





HANDBOOK OF STATISTICS
IN
CLINICAL ONCOLOGY

THIRD EDITION






HANDBOOK OF STATISTICS
IN
CLINICAL ONCOLOGY

THIRD EDITION

Edited by
John Crowley, PhD

CEO, Cancer Research And Biostatistics (CRAB)
Seattle, Washington, USA

Antje Hoering, PhD

Senior Biostatistician, Cancer Research And Biostatistics (CRAB)
Affiliate Assistant Professor, Department of Biostatistics, University of Washington
Affiliate Investigator, Fred Hutchinson Cancer Research Center
Seattle, Washington, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120215

International Standard Book Number-13: 978-1-4398-6201-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



To my wife, Catherine Abram Crowley, my
patient partner of over 40 years.
John Crowley

In memory of my father, Heinz Ferdinand Felix Horing,
who died much too young of colon cancer; and to my
husband, Peter Tadych, for his love and support.
Antje Hoering






Contents

PrEfaCE. ... e X1
e 170 £ S RPN X1ii
CONETIDULOTS ...ivvvieeeeeeiieee ettt e e eee e e e e e et e e e e e eeataeeeeesensaseeeeeenaaeeeeeeennees XV

PART I Phase I Trials

Chapter 1 Choosing a Phase I Design.........cccevvieieriieienieienie e 3
Barry E. Storer

Chapter 2 Dose-Finding Designs Based on the Continual
Reassessment Method ...........oooueeviiiiiiniiniiiicieeeeeeeeee 21

John O’Quigley and Alexia lasonos

Chapter 3 Pharmacokinetics in Clinical Oncology: Statistical Issues................ 53

Gary L. Rosner, Peter Miiller, Simon Lunagomez, and Patrick
A. Thompson

Chapter 4  Statistics of Phase 0 Trials .......c.cceevvevieeiereiienieeieseeeseeee e 73

Larry Rubinstein

Chapter 5 CRM Trials for Assessing Toxicity and Efficacy........cccccceeevveninnenne. 85
Sumithra J. Mandrekar and Daniel J. Sargent

Chapter 6 Seamless Phase I/II Trial Design for Assessing Toxicity and
Efficacy for Targeted AZENnts........ccceevuerierierienienieieeiieieeeenie e 97

Antje Hoering, Michael LeBlanc, and John J. Crowley

PART Il Phase Il Trials

Chapter 7 Overview of Phase II Clinical TrialS.........cccceveueeriienvieenienieeieeneeen 109

Stephanie Green

vii



viii Contents

Chapter 8 Designs Based on Toxicity and Response...........ccccceecvecircercnencnnens 125
Gina R. Petroni and Mark R. Conaway

Chapter 9  Designs Using Time-to-Event Endpoints/Single-Arm versus
Randomized Phase IT Designs .......c..coeeevvenienieienieinininenenenennns 139

Catherine M. Tangen and John J. Crowley

Chapter 10 Phase I Selection Designs ........ccceeoeerieviereenienienienieieeieeeieneeenee 151
P.Y. Liu, James Moon, and Michael LeBlanc

Chapter 11 Phase II with Multiple Subgroups: Designs Incorporating
Disease Subtype or Genetic Heterogeneity ..........cocceeeveevcrveniennnns 163

Michael LeBlanc, Cathryn Rankin, and John J. Crowley

Chapter 12 Phase II/IIT DESIZNS .....cceeeerrieieriieierieeieseeieseeeieeeesve e e eseenseens 175
Sally Hunsberger

PART IIl Phase Il Trials

Chapter 13 Use of Covariates in Randomization and Analysis of
Clinical TrIAlS c..cooiiiiiiiicneereeeeceee e 185

Garnet L. Anderson, Michael LeBlanc, P.Y. Liu, and John J. Crowley

Chapter 14 Factorial Designs with Time-to-Event Endpoints.........c..ccccceceeneeee. 199

Stephanie Green

Chapter 15 Early Stopping of Clinical Trials ........cccccvveeveniinenicniniinieeienenn 211
Mary W. Redman

Chapter 16 Noninferiority Trials .........ccecvieveerievieriierieeiee e 229
Kenneth J. Kopecky and Stephanie Green

Chapter 17 Phase III Trials for Targeted AZents .........cceeveveerieeeeneeieneeieneenns 251

Antje Hoering, Michael LeBlanc, and John J. Crowley



Contents ix

Chapter 18 Adaptive Trial Designs........ccceceririreriniinenenieieieieeeeeeeeeese s 265
Brian P. Hobbs and J. Jack Lee

Chapter 19 Design of a Clinical Trial for Testing the Ability of a
Continuous Marker to Predict Therapy Benefit...........ccccceviennnnne. 293

William E. Barlow

Chapter 20 Software for Design and Analysis of Clinical Trials ........c..cccceene. 305
J. Jack Lee and Nan Chen

Chapter 21 Cure-Rate Survival Models in Clinical Trials ........cccceeceevevieneenen. 325
Megan Othus, John J. Crowley, and Bart Barlogie

Chapter 22 Design and Analysis of Quality-of-Life Data ........c.ccccceecveneeienncee. 339
Andrea B. Troxel and Carol M. Moinpour

Chapter 23 Economic Analyses alongside Cancer Clinical Trials.........c..c..c..... 369
Dean A. Regier and Scott D. Ramsey

Chapter 24 Structural and Molecular Imaging in Cancer Therapy
Clinical TrialS......ccoiiiiiiiiiiicc e 387

Brenda F. Kurland and David A. Mankoff

PART IV  Exploratory and High-Dimensional Data
Analyses

Chapter 25 Prognostic Factor StUdies.........ccecveeierierierierieniee e 415

Martin Schumacher, Norbert Hollinder, Guido Schwarzer,
Harald Binder, and Willi Sauerbrei

Chapter 26 Predictive Modeling of Gene Expression Data...........cccccvevveeevennenne. 471

Alexander Hapfelmeier, Waheed Babatunde Yahya, Robert
Rosenberg, and Kurt Ulm



Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Contents

Explained Variation and Explained Randomness for

Proportional Hazards MoOdelS ........cccceevierveeniiinieniiiieenieeeee

John O’Quigley and Ronghui Xu

Prognostic Groups by Tree-Based Partitioning and

Data Refinement MethodS.........coovuvviiiiiiiiiiiiiieieeeee e

Michael LeBlanc and John J. Crowley

RisK CalCulators .........ccoeeivvieieeieiieeeeeeeeireeee et e

Donna Pauler Ankerst and Yuanyuan Liang

Developing a Score Based upon Gene Expression

Profiling and Validation ............ccceeeeiieiiinienieeieeeeec e

Pingping Qu, John D. Shaughnessy Jr., Bart Barlogie, and
John J. Crowley

Analysis of DNA MICIOAITAYS ....ccccevuieierierieriieienieeieneeniesieeiens

Shigeyuki Matsui and Hisashi Noma

Methods for SNP Regression Analysis in Clinical Studies:

Selection, Shrinkage, and LOZIC ......c.cccevverviieniiiniienienieeieene

Michael LeBlanc, Bryan Goldman, and Charles Kooperberg

Forensic BioInfOrmatiCs ..........coooevvveieiiiieiiieeieiiieeeeeeeeeeeeeeeenees

Keith A. Baggerly and Kevin R. Coombes



Preface

This third edition expands on the first and second editions as a compilation of statis-
tical topics relevant to cancer research in general, and to oncology clinical trials and
translational research in particular. Since the last edition, published in 2006, many
new challenges have arisen in this area. New cancer therapies are often based on
cytostatic or targeted agents, which pose new challenges in the design and analysis
of all phases of oncology clinical trials. New chapters specifically addressing trial
design issues pertaining to targeted agents have been added. The literature on adap-
tive trial designs and early stopping has been exploding, and new chapters on these
topics have been added. Inclusion of high-dimensional data and imaging techniques
have become common practice in oncology clinical trials, and statistical methods
on how to analyze such data have been refined in this area. Many tools have become
available to help statisticians design clinical trials, and a chapter has been added
to review these tools and to provide a reference on where to find them. In addition,
previous sections of the second edition have been revised to reflect the current state
of the art. As in the first two editions, the intended audience is primarily statisticians
and other researchers involved in designing and analyzing cancer clinical trials.
Experts in the field have contributed individual chapters making this an invaluable
reference.
This third edition is divided into four parts:

1. Phase I Trials. Updated recommendations regarding the standard 3+ 3 and
continual reassessment approaches along with new chapters on phase 0 tri-
als and on phase I trial design for targeted agents are provided.

2. Phase II Trials. Current experience in single-arm and randomized phase
II trial designs has been updated. New chapters added to this part include
phase II designs with multiple strata and phase II/III designs.

3. Phase III Trials. Many new chapters have been added to this part, includ-
ing interim analyses and early stopping considerations, phase III trial
designs for targeted agents and for testing the ability of markers, adaptive
trial designs, cure-rate survival models, statistical methods of imaging, as
well as a thorough review of software for the design and analysis of clinical
trials.

4. Exploratory and High-Dimensional Data Analyses. All chapters in this
part have been thoroughly updated since the last edition. New chapters have
been added to address methods for analyzing SNP data and for developing
a score based on gene expression data. In addition, chapters on risk calcula-
tors and forensic bioinformatics have been added to this part.

xi
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1.1  INTRODUCTION AND BACKGROUND

Although the term phase I is sometimes applied generically to almost any “early”
trial, in cancer drug development, it usually refers specifically to a dose finding trial
whose major endpoint is toxicity. The goal is to find the highest dose of a poten-
tial therapeutic agent that has acceptable toxicity; this dose is referred to as the
MTD (“maximum tolerable dose”), and is presumably the dose that will be used in
subsequent phase II trials evaluating efficacy. Occasionally, one may encounter tri-
als that are intermediate between phase I and phase II and are referred to as phase
IB trials. This is a more heterogeneous group, but typically includes trials that are
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evaluating some measure of biologic efficacy over a range of doses that have been
found to have acceptable toxicity in a phase I trial. In that context, the trial determin-
ing the MTD may be referred to as a phase IA trial. This chapter will focus exclu-
sively on phase I trials with a toxicity endpoint.

What constitutes acceptable toxicity of course depends on the potential thera-
peutic benefit of the drug. There is an implicit assumption with most anticancer
agents that there is a positive correlation between toxicity and efficacy, but most
drugs that will be evaluated in phase I trials will prove ineffective at any dose.
The problem of defining an acceptably toxic dose is complicated by the fact that
patient response is heterogeneous: at a given dose, some patients may experience
little or no toxicity, while others may have severe or even fatal toxicity. Since the
response of the patient will be unknown before the drug is given, acceptable toxic-
ity is typically defined with respect to the frequency of toxicity in the population as
a whole. For example, given a toxicity grading scheme ranging from O to 5 (none,
mild, moderate, severe, life-threatening, fatal), one might define the MTD as the
dose where, on average, one out of three patients would be expected to experience
a grade 3 or worse toxicity. In that case, grade 3 or worse toxicity in an individual
patient would be referred to as “dose limiting toxicity” (DLT). The definition of
DLT may vary from one trial to another depending on what toxicities are expected
and how manageable they are.

When defined in terms of the presence or absence of DLT, the MTD can be repre-
sented as a quantile of a dose—response curve. By notation, if Y is a random variable
whose possible values are 1 and 0, respectively, depending on whether a patient does
or does not experience DLT, and for dose d we have y(d) =Pr(Y= 1ld), then the MTD
is defined by y(d,,;,) =0, where 0 is the desired probability of toxicity. Alternately,
one could define Y to be the random variable representing the threshold dose at which
a patient would experience DLT. The distribution of Y is referred to as a tolerance
distribution and the dose—response curve is the cumulative distribution function for
Y, so that the MTD would be defined by Pr(Y < d,,;,,) =0. For a given sample size, the
most effective way of estimating this quantile would be from a sample of threshold
doses. Such data are nearly impossible to gather, however, as it is impractical to give
each patient more than a small number of discrete doses. Further, the data obtained
from sequential administration of different doses to the same patient would almost
surely be biased, as one could not practicably distinguish the cumulative effects of
the different doses from the acute effects of the current dose level. For this reason,
almost all phase I trials involve the administration of only a single dose level to each
patient and the observation of the frequency of occurrence of DLT in all patients
treated at the same dose level.

There are two significant constraints on the design of a phase I trial. The first is
the ethical requirement to approach the MTD from below, so that one must start at
a dose level believed almost certainly to be below the MTD and gradually escalate
upward. The second is the fact that the number of patients typically available for a
phase I trial is relatively small, say 15-30, and is not driven traditionally by rigorous
statistical considerations requiring a specified degree of precision in the estimate of
MTD. The pressure to use only small numbers of patients is large—literally doz-
ens of drugs per year may come forward for evaluation, and each combination with
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other drugs, each schedule, and each route of administration requires a separate trial.
Furthermore, the number of patients for whom it is considered ethically justified to
participate in a trial with little evidence of efficacy is limited. The latter limitation
also has implications for the relevance of the MTD in subsequent phase II trials
of efficacy. Since the patient populations are different, it is not clear that the MTD
estimated in one population will yield the same result when implemented in another.

1.2 DESIGNS FOR PHASE I TRIALS

As a consequence of the previous considerations, the traditional phase I trial
design utilizes a set of fixed dose levels that have been specified in advance, that is
d € {d,, d,,..., di}. The choice of the initial dose level d,, and the dose spacing, are
discussed in more detail hereafter. Beginning at the first dose level, small numbers of
patients are entered, typically 3—6, and the decision to escalate or not depends on a
prespecified algorithm related to the occurrence of DLT. When a dose level is reached
with unacceptable toxicity, then the trial is stopped.

1.2.1 INImAL Dose LeveL AND DOSE SPACING

The initial dose level is generally derived either from animal experiments, if the
agent in question is completely novel, or by conservative consideration of previous
human experience, if the agent in question has been used before but with a differ-
ent schedule, route of administration, or with other concomitant drugs. A common
starting point based on the former is from 1/10 to 1/3 of the mouse LD,,, the dose
that kills 10% of mice, adjusted for the size of the animal on a per kilogram basis or
by some other method.

Subsequent dose levels are determined by increasing the preceding dose level by
decreasing multiples, a typical sequence being {d,, d,=2d,, d;=1.67d,, d,=1.4d,,...,
d,=1.33d, _,}. Such sequences are often referred to as “modified Fibonacci,”
although in a true Fibonacci sequence the increments would be approximately 2, 1.5,
1.67, 1.60, 1.63, and then 1.62 thereafter, converging on the golden ratio. Note that
after the first few increments, the dose levels are equally spaced on a log scale. With
some agents, particularly biological agents, the dose levels may be determined by log
spacing, that is, {d,, d,=10d,,..., d,=10d, _}, or approximate half-log spacing, that
is, {d,, d,=3d,, d,=10d,,..., d,=10d, _,}.

1.2.2 TRADITIONAL ESCALATION ALGORITHMS

A wide variety of dose escalation rules may be used. For purposes of illustration,
we describe the following, which is often referred to as the traditional “3+3” design.
Beginning at k=1,

[A] Evaluate three patients at d;:
[A1] If zero of three patients have DLT, then increase dose to d,, , and go to [A].
[A2] If one of three patients has DLT, then go to [B].
[A3] If > two of three patients have DLT, then go to [C].



6 Handbook of Statistics in Clinical Oncology

[B] Evaluate an additional three patients at d:
[B1] If one of six patients has DLT, then increase dose to d,,, and go to [A].
[B2] If >two of six patients have DLT, then go to [C].

[C] Discontinue dose escalation.

If the trial is stopped, then the dose level below that at which excessive DLT was
observed is the MTD. Some protocols may specify that if only three patients were
evaluated at that dose level, then an additional three should be entered, for a total
of six, and that process should proceed downward, if necessary, so that the MTD
becomes the highest dose level where no more than one toxicity is observed in six
patients. The actual 0 that is desired is generally not defined when such algorithms
are used, but implicitly 0.17 <6 < 0.33, so we could take 6 = 0.25.

Another example of a dose escalation algorithm, referred to as the “best-of-5"
design, is described here. Again, the value of 0 is not explicitly defined, but one could
take 0 =~ 0.40. Beginning at k=1,

[A] Evaluate three patients at d;:
[A1] If zero of three patients have DLT, then increase dose to d,,, and go to [A].
[A2] If one or two of three patients have DLT, then go to [B].
[A3] If three of three patients have DLT, then go to [D].

[B] Evaluate an additional patient at d,:
[B1] If one of four patients has DLT, then increase dose to d,, , and go to [A].
[B2] If two of four patients have DLT, then go to [C].
[B3] If three of four patients have DLT, then go to [D].

[C] Evaluate an additional patient at d,:
[C1] If two of five patients have DLT, then increase dose to d,,, and go to [A].
[C2] If three of five patients have DLT, then go to [D].

[D] Discontinue dose escalation.

Although traditional designs reflect an empirical common sense approach to the
problem of estimating the MTD under the noted constraints, only brief reflection
is needed to see that the determination of MTD will have a rather tenuous statisti-
cal basis. Consider the outcome of a trial employing the “3+3” design where the
frequency of DLT for dose levels d,, d,, and d; is zero of three, one of six, and two
of six, respectively. Ignoring the sequential nature of the escalation procedure, the
pointwise 80% confidence intervals for the rate of DLT at the three dose levels are,
respectively, 0-0.54, 0.02-0.51, and 0.09-0.67. Although the middle dose would
be taken as the estimated MTD, there is not even reasonably precise evidence that
the toxicity rate for any of the three doses is either above or below the implied 6 of
approximately 0.25.

Crude comparisons among traditional dose escalation algorithms can be made
by examining the level-wise operating characteristics of the design, that is, the
probability of escalating to the next dose level given an assumption regarding the
underlying probability of DLT at the current dose level. Usually this calculation is a
function of simple binomial success probabilities. For example, in the “3+3” algo-
rithm described earlier, the probability of escalation is Bin(0, 3;y(d)) + Bin(1, 3;y(d))
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FIGURE 1.1 Level-wise operating characteristics of two traditional dose escalation algo-
rithms. The probability of escalating to the next higher dose level is plotted as a function of
the true probability of DLT at the current dose.

Bin(1, 3;y(d)), where Bin(r, n;y(d)) is the binomial probability of r successes (toxici-
ties) out of n trials (patients) with underlying success probability at the current dose
level y(d). The probability of escalation can then be plotted over a range of y(d),
as is done in Figure 1.1 for the two algorithms described previously. Although it is
obvious from such a display that one algorithm is considerably more aggressive than
another, the level-wise operating characteristics do not provide much useful insight
into whether or not a particular design will tend to select an MTD that is close to the
target. More useful approaches to choosing among traditional designs and the other
designs described hereafter are discussed in Section 1.3.

1.2.3 BAYESIAN APPROACH: THE CONTINUAL REASSESSMENT METHOD

The small sample size and low information content in the data derived from tra-
ditional methods have suggested to some the usefulness of Bayesian methods to
estimate the MTD. In principle, this approach allows one to combine any prior infor-
mation available regarding the value of the MTD with subsequent data collected in
the phase I trial to obtain an updated estimate reflecting both.

The most clearly developed Bayesian approach to phase I design is the continual
reassessment method (CRM) proposed by O’Quigley and colleagues (O’Quigley
et al. 1990, O’Quigley and Chevret 1991). From among a small set of possible dose
levels, say {d,,..., d¢}, experimentation begins at the dose level which the investiga-
tors believe, based on all available information, is the most likely to have an associ-
ated probability of DLT equal to the desired 0. It is assumed that there is a simple
family of monotone dose—response functions  such that for any dose d and prob-
ability of toxicity p there exists a unique a where y(d, a)=p, in particular y(d,;rp,
a,)=06. An example of such a function is y(d, a)=[(tanh d+ 1)/2]¢. Note that y is not
assumed to be necessarily a dose—response function relating a characteristic of the
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dose levels to the probability of toxicity. That is, d does not need to correspond liter-
ally to the dose of a drug. In fact, the treatments at each of the dose levels may be
completely unrelated, as long as the probability of toxicity increases from each dose
level to the next; in this case d could be just the index of the dose levels. The unique-
ness constraint implies in general the use of one-parameter models, and explicitly
eliminates popular two-parameter dose—response models like the logistic. In prac-
tice, the latter have a tendency to become “stuck” and oscillate between dose levels
when any data configuration leads to a large estimate for the slope parameter.

A prior distribution g(a) is assumed for the parameter a such that for the initial

dose level, for Sxample, ds, either | Y(ds,a)g(a)da = 0 or, alternatively, y(d;, p,) =6,

where W, = | ag(a)da. The parlti(zzular prior used should also reflect the degree of
uncertainly p(fesent regarding the probability of toxicity at the starting dose level; in
general this will be quite vague.

After each patient is treated and the presence or absence of toxicity observed, the
current distribution g(a) is updated along with the estimated probabilities of toxic-
ity at each dose level, calculated by either of the previous methods (O’Quigley et al.
1990). The next patient is then treated at the dose level minimizing some measure
of the distance between the current estimate of the probability of toxicity and ©.
After a fixed number n of patients has been entered sequentially in this fashion, the
dose level selected as the MTD is the one which would be chosen for a hypothetical
n+ 1th patient.

An advantage of the CRM design is that it makes full use of all the data at hand in
order to choose the next dose level. Even if the dose-response model used in updat-
ing is misspecified, CRM will tend eventually to select the dose level which has a
probability of toxicity closest to 8 (Shen and O’Quigley 1996), although its practical
performance should be evaluated in the small sample setting typical of phase I tri-
als. A further advantage is that, unlike traditional algorithms, the design is easily
adapted to different values of 6.

In spite of these advantages, some practitioners object philosophically to the
Bayesian approach, and it is clear in the phase I setting that the choice of prior can have
a measurable effect on the estimate of MTD (Gatsonis and Greenhouse 1992). On
the other hand, the basic framework of CRM can easily be adapted to a non-Bayesian
setting and can conform in practice more closely to traditional methods (O’Quigley
and Shen 1996). For example, there is nothing in the approach that prohibits one
from starting at the same low initial dose as would be common in traditional trials,
or from updating after groups of three patients rather than single patients. In fact, the
Bayesian prior can be abandoned entirely and the updating after each patient can be
fully likelihood based. Without a prior, however, the dose—response model cannot be
fit to the data until there is some heterogeneity in outcome, that is, at least one patient
with DLT and one patient without DLT. Thus, some simple rules are needed to guide
the dose escalation until heterogeneity is achieved. A number of other modifications
to the CRM design have been proposed that address practical issues of implementa-
tion. These include limiting the rate of dose escalation (Goodman et al. 1995), stop-
ping rules based on the width of the posterior probability interval (Heyd and Carlin
1999), and interpolation between doses (Piantadosi and Liu 1996).
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1.2.4 StORER’S TWO-STAGE DESIGN

Storer (1989, 1993) has explored a combination of more traditional methods imple-
mented in such a way as to minimize the numbers of patients treated at low dose
levels and to focus sampling around the MTD; these methods also utilize an explicit
dose-response framework to estimate the MTD.

The design has two stages and uses a combination of simple dose—escalation
algorithms. The first stage assigns single patients at each dose level, and escalates
upward until a patient has DLT, or downward until a patient does not have DLT.
Algorithmically, beginning at k=1,

[A] Evaluate one patient at d,:
[A1] If no patient has had DLT, then increase dose to d,,, and go to [A].
[A2] If all patients have had DLT, then decrease dose to d,_, and go to [A].
[A3] If at least one patient has had DLT and at least one patient has not had
DLT, then if the current patient has not had DLT, go to [B], otherwise
decrease the dose to d, _, and go to [B].

Note that the first stage meets the requirement for heterogeneity in response needed
to start off a likelihood-based CRM design, and could be used for that purpose. The
second stage incorporates a fixed number of cohorts of patients. If 0=1/3, then it is
natural to use cohorts of size three, as follows:

[B] Evaluate three patients at d,:
[B1] If zero of three patients have DLT, then increase dose to d,,, and go
to [B].
[B2] If one of three patients has DLT, then go to [B].
[B3] If = two of three patients have DLT, then decrease dose to d, _, and go
to [B].

After completion of the second stage a dose—response model is fit to the data and
the MTD estimated by maximum likelihood or other method. For example, one
could use a logistic model where logit[y(d)]=o+plog(d), whence the estimated
MTD is determined from log(d,,;;) = (logit(®)—&)/p. A two-parameter model is
used here in order to make fullest use of the final sample of data; however, as noted
earlier, two-parameter models have undesirable properties for purposes of dose
escalation. In order to obtain a meaningful estimate of the MTD, one must have
O<ﬁ<w. If this is not the case, then one needs either to add additional cohorts of
patients or substitute a more empirical estimate, such as the last dose level or hypo-
thetical next dose level.

As noted, the algorithm described previously is designed with a target 0=1/3 in
mind. Although other quantiles could be estimated from the same estimated dose—
response curve, a target 0 different from 1/3 would probably lead one to use a modi-
fied second stage algorithm.

Extensive simulation experiments using this trial design in comparison to more
traditional designs demonstrated the possibility of reducing the variability of point
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estimates of the MTD, and reducing the proportion of patients treated at very low
dose levels, without markedly increasing the proportion of patients treated at dose
levels where the probability of DLT is excessive. Storer (1993) also evaluated dif-
ferent methods of providing confidence intervals for the MTD, and found that stan-
dard likelihood-based methods that ignore the sequential sampling scheme are often
markedly anticonservative; these methods included the delta method, a method
based on Fieller’s theorem, and a likelihood ratio method. More accurate confidence
sets can be constructed by simulating the distribution of any of those test statistics
at trial values of the MTD; however, the resulting confidence intervals are often
extremely wide. Furthermore, the methodology is purely frequentist, and may be
unable to account for minor variations in the implementation of the design when a
trial is conducted.

With some practical modifications, the two-stage design described earlier has
been implemented in a real phase I trial (Berlin et al. 1998). The major modifications
included: (a) a provision to add additional cohorts of three patients, if necessary, until
the estimate of  in the fitted logistic model becomes positive and finite; (b) a provi-
sion that if the estimated MTD is higher than the highest dose level at which patients
have actually been treated, the latter will be used as the MTD; and (c) a provision
to add additional intermediate dose levels if, in the judgment of the protocol chair,
the nature or frequency of toxicity at a dose level precludes further patient accrual
at that dose level.

1.2.5 OTHER APPROACHES

1.2.5.1 Accelerated Titration

If the starting dose level has been chosen too conservatively, then the 3+3 design
may use large numbers of patients before reaching a dose level where the probability
of toxicity is nonnegligible. Although one cannot know in advance that the start-
ing dose level is far below the MTD, a feature of the CRM and two-stage designs
described previously is that they have the potential to escalate the dose level using
smaller numbers of patients than a traditional 3 +3 design. Naturally, there is a trade-
off with the potential to escalate above the MTD, but the ability to escalate quickly
could be an attractive feature of the design if the toxicity profile of the drug is reason-
ably well understood and the dose limiting toxicities are thought to be manageable
even at doses above the MTD.

An example of a design that is more similar to the 3+ 3 design but also permits
more rapid dose escalation is the “accelerated titration” design proposed by Simon
et al. (1997). This design permits dose escalation using single patient cohorts, but
then reverts to the traditional 3+3 design at a dose level where a patient experiences
DLT or a second patient experiences grade 2 toxicity (or other specified level of
toxicity less than a DLT). The original description of this design also allowed for
intra-patient dose escalation and a final model fitting procedure using all patients at
all dose levels, although this component is generally not implemented in actual trials
using this design framework.
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1.2.5.2 Another Bayesian Approach (EWOC)

Another Bayesian approach to phase I design has been described by Babb et al.
(1996) and Tighiouart et al. (2005). The approach is referred to as EWOC (escala-
tion with overdose control). The general framework is similar to that of CRM, and
the MTD has the usual definition in terms of the probability of DLT; however, in
contrast to CRM the MTD is related explicitly to an underlying continuous tolerance
distribution. The dose for each patient is selected such that, based on all available
information, the posterior probability that the dose exceeds the MTD is equal to a.
The feasibility bound o controls the aggressiveness of the escalation; a typical value
would be a=0.25. In the usual case that there are a few fixed dose levels available for
testing, additional tolerance parameters are used to select one that is closest to the
optimal exact dose. Note that, unlike CRM, the dose chosen during dose escalation
is not necessarily the one estimated to be closest to the MTD. After a predetermined
number of patients have been evaluated, the final estimate of MTD is determined by
minimizing the posterior expected loss with respect to some loss function.

1.2.5.3 Late Toxicity

In the majority of phase I settings dose escalation is based on the evaluation of DLT
within a relatively limited period of observation, typically no more than 4—6 weeks.
This is acceptable in the usual case that the toxicities of interest are expected to
occur acutely; however, there may be other settings where toxicities may not be
manifest immediately but may occur after chronic dosing over an extended period of
time, or are simply delayed in appearance. Any of the designs mentioned earlier can
be implemented in such a setting, but obviously will extend the duration of the trial
if cohorts of patients must be observed for an extended period of time before dose
escalation is permitted.

Relatively little attention has been paid to this design situation, the most notable
exception being the TITE (time to event)—CRM design (Cheung and Chappell 1996;
Braun 2006). This is a weighted version of CRM, with the weights related in some
way to the amount of time that patients have been observed relative to the maximum
period of time where the occurrence of DLT is of interest. For example, if 7 is the
maximum time (e.g., 6 months), and u; is the amount of time the ith patient has been
observed, then a very simple weighting scheme might take w,=u,/T for patients that
have not experienced DLT, and w,=1 for patients that have. The Bayesian updating
is performed in the usual manner, but patients who have not experienced DLT do not
contribute fully until they have been observed until 7. More complex versions of the
weighting can also be devised, for example, by making some assumptions about the
distribution of the time to DLT during the interval up to 7. As with the basic CRM
design, similar weighting schemes could also be applied to likelihood-based updating.

1.2.5.4 MTD Defined by a Continuous Parameter

Although not common in practice, it is useful to consider the case where the major
outcome defining toxicity is a continuous measurement, for example, the nadir
WBC. This may or may not involve a fundamentally different definition of the MTD
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in terms of the occurrence of DLT. For example, suppose that DLT is determined by
the outcome Y<c¢, where c is a constant, and we have ¥ ~ Normal(a+ pd, 62). Then
dyrp=(c — o — ©71(0)0)/p has the traditional definition that the probability of DLT is
0. The use of such a model in studies with small sample size makes some distribu-
tional assumption imperative. Some sequential design strategies in this context have
been described by Eichhorn and Zacks (1973).

Alternatively, the MTD might be defined in terms of the mean response, that
is, the dose where E(Y)=c. For the same simple linear model, we then have that
dyrp=(c —a)/p. An example of a two-stage design using a regression model for WBC
is given in Mick and Ratain (1993). Fewer distributional assumptions are needed
to estimate d,;;p, and stochastic approximation techniques might be applied in the
design of trials with such an endpoint (Anbar 1984). Nevertheless, the use of a mean
response to define MTD is not generalizable across drugs with different or multiple
toxicities, and consequently has received little attention in practice.

1.3 CHOOSING A PHASE | DESIGN

As noted previously, only limited information regarding the suitability of a phase I
design can be gained from the level-wise operating characteristics shown in Figure 1.1.
Furthermore, for designs like CRM, which depend on data from prior dose levels to
determine the next dose level, it is not even possible to specify a level-wise operating
characteristic.

Useful evaluations of phase I designs must involve the entire dose—response curve,
which of course is unknown. Many simple designs for which the level-wise operating
characteristics can be specified can be formulated as discrete Markov chains (Storer
1989). The states in the chain refer to treatment of a patient or group of patients
at a dose level, with an absorbing state corresponding to the stopping of the trial.
For various assumptions about the true dose—response curve, one can then calculate
exactly many quantities of interest, such as the number of patients treated at each
dose level, from the appropriate quantities determined from successive powers of the
transition probability matrix P. Such calculations are fairly tedious, however, and do
not accommodate designs with nonstationary transition probabilities, such as CRM.
Nor do they allow one to evaluate any quantity derived from all of the data, such as
the MTD estimated after following Storer’s two-stage design.

For these reasons, simulations studies are the only practical tool for evaluating
phase I designs. As with exact computations, one needs to specify a range of possible
dose—response scenarios, and then simulate the outcome of a large number of trials
under each scenario. Here we give an example of such a study, in order to illustrate
the kinds of information that can be used in the evaluation and some of the consid-
erations involved in the design of the study. This study has also been presented in
Storer (2001). Other examples of simulation studies comparing phase I designs are
Korn et al. (1994) and Ahn (1998).

1.3.1  SpecIFYING THE DOSE—RESPONSE CURVE

We follow the modified Fibonacci spacing described in Section 1.2. For example,
in arbitrary units, {d,=100.0, d,=200.0, d;=333.3, d,=500.0, ds=700.0, d;=933.3,
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d,=12444,...}. We also define hypothetical dose levels below d, that successively
halve the dose above, that is, {d,=50.0, d_,=25.0,...}. The starting dose is always
d,, and we assume that the true MTD is four dose levels higher, at ds, with 6=1/3.
In order to define a range of dose—response scenarios, we vary the probability of
toxicity at d, from 0.01 to 0.20 in increments of 0.01, and graph our results as a
function of that probability. The true dose—response curve is determined by assum-
ing that a logistic model holds on the log scale. In the usual formulation one would
have logit[y(d)]=a+plog(d). In the present setup, we specify d,, w(d,), and that
y(ds)=1/3, whence P=logit(1/3)—-logitly(d,))/A, where A=log(ds)—log(d,), and
a=logitly(d,)] - p log(d,).

Varying the probability of DLT at d, while holding the probability at ds fixed
at 0 results in a sequence of dose—response curves ranging from relatively steep
to relatively flat. An even greater range could be encompassed by also varying the
number of dose levels between the starting dose and the true MTD, which of course
need not be exactly at one of the predetermined dose levels. The point is to study the
sensitivity of the designs to features of the underlying dose—response curve, which
obviously is unknown.

1.3.2  SPECIFYING THE DESIGNS

This simulation will evaluate the two traditional designs described earlier, Storer’s
two-stage design, and a non-Bayesian CRM design. It is important to make the simu-
lation as realistic as possible in terms of how an actual clinical protocol would be
implemented, or at least to recognize what differences might exist. For example, the
simulation does not place a practical limit on the highest dose level, although it is
rare for any design to escalate beyond d,,.

An actual protocol might have an upper limit on the number of dose levels, with
a provision for how to define the MTD if that limit is reached. Similarly, the simula-
tion always evaluates a full cohort of patients, whereas in practice, where patients are
more likely entered sequentially than simultaneously, a 3 +3 design might, for exam-
ple, forego the last patient in a cohort of three if the first two patients had experienced
DLT. Specifics of the designs used in the simulation study are given hereafter.

1.3.2.1 Traditional 3 +3 Design

This design is implemented as described in Section 1.2. In the event that excessive
toxicity occurs at d,, the MTD is taken to be d,. Although this is an unlikely occur-
rence in practice, a clinical protocol should specify any provision to decrease dose if
the stopping criteria are met at the first dose level.

1.3.2.2 Traditional Best-of-5 Design

This design is implemented as described in Section 1.2, with the same rules applied
to stopping at d,.

1.3.2.3 Storer’s Two-Stage Design

This design is implemented as described in Section 1.2, using a second stage sample
size of 24 patients. A standard logistic model is fit to the data. If it is not the case that
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0<f<eo, then the geometric mean of the last dose level used and the dose level that
would have been assigned to the next cohort is used as the MTD. In either case, if
that dose is higher than the highest dose at which patients have actually been treated,
then the latter is taken as the MTD.

1.3.2.4 Non-Bayesian CRM Design

We start the design using the first stage of the two-stage design as described earlier.
Once heterogeneity has been achieved, 24 patients are entered in cohorts of three.
The first cohort is entered at the same dose level as for the second stage of the two-
stage design; after that, successive cohorts are entered using likelihood based updat-
ing of the dose—response curve. For this purpose we use a single parameter logistic
model—a two parameter model with f fixed at 0.75. This value does have to be
tuned to the actual dose scale, but is not particularly sensitive to the precise value.
That is, similar results would be obtained with f in the range 0.5-1.0. For reference,
on the natural log scale the distance log(d,,;,) — log(d,) = 2, and the true value of f
in the simulation ranges from 2.01 to 0.37 as y(d,) ranges from 0.01 to 0.20. After
each updating, the next cohort is treated at the dose level with estimated probability
of DLT closest in absolute value to 0; however, the next level cannot be more than
one dose level higher than the current highest level at which any patients have been
treated. The level that would be chosen for a hypothetical additional cohort is the
MTD; however, if this dose is above the highest dose at which patients have been
treated, the latter is taken as the MTD.

1.3.3  SimuLATION AND REsuLTs

The simulation is performed by generating 5000 sequences of patients and applying
each of the designs to each sequence for each of the dose-response curves being
evaluated. The sequence of “patients” is really a sequence of pseudo-random num-
bers generated to be uniform (0,1). Each patient’s number is compared to the hypo-
thetical true probability of DLT at the dose level the patient is entered at for the
dose—response curve being evaluated. If the number is less than that probability, then
the patient is taken to have experienced DLT.

Figure 1.2 displays results of the aforementioned simulation study which relate to
the estimate d,,;,,. Since the dose scale is arbitrary, the results are presented in terms
of y(d ;). Panel (a) displays the mean probability of DLT at the estimated MTD.
The horizontal line at 1/3 is a point of reference for the target 6. Although none of
the designs is unbiased, all except the conservative 3 +3 design perform fairly well
across the range of dose—response curves. The precision of the estimates, taken as
the root MSE of the probabilities y(d,,;;), is shown in panel (b). In this regard the
CRM and two-stage designs perform better than the best-of-5 design over most set-
tings of the dose—response curve. One should also note that, in absolute terms, the
precision of the estimates is not high even for the best designs.

In addition to the average properties of the estimates, it is also relevant to look
at the extremes. Panels (c) and (d) present the fraction of trials where y(d,,;;,) <0.20
or (d ;) >0.50, respectively. The seesaw pattern observed for all but the two-
stage design is caused by changes in the underlying dose—response curve, as the
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FIGURE 1.2 Results of 5000 simulated phase I trials according to four designs, plotted
as a function of the probability of DLT at the starting dose level. The true MTD is fixed
at four dose levels above the starting dose, with ©6=1/3. Results are expressed in terms of

Purp= “V(JMTD)-

probability of DLT at particular dose levels moves over or under the limit under
consideration. Since the three designs select discrete dose levels as d,,;, this will
result in a corresponding decrease in the fraction of estimates beyond the limit. The
cutoff of 0.20 is the level at which the odds of DLT are half that of 6. Although this
may not be an important consideration, to the extent that the target 0 defines a dose
with some efficacy in addition to toxicity, the fraction of trials below this arbitrary
limit may represent cases in which the dose selected for subsequent evaluation in
efficacy trials is “too low.” Because of their common first stage design that uses
single patients at the initial dose levels, the two-stage and CRM designs do best in
this regard. Conversely, the cutoff used in panel (d) is the level at which the odds of
toxicity are twice that of 6. Although the occurrence of DLT in and of itself is not
necessarily undesirable, as the probability of DLT increases there is likely a corre-
sponding increase in the probability of very severe or even fatal toxicity. Hence, the
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FIGURE 1.3 Results of 5000 simulated phase I trials according to four designs, plotted as
a function of the probability of DLT at the starting dose level. The true MTD is fixed at four
dose levels above the starting dose, with 0=1/3.

trials where the probability of DLT is above this arbitrary level may represent cases
in which the dose selected as the MTD is “too high.” In this case there are not large
differences among the designs, and in particular we find that the two designs that
perform the best in panel (c) do not carry an unduly large penalty. One could easily
evaluate other limits if desired.

Some results related to the outcome of the trials themselves are presented in
Figure 1.3. Panels (a) and (b) present the overall fraction of patients that are treated
below and above, respectively, the same limits as for the estimates in Figure 1.2. The
two-stage and CRM designs perform best at avoiding treating patients at the lower
dose levels; the two-stage design is somewhat better than the CRM design at avoid-
ing treating patients at higher dose levels, although of course it does not do as well as
the very conservative 3 +3 design.
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Sample size considerations are evaluated in panels (c) and (d). Panel (c) shows
the mean number of patients treated. Because they share a common first stage and
use the same fixed number of patients in the second stage, the two-stage and CRM
designs yield identical results. The 3+ 3 design uses the smallest number of patients,
but this is because it tends to stop well below the target. On average, the best-of-5
design uses six to eight fewer patients than the two-stage or CRM design. Panel (d)
displays the mean number of “cycles” of treatment that are needed to complete the
trial, where a cycle is the period of time over which a patient or group of patients
needs to be treated and evaluated before a decision can be made as to the dose level
for the next patient or group. For example, the second stage in the two-stage or CRM
designs always uses eight cycles; each dose level in the 3 +3 design uses one or two
cycles, etc. This is a consideration only for situations where the time needed to com-
plete a phase I trial is not limited by the rate of patient accrual but by the time needed
to treat and evaluate each group of patients. In this case the results are qualitatively
similar to that of panel (e).

1.4 SUMMARY AND CONCLUSION

Based only on the previous results, one would likely eliminate the 3 +3 design from
consideration. The best-of-5 design would probably also be eliminated as well, owing
to the lower precision and greater likelihood that the MTD will be well below the
target. On the other hand, the best-of-5 design uses fewer patients. If small patient
numbers are a priority, it would be reasonable to consider an additional simulation in
which the second stage sample size for the two-stage and CRM designs is reduced
to, say, 18 patients. This would put the average sample size for those designs closer
to that of the best-of-5, and one could see whether they continued to maintain an
advantage in the other aspects. Between the two-stage and CRM designs, there is
perhaps a slight advantage to the former in terms of greater precision and a smaller
chance that the estimate will be too far above the target; however, the difference is
likely not important in practical terms and might vary under other dose—response
conditions. The advantage of the two-stage design may seem surprising, given that
the next dose level is selected only on the basis of the outcome at the current dose
level, and ignores the information that CRM uses from all prior patients. However,
the two-stage design also incorporates a final estimation procedure for the MTD that
utilizes all the data, and uses a richer family of dose—response models. This issue is
examined in Storer (2001).

A desirable feature of the results shown is that both the relative and absolute
properties of the designs do not differ much over the range of dose—response curves.
Additional simulations could be carried out which would vary also the distance
between the starting dose and the true MTD, or place the true MTD between dose
levels instead of exactly at a dose level.

To illustrate further some of the features of phase I designs, and the necessity of
studying each situation on a case by case basis, we repeated the simulation study
using a target 6=0.20. Exactly the same dose—response settings are used, so that
the results for the two traditional designs are identical to those shown previously.
The two-stage design is modified to use five cohorts of five patients, but follows
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FIGURE 1.4 Results of 5000 simulated phase I trials according to four designs, plotted
as a function of the probability of DLT at the starting dose level. The dose—response curves
are identical to those used for Figure 1.2, but with 0=0.20. Results are expressed in terms of

Purp= W(dA MTD)-

essentially the same rule for selecting the next level described earlier with “3”
replaced by “5”. Additionally, the final fitted model estimates the MTD associated
with the new target; and of course the CRM design selects the next dose level based
on the new target.

The results for this simulation are presented in Figures 1.4 and 1.5. In this case
the best-of-5 design is clearly eliminated as too aggressive. However, and perhaps
surprisingly, the 3+ 3 design performs nearly as well, or better, than the supposedly
more sophisticated two-stage and CRM designs. There is a slight disadvantage in
terms of precision, but given that the mean sample size with the 3 +3 design is nearly
half that of the other two, this may be a reasonable trade-off. Of course, it could also
be the case in this setting that using a smaller second stage sample size would not
adversely affect the two-stage and CRM designs.
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FIGURE 1.5 Results of 5000 simulated phase I trials according to four designs, plotted as
a function of the probability of DLT at the starting dose level. The dose—response curves are
identical to those used for Figure 1.3, but with 6=0.20.

Finally, we reiterate the point that the purpose of this simulation was to dem-
onstrate some of the properties of phase I designs and of the process of simulation
itself, not to advocate any particular design. Depending on the particulars of the trial
at hand, any one of the four designs might be a reasonable choice. An important
point to bear in mind is that traditional designs must be matched to the desired target
quantile, and will perform poorly for other quantiles. CRM designs are particularly
flexible in this regard; the two-stage design can be modified to a lesser extent.
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2.1 OVERVIEW

This review describes the basic ideas behind the continual reassessment method
(CRM), as it is used in Phase I and Phase I/II dose finding. We recall some impor-
tant technical considerations, some key properties of the method, and the possibility
for substantial generalization, specifically, the use of graded information on toxici-
ties, the incorporation of a stopping rule leading to potential reductions in sample
size, the incorporation of information on patient heterogeneity, the incorporation
of pharmacokinetics, and the possibility of modeling in the presence of drug com-
binations. In its most classical setting the CRM is used to identify the maximum
tolerated dose (MTD) where only information on toxicities is used. For Phase I/II
designs, in which information on efficacy can be obtained within a comparable time
frame as that on toxicity, we can use the CRM structure, together with the sequential
probability ratio test, to construct very effective designs to locate the dose producing
the greatest rate of success. We consider more involved CRM designs, for example,
designs that account for low-grade toxicities, pharmacokinetic endpoints, patient
heterogeneity, partial ordering in drug combinations and model averaging tech-
niques. The theory that backs up this extra complexity comes under the umbrella of
Bayesian model choice.

2.2 GOALS AND OPERATING CHARACTERISTICS

We describe here the clinical goals for these studies and the method’s operating
characteristics. Essentially, the clinical goals correspond to the basic properties we
would wish a suitable method to possess. The operating characteristics describe what
we actually have, that is, how the method will behave in practice.

2.2.1 CunicaL GoALs

Storer (1989) made explicit the goal of a Phase I dose finding study in chronic ill-
ness such as cancer, as being the identification of some dose corresponding to an
acceptable rate of undesirable side effects, usually called toxicities. This would be
the context for cytotoxic drugs in which we might view toxicity as a surrogate for
longer-term efficacy. For Phase I/II studies we observe in a similar time frame both
toxicity and some measure of effect. For these studies the goal is usually to maxi-
mize the overall success rate. O’Quigley et al. (1990) argued that, for a Phase I study,
in addition to the goal of targeting some percentile, an acceptable design should aim
to incorporate the following restrictions:

1. We should minimize the number of under-treated patients, that is, patients
treated at unacceptably low dose levels.

2. We should minimize the number of patients treated at unacceptably high
dose levels.

3. We should minimize the number of patients needed to complete the study
(efficiency).
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4. The method should respond quickly to inevitable errors in initial guesses,
rapidly escalating in the absence of indication of drug activity (toxicity)
and rapidly de-escalating in the presence of unacceptably high levels of
observed toxicity.

Before describing just how the CRM meets the aforementioned requirements we
will first look at the requirements themselves in the context of Phase I cancer dose
finding studies.

Most Phase I cancer clinical trials are carried out on patients for whom all cur-
rently available therapies have failed. There will always be hope in the therapeutic
potential of the new experimental treatment but such hope will often be tempered
by the almost inevitable life-threatening toxicity accompanying the treatment. Given
that candidates for these trials have no other options concerning treatment, their
inclusion appears contingent upon maintaining some acceptable degree of control
over the toxic side effects as well as trying to maximize treatment efficacy, which
in the absence of information on efficacy itself translates as dose. Too high a dose,
while offering in general better hope for treatment effect, will be accompanied by
too high a probability of encountering unacceptable toxicity. Too low a dose, while
avoiding this risk, may offer too little chance of seeing any benefit at all.

Given this context, the first two of the earlier numbered requirements appear
immediate. The third requirement, a concern for all types of clinical studies, becomes
of paramount importance here where very small sample sizes are inevitable. This is
because of the understandable desire to proceed quickly with a potentially promis-
ing treatment to the Phase II stage. At the Phase II stage the probability of observing
treatment efficacy is almost certainly higher than that for the Phase I population of
patients. We have to do the very best we can with the relatively few patients avail-
able and the statistician involved in such studies should also provide some idea as to
the error of our estimates, translating the uncertainty of our final recommendations
based on such small samples. The fourth requirement is not an independent require-
ment and can be viewed as a partial reexpression of requirements 1 and 2, taking
timeliness also into account.

Taken together, the requirements point toward a method where we converge
quickly to the correct level, the correct level being defined as the one having a prob-
ability of toxicity as close as possible to some prespecified value 6. The value is cho-
sen by the investigator such that he or she considers probabilities of toxicity higher
than 6 (to be unacceptably high), while those lower than 6 unacceptably low in that
they indicate, indirectly, the likelihood of too weak an antitumor effect.

Figure 2.1 illustrates the comparative behavior of CRM with a fixed sample up
and down design (Storer 1989) in which level 7 is the correct level. How does CRM
work? The essential idea is similar to that of stochastic approximation, the main
differences being the use of a nonlinear under-parameterized model, belonging to
a particular class of models, and a small number of discrete dose levels rather than
a continuum. Patients enter sequentially. The working dose—toxicity curve, taken
from the CRM class (described hereafter), is refitted after observing each patient’s
outcome. The curve is then inverted to identify which of the available levels has an
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FIGURE 2.1 Typical trial histories; CRM (a), standard design (b).

associated estimated probability as close as we can get to the targeted acceptable
toxicity level. The next patient is then treated at this level. The cycle is continued
until a fixed number of subjects have been treated or until we apply some stopping
rule (see Section 2.4.1). Typical behavior is that shown in Figure 2.1.

2.2.2  OPERATING CHARACTERISTICS

A large sample study (Shen and O’Quigley 1996) showed that, under certain con-
ditions, the level to which a CRM design converges will indeed be the level with
respective estimated toxicity probability closest to the target. As pointed out by Storer
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(1998) large sample properties themselves will not be wholly convincing since, in
practice, we are inevitably faced with small to moderate sample sizes. Nonetheless,
if any scheme fails to meet such basic statistical criteria as large sample convergence,
we need to investigate with great care its finite sample properties. The tool to use
here is mostly that of simulation although for the standard up and down schemes,
the theory of Markov chains enables us to carry out exact probabilistic calculations
(Storer 1993, Reiner et al. 1998).

Whether Bayesian or likelihood based, once the scheme is under way, then it is
readily shown that a nontoxicity always points in the direction of higher levels and a
toxicity in the direction of lower levels, the absolute value of the change diminishing
with the number of included patients. For the case of non-monotone likelihood it is
impossible to be at some level, observe a toxicity and then for the model to recom-
mend a higher level as claimed by some authors, unless pushed in such a direction
by a strong prior. Furthermore, when targeting lower percentiles such as 0.2, it can
be calculated, and follows our intuition, that a toxicity, occurring with a frequency,
a factor of 4 less than that for the nontoxicities, will have a much greater impact on
the likelihood or posterior density. This translates directly into an operating charac-
teristic whereby model-based escalation is relatively cautious and de-escalation more
rapid, particularly early on where little information is available. In the model and
examples of O’Quigley et al. (1990) dose levels could never be skipped when escalat-
ing. However, if the first patient, treated at level 3, suffered a toxic side effect, the
method skipped when de-escalating, recommending level 1 for the subsequent two
entered patients before, assuming no further toxicities were seen, escalating to level 2.

Simulations in O’Quigley et al. (1990), O’Quigley and Chevret (1991, 1993),
Goodman et al. (1995), Korn et al. (1994), and O’Quigley (2006) show the operat-
ing characteristics of CRM to be good, in terms of accuracy of final recommenda-
tion while simultaneously minimizing the numbers of overtreated and undertreated
patients. As long as strong priors are not used in the Bayesian framework, and the
model requirements are not violated, the method behaves very well (Cheung and
Chappell 2002).

2.2.3  SAFETY

Safety is a concern for all clinical trials. Concern for safety in Phase I trials has been
expressed because these are the first inhuman trials and the dose—toxicity profile
obtained from preclinical studies may no longer be valid in the clinical context.
Some investigators have expressed a worry that CRM may tend to treat the early
included patients in a study at high dose levels. This can be seen to not be the case
but the concern alone convinced many investigators that without some modification
CRM was not “safe” to use routinely. Safety is in fact a statistical property of any
method. When faced with some potential realities or classes of realities, we can ask
ourselves questions such as: what is the probability of toxicity for a randomly chosen
patient that has been included in the study or, say, what is the probability of toxicity
for those patients entered into the study at the very beginning.

Once we know the realities or classes of realities we are facing, the operating
rules of the method—obvious and transparent for up and down schemes and less
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transparent for model based schemes such as CRM—then, in principle, we can cal-
culate the probability of toxicity for a randomly chosen patient or for those patients
entered into the study at the very beginning. Theoretical work as well as extensive
simulations (O’Quigley et al. 1990, O’Quigley and Chevret 1991, O’Quigley and
Shen 1996, Ahn 1998, Reiner et al. 1998, O’Quigley 1999) indicates CRM to be
a safer design than any of the commonly used up and down schemes, in that, for
targets of less than (6 = 0.30, the probability that a randomly chosen patient suffers
a toxicity is lower. In practice, these calculations are involved and we may simply
prefer to estimate them to any desired degree of accuracy via simulation.

Were the definition of safety to be widened to include the concept of treating
patients at unacceptably low levels where the probability of toxicity is deemed too
close to zero, then CRM does very much better than the standard designs. This find-
ing is logical given that the purpose of CRM is to concentrate as much experimenta-
tion as possible around the prespecified target. In addition, it ought be emphasized
that we can adjust the CRM to make it as safe as we require by changing the target
level. For instance, were we to decrease the target from 0.20 to 0.10, the observed
number of toxicities will, on average, be reduced and, in many cases, halved. This is
an important point since it highlights the main advantages of the CRM over the stan-
dard designs in terms of flexibility and the ability to be adapted to potentially dif-
ferent situations. An alternative way to enhance conservatism is, rather than choose
the closest available dose to the target, systematically take the dose immediately
lower than the target or change the distance measure used to select the next level
to recommend. This idea has been studied by Babb et al. (1998) who introduced
criteria that control overdosing. The issue of safety has been further addressed by
modified CRM designs that start at the lowest dose level, and do not allow skipping
levels. Simulation studies have shown that the impact of such modifications on the
reliability of final estimation is negligible (Garrett-Mayer 2006, Iasonos et al. 2008).
In addition, in the Bayesian setting, we are at liberty to assign heavier priors to lower
dose levels if those levels should be preferred.

2.3 TECHNICAL ASPECTS

The aim of CRM is to locate the most appropriate dose, the so-called target dose,
the precise definition of which is provided as follows. This dose is taken from some
given range of available doses. Dose spacing for single drug combinations is often
addressed via a modified Fibonacci design, preclinical or earlier clinical studies. For
the purposes of CRM we do not generally address the issue of dose spacing and
we assume that we have available K preselected fixed doses; d,, ..., d,. The need
to add doses may arise in practice when the toxicity frequency is deemed too low
at one level but the next highest level is considered too toxic. CRM can help with
this affirmation but as far as extrapolation or interpolation of dose is concerned, the
relevant insights will come from pharmacokinetics. These doses are not necessarily
ordered directly in terms of the d; themselves, in particular, since each d; may be a
vector, being a combination of different treatments, but rather in terms of the prob-
ability R(d,) of encountering toxicity at each dose d;. We take monotonicity to mean
that the dose levels, equally well identified by their integer subscripts i (i=1,..., k),



Dose-Finding Designs Based on the Continual Reassessment Method 27

are ordered whereby the probability of toxicity at level i is greater than that at level
i'(whenever i>i"). The monotonicity requirement or the assumption that we can so
order our available dose levels in terms of toxicity is thus important. Currently all the
dose information required to run a CRM trial is contained in the dose levels. Without
wishing to preclude the possibility of exploiting information contained in the doses d;
and not in the dose levels i, at present we lose no information when we replace d, by i.

The actual amount of drug therefore, so many mg/m? say, is typically not used.
For a single agent trial it is in principle possible to work with the actual dose (see
Piantadosi et al. 1998). This requires care, in particular, if working with Bayesian
priors, and, generally, we advise working with conceptual dose levels. For multidrug
or treatment combination studies there is no obvious univariate measure. We work
instead with some conceptual dose, increasing when one of the constituent ingre-
dients increases, and under our monotonicity assumption, translating itself as an
increase in the probability of a toxic reaction. Choosing the dose levels amounts to
selecting levels (treatment combinations) such that the lowest level hopefully has an
associated toxic probability less than the target and the highest level possibly close
or higher than the target.

The most appropriate dose, the “target” dose, is that dose having an associated
probability of toxicity as close as we can get to the target “acceptable” toxicity .
Values for the target toxicity level, 6, might typically be 0.2, 0.25, 0.3, 0.35, although
there are studies in which this can be as high as 0.4 (Moller 1995). The value depends
on the context and the nature of the toxic side effects.

The dose for the jth entered patient X; can be viewed as random taking values x;,
most often discrete in which case x;€{d,...., d;} but possibly continuous where X;=x;
x€R*. In light of the remarks of the previous two paragraphs we can, if desired,
entirely suppress the notion of dose and retain only information pertaining to dose
level. This is all we need and we may prefer to write x;€{1,..., k}. Let ¥; be a binary
random variable (0,1) where 1 denotes severe toxic response for the jth entered
patient (j=1,..., n). We model R(x)), the true probability of toxic response at X;=x;;
x;€{d,,...d;} or x;€{l,...k} via

R(x;))=Pr(Y; = 1|X; = x;) = E(Y;|x;) = ¥(x;,0)

for some one-parameter model y(x;,a).

For the most common case of a single homogeneous group of patients we are
obliged to work with an under-parameterized model, notably a one-parameter model.
Although a two-parameter model may appear more flexible, the sequential nature
of CRM together with its aim to put the included patients at a single correct level
means that we will not obtain information needed to fit two parameters. We are close
to something like non-identifiability. A likelihood procedure will be unstable and
may even break down, whereas a two-parameter fully Bayesian approach (O’Quigley
et al. 1990, Gatsonis and Greenhouse 1992, Whitehead and Williamson 1998) may
work initially, by virtue of the cohesion and structure created by the prior, but may
become less stable as the sample size increases (Shu and O’Quigley 2008). The goal
of CRM in not to fit an overall model to the full range of data, but is rather to identify
some target percentile from the dose—toxicity curve.
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2.3.1 MoDEL REQUIREMENTS

The restrictions on y(x,a) were described by O’Quigley et al. (1990). For given
fixed x we require that y(x,a) be strictly monotonic in a. For fixed a we require
that y(x,a) be monotonic increasing in x or, in the usual case of discrete dose
levels d;, i=1,..., k, that y(d;,a)>y(d,,,a) whenever i>m. The true probability
of toxicity at whatever treatment combination has been coded by x, is given by
R(x) and we require that, for the specific doses under study (d,, ..., d,) there exists
values of a, say aj,..., a, such that y(d;,a)=R(d),(i=1, ..., k). In other words, our
one-parameter model has to be rich enough to model the true probability of tox-
icity at any given level. We call this a working model since we do not anticipate
a single value of a to work precisely at every level, that is, we do not anticipate
a,=a,=-=a,=a. Many choices are possible. We have obtained excellent results
with the simple choice:

Y(di,a)=aj, (i=1..k) @2.1)

where O<o; <+ o<1 and O<a < co. For the six levels studied in the simulations by
O’Quigley et al. (1990) the working model had a; =0.05, a,=0.10, o, =0.20, o, =0.30,
as=0.50, and o, =0.70. In that paper this was expressed a little differently in terms
of conceptual dose d; where d,=-1.47, d,=-1.10, d;=-0.69, d,=-0.42, d;=0.0, and
d;=0.42 obtained from a model in which

o < aohdi+D 2.2)
2

The preceding “tanh” model was first introduced in this context by O’Quigley et al.
(1990), the idea being that tanh(x) increases monotonically from 0 to 1 as x increases
from —oo to co. This extra generality is not usually needed since attention is focused
on the few fixed d,. Note that, at least as far as maximum likelihood estimation is
concerned (see Section 2.3.2), working with model (1) is equivalent to working with
a model in which a;, i=1,...,k is replaced by o (i =1,...,k) where a; =a for any
real m>0. Thus, we cannot really attach any concrete meaning to the «;. The spac-
ing, however, between adjacent o; will impact operating characteristics. Working
with real doses corresponds to using some fixed dose spacing, although not neces-
sarily one with nice properties. The spacings chosen here have proved satisfactory in
terms of performance across a broad range of situations. An investigation into how
to choose the o; with the specific aim of improving certain aspects of performance
has been carried out by Lee and Cheung (2009).

Some obvious choices for a model can fail the previous conditions leading
to potentially poor operating characteristics. The one-parameter logistic model,
y(x,a)=w/(1+w), in which b is fixed and where w=exp(b+ax) can be seen to
fail the previous requirements (Shen and O’Quigley 1996). On the other hand the
less intuitive model obtained by w so that w=exp(a+bx), b # 0, belongs to the
CRM class.
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2.3.2 MAXIMUM LIKELIHOOD ESTIMATION

Once a model has been chosen and we have data in the form of the set €2,_; = {y,x,....,
Yj-1-X;-1}, the outcomes of the first j — 1 patients we obtain estimates R(d), (i=1,..., k)
of the true unknown probabilities R(d)), (i=1....,k) at the k dose levels (see the fol-
lowing). The target dose level is that level having associated with it a probability
of toxicity as close as we can get to 0. The dose or dose level x; assigned to the jth
included patient is such that

|R(x;))-0|<|R(d)-8|, (i=1,...kx;=d)

Thus, x; is the closest level to the target level in the previous precise sense. Other
choices of closeness could be made, incorporating cost or other considerations. We
could also weight the distance, for example, multiply IR(x) 6l by some constant
greater than 1 when R(x) >0. This would favor conservatism, such a design tending
to experiment more often below the target than a design without weights. Similar
ideas have been pursued by Babb et al. (1998).

The estimates R(x;) are obtained from the one-parameter working model. Two
questions dealt with in this section arise: (1) How do we estimate R(x) on the basis
of Q;_,? and (2) how do we obtain the initial data, in particular since the first entered
patient or group of patients must be treated in the absence of any data-based esti-
mates of R(x,)? Even though our model is under-parameterized, leading us into the
area of mis-specified models, it turns out that standard procedures of estimation
work. Some care is needed to show this and we look at this in Section 2.4. The proce-
dures themselves are described later. Obtaining the initial data is partially described
in these same sections as well as being the subject of its own Section 2.4.2.

In order to decide, on the basis of available information and previous observa-
tions, the appropriate level at which to treat a patient, we need some estimate of
the probability of toxic response at dose level d,, (i=1,...,k). We would currently
recommend use of the maximum likelihood estimator (O’Quigley and Shen 1996)
described in Section 2.3.1. The Bayesian estimator, developed in the original paper
by O’Quigley et al. (1990) will perform very similarly unless priors are strong. The
use of strong priors in the context of an under-parameterized and mis-specified
model may require deeper study. Bayesian ideas can nonetheless be very useful in
addressing more complex questions such as patient heterogeneity and drug combina-
tions. We return to this in the Section 2.8. After the inclusion of the first j patients,
the log-likelihood can be written as

J J
Ly(a) = ZW log (x;,a) + Z(l — yo)log(1 - (x,,a)) 2.3)

and is maximized at a=d;. Maximization of L(a) can easily be achieved with a
Newton—Raphson algorithm. Once we have calculated d;, we can next obtain an
estimate of the probability of toxicity at each dose level d; via

R(d) =(did)), (i =1,...0k)
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On the basis of this formula the dose to be given to the (j+ )th patient, x;, , is deter-
mined as already mentioned.

A requirement to be able to maximize the log-likelihood on the interior of the
parameter space is that we have heterogeneity among the responses, that is, at least one
toxic and one nontoxic response (Silvapulle 1981). Otherwise the likelihood is maxi-
mized on the boundary of the parameter space and our estimates of R(d), (i=1,...,k)
are trivially either zero, one, or, depending on the model we are working with, may
not even be defined. Thus, the experiment is considered as not being fully underway
until we have some heterogeneity in the responses. These could arise in a variety of
different ways: the use of the standard up and down approach, the use of an initial
Bayesian CRM as outlined in two-stage designs, or the use of a design believed to be
more appropriate by the investigator. Once we have achieved heterogeneity, the model
kicks in and we continue as prescribed earlier (estimation—allocation). Achieving the
necessary heterogeneity to carry out the previous prescription is largely arbitrary.

2.4 IMPLEMENTATION

2.4.1 Fixep SAMPLE OR STOPPING RULES

CRM can be implemented on the basis of a fixed sample or by making use of a
stopping rule. If a fixed sample n is used, then the recommended dose level is the
level that would be recommended to patient n+ 1. However, given the convergence
properties of CRM, it may occur in practice that we appear to have settled on a level
before having included the full sample size n of anticipated patients. In such a case
we may wish to bring the study to an early close, thereby enabling the Phase II study
to be undertaken more quickly. One possible approach suggested by O’Quigley et al.
(1990) would be to use the estimated confidence interval for the probability of toxic-
ity, y(x;,, d), at the currently recommended level and when this interval falls within
some prespecified range; then we stop the study.

We can calculate an approximate 100(1 — a)% confidence interval for y(x;, ;, 4,

as (W7, V;) where

1/2

VLT = wix., @4, —Zl-a/zv(flj)”z)}

V5 =Y{xj01,(d;+Z1-a2V (@))

where
Z, 1s the ath percentile of a standard normal distribution
v(d@) is an estimate of the variance of ¢;
For the model of Equation 2.1 this turns out to be particularly simple and we can write

E, - Y(xg,aG; )ogay)
(<j,ye=0
A=Y(xpa; )

V_l(&,-)=

Although based on a mis-specified model these intervals turn out to be quite accu-
rate, even for sample sizes as small as 12 and thus helpful in practice (Natarajan and
O’Quigley 2003). Another approach would be to stop after some fixed number of
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subjects have been treated at the same level. Such designs were used by Goodman
et al. (1995) and Korn et al. (1994) and have the advantage of great simplicity. These
modifications have been evaluated through simulations and they appear to work well
in terms of MTD estimation (Goodman et al. 1995, Iasonos et al. 2008) if the sample
size is no less than 20, but their theoretical properties remain to be studied.

One stopping rule that has been studied in detail (O’Quigley and Reiner 1998) is
based on the convergence of CRM so that, as we appear to settle at some level, the
accumulating information can enable us to quantify this notion. Specifically, given
the data of j patients, ©;, we would like to be able to say something about the levels
at which the remaining patients, j+ 1 to n, are likely to be treated. The quantity we
are interested in is

7Dj,n = Pr{xﬁl =Xj2 == Xyt Q/}

In other words, P;n is the probability that x;,, is the dose recommended to all
remaining patlents in the trial as well as bemg the final recommended dose. Thus,
to find 72, n one needs to determine all the possible outcomes of the trial based on
the results known for the first j patients. Details regarding estimating 7, n are given
in O’Quigley and Reiner (1998). The rule, based on precise probablhstlc calcula-
tion, is quite involved. A much simpler rule was constructed based on the idea of
having settled at some level in O’Quigley (2002) where the operating characteristics
were more closely evaluated. In addition, Zohar and Chevret (2001) compared vari-
ous Bayesian stopping rules and confirmed the requirement of including at least 20
patients to reach an accurate estimate of MTD when testing 5—6 dose levels.

2.4.2 Two-STAGE DESIGNS

It may be felt that we know so little before undertaking a given study that it is worth-
while splitting the design into two stages, an initial exploratory escalation followed
by a more refined homing in on the target. Such an idea was first proposed by Storer
(1989) in the context of the more classical up and down schemes. His idea was to
enable more rapid escalation in the early part of the trial where we may be quite
far from a level at which treatment activity could be anticipated. Moller (1995) was
the first to use this idea in the context of CRM designs. Her idea was to allow the
first stage to be based on some variant of the usual up and down procedures. In
the context of sequential likelihood estimation, the necessity of an initial stage was
pointed out by O’Quigley and Shen (1996) since the likelihood equation fails to have
a solution on the interior of the parameter space unless some heterogeneity in the
responses has been observed. Their suggestion was to work with any initial scheme,
Bayesian CRM or up and down, and, for any reasonable scheme, the operating char-
acteristics appear relatively insensitive to this choice.

However, we believe there is something very natural and desirable in two-stage
designs and that currently they could be taken as the designs of choice. The rea-
son is the following: Early behavior of the method, in the absence of heterogeneity,
appears to be rather arbitrary. A decision to escalate after inclusion of three patients
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tolerating some level, or after a single patient tolerating a level or according to some
Bayesian prior corresponds to the simple desire to try a higher dose. This follows
some kind of evidence of a low rate of toxicity at the current level. Rather than lead
the clinician into thinking that something subtle and carefully analytic is taking
place, our belief is that it is preferable that he or she be involved in the design of
the initial phase. Operating characteristics that do not depend on data ought to be
driven by clinical rather than statistical concerns. More importantly, the initial phase
of the design, in which no toxicity has yet been observed, can be made much more
efficient, from both the statistical and ethical angles, by allowing information on
toxicity grade to determine the rapidity of escalation.

The simplest example of a two-stage design would be to include an initial esca-
lation stage which exactly replicates the old standard design: starting at the lowest
level, three patients are treated and only if all three tolerate the dose do we escalate
to a higher level. As soon as the first dose limiting toxicity (DLT) is encountered, we
close the first stage and open the second stage based on CRM modeling and using all
the available data. Such a scheme could be varied in many ways, for example, includ-
ing only a single patient at the lowest, then two patients at the second lowest and then
as before. Another simple design, using information on toxicity severity (Table 2.1),
enables rapid escalation through the lower levels. Assume there were many dose
levels and the first included patient was treated at a low level. As long as we observe
very low—grade toxicities then we escalate quickly, including only a single patient at
each level. As soon as we encounter more serious toxicities then escalation is slowed
down. Ultimately, we encounter dose limiting toxicities at which time the second
stage, based on fitting a CRM model, comes fully into play. This is done by integrat-
ing this information and that obtained on all the earlier non-dose-limiting toxicities
to estimate the most appropriate dose level.

It was decided to use information on low-grade toxicities in the first stage of a
two-stage design in order to allow rapid initial escalation since it is possible that we
could be far below the target level. Specifically, we define a grade severity variable
S(@i) to be the average toxicity severity observed at dose level i, in this case the sum
of the severities at that level divided by the number of patients treated at that level.

The rule is to escalate providing S() is less than two. Furthermore, once we have
included three patients at some level then escalation to higher levels only occurs if
each cohort of three patients does not experience DLT. This scheme means that, in

TABLE 2.1
Toxicity “Grades” (Severities) for Trial

Severity Degree of Toxicity

0 No toxicity

Mild toxicity (non-dose limiting)
Moderate toxicity (non-dose limiting)
Severe toxicity (non-dose limiting)
DLT

N T
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practice, if we see toxicities of severities coded 0 or 1, then we escalate. The first
severity, coded 2, necessitates a further inclusion at this same level and, anything
other than a 0 severity for this inclusion, would require yet a further inclusion and
a non-dose-limiting toxicity before being able to escalate. This design also has the
advantage that, should we be slowed down by a severe (severity 3), albeit non-dose-
limiting toxicity, we retain the capability of picking up speed (in escalation) should
subsequent toxicities be of low degree (0 or 1). This can be helpful in avoiding being
handicapped by an outlier or an unanticipated and possibly not drug related toxic-
ity. Once DLT is encountered, this phase of the study (the initial escalation scheme)
comes to a close and we proceed on the basis of CRM recommendation. Although
the initial phase is closed, the information on both dose limiting and non-dose-
limiting toxicities thereby obtained is used in the second stage.

2.4.3 GroupPep DESIGNS

O’Quigley et al. (1990) describe the situation of delayed response in which new patients
become available to be included in the study while we are still awaiting the toxicity
results on already entered patients. The suggestion was, in the absence of information
on such recently included patients, that the logical course to take was to treat at the
most recent recommended level. This is the level indicated by all the currently avail-
able information. The likelihood for this situation was written down by O’Quigley
et al. (1990) and, apart from a constant term not involving the unknown parameter,
is just the likelihood we obtain had the subjects been included one by one. There is
therefore, operationally, no additional work required to deal with such situations.

The question does arise, however, as to the performance of CRM in such cases.
The delayed response can lead to grouping or we can simply decide upon the group-
ing by design. Three papers (Goodman et al. 1995, O’Quigley and Shen 1996,
Iasonos et al. 2008) have studied the effects of grouping. The more thorough study
was that of Goodman et al. in which cohorts of sizes 1, 2, and 3 were evaluated.
Broadly speaking the cohort size had little impact upon operating characteristics and
the accuracy of final recommendation. O’Quigley and Shen (1996) indicated that for
groups of three, and relatively few patients (16), when the correct level was the high-
est available level and we started out at the lowest or a low level, we might anticipate
some marked drop in performance when contrasted with, say, one-by-one inclusion,
but the differences disappeared for samples of size 25. One-by-one inclusion tends
to maximize efficiency but, should stability throughout the study be an issue, then
this extra stability can be obtained through grouping. The cost of this extra stability
in terms of efficiency loss appears to be generally small. The findings of Goodman
et al. (1995), O’Quigley and Shen (1996), O’Quigley (1999), and Iasonos et al. (2008)
show that grouping would not lead to any noticeable efficiency losses, a finding
which contradicts the fears expressed by some workers in the field.

2.4.4 ILLUSTRATION

This brief illustration is recalled from O’Quigley and Shen (1996). The study con-
cerned 16 patients and there was no stopping rule in effect. Their toxic responses
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were simulated from the known dose—toxicity curve. There were six levels in the
study, maximum likelihood was used, and the first entered patients were treated
at the lowest level. The design was two stage. The true toxic probabilities were
R(d,)=0.03, R(d,)=0.22, R(d;)=0.45, R(d,)=0.6, R(d;)=0.8, and R(d;)=0.95. The
working model was that given by Equation 2.1 where a, =0.04, a,=0.07, a;=0.20,
o, =0.35, as=0.55, and a;=0.70. The targeted toxicity was given by 0=0.2 indicat-
ing that the best level for the MTD is given by level 2 where the true probability of
toxicity is 0.22. A grouped design was used until heterogeneity in toxic responses
was observed, patients being included, as for the classical schemes, in groups of
three. The first three patients experienced no toxicity at level 1. Escalation then
took place to level 2 and the next three patients treated at this level did not experi-
ence any toxicity either. Subsequently two out of the three patients treated at level
3 experienced toxicity. Given this heterogeneity in the responses the maximum
likelihood estimator for a now exists and, following a few iterations, could be seen
to be equal to 0.715. We then have that R(d) 0.101, R(dz) 0.149, R(d3) 0.316,
R(d4) 0.472, R(ds) 0.652, and R(d(,) 0.775. Table 2.2 shows the visited dose
levels, the toxicity outcomes, the estimated parameter d, and the estimated prob-
abilities of toxicity at each of the six dose level for each inclusion. Note that the
modeling stage begins after observing the outcome from the ninth patient. The 10th
entered patient is then treated at level 2 for which R(d,)=0.149 since, from the

TABLE 2.2

Sequential Trial for 16 Patients. The 3 +3
Design Is Followed for the First Nine
Patients. CRM Estimation Starts after
Observing the Ninth Patient

Xy & R(dj)

1 1 0

2 1 0

3 1 0

4 2 0

5 2 0

6 2 0

7 3 0

8 3 1

9 3 1 0.7151 0.10, 0.15, 0.32, 0.47, 0.65, 0.77
10 2 0 0.7592 0.09, 0.13, 0.29, 0.45, 0.64, 0.76
11 2 1 0.5711 0.16, 0.22, 0.40, 0.55, 0.71, 0.82
12 2 0 0.6066 0.14, 0.20, 0.38, 0.53, 0.70, 0.81
13 2 0 0.6391 0.13,0.18, 0.36, 0.51, 0.68, 0.80
14 2 0 0.6691 0.12,0.17, 0.34, 0.50, 0.67, 0.79
15 2 1 0.5563 0.17,0.23, 0.41, 0.56, 0.72, 0.82
16 2 0 0.582 0.15,0.21, 0.39, 0.54, 0.71, 0.81
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available estimates, this is the closest to the target =0.2. The 10th included patient
does not suffer toxic effects and the new maximum likelihood estimator becomes
0.759. Level 2 remains the level with an estimated probability of toxicity closest to
the target. This same level is in fact recommended to the remaining patients so that
after 16 inclusions the recommended MTD is level 2. The estimated probability of
toxicity at this level is 0.212 and a 90% confidence interval for this probability is
estimated as (0.07, 0.39).

2.5 STATISTICAL PROPERTIES

Recall that CRM is a class of methods rather than a single method, the members of
the class depending on arbitrary quantities chosen by the investigator such as the
form of the model, the spacing between the doses, the starting dose, whether single
or grouped inclusions, the initial dose escalation scheme in two-stage designs, or the
prior density chosen for Bayesian formulations. The statistical properties described
in this section apply broadly to all members of the class, the members nonetheless
maintaining some of their own particularities.

2.5.1 CONVERGENCE

Convergence arguments obtain from considerations of the likelihood. The same
arguments apply to Bayesian estimation as long as the prior is other than degener-
ate. Usual likelihood arguments based on large sample theory break down since
our models are mis-specified. The maximum likelihood estimate, R(d)=wy(d,, 4)),
exists as soon as we have some heterogeneity in the responses (Silvapulle 1981).
We need to assume that the dose toxicity function, y(x,a), satisfies the condi-
tions described in Shen and O’Quigley (1996); in particular the condition that, for
i=1,...,k, there exists a unique g, such that y(d,, a;) = R(d)). Note that the a,s depend
on the actual probabilities of toxicity and are therefore unknown. We also require
the following:

1. For each 0<7<1 and each x, the function

’

s(t,x,a):= ti(x, a)+(1-1)
P

(x,a)

-y
1-

is continuous and is strictly monotone in a.
2. The parameter a belongs to a finite interval [A, B].

The first condition is standard for estimating equations to have unique solutions. The
second imposes no real practical restriction. We will also require the true unknown
dose toxicity function, R(x), to satisfy the following conditions:

1. The probabilities of toxicity at d,.....d, satisfy 0<R(d))<,....R(d)<1.
2. The target dose level is x,€{d,.....d;} where IR(x,) — 0I<IR(d) - Ol, (i=1....,
kixy # d)).
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3. Before writing down the third condition, note that, since our model is mis-
specified, it will generally not be true that y(d,,a,) = R(d) for i=1,...,k. We
will nonetheless require that the working model be not “too distant” from
the true underlying dose toxicity curve and this can be made precise with
the help of the set

S(ag) ={a :| Y(xy,a)—0 |<| Y(x;,a)-6 |, forall d; = x,} 2.4)

The condition we require is that for i=1,....k, a,€ S(a,).
At the target level x, we have R(x,)=0, and a, is defined as the value of a so that
y(x,,a,) =R(x,). Under these conditions, Shen and O’Quigley (1996) showed that the

estimator d, converges to a, and that the asymptotic distribution of \/; (G, —ap) 1s
N(0,62), with 62= {y'(x,, a,)}20,(1 — 6,).

2.5.2 EFFICIENCY

We can use én:w(xn+ 1» d,) to estimate the probability of toxicity at the recommended
level x,,,, where d, is the maximum likelihood estimate (O’Quigley 1992). An appli-

cation of the 8-method shows that the asymptotic distribution of \/; 6, —R(xy)} is
N{0,8,(1 — 6,)}. The estimate then provided by CRM is fully efficient. This is what our
intuition would suggest given the convergence properties of CRM and the variance of
a binomial variate. What actually takes place in finite samples needs to be investigated
on a case-by-case basis. Nonetheless the relatively broad range of cases studied by
O’Quigley (1992) show a mean squared error for the estimated probability of toxicity
at the recommended level under CRM to correspond well with the theoretical variance
for samples of size n, were all subjects to be experimented at the correct level. Some
of the cases studied showed evidence of superefficiency, translating nonnegligible bias
that happens to be in the right direction while a few others indicated efficiency losses
large enough to suggest the potential for improvement.

