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Preface to the Second Edition

Four years have passed since the first edition of this book. During this time I have
had the opportunity to apply it in classes obtaining feedback from students and
inspiration for improvements. I have also benefited from many comments by users
of the book. For the present second edition large parts of the book have undergone
major revision, although the basic concept — concise but sufficiently rigorous
mathematical treatment with emphasis on computer applications to real datasets —,
has been retained.
The second edition improvements are as follows:

e Inclusion of R as an application tool. As a matter of fact, R is a free
software product which has nowadays reached a high level of maturity
and is being increasingly used by many people as a statistical analysis
tool.

e  Chapter 3 has an added section on bootstrap estimation methods, which
have gained a large popularity in practical applications.

o A revised explanation and treatment of tree classifiers in Chapter 6 with
the inclusion of the QUEST approach.

e Several improvements of Chapter 7 (regression), namely: details
concerning the meaning and computation of multiple and partial
correlation coefficients, with examples; a more thorough treatment and
exemplification of the ridge regression topic; more attention dedicated to
model evaluation.

e Inclusion in the book CD of additional MATLAB functions as well as a
set of R functions.

e  Extra examples and exercises have been added in several chapters.

e  The bibliography has been revised and new references added.

I have also tried to improve the quality and clarity of the text as well as notation.
Regarding notation I follow in this second edition the more widespread use of
denoting random variables with italicised capital letters, instead of using small
cursive font as in the first edition. Finally, I have also paid much attention to
correcting errors, misprints and obscurities of the first edition.

J.P. Marques de S&
Porto, 2007



Preface to the First Edition

This book is intended as a reference book for students, professionals and research
workers who need to apply statistical analysis to a large variety of practical
problems using STATISTICA, SPSS and MATLAB. The book chapters provide a
comprehensive coverage of the main statistical analysis topics (data description,
statistical inference, classification and regression, factor analysis, survival data,
directional statistics) that one faces in practical problems, discussing their solutions
with the mentioned software packages.

The only prerequisite to use the book is an undergraduate knowledge level of
mathematics. While it is expected that most readers employing the book will have
already some knowledge of elementary statistics, no previous course in probability
or statistics is needed in order to study and use the book. The first two chapters
introduce the basic needed notions on probability and statistics. In addition, the
first two Appendices provide a short survey on Probability Theory and
Distributions for the reader needing further clarification on the theoretical
foundations of the statistical methods described.

The book is partly based on tutorial notes and materials used in data analysis
disciplines taught at the Faculty of Engineering, Porto University. One of these
disciplines is attended by students of a Master’s Degree course on information
management. The students in this course have a variety of educational backgrounds
and professional interests, which generated and brought about datasets and analysis
objectives which are quite challenging concerning the methods to be applied and
the interpretation of the results. The datasets used in the book examples and
exercises were collected from these courses as well as from research. They are
included in the book CD and cover a broad spectrum of areas: engineering,
medicine, biology, psychology, economy, geology, and astronomy.

Every chapter explains the relevant notions and methods concisely, and is
illustrated with practical examples using real data, presented with the distinct
intention of clarifying sensible practical issues. The solutions presented in the
examples are obtained with one of the software packages STATISTICA, SPSS or
MATLAB; therefore, the reader has the opportunity to closely follow what is being
done. The book is not intended as a substitute for the STATISTICA, SPSS and
MATLAB user manuals. It does, however, provide the necessary guidance for
applying the methods taught without having to delve into the manuals. This
includes, for each topic explained in the book, a clear indication of which
STATISTICA, SPSS or MATLAB tools to be applied. These indications appear in
specific “Commands” frames together with a complementary description on how to
use the tools, whenever necessary. In this way, a comparative perspective of the



xviil Preface to the First Edition

capabilities of those software packages is also provided, which can be quite useful
for practical purposes.

STATISTICA, SPSS or MATLAB do not provide specific tools for some of the
statistical topics described in the book. These range from such basic issues as the
choice of the optimal number of histogram bins to more advanced topics such as
directional statistics. The book CD provides these tools, including a set of
MATLAB functions for directional statistics.

I am grateful to many people who helped me during the preparation of the book.
Professor Luis Alexandre provided help in reviewing the book contents. Professor
Willem van Meurs provided constructive comments on several topics. Professor
Joaquim Goéis contributed with many interesting discussions and suggestions,
namely on the topic of data structure analysis. Dr. Carlos Felgueiras and Paulo
Sousa gave valuable assistance in several software issues and in the development
of some software tools included in the book CD. My gratitude also to Professor
Pimenta Monteiro for his support in elucidating some software tricks during the
preparation of the text files. A lot of people contributed with datasets. Their names
are mentioned in Appendix E. I express my deepest thanks to all of them. Finally, I
would also like to thank Alan Weed for his thorough revision of the texts and the
clarification of many editing issues.

J.P. Marques de Sa
Porto, 2003



Symbols and Abbreviations

Sample Sets
A event
A set (of events)

{41, Ay,...} set constituted of events A, 4,,...

A complement of {4}

AUB union of {4} with {B}
ANB intersection of {4} with {B}
E set of all events (universe)
@ empty set

Functional Analysis

3 there is

v for every

€ belongs to

3 doesn’t belong to

= equivalent to

Il Euclidian norm (vector length)

= implies

—> converges to

R real number set

R [0, 400 [

[a, b] closed interval between and including a and b
la, b] interval between a and b, excluding a

[a, b[ interval between a and b, excluding b



XX Symbols and Abbreviations

la, b[ open interval between @ and b (excluding a and b)
Z;’Zl sum forindex i=1,....n
I product for index i=1,...,n
i=1
.[: integral from a to b
k! factorial of &, k! = k(k—1)(k=2)...2.1
(’,Z ) combinations of # elements taken & at a time
| x| absolute value of x
|_xJ largest integer smaller or equal to x
gx(a) function g of variable X evaluated at a
d, o . .
ﬁ derivative of function g with respect to X
d"g .
derivative of order n of g evaluated at a
ax"|,
In(x) natural logarithm of x
log(x) logarithm of x in base 10
sgn(x) sign of x

mod(x,y)  remainder of the integer division of x by y

Vectors and Matrices
X vector (column vector), multidimensional random vector
x' transpose vector (row vector)

[x1 x5...x,] row vector whose components are xi, Xy, ...,X,

X; i-th component of vector x

Xk i-th component of vector x;

Ax vector X increment

x'y inner (dot) product of x and y

A matrix

a; i-th row, j-th column element of matrix A
A' transpose of matrix A

Al inverse of matrix A
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|A] determinant of matrix A

tr(A) trace of A (sum of the diagonal elements)
I unit matrix

A eigenvalue i

Probabilities and Distributions

X random variable (with value denoted by the same lower case letter, x)
P(4) probability of event 4

P(A|B) probability of event 4 conditioned on B having occurred

P(x) discrete probability of random vector x

P(wix) discrete conditional probability of @; given x

fx) probability density function f'evaluated at x

fx|w) conditional probability density function f'evaluated at x given ®;
X ~f X has probability density function f

X ~F X has probability distribution function (is distributed as) F

Pe probability of misclassification (error)

Pc probability of correct classification

df degrees of freedom

Xdfa a-percentile of X distributed with df degrees of freedom

b,y binomial probability for n trials and probability p of success
B, binomial distribution for # trials and probability p of success

u uniform probability or density function

U uniform distribution

g geometric probability (Bernoulli trial with probability p)

G, geometric distribution (Bernoulli trial with probability p)

hN.Dn hypergeometric probability (sample of # out of N with D items)
Hyp, hypergeometric distribution (sample of 7 out of N with D items)
Pa Poisson probability with event rate A

P, Poisson distribution with event rate A

Nyo normal density with mean x4 and standard deviation o
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N,u,o‘

Las
Ty

Jaf.ar,

Fapa,

Statistics
X

Elx]
vix]
E[x[y]

my

normal distribution with mean x and standard deviation o
exponential density with spread factor 4

exponential distribution with spread factor A

Weibull density with parameters «,

Weibull distribution with parameters o, S

Gamma density with parameters a, p

Gamma distribution with parameters a, p

Beta density with parameters p, ¢

Beta distribution with parameters p, g

Chi-square density with df degrees of freedom

Chi-square distribution with df degrees of freedom

Student’s ¢ density with df degrees of freedom
Student’s ¢ distribution with df degrees of freedom
F density with df}, df;degrees of freedom

F distribution with df;, df; degrees of freedom

estimate of x

expected value (average, mean) of X

variance of X

expected value of x given y (conditional expectation)
central moment of order k

mean value

standard deviation

covariance of Xand Y

correlation coefficient

mean vector



Symbols and Abbreviations

xxiii

p¥ covariance matrix

X arithmetic mean

v sample variance

s sample standard deviation

Xq a-quantile of X (Fy (x,)=a)
med(X) median of X (same as xys)

S sample covariance matrix

a significance level (1—« is the confidence level)
Xg a-percentile of X

£ tolerance

Abbreviations

FNR False Negative Ratio

FPR False Positive Ratio

iff if an only if

iid. independent and identically distributed
IRQ inter-quartile range

pdf probability density function

LSE Least Square Error

ML Maximum Likelihood

MSE Mean Square Error

PDF probability distribution function
RMS Root Mean Square Error

I.V. Random variable

ROC Receiver Operating Characteristic
SSB Between-group Sum of Squares
SSE Error Sum of Squares

SSLF Lack of Fit Sum of Squares

SSPE Pure Error Sum of Squares

SSR Regression Sum of Squares
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SST Total Sum of Squares

SSW Within-group Sum of Squares
TNR True Negative Ratio

TPR True Positive Ratio

VIF Variance Inflation Factor
Tradenames

EXCEL Microsoft Corporation
MATLAB The MathWorks, Inc.
SPSS SPSS, Inc.
STATISTICA Statsoft, Inc.
WINDOWS Microsoft Corporation



1 Introduction

1.1 Deterministic Data and Random Data

Our daily experience teaches us that some data are generated in accordance to
known and precise laws, while other data seem to occur in a purely haphazard way.
Data generated in accordance to known and precise laws are called deterministic
data. An example of such type of data is the fall of a body subject to the Earth’s
gravity. When the body is released at a height /2, we can calculate precisely where
the body stands at each time ¢. The physical law, assuming that the fall takes place
in an empty space, is expressed as:

h=hy—"gt*,

where 4, is the initial height and g is the Earth’s gravity acceleration at the point
where the body falls.

Figure 1.1 shows the behaviour of 4 with ¢, assuming an initial height of 15
meters.

16
h
14 t h
12 | 0.00 15.00

0.20 14.80
10 A

0.40 14.22
81 0.60 13.24
6 0.80 11.86
4 1.00 10.10

1.20 7.94
2 4

¢ 1.40 5.40

0 T T T T T T T 1.60 2.46

0 02 04 06 08 1 12 14 186

Figure 1.1. Body in free-fall, with height in meters and time in seconds, assuming
2=9.8 m/s>. The & column is an example of deterministic data.
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In the case of the body fall there is a law that allows the exact computation of
one of the variables % or ¢ (for given Ay and g) as a function of the other one.
Moreover, if we repeat the body-fall experiment under identical conditions, we
consistently obtain the same results, within the precision of the measurements.
These are the attributes of deterministic data: the same data will be obtained,
within the precision of the measurements, under repeated experiments in well-
defined conditions.

Imagine now that we were dealing with Stock Exchange data, such as, for
instance, the daily share value throughout one year of a given company. For such
data there is no known law to describe how the share value evolves along the year.
Furthermore, the possibility of experiment repetition with identical results does not
apply here. We are, thus, in presence of what is called random data.

Classical examples of random data are:

— Thermal noise generated in electrical resistances, antennae, etc.;
—  Brownian motion of tiny particles in a fluid,

—  Weather variables;

— Financial variables such as Stock Exchange share values;

—  Gambling game outcomes (dice, cards, roulette, etc.);

—  Conscript height at military inspection.

In none of these examples can a precise mathematical law describe the data.
Also, there is no possibility of obtaining the same data in repeated experiments,
performed under similar conditions. This is mainly due to the fact that several
unforeseeable or immeasurable causes play a role in the generation of such data.
For instance, in the case of the Brownian motion, we find that, after a certain time,
the trajectories followed by several particles that have departed from exactly the
same point, are completely different among them. Moreover it is found that such
differences largely exceed the precision of the measurements.

When dealing with a random dataset, especially if it relates to the temporal
evolution of some variable, it is often convenient to consider such dataset as one
realization (or one instance) of a set (or ensemble) consisting of a possibly infinite
number of realizations of a generating process. This is the so-called random
process (or stochastic process, from the Greek “stochastikos” = method or
phenomenon composed of random parts). Thus:

— The wandering voltage signal one can measure in an open electrical
resistance is an instance of a thermal noise process (with an ensemble of
infinitely many continuous signals);

—  The succession of face values when tossing # times a die is an instance of a
die tossing process (with an ensemble of finitely many discrete sequences).

— The trajectory of a tiny particle in a fluid is an instance of a Brownian
process (with an ensemble of infinitely many continuous trajectories);
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0 02 04 06 08 1 12 14 16
Figure 1.2. Three “body fall” experiments, under identical conditions as in Figure
1.1, with measurement errors (random data components). The dotted line

represents the theoretical curve (deterministic data component). The solid circles
correspond to the measurements made.

We might argue that if we knew all the causal variables of the “random data” we
could probably find a deterministic description of the data. Furthermore, if we
didn’t know the mathematical law underlying a deterministic experiment, we might
conclude that a random dataset were present. For example, imagine that we did not
know the “body fall” law and attempted to describe it by running several
experiments in the same conditions as before, performing the respective
measurement of the height / for several values of the time ¢, obtaining the results
shown in Figure 1.2. The measurements of each single experiment display a
random variability due to measurement errors. These are always present in any
dataset that we collect, and we can only hope that by averaging out such errors we
get the “underlying law” of the data. This is a central idea in sfatistics: that certain
quantities give the “big picture” of the data, averaging out random errors. As a
matter of fact, statistics were first used as a means of summarising data, namely
social and state data (the word “statistics” coming from the “science of state”).

Scientists’ attitude towards the “deterministic vs. random” dichotomy has
undergone drastic historical changes, triggered by major scientific discoveries.
Paramount of these changes in recent years has been the development of the
quantum description of physical phenomena, which yields a granular-all-
connectedness picture of the universe. The well-known “uncertainty principle” of
Heisenberg, which states a limit to our capability of ever decreasing the
measurement errors of experiment related variables (e.g. position and velocity),
also supports a critical attitude towards determinism.

Even now the “deterministic vs. random” phenomenal characterization is subject
to controversies and often statistical methods are applied to deterministic data. A
good example of this is the so-called chaotic phenomena, which are described by a
precise mathematical law, i.e., such phenomena are deterministic. However, the
sensitivity of these phenomena on changes of causal variables is so large that the
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precision of the result cannot be properly controlled by the precision of the causes.
To illustrate this, let us consider the following formula used as a model of
population growth in ecology studies, where p(n) € [0, 1] is the fraction of a
limiting number of population of a species at instant », and k is a constant that
depends on ecological conditions, such as the amount of food present:

Pn1 =P, (1+k(1=p,)), k>0.

Imagine we start (n = 1) with a population percentage of 50% (p; = 0.5) and
wish to know the percentage of population at the following three time instants,
with k= 1.9:

P> =pi(1+1.9 x (1- p1)) = 0.9750
p3=po(1+1.9 x (1- p,)) = 1.0213
P4 =p3(1+1.9 x (1- p3)) = 0.9800

It seems that after an initial growth the population dwindles back. As a matter of
fact, the evolution of p, shows some oscillation until stabilising at the value 1, the
limiting number of population. However, things get drastically more complicated
when k = 3, as shown in Figure 1.3. A mere deviation in the value of p; of only
107 has a drastic influence on p,. For practical purposes, for k around 3 we are
unable to predict the value of the p, after some time, since it is so sensitive to very
small changes of the initial condition p;. In other words, the deterministic p,
process can be dealt with as a random process for some values of k.

Py Pn

0.8 0.8
0.6 0.6
0.4 0.4

0.2 1 0.2

L L L L L L , fime L L L L L L ' time
0 10 20 30 40 50 60 70 80 b 0 10 20 30 40 50 60 70 80

Figure 1.3. Two instances of the population growth process for k£ = 3: a) p; = 0.1;
b) p1=0.100001.

The random-like behaviour exhibited by some iterative series is also present in
the so-called “random number generator routine” used in many computer
programs. One such routine iteratively generates x,, as follows:

X,y =ox, modm .
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Therefore, the next number in the “random number” sequence is obtained by
computing the remainder of the integer division of & times the previous number by
a suitable constant, m. In order to obtain a convenient “random-like” behaviour of
this purely deterministic sequence, when using numbers represented with p binary
digits, one must use m=2%and a = olri2l 3 , where |_p / 2J is the nearest integer
smaller than p/2. The periodicity of the sequence is then 277%. Figure 1.4
illustrates one such sequence.

1200

1000
800 -
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200 -

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Lo
0O 10 20 30 40 50 60 70 80 90 100

Figure 1.4. “Random number” sequence using p =10 binary digits with m = 2 =
1024, @ =35 and initial value x(0) =27 — 3 = 1021.

1.2 Population, Sample and Statistics

When studying a collection of data as a random dataset, the basic assumption being
that no law explains any individual value of the dataset, we attempt to study the
data by means of some global measures, known as statistics, such as frequencies
(of data occurrence in specified intervals), means, standard deviations, etc.

Clearly, these same measures can be applied to a deterministic dataset, but, after
all, the mean height value in a set of height measurements of a falling body, among
other things, is irrelevant.

Statistics had its beginnings and key developments during the last century,
especially the last seventy years. The need to compare datasets and to infer from a
dataset the process that generated it, were and still are important issues addressed
by statisticians, who have made a definite contribution to forwarding scientific
knowledge in many disciplines (see e.g. Salsburg D, 2001). In an inferential study,
from a dataset to the process that generated it, the statistician considers the dataset
as a sample from a vast, possibly infinite, collection of data called population.
Each individual item of a sample is a case (or object). The sample itself is a list of
values of one or more random variables.

The population data is usually not available for study, since most often it is
either infinite or finite but very costly to collect. The data sample, obtained from
the population, should be randomly drawn, i.e., any individual in the population is
supposed to have an equal chance of being part of the sample. Only by studying
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randomly drawn samples can one expect to arrive at legitimate conclusions, about
the whole population, from the data analyses.
Let us now consider the following three examples of datasets:

Example 1.1

The following Table 1.1 lists the number of firms that were established in town X
during the year 2000, in each of three branches of activity.

i
Table 1.1
Branch of Activity No. of Firms Frequencies
Commerce 56 56/109 =51.4 %
Industry 22 22/109 =20.2 %
Services 31 31/109 =28.4 %
Total 109 109/109 = 100 %

Example 1.2

The following Table 1.2 lists the classifications of a random sample of 50 students
in the examination of a certain course, evaluated on a scale of 1 to 5.

0
Table 1.2
Classification No. of Occurrences Accumulated Frequencies
1 3 3/50 =6.0%
2 10 13/50 =26.0%
3 12 25/50 = 50.0%
4 15 40/50 = 80.0%
5 10 50/50 = 100.0%
Total 50 100.0%
Median® =3

#Value below which 50% of the cases are included.

Example 1.3

The following Table 1.3 lists the measurements performed in a random sample of

10 electrical resistances, of nominal value 100 Q (ohm), produced by a machine.
0
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Table 1.3

Case # Value (in Q)
1 101.2

2 100.3

3 99.8

4 99.8

5 99.9

6 100.1

7 99.9

8 100.3

9 99.9

10 100.1
Mean (101.2+100.3+99.8+...)/10 = 100.13

In Example 1.1 the random variable is the “number of firms that were
established in town X during the year 2000, in each of three branches of activity”.
Population and sample are the same. In such a case, besides the summarization of
the data by means of the frequencies of occurrence, not much more can be done. It
is clearly a situation of limited interest. In the other two examples, on the other
hand, we are dealing with samples of a larger population (potentially infinite in the
case of Example 1.3). It’s these kinds of situations that really interest the
statistician — those in which the whole population is characterised based on
statistical values computed from samples, the so-called sample statistics, or just
statistics for short. For instance, how much information is obtainable about the
population mean in Example 1.3, knowing that the sample mean is 100.13 QQ?

A statistic is a function, #,, of the n sample values, x;:

b, (X1, X0,..0,%,) .

The sample mean computed in Table 1.3 is precisely one such function,
expressed as:

)?Emn(xl,xz,...,xn):Z:’:lx,- /n.

We usually intend to draw some conclusion about the population based on the
statistics computed in the sample. For instance, we may want to infer about the
population mean based on the sample mean. In order to achieve this goal the x;
must be considered values of independent random variables having the same
probabilistic distribution as the population, i.e., they constitute what is called a
random sample. We sometimes encounter in the literature the expression
“representative sample of the population”. This is an incorrect term, since it
conveys the idea that the composition of the sample must somehow mimic the
composition of the population. This is not true. What must be achieved, in order to
obtain a random sample, is to simply select elements of the population at random.
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This can be done, for instance, with the help of a random number generator. In
practice this “simple” task might not be so simple after all (as when we conduct
statistical studies in a human population). The sampling topic is discussed in
several books, e.g. (Blom G, 1989) and (Anderson TW, Finn JD, 1996). Examples
of statistical malpractice, namely by poor sampling, can be found in (Jaffe AJ,
Spirer HF, 1987). The sampling issue is part of the planning phase of the statistical
investigation. The reader can find a good explanation of this topic in (Montgomery
DC, 1984) and (Blom G, 1989).

In the case of temporal data a subtler point has to be addressed. Imagine that we
are presented with a list (sequence) of voltage values originated by thermal noise in
an electrical resistance. This sequence should be considered as an instance of a
random process capable of producing an infinite number of such sequences.
Statistics can then be computed either for the ensemble of instances or for the time
sequence of the voltage values. For instance, one could compute a mean voltage
value in two different ways: first, assuming one has available a sample of voltage
sequences randomly drawn from the ensemble, one could compute the mean
voltage value at, say, ¢ = 3 seconds, for all sequences; and, secondly, assuming one
such sequence lasting 10 seconds is available, one could compute the mean voltage
value for the duration of the sequence. In the first case, the sample mean is an
estimate of an ensemble mean (at t = 3 s); in the second case, the sample mean is
an estimate of a temporal mean. Fortunately, in a vast number of situations,
corresponding to what are called ergodic random processes, one can derive
ensemble statistics from temporal statistics, i.e., one can limit the statistical study
to the study of only one time sequence. This applies to the first two examples of
random processes previously mentioned (as a matter of fact, thermal noise and dice
tossing are ergodic processes; Brownian motion is not).

1.3 Random Variables

A random dataset presents the values of random variables. These establish a
mapping between an event domain and some conveniently chosen value domain
(often a subset of R). A good understanding of what the random variables are and
which mappings they represent is a preliminary essential condition in any
statistical analysis. A rigorous definition of a random variable (sometimes
abbreviated to r.v.) can be found in Appendix A.

Usually the value domain of a random variable has a direct correspondence to
the outcomes of a random experiment, but this is not compulsory. Table 1.4 lists
random variables corresponding to the examples of the previous section. Italicised
capital letters are used to represent random variables, sometimes with an
identifying subscript. The Table 1.4 mappings between the event and the value
domain are:

Xp: {commerce, industry, services} — {1, 2, 3}.
Xg: {bad, mediocre, fair, good, excellent} — {1, 2, 3,4, 5}.
Xz: [90Q, 110 Q] — [90, 110].
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Table 1.4
Dataset Variable Value Domain Type
Firms in town X, year 2000 Xr {1,2,3}* Discrete, Nominal
Classification of exams Xe {1,2,3,4,5} Discrete, Ordinal
Electrical resistances (100 Q) Xz [90, 110] Continuous

* 1 = Commerce, 2 = Industry, 3 = Services.

One could also have, for instance:

Xp: {commerce, industry, services} — {-1,0, 1}.
Xg: {bad, mediocre, fair, good, excellent} — {0, 1, 2, 3, 4}.
Xz [90Q, 110 Q] — [-10, 10].

The value domains (or domains for short) of the variables X and Xj are
discrete. These variables are discrete random variables. On the other hand,
variable X is a continuous random variable.

The values of a nominal (or categorial) discrete variable are mere symbols (even
if we use numbers) whose only purpose is to distinguish different categories (or
classes). Their value domain is unique up to a biunivocal (one-to-one)
transformation. For instance, the domain of X could also be codified as {A, B, C}
or {I, I, III}.

Examples of nominal data are:

— Class of animal: bird, mammal, reptile, etc.;
— Automobile registration plates;
— Taxpayer registration numbers.

The only statistics that make sense to compute for nominal data are the ones that
are invariable under a biunivocal transformation, namely: category counts;
frequencies (of occurrence); mode (of the frequencies).

The domain of ordinal discrete variables, as suggested by the name, supports a
total order relation (“larger than” or “smaller than). It is unique up to a strict
monotonic transformation (i.e., preserving the total order relation). That is why the
domain of X could be {0, 1, 2, 3, 4} or {0, 25, 50, 75, 100} as well.

Examples of ordinal data are abundant, since the assignment of ranking scores
to items is such a widespread practice. A few examples are:

— Consumer preference ranks: “like”, “accept”, “dislike”, “reject”, etc.;

— Military ranks: private, corporal, sergeant, lieutenant, captain, etc.;

CEINT3 LR T3 CEINT3

— Certainty degrees: “unsure”, “possible”, “probable”, “sure”, etc.
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Several statistics, whose only assumption is the existence of a total order
relation, can be applied to ordinal data. One such statistic is the median, as shown
in Example 1.2.

Continuous variables have a real number interval (or a reunion of intervals) as
domain, which is unique up to a linear transformation. One can further distinguish
between ratio type variables, supporting linear transformations of the y = ax type,
and interval type variables supporting linear transformations of the y = ax + b type.
The domain of ratio type variables has a fixed zero. This is the most frequent type
of continuous variables encountered, as in Example 1.3 (a zero ohm resistance is a
zero resistance in whatever measurement scale we choose to elect). The whole
panoply of statistics is supported by continuous ratio type variables. The less
common interval type variables do not have a fixed zero. An example of interval
type data is temperature data, which can either be measured in degrees Celsius (X¢)
or in degrees Fahrenheit (Xr), satisfying the relation Xz = 1.8X + 32. There are
only a few, less frequent statistics, requiring a fixed zero, not supported by this
type of variables.

Notice that, strictly speaking, there is no such thing as continuous data, since all
data can only be measured with finite precision. If, for example, one is dealing
with data representing people’s height in meters, “real-flavour” numbers such as
1.82 m may be used. Of course, if the highest measurement precision is the
millimetre, one is in fact dealing with integer numbers such as 182 mm, i.e., the
height data is, in fact, ordinal data. In practice, however, one often assumes that
there is a continuous domain underlying the ordinal data. For instance, one often
assumes that the height data can be measured with arbitrarily high precision. Even
for rank data such as the examination scores of Example 1.2, one often computes
an average score, obtaining a value in the continuous interval [0, 5], i.e., one is
implicitly assuming that the examination scores can be measured with a higher
precision.

1.4 Probabilities and Distributions

The process of statistically analysing a dataset involves operating with an
appropriate measure expressing the randomness exhibited by the dataset. This
measure is the probability measure. In this section, we will introduce a few topics
of Probability Theory that are needed for the understanding of the following
material. The reader familiar with Probability Theory can skip this section. A more
detailed survey (but still a brief one) on Probability Theory can be found in
Appendix A.

1.4.1 Discrete Variables
The beginnings of Probability Theory can be traced far back in time to studies on

chance games. The work of the Swiss mathematician Jacob Bernoulli (1654-1705),
Ars Conjectandi, represented a keystone in the development of a Theory of
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Probability, since for the first time, mathematical grounds were established and the
application of probability to statistics was presented. The notion of probability is
originally associated with the notion of frequency of occurrence of one out of &
events in a sequence of trials, in which each of the events can occur by pure
chance.

Let us assume a sample dataset, of size n, described by a discrete variable, X.
Assume further that there are k distinct values x; of X each one occurring »; times.
We define:

— Absolute frequency of x;:  n; ;
k
— Relative frequency (or simply frequency of x;):  f; = % With n= Zni .
n i=1

In the classic frequency interpretation, probability is considered a limit, for large
n, of the relative frequency of an event: P, =P(X =x;)=1lim, ,, f; € [0, 1]. In
Appendix A, a more rigorous definition of probability is presented, as well as
properties of the convergence of such a limit to the probability of the event (Law of
Large Numbers), and the justification for computing P(X =x;) as the “ratio of the
number of favourable events over the number of possible events” when the event
composition of the random experiment is known beforehand. For instance, the
probability of obtaining two heads when tossing two coins is % since only one out
of the four possible events (head-head, head-tail, tail-head, tail-tail) is favourable.
As exemplified in Appendix A, one often computes probabilities of events in this
way, using enumerative and combinatorial techniques.

The values of P; constitute the probability function values of the random
variable X, denoted P(X). In the case the discrete random variable is an ordinal
variable the accumulated sum of P; is called the distribution function, denoted
F(X). Bar graphs are often used to display the values of probability and distribution
functions of discrete variables.

Let us again consider the classification data of Example 1.2, and assume that the
frequencies of the classifications are correct estimates of the respective
probabilities. We will then have the probability and distribution functions
represented in Table 1.5 and Figure 1.5. Note that the probabilities add up to 1
(total certainty) which is the largest value of the monotonic increasing function

FX).

Table 1.5. Probability and distribution functions for Example 1.2, assuming that
the frequencies are correct estimates of the probabilities.

X; Probability Function P(X) Distribution Function F(X)
| 0.06 0.06
2 0.20 0.26
3 0.24 0.50
4 0.30 0.80
5 0.20 1.00
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Figure 1.5. Probability and distribution functions for Example 1.2, assuming that
the frequencies are correct estimates of the probabilities.

Several discrete distributions are described in Appendix B. An important one,
since it occurs frequently in statistical studies, is the binomial distribution. It
describes the probability of occurrence of a “success” event k times, in n
independent trials, performed in the same conditions. The complementary “failure”
event occurs, therefore, n — k times. The probability of the “success” in a single
trial is denoted p. The complementary probability of the failure is 1 — p, also
denoted ¢. Details on this distribution can be found in Appendix B. The respective
probability function is:

P(X:k){gpk(l—p)"‘k =(ijkq""‘. 11

1.4.2 Continuous Variables

We now consider a dataset involving a continuous random variable. Since the
variable can assume an infinite number of possible values, the probability
associated to each particular value is zero. Only probabilities associated to intervals
of the variable domain can be non-zero. For instance, the probability that a gunshot
hits a particular point in a target is zero (the variable domain is here two-
dimensional). However, the probability that it hits the “bull’s-eye” area is non-zero.

For a continuous variable, X (with value denoted by the same lower case letter,
X), one can assign infinitesimal probabilities Ap(x) to infinitesimal intervals Ax:

Ap(x) = f(x)Ax, 1.2
where f(x) is the probability density function, computed at point x.

For a finite interval [a, b] we determine the corresponding probability by adding
up the infinitesimal contributions, i.e., using:

Pla<X <b)=["f(x)dx. 13
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Therefore, the probability density function, f{x), must be such that:
_[D f(x)dx =1, where D is the domain of the random variable.

Similarly to the discrete case, the distribution function, F(x), is now defined as:
F)=P(X <u)=|" f(x)dx. 1.4

Sometimes the notations fy{(x) and Fix(x) are used, explicitly indicating the
random variable to which respect the density and distribution functions.

The reader may wish to consult Appendix A in order to learn more about
continuous density and distribution functions. Appendix B presents several
important continuous distributions, including the most popular, the Gauss (or
normal) distribution, with density function defined as:

(-p)?
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n,,(x)= e
" \2ro

This function uses two parameters, 1 and o, corresponding to the mean and
standard deviation, respectively. In Appendices A and B the reader finds a
description of the most important aspects of the normal distribution, including the
reason of its broad applicability.

1.5 Beyond a Reasonable Doubt...

We often see movies where the jury of a Court has to reach a verdict as to whether
the accused is found “guilty” or “not guilty”. The verdict must be consensual and
established beyond any reasonable doubt. And like the trial jury, the statistician has
also to reach objectively based conclusions, “beyond any reasonable doubt”...

Consider, for instance, the dataset of Example 1.3 and the statement “the 100 Q
electrical resistances, manufactured by the machine, have a (true) mean value in
the interval [95, 105]”. If one could measure all the resistances manufactured by
the machine during its whole lifetime, one could compute the population mean
(true mean) and assign a True or False value to that statement, i.e., a conclusion
with entire certainty would then be established. However, one usually has only
available a sample of the population; therefore, the best one can produce is a
conclusion of the type “... have a mean value in the interval [95, 105] with
probability ¢”; i.e., one has to deal not with total certainty but with a degree of
certainty:

P(mean €[95,105]))=06 =1- «.

We call 6 (or 1-) the confidence level (a is the error or significance level)
and will often present it in percentage (e.g. 0 = 95%). We will learn how to
establish confidence intervals based on sample statistics (sample mean in the above
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example) and on appropriate models and/or conditions that the datasets must
satisfy.

Let us now look in more detail what a confidence level really means. Imagine
that in Example 1.2 we were dealing with a random sample extracted from a
population of a very large number of students, attending the course and subject to
an examination under the same conditions. Thus, only one random variable plays a
role here: the student variability in the apprehension of knowledge. Consider,
further, that we wanted to statistically assess the statement “the student
performance is 3 or above”. Denoting by p the probability of the event “the student
performance is 3 or above” we derive from the dataset an estimate of p, known as
point estimate and denoted p , as follows:

.~ 12+15+1
P _12+15+10 oo,
50

The question is how reliable this estimate is. Since the random variable
representing such an estimate (with random samples of 50 students) takes value in
a continuum of values, we know that the probability that the true mean is exactly
that particular value (0.74) is zero. We then loose a bit of our innate and candid
faith in exact numbers, relax our exigency, and move forward to thinking in terms
of intervals around p (interval estimate). We now ask with which degree of
certainty (confidence level) we can say that the true proportion p of students with
“performance 3 or above” is, for instance, between 0.72 and 0.76, i.e., with a
deviation — or folerance — of £=10.02 from that estimated proportion?

In order to answer this question one needs to know the so-called sampling
distribution of the following random variable:

Pn :(z;;lXi)/na

where the X; are n independent random variables whose values are 1 in case of
“success” (student performance > 3 in this example) and 0 in case of “failure”.
When the np and n(1-p) quantities are “reasonably large” P, has a distribution
well approximated by the normal distribution with mean equal to p and standard
deviation equal to 4/ p(1— p)/n . This topic is discussed in detail in Appendices A
and B, where what is meant by “reasonably large” is also presented. For the
moment, it will suffice to say that using the normal distribution approximation
(model), one is able to compute confidence levels for several values of the
tolerance, &, and sample size, n, as shown in Table 1.6 and displayed in Figure 1.6.
Two important aspects are illustrated in Table 1.6 and Figure 1.6: first, the
confidence level always converges to 1 (absolute certainty) with increasing n;
second, when we want to be more precise in our interval estimates by decreasing
the tolerance, then, for fixed n, we have to lower the confidence levels, i.e.,
simultaneous and arbitrarily good precision and certainty are impossible (some
trade-off is always necessary). In the “jury verdict” analogy it is the same as if one
said the degree of certainty increases with the number of evidential facts (tending
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to absolute certainty if this number tends to infinite), and that if the jury wanted to
increase the precision (details) of the verdict, it would then lose in degree of
certainty.

Table 1.6. Confidence levels (0) for the interval estimation of a proportion, when
p=0.74, for two different values of the tolerance (¢).

n o for £=0.02 o for £=0.01
50 0.25 0.13
100 0.35 0.18
1000 0.85 0.53
10000 ~ 1.00 0.98
1.2

1.0 1

0.8

0.6 1

0.4

0.2

0.0

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 1.6. Confidence levels for the interval estimation of a proportion, when
p=0.74, for three different values of the tolerance.

There is also another important and subtler point concerning confidence levels.
Consider the value of = 0.25 for a ¢= +0.02 tolerance in the n = 50 sample size
situation (Table 1.6). When we say that the proportion of students with
performance > 3 lies somewhere in the interval p + 0.02, with the confidence
level 0.25, it really means that if we were able to infinitely repeat the experiment of
randomly drawing n = 50 sized samples from the population, we would then find
that 25% of the times (in 25% of the samples) the true proportion p lies in the
interval p, + 0.02, where the p, (k =1, 2,...) are the several sample estimates
(from the ensemble of all possible samples). Of course, the “25%” figure looks too
low to be reassuring. We would prefer a much higher degree of certainty; say 95%
— a very popular value for the confidence level. We would then have the situation
where 95% of the intervals p, + 0.02 would “intersect” the true value p, as shown
in Figure 1.7.
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Imagine then that we were dealing with random samples from a random
experiment in which we knew beforehand that a “success” event had a p = 0.75
probability of occurring. It could be, for instance, randomly drawing balls with
replacement from an urn containing 3 black balls and 1 white “failure” ball. Using
the normal approximation of P,, one can compute the needed sample size in order
to obtain the 95% confidence level, for an &= £0.02 tolerance. It turns out to be
n =~ 1800. We now have a sample of 1800 drawings of a ball from the urn, with an
estimated proportion, say p,, of the success event. Does this mean that when
dealing with a large number of samples of size n = 1800 with estimates p, (k= 1,
2,...), 95% of the p, will lie somewhere in the interval p,+ 0.02? No. It means,
as previously stated and illustrated in Figure 1.7, that 95% of the intervals p,
0.02 will contain p. As we are (usually) dealing with a single sample, we could be
unfortunate and be dealing with an “atypical” sample, say as sample #3 in Figure
1.7. Now, it is clear that 95% of the time p does not fall in the p; + 0.02 interval.
The confidence level can then be interpreted as a risk (the risk incurred by “a
reasonable doubt” in the jury verdict analogy). The higher the confidence level, the
lower the risk we run in basing our conclusions on atypical samples. Assuming we
increased the confidence level to 0.99, while maintaining the sample size, we
would then pay the price of a larger tolerance, £= 0.025. We can figure this out by
imagining in Figure 1.7 that the intervals would grow wider so that now only 1 out
of 100 intervals does not contain p.

The main ideas of this discussion around the interval estimation of a proportion
can be carried over to other statistical analysis situations as well. As a rule, one has
to fix a confidence level for the conclusions of the study. This confidence level is
intimately related to the sample size and precision (tolerance) one wishes in the
conclusions, and has the meaning of a risk incurred by dealing with a sampling
process that can always yield some atypical dataset, not warranting the
conclusions. After losing our innate and candid faith in exact numbers we now lose
a bit of our certainty about intervals...

Figure 1.7. Interval estimation of a proportion. For a 95% confidence level only
roughly 5 out of 100 samples, such as sample #3, are atypical, in the sense that the
respective p + ¢ interval does not contain p.

The choice of an appropriate confidence level depends on the problem. The 95%
value became a popular figure, and will be largely used throughout the book,
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because it usually achieves a “reasonable” tolerance in our conclusions (say,
£ < 0.05) for a not too large sample size (say, n > 200), and it works well in many
applications. For some problem types, where a high risk can have serious
consequences, one would then choose a higher confidence level, 99% for example.
Notice that arbitrarily small risks (arbitrarily small “reasonable doubt”) are often
impractical. As a matter of fact, a zero risk — no “doubt” at all — means, usually,
either an infinitely large, useless, tolerance, or an infinitely large, prohibitive,
sample. A compromise value achieving a useful tolerance with an affordable
sample size has to be found.

1.6 Statistical Significance and Other Significances

Statistics is surely a recognised and powerful data analysis tool. Because of its
recognised power and its pervasive influence in science and human affairs people
tend to look to statistics as some sort of recipe book, from where one can pick up a
recipe for the problem at hand. Things get worse when using statistical software
and particularly in inferential data analysis. A lot of papers and publications are
plagued with the “computer dixif” syndrome when reporting statistical results.
People tend to lose any critical sense even in such a risky endeavour as trying to
reach a general conclusion (law) based on a data sample: the inferential or
inductive reasoning.

In the book of A. J. Jaffe and Herbert F. Spirer (Jaffe AJ, Spirer HF 1987) many
misuses of statistics are presented and discussed in detail. These authors identify
four common sources of misuse: incorrect or flawed data; lack of knowledge of the
subject matter; faulty, misleading, or imprecise interpretation of the data and
results; incorrect or inadequate analytical methodology. In the present book we
concentrate on how to choose adequate analytical methodologies and give precise
interpretation of the results. Besides theoretical explanations and words of caution
the book includes a large number of examples that in our opinion help to solidify
the notions of adequacy and of precise interpretation of the data and the results.
The other two sources of misuse — flawed data and lack of knowledge of the
subject matter — are the responsibility of the practitioner.

In what concerns statistical inference the reader must exert extra care of not
applying statistical methods in a mechanical and mindless way, taking or using the
software results uncritically. Let us consider as an example the comparison of
foetal heart rate baseline measurements proposed in Exercise 4.11. The heart rate
“baseline” is roughly the most stable heart rate value (expressed in beats per
minute, bpm), after discarding rhythm acceleration or deceleration episodes. The
comparison proposed in Exercise 4.11 respects to measurements obtained in 1996
against those obtained in other years (CTG dataset samples). Now, the popular
two-sample #-test presented in chapter 4 does not detect a statiscally significant
diference between the means of the measurements performed in 1996 and those
performed in other years. If a statistically significant diference was detected did it
mean that the 1996 foetal population was different, in that respect, from the
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population of other years? Common sense (and other senses as well) rejects such a
claim. If a statistically significant difference was detected one should look
carefully to the conditions presiding the data collection: can the samples be
considered as being random?; maybe the 1996 sample was collected in at-risk
foetuses with lower baseline measurements; and so on. As a matter of fact, when
dealing with large samples even a small compositional difference may sometimes
produce statistically significant results. For instance, for the sample sizes of the
CTG dataset even a difference as small as 1 bpm produces a result usually
considered as statistically significant (p = 0.02). However, obstetricians only attach
practical meaning to rhythm differences above 5 bpm; i.e., the statistically
significant difference of 1 bpm has no practical significance.

Inferring causality from data is even a riskier endeavour than simple
comparisons. An often encountered example is the inference of causality from a
statistically significant but spurious correlation. We give more details on this issue
in section 4.4.1.

One must also be very careful when performing goodness of fit tests. A
common example of this is the normality assessment of a data distribution. A vast
quantity of papers can be found where the authors conclude the normality of data
distributions based on very small samples. (We have found a paper presented in a
congress where the authors claimed the normality of a data distribution based on a
sample of four cases!) As explained in detail in section 5.1.6, even with 25-sized
samples one would often be wrong when admitting that a data distribution is
normal because a statistical test didn’t reject that possibility at a 95% confidence
level. More: one would often be accepting the normality of data generated with
asymmetrical and even bimodal distributions! Data distribution modelling is a
difficult problem that usually requires large samples and even so one must bear in
mind that most of the times and beyond a reasonable doubt one only has evidence
of a model; the true distribution remains unknown.

Another misuse of inferential statistics arrives in the assessment of classification
or regression models. Many people when designing a classification or regression
model that performs very well in a training set (the set used in the design) suffer
from a kind of love-at-first-sight syndrome that leads to neglecting or relaxing the
evaluation of their models in test sets (independent of the training sets). Research
literature is full with examples of improperly validated models that are later on
dropped out when more data becomes available and the initial optimism plunges
down. The love-at-first-sight is even stronger when using computer software that
automatically searches for the best set of variables describing the model. The book
of Chamont Wang (Wang C, 1993), where many illustrations and words of caution
on the topic of inferential statistics can be found, mentions an experiment where 51
data samples were generated with 100 random numbers each and a regression
model was searched for “explaining” one of the data samples (playing the role of
dependent variable) as a function of the other ones (playing the role of independent
variables). The search finished by finding a regression model with a significant
R-square and six significant coefficients at 95% confidence level. In other words, a
functional model was found explaining a relationship between noise and noise!
Such a model would collapse had proper validation been applied. In the present
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book we will pay attention to the topic of model validation both in classification
and regression.

1.7 Datasets

A statistical data analysis project starts, of course, by the data collection task. The
quality with which this task is performed is a major determinant of the quality of
the overall project. Issues such as reducing the number of missing data, recording
the pertinent documentation on what the problem is and how the data was collected
and inserting the appropriate description of the meaning of the variables involved
must be adequately addressed.

Missing data — failure to obtain for certain objects/cases the values of one or
more variables — will always undermine the degree of certainty of the statistical
conclusions. Many software products provide means to cope with missing data.
These can be simply coding missing data by symbolic numbers or tags, such as
“na” (“not available”) which are neglected when performing statistical analysis
operations. Another possibility is the substitution of missing data by average values
of the respective variables. Yet another solution is to simply remove objects with
missing data. Whatever method is used the quality of the project is always
impaired.

The collected data should be stored in a tabular form (“data matrix”), usually
with the rows corresponding to objects and the columns corresponding to the
variables. A spreadsheet such as the one provided by EXCEL (a popular
application of the WINDOWS systems) constitutes an adequate data storing
solution. An example is shown in Figure 2.1. It allows to easily performing simple
calculations on the data and to store an accompanying data description sheet. It
also simplifies data entry operations for many statistical software products.

All the statistical methods explained in this book are illustrated with real-life
problems. The real datasets used in the book examples and exercises are stored in
EXCEL files. They are described in Appendix E and included in the book CD.
Dataset names correspond to the respective EXCEL file names. Variable identifiers
correspond to the column identifiers of the EXCEL files.

There are also many datasets available through the Internet which the reader
may find useful for practising the taught matters. We particularly recommend the
datasets of the UCI Machine Learning Repository (http://www.ics.uci.edu/
~mlearn/MLRepository.html). In these (and other) datasets data is presented in text
file format. Conversion to EXCEL format is usually straightforward since EXCEL
provides means to read in text files with several types of column delimitation.

1.8 Software Tools

There are many software tools for statistical analysis, covering a broad spectrum of
possibilities. At one end we find “closed” products where the user can only



20 1 Introduction

perform menu operations. SPSS and STATISTICA are examples of “closed”
products. At the other end we find “open” products allowing the user to program
any arbitrarily complex sequence of statistical analysis operations. MATLAB and
R are examples of “open” products providing both a programming language and an
environment for statistical and graphic operations.

This book explains how to apply SPSS, STATISTICA, MATLAB or R to
solving statistical problems. The explanation is guided by solved examples where
we usually use one of the software products and provide indications (in specific
“Commands” frames) on how to use the other ones. We use the releases SPSS
STATISTICA 7.0, MATLAB 7.1 with the Statistics Toolbox and R 2.2.1 for the
Windows operating system; there is, usually, no significant difference when using
another release of these products (especially if it is a more advanced one), or
running these products in other non-Windows based platforms. All book figures
obtained with these software products are presented in greyscale, therefore
sacrificing some of the original display quality.

The reader must bear in mind that the present book is not intended as a
substitute of the user manuals or on-line helps of SPSS, STATISTICA, MATLAB
and R. However, we do provide the really needed information and guidance on
how to use these software products, so that the reader will be able to run the
examples and follow the taught matters with a minimum effort. As a matter of fact,
our experience using this book as a teaching aid is that usually those explanations
are sufficient for solving most practical problems. Anyway, besides user manuals
and on-line helps, the reader interested in deepening his/her knowledge of
particular topics may also find it profitable to consult the specific bibliography on
these software products mentioned in the References. In this section we limit
ourselves to describing a few basic aspects that are essential as a first hands-on.

1.8.1 SPSS and STATISTICA

SPSS from SPSS Inc. and STATISTICA from StatSoft Inc. are important and
popularised software products of the menu-driven type on window environments
with user-friendly facilities of data edition, representation and graphical support in
an interactive way. Both products require minimal time for familiarization and
allow the user to easily perform statistical analyses using a spreadsheet-based
philosophy for operating with the data.

Both products reveal a lot of similarities, starting with the menu bars shown in
Figures 1.8 and 1.9, namely the individual options to manage files, to edit the data
spreadsheets, to manage graphs, to perform data operations and to apply statistical
analysis procedures.

Concerning flexibility, both SPSS and STATISTICA provide command
language and macro construction facilities. As a matter of fact STATISTICA is
close to an “open” product type, since it provides advanced programming facilities
such as the use of external code (DLLs) and application programming interfaces
(API), as well as the possibility of developing specific routines in a Basic-like
programming language.
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In the following we use courier type font for denoting SPSS and STATISTICA
commands.

1.8.1.1 SPSS

The menu bar of the SPSS user interface is shown in Figure 1.8 (with the data file
Meteo. sav in current operation). The contents of the menu options (besides the
obvious Window and Help), are as follows:

File: Operations with data files (*.sav), syntax files (*.sps),
output files (* . spo), print operations, etc.

Edit: Spreadsheet edition.

View: View configuration of spreadsheets, namely of value labels and
gridlines.

Data: Insertion and deletion of variables and cases, and operations with

the data, namely sorting and transposition.

Transform: More operations with data, such as recoding and computation of
new variables.

Analyze: Statistical analysis tools.

Graphs: Operations with graphs.

Utilities: Variable definition reports, running scripts, etc.

Besides the menu options there are alternative ways to perform some operations
using icons.

Meteo.say - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities Window Help

Figure 1.8. Menu bar of SPSS user interface (the dataset being currently operated
is Meteo.sav).

1.8.1.2 STATISTICA

The menu bar of STATISTICA user interface is shown in Figure 1.9 (with the data
file Meteo. sta in current operation). The contents of the menu options (besides
the obvious Window and Help) are as follows:

File: Operations with data files (* . sta), scrollsheet files (*.scr),
graphic files (* . stg), print operations, etc.

Edit: Spreadsheet edition, screen catching.

View: View configuration of spreadsheets, namely of headers, text
labels and case names.

Insert: Insertion and copy of variables and cases.

Format: Format specifications of spreadsheet cells, variables and cases.

Statistics: Statistical analysis tools and STATISTICA Visual Basic.



22 1 Introduction

Graphs: Operations with graphs.
Tools: Selection conditions, macros, user options, etc.
Data: Several operations with the data, namely sorting, recalculation

and recoding of data.

Besides the menu options there are alternative ways to perform a given
operation using icons and key combinations (using underlined characters).

m STATISTICA - Meteo.sta

” File Edit View Insert Format Statistics Graphs Tools Data ‘Window Help

Figure 1.9. Menu bar of STATISTICA user interface (the dataset being currently
operated is Meteo . sta).

1.8.2 MATLAB and R

MATLAB, a mathematical software product from The MathWorks, Inc., and R (R:
A Language and Environment for Statistical Computing) from the R Development
Core Team (R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0), a free software product for statistical computing, are popular
examples of “open” products. R can be downloaded from the Internet URL
http://www.r-project.org/. This site explains the R history and indicates a set of
URLs (the so-called CRAN mirrors) that can be used for downloading R. It also
explains the relation of the R programming language to other statistical processing
languages such as S and S-Plus.

Performing statistical analysis with MATLAB and R gives the user complete
freedom to implement specific algorithms and perform complex custom-tailored
operations. MATLAB and R are also especially useful when the statistical
operations are part of a larger project. For instance, when developing a signal or
image classification project one may have to first compute signal or image features
using specific MATLAB or R toolboxes, followed by the application of
appropriate statistical classification procedures. The penalty to be paid for this
flexibility is that the user must learn how to program with the MATLAB or R
language. In this book we restrict ourselves to present the essentials of MATLAB
and R command-driven operations and will not enter into programming topics.

We use courier type font for denoting MATLAB and R commands. When
needed, we will clarify the correspondence between the mathematical and the
software symbols. For instance MATLAB or R matrix x will often correspond to
the mathematical matrix X.

1.8.2.1 MATAB

MATLAB command lines are written with appropriate arguments following the
prompt, », in a MATLAB console as shown in Figure 1.10. This same Figure
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illustrates that after writing down the command help stats (ending with the
“Return” or the “Enter” key), one obtains a list of all available commands
(functions) of the MATLAB Statistical toolbox. One could go on and write, for
instance, help betafit, getting help about the betafit function.

) MATLAB Command Window 1 =101 x|
Fie Edt Yiew Window Help

Dy @ > BB & 2|
b» help stats ﬂ

Statistics Toolbox.
Version 2.2 (R11) 24-Jul-1998

New Features

Readne - Version 2.2 synopsis of new functionality.
Distributions.
Parameter estimation.
betafit - Beta parameter estimation.
binofit - Binomial parameter estimation.
expfit - Exponential parameter estimation. -
4] | 3
Ready [ lvom Vi

Figure 1.10. The command window of MATLAB showing the list of available
statistical functions (obtained with the help command).

Note that MATLAB is case-sensitive. For instance, Betafit is not the same as
betafit.

The basic data type in MATLAB and the one that will use more often are
matrices. Matrix values can be directly typed in the MATLAB console. For
instance, the following command defines a 2x2 matrix x with the typed in values:

» x=[1 2
3 4];
The “=" symbol is an assignment operator. The symbol “x” is the matrix

identifier. Object identifiers in MATLAB can be arbitrary strings not starting by a
digit; exception is made to reserved MATLAB words.

Indexing in MATLB is straightforward using the parentheses as index qualifier.
Thus, for example x (2, 1) is the element of the second row and first column of x
with value 3.

A vector is just a special matrix that can be thought of as a 1xn (row vector) or
as an nx1 (column vector) matrix.

