 
described in a later section. It also demonstrates that it may be useful to include 
slightly more variables (SNPs) as part of the modeling method, even if they do not 
achieve significance by multiple comparison adjusted methods.

32.5  MULTIVARIATE ASSOCIATIONS

Assume there is interest in combining genetic information across loci. The simplest 
model is some additive combination of the genotype data. For instance, for binary 
outcome data or case control studies, a logistic regression model can be used where 
the probability of disease or toxicity is P(Y = 1|Z, X) = exp(η(X,Z))/(1 + exp(η(X,Z))) 
where a linear combination of individual SNPs which is the simplest way to combine 
information between SNPs adjusting for any baseline factors is

	

η β γ γ β( )X Z, = + + .
= =
∑ ∑0

1 1l

L

l l

k

K

k kZ X 	 (32.1)

32.5.1  Penalized Regression

Consider the likelihood-based regression setting. Assume there are n independent 
observations of the genotype and non-genotype data described earlier. Denote the 
likelihood function as l(·) which would be a binomial likelihood for binary outcomes, 
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FIGURE 32.1  Univariate SNP p-values.
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partial likelihood for survival endpoints or the typically normal likelihood for con-
tinuous outcome data. While step-wise model building is a reasonable strategy for 
building models (with the Akaike information criteria [AIC] Akaike [1974] or BIC 
to do the model selection), we believe penalized methods offer the advantage of 
reduced variability especially in moderate sample size settings. A popular regular-
ization or penalization method is the LASSO (Tibshirani 1996) and its extensions 
(e.g., Hastie et al. 2009). There has been considerable subsequent work on rapid 
estimation methods. Suppressing the notation for the adjustment variables, which 
may or may not be penalized, the LASSO estimate β̴ = (β̴

1, … β̴
m)′ is defined as the 

maximizer of

	

g l Y X
i

n

i k ik k( )β β λ β= ,
⎛

⎝⎜
⎞

⎠⎟
− | | ,

=
∑ ∑ ∑

1

1
1

where λ1 is a non-negative penalty parameter. This estimator has the attractive prop-
erty that as the penalty λ1 increases, maximizing g(β) with respect to β leads to 
some of the βk set to zero. In addition, the variable selection and regression func-
tion estimates tend to have overall less variability than those obtained from forward 
or backward variable selection methods. Further variance reduction, at the cost of 
potentially less sparse solution involving more non-zero coefficients, is obtained by 
using a mixture of L1 and L2 penalty called the “elastic net” proposed by Zou and 
Hastie (2005). The elastic net can be expressed as an optimization problem with the 
objective function with both squared and absolute penalty terms

	

g l Y Xi k ik

i

n

k k( )β β λ β λ β= ,
⎛

⎝⎜
⎞

⎠⎟
− | | − | | .∑∑ ∑ ∑

=1

1
1

2
2

There is overall shrinking of the linear predictor and setting of some of the coeffi-
cients to zero in the model as the penalty parameters λ1 and λ2 are increased. Flexible 
software that fits continuous, binary, and survival data is available in R statistical 
language (GLMNET). In this section, we have described these methods in terms of 
the original predictors Xk; we could generalize to sets of regression splines or even 
more complex multivariable basis functions, Bj(X), j = 1, …, p as described in the 
next section.

For the case of LASSO, the models are indexed by a single parameter λ1 or for the 
elastic net by two parameters λ1 and λ2. To objectively choose these tuning param-
eters, one can either use a separate data set or use a resampling technique such as 
K-fold cross validation. For K-fold cross validation, the data are divided in approxi-
mately K groups (for instance, K = 5 or 10), and fractions (K − 1)/K are used to con-
struct the models and index the sequence of models by the tuning parameters, and 
the log-likelihood is evaluated for each model on the remaining 1/K of the data, 
called the test data. The analysis is repeated for each of the K subsets of the data, 
and test sample log-likelihoods are averaged over the K subsets. Tuning parameters 
(λ1 and λ2 in the case of the elastic net) are chosen that lead to maximum likelihood 
solutions. It is important that all of the variable selection aspects of the modeling be 
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included in the cross-validation loop. For instance, if the initial filter is to use only 
the top q most significant variables in the penalized regression algorithm, that should 
be part of the cross-validation loop.

32.5.1.1  Example: L1 Penalized Regression Bone Disease Model
We chose to use L1 regression to construct a multi-SNP model of bone disease. Based 
on prior methodological work we filtered the number of SNPs under consideration 
prior to using LASSO. For this example we chose only the top 20 SNPs (the top 1% 
SNPs) with the smallest p-values. We left the SNP coding as ordinal {0,1,2}. We 
applied five fold cross validation over both the variable selection as well as the model 
building and the final model chosen included eight SNPs. We acknowledge the num-
ber of SNPs filtered is another tuning parameter which could also be estimated using 
cross-validation. The coefficient profile is presented in Figure 32.2. There are eight 
SNPs remaining in the model; the labels of these SNPs are included in Figure 32.1. 
Cross-validated log-likelihood is presented in Figure 32.3.