Large sample results are helpful in as much as they provide some assurance as
to the basic statistical soundness of the approach. For instance, some suggested
approaches using richer parametric models turn out to be not only inefficient but
also inconsistent. However, in practice, we are typically interested in behavior at
small sample sizes. For some arbitrarily chosen true dose—toxicity relations, authors
have studied the relative behavior of competing schemes, case by case, in terms of
percentage of final recommendation, in-trial allocation, probability of toxicity, aver-
age number of subjects included etc. The operating characteristics are to some extent
dependent upon the true dose—toxicity relation (Gooley et al. 1994). The choice then
of such relations and their influence on the evaluation of the performance of the
method under study raises questions of generalizability.

Nonetheless, it can be seen (O’Quigley et al. 2002) that there does exist an opti-
mal scheme making the fullest use of all the information in the experiment. The
scheme is optimal in that the mean squared error of estimate of the probability of
toxicity at the recommended dose is less than or equal to all other asymptotically
unbiased estimates. Of course, Bayesian schemes could outperform the optimal
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design by including accurate information. It is also helpful to think in terms of the
complementary idea, suboptimality, since we will see that suboptimality can be seen
to be equivalent to the concept of incomplete information.

Most experiments have incomplete information in that it is not usually possible to
replicate experiments for each subject at each level. Were it possible to experiment
each subject independently at each level then such a scheme would in fact be equiva-
lent to the nonparametric optimal method. In a real experiment each patient provides
partial or incomplete information. The monotonicity of toxicity assumption implies
that if a subject had a toxic reaction at level d,(k <6), then he or she would necessarily
have had a toxic reaction at d;(k <{ <6). As for his or her response at levels below d,,
we have no information on this. The information is partial or incomplete. For instance,
a subject experiencing a toxicity at ds provides the information shown in Table 2.3
where a “*” indicates missing or incomplete information. On the other hand, should
the subject tolerate the treatment at level d,(1 <k <6) then he or she would necessarily
tolerate the treatment at all levels d,(1 <€<k). Thus, if a subject had been included at
d; without a toxic response, the experiment would provide the tabulated information
as in Table 2.4. The preceding considerations help us understand in a precise way
why we describe our data as being incomplete. If all the information were available,
for each patient, we would know the response at every dose level. In other words, the
highest tolerated dose level would be known. For instance, instead of the previous
two tables, we could imagine a table for a subject for whom DLT appears from dose
level 3. The complete information would be as shown in Table 2.5.

Of course in a real trial, such information is not available. However, in the
framework of simulations or probabilistic calculation, complete information can be
obtained. As an illustration we take the dose—toxicity relation from O’Quigley et al.
(2002). We carried out 5000 simulations of the two procedures. Table 2.6 gives the
recommendation distribution when the target is 0.2. We denote by ¢,(16) the propor-
tion of times that the optimal method recommends level k based on 16 patients and
p(16) the analogous quantity for a CRM design.

TABLE 2.3

Incomplete Information for a
Subject with a Toxicity

Dose di d2 d3 d4 d5 de

TABLE 2.4

Incomplete Information for a
Subject without a Toxicity

Dose di d2 d3 d4 d5 d6
Y, 0 0 0 v ox
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TABLE 2.5

Complete Information for a
Given Patient

Dose di d2 d3 d4 d5 de
Y, o 0o 1 1 1 1

TABLE 2.6

Compared Frequency of Final
Recommendations of the Optimal Method
and the CRM for Simulated Examples
Based on the Probabilities Given on Line 2

dk 1 2 3 4 5 6

R, 005 011 022 035 045 0.60
p16) 005 026 042 021 006 0.0
q(16) 0.04 027 048 0.17 004 00

Only 16 patients were available for study and we might imagine that, for such
a small sample, we could hope for large gains were we to work with the correct
model instead of an under-parameterized working model. However, there appears
to be very little room for improvement over the CRM model used since the opti-
mal method only performs slightly better. The improvement would be worth having
nonetheless, but we would need quite good evidence that any model that we use is
justified. For larger sample sizes the difference between the CRM and the optimal
method quickly diminishes to the point at which they can be neglected.

2.6 MORE COMPLEX CRM DESIGNS

The different up and down designs amount to a collection of ad hoc rules for making
decisions when faced with accumulating observations. The CRM leans on a model
which, although not providing a broad summary of the true underlying probabilistic
phenomenon, in view of its being under-parameterized, does nonetheless provide
structure enabling better control in an experimental situation. In principle at least, a
model enables us to go further and accommodate greater complexity. Care is needed,
but it has been shown that within the CRM framework we can capture some of the
more complex aspects of dose-finding studies, that are necessarily ignored by the
rule-based designs. The following sections consider some examples.

2.6.1 PHARMACOKINETIC STUDIES

Statistical modeling of Phase I dose finding studies, such as the modeling that takes
place with the CRM, has been introduced in the last two decades. Much more fully
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studied in the Phase I context are pharmacokinetics and pharmacodynamics (see
Chapter 3). Roughly speaking, pharmacokinetics deals with the study of concentra-
tion and elimination characteristics of given compounds in specified organ systems,
most often blood plasma, whereas pharmacodynamics focuses on how the com-
pounds affect the body. This is a vast subject referred to as PK/PD modeling. Clearly
such information will have a bearing on whether or not a given patient is likely to
encounter DLT or, in retrospect, why some patients and not others were able to toler-
ate some given dose. There are many parameters of interest to the pharmacologist,
for example, the area under the concentration time curve, the rate of clearance of the
drug, and the peak concentration.

For our purposes, a particular practical difficulty arises in the Phase I context, in
which any such information only becomes available once the dose has been adminis-
tered. Most often then the information will be of most use in terms of retrospectively
explaining the toxicities. However, it is possible to have pharmacodynamic informa-
tion and other patient characteristics relating to the patient’s ability to synthesize
the drugs, available before selecting the level at which the patient should be treated.

The strength of CRM is to locate with relatively few patients the target dose level.
The remaining patients are then treated at this same level. A recommendation is
made for this level. Further studies, following the Phase I clinical study, can now
be made and this is where we see the main advantage of pharmacokinetics. Most
patients will have been studied at the recommended level and a smaller amount at
adjacent levels. At any of these levels we will have responses and a great deal of
pharmacokinetic information. The usual models, in particular the logistic model,
can be used to see if this information helps explain the toxicities. If so we may be
encouraged to carry out further studies at higher or lower levels for certain patient
profiles, indicated by the retrospective analysis to have probabilities of toxicity much
lower or much higher than suggested by the average estimate. This can be viewed
as the fine tuning and may itself give rise to new more highly focused Phase I stud-
ies. At this point, we do not see the utility of a model in which all the different fac-
tors are included as regressors. These further analyses are necessarily very delicate,
requiring great statistical and/or pharmacological skill, and a mechanistic approach
based on a global umbrella model is probably unrealistic. In principle we can write
down any model, say one including all the relevant factors believed to influence the
probability of encountering toxicity. We can then proceed to estimate the param-
eters. However, we must remain realistic in terms of what can be achieved given the
maximum obtainable sample size. Some pioneering work has been carried out here
by Piantadosi and Liu (1996), indicating the potential for improved precision by the
incorporation of pharmacokinetic information.

Recently, O’Quigley et al. (2010) introduced a dose-finding algorithm to be used
to identify a level of dose that corresponds to some given targeted response, where
the response is a continuously measured quantity, typically some pharmacokinetic
parameter. Consider the case where an agreed level of response has been determined
from earlier studies on some population and the purpose of the current trial is to
obtain the same, or a comparable, level of response in a new population. This relates
to bridging studies. The example came from studies on drugs for HIV that have
already been evaluated in adults and where the new studies are to be carried out in
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children. These drugs have the ability to produce some given mean pharmacokinetic
response in the adult population, and the goal is to calibrate the dose in order to
obtain a comparable response in the childhood population. In practice, it may turn
out that the dose producing some desired mean response is also associated with
an unacceptable rate of toxicity. In this case, we may need to reevaluate the target
response and this is readily achieved. In simulations, the algorithm can be seen to
work very well. In the most challenging situations for the method, those where the
targeted response corresponds to a region of the dose—response curve that is rela-
tively flat, the algorithm can still perform satisfactorily. This is a large field awaiting
further exploration.

2.6.2 GRrADED TOXICITIES

Although we refer to dose limiting toxicities as a binary (0,1) variable, most stud-
ies record information on the degree of toxicity, from 0, complete absence of side
effects, to 4, life threatening toxicity. The natural reaction for a statistician is to con-
sider that the response variable, toxicity, has been simplified when going from 5 lev-
els to 2 and that it may help to employ models accommodating multilevel responses.
The issue is not that of modeling a response (toxicity) at 5 levels but of controlling
DLT, mostly grade 4 but possibly also certain kinds of grade 3. Lower grades are
helpful in that their occurrence indicates that we are approaching a zone in which
the probability of encountering a DLT is becoming large enough to be of concern.
This idea is used implicitly in the two-stage designs described in Section 2.4. If we
are to proceed more formally and hopefully extract yet more information from the
observations, then we need models relating the occurrence of dose limiting toxicities
to the occurrence of lower-grade toxicities. In the unrealistic situation in which we
can accurately model the ratio of the probabilities of the different types of toxicity,
we can make small gains in efficiency since the more frequently observed lower-
grade toxicities carry some information on the potential occurrence of dose limiting
toxicities. Such a situation would also allow gains in safety since it would allow the
method to concentrate the experimentation at the MTD even faster and result in a
smaller variance in the estimation of the parameter of interest. At the opposite end of
the model/hypothesis spectrum we might decide we know nothing about the relative
rates of occurrence of the different toxicity types and simply allow the accumulat-
ing observations to provide the necessary estimates. In this case it turns out that we
neither lose nor gain efficiency, and the method behaves identically to one in which
the only information we obtain is whether or not the toxicity is dose limiting. These
two situations suggest there may be a middle road, using a Bayesian prescription, in
which very careful modeling can lead to efficiency improvements, if only moderate,
without making strong assumptions.

To make this more precise let us consider the case of three toxicity levels, the
highest being dose limiting, the middle level indicating moderate toxicities, and the
lowest level indicating no toxicities at all. Let ¥; denote the toxic response for patient
J who is treated at level x;, and let Y, take three Values 1, 2, 3. The goal of the trial is
still to identify a level of dose Whose probability of DLT is closest to a given percen-
tile of the dose—toxicity curve. A working model for the CRM could be
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Pr(Y; =3) =, (x;,a)
Pr(Y; =2orY; =3)=y,(x;,a,b)

Pr(Y; =1) =1-,(x;,a,b)

The contributions to the likelihood are 1 — q}z(xj,a,b) when Yi=1, y(x,a) when Y= 3
and y,(x,a,b) — y,(x,a) when Y;=2. To begin with, we make the (generally unre-
alistic) assumption that the parameter b is known precisely. The model need not
be correctly specified although b should maintain interpretation outside the model,
for instance some simple function of the ratio of dose-limiting toxicities Pr(Y=3) to
moderate toxicities Pr(Y=2). The known value might have been obtained from other
data although, mostly, the use of a known value is for theoretical purposes, provid-
ing us with some kind of a bound when compared with the more realistic situation
in which b is not known precisely. Such imprecise knowledge could be characterized
by an appropriate prior. With no prior information, and being able to maximize the
likelihood that can involve two unknown parameters, we obtain the same results as
with the more usual one-parameter CRM. This is due to the parameter orthogonal-
ity. There is therefore no efficiency gain although there is the advantage of learning
about the relationship between the different toxicity types. For more details about the
simulation study refer to Iasonos and Zohar (2011).

2.7 COMBINED TOXICITY-EFFICACY STUDIES

An interesting aspect of clinical trial design is the definition of composite endpoints.
In the context of Phase I/II trials, investigators are interested in finding a dose that
is safe and, in addition, meets some threshold for efficacy. Information on efficacy is
obtained during the trial and may be as important as that relating to toxicity. Thall et
al. (2001) have used the CRM framework to identify a feasible MTD based on infus-
ibility and toxicity in the context of T-cell infusion trials. Braun (2002) has also illus-
trated the bivariate CRM in the presence of two competing outcomes. The designs
proposed by O’Quigley et al. (2001) incorporate a bivariate outcome since they aim
to control toxicity and viral reduction at the recommended dose level for early dose
finding studies in HIV. The ideas extend immediately to the cancer setting in which,
instead of viral reduction, we have some other objective measure of response. Initial
doses are given, from some fixed range of dose regimens. The doses are ordered in
terms of their toxic potential. At any dose, a patient can have one of three outcomes:
toxicity (whether or not the treatment is otherwise effective), nontoxicity together
with an insufficient response, and, thirdly, nontoxicity in the presence of an adequate
response. The goal of the study is the identification of the dose leading to the greatest
percentage of successes. This dose is called the MSD (most successful dose).

One simple approach with encouraging results was the following. A CRM design
is used to target some low toxicity level. Information is simultaneously accrued on
efficacy. Whenever efficacy is deemed too low at the target toxicity level, that level
and all levels lower than it are removed from investigation. The target toxicity is then
increased. Whenever efficacy is sufficiently high for the treatment to be considered
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successful, the trial is brought to a close. Rules for making decisions on efficacy
are based on the sequential probability ratio test. This class of designs has great
flexibility. Starting with the inclusion of the first patient, information on the rate of
successes among those patients not suffering toxic side effects is gathered. A true
rate of success of p, or lower is considered unsatisfactory. A rate p, or higher of suc-
cesses is considered a promising treatment. A model free approach would allow us to
determine, on the basis of empirical observations, which of the aforementioned rates
is more likely. This is expensive in terms of patient numbers required. A strong mod-
eling approach uses under-parameterized models. These create a structure around
which we can home in quickly on the best level. This parallels the use of the CRM
for the simpler situation of Phase I toxicity studies. Failure to distinguish between
the previous two hypotheses leads to further experimentation. The experimentation
is carried out at a level guided by the toxicity criterion. A conclusion in favor of a
success rate greater than p, at some level brings the trial to a close with a recommen-
dation for that level. A conclusion in favor of a success rate lower than p, at some
level, leads to that level, and all lower levels, being removed from further study. At
the same time we increase the target “acceptable toxicity” from 0 to 0+ A6. The
trial then continues at those remaining levels. Values for the target toxicity level will
start out low, for example, 6=0.1, and this value may be increased subsequently. The
amount AO by which 0 increases and the highest value that is allowed are parameters
that can be fixed by the investigator. A special case would be AB=0.

Specifically, consider a trial in which j=1,...,n patients may be entered and » is the
greatest number of patients that we are prepared to enter. As before, Y} is a binary ran-
dom variable (0.1) where 1 denotes a toxic response. Let V; be a binary random vari-
able (0.1) where 1 denotes a response to treatment for the jth patient (j=1,...,n). The
probability of acceptable treatment response, given no toxicity, at X;=x; is given by

Q(x;) =Pr(V; =1|X; = x;,¥; =0) (2.5)

so that P(d)=0(d){1 — R(d)} is the probability of success at dose d;. The goal of the
experiment is to identify the dose level { such that P(d,) > P(d,) for all i not equal to {.

As for toxicity only experiments, we take R(x)=Pr(¥;=11X;=x)=y(x;, a). We
introduce an additional modeling assumption which concerns the conditional prob-
ability of success given absence of toxic side effects. We express this as

O(x;) =Pr(V; =1|X; = x;,Y; =0) = E(V; |x;,¥; =0) = ¢(x;,b)  (2.6)

where ¢(x,b) is a one-parameter working model. Thus, we assume that Q(x) is also
monotonic in x. Since it is possible to construct, relatively plausible, counterexamples
to this assumption, in contrast to the monotonicity assumption for y(x), we should
consider this to be a stronger assumption. Nonetheless such an assumption may often
be reasonable, at least as an approximation. Under these models the success rate can
be expressed, in terms of the parameters a and b, as

P(d;) = ¢(d;, b){1 -y (d;,a) } @.n
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Once we have at least one toxicity and one nontoxicity together with at least one suc-
cess and one nonsuccess, then we are in a position to estimate the parameters a and
b. The next dose to be used is the one which maximizes P(d), i=1,....k.

2.8 ADDED FLEXIBILITY BASED ON BAYESIAN MODEL CHOICE

Extra flexibility can be obtained by relaxing some of the model’s rigidity. Useful
gains can be made but care is needed. For example, our usual intuition might lead
us to believe that the simple added flexibility provided by a two-parameter model,
for example, a logistic model, would improve performance when compared to a
one-parameter model. This is not so (see Section 2.3) and, in general, we can only
increase the dimension of the parameter space when we wish to include some added
information of an orthogonal nature, such as group heterogeneity for which we have
available an indicator variable designating the different groups. However, rather than
making the full step of increasing the parameter space from, say, R! to R?, we could,
instead, choose a small finite set of models to work with, choosing the one that
“best fits” the observations. Such an approach can be formalized under the heading
of Bayesian model choice (Gelfand and Ghosh 1998) so that large sample theory,
for example, becomes available to us. Suppose that instead of the single model of
Equation 2.1, we have some class of models of interest and we denote these models
as y,,(x,,a) for m=1,..., M where there are a total of M possible models. In particular,
we might consider

Yo(d,a)=a2P (i=1.,km=1,.,M) (2.8)

where O<a,, <---<a,,<1 and —co<a<oo, as an immediate generalization of the
single model described in Section 2.3.1. Further, we may wish to take account of
any prior information concerning the plausibility of each model and thus introduce
n(m), m=1,..., M where nt(m) = 0 and where X, n(m)=1. In the simplest case where
each model is weighted equally, we would take w(m)=1/M. Here, we consider some

examples.

2.8.1 PATIENT HETEROGENEITY

Since patients differ in the way they may react to a treatment, we may sometimes
be in a position to specifically address the issue of patient heterogeneity. One exam-
ple occurs in patients with acute leukemia where it has been observed that children
will better tolerate more aggressive doses (standardized by their weight) than adults.
Likewise, heavily pretreated patients are often more likely to suffer from toxic side
effects than lightly pretreated patients. In such situations we may wish to carry out
separate trials for the different groups in order to identify the appropriate MTD
for each group. Otherwise we run the risk of recommending an “average” compro-
mise dose level, too toxic for a part of the population and suboptimal for the other.
Usually, clinicians carry out two separate trials or split a trial into two arms after
encountering the first DLT when it is believed that there are two distinct prognostic
groups. This has the disadvantage of failing to utilize information common to both



44 Handbook of Statistics in Clinical Oncology

Trial history

Groupl —

6
Group2 -
Toxicity <
51

Dose level

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2

Patient no

FIGURE 2.2 Simulated trial for two groups.

groups. A two-sample CRM, essentially two separate CRM designs, joined by an
association parameter, has been developed so that only one trial is carried out based
on information from both groups (see Figure 2.2 for illustration). A multi-sample
CRM is a direct generalization although we must remain realistic in terms of what is
achievable in the light of the available sample sizes.

Let z be the binary indicator variable for the two groups. Otherwise, we use the
same notation as previously defined. For clarity, we suppose that the targeted prob-
ability is the same in both groups and is denoted by 6, although this assumption is not
essential to our conclusions. The papers by O’Quigley et al. (1999) and O’Quigley and
Paoletti (2003) focus mostly on models for the two-group case, since this case is the
most common and there are not usually enough resources, in terms of patient num-
bers, to deal with more complex structures. Elaborating higher dimensional models,
at least conceptually, is straightforward. The dose toxicity model is written as

Pr(Y =1|d;,2) =y(d;,a,b) 2.9

where the parameter b measures to some extent the difference between the groups.
An obvious example which has been used successfully is

P(d,a,b) = o (i=1,..,k) (2.10)

where, again, O<a, < <o, < 1; —oo <a< oo, o0 <b< oo and z is a binary group indi-
cator. Asymptotic theory is cumbersome for these models but consistency can be
shown under restrictive assumptions as shown by O’Quigley et al. (1999).
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An alternative approach, in harmony with the underlying CRM idea of exploit-
ing under-parameterized models, is to be even more restrictive than allowed by the
aforementioned regression models. Rather than allow for a large, possibly infinite,
range of potential values for the second parameter b, measuring differences between
the groups, the differences themselves are taken from a very small finite set.

If the recommended MTD for the first group is some level, say, d,,, then the other
group will be recommended either the same level or some level, one, two, or more,
steps away from it. The idea is to parameterize these steps directly. The indices
themselves are modeled and the model is less cluttered if we work with logy(d,,a)
rather than y(d,,a) writing

logy(d;,a) = exp(a)log ayiy;  ¢(0) =i+ 2h;(2) 2.1D)

where

) =t(lsi+t<sk)+kli+t>k)+1i+t<1), t=0,12,..., (2.12)

the second two terms in the previous expression taking care of edge effects. It is easy
to put a discrete prior on #, possibly giving the most weight to =0 and only allowing
one or two dose level shifts if the evidence of the accumulating data points strongly
in that direction. For example, the following formulation allows up to a single differ-
ence in dose levels between the groups:

1. Model 1: m=1
Pr(Y =1|d;,z=0)=y(d;,a), i=1,..,k
Pr(Y =1|d,,z=1)=y(d;,a), i=1,...,k
2. Model 2: m=2
Pr(Y =1|d;,z=0)=y(d;,a), i=1,..,k
Pr(Y =1|d;,z=1)=y(d;,,a), i=1,...,k-1

Pr(Y =1|d;,z=1)=Y(di,a), i=k

3. Model 3: m=3
Pr(Y =1|d;,z=0)=y(d,,a), i=1,..,k
Pr(Y =1|d,z=1)=y(d_,a), i=2,....k
Pr(Y =1|di,z=1)=y(d,a), i=1
This difference can be in either direction, corresponding to a situation in which we

do not know, or we are not certain which of the two groups is likely to fare the worst.
At the same time we rule out the possibility that any difference, should one exist, be



46 Handbook of Statistics in Clinical Oncology

greater than a single level. It is obviously very straightforward to construct models
which would allow for differences up to two or more levels, again in either direction.
Also, we can allow differences in one direction to be limited to one level at most
whereas, in the other direction, we may allow greater differences than one level. We
could even decide that we allow differences of one or more levels in only one direc-
tion, and no differences at all in the other direction. This would correspond to the
case where we know that should any difference exist it can only be in a given direc-
tion. In practice this is likely to be the most common situation, a well known example
being heavily pretreated and lightly pre-treated patients. The MTD for the heavily
pretreated patients will be no higher than that for the lightly pretreated patients.
Given the specifics of the particular study, and whatever information we have on
orderings, or group spacings, we then can write down the model, following which
we use Bayesian model choice to select that model which is “closest” to the observa-
tions. The number of potential models is small and, in practice, we work through the
indices m, maximizing, for each value of m, the likelihood or the posterior density as
a function of a. The overall maximum is the one we choose.

2.8.2 ParTIAL ORDERING IN DOSE LEVELS

A fundamental assumption thus far is the monotonicity of the dose—toxicity curve.
This is a reasonable assumption for single agent trials in which the administration of
greater doses of the agent is expected to produce a higher proportion of patients with
dose-limiting toxicities. When studying multiple agents or a combination of agents
this assumption may not hold since some of the orderings of the toxicity probabilities
between combinations of agents are not known prior to the study. Conaway et al.
(2004) and Wages et al. (2011) proposed methods for Phase I trials involving multiple
agents in which some of the orderings are unknown. As an example, these papers
cite a study by Patnaik et al. (2000) involving paclitaxel and carboplatin adminis-
tered in the combinations shown in Table 2.7. The ordering for combinations 3 and
5 is not known since combination 3 has a greater dose of paclitaxel but a lower dose
of carboplatin than combination 5. Many of the orderings are known. For example,
combination 2 has a greater probability of a toxicity than combination 1 because
combination 2 has the same dose of paclitaxel and the same dose of carboplatin as
combination 1.

The papers by Conaway et al. (2004) and Wages et al. (2011) consider all possible
“simple orders” consistent with the known orderings. A simple order is one in which

TABLE 2.7
lllustrating Drug Combinations

Combination

Agent 1 2 3 4 5 6

Paclitaxel 54 675 81 945 675 675
Carboplatin 6 6 6 6 7.5 9
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all orderings between pairs of treatment combinations are known. In the Patnaik et
al. (2000) study, there are six possible simple orders for the toxicity probabilities
associated with the treatment combinations:

m=1:R(x;) =< R(x;) = R(x3) = R(x4) = R(x5) = R(x4)

m=2:R(x;)< R(x,) = R(x3) = R(xs5) = R(xs) = R(x,)

3
I
w

1R(x1) = R(x;) = R(xs) = R(xs) = R(x3) = R(x4)

3
I
~

R(x1) = R(x;) = R(x5) = R(x3) = R(x4) = R(xe)

3
I
(9]

:R(x)) = R(x;) = R(x3) = R(x5) = R(x4) = R(x¢)

3
I
=N

“R(xp) = R(x;) = R(xs) = R(x;) = R(x6) = R(xy)

Each of the simple orders can be thought of as one of M=6 possible models.

Using the accumulated data from j patients, €;, the maximum likelihood esti-
mate d,, of the parameter a,, in Equation 2.8 can be computed for each ordering
m, m=1,..., M, along with the value of the log-likelihood at &,,. Wages et al. (2011)
propose an escalation method that first chooses the ordering with the largest maxi-
mized log-likelihood value, £,,(@,,). If we denote this ordering by m", the authors use
the estimate of a - to estimate the toxicity probabilities for each treatment combi-
nation under ordering m", IAi(d,-) =Y, (d;,a,), (i=1,...,k).The next patient is then
allocated to the dose combination with the estimated toxicity probability closest to
the target. Wages et al. (in press) investigate several variations of this basic design,
including two-stage designs and designs that incorporate randomization among the
different possible orderings and describe the operating characteristics of their pro-
posed design.

2.8.3 BAYESIAN AVERAGING AND MAXIMIZATION
FOR WORKING MODEL SELECTION

The choice of the working model, that is, the «; in the setting up of any CRM design
is largely arbitrary. Cheung and Chappell (2002) describe how operating charac-
teristics can be less sensitive to certain working model choices. O’Quigley and
Zohar (2010) indicate that an “unreasonable” choice may have a negative impact
on operating characteristics. Unfortunately it is not easy to provide a sharp and
precise definition as to what we mean by “reasonable” and the only operationally
useful definition of a reasonable model would be one that exhibits good robustness
properties. Some working models, while respecting the constraints of Shen and
O’Quigley (1996) required for convergence, might be anticipated to be not reason-
able in this sense. Lee and Cheung (2009) provide algorithms which can furnish
a satisfactory, if not optimal, working model. Their approach is based on that of
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indifference intervals described in Cheung and Chappell (2002). A somewhat dif-
ferent strategy for tackling the same question was adopted by Yin and Yuan (2009).
These authors suggested that, rather than identify a single working model, we work
with a class of working models and make progress by appealing to the technique of
Bayesian model averaging (BMA). This technique makes use of the posterior esti-
mates for the relevant toxic probabilities and these are then weighted with respect
to the corresponding posterior model probabilities. Daimon et al. (2011) also con-
sidered making use of several working models, selecting one model via an adap-
tive technique based on different criteria. Yin and Yuan (2009) showed that their
approach leads to some gains in robustness and can therefore provide some added
assurance that the results of a study are not unduly influenced by arbitrary design
features.

2.9 DISCUSSION

The CRM is often referred to as the Bayesian alternative to the classic up and down
designs used in Phase I studies. This is quite an inaccurate description since, as
seen here, there is nothing particularly Bayesian about the CRM. Furthermore, the
driving ideas and algorithms are very different from those behind the standard up
and down design. In O’Quigley et al. (1990), for the sake of simplicity, Bayesian
estimators and vague priors were proposed. However, there is nothing to prevent us
working with other estimators, in particular the maximum likelihood estimator as
described in Section 2.3.

More fully Bayesian approaches, and not simply a Bayesian estimator, have been
suggested for use in the context of Phase I trial designs. By more fully we mean more
in the Bayesian spirit of inference, in which we quantify prior information, observed
from outside the trial as well as that solicited from clinicians and/or pharmacolo-
gists. Decisions are made more formally using tools from decision theory. Any prior
information can subsequently be incorporated via the Bayesian formula into a pos-
terior density that also involves the actual current observations. Given the typically
small sample sizes often used, a fully Bayesian approach has some appeal in that we
would not wish to waste any relevant information at hand. Gatsonis and Greenhouse
(1992) consider two-parameter probit and logit models for dose response and study
the effect of different prior distributions.

Whitehead and Williamson (1998) carried out similar studies but with atten-
tion focusing on logistic models and beta priors. Whitehead and Williamson (1998)
worked with some of the more classical notions from optimal design for choosing the
dose levels in a bid to establish whether much is lost by using suboptimal designs.
O’Quigley et al. (1990) ruled out criteria based on optimal design due to the ethical
criterion of the need to attempt to assign the sequentially included patients at the most
appropriate level for the patient. This same point was also emphasized by Whitehead
and Williamson (1998) where they suggest that the CRM could be viewed as a spe-
cial case of their designs with their second parameter being assigned a degener-
ate prior and thereby behaving as a constant. This view is technically correct but
does not give the full story in that, for the single sample case, two-parameter CRM
and one-parameter CRM have a more important difference relating to consistency.
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Two-parameter CRM was seen to behave poorly (O’Quigley et al. 1990) and is gen-
erally inconsistent (Shen and O’Quigley 1996). We have to view the single parameter
as necessary in the homogeneous case because, unless we violate the allocation rule
(for example, by introducing some randomization into the design), the model is oth-
erwise overspecified. Two parameters are not identifiable.

A quite different Bayesian approach has been proposed by Babb et al. (1998). The
context is fully Bayesian. Rather than aim to concentrate experimentation at some
target level as does CRM, the aim here is to escalate as fast as possible toward the
MTD, while sequentially safeguarding against overdosing. This is interesting in that
it could be argued that the aim of the approach translates in some ways more directly
the clinician’s objective than does CRM. Model mis-specification within the context
of overdose control was further investigated by Chu et al. (2009). The approach
appears promising and the methodology may be a useful modification of CRM when
primary concern is on avoiding overdosing and we are in a position to have a prior
on a two-parameter function.
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3.1 INTRODUCTION

All drugs share the feature that they are formulated to have an effect on some body
system. In oncology, that effect may be to shrink the size of a tumor, reduce the
growth rate of the tumor, or protect noncancer cells from potentially harmful effects
of the chemotherapy, to name a few examples. Pharmacokinetics (PK) is the study
of what happens to drugs once they enter the body. The study of a drug’s PK will
often entail drawing blood samples to measure the concentration of the compound,
possibly along with metabolites, over time. In some instances, it is even possible to
measure the amount of the drug or metabolite in the tumor tissue itself, such as in
leukemia, or in the microenvironment in which the cancer resides, such as through
the use of microdialysis (Brunner and Miiller 2002).

It is generally not enough to know the PK of the drug, since we are most inter-
ested in the clinical effect of the drug. Pharmacodynamics (PD) is the study of how
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PK relates to measured outcomes, such as clinical response, risk of toxicity, or even
some in vitro measure of cellular response to a drug. A perhaps overly simplistic,
though useful, characterization of PK and PD is that PK measures what happens to
the drug after it enters the body and PD measures what happens to the body after the
introduction of the drug.

As with other aspects of biomedical science and clinical research in the begin-
ning of the twenty-first century, researchers have begun to look into genetic vari-
ation and associations with the PK and PD of drugs. Although there do not yet
appear to be firm definitions, the terms pharmacogenetics and pharmacogenomics
describe such studies. We will differentiate these two areas of study with the fol-
lowing definitions. Pharmacogenetics studies the heritable factors that contribute to
PK and PD variation in a population. That is, how does genetic variation within and
between populations contribute to clinical differences in how individuals react or
respond to drugs? Pharmacogenomics, on the other hand, examines how mutations
and other differences at the level of the genome might provide useful targets for
drug development. The National Institutes of Health of the United States is sup-
porting a large effort to aid research into pharmacogenetics and pharmacogenomics
(Klein et al. 2001).

The statistical issues that arise in pharmacogenetic studies are similar to the
issues that arise in most genetic epidemiology studies. For example, if one has
identified a gene associated with the metabolism of an anticancer drug and one
wishes to see if genetic variation at this allele is associated with different risks
of toxicity, one may wish to carry out a study prospectively or retrospectively.
The prospective study design might call for blood samples at entry to the study,
with genotyping. Then one would look for associations between genotype and
whether or not a patient experienced toxicity. For a retrospective study, one
might identify patients who have experienced toxicity and find an appropriate
control group, perhaps with matching. Then one would only have to genotype
this subset of the study’s patients for analysis of the association between toxicity
and genotype. Obviously, if some genetic variants put the patient at risk of fatal
toxicity, the retrospective design may well miss these patients without banked
blood samples.

Some of the other statistical issues that arise in pharmacogenetic studies include
single nucleotide polymorphism (SNP) studies and determination of haplotypes. With
the many variants at specific loci within a gene, there exists the potential for carry-
ing out many hypothesis tests and declaring false positive associations. Furthermore,
many SNPs are in linkage disequilibrium, meaning they tend to move together and
be highly correlated. One can gain some extra power by grouping SNPs together if
they are highly correlated with each other. Statistical techniques to group SNPs into
such groups, called haplotype blocks, are an endeavor carried out in pharmacoge-
netic studies, as well as other genetic-based studies. More information is contained
in the chapter on haplotypes in this volume. Also, information about pharmacoge-
nomics, in general, and oncology-specific issues are contained in recent edited vol-
umes (Licinio and Wong 2002; Innocenti 2008).
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In this chapter, we will explore some of the main statistical issues in the study of
PK and PD in clinical oncology. Most of these same issues arise in clinical research
relating to other diseases, but our focus is cancer.

3.2 PHARMACOKINETICS AND PHARMACODYNAMICS
OF ANTICANCER AGENTS

The most common basis for determining a drug’s PK is measured drug concentra-
tion in the blood. PK studies call for drawing blood samples during and/or after an
infusion and assaying the concentration of the compound in the blood. The relation-
ship between the drug’s concentrations and time is characterized by a system of dif-
ferential equations that defines a pharmacokinetic model (Gibaldi and Perrier 1982).
Quite often, the differential equations incorporate the so-called compartments to
allow for changes in the loglinear decay of the drug after the end of the infusion.
These differential equations describe the instantaneous change in concentration of
the drug or its metabolites within each compartment, with direct or indirect com-
munication between compartments.

We often use compartmental models to characterize the relationship between
plasma concentration and time, primarily because they seem to fit and have a physi-
ologic interpretation. The compartments in these models are based on the notion that
the drug circulates through the body in the blood stream and may visit other parts
of the body before it is eliminated. The plasma or blood compartment may be con-
sidered the central compartment for a drug that is infused intravenously, but the drug
will likely pass through the liver, kidneys, and, hopefully, the tumor. Eventually, most
of the drug returns to the compartment from which it is eliminated, which may be the
central compartment. The transit between the plasma and these other organs or “com-
partments” forms part of the system of differential equations characterizing the change
in concentration over time. Figure 3.1 illustrates a simple two-compartment model.

Depending on the form of the differential equation describing the instantaneous
rate of change of a compartment’s concentration, the kinetics may be linear or non-
linear. A drug is said to have linear kinetics if, for two different doses, the concen-
trations that result from each dose are proportional to the doses. If, however, the
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FIGURE 3.1 Simple two-compartment model characterizing the disposition of a drug given
by continuous infusion.
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concentrations arising from different doses are not proportional to doses, then the
drug exhibits nonlinear kinetics. Nonlinear kinetics can occur if a process gets satu-
rated, so that no matter what the concentration, the rate of change remains constant.
At the risk of over simplification, the drug exhibits linear kinetics if one can take the
concentration—time curve associated with one dose of the drug, rescale and, perhaps,
shift it and end up with the concentration—time curve associated with another dose.
Modeling nonlinear kinetics is more difficult computationally, because there is no
analytic solution to the differential equations. Instead, one has to find the solution
numerically.

Generally, one has to use a nonlinear regression package, such as the nls() func-
tion in R, to estimate an individual’s PK model parameters. When analyzing a series
of data for individuals in a study, one has to use more specialized computer programs
to deal with the nonlinear repeated measurements. Discovering algorithms for fitting
nonlinear repeated-measurements data continues to be an area of active research,
with some development relating to modeling HIV dynamics (Delyon et al. 1999;
Huang et al. 2006; Samson et al. 2006). There are software packages specifically
for fitting PK models. Please see the end of this chapter for a list of several noncom-
mercial packages for fitting pharmacokinetic models. In the compartmental model,
the unknown parameters to estimate include the volumes of the compartments and
the rate constants for the movement of drug between compartments and out of the
body. The volume of distribution, labeled V, in Figure 3.1, is the hypothetical vol-
ume of the main compartment from which we measure the concentrations over time.
Being a parameter in the PK model, the volume of distribution is hypothetical in the
sense that it is generally not interpretable as the volume of plasma, say, in the body.
Patient-specific estimates of volumes of distribution often exhibit greater variability
and sometimes much larger values than one would expect for the volume of blood in
human bodies. In essence, the compartment-specific volumes of distribution and rate
parameters are model parameters that have a theoretical interpretation loosely based
on physiologic considerations.

Some of the basic parameters that describe the PK of a drug include clearance,
area-under-the-concentration—time curve (AUC), steady-state concentration (Cy,),
the elimination half-life, volume of distribution, the elimination rate parameter,
and bioavailability for drugs administered via a route other than directly into the
blood stream. These characteristics of the PK of a drug are either explicit param-
eters in the concentration—time function or are functions of the model parameters.
Clearance, measured in volume per unit time (e.g., L/h), is most often used to
characterize a drug or to compare a drug’s PK in different populations. By clear-
ance, one generally means total body clearance, that is, the sum of the individual
clearances of the drug from all organs. Another important measure is the AUC,
which is a measure of systemic exposure to the drug. The AUC is usually given
in units of concentration times time (e.g., pgxh/mL). If a drug is given by intra-
venous infusion, clearance (CL) and AUC are inversely proportional, with the
proportionality being the infused dose. That is, CL=d,, /AUC, where d,, is the
administered dose.

Many anticancer drugs are given by constant continuous intravenous infusion
over an extended period of time. During the infusion, plasma concentrations of the
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drug increase but eventually reach a constant value if the infusion lasts long enough.
The C is, as the name implies, the plateau concentration reached in the plasma dur-
ing continuous infusion at a constant rate. Steady-state concentration and clearance
are inversely proportional to each other. The proportionality constant is the infusion
rate, that is, CL=InfRate/Cy,.

The elimination half-life is the time it takes for half of the administered dose to
be eliminated from the body. Usually, the plasma concentration is within 10% of the
C,, after an infusion lasting four half-lives of the drug.

These PK-derived parameters are functions of the compartmental model’s param-
eters. Thus, once one has fit the model, one can estimate these derived parameters.
One can estimate some PK parameters without fitting a compartmental model. As
indicated earlier, one can estimate total-body clearance if one has an estimate of
the C, during a continuous infusion at a constant infusion rate. Another example is
a so-called noncompartmental estimate of the AUC. If one has enough concentra-
tion—time pairs for a patient, one can use the trapezoidal rule to compute the area
under the concentration—time curve. If the final concentration is not zero, a reason-
able approximation might be a simple exponential decay with slope based on the
logarithm of the last two concentrations. This estimate for the AUC is attractive,
since it does not depend on any model assumptions. Usually, however, authors report
the estimated AUC without any attempt to attach a measure of uncertainty to the
estimate.

Many anticancer drugs are available in oral form, which is more convenient in
case of chronic dosing or for patients who may find it difficult to get to a clinic.
When drugs are taken orally, they pass through and are disseminated from the
gut. Ultimately, the drug reaches the circulation system, from which it will get
to the rest of the body. Bioavailability relates to the biological availability of the
active compound in the drug. Estimation often derives from individual estimates
of PK relating the amount of drug or active metabolite in the blood stream after
oral administration to the amount of the drug in the blood stream after intrave-
nous administration. Bioavailability will typically be between 0 and 1. Variation
in bioavailability, which has to be estimated, contributes to PK and PD variability.
Estimates of bioavailability derive from PK studies in which each subject receives
the drug via different administration, usually in a crossover study. Bioequivalence,
a related concept, refers to the evaluation of two different formulations of the same
drug, such as comparing a generic formulation to the original formulation. If two
formulations are bioequivalent, then one assumes they will act the same way and
have the same effectiveness. Statistical issues include designing crossover studies
and modeling within-subject and between-subject sources of variation (Chow and
Liu 2009).

The disposition of a drug in the plasma or tissue may be affected by many factors,
including genetic factors, environmental factors, diet, age, and other drugs being
taken or foods being digested at the same time the drug is in the body. As part of
the learning about a drug’s PK, one will often look for associations between patient
characteristics and patient-specific PK parameters. A common approach is to fit
separate models to each patient’s concentration—time data and then carry out statisti-
cal inference on the patient-specific PK model parameter estimates. This two-stage
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approach ignores uncertainty in the parameter estimates, and may thereby lead to
false declarations of significant differences. For example, one might regress each
patient-specific AUC or clearance on age or smoking status or genotype to look for
patterns or potentially significant differences. Analyses of patient-specific model
estimates and covariates are exploratory, since they typically ignore the uncertainty
in the PK-derived parameters. Inference that accounts for all sources of uncertainty
is preferable.

PK modelers have long realized that there is heterogeneity between individu-
als in terms of subject-specific model parameters. This realization led to the use of
mixed-effects models and hierarchical modeling, allowing for between and within
variation. Sheiner et al. (1972, 1977, 1979a) were among the first to recognize the
usefulness of these models for predicting the time course of a drug’s concentration
for individuals. Other researchers followed up on these ideas, and this research led to
a general approach to studying variation of the PK of a drug in a population, called
population modeling (Racine-Poon and Smith 1990). Population modeling is, essen-
tially, a hierarchical model, as in Equation 3.1:

Vij =f(tij,9,-)+e,-j,e,-j ~F WithE[@ij] =0

0;

6, ~G(0) with E[6;] = 8 (3.1)

00 ~ H(*)

In this equation, y; is the jth concentration of the drug at time ¢; for the ith patient.
The patient’s own model parameters are denoted by 0,, which are assumed randomly
distributed in the population. The population distribution of these individual param-
eters 0, is characterized by G and indexed by parameter 6, corresponding to the
mean of the 6, in Equation 3.1. The population distribution, G, may involve other
unknown parameters, such as the variance or regression-type parameters relating
subject-specific means to covariates. We express our uncertainty about the mean
parameter value in the population through the hyperprior distribution denoted H.
The residual difference between the measured concentrations for the ith patient at
time 7; and the modeled concentrations is a random variable ¢; having zero mean
and distribution F.

Typically, the distribution of the residuals is considered normal or lognormal.
The variance may be a function of the mean concentration level, such as when
one wishes to fit a constant coefficient of variation model. The distribution of
subject-specific model parameters is also often treated as normal or lognormal.
A frequentist analysis would typically stop at the level of the population distribu-
tion. A Bayesian analysis, on the other hand, will also specify a distribution for the
parameters in the population distribution via a hyperprior distribution. The inclu-
sion of a hyperprior and hyperparameters allows for between-individual variation
while learning about the distribution of subject-specific parameters. A Bayesian
hierarchical model also makes prediction for a new patient straightforward. The
book by Davidian and Giltinan describes well many of the frequentist and Bayesian



Pharmacokinetics in Clinical Oncology 59

methods for analyzing repeated measures having a nonlinear relationship with time
(Davidian and Giltinan 1995).

3.2.1 EXAMPLE

As an example, we consider the analysis of the anticancer agent methotrexate in
infants (children less than 1 year old) with leukemia. The clinical prognosis for chil-
dren younger than 1 year old who are diagnosed with acute lymphoblastic leukemia
(ALL) is worse than for older children. It may be that the disease is different or,
perhaps, the infant’s organs, particularly the kidneys, are not yet fully developed,
causing the PK of anticancer drugs to be different in the infants.

Children with ALL often receive methotrexate as part of their chemotherapeutic
treatment regimen. Methotrexate is cleared from the body by the kidneys, and vari-
ability in the drug’s PK may be associated with key measures of renal function, such
as glomerular filtration rate (GFR), tubular secretion, and renal blood flow. Each of
these characteristics of renal function change as the kidneys mature during the first
few months after birth. Additionally, the liver may continue to develop after birth,
leading to altered drug metabolism during the first few months of life. Thus, as
infants develop, there may be changes in the drug’s absorption, distribution, metabo-
lism, and elimination.

Little is known about the PK of methotrexate in very young children. Therefore,
pediatric oncologists were interested to learn what they could by collecting data as
part of a larger study carried out by the Children’s Oncology Group (COG). In this
study, infants with ALL received methotrexate as a high-dose infusion (4 g/m?) over
24h on weeks 4, 5, 11, and 12 from the start of the treatment regimen. The infusion
was divided into an initial 200 mg/m? loading dose given over 20 min, followed by
3.8 g/m? infused over 23h and 40 min, the remainder of the 24 h infusion duration.
The patients received 24 h infusions of methotrexate a week apart and again 7 and 8
weeks after the first infusion of the drug.

The PK study combined data from two sources. As part of routine monitor-
ing of the infants on the study, some blood samples allowed the measurement of
methotrexate concentration levels. The patient charts held these data, allowing for
retrospective collection. The remaining patients in our sample underwent more
extensive sampling. Aside from the dose of methotrexate actually received and
concentration—time data, the dataset also included patient characteristics, such as
age, height, weight, body-surface area, and serum creatinine. The protocol called
for measuring methotrexate levels within each course of therapy at the end of the
24 h infusion and every 24 h following the end of the infusion until the concentration
was less than 0.18 pM. The 18 patients who underwent more extensive sampling had
their additional blood draws during their first methotrexate infusion. Sample collec-
tion for this subset of the patients was at 1, 6, 12, and 23 h after the start of the first
methotrexate infusion.

Altogether, the dataset included 70 patients with enough information to model at
least one course of methotrexate. We could analyze data during the first course of ther-
apy for 62 patients. The dataset contained a total of 686 methotrexate concentration—
time pairs measured during 199 doses of methotrexate given to the 70 infants.
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FIGURE 3.2 Observed and fitted methotrexate concentrations for two infants in the study.
The lines are based on point-wise posterior means.

The primary measure of kidney function in the dataset was an estimate of the
GFR. The estimate is a function of the infant’s length and the creatinine measured in
the infant’s plasma (Schwartz et al. 1984, 1987).

Figure 3.2 shows the concentration—time data for two of the more extensively
sampled patients during their first course of methotrexate. One sees in the figures
how the concentrations approach a plateau corresponding the C over the course of
the 24 h infusion. The figures also show that these two patients have quite different
C,, (around 52 pmol/(mL x m?) versus around 35 pmol/(mL x m?)).

As indicated earlier, one can estimate the total-body clearance of a drug from the
C,, and the infusion rate. Even though the infusion rate was not constant over the
24h infusion, it was constant after the first 20 min. Therefore, it seemed reasonable
to estimate the clearance at steady state from these data.

If one estimates clearance from the end-of-infusion or 23 and 24 h concentra-
tions and uses these estimates in a regression analyses with patient covariates,
then one is ignoring the uncertainty associated with these estimates. Ignoring this
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uncertainty may result in a false-positive finding of an association between clear-
ance and patient characteristics. Instead, we chose to fit a population or hierar-
chical model. We used the program PKBugs (Lunn et al. 1999), which runs in
WinBUGS (Lunn et al. 2000). We fit a model for the log concentrations having a
normal residual, with the subject-specific parameters also being lognormal. The
full hierarchical model is

log(y,-,j) ~ N(log(C [t,v,j,ﬁ,-,d,-]),t)
0; ~ MVN (X, Q)
Y ~MVN (,,C)

v ~ Gamma (0.001,0.001),Q™" ~ Wishart(R,p)

Here, y; ; is the concentration measured on patient i at time ¢, ;. In the model, N(i, 1)
denotes a normal distribution with mean p and variance t, while a multivariate nor-
mal distribution with mean vector m and variance—covariance matrix €2 is denoted
MVN(m, Q). The compartmental model is denoted C(t,-yj, 0,, d), which is a function
of time, model parameters, and dose d,. The function relating concentration to time,
parameters, and dose for a two-compartment model (see Figure 3.1) can be written
as a sum of two exponential functions (Gibaldi and Perrier 1982; Lunn et al. 1999).

*

C(t,-yj,G,-,d,- ) = Aje™ (1 —eM ) + Ae™ (1 _eM )

T = infusion duration

t$=min(t,T)
ko (ki =) o
Vi (M -n)

ko, = infusion rate = dose/infusion duration

The two parameters A, and A, are functions of the rate parameters shown in Figure 3.1.
They satisfy the following two equations, in terms of the rate constants:

)\,1 + )\.2 = klO + k12 + k21 and }\1)\,2 = k10k21 with )\.1 > 7\.2 by definition

The patient-specific model parameters are 0,. This vector includes the four param-
eters in the pharmacokinetic model, namely, log(CL), log(Q), log(V,), and log(V,),
recalling that each patient has his or her own set of parameters. Here, V, and V,
are the respective volumes of the central and peripheral compartments shown in
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Figure 3.1. The CL equals V, times k,,. The parameter Q is called the distributional
clearance between the two compartments, which is assumed to be the same. That is,
Q satisfies Q=k,,V,=k,,V,.

Returning to the hierarchical model, the hyperparameters had the following
values. The variance matrix for the patient-specific parameters (€2) had an inverse-
Wishart prior with p=4 degrees of freedom and scale matrix R corresponding to 50%
coefficient of variation for each parameter. The parameters, in turn, may depend on
patient characteristics X; (e.g., the age or GFR for child i) through a linear regression
with coefficients y. These regression coefficients had a multivariate normal prior
with variance matrix C equal to 10* times the identity matrix. The hypermean v, for
the regression coefficients was a vector with nonzero values for the PK parameter-
specific intercepts and zero for the covariate effects. The nonzero hypermeans came
from an analysis of related data.

Figure 3.2 shows the PKBugs fits to the data as the solid line. These are the
piecewise posterior mean concentrations for the patients over time. Having fit the
model, we examined potential relationships with covariates by plotting the posterior
means of the parameters or functions of the parameters against the potential covari-
ates (Wakefield 1996). We did not find a strong relationship between age (0 and 12
months) and clearance, given the large amount of noise in these data. Nevertheless,
since the primary question motivating this study concerned an association between
age and clearance among the infants, we modeled the logarithm of clearance as a
function of age in the population PK (hierarchical) model. The posterior mean of
the coefficient was 0.034 (posterior standard deviation=0.038). We did not find any
strong associations between the covariates available to us and PK in this dataset.
Further modeling based on exploratory plots mentioned in the previous paragraph
suggested an association between the model-derived parameters GFR and clearance.

3.2.2 NONPARAMETRIC MODEL

In the previous example, we assumed a parametric distribution for the subject-
specific parameters in the model. Assuming a normal or lognormal distribution may
be restrictive in some cases. Some investigators have sought to incorporate nonpara-
metric estimation of the population distribution (Mallet 1986; Mallet et al. 1988b;
Schumitzky 1991, 1993). Bayesian nonparametric modeling removes the assump-
tion that subject-specific PK parameters vary in a population according to a normal
distribution. In particular, knowledge that potential effect modifiers exist, such as
genetics, different diets, etc., means that there might be multi-modal distributions of
the PK parameters in a study population. The earliest attempts to be nonparametric
in the population distribution built up mass at discrete locations, according to the
data. In this approach (Mallet 1986), the distribution of 6, in Equation 3.1 is left
completely unspecified (i.e., 0, ~ F). The likelihood function becomes a function of
the unknown distribution function F, and the problem becomes one of maximum
likelihood estimation of a mixing distribution (Laird 1978; Lindsay 1983). One can
show that the maximum likelihood estimate is a discrete distribution with support
on at most n points, where n is the number of patients in the sample (Laird 1978;
Mallet 1986).
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If one wants to include continuous covariates in the population model, one has
to finesse the problem a bit to make it work with the nonparametric approaches
discussed in the previous paragraph (Mallet et al. 1988a). Furthermore, one would
typically consider modeling the model parameters with a continuous distribution.
Davidian and Gallant used smooth nonparametric maximum likelihood to allow
for a family of continuous distributions that can incorporate continuous covari-
ates explicitly. The smooth nonparametric maximum likelihood solution to the
problem estimates the underlying distribution of a k-variate random vector from a
class of densities that are at least k/2 times differentiable. A density in the speci-
fied class may be represented for all practical purposes as a series expansion of a
polynomial times a normal density function (Gallant and Nychka 1987; Davidian
and Gallant 1993).

None of these nonparametric or semi-parametric methods are Bayesian, however.
Instead, they are mixed-effects models with unspecified distributions for the ran-
dom effects. One can, however, carry out full Bayesian inference in a hierarchical
model with nonlinear regression functions and still be nonparametric. Wakefield and
Walker (1997) used a Dirichlet process (Ferguson 1973) prior for the distribution of
the subject-specific parameters in a hierarchical model with a nonlinear regression,
such as a compartmental PK model. The Dirichlet process (DP) is a distribution
on the space of distributions, allowing inference on the underlying distribution of
parameters and, thereby, greater flexibility. With a DP prior for the subject-specific
parameters, however, the posterior is necessarily discrete.

We have found that a Dirichlet process mixture allows for nonparametric and
semiparametric modeling for these problems (West et al. 1994; Escobar and West
1995; Miiller and Rosner 1998). Instead of the subject-specific parameters having a
DP prior, they have a parametric prior (e.g., normal or other distributional family)
with a DP prior on the parameters of that distribution. Simply put, with a normal
prior at the population level with random subject-specific means and a DP prior on
those means, the prior model for the subject-specific parameters becomes a mix-
ture of normals, with the weights and locations coming from a Dirichlet process
hyperprior. The distribution of subject-specific parameters in the population is a
mixture of continuous densities, such as normal densities, with mixing (i.e., random
weights) over the random locations (means). The Dirichlet process is the prior mix-
ing measure. The discrete nature of the posterior from a Dirichlet process prior is
not a problem, since this prior is on the locations of a continuous density. Thus, the
posterior distribution is continuous with this model. Covariates are incorporated via
the conditional distribution of the parameters, given the covariates. The result is a
semi-parametric regression yielding a smooth curve as a weighted mixture of linear
regressions over the range of the covariates.

3.2.2.1 Nonparametric Example

We first applied a Dirichlet process mixture model to a dataset consisting of white
blood cell counts measured while patients are receiving increasing doses of a che-
motherapeutic drug in a phase I study (Miiller and Rosner 1997, 1998; Rosner and
Miiller 1997). For cytotoxic cancer chemotherapy, myelosuppression (lowered blood
counts) is a common side effect, getting more severe as doses increase. Thus, there is
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great interest in monitoring patients’ blood counts as a pharmacodynamic end point,
especially when escalating doses in a phase I study.

The analysis of blood count data for cancer patients receiving myelosuppressive
doses of chemotherapy is an example of a pharmacodynamic analysis of a nonlinear
model for repeated measurement data. We implemented the Dirichlet process mix-
ture model to analyze these data, with the dose of the drug serving as the pharmaco-
logic covariate. The model can also be fit to other repeated measurements, including
drug concentrations measured over time.

Non-Bayesian analyses of the time-course of blood count data using nonlinear
models for repeated measurements data have also appeared in the pharmacodynam-
ics literature. Karlsson et al. (1995) used a spline-based model to analyze similar
data, although with splines they had to constrain each patient’s profile to return
to baseline at the end of the course of chemotherapy. There are also models that
incorporate PK and PD simultaneously by hypothesizing an “effect” compartment
(Sheiner et al. 1979b; Unadkat et al. 1986; Verotta and Sheiner 1987). These analy-
ses via a so-called indirect-response model have not yet been much studied in the
statistical literature. Minami et al. (1998, 2001) used this approach to model blood
count data collected on cancer patients receiving different chemotherapeutic drugs.
Recently, a mechanistic model based on physiologic considerations of neutrophil
formation has found application in modeling myelosuppression by anticancer agents
(Friberg et al. 2002; Friberg and Karlsson 2003).

3.2.2.2 Combining Data

Another statistical issue in studies of population PK of drugs concerns combining
data from multiple sources. Combining analyses across different population pharma-
cokinetic or pharmacodynamic studies would seem to be a good way to learn more
about the distribution of PK parameters in the general population, or to allow for
more precise inference on the effects of patient characteristics on PK. With mixture
priors, it is not at all obvious how to combine data in a sensible way that leads to bor-
rowing strength across the studies but still allows for each study to maintain its own
idiosyncrasies as characterized through the flexible mixture model. We have devel-
oped a method for use with finite mixtures, allowing for a common measure and
study-specific mixtures (Lopes et al. 2003). We have also developed an ANOVA-
like decomposition of the random locations in a Dirichlet process via the dependent
Dirichlet process (De Iorio et al. 2004). This appears to be a useful modeling strat-
egy for such meta-analyses, since they maintain flexibility in the inference and allow
for different degrees of exchangeability.

3.2.2.3 Dose Individualization

With the ability to model a drug’s PK and, simultaneously account for between-
individual variation, came the realization of the potential to predict a person’s
individual PK if given the drug. This realization then led to the possibility of
PK-guided dosing, meaning that physicians and clinical pharmacologists can tailor
the dose of a drug for an individual to that individual’s own ability to handle the
drug. Other areas of clinical medicine benefited from the use of PK-guided dosing,
including the use of antibiotics (Jelliffe 1986; Jelliffe et al. 1991, 1993). Several



Pharmacokinetics in Clinical Oncology 65

researchers called for PK-guided dosing in medical oncology, recognizing that the
of ten narrow therapeutic window (i.e., the narrow range of doses that are neither
too toxic nor too low to allow for clinical efficacy) might be made wider if patients
received doses that would be expected to lead to systemic exposure in some target
range. Attempts to use PK to guide dosing in cancer have also appeared but have
not yet been put into practice (Collins 1990; Ratain et al. 1991; D’Argenio and
Rodman 1993).

3.2.2.4 Dose Individualization Example

An example of a fully Bayesian design for pharmacologically guided dosing in
cancer is given by a study from the University of Texas MD Anderson Cancer
Center. Our clinical collaborator treats patients with leukemia using bone marrow
transplantation. With this form of anticancer therapy, the patient receives ultrahigh
doses of chemotherapy. The drugs are highly toxic, and at these doses, the patient’s
blood cells are virtually wiped out. Without circulating white blood cells, people
are subject to potentially fatal infection from pathogens that would otherwise not
cause much of a reaction. In order to help the patient’s body recover its ability to
produce white blood cells, the transplant oncologist infuses either bone marrow or
peripheral blood stem cells. An allogeneic transplant is one in which the patient
receives cells from a donor, one who matches the patient in some way. Autologous
transplants reinfuse cells removed from the patient prior to the ultrahigh-dose
chemotherapy.

In transplant therapy, the medical oncologist seeks to treat the patient with doses
that are high enough to kill any and all cancer cells but not so high that the drugs kill
the patient. Most transplant regimens give the drugs at fixed doses that are a function
of body size as measured by the body-surface area (Chabner and Collins 1990). If
there are sources of pharmacokinetic and pharmacodynamic variation beyond body
size, some patients may well receive a dose that is either too high or too low.

One might instead define a target range of exposure to the drug, such as via the
area-under-the-concentration—time curve or AUC. In fact, our clinical collaborator
told us that he had a target range for the AUC of the drug busulfan when given intra-
venously. He wanted to design a study in which patients first received a small, non-
therapeutic dose of the drug, with blood draws to allow pharmacokinetic analysis.
With the pharmacokinetic model fit to the concentration—time data for the test dose,
he thought that one could predict the dose that would achieve the desired AUC. We
agreed and set about to design this study.

We chose to determine a fully Bayesian design for the study. There was clearly a
loss function, namely, achieving an AUC that is either too low or too high, with greater
loss as the AUC was farther away from the ends of the target interval. Furthermore,
the study called for prediction, for which the Bayesian approach excels. Among other
advantages, Bayesian modeling offers the ability to incorporate sources of uncer-
tainty in the algorithm. Finally, we already had data from earlier studies without the
test dose. Thus, we could incorporate historical information as prior information to
improve precision.

We did not assume that the patients in the two historical studies were fully
exchangeable, choosing instead to keep the studies separate in a hierarchical model.
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FIGURE 3.3 (A) The loss function as it relates to the AUC. (B) An example predictive dis-
tribution for the AUC if the next patient receives a particular dose. (C) The expected utility as
a function of dose, allowing one to determine the optimal dose while incorporating the many
sources of uncertainty.

We did, however, want to allow for a Bayesian nonparametric prior distribution in
our inference. Therefore, we chose to use the so-called dependent Dirichlet process
prior in our model (De Iorio et al. 2004). This model allows for some borrowing of
strength across the studies, while still retaining study-specific differences within a
larger nonparametric model.

Our utility function consisted of two straight lines on either end of the target AUC
range (Figure 3.3A). The slopes of the two lines differed, in that the loss would rise
more steeply for exceeding the range than for falling short of it. The reason for the
lack of symmetry is that too high a dose might lead to death, whereas too low a dose
might still provide some therapeutic benefit to the patient.

Based on the results of the PK analysis of the test dose, along with the information
contained in the previous studies, we computed the posterior predictive distribution
of the AUC for a host of possible doses. Figure 3.3B shows an example predictive
distribution for a hypothetical new patient receiving some fixed dose. The utility
function u(d, y, 0) in this study is minus the loss associated with a given AUC and is a
function of the dose of the drug (d), the concentrations over time (y), and the patient’s



Pharmacokinetics in Clinical Oncology 67

PK parameters (). Integrating the utility function with respect to the posterior pre-
dictive distribution of the AUC for a fixed dose gives the expected loss for that dose.
That is, the optimal dose d* satisfies

d = argmaxffu(d,y,@)pd(y‘@)p(B‘Data)dydB,
d

where p,(y10) is the sampling distribution of the future concentrations as a func-
tion of dose (d) and the PK parameters. Of course, the calculations would refer to a
specific patient, but we have suppressed the subscripts for ease of presentation. Over
a range of doses and associated expected utilities, one can pick the dose with the
highest expected utility (or, in our case, the lowest expected loss), as illustrated in
Figure 3.3C. The study we designed will use the patient’s test data to tailor the dose
of the high-dose chemotherapy to the specific patient. This study is ongoing.

3.2.2.5 Design

Another important aspect of designing population studies of PK and PD concerns
the timing of measurements. Quite often, pharmacologists choose sampling times
based on D-optimality criteria or similar criteria relating to minimizing some func-
tion of the variance—covariance matrix. Bayesian optimal design has generally been
Bayesian versions of D-optimality and the like (Merlé et al. 1994; Chaloner and
Verdinelli 1995; Merlé and Mentré 1995). An early example of using information
theory to design a PK study is given by D’Argenio (1990). For a recent review, see
Ogungbenro et al. (2009).

3.2.2.6 Design Example

We have proposed a fully Bayesian design with a loss function that incorporates
inconvenience to the patient (Stroud et al. 2001). The Cancer and Leukemia Group
B (CALGB) was preparing to carry out a large study of 3h infusions of paclitaxel
to treat women with metastatic breast cancer. The proposed sample size was large,
and the study provided an excellent opportunity to study the pharmacology of this
important anticancer drug among a large group of women. Investigators had reported
that the PK parameter with the greatest association with myelosuppression, the pri-
mary toxicity, was the time during which the concentration of the drug is above some
threshold level (Gianni et al. 1995). Therefore, the CALGB was interested in having
a good estimate of the time above the threshold concentration and wanted the sam-
pling times to provide for a good estimate.

Estimating the time above some threshold concentration requires drawing sam-
ples around the time when one might expect the concentration to drop below the
threshold. This requirement means that women would potentially have to stay in
the clinic longer than clinically necessary, or even return the next day, in order to
ensure that one gets a sample with the most information about when the concentra-
tion drops below a threshold. A collaborating clinical pharmacologist suggested,
in fact, that the study require a blood sample 24h after the start of the infusion.
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The treating clinicians did not want to require that the women return to the clinic the
day after the infusion, arguing that such a requirement would be too disruptive for
the women participating in the study. We decided to approach the design question
from a decision-theoretic standpoint, by including an increasing cost for times after
7h from the start of the infusion, which is the length of time the women would be
asked to remain in the clinic for routine surveillance. That is, we wanted to find the
optimal times in order to maximize the precision of estimated PK parameters (in
particular, AUC and the time above a threshold concentration), accounting for the
potential cost of requiring women to wait around or even return to the clinic the next
day. The utility also included a gain as the posterior precision (inverse of the vari-
ance) of the PK characteristic of interest (S(0), such as AUC or time above a threshold
concentration) increased. Equation 3.2 shows the utility as a function of the times (f)
and the data (y). The cost associated with a set of possible sampling times is the sum
of each time’s cost, and each time’s cost is zero or the squared difference between
that sampling time and 7h. The parameter c calibrates a change in cost because of a
sampling time with improved precision:

k

ty) - 6‘2 (t,-7) (2)

Of course, it is not straightforward to decide how to weigh estimation precision with
the cost of waiting to draw samples, since these are not on a common metric. Our
approach called for working with the clinicians to calibrate the relative weights when
it came time to implement the study design.

We used historical PK data for a prior distribution in our design. Because of the
nonlinear nature of the mean function, we had to use Markov chain Monte Carlo
(MCMC) methods for inference (Gamerman 1998). We also used MCMC methods
to determine the utility surface, treating the problem as one in which we generate
random samples from some probability distribution known up to a constant of pro-
portionality (Miiller and Parmigiani 1995; Miiller 1999). In the end, we found that
the utility surface was relatively flat, and we had to work with a numerically exagger-
ated transformation of the surface to find the times associated with the peak utility.
Of course, it was highly informative for the clinical pharmacologists to know that the
utility surface was relatively flat over some range of potential sampling times, since
this meant that there would not be much loss in using sampling times that might be
suboptimal yet be appealing for other reasons not captured by the utility function.

u(t,y) = Var(S(G)

3.3 SUMMARY

In this chapter, we have highlighted some of the statistical issues that arise in stud-
ies of the PK and PD of a drug. We used case studies when available to illustrate
methods. The field is a fascinating one and has the potential to individualize therapy
for patients, thereby maximizing the chance of clinical benefit while minimizing the
risk of serious toxicity.



Pharmacokinetics in Clinical Oncology 69

3.4 SOFTWARE

There are software packages available commercially for fitting pharmacokinetic
models. There are also some programs that are available free to academic institu-
tions. Here are four software packages in alphabetical order, along with the addresses
of the associated websites.

ADAPT (http://bmsr.usc.edu/Software/Adapt/adptmenu.html): A suite of pro-
grams for fitting pharmacokinetic and pharmacodynamic models. The web-
site also includes user-supplied functions for fitting complex models. Work
on a version of the package that will allow population or hierarchical model-
ing is underway.

MCSIM (http://toxi.ineris.fr/activites/toxicologie_quantitative/mcsim/mcsim.
php): A package that allows one to fit one’s own statistical or simulation
models and carry out Bayesian inference via Markov chain Monte Carlo
simulations. It is useful for physiologically based pharmacokinetic (or toxi-
cokinetic) modeling.

MONOLIX (http://software.monolix.org/sdoms/software/): Monolix is free soft-
ware that one can use to fit nonlinear repeated measures data. Model fitting is
based on a stochastic approximation to the EM algorithm. One can download
related research papers from the website, where one can also find some demos
and tutorials.

PKBUGS (http://www.med.ic.ac.uk/divisions/60/pkbugs_web/home.html): An
add-on program for carrying out fully Bayesian pharmacokinetic analyses
within WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml).
One can modify the code generated by the program for problem-specific
analyses.
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4.1 INTRODUCTION AND STATEMENT OF THE CONCEPT:
MEASURING BIOLOGICAL EFFECTIVENESS (WITH
A PD ENDPOINT) AS A VERY EARLY SCREENING
AND DRUG DEVELOPMENT TOOL

Currently only 5% of investigational new drug (IND) applications to the Food and
Drug Administration (FDA) in oncology result in clinically approved agents [1,2].
This is a very serious problem, since the development of a new agent is a lengthy
and expensive process and many of these agents fail relatively late in that process.
The fact that an increasing proportion of IND anticancer agents are molecularly
targeted suggests testing the agent for effectiveness against the target by means of
a PD assay very early in the drug development process. This is particularly useful
and important since the pre-clinical tests of such effectiveness are often mislead-
ing, yielding both false-positive and false-negative results. For this reason, the FDA
issued a new Exploratory IND (expIND) Guidance in 2006, to allow for such studies
as small first-in-man trials, conducted at dose levels and administration schedules
not expected to result in significant clinical toxicity, and generally restricted to at
most approximately 1 week per patient [1,2]. Conducting studies under this guidance
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requires substantially less pre-clinical toxicology work than is required for standard
IND phase 1 studies [1,2]. Therefore, phase 0 studies can be administered while the
toxicology studies preparatory to filing a standard IND are being conducted, and
they will not postpone the time until the phase 1 trial can be initiated.

Phase 0 studies can be very effective tools for determining very early in the drug
development process whether an agent has the anticipated biologic effect. They can
also be used to prioritize among analogs or agents designed to have the same molec-
ular target by means of comparing pharmacokinetic (e.g., oral bioavailability) and/
or PD characteristics (although we will not deal explicitly with such comparative
designs). They are an opportunity for developing and validating clinical PD assays
very early in the drug development process, to enable more reliable usage of such
assays in phase 1 and phase 2 trials [3]. Finally, they can contribute to better defin-
ing the appropriate dose range or administration schedule to take into phase 1 and
phase 2 testing.

4.2 STATISTICAL DESIGN OF A PHASE 0 TRIAL

The challenge presented by the PD-driven phase O study is to assess the change in
the PD endpoint effected by the agent, with very few patients, each treated over a
short period of time, but to maintain a certain amount of statistical rigor. Kummar
et al. [1] and Murgo et al. [2] give several statistical designs to address this challenge
in different clinical contexts, three of which we present here, as well as giving a gen-
eral approach to the design of such trials. Typically, a phase O trial will encompass
several escalating dose levels for the experimental agent. In general, the approach
taken is to mimic the design of a phase 2 study [4], and to design the phase O study
as a phase 2 study in miniature for each separate dose level. Thus, the first step is
to define what is meant by a PD “response” for each individual patient, which is
analogous to defining what constitutes an objective tumor response for a patient in a
phase 2 trial. The second step is to define what constitutes a promising observed PD
response rate for each dose level—in other words, how many patients must demon-
strate a PD response for the dose level to be declared biologically effective. This is
analogous to setting a threshold for observed response rate in a phase 2 trial, in order
that the agent be deemed sufficiently promising for further testing [4]. Further details
of this approach are given in the following sections.

4.2.1 DETERMINING STATISTICAL SIGNIFICANCE OF A PD ErFeCT
AT THE PATIENT LEVEL: DEFINING A PD RESPONSE

In oncology, generally, the PD endpoint is assessed both in tumor tissue and in an
easily assayed surrogate tissue such as blood (peripheral blood mononuclear cells
[PBMCs]). The tumor tissue assay is considered to be more reliable with respect to
reflecting the biological effect of the agent in what is generally the target tissue of
interest [1,3]. However, the number of tumor biopsies per patient usually is severely
limited for ethical reasons [1,2]. Therefore, the PBMC assay, for example, is used as
a surrogate, since multiple PBMC assays can be performed both pre-treatment and
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post-treatment, thus allowing for assessment of both the pre-treatment variability at
the patient level and the post-treatment PD effect over time [1-3]. Generally, there
are only two tumor biopsies, one taken shortly before treatment with the agent,
and one taken at the post-treatment time point of greatest interest, often when the
PD effect is anticipated to be at its maximum. The measure of treatment effect for
the tumor PD assay is the difference between the pre-treatment and post-treatment
values (often measured on the log scale rather than on the original). Generally,
there are multiple PBMC assays both pre-treatment and post-treatment. The pri-
mary measure of treatment effect for the PBMC assay is the one that corresponds in
time to that of the tumor assay—the difference between the most immediately pre-
treatment PBMC assay and the post-treatment PBMC assay closest in time to that
of the tumor biopsy. The other pre-treatment PBMC assays should, ideally, cover
a time span comparable to that of the pre-treatment vs. post-treatment biopsies. In
that way, they provide a measure of the natural variation of the assay, for an indi-
vidual patient, over that time span. The other post-treatment PBMC assays provide
a means of assessing the post-treatment PD effect over time, as a secondary set of
PD endpoints.

Defining a PD “response,” both for the tumor assay and for the PBMC assay,
usually involves both a biologic criterion and a statistical criterion for what is sig-
nificant. The biologic criterion generally depends upon characteristics of the bio-
logic target of the agent. For example, in the recent National Cancer Institute (NCI)
phase O trial of ABT-888 [5,6], the criterion chosen was that the reduction in the
assay value had to be at least twofold. The statistical criterion may be either 90%
confidence or 95% confidence (generally one sided, since the anticipated treatment
effect is generally in one direction) that the observed treatment effect is not a result
of the sort of natural random variation in the assay, for an individual patient, that
would be seen in the absence of a true treatment effect. For the PBMC assay, this
natural variation can be assessed by the pooled intra-patient standard deviation (SD)
of the pre-treatment values. However, for the tumor assay, multiple pre-treatment
assays per patient will generally not be available. Therefore, the inter-patient SD
of the pre-treatment values must be used instead. Details concerning the definition
of a PD response are illustrated in Figure 4.1. The thresholds for declaring the PD
effect (pre-treatment value minus post-treatment value, for the case where the agent
is anticipated to reduce the assay value, as in the NCI phase O trial [5,6]) statisti-
cally significant (at the one-sided .10 or .05 significance levels) are calculated from
the variance of the difference of two normally distributed variables. (If the number
of samples from which to estimate the pre-treatment variability of the assay is very
limited (under 20), consideration should be given to using t-distribution, rather than
normal distribution, cut-off values.)

4.2.2 DETERMINING STATISTICAL SIGNIFICANCE OF A
PD ErrecT FOR A GIVEN DOSE LEVEL
For each dose level, the investigators may set a threshold for the number of patients,

among the total, that must demonstrate a PD response, in order for the dose level to
be judged as yielding a promising biologic effect. Since the false-positive rate for a
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Defining PD Response at the Patient Level

Calculate the baseline variance and standard deviation (SD) of the PD value
(In surrogate tissue, the baseline variance is the pooled intra-patient baseline
variance determined by calculating the baseline variances for each patient,
separately, and then averaging the separate variances across patients. In tumor
tissue, the baseline variance is the inter-patient baseline variance calculated across
patients. In either case, the baseline SD is the square root of the baseline variance.)

Measure PD effect as pre-treatment value minus post-treatment value

l

If the PD effect is greater than 1.8 (2.3) times the baseline SD, then it is statistically
significant at the .10 (.05) significance level

A statistically significant PD effect, at the patient level, is called a PD response

FIGURE 4.1 This figure illustrates the defining of PD “response” for an individual patient.
Multipliers of the baseline SD are derived from asymptotic normal distribution theory.
Significance levels are one sided.

PD response, for an individual patient, has been determined (as given previously),
the false-positive rate for declaring a dose level effective, for each assay separately
and for the two combined, can be calculated from the binomial distribution. (As
indicated earlier, the tumor tissue assay is generally considered to be more reliable
than a PBMC, or other surrogate tissue, assay, but the number of biopsies per patient
is limited for ethical reasons; therefore, PBMC assays are generally used, in addition.
If the PBMC assay has been established as a reliable surrogate for the tumor assay,
or if biopsies are impracticable, the PBMC assay may be the only one available.)
Likewise, for a targeted PD response rate, across patients, the power to declare the
dose level effective, for each of the two assays, can be calculated. The investigators
may employ a one-stage or two-stage design to assess the PD response rate at each
dose level, just as in phase 2 studies [4], and the calculations of power and false-
positive rate are done in an identical fashion. If a dose level proves unpromising, in
general, escalation to the next dose level will occur. If a dose level proves promising,
escalation to the next dose level may or may not occur, according to the judgment of
the investigators. Toxicity may also be a factor in the dose escalation; this will be dis-
cussed further. Examples of designs to target 80%, 60%, or 40% PD response rates,
across patients are given later. More generally, one may use available online software
to determine the “Simon optimal” and “minimax” designs [4] (e.g., that supplied by
the Biometric Research Branch, NCI at http://linus.nci.nih.gov/brb/samplesize/otsd.
html), to be used at each dose level. Likewise, one may use available online software
to construct a trial design, to be used at each dose level, that is not strictly optimal
or minimax, or to precisely evaluate such designs (e.g., that supplied by CRAB and
the SWOG http://www.swogstat.org/stat/public/twostage.htm). We will discuss this
further in Section 4.2.4.
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4.2.3 THree PHASE O TRIAL DEesiGNS: DEsIGNS TO DEeTecT AN 80%,
60%, OR 40% PD ResPONSE RATE ACROSS PATIENTS

To target a true 80% PD response rate at each dose level, a one-stage design may be
used. Three patients are treated and the dose level is declared effective with respect
to either PD assay if at least two of the patients demonstrate a PD response which
is significant at the .10 level. This design yields 90% power to detect a true 80% PD
response rate, across patients, for either assay, with an overall 6% false-positive rate
for the two assays combined, under the null hypothesis that the agent has no biologic
effect. This is the design that was used in the NCI phase 0 trial of ABT-888 [5,6], and
it is illustrated in Figure 4.2.

To target a true 60% PD response rate at each dose level, a two-stage design may
be used. Three patients are treated and the cohort is expanded to five patients if
exactly one patient, for either PD assay, demonstrates a PD response which is sig-
nificant at the .05 level. The dose level is declared effective with respect to either PD
assay if at least two of the patients demonstrate a PD response which is significant at
the .05 level. This design yields 89% power to detect a true 60% PD response rate,
across patients, for either assay, with an overall 4% false-positive rate for the two
assays combined, under the null hypothesis that the agent has no biologic effect. This
design is illustrated in Figure 4.3.

To target a true 40% PD response rate at each dose level, a similar two-stage
design may be used. Five patients are treated and the cohort is expanded to eight
patients if exactly one patient, for either PD assay, demonstrates a PD response which
is significant at the .05 level. The dose level is declared effective with respect to
either PD assay if at least two of the patients demonstrate a PD response which is
significant at the .05 level. This design yields 87% power to detect a true 40% PD
response rate, across patients, for either assay, with an overall 10% false-positive rate
for the two assays combined, under the null hypothesis that the agent has no biologic
effect. This design is illustrated in Figure 4.4.

Design 1: Defining a Significant PD Effect at the Dose Level when
the Target PD Response Rate Is 80% Across Patients

Treat three patients

Declare the PD effect statistically significant at the dose level, for
either endpoint, if at least two of the three patients demonstrate a PD
response at the .10 significance level

l

This yields, for either endpoint, 90% power, at the dose level, to detect
an 80% PD response rate across patients, with an overall 6% false-
positive rate for both endpoints combined

FIGURE 4.2 This figure illustrates the defining of what constitutes a promising observed
response rate for a dose level. The target (true) PD response rate, across patients, is 80%.
Power and false-positive rate are derived from the binomial distribution.
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Design 3: Defining a Significant PD Effect at the Dose Level when
the Target PD Response Rate Is 60% Across Patients

Treat three patients

Treat an additional two patients if exactly one of the three patients (for
either endpoint) demonstrates a PD response at the .05 significance level

Declare the PD effect statistically significant at the dose level, for either
endpoint, if at least two of the three (or five) patients demonstrate a PD
response at the .05 significance level

l

This yields, for either endpoint, 89% power, at the dose level, to detect a
60% PD response rate across patients, with an overall 4% false-positive
rate for both endpoints combined

FIGURE 4.3 This figure illustrates the defining of what constitutes a promising observed
response rate for a dose level with a two-stage design. The target (true) PD response rate, across
patients, is 60%. Power and false-positive rate are derived from the binomial distribution.