MATLAB allows the definition of character vectors (e.g. c=[‘abc’]) and
also of vectors of strings. In this last case one must use the so-called “cell array”
which is simply an object recipient array. Consider the following sequence of
commands:

>> c=cell(1,3);
>> ¢c(1,1)={'Pmax’};
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>> c(1,2)={"T80"};
>> c(1,3)={"T82"};
>> C
Cc =
' Pmax’ ‘T80 ‘7827

The first command uses function cell to define a cell array with 1x3 objects.
These are afterwards assigned some string values (delimited with ‘). When
printing the c values one gets the confirmation that c is a row vector with the three
strings (e.g., c(1,2) is *T80").

When specifying matrices in MATLAB one may use comma to separate column
values and semicolon to separate row values as in:

» x=[1, 2 ; 3, 4];

Matrices can also be used to define other matrices. Thus, the previous matrix x
could also be defined as:

» x=[[1 2] ; [3 4]];
» x=[[1; 31, [2; 411;

One can confirm that the matrix has been defined as intended, by typing x after
the prompt, and obtaining:

X =
1 2
3 4

The same result could be obtained by removing the semicolon terminating the
previous command. In MATLAB a semicolon inhibits the production of screen
output. Also MATLAB commands can either be used in a procedure-like manner,
producing output (as “answers”, denoted ans), or in a function-like manner
producing a value assigned to a variable (considered to be a matrix). This is
illustrated next, with the command that computes the mean of a sequence of values
structured as a row vector:

» v=[1 2 3 4 5 6];
» mean (v)
ans =
3.5000
» y=mean (v)

3.5000

Whenever needed one may know which objects (e.g. matrices) are currently in
the console environment by issuing who. Object removal is performed by writing
clear followed by the name of the object. For instance, clear x removes
matrix x from the environment; it will no longer be available. The use of clear
without arguments removes all objects from the environment.
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On-line help about general or specific topics of MATLAB can be obtained from
the Help menu option. On-line help about a specific function can be obtained by
just typing it after the help command, as seen above.

1.8.2.2 R

R command lines are written with appropriate arguments following the R prompt,
>, in the R Gui interface (R console) as shown in Figure 1.11. As in MATLAB
command lines must be terminated with the “Return” or the “Enter” key.

Data is represented in R by means of vectors, matrices and data frames. The
basic data representation in R is a column vector but for statistical analyses one
mostly uses data frames. Let us start with vectors. The command

> X <- C (1.,2 ,3 141 5! 6)

defines a column vector named x containing the list of values between parentheses.
The “<-" symbol is the assignment operator. The “c” function fills the vector with
the list of values. The symbol “x” is the vector identifier. Object identifiers in R
can be arbitrary strings not starting by a digit; exception is made to reserved R
words.

File Edit Misc Packages Windows Help

AT -5

R : Copyright 2005, The R Foundation for Statistical Computing
Version 2.2.1 (2005-12-20 r36612)
ISEN 3-900051-07-0

R is free softvare and comes with ABSOLUTELY NO WARRANTY.
You are welcome To redistribute 1t under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language sSupport but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTHL browser interface to help.

Type 'gi{)' to quit R.

> K <- c(1,2,3,4)

> w I
[1) 12 3 4

-

1 Hf

Figure 1.11. The R Gui showing the definition of a vector.

We may list the contents of x just by issuing it as a command:



26 1 Introduction

The [1] means the first element of x. For instance,

> y <- rnorm(1l2)

>y

[1] -0.1354 -0.2519 0.5716 0.6845 -1.5148 -0.1190
[7]1 0.7328 -1.0274 0.3319 -0.3468 -1.2619 0.7146

generates and lists a vector with 12 normally distributed random numbers. The 1%
and 7™ elements are indicated. (The numbers are represented here with four digits
after the decimal point because of page width constraints. In R the representation is
with seven digits.) One could also obtain the previous list by just issuing: >
rnorm(12). Most R functions also behave as procedures in that way, displaying
lists of values in the R console.

A vector can be filled with strings (delimited with “), as in v <-
c (“Pmax”,“T80”,“T82”). Now v is a vector containing three strings. The
second vector element, v[2],is “*T80"”

R also provides a function, named seq, to define evenly spaced number
sequences, as in the following example:

> seq(-1,1,0.2)
[1] -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

A matrix can be obtained in R by suitably transforming a vector. For instance,

> dim(x) <- c(2,3)

> X

[,11 [,21 [,3]
[1,] 1 3 5
[2, 2 4 6

transforms (through the dim function) the previous vector x into a matrix of 2x3
elements. Note the display of row and column numbers.

One can also aggregate vectors into a matrix by using the function cbind
(“column binding”) or rbind (“row binding”) as in the following example:

> u <- ¢(1,2,3)
> v <- c¢c(-1,-2,-3)
> m <- cbind(u,vVv)
> m
u v
[1,1 1 -1
[2,1 2 -2
[3,1 3 -3

Matrix indexing in R uses square brackets as index qualifier. As an example,
m[2, 2] has the value -2.

Note that R is case-sensitive. For instance, Cbind cannot be used as a
replacement for cbind.
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Figure 1.12. An illustration of R on-line help of function mean. The “Help on
‘mean’” is displayed in a specific window.

An R data frame is a recipient for a list of objects. We mostly use data frames
that are simply data matrices with appropriate column names, as in the above
matrix m.

Operations on data are obtained by using suitable R functions. For instance,

> mean (x)
[1]1 3.5

displays the mean value of the x vector on the console. Of course one could also
assign this mean value to a new variable, say mu, by issuing the command
mu <- mean(x).

Whenever needed one may obtain the information on which objects are
currently in the console environment by using 1s () (“list”). (Be sure to include the
parentheses; otherwise R will interpret it as you wishing to obtain the 1s function
code.) Object removal is performed by applying the function rm (“remove”) to a
list of object identifiers. For instance, rm(x) removes matrix x from the
environment; it will no longer be available.

On-line help about general topics of R, namely command constructs and
available functions, can be obtained from the Help menu option of the R Gui. On-
line help about a specific function can be obtained using the R help function as
illustrated in Figure 1.12.
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Figure 1.13. A partial view of the R “Package Index”.

The functions available in R are collected in so-called packages (somehow
resembling the MATLAB toolboxes; an important difference is that R packages
may also include datasets). One can inspect which packages are currently loaded
by issuing the search () command (with no arguments). Consider that you have
done that and obtained:

> search()

[1]”.GlobalEnv” “package:methods” “package:stats”
[4] "package:graphics” “package:grDevices” “package:utils”
[7] "package:datasets” “Autoloads” “package:base”

We will often use functions of the stats package. In order to get the
information of which functions are available in the stats package one may issue
the help.start () command. An Internet window pops up from where one
clicks on “Packages” and obtains the “Package Index” window partially shown in
Figure 1.13.

By clicking on stats of the “Package Index” one obtains a complete list of the
available stats functions. The same procedure can be followed to obtain function
(and dataset) lists of other packages.

The command library () issues a list of the packages installed at one’s site.
One of the listed packages is the boot package. In order to have it currently
loaded one should issue library (boot). A following search() would
display:

> search ()

[1] “.GlobalEnv” “package:boot” “package:methods”
[4] “package:stats” “package:graphics” “package:grDevices”
[7] “package:utils” “package:datasets” “Autoloads”

[10] "package:base”



2 Presenting and Summarising the Data

Presenting and summarising the data is certainly the introductory task in any
statistical analysis project and comprehends a set of topics and techniques,
collectively known as descriptive statistics.

2.1 Preliminaries

2.1.1 Reading in the Data

Data is usually gathered and arranged in tables. The spreadsheet approach followed
by numerous software products is a convenient tabular approach to deal with the
data. Consider the meteorological dataset Meteo (see Appendix E for a
description). It is provided in the book CD as an EXCEL file (Meteo.x1s ) with
the cases (meteorological stations) along the rows and the random variables
(weather variables) along the columns, as shown in Figure 2.1. The first column is
the cases column, containing numerical codes or, as in Figure 2.1, names of cases.
The first row is usually a header row containing names of variables. This is a
convenient way to store the data.

Notice also the indispensable Description datasheet, where all the necessary
information concerning the meaning of the data, the definitions of the variables and
of the cases, as well as the source and possible authorship of the data should be
supplied.

(Siveteosss =101x|

A B C D E F —

1 Place Pmax RainDays T80 T8l T2 =

2 |Viana do Castelo 181 143 6 39 37 J
3 |Braga 114 122 5 9 36
4 |Santo Tirsa 101 125 36 4 32
5 |IMontalegre 80 111 34 33 31
§ |Braganca 6 102 37 36 35
7 |Mirandela 24 98 40 40 33

& |IMiranda do Douro 39 96 37 37 35 =

M <« » w]\_Description ) Data / 14 | iy

Figure 2.1. The meteorological dataset presented as an EXCEL file.
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Carrying out this dataset into SPSS, STATISTICA or MATLAB is an easy task.
The basic thing to do is to select the data in the usual way (mouse dragging
between two corners of the data speadsheet), copy the data (e.g., using the
CTRL+C keys) and paste it (e.g., using the CTRL+V keys). In R data has to be
read from a text file. One can also, of course, type in the data directly into the
SPSS or STATISTICA spreadsheets or into the MATLAB command window or
the R console. This is usually restricted to small datasets. In the following
subsections we present the basics of data entry in SPSS, STATISTICA, MATLAB
and R.

2.1.1.1 SPSS Data Entry

When first starting SPSS a file specification box may be displayed and the user
asked whether a (last operated) data file should be opened. One can cancel this file
specification box and proceed to define a new data file (File, New), where the
data can be pasted (from EXCEL) or typed in. The SPSS data spreadsheet starts
with a comfortably large number of variables and cases. Further variables and
cases may be added when needed (use the Insert Variable or Insert
Case options of the Data menu). One can then proceed to add specifications to
the variables, either by double clicking with the mouse left button over the column
heading or by clicking on the Variable View tab underneath (this is a toggle
tab, toggling between the Variable View and the Data View). The
Variable View and Data View spreadsheets for the meteorological data
example are shown in Figure 2.2 and 2.3, respectively. Note that the variable
identifiers in SPSS use only lower case letters.

Untitled - SPSS Data Editor =10 x|

File Edit View Data Transform Analyze Graphs Utiities Window Help

@S| | o T k=0 o8] Fle| Bl %D
[T pmas [181

pmax raindays 160 81 a2 var Iil

1 181 143.00 36.00 39.00 37.00

2 114 132.00 35.00 39.00 36.00

H 101 125,00 36.00 40.00 38.00

4 30 111.00 34.00 33.00 31.00

b 36 102.00 37.00 36.00 35.00

B 24 95.00 40.00 40.00 33.00

7 39 56.00 37.00 37.00 35.00
B 31 109.00 41.00 41.00 40.00 -
|« [»]\Data View A Variable View J (K | LI_I
|SPSS Processor is ready Y

Figure 2.2. Data View spreadsheet of SPSS for the meteorological data.



2.1 Preliminaries 31

The data can then be saved with Save As (File menu), specifying the data
file name (Meteo.sav) which will appear in the title heading of the data
spreadsheet. This file can then be comfortably opened in a following session with
the Open option of the File menu.

Untitled - SPSS Data Editor =101

Fie Edit View Data Transform Analyze Graphs Utiities Window Help

(@S| B || 5 x=[k] ) e Bl Q|
Name I Type I Width Decimals I Label I Values I Missing =
1| pmax Numeric 8 0 ﬁMax Precipitation|None None
2|raindays [Nurmeric G} 2 [None [None
3|60 [Numeric & |2 | [None [Nane
4181 [Numeric & Iz | [None [None
5|82 :Numeric :B :2 | :Nune :None
k
- ] ] 1 I ] 1 -
4 [+ [\ Data View  Variable View S | L’J
ISPSS Processor is ready I 4

Figure 2.3. Variable View spreadsheet of SPSS for the meteorological data.
Notice the fields for filling in variable labels and missing data codes.

2.1.1.2 STATISTICA Data Entry

With STATISTICA one starts by creating a new data file (File, New) with the
desired number of variables and cases, before pasting or typing in the data. There is
also the possibility of using any previous template data file and adjusting the
number of variables and cases (click the right button of the mouse over the variable
column(s) or case row(s) or, alternatively, use Insert). One may proceed to
define the variables, by assigning them a specific name and declaring their type.
This can be done by double clicking the mouse left button over the respective
column heading. The specification box shown in Figure 2.4 is then displayed. Note
the possibility of specifying a variable label (describing the variable meaning) or a
formula (this last possibility will be used later). Missing data (MD) codes and text
labels assigned to variable values can also be specified. Figure 2.5 shows the data
spreadsheet corresponding to the Meteo .x1s dataset. The similarity with Figure
2.1 is evident.

After building the data spreadsheet, it is advisable to save it using the Save As
of the File menu. In this case we specify the filename Meteo, creating thus a
Meteo.sta STATISTICA file that can be easily opened at another session with
the Open option of File. Once the data filename is specified, it will appear in the
title heading of the data spreadsheet and in this case, instead of “Data:
Spreadsheet2*”, “Data: Meteo.sta” will appear. The notation 5v by
25c indicates that the file is composed of 5 variables with 25 cases.
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2
A |aial Blm v||n I n|é' |
Name: |T82| Type: |Double ¥ 0K |
MD code:  [9333 Length: [2 g ol |
— Display format LI LI

Number
Date All Specs... |
Time
Scientific
Cumency Text Labels,..
Percentage
Fraction Values/Stats ..
Custom
Long name (label of formula with ~ Functions | ): ¥ Function guide
Maximum Temp. in 1982

Labels: use any text. Formulas: use vatiable names or w1, v2, .. v0is case B
Examples: [a) = mean[v1:v3, sqit{v?), AGE] [(b) = w1+v2; comment [after;)

Figure 2.4. STATISTICA variable specification box. Note the variable label at the
bottom, describing the meaning of the variable T82.

1 2 3 4 [
Pmax |RainDays| T80 T8 T82

Viana do Castelo | 181 143 36 39 37
Braga 114 132 35 39 36
Santo Tirso 101 125 36 40 38
Montalegre 20 111 34 33 31
Braganga 36 102 37 36 35
Mirandela 24 98 40 40 33
ﬂ’gnda do Douro 39 96 37 37 5=

4 3 é

Figure 2.5. STATISTICA spreadsheet corresponding to the meteorological data.

2.1.1.3 MATLAB Data Entry

In MATLAB, one can also directly paste data from an EXCEL file, inside a matrix
definition typed in the MATLAB command window. For the meteorological data
one would have (the “...” denotes part of the listing that is not shown; the %
symbol denotes a MATLAB user comment):
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» meteo=[

181 143 36 39 37 % Pasting starts here
114 132 35 39 36

101 125 36 40 38

14 70 35 37 39
1;

and ends here.
Typed after the pasting.

P o

One would then proceed to save the meteo matrix with the save command. In
order to save the data file (as well as other files) in a specific directory, it is
advisable to change the directory with the cd command. For instance, imagine one
wanted to save the data in a file named Meteodata, residing in the
c: \experiments directory. One would then specify:

» cd(‘c:\experiments’) ;
» save Meteodata meteo;

The MATLAB dir command would then list the presence of the MATLAB file
Meteodata.mat in that directory.

In a later session the user can retrieve the matrix variable meteo by simply
using the 1oad command: » load Meteodata.

This will load the meteo matrix from the Meteodata.mat file as can be
confirmed by displaying its contents with: » meteo.

2.1.1.4 R Data Entry

The tabular form of data in R is called data frame. A data frame is an aggregate of
column vectors, corresponding to the variables related across the same objects
(cases). In addition it has a unique set of row names. One can create an R data
frame from a text file (direct data entry from an EXCEL file is not available). Let
us illustrate the whole procedure using the meteo.x1s file shown in Figure 2.1
as an example. The first thing to do is to convert the numeric data area of
meteo.xls to a tab-delimited text file, e:meteo.txt, say, from within
EXCEL (with Save As). We now issue the following command in the R console:

> meteo <- read.table(file(“e:meteo.txt”))

The argument of £ile is the path to the file we want to read in. As a result of
read.table a data frame is created with the same numeric information as the
meteo.xls file. We can see this with:

> meteo

vl V2 V3 v4 V5
1 181 143 36 39 37
2 114 132 35 39 36
3 101 125 36 40 38

For future use we may now proceed to save this data frame in e:meteo, say,
with save (meteo, file="e:meteo”). At a later session we can immediately
load in the data frame with 1oad (“e:meteo”).
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It is often convenient to have appropriate column names for the data, instead of
the default v1, V2, etc. One way to do this is to first create a string vector and pass
it to the read.table function as a col.names parameter value. For the
meteo data we could have:

> 1 <- c¢(“PMax”, “RainDays”,“T80”,“T81”,“T82")
> meteo<-read.table(file(“e:meteo.txt”),col.names=1)
> meteo

PMax RainDays T80 T81 T82

1 181 143 36 39 37
2 114 132 35 39 36
3 101 125 36 40 38

Column names and row names can also be set or retrieved with the functions
colnames and rownames, respectively. For instance, the following sequence of
commands assigns row names to meteo corresponding to the names of the places
where the meteorological data was collected (see Figure 2.1):

> r <- c(“V. Castelo”, “Braga”, “S. Tirso”,
“Montalegre”, “Braganca”, “Mirandela”, “M. Douro”,
“Régua”, “Viseu”, “Guarda”, *“Coimbra”, “C. Branco”,
“Pombal”, “Santarém”, “Dois Portos”, “Setubal”,
“Portalegre”, “Elvas”, “Evora”, “A. Sal”, “Beja”,
“Amareleja”, “Alportel”, “Monchique”, “Tavira”);

> rownames (meteo) <- r

> meteo

PMax RainDays T80 T81 T82

V. Castelo 181 143 36 39 37

Braga 114 132 35 39 36

S. Tirso 101 125 36 40 38

Montalegre 80 111 34 33 31

Bragancga 36 102 37 36 35

Mirandela 24 98 40 40 38

M. Douro 39 96 37 37 35

Régua 31 109 41 41 40

2.1.2 Operating with the Data

After having read in a data set, one is often confronted with the need of defining
new variables, according to a certain formula. Sometimes one also needs to
manage the data in specific ways; for instance, sorting cases according to the
values of one or more variables, or transposing the data, i.e., exchanging the roles
of columns and rows. In this section, we will present only the fundamentals of such
operations, illustrated for the meteorological dataset. We further assume that we

' Column or row names should preferably not use reserved R words.
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are interested in defining a new variable, PClass, that categorises the maximum
rain precipitation (variable PMax) into three categories:

1. PMax <20 (low);
2. 20 <PMax < 80 (moderate);
3. PMax > 80 (high).

Variable PClass can be expressed as
PClass = 1 + (PMax > 20) + (PMax > 80),

whenever logical values associated to relational expressions such as “PMax > 20”
are represented by the arithmetical values 0 and 1, coding False and True,
respectively. That is precisely how SPSS, STATISTICA, MATLAB and R handle
such expressions. The reader can easily check that PClass values are 1, 2 and 3 in
correspondence with the low, moderate and high categories.

In the following subsections we will learn the essentials of data operation with
SPSS, STATISTICA, MATLAB and R.

2.1.21 SPSS

The addition of a new variable is made in SPSS by using the Insert
Variable option of the Data menu. In the case of the previous categorisation
variable, one would then proceed to compute its values by using the Compute
option of the Transform menu. The Compute Variable window shown in
Figure 2.6 will then be displayed, where one would fill in the above formula using
the respective variable identifiers; in this case: 1+ (pmax>20) + (pmax>80).

Looking to Figure 2.6 one may rightly suspect that a large number of functions
are available in SPSS for building arbitrarily complex formulas.

Other data management operations such as sorting and transposing can be
performed using specific options of the SPSS Data menu.

2.1.2.2 STATISTICA

The addition of a new variable in STATISTICA is made with the Add
Variable option of the Insert menu. The variable specification window
shown in Figure 2.7 will then be displayed, where one would fill in, namely, the
number of variables to be added, their names and the formulas used to compute
them. In this case, the formula is:

1+(v1>20)+(v1>80).

In STATISTICA variables are symbolically denoted by v followed by a number
representing the position of the variable column in the spreadsheet. Since Pmax
happens to be the first column, it is then denoted v1. The cases column is v0. It is
also possible to use variable identifiers in formulas instead of v-notations.
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Figure 2.6. Computing, in SPSS, the new variable PClass in terms of the variable
pmax.

Add Yariables 2=l
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Currency 1.000; (1,000)
Percentage
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Custom

Long name (label or formula with ~ Functions | ):

=1+(v1>20)+(v1=80)

Figure 2.7. Specification of a new (categorising) variable, PClass, inserted after
PMax in STATISTICA.

The presence of the equal sign, preceding the expression, indicates that one
wants to compute a formula and not merely assign a text label to a variable. One
can also build arbitrarily complex formulas in STATISTICA, using a large number
of predefined functions (see button Functions in Figure 2.7).
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Besides the insertion of new variables, one can also perform other operations
such as sorting the entire spreadsheet based on column values, or transposing
columns and cases, using the appropriate STATISTICA Data menu options.

2.1.2.3 MATLAB

In order to operate with the matrix data in MATLAB we need to first learn some
basic ingredients. We have already mentioned that a matrix element is accessed
through its indices, separated by comma, between parentheses. For instance, for the
previous meteo matrix, one can find out the value of the maximum precipitation
(1% column) for the 3™ case, by typing:

» meteo(3,1)

ans =
101

If one wishes a list of the PMax values from the 3™ to the 5" cases, one would
write:

» meteo(3:5,1)
ans =

101

80

36

Therefore, a range in cases (or columns) is obtained using the range values
separated by a colon. The use of the colon alone, without any range values, means
the complete range, i.e., the complete column (or row). Thus, in order to extract the
PMax column vector from the meteo matrix we need only specify:

» pmax = meteo(:,1);
We may now proceed to compute the new column vector, PClass:
» pclass = 1+ (pmax>20)+ (pmax>80) ;
and join it to the meteo matrix, with:
» meteo = [meteo pclass]

Transposition of a matrix in MATLAB is straightforward, using the apostrophe
as the transposition operation. For the meteo matrix one would write:

» meteotransp = meteo’;

Sorting the rows of a matrix, as a group and in ascending order, is performed
with the sortrows command:

» meteo = sortrows (meteo) ;
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2124 R

Let us consider the meteo data frame created in 2.1.1.4. Every data column can be
extracted from this data frame using its name followed by the column name with
the “$” symbol in between. Thus:

> meteo$PMax

lists the values of the PMax column. We may then proceed as follows:
PClass <- 1 + (meteo$PMax>20) + (meteo$PMax>80)

creating a vector for the needed new variable. The only thing remaining to be done
is to bind this new vector to the data frame, as follows:

> meteo <- cbind(meteo,PClass)

> meteo

PMax RainDays T80 T81 T82 PClass
1 181 143 36 39 37 3
2 114 132 35 39 36 3

One can get rid of the clumsy $-notation to qualify data frame variables by
using the at tach command:

> attach (meteo)

In this way variable names always respect to the attached data frame. From now
on we will always assume that an attach operation has been performed. (Whenever
needed one may undo it with detach. )

Indexing data frames is straightforward. One just needs to specify the indices
between square brackets. Some examples: meteo[2,5] and T82[2] mean the
same thing: the value of T82, 36, for the second row (case); meteo[2, ] is the
whole second row; meteo[3:5,2] is the sub-vector containing the RainDays
values for the cases 3 through 5, i.e., 125, 111 and 102.

Sometimes one may need to transpose a data frame. R provides the t
(“transpose”) function to do that:

> meteo <- t (meteo)
> meteo
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25

PMax 181 114 101 80 36 24 39 31 49 57 72 60
36 45 36 28 41 13 14 16 8 18 24 37 14

RainDays 143 132 125 111 102 98 96 109 102 104 95 85
92 90 83 81 79 77 75 80 72 72 71 71 70

T80 36 35 36 34 37 40 37 41 38 32 36 39
36 40 37 37 38 40 37 39 39 41 38 38 35
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Sorting a vector can be performed with the function sort. One often needs to
sort data frame variables according to a certain ordering of one or more of its
variables. Imagine that one wanted to get the sorted list of the maximum
precipitation variable, PMax, of the meteo data frame. The procedure to follow
for this purpose is to first use the order function:

> order (PMax)
[1] 21 18 19 25 20 22 6 23 16 8 5 13 15 24 7 17
14 9 10 12 11 4 3 2 1

The order function supplies a permutation list of the indices corresponding to
an increasing order of its argument(s). In the above example the 21% element of the
PMax variable is the smallest one, followed by the 18™ element and so on up to the
1** element which is the largest. One may obtain a decreasing order sort and store
the permutation list as follows:

> o0 <- order (PMax, decreasing=TRUE)

The permutation list can now be used to perform the sorting of PMax or any
other variable of meteo:

> PMax|[o]

[1] 181 114 101 80 72 60 57 49 45 41 39 37
36 36 36 31 28 24 24 18 16 14 14

[24] 13 8

2.2 Presenting the Data

A general overview of the data in terms of the frequencies with which a certain
interval of values occurs, both in tabular and in graphical form, is usually advisable
as a preliminary step before proceeding to the computation of specific statistics and
performing statistical analysis. As a matter of fact, one usually obtains some
insight on what to compute and what to do with the data by first looking to
frequency tables and graphs. For instance, if from the inspection of such a table
and/or graph one gets a clear idea that an asymmetrical distribution is present, one
may drop the intent of performing a normal distribution goodness-of-fit test.

After the initial familiarisation with the software products provided by the
previous sections, the present and following sections will no longer split
explanations by software product but instead they will include specific frames,
headed by a “Commands” caption and ending with “®”, where we present which
commands (or functions in the MATLAB and R cases) to use in order to perform
the explained statistical operations. The MATLAB functions listed in “Commands”
are, except otherwise stated, from the MATLAB Base or Statistics Toolbox. The R
functions are, except otherwise stated, from the R Base, Graphics or Stats
packages. We also provide in the book CD many MATLAB and R implemented
functions for specific tasks. They are listed in Appendix F and appear in italic in
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the “Commands” frames. SPSS and STATISTICA commands are described in
terms of menu options separated by “;” in the “Commands” frames. In this case
one may read “,” as “followed by”. For MATLAB and R functions “;” is simply a
separator. Alternative menu options or functions are separated by “|”.

In the following we also provide many examples illustrating the statistical
analysis procedures. We assume that the datasets used throughout the examples are
available as conveniently formatted data files (*.sav for SPSS, *.sta for
STATISTICA, *.mat for MATLAB, files containing data frames for R).

“Example” frames end with [.

2.2.1 Counts and Bar Graphs

Tables of counts and bar graphs are used to present discrete data. Denoting by X
the discrete random variable associated to the data, the table of counts — also know
as tally sheet — gives us:

— The absolute frequencies (counts), ny;
— The relative frequencies (or simply, frequencies) of occurrence f;, = n;/n,

for each discrete value (category), x;, of the random variable X (n is the total
number of cases).

Example 2.1

Q: Consider the Meteo dataset (see Appendix E). We assume that this data has
been already read in by SPSS, STATISTICA, MATLAB or R. Obtain a tally sheet
showing the counts of maximum precipitation categories (discrete variable PClass).
What is the category with higher frequency?

A: The tally sheet can be obtained with the commands listed in Commands 2.1.
Table 2.1 shows the results obtained with SPSS. The category with higher rate of
occurrence is category 2 (64%). The Valid Percent column will differ from
the Percent column, only in the case of missing data, with the valid
Percent removing the missing data from the computations.

Table 2.1. Frequency table for the discrete variable PClass, obtained with SPSS.

Frequency  Percent  Valid Percent Cl;r:ruclsltlltve
Valid 1.00 6 24.0 24.0 24.0
2.00 16 64.0 64.0 88.0
3.00 3 12.0 12.0 100.0

Total 25 100.0 100.0
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In Table 2.1 the counts are shown in the column headed by Frequency, and
the frequencies, given in percentage, are in the column headed by Percent.
These last ones are unbiased and consistent point estimates of the corresponding

probability values p;. For more details see A.1 and the Appendix C.
0

Commands 2.1. SPSS, STATISTICA, MATLAB and R commands used to obtain
frequency tables. For SPSS and STATISTICA the semicolon separates menu
options that must be used in sequence.

Analyze; Descriptive Statistics;

SPSS Frequencies

Statistics; Basic Statistics and Tables;
STATISTICA Descriptive Statistics; Frequency Tables
MATLAB tabulate (x)
R table(x); prop.table(x)

When using SPSS or STATISTICA, one has to specify, in appropriate windows,
the variables used in the statistical analysis. Figure 2.8 shows the windows used for
that purpose in the present “Descriptive Statistics” case.

With SPSS the variable specification window pops up immediately after
choosing Frequencies in the menu Descriptive Statistics. Using a
select button that toggles between select (2_]) and remove ([[£]), one can specify
which variables to use in the analysis. The frequency table is outputted into the
output sheet, which constitutes a session logbook, that can be saved (* . spo file)
and opened at a later session. From the output sheet the frequency table can be
copied into the clipboard in the usual way (e.g., using the CTRL+C keys) by first
selecting it with the mouse (just click the mouse left button over the table).
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Figure 2.8. Variable specification windows for descriptive statistics: a) SPSS;
b) STATISTICA.
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With STATISTICA, the variable specification window pops up when clicking
the Variables tab in the Descriptive Statistics window. One can
select variables with the mouse or edit their identification numbers in a text box.
For instance, editing ‘“2-4”, means that one wishes the analysis to be performed
starting from variable v2 up to variable v4. There is also a Select All
variables button. The frequency table is outputted into a specific scroll-sheet that is
part of a session workbook file, which constitutes a session logbook that can be
saved (* .stw file) and opened at a later session. The entire scroll-sheet (or any
part of the screen) can be copied to the clipboard (from where it can be pasted into
a document in the normal way), using the Screen Catcher tool of the Edit
menu. As an alternative, one can also copy the contents of the table alone in the
normal way.

The MATLAB tabulate function computes a 3-column matrix, such that the
first column contains the different values of the argument, the second column
values are absolute frequencies (counts), and the third column are these frequencies
in percentage. For the PClass example we have:

» t=tabulate(PClass)

t =
1 6 24
2 16 64
3 3 12

Text output of MATLAB can be copied and pasted in the usual way.

The R table function — table (PClass) for the example — computes the
counts. The function prop.table (x) computes proportions of each vector x
element. In order to obtain the information of the above last column one should use
prop.table(table (PClass) ). Text output of the R console can be copied

and pasted in the usual way.
|

Percent

PCLASS
Figure 2.9. Bar graph, obtained with SPSS, representing the frequencies (in

percentage values) of PClass.
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With SPSS, STATISTICA, MATLAB and R one can also obtain a graphic
representation of a tally sheet, which constitutes for the example at hand an
estimate of the probability function of the associated random variable Xpcy,, in the
form of a bar graph (see Commands 2.2). Figure 2.9 shows the bar graph obtained
with SPSS for Example 2.1. The heights of the bars represent estimates of the
discrete probabilities (see Appendix B for examples of bar graph representations of
discrete probability functions).

Commands 2.2. SPSS, STATISTICA, MATLAB and R commands used to obtain
bar graphs. The “|” symbol separates alternative options or functions.

SPSS Graphs; Bar Charts
STATISTICA Graphs; Histograms
MATLAB bar (f) | hist(y,x)

R barplot(x) | hist(x)

With SPSS, after selecting the Simple option of Bar Charts one proceeds to
choose the variable (or variables) to be represented graphically in the Define
Simple Bar window by selecting it for the Category Axis, as shown in
Figure 2.10. For the frequency bar graph one must check the “% of cases”
option in this window. The graph output appears in the SPSS output sheet in the
form of a resizable object, which can be copied (select it first with the mouse) and
pasted in the usual way. By double clicking over this object, the SPSS Chart
Editor pops up (see Figure 2.11), with many options for the user to tailor the
graph to his/her personal preferences.

With STATISTICA one can obtain a bar graph using the Histograms option
of the Graphs menu. A 2D Histograms window pops up, where the user must
specify the variable (or variables) to be represented graphically (using the
Variables button), and, in this case, the Regular type for the bar graph. The
user must also select the Codes option, and specify the codes for the variable
categories (clicking in the respective button), as shown in Figure 2.12. In this case,
the Normal f£it box is left unchecked. Figure 2.13 shows the bar graph obtained
with STATISTICA for the PClass variable.

Any graph in STATISTICA is a resizable object that can be copied (and pasted)
in the usual way. One can also completely customise the graph by clicking over it
and modifying the required specifications in the A11 Options window, shown
in Figure 2.14. For instance, the bar graph of Figure 2.13 was obtained by:
choosing the white background in the Graph Window sub-window; selecting
black hatched fill in the Plot Bars sub-window; leaving the Gridlines box
unchecked in the Axis Major Units sub-window (shown in Figure 2.14).

MATLAB has a routine for drawing histograms (to be described in the
following section) that can also be used for obtaining bar graphs. The routine,
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hist(y,x), plots a bar graph of the v frequencies, using a vector x with the
categories. For the PClass variable one would have to write down the following
commands:

» cat=[1 2 3]; $vector with categories
» hist (pclass, cat)

+ Define Simple Bar: Summaries for Groups of Cases

Figure 2.10. SPSS Define Simple Bar window, for specifying bar charts.

rm Chart1 - SPSS Chart Editor

T
| 2| =] ]| = [ A ]~

PCLASS

Figure 2.11. The SPSS Chart Editor, with which the user can configure the
graphic output (in the present case, Figure 2.9). For instance, by using Color
from the Format menu one can modify the bar colour.
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Category Codes:

Figure 2.12. Specification of a bar chart for variable PClass (Example 2.1) using
STATISTICA. The category codes can be filled in directly or by clicking the A11
button.

No of obs

-

2

PClass

1 2 3
Figure 2.13. Bar graph, obtained with STATISTICA, representing the frequencies
(counts) of variable PClass (Example 2.1).

If one has available the vector with the counts, it is then also possible to use the
bar command. In the present case, after obtaining the previously mentioned t
vector (see Commands 2.1), one would proceed to obtain the bar graph
corresponding to column 3 of t, with:

» colormap([.5 .5 .51); bar(t(:,3))
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Figure 2.14. The STATISTICA A1l Options window that allows the user to
completely customise the graphic output. This window has several sub-windows
that can be opened with the left tabs. The sub-window corresponding to the axis
units is shown.

The colormap command determines which colour will be used for the bars.
Its argument is a vector containing the composition rates (between 0 and 1) of the
red, green and blue colours. In the above example, as we are using equal
composition of all the colours, the graph, therefore, appears grey in colour.

Figures in MATLAB are displayed in specific windows, as exemplified in
Figure 2.15. They can be customised using the available options in Tools. The
user can copy a resizable figure using the Copy Figure option of the Edit
menu.

The R hist function when applied to a discrete variable plots its bar graph.
Instead of providing graphical editing operations in the graphical window, as in the
previous software products, R graphical functions have a whole series of
configuration arguments. Figure 2.16a was obtained with hist (PClass,
col=“gray”). The argument col determines the filling colour of the bars.
There are arguments for specifying shading lines, the border colour of the bars, the
labels, and so on. For instance, Figure 2.16b was obtained with hist (PClass,
density = 10, angle = 30, border = *“black”, col =
“gray”, labels = TRUE). From now on we assume that the reader will
browse through the on-line help of the graphical functions in order to obtain the
proper guidance on how to set argument values. Graphical plots in R can be copied

as bitmaps or metafiles using menu options popped up with the mouse right button.
]
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Figure 2.15. MATLAB figure window, containing the bar graph of PClass. The
graph itself can be copied to the clipboard using the Copy Figure option of the
Edit menu.
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Figure 2.16. Bar graphs of PClass obtained with R: a) Using grey bars; b) Using
dashed gray lines and count labels.

2.2.2 Frequencies and Histograms

Consider now a continuous variable. Instead of a tally sheet/bar graph, representing
an estimate of a discrete probability function, we now want a tabular and graphical
representation of an estimate of a probability density function. For this purpose, we
establish a certain number of equal length intervals of the random variable and
compute the frequency of occurrence in each of these intervals (also known as
bins). In practice, one determines the lowest, x;, and highest, x;, sample values and
divides the range, x;, — x;, into r equal length bins, 4, £k =1, 2,...,r. The computed
frequencies are now:

’ Unequal length intervals are seldom used.
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fi= mi/n, where ny is the number of sample values (observations) in bin /.

The tabular form of the f; is called a frequency table; the graphical form is
known as a histogram. They are representations of estimates of the probability
density function of the associated random variable. Usually the histogram range is
chosen somewhat larger than x;, — x;, and adjusted so that convenient limits for the
bins are obtained.

Let d = (x;, — x;)/r denote the bin length. Then the probability density estimate
for each of the intervals 7 is:

The areas of the /4, intervals are therefore f; and they sum up to 1 as they should.

Table 2.2. Frequency table of the cork stopper PRT variable using 10 bins (table
obtained with STATISTICA).

Count  Cumulative Percent Cumulative

Count Percent
20.22222<x<=187.7778 3 3 2.00000 2.0000
187.7778<x<=355.3333 24 27 16.00000 18.0000
355.3333<x<=522.8889 28 55 18.66667 36.6667
522.8889<x<=690.4444 27 82 18.00000 54.6667
690.4444<x<=858.0000 22 104 14.66667 69.3333
858.0000<x<=1025.556 15 119 10.00000 79.3333
1025.556<x<=1193.111 11 130 7.33333 86.6667
1193.111<x<=1360.667 11 141 7.33333 94.0000
1360.667<x<=1528.222 8 149 5.33333 99.3333
1528.222<x<=1695.778 1 150 0.66667 100.0000
Missing 0 150 0.00000 100.0000

Example 2.2

Q: Consider the variable PRT of the Cork Stoppers’ dataset (see Appendix E).
This variable measures the total perimeter of cork defects, and can be considered a
continuous (ratio type) variable. Determine the frequency table and the histogram
of this variable, using 10 and 6 bins, respectively.

A: The frequency table and histogram can be obtained with the commands listed in
Commands 2.1 and Commands 2.3, respectively.
Table 2.2 shows the frequency table of PRT using 10 bins. Figure 2.17 shows
the histogram of PRT, using 6 bins.
a



2.2 Presenting the Data 49

Let X denote the random variable associated to PRT. Then, the histogram of the
frequency values represents an estimate, fy (x), of the unknown probability
density function f'y (x) .

The number of bins to use in a histogram (or in a frequency table) depends on
its goodness of fit to the true density function f'y (x) , in terms of bias and variance.
In order to clarify this issue, let us consider the histograms of PRT using » = 3 and
r = 50 bins as shown in Figure 2.18. Consider in both cases the f'y (x) estimate
represented by a polygonal line passing through the mid-point values of the
histogram bars. Notice that in the first case (# = 3) the f(x) estimate is quite
smooth and lacks detail, corresponding to a large bias of the expected value
of fy(x)— fx(x); ie., in average terms (for an ensemble of similar histograms
associated to X) the histogram will give a point estimate of the density that can be
quite far from the true density. In the second case (» = 50) the [y (x) estimate is
too rough; our polygonal line may pass quite near the true density values, but the
[fx (x) values vary widely (large variance) around the f (x) curve (corresponding
to an average of a large number of such histograms).

50
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104.000000 606.666667 1109.333333 1612.000000
355.333333 858.000000 1360.666667

Figure 2.17. Histogram of variable PRT (cork stopper dataset) obtained with
STATISTICA using » = 6 bins.

Some formulas for selecting a “reasonable” number of bins, r, achieving a trade-
off between large bias and large variance, have been divulged in the literature,
namely:

r=1+3.3log(n) (Sturges, 1926); 2.1
r=1+2.2log(n) (Larson, 1975). 2.2
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The choice of an optimal value for » was studied by Scott (Scott DW, 1979),
using as optimality criterion the minimisation of the global mean square error:

MSE = [ E[(/x (x)- fx () Jdx,

where D is the domain of the random variable.
The MSE minimisation leads to a formula for the optimal choice of a bin width,
h(n), which for the Gaussian density case is:

h(n) =3.49sn™"5, 23

where s is the sample standard deviation of the data.

Although the A(n) formula was derived for the Gaussian density case, it was
experimentally verified to work well for other densities too. With this 4(n) one can
compute the optimal number of bins using the data range:

r= (x4, — x))/ h(n). 24

No of obs
s
5
f obs
>
]

PRT 0 ﬂ
104.00 345.28 586.56 827.84 1069.12 131040  1551.68
224.64 465.92 707.20 948.48 1189.76  1431.04 PRT

104.000000 606.666667 1109.333333 1612.000000 b

a

Figure 2.18. Histogram of variable PRT, obtained with STATISTICA, using:
a) r =3 bins (large bias); b) » = 50 bins (large variance).

The Bins worksheet, of the EXCEL Tools.x1s file (included in the book
CD), allows the computation of the number of bins according to the three formulas
2.1, 2.2 and 2.4. In the case of the PRT variable, we obtain the results of Table 2.3,
legitimising the use of 6 bins as in Figure 2.17.

Table 2.3. Recommended number of bins for the PRT data (r =150 cases, s = 361,
range = 1508).

Formula Number of Bins
Sturges 8
Larson 6

Scott 6
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Commands 2.3. SPSS, STATISTICA, MATLAB and R commands used to obtain
histograms.

SPSS Graphs; Histogram |Interactive; Histogram
STATISTICA Graphs; Histograms

MATLAB hist(y,x)

R hist (x)

The commands used to obtain histograms of continuous type data, are similar to
the ones already described in Commands 2.2.

In order to obtain a histogram with SPSS, one can use the Hi stogram option
of Graphs, or preferably, use the sequence of commands Graphs;
Interactive; Histogram. One can then select the appropriate number of
bins, or alternatively, set the bin width. It is also possible to choose the starting
point of the bins.

With STATISTICA, one simply defines the bins in appropriate windows as
previously mentioned. Besides setting the desired number of bins, there is instead
also the possibility of defining the bin width (Step size) and the starting point
of the bins.

With MATLAB one obtains both the frequencies and the histogram with the
hist command. Consider the following commands applied to the cork stopper
data stored in the MATLAB cork matrix:

» prt = cork(:,4)
» [f,x] = hist(prt,6);

In this case the hist command generates an £ vector containing the
frequencies counted in 6 bins and an x vector containing the bin locations. Listing
the values of £ one gets:

27 45 32 19 18 9 ,

which are precisely the values shown in Figure 2.17. One can also use the hist
command with specifications of bins stored in a vector b, as hist (prt, b).

With R one can use the hist function either for obtaining a histogram or for
obtaining a frequency list. The frequency list is obtained by assigning the outcome
of the function to a variable identifier, which then becomes a “histogram” object.
Assuming that a data frame has been created (and attached) for cork stoppers we
get a “histogram” object for PRT issuing the following command:

> h <- hist (PRT)

By listing the contents of h one gets among other things the information of the
break points of the histogram bins, the counts and the densities. The densities
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represent the probability density estimate for a given bin. We can list de densities
of PRT as follows:

> hSdensity

[1] 1.333333e-04 1.033333e-03 1.166667e-03
[4] 9.666667e-04 5.666667e-04 4.666667e-04
[7] 4.333333e-04 2.000000e-04 3.333333e-05

Thus, using the formula previously mentioned for the probability density
estimates, we compute the relative frequencies using the bin length (200 in our
case) as follows:

> hSdensity*200
[1] 0.026666661 0.206666667 0.233333333 0.193333333
[5] 0.113333333 0.093333333 0.086666667 0.040000000
[9] 0.006666667

2.2.3 Multivariate Tables, Scatter Plots and 3D Plots

Multivariate tables display the frequencies of multivariate data. Figure 2.19 shows
the format of a bivariate table displaying the counts #;; corresponding to the several
combinations of categories of two random variables. Such a bivariate table is
called a cross table or contingency table.

When dealing with continuous variables, one can also build cross tables using
categories in accordance to the bins that would be assigned to a histogram
representation of the variables.
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Figure 2.19. An rxc contingency table with the observed absolute frequencies
(counts #n;). The row and column totals are 7; and c;, respectively.

Example 2.3

Q: Consider the variables SEX and Q4 (4™ enquiry question) of the Freshmen
dataset (see Appendix E). Determine the cross table for these two categorical
variables.
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A: The cross table can be obtained with the commands listed in Commands 2.4.
Table 2.4 shows the counts and frequencies for each pair of values of the two
categorical variables. Note that the variable Q4 can be considered an ordinal
variable if we assign ordered scores, e.g. from 1 till 5, from “fully disagree”
through “fully agree”, respectively.

A cross table is an estimate of the respective bivariate probability or density
function. Notice the total percentages across columns (last row in Table 2.4) and
across rows (last column in Table 2.4), which are estimates of the respective
marginal probability functions (see section A.8.1).

0

Table 2.4. Cross table (obtained with SPSS) of variables SEX and Q4 of the
Freshmen dataset.

Q4 Total
dilzzgryee Disagree comment Agree aljgrlclez
SEX male  Count 3 8 18 37 31 97
% of Total 2.3% 6.1% 13.6%  28.0%  23.5%  73.5%
female Count 1 2 4 13 15 35
% of Total .8% 1.5% 3.0% 9.8% 11.4%  26.5%
Total Count 4 10 22 50 46 132

% of Total 3.0% 7.6% 16.7%  37.9%  34.8% 100.0%

Table 2.5. Trivariate cross table (obtained with SPSS) of variables SEX, LIKE and
DISPL of the Freshmen dataset.

LIKE Total
DISPL like dislike = no comment
yes SEX  male Count 25 25
% of Total 67.6% 67.6%
female Count 10 2 12
% of Total 27.0% 5.4% 32.4%
Total Count 35 2 37
% of Total 94.6% 5.4% 100.0%
no SEX  male Count 64 1 6 71
% of Total 68.1% 1.1% 6.4% 75.5%
female Count 21 2 23
% of Total 22.3% 2.1% 24.5%
Total Count 85 1 8 94

% of Total 90.4% 1.1% 8.5% 100.0%
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Example 2.4

Q: Determine the trivariate table for the variables SEX, LIKE and DISPL of the
Freshmen dataset.

A: In order to represent cross tables for more than two variables, one builds sub-
tables for each value of one of the variables in excess of 2, as illustrated in Table
2.5. a

Commands 2.4. SPSS, STATISTICA, MATLAB and R commands used to obtain
cross tables.

SPSS Analyze; Descriptive Statistics; Crosstabs
Statistics; Basic Statistics and Tables;

STATISTICA Descriptive Statistics; (Tables and
banners | Multiple Response Tables)

MATLAB crosstab(x,y)

R table(x,y) | xtabs(~x+y)

The MATLAB function crosstab and the R functions table and xtabs
generate cross-tabulations of the variables passed as arguments. Supposing that the
dataset Freshmen has been read into the R data frame freshmen, one would
obtain Table 2.4 as follows (the ## symbol denotes an R user comment):

> attach(freshmen)
> table(SEX,Q4) ## or xtabs (~SEX+Q4)
04
SEX 1 2 3 4 5
1 3 8 18 37 31
2 1 2 4 13 15 u

Commands 2.5. SPSS, STATISTICA, MATLAB and R commands used to obtain
scatter plots and 3D plots.

SPSS Graphs; Scatter; Simple
Graphs; Scatter; 3-D

Graphs; Scatterplots
STATISTICA Graphs; 3D XYZ Graphs; Scatterplots

scatter(x,y,s,c)
MATLAB scatter3 (x,y,z,s,c)

R plot.default(x,vy)
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The s, ¢ arguments of MATLAB scatter and scatter3 are the size and
colour of the marks, respectively.

The plot.default function is the x-y scatter plot function of R and has
several configuration parameters available (colours, type of marks, etc.). The R
Graphics package has no 3D plot available.
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Figure 2.20. Scatter plot (obtained with STATISTICA) of the variables ART and
PRT of the cork stopper dataset.

Figure 2.21. 3D plot (obtained with STATISTICA) of the variables ART, PRT and
N of the cork stopper dataset.

The most popular graphical tools for multivariate data are the scatter plots for
bivariate data and the 3D plots for trivariate data. Examples of these plots, for the
cork stopper data, are shown in Figures 2.20 and 2.21. As a matter of fact, the 3D
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plot is often not so easy to interpret (as in Figure 2.21); therefore, in normal
practice, one often inspects multivariate data graphically through scatter plots of
the variables grouped in pairs.

Besides scatter plots and 3D plots, it may be convenient to inspect bivariate
histograms or bar plots (such as the one shown in Figure A.1, Appendix A).
STATISTICA affords the possibility of obtaining such bivariate histograms from
within the Frequency Tables window of the Descriptive Statistics
menu.

2.2.4 Categorised Plots

Statistical studies often address the problem of comparing random distributions of
the same variables for different values of an extra grouping variable. For instance,
in the case of the cork stopper dataset, one might be interested in comparing
numbers of defects for the three different groups (or classes) of the cork stoppers.
The cork stopper dataset, described in Appendix E, is an example of a grouped (or
classified) dataset. When dealing with grouped data one needs to compare the data
across the groups. For that purpose there is a multitude of graphic tools, known as
categorised plots. For instance, with the cork stopper data, one may wish to
compare the histograms of the first two classes of cork stoppers. This comparison
is shown as a categorised histogram plot in Figure 2.22, for the variable ART.
Instead of displaying the individual histograms, it is also possible to display all
histograms overlaid in only one plot.
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Figure 2.22. Categorised histogram plot obtained with STATISTICA for variable
ART and the first two classes of cork stoppers.

When the number of groups is high, the visual comparison of the histograms
may be rather difficult. The situation usually worsens if one uses overlaid
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histograms. A better alternative to comparing data distributions for several groups
is to use the so-called box plot (or box-and-whiskers plot). As illustrated in Figure
2.23, a box plot uses a distinct rectangular box for each group, where each box
corresponds to the central 50% of the cases, the so-called inter-quartile range
(IQR). A central mark or line inside the box indicates the median, i.e., the value
below which 50% of the cases are included. The boxes are prolonged with lines
(whiskers) covering the range of the non-outlier cases, i.e., cases that do not
exceed, by a certain factor of the IQR, the above or below box limits. A usual IQR
factor for outliers is 1.5. Sometimes box plots also indicate, with an appropriate
mark, the extreme cases, similarly defined as the outliers, but using a larger IQR
factor, usually 3. As an alternative to using the central 50% range of the cases
around the median, one can also use the mean + standard deviation.

There is also the possibility of obtaining categorised scatter plots or categorised
3D plots. Their real usefulness is however questionable.
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Figure 2.23. Box plot of variable ART, obtained with R, for the three classes of
the cork stoppers data. The “o” sign for Class 1 indicates an outlier, i.e., a case
exceeding the top of the box by more than 1.5xIQR.

Commands 2.6. SPSS, STATISTICA, MATLAB and R commands used to obtain
box plots.

SPSS Graphs; Boxplot
STATISTICA Graphs; 2D Graphs; Boxplots
MATLAB boxplot (x)

R boxplot (x~y); legend(x,y,label)
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The R boxplot function uses the so-called x~y “formula” to create a box plot of
x grouped by y. The legend function places label as a legend at the (x,y)
position of the plot. The graph of Figure 2.23 (CL is the Class variable) was
obtained with:

> boxplot (ART~CL)
> legend(3.2,100, legend="CL")
> legend(0.5,900, legend="ART") u

2.3 Summarising the Data

When analysing a dataset, one usually starts by determining some indices that give
a global picture on where and how the data is concentrated and what is the shape of
its distribution, i.e., indices that are useful for the purpose of summarising the data.
These indices are known as descriptive statistics.

2.3.1 Measures of Location

Measures of location are used in order to determine where the data distribution is
concentrated. The most usual measures of location are presented next.

Commands 2.7. SPSS, STATISTICA, MATLAB and R commands used to obtain
measures of location.

SPSS Analyze; Descriptive Statistics

Statistics; Basic Statistics/Tables;

STATISTICA Descriptive Statistics
MATLAB mean (x) ; trimmean (x,p) ; median (x) ;
prctile(x,p)
R mean (x, trim) ; median(x) ; summary (x) ;
quantile(x,seqg(...))
u
2.3.1.1 Arithmetic Mean
Let xy, ..., x, be the data. The arithmetic mean (or simply mean) is:
X = ! Z" X 2.5
2 i .

The arithmetic mean is the sample estimate of the mean of the associated
random variable (see Appendices B and C). If one has a tally sheet of a discrete
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type data, one can also compute the mean using the absolute frequencies (counts),
ny;, of each distinct value x;:

1

Ez—zz_lnkxk with nzzz_lnk. 2.6
k= -

If one has a frequency table of a continuous type data (also known in some
literature as grouped data), with » bins, one can obtain an estimate of x , using the
frequencies f; of the bins and the mid-bin values, x j»as follows:

fal 1 n .
x=;z,-:1 ixi - 27

This mean estimate used to be presented as an expedite way of calculating the
arithmetic mean for long tables of data. With the advent of statistical software the
interest of such a method is at least questionable. We will proceed no further with
such a “grouped data” approach.

Sometimes, when in presence of datasets exhibiting outliers and extreme cases
(see 2.2.4) that can be suspected to be the result of rough measurement errors, one
can use a trimmed mean by neglecting a certain percentage of the tail cases (e.g.,
5%).

The arithmetic mean is a point estimate of the expected value (true mean) of the
random variable associated to the data and has the same properties as the true mean
(see A.6.1). Note that the expected value can be interpreted as the center of gravity
of a weightless rod with probability mass-points, in the case of discrete variables,
or of a rod whose mass-density corresponds to the probability density function, in
the case of continuous variables.

2.3.1.2 Median

The median of a dataset is that value of the data below which lie 50% of the cases.
It is an estimate of the median, med(X), of the random variable, X, associated to the
data, defined as:

FX(x)=% = med(X), 2.8

where F'y (x) is the distribution function of X.