32.5.1.2  Example: L1 Penalized Regression Simulation
A concern with the relatively small sample sizes with SNP studies as part of thera-
peutic cancer studies is that only large effects would be seen. We conducted a small 
simulation study to investigate this issue. SNP data were generated by resampling 
from the “observed 400” patient cohort and the disease response was simulated from 
a single SNP regression model out of the total of 1903 SNPs under consideration. For 
an odds ratio of 1.75, 91% of the LASSO models (with complexity selected by five 
fold cross validation) included the true SNP. On average, 5.2 SNPs were selected, 
indicating at least some tendency for over-fitting. For an odds ratio of 2.0 the prob-
ability of selecting the correct SNP increased to 98.6% with a similar level of overfit-
ting. This indicates the potential for identifying moderately strong associations from 
clinical SNP data.
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32.5.2  Logic Regression

One way to extend the linear model, described earlier, is to consider more complex 
SNP combinations. For instance,

	

η β β( ) ( )X = + ,∑0

h

h hB X

where the basis functions Bh(X) could represent nonlinear functions of several 
of the Xk. A specific example of this model is regression trees (Breiman et al. 
1984) and extended to survival data, for instance, by Segal (1988) and LeBlanc 
and Crowley (1993). In that case, the basis functions Bh(X) are products of subset 
functions of the individual variables, of SNPs. In tree-terminology they would be 
terminal nodes of a regression tree. Trees are discussed in detail in another chapter 
and hence are not developed here. Trees have been used in the analysis of SNP data 
both as single trees (Durie et al. 2009), and as ensembles, such as random forests 
(Ishwaran et al. 2008).

In this section we describe a method which can be viewed as one that uses alter-
native interpretable basis functions based on logical or Boolean rules. The method, 
called “logic regression” is a methodology that is particularly suited for situa-
tions where the data are binary or in the case of SNP data “almost binary” and are 
binary if they are first coded as binary or recessive or dominant codes for each 
SNP (Ruczinski et al. 2003, Kooperberg and Ruczinski 2005). The resulting model, 
again suppressing the adjustment variables, can be expressed as basis functions or as 
Boolean combination of binary predictors Xj, j = 1, …, p such as

	
B X X X Xh
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FIGURE 32.3  Cross-validated log-likelihood for L1 regression.
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where the Xj are binary coding of the SNP data as either dominant or recessive 
effects and hence Xj are assumed to be either 0 or 1. X j

c is the complement function, 
so X Xj

c
j= −1 . Additional adjustment covariates Z can be included in the model as 

for the other models described earlier.
Logic regression is usually implemented as a stochastic simulated annealing 

algorithm which selects those logic terms Bh(·) which maximize the log-likelihood 
corresponding to the model. Given the potential complexity or adaptivity in fitting 
each basis function, the number of logic terms m is set to be some small constant 
(between 1 and 3).

There is a tree-based representation of any logic term, which allows an easy 
specification for the stochastic optimization algorithm. At each step of the simulated 
annealing algorithm, one logic tree can be replaced by another logic tree through sim-
ple change operations on the tree. These operations are demonstrated in Figure 32.4.

As is true for other simulated annealing algorithms, if the likelihood of the new 
model is larger than for the current model, then the new model is chosen; if the cur-
rent model has a smaller likelihood than the new model, then new model is chosen 
with a probability that is a function of the difference between the current and new 
model log-likelihood. The probability of choosing the new model is related to the 
current step number of the algorithm. At early steps of the procedure most of new 
models are accepted, while after many steps, only improved models are chosen with 
high probability.

Similar to penalized regression methods, the model complexity (which we have 
measured as the number of leaves or terms in the logic model) should be selected in 
such a fashion that acknowledges the significant adaptivity of the logic regression 
algorithm. Logic regression allows both permutation tests to assess overall associa-
tion as well as K-fold cross validation.
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32.5.2.1  Example Revisited: Logic Regression
We return to our example, but now with the goal of constructing a simple logic 
regression model of Boolean combinations of SNPs. After conducting full cross 
validation, involving both filtering to the 20 SNPs and application of logic regres-
sion, there was no evidence of improvement in prediction over the null model. As 
expected in the relatively modest sample size setting, the more adaptive and discrete 
logic regression method suffers somewhat from additional variance, even if the inter-
pretation of a small number of SNPs would be desirable. However, for demonstration 
purposes we show the three-leaf tree which on the full data set had a deviance of 288 
compared to the null model deviance of 321. The model is presented in Figure 32.5. 
The estimated odds ratio was 2.12 and the logic representation was

	

L = ( ) ( )

(

NOT AND

OR

dominant rs dominant rs

dominant r

4292454 3745202

ss7843746)

which represented patients at a higher risk of extensive bone disease.

32.6  ASSESSING TREATMENT–GENE INTERACTIONS

In the prior section, we demonstrated logic regression which can be viewed as a 
procedure which builds models within a special class of interactions. However, there 
is now an increasing literature for efficiently assessing more simple gene × gene or 
gene × baseline clinical factor, or gene × treatment interactions. It has been shown 
that significant gains in power can be obtained in many situations by only consider-
ing SNPs with the most significant marginal association prior to testing the interac-
tion. It has been shown that if the test of interaction is independent of the marginal 
test, then one needs to adjust only for the number of interactions tested rather than 
the total number of marginal tests conducted (Kooperberg and LeBlanc 2008, Dai 
et al. 2011). Penalized regression strategies that directly incorporate interactions 

Parameter = 2.12 or

and

1 2

3

FIGURE 32.5  Selected logic regression tree with 3 SNPs (1) rs4292454, (2) rs3745202, and 
(3) rs7843746.
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were considered by Park and Hastie (2008). Several strategies for evaluating and 
utilizing interactions in genomic studies were described in Kooperberg et al. (2009).