Design 3: Defining a Significant PD Effect at the Dose Level when
the Target PD Response Rate Is 40% Across Patients

Treat five patients

Treat an additional three patients if exactly one of the five patients (for
either endpoint) demonstrates a PD response at the .05 significance level

l

Declare the PD effect statistically significant at the dose level, for
either endpoint, if at least two of the eight patients demonstrate a PD
response at the .05 significance level

l

This yields, for either endpoint, 87% power, at the dose level, to detect
a40% PD response rate across patients, with an overall 10% false-
positive rate for both endpoints combined

FIGURE 4.4 This figure illustrates the defining of what constitutes a promising observed
response rate for a dose level with a two-stage design. The target (true) PD response rate, across
patients, is 40%. Power and false-positive rate are derived from the binomial distribution.

4.2.4 CoONSTRUCTING PHASE O TRIAL DESIGNS

As mentioned earlier, phase O trials can be constructed as a series of miniature
phase 2 trials, one for each dose level, as the dose levels escalate. Across the dose lev-
els, the investigators must determine what PD response rate is sufficiently promising
that it should be detected with high probability (generally, at least .90). At each dose
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level, the design must be capable of distinguishing between that target response rate
and the “null rate” associated with the likelihood of a false-positive PD measure for
an individual patient (generally, .05-.10). In Section 4.2.3 we gave designs to distin-
guish between PD response rates of 10% vs. 80%, 5% vs. 60%, and 5% vs. 40%, each
with approximately 90% power to detect the target PD response rate and declare
the agent promising at a particular dose level, according to either of the two assays
(tumor and surrogate tissue), and each with overall false-positive rate of 4%—10%.
These designs, although reasonable, are neither “Simon optimal” nor minimax [4].
It would be reasonable to use an optimal design if the dose level (or the agent, in
general) was unlikely to be effective, to minimize the patients expended for that situ-
ation. On the other hand, it would be reasonable to use a minimax design if the dose
level was likely to be effective, to minimize the patients expended for that situation.

In Table 4.1, we give optimal and minimax designs for various combinations of
Po (the null PD response rate) and p, (the target PD response rate), along with their
statistical operating characteristics. These designs are all identical in structure to
those of Simon [4], except that accrual is terminated at stage 1 if the number of
responses is at least r+ 1, meaning that the dose level has already been proven effec-
tive (this is consistent with the objective to keep the phase O trial as small as pos-
sible). For purposes of comparison, we also give the design examples of Section 4.2.3
(including the one-stage design used in the NCI phase O trial, designated as ™ in the
table), which compare quite favorably to their corresponding optimal and minimax
counterparts. In putting these individual dose-level designs together into a phase 0
trial with escalating dose levels, the investigators may choose to halt the trial, or not,
when an effective dose level has been reached (the observed PD rate is adequate).
Likewise, they may choose to continue dose escalation, or not, until such an effective
dose level has been reached.

It is interesting to note that the standard 3+ 3 phase 1 dose escalation design can
also be viewed as a series of miniature phase 2 trials constructed so as to test the rate
of absence of dose-limiting toxicity (the “DLT-free rate”) at each successive dose
level, and escalate on that basis. Thus, a phase O trial could be designed to test the
“toxicity-free” rate along with the PD response rate. Here, we are using the term
toxicity-free somewhat loosely, since, by definition, phase O trials should not involve
clinical toxicity; however, it is possible that the investigators might have a separate
assay for an unfavorable PD response, which is a biomarker for potential clinical tox-
icity at a higher dose level, along with the assay for the target PD response, which is
a biomarker for potential clinical benefit at a higher dose level. It is also possible that
an analog of an effective, but overly toxic, agent would be tested in phase 0, where
reduction of that toxicity was the primary concern. In Table 4.2, we give examples
of “Simon optimal” phase 0 trial designs to discriminate between unsatisfactory
toxicity-free rates p, (.40-.50), for which we would want to halt the dose escalation
with high probability (at least .90), and target toxicity-free rates p; (.80—.90), for which
we would want to halt the dose escalation with low probability (at most .10), along
with their statistical operating characteristics. As it happens, these designs are also
all minimax. All are identical in structure to those of Simon [4], except that accrual
is terminated at stage 1 if the number of toxicity-free patients is at least r+ 1, meaning
that the dose level has already been proven adequate. For comparison, we also give
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TABLE 4.1

Simon Optimal and Minimax Designs (Designed to Have
a=.05 and (1 -p)=.9) to Evaluate PD Response for
Individual Dose Levels in a Phase 0 Trial

False Positive Prob. of Stage 1
and Target Dose Level Activity  Probability of Determ. of
Response Judged Inadequate  Positive Result Activity for
Rates if Response Rate for p, and p, po and p,
Po P1 <r,/n, <r/n o 1-8 PET, PET,
.05 .40 0/5 2/14 .024 .900 175 395
0/7 2/12 .019 908 702 .608
*.05 40 0/5 1/8 .052 .866 797 741
.05 .50 0/4 1/7 .038 .906 .829 751
Same Same Same Same Same Same
.05 .60 0/3 1/6 .027 918 .864 712
0/4 1/5 .023 913 .829 847
*.05 .60 0/3 1/5 .020 .890 .864 712
.10 .70 0/2 2/8 .025 905 .810 .090
0/3 2/6 .015 920 730 .370
.10 .80 0/2 1/4 .019 951 .820 .680
Same Same Same Same Same Same
.10 .80 — 1/3 .028 .896 — —

po=The false-positive rate associated with determining a PD response for an
individual patient.

p,=The target PD response rate, for a dose level, minimally necessary to estab-
lish promise.

r,/n, (for stage 1) and r/n (for stage 2) are the maximum number of [responses]/
[the number of patients] for declaring the dose level response rate
inadequate.

“ These rows correspond to examples given in Section 4.2.3 and are neither
optimal nor minimax, but compare favorably to them.

“* This row corresponds to the one-stage “Design 17 (Figure 4.2), used in the
NCI phase 0 trial, which is neither optimal nor minimax, but compares favor-
ably to them.

In each row, except * and **, upper numbers relate to the optimal and lower
numbers to the minimax design. These designs are all identical in structure to
those of Simon [4] (excluding design **, which has only one stage), except
that accrual is terminated at stage 1 if the number of responses is at least r+1,
meaning that the dose level has already been proven effective.
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TABLE 4.2

Simon Optimal (and Minimax) Designs (Designed to

have a=.1 and (1 - p) =.9) to Continue Dose Escalation
Based on Toxicity-Free Rate in a Phase 0 Trial

Lower and Halt Dose Probability of  Prob. of Stage 1
Upper Target Escalation if Dose Determ. of
Toxicity-Free Toxicity-Free Escalation for Escalation for
Rates Rate po and p, po and p,

Po P1 <r/n <r/n Forp, Forp, PET, PET,
©.40 .90 173 4/6 .082 906 712 157
40 .90 173 3/5 .087 919 .648 .028
45 .85 173 6/10 .087 908 575 .061
.50 .80 3/7 10/16 .099 .905 .500 .033

po="The target toxicity-free rate, for a dose level, for which one wants a low
(<.10) probability of dose escalation.

p,=The target toxicity-free rate, for a dose level, for which one wants a high

(>.90) probability of dose escalation.

r,/n, (for stage 1) and r/n (for stage 2) are the maximum number of [patients

with toxicity] /[the number of patients] for declaring the toxicity-free rate

inadequate.

This row corresponds to the standard 3 +3 dose escalation design, which is

neither optimal nor minimax, and includes the additional stipulation that

dose escalation will occur after stage 1 if all three patients are toxicity-free

(even though that does not guarantee that, if three additional patients were
accrued to the dose level, at least four of the six would be toxicity-free).

The rows other than * give two-stage designs, based on toxicity-free rate,

which are both optimal and, as it happens, minimax. All are identical in

structure to those of Simon [4], except that accrual is terminated at stage 1

if the number of patients toxicity-free is at least r+ 1, meaning that the dose

level has already been proven adequate.
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the statistical operating characteristics of the standard 3 +3 phase 1 dose escalation

design, which can be seen as discriminating between a p, of .40 and a p, of .90.

4.3 EXAMPLE OF A PHASE 0 TRIAL—THE NCI PARP
INHIBITOR TRIAL—AND FURTHER DISCUSSION
OF PHASE 0 STATISTICAL ISSUES

The NCI selected ABT-888, an inhibitor of the DNA repair enzyme poly (ADP-
ribose) polymerase (PARP), for the first ever phase O trial for two reasons [5,6]. First,
it was anticipated to have a wide margin of safety relative to target modulating doses
in pre-clinical models. This is an essential characteristic for a phase 0 agent. Phase 0
trials cannot promise any benefit for the patients who participate, so there must be
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reasonable assurance that toxicity will be minimal. Second, it was anticipated to have
wide therapeutic applicability if demonstrated effective. Elevated PARP levels are
characteristic of tumors and can result in resistance to both chemotherapy (CT) and
radiotherapy (RT). Therefore, PARP inhibitors hold promise of wide applicability as
CT and RT sensitizers. The NCI trial demonstrated statistically significant reduction
in PAR levels (a surrogate for PARP inhibition) in both tumor and PBMCs [5,6].

There are a number of statistical issues relating to phase O trials that deserve
further mention:

1. In the NCI phase O trial it was found that the variance of the pre-treatment
PD assay values was reduced if the logs of the values were used instead. It is
often appropriate to log-transform PD assay values since geometric, rather
than arithmetic, changes in value are thought to be qualitatively similar
along the assay scale.

2. It will often be the case that assessing the PD treatment effect can be done
with greater statistical power if the mean effect is measured across patients
and then a test applied of the null hypothesis that the mean effect is equal
to 0. Analogously, there have been proposals that phase 2 trials be assessed by
testing whether the mean tumor shrinkage is statistically significant [7]. The
problem with this approach is that a statistically significant mean treatment
effect does not necessarily imply a biologically relevant treatment effect for
a meaningful proportion of the patients [8]. For this reason, the NCI phase 0
trial investigators chose to impose the additional criterion of a biologically
relevant level of PAR reduction for the individual patients. Likewise, it was
felt appropriate to determine, for the individual patients, whether the PAR
reduction observed was statistically significant. This follows the standard
phase 2 model of determining what would constitute a response, for the indi-
vidual patient, suggestive of benefit for that patient, and then assess the pro-
portion of patients demonstrating such a response [8]. There may be phase 0
situations where this approach is too statistically demanding, and it is appro-
priate to resort to assessing the mean treatment PD effect.

3. For the tumor biopsy assay, multiple pre-treatment assays per patient will
generally not be available, for ethical reasons. Therefore, the inter-patient
SD of the pre-treatment values must be used instead of the intra-patient SD,
which cannot be determined. The inter-patient variability will often be sub-
stantially greater than the intra-patient variability. This can seriously limit
the ability to declare an observed treatment effect measured by the tumor
assay to be statistically significant. For example, in the NCI phase O trial,
an observed 95% post-treatment reduction in the tumor assay value was
required for statistical significance, while an observed 55% post-treatment
reduction was sufficient for the PBMC assay [2].

4.4 CONCLUSIONS

Phase 0 trials provide an excellent opportunity to establish feasibility and further
refine target or biomarker assay methodology in a limited number of human samples
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before initiating larger trials involving patients receiving toxic doses of the study
agent. We have demonstrated that, despite the small sample size, the nature of the
PD assay values allow for a reasonable degree of statistical rigor and, especially in
the case of the surrogate assays (which can be repeated multiple times), a reason-
able degree of statistical power. We have shown how phase 0 trials, with reasonable
statistical operating characteristics, can be constructed, to determine PD responses
associated with either potential clinical benefit or potential clinical toxicity. Phase O
trials do not replace phase 1 trials conducted to establish dose-limiting toxicities and
define a recommended phase 2 dose. On the other hand, data from phase 0 trials
allow phase 1 studies to begin at a higher, potentially more efficacious dose, use a
more limited and rationally focused schedule for PD sampling, and use a qualified
PD analytic assay for assessing target modulation. Likewise, phase O trials, with
PD endpoints, will not eliminate the need for phase 2 trials to establish the agent’s
ability to yield tumor response or clinical benefit; but they will allow for early ter-
mination of development of agents that fail to yield the anticipated biologic effect.
Therefore, the effort expended to conduct rationally designed phase O trials should
conserve resources in the long run by improving the efficiency and success of subse-
quent clinical development.
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5.1 INTRODUCTION

Historically, dose-seeking clinical trial designs have geared toward establishing the
maximum tolerated dose (MTD) of a therapeutic regimen, with safety as the pri-
mary outcome. A fundamental assumption of these designs is that of a monotone
increasing dose—toxicity and dose—efficacy relationship. Based on this assumption,
the highest dose found to be safe is also assumed to be the dose most likely to be
efficacious (Storer, 1989). As such, determining the MTD of a new agent (or com-
bination) was the sole goal of phase I trials. While this paradigm has been success-
ful in oncology for cytotoxic agents, it is not always appropriate for molecularly
targeted therapies, vaccines, and/or immunotherapy. Targeted therapies including
monoclonal antibodies have become a major focus of oncology drug development.
Agents like imatinib, bevacizumab, and trastuzumab have demonstrated clinical
benefit in several cancers, whereas others like R115777, ISIS 3521, and ZD1839
have produced negative results (Gelmon et al., 1999; Harris, 2004; Parulekar and
Eisenhauer, 2004). The proposed mechanisms of action for these agents during the
phase I testing are not straightforward in that (1) the dose—efficacy curves are usu-
ally unknown and (2) dose—toxicity relationships are expected to be minimal. The
dose—efficacy curves for these novel therapies may follow a nonmonotone pattern
such as a quadratic curve or an increasing curve with a plateau. Figure 5.1 depicts
three possible dose—efficacy curves for such agents, specifically a monotonically
increasing dose—efficacy curve, an increasing dose—efficacy curve with a plateau,
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FIGURE 5.1 Dose—efficacy curves for targeted agents and novel therapies.

and a unimodal or parabolic dose—efficacy curve. Consider, for example, a thera-
peutic approach based on immunotherapy where an agent is given to a patient in an
attempt to stimulate the patient’s own immune system to fight the tumor. In such
cases, overstimulation of the immune system could in fact interfere with efficacy or
even prove to be harmful (toxic) for the patient (Linsley, 2005). Ideally, dose-finding
studies for such agents should incorporate both measures of efficacy and toxicity,
and the primary aim should be to identify the biologically optimal dose (BOD)
instead of the MTD.

In the setting of combination therapies, there is a further added complexity
involved with the determination of the MTD (or the BOD). Ideally, an understand-
ing of the underlying biologic rationale for the combination would be available, for
example, are the toxicity profiles of the agents overlapping or additive? Is the efficacy
of the two agents’ additive, complementary, or synergistic? Typically, a set of pre-
determined combination dose levels are explored that are based on the single agent
MTD or preclinical cell lines experiment demonstrating synergy, where the dose of
one agent under investigation is escalated while the dose of the second agent remains
constant until a tolerable combination dose level is achieved. Clearly, not all possible
combination levels can be feasibly tested. In reality, preclinical or clinical data to
define the optimal dose combination exploration is however lacking, and an efficient
dose-seeking algorithm thus highly desirable. Despite the increased testing of such
combination treatments in oncology, few designs for dose escalation of two or more
agents have been proposed (Simon and Korn, 1991; Thall et al., 2003; Conaway et
al., 2004; Wang and Ivanova, 2005; Yin and Yuan, 2009; Hamberg et al., 2010).
A majority of these designs base their dose-finding algorithm on the dose—toxicity
relationships (with a goal to identify the MTD of the combination), again based on
the assumption that higher dose level combinations will provide the maximal thera-
peutic efficacy. Designs for dose-finding studies to establish the BOD of two or more
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agents utilizing both toxicity and efficacy are limited (Huang et al., 2007; Dragalin
et al., 2008), as the dose—toxicity and dose—efficacy surfaces for combination thera-
pies are inherently more complex.

In this chapter, we review model-based designs that assist with the identifica-
tion of the BOD of a single or dual agent combinations in a phase I setting utiliz-
ing both toxicity and efficacy data. An obvious requirement for such BOD-based
designs is the existence of a direct or surrogate measure of efficacy. Some pos-
sible efficacy endpoints include the minimum effective blood concentration level
of the agent, percent target inhibition of a marker, minimum expression level of a
molecular target (targeted biologic response), tumor response, or pharmacokinetic
endpoints in addition to toxicity (Gelmon et al., 1999; Parulekar and Eisenhauer,
2004; Hamberg et al., 2010). The existence of such a surrogate marker of effi-
cacy, particularly one that has been properly validated, is a nontrivial issue. For
the purposes of the designs considered in this chapter, we will assume that such
a marker (of efficacy) exists. Thus, this chapter is organized into the following
sections: Section 5.2 provides a brief overview of the framework of the standard
continual reassessment method (CRM) as well as some of the extensions to the
traditional CRM, Section 5.3 reviews the model-based trivariate CRM (TriCRM)
designs for single and dual agent drug combinations, Section 5.4 discusses a hypo-
thetical example of a dual agent TriCRM design, and Section 5.5 ends with some
concluding remarks.

5.2 CONTINUAL REASSESSMENT METHOD (CRM)

The CRM design introduced the concept of dose—toxicity models to guide the dose-
finding process (O’Quigley et al., 1990; O’Quigley, 2011). The dose—toxicity model
represents the investigator’s a priori belief in the likelihood of dose limiting toxicity
(DLT) according to delivered dose, which thereafter is updated sequentially using
cumulative patient toxicity data. While the choice of the prior distribution is always
a concern in the Bayesian framework, CRM designs have proven to be robust to
model mis-specification (Shen and O’Quigley, 1996) as long as the models them-
selves are selected based upon clinical knowledge. The original version of the CRM
allowed for skipping of dose levels during escalation, which had the consequence
that a large proportion of patients could be exposed to unacceptably toxic doses if
the prespecified model were incorrect. Several modifications to the original CRM
have been proposed to address these safety concerns, such as starting the trial at
the lowest dose level, not allowing for skipping of dose levels during escalation, and
requiring at least three patients at each dose level prior to escalation (Goodman et
al., 1995; Piantadosi et al., 1998; Heyd and Carlin, 1999). The classical and modified
CRMs are all model-based adaptive designs that have demonstrated superior oper-
ating characteristics compared to algorithm-based designs (such as the traditional
3+3 design) in simulation settings: A higher proportion of patients are treated at
levels closer to the optimal dose level, and fewer numbers of patients are required to
complete the trial.
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5.2.1 ExteNsiONS TO THE CRM DEsIGN

Current statistical approaches have extended the standard CRM design discussed
earlier in two directions to allow the modeling of toxicity and efficacy outcomes in
a phase I setting. The first approach maintains the bivariate structure of outcomes
through a joint modeling of toxicity and efficacy, whereas the second approach col-
lapsed the combination of toxicity and efficacy outcomes into an ordinal trinary vari-
able that follows a sequential order: acceptable toxicity (i.e., no DLTs) and no efficacy,
acceptable toxicity (i.e., no DLTs) but with efficacy, or unacceptable toxicity (i.e.,
DLTs) that renders any efficacy irrelevant. Examples of the first approach include the
following: the bivariate CRM that utilizes a marginal logit dose—toxicity curve and
a marginal logit dose—disease progression curve with a flexible bivariate distribution
of toxicity and progression (Braun, 2002), a dose-finding algorithm based on the effi-
cacy—toxicity trade-offs (Thall and Cook, 2004), a dose-finding design using toxicity
and efficacy odds ratios (Yin et al., 2006), and bivariate probit models for toxicity
and efficacy (Bekele and Shen, 2005; Dragalin et al., 2008). In terms of the second
approach of collapsing the combination of toxicity and efficacy outcomes into an
ordinal outcome, simple models with a power function were explored by O’Quigley
et al. (2001) and Wang and Ivanova (2005); more sophisticated models such as the
proportional odds (PO) model (Thall and Russell, 1998) or continuation ratio (CR)
models (Zhang et al., 2006; Mandrekar et al., 2007) have also been explored. Here,
we review the theoretical model framework, the design specifics, and the simulation
results of the CR model-based trivariate CRM (TriCRM) designs for single and dual
agent drug combinations in the next section.

5.3 TRIVARIATE CRM (TriCRM) DESIGNS

5.3.1 THEORETICAL FRAMEWORK

Let y=(y,, y;, ¥,) denote a trinary ordinal variable representing the three possible
outcomes of acceptable toxicity without efficacy, acceptable toxicity with effi-
cacy, and severe toxicity, respectively, with corresponding probabilities denoted by
y(x, 0)={yy(x, 0), y,(x, 0), y,(x, 0)}. The probability of each outcome is a function
of the dose of the agent (x) together with the parameter vector (0), with the following
assumptions:

* Y, (x, 0), the probability of acceptable toxicity without efficacy is a decreas-
ing function of the dose (x).

* y,(x, 0), the probability of severe toxicity is an increasing function of the
dose.

e The probability of acceptable toxicity with efficacy, that is, treatment suc-
cess, ,(x, 0) can be a nonmonotone function of the dose (x).

Extending this framework to the dual agent setting, x=(x,, x,) is now an indicator
of dose levels for each agent, and 6 is the set of parameters that characterize the
true toxicity and efficacy curves for each agent, with “no response” as no efficacy
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and acceptable toxicity, “success” as efficacy and acceptable toxicity, and “toxicity”
as unacceptable toxicity, defined for each agent, respectively. The probability of no
response, Y,(x, 0), is assumed to decrease monotonically with increase in dose level
of each agent, the probability of toxicity, y,(x, 0), is assumed to increase monotoni-
cally with increase in dose level of each agent, and when dose level of one agent is
fixed, the success probability, y,(x, 0), is unimodal (monotone increasing or mono-
tone decreasing or parabolic) in the dose levels of the other agent.

Zhang et al. (2006) proposed the continuation ratio (CR) regression model for a
single agent TriCRM model as given in the following:

log(wl)=u+ot+[31'x 5.1)
Yo

Py
1 — =0+ . 52
Og(W0+W1) Br-x (5.2

where 8= (y, a, ), p,>0, and p,>0 to ensure the monotonic relationships of y,(x, 6)/
W,(x, 0) and y,(x, ©) with dose (x). If n is the number of cohorts treated at the current
time, x is an nx 1 dose vector with element x;, and y is an nx 3 outcome matrix with
y; as the ith row, for i=1, 2, 3, ... n; then given the dose-outcome model and current
data (x; y), the likelihood function is given by

LO1x,y)= Hwo(xi,e)”f Py (x,0)" s (x;, 0) (5.3)

where
x; is the dose administered to the ith cohort
Vi=(Yoi Y13 Y29 1s the trinomial outcome of the ith cohort with size ¢;=(yy;+y,;+¥,)
at dose x;
y; (), /=0, 1, 2, are the probabilities as defined earlier

This likelihood function is updated as data from each successive cohort become
available. If only a binary toxicity outcome measure (toxic versus nontoxic) is avail-
able, then this likelihood function is essentially the same as that for the standard
CRM model based on a two parameter logistic model using only the dose—toxicity
relationship. Mandrekar et al. (2007) extended the single agent CR model to accom-
modate two agents by including two additional slope parameters for the second agent
as given in the following:

0

log(ﬁjl)=u+a+ﬁl-xl+ﬁ3-xz 64
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where ,>0, ,>0, B;>0, and f,>0 to ensure the monotonic relationship for each
agent marginally. The likelihood function is constructed similarly to the single agent
scenario (Equation 5.3), where x € R"*? is the dose matrix with rows x; for each agent,
and y € R is the outcome matrix, where 7 is the number of patient cohorts already
treated in the trial. To facilitate numerical computation within the Bayesian frame-
work, both models utilize independent broad uniform priors for the parameter 6 to
account for potential uncertainties.

5.3.2 DecisioN FuncTioNs AND DOSE-FINDING ALGORITHM

Let m, be the maximum tolerable toxicity probability, which is prespecified prior to
trial initiation. The decision functions 9,(x;0) and §,(x;0) are considered jointly with
the accumulated toxicity and efficacy data for decision making of dose escalation or
de-escalation, as outlined in the following:

9, (x;@) = I[lpz(x;e) < no]

4, (x;e) = max {1])1 (x;e)} (5.6)

x&c(x)

Specifically, the toxicity criterion requires 9,(x;0)=1, that is, the toxicity probabil-
ity at the single agent or combination dose levels is smaller than the pre-specified
limit of m, Given that the toxicity criterion is satisfied, the success criterion

9, (x;e) = 22:.}() {lpl (x;B)} seeks to maximize the probability of success, that is,

among all the possible dose levels or dose level combinations, it selects the dose
level or the combination dose level with the highest estimated success probability.
In the single agent setting, 8,(x;0) can also be specified to maximize the difference
between the success probability and toxicity probability instead of just maximizing
the success probability as given in (3.5) (Zhang et al., 2006). Specifically,

0,(x;0) = (x;0) =AM, (x;0); O=Ah=l1

0,(x*;0) = max d,(x;0) 5.7
xEc(x)

Thus, the success criterion seeks to maximize either the difference between the suc-
cess probability and toxicity probability if A=1, or the success probability if A=0.
The value of A can be varied between 0 and 1 to include toxicity in the efficacy
criterion.
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A step-by-step approach to conducting a trial using the model-based TriCRM
designs for single or dual agent combination is given in the following:

1. Treat a cohort of k patients at a time, starting from the lowest dose level in
the case of a single agent, or to the three lowest dose level combinations for
the dual agent.

2. Skipping of dose levels is not recommended; thus, doses are escalated only
by one level at a time but dose de-escalation is not necessarily restricted.
For a trial with dual agents, the proposed level for the next cohort must be a
neighbor of one of the combination levels already tested, where a neighbor
refers to a change in dose level of at most one agent by at most one level.

3. Ateach interim point, 6 is updated and the decision functions given by (3.6)
are evaluated using the accumulated toxicity and efficacy data.

4. If 61(x;é) =0 for all dose levels (or combinations), and the current dose level
is the lowest dose level (or combination), the trial is terminated and no dose
level is recommended.

5. 1If 61(x;é) =0 for all dose levels, but the current level is not the lowest, then
treat the next cohort of patients at the lowest dose level (or combination).

6. Otherwise, the next dose level at which 62(x;é) is maximized among those
with Sl(x;é) =1 is chosen for the next cohort of patients.

7. The trial is terminated after at least a minimum number of patients (say
n,) have been treated, provided at least a prespecified number of patients
(say m) have been treated at the proposed combination dose level, or until
a maximum number of patients (say n,) are treated, whichever occurs first.
As a default, n, is chosen as 18, m is chosen as 9, and n, is chosen as 30 and
45 for the single and dual agent settings.

Extensive simulation studies were carried out to evaluate the performance of the
TriCRM designs. While the dose—toxicity curves were monotone increasing in
all the scenarios, the dose—efficacy curves were monotone increasing, monotone
decreasing, or unimodal. In the single agent setting, the average sample size ranged
from 16 to 25 patients depending on the location of the BOD, the percentage of
patients treated at the optimal dose level varied from 25% (unimodal dose-efficacy
case) to as high as 75%, and the no-recommendation rate was high when the start-
ing dose is too toxic. Zhang et al. (2006) also showed that the TriCRM design is
more efficient in identifying the optimal dose compared to a design where patients
are randomly assigned to dose levels, which has been proposed as an approach for
dose finding for nontoxic agents. The scenarios for the dual agent TriCRM design
were complicated by the fact that each agent had a different dose—efficacy or a dose—
toxicity curve of its own. In this setting, a dose success region was also defined, in
addition to the optimal dose combination that included all those dose levels with
acceptable toxicity that have a success probability within 15% of the highest suc-
cess probability (Mandrekar et al., 2007). The percentages of patients treated at the
optimal dose level combinations (region) varied from 57% to 71%, with a high non-
recommendation rate for toxic combinations. The average sample size ranged from
21 to 34 for the six scenarios considered in their simulations. For further details on
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the simulation settings, and the results, refer to Zhang et al. (2006), Mandrekar et al.
(2007, 2010).

5.4 ILLUSTRATION OF THE TRICRM DESIGN FOR
A SINGLE AGENT DOSE-FINDING TRIAL

Here, we consider the implementation of a TriCRM design in a mock trial in
the setting of head and neck cancer. Patients with head and neck cancer have a
global cancer predilection throughout the oropharyngeal mucosa. Oral leuko-
plakia is an established precursor lesion to oropharyngeal cancer. Current man-
agement options include watchful waiting, laser ablation, or aggressive surgical
resection. Photodynamic therapy (PDT) coupled with a photosensitizing agent
(Aminolevulinic Acid HCL, ALA) could potentially permit a targeted therapy
approach to high-risk mucosal lesions. Typically, extremely high energies with spot
sizes of 1-2mm are used to coagulate blood vessels in the vocal cord, with no adju-
vant drug. In this mock trial, assume that equivalent or superior clinical outcomes at
much lower laser energy densities could potentially be obtained through the intro-
duction of the photosensitizing agent, ALA. We describe here a dose-finding clini-
cal trial design that attempts to determine the safety and tolerability of the optimal
laser dose (PDT) needed to activate ALA in the oral cavity among subjects with
premalignant oral lesions.

Let the dose levels to be experimented be ALA (60 mg/kg) +4 J/cm?, ALA (60 mg/
kg)+6J/cm?, ALA (60mg/kg)+7J)/cm?, and ALA (60 mg/kg)+8J/cm?, where a
higher dose may not necessarily improve efficacy, but could result in increased tox-
icity. Unacceptable adverse events will be defined as third degree burn in the treated
region as well as any significant side effects (tissue damages) from ALA following
the common toxicity criteria (CTC). Efficacy is measured in terms of response rate
defined as either a complete or partial response. A complete response is defined as
complete regression of treated lesions by clinical imaging, a partial response (PR) is
defined as 50% or greater regression of the treated lesion area in clinical imaging,
and no response (NR) is defined as no clinical change or less than 50% regression
of the treated lesion. The proposed design would then use the continuation ratio
(CR) model incorporating both adverse events and efficacy to estimate the optimal
laser dose needed to activate ALA in the oral cavity. The dose-finding algorithm of
the TriCRM design will use two decision functions: an adverse events criterion that
requires that the unacceptable adverse events probability at each dose level is less
than a prespecified rate (say 30%), and an efficacy criterion that maximizes the suc-
cess probability among the dose levels that meet the adverse events criterion. The
trial would then proceed as follows: (1) assign three patients to the lowest starting
dose level; (2) based on the accumulated data at any point in the trial, update the
parameter estimates of the CR model and evaluate the adverse events criterion for
the dose range to be explored; (3) within the dose ranges that satisfy the adverse
events criterion, identify the dose level that has the maximum estimated success
probability; (4) assign the next cohort of three patients to the dose level that has the
maximum estimated success probability; and (5) repeat the previous steps until at
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least 9 patients are treated at the optimal dose level combination or until a maximum
of 18 patients are treated, whichever occurs first. In the event that the entire dose
range does not satisfy the adverse event criterion, and the current dose level is not
the starting dose level, this design has the flexibility to start the trial all over again by
assigning the next three patients to the starting dose level instead of terminating the
trial based on the premise that additional data might be needed at each dose level for
a more accurate estimation of the true toxicity and efficacy curves. The trial could
be designed to allow (or not allow) skipping of dose levels in the dose escalation pro-
cess. An advantage of this design is that it summarizes patient outcomes in terms of
both adverse events and efficacy. Moreover, the trial would be terminated early if all
dose levels to be explored are determined to have an unacceptable adverse event rate.

5.5 CONCLUDING REMARKS

The failure of promising agents in randomized studies has prompted a reconsid-
eration of the standard dose-finding paradigm, with the recognition that improved
drug development strategies for both single agent and dual agent combinations are
required. While the assumption of a monotonically increasing dose—toxicity curve is
almost always appropriate from a biological standpoint, a monotonically increasing
relationship between dose and efficacy has been challenged by the recent develop-
ment of molecularly targeted therapies, vaccines, and immunotherapy. Model-based
designs are certainly not perfect or recommended for every dose-finding study, but
they provide an attractive alternative (notwithstanding the previously mentioned
challenges) compared to the traditional algorithm-based up and down methods when
one or both of the following is true: (1) Number of dose levels for escalation/de-
escalation is large, that is, six or higher, for example, and (2) agent(s) being tested
is(are) expected to have unknown dose efficacy outcomes. In the first case, the tra-
ditional designs would typically require a larger number of patients to be treated
if indeed the optimal dose level is near the highest dose level. In the second case,
the dose escalation/de-escalation decisions are based not only on safety but also a
measure of efficacy that is quick and reliable to assess. Despite the favorable char-
acteristics of CRM-based designs for dose-finding studies of targeted therapies
from a theoretical standpoint, there exists significant scientific and pragmatic rea-
sons for why these designs are not yet “popular” choices for dose-finding studies
(Rogatko et al., 2007; Zohar and Chevret, 2007; Mandrekar et al., 2010). Some of
the scientific reasons for not relying on model-based designs for early phase studies
include (1) lack of validated biomarkers for efficacy, (2) lack of validated assays,
(3) real-time assessment of the biomarker outcome not possible, (4) dichotomous
efficacy outcomes inaccurate and suboptimal (model-based designs for time to event
or other continuous endpoints are limited/nonexistent), and (5) inability of some of
the designs to accommodate categorical (as opposed to a continuum) dose level com-
binations. Several pragmatic issues have limited the use of these designs in early
phase clinical trials, including (1) lack of familiarity with the design, (2) fear of
the “black-box” decision-making framework in comparison to the straightforward
decision process with the traditional non-model-based designs, (3) perceived loss of
control of the data and relying on the statistical model to decide where to treat the
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next cohort of patients, (4) fear of lack of regulatory acceptance, and (5) finally, and
most importantly, resistance to change and unwilling to be the “first” to try a new
approach. The challenge of determining an optimal dose for biologic and molecu-
larly targeted agents is considerable from both a clinical and statistical standpoint
in early phase trials. The model-based designs we present have been shown to have
considerable promise, at least from a theoretical standpoint, in improving the ability
to identify the BOD.
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6.1 INTRODUCTION

The main goal in phase I trials for traditional cytotoxic agents is to determine the
maximal tolerated dose (MTD). The underlying premise is that both efficacy and
toxicity increase monotonically with increasing dose levels. Only toxicity, not effi-
cacy, is monitored during a traditional phase I trial. The standard 3 + 3 design accrues
three to six patients at a time to a given dose level and then increases the dose level
until dose limiting toxicity (DLT) is observed. If two or more DLTs are observed in a
group of six patients at that dose level, dose escalation ceases and the MTD has been
exceeded. The highest dose where no more than one DLT in six subjects is observed
is the MTD. Storer reviews the performance of this and other traditional phase I trial
designs in the first chapter of this handbook [9].

The premise for phase I trials for cytostatic or targeted agents is generally dif-
ferent. Since the targeted agent is designed to specifically interfere with a molecular
pathway directly related to specific characteristics of the tumor, it is hypothesized to
be less toxic than a traditional cytotoxic agent. Toxicity does not necessarily increase
with increasing dose levels. Efficacy does not necessarily increase monotonically
with increasing dose levels either, but may plateau after it reaches maximal efficacy;
higher dose levels past this point may no longer yield higher efficacy.
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Thus, the goal for dose-finding trials for targeted agents should be to determine
the dose level that provides highest efficacy while assuring the safety of that dose
level. We refer to this dose as the best dose. A variety of continual reassessment mod-
els (CRMs) have been proposed for this purpose. These are summarized in Chapter 5
of this handbook [7]. Hunsberger et al. [4] recently proposed a dose escalation trial
for targeted therapies similar to the traditional 3 + 3 phase I trial, but with dose esca-
lation solely based on biomarker response, assuming that no significant toxicity will
occur. These proposed trial designs address the issue of finding such a dose and have
good statistical properties. None of these trial designs appears to have found wide-
spread acceptance in the clinical trials community yet. Here we propose a phase 1/
IT trial design to assess both toxicity and efficacy to find the best dose as well as a
good dose. In this context the best dose is defined as the dose level that maximizes
efficacy while assuring safety and a good dose is defined as a dose level where effi-
cacy is above a predefined boundary while maintaining safety. Targeted agents are
often difficult and expensive to manufacture in larger quantities and a smaller dose
provides economic benefit. Thus under some circumstances a good dose may even
be preferable to the best dose. Jain et al. [5] recently evaluated several phase I tri-
als for targeted agents and found evidence that patients on lower dose levels do not
necessarily fare worse.

This phase I/II design can easily be implemented and interpreted. It allows for
extended cohorts of patients at dose levels close to the best dose to more precisely
determine toxicity and efficacy of the new agent. In addition, different patient popu-
lations may be enrolled to the phase I and phase II portion. Traditionally the patient
population for assessing toxicity is broader than the patient population for the first
efficacy trials.

6.2 PHASE I/l TRIAL DESIGN FOR TARGETED AGENTS

We recently investigated the operating statistics of this two-step dose-finding trial
for assessing both toxicity and efficacy for a new targeted agent [3]. Both steps are
implemented in the same protocol to insure seamless continuation. For the first step
we use a traditional phase I trial design, such as the 3+3, the accelerated titration,
or the CRM model. This step only assesses toxicity and finds the MTD. This step
insures that the dose levels at and below the MTD are safe in humans. Even if a new
agent is not anticipated to have toxicity and has been shown to be safe in animal
models, it is important to be certain of that fact before exposing a large number of
humans to a new agent [2].

The goal of the second step is to determine the best dose in terms of efficacy and
toxicity as a dose level no larger than the MTD. Great care has to be taken in deter-
mining the best efficacy endpoint for this part of the trial. Defining an early efficacy
endpoint based on tumor biology for these agents is often difficult. In addition, some
of these targeted agents are not necessarily expected to yield sufficient tumor shrink-
age to achieve a clinical response by standard response criteria (e.g., RECIST). One
possibility is to use progression-free survival at a single time point or disease control
rate (clinical response of stable or better).



Phase I/1l Trial Design for Targeted Agents 99

For this second step we propose a phase II modified selection design [6] for two
or three dose levels at and below the MTD to determine efficacy and evaluate a dose
level for both efficacy and toxicity. We assume that a binary endpoint for efficacy
such as the ones discussed previously has been determined. We suggest accruing
approximately 15-20 patients per dose level and assess both toxicity and efficacy for
those patients. Each dose level is an arm in our phase II trial. We first evaluate each
arm independently for both efficacy and toxicity. We perform a simple hypothesis
test to determine efficacy and assess the power of the test statistic by determin-
ing the probability of passing the efficacy boundary independently in each arm. We
also determine how many patients experience a DLT and define a toxicity boundary,
which is traditionally 33%. If the percentage of patients experiencing a DLT at a spe-
cific dose level (arm) is larger than or equal to the toxicity boundary, this dose level
is considered to be too toxic and is not pursued any further. On the other hand, if the
percentage of patients experiencing a DLT in a specific arm is lower than the toxicity
boundary, we consider this arm having acceptable toxicity. We next determine the
probability of picking the arm with the largest efficacy while assuring acceptable
toxicity and a minimal efficacy level as defined earlier using a slightly modified
methodology of selection designs. This expanded cohort of 15-20 patients for two
or three dose levels allows us to get a more precise estimate of toxicity and efficacy
and thus a higher probability of correctly determining the best dose before launching
into a larger trial.

6.3 UNDERLYING MODEL ASSUMPTIONS
AND SIMULATION STUDIES

We assume that toxicity and efficacy are binary measures. In general, toxicity and
efficacy are closely linked. Each dose level has a specific average toxicity and effi-
cacy associated with it. We thus simulate the toxicity and efficacy data using a cor-
related bivariate logistic regression model. The correlation can be measured by a
correlation coefficient or an odds ratio relating the two endpoints. We chose the odds
ratio as a means to measure the correlation as it has better numerical properties and
there exists a readily available R-package (VGAM) [10].

Let the marginal probabilities (for toxicity and efficacy) be logistic and depend
on the parameter . For an observation with covariate vector x the marginal prob-
abilities are then given by

Pr(Y=1)= L(XB)
1+ exp(xp)

Let p; be the joint probability for toxicity i=(0,1) and efficacy j=(0,1). The odds ratio
y is defined by w=p,; Poo/P1o Por- FOr a description of bivariate odds ratio models see
Ref. [8]. The joint probability p,, can be expressed in terms of the marginal prob-
abilities p, and p, as follows [1]:
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where

a=1+(p+p)(y — 1) and b=-4y(y - Dp,p,
p, and p, denote the marginal probabilities for toxicity and efficacy, respectively

For our simulation studies we use six dose levels, which is a commonly used num-
ber of dose levels for early therapeutic studies. We assume that the dose—response
curve is monotonically increasing with increasing dose and remains constant after
a critical dose is reached. The window of the six dose levels examined may include
different parts of that dose—response curve. We distinguish three types of efficacy
scenarios. As discussed earlier, efficacy may be measured in different ways depend-
ing on the underlying mechanism of the agent of interest. Here we refer to all the
efficacy measures loosely as response measures, keeping in mind, however, that the
actual efficacy measure may be different from the traditionally defined response.
Figure 6.1a depicts the three response scenarios as a function of dose level. Response
scenario R1: This scenario assumes a continuous increase in response with increas-
ing dose level within the dose levels considered. In this case the leveling-off could
occur outside the dose ranges considered. Response scenario R2: In scenario 2 we
assume an increase in response for the first four dose levels after which it levels off.
Response scenario R3: Scenario 3 describes the scenario where the response is inde-
pendent of the dose level within the range considered.

Similarly, we assume three types of toxicity scenarios; for the scenario with
monotone increase in toxicity we consider two different slopes, so that there is a total
of 4 toxicity scenarios. More specifically, these scenarios are as follows: Toxicity
scenario T1: Scenario 1 assumes that toxicity increases until a maximum toxicity is
achieved after which it levels off. Toxicity scenario T2 and T3: Scenarios T2 and T3
assume that toxicity increases monotonically with dose level, where the increase is
steeper for T2 than T3. Toxicity scenario T4: Finally, scenario 4 assumes negligible
toxicity. Those scenarios are illustrated in Figure 6.1b.

Based on these four toxicity scenarios and three response scenarios there are
twelve possible combinations of scenarios. The best dose is defined as the one that
maximizes efficacy while maintaining acceptable toxicity and a minimal efficacy,
that is, the rate of DLTs is below the toxicity limit and efficacy passes the efficacy
boundary. In addition, we define a good dose level as a dose level with acceptable
toxicity and efficacy passing the efficacy boundary. For each of the response and
toxicity scenario combinations the best dose levels and good dose levels by efficacy
and toxicity are summarized in Table 6.1.

In our simulation studies we determined the probability of correctly identifying
the MTD in the phase I trial using a traditional “3+ 3 trial design. A CRM or accel-
erated titration design could also be used for this step. We used 1000 simulations.

For the phase I trial 3 different outcomes for each of the toxicity scenarios can be
distinguished: The MTD is correctly determined, the MTD is too large, or the MTD
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FIGURE 6.1 (a) Possible response scenarios as a function of dose level. Plotted are the mar-
ginal probabilities as a function of dose level. (b) Possible toxicity scenarios as a function of
dose level. Plotted are the marginal probabilities as a function of dose level.

is too low. In our simulation studies for the phase II portion we determined the power
of the efficacy test, the probability of the doses being tested to be too toxic, and the
probability of correctly determining the best dose. We randomized 40 patients to
two dose levels, the dose level determined by the phase I part (arm 1) and the dose
level immediately below the MTD (arm 2). The hypothesis test for response used in
this example tests HO: p=0.05 versus HA: p=0.30. The toxicity limit in our simula-
tions is defined to be 33%. In our simulation studies, arm 1 is chosen if the toxicity is
below the toxicity boundary, if the efficacy is above the efficacy boundary, and if the
observed efficacy is larger than the efficacy in arm 2. Arm 2 is chosen if the toxicity
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TABLE 6.1
Overall Probability of Selecting the Best or Good Dose Level
Probability ~ Probability

Probability  Probability  of Picking of Picking
of Picking  of Picking  Best Dose  Good Dose

Best Dose  Good Dose with with
Best Good  with Our with Our Traditional  Traditional

Efficacy Toxicity Dose Dose  Proposed Proposed Ph1/ll Ph /1l
Scenario  Scenario Level Level Design Design Design Design
R1 T1 4 4 0.16 0.16 0.21 0.21
R1 T2 4 4 0.15 0.15 0.18 0.18
R1 T3 4 4 0.29 0.29 0.30 0.30
R1 T4 6 4-6 0.61 0.88 0.84 0.89
R2 T1 4 3,4 0.20 0.55 0.21 0.51
R2 T2 4 3,4 0.20 0.52 0.19 0.46
R2 T3 4 3,4 0.38 0.58 0.31 0.48
R2 T4 4-6 3-6 0.89 0.93 0.89 0.93
R3 T1 1-4 1-4 0.93 0.93 0.86 0.86
R3 T2 1-4 1-4 0.90 0.90 0.80 0.80
R3 T3 1-4 1-4 0.85 0.85 0.78 0.78
R3 T4 1-6 1-6 0.97 0.97 0.97 0.97

Compared are the properties of a traditional phase I design followed by a traditional phase II trial design
and the seamless phase I/I1 trial design proposed in this chapter.

is below the toxicity boundary, if the efficacy is above the efficacy boundary, and
if the observed efficacy is larger than or equal to the efficacy in arm 1. These two
probabilities do not add up to one as neither arm is chosen if the toxicity is too high
or the efficacy is not large enough.

We also compared our results with a combination of the same phase I trial and a
traditional single-arm phase II trial at the dose level determined by the phase I trial.
We used the same total sample size and determine the probability of correctly pick-
ing the best dose level and a good dose level using the previous definitions. We evalu-
ated the overall probability of picking a good and best dose level using our proposed
design as a sum of the probabilities of the different possible ways to select a good or
best dose level (Figure 6.2).

6.4 RESULTS AND DISCUSSION

The first four columns of Table 6.1 summarize the twelve toxicity and efficacy sce-
nario combinations and their respective MTD, best and good dose levels as defined
earlier. For some scenarios there is only one best dose and one good dose, whereas
for others several or even all dose levels can be considered good. In the scenarios
RIT1,RIT2, and R1T3, level 4 is the MTD and the only level that crosses the efficacy
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FIGURE 6.2 Possible ways to select a good dose or the best dose level using our proposed
design for response scenarios R1 and R2. Good dose levels as defined by toxicity and efficacy
are listed below the phase II portion. The best dose levels are circled.

boundary. On the other extreme is scenario R3T4 where all levels are considered safe
and all levels cross the efficacy boundary.

Detailed results of our simulations of the phase I part of the trial can be found
in [3]. We chose a high correlation or odds ratio between efficacy and toxicity for
simulating the efficacy and toxicity data. The log odds ratio we chose for all our
simulation studies is 4.6. The 3 +3 design is very conservative. The probability of
reaching the level above the MTD is in general small. In the scenarios with dose
level 4 being the MTD, the probability of correctly identifying the MTD or the dose
level below is similar and in general somewhere between 20% and 30%. Scenarios
T2 and T3 both assume a monotone increase in toxicity with dose level 4 being the
MTD. The only difference is that scenario T2 has a steeper increase than scenario
T3; dose level 5 for T2 is set at 40%, well above the MTD whereas dose level 5 for
T3 is set at 35%, just slightly above the MTD. As a result, the mass of the probabil-
ity distribution for T3 is moved to the right compared to T2 and the probability of
correctly reaching the MTD (level 4) or the level above the MTD (level 5) is higher
than for T2.

Figure 6.2 illustrates the possible ways to reach a good dose or the best dose for
response scenarios R1 and R2. Again, a good dose is defined as any dose achiev-
ing efficacy above a predefined boundary while maintaining safety, and a best dose
achieves maximum efficacy while maintaining safety. The schema for scenarios
RIT1, RIT2, and RIT3 on the top left side of Figure 6.2 illustrates the two possible
ways to reach dose level 4 (the only level with acceptable toxicity and efficacy). If
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the MTD is correctly identified in phase I, the patients will be randomized between
dose levels 4 and 3 and there is the possibility to end up with the best dose level. If
the phase I trial picks level 5 (the dose level right above the MTD), patients will be
randomized between level 5 and 4 in the phase II portion of the trial and again there
is the possibility to select the best dose level. The more “best” dose levels there are
the more ways there are to correctly identify the best dose. For scenario R3T4 (not
shown) all dose levels are considered “best” levels.

Details of our phase II simulation results for the phase I trial can be found in Ref.
[3]. In the case that the phase I trial correctly identifies the MTD, patients are being
randomized to two dose levels: the MTD (arm 1) and the dose level immediately
below the MTD (arm 2). Similar simulation studies were performed for the case that
the phase I trial identifies the dose level above or below the MTD as the correct dose.
In addition to evaluating the power, the probability of more than 33% of patients
experiencing an MTD in each arm was determined. Finally, we determined the prob-
ability of selecting the better dose level (in our example arm 1) by using our modified
selection design taking into account both efficacy and toxicity.

We also evaluated the influence of the correlation of efficacy and toxicity. As
mentioned earlier, we chose a large odds ratio for simulating our data as in general
efficacy and toxicity are highly correlated. To explore the influence of this correla-
tion we did simulation studies for the case that the phase I trial identifies the MTD
correctly, but unlike Table 6.1, the odds ratio was chosen to be 1 (log odds =0), which
corresponds to no correlation of toxicity and efficacy. The probability of an arm
being too toxic is slightly lower in the case of no correlation, and thus the probability
of picking the best dose by efficacy and toxicity is slightly higher compared to the
same probability calculated using a large correlation.

Table 6.1 compares our results to the traditional sequence of a phase I trial fol-
lowed by a single-arm phase II trial at the dose level determined by the phase I trial
using the same total sample size. We have to keep in mind that due to the discrete-
ness of the binomial distribution, the alpha levels which are determined by the effi-
cacy boundary in the two examples (single arm with 40 patients versus two-arm with
20 patients each) are not identical. It is 0.05 for the traditional single-arm trial and
0.07 for each of the arms in the phase II selection design.

In general, the probability of picking a good or best dose is similar or larger in our
proposed design than in the traditional design. The traditional design fares better if
the true efficacy is close to the alternative hypothesis for the MTD (scenario R1). In
that case doubling the sample size in the phase II portion yields a considerably higher
power and thus higher probability of the phase II portion having a positive outcome.
If the underlying toxicity is not uniformly low relative to the maximum toxicity
cutoff (i.e., excluding T4 in our examples), the difference in probability of picking a
good or best dose is at most 5% higher than in our proposed design. The only occa-
sion where the traditional design fares considerably better is in determining the best
dose for the scenario where the true efficacy is close to the alternative hypothesis
for the MTD (R1) and toxicity is negligible (T4). In all other response scenarios our
proposed design performs better than the traditional design. This is particularly true
for finding a good dose in the efficacy scenario R2 and the toxicity scenarios T1-T3
where toxicity is not negligible.
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The 3+3 phase I trial design is designed to be very conservative. For the toxic-
ity scenarios T1 and T2, the probability of determining the dose level above the
MTD as the correct dose level is 8% or lower. Thus, it is very unlikely for efficacy
scenarios R1 and R2 to eventually arrive at the best dose level by reaching the dose
level above the MTD first. On the other hand, the probability of reaching the dose
level right below the MTD as the correct dose level in a phase I trial is often as high
as that of reaching the MTD. A possible consideration that would greatly increase
the probability of reaching the best dose level with our seamless phase I/1I trial
design would be to randomize patients to three dose levels, the dose level determined
to be the MTD by the phase I trial and the dose levels right below and right above
that dose. This would be a possibility if there was strong evidence in animal studies
and the understanding of the pathways of activity that this new agent was not toxic.
This would obviously require continuous toxicity monitoring in the phase II por-
tion and appropriate toxicity stopping rules for the higher dose levels. Three dose
levels would also allow simple logistic regression modeling under the assumption
of smooth dose and toxicity profiles to reduce variance of estimates of response or
toxicity at a given toxicity level.

In summary, this seamless phase I/1I trial design performs in most cases better
than a traditional design using the same overall sample size. We chose a 3+3 trial
design for the simulation studies of the phase I portion of the trial; other phase I trial
designs such as a CRM or accelerated titration could have been used instead. A pos-
sibility would be to slightly increase the sample size in the phase II portion of the
proposed design and thus assuring the highest probability of finding the most effica-
cious and least toxic dose level. This design allows assessing a few dose levels more
closely for both efficacy and toxicity and greater certainty of having correctly deter-
mined the best dose level before launching into a large efficacy trial. It should thus be
considered even in the scenarios where a slightly larger sample size may be required.
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7.1 DESIGN

Standard phase II studies are used to screen new regimens for activity and to decide
which ones should be tested further. To screen regimens efficiently, the decisions
generally have been based on single-arm studies using short-term endpoints, typi-
cally tumor response in cancer studies, in limited numbers of patients. The problem
is formulated as a test of the null hypothesis H,: p=p, versus the alternative hypoth-
esis H,: p=p,, where p is the probability of response, p, is the probability that if
true would mean that the regimen was not worth studying further, and p, is the
probability that if true would mean it would be important to identify the regimen as
active and to continue studying it. Typically, p, is a value at or somewhat below the
historical probability of response to standard treatment for the same stage of disease,
and p, is typically somewhat above.

For ethical reasons, studies of new agents usually are designed with two or
more stages of accrual allowing early stopping due to inactivity of the agent.
A variety of approaches to early stopping have been proposed. Although several
of these include options for more than two stages, only the two-stage versions are
discussed in this chapter. In typical clinical settings, it is difficult to manage more
than two stages. An early approach due to Gehan (1961) suggested stopping if O/N
responses were observed, where the probability of O/N was less than 0.05 under
a specific alternative (for p,=0.2, N=14). Otherwise, accrual was to be contin-
ued until the sample size was large enough for estimation at a specified level of
precision.

109
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Fleming (1982) proposed stopping when results are inconsistent either with H,, or
H,,:p=p’, where H, is tested at level a and p’ is the alternative for which the procedure
has power 1 —a. The bounds for stopping after the first stage of a two-stage design are
the nearest integer to N, p’—Z, _ {Np’ (1-p’)}”* for concluding early that the regimen
should not be tested further, and the nearest integer to N, p,+Z, _ {Np, 1 —p)}'>+1
for concluding early that the regimen is promising, where N, is the first stage sample
size and N is the total after the second stage. At the second stage, H,, is accepted or
rejected according to the normal approximation for a single-stage design. Since then,
other authors, rather than proposing tests, have proposed choosing stopping boundar-
ies to minimize the expected number of patients required, subject to level and power
specifications. Chang et al. (1987) proposed minimizing the average expected sample
size under the null and alternative hypotheses. Simon (1989), recognizing the ethical
imperative of stopping when the agent is inactive, recommended stopping early only
for unpromising results and minimizing the expected sample size under the null or,
alternatively, minimizing the maximum sample size. A problem with these designs is
that sample size has to be accrued exactly for the optimality properties to hold, so in
practice they cannot be carried out faithfully in many settings. Particularly, in multi-
institution settings, studies cannot be closed after a specified number of patients have
been accrued. It takes time to send out and process a closure notice, and, during this
time, more patients will have been approached to enter the trial. Patients who have
been asked and have agreed to participate in a trial should be allowed to do so, and
this means that there is a period of time during which institutions can continue regis-
tering patients even though the study is closing. Furthermore, some patients may be
found to be ineligible after the study is closed. It is rare to end up with precisely the
number of patients planned, making application of fixed designs problematic.

To address this problem, Green and Dahlberg (1992) proposed designs allowing
for variable attained sample sizes. The approach is to accrue patients in two stages
to have level approximately 0.05 and power approximately 0.9 and to stop early if
the agent appears unpromising. Specifically, the regimen is concluded unpromising,
and the trial is stopped early if the alternative H,: p=p, is rejected in favor of p<p,
at the 0.02 level after the first stage of accrual. The agent is concluded promising
if Hy: p=p, is rejected in favor of p>p, at the 0.055 level after the second stage of
accrual. The level 0.02 was chosen to balance the concern of treating the fewest pos-
sible patients with an inactive agent against the concern of rejecting an active agent
due to treating a chance series of poor risk patients. Level 0.05 and power 0.9 are
reasonable for solid tumors due to the modest percent of agents found to be active
in this setting (Simon, 1987); less conservative values might be appropriate in more
responsive diseases.

The design has the property that stopping at the first stage occurs when the esti-
mate of the response probability is less than approximately p,, the true value that
would mean the agent would not be of interest. At the second stage, the agent is con-
cluded to warrant further study if the estimate of the response probability is greater
than approximately (p,+p,)/2, which typically would be equal to or somewhat
above the historical probability expected from other agents and a value at which
one might be expected to be indifferent to the outcome of the trial. However, there
are no optimality properties. Chen and Ng (1998) proposed a different approach
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to flexible design by optimizing with respect to expected sample size under p,
across possible attained sample sizes. They assumed a uniform distribution over
sets of eight consecutive N;s; presumably, if information is available on the actual
distribution in a particular setting, then the approach could be used for a better
optimization. To address the problem of temporary closure of studies, Herndon
(1998) proposed an alternative approach that allows patient accrual to continue
while results of the first stage are reviewed. Temporary closures are disruptive, so
this approach might be reasonable for cases where accrual is relatively slow with
respect to submission of information. If too rapid, the ethical aim of stopping early
due to inactivity is lost.

Table 7.1 illustrates several of the design approaches mentioned earlier for level
0.05 and power 0.9 tests including Fleming designs, Simon minimax designs, Green
and Dahlberg designs, and Chen and Ng optimal design sets. Powers and levels are
reasonable for all approaches. Chen and Ng designs have the correct level on average,
although individual realizations have levels up to 0.075 among the tabled designs.
Of the four approaches, Green and Dahlberg designs are the most conservative with
respect to early stopping for level 0.05 and power 0.9, whereas Chen and Ng designs
are the least.

In another approach to phase II design, Storer (1992) suggested a procedure simi-
lar to two-sided testing instead of the standard one-sided test. In this approach, two
hypothesis tests, one for H, and one for H, are performed. The phase II is considered
negative (H,: p=p, is rejected) if the number of responses is sufficiently low, posi-
tive (H,: p=p, is rejected) if sufficiently high, and equivocal if intermediate (neither
hypothesis rejected). For a value p,, between p, and p,, upper and lower rejection
bounds are chosen such that the probability of concluding the trial is positive is less
than y when p=p,,, and the probability of concluding the trial is negative is also less
than y when p=p . The sample size and p,, are chosen to have adequate power to
reject H, under p,, or H, under p,. When p,=0.1 and p,=0.3, an example of a Storer
design is to test p,,=0.193 with y=0.33 and power 0.8 under p, and p,. For a two-
stage design, N,, N, r(;, ry;, 'p» and 1y, are 18, 29, 1, 6, 4, and 7, respectively, where
N, is the sample size for the first stage, N is the total sample size, and r;; and ry; are
upper and lower rejection bounds for stage i, i=1, 2. If the final result is equivocal
(5 or 6 responses in 29 for this example), the conclusion is that other information is
necessary to make the decision. Hong and Wang (2007) discuss a three conclusion
approach for small randomized phase IIs.

Other proposals for single-arm phase II studies include designs with multino-
mial outcomes. Zee et al. (1999) and Chang et al. (2007) consider three possible
outcomes—response, stability, and early progression—with a goal of recommend-
ing further testing if the number of responses is sufficiently high and number of
early progressions is sufficiently low. Following Chang et al., the null hypothesis
is Hy: pr<pro OF pr=pry Where R refers to response and failure F refers to early
progression, and the study is designed to have power for the alternative pg =pg,+Ag
and pp=pr,— Ar. The rejection region for a single-stage design of fixed sample size
is of the form R>r and F<f, where R and F are the number of responses and early
progressions, respectively. The sample size will be larger than that required for indi-
vidual binomial tests of response or failure since both the response and failure nulls
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TABLE 7.1
Examples of Designs
Power
Level (Average
(Average and
and Range  Range for
H, versus H, N, a, b, N a, b, for Chen) Chen)
Fleming  0.05 versus 0.2 20 0 4 40 4 5 0.052 0.92
0.1 versus 0.3 20 2 6 35 6 7 0.053 0.92
0.2 versus 0.4 25 5 10 45 13 14 0.055 0.91
0.3 versus 0.5 30 9 16 55 22 23 0.042 0.91
Simon 0.05 versus 0.2 29 1 — 38 4 5  0.039 0.90
0.1 versus 0.3 22 2 — 33 6 7 0.041 0.90
0.2 versus 0.4 24 5 — 45 13 14 0.048 0.90
0.3 versus 0.5 24 17 — 53 21 22 0.047 0.90
Green 0.05 versus 0.2 20 0 — 40 4 5 0.047 0.92
0.1 versus 0.3 20 1 — 35 7 8  0.020 0.87
0.2 versus 0.4 25 4 — 45 13 14 0.052 0.91
0.3 versus 0.5 30 8 — 55 22 23 0.041 0.91
Chen 0.05 versus 0.2 1724 1 — 4146 4 5 0.046 0.90
47-48 5 6  0.022-0.069  0.845-0.946
0.1 versus 0.3 12-14 1 —  36-39 6 7 0.050 0.90
15-19 2 40-43 7 8 0.029-0.075  0.848-0.938
0.2 versus 0.4 1820 4 — 48 13 14 0.050 0.90
21-24 5 49-51 14 15 0.034-0.073  0.868-0.937
25 6 52-55 15 16
0.3 versus 0.5 19-20 6 — 55 21 22 0.050 0.90
21-23 7 56-58 22 23 0.035-0.064  0.872-0.929
24-26 8 59-60 23 24

61-62 24 25

N, is the sample size for the first stage of accrual, N is the total sample size after the second stage of
accrual, g; is the bound for accepting H, at stage i, and b, is the bound for rejecting H, at stage i for
i=1, 2. Designs are listed for Fleming (1982), Simon (1989), Green and Dahlberg (1992); the optimal
design set is listed for Chen and Ng (1998).

must be rejected. For example, if A is 0.2 for each of response and early progression,
Dro 18 0.3, ppo is 0.4, level is 0.05, and power is 0.8, then a sample size of 49 patients
is required. For a positive trial, at least 21 responses and at most 13 early progres-
sions must be observed. For a trial with only response as the endpoint, 39 patients
would be required. Optimal two-stage designs are also described in the Chang et al.
article; for the same example, 48 patients are accrued in two stages of 24, and the
trial is stopped early if R>14 and F<4 (H, rejected) or if either R<8 or F'>29 (H,
accepted). However, it is noted that some of these designs optimized for minimum
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sample size may not be ideal for other reasons (e.g., early stopping rule insufficiently
conservative) so some adjustment might be in order.

Panageas et al. (2002) address a similar design, where both complete response
and partial response are of interest. For this setting, the hypotheses of interest are
Hy: perSpocr and ppr<pepr Versus Hy: peg>Ppocr OF Per>Popr- As for Chang et al.
(2007) designs, the outcome is multinomial (CR, PR, and No Response); but, in this
case, the number of CRs and PRs are the statistics of interest rather than CRs and
failures (no response). Lin et al. (2008) consider a similar trinomial outcome consist-
ing of response, prolonged stable, and failure. Here, the hypotheses of interest are H,:
PrEPor and pe<pc versus Hy: pr>por OF pe>poc, Where C is clinical benefit response
(objective response or prolonged stable; note p,z must be<p,.). In this case, the sta-
tistics of interest are R and R+S (R is the number of responses and S is the number of
prolonged stable disease). This arises in settings where it is thought a new agent might
provide benefit through long term disease control not fully reflected by response.

Window designs are another option of recent interest. These involve treatment
of newly diagnosed patients with a new regimen for a short period prior to start of
standard therapy. This allows testing in patients not compromised by prior treatment
so may improve the chance of identifying active regimens. On the other hand, delay
of standard treatment may put patients at risk so settings in which such trials are
used should be considered carefully. Another potential concern with window designs
is that the short-term endpoint chosen (4—12 weeks) may not be sufficiently predic-
tive of the longer term outcomes of primary interest. Trinomial outcomes (response,
stable, and early failure) are common for these designs (Chang et al., 2007).

Stratified designs addressing the issue of heterogeneity in phase II populations have
also gained recent interest. If subpopulations of patients have different underlying
response probabilities, the usual approach of specifying a single value for the null may
not be applicable to the population accrued. If the subpopulations are well understood,
then designs that depend on the mix of patient types accrued may be advantageous.
London and Chang (2005) propose the following single-stage statistic conditional on
the number of patients accrued in each stratum. Here, p,, is the null probability of
response for stratum i and N, is the sample size accrued to stratum 7, i=1—k:

R- Ek Nipio
T = i=1
k
\/E i=1NiPi0 (1—Pio)

k
The rejection region will be equivalent to R = R; > 1y, where r is such that

P(R>ryN, p,,, i=1...k) is approximately equal to a. IS.':lmple size calculations require
estimates of the relative accrual rates of the strata. If the estimates are off, then
power might be different from the calculation. For instance, if there are three strata
with pys of 0.4, 0.2, and 0.1, As for the alternative are 0.2 for each stratum, level and
power are specified as 0.05 and 0.8, and the expected proportion of patients from

the three strata are 50%, 30%, and 20%, then 36 patients are sufficient. If the final
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sample sizes are 18, 10, and 8, then 14 responses are required to reject the null, and
conditional level and power are on target at 0.04 and 0.82; if 24, 8 and 4 are accrued,
then 16 responses are required and power drops to 0.78; while if 12 are accrued in
each, then 12 responses are required and power is 0.86. Two-stage designs in this
setting are discussed in the article and in more detail in Sposto and Gaynon (2009).
A caveat with this approach is that conclusions cannot be drawn for each subpopula-
tion. A different approach should be used if an answer in each group is of primary
interest. See also Chapters 11, 28, and 32.

7.2 ANALYSIS OF STANDARD PHASE Il DESIGNS

As noted in Storer (1992), the hypothesis testing framework typically used in phase
II studies is useful for developing designs and determining sample size. The result-
ing decision rules are not always meaningful, however, except as tied to hypothetical
follow-up trials that in practice may or may not be done. Thus, it is important to
present confidence intervals for phase II results that can be interpreted appropriately
regardless of the nominal decision made at the end of the trial as to whether further
study of the regimen is warranted. The main analysis issue is estimation after a mul-
tistage trial, since the usual estimation procedures assuming a single-stage design are
biased. Various approaches to generating confidence intervals have been proposed.
These involve ordering the outcome space and inverting tail probabilities or test
acceptance regions, as in estimation following single-stage designs; however, with
multistage designs, the outcome space does not lend itself to any simple ordering.
Jennison and Turnbull (1983) order the outcome space by which boundary is
reached, by the stage stopped at, and by the number of successes. Stopping at stage
i is considered more extreme than stopping at stage i+ 1 regardless of the number of
successes. A value p is not in the 1 —2a confidence interval if the probability under p
of the observed result or one more extreme according to this ordering is less than o in
either direction. Chang and O’Brien (1986) order the sample space instead based on
the likelihood principle. For each p, the sample space for a two-stage design is ordered
according to L(x, N*) = [(x/N*)*(1- p) " 1/[p*{(N * -x)/ N*}""~*], where N* is
N, if the number of responses x can only be observed at the first stage and N if at
the second. A value p is in the confidence interval if one half of the probability of
the observed outcome plus the probability of a more extreme outcome according to
this ordering is a or less. The confidence set is not always strictly an interval, but the
authors state that the effect of discontinuous points is negligible. Chang and O’Brien
intervals are shorter than those of Jennison and Turnbull, although this in part would
be because Jennison and Turnbull did not adjust for discreteness by assigning only
one half of the probability of the observed value to the tail as Chang and O’Brien did.
Duffy and Santner (1987) recommend ordering the sample space by success percent
and also develop intervals of shorter length than Jennison and Turnbull intervals.
Koyama and Chen (2008) describe methods for testing, estimation, and confidence
intervals for two-stage Simon (1989) designs assuming the first stage sample size is
fixed but allowing for the second stage to be variable. The method involves speci-
fying conditional testing levels given results at the first stage. If the second stage
is fixed, the confidence interval is based on ordering the sample space by number
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of successes, while for a sample size not equal to planned number, ordering of the
sample space is defined to be consistent with the testing procedure.

Although they produce shorter intervals, Chang and O’Brien and Duffy and
Santner approaches have the major disadvantage of requiring knowledge of the final
sample size in order to calculate an interval for a study stopped at the first stage; as
noted earlier, this typically will be random. The Jennison and Turnbull approach can
be used, because it only requires knowledge up to the stopping time. The Koyama
and Chen approach has the disadvantage of not using all of the information from the
first stage if this stage over-accrues, but advantages in controlling conditional level
and in allowing for variable second-stage accrual.

However, it is not entirely clear how important it is to adjust confidence inter-
vals for the multistage nature of the design. From the point of view of appropriately
reflecting the activity of the agent tested, the usual interval assuming a single-stage
design may be sufficient. In this setting, the length of the confidence interval is not
of primary importance because sample sizes are small and all intervals are long.
Similar to Storer’s idea, it is assumed that if the confidence interval excludes p,, the
regimen is considered active, and if it excludes p,, the regimen is considered insuf-
ficiently active. If it excludes neither, results are equivocal. This seems reasonable
whether or not continued testing is recommended for the better equivocal results.

For Green and Dahlberg designs, the differences between Jennison and Turnbull
and unadjusted tail probabilities are O if the trial stops at the first stage, and are

a N-N;
-Z bin(i,Nl,P)E bin(j,N = N, P)

for the upper tail if stopped at the second stage

and
a N-N;
+Z bin(i, N, P) E bin(j,N - N}, P)
x—1+1

for the lower tail if stopped at the second stage

where a, is the stopping bound for accepting H,, at the first stage. Both the upper and
lower confidence bounds are shifted to the right for Jennison and Turnbull intervals.
These therefore will more often appropriately exclude p, when p, is true and inap-
propriately include p, when p, is true compared to the unadjusted interval. However,
the tail differences are generally small resulting in small differences in the intervals.
Based on the normal approximation, the absolute value of the upper tail difference is
less than approximately 0.003 when the lower bound of the unadjusted interval is p,,
whereas the lower tail difference is constrained to be <0.02 for p>p, due to the early
stopping rule. Generally, the shift in a Jennison and Turnbull interval is noticeable
only for small x at the second stage. As Rosner and Tsiatis (1998) note, such results,
indicating activity in the first stage and no activity in the second, are unlikely, pos-
sibly suggesting the independent identically distributed assumption was incorrect.



116 Handbook of Statistics in Clinical Oncology

For example, consider a common design for testing H,: p=0.1 versus H,: p=0.3:
stop in favor of H, at the first stage if 0 or 1 responses are observed in 20 patients
and otherwise continue to a total of 35. Of the 36 possible trial outcomes if planned
sample sizes are achieved, the largest discrepancy in the 95% confidence intervals
occurs if two responses are observed in the first stage and none in the second. For
this outcome, the Jennison and Turnbull 95% confidence interval is from 0.02 to
0.25, while the unadjusted interval is from 0.01 to 0.19. Although not identical, both
intervals lead to the same conclusions: the alternative is ruled out. For the Fleming
and Green and Dahlberg designs listed in Table 7.1, Table 7.2 lists the probabilities
that the 95% confidence intervals lie above p,, (evidence the regimen is active), below
pa (evidence the agent has insufficient activity to pursue), or cover both p, and p,
(inconclusive). In no case are p, and p, both excluded. Probabilities are calculated
for p=p, and p=p,, both for unadjusted and for Jennison and Turnbull adjusted
intervals. For the Green and Dahlberg designs considered, probabilities for the unad-
justed and for the Jennison and Turnbull adjusted intervals are the same in most
cases. The only discrepancy occurs for the 0.2 versus 0.4 design when the final out-
come is 11/45 responses. In this case, the unadjusted interval is from 0.129 to 0.395,
while the Jennison and Turnbull interval is from 0.131 to 0.402. There are more
differences between adjusted and unadjusted probabilities for Fleming designs, the
largest for ruling out p, in the 0.2 versus 0.4 and 0.1 versus 0.3 designs. In these

TABLE 7.2
Probabilities under p, and p, for Unadjusted and Jennison-Turnbull (J-T)
Adjusted 95% Confidence Intervals

Probability 95%  Probability 95%  Probability 95%
Cl is above p, Cl is below p, ClI Includes p,

When p = When p = and p, When p =
Po Pa Po Pa Po Pa
0.05 versus 0.2 Green J-T 0.014 0.836 0.704 0.017 0.282 0.147

Unadjusted 0.014 0.836 0.704 0.017 0.282 0.147
Fleming J-T 0.024 0.854 0.704 0.017 0.272 0.129
Unadjusted 0.024 0.854 0.704 0.017 0.272 0.129
0.1 versus 0.3 Green J-T 0.020 0.866 0.747 0.014 0.233 0.120
Unadjusted 0.020 0.866 0.747 0.014 0.233 0.120
Fleming J-T 0.025 0.866 0.39 0.008 0.583 0.126
Unadjusted 0.025 0.866 0.515 0.011 0.460 0.123
0.2 versus 0.4 Green J-T 0.025 0.856 0.742 0.016 0.233 0.128
Unadjusted 0.025 0.856 0.833 0.027 0.142 0.117
Fleming J-T 0.023 0.802 0.421 0.009 0.556 0.189
Unadjusted 0.034 0.862 0.654 0.022 0.312 0.116
0.3 versus 0.5 Green J-T 0.022 0.859 0.822 0.020 0.156 0.121
Unadjusted 0.022 0.859 0.822 0.020 0.156 0.121
Fleming J-T 0.025 0.860 0.778 0.025 0.197 0.115
Unadjusted 0.025 0.860 0.837 0.030 0.138 0.110
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designs, no second-stage Jennison and Turnbull interval excludes the alternative,
making this probability unacceptably low under p,,.

The examples presented suggest that adjusted confidence intervals do not neces-
sarily result in more sensible intervals in phase II designs and, in some cases, are
worse than not adjusting.

7.3 OTHER PHASE Il DESIGNS

7.3.1  MurtiARM PHASE 1l DESIGNS

Occasionally, the aim of a phase II study is not to decide whether a particular regi-
men should be studied further but to decide which of several new regimens should
be taken to the next phase of testing. In these cases, selection designs are used,
often formulated as follows: take on to further testing the treatment arm observed
to be best by any amount, where the number of patients per arm is chosen to be
large enough such that if one treatment is superior by A and the rest are equivalent,
the probability of choosing the superior treatment is p. Simon et al. (1985) pub-
lished sample sizes for selection designs with response endpoints, and Steinberg and
Venzon (2002) proposed an approach to early selection in this setting. After the first
stage of accrual for a two-arm trial, one of the treatments is chosen for further study
if the number of responses is higher by at least a specified amount dg, where dj, is
chosen such that the probability of choosing an arm inferior by A is small. The pro-
cedure can be extended to three or more arms.

Liu et al. (1993) provide sample sizes for selection designs with survival end-
points. For survival, the approach is to choose the arm with the smallest estimated
B in a Cox model. Sample size is chosen such that if one treatment is superior with
f=In (1+A) and the others have the same survival, then the superior treatment will
be chosen with probability p.

Theoretically, selection designs are reasonable, but, in reality, the designs are
not strictly followed. If response is poor in all arms, the conclusion should be to
pursue none of the regimens, which is not an option for these designs. If a striking
difference is observed, then the temptation is to bypass the confirmatory phase
III trial. In a follow-up to the survival selection paper, Liu et al. (1999) noted that
the probability of an observed f better than In (1.7), which cancer investigators
consider striking, is not negligible. With two to four arms, the probabilities are
0.07-0.08 when, in fact, there are no differences in the treatment arms. See also
Chapter 10, which includes a discussion of selection designs with a minimum effi-
cacy bounds.

With treatment advancements and more segmentation of patient populations, his-
torical control estimates may be unreliable and preliminary comparative informa-
tion may be necessary. Thus, randomized phase II trials with control arms have
become substantially more common over the last several years. These are sometimes
described as “non-comparative” but this is disingenuous; an informal comparison is
always done and acted upon, with no way of judging the suitability of the conclusion.
It is best to understand the properties of the design, so that results are less likely to
be overinterpreted.
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Although small randomized phase IIs with high level and low power have been
suggested (e.g., Rubinstein et al., 2005), it should be kept in mind that a small ran-
domized controlled phase II does not necessarily provide better conclusions than a
single arm trial if the null is well characterized. Consider a trial of a new regimen for
which the control probability is estimated to be 0.4. A single arm trial requires about
40 patients to test H: p=0.4 versus the alternative hypothesis H,: p=0.65 with level
0.05 and power 0.9. A randomized trial with level 0.2 and power 0.8 for a difference
of 0.25 requires about 60. If the null of 0.4 is correct, the single-arm trial will have
a substantially lower chance of false-positive and false-negative results than the ran-
domized trial despite requiring fewer patients. If the null was incorrectly specified
and should have been in the range of 0.36 to 0.47, the single arm trial still will have
a lower chance of false-positive and false-negative errors than the randomized trial.
Outside of this range, the single-arm trial will be better with respect to one type of
error and worse with respect to the other. If a randomized phase II is judged neces-
sary, then to have the same level and power as a single arm study, a standard two-arm
randomized trial will need to be about four times the size of the single-arm trial. See
also Chapter 9.

Randomized discontinuation designs are a variation on a standard randomized
controlled phase II. For discontinuation designs, patients are treated with standard of
care plus a new agent and after a specified time on treatment patients who have not
progressed are randomized to continue with the new agent or to receive standard of
care only. If randomized patients who do not continue with the new agent do worse
than those who do continue, then the new agent is concluded active. Although this
approach has been used successfully, the number of patients required to start on
treatment in order to have a reasonable number of randomized patients on trial is
often prohibitively large. In addition, Capra (2004) notes that for realistic situations,
power is better if all patients are randomized. He also notes it may be of concern that
half of patients doing well on treatment will be required to stop.

7.3.2  PHASE Il DesiGNs witTH MuLTIPLE ENDPOINTS

The selected primary endpoint of a phase II trial is just one consideration in the deci-
sion to pursue a new regimen. If response is primary, secondary endpoints such as
survival and toxicity must also be considered. For instance, a trial with a sufficient
number of responses to be considered active may still not be of interest if too many
patients experience life-threatening toxicity or if they all die quickly. On the other
hand, a trial with an insufficient number of responses but a good toxicity profile and
promising survival might still be considered for future trials.

Designs have been proposed to incorporate multiple endpoints explicitly into
phase II studies. Bryant and Day (1995) proposed an extension of Simon’s approach,
identifying designs that minimize the expected accrual when the regimen is unac-
ceptable either with respect to response or toxicity. Their designs are terminated
at the first stage if either the number of responses is Cy,; or less, or the number of
patients without toxicity is Cp, or less, or both. The regimen is concluded useful if
the number of patients with responses, and the number without toxicity are greater
than Cy, and Cr,, respectively, at the second stage. N,, N, Cy,, Cr,, Cg,, and Cy, are
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chosen such that the probability of recommending the regimen when the probability
of no toxicity is acceptable (p;>py,) but response is unacceptable (pr<pg,) is less
than or equal to o, the probability of recommending the regimen when response is
acceptable (pgr=py;) but toxicity is unacceptable (pr<pr,) is less than or equal to o,
and the probability of recommending the regimen when both are acceptable is 1 -
or better. The constraints are applied either uniformly over all possible correlations
between toxicity and response or assuming independence of toxicity and response.
Minimization is done subject to the constraints. For many practical situations, min-
imization assuming independence produces designs that perform reasonably well
when the assumption is incorrect.