Note that, using the previous rod analogy for the continuous variable case, the
median divides the rod into equal mass halves corresponding to equal areas under
the density curve:

Imed(X)

—0 .

% 1
=] e S )=



60 2 Presenting and Summarising the Data

The median satisfies the same linear property as the mean (see A.6.1), but not
the other properties (e.g. additivity). Compared to the mean, the median has the
advantage of being quite insensitive to outliers and extreme cases.

Notice that, if we sort the dataset, the sample median is the central value if the
number of the data values is odd; if it is even, it is computed as the average of the
two most central values.

2.3.1.3 Quantiles

The quantile of order & (0 < o < 1) of a random variable distribution Fy (x) is
defined as the root of the equation (see A.5.2):

Fy(x)=a. 2.9

We denote the root as: x,,.

Likewise we compute the quantile of order « of a dataset as the value below
which lies a percentage o of cases of the dataset. The median is therefore the 50%
quantile, or xq 5. Often used quantiles are:

—  Quartiles, corresponding to multiples of 25% of the cases. The box plot
mentioned in 2.2.4 uses the quartiles and the inter-quartile range (IQR) in
order to determine the outliers of the dataset distribution.

— Deciles, corresponding to multiples of 10% of the cases.

— Percentiles, corresponding to multiples of 1% of the cases. We will often
use the percentile p = 2.5% and its complement p = 97.5%.

2.3.1.4 Mode

The mode of a dataset is its maximum value. It is an estimate of the probability or
density function maximum.

For continuous type data one should determine the midpoint of the modal bin of
the data grouped into an appropriate number of bins.

When a data distribution exhibits several relative maxima of almost equal value,
we say that it is a multimodal distribution.

Example 2.5

Q: Consider the Cork Stoppers’ dataset. Determine the measures of location
of the variable PRT. Comment the results. Imagine that we had a new variable,
PRT1, obtained by the following linear transformation of PRT: PRT1 = 0.2 PRT + 5.
Determine the mean and median of PRT].

A: Table 2.6 shows some measures of location of the variable PRT. Notice that as
a mode estimate we can use the midpoint of the bin [355.3 606.7] as shown in
Figure 2.17, i.e., 481. Notice also the values of the lower and upper quartiles
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delimiting 50% of the cases. The large deviation of the 95% percentile from the
upper quartile, when compared to the deviation of the 5% percentile from the lower
quartile, is evidence of a right skewed asymmetrical distribution.

By the linear properties of the mean and the median, we have:

Mean(PRT1) =0.2 Mean(PRT)+5 =147;
Median(PRT1) = 0.2 Median(PRT) + 5 = 131.
0

Table 2.6. Location measures (computed with STATISTICA) for variable PRT of
the cork stopper dataset (150 cases).

Lower Upper Percentile = Percentile
Quartile Quartile 5% 95%

710.3867  629.0000  410.0000  974.0000  246.0000 1400.000

Mean Median

An important aspect to be considered, when using values computed with
statistical software, is the precision of the results expressed by the number of
significant digits. Almost every software product will produce results with a large
number of digits, independent of whether or not they mean something. For
instance, in the case of the PRT variable (Table 2.6) it would be foolish to publish
that the mean of the total perimeter of the defects of the cork stoppers is 710.3867.
First of all, the least significant digit is, in this case, the unit (no perimeter can be
measured in fractions of the pixel unit; see Appendix E). Thus, one would have to
publish a value rounded up to the units, in this case 710. Second, there are
omnipresent measurement errors that must be accounted for. Assuming that the
perimeter measurement error is of one unit, then the mean is 710 £ 1'. As a matter
of fact, even this one unit precision for the mean is somewhat misleading, as we
will see in the following chapter. From now on the published results will take this
issue into consideration and may, therefore, appropriately round the results
obtained with the software products.

The R functions also provide a large number of digits, as when calculating the
mean of PRT:

> mean (PRT)
[1] 710.3867

However, the summary function provides a reasonable rounding:
> summary (PRT)

Min. 1st Qu. Median Mean 3rd Qu. Max.
104.0 412.0 629.0 710.4 968.5 1612.0

3 . .
Denoting by Ax a single data measurement error, the mean of #» measurements has an error
of £(n.abs(Ax))/n = +Ax in the worst case.
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2.3.2 Measures of Spread

The measures of spread (or dispersion) give an indication of how concentrated a
data distribution is. The most usual measures of spread are presented next.

Commands 2.8. SPSS, STATISTICA, MATLAB and R commands used to obtain
measures of spread and shape.

SPSS Analyze; Descriptive Statistics

Statistics; Basic Statistics/Tables;
STATISTICA Descriptive Statistics

MATLAB igr (x) ;| range(x) ; std(x) ; var(x) ;
skewness (x) ; kurtosis (x)

R IQR(x) ; range(x) | sd(x) | var(x) |
skewness (x) ; kurtosis (x)

2.3.2.1 Range

The range of a dataset is the difference between its maximum and its minimum,
ie.:

R = Xmax — Xmin- 2.10

The basic disadvantage of using the range as measure of spread is that it is
dependent on the extreme cases of the dataset. It also tends to increase with the
sample size, which is an additional disadvantage.

2.3.2.2 Inter-quartile range
The inter-quartile range is defined as (see also section 2.2.4):
IQR = x¢.75 — X025 . 2.11

The IQR is less influenced than the range by outliers and extreme cases. It tends
also to be less influenced by the sample size (and can either increase or decrease).

2.3.2.3 Variance

The variance of a dataset xy, ..., x, (sample variance) is defined as:

v=2" (x,-%)* l(n-1). 2.12
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The sample variance is the point estimate of the associated random variable
variance (see Appendices B and C). It can be interpreted as the mean square
deviation (or mean square error, MSE) of the sample values from their mean. The
use of the n — 1 factor, instead of » as in the usual computation of a mean, is
explained in C.2. Notice also that given x, only n — 1 cases can vary independently
in order to achieve the same variance. We say that the variance has df = n — 1
degrees of freedom. The mean, on the other hand, has n degrees of freedom.

2.3.2.4 Standard Deviation

The standard deviation of a dataset is the root square of its variance. It is, therefore,
a root mean square error (RMSE):

s=Av =[x —%) n-1)] "2, 2.13

The standard deviation is preferable than the variance as a measure of spread,
since it is expressed in the same units as the original data. Furthermore, many
interesting results about the spread of a distribution are expressed in terms of the
standard deviation. For instance, for any random variable X, the Chebyshev
Theorem tall us that (see A.6.3):

P(|X—y|>ka)sl2.
k

Using s as point estimate of o, we can then expect that for any dataset
distribution at least 75 % of the cases lie within 2 standard deviations of the mean.

Example 2.6

Q: Consider the Cork Stoppers’ dataset. Determine the measures of spread of
the variable PRT. Imagine that we had a new variable, PRT1, obtained by the
following linear transformation of PRT: PRT1 = 0.2 PRT + 5. Determine the
variance of PRT1.

A: Table 2.7 shows measures of spread of the variable PRT. The sample variance
enjoys the same linear transformation property as the true variance (see A.6.1). For
the PRT1 variable we have:

variance(PRT1) = (0.2)” variance(PRT) = 5219.

Note that the addition of a constant to PRT (i.e., a scale translation) has no

effect on the variance.
1]
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Table 2.7. Spread measures (computed with STATISTICA) for variable PRT of
the cork stopper dataset (150 cases).

Range Inter-quartile range Variance Standard Deviation

1508 564 130477 361

2.3.3 Measures of Shape

The most popular measures of shape, exemplified for the PRT variable of the
Cork Stoppers’ dataset (see Table 2.8), are presented next.

2.3.3.1 Skewness

A continuous symmetrical distribution around the mean, g, is defined as a
distribution satisfying:

Sxu+x)=fy(u—x).

This applies similarly for discrete distributions, substituting the density function
by the probability function.

A useful asymmetry measure around the mean is the coefficient of skewness,
defined as:

y=E[(X-u)’]/ o>, 2.14

This measure uses the fact that any central moment of odd order is zero for
symmetrical distributions around the mean. For asymmetrical distributions y
reflects the unbalance of the density or probability values around the mean. The
formula uses a o’ standardization factor, ensuring that the same value is obtained
for the same unbalance, independently of the spread. Distributions that are skewed
to the right (positively skewed distributions) tend to produce a positive value of y,
since the longer rightward tail will positively dominate the third order central
moment; distributions skewed to the left (negatively skewed distributions) tend to
produce a negative value of y, since the longer leftward tail will negatively
dominate the third order central moment (see Figure 2.24). The coefficient y,
however, has to be interpreted with caution, since it may produce a false
impression of symmetry (or asymmetry) for some distributions. For instance, the
probability function p, = {0.1, 0.15, 0.4, 0.35}, k= {1, 2, 3, 4}, has y= 0, although
it is an asymmetrical distribution.

The skewness of a dataset x;, ..., x, is the point estimate of y, defined as:

g=ny (x;=%)° [(n-D(n-2)s’]. 2.15
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Note that:

— For symmetrical distributions, if the mean exists, it will coincide with the
median. Based on this property, one can also measure the skewness using
g = (mean — median)/(standard deviation). It can be proved that—1 < g < 1.

— For asymmetrical distributions, with only one maximum (which is then the
mode), the median is between the mode and the mean as shown in Figure
2.24.

Sx) fx)

HEE H
mode mean mean m
a median b median

ode

Figure 2.24. Two asymmetrical distributions: a) Skewed to the right (usually with
7> 0); b) Skewed to the left (usually with < 0).

2.3.3.2 Kurtosis

The degree of flatness of a probability or density function near its center, can be
characterised by the so-called kurtosis, defined as:

Kk=E[(X-w)*]/c*-3. 2.16

The factor 3 is introduced in order that x = 0 for the normal distribution. As a
matter of fact, the x measure as it stands in formula 2.16, is often called coefficient
of excess (excess compared to the normal distribution). Distributions flatter than
the normal distribution have x < 0; distributions more peaked than the normal
distribution have x > 0.

The sample estimate of the kurtosis is computed as:

k=[n(n+DM, =3(n-D)M31/[(n-1)(n-2)(n-3)s"], 2.17

with: M ; =" (x; =X)7 .

Note that the kurtosis measure has the same shortcomings as the skewness
measure. It does not always measure what it is supposed to.

The skewness and the kurtosis have been computed for the PRT variable of the
Cork Stoppers’ dataset as shown in Table 2.8. The PRT variable exhibits a
positive skewness indicative of a rightward skewed distribution and a positive
kurtosis indicative of a distribution more peaked than the normal one.



66 2 Presenting and Summarising the Data

There are no functions in the R stats package to compute the skewness and
kurtosis. We provide, however, as stated in Commands 2.8, R functions for that
purpose in text file format in the book CD (see Appendix F). The only thing to be
done is to copy the function text from the file and paste it in the R console, as in
the following example:

> skewness <- function(x) {

+ n <- length(x)

+ v <- (x-mean(x))”"3

+ n*sum(y)/ ((n-1)*(n-2) *sd(x) *3)
+

> skewness (PRT)

[1] 0.592342

In order to appreciate the obtained skewness and kurtosis, the reader can refer to
Figure 2.25 where these measures are plotted for several distributions (see
Appendix B). For more details see (Dudewicz EJ, Mishra SN, 1988).

Table 2.8. Skewness and kurtosis for the PRT variable of the cork stopper dataset.

Skewness Kurtosis
0.59 -0.63

-2

Q Impossible area
Uniform /(:(
O,
Normal 2 F Beta area

I Student ¢

4+ @,

6 1 1 L&

Figure 2.25. Skewness and kurtosis coefficients for several distributions.

2.3.4 Measures of Association for Continuous Variables
The correlation coefficient is the most popular measure of association for

continuous type data. For a dataset with two variables, X and Y, the sample
estimate of the correlation coefficient pyy (see definition in A.8.2) is computed as:

F=ryy = Sxy , 2.18




2.3 Summarising the Data 67

where syy, the sample covariance of X and Y, is computed as:
Sxy = 2y (6 =) =) M(n=1). 2.19

Note that the correlation coefficient (also known as Pearson correlation) is a
dimensionless measure of the degree of linear association of two r.v., with value in
the interval [—1, 1], with:

0: No linear association (X and Y are linearly uncorrelated);
1: Total linear association, with X and Y varying in the same direction;
—1: Total linear association, with X and Y varying in the opposite direction.

Figure 2.26 shows scatter plots exemplifying several situations of correlation.
Figure 2.26f illustrates a situation where, although there is an evident association
between X and Y, the correlation coefficient fails to measure it since X and Y are
not linearly associated.

Note that, as described in Appendix A (section A.8.2), adding a constant or
multiplying by a constant any or both variables does not change the magnitude of
the correlation coefficient. Only a change of sign can occur if one of the
multiplying constants is negative.

The correlation coefficients can be arranged, in general, into a symmetrical
correlation matrix, where each element is the correlation coefficient of the
respective column and row variables.

Table 2.9. Correlation matrix of five variables of the cork stopper dataset.

N ART PRT ARTG PRTG
N 1.00 0.80 0.89 0.68 0.72
ART 0.80 1.00 0.98 0.96 0.97
PRT 0.89 0.98 1.00 0.91 0.93
ARTG 0.68 0.96 0.91 1.00 0.99
PRTG 0.72 0.97 0.93 0.99 1.00

Example 2.7

Q: Compute the correlation matrix of the following five variables of the Cork
Stoppers’ dataset: N, ART, PRT, ARTG, PRTG.

A: Table 2.9 shows the (symmetric) correlation matrix corresponding to the five
variables of the cork stopper dataset (see Commands 2.9). Notice that the main
diagonal elements (from the upper left corner to the right lower corner) are all
equal to one. In a later chapter, we will learn how to correctly interpret the

correlation values displayed.
0
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In multivariate problems, concerning datasets described by » random variables,
X1, X,, ..., X, one sometimes needs to assess what is the degree of association of
two variables, say X; and X, under the hypothesis that they are linearly estimated
by the remaining n — 2 variables. For this purpose, the correlation p y, y, is defined
in terms of the marginal distributions of X; or X, given the other variables, and is
then called the partial correlation of X; and X, given the other variables. Details on
partial correlations will be postponed to Chapter 7.
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Figure 2.26. Sample correlation values for different datasets: a) » = 1; b) r = —1;
c)r=0;d)r=0.81;¢e) r=—0.21; f) r=0.04.
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STATISTICA and SPSS afford the possibility of computing partial correlations
as indicated in Commands 2.9. For the previous example, the partial correlation of
PRTG and ARTG, given PRT and ART, is 0.79. We see, therefore, that PRT and
ART can “explain” about 20% of the high correlation (0.99) of those two variables.

Another measure of association for continuous variables is the multiple
correlation coefficient, which measures the degree of association of one variable Y
in relation to a set of variables, X7, X3, ..., X, that linearly “predict” Y. Details on
multiple correlation will be postponed to Chapter 7.

Commands 2.9. SPSS, STATISTICA, MATLAB and R commands used to obtain
measures of association for continuous variables.

SPSS Analyze; Correlate; Bivariate | Partial
Statistics; Basic Statistics/Tables;

STATISTICA Correlation matrices (Quick |Advanced;
Partial Correlations)

MATLAB corrcoef (x) ; cov(x)

R cor(x,y) ; cov(x,y)

Partial correlations are computed in MATLAB and R as part of the regression
functions (see Chapter 7). u

2.3.5 Measures of Association for Ordinal Variables

2.3.5.1 The Spearman Rank Correlation

When dealing with ordinal data the correlation coefficient, previously described,
can be computed in a simplified way. Consider the ordinal variables X and Y with
ranks between 1 and N. It seems natural to measure the lack of agreement between
X and Y by means of the difference of the ranks d; = x; — y; for each data pair (x;, ;).
Using these differences we can express 2.18 as:

Z?:I xi2 +Zf:1 in _Zlediz

r= . 2.20
MDY DI

Assuming the values of x; and y; are ranked from 1 through N and that there are
no tied ranks in any variable, we have:

Xl =y vl =(NP =N /12,

Applying this result to 2.20, the following Spearman’s rank correlation (also
known as rank correlation coefficient) is derived:
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6y, d?

ro=1-—=C0 221
N(N? -1

When tied ranks occur — i.e., two or more cases receive the same rank on the
same variable —, each of those cases is assigned the average of the ranks that would
have been assigned had no ties occurred. When the proportion of tied ranks is
small, formula 2.21 can still be used. Otherwise, the following correction factor is
computed:

g 3
T=>(t-t;),
i=1

where g is the number of groupings of different tied ranks and ¢ is the number of
tied ranks in the ith grouping. The Spearman’s rank correlation with correction for
tied ranks is now written as:

(N*=N)-6>" d} —(T, +T,)/2

i=1"i

, 2.22

re =1-

L NN (@ TN - N)HTLT,

where 7, and T}, are the correction factors for the variables X and Y, respectively.

Table 2.10. Contingency table obtained with SPSS of the NC, PRTGC variables
(cork stopper dataset).

PRTGC Total
0 1 2 3
NC 0 Count 25 9 4 1 39
% of Total 16.7% 6.0% 2.7% T% 26.0%
1 Count 12 13 10 1 36
% of Total 8.0% 8.7% 6.7% 7% 24.0%
2 Count 1 13 15 9 38
% of Total 7% 8.7% 10.0% 6.0% 25.3%
3  Count 1 1 9 26 37
% of Total 7% 7% 6.0% 17.3%  24.7%
Total Count 39 36 38 37 150
% of Total 26.0%  24.0%  253% 24.7%  100.0%

Example 2.8

Q: Compute the rank correlation for the variables N and PRTG of the Cork
Stopper’ dataset, using two new variables, NC and PRTGC, which rank N and
PRTG into 4 categories, according to their value falling into the 1%, 2", 3 or 4"
quartile intervals.



2.3 Summarising the Data 71

A: The new variables NC and PRTGC can be computed using formulas similar to
the formula used in 2.1.6 for computing PClass. Specifically for NC, given the
values of the three N quartiles, 59 (25%), 78.5 (50%) and 95 (75%), respectively,
NC coded in {0, 1, 2, 3} is computed as:

NC = (N>59)+ (N>78.5)+ (N>95)

The corresponding contingency table is shown in Table 2.10. Note that NC and
PRTGC are ordinal variables since their ranks do indeed satisfy an order relation.

The rank correlation coefficient computed for this table (see Commands 2.10) is
0.715 which agrees fairly well with the 0.72 correlation computed for the

corresponding continuous variables, as shown in Table 2.9.
0

2.3.5.2 The Gamma Statistic

Another measure of association for ordinal variables is based on a comparison of
the values of both variables, X and Y, for all possible pairs of cases (x, y). Pairs of
cases can be:

— Concordant (in rank order): The values of both variables for one case are
higher (or are both lower) than the corresponding values for the other case.
For instance, in Table 2.10 (X = NC; Y = PRTGC), the pair {(0, 0), (2, 1)} is
concordant.

— Discordant (in rank order): The value of one variable for one case is higher
than the corresponding value for the other case, and the direction is reversed

for the other variable. For instance, in Table 2.10, the pair {(0, 2), (3, 1)} is
discordant.

— Tied (in rank order): The two cases have the same value on one or on both
variables. For instance, in Table 2.10, the pair {(1, 2), (3, 2)} are tied.

The following y measure of association (gamma coefficient) is defined:

y= P(Concordant) — P(Discordant)  P(Concordant) — P(Discordant)

. 223
1 - P(Tied) P(Concordant) + P(Discordant)

Let P and Q represent the total counts for the concordant and discordant cases,
respectively. A point estimate of yis then:

_P=0 224
P+Q

with P and QO computed from the counts n; (of table cell if), of a contingency table
with » rows and ¢ columns, as follows:

P=Y 0 m Ny s Q=X Ny 225
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where the N ;’ is the sum of all counts below and to the right of the ijth cell, and
the NV; is the sum of all counts below and to the left of the #jth cell.

The gamma measure varies, as does the correlation coefficient, in the interval
[-1, 1]. It will be 1 if all the frequencies lie in the main diagonal of the table (from
the upper left corner to the lower right corner), as for all cases where there are no
discordant contributions (see Figure 2.27a). It will be —1 if all the frequencies lie in
the other diagonal of the table, and also for all cases where there are no concordant
contributions (see Figure 2.27b). Finally, it will be zero when the concordant
contributions balance the discordant ones.

The G value for the example of Table 2.10 is 0.785. We will see in Chapter 5
the significance of the G statistic.

There are other measures of association similar to the gamma coefficient that
are applicable to ordinal data. For more details the reader can consult e.g. (Siegel S,
Castellan Jr NJ, 1988).

Commands 2.10. SPSS, STATISTICA, MATLAB and R commands used to
obtain measures of association for ordinal variables.

SPSS Analyze; Descriptive
Statistics; Crosstabs

Statistics; Basic Statistics/Tables;
STATISTICA Tables and Banners; Options

MATLAB corrcoef (x) ; gammacoef(t)

R cor(x) ; gammacoef(t)

Measures of association for ordinal variables are obtained in SPSS and
STATISTICA as a result of applying contingency table analysis with the
commands listed in Commands 5.7.

MATLAB Statistics toolbox and R stats package do not provide a function for
computing the gamma statistic. We provide, however, MATLAB and R functions
for that purpose in the book CD (see Appendix F).

[ ]
Y1 Y2 V3 Y1 )2 V3
X1 X X X1 X X
X2 X X X2 X
a x3 X b x; X

Figure 2.27. Examples of contingency table formats for: a) G =1 (N;; cells are
shaded gray); b) G=-1 (N ;’ cells are shaded gray).
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2.3.6 Measures of Association for Nominal Variables

Assume we have a multivariate dataset whose variables are of nominal type and we
intend to measure their level of association. In this case, the correlation coefficient
approach cannot be applied, since covariance and standard deviations are not
applicable to nominal data. We need another approach that uses the contingency
table information in a similar way as when we computed the gamma coefficient for
the ordinal data.

Commands 2.11. SPSS, STATISTICA, MATLAB and R commands used to
obtain measures of association for nominal variables.

SPSS Analyze; Descriptive
Statistics; Crosstabs

Statistics; Basic Statistics/Tables;
STATISTICA Tables and Banners; Options

MATLAB kappa (x, alpha)

R kappa (x, alpha)

Measures of association for nominal variables are obtained in SPSS and
STATISTICA as a result of applying contingency table analysis (see Commands
5.7).

The kappa statistic can be computed with SPSS only when the values of the first
variable match the values of the second variable. STATISTICA does not provide
the kappa statistic.

MATLAB Statistics toolbox and R stats package do not provide a function for
computing the kappa statistic. We provide, however, MATLAB and R functions
for that purpose in the book CD (see Appendix F).

[ ]

2.3.6.1 The Phi Coefficient

Let us first consider a bivariate dataset with nominal variables that only have two
values (dichotomous variables), as in the case of the 2x2 contingency table shown
in Table 2.11.

In the case of a full association of both variables one would obtain a 100%
frequency for the values along the main diagonal of the table, and 0% otherwise.
Based on this observation, the following index of association, ¢ (phi coefficient),
is defined:

¢ _ ad —bc 2.26

Ja+b)c+d)a+e)b+d)




74 2 Presenting and Summarising the Data

Note that the denominator of ¢ will ensure a value in the interval [-1, 1] as with
the correlation coefficient, with +1 representing a perfect positive association and
—1 a perfect negative association. As a matter of fact the phi coefficient is a special
case of the Pearson correlation.

Table 2.11. A general cross table for the bivariate dichotomous case.

Vi 7 Total
X1 a b a+b
X c d c+d
Total a+tc b+d at+b+c+d

Example 2.9

Q: Consider the 2x2 contingency table for the variables SEX and INIT of the
Freshmen dataset, shown in Table 2.12. Compute their phi coefficient.

A: The computed value of phi using 2.26 is 0.15, suggesting a very low degree of
association. The significance of the phi values will be discussed in Chapter 5.

0

Table 2.12. Cross table (obtained with SPSS) of variables SEX and INIT of the
freshmen dataset.

INIT Total
yes no

SEX male Count 91 5 96
% of Total 69.5% 3.8% 73.3%

female Count 30 5 35
% of Total 22.9% 3.8% 26.7%

Total Count 121 10 131
% of Total 92.4% 7.6% 100.0%

2.3.6.2 The Lambda Statistic

Another useful measure of association, for multivariate nominal data, attempts to
evaluate how well one of the variables predicts the outcome of the other variable.
This measure is applicable to any nominal variables, either dichotomous or not. We
will explain it using Table 2.4, by attempting to estimate the contribution of
variable SEX in lowering the prediction error of Q4 (“liking to be initiated”). For
that purpose, we first note that if nothing is known about the sex, the best
prediction of the Q4 outcome is the “agree” category, the so-called modal category,
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with the highest frequency of occurrence (37.9%). In choosing this modal category,
we expect to be in error 62.1% of the times. On the other hand, if we know the sex
(i.e., we know the full table), we would choose as prediction outcome the “agree”
category if it is a male (expecting then 73.5 — 28 = 45.5% of errors), and the “fully
agree” category if it is a female (expecting then 26.5 — 11.4 = 15.1% of errors).

Let us denote:

i.  Pe. = Percentage of errors using only the columns = 100 — percentage of
modal column category.

il. Pe. = Percentage of errors using also the rows = sum along the rows of (100
— percentage of modal column category in each row).

The A measure (Goodman and Kruskal lambda) of proportional reduction of
error, when using the columns depending from the rows, is defined as:

_ Pe,—Pe,

ACV
Pe

2.27

Similarly, for the prediction of the rows depending from the columns, we have:

_ Pe,—Pe,

AI‘C
Pe

2.28

r

The coefficient of mutual association (also called symmetric lambda) is a
weighted average of both lambdas, defined as:

, _ average reduction in errors _ (Pe, —Pe,.)+(Pe, —Pe,.) . 299

average number of errors Pe, + Pe,

The lambda measure always ranges between 0 and 1, with 0 meaning that the
independent variable is of no help in predicting the dependent variable and 1
meaning that the independent variable perfectly specifies the categories of the
dependent variable.

Example 2.10
Q: Compute the lambda statistics for Table 2.4.

A: Using formula 2.27 we find A, = 0.024, suggesting a non-helpful contribution
of the sex in determining the outcome of Q4. We also find 4,.,= 0 and 4 = 0.017.

The significance of the lambda statistic will be discussed in Chapter 5.
0

2.3.6.3 The Kappa Statistic

The kappa statistic is used to measure the degree of agreement for categorical
variables. Consider the cross table shown in Figure 2.19 where the » rows are
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objects to be assigned to one of ¢ categories (columns). Furthermore, assume that &
judges assigned the objects to the categories, with n; representing the number of
judges that assigned object i to category j.

The sums of the counts along the rows totals k. Let ¢; denote the sum of the
counts along the column j. If all the judges were in perfect agreement one would
find a column filed in with & and the others with zeros, i.e., one of the ¢; would be
rk and the others zero. The proportion of objects assigned to the jth category is:

p;=c; (rk).

If the judges make their assignments at random, the expected proportion of
agreement for each category is pjz- and the total expected agreement for all
categories is:

P(E)=Yp;. 230

c
J=1

The extent of agreement, s;, concerning the ith object, is the proportion of the
number of pairs for which there is agreement to the possible pairs of agreement:

420

The total proportion of agreement is the average of these proportions across all
objects:

P(A) =%Zs,- . 2.31
i=1

The x (kappa) statistic, based on the formulas 2.30 and 2.31, is defined as:

_ P(4)- P(E) . 232

1-P(E)

If there is complete agreement among the judges, then x = 1 (P(4) = 1,

P(E) = 0). If there is no agreement among the judges other than what would be
expected by chance, then x =0 (P(4) = P(E)).

Example 2.11

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases, classified
by three human experts (E1C, E2C, E3C) and an automatic diagnostic system
(SPC) into three categories: normal (0), suspect (1) and pathologic (2). Determine
the degree of agreement among all 4 classifiers (experts and automatic system).
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A: We use the N, S and P variables, which contain the data in the adequate
contingency table format, shown in Table 2.13. For instance, object #1 was
classified N by one of the classifiers (judges) and S by three of the classifiers.

Running the function kappa (x, 0.05) in MATLAB or R, where x is the data
matrix corresponding to the N-S-P columns of Table 2.13, we obtain x = 0.213,
which suggests some agreement among all 4 classifiers. The significance of the
kappa values will be discussed in Chapter 5.

0

Table 2.13. Contingency table for the N, S and P categories of the FHR dataset.

Object # N S P Total
1 1 3 4
2 1 3 4
3 1 3 4

S O O

51 1 2 1 4

Exercises

2.1

2.2

23

2.4

Consider the “Team Work” evaluation scores of the Metal Firms’ dataset:

a) What type of data is it? Does it make sense to use the mean as location measure of
this data?

b) Compute the median value of “Evaluation of Competence” of the same dataset,
with and without the lowest score value.

Does the median have the additive property of the mean (see A.6.1)? Explain why.

Variable EF of the Infarct dataset contains “ejection fraction” values (proportion of

ejected blood between diastole and systole) of the heart left ventricle, measured in a

random sample of 64 patients with some symptom of myocardial infarction.

a) Determine the histogram of the data using an appropriate number of bins.

b) Determine the corresponding frequency table and use it to estimate the proportion
of patients that are expected to have an ejection fraction below 50%.

¢) Determine the mean, median and standard deviation of the data.

Consider the Freshmen dataset used in Example 2.3.

a) What type of variables are Course and Exam 1?

b) Determine the bar chart of Course. What category occurs most often?

¢) Determine the mean and median of Exam 1 and comment on the closeness of the
values obtained.

d) Based on the frequency table of Exam 1, estimate the number of flunking students.
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2.5

2.6

2.7

2.8

2.9

Determine the histograms of variables LB, ASTV, MSTV, ALTV and MLTV of the

CTG dataset using Sturges’ rule for the number of bins. Compute the skewness and

kurtosis of the variables and check the following statements:

a) The distribution of LB is well modelled by the normal distribution.

b) The distribution of ASTV is symmetric, bimodal and flatter than the normal
distribution.

c¢) The distribution of ALTV is left skewed and more peaked than the normal
distribution.

Taking into account the values of the skewness and kurtosis computed for variables
ASTV and ALTV in the previous Exercise, which distributions should be selected as
candidates for modelling these variables (see Figure 2.24)?

Consider the bacterial counts in three organs — the spleen, liver and lungs - included in
the Cells dataset (datasheet CFU). Using box plots, compare the cell counts in the
three organs 2 weeks and 2 months after infection. Also, determine which organs have
the lowest and highest spread of bacterial counts.

The inter-quartile ranges of the bacterial counts in the spleen and in the liver after 2
weeks have similar values. However, the range of the bacterial counts is much smaller
in the spleen than in the liver. Explain what causes this discrepancy and comment on
the value of the range as spread measure.

Determine the overlaid scatter plot of the three types of clays (Clays’ dataset), using
variables SiO, and Al,Os. Also, determine the correlation between both variables and
comment on the results.

2.10 The Moulds’ dataset contains measurements of bottle bottoms performed by three

methods. Determine the correlation matrix for the three methods before and after
subtracting the nominal value of 34 mm and explain why the same correlation results
are obtained. Also, express your judgement on the measurement methods taking into
account their low correlation.

2.11 The Culture dataset contains percentages of budget assigned to cultural activities in

several Portuguese boroughs randomly sampled from three regions, coded 1, 2 and 3.

Determine the correlations among the several cultural activities and consider them to be

significant if they are higher than 0.4. Comment on the following statements:

a) The high negative correlation between “Halls” and “Sport” is due to chance alone.

b) Whenever there is a good investment in “Cine”, there is also a good investment
either in “Music” or in “Fine Arts”.

¢) In the northern boroughs, a high investment in “Heritage” causes a low investment
in “Sport”.

2.12 Consider the “Halls” variable of the Cul ture dataset:

a) Determine the overall frequency table and histogram, starting at zero and with bin
width 0.02.

b) Determine the mean and median. Which of these statistics should be used as
location measure and why?
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2.13 Determine the box plots of the Breast Tissue variables 10 through PERIM, for the
6 classes of breast tissue. By visual inspection of the results, organise a table describing
which class discriminations can be expected to be well accomplished by each variable.

2.14 Consider the two variables MH = “neonatal mortality rate at home” and MI = “neonatal
mortality rate at Health Centre” of the Neonatal dataset. Determine the histograms
and compare both variables according to the skewness and kurtosis.

2.15 Determine the scatter plot and correlation coefficient of the MH and MI variables of the
previous exercise. Comment on the results.

2.16 Determine the histograms, skewness and kurtosis of the BPD, CP and AP variables of
the Foetal Weight dataset. Which variable is better suited to normal modelling?
Why?

2.17 Determine the correlation matrix of the BPD, CP and AP variables of the previous
exercise. Comment on the results.

2.18 Determine the correlation between variables 10 and HFS of the Breast Tissue
dataset. Check with the scatter plot that the very low correlation of those two variables
does not mean that there is no relation between them. Compute the new variable 10S =
(I0 — 1235)? and show that there is a significant correlation between this new variable
and HFS.

2.19 Perform the following statistical analyses on the Rocks’ dataset:

a) Determine the histograms, skewness and kurtosis of the variables and categorise
them into the following categories: left asymmetric; right asymmetric; symmetric;
symmetric and almost normal.

b) Compute the correlation matrix for the mechanical test variables and comment on
the high correlations between RMCS and RCSG and between AAPN and PAOA.

c¢) Compute the correlation matrix for the chemical composition variables and
determine which variables have higher positive and negative correlation with
silica (SiO,) and which variable has higher positive correlation with titanium
oxide (TiO,).

2.20 The student performance in a first-year university course on Programming can be partly
explained by previous knowledge on such matter. In order to assess this statement, use
the SCORE and PROG variables of the Programming dataset, where the first
variable represents the final examination score on Programming (in [0, 20]) and the
second variable categorises the previous knowledge. Using three SCORE categories
— Poor, if SCORE<10, Fair if 10 <SCORE< 15, and Good if SCORE> 15 —, determine:
a) The Spearman correlation between the two variables.

b) The contingency table of the two variables.
¢) The gamma statistic.

2.21 Show examples of 2x2 contingency tables for nominal data corresponding to ¢ =1, -1,
Oandto 4, A,.and A, =1 and 0.
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2.22 Consider the classifications of foetal heart rate performed by the human expert 3
(variable E3C) and by an automatic system (variable SPC) contained in the FHR
dataset.

a) Determine two new variables, E3CB and SPCB, which dichotomise the
classifications in {Normal} vs. {Suspect, Pathologic}.

b) Determine the 2x2 contingency table of E3CB and SPCB.

c¢) Determine appropriate association measures and assess whether knowing the
automatic system classification helps predicting the human expert classification.

2.23 Redo Example 2.9 and 2.10 for the variables Q1 and Q4 and comment on the results
obtained.

2.24 Consider the leadership evaluation of metallurgic firms, included in the Metal
Firms' dataset, performed by means of seven variables, from TW = “Team Work”
through DC = “Dialogue with Collaborators”. Compute the coefficient of agreement of
the seven variables, verifying that they do not agree in the assessment of leadership
evaluation.

2.25 Determine the contingency tables and degrees of association between variable
TW = “Team Work” and all the other leadership evaluation variables of the Metal
Firms' dataset.

2.26 Determine the contingency table and degree of association between variable
AB = “Previous knowledge of Boole’s Algebra” and BA = “Previous knowledge of
binary arithmetic” of the Programming dataset.



3 Estimating Data Parameters

Making inferences about a population based upon a random sample is a major task
in statistical analysis. Statistical inference comprehends two inter-related
problems: parameter estimation and test of hypotheses. In this chapter, we describe
the estimation of several distribution parameters, using sample estimates that were
presented as descriptive statistics in the preceding chapter. Because these
descriptive statistics are single values, determined by appropriate formulas, they
are called point estimates. Appendix C contains an introductory survey on how
such point estimators may be derived and which desirable properties they should
have. In this chapter, we also introduce the notion and methodology of interval
estimation. In this and later chapters, we always assume that we are dealing with
random samples. By definition, in a random sample xi, ..., x, from a population
with probability density function fx(x), the random variables associated with the
sample values, Xj, ..., X, are i.i.d., hence the random sample has a joint density
given by:

.....

A similar result applies to the joint probability function when the variables are
discrete. Therefore, we rule out sampling from a finite population without
replacement since, then, the random variables X1, ..., X, are not independent.

Note, also, that in the applications one must often carefully distinguish between
target population and sampled population. For instance, sometimes in the
newspaper one finds estimation results concerning the proportion of votes on
political parties. These results are usually presented as estimates for the whole
population of a given country. However, careful reading discloses that the sample
(hopefully a random one) was drawn using a telephone enquiry from the
population residing in certain provinces. Although the target population is the
population of the whole country, any inference made is only legitimate for the
sampled population, i.e., the population residing in those provinces and that use
telephones.

3.1 Point Estimation and Interval Estimation

Imagine that someone wanted to weigh a certain object using spring scales. The
object has an unknown weight, @. The weight measurement, performed with the
scales, has usually two sources of error: a calibration error, because of the spring’s
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loss of elasticity since the last calibration made at the factory, and exhibiting,
therefore, a permanent deviation (bias) from the correct value; a random parallax
error, corresponding to the evaluation of the gauge needle position, which can be
considered normally distributed around the correct position (variance). The
situation is depicted in Figure 3.1.

The weight measurement can be considered as a “bias + variance” situation. The
bias, or systematic error, is a constant. The source of variance is a random error.

o W

bias
Figure 3.1. Measurement of an unknown quantity @ with a systematic error (bias)
and a random error (variance ¢%). One measurement instance is w.

Figure 3.1 also shows one weight measurement instance, w. Imagine that we
performed a large number of weight measurements and came out with the average
value of w. Then, the difference @ —w measures the bias or accuracy of the
weighing device. On the other hand, the standard deviation, o, measures the
precision of the weighing device. Accurate scales will, on average, yield a
measured weight that is in close agreement with the true weight. High precision
scales yield weight measurements with very small random errors.

Let us now turn to the problem of estimating a data parameter, i.e., a quantity &
characterising the distribution function of the random variable X, describing the
data. For that purpose, we assume that there is available a random sample x =
[)c1 s Xy X, ]’ — our dataset in vector format —, and determine a value #,(x), using
an appropriate function #,. This single value is a point estimate of 6.

The estimate #,(X) is a value of a random variable, that we denote 7, called point
estimator or statistic, T = t,(X), where X denotes the n-dimensional random
variable corresponding to the sampling process. The point estimator 7 is, therefore,
a random variable function of X. Thus, #,(X) constitutes a sort of measurement
device of 6. As with any measurement device, we want it to be simultaneously
accurate and precise. In Appendix C, we introduce the topic of obtaining unbiased
and consistent estimators. The unbiased property corresponds to the accuracy
notion. The consistency corresponds to a growing precision for increasing sample
sizes.
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When estimating a data parameter the point estimate is usually insufficient. In
fact, in all the cases that the point estimator is characterised by a probability
density function the probability that the point estimate actually equals the true
value of the parameter is zero. Using the spring scales analogy, we see that no
matter how accurate and precise the scales are, the probability of obtaining the
exact weight (with arbitrary large number of digits) is zero. We need, therefore, to
attach some measure of the possible error of the estimate to the point estimate. For
that purpose, we attempt to determine an interval, called confidence interval,
containing the true parameter value & with a given probability 1— «, the so-called
confidence level:

Ple,,(0)<0<t,,(0)=1-a, 3.1

where « is a confidence risk.
The endpoints of the interval (also known as confidence limits), depend on the
available sample and are determined taking into account the sampling distribution:

Fr(x)= Ftn(X) (x).

We have assumed that the interval endpoints are finite, the so-called two-sided
(or two-tail) interval estimation. Sometimes we will also use one-sided (or one-
tail) interval estimation by setting ¢, (X) =—000r £, ) (X) =+ .

Let us now apply these ideas to the spring scales example. Imagine that, as
happens with unbiased point estimators, there were no systematic error and
furthermore the measured errors follow a known normal distribution; therefore, the
measurement error is a one-dimensional random variable distributed as Ny, with
known o. In other words, the distribution function of the random weight variable,
W, is Fy(w)=F(Ww)=N,,(w). We are now able to determine the two-sided
95% confidence interval of @, given a measurement w, by first noticing, from the
normal distribution tables, that the percentile 97.5% (i.e., 100—a/2, with « in
percentage) corresponds to 1.960:

Thus:

Fw)=0975 = wyqe;5 =1.960. 32

Given the symmetry of the normal distribution, we have:

Pw<w+1960)=0975 = Pw-1960<w<w+1.960)=0.95,

leading to the following 95% confidence interval:
w-1960 <w<w+1.960 . 3.3

Hence, we expect that in a long run of measurements 95% of them will be inside
the @+ 1.960 interval, as shown in Figure 3.2a.
Note that the inequalities 3.3 can also be written as:
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w—1960 <o <w+1.960, 34

allowing us to define the 95% confidence interval for the unknown weight
(parameter) @ given a particular measurement w. (Comparing with expression 3.1
we see that in this case 6 is the parameter w, t;; =w— 1.96cand t;, =w + 1.960.)
As shown in Figure 3.2b, the equivalent interpretation is that in a long run of
measurements, 95% of the w + 1.960 intervals will cover the true and unknown
weight @ and the remaining 5% will miss it.
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Figure 3.2. Two interpretations of the confidence interval: a) A certain percentage
of the w measurements (#1,..., #10) is inside the @ + 1.960 interval; b) A certain
percentage of the w = 1.96¢ intervals contains the true value w.

Note that when we say that the 95% confidence interval of @ is w = 1.960;, it
does not mean that “the probability that @ falls in the confidence interval is 95%”.
This is a misleading formulation since @ is not a random variable but an unknown
parameter. In fact, it is the confidence interval endpoints that are random variables.

For an arbitrary risk, @, we compute from the standardised normal distribution
the 1—/2 percentile:

NO’I(Z):I_a/Z j—t Zlia/z.l 3.5
We now use this percentile in order to establish the confidence interval:
W=Z1_0/20 <@ <WHZ|_y/70 . 3.6

The factor z,_,,,0 is designated as tolerance, &, and is often expressed as a
percentage of the measured value w, i.e., e=100z,_,,,0 / w %.

1
It is customary to denote the values obtained with the standardised normal distribution by the letter z,
the so called z-scores.
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In Chapter 1, section 1.5, we introduced the notions of confidence level and
interval estimates, in order to illustrate the special nature of statistical statements
and to advise taking precautions when interpreting them. We will now proceed to
apply these concepts to several descriptive statistics that were presented in the
previous chapter.

3.2 Estimating a Mean

We now estimate the mean of a random variable X using a confidence interval
around the sample mean, instead of a single measurement as in the previous
section. Let x = [xl 3 Xgyeas Xy ]’ be a random sample from a population, described
by the random variable X with mean g and standard deviation o. Let xbe the
arithmetic mean:

— n
xzzl.:lxi/n . 3.7

Therefore, x is a function £,(x) as in the general formulation of the previous
section. The sampling distribution of X (whose values are x ), taking into account
the properties of a sum of i.i.d. random variables (see section A.8.4), has the same
mean as X and a standard deviation given by:

O')?ZO'X/\/_EO'/\/;. 3.8

4
3.6 1
3.2 1
2.8 1
2.4 1

2
1.6 4
1.2 4
0.8 |
0.4 1

n 0,0/\n

O o i L i

3 25 2 45 41 05 0 05 1 15 2 25 3
Figure 3.3. Normal distribution of the arithmetic mean for several values of n and
with =0 (o=1forn=1).

Assuming that X is normally distributed, i.e., X ~N 16 then X is also
normally distributed with mean x and standard deviationoy . The confidence
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interval, following the procedure explained in the previous section, is now
computed as:

X—zy 0/ n<u<x+z_,,0/\n. 3.9

As shown in Figure 3.3, with increasing n, the distribution of X gets more
peaked; therefore, the confidence intervals decrease with x/; (the precision of our
estimates of the mean increase). This is precisely why computing averages is so
popular!

In normal practice one does not know the exact value of o, using the previously
mentioned (2.3.2) point estimate s instead. In this case, the sampling distribution is
not the normal distribution any more. However, taking into account Property 3
described in section B.2.8, the following random variable:

X-p
T =24
s

has a Student’s ¢ distribution with df'= n — 1 degrees of freedom. The sample
standard deviation of X, s/\/; , is known as the standard error of the
statistic X and denoted SE.

We now compute the 1-a/2 percentile for the Student’s ¢ distribution with
df=n — ldegrees of freedom:

T, ®)=1-a/2 = ity 4/2> 3.10

and use this percentile in order to establish the two-sided confidence interval:

y
a2 < SE_<taff,1—a/29 3.11

or, equivalently:

)?_tdf,l—a/ZSE<tu<)?+tdf,l—a/2SE' 312

Since the Student’s ¢ distribution is less peaked than the normal distribution, one
obtains larger intervals when using formula 3.12 than when using formula 3.9,
reflecting the added uncertainty about the true value of the standard deviation.

When applying these results one must note that:

— For large n, the Central Limit theorem (see sections A.8.4 and A.8.5)
legitimises the assumption of normal distribution of X even when X is not
normally distributed (under very general conditions).

— For large n, the Student’s ¢ distribution does not deviate significantly from
the normal distribution, and one can then use, for unknown o, the same
percentiles derived from the normal distribution, as one would use in the
case of known o
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There are several values of 7 in the literature that are considered “large”,
from 20 to 30. In what concerns the normality assumption of X, the value n =20 is
usually enough. As to the deviation between z;_,, and #_,; it is about 5% for
n =25 and o= 0.05. In the sequel, we will use the threshold » = 25 to distinguish
small samples from large samples. Therefore, when estimating a mean we adopt
the following procedure:

1. Large sample (n > 25): Use formulas 3.9 (substituting o by s) or 3.12 (if
improved accuracy is needed). No normality assumption of X is needed.

2. Small sample (n < 25) and population distribution can be assumed to be
normal: Use formula 3.12.

For simplicity most of the software products use formula 3.12 irrespective of the
values of n (for small n the normality assumption has to be checked using the
goodness of fit tests described in section 5.1).

Example 3.1

Q: Consider the data relative to the variable PRT for the first class (CLASS=1) of
the Cork Stoppers’ dataset. Compute the 95% confidence interval of its
mean.

A: There are n = 50 cases. The sample mean and sample standard deviation are
X =365 and s = 110, respectively. The standard error is SE = s/ Jn=15.6. We
apply formula 3.12, obtaining the confidence interval:

Xt 149097 xSE= ¥ * 2.01x15.6 =365 % 31.

Notice that this confidence interval corresponds to a tolerance of 31/365 ~ 8%.
If we used in this large sample situation the normal approximation formula 3.9 we
would obtain a very close result.

Given the interpretation of confidence interval (sections 3.1 and 1.5) we expect
that in a large number of repetitions of 50 PRT measurements, in the same
conditions used for the presented dataset, the respective confidence intervals such
as the one we have derived will cover the true PRT mean 95% of the times. In
other words, when presenting [334, 396] as a confidence interval for the PRT
mean, we are incurring only on a 5% risk of being wrong by basing our estimate on

an atypical dataset.
a

Example 3.2

Q: Consider the subset of the previous PRT data constituted by the first n = 20
cases. Compute the 95% confidence interval of its mean.

A: The sample mean and sample standard deviation are now x= 351 and s = 83,
respectively. The standard error is SE = s/ x/; = 18.56. Since n = 20, we apply the
small sample estimate formula 3.12 assuming that the PRT distribution can be well
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approximated by the normal distribution. (This assumption should have to be
checked with the methods described in section 5.1.) In these conditions the
confidence interval is:

X * 000 xSE= ¥ £2.09xSE = [312, 390].

If the 95% confidence interval were computed with the z percentile, one would
wrongly obtain a narrower interval: [315, 387]. 0

Example 3.3

Q: How many cases should one have of the PRT data in order to be able to
establish a 95% confidence interval for its mean, with a tolerance of 3%?

A: Since the tolerance is smaller than the one previously obtained in Example 3.1,
we are clearly in a large sample situation. We have:

2
Zy_ S Zy_ S
=a/2” < ¢ = nz(Mj 3.13

)_c\/; X

Using the previous sample mean and sample standard deviation and with
Z0.975=1.96, one obtains:

n>558.

Note the growth of n with the square of 1/¢.
0

The solutions of all the previous examples can be easily computed using
Tools.x1s (see Appendix F).

An often used tool in Statistical Quality Control is the control chart for the
sample mean, the so-called x-bar chart. The x-bar chart displays means, e.g. of
measurements performed on equal-sized samples of manufactured items, randomly
drawn along the time. The chart also shows the centre line (CL), corresponding to
the nominal value or the grand mean in a large sequence of samples, and lines of
the upper control limit (UCL) and lower control limit (LCL), computed as a ks
deviation from the mean, usually with £ = 3 and s the sample standard deviation.
Items above UCL or below LCL are said to be out of control. Sometimes, lines
corresponding to a smaller deviation of the grand mean, e.g. with k£ = 2, are also
drawn, corresponding to the so-called upper warning line (UWL) and lower
warning line (LWL).

Example 3.4

Q: Consider the first 48 measurements of total area of defects, for the first class of
the Cork Stoppers dataset, as constituting 16 samples of 3 cork stoppers
randomly drawn at successive times. Draw the respective x-bar chart with 3-sigma
control lines and 2-sigma warning lines.
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A: Using MATLAB command xbarplot (see Commands 3.1) the x-bar chart
shown in Figure 3.4 is obtained. We see that a warning should be issued for sample

#1 and sample #12. No sample is out of control.
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Figure 3.4. Control chart of the sample mean obtained with MATLAB for variable
ART of the first cork stopper class.

Commands 3.1. SPSS, STATISTICA, MATLAB and R commands used to obtain
confidence intervals of the mean.

SPSS Analyze; Descriptive Statistics; Explore;
Statistics; Confidence interval for mean

STATISTICA S'Ica'glstlcs; Descriptive Statistics; Conf.
limits for means

[m s mi si]l=normfit(x,delta)
MATLAB xbarplot (data, conf, specs)

R t.test(x) ; cimean(x,alpha)

SPSS, STATISTICA, MATLAB and R compute confidence intervals for the mean
using Student’s ¢ distribution, even in the case of large samples.

The MATLAB normfit command computes the mean, m, standard deviation,
s, and respective confidence intervals, mi and si, of a data vector x, using
confidence level delta (95%, by default). For instance, assuming that the PRT
data was stored in vector prt, Example 3.2 would be solved as:

» prt20 = prt(1:20);
» [m s mi si] = normfit (prt20)
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350.6000

82.7071
mi =
311.8919
389.3081
si =
62.8979
120.7996

The MATLAB xbarplot command plots a control chart of the sample mean
for the successive rows of data. Parameter conf specifies the percentile for the
control limits (0.9973 for 3-sigma); parameter specs is a vector containing the
values of extra specification lines. Figure 3.4 was obtained with:

» y=[ART(1:3:48) ART(2:3:48) ART(3:3:48)1;
» xbarplot(y,0.9973,[89 185])

Confidence intervals for the mean are computed in R when using t . test (to
be described in the following chapter). A specific function for computing the
confidence interval of the mean, cimean (x, alpha) is included in Tools (see
Appendix F).

]

Commands 3.2. SPSS, STATISTICA, MATLAB and R commands for case
selection.

SPSS Data; Select cases
STATISTICA Tools; Selection Conditions; Edit
MATLAB x(x(:,1) == a,:)

R x[col == a,]

In order to solve Examples 3.1 and 3.2 one needs to select the values of PRT for
CLASS=1 and, inside this class, to select the first 20 cases. Selection of cases is an
often-needed operation in statistical analysis. STATISTICA and SPSS make
available specific windows where the user can fill in the needed conditions for case
selection (see e.g. Figure 3.5a corresponding to Example 3.2). Selection can be
accomplished by means of logical conditions applied to the variables and/or the
cases, as well as through the use of especially defined filter variables.

There is also the possibility of selecting random subsets of cases, as shown in
Figures 3.5a (Subset/Random Sampling tab) and 3.5b (Random sample
of cases option).
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Figure 3.5. Selection of cases: a) Partial view of STATISTICA “Case Selection
Conditions” window; b) Partial view of SPSS “Select Cases” window.

In MATLAB one may select a submatrix of matrix x based on a particular
value, a, of a column i using the construction x (x(:,1i)==a, :). For instance,
assuming the first column of cork contains the classifications of the cork
stoppers, ¢ = cork(cork(:,1)==1,:) will retrieve the submatrix of cork
corresponding to the first 50 cases of class 1. Other relational operators can be used
instead of the equality operator “==". (Attention: “="" is an assignment operator,
an equality operator.) For instance, c = cork (cork(:,1)<2, :) will have the
same effect.

The selection of cases in R is usually based on the construction x[col ==
a, 1, which selects the submatrix whose column col is equal to a certain value a.
For instance, cork [CL == 1, ] selects the first 50 cases of class 1 of the data
frame cork. As in MATLAB other relational operators can be used instead of the
equality operator “=="".

Selection of random subsets in MATLAB and R can be performed through the
generation of filter variables using random number generators. An example is
shown in Table 3.1. First, a filter variable with 150 random Os and 1s is created by
rounding random numbers with uniform distribution in [0,1]. Next, the filter
variable is used to select a subset of the 150 cases of the cork data.

Table 3.1. Selecting a random subset of the cork stoppers’ dataset.