However, potentially the most important class of interactions of interest in thera-
peutic studies is the interaction of a SNP with the assigned treatment group. A question 
may arise: Does the impact of treatment (say on toxicity) depend on a gene? A simple 
case of one treatment and one SNP in a multiplicative model can be represented as

	 η β γ β δ( ) ,X Z, = + + +0 Z X ZXk k k 	 (32.2)

where
Z = {0,1} indicates treatment
Xk represents the specific genetic variable

To assess potential interactions, one can test all K gene by treatment interactions. 
Another strategy, as noted earlier, is to first test all the gene main effects, and then 
only test a subset of the interactions corresponding to the top most significant gene 
main effects. It can be shown that the second stage testing is asymptotically inde-
pendent of the first stage; so if only M interaction tests are considered at the second 
stage, then significance only need to be adjusted by the factor of M tests. This can 
lead to increased power to find interactions in many settings. Of course, if the inter-
action is “pure” or hidden entirely in the marginal test, then it will be missed at 
second stage testing (Dai et al. 2011).

If a true interaction is not the primary goal, but rather interest focuses on any 
gene association that may be modified by baseline clinical factors, then more gen-
eral weighted tests can be used. For instance, LeBlanc and Kooperberg (2009) con-
structed adaptively weighted test statistics that can be substantially more powerful 
than the single tests if interactions are truly present in the data so that within a subset 
of patients the genetic association is substantially stronger.

32.7  DISCUSSION

In this chapter our goal was not to provide an exhaustive review of methods for 
prognostic or risk modeling with SNP data, but rather to focus on two techniques 
which have been used and/or developed for SNP data which represent smooth pre-
diction and non-smooth interpretation-based strategies: penalized regression and 
logic regression. Obviously alternatives to linear penalized models could include 
regression trees demonstrated in the analysis of clinical SNP data by Durie et al. 
(2009) or ensembles of trees such as random forests. Other methods have been pro-
posed, including multifactor dimensionality reduction (MDR, Richie et al. 2001) 
which focuses on low-dimensional combinations of SNPs.

We have not addressed sensible ways to combine SNPs that may be close together; 
for instance, some sets of SNPs may be thought to correspond to a haplotype block. 
In that setting, prior to doing some of the modeling proposals we have made in this 
chapter, one may first want to use a haplotype reconstruction method (e.g., Li et al. 
2006). After appropriately acknowledging the haplotype uncertainty, one can use 
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regression methods to predict the outcome. An adaptive technique that does SNP 
selection and haplotype regression, “SNP and HAplotype REgression” was devel-
oped by Dai et al. (2009). An alternative approach is to group using regularized 
methods on SNPs localized in a region; see, for instance, Chen et al. (2010).

An important issue with the analysis of SNP data in the context of moderate-size 
clinical studies is an assessment of power to detect meaningful associations. For 
instance, unlike some large case control studies including meta-analyses used for 
GWAS studies, our experience is that SNP association studies in therapeutic settings 
often consist of small numbers of cases. Therefore, statistical methods which control 
the variability and don’t over-fit the data are critically important. In addition, where 
power to detect reasonable sized effects is limited, combining across clinical studies, 
where scientifically sensible, may be a useful strategy.

Software for logic regression and GLMNET are currently available at CRAN.
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33 Forensic Bioinformatics

Keith A. Baggerly and Kevin R. Coombes

33.1  INTRODUCTION

So, what is forensic bioinformatics?
To us, forensic bioinformatics is the art of using raw data and reported results to 
infer what must have happened to get from one to the other. Ideally, this would never 
be required, as the reported methods should make this an easy task. Empirically, 
however, many results from the bioinformatics literature have proved very hard to 
reproduce, either because some unnoted aspect of the data rendered the conclusions 
invalid or because steps of the analyses were opaque or undocumented. This lack of 
transparency is troubling, since our intuition about what “makes sense” fails in high 
dimensions. We can mention an incorrect gene to an investigator and have him cor-
rect us; we can supply an incorrect list of 50 genes and he will be able to construct a 
seemingly plausible story about why they make sense.

Because of this lack of transparency, we have developed a set of basic tools and 
checks that we use regularly. Here, we illustrate these in a roughly chronological 
tour through four case studies. The first two show, in part, why we have learned 
to approach high-throughput data with a healthy amount of caution, and the lat-
ter two show how simple types of errors can have (and have had) very dramatic 
consequences.

33.2  CASE STUDY 1: CAMDA 2002

We have been working with microarray data since about 2000 and have been try-
ing to understand the best ways of processing these data for much of that time. 
One way we tried to learn what was important was by participating in the Critical 
Analysis of Microarray Data (CAMDA) competitions in 2001, 2002, and 2003. In 
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these competitions, the organizers assemble and distribute a small number of com-
mon datasets for study, and all participants analyze at least one of these. The focus 
is thus placed on differences between analysis methods, rather than on differences 
between datasets. Here we focus on the 2002 competition, http://www.camda.duke.
edu/camda02/best_presentation/index.html.

In 2002, one of the contest datasets came from a set of mouse studies performed 
by Pritchard et al. [1] In this study, the authors were trying to characterize the amount 
of “normal” variation one would see even in the “same” type of samples. Thus, they 
harvested tissue from three organs (kidney, liver, and testis) from each of 6 C57BL6 
male mice, a single inbred line. The arrays were two-channel (red and green), so a 
pool of material from all 18 organs from all mice was used as a common control. 
Each individual mouse/organ sample was examined with four arrays: two with the 
experimental sample in the red channel and the reference in the green channel, and 
two where the red/green labels were reversed (a dye-swap experiment with replica-
tion). Log-ratios from individual arrays were normalized with loess, and the final 
results were analyzed with F-tests.

Contest data were supplied in both corrected (post-normalization) and uncor-
rected forms, and the raw array images were also available for reanalysis if desired. 
In both instances, the data were supplied in three tables, one for each organ, with 
one row per array spot (5304 rows), four columns (foreground and background spot 
quantifications in both red and green channels) for each sample, and six additional 
columns of spot annotation giving the Unigene ID for each cDNA, the clone ID, the 
corresponding gene name, and the block, column and row numbers giving the physi-
cal position of each spot on the arrays. We examined both the corrected and uncor-
rected data, but did not reexamine the images.