Conaway and Petroni (1995) proposed similar designs assuming a particular rela-
tionship between toxicity and response, an optimality criterion, and a fixed total
sample size are all specified. Design constraints proposed include limiting the prob-
ability of recommending the regimen to o or less when both response and toxicity
are unacceptable and to y or less anywhere else in the null region (response or tox-
icity unacceptable but not both). The following year, Conaway and Petroni (1996)
proposed boundaries allowing for tradeoffs between toxicity and response. Instead
of dividing the parameter space as in Figure 7.1a, it is divided according to investiga-
tor specifications, as in Figure 7.1b, allowing for fewer patients with no toxicity when
the response probability is higher and the reverse.

Their proposed test accepts H, when a statistic 7(x) is less than ¢, at the first stage
or is less than ¢, at the second, subject to maximum level o over the null region and
power at least 1 —f when pp=pyg, and pr=p, for an assumed value for the associa-

tion between response and toxicity. The statistic 7(x) i§ P; ln(R; /ﬁ,-j) , where ij
indexes the cells of the 2x2 response-toxicity table, P;s are the usual probability
estimates, and R; s are the values achieving inf ® P; In(P; /13,;,»).

T(x) can be interpreted in some sense as a distance from the result to H,,. Interim
stopping bounds are chosen to satisfy optimality criteria. The authors’ preference is
minimization of the expected sample size under the null. See also Chapter 8.

Thall and Cheng (2001) proposed another approach to multiendpoint design.
Parameters of interest are A=(Ag, A;), where Ay =g(pg,)—g(pgo) is the difference
between probability of response on experimental treatment (pg,) and probability
of historical response (pg,), and Ar=g(pr)—g(pr,) is the difference between the

Pr Hy Hy
Pr

() Py ) Pr

FIGURE 7.1 Division of parameter space for two approaches to bivariate phase II design.
(a) An acceptable probability of response and an acceptable probability of no toxicity are
each specified. (b) Acceptable probabilities are not fixed at one value for each but instead
allow for trade-off between toxicity and response. py is the probability of response and p is
the probability of acceptable toxicity.
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probability of acceptable toxicity on experimental treatment (p-,) and the probability
of acceptable toxicity historically (py,), after arcsine square square root transfor-
mation. Target parameters (€, &) are identified and the alternative region is the
set of all As at least as desirable as the target, that is, {A: Ag>E&; and A =&}, If
multiple targets are identified, the alternative €2, is the convex hull of these regions.
Trial outcome is A =(g(pry)—&(Pro)> &(Pr1)—&(Pro))- The rejection region R(x) is
{(y=x, z=0)l(y, 2) € Q,}, where the sample size n and a number x are chosen such
that Pr{A € R(x)IA=(0, 0)} <a and Pr{A € R(x)IA=(E,E)} 21— for each target.
The test is based on approximate bivariate normality of Jan (A—A), Interim stop-
ping boundaries are based on optimality criteria.

There are a number of practical problems with these designs. As for other designs
relying on optimality criteria, they generally cannot be done faithfully in realistic
settings. Even when they can be carried out, defining toxicity as a single yes—no
variable is problematic, because typically several toxicities of various grades are of
interest. Perhaps the most important issue is that of the response-toxicity trade-off.
Any function specified is subjective and cannot be assumed to reflect the preferences
of either investigators or patients in general.

7.3.3 BAYESIAN PHASE Il DEsSIGNS

Bayesian approaches provide another formulation of phase II designs. As described
in Estey and Thall (2003), prior probability distributions are assigned to my, the true
historical probability of response, and to mg, the true probability of response of the
regimen under study. The prior for ny; is informative, whereas the prior for n; gener-
ally is not. After each specified interim analysis time the posterior distribution of
m:, Which also serves as the prior for the next stage of accrual, is calculated given
the data. The distribution of &ty is also updated if there is a randomized control arm,
which the authors recommend. Accrual is stopped if the posterior probability that
is greater than my; is small. The maximum sample size is chosen such that the final
posterior distribution for &y if accrual completes is sufficiently precise, and the regi-
men under study is considered worth further study if there is a reasonable probability
that &y is better than ;. As with any Bayesian designs, care must be taken that the
a priori assumptions do not unduly influence the conclusion and that stopping criteria
are sufficiently conservative.

The Bayesian framework has been used to address other phase II issues. For exam-
ple, Cheung and Thall (2002) addressed the problem of temporary study closure for
certain types of response endpoints by proposing an adaptive Bayesian method. At
each interim analysis time, an approximate posterior distribution is calculated using
all of the event time data available including data from patients still on treatment for
whom final endpoint determination is unknown. Nuisance parameters in the likeli-
hood are replaced by consistent estimates. The design may reduce trial duration,
but practical difficulties include the need for current follow-up and the numerous
analyses. Case and Morgan (2003) describe a non-Bayesian two-stage approach to
this problem when the outcome is survival status at X months.

Other examples of Bayesian applications include Sambucini (2010) who describes
an adaptive two-stage phase II, where the second-stage sample size is not chosen



Overview of Phase Il Clinical Trials 121

until results from the first stage are known and Ding et al. (2008), who suggest that
combining information across several related single-arm phase II trials done in
sequence using Bayesian decision theoretic methods has potential for more efficient
screening of new agents than the usual one at a time approach.

7.4 DISCUSSION

Despite the precise formulation of decision rules, phase II trials are not as objec-
tive as we would like. The small sample sizes used cannot support decision-making
based on all aspects of interest in a trial. Trials combining more than one aspect,
such as toxicity and response, are fairly arbitrary with respect to the relative impor-
tance placed on each endpoint, including the O weight placed on the endpoints not
included, and so are subject to about as much imprecision in interpretation as results
of single endpoint trials. Furthermore, a phase II trial would rarely be considered on
its own. By the time a regimen is taken to phase III testing, multiple phase II trials
have been done and the outcomes of the various trials weighed and discussed.

For practical reasons, optimality considerations both with respect to design and
confidence intervals are not particularly compelling in phase II trials. Sample sizes
in the typical clinical setting are small and variable, making it more important to
use procedures that work reasonably well across a variety of circumstances rather
than optimally in one. Also, there are various characteristics that it would be useful
to optimize; compromise is usually in order. Perhaps statistical considerations in a
phase II design are most useful in keeping investigators realistic about how limited
such designs are.

Randomization in itself does not guarantee a phase II will be reliable. Small sam-
ple sizes will still mean the probability of error is high. If a new population is being
studied a larger randomized phase II may be worth the investment, both for learning
about the new target population and to better assess the potential of the new regimen.

As a final note, keep in mind that for many cancers phase II studies with tumor
response as the primary endpoint have not proven to be reliable in predicting success
in phase II1. For instance, Zia et al. (2005) describe 43 phase III trials done after the
ideal case of phase IIs with the same regimen in the same population—with only a
28% success rate in phase I1I. Although response may be useful for demonstrating
biologic activity, the primary endpoint used to assess efficacy should be considered
carefully to best reflect potential for long-term benefit.

Detailed discussion of various phase II design issues introduced in this chapter
are discussed in following chapters.
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8.1 INTRODUCTION

In principle, phase II trials evaluate whether a new agent is sufficiently promising to
warrant a comparison with the current standard of treatment. An agent is considered
sufficiently promising based on the proportion of patients who “respond,” that is,
experience some objective measure of disease improvement. The toxicity of the new
agent, usually defined in terms of the proportion of patients experiencing severe side
effects, has been established in a previous phase I trial.

In practice, the separation between establishing the toxicity of a new agent in a
phase I trial and establishing the response rate in a phase II trial is artificial. Most
phase Il trials are conducted not only to establish the response rate, but also to gather
additional information about the toxicity associated with the new agent. Conaway
and Petroni! and Bryant and Day? cite several reasons why toxicity considerations
are important for phase II trials:

1. Sample sizes in phase I trials. The number of patients in a phase I trial is
small and the toxicity profile of the new agent is estimated with little preci-
sion. As a result, there is a need to gather more information about toxicity
rates before proceeding to a large comparative trial.

2. Ethical considerations. Most phase II trials are designed to terminate the
study early if it does not appear that the new agent is sufficiently promising
to warrant a comparative trial. These designs are meant to protect patients
from receiving substandard therapy. Patients should be protected also from
receiving agents with excessive rates of toxicity and consequently, phase
II trials should be designed with the possibility of early termination of the
study if an excessive number of toxicities are observed. This consideration

125
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is particularly important in studies of intensive chemotherapy regimens,
where it is hypothesized that a more intensive therapy induces a greater
chance of a response but also a greater chance of toxicity.

3. The characteristics of the patients enrolled in the previous phase I trials
may be different than those of the patients to be enrolled in the phase II
trial. For example, phase I trials often enroll patients for whom all standard
therapies have failed. These patients are likely to have a greater extent of
disease than patients who will be accrued to the phase II trial.

With these considerations, several proposals have been made for designing phase 11
trials that formally incorporate both response and toxicity endpoints. Conaway and
Petroni! and Bryant and Day? propose methods that extend the two-stage designs of
Simon.? In each of these methods, a new agent is considered sufficiently promising
if it exhibits both a response rate that is greater than that of the standard therapy and
a toxicity rate that does not exceed that of the standard therapy. Examples of these
designs used in practice include Artz et al.,* Meropol et al.,> and Foon et al.® Jin,
and Wu and Liu® propose modifications to the procedure of Conaway and Petroni.!

Conaway and Petroni’ present designs that allow for a trade-off between response
and toxicity rates. In these designs, a new agent with a greater toxicity rate might be
considered sufficiently promising if it also has a much greater response rate than the
standard therapy. Thall et al.,'»!! Thall and Sung,'”? Chen and Smith,'* and Thall'*
propose Bayesian methods for monitoring response and toxicity that can also incor-
porate a trade-off between response and toxicity rates.

8.2 DESIGNS FOR RESPONSE AND TOXICITY

Conaway and Petroni! and Bryant and Day? present multi-stage designs that for-
mally monitor response and toxicity. As a motivation for the multi-stage designs, we
first describe the methods for a fixed sample design, using the notation in Conaway
and Petroni.! In this setting, binary variables representing response and toxicity are
observed in each of N patients. The data are summarized in a 2x2 table where X;;
is the number of patients with response classification i and toxicity classification j
(Table 8.1). The observed number of responses is X=X, + X}, and the observed num-
ber of patients experiencing a severe toxicity is X;=X,,+X,,. It is assumed that the
cell counts in this table (X,;, X,, X,;, X,,) have a multinomial distribution with
underlying probabilities (p,;, P12, Pa1» P2p)- That is, in the population of patients to be
treated with this new agent, a proportion, p;, would have response classification i and
toxicity classification j (Table 8.2). With this notation, the probability of a response is
Pr=P11+P1, and the probability of a toxicity is py=p,,+p,;-

The design is based on having sufficient power to test the null hypothesis that
the new treatment is “not sufficiently promising” to warrant further study against
the alternative hypothesis that the new agent is sufficiently promising to warrant
a comparative trial. Conaway and Petroni' and Bryant and Day? interpret the term
“sufficiently promising” to mean that the new treatment has a greater response rate
than the standard and that the toxicity rate with the new treatment is no greater than
that of the standard treatment. Defining p,, as the response rate with the standard
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TABLE 8.1
Classification of Patients by Response
and Toxicity

Toxicity
Yes No Total
Response Yes X, X Xz
No X, Xy N-Xg
Total X N-X, N
TABLE 8.2

Population Proportions for Response
and Toxicity Classifications

Toxicity
Yes No Total
Response Yes Pu P Pr
No P P L= pyg
Total Pr 1-pr 1

treatment and p;, as the toxicity rate for the standard treatment, the null hypothesis
can be written as

Hy:pr = pro OF pr = pro

H,:pr > pro and pr < prg

The null and alternative regions are displayed in Figure 8.1.

A statistic for testing H,, versus H, is (X, X;), with a critical region of the form
C={(Xg, Xp):Xp 2 ¢ and X, < ¢;}. We reject the null hypothesis and declare the
treatment sufficiently promising if we observe many responses and little toxicity.
We do not reject the null hypothesis if we observe too few responses or too much
toxicity. Conaway and Petroni' choose the sample size, N, and critical values (c, ¢;)
to constrain three error probabilities to be less than pre-specified levels a, v, and £,
respectively. The three error probabilities are as follows:

1. The probability of incorrectly declaring the treatment promising when the
response and toxicity rates for the new therapy are the same as those of the
standard therapy.

2. The probability of incorrectly declaring the treatment promising when the
response rate for the new therapy is no greater than that of the standard
or the toxicity rate for the new therapy is greater than that of the standard
therapy.
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FIGURE 8.1 Null and alternative regions for a bivariate design.

3. The probability of declaring the treatment not promising at a particular
point in the alternative region. The design should yield sufficient power to
reject the null hypothesis for a specific response and toxicity rate, where the
response rate is greater than that of the standard therapy and the toxicity
rate is less than that of the standard therapy.

Mathematically, these error probabilities are expressed as

L. P(X 2 cg, X7 < ¢l pr=pro, Pr=Pro, 0) S
2 sup
PR=PRO O PTZPTQ

3. P(Xg 2 cg, X7 < ¢7| pr=Pro» Pr=Prs» 0)>P

P(Xg = cg, Xy = crlpg, pr.0) =y

where these probabilities are computed for a pre-specified value of the odds ratio,
0=(py1 P2)/(P12P21), in Table 8.2. The point (pg,, Pr,) is a pre-specified point in the
alternative region, with pg,>pg, and pg, <pr,.

Conaway and Petroni! compute the sample size and critical values by enumerat-
ing the distribution of (X, X;) under particular values for (py, p;, 0). As an example,
Conaway and Petroni' present a proposed phase I1 trial of high-dose chemotherapy for
patients with non-Hodgkin’s lymphoma. Results from earlier studies for this patient
population have indicated that standard therapy results in an estimated response rate
of 50% with approximately 30% of patients experiencing life-threatening toxicities.
In addition, previous results indicated that approximately 35%—40% of the patients
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who experienced a complete response also experienced life-threatening toxicities.
The odds ratio, 6, is determined by the assumed response rate, toxicity rate, and the
conditional probability of experiencing a life-threatening toxicity given that patient
had a complete response. Therefore, (pgo, pro) is assumed to be (0.50, 0.30) and the
odds ratio is assumed to be 2.0. Conaway and Petroni' chose values a=0.05, y=0.30
and B=0.10. The trial is designed to have approximately 90% power at the alternative
determined by (pg,. pr,) =(0.75, 0.15).

The extension to multi-stage designs is straightforward. The multi-stage designs
allow for the early termination of a study if early results indicate that the treatment is
not sufficiently effective or is too toxic. Although most phase II trials are carried out in
at most two stages, for the general discussion, Conaway and Petroni' assume that the
study is to be carried out in K stages. At the end of the kth stage, a decision is made
whether to enroll patients for the next stage or to stop the trial. If the trial is stopped
early, the treatment is declared not sufficiently promising to warrant further study. At
the end of the kth stage, the decision to continue or terminate the study is governed by
the boundaries (cg;, ¢gy), k=1,..., K. The study continues to the next stage if the total
number of responses observed up to and including the kth stage is at least as great as
cg and the total number of toxicities up to and including the kth stage is no greater than
¢ At the final stage, the null hypothesis that the treatment is not sufficiently promis-
ing to warrant further study is rejected if there are a sufficient number of observed
responses (at least c,) and sufficiently few observed toxicities (no more than c;y).

In designing the study, the goal is to choose sample sizes for the stages m,, m,,...,
my and boundaries (cg;, ¢71)s (Cra> Cra)s---» (Crrs Crx) satisfying the error constraints
listed earlier. For a fixed total sample size, N=X,m,, there may be many designs
that satisfy the error requirements. An additional criterion, such as one of those
proposed by Simon? in the context of two-stage trials with a single binary endpoint,
can be used to select a design. The stage sample sizes and boundaries can be chosen
to give the minimum expected sample size at the response and toxicity rates for the
standard therapy (pge, Pro) among all designs that satisfy the error requirements.
Alternatively, one could choose the design that minimizes the maximum expected
sample size over the entire null hypothesis region. Conaway and Petroni' compute
the “optimal” designs for these criteria for two-stage and three-stage designs using
a fixed pre-specified value for the odds ratio, 0. Through simulations, they evaluate
the sensitivity of the designs to a misspecification of the value for the odds ratio.

Bryant and Day? also consider the problem of monitoring binary endpoints rep-
resenting response and toxicity. They present “optimal” designs for two-stage trials
that extend the designs of Simon.? In the first stage, N, patients are accrued and clas-
sified by response and toxicity; Yy, patients respond and Y, patients do not experi-
ence toxicity. At the end of the first stage, a decision to continue to the next stage or
to terminate the study is made according to the following rules, where N,, Cy,, and
C,, are parameters to be chosen as part of the design specification:

1. If Yy, < Cy, and Y, > Cy, terminate due to inadequate response.
2. If Yg;>Cy, and Yy, < Cyy, terminate due to excessive toxicity.

3. If Yg, < Cyy and Yy, < Cyy, terminate due to both factors.

4. If Yy, > Cy, and Y > Cyy, continue to the second stage.
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In the second stage, N,—N, patients are accrued. At the end of this stage, the follow-
ing rules govern the decision whether or not the new agent is sufficiently promising,
where N,, Cy,, and C, are parameters to be determined by the design:

1. If Yy, £ Cg, and Yy, > Cpy, “not promising” due to inadequate response
2. If Yg,>Cp, and Y4, < Cypy, “not promising” due to excessive toxicity

3. If Yy, £ Cg, and Yy, < Cpy, “not promising” due to both factors

4. If Yy, > Cp, and Yy, > Cpy, “sufficiently promising”

The principle for choosing the stage sample sizes and stage boundaries is the same as
in Conaway and Petroni.! The design parameters are determined from pre-specified
error constraints. Although the papers differ in the particular constraints consid-
ered, the motivation for these error constraints is the same. One would like to limit
the probability of recommending a treatment that has an insufficient response rate
or excessive toxicity rate. Similarly, one would like to constrain the probability of
failing to recommend a treatment that is superior to the standard treatment in terms
of both response and toxicity rates. Finally, among all designs meeting the error
criteria, the optimal design is the one that minimizes the average number of patients
treated with an ineffective therapy.

In choosing the design parameters, Q=(N;, N,, Cy;, Cg,, Cr; Cpy), Bryant and
Day? specify an acceptable (Pg,) and an unacceptable (Pg,) response rate along with
an acceptable (P;,) and unacceptable (P;,) rate of non-toxicity. Under any of the
four combinations of acceptable or unacceptable rates of response and non-toxicity,
Bryant and Day? assume that the association between response and toxicity is con-
stant. The association between response and toxicity is determined by the odds ratio,
@, in the 2 x 2 table cross-classifying response and toxicity,

_ P(no response, toxicity) * P(response, no toxicity)
P(no response, no toxicity) * P(response, toxicity)

Bryant and Day? parameterize the odds ratio in terms of response and no toxicity
so @ corresponds to 1/0 in the notation of Conaway and Petroni.! For a design, Q,
and an odds ratio, @, let a;(Q, ) be the probability of recommending the treatment,
given that the true response rate equals Py, and the true non-toxicity rate equals Py,
i=0, 1; j=0, 1. Constraining the probability of recommending a treatment with an
insufficient response rate leads to o, (Q, @) < o, Where oy, is a pre-specified con-
stant. Constraining the probability of recommending a treatment with an insufficient
response rate leads to o,,(Q, @) < a4, and ensuring a sufficiently high probability
of recommending a truly superior treatment requires o,,(Q, @) = 1 — p, where o,
and p are pre-specified constants. Bryant and Day? note that o, (Q, @) is less than
either o, (Q, @) or o,,(Q, @), so that an upper bound on o, (Q, @) is implicit in these
constraints.

There can be many designs that meet these specifications. Among these designs,
Bryant and Day? define the optimal design to be the one that minimizes the expected
number of patients in a study of a treatment with an unacceptable response or toxicity
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rate. Specifically, Bryant and Day? choose the design, Q, that minimizes the maxi-
mum of E,(Q, ¢) and E,((Q, @), where Ej; is the expected number of patients accrued
when the true response rate equals Pg; and the true non-toxicity rate equals Py,
i=0, 1;j=0, 1. The expected value E,(Q, ¢) does not play a role in the calculation of
the optimal design because it is less than both E(Q, @) and E (O, ).

The stage sample sizes and boundaries for the optimal design depend on the value
of the nuisance parameter, @. For an unspecified odds ratio, among all designs that
meet the error constraints, the optimal design minimizes the maximum expected
patient accruals under a treatment with an unacceptable response or toxicity rate,
max {max(Eq,(Q, ¢), E;(Q, ))}. Assumptions about a fixed value of the odds ratio
lead to a simpler computational problem; this is particularly true if response and
toxicity are assumed to be independent (¢ = 1). Bryant and Day? provide bounds that
indicate that the characteristics of the optimal design for an unspecified odds ratio do
not differ greatly from the optimal design found by assuming that response and tox-
icity are independent. By considering a number of examples, Conaway and Petroni!
came to a similar conclusion, although they did note that the properties of the design,
particularly the overall type I error, can be affected by a poor specification of the
odds ratio. They suggested that a number of odds ratio values be considered in creat-
ing the design.

Jin’, and Wu and Liu® propose methods to limit the dependence of the Conaway
and Petroni' design on the specification of the odds ratio. Jin’ shows that the type I
error criteria used by Conaway and Petroni':

sup
P(Xg = cp,Xr < crlpg, pr.0) <y
PR=PRO °F PT 2PT0

is equivalent to max{P(Xz=cglpr=pro)s PXr<crlpr=pro)} <v}. The design of Jin’
controls each of these probabilities separately, constraining P(Xz=cglpr=pro) <Vr
and P(X,;<c;lpr=pr) <Y In addition to giving additional flexibility in the speci-
fication of type I error control for response or toxicity, the properties of this design
depend on the assumed odds ratio only through the type II error, making the
design more robust against misspecification of the odds ratio. The cost of the addi-
tional flexibility and protection against misspecification is a greater sample size
requirement.

Wu and Liu® use an adaptive approach which reestimates the sample size based
on an estimated odds ratio. Specifically, they set a maximum sample size, n,,,,, and
choose a sample size n, < n,,,, from which the odds ratio will be estimated. From this
estimated odds ratio, a new sample size, n, will be computed. Wu and Liu® outline
several choices that can be made depending on n, n,, and n,,,,. The study might be
stopped if the recomputed sample size, n, is less than the number of patients already
enrolled, or the investigators may choose to continue enrolling up to n,,,, patients.
If n,<n<n,,,, the investigators can use either the recomputed sample size, n, or
the maximum sample size, n,,,. Wu and Liu® note that with either of these cases,
with n<n,,,,, the error requirements are preserved. If the recomputed sample size n
exceeds n,,,., the investigators can use a sample size of n or n,,,.. Choosing a sample

max?

max? max*
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size of n preserves the error requirements, but it may not be feasible to enroll these
many patients.

8.3 DESIGNS THAT ALLOW A TRADE-OFF
BETWEEN RESPONSE AND TOXICITY

The designs for response and toxicity proposed by Conaway and Petroni! and Bryant
and Day? share a number of common features, including the form for the alternative
region. In these designs, a new treatment must show evidence of a greater response
rate and a lesser toxicity rate than the standard treatment. In practice, a trade-off
could be considered in the design, since one may be willing to allow greater toxicity
to achieve a greater response rate, or be willing to accept a slightly lower response rate
if lower toxicity can be obtained. Conaway and Petroni® propose two-stage designs
for phase II trials that allow for early termination of the study if the new therapy is
not sufficiently promising and allow for a trade-off between response and toxicity.

The hypotheses are the same as those considered for the bivariate designs of the
previous section. The null hypothesis is that the new treatment is not sufficiently
promising to warrant further study, either due to an insufficient response rate or
excessive toxicity. The alternative hypothesis is that the new treatment is sufficiently
effective and safe to warrant further study. The terms “sufficiently safe” and “suf-
ficiently effective” are relative to the response rate, pg,, and the toxicity rate, p;,, for
the standard treatment.

One of the primary issues in the design is how to elicit the trade-off specification.
Ideally, the trade-off between safety and efficacy would be summarized as a function
of toxicity and response rates that defines a treatment as “worthy of further study.” In
practice, this can be difficult to elicit. A simpler method for obtaining the trade-off
information is for the investigator to specify the maximum toxicity rate, py,,,,. that
would be acceptable if the new treatment were to produce responses in all patients.
Similarly, the investigator would be asked to specify the minimum response rate,
Dr.min» that would be acceptable if the treatment produced no toxicities.

Figure 8.2 illustrates the set of values for the true response rate (pg) and true tox-
icity rate (p;), which satisfy the null and alternative hypotheses. The values chosen
for Figure 8.2 are p,=0.5, p;,=0.2, pg ,.;,=0.4, and p;,,..=0.7. The line connecting
the point (pgg, pro) and (1, py,,.,) is given by the equation p;=p;,+tan(y,)(pg — Pro)s
where tan(y;) = (py,,0c — Pro)/(1 — pro). Similarly, the equation of the line connecting
(Pro> Pro) and (1, pg ;) is given by the equation

Pr = Pro+tan(Yg)(pg — Pro)

where tan(yg) =pro (Pro = Promin)- With y <y, the null hypothesis is
Hy: pr = pro +tan(Y7)(pr = Pro) OF pr = pro + tan(yP g)(pr = Pro)

and the alternative hypothesis is

H,: pr < pro +tan(Y7)(pg — pro) and pr < pro + tan(Y g )(Pg = Pro)
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FIGURE 8.2 Null and alternative regions for a trade-off design.

The forms of the null and alternative are different for the case where y, >, although
the basic principles in constructing the design and specifying the trade-off informa-
tion remain the same (cf. Conaway and Petroni®). Special cases of these hypotheses
have been used previously: y,;=0 and y,=n/2 yield the critical regions of Conaway
and Petroni' and Bryant and Day?; y,=y;=0 yield hypotheses in terms of toxicity
alone; and y,=y,;=n/2 yield hypotheses in terms of response alone.

To describe the trade-off designs for a fixed sample size, we use the notation and
assumptions for the fixed sample size design described in Section 8.2. As in their
earlier work, Conaway and Petroni® determine sample size and critical values under
an assumed value for the odds ratio between response and toxicity. The sample size
calculations require a specification of a level of type I error, a, and power, 1—f, at
a particular point pg=pg, and p,=py,. The point (pg,, py) satisfies the constraints
defining the alternative hypothesis and represents the response and toxicity rates for
a treatment considered to be superior to the standard treatment. The test statistic is
denoted by 7(p), where p=(1/N)(X,,, X, X5, X»,) is the vector of sample proportions
in the four cells of Table 8.1, and is based on computing an “I-divergence measure”
(cf. Robertson et al.l).
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The test statistic has the intuitively appealing property of being roughly analo-
gous to a “distance” from p to the region H,,. Rejection of the null hypothesis results
when the observed value of T(p) is “too far” from the null hypothesis region. A vec-
tor of observed proportions p leads to rejection of the null hypothesis if 7(p) = c. For
an appropriate choice of sample size (N), significance level () and power (1 — f), the
value ¢ can be chosen to (1) constrain the probability of recommending a treatment
that has an insufficient response rate relative to the toxicity rate and (2) ensure that
there is a high probability of recommending a treatment with response rate p, and
toxicity rate p;,. The critical value c is chosen to meet the error criteria:

Su
L Pa@) 2 clprpr®) <a

(pR.pr )EHO

2. P(T(P)=¢ | Pras Pras ) 21-P

These probabilities are computed for a fixed value of the odds ratio, 6, by enumerat-
ing the value of T(p) for all possible realizations of the multinomial vector (X;, X,,,
X515 X)-

The trade-off designs can be extended to two-stage designs that allow for early
termination of the study if the new treatment does not appear to be sufficiently prom-
ising. In designing the study, the goal is to choose the stage sample sizes (m,, m,) and
decision boundaries (c,, ¢,) to satisfy error probability constraints similar to those in
the fixed sample size trade-off design:

sup
(pR.pr )EHO
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L. P(Ty(p)) = e, To(p1, P2) = 6l pr, pr,0) =

where
T, is the test statistic computed on the stage 1 observations
T, is the test statistic computed on the accumulated data in stages 1 and 2

As in the fixed sample size design, these probabilities are computed for a fixed value
of the odds ratio and are found by enumerating all possible outcomes of the trial.

In cases where many designs meet the error requirements, an “optimal” design is
found according to the criterion in Bryant and Day? and Simon.? Among all designs
that meet the error constraints, the chosen design minimizes the maximum expected
sample size under the null hypothesis. Through simulations, Conaway and Petroni®
investigate the effect of fixing the odds ratio on the choice of the optimal design.
They conclude that unless the odds ratio is badly misspecified, the choice of the odds
ratio has little effect on the properties of the optimal design.

The critical values for the test statistic are much harder to interpret than the criti-
cal values in Conaway and Petroni' or Bryant and Day,” which are counts of the
number of observed responses and toxicities. We recommend two plots, similar to
Figures 2 and 3 in Conaway and Petroni,’ to illustrate the characteristics of the trade-
off designs. The first is a display of the power of the test, so that the investigators can
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see the probability of recommending a treatment with true response rate p, and true
toxicity rate p,. The second plot displays the rejection region, so that the investiga-
tors can see the decision about the treatment that will be made for specific numbers
of observed responses and toxicities. With these plots, the investigators can better
understand the implications of the trade-off being proposed.

The trade-off designs of Conaway and Petroni® were motivated by the idea that
a new treatment could be considered acceptable even if the toxicity rate for the new
treatment is greater than that of the standard treatment, provided the response rate
improvement is sufficiently large. This idea also motivated the Bayesian monitoring
method of Thall et al.,'»!! They note that, for example, a treatment that improves the
response rate by 15% points might be considered promising, even if its toxicity rate
is 5% points greater than the standard therapy. If, however, the new therapy increases
the toxicity rate by 10% points, it might not be considered an acceptable therapy.

Thall et al.'%!! outline a strategy for monitoring each endpoint in the trial. They
define, for each endpoint in the trial, a monitoring boundary based on pre-specified
targets for an improvement in efficacy and an unacceptable increase in the rate of
adverse events. In the example given earlier for a trial with a single response end-
point and a single toxicity endpoint, the targeted improvement in response rate is
15% and the allowance for increased toxicity is 5%.

Thall et al.'%!! take a Bayesian approach that allows for monitoring each endpoint
on a patient by patient basis. Although their methods allow for a number of efficacy
and adverse event endpoints, we will simplify the discussion by considering only a
single efficacy event (response) and a single adverse event endpoint (toxicity). Before
the trial begins, they elicit a prior distribution on the cell probabilities in Table 8.2.
Under the standard therapy, the cell probabilities are denoted Py=(pg,;, Psizs Psoro
Ds»); under the new experimental therapy, the cell probabilities are denoted Pp=(pg,,,
Pr12s Pea1s Pran)- Putting a prior distribution on the cell probabilities (pg,y, Pgias Poar
Paar) induces a prior distribution on por=pg +Pgi» and on pgr=pe, + P, Where G
stands for either S or E. A Dirichlet prior for the cell probabilities is particularly con-
venient in this setting, since this induces a Beta prior on pg and pgp, for G=S or E.

In addition to the prior distribution, Thall et al.!'%!! specify a target improvement,
S(R), for response, and a maximum allowable difference, 8(7'), for toxicity. The mon-
itoring of the endpoints begins after a minimum number of patients, m, have been
observed. It continues until either a maximum number of patients, M, have been
accrued, or a monitoring boundary has been crossed.

In a typical phase II trial, in which only the new therapy is used, the distribution
on the probabilities under the standard therapy remains constant throughout the trial,
while the distribution on the probabilities under the new therapy is updated each
time a patient’s outcomes are observed. After the response and toxicity classification
on j patients, X, have been observed, there are several possible decisions one could
make. If there is strong evidence that the new therapy does not meet the targeted
improvement in response rate, then the trial should be stopped and the new treat-
ment declared “not sufficiently promising.” Alternatively, if there is strong evidence
that the new treatment is superior to the standard treatment in terms of response the
targeted improvement for response, the trial should be stopped and the treatment
declared “sufficiently promising.” In terms of toxicity, the trial should be stopped if
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there is strong evidence of an excessive toxicity rate with the new treatment. Thall
et al.!®!! translate these rules into statements about the updated (posterior) distribu-
tion [p,IX] and the prior distribution py, using pre-specified cut-off for what consti-
tutes “strong evidence.” For m < j < M, the monitoring boundaries are as follows:

L. Plpgg = ps>d(R)IX] < p (R)

2. P[per>pselX] 2 py(R)

3. Plpgr = psr>8(DIX}] 2 py(T)

where p,(R), py(R), and p,(T) are pre-specified probability levels. Numerical inte-
gration is required to compute these probabilities, but the choice of the Dirichlet
prior makes the computations relatively easy. Extensions to the method that allows
for mixture priors and monitoring cohorts of size greater than one are given in Thall
and Sung.'?

Thall and Russell'® present Bayesian methods for combined phase I/II trials.
These designs can be used for dose finding based on response and toxicity crite-
ria. The models impose an ordering on a combined response—toxicity endpoint and
monitor the trial by updating the probability of response and toxicity.

Thall™* proposes a design in which contours of “equally desirable outcomes” in
terms of the probability of response and toxicity are specified in advance of the trial.
To illustrate, Thall' gives a numerical example where the historical probabilities
of response and toxicity with the standard treatment are represented by the ordered
pair (pg, pp)=(0.4, 0.3). Examples of “equally desirable outcomes” might be (0.55,
0.4), (0.60, 0.45), and (0.40, 0.15). The pair (0.55, 0.4) trades a 10% point increase in
the toxicity probability for an improvement of 15% points in the response probabil-
ity. Thall' describes two ways of eliciting families of contours. One way is for the
investigators to specify a set of pairs, {(px;, Pr0)> (Pra> Pra)s---» (Pris Pr)} along with
numerical values {§,, d,...., Ox} for the desirability of the kth pair, k=1,..., K. The
other is for the investigators to specify pairs of response and toxicity probabilities
that are equally desirable. These contours are then used to define a region, E, such
that each pair of response and toxicity probabilities, (pg, p;), in the region are more
desirable than points outside the region, which includes the response and toxicity
probabilities associated with the current standard. Decisions about the treatment are
made from the posterior probability, P[(pg, p;) € Eldata], with sufficiently large val-
ues of this posterior probability indicative of a treatment with response and toxicity
probabilities that are more desirable than the current standard.

Chen and Smith'? use a Bayesian theoretic decision approach to design trials for
correlated binary endpoints for response and toxicity. They define a “zone of trade-
off” by specifying a rectangle defined by the response probability in the interval
(Pro — Or_> Pro+9r,), and the toxicity probability in the interval (p;, — 87, pro+97.),
where pg, and py, are the response and toxicity rates for the current standard treat-
ment, and d,_, 8,, O, and J,, are pre-specified constants. Inside this rectangle,
the new therapy is considered inferior to the standard therapy if 0,<0,, where 0,=
pr* (L= p)/[(1 = pp) * ppl and 6,=pgy * (1 = pro)/[(1 = pro) * pro)l- In a single-arm
phase II study, 0, is assumed known. At any interim evaluation, the Bayes risk is
computed for each of three possible decisions: (1) stop the trial and declare the
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new therapy not worthy of further study, (2) stop the trial and recommend the new
therapy for evaluation in a phase III trial, or (3) continue to enroll patients in the
phase II trial. The Bayes risk is computed from a loss function that incorporates
the loss in conducting the current trial and the loss in making an incorrect decision
about the new therapy.

8.4 SUMMARY

All of the methods discussed in this chapter have advantages in monitoring toxicity
in phase II trials. None of the methods use asymptotic approximations for distribu-
tions and are well-suited for the small sample sizes encountered typically in phase
II trials. The bivariate designs of Conaway and Petroni,! Bryant and Day,? Jin,” and
Wu and Liu® have critical values that are based on the observed number of responses
and the observed number of toxicities; these statistics are easily calculated and inter-
preted by the investigators.

The trade-off designs of Conaway and Petroni® have a trade-off strategy that per-
mits the allowable level of toxicity to increase with the response rate. In contrast,
in the trade-off example of Thall et al.'>!!, a 5% increase in toxicity would be con-
sidered acceptable for a treatment with a 15% increase in response. Because the
allowance in toxicity is pre-specified, this means that only a 5% increase in toxicity
is allowable even if the response rate with the new treatment is as much as 30%.
With the trade-off of Conaway and Petroni,’ the standard for “allowable toxicity” is
greater for a treatment with a 30% improvement than for one with a 15% improve-
ment. The methods of Thall et al.'%!" have advantages in terms of being able to moni-
tor outcomes on a patient-by-patient basis. At each monitoring point, the method can
provide graphical representations of the probability associated with each of the deci-
sion rules. The designs of Thall,' and Chen and Smith"® give additional flexibility in
how response and toxicity are traded.

Although the methods presented are discussed in terms of toxicity and response,
where toxicity is a predefined measure of adverse events related to protocol treat-
ment and response is a predefined measure of efficacy, the designs apply to any
bivariate endpoints. For example, in vaccine trials assessing immune response, the
efficacy response parameter could be replaced with an earlier measure of immune
response.
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The objective of a phase II study is to evaluate whether a particular regimen has
enough biologic activity in a given disease to warrant further investigation. We
would like to have a mechanism in which the candidate agents or regimens can
be screened relatively quickly, and for practical and ethical reasons, we would like
to expose the minimal number of patients in order to evaluate activity. To plan an
efficient phase II trial, there need to be at least three key considerations: What is the
most appropriate endpoint? What is the optimal patient population, and what is the
most reasonable statistical design?
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9.1 CHOOSING AN APPROPRIATE ENDPOINT

Previously, phase II cancer clinical trials predominantly used response rate as the
primary endpoint, where in the solid tumor setting, response usually involves a reduc-
tion in the dimensions of the measurable disease. However, there are shortcomings to
using response rate as the primary endpoint for evaluating efficacy: (1) Response has
not been shown to be strongly correlated with survival across a number of disease
sites (Forastiere et al. 1992, Durie et al. 2004), (2) there are challenges to evaluat-
ing response (Kimura and Tominaga 2002, Erasmus et al. 2003, McHugh and Kao
2003), and (3) there are new classes of agents that are being tested which are not
expected to be cytotoxic (tumor reducing), but instead they are cytostatic; that is,
the agents may delay disease progression but not reduce the tumor size. For these
reasons, other endpoints such as survival and progression-free survival (PFS) are
more frequently becoming the primary endpoint of choice for evaluating phase II
drugs (Markham 1997).

One endpoint that has drawn some attention in the cytostatic era is disease control
rate (DCR). DCR is the proportion of patients who have a best response of stable
disease or better with a particular regimen. The DCR has been shown to be more
strongly correlated with survival that response rate in some disease settings (Lara
et al. 2008).

9.1.1 PROGRESSION-FREE SURVIVAL

PES is defined as the interval from start of the trial to date of progression, or in the
absence of progression, death due to any cause. Using PFS as the primary endpoint
of a phase II study has appeal because it measures (or more closely measures) a clini-
cally meaningful endpoint that impacts a patient’s life. It also provides consistency
with planned phase III trials that would also use survival or PFS as the primary
endpoint. Two arguments that have been made in support of using response as an
endpoint are that (1) subsequent treatments do not impact it and (2) response status is
evaluated more quickly than progression or survival status. However, by using PFS
as the primary endpoint, it is not necessary to wait until all patients have progressed
or died or even until the median has been estimated. It is possible to specify the null
and alternative hypotheses in terms of a shorter interval of time, such as the expected
event rate at a landmark such as 6 months; thus, the interval needed to assess the PFS
endpoint is in line with that needed for response, and like response, PFS should not
be impacted by subsequent treatments.

There are some drawbacks to using PFS as the primary endpoint. PFS can be
difficult to measure reliably and is sensitive to the timing of disease assessment
(Panageas et al. 2007). Any variation in disease assessment schedule between arms
can make PFS look artificially different. Infrequent disease assessment can cause an
overestimation of the progression-free interval. Secondly, PES is not always predic-
tive of survival, that is, PFS may not be an adequate surrogate marker for survival in
many disease settings. Showing an improvement in PES without an improvement in
survival may also not be clinically relevant, particularly if the experimental regimen
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is more toxic or expensive than the current standard. Finally, in some disease set-
tings, the definition of progression is not standardized. For example, in hormone
refractory prostate cancer, which is primarily a disease of the bone, the role of PSA
kinetics, pain, and the optimal measure of bone progression is unclear (Scher et al.
2008).

It is interesting to note that some clinical trialists feel that using response or DCR
as the primary endpoint allows one to design a phase II trial with a single-arm,
whereas the specification of PFS as the endpoint requires randomization. However,
DCR and PFS at a fixed landmark are essentially the complement of each other.
In the absence of progression or death, the best response must be stable or better
disease.

9.1.2 OVERALL SURVIVAL

Overall survival (OS) has also been considered as a phase II endpoint. However, it
also has drawbacks. Subsequent therapies may affect OS and confound the interpre-
tation of treatment effect, and time to death takes longer to obtain, thus requiring
a longer trial than one which employs PFS, disease control, or response. Using OS
in a randomized phase II trial can also complicate the ability to mount a random-
ized phase III trial using survival, as some may perceive the treatment comparison
already answered. For diseases with very short median OS and lack of effective
salvage treatment, or where PFS cannot be reliably measured, OS may be a preferred
endpoint for phase II trials (Rubinstein et al. 2009).

9.2 CHOOSING THE TARGET POPULATION

The study population should be the one to which we wish to generalize the results
of the trial when it is completed. It has been hypothesized that common tumors
may be common because many mutations can cause them, and a targeted agent may
only work against tumors with specific mutations. Depending on how well under-
stood the mechanism of action is for a study regimen, enriching the trial population
for those with the hypothesized target of interest may increase the likelihood of
observing activity if the agent is active (Stewart 2010). An argument for random-
ized phase II trials is that the design allows for the distinction between prognostic
factors and predictive factors. Additionally, there may not be good historical data
for the relevant subsets of patients, and so a one-arm trial may be difficult to design.
However, unless the marker is quite prevalent, there is no statistical power to evalu-
ate a marker by treatment interaction for the endpoint of interest in a randomized
phase II trial. Despite the logic of enriching the patient population with those most
likely to respond, prospective enrichment based upon molecular markers has rarely
been used in cancer drug development. Often there are not credentialed assays for
evaluating individual patients prior to enrollment into the phase II trial. However,
the situation might be different by the time the phase III trial is ready for enrollment.
Chapter 17 deals with phase III study designs using targeted agents.
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9.3 STUDY DESIGN

There are strong and diverging opinions about the use of single-arm versus random-
ized phase II trials. However, most would agree that it depends on the circumstances
of the trial. With the shift in phase II endpoints away from response and more toward
PES, there has been concern raised that prognostic factors may impact these end-
points in a way that was not thought to impact response. This has led to a concern
that the outcome of a small phase II trial may be highly dependent on the patient
population selected and the mix of prognostic factors in a given study population. To
address such concerns, there has been a trend toward the use of randomized phase II
trials to better ensure a less biased comparison between a standard and experimen-
tal treatment group. However, introducing a second arm as a comparator also adds
substantial variability to the comparison. Essentially, that is the quandary—concern
about bias or concern about variability.

9.3.1 SINGLE-ARM PHASE 1l DESIGNS

9.3.1.1 Comparisons with Historical Experience

This strategy is typically used for phase II studies that have response as the primary
endpoint, but as previously mentioned this design can also be used for time-to-event
measures like PFS. Based on previous experience, one would specify the level at which
there would not be interest in an agent (null hypothesis) versus the alternative hypoth-
esis which is the level at which one would consider pursuing an agent in a phase III
study. For example, one might specify a 20% versus 40% response rate for an agent
where there was some modest level of activity using standard treatment. A two-stage
design is then typically employed where, if adequate activity is observed in the first
group of patients, the study will continue to the second stage of accrual (Fleming 1982,
Simon 1989); see also Chapter 7. If the regimen being studied consists of agents already
shown to be active, a single-stage (or pilot) design may be appropriate. Because there is
already experience with the agents being studied there is less concern about exposing
patients to an ineffective treatment, so a one-stage design is usually used with a sample
size of typically 50-100 patients, avoiding the delays of a multi-stage design.

A similar design strategy could be used in the phase II setting by substituting PFS
or survival for response rate. One could specify a 6 month PFS estimate of 20% ver-
sus 40%, for example, where if only 20% of the patients are alive and free of progres-
sion at 6 months, there would be no interest in the regimen, whereas if 40% or more
of the patients are free of progression, then there would be considerable interest in
pursuing the agent if other considerations such as toxicity were also favorable. This
could be tested in a one- or two-stage design.

One design that has been proposed to avoid temporary closure was proposed by
Herndon (1998), where a slight over-accrual to the first stage is allowed while assess-
ing the endpoint on patients in the first cohort. In a similar vein, it may be reason-
able to conduct an interim analysis of a phase II study in order to avoid temporary
closure. The alternative hypothesis is tested at the alpha 0.005 level or at some other
appropriate level at the approximate mid-point, and the study would be closed only
for the case where there is lack of adequate activity.



Phase Il Designs Using Time-to-Event Endpoints 143

One straightforward design option for conducting a pilot study would be to spec-
ify the null and alternative hypothesis in terms of median PFS or OS. For example,
in the advanced disease setting, a median survival of 9 months might not be of inter-
est while a median survival of 12 months or greater would be of further interest. By
assuming uniform accrual and an exponential distribution, it is straightforward to
calculate the sample size needed. If a study is to have 90% power and take 2 years
of accrual with one additional year of follow-up and a one-sided a=0.05, then 134
patients or 67 per year would be needed. With this one-stage design, it is also pos-
sible to specify an interim analysis to test for lack of biologic activity.

One of the challenges of implementing a historical control phase II trial is choos-
ing the appropriate null and alternative hypothesis levels. As recommended by Korn
etal. (2001), there must be sufficient historical data on a patient population, untreated
or treated with active agents that are similar to the patient population being consid-
ered for treatment with the experimental agent. The historical data would need to be
the survival or PES experience for a group of patients with the same stage of disease
and amount of prior treatment, similar organ function and performance status, and
the procedures used for monitoring progression should be the same. Another impor-
tant recommendation is that patients should come from the same type of institutions
with the same referral patterns in a recent era so diagnostic measures and supportive
care would be similar. For example, using the results of a single institution study in
order to define the level of interest and disinterest in a regimen might not be readily
translatable to a large, diverse cooperative group phase II trial. These considerations
are not unique to trials using a PFS endpoint as these are essentially the same factors
that need to be considered when designing a phase II response study using historical
experience as a comparison.

Even if historical control outcome data are known to vary, that does not neces-
sitate a randomized trial design. If there are known risk factors that are strongly
correlated with the endpoint of interest and they explain a substantial portion of the
variability of the outcome (e.g., response, PES), then an algorithm can be developed
to predict what the historical outcome level would have been for a current cohort of
patients. This would serve as the historical control null hypothesis. Activity beyond
that would be attributable to the experimental treatment regimen. This statistical
method was recently applied to metastatic melanoma (Korn et al. 2008), and algo-
rithms for other cancer populations are also being explored. However, this modeling
approach cannot be employed in settings in which strong prognostic factors have yet
to be identified.

9.3.1.2 Each Patient as His Own Control

With this type of design, in a single group of patients who have progressive disease,
we want to evaluate whether an agent is able to slow down the rate of progression
relative to their pretreatment rate of progression.

Mick et al. (2000) have proposed a methodology for evaluating time-to-progres-
sion as the primary endpoint in a one-stage design. Typically, patients being offered
phase II studies of new agents have failed a previous regimen. The prior time to
progression interval is referred to as TTP, and is not censored; that is, all progres-
sions are observed. Time to progression after the experimental agent, TTP,, may or
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may not be censored at analysis. They propose that the “growth modulation index”
(TTP,/TTP,) will have a null ratio value (HR;) of 1.0, and the index needs to be
greater than 1.33 if a new regimen is to be considered effective at delaying progres-
sion. The degree of correlation between the paired failure times is a key feature of
this design since the patient serves as his own historical control, a concept that was
originally suggested by Von Hoff (1998). The authors note that in some cases it may
be reasonable to hypothesize that, by the natural history of the disease, one would
expect TTP, to be shorter than TTP,, which would indicate a null value less than 1.0.
Hypothesis tests about the hazard ratio from paired data may be conducted under a
log-linear model.

Von Hoff (2010) employed a similar design for their pilot study. They used
a sign test to evaluate whether (TTP,/TTP,)>1.3 in 15% of patients as the null
hypothesis.

One can propose a range of null and alternative hypotheses based on disease and
treatment considerations. However, this design approach can be difficult to imple-
ment because patients must be enrolled for both intervals of progression; that is,
patients are enrolled prior to their first-line treatment for a trial of second-line treat-
ment. As pointed out by Korn et al. (2001), enrolling patients after they progress on
first-line treatment avoids these problems but leads to potential bias in the selection
of the patients included in the trial.

9.3.2 MuLtiIARM DESIGNS

9.3.2.1 Randomized Selection Designs

In some cases, the aim of a phase II trial is not to identify whether an agent has
biologic activity, but instead to select which agent of several should be chosen to be
tested in the phase III setting. This is known as a selection trial. The intent is not
to definitively compare each of the regimens with one another, but to pick the most
promising agent to carry forward. The endpoint can be based on response rates,
but also survival or PFS is typically used as the criterion for picking the best arm.
Selection designs are covered in detail in Chapter 10.

9.3.2.2 Randomized Phase Il: Comparison of
Regimen with a Control Group

There have been a number of review papers published on the merits and shortcom-
ings of randomized phase II comparison trial designs (Van Glabbeke et al. 2002,
Wieand 2005, Taylor et al. 2006, Redman and Crowley 2007, Gan et al. 2010,
Mandrekar and Sargent 2010, Seymour et al. 2010). Newer drugs are expected to
prolong the progression-free interval but not necessarily result in disease response.
PFS is perceived to be a more heterogeneous outcome, which is more dependent on
the mix of prognostic factors in the patient pool than is the case with tumor response.
If the endpoint has not been assessed consistently over time or is not available from
historical trials, there may be a compelling reason to conduct a randomized trial.
Several statisticians have published their take on designing randomized phase II
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TABLE 9.1
Approximate Number of Total Events for a
Randomized Phase Il Trial with PFS as an

Endpoint

Hazard Ratios (A)
Error Rates (a, ) A=13 A=15 A=17
10%, 10% 384 161 94
10%, 20%, or 20%, 10% 264 110 64
20%, 20% 166 69 41

Using the formula: L = {(Z1-a + Z1-p)/(0.5 * In(A))}2
where L is the total number of events and which assumes
a logrank test with a one-sided o (Fleming and
Harrington 1991).

trials (Korn et al. 2001, Rubinstein et al. 2005). The goal is to assess activity of a new
regimen compared to a standard in a preliminary fashion by specifying effect sizes
and statistical error rates which keep the sample size in the range of an expected
phase II trial. Table 9.1 illustrates the total number of events that must be observed in
the combined arms with the specified treatment effect size and statistical error rates
when the logrank test is used. In this example, we are specifying PFS endpoints but
the same holds true for a survival endpoint as well. The total sample size will be
impacted by the accrual and event rate.

A typical trial might involve a standard regimen as the control and a standard + a
new targeted agent as the experimental treatment. This design can only be conducted
successfully if patients are willing to accept being randomized to either arm. Korn et
al. (2001) recommend a moderate one-sided alpha of 0.10 or 0.20, which reduces the
required sample size. Conducting a randomized design in the phase II setting with a
control arm establishes some legitimacy for comparison between the arms. Hence,
there is a great temptation to interpret the results literally and not carry the agent
forward to proper phase III testing. Liu et al. (1999) calculated the probabilities of
observing a hazard ratio greater than 1.3, 1.5, and 1.7 when the true hazard ratio is
1 between all treatments in a randomized phase II trial. In a two-arm trial with 40
patients per arm, the probabilities were 0.37, 0.17, and 0.07 for detecting the respec-
tive hazard ratios. Thus, the false-positive rates are very high if one treats random-
ized phase II trial results as conclusive.

Randomized trials have been viewed favorably because they tend to reduce the
bias between the control and experimental treatment groups. However, in small ran-
domized studies with significant patient heterogeneity, fairly large imbalances can
still occur by chance. Careful selection of stratification factors can help to ensure
balance of important prognostic variables. However, small studies can support only
minimal stratification, and there may also be important unmeasured prognostic fac-
tors that are not balanced in small randomized trials.
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9.3.2.3 Randomization Discontinuation Design

There can be substantial heterogeneity of tumor growth rates in patient populations.
Some patients’ tumors will grow slowly naturally. In order to distinguish anti-pro-
liferative activity of a novel agent from indolent disease, Rosner et al. (2002) pro-
posed what they call a “randomized discontinuation design” (RDT). A generic study
schema can be seen in Figure 9.1. All patients are initially treated with the experi-
mental agent (part I of trial), and these patients can be thought of as coming from
a target population of patients with a given disease and stage. Patients without pro-
gression are randomized in a double-blind fashion to continuing therapy or placebo
(part II). Patients who are non-compliant or experience adverse events are also typi-
cally not randomized. This allows the investigators to assess if apparent slow tumor
growth is attributable to the drug or to the selection of patients with slow-growing
tumors. By selecting a more homogeneous population, the randomized portion of the
study may require fewer patients than would a study randomizing all patients.

Kopec et al. (1993) have reviewed the advantages and limitations of discontinu-
ation studies, and compared the RDT design to the classic randomized clinical trial
(RCT) design in terms of clinical utility and efficiency (sample size). What they found
is that one sees the greatest gain in efficiency with the RDT design when the placebo
response rate is low and the relative response rate is modest. They concluded that the
RDT design is quite useful for studying the effect of long-term, non-curative thera-
pies, when the definition of “clinically important effect” is relatively small, and the
use of a placebo should be minimized for ethical or feasibility reasons. On the other
hand, the RDT design is limited if the objective of the study is to estimate the treat-
ment effect and toxicity within the target population of patients with the disease of
interest, or if the treatment is potentially curative. The relative efficiency of the RDT
design depends on the accuracy of the selection criteria with respect to identifying
true treatment responders and to some degree those with good compliance and lack of
limiting toxicities. As pointed out by Friedman et al. (1985), because the RDT evalu-
ates a highly selected sample, this design can overestimate benefit and underestimate
toxicity. The RDT design, which can end up requiring a fairly large sample size, may
be answering an irrelevant hypothesis; namely, given that one initially responds to a
new agent, is more of the drug better than stopping at the time of response?

Part I Part II
] Continued
R experimental
a treatment
n
Experimental Stable Yes d
treatment disease? I(I)l
i
z
N(N e Placebo*
Out o

FIGURE 9.1 RDT schema.
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9.4 DESIGNING INFORMATIVE PHASE Il TRIALS

It is not uncommon for results from a positive phase II trial not to be confirmed with
a subsequent phase I1I trial. There can be a number of reasons why two trials provide
conflicting conclusions. The phase II trial may have used an intermediate endpoint
that did not adequately capture treatment effect relative to survival, the patient popu-
lation may differ with regard to known (or unknown) predictive factors, or the phase
II trial results may have been a false positive (Table 9.2).

There are two ways that a phase II trial can be declared positive at its conclusion.
Either it is a truly active regimen that has been correctly identified or it is an inac-
tive regimen that has been incorrectly identified as being active (i.e., false positive).
Table 9.3 shows the fraction of positive trials that are expected to be “false positives”
depending on the assumed underlying prevalence of truly active regimens. In this
example, we are assuming that 10% (or 20%) of all regimens studied in phase II trials
are active. Simon (1987) estimated that 10% of phase II agents are active. Here, the
term “‘active” means that the treatment under investigation has the level of activity
specified by the alternative hypothesis if it could be measured perfectly.

By specifying small error rates like what are typically used in phase III trials and
single-arm phase II trials («=0.05, p=0.10), for every three-phase II trials that are
concluded to be positive, on average one of them would be a false positive. As error
rates are relaxed in order to reduce the sample size, the chance that a trial concluded

TABLE 9.2
Statistical Error Rates
Truth
Conclusion Based on Trial Agent is Not Active Agent is Active
Agent is not active Correct conclusion Type II error=p, “false negative”

1 — p=statistical power

Agent is active Type I error=a, “false positive”  Correct conclusion

TABLE 9.3
Impact of Error Rates on the False-Positive Rate among Phase Il Trials
Concluded to be Positive

Percentage False Percentage False
Percentage of Active Positive Assuming Positive Assuming
Error Rates, Agents Correctly 10% of Regimens Are  20% of Regimens Are
aand p Identified (1 - B) (%) Truly Active (%) Truly Active (%)
0.05,0.10 90 33 18
0.10, 0.10 90 50 31
0.10, 0.20 80 53 33

0.20, 0.20 80 69 50
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to be positive is actually a false positive increases. If the type I error rate is doubled
from 5% to 10% (typical of randomized phase II trials) and the statistical power
remains 90% (p=0.10), then half of positive phase II trials would be expected to be
false positives. If a greater proportion of truly active regimens are tested as is shown
in the last column, the chance of a false positive decreases from 50% to 31%. Based
on this table, it should not come as a surprise that a significant number of phase I1I
trials will not confirm the results of a positive phase II trial. Randomization does
not solve the problem. Both one-arm and randomized two-arm trials require the
specification of type I and II error rates, and in fact, randomized phase II trials typi-
cally allow error rates to be larger than their single-arm counterpart in order to keep
sample size at an attainable level.

The best way to increase the chance of making the correct conclusion at the end
of a phase II trial is to design the trial with smaller error rates (which also means
increasing the sample size). This is often not feasible or desirable, and researchers
are willing to make a trade-off between making an incorrect conclusion and having
a smaller trial. The other way to reduce false positives in phase II trials is to test
better drugs.

9.5 CONCLUDING COMMENTS

With the development of cytostatic agents, attention has been given to developing
new phase II trial designs to address the expected lack of cytoreductive activity
with these regimens. Endpoints that incorporate information about progression or
survival are reasonable choices that can be straightforward to conduct. There is no
single phase II study design that fits all situations. In settings where adequate histori-
cal controls exist, historically controlled phase II trials are more efficient. In other
cases where there is substantial heterogeneity and a lack of good historical control
data, a randomized design is likely the better design choice. Identification of the
appropriate study population is just as important as the actual study design, particu-
larly in the setting of targeted study drugs.
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10.1 BASIC CONCEPT

When there are multiple promising new therapies in a disease setting, it may not
be feasible to test all of them against the standard treatment in a definitive phase
III trial. The sample sizes required for a phase III study with more than three arms
could be prohibitive [1]. In addition, the analysis can be highly complex and prone
to errors due to the large number of possible comparisons in a multi-arm study.
An alternative strategy is to screen the new therapies first in a phase II setting and
choose one to test against a standard treatment in a simple two-arm phase III trial.
Selection designs can be used in such circumstances.

Simon et al. [2] first introduced statistical methods for ranking and selection to
the oncology literature. In a selection design, patients are randomized to treatments
involving new combinations or schedules of known active agents, or new agents for
which activity against the disease in question has already been demonstrated in some
setting. In other words, the regimens under testing have already shown promise. Now
the aim is to narrow down the choice for formal comparisons to the standard therapy.
With this approach, one always selects the observed best treatment for further study,
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however small the advantage over the others may appear to be. Hypothesis tests are not
performed. Sample size requirements are established so that, should there exist a supe-
rior treatment, it will be selected with a high probability. The necessary sample sizes
are usually similar to those associated with pilot phase II trials before phase III testing.

Before proceeding further, it is important to note that although the statistical prin-
ciples for selection designs are simple, its proper application can be slippery. Falsely
justified by the randomized treatment assignment, the major pitfall of the design is
to treat the observed ranking as conclusive and forego the required phase III testing.
This practice is especially dangerous when a control arm is included as the basis
for selection, or when all treatment arms are experimental but a standard treatment
does not exist for the particular disease. A “treatment of choice” can be declared
with false justifications in these situations. If such a conclusion is desired, phase III
studies with appropriately planned type I and type II errors should be conducted.
Regarding a two-arm selection design, Sargent and Goldberg [3-5] states the fol-
lowing: “The goal of the randomized phase II trial is to ensure that if one treatment
is clearly inferior to the other, there is a small probability that the inferior treatment
will be carried forward to a phase I1I trial.” Because of the design’s moderate sample
sizes and lack of type I error control for false positive findings, the results are error
prone when treated as ends in themselves [6]. There must be a plan for a definitive
Phase III study following the phase II selection study. Prior to embarking on a selec-
tion study, it is vital that the investigators understand the design’s limitations and the
proper interpretation of upcoming results.

10.2 SAMPLE SIZE REQUIREMENTS

10.2.1 BINARY OUTCOMES

Table 10.1 is reproduced from Simon et al. [2] for binary outcomes with K=2, 3, and
4 groups.

The sample sizes were presumably derived by normal approximations to bino-
mial distributions. With the listed N per group and true response rates, the correct
selection probability should be approximately 0.90. A check by exact probabilities
indicates that the actual correct selection probability ranges from 0.88 in most cases
down to 0.86 when N is small. Increasing the sample size per group by six raises the
correct selection probability to 0.90 in all cases and may be worth considering when
N is less than 30.

Except in extreme cases, Table 10.1 indicates the sample size to be relatively
insensitive to baseline response rates (i.e., response rates of groups 1 through K — 1).
Since precise knowledge of the baseline rates is often not available, a conservative
approach is to use always the largest sample size for each K, that is, 37, 55, and 67
patients per group for K=2, 3, and 4, respectively. While a total N of 74 for two
groups is in line with large phase II studies, the total number of patients required
for four groups, that is, close to 270, could render the design impractical for many
applications. Obviously the sample size can be reduced for differences greater than
the 15% used for Table 10.1. However, if tumor response rate is the outcome of inter-
est, it is generally low (e.g., 10%—20%) for many types of cancer and an absolute 15%
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TABLE 10.1
Sample Size per Treatment for Binary
Outcomes and 0.90 Correct Selection
Probability

Response Rates N per Group
| P Py K=2 K=3 K=4
10% 25% 21 31 37
20% 35% 29 44 52
30% 45% 35 52 62
40% 55% 37 55 67
50% 65% 36 54 65
60% 75% 32 49 59
70% 85% 26 39 47
80% 95% 16 24 29

Source: Simon, R. et al., Cancer Treat. Rep., 69,
1375, 1985.

increase would certainly indicate a superior response rate. Such a treatment should
not be missed in the selection process by inadequate sample sizes. Similarly, a cor-
rect selection probability of 0.90 should also be treated as the standard since a lower
probability would result in too many false negative trials.

10.2.2 SurvivaeL OUTCOMES

For censored survival data, Liu et al. [7] suggested fitting the Cox proportional haz-
ards model, h(t, z) =h,(t)exp(p'z), to the data where z is the (K — 1) dimensional vector
of treatment group indicators and f=(p,, K, Px_,) is the vector of log hazard ratios.
We proposed selecting the treatment with the smallest [31 (where BK—O) for further
testing. Sample sizes for 0.90 correct selection probability were calculated based on
the asymptotic normality of the B. The requirements for exponential survival and
uniform censoring are reproduced in Table 10.2. Simulation studies of robustness of
the proportional hazards assumption found the correct selection probabilities to be
above 0.80 for moderate departures from the assumption.

As with binary outcomes, the sample sizes become less practical when there are
more than three groups or the hazard ratio between the worst and the best groups is
smaller than 1.5.

Table 10.2 covers scenarios where the patient enrollment period is similar to the
median survival of the worst groups. It does not encompass situations where these two
quantities are quite different. Since the effective sample size for exponential survival
distributions is the number of uncensored observations, the actual numbers of expected
events are the same for the different rows in Table 10.2. For a 0.90 correct selection
probability, Table 10.3 gives the approximate number of events needed per group for
the worst groups. With [I dF as the proportion of censored observations, where I and F
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TABLE 10.2

Sample Size per Treatment for Exponential Survival Outcomes with

1 Year Accrual and 0.90 Correct Selection Probability

K=2 K=3 K=4
HR= HR= HR= HR= HR= HR= HR= HR= HR=
Median  Follow 1.3 1.4 1.5 1.3 1.4 1.5 1.3 1.4 1.5
0.5 0 115 72 51 171 107 76 206 128 91
0.5 71 44 31 106 66 46 127 79 56
1 59 36 26 88 54 38 106 65 46
0.75 0 153 96 69 229 143 102 275 172 122
0.5 89 56 40 133 83 59 160 100 70
1 70 44 31 104 65 46 125 78 55
1 0 192 121 87 287 180 128 345 216 153
0.5 108 68 48 161 101 72 194 121 86
1 82 51 36 122 76 54 147 92 65
Source: Liu, PY. et al., Biometrics, 49, 391, 1993.
Median=Median survival in years for groups 1 through K — 1; Follow =Additional follow-up in years

after accrual completion; HR =Hazard ratio of groups 1 through K — 1 vs. group K.

TABLE 10.3
Expected Event Count per
Group for the Worst Groups for
Exponential Survival and 0.90
Correct Selection Probability

AW X

HR
1.3 1.4 1.5
54 34 24
80 50 36
96 60 43

HR =Hazard ratio of groups 1 through K—1

vs. group K.

are the respective cumulative distribution functions for censoring and survival times,

readers may find the expected event count more flexible for planning purposes.

10.3 VARIATIONS OF THE DESIGN

10.3.1

DEsIGNs wiTH MINIMUM ACTIVITY REQUIREMENTS

Though the selection design is most appropriate when adequate therapeutic effect is
no longer in question, the idea of selection is sometimes applied to randomized phase



Phase Il Selection Designs 155

I trials when anti-cancer activities have not been previously established for the treat-
ments involved. Alternatively, the side effects of the treatments could be substantial
that a certain activity level must be met in order to justify the therapy. In such cases,
each treatment arm is designed as a stand-alone phase II trial with the same accep-
tance criterion for all arms. When more than one treatment arms are accepted, the
observed best arm is selected for further study [8,9]. The design typically specifies
a null activity level which does not justify the further pursuit of a treatment, and an
alternative activity level that would definitely render a treatment worthy of more
investigation. The sample size and an end-of-study acceptance criterion signifying
rejection of the null hypothesis are then specified, with the one-sided type I error
rate and power often set at 0.05 and 0.90, respectively. When there are K arms with
selection as the end goal, we recommend Bonferoni adjustment of the individual
arm’s type I error rate in order to maintain the study-wide type I error at 0.05. In the
following sections, we examine the correct selection probability from these designs.

10.3.1.1 Binary Outcomes

For binary outcomes, standard designs without a selection component have been
well developed; see overview of phase II designs by Green in Chapters 7 and 16.
Table 10.4 lists three such designs.

Designs Bl and B2 represent typical situations in new agent testing for cancer
treatment, where moderate tumor response rates in the 20%—-30% range already war-
rant further investigations. Design B3 is more for theoretical interest when response
rates are near 50%.

TABLE 10.4
Three Phase Il Designs for Binary Data
Nominal N per  Acceptance
K o per Arm Arm Level Exacta  Exact Power

Design B1: Null level=5%, alternative level=20%

2 0.025 45 >6/45 0.0239 0.91
3 0.0167 50 >7/50 0.0118 0.90
4 0.0125 50 >7/50 0.0118 0.90

Design B2: Null level=10%, alternative level=30%

2 0.025 36 >8/36 0.0235 0.89
3 0.0167 40 >9/40 0.0155 0.89
4 0.0125 45 >10/45 0.0120 0.91

Design B3: Null level=40%, alternative level=60%

2 0.025 62 >33/62 0.0239 0.89
3 0.0167 69 >37/69 0.0151 0.89
4 0.0125 75 >40/75 0.0133 0.90

2 Response rates signifying treatment worthy of further investigation.
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Assume the same true response rate configuration as in Table 10.1, thatis, P, =...=
Py _, <Py, for designs B1-B3. Table 10.5 indicates that, when the true P, and P val-
ues are the same as the null and alternative design parameters respectively, that is,
5%/20% for Design B1, 10%/30% for Design B2, and 40%/60% for Design B3, the
chance of a correct selection result is approximately the same as the design power,
0.90, in all three cases. In other words, the operating characteristics of the phase II
design dominate in this case and the chance of an inferior arm’s passing the accep-
tance level and further surpassing the best arm is negligible. When the true P, and Py
are far higher than the null and alternative levels of the phase II design, all arms will

TABLE 10.5
Correct Selection Probabilities for Binary Data Designs with
Minimum Acceptance Level® (3000 Simulations)

Design B1, testing 5% vs. 20%, true Py — P,=15%
True P,/P} 5%/20% 10%/25%  15%/30%  20%/35%  30%/45%

K=2 0.91 0.96 0.95 0.94 0.91
K=3 0.89 0.95 0.92 0.90 0.87
K=4 0.90 0.92 0.90 0.88 0.84

Design B2, testing 10% vs. 30%, true Py — P,=15%
True P,/Py 10%/25%  15%/30%  20%/35%  30%/45%  40%/55%

K=2 0.71 0.86 0.90 0.89 0.88
K=3 0.69 0.85 0.87 0.83 0.82
K=4 0.71 0.85 0.85 0.80 0.80

Design B2, testing 10% vs. 30%, true P, — P;=20%
True P,/Py 10%/30%  15%/35%  20%/40%  30%/50%  40%/60%

K=2 0.89 0.95 0.96 0.95 0.94
K=3 0.88 0.94 0.94 0.91 0.93
K=4 0.90 0.95 0.93 0.93 0.92

Design B3, testing 40% vs. 60%, true P, — P;=15%
True P,/Py 40%/55%  45%/60%  50%/65%  55%/70%  60%/75%

K=2 0.66 0.88 0.95 0.95 0.96
K=3 0.62 0.86 0.92 0.92 0.94
K=4 0.65 0.88 0.90 0.93 0.93

Design B3, testing 40% vs. 60%, true P, — P;=20%
True P,/Py 40%/60%  45%/65%  50%/70%  55%/75%  60%/80%

K=2 0.88 0.97 0.98 0.99 0.99
K=3 0.88 0.96 0.98 0.98 0.99
K=4 0.90 0.97 0.98 0.99 0.99

¢ Probability of the true best arm passing the acceptance level and being the observed
best arm.
> Pl=..=Pg_,
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meet the acceptance requirement and selection design properties take over. When
Py — P,=15%, Table 10.1 results can be used as a general guide for correct selection
probability. For example, when K=2, the per arm sample sizes of 45, 36, and 62 in
Table 10.4 compare favorably with the highest N of 37 from Table 10.1; therefore, the
correct selection probabilities are generally 0.88 or higher when minimum accep-
tance level is easily met by the best arm. However, when P,=30%, Py =45%, and
K =4, per Table 10.1, the N required per arm is 62 for an approximate 0.90 correct
selection probability. The corresponding N for K=4 in Designs Bl and B2 are 50 and
45, respectively; therefore, the correct selection probabilities in Table 10.5 are less
than 0.90. When Py — P, =20%, as is the distance between the alternative and null
values for Designs B2 and B3, correct selection probabilities are approximately 0.90
or higher in all cases examined.

In general, applying Bonferoni adjustment to per-arm type I errors performs ade-
quately with respect to correct selection probabilities in the situations examined, of
which the parameter ranges cover most cancer trial applications. The approach is
appropriate when the emphasis is on the initial step of screening the treatments for
minimum acceptable anti-tumor activities. If meeting the minimum activity level is
relatively assured and the emphasis is on selection, it would be more appropriate to
design the trial with the larger sample size between what is required for the phase 11
and the selection portions.

10.3.1.2 Survival Outcomes

The approach for binary outcomes can be applied to survival outcomes as well.
With Bonferoni adjustment for type I errors, phase II designs with null and alter-
native hypotheses are used first to test the minimum acceptance level. Selection
ensues when two or more arms are accepted. Assuming exponential survival and
uniform censoring, Table 10.6 lists correct selection probabilities for one scenario
from Table 10.2. The results are generalizable to other accrual and follow-up length
combinations since the event count, hazard ratio, and the number of arms, which are
represented here, are the determinants for power or selection probability under the
exponential assumption.

Similar to binary data results, when the null median m, =0.75 and my/m,=1.5 as
designed, the phase II operating characteristics dominate and the correct selection
probability is approximately 0.90—the same as the individual arm’s planned power.
The correct selection probability is poor when m,;=0.75 and my/m,=1.3. When the
worst median is higher than the null level of 0.75, selection properties begin to apply.
For example, for Design S3, K=4, N=147 per arm and the worst median is 0.95, the
expected exponential event count is 75 with 1 year accrual and an additional 0.5 year
follow-up. Compared to Table 10.3, the event count required for 0.90 correct selection
probability is 96, 60, and 43 for my/m,=1.3, 1.4, and 1.5, respectively, thus explaining
the corresponding correct selection probabilities of 0.86, 0.93, and 0.97 in Table 10.6.

10.3.2 DEsiGNs WiTH MINIMUM ADVANTAGE REQUIREMENTS

Some authors propose changing the selection criterion so that the observed best treat-
ment will be further studied only when its minimum advantage over all other treatments
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TABLE 10.6

Correct Selection Probabilities for Exponential Survival Design® with 1 Year
Accrual, 0.5 Year Follow-Up and Minimum Acceptance Level (3000
Simulations)

Correct Selection Probability for m/m,> =

True m, 1.3 1.4 1.5
Design S1: K=2, N=124 per arm, observed median acceptable if >0.95

0.75 0.57 0.78 0.91
0.85 0.84 0.94 0.97
0.95 0.90 0.96 0.98
Design S2: K=3, N=137 per arm, observed median acceptable if >0.96

0.75 0.53 0.77 0.89
0.85 0.84 0.93 0.97
0.95 0.88 0.95 0.98
Design S3: K=4, N=147 per arm, observed median acceptable if >0.96

0.75 0.54 0.77 0.90
0.85 0.83 0.93 0.97
0.95 0.86 0.93 0.97

@ All designs are for detecting a hazard ratio of 1.5 over the null median of 0.75 with one-sided 0.05/K
type I error and 0.90 power for each arm.

b - =
m=...=myg_,<my.

is greater than some positive A; otherwise, the selection will be based on other factors.
Table 10.7 gives some binary data sample size requirements [3—5] for A=0.05.

While this approach is appealing because the decision rule is easier to carry out in
practice, the sample sizes required generally more than double those in Table 10.1. For
example, for K=2, P,=35%, P,=50%, and 0.90 correct selection probability, it can be
interpolated from Table 10.1 that 36 patients per treatment are required for A=0. With
the same configuration, the required number of patients is 75 per group for A=5%.
Clearly when A>5%, the sample size requirement would be impractical. Even with
A=5% and 75 patients per group, the results are by no means definitive when a greater
than 5% difference is seen. When P,=P,=35% and N=75, the chance of observing
Ip, = p,I>5% is approximately 52% (where p, and p, are the observed proportions; P,
and P, are the true proportions). On the other hand, with A =0 and N =36 per Table 10.1,
the chance of observing Ip, — p,1>5% is approximately 0.81 when the true P,=35% and
P,=50%. Therefore, with an incremental gain in the probability of correctly observing
a A>5% but double the sample size, this approach may only be practical when patient
resource is plentiful. While precision is improved with the larger sample sizes, the
results are nevertheless non-definitive.

10.3.3 DesigNs IN WHICH ONE OR MORE ARMS ARE FAVORED

In some situations, it might not be appropriate to allow all of the arms an equal chance
of being selected. An example might be a selection between two experimental arms
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TABLE 10.7

Sample Size per Treatment for Binary
Outcomes and 0.90 Correct Selection
Probability When Requiring an Absolute
5% Minimum Advantage for Selection

Response Rates (%) N per Group
Piyees Pe_q Py K=2 K=3 K=4
5 20 32 39 53
15 30 53 77 95
25 40 71 98 119
35 50 75 115 147

Sources: Sargent, D.J. and Goldberg, R.M., Stat. Med.,
20, 1051, 2001; Lui, K.J., Stat. Med., 21, 625,
2002; Sargent, D.J., Stat. Med., 21, 628, 2002.

where one of the arms is known to have much more severe side effects. In such a
case, a variation on the design with a minimum advantage requirement as described
earlier could be utilized. Although this design can be applied to more than two arms,
for the sake of simplicity this discussion will be limited to the two-arm case. In this
design, one arm is favored over the other. That arm is always chosen unless the non-
favored arm has an observed positive advantage >A. That is, to be selected, the non-
favored arm must not only perform better but also “beat the point spread.” This is not
to be confused with a randomized phase II design, in which a formal hypothesis test
between the two arms is performed.

10.3.4 DESIGNS FOR ORDERED TREATMENTS

When the K (>3) treatments under consideration consist of increasing dose sched-
ules of the same agents, the design can take advantage of this inherent order. A
simple method is to fit regression models to the outcomes with treatment groups
coded in an ordered manner. Logistic regression for binary outcomes and the Cox
model for survival are obvious choices. A single independent variable with equally
spaced scores for the treatments could be included in the regression. If the sign of
the observed slope is in the expected direction, the highest dose with acceptable
toxicity is selected for further study. Otherwise, the lowest dose schedule would
be selected.

Compared to the non-ordered design, this approach should require smaller sam-
ple sizes for the same correct selection probability. Limited simulations were con-
ducted with the following results. For binary data with K=3, P,=40%, P;=55%,
P, <P, <P,, approximately N=35 per arm is needed for a 0.90 chance that the slope
from the logistic regression is positive. Compared to N=55 given in Table 10.1, this
is a substantial reduction in sample size. Similarly, for K=4, P, =40%, P,=55%, P, <
P,<P,<P,, 40 patients per arm are needed instead of 67. For exponential survival
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data with a 1.5 hazard ratio between the worst groups and the best group, approxi-
mately 28 and 32 events per group are needed for the worst groups for K=3 and 4,
respectively, as compared to 36 and 43 given in Table 10.3.

10.4 CONCLUDING REMARKS

The statistical principles of selection design are simple and adaptable to various situ-
ations in cancer clinical research. Applied correctly, the design can serve a useful
function in the long and arduous process of new treatment discovery. However, as
mentioned in the beginning, the principal misuse of the design is to treat the results
as ends in themselves without the required phase III investigations. We previously
published the false positive rates of this misapplication [6]. It was shown that impres-
sive looking differences arise with high frequencies purely by chance with selection
design sample sizes. We also pointed out that performing hypothesis tests post-hoc
changes the purpose of the design. If the goal is to reach definitive answers, then a
phase III comparison should be designed with appropriate analyses and error rates.
Testing hypotheses with selection sample sizes can be likened to conducting the
initial interim analysis for phase III trials. It is well known that small sample type I
error assessments are unstable and extremely stringent p-values are required to “stop
the trial” at this early stage.

Finally, when historical benchmarks are not available for setting a minimum
acceptance activity level, the inclusion of a standard or control treatment in a selec-
tion design should be utilized with caution. Without a control arm, any comparison
between the current standard and the observed best treatment from a selection trial is
recognized as informal because the limitations of historical comparisons are widely
accepted. When a control arm is included for randomization, the legitimacy for com-
parison is established and there can be great temptation to interpret the results lit-
erally and “move on.” If there are no efficacy differences between treatments, the
chance of observing an experimental treatment better than the control is (K- 1)/K,
that is, 1/2 for K=2, 2/3 for K=3, etc. Again, an observed advantage for an experi-
mental treatment simply means its substantial inferiority is unlikely so that further
testing may be warranted and must be conducted for definitive comparisons.
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11.1  INTRODUCTION

Patients registered to a Phase II study often are heterogeneous and may not be
expected to respond equally to a new treatment. Tumors can consist of multiple sub-
types diagnosed either histologically or by molecular methods. For example, soft
tissue sarcomas or non-Hodgkin lymphomas have multiple subtypes that can be
identified by microscopic inspection of the tumor sample. Similarly, newer genomic
measurements such as gene expression or comparative genomic hybridization on
these tumors can now lead to refinement or regrouping of patients for clinical stud-
ies. For instance, expression of measures of HER2, EGFR, VEGF may influence the
expectation of response by certain drugs in some tumors. While we are specifically
interested in Phase II studies in oncology, our ideas relate more broadly to the use of
biomarker or subtype information in the design of clinical experiments.