>> filter = round(unifrnd(0,1,150,1));

MATLAB >> fcork = cork(filter==1,:);

> filter <- round(runif(150,0,1))

R > fcork <- cork[filter==1, ]
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In parameter estimation one often needs to use percentiles of random
distributions. We have seen that before, concerning the application of percentiles
of the normal and the Student’s ¢ distribution. Later on we will need to apply
percentiles of the chi-square and F distributions. Statistical software usually
provides a large panoply of probabilistic functions (density and cumulative
distribution functions, quantile functions and random number generators with
particular distributions). In Commands 3.3 we present some of the possibilities.
Appendix D also provides tables of the most usual distributions.

Commands 3.3. SPSS, STATISTICA, MATLAB and R commands for obtaining
quantiles of distributions.

SPSS Compute Variable

STATISTICA Statistics; Probability Calculator

norminv(p,mu, sigma) ; tinv(p,df) ;
MATLAB chi2inv(p,df) ; finv(p,dfl,df2)
R gnorm(p,mean,sd) ; gt(p,df) ;

gchisqg(p,df) ; qf(p,dfl,df2)

The Compute Variable window of SPSS allows the use of functions to
compute percentiles of distributions, namely the functions Idf . IGauss, Idf.T,
Idf.Chisg and Idf.F for the normal, Student’s ¢, chi-square and F
distributions, respectively.
STATISTICA provides a versatile Probability Calculator allowing
among other things the computation of percentiles of many common distributions.
The MATLAB and R functions allow the computation of quantiles of the

normal, ¢, chi-square and F distributions, respectively.
[

3.3 Estimating a Proportion

>

Imagine that one wished to estimate the probability of occurrence, p, of a “success’
event in a series of n Bernoulli trials. A Bernoulli trial is a dichotomous outcome
experiment (see B.1.1). Let £ be the number of occurrences of the success event.
Then, the unbiased and consistent point estimate of p is (see Appendix C):

.~k
p=—.
n
For instance, if there are £ = 5 successes in n = 15 trials, the point estimate of p
(estimation of a proportion) is p=0.33. Let us now construct an interval
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estimation for p. Remember that the sampling distribution of the number of
“successes” is the binomial distribution (see B.1.5). Given the discreteness of the
binomial distribution, it may be impossible to find an interval which has exactly
the desired confidence level. It is possible, however, to choose an interval which
covers p with probability at least 1— a.

Table 3.2. Cumulative binomial probabilities for n =15, p = 0.33.

k 0 1 2 3 4 5 6 7 8 9 10
B(k) 0.002 0.021 0.083 0.217 0.415 0.629 0.805 0.916 0.971 0.992 0.998

Consider the cumulative binomial probabilities for n = 15, p = 0.33, as shown in
Table 3.2. Using the values of this table, we can compute the following
probabilities for intervals centred at k= 5:

P(4 <k <6)=B(6)—B(3)=0.59
P(3<k<7)=B(7)- B(2)=0.83
P2 <k<8)=B(8)-B(1)=0.95
P(1 <k <9)=B(9) - B(0)=0.99

Therefore, a 95% confidence interval corresponds to:

2<k<8 = 3spsi = 0.13<p<0.53.
15 15

This is too large an interval to be useful. This example shows the inherent high
degree of uncertainty when performing an interval estimation of a proportion with
small n. For large n (say n > 50), we use the normal approximation to the binomial
distribution as described in section A.7.3. Therefore, the sampling distribution of
pis modelled as N, , with:

u=p; o=(2L (g= p—1;see A73). 3.14
n

Thus, the large sample confidence interval of a proportion is:

P=ZiqnPq/n <P <p+zi_g/2\Pq/ 1. 3.15

This is the formula already alluded to in Chapter 1, when describing the
“uncertainties” about the estimation of a proportion. Note that when applying
formula 3.15, one usually substitutes the true standard deviation by its point
estimate, i.e., computing:

ﬁ_zl—a/Z‘Vﬁé/n<p<ﬁ+zl—a/2‘\lﬁé/n- 3.16
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The deviation of this formula from the exact formula is negligible for large n
(see e.g. Spiegel MR, Schiller J, Srinivasan RA, 2000, for details).

One can also assume a worst case situation for o, corresponding to p = g = %
= o= (2\/; )" The approximate 95% confidence level is now easy to remember:

px1/n.

Also, note that if we decrease the tolerance while maintaining #, the confidence
level decreases as already mentioned in Chapter 1 and shown in Figure 1.6.

Example 3.5

Q: Consider, for the Freshmen dataset, the estimation of the proportion of
freshmen that are displaced from their home (variable DISPL). Compute the 95%
confidence interval of this proportion.

A: There are n = 132 cases, 37 of which are displaced, i.e., p= 0.28. Applying
formula 3.15, we have:

p—196pg/n <p<p +196pig/n = 020<p <0.36.

Note that this confidence interval is quite large. The following example will
give some hint as to when we start obtaining reasonably useful confidence
intervals.

a
Example 3.6

Q: Consider the interval estimation of a proportion in the same conditions as the
previous example, i.e., with estimated proportion p= 0.28 and a= 5%. How large
should the sample size be for the confidence interval endpoints deviating less than
e=2%?

A: In general, we must apply the following condition:

2
Zq_ Zy_
FranNPl ,,Z[MJ. 317

Jn &

In the present case, we must have n > 1628. As with the estimation of a mean, n
grows with the square of 1/&. As a matter of fact, assuming the worst case situation
for o, as we did above, the following approximate formula for 95% confidence
level holds: nS (1/¢)”.

0

Confidence intervals for proportions, and lower bounds on # achieving a desired
deviation in proportion estimation, can be computed with Tools.x1s.

Interval estimation of a proportion can be carried out with SPSS, STATISTICA,
MATLAB and R in the same way as we did with means. The only preliminary step
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is to convert the variable being analysed into a Bernoulli type variable, i.e., a
binary variable with 1 coding the “success” event, and 0 the “failure” event. As a
matter of fact, a dataset xi, ..., x,, with k successes, represented as a sequence of
values of Bernoulli random variables (therefore, with £ ones and n — k zeros), has
the following sample mean and sample variance:

f:z;llxi/n:k/nzﬁ.

e Z:;l(xi -p)’ _ np* —2kp+k _.n
n—1 n—1 n-1

In Example 3.5, variable DISPL with values 1 for “Yes” and 2 for “No” is
converted into a Bernoulli type variable, DISPLB, e.g. by using the formula
DISPLB = 2 — DISPL. Now, the “success” event (“Yes”) is coded 1, and the
complement is coded 0. In SPSS and STATISTICA we can also use “if” constructs
to build the Bernoulli variables. This is especially useful if one wants to create
Bernoulli variables from continuous type variables. SPSS and STATISTICA also
have a Rank command that can be useful for the purpose of creating Bernoulli
variables.

Commands 3.4. MATLAB and R commands for obtaining confidence intervals of
proportions.

MATLAB ciprop (n0,nl,alpha)

R ciprop (n0,nl,alpha)

There are no specific functions to compute confidence intervals of proportions in
MATLAB and R. However, we provide for MATLAB and R the function
ciprop (n0,nl, alpha) for that purpose (see Appendix F). For Example 3.5
we obtain in R:

> ciprop(95,37,0.05)
[,1]
[1,] 0.2803030

[2,] 0.2036817
[3,] 0.3569244 [

3.4 Estimating a Variance

The point estimate of a variance was presented in section 2.3.2. This estimate is
also discussed in some detail in Appendix C. We will address the problem of
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establishing a confidence interval for the variance only in the case that the
population distribution follows a normal law. Then, the sampling distribution of
the variance follows a chi-square law, namely (see Property 4 of section B.2.7):

-1
(n 2)v ~ 22 3.18
(o2

The chi-square distribution is asymmetrical; therefore, in order to establish a
two-sided confidence interval, we have to use two different values for the lower
and upper percentiles. For the 95% confidence interval and df = n —1, we have:

df x

2 v 2
Xar0025 = o7 < Xar0975 > 3.19

where ij,a means the « percentile of the chi-square distribution with df degrees
of freedom. Therefore:

& <cl< # 3.20
X df 0975 X df 0.025
Example 3.7

Q: Consider the distribution of the average perimeter of defects, variable PRM, of
class 2 in the Cork Stoppers’ dataset. Compute the 95% confidence interval
of its standard deviation.

A: The assumption of normality for the PRM variable is acceptable, as will be
explained in Chapter 5. There are, in class 2, n = 50 cases with sample standard
variance v = 0.7168. The chi-square percentiles are:

2 2
X19.0025 =31.56;  ¥39 0975 =70.22.
Therefore:

Bxv 2 A 050<c2<1.11 = 0.71<c<1.06.
7022 3156

0

Confidence intervals for the variance are computed by SPSS, STATISTICA,
MATLAB and R as part of hypothesis tests presented in the following chapter.
They can be computed, however, either using Tools.x1s or, in the case of the
variance alone, using the MATLAB command normf it mentioned in section 3.2.
We also provide the MATLAB and R function civar (v,n,alpha) for
computing confidence intervals of a variance (see Appendix F).
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Commands 3.5. MATLAB and R commands for obtaining confidence intervals of
a variance.

MATLAB civar(v,n,alpha)

R civar (v,n,alpha)

As an illustration we show the application of the R function civar to the Example
3.7

> civar(0.7168,50,0.05)
[, 1]
[1,] 0.5001708
[2,] 1.1130817 [ |

3.5 Estimating a Variance Ratio

In statistical tests of hypotheses, concerning more than one distribution, one often
needs to compare the respective distribution variances. We now present the topic
of estimating a confidence interval for the ratio of two variances, o2 and 622, based
on sample variances, v; and v,, computed on datasets of size n; and n,
respectively. We assume normal distributions for the two populations from where
the data samples were obtained. We use the sampling distribution of the ratio:

/ 2
V179 321

2’
vy, /o)

which has the F), _;, _, distribution as mentioned in the section B.2.9 (Property 6).
Thus, the 1-a two-sided confidence interval of the variance ratio can be
computed as:

2 2
v, /o 1 % o 1 v
F <1t "lL<F = RANP N ge—— 3.22
al? 2 1-a/2 F 2 F >
vy /05 l-a/2 V2 O; al2 V2

where we dropped the mention of the degrees of freedom from the F percentiles in
order to simplify notation. Note that due to the asymmetry of the F distribution,
one needs to compute two different percentiles in two-sided interval estimation.

The confidence intervals for the variance ratio are computed by SPSS,
STATISTICA, MATLAB and R as part of hypothesis tests presented in the
following chapter. We also provide the MATLAB and R function
civar2(vl,nl,v2,n2,alpha) for computing confidence intervals of a
variance ratio (see Appendix F).
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Example 3.8

Q: Consider the distribution of variable ASTV (percentage of abnormal beat-to-
beat variability), for the first two classes of the cardiotocographic data (CTG). The
respective dataset histograms are shown in Figure 3.6. Class 1 corresponds to
“calm sleep” and class 2 to “rapid-eye-movement sleep”. The assumption of
normality for both distributions of ASTV is acceptable (to be discussed in Chapter
5). Determine and interpret the 95% one-sided confidence interval, [r, oof, of the
ASTYV standard deviation ratio for the two classes.

A: There are n; = 384 cases of class 1, and n, = 579 cases of class 2, with sample
standard deviations s, = 15.14 and s, = 13.58, respectively. The 95% F percentile,
computed by any of the means explained in section 3.2, is:

Fg3 578005 = 1.164.

Therefore:

2
c c

;V_lga_lz S S P W Y5

Fotmtica V2 03 V383578005 52 0, o,

Thus, with 95% confidence level the standard deviation of class 1 is higher than

the standard deviation of class 2 by at least 3%.
0
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Figure 3.6. Histograms obtained with STATISTICA of the variable ASTV
(percentage of abnormal beat-to-beat variability), for the first two classes of the
cardiotocographic data, with superimposed normal fit.

When using F percentiles the following results can be useful:
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L Fy, ani-a =1/ Fy g4, .- For instance, if in Example 3.8 we wished to
compute a 95% one- s1ded confidence interval, [0, 7], for o»/o1, we would
then have to compute Fizg 363 005 = 1/ F383.578,095 = 0.859.

1i. Fdf . de o/ df . Note that, in formula 3.21, with n, — oo the sample
variance v, converges to the true variance, $5% yielding, therefore, the
single-variance situation described by the chi-square distribution. In this
sense the chi-square distribution can be viewed as a limiting case of the F
distribution.

Commands 3.6. MATLAB and R commands for obtaining confidence intervals of
a variance ratio.

MATLAB civar2(vl,nl,v2,n2,alpha)

R civar2(vl,nl,v2,n2,alpha)

The MATLAB and R function civar2 returns a vector with three elements. The
first element is the variance ratio, the other two are the confidence interval limits.
As an illustration we show the application of the R function civar2 to the
Example 3.8:

> civar2(15.1472,384,13.5872,579,0.10)
[,1]

[1,] 1.242946

[2,] 1.067629

[3,] 1.451063

Note that since we are computing a one-sided confidence interval we need to
specify a double alpha value. The obtained lower limit, 1.068, is the square of

1.033, therefore in close agreement to the value we found in Example 3.8.
[ ]

3.6 Bootstrap Estimation

In the previous sections we made use of some assumptions regarding the sampling
distributions of data parameters. For instance, we assumed the sample distribution
of the variance to be a chi-square distribution in the case that the normal
distribution assumption of the original data holds. Likewise for the F' sampling
distribution of the variance ratio. The exception is the distribution of the arithmetic
mean which is always well approximated by the normal distribution, independently
of the distribution law of the original data, whenever the data size is large enough.
This is a result of the Central Limit theorem. However, no Central Limit theorem
exists for parameters such as the variance, the median or the trimmed mean.
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The bootstrap idea (Efron, 1979) is to mimic the sampling distribution of the
statistic of interest through the use of many resamples with replacement of the
original sample. In the present chapter we will restrict ourselves to illustrating the
idea when applied to the computation of confidence intervals (bootstrap techniques
cover a vaster area than merely confidence interval computation). Let us then
illustrate the bootstrap computation of confidence intervals by referring it to the
mean of the n = 50 PRT measurements for Class=1 of the cork stoppers’
dataset (as in Example 3.1). The histogram of these data is shown in Figure 3.7a.

Denoting by X the associated random variable, we compute the sample mean of
the data as x= 365.0. The sample standard deviation of X, the standard error, is
SE =s/+/n =15.6. Since the dataset size, n, is not that large one may have some
suspicion concerning the bias of this estimate and the accuracy of the confidence
interval based on the normality assumption.

Let us now consider extracting at random and with replacement m = 1000
samples of size n = 50 from the original dataset. These resamples are called
bootstrap samples. Let us further consider that for each bootstrap sample we
compute its mean x . Figure 3.7b shows the histogram of the bootstrap distribution
of the means. We see that this histogram looks similar to the normal distribution.
As a matter of fact the bootstrap distribution of a statistic usually mimics the
sample distribution of that statistic, which in this case happens to be normal.

Let us denote each bootstrap mean by x . The mean and standard deviation of
the 1000 bootstrap means are computed as:

— | « = 1 _x
Xboot :;Zx :m X :3651,

1 % 2
S¥,boot :\/mZ(x _xboot) =1547,

where the summations extend to the m = 1000 bootstrap samples.

We see that the mean of the bootstrap distribution is quite close to the original
sample mean. There is a bias of only Xy ,,—x = 0.1. It can be shown that this is
usually the size of the bias that can be expected between x and the true population
mean, g This property is not an exclusive of the bootstrap distribution of the mean.
It applies to other statistics as well.

The sample standard deviation of the bootstrap distribution, called bootstrap
standard error and denoted SEy,q, is also quite close to the theory-based estimate
SE =s/ x/; . We could now use SEy, to compute a confidence interval for the
mean. In the case of the mean there is not much advantage in doing so (we should
get practically the same result as in Example 3.1), since we have the Central Limit
theorem in which to base our confidence interval computations. The good thing

* We should more rigorously say “one possible histogram”, since different histograms are
possible depending on the resampling process. For n and m sufficiently large they are,
however, close to each other.
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about the bootstrap technique is that it also often works for other statistics for
which no theory on sampling distribution is available. As a matter of fact, the
bootstrap distribution usually — for a not too small original sample size, say n > 50
— has the same shape and spread as the original sampling distribution, but is
centred at the original statistic value rather than the true parameter value.

X X*

] 0
a 100 200 300 400 500 600 70 b 300 320 340 360 380 400 42(

Figure 3.7. a) Histogram of the PRT data; b) Histogram of the bootstrap means.

Suppose that the bootstrap distribution of a statistic, w, is approximately normal
and that the bootstrap estimate of bias is small. We then compute a two-sided
bootstrap confidence interval at « risk, for the parameter that corresponds to the
statistic, by the following formula:

wt tnfl,lfa /2 SEboot

We may use the percentiles of the normal distribution, instead of the Student’s ¢
distribution, whenever m is very large.

The question naturally arises on how large must the number of bootstrap
samples be in order to obtain a reliable bootstrap distribution with reliable values
of SEpo0c? A good rule of thumb for m, based on theoretical and practical evidence,
is to choose m > 200.

The following examples illustrate the computation of confidence intervals using
the bootstrap technique.

Example 3.9

Q: Consider the percentage of lime, CaO, in the composition of clays, a sample of
which constitutes the Clays’ dataset. Compute the confidence interval at 95%
level of the two-tail 5% trimmed mean and discuss the results. (The two-tail 5%
trimmed mean disregards 10% of the cases, 5% at each of the tails.)
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A: The histogram and box plot of the CaO data (n = 94 cases) are shown in Figure
3.8. Denoting the associated random variable by X we compute x = 0.28.

We observe in the box plot a considerable number of “outliers” which leads us
to mistrust the sample mean as a location measure and to use the two-tail 5%
trimmed mean computed as (see Commands 2.7): x5 =w = 0.2755.

30

250 — 1 0.45}

A A

20 1 _—

021 ‘

0 |
a 01 015 02 02 03 035 04 045 OF b ca0

Figure 3.8. Histogram (a) and box plot (b) of the CaO data.
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Figure 3.9. Histogram of the bootstrap distribution of the two-tail 5% trimmed
mean of the CaO data (1000 resamples).

We now proceed to computing the bootstrap distribution with m = 1000
resamples. Figure 3.9 shows the histogram of the bootstrap distribution. It is
clearly visible that it is well approximated by the normal distribution (methods not
relying on visual inspection are described in section 5.1). From the bootstrap
distribution we compute:

Whoot = 0.2764
SEpoot = 0.0093



3.6 Bootstrap Estimation 103

The bias Wyeer — w = 0.2764 — 0.2755 = 0.0009 is quite small (less than 10% of
the standard deviation). We therefore compute the bootstrap confidence interval of
the trimmed mean as:

W g3 0975 SE ooy = 02755 + 1.9858x0.0093 = 0.276 + 0.018

Example 3.10

Q: Compute the confidence interval at 95% level of the standard deviation for the
data of the previous example.

A: The standard deviation of the original sample is s = w = 0.086. The histogram of
the bootstrap distribution of the standard deviation with m = 1000 resamples is
shown in Figure 3.10. This empirical distribution is well approximated by the
normal distribution. We compute:

Whoot = 0.0854
SEpo0t = 0.0070

The bias Wyt —w = 0.0854 — 0.086 = —0.0006 is quite small (less than 10% of
the standard deviation). We therefore compute the bootstrap confidence interval of

the standard deviation as:

W L3975 SEpoor = 0.086 % 1.9858x0.007 = 0.086 + 0.014
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Figure 3.10. Histogram of the bootstrap distribution of the standard deviation of
the CaO data (1000 resamples).

Example 3.11

Q: Consider the variable ART (total area of defects) of the cork stoppers’
dataset. Using the bootstrap method compute the confidence interval at 95% level
of its median.
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A: The histogram and box plot of the ART data (n = 150 cases) are shown in
Figure 3.11. The sample median and sample mean of ART are med = w = 263 and
x = 324, respectively. The distribution of ART is clearly right skewed; hence, the
mean is substantially larger than the median (almost one and half times the
standard deviation). The histogram of the bootstrap distribution of the median with

m = 1000 resamples is shown in Figure 3.12. We compute:

Whoot = 266.1210
SEvoot = 20.4335

The bias Wyt — W = 266 — 263 = 3 is quite small (less than 7% of the standard
deviation). We therefore compute the bootstrap confidence interval of the median

as:

W 40,0075 E poo = 263 + 1.976x20.4335 = 263 + 40
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Figure 3.11. Histogram (a) and box plot (b) of the ART data.

Figure 3.12. Histogram of the bootstrap distribution of the median of the ART data

(1000 resamples).
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In the above Example 3.11 we observe in Figure 3.12 a histogram that doesn’t
look to be well approximated by the normal distribution. As a matter of fact any
goodness of fit test described in section 5.1 will reject the normality hypothesis.
This is a common difficulty when estimating bootstrap confidence intervals for the
median. An explanation of the causes of this difficulty can be found e.g. in
(Hesterberg T et al., 2003). This difficulty is even more severe when the data size n
is small (see Exercise 3.20). Nevertheless, for data sizes larger then 100 cases, say,
and for a large number of resamples, one can still rely on bootstrap estimates of the
median as in Example 3.11.

Example 3.12

Q: Consider the variables AI203 and K20 of the Clays’ dataset (n = 94 cases).
Using the bootstrap method compute the confidence interval at 5% level of their
Pearson correlation.

A: The sample Pearson correlation of AI203 and K20 is r = w = 0.6922. The
histogram of the bootstrap distribution of the Pearson correlation with m = 1000
resamples is shown in Figure 3.13. It is well approximated by the normal
distribution. From the bootstrap distribution we compute:

Whoot = 0.6950
SEpoot = 0.0719

The bias Wyt —w = 0.6950 — 0.6922 = 0.0028 is quite small (about 0.4% of the

correlation value). We therefore compute the bootstrap confidence interval of the
Pearson correlation as:

W3 0975 SE poor = 0.6922 + 1.9858x0.0719 = 0.69 + 0.14

300

250

200

150

100

50

wH

0
045 05 055 06 065 07 075 08 08 09 009

Figure 3.13. Histogram of the bootstrap distribution of the Pearson correlation
between the variables AI203 and K20 of the Clays ‘ dataset (1000 resamples).
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We draw the reader’s attention to the fact that when generating bootstrap
samples of associated variables, as in the above Example 3.12, these have to be
generated by drawing cases at random with replacement (and not the variables
individually), therefore preserving the association of the variables involved.

Commands 3.7. MATLAB and R commands for obtaining bootstrap distributions.

MATLAB bootstrp(m, 'statistic’, argl, arg2,...)

R boot (x, statistic, m, stype=“i”",...)

SPSS and STATISTICA don’t have menu options for obtaining bootstrap
distributions (although SPSS has a bootstrap macro to be used in its Output
Management System and STATISTICA has a bootstrapping facility built into its
Structural Equation Modelling module).

The bootstrap function of MATLAB can be used directly with one of
MATLAB’s statistical functions, followed by its arguments. For instance, the
bootstrap distribution of Example 3.9 can be obtained with:

>> b = bootstrp (1000, 'trimmean’,cao,10);

Notice the name of the statistical function written as a string (the function
trimmean is indicated in Commands 2.7). The function call returns the vector b
with the 1000 bootstrap replicates of the trimmed mean from where one can obtain
the histogram and other statistics.

Let us now consider Example 3.12. Assuming that columns 7 and 13 of the
clays’ matrix represent the variables A1203 and K2O, respectively, one obtains
the bootstrap distribution with:

>> b=bootstrp (1000, 'corrcoef’,clays(:,7),clays(:,13))

The corrcoef function (mentioned in Commands 2.9) generates a correlation
matrix. Specifically, corrcoef (clays(:,7), clays(:,13)) produces:

ans =
1.0000 0.6922
0.6922 1.0000

As a consequence each row of the b matrix contains in this case the correlation
matrix values of one bootstrap sample. For instance:

b =
1.0000 0.6956 0.6956 1.0000
1.0000 0.7019 0.7019 1.0000

Hence, one may obtain the histogram and the bootstrap statistics using b (: , 2)
orb(:,3).
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In order to obtain bootstrap distributions with R one must first install the boot
package with 1ibrary (boot). One can check if the package is installed with
the search () function (see section 1.7.2.2).

The boot function of the boot package will generate m bootstrap replicates of
a statistical function, denoted statistic, passed (its name) as argument.
However, this function should have as second argument a vector of indices,
frequencies or weights. In our applications we will use a vector of indices, which
corresponds to setting the stype argument to its default value, stype="i".
Since it is the default value we really don’t need to mention it when calling boot.
Anyway, the need to have the mentioned second argument obliges one to write the
code of the statistical function. Let us consider Example 3.10. Supposing the
clays data frame has been created and attached, it would be solved in R in the
following way:

> sdboot <- function(x,i)sd(x[i])
> b <- boot (CaO, sdboot,1000)

The first line defines the function sdboot with two arguments. The first
argument is the data. The second argument is the vector of indices which will be
used to store the index information of the bootstrap samples. The function itself
computes the standard deviation of those data elements whose indices are in the
index vector 1 (see the last paragraph of section 2.1.2.4).

The boot function returns a so-called bootstrap object, denoted above as b. By
listing b one may obtain:

Bootstrap Statistics
original bias std. error
tl* 0.08601075 -0.00082119 0.007099508

which agrees fairly well with the values computed with MATLAB in Example
3.10. One of the attributes of the bootstrap object is the vector with the bootstrap
replicates, denoted t. The histogram of the bootstrap distribution can therefore be
obtained with:

> hist (bs$t)

Exercises

3.1 Consider the 1-¢; and 1—-¢, confidence intervals of a given statistic with 1—-¢; > 1-a,.
Why is the confidence interval for 1-¢; always larger than or equal to the interval for
1—a2?

3.2 Consider the measurements of bottle bottoms of the Moulds dataset. Determine the
95% confidence interval of the mean and the x-charts of the three variables RC, CG
and EG. Taking into account the x-chart, discuss whether the 95% confidence interval
of the RC mean can be considered a reliable estimate.
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3.3 Compute the 95% confidence interval of the mean and of the standard deviation of the
RC variable of the previous exercise, for the samples constituted by the first 50 cases
and by the last 50 cases. Comment on the results.

3.4 Consider the ASTV and ALTV variables of the CTG dataset. Assume that only a
15-case random sample is available for these variables. Can one expect to obtain
reliable estimates of the 95% confidence interval of the mean of these variables using
the Student’s ¢ distribution applied to those samples? Why? (Inspect the variable
histograms.)

3.5 Obtain a 15-case random sample of the ALTV variable of the previous exercise (see
Commands 3.2). Compute the respective 95% confidence interval assuming a normal
and an exponential fit to the data and compare the results. The exponential fit can be
performed in MATLAB with the function expfit.

3.6 Compute the 90% confidence interval of the ASTV and ALTV variables of the
previous Exercise 3.4 for 10 random samples of 20 cases and determine how many
times the confidence interval contains the mean value determined for the whole 2126
case set. In a long run of these 20-case experiments, which variable is expected to yield
a higher percentage of intervals containing the whole-set mean?

3.7 Compute the mean with the 95% confidence interval of variable ART of the Cork
Stoppers dataset. Perform the same calculations on variable LOGART = In(ART).
Apply the Gauss’ approximation formula of A.6.1 in order to compare the results.
Which point estimates and confidence intervals are more reliable? Why?

3.8 Consider the PERIM variable of the Breast Tissue dataset. What is the tolerance
of the PERIM mean with 95% confidence for the carcinoma class? How many cases of
the carcinoma class should one have available in order to reduce that tolerance to 2%?

3.9 Imagine that when analysing the TW="Team Work” variable of the Metal Firms
dataset, someone stated that the team-work is at least good (score 4) for 3/8 = 37.5% of
the metallurgic firms. Does this statement deserve any credit? (Compute the 95%
confidence interval of this estimate.)

3.10 Consider the Culture dataset. Determine the 95% confidence interval of the
proportion of boroughs spending more than 20% of the budget for musical activities.

3.11 Using the CTG dataset, determine the percentage of foetal heart rate cases that have
abnormal short term variability of the heart rate more than 50% of the time, during
calm sleep (CLASS A). Also, determine the 95% confidence interval of that percentage
and how many cases should be available in order to obtain an interval estimate with 1%
tolerance.

3.12 A proportion p was estimated in 225 cases. What are the approximate worst-case 95%
confidence interval limits of the proportion?

3.13 Redo Exercises 3.2 and 3.3 for the 99% confidence interval of the standard deviation.
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3.14 Consider the CTG dataset. Compute the 95% and 99% confidence intervals of the
standard deviation of the ASTV variable. Are the confidence interval limits equally
away from the sample mean? Why?

3.15 Consider the computation of the confidence interval for the standard deviation
performed in Example 3.6. How many cases should one have available in order to
obtain confidence interval limits deviating less than 5% of the point estimate?

3.16 In order to represent the area values of the cork defects in a convenient measurement
unit, the ART values of the Cork Stoppers dataset have been multiplied by 5 and
stored into variable ARTS. Using the point estimates and 95% confidence intervals of
the mean and the standard deviation of ART, determine the respective statistics for
ARTS.

3.17 Consider the ART, ARM and N variables of the Cork Stoppers’ dataset. Since
ARM = ART/N, why isn’t the point estimate of the ART mean equal to the ratio of the
point estimates of the ART and N means? (See properties of the mean in A.6.1.)

3.18 Redo Example 3.8 for the classes C = “calm vigilance” and D = “active vigilance” of
the CTG dataset.

3.19 Using the bootstrap technique compute confidence intervals at 95% level of the mean
and standard deviation for the ART data of Example 3.11.

3.20 Determine histograms of the bootstrap distribution of the median of the river Cavado
flow rate (see Flow Rate dataset). Explain why it is unreasonable to set confidence
intervals based on these histograms.

3.21 Using the bootstrap technique compute confidence intervals at 95% level of the mean
and the two-tail 5% trimmed mean for the BRISA data of the Stock Exchange
dataset. Compare both results.

3.22 Using the bootstrap technique compute confidence intervals at 95% level of the
Pearson correlation between variables CaO and MgO of the Clays’ dataset.



4 Parametric Tests of Hypotheses

In statistical data analysis an important objective is the capability of making
decisions about population distributions and statistics based on samples. In order to
make such decisions a hypothesis is formulated, e.g. “is one manufacture method
better than another?”, and tested using an appropriate methodology. Tests of
hypotheses are an essential item in many scientific studies. In the present chapter
we describe the most fundamental tests of hypotheses, assuming that the random
variable distributions are known — the so-called parametric tests. We will first,
however, present a few important notions in section 4.1 that apply to parametric
and to non-parametric tests alike.

4.1 Hypothesis Test Procedure

Any hypothesis test procedure starts with the formulation of an interesting
hypothesis concerning the distribution of a certain random variable in the
population. As a result of the test we obtain a decision rule, which allows us to
either reject or accept the hypothesis with a certain probability of error, referred to
as the level of significance of the test.

In order to illustrate the basic steps of the test procedure, let us consider the
following example. Two methods of manufacturing a special type of drill,
respectively A and B, are characterised by the following average lifetime (in
continuous work without failure): g, = 1100 hours and gz = 1300 hours. Both
methods have an equal standard deviation of the lifetime, o= 270 hours. A new
manufacturer of the same type of drills claims that his brand is of a quality
identical to the best one, B, and with lower manufacture costs. In order to assess
this claim, a sample of 12 drills of the new brand were tested and yielded an
average lifetime of x = 1260 hours. The interesting hypothesis to be analysed is
that there is no difference between the new brand and the old brand B. We call it
the null hypothesis and represent it by H,. Denoting by u the average lifetime of
the new brand, we then formalise the test as:

Hy: p=ug=1300.
Hy: p=u,=1100.

Hypothesis H; is a so-called alternative hypothesis. There can be many
alternative hypotheses, corresponding to u#ug. However, for the time being, we
assume that z =g, is the only interesting alternative hypothesis. We also assume
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that the lifetime of the drills, X, for all the brands, follows a normal distribution
with the same standard deviation'. We know, therefore, that the sampling
distribution of X is also normal with the following standard error (see sections 3.2
and A.8.4):

o-=-2_-7794,

X \/E

The sampling distributions (pdf’s) corresponding to both hypotheses are shown
in Figure 4.1. We seek a procedure to decide whether the 12-drill-sample provides
statistically significant evidence leading to the acceptance of the null hypothesis
Hy. Given the symmetry of the distributions, a “common sense” approach would
lead us to establish a decision threshold, X, , halfway between u, and us, i.e.
x,=1200 hours, and decide H, if x >1200, decide H; if x <1200, and arbitrarily if
x=1200.

=1

1100 B 1300

accept H, < » accept H

Figure 4.1. Sampling distribution (pdf) of X for the null and the alternative
hypotheses.

Let us consider the four possible situations according to the truth of the null
hypothesis and the conclusion drawn from the test, as shown in Figure 4.2. For the
decision threshold x, =1200 shown in Figure 4.1, we then have:

a=f=P(Z<(1200~1300)/77.94) = N, (~1.283) = 0.10,

where Z is a random varable with standardised normal distribution.

l Strictly speaking the lifetime of the drills cannot follow a normal distribution, since X > 0.
Also, as discussed in chapter 9, lifetime distributions are usually skewed. We assume,
however, in this example, the distribution to be well approximated by the normal law.



4.1 Hypothesis Test Procedure 113

Values of a normal random variable, standardised by subtracting the mean and
dividing by the standard deviation, are called z-scores. In this case, the test errors «

and S are evaluated using the z-score, —1.283.
In hypothesis tests, one is usually interested in that the probability of wrongly

rejecting the null hypothesis is low; in other words, one wants to set a low value
for the following Type I Error:

Type I Error: a = P(H, is true and, based on the test, we reject Hy).

This is the so-called level of significance of the test. The complement, 1—¢, is
the confidence level. A popular value for the level of significance that we will use
throughout the book is & = 0.05, often given in percentage, @ = 5%. Knowing the
a percentile of the standard normal distribution, one can easily determine the
decision threshold for this level of significance:

P(Z<0.05)=-1.64 = Xx,=1300-1.64x77.94=1172.2.

Decision

Accept Accept

H, H,
H Correct Type I Error
:'? 0 Decision a
3
Y H Type II Error Correct
! ,B Decision

Figure 4.2. Types of error in hypothesis testing according to the reality and the
decision drawn from the test.

=l

woeptH, 11005, 1300

. . < » accept
critical region ptH,

Figure 4.3. The critical region for a significance level of o =5%.
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Figure 4.3 shows the situation for this new decision threshold, which delimits
the so-called critical region of the test, the region corresponding to a Type I Error.
Since the computed sample mean for the new brand of drills, x = 1260, falls in the
non-critical region, we accept the null hypothesis at that level of significance (5%).
In adopting this procedure, we expect that using it in a long run of sample-based
tests, under identical conditions, we would be erroneously rejecting Hy about 5% of
the times.

In general, let us denote by C the critical region. If, as it happens in Figure 4.1
or 43, x ¢ C, we may say that “we accept the null hypothesis at that level of
significance”; otherwise, we reject it.

Notice, however, that there is a non-null probability that a value as large as

x could be obtained by type A drills, as expressed by the non-null 8. Also, when
we consider a wider range of alternative hypotheses, for instance <, there is
always a possibility that a brand of drills with mean lifetime inferior to 3 is,
however, sufficiently close to yield with high probability sample means falling in
the non-critical region. For these reasons, it is often advisable to adopt a
conservative attitude stating that “there is no evidence to reject the null hypothesis
at the « level of significance”.

Any test procedure assessing whether or not Hy should be rejected can be
summarised as follows:

1. Choose a suitable test statistic t,(x), dependent on the n-dimensional sample
X = [xl,xz,...,xn]’, considered a value of a random variable, T = ¢,(X),
where X denotes the n-dimensional random variable associated to the

sampling process.

2. Choose a level of significance « and use it together with the sampling
distribution of 7 in order to determine the critical region C for Hy.

3. Test decision: If ,(x)e C, then reject Hy, otherwise do not reject Hy. In the
first case, the test is said to be significant (at level @); in the second case, the
test is non-significant.

Frequently, instead of determining the critical region, we may determine the
probability of obtaining a deviation of the statistical value corresponding to Hy at
least as large as the observed one, i.e., p = P(T > t,(x)) or p = P(T < t,(x)). The
probability p is the so-called observed level of significance. The value of p is then
compared with a pre-set level of significance. This is the procedure used by
statistical software products. For the previous example, the test statistic is:

mean(x)—1300 x—-1300
t12 (X) = = s
Ox Ox

which, given the normality of X, has a sampling distribution identical to the
standard normal distribution, i.e., 7= Z ~ Ny;. A deviation at least as large as the
observed one in the left tail of the distribution has the observed significance:
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p=P(Z<(X-pup) og)=P(Z<(1260-1300)/77.94) = 0.304.

If we are basing our conclusions on a 5% level of significance, and since
p > 0.05, we then have no evidence to reject the null hypothesis.

Note that until now we have assumed that we knew the true value of the
standard deviation. This, however, is seldom the case. As already discussed in the
previous chapter, when using the sample standard deviation — maintaining the
assumption of normality of the random variable — one must use the Student’s ¢
distribution. This is the usual procedure, also followed by statistical software
products, where these parametric tests of means are called # fests.

4.2 Test Errors and Test Power

As described in the previous section, any decision derived from hypothesis testing
has, in general, a certain degree of uncertainty. For instance, in the drill example
there is always a chance that the null hypothesis is incorrectly rejected. Suppose
that a sample from the good quality of drills has x =1190 hours. Then, as can be
seen in Figure 4.1, we would incorrectly reject the null hypothesis at a 10%
significance level. However, we would not reject the null hypothesis at a 5% level,
as shown in Figure 4.3. In general, by lowering the chosen level of significance,
typically 0.1, 0.05 or 0.01, we decrease the Type I Error:

Type I Error: &= P(H, is true and, based on the test, we reject Hy).

The price to be paid for the decrease of the Type I Error is the increase of the
Type II Error, defined as:

Type 11 Error: = P(H, is false and, based on the test, we accept Hy).

For instance, when in Figures 4.1 and 4.3 we decreased « from 0.10 to 0.05, the
value of fincreased from 0.10 to:

B=P(Z>(F, —uy) og)=P(Z>(1172.8-1100)/77.94) = 0.177 .

Note that a high value of S indicates that when the observed statistic does not
fall in the critical region there is a good chance that this is due not to the
verification of the null hypothesis itself but, instead, to the verification of a
sufficiently close alternative hypothesis. Figure 4.4 shows that, for the same level
of significance, ¢, as the alternative hypothesis approaches the null hypothesis, the
value of f increases, reflecting a decreased protection against an alternative
hypothesis.

The degree of protection against alternative hypotheses is usually measured by
the so-called power of the test, 1, which measures the probability of rejecting the
null hypothesis when it is false (and thus should be rejected). The values of the
power for several alternative values of i, using the computed values of £ as
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shown above, are displayed in Table 4.1. The respective power curve, also called
operational characteristic of the test, is shown with a solid line in Figure 4.5. Note
that the power for the alternative hypothesis g, = 1100 is somewhat higher than
80%. This is usually considered a lower limit of protection that one must have
against alternative hypothesis.

=1

accept H1 P 1100 | 1300

critical region ~

» accept H,

Figure 4.4. Increase of the Type II Error, S, for fixed &, when the alternative
hypothesis approaches the null hypothesis.

Table 4.1. Type II Error and power for several alternative hypotheses of the drill
example, with n =12 and a= 0.05.

Ha z=(Ua—Xg05) 05 p 1-p
1100.0 0.93 0.18 0.82
1172.2 0.00 0.50 0.50
1200.0 —-0.36 0.64 0.36
1250.0 —-0.99 0.84 0.16
1300.0 —-1.64 0.95 0.05

In general, for a given test and sample size, n, there is always a trade-off
between either decreasing « or decreasing f. In order to increase the power of a
test for a fixed level of significance, one is compelled to increase the sample size.
For the drill example, let us assume that the sample size increased twofold, n = 24.
We now have a reduction of +/2 of the true standard deviation of the sample mean,
i.e., o3 =55.11. The distributions corresponding to the hypotheses are now more
peaked; informally speaking, the hypotheses are better separated, allowing a
smaller Type II Error for the same level of significance. Let us confirm this. The

new decision threshold is now:
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X, =pp—1.64x05 =1300-1.64x55.11=1209.6,

a

which, compared with the previous value, is less deviated from up. The value of S
for 14 =1100 is now:

B=P(Z>(%,—uy) o5)=PZ>(1209.6-1100)/55.11) = 0.023.

Therefore, the power of the test improved substantially to 98%. Table 4.2 lists
values of the power for several alternative hypotheses. The new power curve is
shown with a dotted line in Figure 4.5. For increasing values of the sample size n,
the power curve becomes steeper, allowing a higher degree of protection against
alternative hypotheses for a small deviation from the null hypothesis.

Power =1-4
1= -
i\
n=24 ".
rad “\
n=12 '
- .
o ¥

" 1100 | 1200 1300 (z45)
Figure 4.5. Power curve for the drill example, with &= 0.05 and two values of the

sample size n.

Table 4.2. Type Il Error and power for several alternative hypotheses of the drill
example, with n =24 and o= 0.05.

Ha z=(ua—Xg05) 05 yij 1-p
1100 1.99 0.02 0.98
1150 1.08 0.14 0.86
1200 0.17 0.43 0.57
1250 -0.73 0.77 0.23
1300 -1.64 0.95 0.05

STATISTICA and SPSS have specific modules — Power Analysis and
SamplePower, respectively — for performing power analysis for several types of
tests. The R stats package also has a few functions for power calculations.
Figure 4.6 illustrates the power curve obtained with STATISTICA for the last
example. The power is displayed in terms of the standardised effect, E;, which
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measures the deviation of the alternative hypothesis from the null hypothesis,
normalised by the standard deviation, as follows:

_Hp T Hy
pa—

E 4.1

N

For instance, for n = 24 the protection against x, = 1100 corresponds to a
standardised effect of (1300 — 1100)/260 = 0.74 and the power graph of Figure 4.6
indicates a value of about 0.94 for E; = 0.74. The difference from the previous
value of 0.98 in Table 4.2 is due to the fact that, as already mentioned,
STATISTICA uses the Student’s ¢ distribution.

Power

Standardized Effect (Es)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.6. Power curve obtained with STATISTICA for the drill example with
a=0.05 and n =24.

In the work of Cohen (Cohen, 1983), some guidance is provided on how to
qualify the standardised effect:

Small effect size: E,=0.2.
Medium effect size:  E,=0.5.
Large effect size: E,=0.2.8.

In the example we have been discussing, we are in presence of a large effect
size. As the effect size becomes smaller, one needs a larger sample size in order to
obtain a reasonable power. For instance, imagine that the alternative hypothesis
had precisely the same value as the sample mean, i.e., £4=1260. In this case, the
standardised effect is very small, £, = 0.148. For this reason, we obtain very small
values of the power for n = 12 and n = 24 (see the power for z, =1250 in Tables
4.1 and 4.2). In order to “resolve” such close values (1260 and 1300) with low
errors « and f, we need, of course, a much higher sample size. Figure 4.7 shows
how the power evolves with the sample size in this example, for the fixed
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standardised effect £; = —0.148 (the curve is independent of the sign of E;). As can
be appreciated, in order for the power to increase higher than 80%, we need
n > 350.

Note that in the previous examples we have assumed alternative hypotheses that
are always at one side of the null hypothesis: mean lifetime of the lower quality of
drills. We then have a situation of one-sided or one-tail tests. We could as well
contemplate alternative hypotheses of drills with better quality than the one
corresponding to the null hypothesis. We would then have to deal with two-sided
or two-tail tests. For the drill example a two-sided test is formalised as:

Ho: p=us.
}{1: HFUR .

We will deal with two-sided tests in the following sections. For two-sided tests
the power curve is symmetric. For instance, for the drill example, the two-sided
power curve would include the reflection of the curves of Figure 4.5, around the
point corresponding to the null hypothesis, ug.

Power vs. N (Es = -0.148148, Alpha = 0.05)

2

A
Sample Size (N)

0.0

0 100 200 300 400 500 600

Figure 4.7. Evolution of the power with the sample size for the drill example,
obtained with STATISTICA, with = 0.05 and E, = —0.148.

A difficulty with tests of hypotheses is the selection of sensible values for & and f.
In practice, there are two situations in which tests of hypotheses are applied:

1. The reject-support (RS) data analysis situation

This is by far the most common situation. The data analyst states H; as his belief,
i.e., he seeks to reject Hy. In the drill example, the manufacturer of the new type of
drills would formalise the test in a RS fashion if he wanted to claim that the new
brand were better than brand A:
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H(): M S,uA:HOO
H1: M >/IA.

Figure 4.8 illustrates this one-sided, single mean test. The manufacturer is
interested in a high power. In other words, he is interested that when H; is true (his
belief) the probability of wrongly deciding H, (against his belief) is very low. In
the case of the drills, for a sample size n = 24 and o= 0.05, the power is 90% for
the alternative x=Xx, as illustrated in Figure 4.8. A power above 80% is often
considered adequate to detect a reasonable departure from the null hypothesis.

On the other hand, society is interested in a low Type I Error, i.e., it is interested
in a low probability of wrongly accepting the claim of the manufacturer when it is
false. As we can see from Figure 4.8, there is again a trade-off between a low «
and a low . A very low « could have as consequence the inability to detect a new
useful manufacturing method based on samples of reasonable size. There is a wide
consensus that & = 0.05 is an adequate value for most situations. When the sample
sizes are very large (say, above 100 for most tests), trivial departures from Hy may
be detectable with high power. In such cases, one can consider lowering the value

of a (say, ¢ =0.01).
H, H,
,6’2.50.10 ‘%/ /?

1100 1190 1260

Figure 4.8. One-sided, single mean RS test for the drill example, with o= 0.05
and n = 24. The hatched area is the critical region.

2. The accept-support (AS) data analysis situation

In this situation, the data analyst states Hy as his belief, i.e., he seeks to accept H,,.
In the drill example, the manufacturer of the new type of drills could formalise the
test in an AS fashion if his claim is that the new brand is at least better than brand
B:

Ho: ¢ = 15=1300.
Hio o <.
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Figure 4.9 illustrates this one-sided, single mean test. In the AS situation,
lowering the Type I Error favours the manufacturer.

On the other hand, society is interested in a low Type Il Error, i.e., it is
interested in a low probability of wrongly accepting the claim of the manufacturer,
Ho, when it is false. In the case of the drills, for a sample size n = 24 and a = 0.05,
the power is 17% for the alternative =X, as illustrated in Figure 4.9. This is an
unacceptable low power. Even if we relax the Type I Error to o= 0.10, the power
is still unacceptably low (29%). Therefore, in this case, although there is no
evidence supporting the rejection of the null hypothesis, there is also no evidence
to accept it either.

In the AS situation, society should demand that the test be done with a
sufficiently large sample size in order to obtain an adequate power. However,
given the omnipresent trade-off between a low « and a low g, one should not
impose a very high power because the corresponding « could then lead to the
rejection of a hypothesis that explains the data almost perfectly. Again, a power
value of at least 80% is generally adequate.

Note that the AS test situation is usually more difficult to interpret than the RS
test situation. For this reason, it is also less commonly used.

7

=l

1210 1260 1300

Figure 4.9. One-sided, single mean AS test for the drill example, with = 0.05
and n = 24. The hatched area is the critical region.

4.3 Inference on One Population

4.3.1 Testing a Mean
The purpose of the test is to assess whether or not the mean of a population, from
which the sample was randomly collected, has a certain value. This single mean

test was exemplified in the previous section 4.2. The hypotheses are:

Ho: e=pog, Hiip#p,, foratwo-sided test;



122 4 Parametric Tests of Hypotheses

Ho:pe<py, Hizpe>py or
Ho: g2 pg, Hitp<p,, foraone-sided test.

We assume that the random variable being tested has a normal distribution. We
then recall from section 3.2 that when the null hypothesis is verified, the following
random variable:

:)_(—#0
S/\/; ’

has a Student’s ¢ distribution with n — 1 degrees of freedom. We then use as the test
statistic, #,(x), the following quantity:

T 4.2

* )?—/102

_s/\/;.

When a statistic as ¢ is standardised using the estimated standard deviation
instead of the true standard deviation, it is called a studentised statistic.

For large samples, say n > 25, one could use the normal distribution instead,
since it will yield a good approximation of the Student’s ¢ distribution. Even with
small samples, we can use the normal distribution if we know the true value of the
standard deviation. That’s precisely what we have done in the preceding sections.
However, in normal practice, the true value of the standard deviation is unknown
and the test relies then on the Student’s ¢ distribution.

Assume a two-sided ¢ test. In order to determine the critical region for a level of
significance @, we compute the 1—a/2 percentile of the Student’s ¢ distribution with
df = n—1 degrees of freedom:

t

Ty =1-al2 = t41.4/2, 43

and use this percentile in order to establish the non-critical region C of the test:

C= [_tdf,l—a/za +de,1—a/2]' 4.4

Thus, the two-sided probability of C is 2(«/2) = a. The non-critical region can
also be expressed in terms of X , instead of T (formula 4.2):

C:[/uo_tdf,l—a/z s/l g tlyfi-ar S/\/;} 4.4a

Notice how the test of a mean is similar to establishing a confidence interval for
a mean.

2 . ..
We use an asterisk to denote a test statistic.
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Example 4.1

Q: Consider the Meteo (meteorological) dataset (see Appendix E). Perform the
single mean test on the variable T81, representing the maximum temperature
registered during 1981 at several weather stations in Portugal. Assume that, based
on a large number of yearly records, a “typical” year has an average maximum
temperature of 37.5°, which will be used as the test value. Also, assume that the
Meteo dataset represents a random spatial sample and that the variable T81, for
the population of an arbitrarily large number of measurements performed in the
Portuguese territory, can be described by a normal distribution.

A: The purpose of the test is to assess whether or not 1981 was a “typical” year in
regard to average maximum temperature. We then formalise the single mean test
as:

H(): /ITgl :375 .
Hi: pipg #37.5.

Table 4.3 lists the results that can be obtained either with SPSS or with
STATISTICA. The probability of obtaining a deviation from the test value, at least
as large as 39.8 — 37.5, is p = 0. Therefore, the test is significant, i.e., the sample
does provide enough evidence to reject the null hypothesis at a very low «.

Notice that Table 4.3 also displays the values of ¢, the degrees of freedom,

df=n— 1, and the standard error s/ \/; =(.548.
1]

Table 4.3. Results of the single mean ¢ test for the T81 variable, obtained with
SPSS or STATISTICA, with test value = 37.5.

Std. Test
Mean Dev. n Std. Err. Value t df P
39.8 2.739 25 0.548 37.5 4.199 24 0.0003

Example 4.2

Q: Redo previous Example 4.1, performing the test in its “canonical way”, i.e.,
determining the limits of the critical region.

A: First we determine the ¢ percentile for the set level of significance. In the

present case, using o = 0.05, we determine:

tha 0975 = 2.06.

This determination can be done by either using the ¢ distribution Tables (see
Appendix D), or the probability calculator of the STATISTICA and SPSS, or the
appropriate MATLAB or R functions (see Commands 3.3).
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Using the ¢ percentile value and the standard error, the non-critical region is the
interval [37.5 — 2.06x0.548, 37.5 + 2.06x0.548] = [36.4, 38.6]. As the sample mean
x = 39.8 falls outside this interval, we also decide the rejection of the null

hypothesis at that level of significance.
a0

Example 4.3

Q: Redo previous Example 4.2 in order to assess whether 1981 was a year with an
atypically large average maximum temperature.

A: We now perform a one-sided test, using the alternative hypothesis:

Hi: prg >375.
The critical region for this one-sided test, expressed in terms of X , is:
C=lpo+ty1 4 s/ln, .

Since 1y409s =1.71, we have C =[37.5 + 1.71x0.548, o [ = [38.4, oo [. Once
again, the sample mean falls into the critical region leading to the rejection of the
null hypothesis. Note that the alternative hypothesis gy = 39.8 in this Example
4.3 corresponds to a large effect size, E; = 0.84, to which also corresponds a high
power (larger than 95%; see Exercise 4.2).

a

Commands 4.1. SPSS, STATISTICA, MATLAB and R commands used to
perform the single mean ¢ test.

SPSS Analyze; Compare Means; One-Sample T Test

Statistics; Basic Statistics and Tables;
STATISTICA t-test, single sample

MATLAB [h,sig,ci]l=ttest(x,m,alpha,tail)
t.test(x, alternative = c("two.sided",
R n n n n
less", "greater"), mu, conf.level)

When using a statistical software product one obtains the probability of observing a
value at least as large as the computed test statistic #,(x) = ¢, assuming the null
hypothesis. This probability is the so-called observed significance. The test
decision is made comparing this observed significance with the chosen level of
significance. Note that the published value of p corresponds to the two-sided
observed significance. For instance, in the case of Table 4.3, the observed level of
significance for the one-sided test is half of the published value, i.e., p = 0.00015.
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When performing tests of hypotheses with MATLAB or R adequate percentiles
for the critical region, the so-called critical values, are also computed.

MATLAB has a specific function for the single mean ¢ test, which is shown in
its general form in Commands 4.1. The best way to understand the meaning of the
arguments is to run the previous Example 4.3 for T81. We assume that the sample
is saved in the array t81 and perform the test as follows:

» [h,sig,ci]=ttest(t81,37.5,0.05,1)

h =
1
sig =
1.5907e-004
ci =

38.8629 40.7371

The parameter tail can have the values 0, 1, —1, corresponding respectively to
the alternative hypotheses u # s, g > pgand g <y, . The value h =1 informs
us that the null hypothesis should be rejected (0 for not rejected). The variable sig
is the observed significance; its value is practically the same as the above
mentioned p. Finally, the vector c1i is the 1 - alpha confidence interval for the
true mean.