Our first focus was on normalization. Most normalization methods (including the 
loess approach employed) assume that “most” genes do not change expression very 
much in the data being examined. However, while this assumption may be reason-
able for healthy and diseased versions of the same tissue, it is suspect if the samples 
are expected to differ drastically, as would be the case with samples from differ-
ent organs. In the latter case, normalization “adjustments” may actually remove or 
obscure biology of interest. We chose to normalize the data from each array and 
channel (red or green) separately, in the hope of recovering differences that might 
have been hidden.

To test whether our normalization worked, we tried something important: 
Identifying a question we could ask where we knew a priori what the answer should 
be. Many differences may seem “plausible,” so we find it useful to have gold stan-
dard “sanity checks” in place. Here, we used principal component analysis (PCA) 
to examine the 5304 by 144 matrix of normalized values from the individual array 
channels. We expected to see four clusters: one for each organ (each with 24 spots), 
and one for the common reference (with 72 spots). Further, as the reference was 
derived from a pool of the three organs, we expected the reference cluster to be “in 
the middle” of the others.

The results of this initial PCA are shown in Figure 33.1. We did not see four 
clusters. We saw six. While the kidney and liver samples formed distinct clusters as 
expected, both the testis and the reference samples split into two clusters. Further, 



607Forensic Bioinformatics

the “splits” were suggestive: The testis samples split into one group of 20 and another 
of 4, and the corresponding reference samples also split into 20 and 4 along the same 
boundaries. The reference samples for the kidney samples were close to the kid-
ney samples, and the reference samples for the liver samples were close to the liver 
samples. This suggested the presence of a major shift in the data driven by either 
biology or error.

To understand the problem, we first examined the data for the kidney and liver 
samples, as these two groups were the most clearly distinct. The answer, as it turned 
out, lay not with the numbers but with the annotation. For 1932 lines in the two files, 
the mappings between gene name and spot location were different. This is illus-
trated for one of the “villins” of the piece in Table 33.1. This led us to suspect that 
one of the two mappings was wrong. It also led us to suspect that the shift had been 
“introduced” midway through the testis experiments, splitting one group of 20 from 
the other 4. This “mismapping” hypothesis also suggested some reorderings of the 
1932 affected rows that would bring one set of spots (24 kidney and 20 testis) into 
alignment with the others (4 testis and 20 liver). Some experimentation with these 
permutations gave a new PCA plot with the four expected clusters.

At the meeting, Colin Pritchard gave an explanation of what had occurred. Since 
cDNA clones for distinct spots can be “corrupted” over time, their lab regularly did 
confirmation checks. Midway through the testis experiments, a corrupt entry was 
identified, and the cell in the Excel file containing the annotation was deleted. Every 
other entry in that column then moved up by one row, effectively scrambling the 
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FIGURE 33.1  PCA of 144 samples from Project Normal: 24 each from kidney, liver, and 
testis, and 72 from a common reference assembled as a pool of the individual samples. We 
expected to see four clusters (one for each organ and one for the reference). We saw six, 
indicating the presence of either unmodeled structure or errors in the data. (From Stivers, 
D.N. et al., Organ-specific differences in gene expression and UniGene annotations describ-
ing source material, in Methods of Microarray Data Analysis III, Johnson K.F. and Lin, S.M. 
(eds.), pp. 59–72, Kluwer Academic Publishers, Boston, MA, 2003. With permission.)
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mapping for about 40% of the spots. The data were then reordered before export, so 
the simple nature of the offset was hidden.

There are some key lessons we want to highlight. First, having gold standard 
or “sanity check” experiments is important. Second, be careful to maintain links 
between numbers and labels (Excel is dangerous in this regard). Third, do large 
survey plots of the data early in the analysis, so that major shifts can be identified 
before too many detailed analyses are performed. We prefer PCA to hierarchical 
clustering for this purpose, and we like using different colors to mark subgroups 
known a priori.

More details of this case study (including how we identified which mapping was 
“correct”) are given in Stivers et al. [2]; see also Coombes et al. [3]. We won that 
year’s competition.

33.3  CASE STUDY 2: PROTEOMIC DATA MINING

Also in 2002, Duke University hosted a Proteomics Data Mining competition orga-
nized along the same lines as CAMDA. (We referred to it internally as “CAPDA.”) 
Two datasets of mass spectrometry traces derived from serum samples were supplied 
for this competition. In the first dataset, 20 ordered spectra (“fractions”; each spec-
trum had 60,831 values) from each of 41 patients were supplied, and the goal was 
to identify biologically relevant subgroups. In the second dataset, 20 fractions per 
patient were again supplied, but here 24 patients were identified as having cancer and 
the other 17 were identified as healthy controls, and the goal was to identify specific 
“peaks” in the spectra that best differentiated the two subgroups. Data were available 
either as full spectra or as lists of peaks identified by the manufacturer’s software.

As readers probably suspect, and as a Perl script confirmed, the two datasets were 
actually one and the same. Once we knew this, we decided to pursue the peak iden-
tification task, as we already “knew” what the subgroups should be and we did not 
trust ourselves to behave “blindly.”