163
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In this chapter we present a simple strategy for dealing with tumors with multiple
subgroups or histologies. We build our proposal on a traditional design for simple
one-arm study in oncology. For such studies, activity is often not fully understood,
and for ethical and patient resource reasons the designs have multiple stages (often
two stages) where one can stop earlier and declare futility if insufficient activity is
seen (Simon 1989; Green and Dahlberg 1992; Green et al. 2002). At the end of the
first stage, typically accrual is halted until sufficient data have been submitted and
analyzed at the statistical office to determine if the study should be re-opened to
accrue to the next stage.

A problem with a single stratum Phase II study is that it uses the overall response
rate (or another summary statistic), and if efficacy truly varies among subgroups
of patients, strata with good efficacy will be combined with those with limited or
no activity and may falsely lead to an overall negative conclusion. A schematic of
single-arm study that includes multiple subtypes of disease, A, B, or C, is included
in Figure 11.1. Alternatively, one can conduct multiple strata specific studies, with
each strata having its own accrual goal and efficacy estimate with no mechanism
for “joint learning” across the strata. However, it may be clear that there is overall
limited activity in all strata at some point, but separate individual analyses may not
lead to enough evidence to stop each stratum and hence accrual will continue. An
example of a published clinical study for soft tissue sarcoma in the literature using a
“joint learning” via Bayesian methods is Chugh et al. (2009).

Our goal is to present flexible frequentist Phase II strategies that are inclusive
with respect to the patient population, but with appropriate subgroups acknowledged
in the designed hypothesis testing and subsequent analyses. Figure 11.2 shows two
options. Where the relative expected activity is not known between the strata, we
would run a Phase II study with multiple subgroups, but with testing that includes
both the subgroups and a combined test. This is represented by the left panel. In the
situation where there is an expected ordering, for instance decreasing expression
of some tumor based on a drug target, we propose an alternative testing strategy,
represented by a sequence of nested sets or circles in the right panel of Figure 11.2.

One study Three subgroup specific studies

FIGURE 11.1 Representation of a single phase II study versus several subgroup specific
studies.
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Multi-subgroup study Targeted subgroup study

FIGURE 11.2 Representation of a multiple disjoint subgroup phase II study versus nested
targeted study.

We demonstrate the properties of our multiple subgroup Phase II method in
terms of simulations motivated by a multi-histology sarcoma study with clinical
response as the primary endpoint. While we choose to implement the design with
multiple interim futility analyses, the strategy is more general; the essential idea is
that for Phase II studies there are potential gains (in expected sample size or power)
for using a combination of subgroup and overall analyses while appropriately char-
acterizing the overall design statistical error rates. While much of our proposal
appeared in LeBlanc et al. (2009), here we clarify the futility testing and p-value
calculations and provide additional simulations to better understand the properties
of the strategy.

11.2  PHASE Il DESIGN WITH MULTIPLE SUBTYPES

We consider a strategy that tests both within each subtype and combined across
subtypes. The design is presented in terms of binary response data or disease con-
trol rate at some specific time point, but the same methods could easily be extended
to time-to-event patient outcomes. For instance, the parameter estimates given in
Section 11.2.1 could be hazard estimates or non-parametric estimates appropriate
for survival data.

Denote a clinical response model for the outcome of interest for K subgroups
or disease subtypes R,:k=1,..., K, where individuals in subgroup k with outcomes
(responses) are modeled as

Y, =1 with probability 6,
0 with probability 1-0,
We assume that that different subtypes of patients register to the study at a rate pro-

portional to the frequencies of the subtypes of the disease v,. Simple estimates of the
response rates for each stratum are estimated proportions (fraction of patients with



166 Handbook of Statistics in Clinical Oncology

response Y, =1 for each stratum ék) and the overall estimate is the fraction of patients
with Y, =1 over all & strata 0.

We propose a sequential design, motivated by traditional two-stage Phase II
designs, and assume that at least n)"" patients will be accrued to any stratum before
considering testing for futility against the alternative hypothesis 6, and that a maxi-
mum number of patients, n;"”, can be accrued to any stratum. In addition to the
subgroup analysis, the patients on study as a whole are combined and the design tests
for futility when a minimum n™" patients have been accrued. The maximum size of
the study is n™%* patients, where n”* is less than or equal to the number of patients
which would be accrued at full accrual for all strata, Kn;'“.

As a practical issue, even in a single-arm study, a temporary closure while waiting
for patient outcome (response) information to be forwarded to the statistical office
can lead to diminished enthusiasm and subsequent accrual rates. Given the assump-
tion of multiple strata, we focus on the case where responses are assumed to be
available relatively quickly, as temporary closures on multiple strata would likely
exacerbate the problems seen in single stratum studies. Therefore, we will also pro-
pose to analyze the data when each group of ¢ (say 5 or 10 patients) is registered to
the study after achieving some minimum sample size. An alternative would be to
analyze after each fixed number of patients are evaluated for response (say 4 months
after registration) rather than just based on accrual. We note that this idea works with
response, short-term disease control rates or short-term (<4 month) progression-free
survival. Furthermore, even if multiple interim analyses are not feasible for a given
disease, a design with a single interim analysis using the combined and subgroup
testing would still have some attractive sample size and power properties relative to

separate Phase II studies for each subtype of the disease.

11.2.1  UNORDERED SUBGROUPS

We test the alternative hypothesis within each subgroup. The p-value for the alterna-
tive hypothesis is the chance of observing success rate as small as or smaller than the
observed rate under the alternative hypothesis 6,

p/? = Pr(e*jk =< é]k| GA)

The success proportion is defined as 0, =r;/n; where r; is the number of successes

when n;, patients are assessed for response at analysis time j where nj = n"". If the
subgroup test is rejected at an analysis, py < o4, testing at level a,, then accrual to
that stratum is discontinued, but continues for the remaining strata. To improve the
probability of stopping early in the event of limited (or no) activity, the data are also
combined across the subtypes and we test the overall alternative hypothesis. The
p-value for the overall test is calculated, as the chance or probability the combined
rate would be as small as or smaller than the observed success rate

p= Pr(e*j < éjléA)



Phase Il with Multiple Subgroups 167

where r; is the total number of successes across all strata when n; patients are assessed
for response at analysis time j. As in the subgroup tests, the alternative overall test is
calculated only after a prespecified number of patients are accrued, n™". Therefore,
all overall tests of the alternative are conducted with sample sizes, n,2n™". If the
overall test of the alternative is rejected, pA<a,, then accrual to the entire study is
terminated. We think it is sensible for the overall alternative to be set closer to the
null hypothesis than the alternative of interest for a subgroup or histology, 0,<0,.
For instance, while a subgroup alternative value for response probability could be
0,=0.3 (for a null response probability 6,=0.1), a smaller treatment activity may be
of interest for the study as a whole; hence, in this case, an alternative of §,=0.2 may
be appropriate. Therefore, one could pick the 8,=v0,+ (1 —y)0, where v is a fraction
between 0 and 1 where that is thought of as the minimum fraction of patients achiev-
ing the subgroup alternative to be of interest in an overall comparison. For example,
if we choose y=0.5 or moving 50% of patients to the subgroup, this motivates the
0,=0.2 alternative hypothesis (0.2=0.5x0.3+(1-0.5)x0.1.

After completing accrual, the p-value corresponding to the test of the null hypoth-
esis is

pi= Pr(e*jk = 0] 90)
for each stratum and the p-value of the null hypothesis test is

»° =Pr(e*j =0, |eo)

for the combined group. The subgroup null hypothesis would be rejected if PL < oy
or the overall patient group rejected if p®<a,; we think it will usually be sufficient
to keep the subgroup and overall Type | specification equal, oy,=a, if one sets
a,=0.05, leading to a larger overall experiment-wise Type 1 error rate greater than
o,; but we calculate it for a given design.

An important aspect of the design is the selection of sample sizes per stratum, 7,""
and ny"", corresponding to a possible first test of the alternative hypothesis and maxi-
mum stratum sample size for each stratum s, and similar sample sizes for the entire
study, 7 and n™e*, We propose using a standard two-stage design to pick n"" and
ny' as done by Green and Dahlberg (1992), or Green et al. (2002). The same strategy
is used to pick the overall sizes based on null and alternative hypotheses 0, and 0,.

We think a desirable property of the method is that a single stratum is stopped
only for futility outcome data associated with that stratum. Negative results in one
stratum lead to stopping accrual of patients to other strata only if the combined
results cause rejection of the alternative hypothesis. However, more complex bor-
rowing or learning could potentially reduce variance and lead to greater savings in
sample size. This has been done in the literature using Bayesian methods such as
those implemented by Thall et al. (2003) and Thall and Wathen (2008). The poste-
rior probability of the stratum specific response rates can be used to guide stopping
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accrual. However, we believe non-Bayesian borrowing strategies could also be uti-
lized. For instance, simple ridge regression shrinkage could be used as a bridge
between the single stratum analysis and combined analysis. One could replace the
aforementioned individual stratum estimates with

éjk = Yéj +(1—Y)éjk

for each subgroup and the p-values for futility testing could be evaluated as done
previously. While the shrinkage factor y needs to be chosen, one or a small number
of values (say 0.2 and 0.5) might be reasonable to encourage borrowing for futility
testing. While ad hoc, the full frequentist properties can be evaluated.

11.2.2 ORDERED OR TARGETED SUBGROUP

For some drug and disease combinations, it is strongly suspected that the drug will
have greatest activity within a subtype of disease or a group of patients expressing
a marker or combination of markers. In that case, a special subgroup and overall
design can be used. Of course there still needs some belief of the potential efficacy
for the drug outside the targeted subgroup to make it appropriate to include a broader
group of patients. Targeted or nested subgroup design and analyses in the Phase III
setting were developed by Hoering et al. (2008).

In this case, one may focus on accrual both within the subgroup and total for the
study. Consider the target test of the alternative hypothesis

ptA =Pr(e*jt Séjt |9A,)

where éj, is the success or response estimate in the targeted subgroup consisting
the n;, patients in the strata ke S, where S is the set of strata indicating the tar-
get or most promising biologic group. In this case, the alternative hypothesis of
interest, 0,,, corresponds to the targeted subgroup. Once sufficient patients are
accrued to the target group, the test of the targeted subgroup alternative hypothesis
is conducted. If the target test is rejected, then entire study is closed. There is an
important difference between this study design and the unordered subgroup case
described in the previous section. Here, given sufficient understanding or of the
target and drug, one may be willing to infer that lack of efficacy for the targeted
subgroup implies overall futility, and not just for a subgroup of patients. Given that
ordered hypothesis, the design will lead to smaller sample sizes under the null than
the unordered design. At the end of accrual, there are tests of the null hypothesis
for both the targeted group:

p,O = Pr(exﬂ = éjr ‘90)
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and the test for the overall group with p-value defined as p°. The overall experimen-
tal null hypothesis is rejected if either of the two p-values is less than a. This leads
to the potential for improved power when there is substantial activity in the targeted
subgroup but little or no improved activity in the other strata. The sample size for
testing the null hypothesis in targeted group can be set using (Green and Dahlberg
1992); however, if the targeted null hypothesis is rejected (and drug assumed to be
promising), one would likely want to have reasonable stratum specific estimates of
response rates. Therefore, one may also want to allow the targeted group to accrue to
the total of the stratum specific sample sizes, unless there is a decision to stop early
for futility.

11.3 SIMULATIONS BASED ON SOFT TISSUE SARCOMA

11.3.1  UNORDERED SUBGROUPS

We will use simulations based on a prior SWOG cooperative group soft tissue sar-
coma study (von Mehrun et al. 2011). The study was conducted to test sorafenib,
which is an agent with multiple molecular targets that may be of relevance in soft
tissue sarcomas. The drug was potentially interesting because several subtypes of
adult high-grade soft tissue sarcomas were known to express VEGFR and PDGFR
in these tumor types.

The primary objective of the Phase II study was to assess the clinical response
probability (confirmed complete response and partial response) in patients soft tis-
sue sarcoma, with the most frequent histologies assumed to be high-grade leiomyo-
sarcoma or high-grade liposarcoma, and several other histologies (angiosarcoma,
hemangiosarcoma, and hemangiopericytoma) combined into the third stratum. Our
design-specified response would be assessed within histologic subtypes as well as
combined over all subtypes. We note that the design actually used in the SWOG
study only assessed clinical responses at a limited number of times.

Each hypothetical Phase II multi-subtype clinical trial was generated with sub-
type frequencies: Subgroup 1 leiomyosarcoma (50%), Subgroup 2 liposarcoma (30%),
and Subgroup 3 angiosarcoma/hemangiosarcoma/hemangiopericytoma (20%). We
assumed that the probability of response for all three strata was 6,,=0.05 under the null
hypothesis and the alternative hypothesis of subgroup alternative response probability
was 0,=0.25. The overall alternative hypothesis response rate was set at 0, =0.15.

We generated simulated data where each of the three strata had a maximum sam-
ple size of 25 patients. Futility testing is first conducted after 15 patients have been
accrued to any stratum. Overall futility testing (testing the alternative hypothesis)
is first done after 30 patients have been accrued in total. An overall maximum of
75 patients that can be accrued was set for the study design. The Type 1 error for
the futility analyses based on testing of the alternative hypotheses was o, =0.02,
similar to that of Green and Dalhberg (1992), and testing of the null was specified
with a;=0.05. To encourage a smaller overall expected sample size when there is
limited activity, futility analyses were conducted after every five patients accrued. In
practice, this will be done after five patients are assessable for response rather than
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accrued. To estimate properties of the design, we generated 5000 simulated clinical
trials and we evaluated following four hypothetical scenarios:

1. No improved activity: 0,=0,=0;=0.05.

2. Improved activity in frequent subtype: 6,=0.25, 6,=0;=0.05.
3. Improved activity in infrequent subtype: 8,=06,=0.05, 6,=0.25.
4. Limited activity in all subtypes 6,=6,=0,=0.15.

We evaluated some important aspects of Phase II designs, the expected sample
size for the new design N(SubT), the expected sample size for the simple Phase II
study in each stratum N(Simple), power for stratum specific studies Power(Simple),
and power for new design Power(SubT). Therefore, N(SubT) is the sample size using
subgroup efficacy testing but with combined or overall group futility testing and
Power(SubT) is power for subgroup efficacy test with combined futility testing. An
additional piece of information provided in the tables is the conditional probability
of rejecting the null hypothesis for the specific stratum, given either the overall or the
stratum-specific hypotheses have been rejected. We include the target accrual and
the experiment-wise power in the individual figure captions.

Under the null hypothesis that the response rate is 5% in all three strata, as pre-
sented in Table 11.1, there is considerable reduction in the expected sample size
by using the additional combined futility testing. Overall, the reduction is approxi-
mately 18% with the biggest reductions in expected sample size observed for the
infrequent histologies. Table 11.1 shows that the Type 1 error for each stratum is
less than o;=0.05 due to the futility testing. While one could modify the individual
stratum tests to control the overall Type 1 error, we choose to just report the overall
error. The experiment-wise Type 1 error is inflated due to the multiple strata, with
the separate stratum analysis of 10% and with the combined (SubT) strategy 8.4%.
The slightly smaller Type 1 error is due to combined group futility testing.

The second scenario (Table 11.2) investigates the case where the compound was
only effective in the frequent subgroup (which we assume to be 50% of the patients
with soft tissue sarcoma). The strategy of using multiple strata specific Phase IIs and
the combined strategy yield similar expected sample sizes. Importantly, under the
alternative, the conditional probability of rejecting the null hypothesis for that stratum

TABLE 11.1
No Improved Activity

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.05 20.10 0.04 18.74 0.03 0.31
2 0.30 0.05 20.10 0.03 16.69 0.03 0.37
3 0.20 0.05 20.69 0.04 14.70 0.02 0.28

Min stratum= 15, max stratum =25, min combined =30, max combined=75. Experiment-wise power
(Simp)=0.0996, experiment-wise power (SubT)=0.0842.
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TABLE 11.2
Improved Activity in the Frequent Subtype

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.25 24.86 0.89 24.66 0.89 0.99
2 0.30 0.05 19.94 0.04 19.82 0.03 0.04
3 0.20 0.05 20.53 0.03 20.19 0.04 0.05

Min stratum =15, max stratum=25, min combined =30, max combined=75. Experiment-wise power
(Simp)=0.8998, experiment-wise power (SubT)=0.903.

TABLE 11.3
Improved Activity in the Infrequent Subtype

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.05 19.97 0.03 19.73 0.03 0.06
2 0.30 0.05 19.99 0.03 19.55 0.03 0.05
3 0.20 0.25 24.89 0.90 23.27 0.83 0.99

Min stratum= 15, max stratum =25, min combined =30, max combined=75. Experiment-wise power
(Simp)=0.8998, Experiment-wise power (SubT)=0.903.

TABLE 11.4
Limited Improved Activity in All Subtypes

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.15 24.00 0.53 23.94 0.53 0.62
2 0.30 0.15 24.11 0.54 23.81 0.53 0.60
3 0.20 0.15 24.05 0.53 23.79 0.52 0.58

Min stratum= 15, max stratum=25, min combined =30, max combined=75. Experiment-wise power
(Simp)=0.897, Experiment-wise power (SubT)=0.9076.

given any rejection of the null for the combined method is 99%. In Table 11.3, the
case where the improvement is limited to the infrequent subtype (20% frequency), the
experiment-wise power for the combined strategy is 90% which is again approximately
the same as the individual subgroup trials strategy. The false study terminations for
overall futility also lead to a smaller sample size for the infrequent group. While the
comparisons for the simple method and new strategies are quite close for these two
scenarios, the comparison to a single combined study is striking. Even with sample
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size equal to the total sample size of the study (75 patients), a single combined analysis
for improved activity in an infrequent histology would only have power of 39%.

Finally, Table 11.4 shows that if sorafinib were approximately equally effective
in all subgroups, the combined strategy yields a power of 91% which is only slightly
higher than the probability of rejecting at least one of the individual strata (90%).
However, for a given stratum there is only an approximately 53%-54% chance of
rejecting the null hypothesis, potentially leading to falsely concluding negative
results for one or more subgroups. In summary, for the sarcoma study, the subgroup/
combined Phase II strategy leads to smaller sample sizes under the null and improved
power when there was limited efficacy across subtypes.

11.3.2 ORDERED OR TARGETED SUBGROUP

We also used the same trial characteristics to study the impact of a design where effi-
cacy is expected to be best within one or more subtypes. We assumed that the most
frequent and most infrequent subgroups were combined to make a targeted subgroup
containing about 70% of patients. Such a design would be useful if it were known (or
strongly believed) that those histologies or genetically defined subgroups were most
biologically suited to a particular treatment. For instance, tumors in those subgroups
might express the target molecule most highly among all histologies. Under this design,
given that we assume that the efficacy will be greatest in the targeted group, evidence
of a lack of efficacy for the targeted group implies overall futility, not just subgroup
futility. Therefore, the entire study would be closed if the targeted subgroup alternative
hypothesis is rejected. Note, while one could limit the total sample size of the subgroups
or combined subgroups expected to have greatest efficacy, we choose only to focus on
futility testing. Therefore, the targeted test of the null will be based on full accrual to the
stratum or strata representing the targeted group. A motivation for not stopping for the
potentially smaller sample size is that would likely still want to have good response rates
estimates within each of the subtype strata if the targeted null hypothesis is rejected.
Testing of the alternative hypothesis within the subgroup was conducted as
described in Section 11.2.2, with alternative response probability of 6,,=0.20. Under
the null hypothesis, the targeted design further reduced the sample size compared to
either of the individual subgroup analyses as shown in Table 11.5 (a 27% reduction

TABLE 11.5
No Improved Activity: Simple Subgroups or Targeted Method

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.05 20.01 0.04 17.95 0.03 0.44
2 0.30 0.05 20.13 0.03 14.09 0.02 0.28
3 0.20 0.05 20.72 0.04 12.46 0.02 0.32

Min stratum=15, max stratum=25, min target=20, max target=50. Experiment-wise power
(Simp)=0.0988, experiment-wise power (Comb)=0.0788. Target power=0.0288.
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TABLE 11.6
Active within Subgroup: Simple Subgroups or Targeted Method

Cond.
Stratum  Accrual Rate N(Simp) Power(Simp) N(SubT) Power(SubT) Prob.
1 0.50 0.20 24.60 0.76 24.44 0.75 0.84
2 0.30 0.05 19.86 0.04 19.75 0.03 0.04
3 0.20 0.20 24.64 0.75 24.24 0.74 0.82

Min stratum=15, max stratum=25, min target=20, max target=50. Experiment-wise power
(Simp)=0.9404, experiment-wise power (Comb)=0.9416. Target power=0.920.

in overall sample size). In addition, in Table 11.6, if the targeted strata had response
probability of 0.20 and remaining strata had a response rate of 0.05, the simulation
study showed that the targeted hypothesis significantly increased power (92%) (Type
1 error of 0.02) over individual subgroup analyses (approximately 77%) (Type 1 errors
of 3% or 4%) for the two strata corresponding promising subgroups. The experiment-
wise power of rejecting at least one of the strata was modestly higher than the exper-
iment-wise power of the strategy including targeting. But this was, in part, due to the
larger Type 1 error of the untargeted strategy compared to targeted 9.9% versus 2.9%.
The reduction in Type 1 error for the targeted method is a result of the more directed
futility testing that stops overall accrual if there is futility in the target subgroup,
compared to considering each stratum separately in the untargeted strategy.

11.4 DISCUSSION

The Phase II strategies presented in this chapter fit into the class of recently developed
methods for incorporating biologic subgroup variation into designed experiments. Our
proposed Phase II method for unordered subgroups can be a useful alternative to either
combining all groups to do a single Phase II study with a single endpoint evaluation
or conducting multiple separate studies each with separate analyses. The former has
the drawback of not acknowledging potential variation in activity in disease subtypes
which are likely to occur, and the latter strategy may be logistically difficult if diseases
are rare and the relative frequencies of subgroups cannot be well predicted before
activating the study. We conduct individual subgroup tests and the overall combined
tests all the while acknowledging the multiple testing properties of the design. The
combination strategy yields smaller sample sizes when the drug is inactive across all
strata and more power in cases when there is some activity across all strata compared
to conducting individual Phase II studies in the subgroups. In addition, by retaining
the stratum-specific tests, the design allows active subgroups to be identified.

While there are many variations for the Phase II design and implementation, we
believe our results support the general proposal of appropriate “borrowing” of infor-
mation in the Phase II setting where there are multiple biologic or histologic sub-
groups. For instance, for some diseases it may not be feasible to conduct as frequent
futility testing (e.g., after every 5—10 patients are accrued). We believe the combined
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subgroup and overall analyses would still be useful even if only one interim analysis
was possible. Furthermore, even in a single stage one-arm pilot study, the use of the
either the unordered or targeted tests of the null hypotheses for efficacy testing could
lead to improved overall power and insights into activity.

We have also chosen to use a method where futility stopping of a stratum only
depends on stratum specific data. We only borrow information across strata for futil-
ity testing for the entire study. As noted earlier in the chapter, one could choose to
borrow even for the stratum specific tests using the Bayesian proposals for multiple
histology Phase II studies (Thall et al. 2003; Thall and Wathen 2008), but we prefer
to evaluate the frequentist properties of any borrowing or shrinking method.

Another extension includes the use of time-to-event data. To evaluate progres-
sion-free survival and overall survival, one will typically need larger studies to
achieve sufficient power and increase the promise that large sample results hold.
Such studies may also be practically limited to a single interim or even no interim
analysis. One could consider parametric survival estimates hazard ratio estimates or
non-parametric estimates following work by Lin et al. (1996).

Software implementing this procedure is for response data available from the first
author.
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12.1 INTRODUCTION

Phase II/111, seamless phase II/111, and integrated II/II1 designs are terms that are used
interchangeably and refer to study designs that combine aspects of phase II drug devel-
opment and phase III drug development into one study. Phase II/III designs randomize
patients in the phase IT component and then include these patients in the phase III com-
ponent of the study. An intermediate end point is evaluated in the phase I component.

Historically, phase II studies have been designed to have a single arm and are
independent of a phase III. Phase II studies are used to screen agents for activity
before launching a large phase I1I study. Since there are many agents to screen and
many of the agents will provide no benefit, it is important to keep phase II studies as
small as possible. Traditionally, the sample size for phase II studies has been 15-40
patients. As described in other chapters, phase III studies require large sample sizes
since clinical benefit defined as overall survival (OS) or disease-free survival (DFS)
is the endpoint of interest.

Although there has been more interest in using phase II/III designs recently
(Goldman et al. 2008; Hunsberger et al. 2009; Parmar et al. 2008), the concept is not
new. For example, Ellenberg and Eisenberger (1985) and Schaid et al. (1990) both
proposed study designs that use the same patients to answer phase II and III ques-
tions, but the designs have rarely been used in practice in oncology. The renewed
interest in phase II/III studies has occurred because of the need to perform more
randomized phase II studies.

12.2  MOTIVATION FOR PHASE I1I/111 DESIGNS

The need for randomized phase II studies is a result of significant changes in the drug
development landscape in oncology. First, there are now agents known to extend
survival in many types of cancer. Along with studying the single agent activity of a

175
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new agent, it is also of interest to study new agents in combination with agents that
are known to be beneficial. Single-arm studies are less appropriate when studying
combinations that include an established active agent. Due to heterogeneity of the
population, some patients will respond to the active agent and some will not. An
increase in an observed response rate over a value defined by the historical single
agent response rate is difficult to interpret. The increase could be a result of accruing
more patients to the study who respond to the active single agent or it could be due
to the new agent. The only way to determine the population benefit of the addition of
the new agent is through a randomized study.

Second, new molecularly targeted agents are being developed with different
hypothesized mechanisms of action. Historically, antitumor activity has been evalu-
ated by using an endpoint such as tumor shrinkage. Currently, many new agents are
not expected to shrink tumors. It is thought that the molecularly targeted agents will
inhibit tumor growth and stabilize disease. Therefore, progression-free survival (PFS)
is often the endpoint of interest for phase II studies of molecularly targeted agents.
This endpoint is preferred to OS for phase II studies, since it may occur significantly
sooner than OS. Even when OS occurs early, it may not be a good endpoint for phase
IT studies, since often after progression patients are changed to a different therapy,
thereby potentially diluting effects on OS and leading to the need for large sample
sizes. Although PFS is a phase II endpoint of interest, it can be difficult to measure
accurately and is more affected by population heterogeneity than tumor shrinkage.
PFS can vary depending on individual patient characteristics; therefore, the median
PFS for a study can be influenced greatly by patient selection. Consequently, studies
involving molecularly targeted agents with PES as the endpoint must be randomized
in order to really learn if PFS has been increased with the new agent. Also, with
molecularly targeted agents, patients may be selected based on having a positive or
negative marker. If a population is selected based on a marker, there may be no his-
torical data for the response rate or PFS rate in that population (McShane et al. 2009).

Third, molecularly targeted agents often have nonoverlapping toxicities with che-
motherapeutic agents or very little toxicity, so it is of interest to study combina-
tions of molecularly targeted agents along with combinations of molecularly targeted
agents and cytotoxic chemotherapy. For all these reasons, an increasing number of
phase II trials are needed, and many of them will require randomization.

Randomized phase II studies require at least two times more patients than single-
arm phase II studies (Rubinstein et al. 2005). Given the increased number of regi-
mens to study, efficient use of patients is required. For some experimental regimens,
the same control arm would be used in a randomized phase II study and the phase
III study. In this situation, an obvious efficient use of patients would be to include
patients from the phase II study in the phase III study. A practical approach is to
consider phase II/III designs, where patients in phase II can also be used in phase III.

12.3 SPECIFICS OF I1I/111 DESIGNS

The elements of a phase II/III design are as follows: the overall sample size (total
number of patients) is calculated based on the phase III endpoint. The phase II com-
ponent of the study can be viewed as an interim futility analysis with an intermediate
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endpoint (Goldman et al. 2008). That is, patients are accrued to the study until a
specified number of patients are on study. At that point, an analysis based on an
intermediate endpoint (response or PFS) is performed. If a prespecified activity cri-
terion is met, accrual is continued to the study until the overall sample size is met.
All patients are then used in the phase III analysis (final analysis).

Challenges in designing phase II/III studies are the choice of the intermediate
endpoint (or phase I endpoint), the decision criterion for stopping, and timing of
the interim analysis. The intermediate endpoint should be related to the primary
endpoint in such a way that at a minimum, lack of effect on the intermediate
endpoint is a reliable indication of there being no effect on the primary endpoint.
(This is the standard assumption that has historically been made when using PFS
or response rate in single-arm phase II studies or randomized phase II studies.)
The intermediate outcome should be observed earlier than the primary endpoint.
If the intermediate endpoint is obtained late (or at a time that is not much different
from the primary endpoint), then the benefit of the interim analysis (or the chance
to stop the study early and save patients entering into the study) will be lost. The
stopping criterion should be such that there is a high probability of stopping the
study under the null hypothesis while having little impact on the overall power
of the study to detect a true benefit on the primary endpoint. The timing of the
interim analysis should be such that if the regimen is inactive, the study will stop
as early as possible during accrual but late enough, so that a reliable decision can
be made.

12.4 EXAMPLE

As a case study consider a Cancer and Leukemia Group B (CALGB) study of renal
cell carcinoma (RCC). It is a placebo-controlled randomized study of bevacizumab
in advanced RCC patients who have progressed after treatment with a tyrosine
kinase inhibitor. The combination of everolimus (mTOR inhibitor) and bevaci-
zumab (VEGFR inhibitor) is being compared to everolimus. Everolimus is approved
for second line treatment of RCC based on a PFS endpoint (Motzer et al. 2008).
Bevacizumab with interferon was shown to be an active combination in first line
RCC (Escudier et al. 2007; Rini et al. 2008). Due to nonoverlapping toxicities of
everolimus and bevacizumab, it was of interest to combine the two agents. A phase
II/1II design is of interest for the following reasons.

1. If the addition of bevacizumab to everolimus were shown to increase activ-
ity in a randomized phase II study, a phase III study with the same arms
would definitely be designed.

2. Although both agents have been shown to increase PFS neither has demon-
strated benefit on OS. Ultimately, the combination is only of interest if OS
is shown to be increased.

3. The primary endpoint of interest is OS, but there is no data to indicate
the addition of bevacizumab to everolimus increases activity. Obtaining the
activity data before investing in a large phase I1I study is essential.
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The actual phase II/111 study design is as follows. The total study size is 676 patients
with the primary endpoint being OS. With an accrual rate of 23 patients per month,
the study will need to accrue for 30 months. The minimum follow-up will be 34
months. An interim analysis based on PFS will be performed after 100 patients
have been followed for 4 months (since accrual will continue to the study while
the patients are being followed for 4 months, approximately 191 patients will be
on study). Patient accrual will continue if at the interim analysis, the estimate of
4 month PFS in the combination arm is at least 6% higher than the estimate in the
everolimus alone arm.

The total sample size was chosen, so that f, the probability of incorrectly con-
cluding no improvement in OS, would be less than 0.1 if the true median OS is
improved from 12 to 15.6 months (hazard ratio, HR=1.3). The calculation of the
total sample size did not take into account the interim analysis on PFS. At the end of
the study, a one-sided p-value less than 0.025 would be considered significant.

When the null hypothesis of no treatment effect on PFS is true, the study will
stop with probability 0.76. If the combination truly improves median PFS from 4 to
8 months (hazard ratio of 2) and improves OS from 12 to 15.6 months, the overall
probability of concluding a benefit of the combination is at least 0.855.

The choice of the phase II analysis time and criteria for continuing the study is
critical to phase II/111I studies and will be explored further for this example. The tim-
ing of the analysis will be determined by the type I and II error rates for the inter-
mediate analysis, o, and f3;, respectively. Here, ; is the probability of continuing the
study when the experimental agent is not active on the intermediate endpoint, and f3,
is the probability of not continuing the study when the experimental agent is active
on the intermediate endpoint. Accrual to the study will continue if the p-value of the
test comparing PFES in the two arms is less than «;. The selected o; defines (and lim-
its) the probability of continuing on to the phase III portion of the study when there
is no benefit of the experimental agent on the intermediate endpoint. When there is
no benefit on the intermediate endpoint, it is desirable to stop accrual to the study
early to avoid continuing on to a foreseeable negative phase III study (assuming the
predictive value of the intermediate endpoint). A measure of the impact of o is the
expected sample size, E[S], or the average sample size if the study were repeated
many times when the intermediate endpoint null hypothesis is true. It is given by
E[S]=n;+a;(N — n;) where n; is sample size at the interim analysis and N is the total
sample size. Under the null hypothesis, we would like E[S] to be minimized; how-
ever, as o; decreases, n, increases for fixed p; and N, so the relationship between «o;
and E(S) is not monotonic. Figure 12.1 shows the relationship between E[S], n;, and
o, for a specific example under the null hypothesis.

In Figure 12.1, N=676, ,=0.05 (the unusually small choice of ; will be described
later), and n; is calculated assuming PFS is the intermediate endpoint and follows an
exponential distribution with median of 4 months. The calculations use an accrual
rate of 23 patients per month and target a hazard ratio of 1.5 or 2 (this is equivalent
to an increase in median PFS to 6 or 8§ months).

In Figure 12.1, the solid line is used to show E[S] and the dashed line to show nj,
as o; varies. The figure shows that for small «;, n; is large and this increases E[S].
For the curves with HR=1.5, o;=0.2 minimizes E[S]. For o;=0.2, E[S]=365 and
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FIGURE 12.1 Relationship between expected sample size, E[S], the sample size in phase II
portion of study, n; (or before interim analysis), and o; for the RCC study example. The solid
line represents E[S] and the dashed line represents n;. The lines labeled PFS HR are for stop-
ping based on the PFS endpoint for different hazard ratios (HR). The lines labeled OS HR are
for futility monitoring based on OS. The total sample size is fixed at 676 and p3;=0.05.

n,;=287. The E[S] curve is relatively flat for values of o, between 0.2 and 0.3 but n,
decreases rapidly. For example, for o;=0.3, E[S]=372 and n,=241, which means
that n; has decreased by 46 patients while E[S] has only increased by 7. Therefore,
o, =0.3 is also a good choice for the interim analysis given the small increase in E[S]
and large decrease in n,. For the curves with HR=2, o, =0.10 minimizes E[S] with
E[S]=244 and n;=196. Again, the E[S] curve is relatively flat for an interval around
o;=0.1. For o;=0.15, E[S]=252 and n;=177. Here, o, =0.15 is also an adequate choice
for the stopping criteria.

The overall power is the probability of correctly concluding that the experimen-
tal treatment improves OS (given an interim analysis of PFS has occurred). In the
phase II/IIT setting, this probability depends on f3,, the probability of incorrectly
stopping a study when there is a true benefit on the intermediate endpoint and f
(the probability of concluding no benefit on OS if no interim analysis is performed).
A simple calculation assuming the intermediate endpoint and the final endpoint are
independent gives a lower bound on the overall power of the study. The overall power
is the probability of rejecting the null hypothesis at the interim analysis multiplied
by the probability of rejecting the null hypothesis at the end of the study given you
rejected the null hypothesis at the interim analysis, that is (1 —B)(I —p,), which, in
our example, is (1 -0.1) (1-0.05)=0.855. By examining this equation, it can be seen
that as B, decreases, the overall power increases. Typically, the intermediate endpoint
and the final endpoint will be positively correlated (not independent), so the overall
power will be between 0.9 and 0.855. We always assume that the treatment effects on
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the two variables are very highly correlated; otherwise, the intermediate endpoint is
not a good surrogate for the primary endpoint.

Although there is a loss in power by using the phase II/III design rather than a
phase III design with no interim analysis based on an intermediate endpoint, the
power comparisons must be interpreted carefully. If a phase III design with no inter-
mediate endpoint monitoring was performed, there would typically be an indepen-
dent randomized phase II study based on the intermediate endpoint. Therefore, the
correct comparison of power is to account for the phase II study before proceeding to
the phase III study. If the phase II study was designed to have power of 0.95 and the
phase III study to have power of 0.9, the overall probability of correctly concluding
a benefit on OS would also be 0.855.

In the example, an overall power of 85% was specified, if instead, an overall
power of 90% was desired, f; would need to be decreased from 0.10 to 0.05, since
power would be (1-f,) (1-p,)=(1-0.05) (1-0.05)=0.90. Now, p, is used in the
calculation of the overall sample size and as {3, decreases sample size increases. In
this example, if we use the same type I error rate (0.025), hazard ratio (1.3), mini-
mum follow-up (34 months), and accrual rate (23 patients per month), the overall
sample size would be 826 (rather than 676). A figure similar to Figure 12.1 could
be created for this new overall sample size. The «;’s that give the smallest E[S] are
smaller (0.1-0.2). This is due to the larger overall sample size. If o is large, the study
continues to the full size more often, which increases E[S] more dramatically. Thus,
continuing to the full study size is more costly and should be done with a lower prob-
ability of erroneously moving forward.

A variant of the phase II/I1I design with an interim analysis based on an interme-
diate endpoint is to perform an aggressive futility analysis on the primary endpoint.
This design does not work nearly as well for cases such as the one given, where the
median time to the primary endpoint is much longer than that to the intermediate
endpoint. In order to not impact power, the analysis must be performed late in the
study, and due to the much later event times, the continuation criteria must be very
low so that the study only stops in extreme cases. This is demonstrated in Figure
12.1, which shows the E[S] and n; as o; varies for the futility design based on OS.
In the Figure 12.1, the overall power is maintained at 0.855. Again, the solid line is
E[S], and the dashed line is n;. In this case, the null hypothesis involves OS. The fig-
ure indicates that o; =0.54 minimizes E[S]. For this criteria E[S]=520, n;=330. The
study will continue with an observed hazard ratio of 0.979 (or 11.8 month median
OS in the experimental arm), indicating that the placebo arm is performing slightly
better than the experimental arm. The E[S] curve is relatively flat until about o;=0.6,
with this criteria E[S]=523, n;=294, HR=0.931, 11.18 median OS for the experi-
mental arm. For both criteria, E[S] is 77% of the total sample size, whereas for the
designs, using the intermediate endpoint, E[S] was 36% of the total sample size.

12.5 DISCUSSION

Phase II/11I designs can be valuable designs in drug development, but they should
not be used for all studies. Several issues should be evaluated when considering
whether a phase II/III design is appropriate. A phase II/11I study can be considered
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when there is an intermediate endpoint that is related to the phase III endpoint, and
the intermediate endpoint can be obtained much earlier than the primary endpoint.
If such an endpoint is not available, then there would be no savings in doing a II/111
design.

A phase II/III design could be considered if a positive randomized phase II result
(even using a relatively high o;, such as 0.2 or 0.3, as suggested in the example) would
ensure moving to a phase III study. Typically, positive data from several single arm
studies in a specific disease type are required before a phase III study is launched.
For the phase II/III design, this may be the only phase II study in this disease type
or stage. Therefore, there should be other types of data that would provide justifica-
tion for a phase II/I1I study. For example, there may be evidence from other disease
types, strong evidence from phase I studies, strong evidence from a different stage
of disease, or a known molecular target that has shown activity in other settings with
this regimen.

The key assumption in the phase II screening component of oncologic drug devel-
opment for the past 50 years has been that a lack of effect on the intermediate end-
point is a reliable indication of there being no effect on the primary endpoint. This
assumption is also crucial for phase II/III designs. If this assumption is not valid, the
phase II component (either as an independent study or as part of a phase III study)
will substantially reduce the probability of finding a treatment benefit on OS.

There is little savings in terms of the expected sample size, E[S], for the design
with a futility analysis based on OS. However, the power does not depend on the
experimental treatment affecting an intermediate endpoint. Therefore, this design
could be considered when there is no intermediate endpoint that meets the previous
assumption.

There are disadvantages of the phase II/III designs. Developing the protocol for a
phase II/III design is complex and time consuming. It essentially requires develop-
ing a phase I1I protocol that requires more work than a phase II protocol. A phase III
study often requires more sites to commit to the study since potentially more patients
will be required. It may be possible to begin the study in a subset of sites for the
phase II component and then expand to more sites for the phase III component but
often this can lead to problems with sites not feeling invested in the study when they
did not have much say in the development of the study. Thus, accrual to the phase I1I
component may not increase as much as expected.

An unresolved issue is whether positive results from the phase II portion of the
study should be published before the end of the phase III study (note accrual and
treatment of patients would still be occurring). Typically, data from an interim analy-
sis of an ongoing study are not published. This practice has been established so that
doctors and patients will not base treatment decisions on unreliable information. For
phase II/III studies, if o; were chosen to be small, the phase II data may be the most
reliable data available and one could argue that these should be published. Then
again, publishing the data may negatively impact accrual to the study, since patients
would want to be treated with the most promising regimen. A similar issue arises
when an independent randomized phase II study is performed. Positive results from
the study will be published potentially making it impossible to perform a phase I1I
study. In a phase II/111 study, if o; were 0.2 or 0.3, publishing a positive phase II result
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early may result in treating patients with an experimental regimen when the prob-
ability of falsely concluding the regimen is active is high. The decision as to when
positive phase II results could be published should be considered carefully for each
study and clearly addressed in the protocol.

Although there are disadvantages and concerns to address, there are situations
where phase II/III study designs should be considered.
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13.1 INTRODUCTION

Randomization provides the basis for determining causality in scientific experi-
ments. While there are settings in medicine and public health where convincing
evidence may be obtained from nonrandomized studies, there is a clear shift toward
requiring the higher quality evidence obtained from well-designed randomized tri-
als. Rapidly changing diagnostic and disease assessment tools, the use of more sub-
jective endpoints, requirements for diverse patient populations, and modest effect
sizes all tend to weaken the inference from uncontrolled experiments. In oncology,
where historically a single-arm phase II trial has often been adequately informative,
randomized phase II trials are increasingly common.

Pure randomization, such as a simple coin flip, is almost never used in practice.
Such a procedure assures balance between arms only in expectation. Given that clin-
ical trials are almost never repeated, most researchers want to avoid the risk of a loss
of power that would arise with a noteworthy imbalance in the number of patients on
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each arm by restricting the randomization to assure some degree of balance. Equal
numbers in each arm are easily achieved but also considered insufficient, except
in large trials, since imbalance on important prognostic factors may also diminish
confidence in trial results. Hence the adage “block what you can and randomize what
you cannot” (Box et al. 1978) is often invoked in trial design.

Multiple strategies exist to incorporate covariate information in randomization
schemes. Kalish and Begg (1985) review a comprehensive list of treatment allocation
strategies. These allocation rules generally fall into three categories based on their
use of covariates: (1) rules that are independent of covariates, (2) rules that promote
balance marginally for each covariate, and (3) rules that balance the treatment arms
within each stratum. Another class of treatment allocation approaches, known as
“response adaptive” randomization schemes (Hu and Rosenburg 2006), have been
developed, which alter the probability of assignment to each arm over time based on
interim results of the trial. We elected not to consider these here, because they are
not well suited to the long-term and complex nature of randomized phase III trials in
oncology (but see Chapter 18).

Any constrained randomization scheme can be applied overall, ignoring covariate
information, or within strata defined by covariates (Hill 1951). Furthermore, a strati-
fied randomization approach that does not constrain the treatment assignments to be
approximately equal within strata does not introduce any true stratification. When
the ratio of sample size to strata is small, however, stratified randomization may
actually increase the potential for imbalance if balance is not adequately achieved in
each cell of the design. For these settings, covariate-adaptive randomization schemes
were developed to promote balance for each factor marginally (Taves 1974, Pocock
and Simon 1975) or to optimize an objective function defined by a linear model
(Begg and Iglewicz 1980).

The use of covariates in the analysis of randomized experiments is often guided
by our understanding of linear models. In this setting, the model need not control for
covariates to produce unbiased estimates of effect or a valid test (acceptable type I
error), but may be used to improve power by reducing variance. In nonlinear models,
however, omitting predictive covariates may reduce efficiency because the treatment
effect estimators are biased toward zero (Gail et al. 1984, Lagakos and Schoenfeld
1984, Struthers and Kalbfleisch 1986, Anderson and Fleming 1995).

The choice of analytic approach in clinical trials is less clear when the randomiza-
tion uses covariates (Peto et al. 1976, Friedman et al. 1981, Meinert 1986). Green and
Byar (1978) demonstrated that an unstratified analysis of binary data generated from
a trial using important prognostic covariates in a stratified treatment allocation rule
yields a conservative test with noticeably reduced power. A stratified analysis in this
setting preserves the nominal size of a test (Green and Byar 1978). For more complex
randomization strategies, such as the adaptive designs, however, there is no direct
link between the covariate structure in the design and the test statistic.

The Southwest Oncology Group (SWOG), an NCI-funded cooperative group,
conducts numerous randomized trials of cancer therapeutics. These trials are
designed to test the effects of specific treatment regimens on failure-time endpoints
such as survival or progression-free survival. Baseline information on disease status
and patient characteristics is often used in randomization. SWOG has adopted the
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biased-coin adaptive randomization rule proposed by Pocock and Simon (1975) to
assure balance on the margins for key covariates. In reporting results, the majority of
these studies use stratified logrank statistics or Cox proportional hazards regression
to incorporate these covariates. It is of interest to know if there is a preferred analysis
approach in this setting.

Here, we characterize the performance of the most commonly used survival anal-
ysis-based tests when applied to trials employing randomization strategies that differ
in their use of covariates using simulations. Several factors come into play in these
settings: the number of strata or covariates and their distribution in the sample, the
magnitude of the covariate and treatment effects, and the degree of censoring. Though
we cannot be comprehensive in examining these factors, we examined a variety of set-
tings, some specifically chosen to violate model assumptions or create instability, with
the hope that these would provide useful insight into the robustness of each approach.

13.2 RANDOMIZATION SCHEMES

We selected one allocation rule from each of the three categories defined earlier
based on their use of covariate information to investigate.

13.2.1 RANDOMIZATION INDEPENDENT OF COVARIATES

Permuted blocks (PB) is the simplest and most commonly used randomization strat-
egy (Rubin 1977, 1978). In this approach, a list or block of treatment assignments is
generated in advance with each treatment arm appearing in random order in the prede-
termined proportion. The treatments are assigned sequentially to patients as they enter
the trial. For the case of block size N, where N is the total sample size for the study, a
PB approach merely assures that the desired proportions on each treatment arm are
reached. Typically multiple, smaller block are used (e.g., block sizes of 2, 4, 6, and 8
for two-armed trials). Table 13.1 gives an example of PB of size 4 and a simple method
for their application. Since balance is attained at the completion of each block, smaller
block sizes promote balance on the implicit covariate of time of entry, an important
feature if there is a significant possibility of drift in patient characteristics over time
or if interim analyses will be conducted. In unblinded trials, however, small block
sizes increase the probability that the next treatment assignment can be accurately pre-
dicted, which may introduce selection bias. To reduce this problem, randomized PB
algorithms have been proposed. Here, variable block sizes are used, with block size
randomly selected from a few preselected sizes. More sophisticated algorithms, such
as constrained block randomization (Berger et al. 2003) have been proposed to reduce
the potential for selection bias while assuring reasonable balance over time. For this
purpose, however, we examine a PB design with block size N, a method that imposes
the fewest constraints on the randomization.

13.2.2 COVARIATE ADAPTIVE ALGORITHMS

The Pocock—Simon (PS; Pocock and Simon 1975) or minimization (Taves 1974)
approach uses the covariate stream and a measure of covariate imbalance to determine
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TABLE 13.1
Permuted Blocks Example

Block Randomization Assignments

1 A A B B
2 A B A B
3 A B B A
4 B A B A
5 B A A B
6 B B A A

Assume 100 patients are to be randomized
to two arms, designated A and B, using
block size of 4. There are six potential
blocks. One can generate a list of assign-
ments by randomly sampling with
replacement 25 times from these 6 blocks,
and then assign patients to treatment in
the order generated.

treatment assignment. Imbalance is defined as a function of the treatment imbalance
for each covariate of interest, weighted by a measure of the importance of the covari-
ate, if desired. If A; and B; represent the number of individuals currently assigned
to arm A and B, respectively, for the jth value of covariate i, then a typical measure
of imbalance would be A=X abs(A;; — B;;), where the sum is over all i and j values.
To emphasize balance for selected covariates, weights (w,;) can be assigned to these
covariates and incorporated into the measure of imbalance, as given by A=Xw;; abs(A;;
— B;). This function measure may be generalized to ensure balance within strata by
summing the absolute differences between arms within combinations of covariates.

In adaptive randomizations, treatment arms are usually assigned at random with
equal probability when there is perfect balance (A=0). When there is imbalance
(A>0), minimization automatically assigns the next patient to the arm that mini-
mizes A. In many circumstances, then, minimization may not truly randomize. To
introduce a stochastic component, Pocock and Simon (1975) proposed the biased
coin design, where the next patient is randomized to the arm that minimizes A with
probability greater than 0.5. Our simulations used the SWOG standard probability
of 0.75. Figure 13.1 illustrates how the next assignment would be determined when
balance on two covariates, in this case age and sex, is of interest. Here, the algorithm
is designed to ensure approximately the same proportions of males and females on
each arm and the same age distribution on each arm, but it does not assure balance
between arms within each age by sex combination.

13.2.3  StrATIFIED RANDOMIZATION

For a stratified randomization, the intent is to assure balance in treatment arm
assignments within each cell defined by the covariates. We evaluated the stratified
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Age group
50-59 60-69 70-79 Total
A B A B A B A B 8
Sex M 7 9 13 12 7 5 27 26 1
F 5 4 8 8 14 16 27 28 1
Total 12 13 21 20 21 21
S 1 1 0

FIGURE 13.1 Example of an adaptive randomization. Assume there are two treatment
arms (A,B) and two stratification factors: Age (50-59, 60—69, 70-79) and Sex (M,F) of equal
importance. For each possible value j of covariate i, let 5, =abs(A; — B,), the absolute value
of the difference in the numbers currently assigned to A and B among patients with covariate
i value j. Then define the measure of total imbalance to be A=%§,. If the current allocation
by age and sex is given as shown, then the present value of A =4. If the next patient is a male,
age 60—69, the only d values that would change are those for males and for 60—69 year olds.
Assignment to A would result in A=6 whereas assignment to B would result in A=2. Under
minimization, this patient would be assigned to arm B. Under a PS approach, this assignment
would be made with probability 0.75. If the next patient is a female, age 50-59, assignment to
A or B would result in A=2 and A=6, respectively. Again minimization would automatically
assign this patient to arm A; PS would assign arm A with probability 0.75.

block (SB) algorithm that applies PB within each stratum. This approach is easy
to implement and common in multicenter studies where blocking within centers
is recommended whenever sample size per center permits. Under well-controlled
conditions, such as animal and agricultural studies, where the covariate distribu-
tion may be under the control of the researcher, this approach best assures balance
on the design covariates. In clinical trials, where the distribution of covariates is
unpredictable, balance within a block may not be achieved because the final block
is incomplete.

13.3 BASIS FOR INFERENCE

Randomized experiments afford two options for interpreting results: randomization
tests or population models. While randomization tests are free from assumptions
about the sampling frame, they lack some appeal in that, strictly speaking, the con-
clusions have narrow applicability. If one were to use a randomization test as the
basis for inference in a randomized clinical trial, there is a general agreement that the
structure of the allocation scheme must be incorporated in the analysis to preserve
power. The implementation of this is straightforward for PB and SB randomizations.
The observed test statistic is compared to the distribution of test statistics obtained
from a large number of simulations where each simulation merely generates a new
sequence of PB under the original randomization structure. For nondeterministic
adaptive designs, randomization tests can be similarly obtained through simulation
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by conditioning on the covariate stream and generating a new assignment with
appropriate probability at each point of imbalance. We are not aware of anyone who
has used this in published applications, however. For minimization designs, where a
large fraction of the assignments are dictated by the preceding assignments and the
cumulative covariate history, the proper specification of a randomization test is not
clear.

Inference based on population models assumes that the sample under test is repre-
sentative of a larger population to which the results apply. This assumption does not
strictly hold for most clinical trials in the sense that the study population represents
volunteers rather than a probability sample. Nevertheless, this approach is simpler to
implement in that it allows us to rely on usual distribution theory for test statistics.
Issues of generalizability are typically dealt with in the interpretation of results by
considering eligibility and actual study subject characteristics. Because of its popu-
larity, we evaluated this approach to inference.

13.4 ANALYTIC APPROACHES

Analyses of survival data from clinical trials are typically based on either unstrati-
fied or stratified logrank tests or on a test for the treatment assignment variable from
a Cox proportional hazards regression model (Cox 1972). Each of these can be devel-
oped in the context of a Cox model given by h(t;x,2)=h(t;z,) exp(Px + az;), where
t is time from randomization, x represents a binary treatment assignment variable,
z=(z,, 2,) 1s a vector of covariates where z, corresponds to those covariates used in
the regression function, z, covariates used for model stratification and %(;z,) is the
baseline hazard function for z,.

The logrank test, a commonly employed test statistic for comparing survival
curves, can be obtained from a Cox model as a maximum partial likelihood score
test for =0 in a model were no other covariates are included (Kalbfleisch and
Prentice 2002). The natural generalization to accommodate covariate information is
the analogous score statistic in a Cox model where covariates are used as regressors
in the model with a single baseline hazard function /. This model is of particular
interest for the covariate adaptive randomization schemes because it uses the covari-
ate information in the same manner—controlling for their main effects. A fully
stratified logrank test or generalized score statistic can be computed in a similar
fashion, where each stratum has a separate baseline hazard function.

13.5 DESIGN OF SIMULATION STUDIES

We evaluated the impact of randomization strategies on the size and power of these
analytic strategies in simulated clinical trials using both purely hypothetical trial
scenarios as well as several derived from completed SWOG trials.

For each hypothetical trial, the basic setting was a two-arm trial with 400 patients,
200 per arm. The underlying survival models were derived from Cox models assum-
ing the existence of up to three binary covariates using the hazard models

h(t; x,2) = ho(1) exp(px) (A)
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h(t; x,2) = hy(t) exp(Bx + az; + 022, + 01323) (B)
h(t; x,z) = hy(t; z) exp(Px;) ©

where hy(?) is the hazard function from the exponential distribution for models A
and B. For all models, x=0, 1 represents the randomization assignment and z is
the vector of binary covariates that jointly define membership into eight strata. For
model C, with nonproportional covariate effects, the eight baseline hazard func-
tions hy(t; z,,2,,2;) were generated from Weibull (A k) distribution functions where
7»] and K; are the scale and shape parameters for stratum j, j=1,..., 8. The Weibull
family of distributions was chosen because of the degree of flexibility it allows in
describing nonproportional hazard functions. Values of (;x; used were (0.2, 0.7),
(0.2, 0.8), (0.6, 1), (0.1, 1.2), (0.2, 1.5), (0.5, 2), and (0.2, 3). Note that for K= 1, the
Weibull model reduces to the exponential (2) distribution (constant hazard), and all
covariate effects are proportional. When k>1 (k< 1), the baseline hazard functions
are decreasing (increasing) with time. Hazard functions associated with a covari-
ate will be nonproportional when values of k; differ across levels of the covariates.
Moderate covariate effects were defined as o, =1n(0.33), a, =In(1.5), and oy =1n(2.0).
Larger covariate effects used hazard ratios of a, =1n(0.2), o, =1n(3), and a;=In4). To
examine the setting of highly stratified allocation, model B was expanded to include
five independent binary covariates (32 strata) with coefficients in the data generating
model of 1In(0.33), In(1.5), In(2), In (0.67), and In(1.5).

For each simulated trial, patient level covariates were generated with all combi-
nations having equal probability. Two potential survival times were generated for
each patient, one associated with each potential treatment assignment. Censoring
times and the corresponding order of patient presentation were randomly generated
from a uniform distribution to represent constant accrual over a designated interval.
The two corresponding censored survival times and indicators were determined by
comparing the survival times associated with each potential treatment assignment
and the censoring time for each patient.

Three treatment allocation rules (PB, PS, and SB) were applied to this same
patient dataset to simulate three trials in the same set of patients. As each patient in
a trial was randomized, the appropriate censored survival time and indicator was
selected from the source dataset to form the simulated trial data. All the test statis-
tics (logrank, Cox regression, and stratified logrank) were then calculated for that
trial. For each configuration, 5000 trials were simulated. Performance of each test
statistic was assessed by calculating the proportion of test statistics exceeding 1.96,
corresponding to a one-sided, 0.025-level test, to estimate size (under f=0) and
power (under the alternative f=,).

We conducted a similar set of simulations motivated by five completed SWOG
trials known by protocol numbers SWOG-8516, SWOG-8501, SWOG-9210, SWOG-
9308, and SWOG-8738 (Fisher et al. 1993, Gandara et al. 1993, Albert et al. 1996,
Wozniak et al. 1998, Berenson et al. 2001). Key features of these trials extracted for
the simulations are shown in Table 13.2. The number of design strata in these studies
ranged from 4 to 38. For each stratum j where sample size permitted, we estimated
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TABLE 13.2
Selected Parameters from Five SWOG Studies Used as the Basis for
Simulation Studies

No. of
Protocol  Cancer Site N Covariates®  Strata Weibull Parameter (k)
8516 Non- 435 5/3 38 27 cells with (0.185 and 0.845), 11
Hodgkin’s remaining cells have
lymphoma A=(0.205, 0.125, 0.097, 0.118, 0.070,
0.207, 0.570, 0.155, 0.096, 0.222, and
0.171)

k=(1.46,0.915, 0.865, 1.38, 0.796, 0.615,

0.840, 0.573, 0.566, 0.652, and 0.637)
8501 Ovary 546 472 29 20 cells with (0.192 and 1.231), 9

remaining cells with

A=(0.110, 0.182, 0.267, 0.191, 0.284,
0.168, 0.070, 0.208, and 0.255)

k=(0.943, 1.239, 1.366, 1.218, 1.38,
1.256, 0.89, 1.506, and 1.283)

9210 Multiple 247 2/0 6 A=(0.309, 0.309, 0.286, 0.262, 0.343,
myeloma and 0.344)
k=(1.30, 1.30, 1.33, 1.148, 1.454, and
1.268)
9308 Non-small 414 2/2 4 A=(1.029, 0.605, 1.643, and 1.092)
cell lung k=(1.213,1.209, 1.031, and 1.151)
8738 Non-small 356 2/2 6 A=(1.079, 2.248,0.914, 1.379, 1.737,
cell lung and 1.471)

k=(1.086, 1.55, 0.903, 0.922, 1.483, and
1.19)
4 Number of covariates used in the randomization scheme/number found to be significant (p <0.05) in
a Cox proportional hazards model analysis.

the scale and shape parameters of a censored Weibull (Ak)) distribution. These
Weibull hazard functions then formed the basis of the survival times for patients
generated under model C.

SWOG trial-based simulations were conducted using the same general plan
described for the hypothetical trials while preserving as much of the underlying
data structures of the original trials as possible. The sample size (V) was the same
as the original trial and covariates for the N patients were obtained by sampling with
replacement from the observed covariate vectors. The simulated treatment effect
B, was calculated separately for each trial to provide approximately 80% power for
a one-sided 0.025-level test: In(1.4) for SWOG-8516 and SWOG-8501; In(1.65) for
SWOG-9210; In(1.4) for SWOG-9308; and In(1.6) for SWOG-8738). Censoring was
chosen to be uniform over an interval that varied between studies, yielding 15%—-60%
censoring, depending on the survival distributions. Results are summarized with
estimated size and power, as described earlier.
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13.6 RESULTS

In the hypothetical trials, all combinations of randomization schemes and test statis-
tics provided statistically valid tests. The estimated size was never significantly above
the nominal 0.025 level (Table 13.3), even in the settings where some of the underly-
ing assumptions were violated (i.e., nonproportional covariate effects). Evidence of
conservatism in the logrank statistics is seen under randomization schemes that use
covariate information, however. In each scenario, where covariates were predictive
of survival, the trials that used either covariate information in the design (PS or SB)
show estimated type I error rates less than 0.025 and in some cases as low as 0.005.

TABLE 13.3

Estimated Size and Power? for Three Randomization
Strategies and Three Analytic Approaches Based on
5000 Simulated Trials Derived from Models A-C

Model and Analysis
Allocation Logrank Cox Model Stratified Logrank
RuleP Size Power  Size Power Size Power

8 strata, no covariate effects

PB 0.023 0.923 0.026 0.923 0.026 0.902
PS 0.025 0914 0.027 0.916 0.025 0.896
SB 0.025 0.920 0.025 0.918 0.025 0.912
8 strata, moderate PH covariate effects

PB 0.025 0.755 0.027 0.904 0.022 0.889
PS 0.012 0.790 0.023 0.908 0.024 0.890
SB 0.009 0.790 0.023 0.905 0.023 0.889
8 strata, large PH covariate effects

PB 0.025 0579  0.025  0.930 0.026 0915
PS 0.004 0.610 0.026 0.929 0.028 0.913
SB 0.005 0.584 0.029 0.926 0.026 0.926
8 strata, non-PH covariate effects

PB 0.027 0.654 0.026 0.820 0.024 0.857
PS 0.013 0.676 0.025 0.824 0.027 0.855
SB 0.013 0.697 0.027 0.841 0.027 0.874
32 strata, PH covariate effects

PB 0.027 0.764 0.027 0.905 0.026 0.825
PS 0.014 0.799 0.024 0.914 0.027 0.843
SB 0.015 0792  0.027  0.908 0.026 0.853

Estimated type I error significantly less than 0.025
Estimated power significantly lower than the best
performing approach
4 SE (estimated size)=0.002; SE (estimated power) =0.0055.
b PB, permuted block; PS, Pocock—Simon adaptive allocation; SB, strati-
fied permuted block.
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Under the simple PB scheme, however, the size of the logrank statistic was unaf-
fected by the presence of predictive covariates. The estimated type I error rates for
the Cox model-based or stratified logrank tests appear unaffected by differences in
randomization strategies.

Using covariates in the randomization appears to have a very modest effect on
power throughout these simulations. Within any trial scenario and analytic approach,
the differences in the estimated power between allocation strategies are less than 5%
and are negligible for both the Cox model and stratified logrank tests.

The choice of analytic approach is more important. When covariates were not pre-
dictive of outcome, all tests were equally powerful. When there were predictive covari-
ates, however, power for the Cox model and the stratified logrank test was higher than
for the logrank test, regardless of whether these covariates were used in treatment allo-
cation. With nonproportional covariate effects, the stratified logrank statistic improved
power by 3% over the Cox model but in the setting of many covariates conforming to
the proportional hazards assumption, the Cox model was more powerful. In all other
cases examined, the Cox model and stratified logrank tests appear comparable.

Similar patterns are evident in the results simulated from the five SWOG trials
(Table 13.4). The estimated size did not significantly exceed 0.025 in any of these
simulated trials. In fact, the estimated type I errors observed in these simulations
derived from actual trials more closely cluster around 0.025 than we observed in the
hypothetical trials described earlier (Table 13.3). The estimate power for each com-
bination of randomization scheme and test statistic yielded at most a 5% increment
in power over the least favorable combination. For the majority of scenarios, the
PH regression model performed slightly better than either the logrank or the strati-
fied logrank, although the differences were generally quite small. In some settings,
particularly, SWOG-8516 and SWOG-8501, there is a suggestion that the stratified
logrank test does not provide as much power as the PH model based test, possibly
related to the highly stratified nature of these trials.

In earlier work, we examined the effect of the number of covariates, their distri-
bution in the study population, and the size of covariate effects on treatment effect
inference (Anderson 1989). These simulations indicated that the number of covari-
ates and their distribution have a smaller effect on the performance of these test
statistics than the factors examined here. The magnitude of covariate effects was
the key in determining the best analytic approach—the larger the effect, the more
important it is to include that covariate in the analysis and to do so correctly.

13.7 DISCUSSION

The motivation behind this study was to examine the performance of various ana-
lytic strategies for clinical trials with failure time endpoints that employ random-
ization strategies that may or may not use important covariates. The approaches
and scenarios examined via simulation were based on practical examples in which
these very decisions are regularly made. Though not comprehensive in examining
the many parameters that may influence the findings, these simulations provide a
useful description of the magnitude of impact of the key aspects related to covariates
in the design and analysis.
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TABLE 13.4

Estimated Size and Power? for Three Randomization

Strategies and Three Analytic Approaches Based on 5000

Simulated Trials Derived from Five Swog Randomized Trials

Protocol and
Allocation
Rule®
SWOG-8516
PB

PS

SB
SWOG-8501
PB

PS

SB
SWOG-9210
PB

PS

SB
SWOG-9308
PB

PS

SB
SWOG-8738
PB

PS

SB

2 SE (estimated size)=0.002; SE (estimated power)=0.0055.
b PB, permuted block; PS, Pocock-Simon adaptive allocation; SB, stratified
permuted block.

Analysis
Logrank Cox Model Stratified Logrank

Size Power Size Power Size Power
0.022 0.834 0.023 0.843 0.022 0.812
0.024 0.835 0.027 0.850 0.026 0.816
0.020 0.847 0.023 0.859 0.024 0.834
0.025 0.836 0.026 0.841 0.026 0.821
0.023 0.844 0.023 0.852 0.024 0.827
0.027 0.831 0.027 0.832 0.027 0.819
0.023 0.788 0.024 0.791 0.024 0.773
0.021 0.793 0.021 0.799 0.022 0.780
0.023 0.803 0.024 0.809 0.024 0.794
0.019 0.836 0.024 0.884 0.022 0.871
0.019 0.853 0.025 0.886 0.022 0.876
0.023 0.843 0.028 0.886 0.027 0.875
0.023 0.842 0.026 0.851 0.021 0.871
0.019 0.843 0.025 0.860 0.026 0.878
0.023 0.848 0.024 0.860 0.026 0.877

Estimated type I error significantly less than 0.025
Estimated power significantly lower than the best

performing approach
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All combinations of randomization schemes and test statistics produced statisti-
cally valid tests but analyses that ignored predictive covariates, particularly if they
were used in the design, produced smaller than expected type I error rates and sig-
nificantly reduced power.

In realistic settings, the use of covariate information in treatment allocation may
slightly improve power, but we found little evidence to suggest the superiority of one
constrained allocation rule over another. With this knowledge, the choice of random-
ization scheme can be based primarily on other considerations including logistics
and concern for selection bias associated with the predictability of the treatment

assignment.
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This work indicates that statistical power may be improved by including strongly
predictive covariates in the analysis, regardless of their use in the randomization.
Furthermore, there can be a substantial loss in power when highly predictive covari-
ates were not accounted for in the analysis, consistent with previous work on omitted
covariates, especially if they were used in the randomization. Where proportional
hazards assumptions for the covariates are reasonable, a Cox model-based test is
expected to provide better power than a stratified analysis. In most settings exam-
ined, however, there was little to distinguish these two approaches. Even when pro-
portional hazards assumptions were known to be violated, the Cox model results
were valid and nearly as powerful as the correct, stratified logrank tests.

In summary, the value of using of covariates in the randomization schemes is
driven by their effect on the outcome variable. In most settings, covariate effects
are relatively small, and their use in the treatment allocation or analysis will have a
similarly modest effect. These simulations suggest that only when highly predictive
covariates are used in the randomization but not in the analysis would we expect a
marked degradation in performance (conservative type I error rates and a significant
loss of power). In both the hypothetical trials and those derived from completed
SWOG studies, we found that PS adaptive randomization and stratified PB schemes,
paired with either tests from Cox regression models adjusting for important covari-
ates or stratified logrank tests, provided similar operating characteristics.
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14.1 INTRODUCTION

The frequent use of the standard two-arm randomized clinical trial is due in part to
its relative simplicity of design and interpretation. Conclusions are straightforward:
either the two arms are shown to be different or they are not. Complexities arise with
more than two arms; with four arms, there are 6 possible pairwise comparisons, 19
ways of pooling and comparing two groups, 24 ways of ordering the arms, plus the
global test of equality of all four arms. Some subset of these comparisons must be
identified as of interest; each comparison has power, level, and magnitude consider-
ations; the problems of multiple testing must be addressed; and conclusions can be
difficult, particularly if the comparisons specified to be of interest turn out to be the
Wrong ones.

Factorial designs are sometimes considered when two or more treatments, each
of which has two or more dose levels, possibly including level O or no treatment,
are of interest alone or in combination. A factorial design assigns patients equally
to each possible combination of levels of each treatment. If treatment i, i=1, ... K|
has J; levels, the result is a J, X J, ... xJ¢ factorial. Generally, the aim is to study the
effect of levels of each treatment separately by pooling across all other treatments.
The assumption often is made that each treatment has the same effect regardless
of assignment to the other treatments. Statistically, an assumption of no interaction
is made.

The use of factorial designs in clinical trials has become more common, as
noted in McAlister et al. (2003). Statistical papers on the topic include a theoretical

199
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discussion of factorials in the context of the proportional hazards model presented
by Slud (1994). Other contributions to the topic include those by Byar (1990), who
suggested potential benefit in the use of factorials for studies with low event rates
such as screening studies; Simon and Freedman (1997), who discussed Bayesian
design and analysis of 2 x 2 factorials, allowing for some uncertainty in the assump-
tion of no interaction; Hung (1993), who discussed testing first for interaction when
outcomes are normally distributed and interactions occur only if there are effects
of both treatment arms; another by Hung (2000) concerning testing for unbalanced
factorial clinical trials; and by Akritas and Brunner (1997), who proposed a non-
parametric approach to the analysis of factorial designs with censored data making
no assumptions about interaction. On the applied side, Green et al. (2002) discussed
limitations of factorial designs and McAlister et al. (2003) discussed the quality of
analysis and reporting in recently published factorial trials.

The multiple comparisons problem is one of the issues that must be considered in
factorial designs. If tests of each treatment are performed at level a, which is typical
for factorial designs (Gail et al. 1998), then the experiment-wide level, defined as the
probability that at least one comparison will be significant under the null hypothesis,
is greater than . There is a disagreement on the issue of whether all primary questions
should each be tested at level o or whether the experiment-wide level across all primary
questions should be level a, but clearly if the probability of at least one false-positive
result is high, a single positive result from the experiment will be difficult to interpret
and may well be dismissed by many as inconclusive. Starting with global testing fol-
lowed by pairwise tests only if the global test is significant is a common approach to
limit the probability of false-positive results. A Bonferroni approach where each of 7
primary tests is performed at o/7 is also an option. For comprehensive discussions of
testing strategies in multiple testing settings, see Dmitrienko et al. (2010).

Power issues also must be considered. From the point of view of individual tests,
power calculations are straightforward under the assumption of no interaction—cal-
culate power according to the number of patients in the combined groups. A concern
even in this ideal case may be the joint power. For instance, in a 2 x 2 trial of observa-
tion (O) versus treatment A versus treatment B versus the combination AB, if power
to detect a specified effect of A is 1 —  and power to detect a specified effect of B is
also 1 — B, the joint power to detect the effects of both is closer to 1 — 2.

From the point of view of choosing the best arm, power considerations are consid-
erably more complicated. The best arm must be specified for the possible true con-
figurations; the procedures for designating the preferred arm at the end of the trial,
which generally is the point of a clinical trial, must be specified; and the probabilities
of choosing the best arm under alternatives of interest must be calculated. Various
approaches can be considered in the context of a 2x?2 trial. Three possibilities are
considered in this chapter.

Approach 1

The first approach is to perform the analysis assuming there are no interactions,
using two one-sided tests, A versus not-A and B versus not-B. For example, test a=0
and $=0 in a two-parameter proportional hazards model A=A exp(az, + Pzp), Where
A is the survival hazard rate and z, and zg are treatment indicators. If neither test is
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significant, O is assumed to be the preferred arm. If A is better than not-A and B ver-
sus not-B is not significant, then A is assumed to be the preferred arm. B is assumed
best if the reverse is true. If A is better than not-A and B is better than not-B, then
AB is preferred.

Approach 2

The second approach is to first perform a two-sided test for interaction using the
model A=Ajexp(az, + Pz +7Y 2525)- If the interaction term v is not significant, then
base conclusions on the tests of A versus not-A and B versus not-B as in Approach 1.
If it is significant, then base conclusions on tests of the three terms in the model and
on appropriate subset tests. The treatment of choice is as follows:

Arm O if

1. y is not significant, A versus not-A is not significant, and B versus not-B is
not significant

2. v is significant and negative (favorable interaction), a and  are not sig-
nificant in the three-parameter model, and the test of O versus AB is not
significant

3. y is significant and positive (unfavorable interaction) and a and p are not
significant in the three-parameter model

Arm AB if

1. y is not significant, and A versus not-A and B versus not-B are both
significant

2. vy is significant and favorable and a and f are both significant in the three-
parameter model

3. y is significant and favorable, « is significant and f is not significant in the
three-parameter model, and the test of A versus AB is significant

4. vy is significant and favorable, p is significant and o is not significant in the
three-parameter model, and the test of B versus AB is significant

5. y is significant and favorable, « is not significant and B is not significant in
the three-parameter model, and the test of O versus AB is significant

Arm A if

1. y is not significant, B versus not-B is not significant, and A versus not-A is
significant

2. vy is significant and favorable, « is significant and p is not significant in the
three-parameter model, and the test of A versus AB is not significant

3. y is significant and unfavorable, o is significant and f is not significant in
the three-parameter model

4.y is significant and unfavorable, « and [ are significant in the three-
parameter model, and the test of A versus B is significant in favor of A

Arm B if
1. Results are similar to A presented earlier but with the results for A and B
reversed
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Arm A or Arm B if
2. vy is significant and unfavorable, a and f are significant in the three param-
eter model, and the test of A versus B is not significant

Approach 3

The third approach is to control the overall level of the experiment by first doing an
overall test of differences among the four arms, for example, the four-arm logrank
test. Proceed with Approach 2 only if this test is significant. If the overall test is not
significant, then arm O is concluded to be the treatment of choice.

14.2 SIMULATION STUDY

To illustrate the issues in factorial designs, a simulation of a 2 x 2 factorial trial will be
used. The simulated trial had 125 patients per arm accrued over 3 years with 3 addi-
tional years of follow-up. Survival was exponentially distributed on each arm, and
median survival was 1.5 years on the control arm. The sample size was sufficient for
a one-sided 0.05 level test of A versus no-A to have power 0.9 with no effect of B, no
interaction, and an A/O hazard ratio of 1/1.33. Various cases were considered using
the model A=Ajexp(az, + Pzg +7z42p): neither A nor B effective (x and f=0), A effec-
tive (a=—In(1.33)) with no effect of B, A effective and B detrimental (3=1n(1.5)), and
both A and B effective (o and p both=-In(1.33)). Each of these was considered with no
interaction (y=0), favorable interaction (AB hazard improved compared to expected,
y=-In(1.33)), and unfavorable interaction (worse, y=1In(1.33)). For each case, 2500
realizations were used for estimating characteristics of the three approaches outlined
previously. Table 14.1 summarizes the cases considered.

The possible outcomes of a trial of O versus A versus B versus AB are to recom-
mend one of O, A, B, AB, or A or B, but not AB. Tables 14.2 through 14.4 show
the simulated probabilities of making each of the conclusions in the 12 cases of

TABLE 14.1
Medi . . (0 A\ . . .
edian Survival Times from Arms Used in the Simulation
LB AB )
Case
2: Effect of Aand  3: Effect of A 4: Effect of A and

Interaction 1: Null No Effect of B and Effect of B Detrimental Effect of B
None 1.5 15 1.5 2 1.5 2 1.5 2

1.5 1.5 1.5 2 2 2.67 1 1.33
Unfavorable 1.5 1.5 1.5 2 1.5 2 1.5 2

1.5 1.13 1.5 1.5 2 2 1 1
Favorable 1.5 1.5 1.5 1.5 1.5 2 1.5 2

1.5 2 1.5 2.67 2 3.55 1 1.77

Each case has the median of the best arm in bold.
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TABLE 14.2

Simulated Probability of Conclusion with

Approach 1: No Test of Interaction

Conclusion
Case, Interaction (o) A B AB AorB
1, none 0.890 0.055 0.053 0.002 0
1, unfavorable 0.999 0.001 0 0 0
1, favorable 0.311 0.243 0259 0.187 0
2, none 0.078  0.867 0.007 0.049 0
2, unfavorable 0.562 0437 O 0.001 0
2, favorable 0.002 0.627 0.002  0.369 0
3, none 0.010 0.104 0.095 0.791 0
3, unfavorable 0.316  0.244 0.231 0.208 0
3, favorable 0 0.009 0.006 0.985 0
4, none 0.078 0922 0 0 0
4, unfavorable 0578 0422 0 0 0
4, favorable 0.002 0998 0 0 0

Each case has the median of the best arm in bold.

TABLE 14.3
Probability of Conclusion with Approach 2: Test of Interaction

Conclusion

Case, Interaction o
1, none 0.865
1, unfavorable 0.914
1, favorable 0.309
2, none 0.086
2, unfavorable 0.349
2, favorable 0.003
3, none 0.009
3, unfavorable 0.185
3, favorable 0

4, none 0.117
4, unfavorable 0.341
4, favorable 0.198

A AB AorB
0.060 0.062  0.005 0.008
0.036 0.033 0 0.017
0.128 0.138 0424 O
0.810 0.006 0.078  0.019
0.601 0.001 0.001 0.048
0.384 0.002 0612 O
0.089 0.089 0.752  0.061
0.172 0.167 0.123  0.353
0.004 0.003 0990  0.002
0.883 0 0 0
0659 0 0 0
0.756 0 0046 0

Each case has the median of the best arm in bold.

Test for Interaction,
Probability of Rejection

0.116
0.467
0.463
0.114
0.446
0.426
0.122
0.434
0.418
0.110
0.472
0.441

203
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TABLE 14.4
Simulated Probability of Conclusion with Approach 3: Global Test
Followed by Approach 2

Conclusion Global Test, Probability

Case, Interaction (0] A B AB  AorB of Rejection
1, none 0972 0.011 0.010 0.003 0.004 0.052

1, unfavorable 0.926 0.032 0.026 0 0.015 0.578

1, favorable 0.503 0.049 0.057 0.390 0 0.558

2, none 0.329 0.578 0.001 0.074 0.018 0.684

2, unfavorable 0.528 0432 O 0 0.039 0.541

2, favorable 0.014 0374 0.001 0.611 0 0.987

3, none 0.068 0.069 0.063 0.741 0.059 0.932

3, unfavorable 0.466  0.067 0.072  0.109 0.286 0.535

3, favorable 0 0.004  0.003  0.990 0.002 1.00

4, none 0.117 0882 0 0 0 0.997

4, unfavorable 0341 0.659 O 0 0 1.00

4, favorable 0.198 0.756 O 0.046 0 0.999

Each case has the median of the best arm in bold.

Table 14.1, for the approach of ignoring interaction, for the approach of testing for
interaction, and for the approach of doing a global test before testing for interaction.
The global test was done at the two-sided 0.05 level. Other tests were done at the
one-sided 0.05 level, with the exception of tests of A versus B and y=0, which were
done at the two-sided 0.1 level. For each table the probability of drawing the correct
conclusion is in bold.

Tables 14.2 through 14.4 illustrate several points. In the best case of using
Approach 1, when in fact there is no interaction, the experiment level is 0.11, and
the power when both A and B are effective is 0.79, about as anticipated and possibly
insufficiently conservative. Apart from that, Approach 1 is best if there is no interac-
tion. The probability of choosing the correct arm is reduced if Approach 2 testing
first for interaction is used instead of Approach 1 in all four cases with no interaction.