The same example is solved in R with:

> t.test (T81,alternative=(“greater”),mu=37.5)
One Sample t-test

data: T81
t = 4.1992, df = 24, p-value = 0.0001591
alternative hypothesis: true mean is greater than
37.5
95 percent confidence interval:
38.86291 Inf
sample estimates:
mean of x
39.8

The conf.level of t.test is 0.95 by default. u

4.3.2 Testing a Variance

The assessment of whether a random variable of a certain population has
dispersion smaller or higher than a given “typical” value is an often-encountered
task. Assuming that the random variable follows a normal distribution, this
assessment can be performed by a test of a hypothesis involving a single variance,
0'3 , as test value.
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Let the sample variance, computed in the n-sized sample, be s*. The test of a
single variance is based on Property 5 of B.2.7, which states a chi-square sampling
distribution for the ratio of the sample variance, s f( =s%(X), and the hypothesised
variance:

sy lo? ~ y2,/n-1). 4.5

Example 4.4

Q: Consider the meteorological dataset and assume that a typical standard
deviation for the yearly maximum temperature in the Portuguese territory is
o= 2.2°. This standard deviation reflects the spatial dispersion of maximum
temperature in that territory. Also, consider the variable T81, representing the 1981
sample of 25 measurements of maximum temperature. Is there enough evidence,
supported by the 1981 sample, leading to the conclusion that the standard deviation
in 1981 was atypically high?

A: The test is formalised as:

Hy: 0%, <4.84.
Hi:otg >4.84.

The sample variance in 1981 is s> = 7.5. Since the sample size of the example is
n =25, for a 5% level of significance we determine the percentile:

X31005 =36.42 .

Thus, y300s /24=1.52.

This determination can be done in a variety of ways, as previously mentioned
(in Commands 3.3): using the probability calculators of SPSS and STATISTICA,
using MATLAB chi2inv function or R gchisqg function, consulting tables (see
D.4 for P(y*> x) = 0.05), etc.

Since s2/c?=7.5/4.84=1.55 lies in the critical region [1.52, +oo[, we
conclude that the test is significant, i.e., there is evidence supporting the rejection
of the null hypothesis at the 5% level of significance.

a

4.4 Inference on Two Populations

4.4.1 Testing a Correlation

When analysing two associated sample variables, one is often interested in
knowing whether the sample provides enough evidence that the respective random
variables are correlated. For instance, in data classification, when two variables are
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correlated and their correlation is high, one may contemplate the possibility of
discarding one of the variables, since a highly correlated variable only conveys
redundant information.

Let p represent the true value of the Pearson correlation mentioned in section
2.3.4. The correlation test is formalised as:

Ho: p=0, H;: p#0, for a two-sided test.
For a one-sided test the alternative hypothesis is:
H;: p>0 or p<O0.

Let r represent the sample Pearson correlation when the null hypothesis is
verified and the sample size is n. Furthermore, assume that the random variables
are normally distributed. Then, the (r.v. corresponding to the) following test
statistic:

, 4.6

has a Student’s ¢ distribution with n — 2 degrees of freedom.

The Pearson correlation test can be performed as part of the computation of
correlations with SPSS and STATISTICA. It can also be performed using the
Correlation Test sheet of Tools.xls (see Appendix F) or the
Probability Calculator; Correlations of STATISTICA (see also
Commands 4.2).

Example 4.5

Q: Consider the variables PMax and T80 of the meteorological dataset (Meteo)
for the “moderate” category of precipitation (PClass = 2) as defined in 2.1.2. We
then have n = 16 measurements of the maximum precipitation and the maximum
temperature during 1980, respectively. Is there evidence, at & = 0.05, of a negative
correlation between these two variables?

A: The distributions of PMax and T80 for “moderate” precipitation are reasonably
well approximated by the normal distribution (see section 5.1). The sample
correlation is » = —0.53. Thus, the test statistic is:

r=-053,n=16 = (=-233.

Since #1405 =—1.76, the value of ¢ falls in the critical region ] —, —1.76];
therefore, the null hypothesis is rejected, i.e., there is evidence of a negative
correlation between PMax and T80 at that level of significance. Note that the

observed significance of ¢ is 0.0176, below a.
0
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Commands 4.2. SPSS, STATISTICA, MATLAB and R commands used to
perform the correlation test.

SPSS Analyze; Correlate; Bivariate

Statistics; Basic Statistics and Tables;
STATISTICA Correlation Matrices

Probability Calculator; Correlations

MATLAB [r,t,tcrit] = corrtest(x,y,alpha)

R cor.test(x, y, conf.level = 0.95, ...)

As mentioned above the Pearson correlation test can be performed as part of the
computation of correlations with SPSS and STATISTICA. Also with the
Correlations option of STATISTICA Probability Calculator.

MATLAB does not have a correlation test function. We do provide, however, a
function for that purpose, corrtest (see Appendix F). Assuming that we have
available the vector columns pmax, t80 and pclass as described in 2.1.2.3,
Example 4.5 would be solved as:

>>[r,t,tcrit]=corrtest (pmax(pclass==2),t80 (pclass==2)
,0.05)

r =
-0.5281

t =
-2.3268

tcrit =
-1.7613

The correlation test can be performed in R with the function cor.test. In
Commands 4.2 we only show the main arguments of this function. As usual, by
default conf.level=0.95. Example 4.5 would be solved as:

> cor.test(T80[Pclass==2],Pmax[Pclass==2])

Pearson’s product-moment correlation
data: T80[Pclass == 2] and Pmax[Pclass == 2]
t = -2.3268, df = 14, p-value = 0.0355
alternative hypothesis: true correlation is not equal

to 0
95 percent confidence interval:
-0.81138702 -0.04385491
sample estimates:
cor

-0.5280802 [ |
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As a final comment, we draw the reader’s attention to the fact that correlation is
by no means synonymous with causality. As a matter of fact, when two variables
X and Y are correlated, one of the following situations can happen:

— One of the variables is the cause and the other is the effect. For instance, if
X = “nr of forest fires per year” and Y = “area of burnt forest per year”, then
one usually finds that X is correlated with ¥, since Y is the effect of X

— Both variables have an indirect cause. For instance, if X = “% of persons daily
arriving at a Hospital with yellow-tainted fingers” and Y = “% of persons daily
arriving at the same Hospital with pulmonary carcinoma”, one finds that X is
correlated with Y, but neither is cause or effect. Instead, there is another variable
that is the cause of both — volume of inhaled tobacco smoke.

— The correlation is fortuitous and there is no causal link. For instance, one may
eventually find a correlation between X = “% of persons with blue eyes per
household” and Y = “% of persons preferring radio to TV per household”. It
would, however, be meaningless to infer causality between the two variables.

4.4.2 Comparing Two Variances

4.4.2.1 The F Test

In some comparison problems to be described later, one needs to decide whether or
not two independent data samples A and B, with sample variances s> and s3 and
sample sizes n, and ng, were obtained from normally distributed populations with
the same variance.

Using Property 6 of B.2.9, we know that:

2, 2
syloy
A A F -1 -1 4.7
s2/oh ATE
Under the null hypothesis “Hy: o2 = o2, we then use the test statistic:
*_ 2.2
Fo=sy/sg ~ Fy, iup1- 4.8

Note that given the asymmetry of the F distribution, one needs to compute the
two (1—a/2)-percentiles of F for a two-tailed test, and reject the null hypothesis if
the observed F value is unusually large or unusually small. Note also that for
applying the F test it is not necessary to assume that the populations have equal
means.

Example 4.6

Q: Consider the two independent samples shown in Table 4.4 of normally
distributed random variables. Test whether or not one should reject at a 5%
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significance level the hypothesis that the respective population variances are
unequal.

A: The sample variances are v; = 1.680 and v, = 0.482; therefore, F'=3.49, with an
observed one-sided significance of p = 0.027. The 0.025 and 0.975 percentiles of
Foyy are 0.26 and 3.59, respectively. Therefore, since the non-critical region
[0.26, 3.59] contains p, we do not reject the null hypothesis at the 5% significance
level. 1]

Table 4.4. Two independent and normally distributed samples.

Case # 1 2 3 4 5 6 7 8 9 10 11 12
Group 1 47 37 52 63 62 67 28 48 6.1 39
Group2 101 86 109 97 97 10 94 101 99 10 10.8 8.7

Example 4.7

Q: Consider the meteorological data and test the validity of the following null
hypothesis at a 5% level of significance:

Hy: ors1 = org0 -

A: We assume, as in previous examples, that both variables are normally
distributed. We then have to determine the percentiles of F,4,4 and the non-critical
region:

C =[Foons. Foors|=[0.44,2.27] .

Since F'=s7g, / s7g9= 7.5/4.84 = 1.55 falls inside the non-critical region, the

null hypothesis is not rejected at the 5% level of significance.
0

SPSS, STATISTICA and MATLAB do not include the test of variances as an
individual option. Rather, they include this test as part of other tests, as will be seen
in later sections. R has a function, var . test, which performs the F test of two
variances. Running var . test (T81, T80) for the Example 4.7 one obtains:

F=1.5496, num df=24, denom df=24, p-value=0.2902

confirming the above results.

4.4.2.2 Levene’s Test

A problem with the previous F test is that it is rather sensitive to the assumption of
normality. A less sensitive test to the normality assumption (a more robust test) is
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Levene’s test, which uses deviations from the sample means. The test is carried out
as follows:

1. Compute the means in the two samples: x, and X .

2. Letd, = |x,-A -X A| and d = |x,-B —)?B| represent the absolute deviations
of the sample values around the respective mean.

3. Compute the sample means, d Aand d s » and sample variances, v, and vg
of the previous absolute deviations.

4. Compute the pooled variance, v,, for the two samples, with n, and ng cases,

as the following weighted average of the individual variances:

2 _ (np —Dvy +(ng —Dvg 4.9
ny +ng—2 . )

5. Finally, perform a ¢ test with the test statistic:

f=—A By 4.10
1

There is a modification of the Levene’s test that uses the deviations from the
median instead of the mean (see section 7.3.3.2).

Example 4.8
Q: Redo the test of Example 4.7 using Levene’s test.

A: The sample means are x;=5.04 and X, =9.825. Using these sample means, we
compute the absolute deviations for the two groups shown in Table 4.5.
_ The sample means and variances of these absolute deviations are: d;= 1.06,
d,=0.492; v; = 0432, v, = 0.235. Applying formula 4.9 we obtain a pooled
variance v, = 0.324. Therefore, using formula 4.10, the observed test statistic is
{=2.33 with a two-sided observed significance of 0.03.

Thus, we reject the null hypothesis of equal variances at a 5% significance level.

Notice that this conclusion is the opposite of the one reached in Example 4.7.
0

Table 4.5. Absolute deviations from the sample means, computed for the two
samples of Table 4.4.

Case # 1 2 3 4 5 6 7 8 9 10 11 12

Group1l 034 134 0.16 126 1.16 1.66 224 024 1.06 1.14
Group2 0.15 135 095 025 025 0.05 055 0.15 0.05 005 085 1.25
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4.4.3 Comparing Two Means

4.4.3.1 Independent Samples and Paired Samples

Deciding whether two samples came from normally distributed populations with
the same or with different means, is an often-met requirement in many data
analysis tasks. The test is formalised as:

Ho: pa= s (or pa— ps = 0, whence the name “null hypothesis™),
Hy: pua# s, for a two-sided test;

Ho: pa<ps, Hit pa>pp,  or
Ho: pa > s, Hi: pa<upug , for a one-sided test.

In tests of hypotheses involving two or more samples one must first clarify if the
samples are independent or paired, since this will radically influence the methods
used.

Imagine that two measurement devices, A and B, performed repeated and
normally distributed measurements on the same object:

X1, X2, ..., X, With device A;
V1, V25 ---» Vn, With device B.

The sets x = [x; x; ... x,]” and 'y = [ y1 2 ... yu]’, constitute independent samples
generated according to N, , and N, ., respectively. Assuming that device B
introduces a systematic deviation A, i.e., ug = us + A, our statistical model has 4
parameters: pa, A, op and og.

Now imagine that the » measurements were performed by A and B on a set of n
different objects. We have a radically different situation, since now we must take
into account the differences among the objects together with the systematic
deviation A. For instance, the measurement of the object x; is described in
probabilistic terms by N, . when measured by A and by N, ..., When
measured by B. The statistical model now has n + 3 parameters: fia1, tia2, ---, Lan,
A, op and op. The first n parameters reflect, of course, the differences among the n
objects. Since our interest is the systematic deviation A, we apply the following
trick. We compute the paired differences: d\ =y, —x1, dr=y2— X2, ..., &y =Yy — X,
In this paired samples approach, we now may consider the measurements d; as
values of a random variable, D, described in probabilistic terms by N, .
Therefore, the statistical model has now only two parameters.

The measurement device example we have been describing is a simple one,
since the objects are assumed to be characterised by only one variable. Often the
situation is more complex because several variables — known as factors, effects or
grouping variables — influence the objects. The central idea in the “independent
samples” study is that the cases are randomly drawn such that all the factors,
except the one we are interested in, average out. For the “paired samples” study
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(also called dependent or matched samples study), the main precaution is that we
pair truly comparable cases with respect to every important factor. Since this is an
important topic, not only for the comparison of two means but for other tests as
well, we present a few examples below.

Independent Samples:

1i.

1il.

We wish to compare the sugar content of two sugar-beet breeds, A and B.
For that purpose we collect random samples in a field of sugar-beet A and in
another field of sugar-beet B. Imagine that the fields were prepared in the
same way (e.g. same fertilizer, etc.) and the sugar content can only be
influenced by exposition to the sun. Then, in order for the samples to be
independent, we must make sure that the beets are drawn in a completely
random way in what concerns the sun exposition. We then perform an
“independent samples” test of variable “sugar content”, dependent on factor
“sugar-beet breed” with two categories, A and B.

We are assessing the possible health benefit of a drug against a placebo.
Imagine that the possible benefit of the drug depends on sex and age. Then,
in an “independent samples” study, we must make sure that the samples for
the drug and for the placebo (the so-called control group) are indeed random
in what concerns sex and age. We then perform an “independent samples”
test of variable “health benefit”, dependent on factor “group” with two
categories, “drug” and “placebo”.

We want to study whether men and women rate a TV program differently.
Firstly, in an “independent samples” study, we must make sure that the
samples are really random in what concerns other influential factors such as
degree of education, environment, family income, reading habits, etc. We
then perform an “independent samples” test of variable “TV program rate”,
dependent on factor “sex” with two categories, “man” and “woman”.

Paired Samples:

1l

The comparison of sugar content of two breeds of sugar-beet, A and B,
could also be studied in a “paired samples” approach. For that purpose, we
would collect samples of beets A and B lying on nearby rows in the field,
and would pair the neighbour beets.

The study of the possible health benefit of a drug against a placebo could
also be performed in a “paired samples” approach. For that purpose, the
same group of patients is evaluated after taking the placebo and after taking
the drug. Therefore, each patient is his/her own control. Of course, in
clinical studies, ethical considerations often determine which kind of study
must be performed.
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iii. Studies of preference of a product, depending on sex, are sometimes
performed in a “paired samples” approach, e.g. by pairing the enquiry
results of the husband with those of the wife. The rationale being that
husband and wife have similar ratings in what concerns influential factors
such as degree of education, environment, age, reading habits, etc.
Naturally, this assumption could be controversial.

Note that when performing tests with SPSS or STATISTICA for independent
samples, one must have a datasheet column for the grouping variable that
distinguishes the independent samples (groups). The grouping variable uses
nominal codes (e.g. natural numbers) for that distinction. For paired samples, such
a column does not exist because the variables to be tested are paired for each case.

4.4.3.2 Testing Means on Independent Samples

When two independent random variables X, and Xj are Llormzﬂly distributed, as
]Y N .and .N g o TESPECtIVELY, thf:n the. variable X, —Xphas a normal
distribution with mean x5 — 5 and variance given by:

2 2
(2 O
o?="A 4B 4.11

ny np

where 1, and ng are the sizes of the samples with means x, and xy, respectively.
Thus, when the variances are known, one can perform a comparison of two means
much in the same way as in sections 4.1 and 4.2.

Usually the true values of the variances are unknown; therefore, one must apply
a Student’s ¢ distribution. This is exactly what is assumed by SPSS, STATISTICA,
MATLAB and R.

Two situations must now be considered:

1 — The variances o, and op can be assumed to be equal.

Then, the following test statistic:

PR S B 4.12

Vo Y

ny np

where v, is the pooled variance computed as in formula 4.9, has a Student’s ¢
distribution with the following degrees of freedom:

df=nA+anZ. 4.13

2 — The variances o, and op are unequal.
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Then, the following test statistic:

. Xy-X

R 4.14
2 2
S S
Sh L SB

ny, ng

has a Student’s # distribution with the following degrees of freedom:

2 2 2
Inp +s5/
df =— (SA2 A SBZ”B) —. 4.15
(sx/np) /np+(sg/ng) /ng

In order to decide which case to consider — equal or unequal variances — the F
test or Levene’s test, described in section 4.4.2, are performed. SPSS and
STATISTICA do precisely this.

Example 4.9

Q: Consider the Wines’ dataset (see description in Appendix E). Test at a 5%
level of significance whether the variables ASP (aspartame content) and PHE
(phenylalanine content) can distinguish white wines from red wines. The collected
samples are assumed to be random. The distributions of ASP and PHE are well
approximated by the normal distribution in both populations (white and red wines).
The samples are described by the grouping variable TYPE (1 = white; 2 = red) and
their sizes are n; = 30 and n, = 37, respectively.

A: Table 4.6 shows the results obtained with SPSS. In the interpretation of these
results we start by looking to Levene’s test results, which will decide if the
variances can be assumed to be equal or unequal.

Table 4.6. Partial table of results obtained with SPSS for the independent samples ¢
test of the wine dataset.

Levene’s Test t-test
Mean Std. Error
F P ¢ df (2-tailed) Difference Difference
ASP  Equal
variances 0.017 0.896  2.345 65 0.022 6.2032 2.6452
assumed
Equal
variances 2.356 63.16 0.022 6.2032 2.6331
not assumed
PHE Equal
variances 11.243 0.001 3.567 65 0.001 20.5686 5.7660
assumed
Equal
variances 3.383 44.21 0.002 20.5686 6.0803

not assumed
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For the variable ASP, we accept the null hypothesis of equal variances, since the
observed significance is very high (p = 0.896). We then look to the ¢ test results in
the top row, which are based on the formulas 4.12 and 4.13. Note, particularly, that
the number of degrees of freedom is df =30 + 37 — 2 = 65. According to the results
in the top row, we reject the null hypothesis of equal means with the observed
significance p = 0.022. As a matter of fact, we also reject the one-sided hypothesis
that aspartame content in white wines (sample mean 27.1 mg/l) is smaller or equal
to the content in red wines (sample mean 20.9 mg/l). Note that the means of the
two groups are more than two times the standard error apart.

For the variable PHE, we reject the hypothesis of equal variances; therefore, we
look to the ¢ test results in the bottom row, which are based on formulas 4.14 and
4.15. The null hypothesis of equal means is also rejected, now with higher
significance since p = 0.002. Note that the means of the two groups are more than
three times the standard error apart.

0

~ Fined Parameters Population Mean Mu1 | 27.000(
R P | Population Mean Mu2 21.0000

me fr 8 Population S.D. {Sigma) 26400

. '30— Standardized Effect (Es) 22727

: = | Type of Hypathesis Sample Size N1 30,0000

N [z € 2eadac (Ml =Mi2] Sample Size N2 37.000]
Apha: [0.05 & 1-taled ( Mul <= Mu2) Type | Error Rate (Alpha) 0.0500
sigma 268 [ | |~ 1 aied(Mul >= Mu2) Critical Value of t 1.6685

a b LEower 1.0000]

Figure 4.10. a) Window of STATISTICA Power Analysis module used for the
specifications of Example 4.10; b) Results window for the previous specifications.

Example 4.10

Q: Compute the power for the ASP variable (aspartame content) of the previous
Example 4.9, for a one-sided test at 5% level, assuming that as an alternative
hypothesis white wines have more aspartame content than red wines. Determine
what is the minimum distance between the population means that guarantees a
power above 90% under the same conditions as the studied samples.

A: The one-sided test for this RS situation (see section 4.2) is formalised as:

Ho: 1 < g
Hi: 1> . (White wines have more aspartame than red wines.)

The observed level of significance is half of the value shown in Table 4.6, i.e.,
p = 0.011; therefore, the null hypothesis is rejected at the 5% level. When the data
analyst investigated the ASP variable, he wanted to draw conclusions with
protection against a Type II Error, i.e., he wanted a low probability of wrongly not
detecting the alternative hypothesis when true. Figure 4.10a shows the
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STATISTICA specification window needed for the power computation. Note the
specification of the one-sided hypothesis. Figure 4.10b shows that the power is
very high when the alternative hypothesis is formalised with population means
having the same values as the sample means; i.e., in this case the probability of
erroneously deciding Hj is negligible. Note the computed value of the standardised
effect (14 — t)/s =2.27, which is very large (see section 4.2).

Figure 4.11 shows the power curve depending on the standardised effect, from
where we see that in order to have at least 90% power we need E; = 0.75, i.c., we

are guaranteed to detect aspartame differences of about 2 mg/l apart (precisely,
0.75x2.64 = 1.98).

Power vs. Es (N1 =30, N2 = 37, Alpha = 0.05)

Power

Standardized Effect (Es)
3
0.0 0.5 1.0 1.5 20 25

Figure 4.11. Power curve, obtained with STATISTICA, for the wine data
Example 4.10.

Commands 4.3. SPSS, STATISTICA, MATLAB and R commands used to
perform the two independent samples ¢ test.

SPSS Analyze; Compare Means; Independent
Samples T Test

Statistics; Basic Statistics and Tables;
STATISTICA t-test, independent, by groups

MATLAB [h,sig,ci] = ttest2(x,y,alpha,taill

R t.test(formula, var.equal = FALSE)

The MATLAB function ttest2 works in the same way as the function ttest
described in 4.3.1, with x and y representing two independent sample vectors. The
function ttest?2 assumes that the variances of the samples are equal.
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The R function t . test, already mentioned in Commands 4.1, can also be used to
perform the two-sample ¢ test. This function has several arguments the most
important of which are mentioned above. Let us illustrate its use with Example 4.9.
The first thing to do is to apply the two-variance F test with the var.test
function mentioned in section 4.4.2.1. However, in this case we are analysing
grouped data with a specific grouping (classification) variable: the wine type. For
grouped data the function is applied as var.test(formula) where
formula is written as var~group. In our Example 4.9, assuming variable CL
represents the wine classification we would then test the equality of variances of
variable Asp with:

> var.test (Asp~CL)

In the ensuing list a p value of 0.8194 is published leading to the acceptance of
the null hypothesis. We would then proceed with:

> t.test (Asp~CL, var.equal=TRUE)

Part of the ensuing list is:
t = 2.3451, df = 65, p-value = 0.02208

which is in agreement with the values published in Table 4.6. For
var.test (Phe~CL) we get a p value of 0.002 leading to the rejection of the
equality of variances and hence we would proceed with t.test (Phe~CL,
var.equal=FALSE) obtaining

t = 3.3828, df = 44.21, p-value = 0.001512

also in agreement with the values published in Table 4.6.
R stats package also has the following power.t.test function for
performing power calculations of # tests:

power.t.test(n, delta, sd, sig.level, power, type =
c(“two.sample”, “one.sample”, ‘“paired”), alternative
= c(“two.sided”, “one.sided”))

The arguments n, delta, sd are the number of cases, the difference of means
and the standard deviation, respectively. The power calculation for the first part of
Example 4.10 would then be performed with:

> power.t.test (30, 6, 2.64, type=c(“two.sample”),
alternative=c (“one.sided”))

A power of 1 is obtained. Note that the arguments of power.t.test have
default values. For instance, in the above command we are assuming the default
sig.level = 0.05. The power.t.test function also allows computing
one parameter, passed as NULL, depending on the others. For instance, the second
part of Example 4.10 would be solved with:
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> power.t.test (30, delta=NULL, 2.64, power=0.9,
type=c(“two.sample”) ,alternative=c(“one.sided”))

The result delta = 2 would be obtained exactly as we found out in Figure
4.11. |

4.4.3.3 Testing Means on Paired Samples

As explained in 4.4.3.1, given the sets X =[x, X, ... x,,]” and y = [y1 2 ... y,]’, where
the x;, y; refer to objects that can be paired, we then compute the paired differences:
di=y1—x1, &y=y,—xy, ..., d,=y,— x,. Therefore, the null hypothesis:

Ho: px= wy,
1S rewritten as:
Ho: pp=0 with D=X-7.

The test is, therefore, converted into a single mean ¢ test, using the studentised
statistic:

£ d
S d / \/;
where s, is the sample estimate of the variance of D, computed with the differences

d;. Note that since X and Y are not independent the additive property of the
variances does not apply (see formula A.58c).

4.16

t

n—1»

Example 4.11

Q: Consider the meteorological dataset. Use an appropriate test in order to compare
the maximum temperatures of the year 1980 with those of the years 1981 and
1982.

A: Since the measurements are performed at the same weather stations, we are in
adequate conditions for performing a paired samples ¢ test. Based on the results
shown in Table 4.7, we reject the null hypothesis for the pair T80-T81 and accept it
for the pair T80-T82.

a

Table 4.7. Partial table of results, obtained with SPSS, in the paired samples ¢ test
for the meteorological dataset.

Std. Std. Error .
Mean Deviation Mean t df p (2-tailed)

Pair1 T80-T81 -2.360 2.0591 0.4118 -5.731 24 0.000
Pair2 T80 -T82 0.000 1.6833 0.3367 0.000 24 1.000
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Example 4.12
Q: Study the power of the tests performed in Example 4.11.

A: We use the STATISTICA Power Analysis module and the descriptive
statistics shown in Table 4.8.

For the pair T80-T81, the standardised effect is E, = (39.8-37.44)/2.059 =1.1
(see Table 4.7 and 4.8). It is, therefore, a large effect — justifying a high power of
the test.

Let us now turn our attention to the pair T80-T82, whose variables happen to
have the same mean. Looking at Figure 4.12, note that in order to have a power
1-p= 0.8, one must have a standardised effect of about E; = 0.58. Since the
standard deviation of the paired differences is 1.68, this corresponds to a deviation
of the means computed as E; x 1.68 = 0.97 = 1. Thus, although the test does not
reject the null hypothesis, we only have a reasonable protection against alternative
hypotheses for a deviation in average maximum temperature of at least one degree

centigrade.
0

Table 4.8. Descriptive statistics of the meteorological variables used in the paired
samples ¢ test.

n X s
T80 25 37.44 2.20
T81 25 39.80 2.74
T82 25 37.44 2.29

Standérdized Ef‘féct (Es)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.12. Power curve for the variable pair T80-T82 of Example 4.11.
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Commands 4.4. SPSS, STATISTICA, MATLAB and R commands used to
perform the paired samples ¢ test.

Analyze; Compare Means; Paired-Samples T

SPSS Test
Statistics; Basic Statistics and Tables;
STATISTICA t-test, dependent samples
MATLAB [h,sig,cil=ttest(x,m,alpha,tail]
R t.test(x,y,paired = TRUE)

With MATLAB the paired samples ¢ test is performed using the single ¢ test
function ttest, previously described.

The R function t . test, already mentioned in Commands 4.1 and 4.3, is also
used to perform the paired sample ¢ test with the arguments mentioned above
where x and y represent the paired data vectors. Thus, the comparison of T80 with
T81 in Example 4.11 is solved with

> t.test(T80,T81,paired=TRUE)

obtaining the same values as in Table 4.7. The calculation of the difference of
means for a power of 0.8 is performed with the power.t.test function (see
Coomands 4.3) with:

> power.t.test (25,delta=NULL,1.68,power=0.8,
type=c(“paired”) ,alternative=c(“two.sided”))

yielding delta = 0.98 in close agreement to the value found in Example 4.11
|

4.5 Inference on More than Two Populations

4.5.1 Introduction to the Analysis of Variance

In section 4.4.3, the two-means tests for independent samples and for paired
samples were described. One could assume that, in order to infer whether more
than two populations have the same mean, all that had to be done was to repeat the
two-means test as many times as necessary. But in fact, this is not a commendable
practice for the reason explained below.

Let us consider that we have ¢ independent samples and we want to test whether
the following null hypothesis is true:

H(): == ... = 4.17
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the alternative hypothesis being that there is at least one pair with unequal means,
i # L.

We now assume that Hy is assessed using two-means tests for all (3) pairs of
the ¢ means. Moreover, we assume that every two-means test is performed at a
95% confidence level, i.e., the probability of not rejecting the null hypothesis when
true, for every two-means comparison, is 95%:

P(u; = ;| Hp;) =095, 4.18

where Hy; is the null hypothesis for the two-means test referring to the i and j
samples.

The probability of rejecting the null hypothesis 4.17 for the ¢ means, when it is
true, is expressed as follows in terms of the two-means tests:

a = P(reject Hy |H)

. 4.19
=P(uy # py [Ho or g # py [Hg or...or .y # u. [Hy)
Assuming the two-means tests are independent, we rewrite 4.19 as:
a=1=P(uy = puy |Ho)P(y = p3 [Ho) ... P(ey = p1. [Hy). 4.20

Since Hy is more restrictive than any Hy;, as it implies conditions on more than
two means, we have P(u; # u;[Hy;) 2 P(u; # u; |Hy), or, equivalently,
P(u; = ;| Hop) < Plu; = iy | Hy)

Thus:

a21=P(uy = py [Hop)P(uy = p3 [Hopz) ... Pty = e [Hoey o) 4.21

For instance, for ¢ = 3, using 4.18 and 4.21, we obtain a Type I Error
a > 1-0.95° = 0.14. For higher values of ¢ the Type I Error degrades rapidly.
Therefore, we need an approach that assesses the null hypothesis 4.17 in a “global”
way, instead of assessing it using individual two-means tests.

In the following sections we describe the analysis of variance (ANOVA)
approach, which provides a suitable methodology to test the “global” null
hypothesis 4.17. We only describe the ANOVA approach for one or two grouping
variables (effects or factors). Moreover, we only consider the so-called “fixed
factors” model, i.e., we only consider making inferences on several fixed
categories of a factor, observed in the dataset, and do not approach the problem of
having to infer to more categories than the observed ones (the so called “random
factors” model).
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4.5.2 One-Way ANOVA

4.5.2.1 Test Procedure

The one-way ANOVA test is applied when only one grouping variable is present in
the dataset, i.e., one has available ¢ independent samples, corresponding to ¢
categories (or levels) of an effect and wants to assess whether or not the null
hypothesis should be rejected. As an example, one may have three independent
samples of scores obtained by students in a certain course, corresponding to three
different teaching methods, and want to assess whether or not the hypothesis of
equality of student performance should be rejected. In this case, we have an effect
— teaching method — with three categories.

A basic assumption for the variable X being tested is that the ¢ independent
samples are obtained from populations where X is normally distributed and with
equal variance. Thus, the only possible difference among the populations refers to
the means, g4 The equality of variance tests were already described in section
4.4.2. As to the normality assumption, if there are no “a priori” reasons to accept it,
one can resort to goodness of fit tests described in the following chapter.

In order to understand the ANOVA approach, we start by considering a single
sample of size n, subdivided in ¢ subsets of sizes nj, ny, ..., n., with averages
Xy, X,,..., X, and investigate how the total variance, v, can be expressed in terms
of the subset variances, v;. Let any sample value be denoted x;;, the first index
referring to the subset, i = 1, 2, ..., ¢, and the second index to the case number
inside the subset, j = 1, 2, ..., n;. The total variance is related to the total sum of
squares, SST, of the deviations from the global sample mean, x :

SST = Z zi(x,j -3)%. 422
i=1 j=1

Adding and subtracting x; to the deviations, x; —x , we derive:

n; c N

SST =ZC:Z(X;-,~ -5, +Zc:i(7€i =023 Oy —X)(E; —X) . 4.23

i=l j=1 i=1 j=1 i=1 j=l1

The last term can be proven to be zero. Let us now analyse the other two terms.
The first term is called the within-group (or within-class) sum of squares, SSW,
and represents the contribution to the total variance of the errors due to the random
scattering of the cases around their group means. This also represents an error term
due to the scattering of the cases, the so-called experimental error or error sum of
squares, SSE.

The second term is called the between-group (or between-class) sum of squares,
SSB, and represents the contribution to the total variance of the deviations of the
group means from the global mean.

Thus:

SST = SSW + SSB. 4.24
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Let us now express these sums of squares, related by 4.24, in terms of variances:

SST =(n—-1Dv. 4.25a

SSW =SSE = i (n;, =y, = {ZL: (n; —1)} vy =m—=c)vy . 4.25b
= =

SSB = (c—l)vBl. | 4.25¢

Note that:

1. The within-group variance, vy, is the pooled variance and corresponds to
the generalization of formula 4.9:

Vw EVP:HT' 4.26

This variance represents the stochastic behaviour of the cases around their

group means. It is the point estimate of o, the true variance of the
population, and has n — ¢ degrees of freedom.

2. The within-group variance vy represents a mean square error, MSE, of the
observations:

SSE

n—c¢

MSE =vy, = 4.27
3. The between-group variance, v, represents the stochastic behaviour of the
group means around the global mean. It is the point estimate of o> when the
null hypothesis is true, and has ¢ — 1 degrees of freedom.
When the number of cases per group is constant and equal to n, we get:

S = =2
Z (x; —x)
vep=nitl— —py_, 4.28
8 c—1 X
which is the sample expression of formula 3.8, allowing us to estimate the
population variance, using the variance of the means.

4. The between-group variance, vg, can be interpreted as a mean between-
group or classification sum of squares, MSB:
SSB

. 4.29
c—1

MSB=v, =

With the help of formula 4.24, we see that the fotal sample variance, v, can be
broken down into two parts:

(n=Dv=m—-c)vy +(c-Dvyg, 4.30
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The ANOVA test uses precisely this “analysis of variance” property. Notice that
the total number of degrees of freedom, n — 1, is also broken down into two parts:
n—candc—1.

Figure 4.13 illustrates examples for ¢ = 3 of configurations for which the null
hypothesis is true (a) and false (b). In the configuration of Figure 4.13a (null
hypothesis is true) the three independent samples can be viewed as just one single
sample, i.e., as if all cases were randomly extracted from a single population. The
standard deviation of the population (shown in grey) can be estimated in two ways.
One way of estimating the population variance is through the computation of the
pooled variance, which assuming the samples are of equal size, n, is given by:

2,2, .2
) Sy +585 +53
ci=vyry, =—T——

; 431
3

The second way of estimating the population variance uses the variance of the
means:
oA'ZEvsz:nv)?. 432

When the null hypothesis is true, we expect both estimates to be near each other;
therefore, their ratio should be close to 1. (If they are exactly equal 4.30 becomes
an obvious equality.)

b

Figure 4.13. Analysis of variance, showing the means, X;, and the standard
deviations, s;, of three equal-sized samples in two configurations: a) Hy is true;
b) Hy is false. On the right are shown the within-group and the between-group
standard deviations (sp is simply s ; multiplied by \/; ).
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In the configuration of Figure 4.13b (null hypothesis is false), the between-
group variance no longer represents an estimate of the population variance. In this
case, we obtain a ratio vg/vy larger than 1. (In this case the contribution of v to the
final value of v in 4.30 is smaller than the contribution of vy.)

The one-way ANOVA, assuming the test conditions are satisfied, uses the
following test statistic (see properties of the /" distribution in section B.2.9):

* Vg _MSB

Fr="t_ F
vy MSE

c—l,n—c

(under Hy). 4.33

If H, is not true, then F~ exceeds 1 in a statistically significant way.

The F distribution can be used even when there are mild deviations from the
assumptions of normality and equality of variances. The equality of variances can
be assessed using the ANOVA generalization of Levene’s test described in the
section 4.4.2.2.

Table 4.9. Critical F values at o= 0.05 for n = 25 and several values of c.

c 2 3 4 5 6 7 8
Foine 4.26 3.42 3.05 2.84 2.71 2.63 2.58

For ¢ =2, it can be proved that the ANOVA test is identical to the ¢ test for two
independent samples. As ¢ increases, the 1 — « percentile of F,_;,_. decreases (see
Table 4.9), rendering the rejection of the null hypothesis “easier”. Equivalently, for
a certain level of confidence the probability of observing a given F~ under H,
decreases. In section 4.5.1, we have already made use of the fact that the null
hypothesis for ¢ > 2 is more “restrictive” than for ¢ = 2.

The previous sums of squares can be shown to be computable as follows:

SST=izix§—T2/n, 4.34a

i=1 j=I
SSB=Y (I} /r)-T*/n, 4.34b
i=1
where T; and T are the totals along the columns and the grand total, respectively.
These last formulas are useful for manual computation (or when using EXCEL).
Example 4.13

Q: Consider the variable ART of the Cork Stoppers’ dataset. Is there
evidence, provided by the samples, that the three classes correspond to three
different populations?
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A: We use the one-way ANOVA test for the variable ART, with ¢ = 3. Note that
we can accept that the variable ART is normally distributed in the three classes
using specific tests to be explained in the following chapter. For the moment, the
reader has to rely on visual inspection of the normal fit curve to the histograms of
ART.

Using MATLAB, one obtains the results shown in Figure 4.14. The box plot for
the three classes, obtained with MATLAB, is shown in Figure 4.15. The MATLAB
ANOVA results are obtained with the anoval command (see Commands 4.5)
applied to vectors representing independent samples:

» x=[art(1:50),art(51:100),art(101:150)7];
» p=anoval (x)

Note that the results table shown in Figure 4.14 has the classic configuration of
the ANOVA tests, with columns for the total sums of squares (SS), degrees of
freedom (df) and mean sums of squares (MS). The source of variance can be a
between effect due to the columns (vectors) or a within effect due to the
experimental error, adding up to a total contribution. Note particularly that
MSB is much larger than MSE, yielding a significant (high F) test with the
rejection of the null hypothesis of equality of means.

One can also compute the 95% percentile of F, 147 = 3.06. Since F'=273.03 falls
within the critical region [3.06, +oo [, we reject the null hypothesis at the 5% level.

Visual inspection of Figure 4.15 suggests that the variances of ART in the three
classes may not be equal. In order to assess the assumption of equality of variances
when applying ANOVA tests, it is customary to use the one-way ANOVA version
of either of the tests described in section 4.4.2. For instance, Table 4.10 shows the
results of the Levene test for homogeneity of variances, which is built using the
breakdown of the total variance of the absolute deviations of the sample values
around the means. The test rejects the null hypothesis of variance homogeneity.
This casts a reasonable doubt on the applicability of the ANOVA test.

O
ANOVA Table
Source SS df HS F Prob:F |
Columns 4 75959e+006 2 2379796 .17 273.03 0
Error 1.2813e+006 147 8716 .32
Total 6.04089=+006 149

Figure 4.14. One-way ANOVA test results, obtained with MATLAB, for the cork-
stopper problem (variable ART).

Table 4.10. Levene’s test results, obtained with SPSS, for the cork stopper
problem (variable ART).

Levene Statistic dfl df2 Sig.
27.388 2 147 0.000
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Figure 4.15. Box plot, obtained with MATLAB, for variable ART (Example 4.13).

As previously mentioned, a basic assumption of the ANOVA test is that the
samples are independently collected. Another assumption, related to the use of the
F distribution, is that the dependent variable being tested is normally distributed.
When using large samples, say with the smallest sample size larger than 25, we can
relax this assumption since the Central Limit Theorem will guarantee an
approximately normal distribution of the sample means.

Finally, the assumption of equal variances is crucial, especially if the sample
sizes are unequal. As a matter of fact, if the variances are unequal, we are violating
the basic assumptions of what MSE and MSB are estimating. Sometimes when the
variances are unequal, one can resort to a transformation, e.g. using the logarithm
function of the dependent variable to obtain approximately equal variances. If this
fails, one must resort to a non-parametric test, described in Chapter 5.

Table 4.11. Standard deviations of variables ART and ARTI1 = In(ART) in the
three classes of cork stoppers.

Class 1 Class 2 Class3
ART 43.0 69.0 139.8
ART1 0.368 0.288 0.276

Example 4.14

Q: Redo the previous example in order to guarantee the assumption of equality of
variances.

A: We use a new variable ART1 computed as: ART1 = In(ART). The deviation of
this new variable from the normality is moderate and the sample is large (50 cases
per group), thereby allowing us to use the ANOVA test. As to the variances, Table
4.11 compares the standard deviation values before and after the logarithmic
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transformation. Notice how the transformation yielded approximate standard
deviations, capitalising on the fact that the logarithm de-emphasises large values.

Table 4.12 shows the result of the Levene test, which authorises us to accept the
hypothesis of equality of variances.

Applying the ANOVA test to ART1 the conclusions are identical to the ones
reached in the previous example (see Table 4.13), namely we reject the equality of
means hypothesis.

0

Table 4.12. Levene’s test results, obtained with SPSS, for the cork-stopper
problem (variable ART1 = In(ART)).

Levene Statistic dfl df2 Sig.
1.389 2 147 0.253

Table 4.13. One-way ANOVA test results, obtained with SPSS, for the cork-
stopper problem (variable ART1 = In(ART)).

Sscllllirz;r(z:z df  Mean Square F Sig.
Between Groups 51.732 2 25.866 263.151 0.000
Within Groups 14.449 147 9.829E-02
Total 66.181 149

Commands 4.5. SPSS, STATISTICA, MATLAB and R commands used to
perform the one-way ANOVA test.

Analyze; Compare Means; Means|One—Way
SPSS ANOVA

Analyze; General Linear Model; Univariate
Statistics; Basic Statistics and Tables;
Breakdown & one-way ANOVA

STATISTICA Statistics; ANOVA; One-way ANOVA

Statistics; Advanced Linear/Nonlinear
Models; General Linear Models; One-way

ANOVA
MATLAB [p, table, stats]=anoval (x,group, ‘dispopt’)
R anova (1m(X~f))

The easiest commands to perform the one-way ANOVA test with SPSS and
STATISTICA are with Compare Means and ANOVA, respectively.
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“Post hoc” comparisons (e.g. Scheffé test), to be dealt with in the following
section, are accessible using the Post-hoc tab in STATISTICA (click More
Results) or clicking the Post Hoc button in SPSS. Contrasts can be performed
using the Planned comps tab in STATISTICA (click More Results) or
clicking the Contrasts button in SPSS.

Note that the ANOVA commands are also used in regression analysis, as
explained in Chapter 7. When performing regression analysis, one often considers
an “intercept” factor in the model. When comparing means, this factor is
meaningless. Be sure, therefore, to check the No intercept box in
STATISTICA (Options tab) and uncheck Include intercept in the
model in SPSS (General Linear Model). In STATISTICA the Sigma-
restricted box must also be unchecked.

The meanings of the arguments and return values of MATLAB anoval
command are as follows:

p: p value of the null hypothesis;

table: matrix for storing the returned ANOVA table;

stats: test statistics, useful for performing multiple comparison of means
with the mul tcompare function;

X: data matrix with each column corresponding to an independent
sample;

group: optional character array with group names in each row;

dispopt: display option with two values, ‘on’ and ‘off’. The default ‘on’
displays plots of the results (including the ANOVA table).

We now illustrate how to apply the one-way ANOVA test in R for the Example
4.14. The first thing to do is to create the ARTI1 variable with ART1 <-
log (ART). We then proceed to create a factor variable from the data frame
classification variable denoted CL. The factor variable type in R is used to define a
categorical variable with label values. The need of this step is that the ANOVA test
can also be applied to continuous variables as we will see in Chapter 7. The
creation of a factor variable from the numerical variable CL can be done with:

> CLf <- factor(CL,labels=c(“I”,“II”,“II1I"))
Finally, we perform the one-way ANOVA with:
> anova (1m (ART1~CLf))

The anowva call returns the following table similar to Table 4.13:

Df Sum Sg Mean Sg F value Pr (>F)
CLf 2 51.732 25.866 263.15 < 2.2e-16 ***
Residuals 147 14.449 0.098
Signif. codes: 0 'x**/ 0.001 **** 0.01 *’ 0.05 .-
0.1 + " 1
| |
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4.5.2.2 Post Hoc Comparisons

Frequently, when performing one-way ANOVA tests resulting in the rejection of
the null hypothesis, we are interested in knowing which groups or classes can then
be considered as distinct. This knowledge can be obtained by a multitude of tests,
known as post-hoc comparisons, which take into account pair-wise combinations
of groups. These comparisons can be performed on individual pairs, the so-called
contrasts, or considering all possible pair-wise combinations of means with the aim
of detecting homogeneous groups of classes.

Software products such as SPSS and STATISTICA afford the possibility of
analysing contrasts, using the ¢ test. A contrast is specified by a linear combination
of the population means:

Ho: ayy +ayn + ... + appy = 0. 435

Imagine, for instance, that we wanted to compare the means of populations 1
and 2. The comparison is expressed as whether or not 4 = 1, or, equivalently,
1 —tb = 0; therefore, we would use a; = 1 and a, = —1. We can also use groups of
classes in contrasts. For instance, the comparison g = (15 + 14)/2 in a 5 class
problem would use the contrast coefficients: a; = 1; a, = 0; a3 = =0.5; a4 = -0.5;
as= 0. We could also, equivalently, use the following integer coefficients: a; = 2;
a,=0;a3=-1;a,=-1;as=0.

Briefly, in order to specify a contrast (in SPSS or in STATISTICA), one assigns
integer coefficients to the classes as follows:

i. Classes omitted from the contrast have a coefficient of zero;

ii. Classes merged in one group have equal coefficients;

iii. Classes compared with each other are assigned positive or negative values,
respectively;

iv. The total sum of the coefficients must be zero.

R has also the function pairwise.t.test that performs pair-wise
comparisons of all levels of a factor with adjustment of the p significance for the
multiple testing involved. For instance, pairwise.t.test (ART1,CLf)
would perform all possible pair-wise contrasts for the example described in
Commands 4.5.

It is possible to test a set of contrasts simultaneously based on the test statistic:

Ry

g=—"7,
sp/\/;

where R is the observed range of the means. Tables of the sampling distribution
of ¢, when the null hypothesis of equal means is true, can be found in the literature.

It can also be proven that the sampling distribution of ¢ can be used to establish
the following 1—« confidence intervals:

4.36
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~q1-oS

Tn

P <(a)x, +a,X, +--+a,x;)

4.37
ql—asp
—(aypy +agpuy +-oFagpy) < N
n

A popular test available in SPSS and STATISTICA, based on the result 4.37, is
the Scheffé test. This test assesses simultaneously all possible pair-wise
combinations of means with the aim of detecting homogeneous groups of classes.

Example 4.15

Q: Perform a one-way ANOVA on the Breast Tissue dataset, with post-hoc
Scheffé test if applicable, using variable PA500. Discuss the results.

A: Using the goodness of fit tests to be described in the following chapter, it is
possible to show that variable PA500 distribution can be well approximated by the
normal distribution in the six classes of breast tissue. Levene’s test and one-way
ANOVA test results are displayed in Tables 4.14 and 4.15.

Table 4.14. Levene’s test results obtained with SPSS for the breast tissue problem
(variable PA500).

Levene Statistic dfl df2 Sig.
1.747 5 100 0.131

Table 4.15. One-way ANOVA test results obtained with SPSS for the breast tissue
problem (variable PA500).

Sum of i
Squares dfr Mean Square F Sig.
Between 0.301 5 6.018E-02  31.135 0.000
Groups
Within 0.193 100 1.933E-03
Groups
Total 0.494 105

We see in Table 4.14 that the hypothesis of homogeneity of variances is not
rejected at a 5% level. Therefore, the assumptions for applying the ANOVA test
are fulfilled.

Table 4.15 justifies the rejection of the null hypothesis with high significance
(p < 0.01). This result entitles us to proceed to a post-hoc comparison using the
Scheffé test, whose results are displayed in Table 4.16. We see that the following
groups of classes were found as distinct at a 5% significance level:
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{CON, ADI, FAD, GLA}; {ADI, FAD, GLA, MAS}; {CAR}

These results show that variable PA500 can be helpful in the discrimination of

carcinoma type tissues from other types.
i

Table 4.16. Scheff¢ test results obtained with SPSS, for the breast tissue problem
(variable PA500). Values under columns “1”, “2” and “3” are group means.

Subset for alpha = 0.05

CLASS N 1 2 3
CON 14 7.029E-02

ADI 22 7.355E-02 7.355E-02

FAD 15 9.533E-02 9.533E-02

GLA 16 0.1170 0.1170

MAS 18 0.1231

CAR 21 0.2199
Sig. 0.094 0.062 1.000
Example 4.16

Q: Taking into account the results of the previous Example 4.15, it may be asked
whether or not class {CON} can be distinguished from the three-class group {ADI,
FAD, GLA}, using variable PA500. Perform a contrast test in order to elucidate
this issue.

A: We perform the contrast corresponding to the null hypothesis:
Ho: picon = (trap + Hora + tap1)/3,

i.e., we test whether or not the mean of class {CON} can be accepted equal to the
mean of the joint class {FAD, GLA, ADI}. We therefore use the contrast
coefficients shown in Table 4.17. Table 4.18 shows the #-test results for this
contrast. The possibility of using variable PA500 for discrimination of class

{CON} from the other three classes seems reasonable.
i

Table 4.17. Coefficients for the contrast {CON} vs. {FAD, GLA, ADI}.

CAR FAD MAS GLA CON ADI
0 -1 0 -1 3 -1
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Table 4.18. Results of the ¢ test for the contrast specified in Table 4.17.

Value of ] _
Contrast Std. Error t df Sig. (2-tailed)
Assume equal
variances —7.502E-02 3.975E-02 —1.887 100 0.062
Does notassume -, 50,0 ) 2801E-02  —2.678 3179 0.012

equal variances

4.5.2.3 Power of the One-Way ANOVA

In the one-way ANOVA, the null hypothesis states the equality of the means of ¢
populations, 44 = 16 = ... = g, which are assumed to have a common value o for
the variance. Alternative hypothesies correspond to specifying different values for
the population means. In this case, the spread of the means can be measured as:

i(ﬂi —m)? le-1). 438
i=1

It is convenient to standardise this quantity by dividing it by o*/n:

> (- ) fe =)
¢2 — i=1

5 , 4.39
o /n
where 7 is the number of observations from each population.

The square root of this quantity is known as the root mean square standardised
effect, RMSSE = ¢. The sampling distribution of RMSSE when the basic
assumptions hold is available in tables and used by SPSS and STATISTICA power
modules. R has the following power.anova. test function:

power .anova.test (g, n, between.var, within.var,
sig.level, power)

The parameters g and n are the number of groups and of cases per group,
respectively. This functions works similarly to the power.t.test function
described in Commands 4.4.

Example 4.17

Q: Determine the power of the one-way ANOVA test performed in Example 4.14
(variable ART1) assuming as an alternative hypothesis that the population means
are the sample means.

A: Figure 4.16 shows the STATISTICA specification window for this power test.
The RMSSE value can be specified using the Calc. Effects button and filling
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in the values of the sample means. The computed power is 1, therefore a good
detection of the alternative hypothesis is expected. This same value is obtained in
R issuing the command (see the between and within variance values in Table 4.13):

> power.anova.test (3, 50, between.var = 25.866,
within.var = 0.098).

Quick | Settings /0 |

r~ Fixed Parameters

N per Group: ISU_
No. of Gioups: |3_
P
RAMSSE 107456 4]

— Type of Model
(% Fixed Effects

¢ Random Effects u Cale. Effects

Figure 4.16. STATISTICA specification window for computing the power of the
one-way ANOVA test of Example 4.17.

T T T

RMSSE = 0.697, Groups = 6, Alpha £ 0.05

Power

Group Sarﬁp\e Size (N)

0 5 10 15 20 25 30

Figure 4.17. Power curve obtained with STATISTICA showing the dependence on
n, for Example 4.18.

Example 4.18

Q: Consider the one-way ANOVA test performed in Example 4.15 (breast tissue).
Compute its power assuming population means equal to the sample means and
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determine the minimum value of n that will guarantee a power of at least 95% in
the conditions of the test.

A: We compute the power for the worst case of n: n = 14. Using the sample means
as the means corresponding to the alternative hypothesis, and the estimate of the
standard deviation s = 0.068, we obtain a standardised effect RMSSE = 0.6973. In
these conditions, the power is 99.7%.

Figure 4.17 shows the respective power curve. We see that a value of n > 10

guarantees a power higher than 95%.
a

4.5.3 Two-Way ANOVA

In the two-way ANOVA test we consider that the variable being tested, X, is
categorised by two independent factors, say Factor 1 and Factor 2. We say that X
depends on two factors: Factor 1 and Factor 2.

Assuming that Factor 1 has ¢ categories and Factor 2 has r categories, and that
there is only one random observation for every combination of categories of the
factors, we get the situation shown in Table 4.19. The means for the Factor 1
categories are denoted X, , X, , ..., X, . The means for the Factor 2 categories are
denoted X ;, X,, ..., X, . The total mean for all observations is denoted x .

Note that the situation shown in Table 4.19 constitutes a generalisation to
multiple samples of the comparison of means for two paired samples described in
section 4.4.3.3. One can, for instance, view the cases as being paired according to
Factor 2 and compare the means for Factor 1. The inverse situation is, of course,
also possible.

Table 4.19. Two-way ANOVA dataset showing the means along the columns,
along the rows and the global mean.