The mass spectra here are traces of intensity (number of hits) at a detector as a 
function of time; peaks in the spectra correspond to distinct peptides, and on a well-
calibrated instrument the mass to charge (m/z) ratio of the peptide can be inferred 
from the time of detection. Mass spectra data are often reported in text files with two 

TABLE 33.1
Annotations for the Gene villin from Two Aggregate 
Quantification Files: One for All Kidney Samples Profiled, 
the Other for All Liver Samples Profiled

Organ Line # Unigene ID Gene Name Block Column Row

Kidney 589 Mm.4010 villin 2 17 5

Liver 589 Mm.4010 villin 4 17 5

The two files give two locations for where villin was printed on the arrays: one of 
the mappings is wrong.
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columns: one column for the inferred m/z values (the x-axis), and another for the 
observed intensity (the y-axis). Sequential observations are, however, often equally 
spaced in time, so there can be two natural x-axes here: time and m/z.

When we entered this contest, we were not that familiar with mass spectrometry 
data, so one of the first things we did was take some time and simply plot the data 
in several different ways. In particular, we plotted early parts of the spectra (with 
lots of peaks), and late parts of the spectra (with few peaks) from several patients. 
We superimposed spectra from the same fraction for different patients to see if the 
problem was “easy.” Here, simply looking at the data identified various oddities. As 
an illustration, the late parts of four spectra, plotted against time index, not m/z, are 
shown in Figure 33.2.

Several differences not due to biology are immediately apparent. First, there are 
different baseline intensity levels, which may reflect detector gain settings. Second, 
the central spectrum has “wiggles” that are quite regular on this scale. This is per-
fectly sinusoidal noise, and represents an electronic artifact (e.g., feedback from a 
loose AC power cord). In this case, we wound up estimating and subtracting back-
ground separately for each spectrum, and using a Fourier transform to identify and 
remove the sinusoidal noise from affected spectra (about half). The preprocessed 
peak data from the manufacturer performed neither of these steps, so the automati-
cally generated peaks included systematic distortions.

The key lessons we want to highlight here involve the importance of sim-
ple exploratory data analysis and preprocessing. As it happens, we were the only 
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FIGURE 33.2  Tail ends of spectra from the first fraction for each of four patients, plotted 
as a function of time index, not m/z. Several differences not due to biology are immediately 
apparent. First, there are different baseline intensity levels, which may reflect detector gain 
settings. Second, the central spectrum has “wiggles” that are quite regular on this scale. This 
is perfectly sinusoidal noise, and represents an electronic artifact. (From Baggerly, K.A. et al., 
Proteomics, 3(9), 1667, 2003. With permission.)
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entrants to identify and remove the sinusoidal noise, and some other types of noise 
not described in detail here (including a 4K computer buffer “flushing” every 4096th 
value). The vast majority of our time was spent cleaning and preprocessing the data, 
with the actual statistical comparison to identify the best peaks coming late in the 
process. This is typical in our experience.

More details of this case study (including how we actually identified and tested 
peaks for differential expression) are given in Baggerly et al. [4]; other papers in the 
same issue of Proteomics contain results of other analyses presented at the meeting. 
We won the competition.

33.4  CASE STUDY 3: PROTEOMICS AND EXPERIMENTAL DESIGN

In 2002, Emmanuel Petricoin of the FDA and Lance Liotta of the NCI published a 
paper in The Lancet claiming that patterns of peak expression in mass spectrometry 
traces derived from serum samples could provide highly sensitive and specific diag-
nostic tests for ovarian cancer [5]. Such a test could be of great clinical utility, as the 
lethality of ovarian cancer derives largely from the fact that it typically goes undiag-
nosed until after it has invaded the abdominal cavity and potentially metastasized, 
rendering complete surgical resection infeasible, and the fact that our other noninva-
sive diagnostic tests do not have high enough specificity for general screening.

These results were sufficiently high profile that the NCI announced a Clinical 
Proteomics initiative, and companies were formed to take these assays to the clinic. 
In addition, several groups at MD Anderson began parallel work studying their own 
tumor types of interest, and they asked us for help with implementing the approach. 
This led us to look at the raw data more closely.

In their Lancet paper, Petricoin et al. [5] looked at spectra from 216 serum sam-
ples: 100 from women with ovarian cancer, including some cases of early stage 
disease, 100 from healthy women, and 16 from women with “benign disease” (e.g., 
ovarian cysts). All of the spectra had 20,514 observations, and covered the same 
m/z range (roughly up to masses (strictly, m/z values) of 20 kDa). Starting with the 
previous spectra, they randomly chose 50 cancer spectra and 50 control spectra to 
train their classifier, and then predicted the status of the samples not used in train-
ing the model. They correctly identified all 50 cancer cases, and 47/50 healthy cases 
(the other three were called cancer). They noted that the 16 benign disease samples 
were not classified as “cancer,” but they were not classified as “control” either—they 
were sufficiently distinct that they were easily recognizable as “other.” This last 
aspect was part of the allure, as there are actually many proteins that may be high 
in patients with advanced cancer and low in healthy controls, but the vast majority 
of these are indicative of systemic distress, and are not specific to ovarian cancer. 
By classifying the benign disease samples as other, this algorithm implied higher 
specificity.

Over time, since the results were deemed to be of high clinical relevance, they 
also generated two more sets of spectra, for a total of three (data set 1 [DS1], the 216 
Lancet spectra, DS2, and DS3). The spectra in DS1 were all generated using a par-
ticular type of “surface-enhanced” plate for use with mass spectrometers, where the 
type of coating (here “H4”) should make the ionization (and thus detection) of some 
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subsets of peptides easier. After publication, Ciphergen, the company that produced 
the surface-enhanced chips, suggested that chips with a different type of coating 
(“WCX2” chips) might give clearer signals. Consequently, all 216 of the DS1 sam-
ples were rerun using WCX2 chips, producing the spectra in DS2. Later, to check 
the approach again, the investigators came back with 162 new cancer samples and 91 
new control samples (no new benign disease samples), and ran these 253 samples on 
WCX2 chips to produce DS3. In each case, the investigators applied their algorithm 
and were able to find “patterns” separating cancers from controls, but the constituent 
peaks in these patterns changed from DS1 to DS2 to DS3.