If there is an interaction, Approach 2 may or may not be superior. If the inter-
action masks the effectiveness of the best regimen, it is better to test for interac-
tion. See, for example, Case 4 with an unfavorable interaction, where the difference
between A and not-A is diminished due to the interaction. If the interaction enhances
the effectiveness of the best arm, testing is detrimental; see Case 4 with favorable
interaction, where the difference between A and not-A is larger due to the interaction
while B is still clearly ineffective. In all cases the power for detecting interactions
is poor. Even using 0.1 level tests, the interactions were detected at most 47% of the
time in these simulations.

Approach 3 does restrict the overall level, but this is at the expense of a reduced
probability of choosing the correct arm when the four arms are not sufficiently dif-
ferent for the overall test to have high power.
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Unfavorable interactions are particularly detrimental to a study. The probabil-
ity of identifying the correct regimen is poor for all methods if the correct arm
is not the control arm. Approach 1, assuming there is no interaction, is particu-
larly poor.

14.3 EXAMPLES

14.3.1  SoutHwest ONcoLoGy Group Stuby 8300

As an illustration of how the use of a factorial design may compromise a study,
consider Southwest Oncology Group Study 8300, which is similar to Case 4 with
an unfavorable interaction, reported by Miller et al. (1998). In this study, in limited
nonsmall cell lung cancer, the roles of both chemotherapy and prophylactic radia-
tion to the brain were of interest. All 226 eligible patients received radiation to the
chest and were randomized to receive prophylactic brain irradiation (PBI) versus
chemotherapy versus both PBI and chemotherapy versus no additional treatment.
PBI was to be tested by combining across the chemotherapy arms and chemotherapy
was to be tested by combining across PBI arms. Investigators chose a Bonferroni
approach to limit Type I error. The trial design specified level 0.025 for two tests, a
test of whether PBI was superior to no PBI and a test of whether chemotherapy was
superior to no chemotherapy. No other tests were specified. It was assumed that PBI
and chemotherapy would not affect each other. Unfortunately, PBI was found to be
detrimental to patient survival. Although the interaction term was not significant,
the worst arm was PBI plus chemotherapy, followed by PBI, then no additional treat-
ment, then chemotherapy alone. Using the design criteria, one would conclude that
neither PBI nor chemotherapy should be used. With this outcome, however, it was
clear that the comparison of no further treatment versus chemotherapy was critical,
but the study had seriously inadequate power for this test, and no definitive conclu-
sion could be made concerning chemotherapy.

14.3.2 NORTH AMERICAN BREAST CANCER INTERGROUP TRIAL E1199

Another example is a 2x?2 trial of docetaxel versus paclitaxel and weekly versus
every 3 week administration as adjuvant treatment for breast cancer. Bria et al.
(20006) in a letter to the editor in Annals of Oncology questioned whether it was rea-
sonable to assume the effect of weekly versus every 3 week schedule would be the
same for two different taxanes. They pointed to current evidence that weekly treat-
ment might be beneficial for paclitaxel but not for docetaxel, expressed concern that
ability to address each question within the trial might be compromised, and noted
that preliminary results (Sparano et al. 2005) suggested the risk was real. They con-
cluded “when planning such a trial, if a significant interaction is expected, it should
be kept in mind that its occurrence could make the primary result of the trial practi-
cally useless, and the unique useful information could come from secondary, less
powered analyses.” In fact, as designed, the trial was negative for both of the primary
comparisons, paclitaxel versus docetaxel and weekly versus every 3 weeks (Sparano
et al. 2008). Unlike the previous example, however, this trial was designed to be
large enough (4950 patients, 1038 events) to examine comparisons between control
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treatment (every 3 week paclitaxel) and the other three arms as secondary analyses.
Both weekly paclitaxel and every 3 week docetaxel were observed to be beneficial
with respect to disease-free survival, with weekly paclitaxel also showing a survival
benefit. Significant interactions were also observed. The primary conclusion of the
study was that weekly paclitaxel was beneficial. But as noted by Montgomery et al.
(2003), “presentation of results should reflect the analytical strategy with an empha-
sis on the principal research questions.” In the absence of difference in primary
comparisons, secondary comparisons generally should be considered nondefinitive
due to inflated Type I error. For this trial more emphasis on the planned primary
comparisons might have been expected, with more cautionary interpretation of the
secondary analyses. The results elicited a letter to the editor commenting that clini-
cians would have difficulty in drawing definitive conclusions due to the disparity of
overall results with subset results (Tsubokura et al. 2008).

Once a KxJ factorial study is recognized as not one K arm study and one J arm
study that happen to be in the same patients but rather a KxJ arm study with small
numbers of patients per arm, the difficulties become evident. Perhaps in studies where
A and B have unrelated mechanisms of action and are being used to affect different
outcomes, assumptions of no biologic interaction may not be unreasonable. However,
in general A cannot be assumed to behave the same way in the presence of B as in
the absence of B. Potential drug interactions, overlapping toxicities, differences in
compliance, and other confounding factors all make it more reasonable to assume
there will be differences. Furthermore, interaction may occur simply as an artifact
of the particular model chosen. In the simulation, no interaction meant the O/A and
B/AB hazard ratios were equal. If instead, equally effective is defined as equal abso-
lute increase in median, then two of the no interaction cases in Table 14.1 turn into
interaction cases. There is no biologic reason that compels any particular mathemati-
cal formulation of equally effective to be correct. Thus, lack of biologic rationale does
not necessarily provide reassurance with respect to interaction according to the model
identified for analysis. Models are rarely completely correct, so statistical interactions
of modest size are likely even if there is no evidence of biologic interactions.

14.4 OTHER APPROACHES TO MULTIARM STUDIES

Various approaches to multiarm studies are available. If the example study could be
formulated as O versus A, B, and AB, as might be the case if lower doses of A and
B are used for the combination, the problem of comparing control versus multiple
experimental arms would apply. There is a long history of papers on this problem
(e.g., Dunnet 1955, Marcus et al. 1976, Tang and Lin 1997) focusing on appropriate
global tests or tests for subhypotheses. Liu and Dahlberg (1995) discussed design and
provided sample size estimates based on the least favorable alternative for the global
test for K-arm trials with time-to-event endpoints. Their procedure, a K-sample
logrank test performed at level a followed by a level pairwise tests if the global test
is significant, has good power for detecting the difference between a control arm and
the best treatment. These authors emphasized the problems when power is consid-
ered in the broader sense of drawing the correct conclusions. Properties are good for
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this approach when each experimental arm is similar either to the control arm or the
best arm, but not when survival times are more evenly spread out among the control
arm and other arms.

Designs for ordered alternatives are another possibility. For example, suppose
there are theoretical reasons to hypothesize superiority of A over B resulting in the
alternative O<B<A<AB. Liu et al. (1998) proposed a modified logrank test for
ordered alternatives,

K-1

L)
T = =1

[E L+ 2y (eov(wio.L()

where L(7) is the numerator of the one-sided logrank test between the pooled groups
1, ..., i and pooled groups i+ 1, ..., K. This test is used as the global test before pair-
wise comparisons. Similar comments apply as to the more general case discussed
earlier, with the additional problem that the test will not work well if the ordering
is mis-specified. A related approach includes a preference ordering, say by expense
of the regimens, which at least has a good chance of being specified correctly, and
application of a bubble sort analysis. For example, the most costly treatment is pre-
ferred only if significantly better than the rest, the second most costly only if sig-
nificantly better than the less costly arms and if the most costly is not significantly
better, and so on. This approach is discussed by Chen and Simon (1994).

Any model assumption that is incorrect can result in problems. As with testing
for interactions, testing any assumptions can either be beneficial or detrimental,
with no way of ascertaining beforehand which is the case. If assumptions are tested,
procedures must be specified for when the assumptions are shown not to be met,
which changes the properties of the experiment and complicates sample size consid-
erations. Southwest Oncology Group study S8738 (Gandara et al. 1993) provides an
example of incorrect assumptions. This trial randomized patients to low-dose CDDP
versus high-dose CDDP versus high-dose CDDP plus Mitomycin-C, with the obvi-
ous hypothesized ordering. The trial was closed approximately halfway through the
planned accrual because survival on high-dose CDDP was convincingly shown not
to be superior to standard dose CDDP by the hypothesized 25%. In fact, it appeared
to be worse. A beneficial effect of adding Mitomycin-C to high-dose CDDP could
not be ruled out at the time, but this comparison became meaningless in view of the
standard-dose versus high-dose comparison.

1/2

14.5 CONCLUSION

The motivation for simplifying assumptions in multiarm trials is clear. The sample
size required to have adequate power for multiple plausible alternatives, while at the
same time limiting the overall level of the experiment, is large. If power for specific
pairwise comparisons is important for any outcome, then the required sample size is
larger. An even larger sample size is needed if detection of interaction is of interest.
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To detect an interaction of the same magnitude as the main effects in a 2x2 trial,
four times the sample size is required (Peterson and George 1993), thereby eliminat-
ing what most view as the primary advantage to factorial designs.

Likely not all simplifying assumptions are wrong, but disappointing experience
tells us the risk is not negligible. Unfortunately, the reduced sample sizes resulting
from oversimplification may lead to unacceptable chances of inconclusive results.
The correct balance between conservative assumptions versus possible efficiencies is
rarely clear. In the case of factorial designs, combining treatment arms seems to be a
neat trick, yielding multiple answers for the price of one, until one starts to consider
how to protect against the possibility that the assumptions underlying the trick are
incorrect.

The conclusion of the Montgomery et al. (2003) paper is apt. “Difficulties in
interpreting the results of factorial trials if an influential interaction is observed
should be recognized as the cost of the potential for efficient, simultaneous consid-
eration of two or more interventions ... factorial design does enable investigation of
interactions in the analysis, albeit with limited power. Researchers should be aware
of such issues.”

REFERENCES

Akritas, M. and Brunner, E. 1997. Nonparametric methods for factorial designs with censored
data. J. Am. Stat. Assoc., 92, 568-576.

Bria, E., De Maio, M., Nistico, C. et al. 2006. Factorial design for randomized clinical trials.
Letter to the editor. Ann. Oncol., 17, 1607-1608.

Byar, J. 1990. Factorial and reciprocal control design. Stat. Med., 9, 55-64.

Chen, T. and Simon, R. 1994. Extension of one-sided test to multiple treatment trials.
Controlled Clin. Trials, 15, 124—134.

Dmitrienko, A., Tamhane, A., and Bretz, F. eds. 2010. Multiple Testing Problems in
Pharmaceutical Statistics. Boca Raton, FL: Chapman & Hall/CRC.

Dunnet, C. 1955. A multiple comparisons procedure for comparing several treatments with a
control. J. Am. Stat. Assoc., 60, 573-583.

Gail, M., You, W., Chang, Y. et al. 1998. Factorial trial of three interventions to reduce the
progression of precancerous gastric lesions in Sandong, China: Design issues and initial
data. Controlled Clin. Trials, 19, 352-3609.

Gandara, D., Crowley, C., Livingston, R. et al. 1993. Evaluation of cisplatin intensity in meta-
static non-small cell lung cancer: A Phase III study of the Southwest Oncology Group.
J. Clin. Oncol., 11, 873-887.

Green, S., Liu, P.Y., and O’Sullivan, J. 2002. Factorial design considerations. J. Clin. Oncol.,
20, 3424-3430.

Hung, H. 1993. Two-stage tests for studying monotherapy and combination therapy in two by
two factorial trials. Stat. Med., 12, 645-660.

Hung, H. 2000. Evaluation of a combination drug with multiple doses in unbalanced factorial
design clinical trials. Stat. Med., 19, 2079-2087.

Liu, P.Y. and Dahlberg, S. 1995. Design and analysis of multiarm clinical trials with survival
endpoints. Controlled Clin. Trials, 16, 119-130.

Liu, PY., Tsai, W.Y., and Wolf, M. 1998. Design and analysis for survival data under order
restrictions with a modified logrank test. Star. Med., 17, 1469-1479.

Marcus, R., Peritz, E., and Gabriel, K. 1976. On closed testing procedures with special refer-
ence to ordered analysis of variance. Biometrika, 63, 655-660.



Factorial Designs with Time-to-Event Endpoints 209

McAlister, F., Straus, S., Sackett, D., and Altman, D. 2003. Analysis and reporting of factorial
trials: A systematic review. J. Am. Med. Assoc., 289, 2545-2553.

Miller, T., Crowley, J., Mira, J. et al. 1998. A randomized trial of chemotherapy and radio-
therapy for stage III non-small cell lung cancer. Cancer Therapeutics, 1, 229-236.
Montgomery, A., Peters, T., and Little, P. 2003. Design, analysis and presentation of factorial

randomized controlled trials. BMC Med. Res. Methodol., 3, 26.

Peterson, B. and George, S. 1993. Sample size requirements and length of study for testing
interaction in a 2xK factorial design when time to failure is the outcome. Controlled
Clin. Trials, 14, 511-522.

Simon, R. and Freedman, L. 1997. Bayesian design and analysis of two x two factorial clinical
trials. Biometrics, 53, 456-464.

Slud, E. 1994. Analysis of factorial survival experiments. Biometrics, 50, 25-38.

Sparano, J., Wang, M., Martino, S. et al. 2005. Phase III study of doxorubicin-cyclophospha-
mide followed by paclitaxel or docetaxel given every 3 weeks or weekly in patients
with axillary node-positive or high-risk node-negative breast cancer: Results of North
American Breast Cancer Intergroup Trial E1199. Proceedings San Antonio Breast
Cancer Symposium, San Antonio, TX, 2005.

Sparano, J., Wang, M., Martino, S. et al. 2008. Weekly paclitaxel in the adjuvant treatment of
breast cancer. N. Engl. J. Med., 358: 1663-1671.

Tang, D.-I. and Lin, S. 1997. An approximate likelihood ratio test for comparing several treat-
ments to a control. J. Am. Stat. Assoc., 92, 1155-1162.

Tsubokura, M., Kami, M., and Kmatsu, T. 2008. Weekly paclitaxel in the adjuvant treatment
of breast cancer. Letter to the editor. N. Engl. J. Med., 359, 310.






’I 5 Early Stopping of
Clinical Trials

Mary W. Redman

CONTENTS
15,1 TNEFOAUCTION ...tintiiiiiiieiieetiete ettt ettt 211
15.2 Interim Monitoring ConsSiderations ...........cecceveeruereerieneenienienieeieneeeeeneeenes 213
15.2.1 Interim MONIEOTING c..couveviiieiieiierieetesie et 213
15.2.1.1 Stopping for Efficacy .......cccoceririeniiiiniiicnecceeeee 214
15.2.1.2 Stopping for FUtility........ccoocerieniriiniienieeeeeeee 214
15.2.1.3 Other Considerations for Early Stopping.........c..cccceeeuennee 215
15.3 Applications to Study Desi@ns. .......cccceeveereerieiierienieieniieieeeieee e 216
15.3.1 Designs with a Single Hypothesis ........ccccooeeveiieiinieninieeceee 216
15.3.2 Designs with Multiple Hypotheses..........ccccevenieiinieninieniiieee 217
15.3.2.1 Subgroup-Focused Designs .........cccocereeneriienenienieeienneens 219
15.3.2.2 Overall-Population-Focused Designs .........ccccceeevueeiencnns 222
15.3.2.3 Discrete Hypothesis Designs .........ccoceeovereevienerieneeniennees 223
154 DISCUSSION ....cuvinieniiiieiieiteieeieee ettt sttt ettt e 225
ACKNOWIEAZMENE ...ttt ettt ettt et 225
RETEIENCES ...ttt s 226

15.1 INTRODUCTION

Monitoring of accumulating information on efficacy and toxicity data in a clini-
cal trial is an important aspect of human subjects protection. The primary goal of
monitoring a clinical trial is to protect patients while allowing sufficient information
to be accumulated so that the study objectives can be addressed. Addressing study
objectives may include stopping a trial as soon as there is sufficient evidence to
demonstrate efficacy, harm, or even lack of benefit. The standards for these objec-
tives may well depend on the disease setting, type of treatment, or other factors
(Freidlin and Korn 2009). The objective of an interim monitoring plan is define
pre-specified stopping rules that define when a study will be analyzed and under
what conditions the trial will be stopped early, while controlling for the study design
properties. A well-designed trial is the one in which the analyst has investigated and
understands the properties of the trial design. In particular, it is important to have an
understanding of when a trial may be stopped either for evidence of activity or for
lack of benefit or harm.
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Most treatments being developed in cancer are expected to work by acting on a
biologic target: inhibiting some aspect of cell proliferation or some other mechanism
within the host or tumor cell. In order for the drug to have some efficacy the patient
must then have this target to inhibit, therefore this newer class of agents are called
targeted agents. Patients who were once thought of as a homogenous group (e.g., a
diagnosis with advanced non-small cell lung cancer with adenocarcinoma) are now
being further stratified by more refined biologic markers. With the exception of a
treatment with a known, validated, and reliably measured biomarker, an additional
objective in drug development is to determine what patients may derive benefit or
the most benefit from a drug. Therefore, it is generally expected that a clinical trial
will answer a question about the experimental treatment and biomarker either as a
primary objective or a secondary objective. Broadly speaking, there are four choices
of clinical trial designs to address these objectives: (1) the all-comers design with sec-
ondary biomarker objectives, (2) a targeted design that restricts the patient population
to “marker positive” patients, (3) a strategy design that randomizes patients to receive
marker-based or non-marker-based treatments, and (4) a composite of the targeted
and all-comers designs that address multiple hypotheses as co-primary objectives.
As discussed by Hoering et al. (2008) and Mandrekar and Sargent (2009), the choice
of a study design for evaluation of a targeted therapy with a potentially predictive
biomarker depends on the specific scenario (see also Chapter 17). The objective of
this chapter is to discuss considerations in the choice of an interim monitoring plan
for different types of designs involving targeted therapies.

Throughout the chapter, the trial SWOG S0819 will be used to facilitate discus-
sion of interim monitoring considerations for different trial designs. In 2009, SWOG
(formally the Southwest Oncology Group) initiated a trial in first-line advanced non-
small cell lung cancer to evaluate if the addition of cetuximab to chemoradiotherapy
with or without bevacizumab improved progression-free survival (PFS). Support for
the trial was based on two phase II trials, S0342 and S0536 (Gandara et al. 2009;
Herbst et al. 2010). The first study evaluated the addition of cetuximab alone to
chemoradiotherapy and the second evaluated cetuximab and bevacizumab added to
chemoradiotherapy. Both of these studies met their pre-specified benchmarks indi-
cating that cetuximab may improve PFS in this patient population. A retrospective
analysis of tumor tissue in S0342 evaluated the predictive role of increased gene
copy number of epidermal growth factor receptor (EGFR) measured by fluorescence
in situ hybridization (FISH) (Hirsch et al. 2008). Tumors with four or more copies
of the EGFR gene in >40% of the cells (high polysomy) or tumors with EGFR gene
amplification (gene-to-chromosome ratio >2 or presence of gene cluster or >15 gene
copies in >10% of the cells) were considered to be EGFR FISH positive, whereas
all other tumors were considered to be EGFR FISH negative. This study found a
near doubling of median PFS among EGFR FISH positive patients relative to EGFR
FISH negative patients. Previous studies had found EGFR FISH to either be nega-
tively prognostic or not prognostic (S0126). Therefore, in addition to evidence of
improved PFS in the unselected population, based on these data, there was evidence
that EGFR FISH could be a predictive biomarker for cetuximab.

While this chapter is not intended to be a comprehensive overview of group
sequential designs, we now provide a brief overview of some relevant considerations.
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For an extensive discussion of interim monitoring procedures and considerations,
see, for example, Jennison and Turnbull (2000), Friedman et al. (1996), and Green
et al. (2002).

15.2 INTERIM MONITORING CONSIDERATIONS

The typical goal in cancer clinical trials is to demonstrate that a regimen is either
superior or equivalent (when the new regimen has other benefits such as being less
toxic) to the standard of care. Therefore, the associated hypotheses are usually one-
sided. Early stopping in this setting would then either be due to evidence of (1) ben-
efit or (2) lack of benefit or harm. Throughout we will refer to the early closure of a
study for evidence of benefit as stopping for efficacy and early closure due to lack of
benefit or harm as stopping for futility.

15.2.1 INTERIM MONITORING

A test statistic commonly used to compare survival distributions is the log-rank
test statistic. Under the proportional hazards assumption, the sequence of log-rank
statistics is approximated by a multivariate normal and therefore group sequential
procedures can be applied as developed for normally distributed data. Letting 7 rep-
resent survival time with probability density function f{7), then the survival function
is defined as

S(t) = Pr{T > 1} =ff(u)du, t=0,

and the hazard rate is

h(t) = &.

S()
Letting A represent the hazard ratio between treatment the control arm C and the
experimental treatment arm E and defining 0 =1og(}), then testing A=1 is equivalent
to testing O=1log(A)=0. For i indexing the discrete event times (assuming no ties),
k=1,..., K indexing the analyses and letting d, denote the number of uncensored
events at analysis k, the log-rank statistic at analysis & is

di
VEki

Si = 2(5%— Ek)-
= Tki

Here &,,,=1 if the ith event occurred on the experimental arm, ry, is the number of
participants on the experimental treatment arm at risk just before the ith event, and
r,; 1s the total number of participants at risk. When 0 is close to zero, the variance of
S,» which is equal to the observed information /, can be estimated by d/4 and further,

it has been shown that Z, =S, //I, follows a standard normal distribution.
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Interim monitoring rules in the context of one-sided hypotheses for testing
H;:0=0 against H,:0>0 define rules based on pairs of constants (a,,b,), a,<b, for
k=1,..., K- 1 and a,=b, such that if Z, < g, the study is stopped for futility and if
Z, > b, the study is stopped for efficacy, otherwise the study is continued to the next
stage. While originally proposed in the context of two-sided testing, two commonly
used approaches to determine the critical values (a,,b,) were proposed by Pocock
(1977) and O’Brien and Fleming (1979).

15.2.1.1 Stopping for Efficacy

The approach of Pocock is to determine the critical value b,=C,(K,o) for all
k=1,..., K that preserves the overall type I error rate at o, spending equal amounts
of error across all analysis times, including the final analysis. The approach of
O’Brien-Fleming (OBF) is to determine the critical value b, = CB(K,a)\/K—/k for
all k=1,..., K, which also preserves type I error rates. Since the boundaries for OBF
are a function of the percentage of information, relative to the Pocock boundaries,
the OBF boundaries are quite conservative at earlier time points (less information)
and become increasingly more aggressive with more information. There are numer-
ous other approaches to determining the boundaries for group sequential testing.
One other approach regularly used by SWOG is a modified Haybittle-Peto approach
(Haybittle 1971). This approach is similar to the Pocock bounds in that for k=1,...,
K — 1 the same critical value is used; however, the critical value at the final analysis
is different. The bounds are specified on the fixed sample p-value scale by testing
the null hypothesis at level /10 and then the final analysis is tested conservatively
at a — Kx (a/10). We note that the exact level can be determined exactly by simula-
tion or in some software packages.

15.2.1.2 Stopping for Futility

As a result of the asymmetry of one-sided testing, formulation of the boundaries for
futility testing can be specified in terms of testing the alternative hypothesis with
boundaries determined to preserve the study type I and type II error rates. For test-
ing the alternative hypothesis, the log-rank statistic is evaluated at =3 and critical
values are determined as for efficacy testing to spend a certain amount of error over
the analysis times. The futility bound is a function of the alternative hypothesis §, the
observed information /,, and a critical value which now depends on both the type I
error o and the type Il error f (Harrington et al. 1982). Specifically, the general form
of the futility boundary q, is

a =8I, -Ci(K,0.p), k=1,... K.

As before, the Pocock-style boundaries use a critical value that is constant across
analysis times; the OBF-style boundaries are a function of the amount of informa-
tion and are more aggressive as the study continues. The SWOG boundaries again
are specified on the fixed sample p-value scale by testing the alternative hypothesis

at level o/10. The lower boundary is crossed in this set-up if Z; — 84/, is less than
the critical value.
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An alternative to idea to specification of boundaries based on critical values as
described earlier was proposed by Wieand et al. (1994). Their proposal is that once
a study has reached at least 50% of the planned events, if the observed hazard ratio
is greater than 1, then the study should be stopped for futility. This idea was further
refined by Freidlin et al. (2010a) to provide boundaries that retain study design prop-
erties. While intuitively appealing, the simulations presented in their paper indicated
that this approach was not that dissimilar from the SWOG approach, but is not as
easily implemented and also results in a greater loss of power.

15.2.1.3 Other Considerations for Early Stopping

Emerson (2000) demonstrated that various approaches to error spending and stochas-
tic curtailment approaches can all be mapped to each other one-to-one. Therefore,
for this discussion of early stopping, the focus is on the use of error spending func-
tions to determine the interim monitoring plan/boundaries. Clearly stopping early
for evidence of benefit has an impact on the study-wide type I error rate and stopping
early for evidence of no benefit or harm has an impact on the study-wide power.

Barber and Jennison (2002) demonstrated that minimizing the sample size under
the null typically results in a larger sample size under the alternative (and vice versa)
for asymmetric designs. It follows that designs with conservative stopping rules are
closest to the fixed sample design; they spend less type I and II error at the interim
analyses and therefore have smaller maximal sample sizes than designs with more
aggressive stopping rules. Designs with more aggressive stopping rules are more
likely to stop early for either efficacy or futility and therefore have smaller average
sample sizes. However, these designs spend more type I and type II error at the
interim analyses. It is possible that the associated increase in sample size to retain
power may counteract the benefit to aggressive monitoring.

The timing of interim analyses in a clinical trial is usually based on the percentage
of information accumulated. In cancer clinical trials, the number of events such as
deaths or progression events is the typical measure of information. Protocol-specified
stopping rules are defined in terms of the exact number of events. Deviations from
the planned analysis schedule can have an impact on the operating characteristics
of a trial. Even with careful and close monitoring of trial data, the interim analyses
may not performed at precisely the protocol-specified number of events. This may be
due to a variety of reasons. For example, in the cooperative group setting, coopera-
tive groups typically have one DSMB for all studies within in the group that require
monitoring. As such, these DSMBs usually have a set meeting schedule and meet
for example on a biannual basis. The likelihood that accumulation of events in a
study will follow the meeting schedule exactly is highly unlikely. Alternatively, an
unplanned interim analysis may be called for given outside information. For exam-
ple, due to safety concerns with the experimental drug arising from other studies,
an unplanned interim analysis was performed in the SWOG trial S0023. This trial
randomized stage III non-small cell lung cancer patients to receive either gefitinib or
placebo for maintenance therapy following systemic chemotherapy. The unplanned
analysis resulted in early closure of the trial (Kelly et al. 2008).

The Pocock and OBF boundaries were developed under the assumption of equal
increments of information and analyses being performed exactly at the specified
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amounts of information. Lan and DeMets (1983) developed a method to adjust the test-
ing thresholds to preserve the overall type I error. The SWOG boundaries do not deter-
mine the bounds based on the amount of information and use a conservatively adjusted
p-value at the end of study and therefore does not need to be adjusted. Moreover, if the
study investigators are willing to modify the maximal sample size, the design power
can be maintained (Pampallona and Tsiatis 1994). These adjustments can be made to
maintain the study properties accounting for both planned and unplanned analyses as
long as the analyses do not depend on treatment effects at interim analyses.

Designs with multiple hypotheses have multiple groups on which to base the
scheduling of interim analyses. Despite well-thought-out trial designs, it is almost
a certainty that interim analyses will take place outside of the planned number of
events for at least one of the groups. Therefore, the need to consider design properties
resulting from analyses at non-pre-specified times may arise more often in designs
with multiple hypotheses.

15.3 APPLICATIONS TO STUDY DESIGNS

Using the S0819 trial setting as a guide, we now evaluate and discuss the properties
of different monitoring approaches for the all-comers, targeted, strategy, and multi-
ple hypothesis designs. Design assumptions include an assumed prevalence of EGFR
FISH positivity to be around 50% and the median PFS is estimated to be approxi-
mately 5—6 months. It is assumed that 80% of patients will have an EGFR FISH
result and therefore 40% of the total population will be determined to be EGFR
FISH positive. For designs that include the unselected population, it may be reason-
able to include patients with unknown marker status. In this case, patients are classi-
fied as marker positive and marker non-positive. All designs will have 90% power for
the primary hypothesis and 2.5% type I error based on one-sided testing. The target
hazard ratio in the EGFR FISH positive group is a 33% improvement in median PFS.
The target hazard ratio in the overall study population is a 20% improvement in
median PFS. Further, accruals to the study are distributed uniformly over the accrual
period, the accrual rate in the unselected population is 35 patients per month, and the
follow-up time is 12 months. The interim monitoring plan considered for all designs
will be interim analyses at 40%, 60%, and 80% of the expected PFS events.

15.3.1 DESIGNS WITH A SINGLE HYPOTHESIS

The all-comers, targeted, and strategy designs evaluate one primary hypothesis.
Referring to the motivating example S0819, the all-comers and targeted designs are
based on the design assumptions stated earlier. The strategy design that would ran-
domize patients to marker-based treatment or to receive the standard of care irrespec-
tive of marker value would then have a target hazard ratio equal to a 13% improvement
in median PFS. The fixed-design sample sizes for these three designs are 1314 patients
for the all-comers design, 1345 patients screened to achieve 538 marker-positive
patients for the targeted design, and 2784 patients for the strategy design.

A comparison of properties of the all-comers, targeted, and strategy design for
designs under the three monitoring approaches is presented in Table 15.1. While the
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TABLE 15.1
Properties of All-Comers, Targeted, and Strategy Designs
under Pocock, OBF and SWOG Stopping Rules

Study Time (If Average Sample Size
Continues to Maximal Under Under

Full Accrual) Events  Sample Size Null Alternative

All-comers design: H,=1.2

Pocock 62 1678 1728 789 888

OBF 52 1333 1382 827 936

SWOG 51 1283 1334 950 963
Targeted design: H,=1.33

Pocock 63 686 706 323 363

OBF 53 545 566 338 382

SWOG 51 525 546 388 394
Strategy design: H,=1.13

Pocock 118 3627 3676 1707 1921

OBF 96 2881 2930 1787 2023

SWOG 93 2774 2824 2070 2083

sample size in the all-comers design is about 2.5 times that of the targeted design,
accounting for the number needed to be screened, the two designs would take about
the same amount of time to complete accrual. The ratio of the maximal and aver-
age sample sizes under the null and alternative hypotheses for the three monitoring
approaches is constant across all scenarios. The strategy design requires approxi-
mately twice as many patients as the all-comers design and would take at least twice
as long to complete. The strategy design requires about five times the number of
patients needed for the targeted design and essentially performs the same compari-
son. The ratios of the average sample sizes under the null and alternative hypotheses
are essentially the same for the different monitoring plans indicating that the fraction
of times that the studies are stopped early is essentially the same, the strategy design
just would take twice as long to get to the interim analyses.

The use of the all-comers design in this setting will likely include evaluation of
a biomarker and a secondary objective. An important consideration in this setting is
the power to look for subgroups deriving benefit when the overall null hypothesis is
true. In this case, maximizing the sample size under the null is key indicating that a
monitoring plan with conservative bounds is the most appropriate. Figure 15.1 dem-
onstrates the properties of the boundaries for the all-comers design. The boundaries
presented are based on OBF, Pocock, and the standard SWOG approach. The SWOG
approach is the most conservative and the Pocock approach is the most aggressive.

15.3.2 DEsiGNs witH MuLtipLE HYPOTHESES

In the context of designs for targeted therapies, multiple hypothesis designs usu-
ally involve the specification of a hypothesis in the target population defined to be
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FIGURE 15.1 A comparison of boundary shapes for the all-comers design.

biomarker-positive and in either the overall study population or in the biomarker-negative
population (Chapter 17). These hypotheses are treated as “‘co-primary” and control the
overall study false-positive rate; a fraction of the type I error is portioned to each of
the hypotheses. Functionally, the study is designed around one of the hypotheses at
the specified type I error rate and then the design associated with the other hypothesis
is defined based on the sample size for the population associated with that hypothesis.

The specification of a design with multiple hypotheses not only has an impact on
the design of the study itself, it has impact on the interim monitoring plan. No longer
is there one hypothesis on which to base the monitoring plan. Decisions to stop a
trial early for either efficacy or futility based on the evaluation of one hypothesis can
have an impact on the ability to evaluate the other (or multiple other) hypotheses.
Our primary driving framework for interim monitoring considerations for designs
with multiple hypotheses is that the study design, study hypotheses, and the prioriti-
zation of the hypotheses should dictate the interim monitoring plan. Moreover, there
has to be a trade-off between answering one question and answering multiple ques-
tions within the same study. Not only will the maximal sample size for these mul-
tiple hypothesis designs be larger than the standard phase III design, but the average
sample size under the null and alternative hypotheses will be larger. Regular moni-
toring for safety and feasibility should not change significantly but the formal rules
to guide under what conditions stopping the study should be considered.

We divide the scenarios for these multiple hypothesis designs into three categories:
(I) subgroup-focused, (2) overall-population-focused, and (3) discrete-hypothesis
designs. Subgroup-focused and overall-population-focused designs are trial designs
where one of the hypotheses is nested within the other. Whereas discrete hypothesis
designs are essentially parallel clinical trials with no overlap in hypotheses, sub-
group-focused designs are designs where the subgroup drives the study design and
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is allotted the majority of the type I error. Design properties within the overall study
population are based on the residual type I error to achieve the desired study type
I error and the number of patients needed to be screened to achieve the number for
the subgroup. Overall-population-focused designs are simply the opposite of the sub-
group-focused design; the study design is based on the hypothesis within the overall
study population and this hypothesis is allotted the majority of the type I error.

When deciding upon an interim monitoring plan in a study that has multiple pri-
mary objectives, all of the various scenarios should be taken into consideration. At
each analysis time, one could decide to continue or stop the study in the overall study
population or continue the study in one subgroup but not the other (e.g., continue in
marker positive patients but stop in marker non-positive patients). Decisions regarding
whether or not to continue the study in the marker non-positive group could be based
on an evaluation within that subgroup or on the joint evaluation of the marker-positive
group and the overall study population.

15.3.2.1 Subgroup-Focused Designs

In a subgroup-focused design, the hypothesis within the subgroup is the primary driver
of the study design and this hypothesis is allotted the majority of the type I error. For
example, Simon et al. (2005) recommend using 80% of the type I error for the sub-
group hypothesis. An appropriate use of this design is when it is thought that the most
likely group to benefit from the experimental regimen is the subgroup, but that it is
also possible that the unselected population may also benefit from the experimental
regimen, a likely scenario when the biomarker or biomarkers have not been validated.

The relationship between the subgroup-focused design versus a targeted design is
depicted in Figure 15.2. In comparison to the targeted design, the subgroup-focused
design requires more marker-positive patients and the analysis times are later,
although these differences are very minor. The boundaries on the hazard ratio scale
are essentially the same.

Therefore, in the scenario presented here, the relative cost of a subgroup-focused
design to a targeted design is minimal, and the gains are that the treatment effect can
be assessed in the entire study population.

The underlying implication of this study design is that the primary goal of the
study is to monitor for efficacy in the subgroup. If the null hypothesis is rejected
within the marker-positive group, then trial is a success and has demonstrated effi-
cacy of the experimental regimen. However, the trade-off in this scenario is that by
stopping a trial early for efficacy in the subgroup, the properties of the design in the
overall study population are altered. The result of stopping a trial in the subgroup
is that there is a loss of power to evaluate the hypothesis within the overall study
population. Stopping the trial early can also reduce the false-positive rate within the
overall study population because stopping the trial early could preempt studies that
would have rejected the null hypothesis at full accrual. Additionally, if the study is
stopped for efficacy in the marker positive group, a decision has to be made about
whether or not to continue the trial in the marker non-positive group.

Determination of the rules for stopping a trial for futility is more complicated. In
subgroup-focused designs, a clear component of futility monitoring is an evaluation
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Accrual (subgroup) 434 518 588 594

FIGURE 15.2 The targeted design versus the subgroup-focused design with OBF
boundaries.

within the target subgroup. However, if the biomarker or a set of biomarkers is not a
predictive biomarker, then subgroup hypothesis is either not true or overly optimis-
tic, but it is still possible that the overall study population hypothesis is true. In this
scenario, one would not want the trial discontinued for lack of efficacy based on the
target subgroup alone; the evaluation should also consider the overall study popula-
tion. This scenario highlights that in these multiple hypothesis designs the trade-off
for hedging your bets with multiple hypotheses is that more conservative stopping
rules are needed to be able to address all of the trial objectives.

Futility monitoring could either occur separately within the marker positive and
the marker negative groups or jointly within the marker positive group and in the
overall study population. The subgroup-focused design specifies the target alter-
native hazard ratios for the subgroup and the overall study population. In order to
define a monitoring plan for the marker negative group, the alternative hazard ratio
for the negative subgroup needs to be determined based on the design hypotheses.
If the data can be assumed to follow the exponential distribution, then the overall
population hazard rate is simply a weighted average of the hazard rate in the marker-
positive group and the marker-negative group. Moreover, if the marker is not prog-
nostic, then the alternative hazard ratio is a weighted average of the hazard ratios for
the marker positive and negative groups.

Referring to our example with EGFR FISH and cetuximab, if the objective within
the EGFR FISH positive population was determined to be of greater importance
than the objective within the unselected population, then a subgroup-focused design
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would be most appropriate. Based on the target hazard ratios for the EGFR FISH
positive group and the overall study population, the associated alternative hypoth-
esis within the EGFR FISH non-positive group is an 11% improvement in median
PFS. Allocating 80% of the type I error to the subgroup results in a design with
one-sided 0.02 type I error for the subgroup hypothesis. The residual type I error is
conservatively 0.005; however, as the hypotheses are nested, the exact level can be
determined to be greater than this level. Using simulations the exact residual type I
error for this study was to use a one-sided p-value equal to 0.008 in the overall study
population to achieve an overall study type I error rate of 2.5%. The sample size for
this subgroup-focused design is a target accrual of 1440 patients needed to achieve
572 EGFR FISH positive patients. The power within the overall study population to
detect a 20% improvement in median PFS is 83%.

Using the standard SWOG approach to interim monitoring, Figure 15.3 depicts
stopping boundaries for the EGFR FISH positive group, the overall study popula-
tion and the EGFR FISH non-positive group at 40%, 60% and 80% of PFS events.
Futility boundaries for bounds based on monitoring the overall study (gray line) and
the EGFR FISH non-positive group (dashed line) are presented. Boundaries in the
EGFR FISH non-positive group are based on testing the alternative at the same level
as the EGFR FISH positive group (overall level =0.02).

This Figure 15.3 demonstrates that the underpowered aspect of the evaluation
within the non-positive group is much more conservative than using an approach that
uses an evaluation within the target subgroup and the overall population to deter-
mine if the study should be stopped for futility, even though the non-positive group is
tested at a higher level than the overall study population. In fact, at the earlier interim

2

- —EGER FISH positive

" : Overall population

= : --- EGFR FISH non-positive

1.1 1.2 1.3 14

Hazard ratio (control : treatment)
1.0

Information (%) 40 60 80 100
Time 30 36 41 54

FIGURE 15.3  Stopping boundaries for subgroup-focused design example using the SWOG
boundaries.
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analyses, the futility boundary for the overall population is actually larger than that
of the target subgroup due to the greater number of events in the entire study.

Given the complexity of a trial with multiple hypotheses, we recommend defin-
ing stopping rules for a limited set of conditions that are relatively conservative. In
this example, the planned futility rules are to stop the trial for futility if both the
alternative in the target subgroup and the overall study population are rejected. In
addition, the plan includes stopping the trial for futility in the non-target subgroup if
the alternative in the overall study population is rejected and the target subgroup is
not rejected. This does result in a trial design with average sample size under the null
that is not too dissimilar to the fixed design sample size. But again, the trade-off for
complexity is conservatism, and conservatism results in a smaller maximal sample
size but larger average sample size.

15.3.2.2 Overall-Population-Focused Designs

Designs that are overall-population-focused can be thought of as designs which add a
safety net to the general all-comers design. Examples of designs which were overall
population focused are the Sequential Tarceva in Unresectable NSCLC (SATURN)
and INTEREST trials (Capuzzo et al. 2010; Kim et al. 2008). The INTEREST trial
compared gefitinib, a tyrosine kinase inhibitor, which targets the EGFR recep-
tor with docetaxel in previously treated non-small-cell lung cancer patients. The
SATURN trial evaluated the role of erlotinib as maintenance therapy relative to no
maintenance therapy (placebo) in advanced non-small-cell lung cancer patients. The
biomarker used in the INTEREST trial was EGFR FISH and in the SATURN trial
was EGFR measured by immunohistochemistry (IHC).

The interpretation of such a design is that the investigators believe that there
is good evidence that an unselected population will benefit from the experimen-
tal regimen. However, it is possible that efficacy may be limited to a subset of the
patients defined based on a biomarker or set of biomarker values. Given this set of
suppositions, it makes sense that monitoring a study for early signs of efficacy would
be based on the overall study population. If the null hypothesis is rejected within
this population, then the trial is a success and has demonstrated the efficacy of the
experimental regimen. The trade-off in this scenario is that by stopping a trial early
for efficacy in the overall study population, there is a loss of power to evaluate the
hypothesis within the subgroup. It is possible that the subgroup is the primary group
that benefits and the rest of the patient population derives little or no benefit from the
experimental drug. That said, if this is the case one hopes that the subgroup effect is
so large that it is still well powered with the reduced sample size given that the trial
is stopping early for large effect sizes.

Relative to the all-comers design, a consequence of smaller type I error is that
the overall-population-focused design will stop less often under the null than the
all-comers design. Futility monitoring in this setting is also more similar to the
all-comers design except that it too is slightly more conservative than the all-comers
design. A reasonable approach to futility monitoring may or may not include an
evaluation of the subgroup. If the subgroup is known a priori and is evaluated,
then stopping the trial for futility in the target subgroup would occur if both the
overall-population and target subgroup futility boundary is crossed. If only the
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FIGURE 15.4 Stopping boundaries for overall-population-focused design example using
the SWOG boundaries.

overall-population hypothesis is rejected, it may still be of interest to continue the
trial in the target subgroup alone.

Referring again to the example study S0819, an overall-population-focused design
would be based on the target 20% improvement in median PFS and a type I error
rate of 0.02. Under the design assumptions, the sample size is 1154 patients, 462
of them expected to be EGFR FISH positive. The split of type I error is the same
for the overall-population-focused design as it was for the subgroup-focused design.
Therefore, the power to detect a 33% improvement in median PES in the EGFR FISH
positive population is 38% using the 0.008 level. The stopping boundaries for this
example are depicted in Figure 15.4.

As can be seen in Figure 15.4, the futility boundaries for both hypotheses are
pretty conservative with stopping only for harm, and the boundaries for the EGFR
FISH positive group will almost never be crossed. Any early closures for futility will
almost certainly be based on the overall study population alone.

The overall-population-focused design can also be used in the situation where the
biomarker or biomarker set is unknown, or where the exact threshold is unknown.
For example, Freidlin and Simon (2005) proposed the adaptive signature design. This
design can be used to both discover and validate a set of biomarker values that defines a
subgroup most likely to benefit from treatment. Clearly, as the subgroup is not defined
until the end of study, interim analyses will not include an evaluation of the subgroup.

15.3.2.3 Discrete Hypothesis Designs

Discrete hypothesis designs seem most appropriate when completely different hypoth-
eses are to be evaluated within each subgroup. As the S0819 example is not appropriate
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for this type of design, a different setting is used to motivate the discussion of this
design. An example of a trial where the hypotheses are specified for discrete study
populations is the MARVEL trial (Wakelee et al. 2008). The North Central Cancer
Treatment Group initiated a trial in second-line advanced non-small cell lung cancer
initiated a trial called MARVEL (marker validation for erlotinib in lung cancer). The
study aimed to compare two drugs, both of which had been approved for treatment
in the disease setting. This trial employed a biomarker-stratified design with separate
hypotheses in each of the strata defined based on EGFR FISH status. The two hypoth-
eses were that (1) erlotinib, an EGFR tyrosine kinase inhibitor was superior to peme-
trexed, a multitargeted antifolate in patients who were EGFR FISH positive and (2)
that pemetrexed was superior to erlotinib in EGFR FISH negative patients. The study
was designed with 90% power to detect a 50% improvement with erlotinib in median
PFS among EGFR FISH positive patients and to detect a 30% improvement with
pemetrexed among EGFR FISH negative patients. They assumed that the proportion
of patients determined to be EGFR FISH positive would be 30%. Interim analyses
were specified to occur when 50% and 75% of the expected events had occurred
within each stratum. For the purposes of this example, we assumed that the accrual
rate was 15 patients per month and that the null median PFS was 3 months.

In contrast to the designs discussed earlier, the hypotheses for this trial were com-
pletely independent for the two strata; this trial design is one of two parallel phase
III designs. Accordingly, the type I error levels were not split between the hypoth-
eses. While a secondary objective was to test the interaction between EGFR FISH
status and treatment effect, this objective was not the primary objective. Therefore,
it makes sense that the interim analysis plan for this trial was specified separately for
the two groups and any decision to stop early in one stratum would have no impact
on the other stratum (Freidlin et al. 2010b). Part of this plan is an acceptance that the
interim analyses may preclude the ability for the study to test the interaction (with
much power). But in reality, if either group is stopped early either for efficacy or
harm, the value of being able to definitely prove that the marker is prognostic is small
relative to the overall benefit of determining one treatment is either more efficacious
or more harmful within that subgroup.

The role of the biomarker in this trial is different from the other multiple hypoth-
esis designs. In this setting, completely different questions are being asked of the
subgroups defined by the biomarker and in fact, different monitoring approaches
could be used for the studies within subgroups. In choosing the boundary shape
parameters in this setting, on might want to take into consideration of the secondary
objective to test the interaction and choose a more conservative monitoring plan.
Table 15.2 details the trade-off between more or less aggressive monitoring and
its impact on the maximal sample size and average sample sizes. As expected, the
SWOG approach has the smallest maximal sample size and shortest time to study
completion (if it goes to full accrual); the Pocock approach has the largest maximal
sample size and longest time; and the OBF approach is in the middle. The average
sample sizes for the OBF and Pocock boundaries are essentially the same under the
null and the SWOG and OBF average sample sizes are essentially the same under the
alternative hypothesis (Table 15.2).
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TABLE 15.2
Properties of the Discrete Hypothesis Design Example

Average Sample Size

Study Time (If Maximal
Continues to Sample  Under Under
Full Accrual) Events Size Null Alternative
FISH positive
Pocock 78 321 324 176 191
OBF 67 267 272 174 195
SWOG 65 258 262 202 203
FISH negative
Pocock 80 765 774 420 457
OBF 68 637 646 415 465
SWOG 66 616 624 482 485

15.4 DISCUSSION

In all the designs discussed in this chapter, a biomarker or set of biomarkers is evalu-
ated either to establish eligibility to stratify for treatment assignment or to be evalu-
ated during the course of the trial to determine subgroup membership (similar to
stratify with prospective evaluation). Consideration of the operating characteristics
of the interim monitoring plans is important to ensure that clinical trials, which
are a huge undertaking, provide us with the necessary data to answer the pertinent
scientific questions. Interim monitoring plans are best when they correspond to the
setting. In particular, more complex trials designs may need less aggressive monitor-
ing plans in order to address multiple objectives.

The evaluation of an interim monitoring plan includes the evaluation of all aspects.
In settings where biomarker-driven hypothesis are primary, it is also important to
monitor the study for the quality of biomarker data. Typically, the study design will
specify the assumed marker prevalence, specimen submission rates, rates of ade-
quate specimen submission, and assay failure rates. Therefore, in addition to evalu-
ating clinical outcomes and adverse events, interim monitoring of the study should
also include an evaluation of these assumptions. Incorrectly specified assumptions
may require modification of screening and/or accrual targets or demonstrate a lack
of feasibility to perform the biomarker-driven study. In any case, a carefully thought
out plan should provide a good basis to evaluate accumulating information in a trial,
with the goal to balance the risks and benefits for patients while addressing the sci-
entific questions at hand.
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16.1 INTRODUCTION

Phase III therapeutic trials in oncology are conducted to compare the effectiveness
of treatment regimens. In most settings, an accepted standard therapy exists and the
motivation is the hope that a new treatment regimen (E) will prove to be superior
to the standard therapy (S) in some respect, for example, survival or response rate.
Such trials are called “superiority trials.” Let p(X,Y) denote a parameter that char-
acterizes the difference between outcomes with treatments X and Y. Without loss
of generality, we assume that p(E,S) is parameterized so that p(E,S)=0 if E and
S are equally effective and p(E,S)>0 if E is superior to S. For example, for com-
parisons of response rates, p(E,S) might be rate difference Py— Py or the log odds
ratio In{P,(1-Py)/[P¢(1-P,)]}, where P, denotes the response rate for arm X=S or
E. Similarly p(E,S) might be the log hazard ratio for S relative to E in comparing
censored outcomes such as overall or progression-free survival, or p(E,S) might be
the difference in mean values of a continuous outcome variable measured without
censoring, such as a quantitative measure of molecular response. In the hypothesis
testing context, a superiority trial tests the null hypothesis H,:p(E,S) <0 against the
one-sided alternative H ,:p(E,S)>0.

In some circumstances, however, a trial is motivated by the hope that E is nearly
as effective as S in some respect. In cancer trials, such studies can be of particular
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interest since many treatment regimens have significant detrimental consequences,
for example, severe and even life-threatening toxicity, high cost, or inconvenience or
difficulty of administration that reduces adherence to the regimen. A new regimen
that is less toxic, expensive, or difficult but nearly as effective as the standard regi-
men may therefore be the preferred treatment approach. Trials in this setting can be
classified as either equivalence trials or noninferiority trials.

The term “equivalence trial” has generally come to refer to trials for which the
hypothesis of interest is that results with E are similar to S, that is, neither better nor
worse beyond reasonable limits. In general, such trials are of little value for studies
of the effectiveness of new treatments, since there would be little reason to reject E if
it proved significantly more effective than S. Equivalence trials will not be discussed
in this chapter.

Noninferiority trials, in contrast, are inherently one-sided. The hypothesis of
interest is that £ is, at worst, inferior to S by a defined margin. In the hypothesis test-
ing context, the null hypothesis for a noninferiority trial is therefore H:p(E,S)<M
against the one-sided alternative H,:p(E,S)>M where M <0 is the allowable margin
of inferiority, that is, the maximum loss of effectiveness that is considered accept-
able. M, referred to herein as the noninferiority margin, is sometimes called the
equivalence limit or irrelevant difference (Wiens 2002, Lange and Freitag 2005).

Recent years have seen a great deal of research into the methods for designing,
analyzing, and interpreting noninferiority trials; see, for example, the January 30,
2003 issue of Statistics in Medicine (volume 22, number 2), the December, 2004
issue of the Journal of Biopharmaceutical Statistics (volume 14, number 2), and the
February 15, 2005 issue of Biometric Journal (volume 47, number 1). Standards for
reporting results of noninferiority trials have been established (Piaggio et al. 2000).
In this chapter, we address some practical issues regarding noninferiority trials in the
setting of cancer therapy research.

16.2 HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

There are two general approaches to analyzing the results of noninferiority trials:
significance testing and confidence interval (CI) estimation. The distinction between
the two approaches is to some extent artificial. Although these are sometimes viewed
as alternative approaches to statistical analysis, they provide complementary infor-
mation and are indeed often used together. Nevertheless the design and analysis of
noninferiority trials is generally presented in terms of one or the other approach.

In the hypothesis testing approach, the aim is to perform a significance test of the
null hypothesis of unacceptable inferiority, Hy:p(E,S) <M (recall M <O is the largest
allowable margin of inferiority), against the one-sided alternative H,:p(E,S)>M. If
the null hypothesis is rejected, then noninferiority is concluded. The study’s statisti-
cal power is the probability of correctly rejecting the null hypothesis of unacceptable
inferiority. Ordinarily the study’s sample size is determined to ensure that this test
has a high level of power, typically 90% or 80%, if E and S are indeed equally effec-
tive, that is, under the specific alternative hypothesis H,:p(E,S)=0.

The aim of the CI approach is to calculate a lower confidence limit pX(E, S)
for p(E,S). In this chapter, we assume p4(E, S) is the lower limit of a two-sided
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100(1 —a)% CI. If M <p(E, S), then the study’s results are inconsistent with unac-
ceptable inferiority, and noninferiority within the margin M is concluded. If, on
the other hand, p*(E, S) <M, then the possibility of unacceptable inferiority cannot
be ruled out. The sample size is determined to ensure a high level of power, in
other words, a high probability that p*(E, S) will exceed M if in fact E is not infe-
rior to S. As in the hypothesis testing approach, it is usually reasonable to calculate
sample size under the assumption that p(E,S) =0, that is, that £ and § are equally
effective.

As is generally the case, the two approaches are closely related, for example, one
can define significance tests on the basis of CIs including or excluding hypothesized
values. Nevertheless the CI approach provides more information than the simple
result of the hypothesis test, since it gives a range of plausible values for the treat-
ment difference parameter p(E,S). Therefore, the following development is based on
the CI approach.

In some circumstances, it may be appropriate to test both superiority and non-
inferiority hypotheses in a single trial, since this allows three possibilities: reject-
ing the superiority null hypothesis H:p(E,S) <0 might suggest that E should replace
S as the standard therapy; otherwise rejecting the noninferiority null hypothesis
Hy:p(E,S)<M might support a recommendation that £ may be used as an alterna-
tive to S, while failing to reject the latter hypothesis would support a conclusion that
E is unacceptably inferior to S and should not be used (Dunnett and Tamhane 1997,
Friedlin et al. 2007). As in simple noninferiority trials without superiority testing,
the general approach based on CIs can be applied to both hypotheses in this setting
(Tsong and Zhang 2005).

In the following sections, sample size formulas are presented for simple noninfe-
riority trials, without superiority testing, in which the treatments are compared with
respect to a binary outcome such as response to therapy, a time-to-event outcome
subject to censoring such as overall or disease-free survival, or a continuous outcome
variable not subject to censoring such as a quantitative measure of response. These
relatively simple models may be appropriate for noninferiority trials of cancer thera-
pies in many if not most settings. Indeed models of such simplicity have been used
to design a number of published cancer trials although, as described in the following
examples, they have not always been used with sufficient attention to the selection of
appropriate design specifications.

16.3 SAMPLE SIZE DETERMINATION

16.3.1 NONINFERIORITY TRIAL WITH BINARY OUTCOME

For a binary outcome variable such as complete response (CR), a noninferiority
trial can be based on the difference in outcome probabilities: p(E,S)=P;—P. The
100(1 — )% two-sided confidence limits for P,— P are given by

+

I'A)E - ﬁs x Za/Z\/ﬁE (zlv_ ﬁE) ﬁs (jv_ ﬁS)
E s
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where
N, and }A’X are the number of patients and proportion of patients with the outcome,
respectively, in arm x=E or §
z, denotes the 100pth percentile of the standard normal distribution

For a noninferiority trial comparing E and S, one wants a high probability (power)
that the lower confidence limit will be greater than the noninferiority margin M
if E is indeed not inferior. The sample size required to ensure statistical power of
100(1 —B)% if the true event probabilities are P, and Py may therefore be calculated
using the formula

PE(I—PE)+PS(1—PS)
Ky 1-K,

(16.1)

_ a2 38 y
M +(Pg - F)

where
N is the total number of patients
K is the proportion randomized to E

Ordinarily trials are designed to have adequate power to reject inferiority if the
regimens are equally effective, that is if P,=P¢=P for a value of P specified by the
investigators. Also for any fixed P, M, a, and , N is minimized when K,=0.5. With
these assumptions, Equation 16.1 simplifies to

Zar2 t 3
M

2
N =4x } x[P(1-P)] (16.2)

Table 16.1 displays the numbers of patients required for various combinations of P,
M, a, and B, calculated using Equation 16.2.

Alternatively, the difference in event rates can be expressed as the log odds ratio:
p(E,S)=In{P(1-Py/[Ps(1-Py)]} (Wang et al. 2002a). The estimated log odds
ratio is

Py
1-P,

ﬁ(E,S)=1n( P’i )—m

which has estimated standard error

1 1
\/NEﬁE(l—ﬁE)+Nsﬁs(l—ﬁs)

For inferiority margin M, now expressed as the log odds ratio, the sample size for-
mula analogous to Equation 16.1 is
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TABLE 16.1
Study Sizes Required for Noninferiority Comparison of Binary
Outcome, Based on Arithmetic Difference in Outcome Probabilities

Confidence Level?

Probability of Noninferiority Margin M, . oy
Outcome with Expressed as Additive Change ° °
Standard Therapy in Outcome Probability Statistical Power
90% 80% 90% 80%

0.50 -0.05 4204 3140 3426 2474

-0.10 1052 786 858 620
0.75 -0.05 3154 2356 2570 1856

-0.10 790 590 644 464
0.90 -0.05 1514 1132 1234 892

-0.10 380 284 310 224
2 Confidence level for two-sided confidence interval.

2
1 1

(16.3)

N = Zai2 ¥ 2 x +
M -1n(OR) KPo(1-P:) (1-Kg)Ps(1-P)

where In(OR)=In[P./(1 - P,)] —In[P; /(1 - Py)] is defined by the values of P, and Pg
under the alternative hypothesis. If this is chosen as the hypothesis of equivalence
(P,=Pg=P) and K;=0.5, then Equation 16.3 simplifies to

1
P(1-P)

(16.4)

2
N =4x a2 + 2
M

Table 16.2 displays the numbers of patients required for selected values of P, M, a,
and f, calculated using Equation 16.4. If P;>0.5, and therefore P>0.5, then for any
fixed values of M, a, and P, the sample size increases with increasing P. This occurs
because the absolute difference between P, and P, corresponding to the log odds
ratio M decreases.

16.3.2 NONINFERIORITY TRIAL WITH TiME-TO-EVENT OUTCOME

For cancer clinical trials in which the outcome of interest is time until some event
such as death or disease progression, it is often reasonable for sample size calcula-
tions to assume that times to events are exponentially distributed. Assume N patients
will accrue at a uniform rate from time O until A, and that follow-up will continue
for an additional period of duration F, at which point observation will be censored
for all patients remaining alive (censoring at time A+ F). Assuming E and S are
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TABLE 16.2
Study Sizes Required for Noninferiority Comparison of Binary
Outcome, Based on Odds Ratio

Confidence Level®

Probability of Noninferiority Margin,
Outcome with Expressed as Odds Ratio 95% 90%
Standard Therapy (Ps)  [M=Log Odds Ratio] (P;) Statistical Power
90% 80% 90% 80%
0.50 0.80 [-0.22] (0.44) 3377 2523 2752 1987
0.70 [-0.36] (0.41) 1322 988 1078 778
0.75 0.80 [-0.22] (0.71) 4502 3363 3670 2649
0.70 [-0.36] (0.68) 1763 1317 1437 1037
0.90 0.80 [-0.22] (0.88) 9379 7006 7644 5519
0.70 [-0.36] (0.86) 3671 2743 2992 2160

@ Event probability for arm E assuming probability Pg for arm S and the indicated E:S odds
ratio.
b Confidence level for two-sided confidence interval.

exponentially distributed, the hazard rates can be parameterized as Ay=e* and
hg=ePES) respectively, so that the log hazard ratio for S relative to E, p(E,S) is
greater than O if E is superior to S, and the noninferiority hypothesis is Hy:p(E,S) <M
for a specified M<0. For example, in Southwest Oncology Group study SWOG-
8412, which compared carboplatin plus cyclophosphamide to the standard therapy
of cisplatin plus cyclophosphamide with respect to overall survival of patients with
stage III or IV ovarian cancer, the margin was chosen to correspond to a mortal-
ity hazard ratio (E relative to S) of 1.3, corresponding to a noninferiority margin
M= —In(1.3)=-0.262 (Alberts et al. 1992).
Letting p=p(E,S), the maximum likelihood estimator of the log hazard ratio is

p=In d ~In ds
T, T

with estimated standard error

where d, and T, are the number of events and total observation time (sum of all times
from study entry until observation of the event or censoring), respectively observed
on arm x=F or S. Thus the 100(1 —®)% confidence limits are given by

D Zgp X SE(@)
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The total number of patients required to ensure at least 100(1 — )% probability that
the lower limit of the two-sided 100(1 —a)% CI will exceed M when the true value of
the log hazard ratio is p(E,S) can be calculated as

2
N = a2 + 3 y
M -p(E,S)

1 1
16.5
KiQ: (1—KE)Qsl 16

where
K is the proportion of patients randomized to E and Qj
Oy are the expected proportions of patients whose deaths will be observed in the
two arms

For exponentially distributed times to events,

exp(-A,F)x [1 - exp(—)»xA)]

0,=1- w (16.6)

for x=FE or S. Typically the study requires adequate power under the alternative
hypothesis p(E,S)=0, in which case Ay=Ag, N is again minimized if K;=0.5 and
Equation 16.5 simplifies to

2
N=(4)(Z°‘/2+Z‘*) 16.7)
Os M
The value of Ag, and of A, if needed, can be determined from parameters of the
anticipated true exponential distributions. For example, if the median event time is
predicted to be T, then A,=In(2)/T},s. Note from Equation 16.6 that the required
number of patients depends on the accrual and follow-up times through their ratios to
the median event time, A/T}, ; and F/T, ;. A JavaScript program that calculates N using
Equation 16.5 for the alternative hypothesis that the true value of p(E,S) is 0 and for
arbitrary Q, and Qg is available at http://www.swogstat.org/stat/public/equivsurv.htm.

Table 16.3 displays examples of the sample size required for various combinations
of M, a, and P, calculated using Equations 16.6 and 16.7, assuming A/T, ;=4 and
FIT, s=1. Whether an accrual goal can be met within an accrual period depends, of
course, on the accrual rate. For example, if the noninferiority margin is set at 1.10,
and the study uses the two-sided 95% confidence level and requires 90% power if
the true hazard ratio is 1.0, the study must accrue 5569 patients in a period that is
four times the median survival time with standard therapy. If the median is 1.5 years,
then an accrual rate of about 929 per year is required for 6 years. Having specified
the noninferiority margin, confidence level, and power, a combination of A, F, and
accrual rate, if any is indeed feasible, can be found by trial and error.

In general, increasing the duration of follow-up will not reduce the study size
greatly. For example, with margin 1.10, confidence level 95%, and power 90% for
true hazard ratio 1.0, increasing the follow-up from one to four times the median
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TABLE 16.3
Study Sizes Required for Noninferiority Comparison of Exponentially
Distributed Time-To-Event Outcome, Based on Hazard Ratio

Noninferiority Duration of Study Confidence Level®

Margin, Expressed' Per|0('is, Express?d 959 90%

as E:S Hazard Ratio  as Ratios to Median

(Corresponding M) Event Time with § Statistical Power
Accrual Follow-Up  90% 80% 90%  80%

1.05 (-0.049) 4 1 21249 15873 17319 12503

1.10 (-0.095) 4 1 5569 4160 4539 3277

1.30 (-0.262) 4 1 735 549 599 433

2 Confidence level for two-sided confidence interval.

survival with standard therapy decreases the required number of patients to from
5569 to 4727. This is because the power depends heavily on NQj, the expected num-
ber of patients whose events will be observed. For the specifications in Table 16.3, O,
increases from 0.83 if F=1 to 0.98 if F=4, a modest increase. Note that increasing F
further above four would clearly yield little additional power. Shortening the accrual
interval increases the necessary number of patients and consequently the required
accrual rate. For example, under the same specifications that were discussed earlier,
total accrual of 6343 would be required for the study to complete accrual in a period
twice, rather than four times, as long as the median event time. Note that this more
than doubles the required accrual rate.

The results in Table 16.3 show that the sample sizes required to demonstrate non-
inferiority within reasonable margins may be very large. For outcomes such as death
or, for highly lethal diseases, disease progression, it may be difficult to justify a 30%
or even 10% increase in mortality as an acceptable trade-off for some other benefit
such as decreased toxicity or cost. Moreover, allowing a large noninferiority margin
increases the risk that an apparently noninferior £ will not be significantly superior
to no treatment. However, it may not be possible to conduct an adequately powered
noninferiority trial targeting a smaller margin. The likelihood that the accrual period
will need to extend for several multiples of the median time to event may render a
noninferiority trial impractical. This is especially true for studies of patients with
good prognosis for long median event times, a circumstance in which noninferiority
questions may be most likely to arise. Shorter accrual periods may be appropriate
for studies in patients with poor prognosis, however in such settings superiority tri-
als aimed at improving treatment outcomes are likely to have much higher research
priority than noninferiority trials.

16.3.3 NONINFERIORITY TRIAL WITH UNCENSORED CONTINUOUS OUTCOME

In cancer trials, the primary endpoints have commonly been either binary outcomes
such as CR to remission induction therapy, or time-to-event outcomes that are subject
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to censoring such as overall or progression-free survival. However, continuous vari-
ables that are not subject to censoring can also serve as outcomes of interest. For
example, assays that produce quantitative results such as real-time polymerase chain
reaction (RT-PCR) or flow cytometry might be used to measure an impact of treat-
ment. A noninferiority trial for such an outcome might be based on the difference in
mean values of a continuous outcome variable. Let Y denote the outcome variable,
with larger values of Y corresponding to better results, and let p,=E;Y and py=E Y
be the mean values of Y for the experimental and standard regimens, respectively.
Then a noninferiority trial might be based on the difference p(E,S)=p;— g, with
noninferiority margin M <0 representing the absolute decrease in the mean value of
Y that is considered acceptable. If the variance of Y, 62, is the same for both E and S,
then under suitable regularity conditions, the asymptotic 100(1 —®)% CI for the true
difference pz—pg is

1 1

—+— 16.8
N, TN (16.8)

Ug —WUs £5X Zg/2

where
N and Ny are the numbers of patients
52 is the pooled estimate of the common variance ¢>

The total sample size N=N,+ N, required to ensure statistical power of 100(1 — )%
if the true event means are i and pg may therefore be calculated using the formula

{Gar + 5)0IM = (g - )}
[K:(1-Kp)]

N = (16.9)

where K is the proportion of patients randomized to E. If the goal is to ensure
adequate power when E and S are in fact equivalent, that is, under the alternative
hypothesis p(E,S)=p;—ps=0, and if K;=0.5, Equation 16.9 simplifies to

2
(Zas2 +23)0

o (16.10)

N=4x[

Note that N is a function of [M —(uz—p)l/o in (16.9) and simply M/c in (16.10). Thus
N depends only on M measured in units of the standard deviation. For example, if
o =12, then a noninferiority margin M =-3 corresponds to a decrease of 0.25 stan-
dard deviations: M=-0.25c. Table 16.4 shows the numbers of patients required for
various combinations of M (expressed as a multiple of ), a, and § based on Equation
16.10. Expressing the noninferiority margin as a multiple of the true standard devia-
tion o may be a useful approach to defining M for a given study, since it represents
the loss of benefit in relation to the variability of the response variable.

If Y is positive, that is, cannot have values<0, an alternative approach is to
define a noninferiority margin for the ratio of the means, that is, E is unacceptable
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TABLE 16.4

Study Sizes Required for Noninferiority
Comparison of Uncensored Continuous Outcome,
Based on Arithmetic Difference in Means

Confidence Level

Noninferiority Margin, M,
Expressed as a Multiple of the
Standard Deviation ¢ Statistical Power

95% 90%

90% 80% 90% 80%

—-0.10c 4203 3140 3426 2474
-0.25¢ 673 503 549 396
—0.50c 169 126 138 99

2 Confidence level for two-sided confidence interval.

if pg/pg<R, <1 where R, is close to 1.0. Note that 100(1 —R,,)% corresponds to a
proportional decrease in the mean of Y. For example, if R,,=0.95, then the noninfe-
riority margin corresponds to a 5% decrease in the mean. This may be a useful way
to express the magnitude of the noninferiority margin. Laster and Johnson, noting
that pz/pg<R,, is equivalent to p,— R, <0, described testing for noninferiority by,
in effect, calculating the asymptotic 100(1 —a)% CI for pz—R 1

L7}

—+ 16.11
N, TN (16.11)

Ug — Rylls £ 5% 242

where s is the pooled estimate of the common variance as in Equation 16.8 (Laster
and Johnson 2003).

If the lower confidence limit for p,— R, is greater than 0, then the null hypoth-
esis of unacceptable inferiority can be rejected. In this approach, sometimes called
“ratio-based” noninferiority testing, the total sample size to ensure 100(1-p)%
power under the alternative hypothesis of equivalence, p/ps=1 for a study with
Ny=Ng=N/2is

2
(Zasz +23)0

16.12
ws (1- Ry ) (1612)

Niw =21+ Ry ) x

Note that this ratio-based approach differs from the general formulation described
earlier, in which p(E,S) does not involve the noninferiority margin M, but the null
hypothesis does: p(E,S)<M. In the ratio-based approach the measure of difference
between E and S, pp— R, includes R,,, a defined constant analogous to the non-
inferiority margin, while its value under null hypothesis does not: pz—R,,1s=0. As
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a result, the power of the ratio-based test using (16.12) depends not only on R,, but
also on pg/o. This occurs because, under the noninferiority alternative hypothesis
Me=Hs, the expected value of fi,—R,,fi in (16.11) is ps(1 —R,,), while the expected
value of ji,— [ in (16.8) is O for any value of p,. However, as Laster and Johnson
pointed out, for a given value of the noninferiority ratio R,,, the corresponding abso-
lute noninferiority margin in (16.10) is simply M =p—pgs=—pg (1 —R,,). Substituting
this expression for M in (16.10), it follows that for any given M and corresponding R,
the ratio-based test requires fewer patients (Laster and Johnson 2003). Specifically,
comparing (16.12) and (16.10), Ngz/N = (1+ R;;)/2. Since R <1, Ny, will always
be less than N for any o and . For example, if R,,=0.95, which corresponds to an
absolute noninferiority margin of M=-0.05 i, the ratio-based noninferiority com-
parison using (16.11) will require only 95.1% as many patients as the comparison
based on absolute differences as in (16.8).

In general, the decision to base a trial on an absolute specification of the nonin-
feriority margin (Equations 16.8 through 16.10), as opposed to a ratio-based speci-
fication (Equations 16.11 and 16.12) cannot be based solely on the greater efficiency
(smaller sample size) of the ratio-based design. The ratio-based approach is appro-
priate for positive outcome variables (after reparameterization if necessary). If p,
and p, have different signs, the ratio is no longer a useful characterization of non-
inferiority. Also the sample size formulas (16.10) and (16.12) assume that the vari-
ance of Y is the same for both E and §, which may be untrue for a positive outcome
variable. Often, the variance of a positive outcome variable Y is positively related to
its mean. Generalizations of (16.10) allowing for the variance of Y to differ between
E and S are possible, but applying a variance-stabilizing transformation to Y, for
example, logarithmic transformation, may be more appropriate. The transformed
variable in such cases may also be more nearly symmetrically distributed than Y,
thereby improving the accuracy of the large-sample approximations in Equations
16.8 through 16.12.

16.4 EXAMPLE

Two recent papers provide interesting examples of noninferiority trials (Major et al.
2001, Rosen et al. 2001). Each study compared the experimental treatment zole-
dronic acid (E=Zol) to the standard therapy, pamidronate (S=Pam), with respect to
skeletal-related events (SREs, i.e., skeletal metastases or osteolytic lesions) in cancer
patients, or hypercalcemia related to malignancy (HCM). The primary endpoints for
the noninferiority comparisons were binary outcomes: avoidance of SRE (exclud-
ing HCM) during treatment and follow-up in the first trial (the “SRE trial”), and
complete response (CR) of HCM in the second trial (the “HCM trial”). Since these
two trials did not address the same endpoint, they cannot be compared directly.
Nevertheless, they present an interesting contrast.

Both studies were designed to test noninferiority of Zol by comparing the upper
limit of a two-sided 100(1 — )% CI for the difference in event rates (P,,,— Pp,,,) t0 a
specified margin M. For the SRE trial, the upper limit of the 90% CI for P,,,— Py,
was required to exceed —0.08 in order to conclude noninferiority of Zol, that is,
a=0.1 and M=-0.08. The trial was designed to ensure 80% power (f=0.2) if the
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true probabilities were P,,,=Pp,,=0.5 and therefore from Equation 16.2 required
N=968 patients. The HCM trial was designed with very different specifications
that led to a much smaller study size: the criterion for noninferiority of Zol required
that the upper limit of the 95% CI exceed a margin of M=-0.10 and the trial was
designed to ensure 80% power if the true event probabilities were P,,=0.92 and
Pp,.,=0.90. Consequently from Equation 16.1 the HCM trial had a goal of only
N=180 patients.

Ordinarily noninferiority trials are designed to have adequate power to reject
inferiority if the two regimens are equivalent. However, the HCM trial was designed
to have adequate power if Zol was in fact slightly superior to Pam. Had the power
been targeted to the conventional alternative hypothesis that Zol is equivalent to
Pam, thatis, P,,,=Pp,,=0.90, the study would have required N=284 patients (Table
16.1) rather than 180. Therefore, the HCM trial was seriously underpowered and had
an unacceptably high probability of failing to reject the hypothesis of Zo/’s inferior-
ity if it was in fact equivalent to Pam.

16.5 DETERMINING THE NONINFERIORITY MARGIN

Determining an appropriate value for the noninferiority margin M requires careful
clinical and statistical consideration. Wiens (2002) described general approaches for
selecting noninferiority margins. One is to choose a margin small enough to ensure
that if £ is nearly as effective as S, then it is reasonable to conclude that E is superior
to no treatment or placebo (P). To do this, one might try to choose a specific value of
M, which is “close enough” to 0 to provide assurance of E’s benefit; this appears to be
the approach taken in the two Zol vs. Pam trials described earlier. Alternatively, one
may choose to define M as a fraction of the benefit of S compared to P: M =-@p(S,P)
where 0<@< 1. This way of defining M has an appealingly intuitive interpretation:
the noninferiority margin corresponds to preserving 100(1 — )% of the benefit of S
relative to P. Note that the latter approach corresponds to the formulation of ratio-
based testing described earlier. The general problem of assessing benefits of S and/
or E relative to P is discussed further below. In either case, this may be a useful
approach when there is very strong evidence that S is very effective. However, if the
statistical significance or the magnitude of the benefit of S is modest, then a noninfe-
riority margin chosen solely by this approach may not provide the desired assurance
that £ has some benefit.

A second approach described by Wiens is to choose a margin based solely on
clinical importance, that is, a difference that is judged to be clinically unimportant.
Choosing a margin in this way is clearly fraught with subjectivity and uncertainty.
Nevertheless, it may be a reasonable approach when there is little information avail-
able from which to predict the likely benefit of S compared to P in the planned trial.
For example, Michallet et al. designed a noninferiority comparison of £E=pegylated
interferon alpha-2b (rIFN-a2b) compared to S=rIFN-a2b as therapy for chronic
myelogenous leukemia (CML) in chronic phase (Michallet et al. 2004). They speci-
fied a 20% decrease in the odds of major cytogenetic response (MCR) as the non-
inferiority margin. Although the authors did not describe their rationale for this
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specification, it was perhaps justified by a combination of the two approaches men-
tioned earlier. In particular, regarding Wiens’ first approach, it is plausible to assume
that spontaneous MCR is a very unlikely event, so if S is clearly beneficial relative
to P and the trial showed that E preserved a large proportion of the benefit of S,
then it might be reasonable to conclude that E is sufficiently beneficial to replace
S. However, the trial was unlikely to reach such a conclusion for two reasons. First,
the rate of MCR with S was not very high: 20% in the investigators’ assumption for
design purposes. Thus even if E could be shown to preserve a large proportion of
the benefit of S, it would probably remain unclear whether E had sufficient benefit
compared to no treatment to warrant its use. Moreover, the study as designed was
badly underpowered. The sample size was calculated to ensure that the lower limit
of a two-sided 95% CI for the log odds ratio had 80% probability of exceeding a
noninferiority margin corresponding to an odds ratio of 0.8 if the true MCR rates
were 20% with S and 30% with E, that is, if under an alternative hypothesis that £
was substantially superior to S. Using Equation 16.3 or a similar formula, the study
was designed to include 300 patients, although 344 were actually included. The trial
was therefore badly underpowered: a total of 3941 patients would be required to have
80% power if E and S are in fact equivalent with MCR rates of 20%. As it turned out,
the study failed to reject the hypothesis of inferiority. However, due to the study’s low
power, this result is in fact inconclusive.

The third approach described by Wiens is to select a margin that ensures the dis-
tributions of outcomes for patients on the £ and S arms are similar in some respect
other than the parameter for which they are being compared (Wiens 2002). A simple
example of this is the use of the difference in rates to determine the noninferior-
ity margin for the odds ratio in trials with binary outcome variables: the differ-
ence in rates may be more readily understood by clinicians than the odds ratio. For
example, in the CML trial described earlier, the noninferiority margin corresponded
to a 20% decrease in the odds of MCR, and the MCR rate was assumed to be 20%
with § (Michallet et al. 2004). The noninferiority margin therefore corresponds to a
decrease in the MCR rate from 20% with S to 17% with E, which is easy to interpret
clinically.

16.6 BENEFIT OF E COMPARED TO NO TREATMENT

In order for E to be a suitable replacement for S on the basis of noninferiority, it
is important to consider not only (1) whether E is nearly as effective as S, but also
(2) whether E is superior to no treatment or placebo (P), that is, whether p(E,P)>0.
The ideal equivalence trial would randomize to all three approaches, P, S, and E,
provided it is ethical to randomize to P. This might be the case if evidence support-
ing S is weak, such as the lower bound of CI being close to 0, uncertainty due to
poorly conducted previous trials, changes over time, short-term effects, or highly
variable differences in treatment effect across previous studies. Koch and Réhmel
describe conduct of “gold standard” non-inferiority trials (Koch and R6hmel 2004).
The experimental regimen E is accepted if E is significantly better than P and if
it is non-inferior to S. S itself need not be significantly better than P. Hypotheses
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are ordered hierarchically. H,:p(E,P)= 0 vs. p(E,P)>0 is tested in step one and, if
rejected, Hy,: p(E,S)=M vs. p(E,S)>M is tested in step two, each typically at the
0.025 level. If both hypotheses are rejected, the trial is concluded successful. If the
trial is successful, further tests can be done to address questions about superiority
of S compared to P and of E compared to S without compromising family-wise
type-one error.

If a treatment of established effectiveness exists (i.e., ), it would be unethical to
randomize patients to the nontreatment arm P. In this circumstance, only histori-
cal experience may be available to address (2). Therefore, the benefit of E relative
to P must be inferred from the current trial comparing E to S and from whatever
information is available regarding the benefit of S relative to P. The latter inference
typically relies on the assumption of some kind of “constancy condition,” that is, that
the benefit of S compared to P observed in prior studies carries over to the current
noninferiority trial (Jones et al. 1996, D’Agostino et al. 2003). If the noninferiority
margin is defined as a fraction of the benefit of S compared to P, M=—¢p(S,P) for
a specified value of @, then the need to infer p(S,P) from historical experience also
affects the inference regarding (1).

Some approaches to estimating or testing p(E,P) are described briefly in the fol-
lowing. First, however, it is important to recognize that the validity of inferences
concerning the benefit of E relative to P in a trial with no P arm can be very sensi-
tive to the validity of the constancy condition (Wang et al. 2002b, Hung et al. 2003,
Rothman et al. 2003, Fleming 2008). Therefore, the constancy condition requires
careful, critical consideration. Any number of effects may operate to violate the con-
stancy condition: patterns of referral of patients to study centers may change, diag-
nostic criteria may change, or supportive care may become more effective. Moreover,
variations in the design and conduct of the current and prior trials may invalidate the
constancy condition: differences in eligibility criteria, response criteria, adherence
to treatment regimens and follow-up requirements, subsequent “rescue” therapy for
treatment failures, and many other factors may reduce the actual effect of S com-
pared to P (Rothman et al. 2003). These are basically the same pitfalls that arise in
any comparison of current to historical data. The potential for error in this extrapola-
tion is of particular concern in studies of cancer therapies, since there may be few or
even no historical studies that can provide a solid basis for estimating the benefit of
S compared to no treatment.