Factor 1
Factor 2 1 2 e c Mean
1 X11 X21 Xel ?_C.l
2 X12 X22 X2 ?7.2
r X1r Xor Xer )?}
Mean Xy, Xy, Xe. X

Following the ANOVA approach of breaking down the total sum of squares (see
formulas 4.22 through 4.30), we are now interested in reflecting the dispersion of
the means along the rows and along the columns. This can be done as follows:
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SST = zz(xj -x)°

i=1 j=1

=ry (%, —X ) +ey (X, =% ) +2 > (xy =X, =% ; %)’ 4.40
i=1 Jj=1 i=1 j=1
=SSC +SSR +SSE

Besides the term SST described in the previous section, the sums of squares
have the following interpretation:

1. SSC represents the sum of squares or dispersion along the columns, as the
previous SSB. The variance along the columns is v. = SSC/(c—-1), has c-1
degrees of freedom and is the point estimate of c’+ro?

c

2. SSR represents the dispersion along the rows, i.c., is the row version of the
previous SSB. The variance along the rows is v, = SSR/(r-1), has r-1
degrees of freedom and is the point estimate of o* + carz .

3. SSE represents the residual dispersion or experimental error. The
experimental variance associated to the randomness of the experiment is
v, = SSE / [(c—1)(r—1)], has (c—1)(r—1) degrees of freedom and is the point
estimate of 2.

Note that formula 4.40 can only be obtained when ¢ and r are constant along the
rows and along the columns, respectively. This corresponds to the so-called
orthogonal experiment.

In the situation shown in Table 4.19, it is possible to consider every cell value as
a random case from a population with mean g, such that:

=g+ + py, with z,ui.=0and Z,u'j=0, 4.41

i=1 j=1

i.e., the mean of the population corresponding to cell jj is obtained by adding to a
global mean u the means along the columns and along the rows. The sum of the
means along the columns as well as the sum of the means along the rows, is zero.
Therefore, when computing the mean of all cells we obtain the global mean . It is
assumed that the variance for all cell populations is o>

In this single observation, additive effects model, one can, therefore, treat the
effects along the columns and along the rows independently, testing the following
null hypotheses:

Ho;: There are no column effects, £ = 0.
Hg,: There are no row effects, 1, = 0.

The null hypothesis Hy, is tested using the ratio v.v,, which, under the
assumptions of independent sampling on normal distributions and with equal
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variances, follows the F,_j iy distribution. Similarly, and under the same
assumptions, the null hypothesis Hg, is tested using the ratio v,/v, and the
Fr—l,(c—l)(r—l) distribution.

Let us now consider the more general situation where for each combination of
column and row categories, we have several values available. This repeated
measurements experiment allows us to analyse the data more fully. We assume that
the number of repeated measurements per table cell (combination of column and
row categories) is constant, n, corresponding to the so-called factorial experiment.
An example of this sort of experiment is shown in Figure 4.18.

Now, the breakdown of the total sum of squares expressed by the equation 4.40,
does not generally apply, and has to be rewritten as:

SST = SSC + SSR + SSI + SSE, 4.42
with:
L SST=)>> (x; -¥.)°.
i=l j=1k=1

Total sum of squares computed for all z cases in every combination of the
cxr categories, characterising the dispersion of all cases around the global
mean. The cases are denoted x;;, where & is the case index in each ij cell
(one of the cxr categories with n cases).

2. SSC=m) (X, -x.)*.
i=1

Sum of the squares representing the dispersion along the columns. The

variance along the columns is v, = SSC/(c — 1), has ¢ — 1 degrees of freedom
and is the point estimate of o2 +rn Gcz .

3. SSR=cn) (X, -% ).
j=1
Sum of the squares representing the dispersion along the rows. The variance

along the rows is v, = SSR/(r — 1), has » — 1 degrees of freedom and is the
point estimate of o* +cno? .

4. Besides the dispersion along the columns and along the rows, one must also
consider the dispersion of the column-row combinations, i.e., one must
consider the following sum of squares, known as subtotal or model sum of
squares (similar to SSW in the one-way ANOVA):

SSS = nz Z(fl -x )%,

i=1 j=1

5. SSE=SST- SSS.
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Sum of the squares representing the experimental error. The experimental
variance is v, = SSE/[rc(n — 1)], has rc(n — 1) degrees of freedom and is the
point estimate of o2.

6. SSI=SSS - (SSC+ SSR)=SST - SSC -SSR - SSE.

The SSI term represents the influence on the experiment of the interaction
of the column and the row effects. The variance of the interaction,
v; = SSI/[(c — 1)(r — 1)] has (¢ — 1)(r — 1) degrees of freedom and is the point
estimate of &% +no; .

Therefore, in the repeated measurements model, one can no longer treat
independently the column and row factors; usually, a term due to the interaction of
the columns with the rows has to be taken into account.

The ANOVA table for this experiment with additive and interaction effects is
shown in Table 4.20. The “Subtotal” row corresponds to the explained variance
due to both effects, Factor 1 and Factor 2, and their interaction. The “Residual” row
is the experimental error.

Table 4.20. Canonical table for the two-way ANOVA test.

\S/;rlirigce Sum of Squares df Mean Square F
Columns SSC c—1 v, =SSC/(c-1) Vel Ve
Rows SSR r—1 v, = SSR/(r-1) v/ Ve
Interaction ~ SSI (c=D)(r=1) v;=SSU[(c-D)(-1)] vi/ve
Subtotal SSS=SSC+SSR+SSI  ¢r—1 v =SSS/(cr-1) v/ v,
Residual SSE cr(n-1) ve = SSE/[cr(n—1)]

Total SST crn—1

The previous sums of squares can be shown to be computable as follows:

4 r n
SST =33 xj T /(ren), 4.43a
i=1 j=1k=1
8SS=3">"x; —T7 /(rcn) 4.43b
i=1 j=1
SSC=> (17 /rn)~T? /(ren), 4.43c

i=1

SSR =T Ken)—T? /(ren) 4.43d
Jj=1
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C r
SSE=SST-Y 7. /n—T" /(rcn), 4.43e
i=l j=1

where T; T;, T; and T _ are the totals along the columns, along the rows, in each
cell and the grand total, respectively. These last formulas are useful for manual
computation (or when using EXCEL).

Example 4.19

Q: Consider the 3x2 experiment shown in Figure 4.18, with n = 4 cases per cell.
Determine all interesting sums of squares, variances and ANOVA results.

A: In order to analyse the data with SPSS and STATISTICA, one must first create
a table with two variables corresponding to the columns and row factors and one
variable corresponding to the data values (see Figure 4.18).

Table 4.21 shows the results obtained with SPSS. We see that only Factor 2 is
found to be significant at a 5% level. Notice also that the interaction effect is only
slightly above the 5% level; therefore, it can be suspected to have some influence
on the cell means. In order to elucidate this issue, we inspect Figure 4.19, which is
a plot of the estimated marginal means for all combinations of categories. If no
interaction exists, we expect that the evolution of both curves is similar. This is not
the case, however, in this example. We see that the category value of Factor 2 has
an influence on how the estimated means depend on Factor 1.

The sums of squares can also be computed manually using the formulas 4.43.
For instance, SSC is computed as:

SSC = 374%8 + 342%/8 + 335%/8 — 1051%/24 = 108.0833.

Factor 1 n | 2 | «x
1 1 1 42.00
Factor 2 | 2 3 Totals 3 1 : 00
42 40 33 3 1] 1] 33.00
39 37 46 1 1] 1 43m
33 28 40 & 1] 2| 56.00
1 43 38 45 464 6 1] 2| 56.00
7 1] 2| 47.00
56 41 39 8 1 2 58.00
56 43 40 9 2 1 40.00
47 55 49 10 2 1 37.00
2 58 60 43 587 n 2| 1] 25.00
Totals 374 342 335 1051 12 2| 1 3800

Figure 4.18. Dataset for Example 4.19 two-way ANOVA test (c=3, =2, n=4). On
the left, the original table is shown. On the right, a partial view of the
corresponding SPSS datasheet (f1 and {2 are the factors).
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Notice that in Table 4.21 the total sum of squares and the model sum of squares
are computed using formulas 4.43a and 4.43b, respectively, without the last term of
these formulas. Therefore, the degrees of freedom are crn and cr, respectively.

Table 4.21. Two-way ANOVA test results, obtained with SPSS, for Example 4.19.

Type III Sum of

Source S df Mean Square F Sig.
quares
Model 46981.250 6 7830.208 220.311 0.000
F1 108.083 2 54.042 1.521 0.245
F2 630.375 1 630.375 17.736 0.001
F1*F2? 217.750 2 108.875 3.063 0.072
Error 639.750 18 35.542
Total 47621.000 24
a Interaction term.
60
50 NN .
% <
g 40
g ‘\/ ]
Z % F1 R

1 2 3

Figure 4.19. Plot of estimated marginal means for Example 4.19. Factor 2 (F2)
interacts with Factor 1 (F1).

Example 4.20

Q: Consider the FHR-Apgar dataset, relating variability indices of foetal heart
rate (FHR, given in percentage) with the responsiveness of the new-born (Apgar)
measured on a 0-10 scale (see Appendix E). The dataset includes observations
collected in three hospitals. Perform a factorial model analysis on this dataset, for
the variable ASTV (FHR variability index), using two factors: Hospital (3
categories, HUC = 1, HGSA =2 and HSJ = 3); Apgar 1 class (2 categories: 0 = [0, 8],
1 =[9,10]). In order to use an orthogonal model, select a random sample of n = 6
cases for each combination of the categories.
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A: Using specific tests described in the following chapter, it is possible to show
that variable ASTV can be assumed to approximately follow a normal distribution
for most combinations of the factor levels. We use the subset of cases marked with
yellow colour in the FHR-Apgar . x1s file. For these cases Levene’s test yields an
observed significance of p = 0.48; therefore, the equality of variance assumption is
not rejected. We are then entitled to apply the two-way ANOVA test to the dataset.

The two-way ANOVA test results, obtained with SPSS, are shown in Table 4.22
(factors HOSP = Hospital; APCLASS = Apgar 1 class). We see that the null
hypothesis is rejected for the effects and their interaction (HOSP * APCLASS).
Thus, the test provides evidence that the heart rate variability index ASTV has
different means according to the Hospital and to the Apgar 1 category.

Figure 4.20 illustrates the interaction effect on the means. Category 3 of HOSP

has quite different means depending on the APCLASS category.
i

Table 4.22. Two-way ANOVA test results, obtained with SPSS, for Example 4.20.

Type III Sum of

Source Squares df  Mean Square F Sig.
Model 111365.000 6 18560.833  420.881  0.000
HOSP 3022.056 2 1511.028 34.264  0.000
APCLASS 900.000 1 900.000 20.408  0.000
HOSP * APCLASS 1601.167 2 800.583 18.154  0.000
Error 1323.000 30 44.100

Total 112688.000 36

Example 4.21

Q: In the previous example, the two categories of APCLASS were found to exhibit
distinct behaviours (see Figure 4.20). Use an appropriate contrast analysis in order
to elucidate this behaviour. Also analyse the following comparisons: hospital 2 vs. 3;
hospital 3 vs. the others; all hospitals among them for category 1 of APCLASS.

A: Contrasts in two-way ANOVA are carried out in a similar manner as to what
was explained in section 4.5.2.2. The only difference is that in two-way ANOVA,
one can specify contrast coefficients that do not sum up to zero. Table 4.23 shows
the contrast coefficients used for the several comparisons:

a. The comparison between both categories of APCLASS uses symmetric
coefficients for this variable, as in 4.5.2.2. Since this comparison treats all levels
of HOSP in the same way, we assign to this variable equal coefficients.

b. The comparison between hospitals 2 and 3 uses symmetric coefficients for these
categories. Hospital 1 is removed from the analysis by assigning a zero
coefficient to it.
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c. The comparison between hospital 3 versus the others uses the assignment rule
for merged groups already explained in 4.5.2.2.

d. The comparison between all hospitals, for category 1 of APCLASS, uses two
independent contrasts. These are tested simultaneously, representing an
exhaustive set of contrasts that compare all levels of HOSP. Category 0 of
APCLASS is removed from the analysis by assigning a zero coefficient to it.

Table 4.23. Contrast coefficients and significance for the comparisons described in
Example 4.21.

Contrast (a) (b) () (d)
APCLASS 0 HOSP 2 HOSP 3 HOSP

Description VS. VS. VS. for
APCLASS 1 HOSP 3 {HOSP 1, HOSP 2} APCLASS 1

HOSP coef. 1 1 1 0 1 -1 1 1 =2 (1) (1) j

APCLASS coef. 1 -1 1 1 1 1 0 1

p 0.00 0.00 0.29 0.00

80

70 A

HAPCLASS

5 9

30 HOSP o 1
1 2 3

Estimated Marginal Means

Figure 4.20. Plot of estimated marginal means for Example 4.20.

SPSS and STATISTICA provide the possibility of testing contrasts in multi-way
ANOVA analysis. With STATISTICA, the user fills in at will the contrast
coefficients in a specific window (e.g. click Specify contrasts for LS
means in the Planned comps tab of the ANOVA command, with
HOSP*APCLASS interaction effect selected). SPSS follows the approach of
computing an exhaustive set of contrasts.
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The observed significance values in the last row of Table 4.23 lead to the

rejection of the null hypothesis for all contrasts except contrast (c).
0

Example 4.22

Q: Determine the power for the two-way ANOVA test of previous Example 4.20
and the minimum number of cases per group that affords a row effect power above
95%.

A: Power computations for the two-way ANOVA follow the approach explained in
section 4.5.2.3.

First, one has to determine the cell statistics in order to be able to compute the
standardised effects of the columns, rows and interaction. The cell statistics can be
easily computed with SPSS, STATISTICA MATLAB or R. The values for this
example are shown in Table 4.24. With STATISTICA one can fill in these values
in order to compute the standardised effects as shown in Figure 4.21b. The other
specifications are entered in the power specification window, as shown in Figure
4.21a.

Table 4.24. Cell statistics for the FHR-Apgar dataset used in Example 4.20.

HOSP APCLASS N Mean Std. Dev.
1 0 6 64.3 4.18
1 1 6 64.7 5.57
2 0 6 43.0 6.81
2 1 6 41.5 7.50
3 0 6 70.3 5.75
3 1 6 41.5 8.96
~ Fixed Parameters [;Ni:: I =] le LI
N per greup: [§ e @ b |
. (=] m How Ettect Measures
Alpha: [0 2 o | B poeef e
No. of Rows: [2 sgra 3 £ sy
No. of Cals.: |3 Populatio Means c Cal. Effect Measuies—
) ™ Row 1 d;m 3 RMSSE: 1248679
Rew AMSSE: [783055 ) B @ 3l o
Col RMSSE: [1 24568 2 7 @ls @las B E—
[=] AMSSE: 1263618
Int. AMSSE: [128362 2l Cote Efects | e
a b

Figure 4.21. Specifying the parameters for the power computation with
STATISTICA in Example 4.22: a) Fixed parameters; b) Standardised effects
computed with the values of Table 4.24.
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2-Way (2 X 3) ANOVA
Row Effect Power vs. N(RMSSE = 0.783055, Alpha = 0.05)

1.00 W

.95

Power

.90

R

.80

Group Sample Size (N)

0 5 10 15 20 25 30
Figure 4.22. Power curve for the row effect of Example 4.22.

The power values computed by STATISTICA are 0.90, 1.00 and 0.97 for the
rows, columns and interaction, respectively.
The power curve for the row effects, dependent on n is shown in Figure 4.22.

We see that we need at least 8 cases per cell in order to achieve a row effect power
above 95%. a

Commands 4.6. SPSS, STATISTICA, MATLAB and R commands used to
perform the two-way ANOVA test.

SPSS Analyze; General Linear Model;
Univariate|Multivariate

Statistics; ANOVA; Factorial ANOVA
STATISTICA Statistics; Advanced Linear/Nonlinear

Models; General Linear Models; Main
effects ANOVA | Factorial ANOVA

MATLAB [p, table]l=anova2 (x, reps, 'dispopt’)

R anova (Im(X~f1f*£2f))

The easiest commands to perform the two-way ANOVA test with SPSS and
STATISTICA are General Linear Model; Univariate and ANOVA,
respectively. Contrasts in STATISTICA can be specified using the Planned
comps tab.
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As mentioned in Commands 4.5 be sure to check the No intercept box in
STATISTICA (Options tab) and uncheck Include intercept in model
in SPSS (General Linear Model, Model tab). In STATISTICA the
Sigma-restricted box must also be unchecked; the model will then be the
Type III orthogonal model.

The meanings of most arguments and return values of anova2 MATLAB
command are the same as in Commands 4.5. The argument reps indicates the
number of observations per cell. For instance, the two-way ANOVA analysis of
Example 4.19 would be performed in MATLAB using a matrix x containing
exactly the data shown in Figure 4.18a, with the command:

» anovazl(x,4)

The same results shown in Table 4.21 are obtained.

Let us now illustrate how to use the R anowva function in order to perform two-
way ANOVA tests. For this purpose we assume that a data frame with the data of
Example 4.19 has been created with the column names £1, £2 and X as in the left
picture of Figure 4.18. The first thing to do (as we did in Commands 4.5) is to
convert £1 and £2 into factors with:

> f1f <- factor(fl, labels c(™17,%27,%3"))
> f2f <- factor (f2,labels = c(“1",%2"))

We now obtain the two-way ANOVA similar to Table 4.21 using:
> anova (1lm(X~f1£*£f2f))

A model without interaction effects can be obtained with anova (1m (X~

f1f+£2f)) (for details see the help on 1m)
]

Exercises

4.1 Consider the meteorological dataset used in Example 4.1. Test whether 1980 and 1982
were atypical years with respect to the average maximum temperature. Use the same
test value as in Example 4.1.

4.2 Show that the alternative hypothesis £7¢; =39.8 for Example 4.3 has a high power.
Determine the smallest deviation from the test value that provides at least a 90%
protection against Type II Errors.

4.3 Perform the computations of the powers and critical region thresholds for the one-sided
test examples used to illustrate the RS and AS situations in section 4.2.

4.4 Compute the power curve corresponding to Example 4.3 and compare it with the curve
obtained with STATISTICA or SPSS. Determine for which deviation of the null
hypothesis “typical” temperature one obtains a reasonable protection (power > 80%)
against alternative hypothesis.
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4.5 Consider the Programming dataset containing student scores during the period 1986-
88. Test at 5% level of significance whether or not the mean score is 10. Study the
power of the test.

4.6 Determine, at 5% level of significance, whether the standard deviations of variables CG
and EG of the Moulds dataset are larger than 0.005 mm.

4.7 Check whether the correlations studied in Exercises 2.9, 2.10. 2.17, 2.18 and 2.19 are
significant at 5% level.

4.8 Study the correlation of HFS with I0A = |I0 — 1235| + 0.1, where HFS and 10 are
variables of the Breast Tissue dataset. Is this correlation more significant than the one
between HFS and 10S in Example 2.18?

4.9 The CFU datasheet of the Cells dataset contains bacterial counts in three organs of
sacrificed mice at three different times. Counts are performed in the same conditions in
two groups of mice: a protein-deficient group (KO) and a normal, control group (C).
Assess at 5% level whether the spleen bacterial count in the two groups are different
after two weeks of infection. Which type of test must be used?

4.10 Assume one wishes to compare the measurement sets CG and EG of the Moulds
dataset.
a)  Which type of test must be used?
b) Perform the two-sample mean test at 5% level and study the respective power.
c) Assess the equality of variance of the sets.

4.11 Consider the CTG dataset. Apply a two-sample mean test comparing the measurements
of the foetal heart rate baseline (LB variable) performed in 1996 against those
performed in other years. Discuss the results and pertinence of the test.

4.12 Assume we want to discriminate carcinoma from other tissue types, using one of the
characteristics of the Breast Tissue dataset.
a) Assess, at 5% significance level, whether such discrimination can be achieved
with one of the characteristics 10, AREA and PERIM.
b) Assess the equality of variance issue.
c) Assess whether the rejection of the alternative hypothesis corresponding to the
sample means is made with a power over 80%.

4.13 Consider the Infarct dataset containing the measurements EF, IAD and GRD and a
score variable (SCR), categorising the severeness of left ventricle necrosis. Determine
which of those three variables discriminates at 5% level of significance the score group
2 from the group with scores 0 and 1. Discuss the methods used checking the equality
of variance assumption.

4.14 Consider the comparison between the mean neonatal mortality rate at home (MH) and
in Health Centres (MI) based on the samples of the Neonatal dataset. What kind of
test should be applied in order to assess this two-sample mean comparison and which
conclusion is drawn from the test at 5% significance level?
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4.15 The FHR-Apgar dataset contains measurements, ASTV, of the percentage of time that
foetal heart rate tracings exhibit abnormal short-term variability. Use a two-sample ¢
test in order to compare ASTV means for pairs of Hospitals HSJ, HGSA and HUC.
State the conclusions at a 5% level of significance and study the power of the tests.

4.16 The distinction between white and red wines was analysed in Example 4.9 using
variables ASP and PHE from the Wines dataset. Perform the two-sample mean test for
all variables of this dataset in order to obtain the list of the variables that are capable of
achieving the white vs. red discrimination with 95% confidence level. Also determine
the variables for which the equality of variance assumption can be accepted.

4.17 For the variable with lowest p in the previous Exercise 4.15 check that the power of the
test is 100% and that the test guarantees the discrimination of a 1.3 mg/l mean
deviation with power at least 80%.

4.18 Perform the comparison of white vs. red wines using the GLY variable of the Wines
dataset. Also depict the situations of an RS and an AS test, computing the respective
power for & = 0.05 and a deviation of the means as large as the sample mean deviation.
Hint: Represent the test as a single mean test with x = g — 4 and pooled standard
deviation.

4.19 Determine how large the sample sizes in the previous exercise should be in order to
reach a power of at least 80%.

4.20 Using the Programming dataset, compare at 5% significance level the scores
obtained by university freshmen in a programming course, for the following two
groups: “No pre-university knowledge of programming”; “Some degree of pre-
university knowledge of programming”.

4.21 Consider the comparison of the six tissue classes of the Breast Tissue dataset
studied in Example 4.15. Perform the following analyses:
a) Verify that PAS00 is the only suitable variable to be used in one-way ANOVA,
according to Levene’s test of equality of variance.
b) Use adequate contrasts in order to assess the following class discriminations:
{car}, {con, adi}, {mas, fad, gla}; {car} vs. all other classes.

4.22 Assuming that in the previous exercise one wanted to compare classes {fad}, {mas}

and {con}, answer the following questions:

a) Does the one-way ANOVA test reject the null hypothesis at o = 0.005
significance level?

b) Assuming that one would perform all possible two-sample 7 tests at the same o =
0.005 significance level, would one reach the same conclusion as in a)?

¢) What value should one set for the significance level of the two-sample ¢ tests in
order to reject the null hypothesis in the same conditions as the one-way ANOVA
does?

4.23 Determine whether or not one should accept with 95% confidence that pre-university
knowledge of programming has no influence on the scores obtained by university
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freshmen in a programming course (Porto University), based on the Programming
dataset.

Use the Levene test to check the equality of variance assumption and determine the
power of the test.

4.24 Perform the following post-hoc comparisons for the previous exercise:
a)  Scheffé test.
b) “No previous knowledge” vs. “Some previous knowledge” contrast. Compare the
results with those obtained in Exercise 4.19

4.25 Consider the comparison of the bacterial counts as described in the CFU datasheet of
the Cells dataset (see Exercise 4.9) for the spleen and the liver at two weeks and at
one and two months (“time of count” categories). Using two-way ANOVA performed
on the first 5 counts of each group (“knock-out” and “control”), check the following
results:

a) In what concerns the spleen, there are no significant differences at 5% level either
for the group categories or for the “time of count” categories. There is also no
interaction between both factors.

b) For the liver there are significant differences at 5% level, both for the group
categories and for the “time of count” categories. There is also a significant
interaction between these factors as can also be inferred from the respective
marginal mean plot.

¢) The test power in this last case is above 80% for the main effects.

4.26 The SPLEEN datasheet of the Cells dataset contains percent counts of bacterial load
in the spleen of two groups of mice (“knock-out” and “control”) measured by two
biochemical markers (CD4 and CD8). Using two-way ANOVA, check the following
results:

a) Percent counts after two weeks of bacterial infection exhibit significant
differences at 5% level for the group categories, the biochemical marker
categories and the interaction of these factors. However, these results are not
reliable since the observed significance of the Levene test is low (p = 0.014).

b) Percent counts after two months of bacterial infection exhibit a significant
difference (p = 0) only for the biochemical marker. This is a reliable result since
the observed significance of the Levene test is larger than 5% (p = 0.092).

c¢) The power in this last case is very large (p = 1).

4.27 Using appropriate contrasts check the following results for the ANOVA study of
Exercise 4.24 b:
a) The difference of means for the group categories is significant with p = 0.006.
b) The difference of means for “two weeks” vs “one or two months” is significant
with p = 0.001.
c¢) The difference of means of the time categories for the “knock-out” group alone is
significant with p = 0.027.



5 Non-Parametric Tests of Hypotheses

The tests of hypotheses presented in the previous chapter were “parametric tests”,
that is, they concerned parameters of distributions. In order to apply these tests,
certain conditions about the distributions must be verified. In practice, these tests
are applied when the sampling distributions of the data variables reasonably satisfy
the normal model.

Non-parametric tests make no assumptions regarding the distributions of the
data variables; only a few mild conditions must be satisfied when using most of
these tests. Since non-parametric tests make no assumptions about the distributions
of the data variables, they are adequate to small samples, which would demand the
distributions to be known precisely in order for a parametric test to be applied.
Furthermore, non-parametric tests often concern different hypotheses about
populations than do parametric tests. Finally, unlike parametric tests, there are non-
parametric tests that can be applied to ordinal and/or nominal data.

The use of fewer or milder conditions imposed on the distributions comes with a
price. The non-parametric tests are, in general, less powerful than their parametric
counterparts, when such a counterpart exists and is applied in identical conditions.
In order to compare the power of a test B with a test 4, we can determine the
sample size needed by B, np, in order to attain the same power as test 4, using
sample size n,, and with the same level of significance. The following power-
efficiency measure of test B compared with 4, 774, is then defined:

n
Npy =—+. 5.1
np

For many non-parametric tests (B) the power efficiency, 75,, relative to a
parametric counterpart (4) has been studied and the respective results divulged in
the literature. Surprisingly enough, the non-parametric tests often have a high
power-efficiency when compared with their parametric counterparts. For instance,
as we shall see in a later section, the Mann-Whitney test of central location, for two
independent samples, has a power-efficiency that is usually larger than 95%, when
compared with its parametric counterpart, the ¢ test. This means that when applying
the Mann-Whitney test we usually attain the same power as the ¢ test using a
sample size that is only 1/0.95 bigger (i.e., about 5% bigger).
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5.1 Inference on One Population

5.1.1 The Runs Test

The runs test assesses whether or not a sequence of observations can be accepted
as a random sequence, that is, with independent successive observations. Note that
most tests of hypotheses do not care about the order of the observations. Consider,
for instance, the meteorological data used in Example 4.1. In this example, when
testing the mean based on a sample of maximum temperatures, the order of the
observations is immaterial. The maximum temperatures could be ordered by
increasing or decreasing order, or could be randomly shuffled, still giving us
exactly the same results.

Sometimes, however, when analysing sequences of observations, one has to
decide whether a given sequence of values can be assumed as exhibiting a random
behaviour.

Consider the following sequences of n = 12 trials of a dichotomous experiment,
as one could possibly obtain when tossing a coin:

Sequence 1: o 0 0 o0 o o 1 1 1 1 1 1
Sequence 2: o 1 o 1 o 1 o0 1T o0 1 0 1
Sequence 3: o o0 1 o0 1 1 1T O 1 1 0 O

Sequences 1 and 2 would be rejected as random since a dependency pattern is
clearly presentl. Such sequences raise a reasonable suspicion concerning either the
“fairness” of the coin-tossing experiment or the absence of some kind of data
manipulation (e.g. sorting) of the experimental results. Sequence 3, on the other
hand, seems a good candidate of a sequence with a random pattern.

The runs test analyses the randomness of a sequence of dichotomous trials. Note
that all the tests described in the previous chapter (and others to be described next
as well) are insensitive to data sorting. For instance, when testing the mean of the
three sequences above, with Hy: xz= 6/12 = !4, one obtains the same results.

The test procedure uses the values of the number of occurrences of each
category, say n; and n, for 1 and O respectively, and the number of runs, i.e., the
number of occurrences of an equal value subsequence delimited by a different
value. For sequence 3, the number of runs, 7, is equal to 7, as seen below:

Sequence 3: o o0 1 o0 1 1 1 O 1 1 0 O
Runs: 1 2 3 4 5 6 7

1
Note that we are assessing the randomness of the sequence, not of the process that generated it.
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The runs test assesses the null hypothesis of sequence randomness, using the
sampling distribution of , given n; and n,. Tables of this sampling distribution can
be found in the literature. For large n; or m, (say above 20) the sampling
distribution of r is well approximated by the normal distribution with the following
parameters:

2nn, +1: 2 _ 2nyny (2nyny —ny —ny) 59

Hr (n;+ny) (n +n2)2(n1 +n, -1)

Notice that the number of runs always satisfies, 1 < r < n, with n = n; + ny. The
null hypothesis is rejected when there are either too few runs (as in Sequence 1) or
too many runs (as in Sequence 2). For the previous sequences, at a 5% level the
critical values of » for n; = n, = 6 are 3 and 11, i.e. the non-critical region of r is
[4, 10]. We, therefore, reject at 5% level the null hypothesis of randomness for
Sequence 1 (» = 2) and Sequence 2 (» = 12), and do not reject the null hypothesis
for Sequence 3 (r="7).

The runs test can be used with any sequence of values and not necessarily
dichotomous, if previously the values are dichotomised, e.g. using the mean or the
median.

Example 5.1

Q: Consider the noise sequence in the Signal & Noise dataset (first column)
generated with the “normal random number” routine of EXCEL with zero mean.
The sequence has n = 100 noise values. Use the runs test to assess the randomness
of the sequence.

A: We apply the SPSS runs test command, using an imposed (Custom)
dichotomization around zero, obtaining an observed two-tailed significance of
p = 0.048. At a 5% level of significance the randomness of the sequence is not
rejected. We may also use the MATLAB or R runs function. We obtain the
values of Table 5.1. The interval [ny,,, 7,,] represents the non critical region. We
see that the observed number of runs coincides with one of the interval ends.

Table 5.1. Results obtained with MATLAB or R runs test for the noise data.

np ny r Niow Nyp
53 47 41 41 61
g
Example 5.2

Q: Consider the Forest Fires dataset (see Appendix E), which contains the
area (ha) of burnt forest in Portugal during the period 1943-1978. Is there evidence
from this sample, at a 5% significance level, that the area of burnt forest behaves as
a random sequence?
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A: The area of burnt forest depending on the year is shown in Figure 5.1. Notice
that there is a clear trend we must remove before attempting the runs test. Figure
5.1 also shows the regression line with a null intercept, i.e. passing through the
point (0,0), obtained with the methods that will be explained later in Chapter 7.

We now compute the deviations from the linear trend and use them for the runs
test. When analysed with SPSS, we find an observed two-tailed significance of
p = 0.335. Therefore, we do not reject the null hypothesis that the area of burnt
forest behaves as a random sequence superimposed on a linear trend.

25000
Area (ha)
20000
3
15000 |
10000 |
5000
0 PetresiNeed ¥ Year
1943 1947 1951 1955 1959 1963 1967 1971 1975

Figure 5.1. Area of burnt forest in Portugal during the years 1943-1978. The
dotted line is a linear fit with null intercept.

Commands 5.1. SPSS, MATLAB and R commands used to perform the runs test.

SPSS Analyze; Nonparametric Tests; Runs
MATLAB runs (x,alpha)
R runs (x,alpha=0.05)

STATISTICA, MATLARB statistical toolbox and R stats package do not have
the runs test. We provide the runs function for MATLAB and R (see appendix F)
returning the values of Table 5.1. The function should only be used when #, or n,

are large (say, above 20).
]

5.1.2 The Binomial Test

The binomial or proportion test is used to assess whether there is evidence from
the sample that one category of a dichotomised population occurs in a certain
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proportion of times. Let us denote the categories or classes of the population by o,
coded 1 for the category of interest and O for the complement. The two-tailed test
can be then formalised as:

Ho: P(o=1)=p (and P(@=0)=1-p=gq);
Hi: P(o=1)#p (and P(0=0)#q ).

Given a data sample with # i.i.d. cases, k of which correspond to @ =1, we know
from Chapter 3 (see also Appendix C) that the point estimate of p is p= k/n. In
order to establish the critical region of the test, we take into account that the
probability of obtaining & events of @ =1 in n trials is given by the binomial law.
Let K denote the random variable associated to the number of times that @ = 1
occurs in a sample of size n. We then have the binomial sampling distribution
(section A.7.1):

P(K:k):U:jpkq”k; k=0,1,....n.

When 7 is small (say, below 25), the non-critical region is usually quite large
and the power of the test quite low. We have also found useless large confidence
intervals for small samples in section 3.3, when estimating a proportion. The test
yields useful results only for large samples (say, above 25). In this case (especially
when np or ng are larger than 25, see A.7.3), we use the normal approximation of
the standardised sampling distribution:

_K-np

Vnpq

Notice that denoting by P the random variable corresponding to the proportion
of successes in the sample (with observed value p = k/n), we may write 5.3 as:

V4

~ NO,I 5.3

_K-np Kn-p P-p

) Jnpq _\/pq/n _\/pq/n '

The binomial test is then performed in the same manner as the test of a single
mean described in section 4.3.1. The approximation to the normal distribution
becomes better if a continuity correction is used, reducing by 0.5 the difference
between the observed mean ( np ) and the expected mean (np).

As shown in Commands 5.3, SPSS and R have a specific command for carrying
out the binomial test. SPSS uses the normal approximation with continuity
correction for n > 25. R uses a similar procedure. In order to perform the binomial
test with STATISTICA or MATLAB, one uses the single sample ¢ test command.

V4 54
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Example 5.3

Q: According to Mendel’s Heredity Theory, a cross breeding of yellow and green
peas should produce them in a proportion of three times more yellow peas than
green peas. A cross breeding of yellow and green peas was performed and
produced 176 yellow peas and 48 green peas. Are these experimental results
explainable by the Theory?

A: Given the theoretically expected values of the proportion of yellow peas, the
test is formalised as:

Hy: P(o=1)=%;
H;: P(o=1)#7%.

In order to apply the binomial test to this example, using SPSS, we start by
filling in a datasheet as shown in Table 5.2.

Next, in order to specify that category 1 of pea-type occurs 176 times and the
category 0 occurs 48 times, we use the “weight cases” option of SPSS, as shown in
Commands 5.2. In the Weight Cases window we specify that the weight
variable is n.

Finally, with the binomial command of SPSS, we obtain the results shown in
Table 5.3, using 0.75 (3%4) as the tested proportion. Note the “Based on Z
Approximation” foot message displayed by SPSS. The two-tailed significance is
0.248, so therefore, we do not reject the null hypothesis P(w=1) = 0.75.

Table 5.2. Datasheet for Example 5.3.

group pea-type n
1 1 176
2 0 48

Table 5.3. Binomial test results obtained with SPSS for the Example 5.3.

Category Otl’)iirged Test Prop. A(sly_ Igi)l'eil)g'
PEA TYPE Group 1 1 176 0.79 0.75 0.124°
Group 2 0 48 0.21
Total 224 1.00

a Based on Z approximation.

Let us now carry out this test using the values of the standardised normal
distribution. The important values to be computed are:

np = 224x0.75 = 168;
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s =+lnpq =+/224x0.75%0.25 = 6.48.

Hence, using the continuity correction, we obtain z = (168 — 176 + 0.5)/6.48 =

—1.157, to which corresponds a one-tailed probability of 0.124 as reported in
Table 5.3.
0

Example 5.4

Q: Consider the Freshmen dataset, relative to the Porto Engineering College.
Assume that this dataset represents a random sample of the population of freshmen
in the College. Does this sample support the hypothesis that there is an even
chance that a freshman in this College can be either male or female?

A: We formalise the test as:

Hy: P(o=1)=Y%;
H;: P(o=1)#Y%.

The results obtained with SPSS are shown in Table 5.4. Based on these results,
we reject the null hypothesis with high confidence.

Note that SPSS always computes a two-tailed significance for a test proportion
of 0.5 and a one-tailed significance otherwise. a

Table 5.4. Binomial test results, obtained with SPSS, for the freshmen dataset.

Category n Ol;)sre(:)r;ed Test Prop. A(szy_ Itnari)l.efll)g.
SEX Group 1 female 35 0.27 0.50 0.000
Group 2 male 97 0.73
Total 132 1.00

Commands 5.2. SPSS and STATISTICA commands used to specify case
weighing.

SPSS Data; Weight Cases

STATISTICA Tools; Weight

These commands pop up a window where one specifies which variable to use as
weight variable and whether weighing is “On” or “Off’. Many STATISTICA
commands also include a weight button (& ) in connection with the weight
specification window. Case weighing is useful whenever the datasheet presents the
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data in a compact way, with a specific column containing the number of

occurrences of each case.
[

Commands 5.3. SPSS, STATISTICA, MATLAB and R commands used to
perform the binomial test.

SPSS Analyze; Nonparametric Tests; Binomial

Statistics; Basic Statistics and Tables;
STATISTICA t-test, single sample

MATLAB [h,sig,ci]l=ttest(x,m,alpha, tail)

R binom.test(x,n,p,conf.level=0.95)

When performing the binomial test with STATISTICA or MATLAB using the
single sample ¢ test, a somewhat different value is obtained because no continuity
correction is used and the standard deviation is estimated from p . This difference
is frequently of no importance. With MATLAB the test is performed as follows:

» x = [ones(176,1); zeros(48,1)]1;

» [h, sig, cil=ttest(x,0.75,0.05,0)
h =

0

sig =
0.195
ci =
0.7316 0.8399

Note that x is defined as a column vector filled in with 176 ones followed by 48
zeros. The commands ones (m,n) and zeros (m,n) define matrices with m
rows and n columns filled with ones and zeros, respectively. The notation [A; B]
defines a matrix by juxtaposition of the matrices A and B side by side along the
columns (along the rows when omitting the semicolon).

The results of the test indicate that the null hypothesis cannot be rejected (h=0).
The two-tailed significance is 0.195, somewhat lower than previously found
(0.248), for the above mentioned reasons.

The arguments x, n and p of the R binom.test function represent the
number of successes, the number of trials and the tested value of p, respectively.
Other details can be found with help (binom. test). For the Example 5.3 we
run binom. test (176,176+48,0.75), obtaining a two-tailed significance of
0.247, nearly the double of the value published in Table 5.3 as it should. A 95%
confidence interval of [0.726, 0.838] is also published, containing the observed

proportion of 0.786.
]
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5.1.3 The Chi-Square Goodness of Fit Test

The previous binomial test applied to a dichotomised population. When there are
more than two categories, one often wishes to assess whether the observed
frequencies of occurrence in each category are in accordance to what should be
expected. Let us start with the random variable 5.4 and square it:

72 =M=n(P—p)2(l+lJ= (X, —np)* L X —nq)?

, 55
pq/n p np ng

where X; and X, are the random variables associated with the number of
“successes” and “failures” in the n-sized sample, respectively. In the above
derivation note that denoting O = 1 — P we have (nP — np)* = (nQ — ng)*. Formula
5.5 conveniently expresses the fitting of X; = nP and X, = nQ to the theoretical
values in terms of square deviations. Square deviation is a popular distance
measure given its many useful properties, and will be extensively used in
Chapter 7.

Let us now consider k categories of events, each one represented by a random
variable X, and, furthermore, let us denote by p; the probability of occurrence of
each category. Note that the joint distribution of the X; is a multinomial
distribution, described in B.1.6. The result 5.5 is generalised for this multinomial
distribution, as follows (see property 5 of B.2.7):

o _& (X =)
12=Z% ~ 2, 5.6

i=l1 i

where the number of degrees of freedom, df =k — 1, is imposed by the restriction:

k
in =n. 5.7
i=1

As a matter of fact, the chi-square law is only an approximation for the sampling
distribution of ", given the dependency expressed by 5.7.

In order to test the goodness of fit of the observed counts O; to the expected
counts E;, that is, to test whether or not the following null hypothesis is rejected:

Hy: The population has absolute frequencies E; for each of the i =1, .., k
categories,

we then use test the statistic:

k(o
p =y A 58
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which, according to formula 5.6, has approximately a chi-square distribution with
df = k — 1 degrees of freedom. The approximation is considered acceptable if the
following conditions are met:

i. Fordf=1,no E; must be smaller than 5;

ii. For df > 1, no E; must be smaller than 1 and no more than 20% of the E;
must be smaller than 5.

Expected absolute frequencies can sometimes be increased, in order to meet the
above conditions, by merging adjacent categories.

When the difference between observed (O;) and expected counts (E;) is large,
the value of y will also be large and the respective tail probability small. For a
0.95 confidence level, the critical region is above 1,?,1,0‘95 .

Example 5.5

Q: A die was thrown 40 times with the observed number of occurrences 8, 6, 3, 10,
7, 6, respectively for the face value running from 1 through 6. Does this sample
provide evidence that the die is not honest?

A: Table 5.5 shows the chi-square test results obtained with SPSS. Based on the
high value of the observed significance, we do not reject the null hypothesis that
the die is honest. Applying the R function chisqg.test(c(8,6,3,10,7,6))
one obtains the same results as in Table 5.5b. This function can have a second
argument with a vector of expected probabilities, which when omitted, as we did,
assigns equal probability to all categories. a0

Table 5.5. Dataset (a) and results (b), obtained with SPSS, of the chi-square test
for the die-throwing experiment (Example 5.5). The residual column represents the
differences between observed and expected frequencies.

FACE Observed N Expected N  Residual FACE

; 2 2:; _(1)'; Chi-Square 4.100

: 1 07 By df 5

. Z Z 2:; _(0):§ ) Asymp. Sig. 0535
Example 5.6

Q: It is a common belief that the best academic freshmen students usually
participate in freshmen initiation rites only because they feel compelled to do so.
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Does the Freshmen dataset confirm that belief for the Porto Engineering
College?

A: We use the categories of answers obtained for Question 6, “I felt compelled to
participate in the Initiation”, of the freshmen dataset (see Appendix E). The
respective EXCEL file contains the computations of the frequencies of occurrence
of each category and for each question, assuming a specified threshold for the
average results in the examinations. Using, for instance, the threshold = 10, we see
that there are 102 “best” students, with average examination score not less than the
threshold. From these 102, there are varied counts for the five categories of
Question 6, ranging from 16 students that “fully disagree” to 5 students that “fully
agree”.

Under the null hypothesis, the answers to Question 6 have no relation with the
freshmen performance and we would expect equal frequencies for all categories.

The chi-square test results obtained with SPSS are shown in Table 5.6. Based on
these results, we reject the null hypothesis: there is evidence that the answer to
Question 6 of the freshmen enquiry bears some relation with the student
performance. 0

Table 5.6. Dataset (a) and results (b), obtained with SPSS, for Question 6 of the
freshmen enquiry and 102 students with average score >10.

CAT Observed N Expected N Residual CAT

! 16 204 —4.4 Chi-Square 32.020
2 26 20.4 5.6

3 39 20.4 18.6 df 4
4 16 20.4 —4.4 .

5 5 20.4 -15.4 Asymp. Sig. 0.000

a b
Example 5.7

Q: Consider the variable ART representing the total area of defects of the Cork
Stoppers’ dataset, for the class 1 (Super) of corks. Does the sample data
provide evidence that this variable can be accepted as being normally distributed in
that class?

A: This example illustrates the application of the chi-square test for assessing the
goodness of fit to a known distribution. In this case, the chi-square test uses the
deviations of the observed absolute frequencies vs. the expected absolute
frequencies under the condition of the stated null hypothesis, i.e., that the variable
ART is normally distributed.

In order to compute the absolute frequencies, we have to establish a set of
intervals based on the percentiles of the normal distribution. Since the number of
cases is n = 50, and we want the conditions for using the chi-square distribution to
be fulfilled, we use intervals corresponding to 20% of the cases. Table 5.7 shows
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these intervals, under the “z-Interval” heading, which can be obtained from the
tables of the standard normal distribution or using software functions, such as the
ones already described for SPSS, STATISTICA, MATLAB and R.

The corresponding interval cutpoints, x., for the random variable under
analysis, X, can now be easily determined, using:

Xeyt =X+ ZouSx o 59

where we use the sample mean and standard deviation as well as the cutpoints
determined for the normal distribution, z.,. In the present case, the mean and
standard deviation are 137 and 43, respectively, which leads to the intervals under
the “ART-Interval” heading.

The absolute frequency columns are now easily computed. With SPSS,
STATISTICA and R we now obtain the value of 7~ = 2.2. We must be careful,
however, when obtaining the corresponding significance in this application of the
chi-square test. The problem is that now we do not have df = k — 1 degrees of
freedom, but df = k-1 — n,, where n, is the number of parameters computed from
the sample. In our case, we derived the interval boundaries using the sample mean
and sample standard deviation, i.e., we lost two degrees of freedom. Therefore, we
have to compute the probability using df =5 — 1 — 2 = 2 degrees of freedom, or
equivalently, compute the critical region boundary as:

122,0.95 =5.99.

Since the computed value of the y™ is smaller than this critical region boundary,
we do not reject at 5% significance level the null hypothesis of variable ART being
normally distributed. I

Table 5.7. Observed and expected (under the normality assumption) absolute
frequencies, for variable ART of the cork-stopper dataset.

Expected  Observed

Cat. z-Interval Cumulative p ART-Interval Frequencies Frequencies
1 J-o0,-0.8416] 0.20 [0, 101] 10 10
2 1-0.8416,-0.2533] 0.40 1101, 126] 10 8
3 1-0.2533, 0.2533] 0.60 1126, 148] 10 14
4 10.2533, 0.8416] 0.80 1148, 173] 10 9

5 10.8416, +x [ 1.00 > 173 10 9
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Commands 5.4. SPSS, STATISTICA, MATLAB and R commands used to
perform the chi-square goodness of fit test.

SPSS Analyze; Nonparametric Tests; Chi-Square

Statistics; Nonparametrics; Observed

STATISTICA versus expected X2,
MATLAB [c,df,sig] = chiltest (x)
R chisqg.test (x,p)

MATLAB does not have a specific function for the chi-square test. We provide in
the book CD the chi2test function for that purpose. u

5.1.4 The Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov goodness of fit test is a one-sample test designed to
assess the goodness of fit of a data sample to a hypothesised continuous
distribution, Fx(x). The null hypothesis is formalised as:

Hy: Data variable X has a cumulative probability distribution Fy(x) = F(x).

Let S,(x) be the observed cumulative distribution of the random sample, xi,
X2,..., Xn, also called empirical distribution. Assuming the sample data is sorted in
increasing order, the values of S,(x) are obtained by adding the successive
frequencies of occurrence, &;/n, for each distinct x;.

Under the null hypothesis one expects to obtain small deviations of S,(x) from
F(x). The Kolmogorov-Smirnov test uses the largest of such deviations as a
goodness of fit measure:

D, =max | F(x) — S,(x) |, for every distinct x;. 5.10

The sampling distribution of D, is given in the literature. Unless # is very small
the following asymptotic result can be used:

lim P(nD, <1)=1-23" (-1 e 5.11

n—>0

The Kolmogorov-Smirnov test rejects the null hypothesis at level « if
D,> d whered, , is such that:

n,a n,a

PHO(Dn>dn,a):a' 5.12

Using formula 5.11 the following critical points are obtained:

dyoor =1.63/n;  dyg0s =1.36/\n;  d, g0 =1.22/4n. 5.13
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Note that when applying the Kolmogorov-Smirnov test, one often uses the
distribution parameters computed from the actual data. For instance, in the case of
assessing the normality of an empirical distribution, one often uses the sample
mean and sample standard deviation. This is a source of uncertainty in the
interpretation of the results.

Example 5.8

Q: Redo the previous Example 5.7 (assessing the normality of ART for class 1 of
the cork-stopper data), using the Kolmogorov-Smirnov test.

A: Running the test with SPSS we obtain the results displayed in Table 5.8,
showing no evidence (p = 0.8) supporting the rejection of the null hypothesis
(normal distribution). In R the test would be run as:

> x <- ART[1:50]
> ks.test(x, “pnorm”, mean(x), sd(x))

The following results are obtained confirming the ones in Table 5.8:

D = 0.0922, p-value = 0.7891 a0

Table 5.8. Kolmogorov-Smirnov test results for variable ART obtained with SPSS
in the goodness of fit assessment of normal distribution.

ART

N 50
Normal Parameters Mean 137.0000
Std. Deviation 42.9969

Most Extreme Differences Absolute 0.092
Positive 0.063

Negative —-0.092

Kolmogorov-Smirnov Z 0.652
Asymp. Sig. (2-tailed) 0.789

In the goodness of fit assessment of a normal distribution it may be convenient
to inspect cumulative distribution plots and normal probability plots. Figure 5.2
exemplifies these plots for the ART variable of Example 5.8. The cumulative
distribution plot helps to detect the regions where the empirical distribution mostly
deviates from the theoretical distribution, and can also be used to measure the
statistic D, (formula 5.10). The normal probability plot displays z-scores for the
data and for the standard normal distribution along the vertical axis. These last
ones lic on a straight line. Large deviations of the observed z-scores, from the
straight line corresponding to the normal distribution, are a symptom of poor
normal approximation.
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Figure 5.2. Visually assessing the normality of the ART variable (cork stopper
dataset) with MATLAB: a) Empirical cumulative distribution plot with
superimposed normal distribution (smooth line); b) Normal probability plot.

Commands 5.5. SPSS, STATISTICA, MATLAB and R commands used to
perform goodness of fit tests.

Analyze; Nonparametric Tests; 1-Sample K-S
SPSS Analyze; Descriptive Statistics; Explore;
Plots; Normality plots with tests

Statistics; Basic Statistics/Tables;
STATISTICA Histograms
Graphs; Histograms

[h,p,ksstat,cv]= kstest (x,cdf,alpha, tail)
MATLAB [h,p,lstat,cv]= lillietest (x,alpha)
R ks.test(x, v, ...)

With STATISTICA the one-sample Kolmogorov-Smirnov test is not available as a
separate test. It can, however, be performed together with other goodness of fit
tests when displaying a histogram (Advanced option). SPSS also affords the
goodness of fit tests with the normality plots that can be obtained with the
Explore command.

With the MATLAB commands kstest and 1illietest, the meaning of the
parameters and return values when testing the data sample x at level alpha, is as
follows:

cdf: Two-column matrix, with the first column containing the random
sample x and the second column containing the hypothesised
cumulative distribution.

tail: Type of test with values 0, —1, 1 corresponding to the alternative
hypothesis F(x) # S,(x), F(x) > S,(x) and F(x) < S,(x), respectively.

h: Test result, equal to 1 if Hy can be rejected, 0 otherwise.
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p: Observed significance.

ksstat, lstat: Values of the Kolmogorov-Smirnov and Liliefors statistics,
respectively.

cv: Critical value for significant test.

Some of these parameters and return values can be omitted. For instance,

h =

kstest (x) only performs the normality test of x.

The arguments of the R function ks . test are as follows:

X
v

A numeric vector of data values.
Either a numeric vector of expected data values or a character string
naming a distribution function.
Parameters of the distribution specified by y.
|

Commands 5.6. SPSS, STATISTICA, MATLAB and R commands used to obtain
cumulative distribution plots and normal probability plots.

Graphs; Interactive; Histogram; Cumulative
histogram

SPSS Analyze; Descriptive Statistics; Explore;

Plots; Normality plots with tests |
Graphs; P-P

Graphs; Histograms; Showing Type;

STATISTICA Cumulative
Graphs; 2D Graphs; Probability-Probability
Plots
MATLAB cdfplot (x) ; normplot (x)
R plot.ecdf (x) ; ggnorm(x)
The cumulative distribution plot shown in Figure 5.2a was obtained with

MATLAB using the following sequence of commands:

>

>

>

>

>

art = corkstoppers(1:50,3);

cdfplot (art)

hold on

xaxis = 0:1:250;

plot (xaxis,normcdf (xaxis,mean (art),std(art)))

Note the hold on command used to superimpose the standard normal
distribution over the previous empirical distribution of the data. This facility is
disabled with hold off. The normcdf command is used to obtain the normal
cumulative distribution in the interval specified by xaxis with the mean and
standard deviation also specified. u



5.1 Inference on One Population 187

5.1.5 The Lilliefors Test for Normality

The Lilliefors test resembles the Kolmogorov-Smirnov but it is especially tailored
to assess the normality of a distribution, with the null hypothesis formalised as:

Hy F(x)=N,,(x). 5.14

For this purpose, the test standardises the data using the sample estimates of u
and o. Let Z represent the standardised data, i.e., z; = (x; —x)/s . The Lilliefors’

test statistic is:
D, =max | F(z) - S,(2) |. 5.15

The test is, therefore, performed like the Kolmogorov-Smirnov test (see formula
5.12), but with the advantage that the sampling distribution of D, takes into
account the fact that the sample mean and sample standard deviation are used. The
asymptotic critical points are:

dyoor =1.031/n;  d, 05 =0.886/4n;  d,g,0=0805/n. 516

Critical values and extensive tables of the sampling distribution of D, can be
found in the literature (see e.g. Conover, 1980).

The Liliefors test can be performed with SPSS and STATISTICA as described
in Commands 5.5. When applied to Example 5.8 it produces a lower bound for the
significance (p = 0.2), therefore not providing evidence allowing us to reject the
null hypothesis.