We acquired all three datasets to explore how these spectra could be used. In 
exploring DS1, we were able to separate the benign samples from the controls and 
cancers with ease, but we were unable to separate the cancers and controls. Further 
exploration suggested that data posted to the web had been subjected to processing 
after the initial analysis, and that this processing destroyed the separation effect of 
the initial “pattern,” calling its robustness into question. In exploring DS2, we noted 
the same problem of post-analysis processing destroying the pattern, but in these 
spectra (derived from the same samples used for DS1), we were no longer able to 
clearly separate the benign disease samples. In order to understand this discrepancy, 
we tried examining heatmap summaries of both DS1 and DS2 at the same time. 
These are shown in Figure 33.3.

Data set 1 (top), data set 2 (bottom)

Cancer

Normal

Other

Clock tick
4,000 8,000 12,000

Cancer

Normal

Other

FIGURE 33.3  Heatmaps of spectra from 216 samples run on H4 chips (DS1, top), and later 
on WCX2 chips (DS2, bottom). In DS1, the “benign disease” or “other” samples are starkly 
different from both the cancers and controls, as evidenced by the locations of the most intense 
peaks (vertical bands). In DS2, no such difference is seen. Looking across datasets, however, 
shows the benign disease samples from DS1 align extremely well with all of the spectra 
in DS2, leading us to conclude that the experimental conditions changed before the benign 
samples in DS1 were run. (From Baggerly, K.A. et al., Bioinformatics, 20(5), 777, 2004. With 
permission.)
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In DS1, the “benign disease” or “other” samples are starkly different from both 
the cancers and controls, as evidenced by the locations of the most intense peaks 
(vertical bands). In DS2, no such difference is seen. Looking across datasets, how-
ever, shows the benign disease samples from DS1 align extremely well with all of 
the spectra in DS2, leading us to conclude that the experimental conditions changed 
before the benign samples in DS1 were run. In short, while the benign samples are 
indeed different in DS1, this difference (and the implied assay specificity) is driven 
by experimental artifact, not by biology of interest.

The difference we saw in DS1 also made us worry about whether the run order of 
the other (cancer and control) samples had been randomized, since differences over 
time could easily be mistaken for the biological changes the investigators expected to 
see. DS3 was not subjected to the post-analysis processing that broke the “patterns,” 
but with that dataset we were able to separate cancers from controls using peaks in 
the electronic noise regions of the spectra. The only explanation for this separation 
was an artifact of poor experimental design (running all of the controls before all of 
the cancers), not biology.

In this case the apparent clinical importance of the initial results had broad impli-
cations. In 2004, the company Correlogic began advertising the “OvaCheck” assay 
for diagnosing ovarian cancer based on the results discussed earlier, announcing it at 
the January meeting of the Society of Gynecologic Oncologists. Our objections and 
others were made available online at the end of January, and the story was covered 
by the New York Times on February 3. In mid-February, the FDA sent letters to 
both Correlogic and its collaborators (LabCorp and Quest Diagnostics) requesting 
consultation before any further advertisement of the assay. In June 2004, the FDA 
ruled that OvaCheck was a medical “device” in the sense that the outcome of its use 
would potentially guide medical interventions of high risk. As a device, the algo-
rithm was subject to FDA review and regulation, and OvaCheck was never cleared 
to be marketed. The FDA has since indicated that other “omic” signatures or “in 
vitro diagnostic multivariate index assays” (IVDMIAs) are also medical devices [6].

In 2005, this incident was cited by members of the NCI’s scientific advisory board 
when they voted against pursuing an $89 million initiative to discover new diagnos-
tic protein signatures. Rather, they later voted for another initiative focused on better 
understanding the capabilities of the mass spectrometry approach, with the latter 
specifically not trying to produce diagnostic signatures in the short term and includ-
ing funding specifically targeting experimental design issues.

The key lessons we want to highlight here involve the importance of basic experi-
mental design and (again) of exploratory data analysis. The two can often be pro-
ductively combined by plotting clinical variates of interest as a function of assay run 
date when the latter is available. A surprisingly large number of high-throughput 
biological studies are subject to complete confounding. This is a major problem since 
sizable batch effects have been observed with almost every type of high-throughput 
assay now in use (see Leek et al. [7]). In this light, we note that run date information 
for Affymetrix experiments is often included in the CEL file headers, where it can be 
accessed with the read.celfile.header function in the affyio package.

More details of this case study (including other artifacts and an argument in one 
of the commentaries that the investigators explicitly chose to run all samples of one 
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group before all of the other [8]) are given in Baggerly et al. [9] and Baggerly et al. 
[10]; Hu et al. [11] provide other examples of poor experimental design affecting pro-
teomic studies. The data and code underlying our analyses of these data are available 
at http://bioinformatics.mdanderson.org/Supplements/ReproducibilitySELDITOF/.

33.5  �CASE STUDY 4: MICROARRAYS AND 
REPRODUCIBLE RESEARCH

In November 2006, Potti et al. published a paper in Nature Medicine claiming to 
show how microarray signatures of drug sensitivity could be constructed from cell 
line profiles and used to predict patient response [12]. In theory, this would allow 
doctors to personalize therapy by selecting the drugs to which a given patient’s tumor 
would be most sensitive. Discover magazine designated this paper one of the top 100 
breakthroughs of 2006. The group shortly extended their method to deal with other 
drugs widely used in treating lung cancer (Hsu et al. [13], dealing with cisplatin and 
pemetrexed) and with predicting response to combination chemotherapy (Bonnefoi 
et al. [14]).