To reduce the bias that can arise from imputing the standard regimen’s effec-
tiveness using historical placebo-controlled studies, the current study should be
as similar as possible to the prior successful trials (Jones et al. 1996). However, a
high degree of similarity may be difficult to achieve. For example, in adult AML
(excluding AML-M3), the most widely used remission induction regimens, includ-
ing ara-C and an anthracycline such as daunorubicin or idarubicin, have been argu-
ably standard therapy for two decades or more. During that time there have been
no placebo-controlled trials of AML remission induction chemotherapy. Moreover,
it has recently been proposed to revise the diagnostic criteria for AML to include a
condition, RAEB-T, which was previously classified as one of the myelodysplastic
syndromes. This reclassification was based on evidence that RAEB-T and AML
patients under age 60 have similar prognoses for overall survival (Bennett 2000).
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Such a revision makes it even more difficult for future noninferiority trials of che-
motherapy for AML, if any are attempted, to infer reliably the benefits of S and £
relative to P.

Simon has argued that noninferiority trials cannot produce reliable results unless
there is very strong evidence that the benefit of S compared to P is large (Simon
2001). This would not be the case if, for example, the benefit of S was established in
placebo-controlled trials with marginal levels of statistical significance or, equiva-
lently, CIs for the magnitude of the benefit barely excluded zero. Similarly, suppose
S is the latest in a series of two or more standard therapies that have been adopted
sequentially based on trials, without placebo controls, that have each demonstrated
marginally significant incremental superiority over the previous standard regimen.
In such situations, it may be extremely difficult to infer the benefit of S relative to no
treatment. In particular, if the current S was adopted on the basis of a noninferiority
trial, or perhaps a series of noninferiority trials, then its benefit relative to P may be
diminished, a phenomenon that has been called “biocreep” (D’Agostino et al. 2003).
D’Agostino et al. suggest dealing with biocreep by always using the “best” regimen
as the active control arm, however this may not be practical: selection of the best
arm may need to rely on nonrandomized historical comparisons and a new trial in
which standard care is a therapy that is no longer widely used may fail to accrue
patients. Moreover, biocreep in the opposite direction might also occur in a series
of superiority trials as a result of publication bias: if superiority trials with statisti-
cally significant results are more likely to be published than those with significant
results, then the benefit of S may be overestimated. This kind of biocreep would be
less likely if positive results of superiority trials were routinely investigated in con-
firmatory trials.

Several approaches have been proposed for what is sometimes called “putative
placebo analysis,” used for inferring the comparison of E to P from the current
noninferiority trial of £ vs. S and historical data regarding the benefit of S rela-
tive to P.

Fisher (1998) and Hasselblad and Kong (2001) exploited the fact that if treatment
differences can be represented on an additive scale, then

P(E.P) =p(E.S) +p(S,P) (16.13)

Note that this may require transformation to an additive scale, for example, to log
odds ratios or log hazard ratios. If the two terms on the right side of Equation 16.13
are estimated from independent studies, we also have

var [ﬁ(EP)] = var [f)(ES)] +Var[f)(S,P)] (16.14)

The terms on the right sides of Equations 16.13 and 16.14 can be estimated from
the current noninferiority trial [p(E,S)] and the historical data [p(S,P)]. For exam-
ple, p(S,P) and var[p(S,P)] might be estimated from a meta-analysis of prior trials
of S vs. P. Thus, p(E,P) and its variance can be estimated, and the hypothesis
Hy:p(E,P)<0 can be tested against the one-sided alternative H,:p(E,P)>0, or a CI
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for p(E,P) can be calculated to support inference regarding the benefit of £ com-
pared to P.

Rothman described a “two confidence interval” approach in which a lower confi-
dence limit for the effect of E relative to S, p*(E,S), is compared to a multiple of an
upper confidence limit for the benefit of S relative to P, 5pY(S,P), based on historical
data. The confidence level of the latter interval must be chosen to ensure the desired
probability of type I error (Rothman et al. 2003).

Simon described a Bayesian approach to analysis after a trial of E vs. S in which
the expected responses for P, S, and E are p, p+1, and p+6, respectively. In terms
of Equation 16.13, 8=p(E,P) and n=p(S,P) (Simon 1999, 2001). Thus, since posi-
tive values of 1 and 6 indicate benefit, £ would be of interest if n>0 (S has ben-
efit) and 6> (1 —@)n for a specified value of @ between 0 and 1 (E preserves at least
100(1 — @)% of S’s benefit). Note that the latter condition corresponds to 8 —n> —@n,
and the noninferiority margin for p(E,S)=60-n1 is therefore M =—-@n, which is pro-
portional to n=p(S,P). Through straightforward Bayesian analysis, the posterior
joint distribution of (p, 1, 0) is estimated, allowing in turn estimation of the posterior
probabilities of the events {n>0} and {6>(1 —@)n}, and perhaps more usefully of the
event {n>0 and 6> (1 —@)n}. Simon also describes a variation of this model for the
proportional hazards regression model assuming the hazard ratios for S and FE rela-
tive to P are exp(n) and exp(0), respectively (Simon 1999, 2001).

Note that in Simon’s approach, there is no attempt to compare E to P directly
as in the approach of Hasselblad and Kong. Instead the benefit of E compared to
P is inferred from the findings that (1) S is superior to P, and (2) E retains at least
100(1 — @)% of the benefit of S. If the results do not favor (1), that is if the posterior
probability of {n>0} is small, then inference regarding (2) is of little interest and
the validity of the constancy condition is in doubt, however the posterior probabil-
ity of {8>0} may still provide useful information about the benefit of E. Allowing
for uncertainty in p and n is appealing, but as always with Bayesian approaches,
care must be taken that choice of priors does not unduly influence the conclusion
concerning E.

16.7 EXAMPLE, CONTINUED

For neither the SRE trial nor the HCM trial did the study’s reported design or imple-
mentation provide for testing or estimating the benefit of Zol compared to a putative
untreated control. No rationale for this omission was provided. The investigators
may have assumed that the benefits of Pam are sufficiently large and precisely esti-
mated that showing Zol is almost as effective as Pam would ensure that it must have
benefit compared to no treatment. The risk in this assumption was clearly shown by
the results of the HCM trial, in which the CR rate with Pam (69.7%) was markedly
lower than had been expected based on earlier HCM trials (Major et al. 2001). Had
the trial been designed to have 80% power if P,,,=P,,,,=0.7, it would have required
N=660 patients, rather than the 180 required by targeting the power to P,,=0.92
and Py, =0.90.

In further analysis of the SRE results, an estimate of Pam’s benefit was derived
from three prior placebo-controlled studies (Ibrahim et al. 2003). It was estimated
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that Pam increased the rate of SRE avoidance from the placebo’s 48.0% to 61.1%, an
improvement of 13.1% with 95% CI (7.3%, 18.9%). In the SRE trial, the estimated
event rates were 56% with Zol and 54% with Pam, for a difference of 2% with 95%
CI (-3.7%, 7.9%). Comparing these confidence intervals, it was concluded that Zol
retained at least (7.3 —-3.7)/7.3=49.3% of Pam’s benefit relative to placebo. Had the
lower confidence limit for Zo!l’s inferiority been less than —7.3%, the study could not
have ruled out the possibility that Zo/ had no benefit compared to placebo. Again it
was noteworthy that Pam was less effective in the SRE trial (54%) than might have
been predicted from the earlier placebo-controlled trials (61.1%), raising doubt about
the validity the constancy condition.

As it turned out, the proportions of patients with favorable outcomes were higher
with Zol than with Pam in both of the SRE and HCM trials. While this may obvi-
ate some of the concerns about these trials’ limitations as noninferiority studies, it
must be emphasized that these trials were at risk of producing inconclusive or even
misleading results concerning their stated noninferiority objectives.

16.8 INTENTION-TO-TREAT VS. PER-PROTOCOL

The principle of making treatment comparisons on the basis of intention to treat
(ITT) is widely accepted for superiority trials, since the inclusion of ineligible or
untreated patients, lack of adherence to treatment regimens, and other inevitable
“flaws” in study conduct are generally expected to increase the noise in the study and
may reduce the apparent benefit, if any, of the experimental treatment. That is, com-
parisons of treatment groups based on ITT are expected to be conservative in supe-
riority trials. In contrast, “per-protocol” (PP) analysis is limited to eligible patients
who received treatment according to protocol. PP analysis, which may be unbiased
with regard to treatment differences, may have severely limited generalizability. For
noninferiority trials, however, the situation regarding ITT analysis may be reversed:
the “flaws” in study conduct, by increasing the noise and reducing the apparent dif-
ference between E and S, may bias the study toward a conclusion of noninferiority
(Jones et al. 1996, CDER/CBER 1998). Thus ITT may be anticonservative for non-
inferiority trials. Jones et al. recommend carrying out both ITT and PP analyses and
careful examination of the patients who are excluded from PP analysis, in order to
investigate the impact on the anticonservatism of ITT analysis (Jones et al. 1996).

16.9 DISCUSSION

It is widely understood that failure to reject the null hypothesis that two regimens
have equivalent effectiveness does not constitute proof that they are equivalent.
However, this understanding is not universal. One still hears, for example, estimated
survival curves that are quite close together (described sometimes as “superimpos-
able”) interpreted as evidence of equivalence, with no mention of the variability
inherent in the estimates. In a similar vein, a large p-value for a test of the hypothesis
of equality may also be taken inappropriately to imply equivalence, for example,
p=0.9 may be misinterpreted to mean that there is a 90% chance the null hypothesis
is true. Krysan and Kemper reviewed 25 randomized controlled trials that claimed
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equivalence of case mortality between treatments for bacterial meningitis in chil-
dren, and found that the claim was based on absence of significant superiority in
23 trials, and that only 3 of the 25 trials had adequate power to rule out a 10%
difference in mortality (Krysan and Kemper 2002). Others have reported similar
results (Greene et al. 2000). While noninferiority questions may frequently arise in
cancer therapy research, the questions of whether and how such questions should be
addressed require careful consideration.

The conduct, analysis, and interpretation of noninferiority trials have been the
subject of extensive methodological research in recent years, and a number of valu-
able insights and methods have resulted. However, in the context of cancer therapy
trials, relatively simple methods may be adequate and even preferred. Much of the
recent methodological research has addressed the problem of inferring whether E is
superior to P, and the validity of this inference is heavily dependent on the validity
of a constancy condition that permits extrapolation from prior studies comparing
S to P. In the setting of cancer therapy trials, it may be very difficult to justify this
extrapolation. In that setting, if a noninferiority trial is necessary and appropriate,
a practical approach may be the following: define a fixed noninferiority margin
M that preserves a sufficient fraction of the benefit of § relative to P, based on the
best judgment of the magnitude of that benefit and the best clinical opinion as to
the fraction of that benefit that must be preserved; and then perform an adequately
powered trial to produce a hypothesis test or CI to support an inference about
whether E is or is not inferior to S. See the commentaries by Hung et al. (2005) and
Fleming (2008) for further discussion of issues regarding the selection of M.

The requirement that noninferiority trials be adequately powered would seem to
be self-evident. And yet, as the previous examples illustrate, even published studies
have failed to meet this minimal quality requirement. Adequate power may require
extraordinarily large study sizes, especially for studies of highly significant out-
comes such as survival or, for some diseases, response to therapy. Reducing these
sample sizes can be achieved in either of two ways. First the margin of noninferior-
ity, M (or R,, for a ratio-based comparison), can be chosen to have a comparatively
large magnitude. However, such a value of M may represent an unacceptable trade-
off for the benefits that the experimental treatment offers. The other way to reduce
study size is to require that the study only have adequate power to reject inferiority if
E is in fact superior to S, as was done in the HCM and CML trials described earlier.
However, this requires one to accept less than adequate power to conclude noninfe-
riority if the two treatments are in fact equivalent. In other words, it has too large a
probability of missing the benefits that accrue from using E in place of S if £ and S
are in fact equivalent.

In studies of cancer therapy, most superiority trials include interim analyses to
permit early stopping if sufficiently conclusive results are obtained before the trial is
completed. Several approaches have been developed to ensure that the study main-
tains the intended probabilities of Type I and II error when interim analyses are
performed. These approaches generally carry over to the setting of simple noninfe-
riority trials, that is, to trials that do not also include tests for superiority. However
as mentioned earlier, some trials may be designed to test both noninferiority and
superiority of E compared to S. In such trials, the superiority comparison may only
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require sufficient statistical power to detect an improvement that is substantially
larger in magnitude than the noninferiority margin M. In other words, the superior-
ity comparison may require many fewer patients than the noninferiority comparison.
A number ways to conduct interim analyses for studies with both noninferiority and
superiority comparisons have been proposed in recent years, and research in this
area is ongoing (see, e.g., Dunnett and Tamhane 1997, Wang et al. 2001, Lai et al.
2006, Ohrn and Jennison 2010).

It should also be noted that the requirements for reporting results of noninferior-
ity trials differ somewhat from requirements for superiority trials. A version of the
CONSORT (Consolidated Standards of Reporting Trials) statement for noninferior-
ity trials, published in 2006, provides a useful guide to the information that should
be reported, including the predefined noninferiority margin “with the rationale for
its choice” (Piaggio et al. 2006). Notably, in a 2005 review, Lange and Freitag found
that the rationale for choice of the noninferiority margin was reported for only 43%
of 314 published noninferiority trials not limited to cancer trials (Lange and Freitag
2005). A review of 162 reports (116 noninferiority trials and 46 equivalence trials)
found frequent and serious deficiencies in the descriptions of study design and results
(Le Hananff et al. 2006).

Noninferiority trials requiring large numbers of patients may be difficult to com-
plete; however, smaller trials having insufficient statistical power should be avoided
since, as is true of any statistical study, they are too likely to produce inconclusive
results. It remains true, as Simon pointed out in the first edition of this handbook
(Simon 2001), that superiority trials remain the preferred means to improve cancer
therapy whenever possible.
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17.1  INTRODUCTION

The paradigm of cancer research has been changing and cancer therapies with
new mechanisms of action from conventional chemotherapies are being developed.
Conventional chemotherapies are also often known as cytotoxic agents and utilize
various mechanisms important in mitosis to kill dividing cells, such as tumor cells.
Cytostatic agents, on the other hand, exploit alternate mechanisms, such as inhibit-
ing the formation of new blood vessels (antiangiogenic agents), initiating tumor cell
death (proapoptotic agents), or inhibiting tumor cell division (epidermal growth fac-
tor inhibitors). Many newer therapies (including both cytostatic and cytotoxic agents)
are also often referred to as targeted, as they target specific molecules or pathways
important to cancer cells. It is expected that by focusing treatment on important
molecules or mechanisms, the therapies will be more effective and result in less
toxicity than many traditional treatments. While many of these compounds are at
a preclinical stage or in early clinical testing, there are already some well-known
targeted therapies.

Gleevec (imatinib mesylate) is a small-molecule drug approved by the FDA
to treat CML. Gleevec interferes with the protein produced by the ber/abl onco-
gene. Velcade (bortezomib) is a proteasome directed drug approved by the FDA
to treat multiple myeloma and is being tested in other cancers. Another approved
targeted agent is Herceptin (trastuzumab), which blocks the effects of the growth
factor protein Her-2, which transmits growth signals to breast cancer cells. Iressa
(gefitinib) and Tarceva (erlotinib) both target the epidermal growth factor receptor
(EGFR). Recent phase III studies do not support the use of Iressa but a phase 111
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trial of Tarceva showed a significant improvement in survival in non-small cell
lung cancer (NSCLC) [12].

The story for EGFR inhibitors is complicated because there may be benefits in the
subgroup of patients who are nonsmokers due to genetic differences in the tumors. It
is not clear if the survival benefit may be due to mutations, gene copy number, or pro-
tein expression [5]. The results for these EGFR inhibitors motivate several more gen-
eral targeted therapy questions: Is there a genetic subgroup where such treatments
are effective (or more effective) and how should study designs be modified where
feasible? Should all patients of a particular tumor type be treated with a targeted
agent or should only those patients who are positive for the target (or marker) be so
treated? As mentioned earlier, traditional cytotoxic agents “target” dividing cells,
thus killing tumor cells but at the cost of collateral damage (toxicity), especially for
other organs with a high proliferative fraction. Also, targeted agents can have col-
lateral benefit, in that they can be effective in patients classified as negative for the
target, either because there is a weak signal for the target in such patients, or because
the agent hits a different target. For example, there is now evidence that trastuzumab
has some effect on Her-2 neu negative breast cancer patients [9]. Another example is
imatinib, which was developed to target the CML defining bcr-abl translocation but
also destroys tumor cells that are c-kit positive (which virtually defines GI stromal
tumors) [4].

Technological and scientific advances in fields such as gene expression profil-
ing and proteomics have made it possible to detect possible tumor markers very
efficiently. Research laboratories at universities and pharmaceutical companies have
been very productive in developing targeted agents specifically for those tumor
markers. The next challenge then is to validate such biomarkers in the clinical trial
setting and to determine the subgroup of patients with good prognosis and the sub-
group of patients most likely to benefit from a new therapy as a function of these
biomarkers. Hoering and Crowley [6] recently discussed some general issues with
respect to targeted therapies and cytostatic agents in the context of clinical trials for
multiple myeloma.

Two classes of biomarkers can be distinguished. Prognostic markers give infor-
mation about a likely disease outcome independent of a treatment, and can be used
for risk stratification. For example, high-risk patients, who do poorly with conven-
tional approaches, may be treated more aggressively, or may be reserved for highly
experimental regimens. Other markers, on the other hand, give information on a
likely disease outcome based on a specific treatment. These therefore represent
treatment by marker interactions, and are now known in some clinical literature as
“predictive” markers [11]. Predictive markers can be used to indicate which patients
should be treated with a particular targeted agent, developed to attack that marker.
In general, a prognostic marker is not necessarily a predictive marker, but the hope
is that some of the prognostic markers may be predictive as well.

Such markers are often based on levels of a specific chemical in the blood or in
other tissue compartments, on the abundance of certain proteins or peptides, or on a
combination of gene expression levels. Thus, in practice, the underlying marker dis-
tribution, and the response probability as a function of the marker value, is often con-
tinuous. The actual cut-point to distinguish marker-positive from marker-negative
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patients may not be able to be determined precisely, or the best cut-point among
various possibilities may be unknown. In that scenario it is advantageous to take the
actual marker distribution into account when designing the trial. In this chapter we
investigate the performance of several phase III clinical trial designs, both for test-
ing the overall efficacy of a new regimen and for testing its efficacy in a subgroup of
patients with a tumor marker. We recently studied the impact of designs assuming
continuous markers to assess the trade-off between the number of patients on study
and the effectiveness of treatment in the subgroup [7]. This formulation also allows
us to explore the effect of marker prevalence in the patient population, and the effect
of marker misclassification if the actual cut-point that distinguishes the group of
patients associated with the greatest potential treatment effect is not known. Here we
evaluate possible trial designs for predictive markers, but we also consider scenarios
with an underlying prognostic marker, as it is often unknown whether or not a novel
marker is prognostic or predictive. The results of this investigation can serve as a
guide in the decision as to which trial design to use in a specific situation. While we
present the results for binary outcome data, the same strategy can be easily imple-
mented for other outcomes including survival data.

17.2  PHASE 11l TRIAL DESIGNS FOR TARGETED AGENTS

A variety of designs for assessing targeted treatments using biomarkers have been
proposed. Figure 17.1 illustrates three such phase III trial designs for predictive
markers. For illustration purposes, we restrict our discussion to two treatments: T1
and T2, where T1 could be the standard of care and T2 the new therapy of interest.
These do not have to be limited to single agents but can include entire treatment
strategies, as is common for many cancers. We also assume that the marker distin-
guishes between two groups—marker-positive patients (M+) and marker-negative

= Randomize-all design: Randomize all patients, measure marker.

o T2 C—=m

Register — Assess marker—> Randomize M+ M-
~~T1 [ E—

M+ M-

= Targeted design: Randomize marker-positive patients only
T2 —— M+
Register—>Assess marker —Randomize M+
( = M-==TI) Tl == M+
= Strategy design: Randomize to marker-based versus not marker-based.

M+ —=T2
Tx based ~

—onM T M-mmTI
Register —Assess marker —Randomize

TxNOT s e T1
based on M M+ M-

[M+: marker-positive pts. =, M—: marker-negative pts. mm , T1: Treatment I, T2: Treatment 2 |

FIGURE 17.1 Possible clinical trial designs for targeted therapy: randomize-all design,
targeted design, and strategy design.
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patients (M-). It is conjectured that the new therapy to be studied, T2, benefits M+
patients. For this illustration we also assume that for continuous markers, a cut-point
has been determined to distinguish these two groups.

In the randomize-all design, the marker status of the patient is assessed and all
patients are randomized to one of two treatments. The treatment assignment for
patients can also be stratified by observed marker status. If stratification is deemed
not necessary, assessing the marker status of the patient can occur after random-
ization, which may speed up the start of treatment. If we hypothesize that the
treatment is mostly efficacious in marker-positive patients, but it is unclear whether
the therapy is beneficial (possibly to a lesser extent) for marker-negative patients
as well, this is a good design to test for overall benefit, regardless of marker status,
and to explore the M— and M+ subsets. One possibility is to use this design and
power it for the subgroup of marker positive patients. This will then allow us to
determine, with appropriate power, whether or not the treatment is effective over-
all and in the subgroup of M+ patients. A similar procedure in the context of haz-
ard ratios was recently discussed by Jiang et al. [8]. SWOG has recently adopted
this trial design for an NSCLC trial (S0819). In this trial, patients with advanced
NSCLC are randomized to carboplatin and pacitaxel plus or minus cetuximab.
Two hypotheses are being tested. The overall hypothesis tests whether cetuximab
increases the efficacy of concurrent chemotherapy (carboplatin and pacitaxel) in
patients with advanced NSCLC. The targeted hypothesis tests whether EGFR
FISH+ patients benefit to a larger degree. More specifically, the hazard ratio to be
tested in the EGFR FISH+ group was chosen to be larger than that of the hazard
ratio to be tested in the entire study population.

Simon and Manitournam [13] evaluated the efficiency of a fargeted trial design.
In this design, patients are first assessed for their marker value and only marker-pos-
itive patients are enrolled in the trial and randomized to the two treatment options.
They evaluated the effectiveness of the targeted design versus the randomize-all
design with respect to the number of patients required for screening and the number
of patients needed for randomization. A fargeted design proves to be a good design
if the underlying pathways and biology are well enough understood, so that it is
clear that the therapy under investigation only works for a specific subset of patients,
namely marker-positive patients. Such a targeted design generally requires a smaller
number of patients to be randomized than the randomize-all design to determine
the efficaciousness of a new treatment in M+ patients; however, no insight is gained
on the efficaciousness of the new treatment in M— patients, and a large number of
patients still needs to be assessed for their marker status. Freidlin and Simon [2] also
proposed an adaptive two-stage trial design specifically for developing and assessing
markers using gene expression profiling. We do not evaluate this trial design here as
we focus our discussion on one-stage designs.

Hayes et al. [3] suggested a trial design for predictive markers, where patients
are randomized between marker-based treatment (M+ patients getting new therapy,
M- patients getting standard of care) and every patient, independent of their marker
status, getting standard of care. Such a trial is designed to test whether marker-based
treatment strategy is superior to standard therapy. We refer to this trial design as the
strategy design. Sargent [10] suggested an augmented strategy design, extending this
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strategy design to the case where patients are randomized between marker-based
treatment (as in the strategy design) and treatment independent of marker, where in
the latter arm a second randomization to new versus standard therapy is added. We
evaluate the strategy design rather than the augmented strategy design since the for-
mer is more frequently used. As an example, the strategy design was recently used
in an NSCLC trial to test individualized cisplatin-based chemotherapy dependent on
the patients ERCC1 mRNA [1].

These various trial designs test different hypotheses. The randomize-all design
addresses the question whether the treatment is beneficial for all patients, with the
possibility of testing whether or not the new treatment is beneficial in the subset
of marker-positive patients. We also investigate testing both the targeted and the
overall hypothesis in the randomize-all design with appropriate adjustment for
multiple comparisons. The rargeted design tests whether or not the treatment is
beneficial for marker-positive patients. The strategy design addresses the question
of whether the marker-based treatment strategy is better than everyone receiving
standard of care (T1) regardless of marker status. The strategy design does not
directly address the question of whether treatment T2 is more efficacious than treat-
ment T1; however, it is frequently used in that context and we thus felt it important
to assess its properties.

In this chapter we evaluate the effectiveness of the randomize-all, the targeted and
the strategy phase III trial designs under several scenarios. These scenarios include
the presence of a prognostic marker, several possible scenarios for the presence of
a predictive marker, and no valid marker. We assume that the underlying distribu-
tion of the biomarker is continuous in nature. We further assume that a cut-point is
used to distinguish patients with marker values above (below) such a threshold, who
are then referred to as marker-positive (negative) patients. We recently investigated
the performance of several test statistics for the different trial designs discussed in
this section as a function of the marker distribution and the marker cut-off [7]. The
performance was evaluated as a function of the cut-point, the number of patients
screened, and the number of patients randomized to obtain a certain power and sig-
nificance for the various test statistics. We studied these designs under some simple
marker and effect assumptions.

17.3 UNDERLYING MODEL ASSUMPTIONS AND SIMULATIONS

In practice, the underlying marker distribution, and the response probability as a
function of the marker value, are often continuous. Assume that the log-transformed
marker value X is normally distributed, X~N(y, 6%) and its density function is
denoted by f{X). Other distributional assumptions may be used instead. If multiple
markers are of interest, a combined distribution of a linear combination of the mark-
ers can be used. We assume that two treatments T1 and T2 are being investigated
and that the treatment assignment has been determined using one of the various trial
designs discussed in Section 17.2. The treatment assignment is indexed by j=1, 2
and we focus our analysis on binary outcomes. However, this approach can be easily
extended to a survival outcome. The expected outcome for the subgroup M+ patients,
M+={X:X>c}, can be written, assuming a logit link, as
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ap j+aj jx
e J J

g;(c,M+) = f e f(X) dx /v, (0),
L+

where ¢ is the cut-point that distinguishes M+ from M- subjects and where the
fraction of marker-positive patients is given by vy, (¢) = f(x)dx and the marker-

negative fraction by v,_(c)=1 — v, (c). Analogous calculations for the M— patients
give the summary measures, g;(c, M-) for those groups. We study design properties
indexed by the cut-point c¢. Therefore, important parameters in the design assess-
ments are (g;(c, M+), g;(c, M-), v\, (c) ), which constitute the outcome and the frac-
tions of patients in the M+ group.

Figure 17.2 presents several scenarios based on this simple marker treatment
model. Scenario 1 is the scenario where the marker under investigation is a false
marker, that is, it has no effect on the outcome. Scenarios 2 through 4 are different
scenarios for a predictive marker. In Scenario 2 the new treatment (T2) does not
help M- patients more than the standard treatment (T1), but has additional benefit
for marker positive patients, increasing with the marker value. In Scenario 3 the
two treatment curves are diverging with increasing marker value. The marker does
not have any effect on Treatment 1, but the effect of Treatment 2 is increasing with
increasing marker value. In scenario 4 the new therapy benefits M+ patients, but
has a negative impact on M— patients. Finally, for a prognostic marker, where T2 is
overall better than T1, both are increasing with increasing marker value (scenario 5).
All these graphs are on a logit scale.

We investigated the overall performance of the different designs in the various
scenarios presented in Figure 17.2 [7]. We simulate the underlying log-marker dis-
tribution from a normal distribution X~ N(p, 6%). We then evaluated the response
probability to the marker using the distribution functions discussed previously for
the various scenarios. The actual parameters used to evaluate the response prob-
abilities for the five different scenarios can be found in [7]. We performed 5000
simulations to calculate g/(c, M—) and g{c, M+). These derived quantities were
then used to evaluate power or sample size for the different scenarios assuming an
underlying binomial distribution. For the power calculations we used a one-sided
significance level a of 0.05.

17.4 RESULTS

Figure 17.3 shows the power of the three designs as a function of the sample size of
patients randomized for each of the five scenarios discussed earlier. In Scenario 1,
which is the scenario with no valid marker, the randomize-all and the targeted design
achieve the same power for all sample sizes, as response to treatment is independent
of the marker status. The lowest power is achieved with the strategy design as this
design assigns subsets of patients in both of the randomized arms to the identical
treatment, and is thus inefficient if there is no true underlying marker. For Scenario
2, in which the new treatment T2 only helps patients with the marker, the targeted
design outperforms both the randomize-all and the strategy design, as this is the
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FIGURE 17.2 Scenarios for response distribution of marker. The response probability is
plotted versus the log-transformed marker value x.

scenario of a true marker for which this trial has been designed. The randomize-all
design and the strategy design achieve the same power. This is due to the fact that
in the experimental arm the same fraction of marker-positive patients are treated
with the effective treatment T2 and the same fraction of marker-negative patients
are treated with T1 (in the strategy design) or T2 (in the randomize-all design), and
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power of the randomize-all and targeted designs are identical. In Scenario 2 the power of the
randomize-all and strategy designs are identical.
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the effect of both treatments is the same for marker-negative patients. Scenario 3 is
the scenario in which M— patients benefit less than M+ patients. In that scenario the
targeted design performs the best, followed by the randomize-all design, and then
the strategy design. In this case the efficacy is the largest in the M+ patients and
thus best picked up by the targeted design. However, the new therapy also helps M—
patients. This fact is missed by the fargeted design, since no information is obtained
on M- patients. In the strategy design the M— patients in the experimental arm are
treated with the less effective treatment T1 and the power of that design is thus lower
than that of the other two designs. In Scenario 4, where the new therapy is beneficial
for M+ patients, but is actually harmful for M— patients, the targeted design outper-
forms the others. The randomize-all design does the worst, as the two effects in this
example cancel each other out. Lastly, in Scenario 5, the example for a purely prog-
nostic marker, the targeted design performs the best, followed by the randomize-all
design and lastly the strategy design.

For a new marker or a new assay that has not been thoroughly tested yet, the
cut-point corresponding to the strongest therapeutic effect is often not known pre-
cisely. Using an underlying continuous marker model makes it possible to investigate
this effect on power and sample size for the various scenarios. We thus performed
simulation studies in which we vary the cut-point ¢, which distinguishes M+ from
M- patients. Shifting the cut-point results in some patients being incorrectly (or
inappropriately) classified as M+, when treatment T2 is not more effective for this
patient and vice versa. We investigated the effect on the power for a fixed sample size
in the three designs. Moving the cut-point does not affect power in the randomize-all
design, as all patients are being randomized independent of their marker status and
the underlying marker distribution is not affected by moving the cut-point. Moving
the cut-point has an effect on whether a subject is classified as being marker positive
or being marker negative and thus has a large effect on power for the fargeted and
the strategy design.

We found that overall the improvements in power for the fargeted design are
impressive for most scenarios. Only in the case in which there is a constant odds ratio
between treatment arms is there a decrease in power for the targeted design, and then
only for the most extreme marker group. The worst case for the randomize-all design
is the hypothetical total interaction model of Scenario 4, where the overall treatment
effect is null. This is also the only case in which the strategy design performs slightly
better than the randomize-all design.

We also explored the effect of maker prevalence in the patient population on
power for the different designs and scenarios. In our simulations we achieve this
by shifting the marker distribution, but leaving the cut-point at X=0.5. Shifting the
marker distribution increases or decreases the fraction of M+ and M- patients. We
evaluated the effect of marker prevalence on power and sample size. The targeted
design performs the best in all scenarios with an underlying true predictive marker
(Scenarios 2—4). In those scenarios the treatment benefit for M+ patients is diluted
in the randomize-all and the strategy design and many more patients are needed to
test the respective hypothesis. However, the targeted design misses the benefit of the
T2 for marker-negative patients in Scenario 3. In the case of a prognostic marker
(Scenario 5) with a constant odds ratio between treatment arms the fargeted design
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has smaller power than the randomize-all design but only for the extreme marker
values when the cut-point is shifted such that most patients are marker negative.
The randomize-all design performs as well or in most cases better than the strategy
design except for the hypothetical total interaction model of Scenario 4, where the
overall treatment effect is null.

We also studied the feasibility and performance of testing both the overall and
the targeted hypothesis in the randomize-all design with appropriate adjustment
for multiple comparisons. We split the significance level o and test the overall
hypothesis at ®=0.04 and the targeted hypothesis at «=0.01. Other splits of the
significance level can be considered, but the outcome would qualitatively stay
the same. In general, there is little change in power for the overall hypothesis for
a=0.04 versus a=0.05 [7]. The change in power for the targeted hypothesis for
a=0.01 versus a=0.05 is slightly larger since there is a larger difference in alpha.
The main question, however, is whether it is feasible to test both the targeted and
the overall hypothesis in the scenarios with a predictive marker using this trial
design. In the scenarios with a predictive marker (Scenarios 2—4), with exception
of the scenario of total interaction (Scenario 4), the power for the two hypotheses
(with Bonferroni adjusted alpha-levels) is comparable and only a modest increase
of sample size (compared to the randomize-all design with just the overall hypoth-
esis and a=0.05) is needed to test both hypotheses. We note that in the context of
a given real study, one can simulate from the large sample joint normal distribu-
tion of the two test statistics to less conservatively control for the overall type-1
error. For instance, if the overall hypothesis is fixed at «=0.04, then by using this
calculation one could increase alpha for subgroup test to greater than 0.01, yet have
overall a=0.05.

This approach was recently used in the SWOG trial S0819, a randomized,
phase III study comparing carboplatin/paclitaxel or carboplatin/paclitaxel/beva-
cizumab with or without concurrent cetuximab in patients with advanced NSCLC.
This study was designed to have two primary objectives. The primary objective
for the entire study population is to compare overall survival in advanced NSCLC
patients treated with chemotherapy plus bevacizumab (if appropriate) versus
chemotherapy and bevacizumab (if appropriate) and cetuximab. The addition of
cetuximab will be judged to be superior if the true increase in median OS is 20%
(overall hypothesis). The second primary objective is to compare progression-
free survival (PFS) by institutional review in EGFR FISH—positive patients with
advanced NSCLC treated with chemotherapy plus bevacizumab (if appropriate)
versus chemotherapy and bevacizumab (if appropriate) and cetuximab. The addi-
tion of cetuximab will be judged to be superior in this subset of patients if the
true increase in median PFS is 33% (targeted hypothesis). The overall sample size
for this study is 1546 patients, which includes approximately 618 EGFR FISH+
patients. The overall one-sided significance level, a, was chosen to be 0.025. The
overall hypothesis was tested at «=0.015 and the targeted hypothesis at «=0.020;
the split of a was determined using simulation studies. The power for the overall
hypothesis is 86% and the power for the targeted hypothesis is 92%. These calcula-
tions are based on 4 year accrual and 1 year follow-up. The estimate for the overall
survival in the EGFR FISH+ subgroup and the entire patient population for the



Phase Il Trials for Targeted Agents 261

control arm were determined by estimating the proportion of patients deemed to be
in the bevacizumab-appropriate versus the bevacizumab-inappropriate. A targeted
design, testing the targeted hypothesis only with the same statistical properties as
used in SO819 (except for using a one-sided o=0.025) would take 582 patients. The
strategy design testing the marker-based treatment (only EGFR FISH+ patients
receiving the addition of cetuximab) versus treatment not based on marker (none
of the patients receiving cetuximab independent of marker status) results in testing
a hazard ratio of 1.14 and would require approximately 2580 patients. These calcu-
lations are based on using the preceding parameters and statistical assumption for
the overall hypothesis and a one-sided o=0.025.

We investigated the effect of the marker prevalence on the ratio of the number of
patients randomized in the randomize-all design and the number of patients screened
in the targeted design [7]. The number of patients required to be screened in the tar-
geted design is given by the ratio of the number of patients randomized in the targeted
design divided by the fraction of M+ patients. If the fraction of M+ patients is equal
to one, the targeted and the randomize-all design are equivalent. For a small fraction
of M+ patients the mass of the marker distribution is centered at very low marker
values. Scenarios 1 and 5 are similar. In the case of no marker (Scenario 1) and a
constant difference in treatment efficacy independent of the marker value, this ratio
increases linearly with the fraction of M+ patients. In Scenario 5 this ratio increases
too, but is not linear as the difference in response is not constant. Scenarios 2, 3,
and 4, the scenarios with an underlying predictive marker, are also similar. The ratio
of the number of patients randomized in the randomize-all design and the number
of patients screened in the targeted design gets larger with smaller M+ prevalence.
If the marker prevalence is small in those scenarios we have to screen more patients
in the targeted design. However, we have to randomize even more patients in the
randomize-all design than screen in the targeted design, as the treatment effect gets
diluted.

17.5 DISCUSSION

We evaluated three different trial designs commonly considered for situations when
an underlying predictive marker is hypothesized. We consider the randomize-all
design, the trargeted design and the strategy design. We also evaluate testing both,
the overall and the targeted hypothesis in the randomize-all design. Even if a prom-
ising marker is found in the laboratory, it is not clear that this marker is an actual
predictive marker for the treatment of patients or that the new treatment under inves-
tigation only helps marker-positive patients. We investigated five realistic scenarios,
considering several different types of predictive markers, a prognostic marker, and
no marker. Since many biologic markers are continuous in nature, we assume an
underlying continuous marker distribution rather than a discrete distribution as has
been used in the current literature. This is more realistic for most markers and thus
allows for a more precise design and analysis of clinical trial data. It also allows
us to determine the effect of range of cut-points on the performance of the various
designs. For a newly developed marker or assay the cut-point has often not been
determined precisely. This formulation also allows us to take into account marker
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prevalence in the patient population by shifting the underlying marker distribution.
Finally, while the results are stated for a single continuous marker, the same strategy
holds for a linear combination potentially based on two or more biologic markers.
For instance, the continuous marker could be a linear combination of gene expres-
sion measurements.

The large impact on power we have observed due to differences in treatment effi-
cacy as a function of marker values and fraction of selected marker positive patients
highlights the need for a thorough investigation of properties prior to committing to
a specific design and initiating a phase III study with targeted agents. If the actual
underlying scenario (marker response distribution) is known, it is easy to decide
on the most appropriate trial design using our results. In reality, however, the true
underlying marker response distribution is often unknown and we have to consider
several possibilities.

The SWOG trial S1007 provides a recent example when using a continuous
marker is essential. S1007 is a phase III randomized clinical trial of standard adju-
vant endocrine therapy + chemotherapy in patients with 1-3 positive nodes, hormone
receptor positive and HER2-negative breast cancer with recurrence score (RS) of 25
or less. Women who have been diagnosed with node-positive (1-3 positive nodes),
HER2-negative, endocrine-responsive breast cancer who meet the eligibility crite-
ria will undergo testing by the 21-gene RS assay (OncotypeDX®). Enough patients
will initially be tested to obtain a total of 4000 eligible women with RS of 25 or
less accepting to be randomized. The primary question is to test whether chemo-
therapy benefit (if it exists) depends on the RS. Thus, the underlying hypothesis
is that there is an interaction of chemotherapy and RS. This trial tests Scenario 4
(interaction) versus Scenario 5 (prognostic marker). The interaction is tested in a
Cox regression model of disease-free survival. If the interaction of chemotherapy
and the linear RS term is statistically significant (two-sided o) and there is a point of
equivalence between the two randomized treatments for some RS value in the range
0-25, then additional steps are undertaken. Based on simulation studies, power to
find a significant interaction with an equivalence point is 81%. Assuming there is
a significant predictive effect of RS on chemotherapy benefit, a clinical cut-point
for recommending chemotherapy will be estimated. This estimated cut-point is the
upper bound of the 95% confidence interval on the point of equivalence. If there is no
statistical interaction between linear RS and chemotherapy, then chemotherapy will
be tested in a Cox model adjusting for RS, but without an interaction term. This test
will be conducted at a one-sided a=0.025 since chemotherapy would be expected to
improve outcomes. Chapter 19 in this handbook describes this trial in greater detail.

We suggest some general guidelines to help with the decision on which trial design
is most appropriate. In general, the fargeted design performs the best in all scenarios
with an underlying true predictive marker. There is only one exception which is in
the case of a prognostic marker with constant odds ratio between treatment arms
(Scenario 5) when the targeted design has less power than the randomize-all design,
but only for the extreme marker values when the cut-point is shifted such that most
patients are marker negative. In addition, more patients still need to be assessed for
their marker status compared to the randomize-all and the strategy designs. If the
new treatment may also help marker-negative patients there is the question whether
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the targeted design is appropriate. The strategy design tends to be inefficient to com-
pare the efficacy difference of two treatments as patients in different randomized
arms are treated with the same therapy. The randomize-all design performs as well
or in most cases better than the strategy design except for the hypothetical total
interaction model on Scenario 4, where the overall treatment effect is null. We thus
recommend using the randomize-all design over the strategy design except for cases
where the actual strategy hypothesis is of greater interest than the efficacy hypoth-
esis or if almost all patients in the marker-based treatment arm receive the experi-
mental treatment T2.

We recommend using the fargeted design if it is known with little uncertainty
that the new treatment does not help all patients to some degree, if the marker preva-
lence (indicating patients helped by the new therapy) is small, and if the cut-point
of marker-positive and marker-negative patients is relatively well established. If the
cut-point is not well established yet, the power of the study can be severely compro-
mised. Likewise, if only the most extreme marker values are classified as marker
positive, but if the treatment is more broadly effective, then some patients who are
classified as marker-negative will not get randomized even though they would have
benefited from the new treatment.

Scenario 3 is a very likely scenario. In this scenario the treatment works better
for M+ subjects but also benefits M— subjects, for instance to a lesser extent. Even
if one pathway of action is well understood for M+ patients, there is always the pos-
sibility that the new agent works via a different pathway for the M— patient. This has
recently been observed in the case of Her-2 over-expression in breast cancer, there
is still the possibility that the new therapy under investigation works through other
pathways not yet investigated [9]. If there is the possibility that the new treatment
helps marker-negative patients, that the cut-point determining marker status has not
yet been well established, and if the marker prevalence is large enough to make
the study effective, we recommend using the randomize-all design with the power
adjusted for multiple comparison such that both the overall and the targeted hypoth-
esis can be tested. Our results show that if there is an underlying predictive marker
and if the cut-point determining marker status is not too far off the correct cut-point,
the targeted hypothesis and the overall hypotheses (with split alpha-level) achieve
similar power as the overall hypothesis tested at «=0.05 and thus both hypotheses
can be tested with only a modest increase in sample size compared to testing the
overall hypothesis alone in the randomize-all design. In addition, we found that even
in the case of extreme (large or small) marker prevalence both the targeted and the
overall hypotheses (with split alpha-level) achieve comparable power as the overall
hypothesis tested at a=0.05 and again both hypotheses can be tested with only a
modest increase in sample size compared to testing the overall hypothesis only in
the randomize-all design.
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18.1 INTRODUCTION

Adaptive designs can be broadly defined as all designs that allow mid-trial modifica-
tions based on interim information from sources both internal and external to the
trial. Methodology has been proposed to facilitate adaptivity for prospective modifi-
cation to many features of clinic trial design.'-* For example, eligibility criteria can be
modified to enrich the study population and enhance the chance of success. Adaptive
randomization (AR) methods have been proposed based upon baseline covariates,*¢
outcomes,”"'2 and biomarkers.'*-16 Several authors have proposed designs for phase I
trials that use methods for adaptively allocating patients to dose levels.!’-2* Methods
have been proposed for adding or dropping study arms (or doses) or sequential stop-
ping,?4-33 for adaptive sample size reestimation,3-4 adaptively modifying study end-
points or hypotheses,*-* and “seamless” designs that even adaptively alter the trial’s
phase.#4-4

The use of adaptive designs has gained much attention lately thanks to its poten-
tial for improving study efficiency by reducing sample size, facilitating higher statis-
tical power for identifying efficacious drugs or important biomarkers associated with
the drug efficacy, and treating more patients with more effective treatments during
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the trial. As the data accrue, these designs allow learning about the efficacy and
safety profiles of the experimental treatment under study to guide the ongoing trial,
which reflects actual clinical practice. Both the Center for Biologics Evaluation and
Research (CBER) and the Center for Drug Evaluation and Research (CDER) at the
U.S. FDA have issued guidance documents for the use of adaptive methods in clini-
cal trials.? In addition, the Center for Devices and Radiological Health (CDRH) also
issued guidance for applying Bayesian methods to the design and analysis of clinical
trials,’® which is closely related to the use of adaptive designs.

The main part of this chapter is divided into three sections. In Section 18.2 we
discuss frequentist methods for sequential analysis and sample size reestimation.
Then in Section 18.3 we consider Bayesian approaches for interim monitoring, AR,
seamless phase II/I1T designs, and hypothesis testing. In addition, we describe two
recent high profile large scale clinical trials that highlight the potential impact of
new innovative adaptive clinical trial designs that use Bayesian methods. Finally,
Section 18.4 briefly discusses practical issues that arise when implementing adaptive
design methods in clinical trials.

18.2 FREQUENTIST PERSPECTIVE

Classical analysis of outcomes observed in a randomized controlled trial is based
upon the frequentist perspective of probability as long-run frequency behavior. To
ensure a high probability of making correct inference, a clinical trial must enroll
sufficient number of patients to satisfy the prespecified Type I and Type II error
constraints. The frequentist approach regards parameters as fixed and not subject
to probability distributions. Probability is assigned on the space of the observed
data through a model (or likelihood) by assuming fixed values of the unknown
parameters. In the frequentist hypothesis-testing framework, the P-value is defined
as the probability of observing events as extreme as or more extreme than the
observed data, given that the null hypothesis (H,) is true. The P-value is not the
probability that the null hypothesis is true, but rather a measure of evidence against
the null hypothesis, with smaller P-values corresponding to stronger evidence.
Conventionally, P < 0.05, has been used to indicate that the data provide a sta-
tistically significant result. However, if analyses of two distinct designs (e.g., dif-
ferent sample sizes) testing the same null hypothesis result in identical P-values,
the amount of “evidence” against the null hypothesis supplied by the two studies
need not be equivalent.’! Since P-values are computed conditionally with respect
to possible, yet unobserved, values of the experimental data, they depend upon the
experimental design. Consequently, frequentist designs lack flexibility. This lack of
design flexibility exposes a fundamental limitation of frequentist-based methods,
because statistical inferences are made by computing the probability of observing
data conditioned on a particular design and sampling plan. When there is a dispar-
ity between the proposed design and the actual trial conduct (more the norm than an
exception in clinical trials), adjustments must be made to all statistical inferences.
In Section 18.2.1 we consider sequential approaches that enable stopping at interim
analyses while maintaining Type I error at the preplanned rate. Frequentist sample
size calculations depend upon the accurate assessment of uncertain parameters, but
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potential inaccuracies in these assessments are not formally acknowledged with
prior distributions as in the Bayesian framework. Section 18.2.2 considers methods
for reassessing these parameters at interim stages of the trial in order to achieve the
preplanned operating characteristics. Many authors have compared Bayesian and
frequentist approaches to clinical trial design.>>-8

18.2.1 SEQUENTIAL ANALYSIS

Most clinical trials are designed with a fixed sample size (or expected number of
events for time-to-event studies). This is in contrast to sequential designs in which
the sample size is not fixed by design but depends on the accumulating results of
the study. Sequential designs are used to minimize the number of patients enrolled
into the trial by stopping early if interim analysis of the primary outcome suggests
unequivocal evidence of treatment benefit or harm, or clear absence of treatment
differences (i.e., equivalence). Often these designs assume that the outcomes can
be assessed quickly relative to patient accrual and the duration of the trial. Trials
may also be stopped early by data safety monitoring board for reasons unrelated to
interim analysis of the primary outcome, such as unexpected toxicities that prevent
the treatment from being used, poor enrollment, insufficient follow-up, or poor com-
pliance to one or more of the treatments.

The simplest sequential trial designs®* involve patients enrolling into the trial in
pairs and randomly allocated to each of two treatments (A or B). The pairs need not
necessarily be matched. After the outcomes are observed for each pair of patients,
a decision is made to continue randomizing or stop the study. This is referred to
as an “open” sequential plan since, in theory, randomization continues indefinitely.
A subsequent variation or “closed” plan® restricts the maximum enrollment. A con-
sequences of repeated interim analyses of accumulating trial data is Type I error
inflation. Both the “open” and “closed” plans involve the determination of boundary
lines based on the Type I and Type II error rates and the proportion of untied pairs
with preference for one of the treatments.

Given the limitations of the simple sequential designs, several alternative group
sequential approaches to interim monitoring that control for the Type I error rate have
been proposed. These designs require that interim analyses occur at predetermined
sample sizes. Consider a trial designed to test the null hypothesis H;:0=0, and let o
denote the desired overall Type I error rate. Suppose the trial is designed to conduct
J interim analyses after outcomes for n; patients have been observed and denote the
associated critical value for the jth analysis by Z;, j=1...., J. The frequentist approach
to group sequential trial design in essence involves methods for bounding the critical
values at each interim analysis by scalars c,..., ¢;, such that

f(Z <, Zy|<crse| Zs |< ey |[8=0)=1-0qu (18.1)

That is H,, is rejected and the trial is terminated at the jth interim analysis if IZ]>c;.
Haybittle* and Peto et al.?® propose requiring very large critical value, such as
¢;=3.3 for stopping the trial at interim, j<J, then using the conventional ¢,=1.96



268 Handbook of Statistics in Clinical Oncology

at the final analysis. Pocock?” proposed dividing the sample size into J equal-sized
groups and testing the null hypothesis using the same critical value at each interim
analysis, ¢;=c*(a,j), where c*(a,j), a function of the number of interim analyses
and o, preserves the overall Type I error rate at a. O’Brien and Fleming?® propose
using a declining critical value, ¢; = b*\/T/j, where b* is a scalar that preserves
the overall Type I error rate at a. Stopping the trial at an earlier interim analysis
requires stronger evidence against the null hypothesis since c¢; > ¢; for all j’ <. For
the final analysis, after outcomes are observed for all planned n, patients, c, is very
close to 1.96.

To provide flexibility in monitoring, Lan and DeMets®® proposed the “alpha
spending function” approach to interim analyses which does not require that the
number of interim analysis be prespecified nor that an equal number of outcomes
are observed between each analysis; also see DeMets and Lan.?® The spending func-
tion defines the rate at which the overall Type I error is used up at repeated interim
analyses. To use this approach, one has to define the scale on which information is
accumulated. In trials with morbidity/mortality outcomes in which time-to-event
methods will be used for analysis, the information accumulated corresponds to the
number of events observed, not the number of patients under follow-up. For further
discussion of group sequential methods see Friedman et al.> A number of authors
have recently proposed modifications to the conventional approach to group sequen-
tial analysis.®'-63

18.2.2 ADAPTIVE SAMPLE SiZE REESTIMATION

Traditional methods for clinical trial design fix the sample size (or target number
of events) to deliver a prespecified power to detect a clinically meaningfully treat-
ment effect size for fixed values of “nuisance” parameters. The nuisance param-
eters are usually estimates of the variability of the outcome or the underlying event
rate. These are assessed using available pretrial information in the design stage.
Sample size formulation in the frequentist paradigm is based upon the convergence
of various test statistics to standard (typically normal) probability distributions for
large sample sizes. For example, for continuous, approximately normally distrib-
uted responses and a test of H:p, =, versus H,:p, #},, the sample size per group
required by a standard frequentist design to deliver power 1 —f§ and Type I error rate
o satisfies

2
N _2AZun+2]0* (18.2)
2 A? ’
where
A=p,—H,, the true change in mean response between the treatment and control
groups

o2 is the common variance of the assumed distributions of responses to which
observations from both groups belong
Z,denotes the 1 —y-quantile of the standard normal probability distribution function
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Since we do not know o2, it must be assumed or estimated in some capacity from
prior data. Similarly, since A is also unknown, one typically chooses a value that
is pragmatically attainable, yet small enough to distinguish between groups with
truly disparate conditions. A frequentist design would fix A at the minimally clin-
ically significant difference (i.e., the smallest improvement the clinician would
consider meaningful), and “powers” the trial to detect a true effect difference of
A or greater.

At interim stages of the trial, investigators would have gained additional informa-
tion to assess these parameters. To avoid sample size under- or overestimation several
proposals for sample size reestimation based on interim estimates of the variability
have been offered.’>37-3% The general intention of these methods is to preserve the
prespecified power/Type I error in case of a priori misspecification of the “nuisance”
parameters. The final analysis must account for the reassessment procedure in order
to avoid inflating the Type I error rate.

Posch and Bauer® propose an adaptive procedure for sample size reassessment
that incorporates sequential stopping rules for early rejection and acceptance of the
null hypothesis in a two-stage design. Consider a two-stage test of the one-sided
hypothesis Hy:A=p,—p,=0 versus H;:A>0 for the difference of means from two
independent normal populations assuming a common unknown variance 2. Denote
the sample sizes in each treatment arm for the first and second stages by n,, n, (bal-
anced over treatment arms). Denote the one-sided P-values calculated before and
after the adaptive interim analysis by p, and p,. Suppose that the trial proceeds to
the second stage, only if o, <p, <a,, where the null hypothesis is rejected at the first
stage if p,<a,, and accepted if p,>a,. At the second stage, the null hypothesis is
rejected only if p, < ¢, /p;, where c,, is based on Fisher’s product criterion. To obtain
an o level test, o, a;, and a, must satisfy

0y + Cq, {log(ay ) —log(ay)} = a, (18.3)

where ¢,, = exp(—O.Sxil_Q) and Xil_a denote the 1 —a quantile of the y? distribution
with 4 degrees of freedom. For fixed a,, o, can be expressed as a monotonically
decreasing function of o,

o

0o(0y) =0y exp(a_al ), (18.4)

where oy(cq, ) =1 and o) =a

The product test may reject the null hypothesis after the second stage even if a
fixed sample test of the pooled data at the same a-level does not. Posch and Bauer?®
suggest aiming at a prespecified conditional power, (power of the remainder of the
trial given the observed information in the first stage), 1 —p, at the final analysis by
choosing the sample size for the second stage using fixed sample size calculations
with modified significance level equal to c,, / p;. Therefore, if o, <p, <, after the
first stage, then n, can be chosen to satisfy
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2612 (Z[S + an2 Ip1 )

n , (18.5)

n(p1, Gy ,0) =

where Gi is the estimated variance from the first stage. Therefore, the sample size in
the second stage depends on the prespecified treatment effect size under the alterna-

tive hypothesis A, the observed variance in the first stage &1, and the P-value from
the first stage such that the power conditional on the event that the second stage is
necessary is near 1—f. For n, — oo such that 6, converges to ¢ almost surely, the
conditional power for the second stage converges almost surely to 1 —f.

In order to obtain an overall power of 1—f, the power conditional on stopping
at the first stage has to be equivalent to the conditional power for the second stage
analysis, 1 — . Therefore, under the alternative hypothesis § must satisfy

B = P(p > ) ) (18.6)
p(pr>ag)+ p(p < ay)

For given a, and «,, the sample size for stage 1 follows from (18.6). Denote the dif-
ference between the sample means in the two groups at the first stage by A. For large
n,, (18.6) is approximated by

p((&\/n—llaﬁ)< A —OLO)

B=—7= - ) (18.7)
p((A\/nT/O\/E) < Za0)+ p((A\/nT/O\/E) > Zul)
Let E=A(n,)""?/(2"%c). Then & satisfies
1-B
Tq)(&,l)(zao) =1-®¢ y(Za), (18.8)

where @, () denotes the cumulative distribution function of the normal dis-
tribution with mean p and standard deviation o. Posch and Bauer’® denote the
unique solution of (18.8) (solved numerically) by function &(o,a,), defined for all
0 E{Coy (ag,a1)> 4} Ao E{0y,1 -0y}, and fixed B<1/2, such that if the sample size for
the first stage is chosen by

250 (0, 04)°

R (189)

m(C, ) =

where 6, denotes the fixed prestudy estimate of 6. The power conditional on stop-
ping in at the first stage is 1—f3, given that the variance estimate is indeed correct.
If early stopping after the first stage is not allowed (a,=1), applying the sample size
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reestimation procedure based on the conditional power of 1—f leads to an expected
overall power that is greater than 1 —f.

Fisher** and Shen and Fisher’® propose so-called self-designing clinical trials
based on a sequential monitoring method that uses the trial’s accumulating data to
assign a “weight” to the next patient. The method uses the interim results to expand
or contract the implicit sample size in stages while maintaining the Type I error
rate. The approach does not require that the maximum sample size is specified in
the design stage. Yin and Shen*® expand the approach to correlated data using the
general estimating equations framework.

18.3 BAYESIAN METHODS

The general Bayesian approach involves combining prior knowledge about the distri-
butions of the unknown model parameters with the observed data to provide direct
estimation of “evidence” for the parameter of interest using posterior probabilities.
In contrast, frequentist hypothesis tests based on P-values offer indirect evidence for
the parameters of interest that is based on conditional probabilities of the observed
data given a fixed values of the parameters. The Bayesian approach to inference
enables relevant existing information to be formally incorporated into the statis-
tical analysis. This is done through the specification of prior distributions, which
summarize our preexisting understanding or beliefs regarding any unknown model
parameters 0=(0,,..., 0,)". Inference is conducted on the posterior distribution of 0
given the observed data y=(y,,..., y»), via the Bayes rule as

r@y) _ folar@
P(y) f f(y|@p(@dg

p(aly) =

This simple formulation assumes the prior p(0) is fully specified. However, when
we are less certain about p(0), or when model variability must be allocated to
multiple sources (say, centers and patients within centers), a hierarchical model
may be more appropriate. One of the greatest contributions of Bayesian statistics
to biomedical research is the use of hierarchical models to borrow strength across
related subpopulations. This approach places prior distributions on the unknown
parameters of previously specified priors in stages. Posterior distributions are
again derived by Bayes theorem, where the integral in the denominator is more
difficult to compute, but remains feasible using modern Markov chain Monte Carlo
(MCMC) methods. 345764

Another advantage of the Bayesian approach is the ability to find probability dis-
tributions of as yet unobserved results. Often the goal of a statistical analysis is to
predict how the system under study will behave in the future. Let y,, , denote a future
observation that is conditionally independent of y given the model parameters 6. The
posterior predictive distribution for y,, , follows as

POyt |¥) = f fOna | Dp(a]y)da



272 Handbook of Statistics in Clinical Oncology

The posterior predictive distribution synthesizes information concerning the likely
value of a new observation, given the likelihood, prior, and the data observed so far.

Generally speaking, the goal for conducting clinical trials is to provide evidence
for estimating or making inference on the unknown parameter of interest, for exam-
ple, the treatment efficacy. Bayesian methods assume that all unknown parameters
follow certain statistical distributions. Before the trial begins, available informa-
tion on the parameter can be incorporated into the prior distribution. By conducting
a clinical trial, new data are collected to refine the estimate of the parameter by
computing the posterior distribution which can be used for the updated estimator
or inference making. Clinical trials can be considered as an iterative learning pro-
cess. The Bayesian framework is adaptive in nature and ideal for learning. Recently
there have been several articles 3133656 discussing fundamental concepts of applying
Bayesian methods in the design and analysis of clinical trials. Specific examples are
given hereafter.

Over the past two decades many authors have proposed various Bayesian clinical
trial designs that incorporate adaptive features. The continual reassessment method
(CRM)'® seems to have been the first Bayesian model-based phase I design intro-
duced in the literature. Details of the CRM?? and other seminal works in this area
have been thoroughly investigated in the literature.”$:3%:31.67.68 The proposed method-
ologies differ widely by complexity, attention to practical details, use of predictive
probabilities, inclusion of decision theoretic arguments, sequential decisions, and
more. Bayesian methods offer a different approach for designing and monitoring
clinical trials by permitting calculation of the posterior probability of various events
given the data. Bayesian design conforms to the likelihood principle,® which states
that all information pertinent to the parameters is contained in the data and is not
constrained by the design. Bayesian methods are particularly appealing in clinical
trial design because they inherently allow for flexibility in trial conduct and impart
the ability to examine interim data, update the posterior probability of parameters,
and accordingly make relevant predictions and sensible decisions.®® Furthermore,
the pioneers of Bayesian methods in medical research argue that in addition provid-
ing more efficient designs of trials and of drug development programs, the Bayesian
approach is more ethical for physicians who participate in randomized clinical tri-
als.’>33 Given the aforementioned advantages, the Bayesian approach has become a
standard in designing clinical trials at the University of Texas MD Anderson Cancer
Center’® and have generated considerable interest elsewhere.

Many Bayesian clinical trial designs can be described as follows. The parameter of
interest is defined based on the primary objective of the clinical trial. Relevant prior
distributions of the parameters should be elicited before the trial. Data are collected
during the trial. Posterior probabilities of clinically meaningful events are computed.
Thresholds on these posterior probabilities are constructed to define decision rules.
The thresholds are calibrated to attain certain desired frequentist properties, such as
the control of Type I and Type II error rates, mean sample size, etc. In the context
of clinical trial design such frequentist summaries, that is, probabilities and means
under repeat experimentation of the design quantities of interest, are also known as
frequentist operating characteristics. Berry et al.’® discuss the frequentist operating
characteristics of many Bayesian designs. In summary, posterior probabilities can
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be used to construct a valid inference with desirable frequentist properties. Such
approaches are sometimes referred to as “proper Bayes” methods and are widely
used. The proper Bayes approach uses informative prior distributions based on
available evidence and summaries of the posterior distributions to reach conclusions
without explicit incorporation of utility functions, as in the decision-theoretic frame-
work.>* A typical example is sequential stopping for futility and efficacy3®3' which
is discussed in Section 18.3.1. Bayesian methods are also used to assign patients to
better performing treatments, as discussed in Section 18.3.2. Seamless phase I1/111
designs are discussed in Section 18.3.3. Bayesian hypothesis testing methodology
is introduced in Section 18.3.4. In Section 18.3.5 we discuss two recent high profile
large-scale clinical trials that highlight the potential impact of new innovative adap-
tive clinical trial designs that use Bayesian methods.

18.3.1 INTERIM MONITORING

One of the advantages of the Bayesian approach to inference is its flexibility to
include sequential stopping compared to the more restrictive requirements under a
frequentist approach. Stopping rules do not affect a Bayesian inference given that
they are a priori independent of the parameters. In this case posterior inference
remains unchanged regardless of the reason why a trial is stopped.

18.3.1.1 Posterior Inference

Thall and Simon*® and Thall et al.3! introduce a class of phase II Bayesian clinical
trial designs that include stopping rules based on decision boundaries for clinically
meaningful events. To illustrate, let y, € {0,1} denote an indicator for response for
the ith patient. Let 8, and 65 denote the probability of response for the experimental
therapy (E) and standard of care (S), respectively. Many phase ITA studies do not
include randomization to control. In such cases we assume that either 6 is known,
or at least that an informative prior distribution p(By) is available. Let y=(y,,..., y,)
denote all data up to patient n. Bayes rule allows for the direct evaluation of the
posterior probability that the response probability under the experimental therapy
exceeds that under the standard of care by at least 8, which follows as

m, = p(0; > 05 +d]y). (18.10)

The offset d is fixed by the investigator, and should reflect the minimum clinically
meaningful improvement. It also depends on the nature of the response, the dis-
ease, and the range of 6. The probability n, is updated after each patient (or patient
cohort), and is subsequently used to define sequential stopping rules reminiscent of
the form

stop and declare E promising ifr, =2U,
decision = continue enrolling patients if L, <m, <U,. (18.11)

stop and declare E not promising ifm, <L,
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The decision boundaries {(L,,U,), n=1,2,...} are parameters of the design. They deter-
mine the design’s frequentist operating characteristics. For example, a “symmetric”
rule could use L,=0.05 and U,=0.95 for all n.

The considerations for choosing stopping boundaries in the frequentist group
sequential designs discussed in Section 18.2.1 apply when designing a clinical trial
from the Bayesian perspective. In practice, one starts with a reasonable first choice,
evaluates frequentist operating characteristics, and iteratively adjusts the decision
boundaries until desired operating characteristics are achieved. For example, we might
start with L,=0.1 and U,=0.8. Next we compute operating characteristics. We might
consider two scenarios: a null scenario SO with 6,=0; and an alternative scenario S1
with 6,>0,+9 as the simulation truth. Type I error is then the probability with respect
to repeat experimentation under SO of ending the trial with the conclusion that E is
promising, while power is the probability, with respect to repeated simulation of pos-
sible trial histories under S1, that the trial ends with the conclusion that E is promis-
ing. Suppose that the Type I error implied by rule (18.11) is 0.08, thus larger than the
desired. The upper bound U, needs to be increased (e.g., to U,=0.85) to reduce the
Type I error. Now we might find an acceptable Type I error under SO, but a power of
only 0.7 under S1. To increase power we might now try to reduce the upper bound, say
to U,=0.825 for example. A sequence of such iterative corrections on L,, U,, and N
will eventually lead to a set of bounds that achieve desirable operating characteristics.

Thall et al.3! extend the design from a single outcome to multiple outcomes,
including, for example, an efficacy and a toxicity outcome. This allows us to con-
sider the phase II analog of phase I-II dose-finding trials that trade off efficacy and
toxicity following the approach of Thall and Simon.?! In our present context, let CR
denote an efficacy event (e.g., complete response) and 7OX a toxicity event. Thall
and Simon* describe an example with K=4 elementary events {A,=(CR,T70X),
A,=moCR,TOX), A;=(CR,noTOX), A,(noCR,noTOX)}. Efficacy is CR=A,UA;,
while toxicity is 7TOX=A,UA,, etc. The design again involves stopping boundaries
as in (18.11), but now using posterior probabilities of CR and TOX.

Let {pr(A)), p(A,), p;(A3), p(A,)} denote the (unknown) probabilities of the four
elementary events A, A,, A;, and A, under treatment 7, where T € {E,S} (experi-
mental or standard therapy). Suppose we assume a Dirichlet prior for these prob-
abilities. Under standard therapy, we assume a priori that (p...., p,,)~Dir(9,,....,
0,,). Similarly, under experimental therapy we assume (pgys..., Pgs) ~Dir(0gy,..., Opy),
where 0, and 0, are fixed hyperparameters. Let y;' denote the number of patients
among the first » who report event A, and let y" = (y{,..., v4). The conjugate Dirichlet
prior allows for easy posterior updating, since

PE(Pres ps|y") = Dir(0f,...,0%4),

where 0% =0z +y;'. Let 1g(CR) = ©ech psi denote the probability of complete
remission under standard therapy, and stmilarly for n,(CR), n4(TOX), andn(TOX). The

posterior pp{n-(CR)/y"} thenemerges as abetadistribution, Beta(0%; + 0%3,0%, + 0%4).
Here we used the fact that the beta is the special case of a Dirichlet distribution having
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just two probabilities. Similarly, p{nE(TOX)‘y"} = Beta(0%, + 03,,0%3 +0%4) . The
distributions for ng(.) remain unchanged throughout as p{ny(7OX)} =Beta(0, +6,,
04;+0y,), and similarly for p{n,(CR)}.

As before, thresholds on posterior probabilities determine sequential stopping.
We track the two posterior probabilities

m,(CR) = pInz(CR) > ns(CR) +d¢x|y"} and

7, (TOX) = p{np(TOX) > Ns(TOX) + 870 |y"}. (18.12)

After each patient cohort, the posterior probabilities «,(-) are updated and compared
against thresholds (in this sequence):

decision
stop, declare E not promising if x,(CR) < L,(CR)
stop, declare E too toxic if 7, (TOX) > U,(TOX)
- stop, declare E promising if &, (CR) > U, (CR),n,,(TOX) < L,(TOX)
continue enrolling patients otherwise

(18.13)

The evaluation of x,(CR) requires integration with respect to the two independent
beta-distributed random variables n;(CR) and n4(CR), and similarly for x,(70X).

The stopping rules discussed previously are based on a binary response variable.
The nature of a response of this sort varies across studies. For example, a typical
response might be an indicator for patient survival beyond 6 months. Response
variables based on a dichotomized continuous outcome involve a loss of informa-
tion compared to the original data. Their main advantage is increased robustness;
it is easy to be very general about a probability model for a binary outcome. By
contrast, inference is often very sensitive with respect to the choice of a specific
parametric form for the distribution of a continuous outcome and the correspond-
ing cutoff values. On the other hand, the likelihood function for the continuous out-
come is more informative (i.e., more peaked) and allows more decisive inference
with fewer observations. In other words, we achieve faster learning with the same
number of patients. Also, in some studies it is scientifically inappropriate to reduce
the outcome to a dichotomized binary variable, for example, a quadratic dose—
response curve. Another limitation of binary outcomes is their inherent delays. For
example, we might have to wait up to 100 days after treatment to record a response
when the binary outcome is defined as transplant rejection within 100 days.

Thall et al.3? propose study designs that allow early stopping for futility and/or
efficacy based on a time-to-event outcome. Assume that an event time 7; is recorded
for each patient, say, time to disease progression (77P). We assume a parametric
model for the sampling distribution, say, an exponential distribution. Let p; denote
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the mean event time under the standard of care, and let j1, denote the unknown mean
event time under the experimental therapy. Rather than reducing 7 to a binary out-
come (such as TTP>6), the authors replace the posterior probabilities x, in (18.10)
with corresponding probabilities on the p scale, for example,

T, = p(ug > Us +6‘Y)-

On the basis of &, they define stopping rules similar to (18.11): for example, stop for
futility when &, <L,, stop for efficacy when n,>U,, and continue enrollment other-
wise. As before, the tuning parameters 6 and {(L,,U,),n=1,2,...} are chosen to achieve
desired operating characteristics. A public domain software implementation of this
approach is available from http://biostatistics.mdanderson.org/SoftwareDownload/.
Thall et al.* also discuss extensions to multiple event times, such as TTP, severe
adverse event, and death.

18.3.1.2 Predictive Probability*

Given the observed data and assuming that the current trend continues, the predic-
tive probability of concluding superiority/inferiority at the end of the trial can be
computed should the trial continue to enroll patients until it reaches the planned
sample size. Computing predictive probability can be a useful tool for interim moni-
toring during the trial such that an informative decision can be made based on the
observed data. The concept of predictive probability can also be applied to clinical
trial design, for example, consider a phase IIA trial designed to evaluate the response
rate p for a new drug by testing the hypothesis Hy:p <p, versus H,;;p=p,. Suppose
we assume that the prior distribution of the response rate, n(p), follows a Beta(a,,b,)
distribution. The beta family of densities has mean equal to ay/(a,+b,). The quantity
a,+b, characterizes “informativeness.” Since the quantities a, and b, can be con-
sidered as the numbers of effective prior responses and nonresponses, respectively,
a,+b, can be thought of as a measure of prior precision, a larger sum results in a
more informative the prior.

Suppose we set a maximum number of accrued patients N, and assume
that the number of responses X among the current n patients (n<N,,,) follows a
binomial(n,p) distribution. By the conjugacy of the beta prior and binomial likeli-
hood, the posterior distribution of the response rate follows another a beta distribu-
tion, plx~Beta(a,+x,b,+n —x). The predictive probability approach is based upon
interim assessment of the future probability of a positive conclusion at the end of
study given the current observed data. Let Y be the number of responses in the poten-
tial m=N,,,,—n future patients. Suppose our design is to declare superiority (efficacy)
if the posterior probability of p exceeding some prespecified level p, is greater than
some threshold 6,. Marginalizing p out of the binomial likelihood, it is well known that
Y follows a beta-binomial distribution, Y ~Beta-Binomial(m,a,+x, b,+n —x). When
Y =i, the posterior distribution of pl(X=x,Y=1i) is Beta(a,+x+1i,by+N,,, . — x—i).

*#J.J. Lee and D. D. Liu, A predictive probability design for phase II cancer clinical trials, Clinical
Trials, 5(2):93-106, 2008. SAGE Publications pp. 96 and 97 (section titled: Predictive probability
approach in a Bayesian setting), 2008.
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The predictive probability (PP) of trial success can then be calculated as follows.
Letting B;=Pr(p > p,lx,Y=i) and I,=(B,>0;), we have

PP = E{I[p(p > po | x,Y) > 07]|x}

f 1[p(p > po| x,Y) > 0,1dP(Y | x)

m

2p(Y=i|x>x1<p<p>po |x,Y =i)>0;)

=

m

- ZP(Y=i|x)xI(B,- >0r)

=

=2p(Y=i|x)><I,v.

The quantity B, is the probability that the response rate is larger than p, given x
responses in n patients in the current data and i responses in m future patients.
Comparing B; to a threshold value 0; yields an indicator /; for considering if the
treatment is efficacious at the end of the trial given the current data and the potential
outcome of Y=i. The weighted sum of indicators /; yields the predictive probabil-
ity of concluding a positive result by the end of the trial based on the cumulative
information in the current stage. A high PP means that the treatment is likely to be
efficacious by the end of the study, given the current data, whereas a low PP sug-
gests that the treatment may not be efficacious. Therefore, PP can be used to deter-
mine whether the trial should be stopped early due to efficacy/futility or continued
because the current data are not yet conclusive.

Lee and Liu® define a decision rule by introducing two thresholds on PP as fol-
lows: if PP <0,, stop the trial and reject the alternative hypothesis; if PP>0,, stop
the trial and reject the null hypothesis; otherwise continue to the next stage until
reaching N, patients.

Typically, 6, is chosen as a small positive number and 0, as a large positive
number, both between 0 and 1 (inclusive). PP <0, indicates that it is unlikely the
response rate will be larger than p, at the end of the trial given the current infor-
mation. When this happens, we may as well stop the trial and reject the alternative
hypothesis at that point. On the other hand, when PP >0, the current data suggest
that, if the same trend continues, we will have a high probability of concluding
that the treatment is efficacious at the end of the study. This result, then, provides
evidence to stop the trial early due to efficacy. By choosing 6,>0 and 6,<1.0,
the trial can terminate early due to either futility or efficacy. For phase IIA trials,
we often allow for early stopping due to futility (6, >0), but not due to efficacy
©,=1.0).>%

Following Lee and Liu,> suppose an investigator plans to enroll a maximum of

N,,..=40 patients into a phase II study. At a given time, x= 16 responses are observed

max
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TABLE 18.1

Bayesian Predictive Probability Calculation for
Py=0.60, 6,=0.90, N,,. =40, x=16, n=23, and a
Beta(0.6,0.4) Prior Distribution on p

Y=i Pr(Y=i|x Bi=Pr(p>0.60 | x,Y=i) 1(Bi>0.90)

0 0.0000 0.0059 0
1 0.0000 0.0138 0
2 0.0001 0.0296 0
3 0.0006 0.0581 0
4 0.0021 0.1049 0
5 0.0058 0.1743 0
6 0.0135 0.2679 0
7 0.0276 0.3822 0
8 0.0497 0.5085 0
9 0.0794 0.6349 0
10 0.1129 0.7489 0
11 0.1426 0.8415 0
12 0.1587 0.9089 1
13 0.1532 0.9528 1
14 0.1246 0.9781 1
15 0.0811 0.9910 1
16 0.0381 0.9968 1
17 0.0099 0.9990 1

Source: Lee, J.J. and Liu, D.D., Clin. Trials, 5(2), 97, 2008. With
permission.

in n=23 patients. What is P(response rate>60%)? Assuming a vague Beta(0.6,0.4)
prior distribution on the response rate p and letting ¥ be the number of responses in a
future m=17 patients, Y’s marginal distribution is beta-binomial(17,16.6,7.4). At each
possible value of Y=i, the conditional posterior of p follows a beta distribution, plx,
Y=i~Beta(16.6+i,24.4—1i). In this example we can set 6,=0.90.

Table 18.1 shows that when Y lies in [0,11], the resulting P(response rate>0.60)
ranges from 0.0059 to 0.8415. Therefore, one would conclude H, for Y<11. On the
other hand, when Y lies in [12,17], the resulting P(response rate>0.60) ranges from
0.9089 to 0.9990. In these cases we would instead decide in favor of H,. The pre-
dictive probability is then the weighted average (weighted by the probability of the
realization of each Y) of the indicator of a positive trial should the current trend
continue and the trial be conducted until the end of the study. The calculation yields
PP=0.5656. If we were to choose 0, =0.10, the trial would not be stopped due to
futility because PP is greater than 0,. Similarly, if we were to choose 0,=0.95, the
trial would not be stopped due to efficacy either. Therefore, based on the interim
data, the trial should continue because the evidence is not yet sufficient to draw a
definitive conclusion.
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18.3.2 ADAPTIVE RANDOMIZATION

Randomization ensures that on average, the effects of the unknown dependent
variables will be balanced among all treatment arms, thus providing unbiased
comparisons. Many authors have written on the advantages and disadvantages of
randomization.”®113871 Friedman et al.’ broadly refer to randomization procedures
that adjust the allocation ratio as the study progresses as adaptive. Two types of
the AR designs are commonly used in clinical trials. Baseline AR designs are used
to balance prognostic factors available at baseline among the treatment arms.*¢
Response adaptive or outcome-adaptive designs were developed for the purpose of
assigning more patients to the better treatments based on the interim data.

One of the goals of the outcome AR designs is to minimize the expected number of
treatment failures for patients enrolled in the trial. Such designs have been proposed
to mitigate the ethical dilemma of equally allocating patients to treatments when the
evidence available during the trial with respect to the comparative treatment efficacy
violates the requirement of equipoise. In this section we consider applying outcome
response adaptive randomization to phase IIB multiarm clinical trials. The multiple
arms could be different treatments (possibly including a control arm), different doses
or schedules of the same agent, or any combination of such comparisons.

Thall and Wathen'!' propose Bayesian adaptive randomization (BAR) in the con-
text of a multicenter trial comparing two chemotherapy regimens in patients with
advanced/metastatic unresectable soft tissue sarcoma. Let A, and A, denote the two
treatment arms. Let p,_, denote the posterior probability that arm A, is better than
arm A,. For example, assume that the outcome is a binary efficacy response, and let 0,
and 0, denote the probability of response under each treatment arm. Let y generically
denote the currently available data. Then p,_,=p(0,<0,ly). One proposal is to allo-
cate patients to treatments A, and A, with probability proportional to r,(y)={p,(y)}*/
UpiW)+ {1 =pioWi and r(y) = {1 =p, ;(M}/U P12} + {1 =p12(V)}], where ¢>0
is a tuning parameter. In general, for K arms (K>=2),

{p(6i = max, 0 |y)}*
ri(y) .
E‘ {p(®; = max, 0;[y)}*

i=1toK

(18.14)

Notice that when ¢ =0, (18.14) corresponds to equal randomization (ER). When ¢ = o,
(18.14) yields the “play-the-winner” design. That is, the process is deterministic
since the next patient is assigned to the current winning treatment. The randomiza-
tion ratio becomes more “imbalanced” as ¢ increases.

Thall and Wathen!! propose using c=n/(2N), where N is the maximum number
of patients and n is the number of currently enrolled patients. This recommenda-
tion is based on empirical evidence under typical scenarios. The results of extensive
simulations studies and specific recommendations for the implementation of BAR
can be found in Wathen and Cook.”> Thall and Wathen® apply the approach to a
study where the probability model for an ordinal outcome includes a covariate. The
outcome is ternary (response, stable, failure), while the covariates are two binary
patient-specific baseline values. The definition of (18.14) remains unchanged; only
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the relevant probability model with respect to which the posterior probabilities are
evaluated changes. Cheung et al.'” apply the method with r; based on posterior prob-
abilities of survival beyond day 50 under three competing treatment regimens.