5.1.6 The Shapiro-Wilk Test for Normality

The Shapiro-Wilk test is also tailored to assess the goodness of fit to the normal
distribution. It is based on the observed distance between symmetrically positioned
data values. Let us assume that the sample size is n and the successive values x;,
X2,..., X, wWere preliminarily sorted by increasing value:

The distance of symmetrically positioned data values, around the middle value,
is measured by:

(Xp_iv1—xi), for i=1,2,..,k,
where k= (n + 1)/2 if n is odd and k = n/2 otherwise.
The Shapiro-Wilk statistic is given by:

2
w :|:Zk:ai(xn—i+1 _xi):| /Z(xi _3_5)2 . 5.17

i=1 i=1
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The coefficients @; in formula 5.17 and the critical values of the sampling
distribution of W, for several confidence levels, can be obtained from table look-up
(see e.g. Conover, 1980).

The Shapiro-Wilk test is considered a better test than the previous ones,
especially when the sample size is small. It is available in SPSS and STATISTICA
as a complement of histograms and normality plots, respectively (see Commands
5.5). It is also available in R as the function shapiro.test (x). When applied
to Example 5.8, it produces an observed significance of p = 0.88. With this high
significance, it is safe to accept the null hypothesis.

Table 5.9 illustrates the behaviour of the goodness of fit tests in an experiment
using small to moderate sample sizes (n = 10, 25 and 50), generated according to a
known law. The lognormal distribution corresponds to a random variable whose
logarithm is normally distributed. The “Bimodal” samples were generated using the
sum of two Gaussian functions separated by 4o. For each value of n a large
number of samples were generated (see top of Table 5.9), and the percentage of
correct decisions at a 5% level of significance was computed.

Table 5.9. Percentages of correct decisions in the assessment at 5% level of the
goodness of fit to the normal distribution, for several empirical distributions (see
text).

n =10 (200 samples) n =25 (80 samples) n =50 (40 samples)

KS L Sw KS L Sw KS L Sw

Normal, Ny ; 100 95 98 100 100 98 100 100 100
Lognormal 2 42 62 32 94 100 92 100 100
Exponential, g 1 33 43 9 74 91 32 100 100
Student #, 2 28 27 11 55 66 38 88 95
Uniform, Uy, 0 8 6 0 6 24 0 32 88
Bimodal 0 16 15 0 46 51 5 82 92

KS: Kolmogorov-Smirnov; L: Lilliefors; SW: Shapiro-Wilk.

As can be seen in Table 5.9, when the sample size is very small (n = 10), all the
three tests make numerous mistakes. For larger sample sizes the Shapiro-Wilk test
performs somewhat better than the Lilliefors test, which in turn, performs better
than the Kolmogorov-Smirnov test. This test is only suitable for very large samples
(say n >> 50). It also has the advantage of allowing an assessment of the goodness
of fit to other distributions, whereas the Liliefors and Shapiro-Wilk tests can only
assess the normality of a distribution.

Also note that most of the test errors in the assessment of the normal distribution
occurred for symmetric distributions (three last rows of Table 5.9). The tests made
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fewer mistakes when the data was generated by asymmetric distributions, namely
the lognormal or exponential distribution. Taking into account these observations
the reader should keep in mind that the statements “a data sample can be well
modelled by the normal distribution” and a “data sample comes from a population
with a normal distribution” mean entirely different things.

5.2 Contingency Tables

Contingency tables were introduced in section 2.2.3 as a means of representing
multivariate data. In sections 2.3.5 and 2.3.6, some measures of association
computed from these tables were also presented. In this section, we describe tests
of hypotheses concerning these tables.

5.2.1 The 2x2 Contingency Table

The 2x2 contingency table is a convenient formalism whenever one has two
random and independent samples obtained from two distinct populations whose
cases can be categorised into two classes, as shown in Figure 5.3. The sample sizes
are n; and n, and the observed occurrence counts are the O;;.

This formalism is used when one wants to assess whether, based on the samples,
one can conclude that the probability of occurrence of one of the classes is
different for the two populations. It is a quite useful formalism, namely in clinical
research, when one wants to assess whether a specific treatment is beneficial; then,
the populations correspond to “without” and “with” the treatment.

Class 1  Class 2

Population 1 0y 0, n,

Population 2 0, 0,, n,

Figure 5.3. The 2x2 contingency table with the sample sizes (n; and n,) and the
observed absolute frequencies (counts Oy).

Let p; and p, denote the probabilities of occurrence of one of the classes, e.g.
class 1, for the populations 1 and 2, respectively. For the two-sided test, the
hypotheses are:

Ho: p1=p;
Hi: p1 #pa.

The one-sided test is formalised as:
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Ho: p1 <pa, Hi: p1>p; or
Ho: p1 = pa; Hi: pi <p».

In order to assess the null hypothesis, we use the same goodness of fit measure
as in formula 5.8, now reflecting the sum of the squared deviations for all four cells
in the contingency table:

2 2 (0. —E. )2
T:ZZLLELL, 5.18
i=1 j=I ij

where the expected absolute frequencies £;; are estimated as:

E; =

2
n-ZOf
li:l 7 :ni(Olj +02j), 519
n

n
with n = n; + n, (total number of cases).

Thus, we estimate the expected counts in each cell as the ratio of the observed
marginal counts. With these estimates, one can rewrite 5.18 as:

n(0,,0y, ‘012021)2

= . 5.20
mny (01 + 0, (O, +0yy)

The sampling distribution of 7, assuming that the null hypothesis is true,
p1 = p>=p, can be computed by first noticing that the probability of obtaining O,
cases of class 1 in a sample of n; cases from population 1, is given by the binomial
law (see A.7):

11

Similarly, for the probability of obtaining O, cases of class 1 in a sample of n,
cases from population 2:

P(031) =( o jpoﬂq"roﬂ .
21

Because the two samples are independent the probability of the joint event is
given by:

n n
11 21

The exact values of P(Oy;, O,) are, however, very difficult to compute, except
for very small n; and n, (see e.g. Conover, 1980). Fortunately, the asymptotic
distribution of T is well approximated by the chi-square distribution with one
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degree of freedom ( )(12 ). We then use the critical values of the chi-square
distribution in order to test the null hypothesis in the usual way. When dealing with
a one-sided test we face the difficulty that the 7T statistic does not reflect the
direction of the deviation between observed and expected frequencies. In this
situation, it is simpler to use the sampling distribution of the signed square root of
T (with the sign of O,,0,, —0,,0,,), which is approximated by the standard
normal distribution. Denoting by 7 the signed square root of 7, the one-sided test
is performed as:

Ho: p1 £ po: rejectatlevel aif T >z ;
Ho: p1 = po: rejectatlevel aif T <z,.

A “continuity correction”, known as “Yates’ correction”, is sometimes used in
the chi-square test of 2x2 contingency tables. This correction attempts to
compensate for the inaccuracy introduced by using the continuous chi-square
distribution, instead of the discrete distribution of 7, as follows:

T- (101105 =010, |-(1/2) |
nin, (O + 0, )(O1; +0yy)

5.22

Example 5.9

Q: Consider the male and female populations related to the Freshmen dataset.
Based on the evidence provided by the respective samples, is it possible to
conclude that the proportion of male students that are “initiated” differs from the
proportion of female students?

A: We apply the chi-square test to the 2x2 contingency table whose rows are the
populations (variable SEX) and whose columns are the counts of initiated
freshmen (column INIT).

The contingency table is shown in Table 5.10. The chi-square test results are
shown in Table 5.11. Since the observed significance, with and without the
continuity correction, is above the 5% significance level, we do not reject the null

hypothesis at that level.
a

Table 5.10. Contingency table obtained with SPSS for the SEX and INIT variables
of the freshmen dataset. Note that a missing case for INIT (case #118) is not
included.

INIT Total
yes no
SEX male 91 5 96
female 30 5 35

Total 121 10 131
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Table 5.11. Partial list of the chi-square test results obtained with SPSS for the
SEX and INIT variables of the freshmen dataset.

Value df Asymp. Sig. (2-sided)
Chi-Square 2.997 1 0.083
Continuity Correction 1.848 1 0.174

Example 5.10

Q: Redo the previous example assuming that the null hypothesis is “the proportion
of male students that are ‘initiated’ is higher than that of female students”.

A: We now perform a one-sided chi-square test. For this purpose we notice that the
sign 0of 0,,0,, —0,,0,, is positive, therefore T} =++42.997 =1.73. Since

T, > z,= —1.64, we also do not reject the null hypothesis for this one-sided test.
0

Commands 5.7. SPSS, STATISTICA, MATLAB and R commands used to
perform tests on contingency tables.

SPSS Analyze; Descriptive Statistics; Crosstabs

Statistics; Basic Statistics/Tables;
STATISTICA Tables and banners

MATLAB [table,chi2,p]l=crosstab(coll,col2)

R chisg.test (x, correct=TRUE)

The meaning of the MATLAB crosstab parameters and return values is as
follows:

coll, col2: vectors containing integer data used for the cross-tabulation.
table: cross-tabulation matrix.
chi2, p: value and significance of the chi-square test.

The R function chisqg.test can be applied to contingency tables. The x
parameter represents then a matrix (the contingency table). The correct parameter
corresponds to the Yates’ correction for 2x2 contingency tables. Let us illustrate
with Example 5.9 data. The contingency table can be built as follows:

ct <- array(0,dim=c(2,2)) ## building the matrix
ct[l,1] <- sum(SEX==1 & INIT==1) ## & means AND
ct[l,2] <- sum(SEX==1 & INIT==2)

ct[2,1] <- sum(SEX==2 & INIT==1)

ct[2,2] <- sum(SEX==2 & INIT==2)

VVVVYV
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An alternative and easier way to build the contingency table is by using the table
function mentioned in Commands 2.1:

> ct <- table(SEX, INIT, exclude=c(9))

Note the exclude=c(9) argument which excludes non-valid data
(corresponding to missing data) coded with 9. Finally, we apply:

> chisg.test (ct,correct=FALSE)
X-squared = 2.9323, df = 1, p-value = 0.08682

These values agree quite well with those published in Table 5.11.
In order to solve the Example 5.12 we first recode Q7 by merging the values 1
and 2 as follows:

> Q7_12<-as.numeric (Q7<=2)+as.numeric (Q7>2) *Q7

This creates a new vector with only 4 categorical values: 1, 3, 4 and 5. The
as.numeric function converts FALSE and TRUE into 0 and 1, respectively. We
then proceed as above:

> ct<-table(SEX,Q7_12,exclude=c(9))
> chisg.test (ct)
X-squared = 5.3334, df = 3, p-value = 0.1490

5.2.2 The rxc Contingency Table

The rxc contingency table is an obvious extension of the 2x2 contingency table,
when there are more than two categories of the nominal (or ordinal) variable
involved. However, some aspects described in the previous section, namely the
Yates’ correction and the computation of exact probabilities, are only applicable to
2x2 tables.

Class 1 Class2 o+ o o Classc

Population 1 0, 0y, o o o 0, m

Population 2 0,, 0y, o« o 0, n,

Population r Orl 0r2 e o o Orc n’
¢ c, o o o C.

Figure 5.4. The rxc contingency table with the sample sizes (#;) and the observed
absolute frequencies (counts Oy).
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The rxc contingency table is shown in Figure 5.4. All samples from the r
populations are assumed to be independent and randomly drawn. All observations
are assumedly categorised into exactly one of ¢ categories. The total number of
cases is:

n=ntmt+.+n=ctcet..tc,

where the ¢; are the column counts, i.e., the total number of observations in the jth
class:

Let p; denote the probability that a randomly selected case of population i is
from class j. The hypotheses formalised for the rxc contingency table are a
generalisation of the two-sided hypotheses for the 2x2 contingency table (see
5.2.1):

Hy: For any class, the probabilities are the same for all populations: py; = p,; =
s = Dyjy V.

H;: There are at least two populations with different probabilities in one class:
34, py# py-

The test statistic is also a generalisation of 5.18:

2
Z—(O”'_E”)  with By =

i=1 j=1 Eij n

T= 523

Iz

If Hy is true, we expect the observed counts Oy to be near the expected counts
Ej;, estimated as in the above formula 5.23, using the row and column marginal
counts. The asymptotic distribution of 7 is the chi-square distribution with
df = (r — 1)(c — 1) degrees of freedom. As with the chi-square goodness of fit test
described in section 5.1.3, the approximation is considered acceptable if the
following conditions are met:

i. Fordf=1,i.e. for 2x2 contingency tables, no E; must be smaller than 5;
ii. For df> 1, no E; must be smaller than 1 and no more than 20% of the E;
must be smaller than 5.

The SPSS STATISTICA, MATLAB and R commands for testing rxc
contingency tables are indicated in Commands 5.7.

Example 5.11

Q: Consider the male and female populations of the Freshmen dataset. Based on
the evidence provided by the respective samples, is it possible to conclude that
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male and female students have different behaviour participating in the “initiation”
on their own will?

A: Question 7 (column Q7) of the freshmen dataset addresses the issue of
participating in the initiation on their own will. The 2x5 contingency table, using
variables SEX and Q7, has more than 20% of the cells with expected counts below
5 because of the reduced number of cases ranked 1 and 2. We, therefore, create a
new variable Q7 12 where the ranks 1 and 2 are merged into a new rank, coded 12.

The contingency table for the variables SEX and Q7 12 is shown in Table 5.11.
The chi-square value for this table has an observed significance p = 0.15; therefore,
we do not reject the null hypothesis of equal behaviour of male and female students
at the 5% level.

Since one of the variables, SEX, is nominal, we can determine the association
measures suitable to nominal variables, as we did in section 2.3.6. In this example
the phi and uncertainty coefficients both have significances (0.15 and 0.08,
respectively) that do not support the rejection of the null hypothesis (no association

between the variables) at the 5% level.
0

Table 5.12. Contingency table obtained with SPSS for the SEX and Q7 _12
variables of the freshmen dataset. Q7 12 is created with the SPSS recode
command, using Q7. Note that three missing cases are not included.

Q712 Total
3 4 5 12
SEX male  Count 18 36 29 12 95
Expected Count 14.0 36.8 30.9 13.3 95.0
female Count 1 14 13 6 34
Expected Count 5.0 13.2 11.1 4.7 34.0
Total Count 19 50 42 18 129

Expected Count 19.0 50.0 42.0 18.0 129.0

5.2.3 The Chi-Square Test of Independence

When performing tests of hypotheses one often faces the situation in which a
decision must be made as to whether or not two or more variables pertaining to the
same population can be considered independent. In order to assess the
independency of two variables we use the contingency table formalism, which
now, however, is applied to only one population whose variables can be
categorised into two or more categories. The variables can either be discrete



196 5 Non-Parametric Tests of Hypotheses

(nominal or ordinal) or continuous. In this latter case, one must choose suitable
categorisations for the continuous variables.

The rxc contingency table for this situation is the same as shown in Figure 5.4.
The only differences being that whereas in the previous section the rows
represented different populations and the row totals were assumed to be fixed, now
the rows represent categories of a second variable and the row totals can vary
arbitrarily, constrained only by the fact that their sum is the total number of cases.

The test is formalised as:

Ho: The event “an observation is in row i” is independent of the event “the same
observation is in column j”, i.e.:

P(row i, column j) = P(row i) xP(column j), Vi,j.

H;: The events “an observation is in row i” and “the same observation is in
column ;”, are dependent, i.e.:

3 i,j, P(row i, column j) # P(row i) xP(column j).

Let r; denote the row totals as in Figure 2.18, such that:
C
7 :in]- and n=ritrn+. .+t r=ctct..tc.

As before, we use the test statistic:

r c\o.—FE. 2 C .
T=Z;Zl—( )5y , with Eﬁﬁ, 5.24
i=l j=

i n

which has the asymptotic chi-square distribution with df = (r — 1)(c — 1) degrees of
freedom. Note, however, that since the row totals can vary in this situation, the
exact probability associated to a certain value of 7 is even more difficult to
compute than before because there are a greater number of possible tables with the
same 7.

Example 5.12

Q: Consider the Programming dataset, containing results of pedagogical
enquiries made during the period 1986-1988, of freshmen attending the course
“Programming and Computers” in the Electrotechnical Engineering Department of
Porto University. Based on the evidence provided by the respective samples, is it
possible to conclude that the performance obtained by the students at the final
examination is independent of their previous knowledge on programming?

A: Note that we have a single population with two attributes: “previous knowledge
on programming” (variable PROG), and “final examination score” (variable
SCORE). In order to test the independence hypothesis of these two attributes, we
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first categorise the SCORE variable into four categories. These can be classified
as: “Poor” corresponding to a final examination score below 10; “Fair”
corresponding to a score between 10 and 13; “Good” corresponding to a score
between 14 and 16; “Very Good” corresponding to a score above 16. Let us call
PERF (performance) this new categorised variable.

The 3x4 contingency table, using variables PROG and PERF, is shown in Table
5.13. Only two (16.7%) cells have expected counts below 5; therefore, the
recommended conditions, mentioned in the previous section, for using the
asymptotic distribution of 7, are met.

The value of T is 43.044. The asymptotic chi-square distribution of 7' has
(3 = 1)(4 - 1) = 6 degrees of freedom. At a 5% level, the critical region is above
12.59 and therefore the null hypothesis is rejected at that level. As a matter of fact,

the observed significance of T'is p ~ 0.
0

Table 5.13. The 3x4 contingency table obtained with SPSS for the independence
test of Example 5.12.

PERF Total
. Ve
Poor Fair  Good Gocl;}(li

PROG 0 Count 76 78 16 7 177
Expected Count 63.4 73.8 21.6 18.3 177.0

1 Count 19 29 10 13 71
Expected Count 25.4 29.6 8.6 7.3 71.0

2 Count 2 6 7 8 23
Expected Count 8.2 9.6 2.8 24 23.0

Total Count 97 113 33 28 271
Expected Count 97.0 113.0 33.0 280 271.0

The chi-square test of independence can also be applied to assess whether two
or more groups of data are independent or can be considered as sampled from the
same population. For instance, the results obtained for Example 5.7 can also be
interpreted as supporting, at a 5% level, that the male and female groups are not
independent for variable Q7; they can be considered samples from the same
population.

5.2.4 Measures of Association Revisited
When analysing contingency tables, it is also convenient to assess the degree of

association between the variables, using the ordinal and nominal association
measures described in sections 2.3.5 and 2.3.6, respectively. As in 4.4.1, the
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hypotheses in a two-sided test concerning any measure of association y are
formalised as:

Hy: y=0;
H1: V#* 0.

5.2.4.1 Measures for Ordinal Data

Let X and Y denote the variables whose association is being assessed. The exact
values of the sampling distribution of the Spearman’s rank correlation, when Hy is
true, can be derived if we note that for any given ranking of ¥, any rank order of X
is equally likely, and vice-versa. Therefore, any particular ranking has a probability
of occurrence of 1/n!. As an example, let us consider the situation of n = 3, with X
and Y having ranks 1, 2 and 3. As shown in Table 5.14, there are 3! = 6 possible
permutations of the X ranks. Applying formula 2.21, one then obtains the 7, values
shown in the last row. Therefore, under Hy, the 1 values have a 1/6 probability
and the £'4 values have a 1/3 probability. When 7 is large (say, above 20), the
significance of r; under H, can be obtained using the test statistic:

2 =r n—-1, 5.25

which is approximately distributed as the standard normal distribution.

Table 5.14. Possible rankings and Spearman correlation for n = 3.

X Y Y Y Y Y Y
1 1 1 2 2 3 3
2 2 1 3 1 2

3 2 3 1 2 1

Ty 1 0.5 0.5 -0.5 -0.5 -1

In order to test the significance of the gamma statistic a large sample (say,
above 25) is required. We then use the test statistic:

z =(G-y) LQZ, 5.26
\}n(l—G )

which, under Hy (y = 0), is approximately distributed as the standard normal
distribution. The values of P and Q were defined in section 2.3.5.

The Spearman correlation and the gamma statistic were computed for Example
5.12, with the results shown in Table 5.15. We see that the observed significance is
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very low, leading to the conclusion that there is an association between both
variables (PERF, PROG).

Table 5.15. Measures of association for ordinal data computed with SPSS for
Example 5.12.

Asymp. Std. .
Value Error Approx. T Approx. Sig.
Gamma 0.486 0.076 5.458 0.000
Spearman Correlation 0.332 0.058 5.766 0.000

5.2.4.2 Measures for Nominal Data

In Chapter 2, the following measures of association were described: the index of
association (phi coefficient), the proportional reduction of error (Goodman and
Kruskal lambda), and the « statistic for the degree of agreement.

Note that taking into account formulas 2.24 and 5.20, the phi coefficient can be
computed as:

r |7
Ny 527
o= -1

with the phi coefficient now lying in the interval [0, 1]. Since the asymptotic
distribution of 7 is the standard normal distribution, one can then use this
distribution in order to evaluate the significance of the signed phi coefficient (using
the sign of 0,,0,, —0,,0,, ) multiplied by /n .

Table 5.16 displays the value and significance of the phi coefficient for Example
5.9. The computed two-sided significance of phi is 0.083; therefore, at a 5%
significance level, we do not reject the hypothesis that there is no association
between SEX and INIT.

Table 5.16. Phi coefficient computed with SPSS for the Example 5.9 with the two-
sided significance.

Value Approx. Sig.
Phi 0.151 0.083

The proportional reduction of error has a complex sampling distribution that we
will not discuss. For Example 5.9 the only situation of interest for this measure of
association is: INIT depending on SEX. Its value computed with SPSS is 0.038.
This means that variable SEX will only reduce by about 4% the error of predicting
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INIT. As a matter of fact, when using INIT alone, the prediction error is
(131 — 121)/131 = 0.076. With the contribution of variable SEX, the prediction
error is the same (5/131 + 5/131). However, since there is a tie in the row modes,
the contribution of INIT is computed as half of the previous error.

In order to test the significance of the x statistic measuring the agreement
among several variables, the following statistic, approximately normally
distributed for large n with zero mean and unit standard deviation, is used:

z=kK/ Var(/() , with 5.28
2 PE)-(x-3)[PE)] +2(x-2)3 p
var(x) nzc(zc—l) [I—P(E)]z . 5.28a

As described in 2.3.6.3, the « statistic can be computed with function kappa
implemented in MATLAB or R; kappa (x, alpha) computes for a matrix x,
(formatted as columns N, S and P in Table 2.13), the row vector denoted
[ko, z, zc] in MATLAB containing the observed value of «, ko, the z value of
formula 5.28 and the respective critical value, zc, at alpha level. The meaning of
the returned values for the R kappa function is the same. The results of the x
statistic significance for Example 2.11 are obtained as shown below. We see that
the null hypothesis (disagreement among all four classifiers) is rejected at a 5%
level of significance, since z > zc.

[ko,z,zcl=kappa(x,0.05)

ko =
0.2130
Z =
3.9436
zCc =
3.2897

5.3 Inference on Two Populations

In this section, we describe non-parametric tests that have parametric counterparts
described in section 4.4.3. As discussed in 4.4.3.1, when testing two populations,
one must first assess whether or not the available samples are independent. Tests
for two paired or matched samples are used to assess whether two treatments are
different or whether one treatment is better than the other. Either treatment is
applied to the same group of cases (the “before” and “after” experiments), or
applied to pairs of cases which are as much alike as possible, the so-called
“matched pairs”. When it is impossible to design a study with paired samples, we
resort to tests for independent samples. Note that some of the tests described for
contingency tables also apply to two independent samples.



5.3 Inference on Two Populations 201

5.3.1 Tests for Two Independent Samples

Commands 5.8. SPSS, STATISTICA, MATLAB and R commands used to
perform non-parametric tests on two independent samples.

Analyze; Nonparametric Tests;

SPSS 2 Independent Samples
Statistics; Nonparametrics; Comparing two
STATISTICA independent samples (groups)
MATLAB [p,h,stats]=ranksum(x,y,alpha)
R ks.test (x,y) ;

wilcox.test(x,y) | wilcox.test (x~y)

5.3.1.1 The Kolmogorov-Smirnov Two-Sample Test

The Kolmogorov-Smirnov test is used to assess whether two independent samples
were drawn from the same population or from populations with the same
distribution, for the variable X being tested, which is assumed to be continuous. Let
F(x) and G(x) represent the unknown distributions for the two independent
samples. The null hypothesis is formalised as:

Hy: Data variable X has equal cumulative probability distributions for the two
samples: F (x) = G(x).

The test is conducted similarly to the way described in section 5.1.4. Let S,,(x)
and S,(x) represent the empirical distributions of the two samples, with sizes m and
n, respectively. We then use as test statistic, the maximum deviation of these
empirical distributions:

Dm,n = max | Sn(x) - Sm(x) | 5.29

For large samples (say, m and n above 25) and two-tailed tests (the most usual),
the significance of D,,, can be evaluated using the critical values obtained with the
expression:

m+n

, 5.30

mn

where c is a coefficient that depends on the significance level, namely ¢ = 1.36 for
a =0.05 (for details, see e.g. Siegel S, Castellan Jr NJ, 1998).

When compared with its parametric counterpart, the ¢ test, the Kolmogorov-
Smirnov test has a high power-efficiency of about 95%, even for small samples.
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Example 5.13

Q: Consider the variable ART, the total area of defects, of the cork-stopper dataset.
Can one assume that the distributions of ART for the first two classes of cork-
stoppers are the same?

A: Variable ART can be considered a continuous variable, and the samples are
independent. Table 5.17 shows the Kolmogorov test results, from where we
conclude that the null hypothesis is rejected, i.e., for variable ART, the first two
classes have different distributions. The test is performed in R with ks.test
(ART[1:50],ART[51:100]). 1]

Table 5.17. Two sample Kolmogorov-Smirnov test results obtained with SPSS for
variable ART of the cork-stopper dataset.

ART

Most Extreme Differences Absolute 0.800
Positive 0.800

Negative 0.000

Kolmogorov-Smirnov Z 4.000
Asymp. Sig. (2-tailed) 0.000

5.3.1.2 The Mann-Whitney Test

The Mann-Whitney test, also known as Wilcoxon-Mann-Whitney or rank-sum test,
is used like the previous test to assess whether two independent samples were
drawn from the same population, or from populations with the same distribution,
for the variable being tested, which is assumed to be at least ordinal.

Let Fy(x) and Gy(x) represent the unknown distributions of the two independent
populations, where we explicitly denote by X and Y the corresponding random
variables. The null hypothesis can be formalised as in the previous section (Fy(x)=
Gy(x)). However, when the distributions are different, it often happens that the
probability associated to the event “X > Y is not %, as should be expected for
equal distributions. Following this approach, the hypotheses for the Mann-Whitney
test are formalised as:

Hy PX >Y)=%;
Hy: PX >Y)#%,

for the two-sided test, and

Hoy: P(X >Y) 25 Hi: PX >Y)<'%, or
Hyo: PX >Y) < Vs Hi: P(X >Y)> %,

for the one-sided test.
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In order to assess these hypotheses, the Mann-Whitney test starts by assigning
ranks to the samples. Let the samples be denoted xi, x5, ..., x, and yy, v, ..., V-
The ranking of the x; and y; assigns ranks in 1, 2, ..., n + m. As an example, let us
consider the following situation:

xo 12 21 15 8
y.: 9 13 19

The ranking of x; and y; would then yield the result:

Variable: X Y X Y X Y X
Data: 8 9 12 13 15 19 21
Rank: 1 2 3 4 5 6 17

The test statistic is the sum of the ranks for one of the variables, say X:
Wy =21 R(x), 531

where R(x;) are the ranks assigned to the x;. For the example above, Wy = 16.
Similarly, Wy= 12 with:

N(N +1)

Wy +Wy = , total sum of the ranks from 1 through N=n+ m.

The rationale for using Wy as a test statistic is that under the null hypothesis,
P(X >Y)="1, one expects the ranks to be randomly distributed between the x; and
y;, therefore resulting in approximately equal average ranks in each of the two
samples. For small samples, there are tables with the exact probabilities of Wy. For
large samples (say m or n above 10), the sampling distribution of Wy rapidly
approaches the normal distribution with the following parameters:

n(N+1) 5 nm(N +1)
H wx 2 Wy 12
Therefore, for large samples, the following test statistic with standard normal
distribution is used:

. W,yx05-
:X—ﬂWX. 533

z

Owy

The 0.5 continuity correction factor is added when one wants to determine

critical points in the left tail of the distribution, and subtracted to determine critical
points in the right tail of the distribution.

When compared with its parametric counterpart, the ¢ test, the Mann-Whitney

test has a high power-efficiency, of about 95.5%, for moderate to large n. In some
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cases, it was even shown that the Mann-Whitney test is more powerful than the ¢
test! There is also evidence that it should be preferred over the previous
Kolmogorov-Smirnov test for large samples.

Example 5.14

Q: Consider the Programming dataset. Does this data support the hypothesis that
freshmen and non-freshmen have different distributions of their scores?

A: The Mann-Whitney test results are summarised in Table 5.18. From this table
one concludes that the null hypothesis (equal distributions) cannot be rejected at
the 5% level. In R this test would be solved with wilcox.test
(Score~F)yielding the same results for the “Mann-Whitney U” and “Asymp.

Sig.” as in Table 5.18.
a0

Table 5.18. Mann-Whitney test results obtained with SPSS for Example 5.14:
a) Ranks; b) Test statistic and significance. F=1 for freshmen; 0, otherwise.

Mean Sum of SCORE

F N Rank Rank
a anks Mann-Whitney U 3916
0 34 132.68 4511 Wilcoxon W 4511
1 237  136.48 32345 z -0.265
Asymp. Sig. 0.791

Total 271 ) (2-tailed) .
a

Table 5.19. Ranks for variables ASP and PHE (Example 5.15), obtained with

SPSS.
TYPE N Mean Rank Sum of Ranks
ASP 1 30 40.12 1203.5
2 37 29.04 1074.5
Total 67
PHE 1 30 42.03 1261.0
2 37 27.49 1017.0
Total 67
Example 5.15

Q: Consider the ¢ test performed in Example 4.9, for variables ASP and PHE of the
wine dataset. Apply the Mann-Whitney test to these continuous variables and
compare the results with those previously obtained.
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A: Tables 5.19 and 5.20 show the results with identical conclusions (and p values!)
to those presented in Example 4.9.

Note that at a 1% level, we do not reject the null hypothesis for the ASP
variable. This example constitutes a good illustration of the power-efficiency of the
Mann-Whitney test when compared with its parametric counterpart, the ¢ test.

0

Table 5.20. Mann-Whitney test results for variables ASP and PHE (Example 5.15)
with grouping variable TYPE, obtained with SPSS.

ASP PHE
Mann-Whitney U 371.5 314
Wilcoxon W 1074.5 1017
Z -2.314 -3.039
Asymp. Sig. (2-tailed) 0.021 0.002

5.3.2 Tests for Two Paired Samples

Commands 5.9. SPSS, STATISTICA, MATLAB and R commands used to
perform non-parametric tests on two paired samples.

Statistics; Nonparametrics; Comparing two
STATISTICA dependent samples (variables)

Analyze; Nonparametric Tests; 2 Related
SPSS

Samples
MATLAB [p,h, stats]=signrank(x,y,alpha)

[p,h,stats]=signtest (x,vy,alpha)

R mcnemar. test (x) | mcnemar.test(x,y)
wilcox.test (x,y,paired=TRUE)

5.3.2.1 The McNemar Change Test

The McNemar change test is particularly suitable to “before and after”
experiments, in which each case can be in either of two categories or responses and
is used as its own control. The test addresses the issue of deciding whether or not
the change of response is due to hazard. Let the responses be denoted by the + and
— signs and a change denoted by an arrow, —. The test is formalised as:
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Hg: After the treatment, P(+ — —-)=P(- — +);
H;: After the treatment, P(+ — —-)#=P(- — +).

Let us use a 2x2 table for recording the before and after situations, as shown in
Figure 5.5. We see that a change occurs in situations 4 and D, i.e., the number of
cases which change of response is 4 + D. If both changes of response are equally
likely, the expected count in both cells is (4 + D)/2.

The McNemar test uses the following test statistic:

4+DY A+D 7
“ :z(oi—E[) 2 ], 2 | _(4-D
=~ F A+D A+D A+D

2 2

5.34

The sampling distribution of this test statistic, when the null hypothesis is true,
is asymptotically the chi-square distribution with df = 1. A continuity correction is
often used, especially for small absolute frequencies, in order to make the
computation of significances more accurate.

An alternative to using the chi-square test is to use the binomial test. One would
then consider the sample with n = 4 + D cases, and assess the null hypothesis that
the probabilities of both changes are equal to %%.

After
- +
+| 4 B
Before
- C D

Figure 5.5. Table for the McNemar change test, where A, B, C and D are cell
counts.

Example 5.16

Q: Consider that in an enquiry into consumer preferences of two products A and B,
a group of 57 out of 160 persons preferred product A, before reading a study of a
consumer protection organisation. After reading the study, 8 persons that had
preferred product A and 21 persons that had preferred product B changed opinion.
Is it possible to accept, at a 5% level, that the change of opinion was due to hazard?

A: Table 5.21a shows the respective data in a convenient format for analysis with
STATISTICA or SPSS. The column “Number” should be used for weighing the
cases corresponding to the cells of Figure 5.5 with “1” denoting product A and “2”
denoting product B. Case weighing was already used in section 5.1.2.
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Table 5.21b shows the results of the test; at a 5% significance level, we reject
the null hypothesis that the change of opinion was due to hazard.
In R the test is run (with the same results) as follows:

> x <- array(c(49,21,8,82),dim=c(2,2))
> mcnemar.test (x) a0

Table 5.21. (a) Data of Example 5.16 in an adequate format for running the
McNmear test with STATISTICA or SPSS, (b) Results of the test obtained with
SPSS.

Before After Number BEFORE &
1 1 49 AFTER
1 2 8 N 160
2 2 82 Chi-Square 4.966
2 1 21 X Asymp. Sig. 0.026
a

5.3.2.2 The Sign Test

The sign test compares two paired samples (x, 1), (X2, V2), ... , (X4, ¥u), using the
sign of the respective differences: (x; — yy), (x2 —»2), ... , (x, —¥,), 1.€., using a set
of dichotomous values (+ and — signs), to which the binomial test described in
section 5.1.2 can be applied in order to assess the truth of the null hypothesis:

Hyp: P(x; >y;)=P(x; <y;)="2. 5.35

Note that the null hypothesis can also be stated in terms of the sign of the
differences x; — y;, by setting their median to zero.

Previous to applying the binomial test, all cases with tied decisions, x; = y;, are
removed from the analysis, and the sample size, n, adjusted accordingly. The null
hypothesis is rejected if too few differences of one sign occur.

The power-efficiency of the test is about 95% for n = 6, decreasing towards 63%
for very large n. Although there are more powerful tests for paired data, an
important advantage of the sign test is its broad applicability to ordinal data.
Namely, when the magnitude of the differences cannot be expressed as a number,
the sign test is the only possible alternative.

Example 5.17

Q: Consider the Metal Firms’ dataset containing several performance indices
of a sample of eight metallurgic firms (see Appendix E). Use the sign test in order
to analyse the following comparisons: a) leadership teamwork (TW) vs. leadership
commitment to quality improvement (CI), b) management of critical processes
(MC) vs. management of alterations (MA). Discuss the results.
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A: All variables are ordinal type, measured on a 1 to 5 scale. One must note,
however, that the numeric values of the variables cannot be taken to the letter. One
could as well use a scale of A to E or use “very poor”, “poor”, “fair”, “good” and
“very good”. Thus, the sign test is the only two-sample comparison test appropriate
here.

Running the test with STATISTICA, SPSS or MATLAB yields observed one-
tailed significances of 0.0625 and 0.5 for comparisons (a) and (b), respectively.
Thus, at a 5% significance level, we do not reject the null hypothesis of
comparable distributions for pair TW and CI nor for pair MC and MA.

Let us analyse in detail the sign test results for the TW-CI pair of variables. The

respective ranks are:

TW: 4 4 3 2 4 3 3 3
CI : 3 2 3 2 4 3 2 2
Difference: + + 0 0 0 0 + +

We see that there are 4 ties (marked with 0) and 4 positive differences TW — CI.
Figure 5.6a shows the binomial distribution of the number £ of negative differences
for n = 4 and p = '2. The probability of obtaining as few as zero negative
differences TW — CI, under H,, is (‘/z)4 =0.0625.

We now consider the MC-MA comparison. The respective ranks are:

MC: 2 2 2 2 1 2 3 2

MA: 1 3 1 1 1 4 2 4
Difference: + - + + 0 -+ -

040 0.30 035

P P P
035 0.25 030
0.30 0.25
020

025 020
0.20 0.15 o5
0.15 )
0.10 010 010
0.05 0.05 0.05
0.00 0.00 0.00
a o 1 2 3 4xb 01 2 3 4 5 6 7kC 001 2 3 4 5 6 Tk

Figure 5.6. Binomial distributions for the sign tests in Example 5.18: a) TW-CI
pair, under Hy; b) MC-MA pair, under Hp; ¢) MC-MA pair for the alternative
hypothesis H;: P(IMC < MA) = Y.

Figure 5.6b shows the binomial distribution of the number of negative
differences for n = 7 and p = . The probability of obtaining at most 3 negative
differences MC — MA, under Hy, is %2, given the symmetry of the distribution. The
critical value of the negative differences, k = 1, corresponds to a Type I Error of
a=0.0625.
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Let us now determine the Type II Error for the alternative hypothesis “positive
differences occur three times more often than negative differences”. In this case,
the distributions of MC and MA are not identical; the distribution of MC favours
higher ranks than the distribution of MA. Figure 5.6c shows the binomial
distribution for this situation, with p = PMMC < MA) = V4. We clearly see that, in
this case, the probability of obtaining at most 3 negative differences MC — MA
increases. The Type II Error for the critical value £ = 1 is the sum of all
probabilities for k£ > 2, which amounts to = 0.56. Even if we relax the « level to
0.23 for a critical value k = 2, we still obtain a high Type II Error, f= 0.24. This
low power of the binomial test, already mentioned in 5.1.2, renders the conclusions
for small sample sizes quite uncertain.

0

Example 5.18

Q: Consider the FHR dataset containing measurements of basal heart rate
frequency (beats per minute) made on 51 foetuses (see Appendix E). Use the sign
test in order to assess whether the measurements performed by an automatic
system (SPB) are comparable to the computed average (denoted AEB) of the
measurements performed by three human experts.

A: There is a clear lack of fit of the distributions of SPB and AEB to the normal
distribution. A non-parametric test has, therefore, to be used here. The sign test
results, obtained with STATISTICA are shown in Table 5.22. At a 5% significance
level, we do not reject the null hypothesis of equal measurement performance of
the automatic system and the “average” human expert. a0

Table 5.22. Sign test results obtained with STATISTICA for the SPB-AEB
comparison (FHR dataset).

No. of Non-Ties Percentv<V V4 p-level

49 63.26531 1.714286 0.086476

5.3.2.3 The Wilcoxon Signed Ranks Test

The Wilcoxon signed ranks test uses the magnitude of the differences d; = x; — y;,
which the sign test disregards. One can, therefore, expect an enhanced power-
efficiency of this test, which is in fact asymptotically 95.5%, when compared with
its parametric counterpart, the ¢ test. The test ranks the d;’s according to their
magnitude, assigning a rank of 1 to the d; with smallest magnitude, the rank of 2 to
the next smallest magnitude, etc. As with the sign test, x; and y; ties (d; = 0) are
removed from the dataset. If there are ties in the magnitude of the differences,
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these are assigned the average of the ranks that would have been assigned without
ties. Finally, each rank gets the sign of the respective difference. For the MC and
MA variables of Example 5.17, the ranks are computed as:

MC: 2 2 2 2 1 2 3 2
MA: 1 3 1 1 1 4 2 4
MC-MA: +1 -1 41 41 0 =2 +1 =2
Ranks: 1 2 3 4 6 5 7
Signed Ranks: 3 -3 3 3 -6.5 3 —6.5

Note that all the magnitude 1 differences are tied; we, therefore, assign the
average of the ranks from 1 to 5, i.e., 3. Magnitude 2 differences are assigned the
average rank (6+7)/2 =6.5.

The Wilcoxon test uses the test statistic:

T = sum of the ranks of the positive d;. 5.36

The rationale is that under the null hypothesis — samples are from the same
population or from populations with the same median — one expects that the sum of
the ranks for positive d; will balance the sum of the ranks for negative d;. Tables of
the sampling distribution of 7" for small samples can be found in the literature. For
large samples (say, n > 15), the sampling distribution of T° converges
asymptotically, under the null hypothesis, to a normal distribution with the
following parameters:

_n(n+1) 2 _n(n+D2n+1)
Tt 4 7 T 24 '

5.37

A test procedure similar to the ¢ test can then be applied in the large sample
case. Note that instead of 7" the test can also use 7~ the sum of the negative ranks.

Table 5.23. Wilcoxon test results obtained with SPSS for the SPB-AEB
comparison (FHR dataset) in Example 5.19: a) ranks, b) significance based on
negative ranks.

N Mean Rank Sum of Ranks

AE - SP
Negative Ranks 18 20.86 375.5
Positive Ranks 31 27.40 849.5 zZ -2.358
Ties 2 Asymp. Sig. 0.018
Total 51 (2-tailed) ’




5.3 Inference on Two Populations 211

Example 5.19

Q: Redo the two-sample comparison of Example 5.18, using the Wilcoxon signed
ranks test.

A: The Wilcoxon test results obtained with SPSS are shown in Table 5.23. Ata 5%
significance level, we reject the null hypothesis of equal measurement performance
of the automatic system and the “average” human expert. Note that the conclusion
is different from the one reached using the sign test in Example 5.18.

In R the command wilcox.test (SPB, AEB, paired = TRUE) yields
the same “p-value”.

0

Example 5.20

Q: Estimate the power of the Wilcoxon test performed in Example 5.19 and the
needed value of n for reaching a power of at least 90%.

A: We estimate the power of the Wilcoxon test using the concept of power-
efficiency (see formula 5.1). Since Example 5.19 involves a large sample (n = 51),
the power-efficiency of the Wilcoxon test is of about 95.5%.

Figure 5.7a shows the STATISTICA specification window for the dependent
samples ¢ test. The values filled in are the sample means and sample standard
deviations of the two samples, as well as the correlation between them. The
“Alpha” value is the previous two-tailed observed significance (see Table 5.22).
The value of n, using formula 5.1, is n = ny; = 0.955x51 ~ 49. STATISTICA
computes a power of 76% for these specifications.

The power curve shown in Figure 5.7b indicates that the parametric test reaches
a power of 90% for ny = 70. Therefore, for the Wilcoxon test we need a number of
samples of ng = 70/0.955 ~ 73 for the same power.

O
Fixed Parameters ! 1.0} Power vs. N (Es = -0.443727, Alpha = 0.02)
. [2] k]
N: [a3 :
Mul: 137 .
Mu2: IIAD‘ e 8
g s
ha: |u 0z = &
A Type of Hypothesis 4
Signa: [15.5 & Z4aled [Mul = Mu2) 3
o N bl E
Sigma2: [13.7 ™ 12aled (Mul <= Mu2 | 2
Rha: IG S0 " 14ailed [ Mul 5= Mu2 ) ! Sample Size (N)
a— b0'0010203040506070w311w110

Figure 5.7. Determining the power for a two-paired samples ¢ test, with
STATISTICA: a) Specification window, b) Power curve dependent on ».
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5.4 Inference on More Than Two Populations

In the present section, we describe non-parametric tests that have parametric
counterparts already described in section 4.5. Note that some of the tests described
for contingency tables also apply to more than two independent samples.

5.4.1 The Kruskal-Wallis Test for Independent Samples

The Kruskal-Wallis test is the non-parametric counterpart of the one-way ANOVA
test described in section 4.5.2. The test assesses whether ¢ independent samples are
from the same population or from populations with continuous distribution and the
same median for the variable being tested. The variable being tested must be at
least of ordinal type. The test procedure is a direct generalisation of the Mann-
Whitney rank sum test described in section 5.3.1.2. Thus, one starts by assigning
natural ordered ranks to the sample values, from the smallest to the largest. Tied
ranks are substituted by their average.

Commands 5.10. SPSS, STATISTICA, MATLAB and R commands used to
perform the Kruskal-Wallis test.

Analyze; Nonparametric Tests; K

SPSS Independent Samples

STaTISTICA Statistics; Nonparanctrice; Comparing
MATLAB p=kruskalwallis (x)

R kruskal.test (X~CLASS)

Let R; denote the sum of ranks for sample i, with n; cases. Under the null
hypothesis, we expect that each R; will exhibit a small deviation from the average
of all R;, R . The test statistic is:

12

= > n.(R;-R)*, 5.38
n(n+1)

i=l1

Kw

which, under the null hypothesis, has an asymptotic chi-square distribution with
df = c — 1 degrees of freedom (when the number of observations in each group
exceeds 5).

When there are tied ranks, a correction is inserted in formula 5.38, dividing the
KW value by:
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1—[i & —ti)J /(zv3 —N), 539
i=1

where ¢; is the number of ties in group i of g tied groups, and N is the total number
of cases in the ¢ samples (sum of the #;).

The power-efficiency of the Kruskal-Wallis test, referred to the one-way
ANOVA, is asymptotically 95.5%.

Example 5.21

Q: Consider the Clays’ dataset (see Appendix E). Assume that at a certain stage
of the data collection process, only the first 15 cases were available and the
Kruskal-Wallis test was used to assess which clay features best discriminated the
three types of clays (variable AGE). Perform this test and analyse its results for the
alumina content (Al,O3) measured with only 3 significant digits.

A: Table 5.24 shows the 15 cases sorted and ranked. Notice the tied values for
ALO; = 17.3, corresponding to ranks 6 and 7, which are assigned the mean rank
(6+7)/2.

The sum of the ranks is 57, 41 and 22 for the groups 1, 2 and 3, respectively;
therefore, we obtain the mean ranks shown in Table 5.25. The asymptotic
significance of 0.046 leads us to reject the null hypothesis of equality of medians

for the three groups at a 5% level.
0

Table 5.24. The first fifteen cases of the Clays ' dataset, sorted and ranked.

AGE 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
AlLO; 23.0 214 16.6 22.1 188 173 17.8 184 173 19.1 115 149 11.6 158 19.5

Rank 15 13 5 14 10 65 8 9 65 11 1 3 2 4 12

Table 5.25. Results, obtained with SPSS, for the Kruskal-Wallis test of alumina in
the Clays’ dataset: a) ranks, b) significance.

AGE N Mean Rank AL203
pliocenic good clay 5 11.40 Chi-Square 6.151
pliocenic bad clay 5 8.20 df )
holocenic clay 5 4.40

Total 15 Asymp. Sig.  0.046

a b




214 5 Non-Parametric Tests of Hypotheses

Example 5.22

Q: Consider the Freshmen dataset and use the Kruskal-Wallis test in order to
assess whether the freshmen performance (EXAMAVG) differs according to their
attitude towards skipping the Initiation (Question 8).

A: The mean ranks and results of the test are shown in Table 5.26. Based on the
observed asymptotic significance, we reject the null hypothesis at a 5% level, i.e.,
we have evidence that the freshmen answer Question 8 of the enquiry differently,
depending on their average performance on the examinations.

Table 5.26. Results, obtained with SPSS, for the Kruskal-Wallis test of average
freshmen performance in 5 categories of answers to Question 8: a) ranks; b)
significance.

Q8 N Mean Rank

EXAMAVG

1 10 104.45

2 22 75.16 Chi-Square  14.081

3 48 60.08

4 39 59.04 df 4

> 12 63.46 '
, Total 131 . Asymp. Sig.  0.007

0

Example 5.23

Q: The variable ART of the Cork Stoppers’ dataset was analysed in section
4.5.2.1 using the one-way ANOVA test. Perform the same analysis using the
Kruskal-Wallis test and estimate its power for the alternative hypothesis
corresponding to the sample means.

A: We saw in 4.5.2.1 that a logarithmic transformation of ART was needed in
order to be able to apply the ANOVA test. This transformation is not needed with
the Kruskal-Wallist test, whose only assumption is the independency of the
samples.

Table 5.27 shows the results, from which we conclude that the null hypothesis
of median equality of the three populations is rejected at a 5% significance level
(or even at a smaller level).

In order to estimate the power of this Kruskal-Wallis test, we notice that the
sample size is large, and therefore, we expect the power to be the same as for the
one-way ANOVA test using a number of cases equal to n = 50x0.955 ~ 48. The
power of the one-way ANOVA, for the alternative hypothesis corresponding to the
sample means and with n =48, is 1.

0
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Table 5.27. Results, obtained with SPSS, for the Kruskal-Wallis test of variable
ART of the Cork Stoppers’ dataset: a) ranks, b) significance.

C N Mean Rank ART
1 50 28.18 Chi-Square  121.590
2 50 74.35 daf 2
3 50 123.97
Asymp. 0.000
Total 150 Sig. '
a b

5.4.2 The Friedmann Test for Paired Samples

The Friedman test can be considered the non-parametric counterpart of the two-
way ANOVA test described in section 4.5.3. The test assesses whether c-paired
samples, each with n cases, are from the same population or from populations with
continuous distributions and the same median. The variable being tested must be at
least of ordinal type. The test procedure starts by assigning natural ordered ranks
from 1 to ¢ to the matched case values in each row, from the smallest to the largest.
Tied ranks are substituted by their average.

Commands 5.11. SPSS, STATISTICA, MATLAB and R commands used to
perform the Friedmann test.

SPSS Analyze; Nonparametric Tests; K Related

Samples

Statistics; Nonparametrics; Comparing
STATISTICA multiple dep. samples (groups)
MATLAB [p, table, stats]=friedman (x, reps)
R friedman.test (x, group) |

friedman. test (x~group)

Let R; denote the sum of ranks for sample i. Under the null hypothesis, we
expect that each R; will exhibit a small deviation from the value that would be
obtained by chance, i.e., n(c + 1)/2. The test statistic is:

C
12) R? —3n’c(c+1)°

F =— . 5.40
ne(c+1)
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Tables with the exact probabilities of F,, under the null hypothesis, can be found
in the literature. For ¢ > 5 or for n > 15 F, has an asymptotic chi-square distribution
with df'=c— 1 degrees of freedom.

When there are tied ranks, a correction is inserted in formula 5.40, subtracting
from nc(c + 1) in the denominator the following term:

n g

nc—Zthj

— = 5.41
c—1

where ¢;; is the number of ties in group j of g; tied groups in the ith row.

The power-efficiency of the Friedman test, when compared with its parametric
counterpart, the two-way ANOVA, is 64% for ¢ = 2 and increases with ¢, namely
to 80% for ¢ = 5.

Example 5.24

Q: Consider the evaluation of a sample of eight metallurgic firms (Metal
Firms’ dataset), in what concerns social impact, with variables: CEI =
“commitment to environmental issues”; IRM = “incentive towards using recyclable
materials”; EMS = “environmental management system”; CLC = “co-operation
with local community”’; OEL = “obedience to environmental legislation”. Is there
evidence at a 5% level that all variables have distributions with the same median?

Table 5.28. Scores and ranks of the variables related to “social impact” in the
Metal Firms dataset (Example 5.24).

Data Ranks

CEI IRM EMS CLC OEL CEI IRM EMS CLC OEL
Firm#1 2 1 1 1 2 4.5 2 2 2 4.5
Firm#2 2 1 1 1 2 4.5 2 2 2 4.5
Firm#3 2 1 1 2 2 4 1.5 1.5 4 4
Firm#4 2 1 1 1 2 4.5 2 2 2 4.5
Firm#5 2 2 1 1 1 45 45 2 2 2
Firm#6 2 2 2 3 2 25 25 25 5 2.5
Firm#7 2 1 1 2 2 4 1.5 1.5 4 4
Firm#8 3 3 1 2 2 45 45 1 25 25
Total 33 205 145 235 285

A: Table 5.28 lists the scores assigned to the eight firms. From the scores, the ranks
are computed as previously described. Note particularly how ranks are assigned in
the case of ties. For instance, Firm #1 IRM, EMS and CLC are tied for rank 1
through 3; thus they get the average rank 2. Firm #1 CEI and OEL are tied for
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ranks 4 and 5; thus they get the average rank 4.5. Table 5.29 lists the results of the
Friedman test, obtained with SPSS. Based on these results, the null hypothesis is

rejected at 5% level (or even at a smaller level).
0

Table 5.29. Results obtained with SPSS for the Friedman test of social impact
scores of the Metal Firms’ dataset: a) mean ranks, b) significance.

Mean Rank

N 8
CEI 4.13
EMS 1.81 df 4
CLC 2.94
Asymp. 0.008
OEL 3.56 Sig. '
a b

5.4.3 The Cochran Q test

The Cochran Q test is particularly suitable to dichotomous data of k related
samples with n items, e.g., when k judges evaluate the presence or absence of an
event in the same n cases. The null hypothesis is that there is no difference of
probability of one of the events (say, a “success”) for the £ judges. If the null
hypothesis is true, the statistic:

k(k—l)i(Gj -G)?
0= /A , 5.42

KL=
i=1 i=1

is distributed approximately as y* with df =k — 1, for not too small 7 (n >4 and
nk > 24), where G; is the total number of successes in the jth column, G is the
mean of G; and L; is the total number of successes in the ith row.

Example 5.25

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases classified by
three human experts (E1C, E2C, E3C) and an automatic diagnostic system (SPC)
into three categories: normal, suspect and pathologic. Apply the Cochran Q test for
the dichotomy normal (0) vs. not normal (1).
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A: Table 5.30 shows the frequencies and the value and significance of the Q
statistic. Based on these results, we reject with p = 0 the null hypothesis of equal
classification of the “normal” event for the three human experts and the automatic
system. As a matter of fact, the same conclusion is obtained for the three human

experts group (left as an exercise).
0

Table 5.30. Frequencies (a) and Cochran Q test results (b) obtained with SPSS for
the FHR dataset in the classification of the normal event.