Again, there was excitement about using the approach at MD Anderson, and 
again, we were asked to examine the raw data to figure out how the approach worked. 
Our first finding was that the analysis was extremely hard to reproduce, even after 
exchanging emails with the investigators, because various small processing steps 
were not described in precise detail. In working past that, we found that some of the 
processing steps included errors contaminating the results: Genes were mislabeled 
due to an off-by-one indexing error. Some genes identified as “important” were not 
produced by their software. Worst, “sensitive” and “resistant” labels were apparently 
reversed for some drugs; if the base method worked, this would result in withholding 
treatment from those most likely to benefit from it. We concluded that the method 
didn’t actually work at all; it only appeared to work due to poor bookkeeping. We 
published a short note to that effect in Nature Medicine (Coombes et al. [15]), and 
commented on the need to include code sufficient to allow for complete reproduc-
ibility of the analysis. This 750-word note was accompanied by roughly 130 pages of 
supplementary code and documentation.

We identified further problems in 2007, 2008, and 2009; see, for example, 
Baggerly et al. [16]. In June 2009, we learned that clinical trials using this approach 
to guide therapy had been started at Duke University back in 2007, and were still 
underway. We wrote out our objections and submitted a report to the Annals of 
Applied Statistics at the start of September 2009; the paper [17] was accepted and 
posted online 2 weeks later. The NCI agreed the issues raised were of serious con-
cern, and forwarded the paper to Duke’s Institutional Review Board (IRB). Duke 
suspended trial accruals in October 2009 and arranged for an external review.

In November 2009, while the investigation was underway, the Duke investigators 
posted new data to the web. In particular, they posted the array data that had been 
used to “validate” the performance of the predictive signatures introduced by Hsu 
et al. [13] for cisplatin and pemetrexed, which were two of the drugs they’d been 
using in clinical trials for 2 years by that point. We downloaded these data in order 
to see whether we could also verify the performance.
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The cisplatin and pemetrexed validation data involved array profiles from 59 
women with ovarian cancer who had been treated with the drugs in question. 
Hsu et al. [13] had previously indicated that these profiles were drawn from a larger 
dataset available from the Gene Expression Omnibus (GEO), GSE3149, but they 
had not named which of the 153 samples in the larger dataset were used. In their 
November 2009 posting, the 59 array profiles were specifically named. In order to 
check data provenance, we looked for high pairwise correlations between the pro-
files posted by the investigators and those given in GSE3149. The results are shown 
in Figure 33.4.

We reordered the GSE3149 samples so that if all of the sample labels matched, 
there should be 59 squares (matched profiles) falling on the diagonal line shown. No 
squares fall on this line. There were no matches at all for the first 16 posted samples. 
We found matches for the remaining 43, but none of the sample names were cor-
rect. Using the names posted would in many cases reverse the true response status 
of the underlying sample. A disconnect between the numbers and the sample names 
rendered the predictions invalid. We then examined the behavior of the first 16 sam-
ples (where we found no matches) in more detail, by plotting the RMA-summarized 
intensities of the first 100 probesets for each of the 59 arrays. In looking across 
samples, the identities of the brightest and darkest probesets will generally remain 
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FIGURE 33.4  Locations of high (0.999+) pairwise correlations between the 59 samples 
posted by Duke investigators in November 2009 (x-axis) and the 153 samples in GSE3149 
(y-axis). We reordered the GSE3149 samples so that if all of the sample labels matched, there 
should be 59 squares (matched profiles) falling on the diagonal line shown. No squares fall on 
this line. There were no matches at all for the first 16 posted samples. We found matches for 
the remaining 43, but none of the sample names were correct. Using the names posted would 
in many cases reverse the true response status of the underlying sample.



615Forensic Bioinformatics

fairly stable, because of the differential binding affinities of the various probes for 
cRNA. Indeed, this is seen for the last 43 samples, which roughly parallel the pat-
terns seen in the rest of GSE3149. For the first 16, however, the pattern is quite differ-
ent, but consistent across the set. These 16 samples do not match any of the GSE3149 
samples because the mapping between the numbers and the gene names has been 
corrupted, so we do not know what goes where.

In short, all of the validation data were wrong, for two drugs they’d been using in 
clinical trials for 2 years. We reported this to Duke and to the NCI in mid-November, 
and the data were stripped from the web within the week.

In January 2010, Duke announced that the findings of their external reviewers 
were positive, and that they were restarting the clinical trials. We objected, but to 
no avail. The trials then proceeded until mid-July, at which point the Cancer Letter 
revealed that one of the investigators (Anil Potti) had repeatedly “puffed up” his 
CV, including claims to have been a Rhodes scholar. A group of prominent bio-
informaticians and biostatisticians wrote to Harold Varmus, the newly appointed 
head of the NCI, requesting that the trials be resuspended, and they were. In 
October, after another review of the data, the senior author (Joseph Nevins) called 
to retract the Hsu et al. [13] paper, citing problems identical to those noted earlier: 
43/59 validation samples were mislabeled, and they could not match the other 16. 
In November, the trials were terminated. In January 2011, a Nature news feature 
revealed that the Duke administrators overseeing the initial investigation, in col-
laboration with the acting head of Duke’s institutional review board, had chosen 
to withhold our report from the external reviewers. All three of the foundational 
papers cited previously [12–14] have since been retracted, and others are being 
reviewed.