Lee et al.' propose response adaptive randomization (RAR) using a ratio that is
based upon the posterior mean probability of success of the jth treatment, denoted
0, in each group. In the simple case of testing the response rates of only two treat-
ments the authors propose randomization ratios of the form, 5 (y) = §5/[ +65] and
i(y) = 67/16 +5] -

Figure 18.1 compares the randomization probabilities and the observed response
rates (plotted by assignment) of the RAR and ER designs for five simulated trials
of n=_80 patients, where 6, =0.1 and 6,=0.3. It is assumed that patients are enrolled
sequentially and that the patient outcomes are observed instantaneously.

For ER, the plots show that the randomization probabilities converge to 0.5 as the
trial progresses (upper left). Furthermore, the observed response rates converge to
their corresponding true values, 0.1 and 0.3, for treatments 1 and 2, respectively (bot-
tom left). The right panels show the performance of RAR. This procedure random-
izes the first 20 patients equally, then adaptively assigns the last 60. After 20 patients,
the randomization ratio decreases for treatment 1 and increases for treatment 2, and
therefore more patients are randomized into the better treatment. The plots show that
resulting observed response rates also converge to their corresponding true values
as the trial continues.

Adaptive designs enable the investigators to learn about the clinical activities of
novel treatments during the trial. We can apply this knowledge to better treat patients
in real time by implementing an AR design that randomizes more patients to the
more effective treatments. AR designs preserve Type I and Type II error rates at the
cost of a slight increase in sample size when compared to ER.'® However, decision
rules can be implemented to stop the trial at interim when sufficient evidence for
futility and/or efficacy has accumulated. Lee et al.'® also consider AR designs that
facilitate simultaneous evaluation of the effects of treatment and biomarkers for the
purpose of treating more patients with more effective treatments according to their
biomarker profiles.

Strategies for accruing patients into clinical trials are integral parts of adaptive trial
design. This is especially important because adaptive rules based on the outcomes of
patients who have been treated previously are used to assign patients to treatments.
But there often is a time lag between treatment and evaluation of outcome. Efficient
patient accrual is especially vital in oncology, where the full effects of radiation ther-
apy or toxicities from chemotherapy are often observed months after treatment.”

For this reason it is customary in cancer phase II studies to use a proxy early out-
come in place of the ultimate outcome. The ultimate outcome is overall survival, or
at least progression-free survival. To avoid the long delay involved in recording these
event times, many phase II studies use instead tumor response as an intermediate
endpoint. For solid tumors, response might be defined in terms of tumor size after a
fixed number of days after treatment. Thall et al.3! provide another example of a phase
II trial of a post transplant prophylaxis for graft versus host disease (GVHD) in which
patients were monitored for 100 days post transplant before outcome was determined.
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In a recent publication Korn and Freidlin™ argue that for two-arm trials response
AR is inferior to 1:1 randomization in terms of acquiring information for the general
clinical community, and that the benefits to the patients on the trial are modest at
best and do not justify the added complexity required for implementing designs that
incorporate AR schemes in practice. The authors recommend a fixed 1:1 randomiza-
tion given no differential rates in patient accrual because of the trial design, and 2:1
randomization if assigning more patients to the experimental arm can increase the
study’s accrual rate. In the corresponding editorial, Berry** acknowledges the added
complexities involving implementation of designs that incorporate response AR, but
argues that the disadvantages should be considered along with the potential advan-
tages. Berry contends that while the benefits of AR are limited but real in two-arm
trials, they can be more evident in trials with more than two arms. Furthermore,
Berry suggests that AR can shorten the time of cancer drug development and bet-
ter identify responding patient populations. Further discussions on this issue can be
found in Yuan and Yin% and Lee et al.3®

18.3.3  Seamiess PHASE 11/111 DEsIGNS

In traditional cancer drug development, phase Il addresses tumor response. Sufficient
success in phase II leads to phase I1I, which is designed to determine if the drug pro-
vides an improvement in survival. Seamless phase II/III designs refer to multi-stage
clinical trials that begin with multiple doses of one or more experimental agents.
In the first stage a pre-specified dose arm is graduated to a second stage wherin the
experimental agent undergoes a more traditional comparision to a control arm at the
graduated close.

Seamless phase II/I1I trials combine phase II and phase III into a single trial con-
sisting of a phase II stage and a phase I1I stage. Phase II trials generally require more
than 18 months, after which phase III generally requires at least another 2 years.>
In contrast, seamless phase II/III trials allow for moving from phase II to phase 111
without stopping patient accrual, which accelerates the drug development process.
Inoue et al.** compared the seamless design with more conventional designs hav-
ing the same frequentist operating characteristics and found reductions in average
sample size ranging from 30% to 50%, in both the null and alternative hypothesis
cases. In addition, the total time of the trial was similarly reduced. Several phase
II/II clinical designs have been proposed more recently. Kimani et al.*’ propose a
dose-selection procedure in an adaptive phase II/11I trial that incorporates the dose—
response relationship when the experimental treatments are different dose levels of
the same drug for binary outcomes. Stallard* considers strong control of the fam-
ily wise Type I error rate when short-term endpoint data are used for the treatment
selection at the phase II stage. Bischoff and Miller*® compare an adaptive two-stage
test procedure to a seamless phase II/III trial design and provide formulae for the
expected sample size of the design.

One of the major challenges of drug development is the high failure rate of phase
III confirmatory studies. More than 50% of phase III studies in cancer are reported
to fail,”® despite the promising results in the preceding phase II studies. Huang et al.!>
speculate that one of the reasons for this disconnect is that often, an improvement
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in response rate does not necessarily translate into an improvement in survival. The
main reason why investigators nevertheless continue to use tumor shrinkage are the
practical considerations arising from the substantial lag between treatment assign-
ment and reporting of a delayed survival response. To mitigate the problem they
propose a novel clinical trial design that explicitly includes the delayed survival
response, in addition to tumor response for adaptive treatment allocation. They con-
sider a phase IIB trial with two treatment arms, A and B.

The key feature of the design is a joint probability model for tumor response
(S) and survival (7). Let x; € {A,B} denote the treatment assignment for the ith
patient, and let (S, 7;,8,) denote the outcome for the ith patient, with S, denoting tumor
response (i.e., tumor shrinkage), 7; denoting the survival time, and 9, € {0,1} a binary
indicator with §,=1 when 7, is observed and §,=0 when only a censored time ¢, < T is
recorded. In other words, at calendar time ¢ the recorded response for a patient who
was recruited at (calendar) time #{ is ¢, = min(7},7 —1)"), with 9, indicating whether
is an observed survival time. The authors assume that tumor response is reported as
a categorical outcome with four possibilities, S; € {1,2,3,4}, referring to resistance to
treatment or death (§;,=1), stable disease (S;=2), partial remission (S;=3), and com-
plete remission (CR; S;=4). The joint probability model for (S,,T)) is

P(S; = jlx,=x)=py and P(T;

S, =J,x =x)=Exp(hy), (18.15)

where Exp()) indicates an exponential distribution with mean p=1/A. The model is
completed with a prior

. 1
(pxla""px4) ~ Dlr(Yxl:--wYﬂt)a and ij = )\'7 ~ IG(axjs ij) (1816)

X

independently for x € {A,B}. Here Dir(q,,..., a,) denotes a Dirichlet distribu-
tion with parameters (a,,..., a,) and IG(a,b) is an inverse gamma distribution with
mean b/(a—1). The model is chosen to allow closed-form posterior inference. Let
ng = n I(S; = j and x; = x) denote the number of patients with response j under
treatmenf?é, let ¢ denote the current calendar time, let y'xj =7V +n,, and let

+ Y o andBy =Byt Y 0 (18.17)

i:Si=J,Xj=x i:Si=],Xj=x

Otxj =

X

with t; = min{T},# -} denoting the observed survival time T, if §,=1, and the cen-
soring time ¢ — 1! if §,=0. Letting Y generically denote the observed data, we have

Y) =Dir(y,,...,Yxs) and p(uy [¥) = IG(ay,By).  (18.18)

p(px1>--~7px4

Huang et al.!> propose a trial design that includes continuous updating of the pos-
terior distributions (18.18), adaptive allocation based on current posterior inference
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and early stopping for futility and for superiority. For adaptive allocation they con-
sider the posterior probability

p =Py >uzY),

with u, = 2 py\y for x € {A,B} indicating the mean progression-free survival
on treatment arm x. By allocating patients to arm A with probability p, the design
increases the probability that patients receive the best treatment. The same posterior
probability is used to define early stopping for futility when p <p, and for superiority
when p>p,, using, for example, p, =0.025 and p,=1-p,. The authors discuss an
application of the proposed design to a phase II trial for acute myelogenous leukemia.

18.3.4 BAYESIAN HYPOTHESIS TESTING

Johnson and Cook* argue that Bayesian clinical trial designs should use decision
rules based upon formal Bayesian hypothesis tests instead of posterior credible
intervals, which result in a loss of efficiency and involve unnecessary subjectivity.
Consider two competing models and let 0 € ® denote the parameter of interest. Let
H, and H, denote the null and alternative hypotheses, respectively, and x denote the
current observable trial data. Classical tests of two hypotheses typically involve par-
titioning the parameter space into two disjoint subspaces, H:0 € ®, and H,:0 € ©,,
such that ®,U ®, =0. Hypothesis testing in the Bayesian paradigm involves comput-
ing the posterior odds in favor of the alternative hypothesis. This requires that prior
distributions are specified on 0 under the alternative and null hypotheses m,(0), 7,(9),
respectively, and that the prior probabilities are assigned to the hypotheses them-
selves. Let y denote the prior probability assigned to the alternative hypothesis, and
f1x10) and f,(x10) denote the sampling distributions of the data under the alternative
and null models. The posterior odds in favor of the alternative hypothesis is equal
to the product of the Bayes factor (BF)® and the prior odds in favor of the alterna-
tive hypothesis. The BF is defined as the ratio of the marginal densities of the data
defined under the alternative and null hypotheses

ngalmnxwdq

Bp = ™) . (18.19)
o (X) ﬁﬁmwm@m
Thus, the posterior odds follow as
p(H,|x) _om(x) Y (18.20)

p(Hoy |x)  mo(x)1-v '

Bayesians use the logarithm of the BF, or “weight of evidence,” to summarize the
result of a hypothesis test.*?
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In an effort to be “objective,” there is a temptation to specify improper vague prior
densities on model parameters under the alternative hypothesis. Yet, BFs for two com-
peting hypotheses are only defined for proper prior distributions, x,(0) and m,(0). This
fact has precluded widespread use of Bayesian testing methodology in clinical trial
design.”” However, Johnson and Cook33? show that these concerns about objectivity are
in fact misguided since misspecification of the prior density under the alternative model
in single-arm clinical trials can only decrease the expected weight of evidence in favor
of the alternative model. In other words, there is no danger that proponents of an experi-
mental treatment can bias the results of a Bayesian test-based trial in favor of the alter-
native model by specifying an overly optimistic alternative model. In fact, they show
that prior distributions on the parameters for the alternative model, x,(0), that assign
positive probability to regions of the parameter space that are consistent with the null
hypothesis, referred to as “local alternative” prior densities, dramatically decreases the
rate at which a trial can accumulate evidence in favor of a true null hypothesis because
parameter values under the alternative model are then also consistent with the observed
data. Instead, they propose formal test-based designs that use a class of “nonlocal” prior
densities for specifying alternative hypotheses, referred to as inverse moment densities
and argue that these designs provide better operating characteristics, use fewer patients
per correct decision, and provide more directly interpretable results than other com-
monly used Bayesian and frequentist designs of phase II single-arm trials.

18.3.5 EXAMPLES

In this section we briefly describe two recent high profile large-scale clinical trials
that highlight the potential impact of new innovative adaptive clinical trial designs
that use Bayesian methods. Both trials use AR schemes that account for heteroge-
neity with respect to treatment response relative to biomarker profiles and decision
rules for interim monitoring of treatment arms.

18.3.5.1 BATTLE

The BATTLE trial'*7® is a phase II trial for patients with advanced non-small cell
lung cancer (NSCLC) that considers five subpopulations defined by biomarker pro-
files. BATTLE stands for “biomarker-integrated approaches of targeted therapy for
lung cancer elimination.” Biomarker profiles include EGFR mutation/amplifica-
tion, K-ras and B-raf mutation, VEGF and VEGFR expression and Cyclin DI/RXR
expressions. Four targeted therapies are evaluated with one therapy targeting each
one of the four biomarker profiles. The primary outcome is the disease control rate
at 8 weeks. The outcome is reported as a binary response. We refer to the binary out-
come as “disease control.” The design calls for adaptive treatment allocation based
on a patient’s biomarker profile. Let y; denote the current posterior mean probability
of disease control for a patient in biomarker group k under treatment j. The next
patient in biomarker group k is assigned to treatment j with probability

r = Vik
Eink

(18.21)
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Posterior probabilities are with respect to a hierarchical probit model. The probit
model is written in terms of latent probit scores z;, for patient i under treatment j in
biomarker group k. The model assumes a hierarchical normal/normal model for z,.
The model includes mean effects p;, of treatment j in biomarker group k, and mean
effects for treatment j.

The hierarchical probit model™ is used to borrow strength across related subpop-
ulations. The model is also used to define early stopping of a treatment arm j for the
kth disease group. An arm is dropped for futility when the posterior probability for
disease control being beyond 0, is less than d,. Here, 6, would naturally be chosen
to be the probability of disease control under the experimental treatment. Similarly,
treatment j is recommended for biomarker group k if the posterior probability of
mean probability for disease control being greater than 0, is greater than §,. Here
0,>0, and the difference would indicate a clinically meaningful improvement from
the standard therapy. The BATTLE trial enrolled 341 patients and randomized 255
of them under the proposed AR scheme. The trial confirmed several prespecified
hypotheses and identified interesting subgroups of patients for further study.”®

18.3.5.2 I-SPY-2

ISPY-21 is an adaptive phase II clinical trial of neoadjuvant treatments for women
with locally advanced breast cancer. The trial title is an acronym for “investigation
of serial studies to predict your therapeutic response with imaging and molecu-
lar analysis.” The little word “your” in the name signifies revolution. The trial
evaluates a large number of potential treatments but considers up to five different
experimental therapies at any given time. All are given in combination with stan-
dard chemotherapy, before surgery (thus “neoadjuvant”). In the case of I-SPY-2 the
adaptation includes changing probabilities of assigning patients to the treatment
arms, the possibility of dropping arms early for futility or graduating an arm for
efficacy. In the latter case, the protocol recommends a following small phase 111
study. These decisions are based on posterior predictive probabilities of being suc-
cessful in a (future) phase I1I study. These probabilities can only be meaningfully
accurately reported under a Bayesian framework with a complete description of all
underlying uncertainties.

In contrast to common practice the trial is designed to allocate patients to the
therapy that is best for them. To achieve this goal the trial explicitly allows for
population heterogeneity, considering up to 256 different subpopulations (although
only about 14 remain as practically interesting, due to prevalence and biologic con-
straints). For each patient the investigators record presence or absence of a list of
biomarkers, including presence of hormone receptors (estrogen and progesterone),
human epidermal growth factor receptor 2 (HER2), and MammaPrint risk score.
These biomarkers are recorded from core biopsies taken during screening. Patients
are allocated to the competing treatment arms using AR. Let n(z,7) denote the prob-
ability of pCR for a patient characterized by biomarkers z under treatment z. I-SPY 2
uses adaptive allocation probabilities proportional to

P(n(z,1) > 7(z,1),1 = t|data),
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that is, the posterior probability of treatment ¢ being optimal for subgroup z. As usual
the randomization is restricted to some minimum allocation probability for all active
treatment arms. In addition, to increase the study efficiency, the results of a series
of MRI scans are used to inform the probability of pCR. The trial is a collabora-
tion of the U.S. National Cancer Institute, the U.S. Food and Drug Administration,
pharmaceutical companies and academic investigators. See http://www.ispy2.org for
more details.

18.4 PRACTICAL CONSIDERATIONS

Success of clinical investigation requires that trials are properly designed and metic-
ulously implemented. There are many available computer software tools to facilitate
the trial design and conduct.’® Compared to the standard, fixed designs, adaptive
designs demand more attention in both the study design and trial conduct phases.
The operating characteristics of the trial design need to be thoroughly examined
under a spectrum of plausible conditions. Special tools need to be developed to
implement adaptive designs such that data can be timely updated to allow interim
statistical monitoring.

Requesting interim data frequently from the trial creates additional pressure on
data collection. Response AR requires that responses are assessed accurately in a
relatively short time period. This requires that robust infrastructure be put into place
to allow timely and more frequent monitoring of interim results. Adaptive designs
also require more frequent involvement of statisticians since they will be asked to
provide calculations to assess the strength of the available data for interim deci-
sion making. Another consideration for the adaptive design is that because changes
in patient characteristics over the course of the trial can lead to biased treatment
comparisons, all clinical trial designs should adhere to strict eligibility criteria to
ensure homogeneity in the patient population as patients enroll over time. Designs
that incorporate outcome AR are more sensitive to population drifts’ than standard
designs that utilize 1:1 randomization among the study arms. However, regression
analysis can be used to adjust for an imbalance of prognostic factors between the
treatment groups. There are several recent articles®'-3¢ that discuss many practical
issues that arise when implementing adaptive design methods in clinical trials.
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19.1 INTRODUCTION

19.1.1 BACKGROUND

Biologic markers are commonly used as prognostic indicators of outcome following a
diagnosis of disease and subsequent treatment. In oncology, tumor-based markers are
used to suggest the potential for cancer to recur or to cause death. These markers are
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regarded as “prognostic” in that they provide information to patients about what they
might expect in the future, but the markers may not help choose appropriate treatment
(Schumacher et al., 2006). On the other hand, “predictive” markers do suggest that a
particular therapy is optimal and may reflect that the prognostic effect of the marker
differs by treatment or that the efficacy of a particular treatment depends on the
marker. The distinction between prognostic and predictive factors is usually attrib-
uted to the late William McGuire (McGuire et al., 1992). Marker discovery begins
by noting the important prognostic effect of a marker, which may in turn be found
to be predictive upon greater examination of the prognostic effect conditional on dif-
ferent treatment choices. Ideally, treatment has been randomized, thus providing an
unbiased assessment of predictive ability of a marker with regard to treatment choice.

19.1.2 StATISTICAL MODELING OF PROGNOSIS AND PREDICTION

Prognostic effects are typically coded as a main effect in statistical models, since
their effect is present for all patients regardless of treatment choice. On occasion,
prognostic effects will be considered only within patients treated in a uniform
fashion or even in untreated patients to determine the natural course of disease. In
contrast, predictive effects are often represented as interactions of the marker with
treatment. Suppose we have treatment (trt) and a marker Z. A simple Cox regression
model of survival at time 7 on the log hazard rate scale would be the following:

log Mt;trt,z) = loghg(t) + trt By + 2 Po + 11t %7 B3 (19.1)

The treatment is considered to be dichotomous for simplicity, and the marker Z could
be either dichotomous or continuous. A typical approach is to test whether the inter-
action term adds significantly to a statistical model, which has only the two main
effects of treatment and the marker. A significant interaction may imply that the
effect of treatment differs by the value of the marker. It can also imply that the prog-
nostic effect of the marker Z is conditional on the choice of treatment.

19.1.3 QUALITATIVE VERSUS QUANTITATIVE INTERACTIONS

Interaction terms can be described as quantitative or qualitative. A “quantitative”
interaction describes an interaction that is in a consistent direction even though the
magnitude may vary. Thus, even though the magnitude of the treatment effect may
depend on the covariate z, one treatment is always superior to the other treatment for
all choices of z. For example, in Model (19.1), B, +zp;<0 for all z implies that treat-
ment is always effective in increasing survival even though the magnitude of benefit
may depend on the marker z. In this case, the marker may not guide the choice of
treatment, since a particular treatment is always dominant. Thus, an interaction of
treatment and the marker may be necessary for a predictive effect, but it is not suf-
ficient. The work by Janes et al. (2011) gives other examples within this context. On
the other hand, a qualitative interaction implies that the benefit of treatment may
differ for different values of the marker such that the treatment is beneficial in some
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situations, but not others. In terms of the model, it implies that that there is a cutoff
2y, such that B, +zp; < 0 for 2z, and that f, +z ;20 for z<z,. Thus, treatment may
be valuable for high values of the marker, but may not be effective (or even harmful)
for low values of the marker. In this situation, we would term the marker as “predic-
tive” since it may suggest treatment strategy depends on the value of the marker.

19.1.4 RETROSPECTIVE EVALUATION OF MARKERS AS PREDICTIVE

Often, predictive markers are tested in the context of a more general comparative
trial of two treatments or the addition of an experimental treatment compared to
standard treatment. In most cases, the trial was powered to find an overall differ-
ence between two treatments despite the possible presence of subgroups who may
not have benefitted from treatment. Consequently, analyses of interaction terms will
often be inadequately powered to find a statistically significant difference unless the
interaction is large. Even in the presence of a statistically nonsignificant interaction,
separate analyses of treatment by a marker may demonstrate an effect of treatment
in one group, but not another. These apparent effects can then lead to a new trial
with sufficient power or to similar analyses in other trials to validate the original
findings. On the other hand, separate analyses of treatment by marker values may
be convincing that there is little predictive effect of the marker. For example, forest
plots of treatment by marker values may show strong concordance of the treatment
difference across subgroups suggesting little predictive effect of the markers.

19.2 CONTINUOUS MARKERS

19.2.1 CutroINTS FOR CONTINUOUS MARKERS

In many cases, marker values are dichotomous or cutpoints are designated to divide
the marker into positive or negative values. Well-known examples of predictive mark-
ers in breast cancer include hormone-receptor status as a guide to using endocrine
therapy and HER2-status as a determinant of trastuzumab efficacy. Both markers
are viewed as positive or negative for decision making, but in fact often arise from
continuous or ordinal values. Testing of dichotomous markers and associated trial
designs are discussed by Hoering et al. (2008) and Sargent et al. (2005). It is well
known that categorization of continuous markers may lose power (Royston et al.,
2006). In this work, we will focus on continuous markers and attempts to categorize
the marker when needed for final clinical decision making.

19.2.2 StaTisTiICAL MODEL FOR CONTINUOUS MARKERS

We assume that we have a continuous marker Z>0 and use a standard Cox regression
model that included an interaction term

log Mt;trt,z) = loghog(t) + trt By + 2 Po + trt %7 B3

For the purpose of illustration, we define treatment as being a comparison of che-
motherapy to no chemotherapy, and the continuous marker is labeled as recurrence
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FIGURE 19.1 Modeled relationship of the Cox regression log hazard ratio (HR) relating
survival to Recurrence Score (RS) and therapy. In this model chemotheraphy has a lower
failure rate than no chemotheraphy for all values of RS.

score (RS) for recurrence score. Figure 19.1 illustrates a quantitative interaction
between RS, a continuous marker, and treatment with chemotherapy. The log hazard
ratio (HR) for no chemotherapy is always higher than that for chemotherapy at all RS
values, so chemotherapy is always the preferred therapy. Within each therapy, higher
RS is a predictor of worse prognosis with slope 8, and ($,+ ;) per unit increase in
RS for no chemotherapy and chemotherapy, respectively. Clinically, chemotherapy is
always more efficacious, though some patients may still feel that the gain is too small
to overweigh the adverse effects of treatment.

For a qualitative interaction, the appropriate illustration may be more like that
in Figure 19.2. There is a point at approximately RS=12.5 for which the benefit of
treatment would change. Below this value, no chemotherapy is the preferred choice,
but above this point, chemotherapy would have a lower failure rate. In both cases,
RS appears to be prognostic within its treatment group though the slope for chemo-
therapy is much less pronounced. Note that if one started with a simple model with
only main effects in this scenario log A(t;trt, z)=log Ay (f)+1rt B, +z B,, then the treat-
ment parameter estimate 61 would be close to zero due to the interaction masking
the impact of treatment. Thus, a significant treatment effect is not a precondition to
investigate a predictive effect, particularly when there is an a priori hypothesis that
the interaction exists. Finally, we note that we describe the crossover point in the
model as a fixed point, but it is of course subject to sampling error as we consider later.

19.2.3 ExampLE FRoM SWOG TriaL S8814

To illustrate this approach, we use SWOG study S8814, which compared no chemo-
therapy to chemotherapy for node-positive hormone-receptor positive breast cancer
(Albain et al., 2009). The overall trial showed a significant benefit of chemotherapy
particularly if delivered before tamoxifen therapy commenced (Albain et al., 2009).
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FIGURE 19.2 Modeled relationship of the Cox regression log HR relating survival to RS
and therapy. In this model chemotherapy has a lower failure rate than no chemotherapy only
for higher values of RS.

For available tumor samples, the 21-gene assay (OncotypeDX) was evaluated (Albain
et al., 2010). This assay yields RS on a scale of 0—100 indicating likelihood of a recur-
rence. It had previously been shown to be predictive in node-negative disease (Paik
etal.,2006), but not yet in node-positive disease. For disease-free survival up to 5 years,
there was a significant interaction of chemotherapy and continuous RS (p=0.029) with
adjustment for the main effects of chemotherapy, RS, and number of positive nodes
(1-3 versus 4+). The estimated model leads to a crossing of the log HRs at an approxi-
mate RS value of 19. Above this value, the model suggests that chemotherapy has
better outcomes than no chemotherapy, though the sampling variability around this
point is large. The model also indicates that below this value, chemotherapy may not
be beneficial despite the results of the overall trial. We did assume that the impact of
RS on the log hazard rate was linear. The assumption of linearity was supported by
testing with fractional polynomials as described by Royston and Sauerbrei (2004).
This retrospective study has limitations including the small sample size, evolution of
chemotherapy since the original trial was conducted, and addition of new endocrine
therapies. Therefore, a prospective trial is necessary to confirm that chemotherapy
may not be beneficial for some values of RS and to establish the correct cutoff.

19.3 TRIAL DESIGN FOR TESTING A PREDICTIVE MARKER

19.3.1 StATIsSTICAL MODEL

Designing a trial to test prediction of treatment benefit using a continuous marker
requires categorizing the marker (e.g., as positive or negative based on the cutoff)
or using the marker as a continuous value. Preservation of the marker as continuous
will increase power compared to using cutpoints (Royston et al., 2006). A continu-
ous marker can be used directly in the model or the marker can be converted into
percentile values based on a known distribution of the marker values in a population
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and modeled directly on the percentile scale (Huang et al., 2007). In the absence of
a known distribution, one may have to model the marker directly. Again, we assume
an underlying model using the interaction term

log\(t;trt,z) = loghg(t) +trt By + 2 Py + trt 7 B3

The first requirement is that power be sufficient so that testing of the estimate of
5 has high probability of rejecting the null hypothesis that $;=0. A significant
interaction will suggest that the value of the marker may determine the efficacy
of treatment for patient with that marker value. The second requirement is that the
log HRs for the two treatment groups cross for some value of the marker inter-
nal to the range of values for the marker (Figure 19.2). This point of equivalence
is designated as 0. If the model is correct, then equivalence between treatments is
achieved at marker value 6=—p,/p; estimated by 6= —ﬁ]/ﬁ3 from the fitted Cox model.
However, the crossover point has estimated variance based on the delta method of

Var(é) = 1/[3% [VH + ZéVB + 62\/33 ] using the appropriate covariance terms from the

fitted model. Before a treatment is designated as beneficial, it must be convincingly
superior to no treatment, not just equivalent. For that reason, we take the upper limit
of the 95% CI on 6 as the point for which there is convincing evidence of benefit.
This cutpoint can be based on the upper limit of a 1-sided Wald confidence interval
for the point of equivalence:

c=(é+1.645*%)

This is illustrated in Figure 19.3. The actual value of the HR at the upper limit of the
confidence interval will vary, but may provide a reasonable estimate of a clinically
meaningful difference. One can see that the variance depends on the strength of
the interaction term and the individual variances of the treatment effect, interaction
effect, and their covariance. The Wald confidence interval assumes asymptotic nor-
mality of the estimate of the point of equivalence, 0. Alternatively, one can determine
the upper bound of the interval using profile likelihood methods. Let /I() be the
partial log-likelihood at B. We would search for the upper bound 0 that satisfies the
following 2[11([5) - ll(B)f= xe(1df), where

logM(t;1rt,z) = logNo(£) + trt By + 2 By + 111 %7 B3

is maximized subject to the constraint that §, =—6; defining an upper bound on the
range of equivalency.

19.3.2  Sampie Size, Power, AND HYPOTHESIS TESTING

Sample sizes for testing interaction terms are often larger than sample sizes for test-
ing constant treatment effects. However, testing a continuous interaction may not
require the huge sample sizes that a dichotomized marker would require. Simulation
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FIGURE 19.3 Modeled relationship of the Cox regression log HR relating survival to RS
and therapy. The short dashed line indicates the RS value where treatments are equivalent.
The long dash line indicates the upper bound of the 95% confidence interval on the point of
equivalence.

is probably required in most complex situations. The goal is to choose a sample
size that gives 80%—-90% power to reject the null hypothesis of no interaction when
comparing the model with an interaction of marker and treatment to a reduced model
without the interaction term. If the interaction is statistically significant, then one
would determine if the point of equivalency is interior to the range of marker values.
This would then be followed by construction of a one-sided confidence limit on the
point of equivalence that will allow estimation of the cutoff point for recommending
therapy. Should the interaction term not be statistically significant, then step-down
testing would suggest that the interaction term be dropped and that the treatment
effect be tested using the marker as a prognostic term only (main effect). We assume
that there is already sufficient evidence that the marker is prognostic, so testing the
marker per se may not be of interest. To summarize the steps:

1. Test the interaction term in the model

logM(t;1rt,z) = logNo(t) + trt By + 2 By + 11 2 B3

versus

log M(t;trt,z) = logho(t) + trt B + 2 B>

a. If the interaction term is significant, establish the cutoff point based on

8 [3 2 [Vu +Zévls + ézvss]
3 3
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c=(é+1.645*W)

b. If the interaction term is not significant, test the treatment effect overall
using

log\(t;trt,z) = logho(t) + trt By + 2 B>
versus

log M#;1rt,2) = log Mo (1) + 2 B2

In the presence of a significant interaction with crossing HRs, a cutpoint for use of
therapy can be derived, and one can give predicted benefit from either treatment at
each value of the marker. In the absence of a significant interaction, the effect of
treatment can be estimated as a single HR over the entire range of marker values
tested.

19.3.3 MobEL DiIAGNOSTICS

The assertion that the marker acts linearly on the log HR may be a strong assump-
tion. After testing the primary hypotheses, secondary analyses can consider model
form. There are several methods available for checking this assumption. The first
method would be a fractional polynomial model of degree 2 that would allow depar-
ture from linearity and provide a direct likelihood-based test of the linearity assump-
tion (Royston and Sauerbrei, 2004). A second method would be the subpopulation
treatment effect pattern plot (STEPP)—a nonparametric approach described by
Bonetti and Gelber (2000). A third method would be derived from a model fit based
on log A(t;trt,z) =log Ay(f) +trt B, without inclusion of the marker at all. After fitting
the model, delta beta diagnostics for treatment would be computed assessing each
individual’s effect on the treatment coefficient. A plot of these delta betas against the
marker z can indicate the nature of the functional association of the marker and log
hazard rate separately by treatment group (Barlow and Prentice, 1988). Finally, one
may wish to use the ranks of the marker values, rather than the actual marker val-
ues, to test the model log A(#;trt,z) =log Ay(?) +trt B, +rank(z) f, + trt*rank(z) 5. This
approach is very similar to that described by Janes et al. (2011) who use the marker
percentile as the predictor where the percentiles are known from external data, but
could be generated from internal data using the ranked data.

19.4 APPLICATION TO TRIAL DESIGN

19.4.1 SWOG TriAL S1007

The earlier results of SWOG trial S8814 suggested that chemotherapy was ben-
eficial, but only for higher values of the RS. Giving chemotherapy to women with
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node-positive breast cancer has become standard of care, but clearly some women
may not benefit if they have a low risk for recurrence. The recently launched S1007
RxPONDER trial will test the efficacy of chemotherapy in women with low RSs
(0-25) who have only one to three positive nodes and who have endocrine-respon-
sive disease. This group is at low risk for recurrence and did not seem to benefit
from chemotherapy in the retrospective evaluation of S8114. The sample size is
constructed on finding a significant interaction of RS and randomized treatment
(chemotherapy or no chemotherapy; two-sided a=0.05) with 80% power followed
by the identification of the cutoff using the aforementioned procedure. Note that this
is not a test of the 21-gene assay directly, which might be directly tested by random-
ization to its use or not. Instead, we assume that women with RS>25 need chemo-
therapy and only examine the relationship of RS to the efficacy of chemotherapy for
women with RS in the range 0-25.

19.4.2 Power CALCULATIONS

While there may be closed form sample size estimation procedures for estimation of
interaction terms (Schmoor et al., 2000), we believed that this situation was complex
enough to use simulation. Parameter estimates were derived from the S8814 study
restricting consideration to women with 1-3 positive nodes and RS in the range 0-25.
A Weibull model provided a better fit than the exponential model, so this model was
used to simulate 10,000 replications of the trial. For each replication, we used a Cox
model to test the interaction term. Empirical power was determined by the probabil-
ity of rejection of the null hypothesis for the interaction term. If it was significant and
the point of equivalence was interior to the range 025, then the upper bound of the
95% Wald CI was computed to determine the cutpoint. In some cases, the upper cut-
point would exceed 25, and therefore the clinical interpretation is that chemotherapy
is not needed for the entire range 0-25. If the interaction was not significant, then a
main effect of chemotherapy was tested over the entire range.

Other parameter configurations were tested beyond using the direct estimates
from the S8814 trial. For example, under the null hypothesis of no interaction, the
correct test size of 5% was obtained. If the model is further simplified and thus there
is no treatment effect, again the correct test size is obtained. Examination of the
95% confidence interval for the point of equivalence showed 95% of the obtained
intervals included the true equivalence point. Other simulations showed remarkable
robustness to some violations of the linearity assumption. There was a concern that
the linearity assumption may lead to an optimistic sample size estimate if the rela-
tionship was monotonic in RS, but not linear. Simulations showed that these con-
cerns were not warranted. Departures from linearity tend to depress the magnitude
of the interaction term thus resulting in more conservative estimates. Furthermore,
while estimates at the extremes are affected, estimation of the point of equivalence
and its confidence interval is less affected, thus making the calculations somewhat
robust to misspecification.

It was also expected that there will be treatment crossovers from patients who
do not want to comply with their treatment assignment and get the opposite treat-
ment from that randomized with a probability depending on the RS. This inflates
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the sample size since the analysis is intent-to-treat and patients are analyzed by
randomization assignment. The actual simulated population was 3800 (including
5% treatment crossovers), but the sample size goal was increased to 4000 to allow
for dropouts and ineligibility. The final sample size of 4000 will require screening
approximately 9000 women to determine if their RS value is <25 since the 21-gene
assay is not routinely done.

19.4.3 PLANNED ANALYSES

The protocol includes interim analyses of the interaction as well as safety analyses
that could indicate the no chemotherapy group has lower survival than expected
compared to the chemotherapy group early on. The primary analysis of the inter-
action is consistent with how the simulations were performed. Nonetheless, the
underlying model assumes that the effect of RS on the log hazards ratio is linear
with different slopes for each treatment group. This assumption will be tested in
the analysis using alternative models such as fractional polynomials. A successful
trial would include (1) a statistically significant linear interaction, (2) an estimated
cutpoint below the upper bound of 25, (3) Kaplan—Meier displays showing no ben-
efit of chemotherapy below the cutpoint, but benefit above the cutpoint, and (4)
estimated benefit of treatment at each value on the range 0-25 with 95% confidence
intervals. The last goal may require a departure from the linearity assumption if
the diagnostic tools indicate that the linear model does not provide a sufficient
description.

19.5 CONCLUSIONS

While methods to test prediction of treatment benefit for dichotomous markers
are available, there has been less development using continuous markers. We are
unaware of any clinical trials that have been designed to primarily test prediction
using linear markers. Testing the ability of a continuous marker to optimize treat-
ment assignment can be done by a sequence of steps. The first is to demonstrate
a significant interaction of the marker value with treatment assignment, followed
by a determination of a point of equivalence and its associated confidence inter-
val. The upper bound of that confidence interval can mark a cutoff for choosing a
treatment. The same logic can be applied to designing a trial to test marker pre-
diction. While sample sizes can be large, the sample size is moderated by using a
continuous marker in a linear prediction model. Use of cutpoints to design the trial
will require larger sample sizes and thus imperil the likelihood of the trial going
forward.
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20.1 INTRODUCTION

Recent advances in molecular biology, genomics, and targeted agent development
have fueled the rapid progress in clinical oncology. In parallel, developments in sta-
tistical theory and computation have continued to provide better methods and tools
for dealing with complex problems. All these efforts lead to more advanced, yet
complicated study design, conduct, and analysis, which depend more and more heav-
ily on computing resources from both the software and hardware points of view.
Because a wide range of complex calculation methods are involved, it is difficult
and complicated for statisticians to develop their own codes from scratch every
time when a new design is implemented or an analysis is performed. Moreover, the
emerging Bayesian methods and adaptive trial designs (Berry 2006, Biswas et al.
2009, Berry et al. 2010, Lee et al. 2010), which introduced many new concepts and
calculation methods, pose new challenges for software development. Developing
and debugging codes could take a huge amount of time, and, without thoroughly
being tested, the best effort from any individual is also subject to errors. Fortunately,
many useful and valuable computer software and resources are now available from
both research and commercial entities. Instead of developing their own codes from
scratch every time, statisticians and clinical trial researchers will benefit much from
using available design and analysis software that has been developed and tested. In
this chapter, we will give a broad overview on selected software resources relevant to
cancer clinical trials. It is impossible to do a comprehensive review in this knowledge
explosion era. The choice of the software is limited by the authors’ knowledge and
experience. Undoubtedly, many valuable tools could be omitted and not covered.
However, we hope the information provided in this chapter can be used as a starting
point for the quest of identifying and developing more and better software for cancer
clinical trials.

In the recent literature, there are some reviews on software packages relevant to
clinical trials. Tai and Seldrup (2000) reviewed software packages on data manage-
ment, design, and analysis of clinical trials. Some clinical trial packages (nQuery,
PEST, and POWER) and analysis tools (SAS, SPSS, and STATA) were discussed
in the review. Arena and Rockette (2005) provided an overview of software that
is related to the design, management, and analysis of clinical trials. Wassmer
and Vandemeulebroecke (2006) reviewed many popular group sequential and
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adaptive design software packages for clinical trials. They evaluated packages such
as ADDPLAN, EAST, PASS, and PEST and some source code for SAS, Fortran,
and R. A comprehensive review on nQuery and PASS is given by Lane (2002). This
review listed the features for each software package and provided a detailed com-
parison between them. However, this review was published in 2002, and many new
features have been developed in nQuery and PASS since then.

Most reviews discussed earlier focused on a specific field (i.e., group sequential
designs) and included much calculation details. In this review, our intent is to give
readers a brief introduction of popular software packages for clinical trial designs.
However, due to the space limit, we are not able to discuss the calculation in detail in
this review, which can be easily found in the related literature.

Most previous reviews are based on frequentist methods, and almost no Bayesian
method—based software is discussed. In the past decade, at the MD Anderson Cancer
Center, many Bayesian clinical trial designs have been developed and applied due
to their unique strength and flexibility of handling complex designs (Biswas et al.
2009). Many software packages for implementing such designs have been devel-
oped, and users can download them for free from the software downloading website
(https://biostatistics.mdanderson.org/SoftwareDownload/). In this review, we will
also introduce some Bayesian clinical trial design software to the readers who are
interested. The source of all the software described below can be found in Table 20.1.

20.2 SOFTWARE PACKAGES FOR POWER/SAMPLE
SIZE CALCULATION

20.2.1 PowER ANALYSIS AND SAMPLE SIZE

Power analysis and sample size (PASS) is a commercial software package for power
analysis and sample size calculation based on frequentist methods. Its power and
sample size calculation procedure library includes analysis of mean and proportion
of one or two groups, correlated or paired, cross-over design, ANOVA, regression/
correlation, survival analysis, noninferiority, group sequential analysis, equivalence
tools, and many other procedures. The package comes with a detailed manual con-
taining tutorials, examples, references, and instructions; users can easily become
familiar with its usage. Each procedure in PASS is validated using published docu-
ment examples, and the validation examples are attached with the manual. It has a
very good graphic user interface (GUI) on the Windows platform (Figure 20.1) and
a detailed help system, making its usage convenient and straightforward.

20.2.2 NQUERY

nQuery is a commercial software package for sample size and power calculation
for a wide range of frequentist analysis. It calculates the sample size and power for
means, proportions, agreements, regression, survival analysis, and nonparametric
test and offers analysis for more than 90 different tests. It has a function for gener-
ating randomization lists for patient treatment allocation, and one can use this tool
for patient treatment assignment in a randomized trial. It has a user-friendly GUI
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TABLE 20.1

Software Packages for Clinical Trial Design and Analysis

Name

nQuery

PASS
STPLAN

StudySize

CRM simulator
EffTox
BMA-CRM
TITE-CRM

ATDPH1

Modified CRM v2.0
JLB design

EWOC

Simon two-stage design

Green-Benedetti-Crowely

Bryant-Day design

Predictive probability
design

BFDesigner

Multc99

CTD system

One-arm binomial
One-arm survival

Two-arm survival

Biomarker-targeted
randomized design

Biomarker-stratified
randomized design

Optimal Two-stage designs
for phase II clinical trials

Sample size for integrated
phase II/1II trial

URL

Power and Sample Size
http://www.statistical-solutions-software.com/
products-page/nquery-advisor-sample-size-software/
http://www.ncss.com/pass.html
https://biostatistics.mdanderson.org/
SoftwareDownload/
http://www.studysize.com/

Phase |
https://biostatistics.mdanderson.org/softwaredownload
https://biostatistics.mdanderson.org/softwaredownload/
https://biostatistics.mdanderson.org/softwaredownload/
http://roadrunner.cancer.med.umich.edu/wiki/index.

php/TITE-CRM
http://linus.nci.nih.gov/~brb/Methodologic.htm
http://www.cancerbiostats.onc.jhmi.edu/software.cfm
http://odin.mdacc.tmc.edu/~yuanj/software.htm
https://apps.winship.emory.edu/biostatistics/
software_ewoc.php

Phase Il
http://linus.nci.nih.gov/~brb/Opt.htm
http://www.swogstat.org/stat/public/TwoStage/2stagel.

htm
http://www.upci.upmc.edu/bf/ClinicalStudyDesign/

Phase 2 BryantDay.cfm
https://biostatistics.mdanderson.org/softwaredownload

https://biostatistics.mdanderson.org/softwaredownload
https://biostatistics.mdanderson.org/softwaredownload
http://www.cancer.duke.edu/modules/CTDSystems54/
index.php?id = 3
http://www.swogstat.org/stat/public/one_binomial.htm
http://www.swogstat.org/stat/public/one_survival.htm
http://www.swogstat.org/stat/public/survival_twoarm.
htm
http://linus.nci.nih.gov/brb/samplesize/td.html

http://linus.nci.nih.gov/brb/samplesize/sdpap.html
http://linus.nci.nih.gov/brb/samplesize/otsd.html

http://linus.nci.nih.gov/brb/samplesize/ip23study 1.
html

Free or
Commercial®

m T ™™ o™ ™ T
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TABLE 20.1 (continued)
Software Packages for Clinical Trial Design and Analysis

Name

EAST
PEST

gsDesign

ADDPLAN

S + SeqTrial

Expected death on a study

Adaptive randomization
Parameter solver
Predictive probability
calculation
TTEDesigner
Interaction survival

Biometric research of NCI
Power and sample size
Sample size

Simon’s two-stage design
MD Anderson

Sidney Kimmel
Comprehensive Cancer
Center in Johns Hopkins

MGH biostatistics center at
Harvard University

SAS

R

SPlus

SPSS

Stata

GraphPad Prism

BUGS, WinBUGS, and
JAGS

2 F, Free; C, Commercial.

URL

Phase IlI
http://www.cytel.com/software/east.aspx
http://www.maths.lancs.ac.uk/department/research/

statistics/mps/pest
R package
http://www.addplan.com/
http://spotfire.tibco.com/products/splus-seqtrial.aspx
http://www.swogstat.org/stat/public/expdeath.htm

Tools and Others

https://biostatistics.mdanderson.org/softwaredownload
https://biostatistics.mdanderson.org/softwaredownload
https://biostatistics.mdanderson.org/softwaredownload

https://biostatistics.mdanderson.org/softwaredownload
http://www.swogstat.org/stat/public/int_survival.htm
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http://www.graphpad.com/prism/prism.htm
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(Figure 20.2) and detailed help documents, making sample size and power calcula-
tion straightforward. A new module nTerim is shipped with the nQuery Advisor 7
for group sequential trial designs, and it includes the spending functions of Pocock
(1977), O’Brien and Fleming (1979), Hwang et al. (1990), and other functions.

20.2.3 STPLAN

STPLAN is a software package for designing frequentist clinical trial. It covers a
wide range of frequentist tests and performs power, sample size, and significance
calculation for different types of analysis. It offers tests for binomial distribution,
Poisson distribution, normal distribution, exponential distribution, and survival time
analysis. Most common frequentist one-sample and two-sample tests are included
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in the package. For a practical test, users need to set an unknown variable from
distribution parameters, significance level, power, and sample size, and the package
then calculates the value of the unknown variable from other specified parameters.
The program is useful and free for downloading. It is easy to use and has a simple
command line tool, running on DOS/Windows operating systems, but lacks a more
sophisticated user interface.

20.2.4 StupYSIZE

StudySize is a commercial software package for performing most standard hypoth-
esis testing, point estimation, and confidence interval calculation. It includes equiva-
lence and noninferiority tests. It also can perform nonparametric tests (Wilcoxon
test and Sign test). It can run group sequential interim analyses for most tests and
confidence interval calculation. It has a user-friendly Windows GUI.

20.3 PHASE I CLINICAL TRIAL SOFTWARE
20.3.1 CRM SIMULATOR

Continual reassessment method (CRM) simulator is a useful tool for phase I clinical
trial based on the CRM (O’Quigley et al. 1990). It can be used for trial planning and
implementation. Using this software package, one can simulate trials with differ-
ent parameter values, observing the operating characteristics for different scenarios.
Input parameters include the prior mean probability of toxicity at each dose level,
target probability of toxicity, different scenarios (true probability of toxicity at each
dose level), and simulation setting parameters (e.g., repeat numbers of the simula-
tions). The software package simulates each trial with a different random number
sequence and at the end collects all data to produce the output. The output includes
the selection probability at each dose level, average number of patients treated at
each dose level, average toxicities for each simulated trial, and other information.
It has a user-friendly graphical GUI on Windows platforms (Figure 20.3), and users
can easily adjust each parameter and analyze output data.

20.3.2 BMA-CRM

This software package implements the Bayesian model average continual reassess-
ment method (Yin and Yuan 2009) for dose finding in the phase I clinical trial, and
it can be used for clinical trial design and trial conduct. The difference between the
BMA-CRM and the CRM is that the BMA-CRM utilizes the Bayesian model aver-
age method for dose level selection based on multiple sets of probability of prior
mean of toxicity and the traditional CRM uses only one set of prior mean of toxicity
for the dose level selection. Usually, the BMA-CRM gives more robust results than
the traditional CRM. Parameters for the BMA-CRM are similar to that of the CRM
except that multisets of prior are needed. This package has a user-friendly GUI and
runs on Windows platforms (Figure 20.4).
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20.3.3 TITE-CRM

The TITE-CRM (Cheung and Chappell 2000) software is used for dose finding in
the situation that patient outcomes are not instantaneous and late-onset effects play
an important role. It is based on the time-to-event continual reassessment method
and a weighted dose model to extend the CRM method. For ongoing trials, it has the
functions of estimating the probability of toxicities, selecting dose level for the suc-
cessive patient based on current data. With this software package, one can perform
trial simulations with different scenarios and calculate the operating characteristics
for phase I trial design planning. This package is an SAS program but does not have
a GUL It has a detailed user guide for users to run the program.
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20.3.4 EWOC

EWOC (escalation with overdose control) is a software tool for conducting cancer
phase I clinical trial based on such design (Babb et al. 1998). It calculates the maxi-
mum tolerated dose level by utilizing an adaptive escalation scheme with all infor-
mation available at the time of dose assignment. The design reaches the maximum
tolerated dose level at a fast rate, while still subject to the constraints of the prespeci-
fied overdose proportion. Compared with the CRM, this method demonstrates lower
overdose rates, fewer toxicities, and comparable accuracy. This software tool is based
on windows platforms. It has a user-friendly GUI and well-organized introduction
documents.

20.3.5 JLB DesigN

The software package for the JLB design (Ji et al. 2007) is distributed in the form
of an Excel macro, and one can easily use it to carry out the phase I trial if he/she
has some basic knowledge of the Excel macro. The calculation method has two
important components: a beta/binomial model and a dose-assignment rule based
on posterior toxicity probability. Two parameters are required for running the
macro: target toxicity probability and the maximum sample size. Once the param-
eters are specified, the macro will generate a spreadsheet to guide users for trial
monitoring and dose assignment for each patient enrolled. This software is not
compatible with Mac OS, Unix, or Linux; it works only on the Excel Windows
version.

20.3.6 ErfTox

Software package EffTox is a dose-finding tool for phase I/1I trial designs based on
trade-offs between treatment efficacy and toxicity (Thall and Cook 2004, 2006). It
can handle trinary or bivariate binary patient outcomes for both efficacy and toxicity.
One can adjust different parameter combinations to balance the drug efficacy and
toxicity for patient dose level assignment. The dose level for the successive patients
is determined by the current outcome and the efficacy-toxicity contour. One can use
this package to design trials by performing trial simulations or to conduct real trial
by enrolling patients, recording their outcomes, and determining the dose for treat-
ing subsequent patients. The package has a user-friendly GUI and runs on Windows
platforms (Figure 20.5).

20.4 PHASE 1l TRIAL DESIGN SOFTWARE

20.4.1  SiMoN Two-STAGE DESIGN

Simon two-stage design (Simon 1989) is a small program for the popular two-stage
optimal and minimax designs. The optimal design minimizes the expected sample
size under the null hypothesis, and the minimax design attains the smallest total
sample size that satisfies the error constraints. The usage of the program is very
simple, and only several parameters (null and alternative response rates, maximum
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sample size, and Type I and II error constraints) are required. It calculates the total
sample size, the interim sample size, and the stopping boundary. It runs very fast on
a DOS platform (or using a command line console on Windows). However, in the
latest Windows 7 OS, it has a compatibility problem, but running the program in a
DOS simulator (i.e., DOSBox) can easily solve the problem.

20.4.2 WieB-Basep Two-STAGE DESIGN

A very useful two-stage phase II trial design tool is based on a web-application at
SWOG (http://www.swogstat.org/stat/public/TwoStage/2stagel.htm). The calcula-
tor can estimate the sample size, interim analysis points, stopping boundaries, and
power values for a two-stage Green—Benedetti—Crowely design (Green et al. 1997).
It allows both futility and efficacy stopping after the first stage of the trial. It has two
versions: The JavaScript version can be saved as a web-page, and one can run it in a
web-browser without internet connection. The server version is provided in case the
user’s web-browser does not support JavaScript.

CTD system (clinical trial design system), developed at Duke Cancer Institute,
is a user-friendly web-based two-stage design tool. It plots the expected sample size
versus total sample size curve and indicates the points corresponding to the optimal
and minimax designs. It supports two types of two-stage designs: allowing only
futility stopping (Simon’s two-stage design) or allowing both futility and efficacy
stopping.

Another free web-based two-stage phase II calculator is for Bryant-Day design
(Bryant and Day 1995) calculation. The toxicity is incorporated into the Simon’s
two-stage design, and a trial will be stopped either by unacceptable clinical response
or toxicity. Probabilities of accepting poor responses, accepting toxic drug, rejecting
good drug, and other parameters are required for the calculation. The application
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calculates the stopping boundaries based on patients’ response and toxicity. It is
web-based and users can easily run the application from their web-browser.

20.4.3 PrepicTive PROBABILITY DESIGN

Predictive probability design (Lee and Liu 2008) is a useful tool for designing
single-arm phase II trial based on the predictive probability calculation. Stopping
boundaries at each interim look are calculated based on the predictive probability of
the final inference decision. The software package helps users find the cut-off values
of the predictive probability and the corresponding stopping boundary calculation.
Users need to specify the type I and type II error constraints, interim look points, the
search domain of the cut-off values and priors, the program will search the param-
eter domain to find whether a solution exists to satisfy both type I and type II error
constraints. If a solution is found, the cut-off value, stopping boundaries, and the cor-
responding operating characteristics will be calculated and displayed. The software
has a user-friendly GUI on Windows platforms, and one can easily use it with the
assistance from the embedded user guide (Figure 20.6).

20.4.4 MuLtc99

Multc99 (Thall et al. 1995) is a program for designing single-arm phase I/II trial
with multiple outcomes, typically, efficacy and toxicity. A Dirichlet-multinomial
model is applied to describe discrete multivariate outcomes, and Bayesian stopping
rules are set for high rates of adverse outcomes or low rates of desirable outcomes.
Users can use this software to calculate the operating characteristics of different
scenarios and stopping boundaries. The software is a command line DOS program
and a simplified Windows version covers only the basic features.
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FIGURE 20.6 Screenshot of software predictive probability designer.
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20.4.5 BFDEsIGNER

BFDesigner is a useful tool for single-arm phase II clinical trial design. The soft-
ware package is based on the method of Bayesian hypothesis tests via Bayes factor
and nonlocal alternative prior density proposed by Johnson and Cook (2009). This
method provides more efficient stopping rules than the commonly used Bayesian
posterior credible interval and frequentist methods. The software package is a com-
mand line tool, but a detailed manual is attached with the package, making the usage
of this tool straightforward.

20.5 PHASE IlIl CLINICAL TRIAL SOFTWARE
20.5.1 EAST

EAST is a widely used commercial package for group sequential trial planning and
analysis. It supports normal, binomial, survival, and other type of end points and can
be applied for superiority, noninferiority, and equivalence trial designs. Its spending
function family includes Pocock, O’Brien—-Fleming, Wang—Tsiatis, and other func-
tions. Calculation results include stopping boundaries, power, expected number of
events, and sample size with different scenarios. The software (Figure 20.7) comes
with a user-friendly wizard system to help one design a group sequential trial in a
very convenient way. A detailed manual includes many software usage tutorials and
examples.

20.5.2 PEST

The PEST (“planning and evaluation of sequential trials”) is a commercial soft-
ware package for sequential trial design and analysis. PEST offers a wide range of
response types including binary, normal, survival, and interval censored survival
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times. It includes five modules: design, simulator, monitor, analyze, and view for dif-
ferent purposes of usage. Using this package, one can calculate stopping boundary
and sample size in the design stage and perform analysis such as significance level
and interval estimation at the end of the trial. The package is developed using C and
SAS and runs within an SAS session on Windows platforms, making communicat-
ing with other SAS codes easy.

20.5.3 GsDesIGN (R PACKAGE)

gsDesign is an R package for group sequential design, and it can be installed using the
R installation function. It supports common spending functions including Pocock,
O’Brien—Fleming, and Hwang—Shih—DeCani types. For a standard group sequential
design, it is not as convenient as the commercial packages such as the EAST pack-
age, but it is free and offers flexibility for accommodating nonstandard designs in
the R environment.

20.5.4 ADDPLAN

The ADDPLAN (adaptive designs-plan and analysis) is a commercial software pack-
age for adaptive clinical trial designs. It offers a comprehensive design planning
tools for means, proportions and survivals, one-sided and two-sided, noninferiority,
and equivalence tests. At interim monitoring points, it can recalculate the sample
size for the ongoing trial based on the current data and adaptively adjust the trial
based on the patient outcomes.

20.5.5 S+ SeQTRIAL

S+SeqTrial is a S-Plus software library for designing, monitoring, and analyzing
the group sequential trials. It is integrated into the S-Plus software and allows users
to directly use or extend the package functions for their designs. It includes many
spending functions such as Pocock, O’Brien—Fleming, Whiteheard triangular and
double triangular, Wang—Tsiatis, and others. It can evaluate design operating charac-
teristics including power curve, average sample size calculation, sample size distri-
bution, stopping probabilities, and maximum sample size.

20.5.6 Expectep DEATH ON A STUDY

Expected death on a study is a useful web-based tool to estimate the expected num-
ber of death at specific time point in a time-to-event trial design. The program can
be used to plan various types of phase III trials. The program assumes the uniform
accrual and the time to death follows an exponential distribution. Users need to spec-
ify the accrual time, follow-up time, hazard rate, and sample size, and the program
calculates the expected number of deaths at a specific time point. The program can
also calculate the time at which a given potion of deaths has occurred. The program
is developed using JavaScript, and one can run it from a web-browser.
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20.6 TOOLS AND OTHERS

20.6.1 ADAPTIVE RANDOMIZATION

Adaptive randomization is a software package for helping statisticians design adap-
tive randomization-based Bayesian clinical trials. Users can study operating charac-
teristics of different scenarios and randomization rates by running trial simulations
in this software. For binary outcome cases, treatment response rates are described
with a Beta distribution. For time-to-event cases, survival times are described with
an inverse Gamma distribution. Users can easily adjust parameters including trial
sample size, tuning parameters for adaptive randomizations, early stopping rules,
threshold values, and final decision rules. Users can also input multiple scenarios
simultaneously, and the software carries out all scenario simulations as a batch job.
The output includes expected sample size, rejection rates, allocation rates, early stop-
ping rates, and other useful operating characteristics. Users can modify and improve
trial designs based on software output. The software runs on Window platforms with
a user-friendly GUI (Figure 20.8).

20.6.2 PARAMETER SOLVER

Parameter solver (Figure 20.9) is a useful tool for understanding properties of com-
mon distributions and for studying Bayesian statistics and inference. This application
calculates properties of a given distribution determined by mean and variance or
other combinations of two parameters. It supports beta, gamma, inverse gamma, log
normal, normal, and Weibull distributions. It is a very useful tool for studying the
properties of the distributions of random variables.

20.6.3 PrepicTiVE PROBABILITY CALCULATION

The predictive probability calculation (Figure 20.10) program is a useful tool for cal-
culating the predictive probability based on the current patient outcomes and future
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sample size. This software includes the parameter solver and the inequality calcula-
tor to help users adjust distribution parameters and compare distributions. The pro-
gram runs on Windows platforms and has a user-friendly GUIL

The difference between this program and the predictive probability design soft-
ware is that this one calculates predictive probability for both binary and survival
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endpoints. Users can use this tool as a tutorial to understand how the predictive prob-
ability works. Predictive probability calculation can also be used by the Data Safety
and Monitoring Board for monitoring the study based on the interim outcomes and
making decision on whether to stop or continue the trial.

On the other hand, the predictive probability design calculates the stopping bound-
aries and sample sizes for designing trials based on a binary endpoint. One can use
the predictive probability design tool for planning a single-arm phase II trial design.

20.6.4 OTHER TooLs FOR BAYESIAN AND NON-BAYESIAN ADAPTIVE DESIGNS

Traditional frequentist clinical trial methodology is known to be more rigid and
less adaptive. On the other hand, Bayesian framework naturally incorporates prior
knowledge to current data to make proper inference. Bayesian methods are adaptive
in nature and are ideal for learning. Methods and software tools for Bayesian adap-
tive designs can be found in a recent book by Berry et al. (2010). Discussions on non-
Bayesian adaptive designs are covered by books by Chow and Chang (2006,2007).

20.6.5 OTHER PROGRAMS

There are many other well-known programs that are frequently used in clinical trial
design, conduct, and analysis. Many statisticians rely heavily on those packages such
as SAS, R, SPlus, SPSS, Stata, and others in their daily work. There are also many
user-developed add-on’s such as SAS macros, R libraries, and Stata ado files that are
helpful for clinical trial design and analysis. In addition, Graphpad Prism is a very
useful tool for curve fitting, statistical comparison, column statistics, linear regres-
sion and correlation, clinical lab statistics, and other functions. It also provides a lot
of scientific graphing functions to draw and edit scientific plots. Lastly, the develop-
ments of BUGS, WINBUGS, and JAGS have greatly enhanced the implementation
of computations using Bayesian approaches.

20.7 WEB-BASED CALCULATORS AND RESOURCES

20.7.1 HTTP://WWW.SWOGSTAT.ORG/STATOOLSOUT.HTML

Online calculators for sample size calculation of one-arm, two-arm, normal, bino-
mial, and survival clinical trials. It also includes the Fisher’s exact test and some
probability calculations for common distributions.

20.7.2  HTTP://WWW.UPCI.UPMC.EDU/BF/RESOURCES.CFM

University of Pittsburgh Cancer Institute website includes online calculators for
Simon’s and Bryant-Day two-stage designs.

20.7.3  HTTPS://BIOSTATISTICS.MDANDERSON.ORG/SOFTWAREDOWNLOAD/

MD Anderson statistical software download site offers many software packages
for a wide variety of statistical calculations and clinical trial designs. It has many
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packages for Bayesian clinical trial design including adaptive randomization, CRM
packages, predictive probability designs, Multc design, EffTox design, and some
frequentist packages as well, such as STPLAN.

20.7.4 HTTP://CALCULATORS.STAT.UCLA.EDU/

This website, developed by UCLA, offers online calculation for distribution, graphic
chart, and statistical analysis.

20.7.5 HTTP://WWW.CANCERBIOSTATS.ONC.JHMI.EDU/SOFTWARE.CFM

This website, developed by Sidney Kimmel Comprehensive Cancer Center in Johns
Hopkins, offers some statistical software packages for clinical trials, including ran-
domization, CRM, optimization, and power/sample size calculation.

20.7.6  HTTP://HEDWIG.MGH.HARVARD.EDU/BIOSTATISTICS/SOFTWARE2TID _ 1 = ALL

This website, developed by MGH biostatistics center at Harvard University, pro-
vides some software packages for clinical trials including sample size, model fitting,
sequential boundaries, failure time analysis, power/sample size for logistic, and Cox
models and others.

20.7.7 HTTP://WWW.BETTYCJUNG.NET/STATPGMS.HTM

This website, developed by Berry C. Jung, covers a large variety of online statistical
resources. It includes statistical software sites, online calculator sites, specific data
management software sites, and general software (R, SAS, SPSS, and STATA).

20.7.8 HTTP://STATPAGES.ORG/H#COMPARISONS

This page includes many useful links for performing statistical analyses and tests.
Users can find most common statistical test software packages and many useful sta-
tistical analysis resources.

20.8 SUMMARY

In the last few decades, significant progress in clinical trial design software has been
made, thanks to the efforts of statisticians and software developers. Statisticians and
end users have many software options (Table 20.1) for implementing their designs:
commercial packages, free software, online tools, and R-packages, etc. Finding and
learning clinical trial software usages has become an important component of stat-
isticians’ routine responsibilities, which can save them a large amount of time rather
than developing their own codes for trial design and conduct.

With the development of statistical methods and information technology, clinical
trial software will become more convenient and powerful for users to design sophis-
ticated trials and perform complex analyses. For instance, high-speed computers
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make the MCMC sampling much faster than before, resulting in rapid progress in
Bayesian clinical trial methods. Cloud computing technology provides a very conve-
nient environment for users to run calculation from a web-browser, without install-
ing any software on their computers. We can expect continual advance in clinical
trial software design in future with the development of computation and computer
technologies. More powerful and user-friendly software will be available and used
to facilitate clinical trial design, conduct, and analysis.
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21.1 INTRODUCTION

Advances in therapy have made cure a possibility for some cancers. For example,
multiple myeloma (MM) is generally considered an incurable disease [14], but recent
research suggests that some MM patients could be cured. Investigators at the University
of Arkansas for Medical Sciences (UAMS) have developed an approach called total
therapy (TT) that has recently been shown to cure up to 30% of MM patients [13].

The most common regression model for survival data, the proportional hazards
(PH) model [12], is often not appropriate for heterogeneous patient populations
including both cured and uncured patients because the PH assumptions fails [37]. In
this situation, alternative models are needed, and a number of cure regression models
have been proposed for this type of data.

Cure models can be useful for applications where patients are not technically
“cured,” but rather there is a proportion of patients who will not fail during the
follow-up of the study. These patients can be referred to as long-term survivors rather
than cured. Cure models often can more adequately describe survival trends when
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there is a non-negligible proportion of patients alive at the end of follow-up with a
plateau at the end of the survival curve. In this case, the “cured” proportion from
cure models provides an estimate of the proportion of patients who will not fail dur-
ing follow-up, which may be a clinically relevant value.

This chapter is organized as follows: Section 21.2 reviews cure models proposed
in the statistical literature; Section 21.3 summarizes important assumptions common
to cure models; Section 21.4 outlines cure modeling options available in R, SAS,
and Stata; Section 21.5 outlines design considerations for clinical trials where some
patients may be cured; and Section 21.6 summarizes an analysis of the UMAS MM
data by several cure models to highlight differences, common features, and interpre-
tations of models.

21.2 MODEL OPTIONS

Cure models can be classified into two groups: mixture and non-mixture. Each group
will be reviewed in the following.

21.2.1  MixTure CURE MODELS

Mixture cure models assume that the underlying population includes both cured and
uncured patients. The first cure models were motivated by cancer survival trends and
assumed that survival for cured patients was different and better than survival for
uncured patients [7]. The authors assumed a simple parametric model:

S() = pSo() + (1= p)Sy(t)exp(-Ar), QLD

where
p denotes the proportion of cured patients
S,(t) denotes the survival of the “general” or “normal” population
A denotes the death rate due to cancer [7]

The authors were “surprised as well as gratified” to find that such a simple formula-
tion with only two parameters fit observed data quite well.

Further research on mixture cure models has focused on developing more gen-
eral and flexible formulations of Equation 21.1. Most mixture cure models can be
written as

S(11X) = pO+ (1= pXO)S (1]x), (212)

where
X is a set of covariates
p(X) is a model for the probability that an individual is cured
So(|X) is the survival function for patients who are not cured

Most mixture cure models use a logistic model for p(X). Proposed models for S,(#|X)
include the exponential and Weibull distributions [16], the PH model [20,34,38], a
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semiparametric accelerated failure time model [24], and a semiparametric transfor-
mation model that includes both the PH and proportional odds [6] models as special
cases [28].

Recent research on mixture cure models has focused on more complicated sur-
vival data including interval censoring [27], dependent censoring [26,32], longitudi-
nal data [23,36,44], current status data [29], and grouped survival data [45].

21.2.2 NoN-MixTure CURE MODELS

Most non-mixture cure models parametrize the survival function as
S(t) = exp(-0F(1)). (21.3)

where F(f) is the distribution function for a non-negative random variable. In this
model, the cumulative hazard function 0F(¢) is bounded, and so the survival function
is an improper survival function in the sense that lim,_,,S() >0. In Equation 21.3, the
proportion of cured patients is equal to exp(—0). When F(f) does not depend on covari-
ates, Model (21.3) has a PH structure. Covariates are incorporated into this model
through both © and F(z). Often © is modeled with the relationship 6(X)=exp(p’X).
Common parametric forms for F(7) include the Weibull, lognormal, logistic, and
gamma distributions.

Parametric forms for F(f) can incorporate covariates and have been considered by
a number of authors [8,37,40]. Models with semiparametric F() have also been pro-
posed [41]. Some work has been done for non-mixture cure models with alternative
transformations of 0F(f) [39,46].

Non-mixture cure models are a popular framework for Bayesian cure models
because mixture cure models yield improper posterior distributions for many non-
informative priors, and the PH structure is computationally convenient [8,18,41].
Proposals for Bayesian extensions to Equation 21.3 include models for multivariate
survival data [9], models for spatial data with interval censoring [1], and general
transformations of OF(¢) into survival functions [42,43].

21.2.3 DirrereNces BETWEEN MIXTURE AND NON-MIXTURE CURE MODELS

Choosing between mixture and non-mixture models is a matter of preference.
Frequentist results are available for both mixture and non-mixture models, but
Bayesian work has focused on non-mixture models due to computational ease.
Because in mixture models the probability of being cured is modeled separately
from the survival for those who are not cured, mixture models allow for separate
covariate relationships for cured and uncured patients.

21.3 ASSUMPTIONS AND IDENTIFIABILITY

All cure models, parametric, semiparametric, mixture, and non-mixture, assume
that that a cured fraction exists. This assumption ensures that there is enough
data to estimate parameters related the cure proportion. This assumption can be
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checked in a dataset by looking at empirical survival curves. Survival functions
for populations with cured patients exhibit a plateau at the end of the curve beyond
which there are no more failures and the survival curve is flat. Given this feature
of cure survival curves, Kaplan—Meier plots that exhibit plateaus at the end of the
curve are often interpreted to describe cured populations and that shape of curve
is often taken as evidence that a cure model may be appropriate. For mixture cure
models, a test of the existence of a cure fraction based on the tail of the Kaplan—
Meier curve has been proposed [30], though it is not straightforward to implement
the test.

Additionally, care needs to be taken to ensure that semiparametric models are
identifiable. Proofs of identifiability or nonidentifiability exist for some general
classes of semiparametric mixture and non-mixture cure models. For example, the
logistic-PH model and Equation 21.3 with log(0) linear in covariates without an
intercept and F(f) unspecified are both identifiable [25]. The mixture cure model
(Equation 21.2) with survival for those not cured modeled nonparametrically and
assuming a constant probability of cure [p(x)=p for all x] is not identifiable [25].

Although common semiparametric mixture models have been proved to be iden-
tifiable, in finite samples, the models can exhibit “near-nonidentifiability” in which
the likelihood for cure parameters can be flat. To address this issue in mixture
cure models, authors have proposed setting the survival function for patients who
are not cured S,(#) in Equation 21.2 equal to zero after the last observed failure
time [28,34,38]. The justification for this computational adjustment is that cure
models are only appropriate when some patients are cured and that long follow-up
is required to identify the plateau of the tail of a survival curve. If there is suf-
ficient follow-up to support the assumption of a cured proportion, authors argue
that it is reasonable to set the survival function to zero after the last failure. If there
is not sufficient follow-up or there is no rational for why a cure might exist, the
model should not be used. Similarly, semiparametric non-mixture survival mod-
els usually assume that F(r) from Equation 21.3 is equal to zero at the last failure.
Many Bayesian models can control the degree to which a model is semiparametric.
Bayesian semiparametric non-mixture models often model F(f) as having a piece-
wise constant hazard. The number of pieces controls the “nonparametricity” of the
model, and so small-to-moderate numbers of pieces are required to have the models
behave well [9].

21.4 COMPUTATIONAL IMPLEMENTATION

One barrier to implementation of cure models is that there are limited computational
resources available. Cure models are not standard functions in most statistical pack-
ages. Some authors have made personal code available for their methods, but for the
most part interested parties would need to hand code complicated formulae. Some
methods only require a straightforward implementation of built-in optimization rou-
tines, but many methods propose EM algorithms that require more work on the part
of the user. Later, we review the limited R packages, SAS macros, and Stata modules
available for cure analyses.
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2141 R

There is one package for cure modeling in R. The package nltm provides frequen-
tist estimates for non-mixture PH and proportional odds models based on [39].
Additionally, some authors have made R code available on personal websites. There
is S-PLUS and R code available for an implementation of the logistic-PH mixture
cure model [20,33,34,38] using an EM algorithm. The website for the code is http://
www.math.mun.ca/~ypeng/research/semicure/, and details of the method are pro-
vided in [33]. S-PLUS code for evaluating a generalized F mixture cure model
using a simulated annealing algorithm [35] is available at http:/www.math.mun.
ca/~ypeng/research/.

WinBUGS code is available for a Bayesian hierarchical model that includes mod-
els of the form (21.2) and (21.3) as special cases. The method proposed in [10] has
code available at http://www.biostat.umn.edu/~sudiptob/Software.html. The book
[19] has a chapter on Bayesian cure survival models. Code for the book can be found
on the website http://www.stat.uconn.edu/~mhchen/survbook/.

21.4.2 SAS

A SAS macro was published that fits some frequentist parametric and semiparamet-
ric mixture cure survival models [11].

21.4.3 StatA

There is a Stata module available to fit a frequentist parametric non-mixture cure
model as detailed in ref. [37]. The module can be downloaded from http://ideas.
repec.org/c/boc/bocode/s446901.html. Details on Stata commands to fit cure models
that incorporate expected background mortality and that can estimate relative moral-
ity have been published [21].

21.5 DESIGN CONSIDERATIONS

Limited work has been done for power and sample size calculations assuming a
proportion of patients have been cured. All of the work as focused on mixture cure
survival models and most of that work has focused on power of tests of the cure
proportion. Gray and Tsiatis [17] proposed a linear rank test derived to focus power
at the alternative that cure proportions are different but that survival among those
not cured is the same between the two groups. This test has improved power over
the log-rank test when less than 50% of the population is cured. Laska and Meisner
[22] proposed a test of cure proportions based on the tails of the Kaplan—Meier
curves. Ewell and Ibrahim extended the results of [17] to cases in which the sur-
vival distributions for non-cured populations may differ [15]. There currently do not
exist calculators to determine power and sample size for clinical trials assuming a
cure proportion, and so simulations are the most straightforward way to determine
sample size.
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21.6 ANALYSIS OF MULTIPLE MYELOMA DATA

In an effort to distinguish between the available models, we will evaluate sev-
eral models on the MM dataset mentioned in the introduction of this chapter. The
UAMS has developed three TT protocols since 1989 with the intent of curing some
MM patients. The first protocol, TT1, used a tandem autotransplant approach [3,5].
The second protocol intensified induction, added posttransplant consolidation,
and randomized between the addition of thalidomide, TT2+, or no thalidomide,
TT2- [4]. The most recent protocol, TT3, incorporated thalidomide and bortezomib
for induction [2,31]. Patient outcomes have improved over the protocols, so we will
investigate the trends in progression-free survival (PFS) over the protocols using
several cure models. PFS is defined from the time of registration to the first of death
or progression, with patients last known to be alive without progression censored at
the date of last contact.

First, we look at the survival curves for the four groups to evaluate whether cure
models are appropriate for this data. Figure 21.1 shows Kaplan—Meier plots of PFS
stratified by TT protocol. PES has improved over time, and each PFS curve has a
plateau at the tail indicating the potential that some patients may be cured.

Table 21.1 summarizes estimates and standard errors (SEs) for a mixture cure
model (Equation 21.2) with a constant probability of cure, p(X)=p, and exponen-
tial survival, S,(|X)=exp(-A?) fit to each protocol. The estimated cure propor-
tions increase over the protocols, as Figure 21.1 indicated. The proportion of cured
patients more than doubled between TT1 and TT2+/TT3. Survival for patients who
are not cured has also improved over the TT protocols. Based on the exponential
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FIGURE 21.1 Kaplan—Meier plots for PFS.
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TABLE 21.1
Exponential Cure Model Regression Results
Cure Survival

Proportion (%) SE Parameter A SE

TT1 9.4 2.1 0.30 0.02

TT2- 10.3 6.1 0.20 0.03

TT2+ 232 7.8 0.17 0.03

TT3 52.7 115 0.22 0.08

assumption, median survival for patients who were not cured was 2.3 years in TT1
and 3.2 years in TT3. Survival among those not cured in TT2—, TT2+, and TT3 was
relatively stable.

We can incorporate covariates into a parametric mixture cure model though a
logistic-Weibull cure model. In this model, the probability of being cured, p(X), fol-
lows a logistic distribution, and the survival for those who are not cured, S (¢|X),
follows a Weibull distribution. We incorporate covariates into the Weibull survival
function by S(f|X)=exp (—exp(B’X)\tY), where B is a vector of parameters corre-
sponding to the covariate matrix X, A is the Weibull shape parameter, and vy is the
Weibull scale parameter. Table 21.2 summarizes results (odds ratios [ORs], hazard
ratios [HRs], and 95% confidence intervals [CIs]) from a model with covariates for
protocol, age at diagnosis, and an indicator of presence of metaphase cytogenetic
abnormalities (CA) at diagnosis. The conclusions from the logistic-Weibull models
are similar to the conclusions from the simple cure model summarized in Table
21.1; the probability of cure increased over the protocols. Survival among those not
cured in TT2+ was significantly improved over TT1, though survival among those
not cured in TT2—, and TT3 was not significantly improved over TT1. Additionally,
we have information on age and CA. Both increased age and presence of CAs were
associated with a decreased probability of being cured and an increased hazard of

TABLE 21.2
Logistic-Weibull Regression Results
Cure Model Weibull Model

OR 95% ClI HR  95%Cl
TTI (ref)
TT2- 151 (1.06,526) 065 (0.57,1.00)
TT2+ 475 (222,10.18)  0.64  (0.44,0.91)
TT3 2023 (9.11,44.90) 091  (0.48,1.73)
Age 103 (1.00,1.05 101  (1.00, 1.02)
CA 238 (1.43,400) 146 (1.17,1.83)
A (shape) 0.16  (0.09,0.30)

vy (scale) 1.11 (1.02, 1.19)




332 Handbook of Statistics in Clinical Oncology

failure. The exponential distribution is a special case of the Weibull distribution
when y=1. In this model, the 95% CI for y excludes 1 implying the model does not
simplify to the exponential case.

The PH model can be more flexible than the Weibull model because it does not
assume a parametric form for the hazard function. Table 21.3 summarizes results
from a logistic-PH model, where S (t|X) =exp (—exp(f’X) A(?)) and A(?) is an unspeci-
fied cumulative hazard function. The point estimates for the ORs and HRs from the
logistic-PH model are fairly similar to the estimates from the logistic-Weibull model.
In contrast to the logistic-Weibull model, the survival among those not cured with
TT2- was significantly improved over TT1, and the HR for CA is not significantly
different from 1.

An alternative semiparametric model is a non-mixture model (Equation 21.3)
with an unspecified F(7) and O=exp (f’X). Results for this model were summarized
in Table 21.4. The results for the PH non-mixture model indicate that there was con-
tinued improvement in survival for all patients, on average, from TT1 through TT3.
Older age and presence of CAs are associated with decreased survival.

TABLE 21.3
Logistic-Proportional Hazards Regression
Results
Cure Model PH Model
OR 95% ClI HR 95% Cl
TT1 (ref)
TT2- 190 (1.08,3.34) 0.69  (0.57,0.84)
TT2+ 397 (2.31,6.82) 0.57  (0.46,0.70)
TT3 2135 (1232,37.03)  0.87 (0.67,1.24)
Age 1031 (1.05,1.02) 1.0l (100, 1.01)
CA 248 (1.86,3.69) 144 (0.89,1.21)
TABLE 21.4

PH Non-Mixture Model
Regression Results

HR  95%Cl
TTI (ref)
TT2- 0.64  (0.53,0.78)
TT2+ 045  (0.36,0.55)
TT3 0.29  (0.22,0.37)
Age 1.03  (1.01,1.05)

CA .72 (1.47,2.01)
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TABLE 21.5
Weibull Non-Mixture
Model Regression Results

HR 95% ClI
TT1 (ref)
TT2- 0.64  (0.53,0.78)
TT2+ 045  (0.36,0.55)
TT3 0.29  (0.22,0.37)
Age 1.03  (1.01, 1.05)
CA 1.72  (1.47,2.01)
Scale
Intercept -7.03 (-8.24,-5.83)
Age -0.02  (-0.04,0.01)
Shape
Intercept 0.56  (0.18,0.94)
Age -0.01  (-0.01,-0.001)

The non-mixture model can also take use parametric forms for F(f). Table 21.5
summarizes results for F(f) following the Weibull distribution with the covariate
age and letting 0=exp(p’X). The results for this model are virtually identical to the
results form the semiparametric model.

As a final comparison, the standard survival model, the PH model, is summarized
in Table 21.6. The PH model has very similar estimates as the non-mixture cure
models.

Given the number of different models applied to the data, we were interested
in how the estimates of cured fractions differed between the models. Table 21.7
summarizes estimates of cure fractions for each of the protocols from the five cure
models summarized earlie