This case has now led to an Institute of Medicine review of the use of “omics” 
based signatures in clinical trials, with a focus on what data should be made avail-
able and when.

This case is easily the most complex, but one of the key lessons we want to high-
light here is that it should not have been—it was hard because poor documentation 
allowed errors to go unnoticed until after things had proceeded to clinical trials. We 
advocate more complete availability of data and code (see Baggerly et al. [18] and 
Baggerly and Coombes [19]) in part because the complexity of high-throughput data 
is such that inadvertent simple errors are very hard to find without it. This boils down 
to a simple question: When you report results, are your analyses documented well 
enough for somebody else to reproduce them? The other lesson we wish to empha-
size is the importance of checking data provenance—are the labels correct? As anal-
yses become more complex, involving multiple datasets across the web, being able 
to track this type of accuracy becomes ever more important. We try to do most of 
our analyses using data frames in R, which keeps track of row and column labels for 
us. But, when we encounter cases where disconnects are part of one of the analysis 
steps, we include explicit spot checks before and after to make sure a sample of the 
values transform as we expect them to and keep their proper names.

More details of this case study are given in the references cited earlier (Baggerly 
and Coombes [17] is the most extensive), and are also available at http://bioinformat-
ics.mdanderson.org/Supplements/ReproRsch-All/ and its child links. The full report 
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we sent in November 2009, together with all of the data and code needed to recreate 
it, is available at http://bioinformatics.mdanderson.org/Supplements/ReproRsch-All/
Modified.

33.6  GENERAL LESSONS

The tools we have introduced here are, for the most part, simple ones—gold standard 
tests, PCA, exploratory data analysis, plotting by run date, checking provenance. In 
this sense, they are parallel to the errors themselves, since, in our experience, the 
most common mistakes people make are simple ones, for example, getting labels 
transposed, disconnecting labels from data, and confounding the design. No malice 
of any type is required; the first two mistakes in particular are easy to make in Excel. 
If the analyses are clear, simple errors are often easy to find and fix. If the analyses 
are opaque, then the simple errors may go unnoticed, and simple mistakes are still 
important.

Another general lesson that we have learned is that clarity and reproducibility 
are vitally important in high-throughput biology. In keeping with this observation, 
we instituted the requirement in our department that all analysis reports are written 
in Sweave [20], a literate programming language that combines R and LaTeX in 
a way that lets others run your reports and get the same numbers you did. (While 
we like Sweave, we note that other tools such as GenePattern [21] and Galaxy [22] 
are available; reproducibility is the goal, and Sweave is a tool for reaching it.) To 
enhance clarity, we have also imposed a regular structure on our reports, the most 
important of which is that our reports begin with a short (one or two page) “executive 
summary” organized in the “Introduction, Data and Methods, Results, Conclusions” 
style of presentation most familiar to our collaborators. Examples of such reports 
are available at http://bioinformatics.mdanderson.org/Supplements/ReproRsch-All/.

Getting used to checking simple things and making things reproducible requires 
some initial effort, but we see this effort both as necessary for the field to progress 
and well worth it from the point of view of enhancing our own productivity.
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FIGURE 30.4  A heatmap of log rank statistics comparing survival distributions of the high- 
and low-risk groups predicted by cross validation (based on training set of data set 2) when 
using the top 5, 10, …, 100 genes (represented in rows) to calculate scores and dichotomize 
from the 10th through 90th percentile with increments of 1 (represented in columns). The 
color bar on the right shows the colors representing the log rank statistics ranging from 0.3 to 
47.55, that is, lighter colors correspond to higher log rank statistics. Each black circle in the 
heatmap indicates the percentile to achieve maximum log rank statistic for the corresponding 
gene score, and the single circle highlighted in bold indicates where the maximum log rank 
statistic was achieved among all.
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Many new challenges have arisen in the area of oncology clinical trials.  New 
cancer therapies are often based on cytostatic or targeted agents, which pose 
new challenges in the design and analysis of all phases of trials.  The literature 
on adaptive trial designs and early stopping has been exploding. Inclusion of 
high-dimensional data and imaging techniques has become common practice, 
and statistical methods on how to analyze such data have been refined in this 
area. A compilation of statistical topics relevant to these new advances in cancer 
research, this third edition of Handbook of Statistics in Clinical Oncology 
focuses on the design and analysis of oncology clinical trials and translational 
research. 

Addressing the many challenges that have arisen since the publication of its 
predecessor, this third edition covers the newest developments involved in the 
design and analysis of cancer clinical trials, incorporating updates to all four 
parts:
•	 Phase	I	trials: Updated recommendations regarding the standard 3 + 3 and 

continual reassessment approaches, along with new chapters on phase 0 
trials and phase I trial design for targeted agents.

•	 Phase	II	trials: Updates to current experience in single-arm and randomized 
phase II trial designs. New chapters include phase II designs with multiple 
strata and phase II/III designs.

•	 Phase	III	trials: Many new chapters include interim analyses and early 
stopping considerations, phase III trial designs for targeted agents and 
for testing the ability of markers, adaptive trial designs, cure rate survival 
models, statistical methods of imaging, as well as a thorough review of 
software for the design and analysis of clinical trials.

•	 Exploratory	and	high-dimensional	data	analyses: All chapters in this part 
have been thoroughly updated since the last edition. New chapters address 
methods for analyzing SNP data and for developing a score based on 
gene expression data. In addition, chapters on risk calculators and forensic 
bioinformatics have been added.

Accessible to statisticians and oncologists interested in clinical trial methodology, 
the book is a single-source collection of up-to-date statistical approaches to 
research in clinical oncology. 
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