Value N 51
0 ! Cochran’ 61.615
SPCB 41 10 ochran’s Q '
E1CB 20 31 df 3
E2CB 12 39 '
Asymp. Sig. 0.000
. E3CB 35 16 b

Exercises

5.1 Consider the three sets of measurements, RC, CG and EG, of the Moulds dataset.
Assess their randomness with the Runs test, dichotomising the data with the mean,
median and mode. Check with a data plot why the random hypothesis is always
rejected for the RC measurements (see Exercise 3.2).

5.2 In Statistical Quality Control a process variable is considered out of control if the
respective data sequence exhibits a non-random pattern. Assuming that the Cork
Stoppers dataset is a valid sample of a cork stopper manufacture process, apply the
Runs test to Example 3.4 data, in order to verify that the process is not out of control.

5.3 Consider the Culture dataset, containing a sample of budget expenditure in cultural
and sport activities, given in percentage of the total budget. Based on this sample, one
could state that more than 50% of the budget is spent on sport activities. Test the
validity of this statement with 95% confidence.

5.4 The Flow Rate dataset contains measurements of water flow rate at two dams,
denoted AC and T. Assuming the data is a valid sample of the flow rates at those two
dams, assess at a 5% level of significance whether or not the flow rate at AC is half of
the time higher than at T. Compute the power of the test.

5.5 Redo Example 5.5 for Questions Q1, Q4 and Q7 (Freshmen dataset).

5.6 Redo Example 5.7 for variable PRT (Cork Stoppers dataset).
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5.7 Several previous Examples and Exercises assumed a normal distribution for the
variables being tested. Using the Lilliefors and Shapiro-Wilk tests, check this
assumption for variables used in:

a) Examples 3.6,3.7,4.1,4.5,4.13,4.14 and 4.20.
b) Exercises 3.2, 3.8,4.9,4.12 and 4.13.

5.8 The Signal & Noise dataset contains amplitude values of a noisy signal for
consecutive time instants, and a “detection” variable indicating when the amplitude is
above a specified threshold, A. For A = 1, compute the number of time instants between
successive detections and use the chi-square test to assess the goodness of fit of the
geometric, Poisson and Gamma distributions to the empirical inter-detection time. The
geometric, Poisson and Gamma distributions are described in Appendix B.

5.9 Consider the temperature data, T, of the Weather dataset (Data 1) and assume that
it is a valid sample of the yearly temperature at 12HO0 in the respective locality.
Determine whether one can, with 95% confidence, accept the Beta distribution model
with p = ¢ = 3 for the empirical distribution of T. The Beta distribution is described in
Appendix B.

5.10 Consider the ASTV measurement data sample of the FHR-Apgar dataset. Check the

following statements:

a) Variable ASTV cannot have a normal distribution.

b) The distribution of ASTV in hospital HUC can be well modelled by the normal
distribution.

c¢) The distribution of ASTV in hospital HSJ cannot be modelled by the normal
distribution.

d) If variable ASTV has a normal distribution in the three hospitals, HUC, HGSA
and HSJ, then ASTV has a normal distribution in the Portuguese population.

e) If variable ASTV has a non-normal distribution in one of the three hospitals,
HUC, HGSA and HSJ, then ASTV cannot be well modelled by a normal
distribution in the Portuguese population.

5.11 Some authors consider Yates’ correction overly conservative. Using the Freshmen
dataset (see Example 5.9), assess whether or not “the proportion of male students that
are ‘initiated’ is smaller than that of female students” with and without Yates’
correction and comment on the results.

5.12 Consider the “Commitment to quality improvement” and “Time dedicated to
improvement” variables of the Metal Firms’ dataset. Assume that they have binary
ranks: 1 if the score is below 3, and 0 otherwise. Can one accept the association of
these two variables with 95% confidence?

5.13 Redo the previous exercise using the original scores. Can one use the chi-square
statistic in this case?

5.14 Consider the data describing the number of students passing (SCORE > 10) or flunking
(SCORE < 10) the Programming examination in the Programming dataset. Assess
whether or not one can be 95% confident that the pass/flunk variable is independent of
previous knowledge in Programming (variable PROG). Also assess whether or not the
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variables describing the previous knowledge of Boole’s Algebra and binary arithmetic
are independent.

5.15 Redo Example 5.14 for the variable AB.

5.16 The FHR dataset contains measurements of foetal heart rate baseline performed by
three human experts and an automatic system. Is there evidence at the 5% level of
significance that there is no difference among the four measurement methods? Is there
evidence, at 5% level, of no agreement among the human experts?

5.17 The Culture dataset contains budget percentages spent on promoting sport activities
in samples of Portuguese boroughs randomly drawn from three regions. Based on the
sample evidence is it possible to conclude that there are no significant differences
among those three regions on how the respective boroughs assign budget percentages
to sport activities? Also perform the budget percentage comparison for pairs of regions.

5.18 Consider the flow rate data measured at Cavado and Toco Dams included in the Flow
Rate dataset. Assume that the December samples are valid random samples for that
period of the year and, furthermore, assume that one wishes to compare the flow rate
distributions at the two samples.

a) Can the comparison be performed using a parametric test?

b) Show that the conclusions of the sign test and of the Wilcoxon signed ranks test
are contradictory at 5% level of significance.

c) Estimate the power of the Wilcoxon signed ranks test.

d) Repeat the previous analyses for the January samples.

5.19 Using the McNemar Change test compare the pre and post-functional class of patients
having undergone heart valve implant using the data sample of the Heart Valve
dataset.

5.20 Determine which variables are important in the discrimination of carcinoma from other
tissue types using the Breast Tissue dataset, as well as in the discrimination
among all tissue types.

5.21 Consider the bacterial counts in the spleen contained in the Cells’ dataset and check

the following statements:

a) In general, the CD4 marker is more efficacious than the CD8 marker in the
discrimination of the knock-out vs. the control group.

b) However, in the first two weeks the CD8 marker is by far the most efficacious in
the discrimination of the knock-out vs. the control group.

c¢) Two months after the infection the biochemical markers CD4 and CDS are unable
to discriminate the knock-out from the control group.

5.22 Based on the sample data included in the Clays’ dataset, compare the holocenic with
pliocenic clays according to the content of chemical oxides and show that the main
difference is in terms of alumina, Al,O;. Estimate what is the needed difference in
alumina that will correspond to an approximate power of 90%.
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5.23 Run the non-parametric counterparts of the tests used in Exercises 4.9, 4.10 and 4.20.
Compare the results and the power of the tests with those obtained using parametric
tests.

5.24 Using appropriate non-parametric tests, determine which variables of the Wines"’
dataset are most discriminative of the white from the red wines.

5.25 The Neonatal dataset contains mortality data for delivery taking place at home (MH)
and at a Health Centre (MI). Assess whether there are significant differences at 5%
level between delivery conditions, using the sign and the Wilcoxon tests.

5.26 Consider the Firms’ dataset containing productivity figures (P) for a sample of
Portuguese firms in four branches of activity (BRANCH). Study the dataset in order to:
a) Assess with 5% level of significance whether there are significant differences
among the productivity medians of the four branches.
b) Assess with 1% level of significance whether Commerce and Industry have
significantly different medians.

5.27 Apply the appropriate non-parametric test in order to rank the discriminative capability
of the features used to characterise the tissue types in the Breast Tissue dataset.

5.28 Redo the previous Exercise 5.27 for the CTG dataset and the three-class discrimination
expressed by the grouping variable NSP.

5.29 Consider the discrimination of the three clay types based on the sample data of the
Clays’ dataset. Show that the null hypothesis of equal medians for the three clay
types is:

a) Rejected with more than 95% confidence for all grading variables (LG, MG, HG).
b) Not rejected for the iron oxide features.
¢) Rejected with higher confidence for the lime (CaO) than for the silica (SiO,).

5.30 The FHR dataset contains measurements of basal heart rate performed by three human
experts and an automatic diagnostic system. Assess whether the null hypothesis of
equal median measurements can be accepted with 5% significance for the three human
experts and the automatic diagnostic system.

5.31 When analysing the contents of questions Q4, Q5, Q6 and Q7, someone said that “these
questions are essentially evaluating the same thing”. Assess whether this statement can
be accepted at a 5% significance level. Compute the coefficient of agreement x and
discuss its significance.

5.32 The Programming dataset contains results of an enquiry regarding freshman
previous knowledge on programming (PROG), Boole’s Algebra (AB), binary
arithmetic (BA) and computer hardware (H). Consider the variables PROG, AB, BA
and H dichotomised in a “yes/no” fashion. Can one reject with 99% confidence the
hypothesis that the four dichotomised variables essentially evaluate the same thing?
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5.33 Consider the share values of the firms BRISA, CIMPOR, EDP and SONAE of the
Stock Exchange dataset. Assess whether or not the distribution of the daily
increase and decrease of the share values can be assumed to be similar for all the firms.
Hint: Create new variables with the daily “increase/decrease” information and use an
appropriate test for this dichotomous information.



6 Statistical Classification

Statistical classification deals with rules of case assignment to categories or
classes. The classification, or decision rule, is expressed in terms of a set of
random variables — the case features. In order to derive the decision rule, one
assumes that a training set of pre-classified cases — the data sample — is available,
and can be used to determine the sought after rule applicable to new cases. The
decision rule can be derived in a model-based approach, whenever a joint
distribution of the random variables can be assumed, or in a model-free approach,
otherwise.

6.1 Decision Regions and Functions

Consider a data sample constituted by »n cases, depending on d features. The central
idea in statistical classification is to use the data sample, represented by vectors in
an R feature space, in order to derive a decision rule that partitions the feature
space into regions assigned to the classification classes. These regions are called
decision regions. If a feature vector falls into a certain decision region, the
associated case is assigned to the corresponding class.

Let us assume two classes, @; and @,, of cases described by two-dimensional
feature vectors (coordinates x; and x,) as shown in Figure 6.1. The features are
random variables, X; and X ,, respectively.

Each case is represented by a vector x = [x1 xz]’ € R?. In Figure 6.1, we
used “0” to denote class @, cases and “x” to denote class w, cases. In general, the
cases of each class will be characterised by random distributions of the
corresponding feature vectors, as illustrated in Figure 6.1, where the ellipses
represent equal-probability density curves that enclose most of the cases.

Figure 6.1 also shows a straight line separating the two classes. We can easily
write the equation of the straight line in terms of the features Xj, X, using
coefficients or weights w;, w, and a bias term w, as shown in equation 6.1. The
weights determine the slope of the straight line; the bias determines the straight
line intersect with the axes.

Xm,X2 (X)Ed(x)zwlxl T WrXy + Wy =0. 6.1

Equation 6.1 also allows interpretation of the straight line as the root set of a
linear function d(x). We say that d(x) is a linear decision function that divides
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(categorises) R* into two decision regions: the upper half plane corresponding to
d(x) > 0 where feature vectors are assigned to ;; the lower half plane
corresponding to d(x) < 0 where feature vectors are assigned to @,. The
classification is arbitrary for d(x) = 0.

Figure 6.1. Two classes of cases described by two-dimensional feature vectors
(random variables X7 and X). The black dots are class means.

The generalisation of the linear decision function for a d-dimensional feature
space in R is straightforward:

dx)=wx+w,, 6.2

where w’x represents the dot productl of the weight vector and the d-dimensional
feature vector.

The root set of d(x) = 0, the decision surface, or discriminant, is now a linear
d-dimensional surface called a linear discriminant or hyperplane.

Besides the simple linear discriminants, one can also consider using more
complex decision functions. For instance, Figure 6.2 illustrates an example of
two-dimensional classes separated by a decision boundary obtained with a
quadratic decision function:

2 2
d(X) = WsX{ +WyXy +WiX| X, + WX, + WX W . 6.3

Linear decision functions are quite popular, as they are easier to compute and
have simpler statistical analysis. For this reason in the following we will only deal
with linear discriminants.

" The dot product X’y is obtained by adding the products of corresponding elements of the
two vectors X and y.
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Figure 6.2. Decision regions and boundary for a quadratic decision function.

6.2 Linear Discriminants

6.2.1 Minimum Euclidian Distance Discriminant

The minimum Euclidian distance discriminant classifies cases according to their
distance to class prototypes, represented by vectors my. Usually, these prototypes
are class means. We consider the distance taken in the “natural” Euclidian sense.
For any d-dimensional feature vector x and any number of classes, o (k=1, ..., ¢),

represented by their prototypes my, the square of the Euclidian distance between
the feature vector x and a prototype m;. is expressed as follows:

d
di(x)=> (x; =my)” . 6.4
i=1

This can be written compactly in vector form, using the vector dot product:

2 _ ) ) ) ’ ’
dk(x)—(x—mk) (x—mk)—x X-m;/’x-x’m; +m;’m,. 6.5
Grouping together the terms dependent on my, we obtain:
di(x)=-2(m,;’x—-0.5m, m, ) +x’x. 6.6a

We choose class @y, therefore the m;, which minimises d,f (x) . Let us assume
¢ =2. The decision boundary between the two classes corresponds to:

di(x)=d3 (x). 6.6b
Thus, using 6.6a, one obtains:

(m1 —mz)’[x—O.S(mlerz)]:O. 6.6¢c
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Equation 6.6¢, linear in x, represents a hyperplane perpendicular to (m; — m,)’
and passing through the point 0.5(m; + m;)’ halfway between the means, as
illustrated in Figure 6.1 for d = 2 (the hyperplane is then a straight line).

For ¢ classes, the minimum distance discriminant is piecewise linear, composed
of segments of hyperplanes, as illustrated in Figure 6.3 with an example of a
decision region for class @ in a situation of ¢ = 4.

Figure 6.3. Decision region for @ ; (hatched area) showing linear discriminants
relative to three other classes.

Example 6.1

Q: Consider the Cork Stoppers’ dataset (see Appendix E). Design and
evaluate a minimum Euclidian distance classifier for classes 1 (@) and 2 (® »),
using only feature N (number of defects).

A: In this case, a feature vector with only one element represents each case:
x = [N]. Let us first inspect the case distributions in the feature space (d = 1)
represented by the histograms of Figure 6.4. The distributions have a similar shape
with some amount of overlap. The sample means are m; = 55.3 for w, and m, =
79.7 for @,.

Using equation 6.6c, the linear discriminant is the point at half distance from the
means, i.e., the classification rule is:

If x<(m+my)/2=675 then xew, celse xXecw,. 6.7

The separating “hyperplane” is simply point 68", Note that in the equality case
(x = 68), the class assignment is arbitrary.

The classifier performance evaluated in the whole dataset can be computed by
counting the wrongly classified cases, i.e., falling into the wrong decision region

(a half-line in this case). This amounts to 23% of the cases.
0

2 . . . . .
We assume an underlying real domain for the ordinal feature N. Conversion to an ordinal
is performed when needed.
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Figure 6.4. Feature N histograms obtained with STATISTICA for the first two
classes of the cork-stopper data.
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Figure 6.5. Scatter diagram, obtained with STATISTICA, for two classes of cork
stoppers (features N, PRT10) with the linear discriminant (solid line) at half
distance from the means (solid marks).

Example 6.2
Q: Redo the previous example, using one more feature: PRT10 = PRT/10.

A: The feature vector is:
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N
X = or x:[N PRTIO]’. 6.8
PRTI0

In this two-dimensional feature space, the minimum Euclidian distance
classifier is implemented as follows (see Figure 6.5):

1. Draw the straight line (decision surface) equidistant from the sample means,
i.e., perpendicular to the segment linking the means and passing at half
distance.

2. Any case above the straight line is assigned to @,. Any sample below is
assigned to w;. The assignment is arbitrary if the case falls on the straight-
line boundary.

Note that using PRT10 instead of PRT in the scatter plot of Figure 6.5 eases the
comparison of feature contribution, since the feature ranges are practically the
same.

Counting the number of wrongly classified cases, we notice that the overall
error falls to 18%. The addition of PRT10 to the classifier seems beneficial.

0

6.2.2 Minimum Mahalanobis Distance Discriminant

In the previous section, we used the Euclidian distance in order to derive the
minimum distance, classifier rule. Since the features are random variables, it seems
a reasonable assumption that the distance of a feature vector to the class prototype
(class sample mean) should reflect the multivariate distribution of the features.
Many multivariate distributions have probability functions that depend on the joint
covariance matrix. This is the case with the multivariate normal distribution, as
described in section A.8.3 (see formula A.53). Let us assume that all classes have
an identical covariance matrix X, reflecting a similar hyperellipsoidal shape of the
corresponding feature vector distributions. The “surfaces” of equal probability
density of the feature vectors relative to a sample mean vector m; correspond to a
constant value of the following squared Mahalanobis distance:

di(x)=(x-m, X' (x-m,), 6.9
When the covariance matrix is the unit matrix, we obtain:
di (0) = (x—m VT (x=m;) = (x—m; ) (x~m,),

which is the squared Euclidian distance of formula 6.7.
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a
Figure 6.6. 3D plots of 1000 points with normal distribution: a) Uncorrelated
variables with equal variance; b) Correlated variables with unequal variance.

Let us now interpret these results. When all the features are uncorrelated and
have equal variance, the covariance matrix is the unit matrix multiplied by the
equal variance factor. In the three-dimensional space, the clouds of points are
distributed as spheres, illustrated in Figure 6.6a, and the usual Euclidian distance to
the mean is used in order to estimate the probability density at any point. The
Mahalanobis distance is a generalisation of the Euclidian distance applicable to the
general case of correlated features with unequal variance. In this case, the points of
equal probability density lie on an ellipsoid and the data points cluster in the shape
of an ellipsoid, as illustrated in Figure 6.6b. The orientations of the ellipsoid axes
correspond to the correlations among the features. The lengths of straight lines
passing through the centre and intersecting the ellipsoid correspond to the
variances along the lines. The probability density is now estimated using the
squared Mahalanobis distance 6.9.

Formula 6.9 can also be written as:

dix)=xZ'x-m’Z'x-x’2'm, +m "X 'm, . 6.10a
Grouping, as we have done before, the terms dependent on my, we obtain:
d}(x)=-2((2"'m,yx-0.5m, "X 'm, J+ XL 'x . 6.10b

Since X’ 'xis independent of k, minimising di(x) is equivalent to maximising
the following decision functions:

g (X) =W x+w, 6.10¢

Wlth Wk :Eilmk; Wk’o :_O.Smk,z_lmk. 6.10d
Using these decision functions, we again obtain linear discriminant functions in
the form of hyperplanes passing through the middle point of the line segment
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linking the means. The only difference from the results of the previous section is
that the hyperplanes separating class @; from class @; are now orthogonal to the
vector ™' (m; — m)).

In practice, it is impossible to guarantee that all class covariance matrices are
equal. Fortunately, the decision surfaces are usually not very sensitive to mild
deviations from this condition; therefore, in normal practice, one uses an estimate
of a pooled covariance matrix, computed as an average of the sample covariance
matrices. This is the practice followed by SPSS and STATISTICA.

Example 6.3

Q: Redo Example 6.1, using a minimum Mahalanobis distance classifier. Check
the computation of the discriminant parameters and determine to which class a
cork with 65 defects is assigned.

A: Given the similarity of both distributions, the Mahalanobis classifier produces
the same classification results as the Euclidian classifier. Table 6.1 shows the
classification matrix (obtained with SPSS) with the predicted classifications along
the columns and the true (observed) classifications along the rows. We see that for
this simple classifier, the overall percentage of correct classification in the data
sample (training set) is 77%, or equivalently, the overall training set error is 23%
(18% for @, and 28% for @,). For the moment, we will not assess how the
classifier performs with independent cases, i.e., we will not assess its test set error.

The decision function coefficients (also known as Fisher’s coefficients), as
computed by SPSS, are shown in Table 6.2.

Table 6.1. Classification matrix obtained with SPSS of two classes of cork
stoppers using only one feature, N.

Predicted Group Membership Total
Class 1 2
Original Count 1 41 9 50
Group 2 14 36 50
% 1 82.0 18.0 100
2 28.0 72.0 100

77.0% of original grouped cases correctly classified.

Table 6.2. Decision function coefficients obtained with SPSS for two classes of
cork stoppers and one feature, N.

Class 1 Class 2
N 0.192 0.277
(Constant) —6.005 —11.746
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Let us check these results. The class means are m; = [55.28] and m, = [79.74].
The average variance is s° = 287.63. Applying formula 6.10d we obtain:

wi=m, /s> =[0.192] ; w=-0.5]m|*/s* =-6.005. 6.11a
wy=m, /52 =[0277] 5wy =-0.5]m,| /s> =-11.746.. 6.11b

These results confirm the ones shown in Table 6.2. Let us determine the class
assignment of a cork-stopper with 65 defects. As g;([65]) = 0.192x65 — 6.005 =

6.48 is greater than g,([65]) = 0.227x65 — 11.746 = 6.26 it is assigned to class @;.
0

Example 6.4

Q: Redo Example 6.2, using a minimum Mahalanobis distance classifier. Check
the computation of the discriminant parameters and determine to which class a
cork with 65 defects and with a total perimeter of 520 pixels (PRT10 = 52) is
assigned.

A: The training set classification matrix is shown in Table 6.3. A significant
improvement was obtained in comparison with the Euclidian classifier results
mentioned in section 6.2.1; namely, an overall training set error of 10% instead of
18%. The Mahalanobis distance, taking into account the shape of the data clusters,
not surprisingly, performed better. The decision function coefficients are shown in
Table 6.4. Using these coefficients, we write the decision functions as:

g1 (X) =W x+w o =[0262 -0.09783]x~6.138. 6.12a
2,(X) =W, x+w,, =[0.0803 0.2776]x-12.817. 6.12b

The point estimate of the pooled covariance matrix of the data is:

287.63 204.070 2 0.0216 —0.0255
= S . 6.13

204.070 172.553 T1-0.0255  0.036

Substituting $™ in formula 6.10d, the results shown in Table 6.4 are obtained.

Table 6.3. Classification matrix obtained with SPSS for two classes of cork
stoppers with two features, N and PRT10.

Predicted Group Membership Total
Class 1 2
Original Count 1 49 1 50
Group 2 9 41 50
% 1 98.0 2.0 100
2 18.0 82.0 100

90.0% of original grouped cases correctly classified.
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It is also straightforward to compute S'(m; — m,) = [0.18 —0.376]’. The
orthogonal line to this vector with slope 0.4787 and passing through the middle
point between the means is shown with a solid line in Figure 6.7. As expected, the
“hyperplane” leans along the regression direction of the features (see Figure 6.5 for
comparison).

As to the classification of x = [65 527, since g1([65 52]’) = 5.80 is smaller than
2([65 52]°) = 6.86, it is assigned to class @,. This cork stopper has a total

perimeter of the defects that is too big to be assigned to class .
0

Table 6.4. Decision function coefficients, obtained with SPSS, for the two classes
of cork stoppers with features N and PRT10.

Class 1 Class 2
N 0.262 0.0803
PRT10 -0.09783 0.278
(Constant) -6.138 -12.817

120

100

PRT10
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H

Figure 6.7. Mahalanobis linear discriminant (solid line) for the two classes of cork
stoppers. Scatter plot obtained with STATISTICA.

Notice that if the distributions of the feature vectors in the classes correspond to
different hyperellipsoidal shapes, they will be characterised by unequal covariance
matrices. The distance formula 6.10 will then be influenced by these different
shapes in such a way that we obtain quadratic decision boundaries. Table 6.5
summarises the different types of minimum distance classifiers, depending on the
covariance matrix.
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Table 6.5. Summary of minimum distance classifier types.

Equal-density

Covariance Classifier Discriminants
surfaces
Hyperplanes orthogonal to the segment
Z= s Linear, Euclidian Hyperspheres Yperp . & &
linking the means
. . L Hyperplanes leaning along the
=2 Linear, Mahalanobis Hyperellipsoids yperp . g &
regression lines
2 Quadratic, Mahalanobis Hyperellipsoids Quadratic surfaces

Commands 6.1. SPSS, STATISTICA, MATLAB and R commands used to
perform discriminant analysis.

SPSS Analyze; Classify; Discriminant

Statistics; Multivariate Exploratory

STATISTICA Techniques; Discriminant Analysis
classify(sample, training, group)

MATLAB classmatrix(x,y)

R classify(sample, training, group)

classmatrix(x,y)

A large number of statistical analyses are available with SPSS and STATISTICA
discriminant analysis commands. For instance, the pooled covariance matrix
exemplified in 6.13 can be obtained with SPSS by checking the Pooled
Within-Groups Matrices of the Statistics tab. There is also the
possibility of obtaining several types of results, such as listings of decision
function coefficients, classification matrices, graphical plots illustrating the
separability of the classes, etc. The discriminant classifier can also be configured
and evaluated in several ways. Many of these possibilities are described in the
following sections.

The R stats package does not include discriminant analysis functions.
However, it includes a function for computing Mahalanobis distances. We provide
in the book CD two functions for performing discriminant analysis. The first
function, classify (sample, training, group), returns a vector contain-
ing the integer classification labels of a sample matrix based on a training
data matrix with a corresponding group vector of supervised classifications
(integers starting from 1). The returned classification labels correspond to the
minimum Mahalanobis distance using the pooled covariance matrix. The second
function, classmatrix (x,y), generates a classification matrix based on two
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vectors, x and v, of integer classification labels. The classification matrix of Table
6.3 can be obtained as follows, assuming the cork data frame has been attached
with columns ND, PRT and CL corresponding to variables N, PRT and CLASS,
respectively:

> vy <- cbind(ND[1:100],PRT[1:100]/10)
> co <- classify(y,y,CL[1:1001])
> classmatrix(CL[1:100],co)

The meanings of MATLAB’s classify arguments are the same as in R.
MATLAB does not provide a function for obtaining the classification matrix. We
include in the book CD the classmatrix function for this purpose, working in
the same way as in R.

We didn’t obtain the same values in MATLAB as we did with the other software
products. The reason may be attributed to the fact that MATLAB apparently does

not use pooled covariances (therefore, is not providing linear discriminants).
]

6.3 Bayesian Classification

In the previous sections, we presented linear classifiers based solely on the notion
of distance to class means. We did not assume anything specific regarding the data
distributions. In this section, we will take into account the specific probability
distributions of the cases in each class, thereby being able to adjust the classifier to
the specific risks of a classification.

6.3.1 Bayes Rule for Minimum Risk

Let us again consider the cork stopper problem and imagine that factory production
was restricted to the two classes we have been considering, denoted as: @; = Super
and o, = Average. Let us assume further that the factory had a record of production
stocks for a reasonably long period, summarised as:

Number of produced cork stoppers of class @:  n; = 901 420
Number of produced cork stoppers of class @,: 1, = 1352 130
Total number of produced cork stoppers: n = 2253550

With this information, we can readily obtain good estimates of the probabilities
of producing a cork stopper from either of the two classes, the so-called prior
probabilities or prevalences:

P(@)=n/n=04;  P(w)=nyn=0.6. 6.14
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Note that the prevalences are not entirely controlled by the factory, and that they
depend mainly on the quality of the raw material. Just as, likewise, a cardiologist
cannot control how prevalent myocardial infarction is in a given population.
Prevalences can, therefore, be regarded as “states of nature”.

Suppose we are asked to make a blind decision as to which class a cork stopper
belongs without looking at it. If the only available information is the prevalences,
the sensible choice is class @,. This way, we expect to be wrong only 40% of the
times.

Assume now that we were allowed to measure the feature vector x of the
presented cork stopper. Let P(@; | x)be the conditional probability of the cork
stopper represented by x belonging to class @;. If we are able to determine the
probabilities P(@, | x) and P(®, | X) , the sensible decision is now:

If P(w,|x) > P(w,|Xx) we decide x € @, ;
If P(w,|x) < P(w,|x) we decide x € @, ; 6.15
If P(w,|x) = P(w,|x) the decision is arbitrary.

We can condense 6.15 as:

If P(w,|x) > P(w, |x) then xew, else xew,. 6.15a

The posterior probabilities P(w; |x) can be computed if we know the pdfs of
the distributions of the feature vectors in both classes, p(x|®;), the so-called
likelihood of x. As a matter of fact, the Bayes law (see Appendix A) states that:

p(x|w;)P(w;)
p(x)
with p(x)= z; p(x|w;)P(w;), the total probability of x.

P(w; | x)= 6.16

Note that P(w;) and P(w; | x) are discrete probabilities (symbolised by a capital
letter), whereas p(x |®;) and p(x) are values of pdf functions. Note also that the
term p(x) is a common term in the comparison expressed by 6.15a, therefore, we
may rewrite for two classes:

If pix|w)P(w,) > p(x|®,)P(®w,) then x e w, else xew,, 6.17

Example 6.5

Q: Consider the classification of cork stoppers based on the number of defects, N,
and restricted to the first two classes, “Super” and “Average”. Estimate the
posterior probabilities and classification of a cork stopper with 65 defects, using
prevalences 6.14.

A: The feature vector is x = [N], and we seek the classification of x = [65]. Figure
6.8 shows the histograms of both classes with a superimposed normal curve.



236 6 Statistical Classification

-

R —"

Ho of obs
o

g L&““ PR o 1

=20 (,40] (40,50] (50,80] (80,100] (100,120] »120 [ o:2

N
Figure 6.8. Histograms of feature N for two classes of cork stoppers, obtained with
STATISTICA. The threshold value N = 65 is marked with a vertical line.

From this graphic display, we can estimate the likelihoods and the posterior
probabilities:

p(x|w)=20/24=0833 = P(o,)p(x|e)=04x0.833=0333; 6.18a
p(x|0,)=16/23=0.696 = P(w,)p(x|®,)=0.6x0.696=0.418. 6.18b

We then decide class @,, although the likelihood of @ is bigger than that of w,.
Notice how the statistical model prevalences changed the conclusions derived by
the minimum distance classification (see Example 6.3).

0

Figure 6.9 illustrates the effect of adjusting the prevalence threshold assuming
equal and normal pdfs:

e Equal prevalences. With equal pdfs, the decision threshold is at half
distance from the means. The number of cases incorrectly classified,
proportional to the shaded areas, is equal for both classes. This situation is
identical to the minimum distance classifier.

e Prevalence of @; bigger than that of @,. The decision threshold is displaced
towards the class with smaller prevalence, therefore decreasing the number
of wrongly classified cases of the class with higher prevalence, as seems
convenient.

* The normal curve fitted by STATISTICA is multiplied by the factor “number of cases” x
“histogram interval width”, which is 1000 in the present case. This constant factor is of no
importance and is neglected in the computations of 6.18.
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Figure 6.9. Influence of the prevalence threshold on the classification errors,
represented by the shaded areas (dark grey represents the errors for class ). (a)
Equal prevalences; (b) Unequal prevalences.

DISCRIM. |(Rows: Observed classifications
ANALYSIS |Columns: Predicted classifications
G_2:2
p=.60000
18
G_2:2 g2.00000 9 41
Total 73.00000 41 59

Figure 6.10. Classification results, obtained with STATISTICA, of the cork
stoppers with unequal prevalences: 0.4 for class @, and 0.6 for class @,.

Example 6.6

Q: Compute the classification matrix for all the cork stoppers of Example 6.5 and
comment the results.

A: Figure 6.10 shows the classification matrix obtained with the prevalences
computed in 6.14, which are indicated in the Group row. We see that indeed the
decision threshold deviation led to a better performance for class @, than for class
;. This seems reasonable since class w, now occurs more often. Since the overall
error has increased, one may wonder if this influence of the prevalences was
beneficial after all. The answer to this question is related to the topic of
classification risks, presented below.

0

Let us assume that the cost of a @; (“super”) cork stopper is 0.025 € and the cost
of a w, (“average”) cork stopper is 0.015 €. Suppose that the @, cork stoppers are
to be used in special bottles whereas the w, cork stoppers are to be used in normal
bottles.

Let us further consider that the wrong classification of an average cork stopper
leads to its rejection with a loss of 0.015 € and the wrong classification of a super
quality cork stopper amounts to a loss of 0.025 — 0.015 =0.01 € (see Figure 6.11).
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Figure 6.11. Loss diagram for two classes of cork stoppers. Correct decisions have
zero loss.

Denote:

SB — Action of using a cork stopper in special bottles.
NB — Action of using a cork stopper in normal bottles.
@ =S (class super); @,=A4 (class average)

Define: 4; =A(;|@;) as the loss associated with an action «;when the
correct class is @, In the present case, a; € { SB, NB}.
We can arrange the 4;; in a loss matrix A, which in the present case is:

0 0.015
A= . 6.19
001 0

Therefore, the risk (expected value of the loss) associated with the action of
using a cork, characterised by feature vector x, in special bottles, can be expressed
as:

R(SB|x)=A(SB|S)P(S | x)+ A(NB|M)P(4|x)=0.015x P(4]x); 6.20a
And likewise for normal bottles:
R(NB|x)=A(NB|S)P(S | x)+ A(NB| A)P(A|x)=0.01x P(S | x); 6.20b

We are assuming that in the risk evaluation, the only influence is from wrong
decisions. Therefore, correct decisions have zero loss, A;= 0, as in 6.19. If instead

of two classes, we have ¢ classes, the risk associated with a certain action ¢; is
expressed as follows:

R(a, %)= Y A@, |o)P@, |x). 621

J=1

We are obviously interested in minimising an average risk computed for an
arbitrarily large number of cork stoppers. The Bayes rule for minimum risk
achieves this through the minimisation of the individual conditional risks R(¢; | x).
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Let us assume, first, that wrong decisions imply the same loss, which can be
scaled to a unitary loss:
if i=j

0
Ay = Ma; | o)) = {1 6.22a

if i#j

In this situation, since all posterior probabilities add up to one, we have to
minimise:

R(e; %)= P(w; |x) =1-P(w; | x). 6.22b

J#I

This corresponds to maximising P(w@; | X), i.e., the Bayes decision rule for
minimum risk corresponds to the generalised version of 6.15a:

Decide w; if P(o;[x)>P(w;|x), Vj#i. 6.22¢

Thus, the decision function for class @; is the posterior probability,
g,(x)=P(w; | x), and the classification rule amounts to selecting the class with
maximum posterior probability.

Let us now consider the situation of different losses for wrong decisions,
assuming, for the sake of simplicity, that ¢ = 2. Taking into account expressions
6.20a and 6.20b, it is readily concluded that we will decide ), if:

A P(oy | X) > A P(0, | X) = p(X| @) Ay P(@)) > p(x| @)A1, P(@;) . 6.23
This is equivalent to formula 6.17 using the following adjusted prevalences:

Ay P(@y)

. A P(@;)
A P(@)) + 4, P(@,)

P*(C‘)l) = .
Ay P(@) + 2, P(w,)

P(w,) = 6.23a

STATISTICA and SPSS allow specifying the priors as estimates of the sample
composition (as in 6.14) or by user assignment of specific values. In the latter the
user can adjust the priors in order to cope with specific classification risks.

Example 6.7

Q: Redo Example 6.6 using adjusted prevalences that take into account 6.14 and
the loss matrix 6.19. Compare the classification risks with and without prevalence
adjustment.

A: The losses are A, = 0.015 and A,; = 0.01. Using the prevalences 6.14, one
obtains P'(e;) = 0.308 and P'(w,) = 0.692. The higher loss associated with a
wrong classification of a @, cork stopper leads to an increase of P’( @,) compared
with P*( ;). The consequence of this adjustment is the decrease of the number of
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w, cork stoppers wrongly classified as @;. This is shown in the classification matrix
of Table 6.6.
We can now compute the average risk for this two-class situation, as follows:

R = A, Pej, + 4, Peyy,

where Pe;; is the error probability of deciding class @; when the true class is ;.
Using the training set estimates of these errors, Pej; = 0.1 and Pey; = 0.46 (see
Table 6.6), the estimated average risk per cork stopper is computed as
R = 0.015xPej; + 0.01xPey; = 0.015x0.01 + 0.01x0.46 = 0.0061 €. If we had not
used the adjusted prevalences, we would have obtained the higher risk estimate of
0.0063 € (use the Pe; estimates from Figure 6.10). 0

Table 6.6. Classification matrix obtained with STATISTICA of two classes of
cork stoppers with adjusted prevalences (Class 1 =w;; Class 2 =@,). The column
values are the predicted classifications.

Percent Correct Class 1 Class 2
Class 1 54 27 23
Class 2 90 5 45
Total 72 32 68

6.3.2 Normal Bayesian Classification

Up to now, we have assumed no particular distribution model for the likelihoods.
Frequently, however, the normal distribution model is a reasonable assumption.
SPSS and STATISTICA make this assumption when computing posterior
probabilities.

A normal likelihood for class ; is expressed by the following pdf (see
Appendix A):

1 1
plsl )=t ——enp L,z o). 624
(2”)d/2|2i|”2 2
with:
n; =E; [x], mean vector for class @y ; 6.24a
X, =E [(x —n,)(x—p, )’], covariance for class @, . 6.24b

Since the likelihood 6.24 depends on the Mahalanobis distance of a feature
vector to the respective class mean, we obtain the same types of classifiers shown
in Table 6.5.
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Note that even when the data distributions are not normal, as long as they are
symmetric and in correspondence to ellipsoidal shaped clusters of points, we obtain
the same decision surfaces as for a normal classifier, although with different error
rates and posterior probabilities.

As previously mentioned SPSS and STATISTICA use a pooled covariance
matrix when performing linear discriminant analysis. The influence of this practice
on the obtained error, compared with the theoretical optimal Bayesian error
corresponding to a quadratic classifier, is discussed in detail in (Fukunaga, 1990).
Experimental results show that when the covariance matrices exhibit mild
deviations from the pooled covariance matrix, the designed classifier has a
performance similar to the optimal performance with equal covariances. This
makes sense since for covariance matrices that are not very distinct, the difference
between the optimum quadratic solution and the sub-optimum linear solution
should only be noticeable for cases that are far away from the prototypes, as
illustrated in Figure 6.12.

As already mentioned in section 6.2.3, using decision functions based on the
individual covariance matrices, instead of a pooled covariance matrix, will produce
quadratic decision boundaries. SPSS affords the possibility of computing such
quadratic discriminants, using the Separate-groups option of the Classify
tab. However, a quadratic classifier is less robust (more sensitive to parameter
deviations) than a linear one, especially in high dimensional spaces, and needs a
much larger training set for adequate design (see e.g. Fukunaga and Hayes, 1989).

SPSS and STATISTICA provide complete listings of the posterior probabilities
6.18 for the normal Bayesian classifier, i.e., using the likelihoods 6.24.

Figure 6.12. Discrimination of two classes with optimum quadratic classifier (solid
line) and sub-optimum linear classifier (dotted line).

Example 6.8

Q: Determine the posterior probabilities corresponding to the classification of two
classes of cork stoppers with equal prevalences as in Example 6.4 and comment the
results.

A: Table 6.7 shows a partial listing of the computed posterior probabilities,
obtained with SPSS. Notice that case #55 is marked with **, indicating a
misclassified case, with a posterior probability that is higher for class 1 (0.782)
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than for class 2 (0.218). Case #61 is also misclassified, but with a small difference
of posterior probabilities. Borderline cases as case #61 could be re-analysed, e.g.
using more features.

Table 6.7. Partial listing of the posterior probabilities, obtained with SPSS, for the
classification of two classes of cork stoppers with equal prevalences. The columns
headed by “P(G=g | D=d)” are posterior probabilities.

Actual Group Highest Group Second Highest Group
C i
lerieber Predicted Group P(G=g | D=d) Group P(G=g | D=d)
50 1 1 0.964 2 0.036
51 2 2 0.872 1 0.128
52 2 2 0.728 1 0272
53 2 2 0.887 1 0113
54 2 2 0.843 1 0.157
55 2 I 0.782 2 0218
56 2 2 0.905 1 0.095
57 2 2 0.935 1 0.065
61 2 1 0.522 2 0478

** Misclassified case

For a two-class discrimination with normal distributions and equal prevalences
and covariance, there is a simple formula for the probability of error of the
classifier (see e.g. Fukunaga, 1990):

Pe=1-N,;(6/2), 6.25
with:
6% = (1o E7 (1 — ), 6.25a

the square of the so-called Bhattacharyya distance, a Mahalanobis distance of the
means, reflecting the class separability.

Figure 6.13 shows the behaviour of Pe with increasing squared Bhattacharyya
distance. After an initial quick, exponential-like decay, Pe converges
asymptotically to zero. It is, therefore, increasingly difficult to lower a classifier
error when it is already small.
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Figure 6.13. Error probability of a Bayesian two-class discrimination with normal
distributions and equal prevalences and covariance.

6.3.3 Dimensionality Ratio and Error Estimation

The Mahalanobis and the Bhattacharyya distances can only increase when adding
more features, since for every added feature a non-negative distance contribution is
also added. This would certainly be the case if we had the true values of the means
and the covariances available, which, in practical applications, we do not.

When using a large number of features we get numeric difficulties in obtaining a
good estimate of =, given the finiteness of the training set. Surprising results can
then be expected; for instance, the performance of the classifier can degrade when
more features are added, instead of improving.

Figure 6.14 shows the classification matrix for the two-class, cork-stopper
problem, using the whole ten-feature set and equal prevalences. The training set
performance did not increase significantly compared with the two-feature solution
presented previously, and is worse than the solution using the four-feature vector
[ART PRM NG RAARY’, as shown in Figure 6.14b.

There are, however, further compelling reasons for not using a large number of
features. In fact, when using estimates of means and covariance derived from a
training set, we are designing a biased classifier, fitted to the training set.
Therefore, we should expect that our training set error estimates are, on average,
optimistic. On the other hand, error estimates obtained in independent test sets are
expected to be, on average, pessimistic. It is only when the number of cases, #, is
sufficiently larger than the number of features, d, that we can expect that our
classifier will generalise, that is it will perform equally well when presented with
new cases. The n/d ratio is called the dimensionality ratio.

The choice of an adequate dimensionality ratio has been studied by several
authors (see References). Here, we present some important results as an aid for the
designer to choose sensible values for the n/d ratio. Later, when we discuss the
topic of classifier evaluation, we will come back to this issue from another
perspective.
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Rows: Observ. classif. Rows: Observ. classif.
a Cols: Pred. classif b Cols: Pred. classif.
el alzil G _2:2 (eg_algil (e 2ad
Group p=.50 p=.50 Group p=.50 p=.50
| 98 .0 49 1 98 .0 49 1
G 2:2 86.0 7 43 G 2:2 88 0 6 44
Total 92.0 56 44 Total 53.0 55 45

Figure 6.14. Classification results obtained with STATISTICA, of two classes of
cork stoppers using: (a) Ten features; (b) Four features.

Let us denote:

Pe —  Probability of error of a given classifier;

Pe’ —  Probability of error of the optimum Bayesian classifier;

Pey(n) — Training (design) set estimate of Pe based on a classifier
designed on n cases;

Pe,(n) —  Test set estimate of Pe based on a set of n test cases.

The quantity Pey(n) represents an estimate of Pe influenced only by the finite
size of the design set, i.e., the classifier error is measured exactly, and its deviation
from Pe is due solely to the finiteness of the design set. The quantity Pe/(n)
represents an estimate of Pe influenced only by the finite size of the test set, i.e., it
is the expected error of the classifier when evaluated using n-sized test sets. These
quantities verify Pey(0) = Pe and Pe, () = Pe, i.e., they converge to the theoretical
value Pe with increasing values of n. If the classifier happens to be designed as an
optimum Bayesian classifier Pe, and Pe, converge to Pe .

In normal practice, these error probabilities are not known exactly. Instead, we
compute estimates of these probabilities, Pe; and Pe,, as percentages of
misclassified cases, in exactly the same way as we have done in the classification
matrices presented so far. The probability of obtaining & misclassified cases out of
n for a classifier with a theoretical error Pe, is given by the binomial law:

P(k) = (ZjPek (1-Pe)"™ . 6.26

The maximum likelihood estimation of Pe under this binomial law is precisely
(see Appendix C):
Pe=k/n , 6.27

with standard deviation:

o= fM ) 6.28
n
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Formula 6.28 allows the computation of confidence interval estimates for Pe,
by substituting Pe in place of Pe and using the normal distribution approximation
for sufficiently large n (say, n > 25). Note that formula 6.28 yields zero for the
extreme cases of Pe =0 or Pe=1. .

In normal practice, we first compute Pe, by designing and evaluating the
classifier in the same set with n cases, Pe, (n). This is what we have done so far.
As for Pe,, we may compute it using an independent set of n cases, Pe,(n). In
order to have some guidance on how to choose an appropriate dimensionality ratio,
we would like to know the deviation of the expected values of these estimates from
the Bayes error. Here the expectation is computed on a population of classifiers of
the same type and trained in the same conditions. Formulas for these expectations,
E[ Pe,(n)] and E[Pe,(n)], are quite intricate and can only be computed
numerically. Like formula 6.25, they depend on the Bhattacharyya distance. A
software tool, SC Size, computing these formulas for two classes with normally
distributed features and equal covariance matrices, separated by a linear
discriminant, is included with on the book CD. SC Size also allows the
computation of confidence intervals of these estimates, using formula 6.28.

Pe
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oo 10 20 20 4.0 a0 el 70 go a0 oo

Figure 6.15. Two-class linear discriminant E[ Pe, (n)] and E[ Pe, (n)] curves, for
d =7 and §°= 3, below and above the dotted line, respectively. The dotted line
represents the Bayes error (0.193).

Figure 6.15 is obtained with SC Size and illustrates how the expected values
of the error estimates evolve with the n/d ratio, where n is assumed to be the
number of cases in each class. The feature set dimension id d = 7. Both curves have
an asymptotic behaviour with n — ", with the average design set error estimate
converging to the Bayes error from below and the average test set error estimate
converging from above.

4 . o . . .
Numerical approximations in the computation of the average test set error may sometimes
result in a slight deviation from the asymptotic behaviour, for large n.
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Both standard deviations, which can be inspected in text boxes for a selected
value of n/d, are initially high for low values of n and converge slowly to zero with
n — . For the situation shown in Figure 6.15, the standard deviation of Pe, (n)
changes from 0.089 for n = d (14 cases, 7 per class) to 0.033 for n = 10d (140
cases, 70 per class).

Based on the behaviour of the E[ Pe, (n)] and E[ Pe, (n)] curves, some criteria
can be established for the dimensionality ratio. As a general rule of thumb, using
dimensionality ratios well above 3 is recommended.

If the cases are not equally distributed by the classes, it is advisable to use the
smaller number of cases per class as value of n. Notice also that a multi-class
problem can be seen as a generalisation of a two-class problem if every class is
well separated from all the others. Then, the total number of needed training
samples for a given deviation of the expected error estimates from the Bayes error
can be estimated as cn’, where n" is the particular value of » that achieves such a
deviation in the most unfavourable, two-class dichotomy of the multi-class
problem.

6.4 The ROC Curve

The classifiers presented in the previous sections assumed a certain model of the
feature vector distributions in the feature space. Other model-free techniques to
design classifiers do not make assumptions about the underlying data distributions.
They are called non-parametric methods. One of these methods is based on the
choice of appropriate feature thresholds by means of the ROC curve method (where
ROC stands for Receiver Operating Characteristic).

The ROC curve method (available with SPSS; see Commands 6.2) appeared in
the fifties as a means of selecting the best voltage threshold discriminating pure
noise from signal plus noise, in signal detection applications such as radar. Since
the seventies, the concept has been used in the areas of medicine and psychology,
namely for test assessment purposes.

The ROC curve is an interesting analysis tool for two-class problems, especially
in situations where one wants to detect rarely occurring events such as a special
signal, a disease, etc., based on the choice of feature thresholds. Let us call the
absence of the event the normal situation (N) and the occurrence of the rare event
the abnormal situation (A). Figure 6.16 shows the classification matrix for this
situation, based on a given decision rule, with true classes along the rows and
decided (predicted) classifications along the columns’.

5
The reader may notice the similarity of the canonical two-class classification matrix with the
hypothesis decision matrix in chapter 4 (Figure 4.2).
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Figure 6.16. The canonical classification matrix for two-class discrimination of an
abnormal event (A) from the normal event (N).

From the classification matrix of Figure 6.16, the following parameters are
defined:

True Positive Ratio = TPR = a/(a+b). Also known as sensitivity, this
parameter tells us how sensitive our decision method is in the detection of
the abnormal event. A classification method with high sensitivity will rarely
miss the abnormal event when it occurs.

True Negative Ratio = TNR = d/(c+d). Also known as specificity, this
parameter tells us how specific our decision method is in the detection of the
abnormal event. A classification method with a high specificity will have a
very low rate of false alarms, caused by classifying a normal event as
abnormal.

False Positive Ratio = FPR = ¢/(c+d) = | — specificity.
False Negative Ratio = FNR = b/(a+b) = 1 — sensitivity.

Both the sensitivity and specificity are usually given in percentages. A decision
method is considered good if it simultaneously has a high sensitivity (rarely misses
the abnormal event when it occurs) and a high specificity (has a low false alarm
rate). The ROC curve depicts the sensitivity versus the FPR (complement of the
specificity) for every possible decision threshold.

Example 6.9

Q: Consider the Programming dataset (see Appendix E). Determine whether a
threshold-based decision rule using attribute AB, “previous learning of Boolean
Algebra”, has a significant influence deciding the student passing (SCORE > 10) or
flunking (SCORE < 10) the Programming course, by visual inspection of the
respective ROC curve.

A: Using the Programming dataset we first establish the following Table 6.8.
Next, we set the following decision rule for the attribute (feature) AB:

Decide “Pass the Programming examination” if AB > A.
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We then proceed to determine for every possible threshold value, A, the
sensitivity and specificity of the decision rule in the classification of the students.
These computations are summarised in Table 6.9.

Note that when A = 0 the decision rule assigns all students to the “Pass” group
(all students have AB > 0). For 0 < A <1 the decision rule assigns to the “Pass”
group 135 students that have indeed “passed” and 60 students that have “flunked”
(these 195 students have AB > 1). Likewise for other values of A up to A > 2 where
the decision rule assigns all students to the flunk group since no students have
A > 2. Based on the classification matrices for each value of A the sensitivities and
specificities are computed as shown in Table 6.9.

The ROC curve can be directly drawn using these computations, or using SPSS
as shown in Figure 6.17c. Figures 6.17a and 6.17b show how the data must be
specified. From visual inspection, we see that the ROC curve is only moderately
off the diagonal, corresponding to a non-informative decision rule (more details,

later).
0

Table 6.8. Number of students passing and flunking the ‘“Programming”
examination for three categories of AB (see the Programming dataset).

Previous learning of AB = Boolean Algebra 1 =Pass 0 = Flunk
0 =None 39 37
1 = Scarcely 86 46
2=Alot 49 14
Total 174 97

Table 6.9. Computation of the sensitivity (TPR) and 1-specificity (FPR) for
Example 6.9.

Pass/Flunk Decision Based on AB > A
Pass / Flunk Total

Reality Cases A=0 0<A<1 1<AL2 A>2

1 0 1 0 1 0 1 0
1 174 174 0 135 39 49 125 0 174
0 97 97 0 60 37 14 83 0 97
TPR 1 0.78 0.28 0

FPR 1 0.62 0.14 0
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Figure 6.17. ROC curve for Example 6.9, solved with SPSS: a) Datasheet with
column “n” used as weight variable; b) ROC curve specification window; ¢) ROC
curve.
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Figure 6.18. One hundred samples of a signal consisting of noise plus signal
impulses (bold lines) occurring at random times.

Example 6.10

Q: Consider the Signal & Noise dataset (see Appendix E). This set presents
100 signal plus noise values s(n) (Signal+Noise variable), consisting of random
noise plus signal impulses with random amplitude, occurring at random times
according to the Poisson law. The Signal & Noise data is shown in Figure
6.18. Determine the ROC curve corresponding to the detection of signal impulses
using several threshold values to separate signal from noise.

A: The signal plus noise amplitude shown in Figure 6.18 is often greater than the
average noise amplitude, therefore revealing the presence of the signal impulses
(e.g. at time instants 53 and 85). The discrimination between signal and noise is
made setting an amplitude threshold, A, such that we decide “impulse” (our rare
event) if s(n) > A, and “noise” (the normal event) otherwise. For each threshold
value, it’s then possible to establish the signal vs. noise classification matrix and
compute the sensitivity and specificity values. By varying the threshold (easily
done in the Signal & Noise.xls file), the corresponding sensitivity and
specificity values can be obtained, as shown in Table 6.10.
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There is a compromise to be made between sensitivity and specificity. This
compromise is made more patent in the ROC curve, which was obtained with
SPSS, and corresponds to eight different threshold values, as shown in Figure
6.19a (using the Data worksheet of Signal & Noise.xls). Notice that
given the limited number of threshold values, the ROC curve has a stepwise aspect,
with different values of the FPR corresponding to the same sensitivity, as also
appearing in Table 6.10 for the sensitivity value of 0.7. With a large number of
signal samples and threshold values, one would obtain a smooth ROC curve, as
represented in Figure 6.19b. I

Looking at the ROC curves shown in Figure 6.19 the following characteristic
aspects are clearly visible:

—  The ROC curve graphically depicts the compromise between sensitivity and
specificity. If the sensitivity increases, the specificity decreases, and vice-
versa.

— AllROC curves start at (0,0) and end at (1,1) (see Exercise 6.7).
— A perfectly discriminating method corresponds to the point (0,1). The ROC

curve is then a horizontal line at a sensitivity =1.

A non-informative ROC curve corresponds to the diagonal line of Figures 6.19,
with sensitivity = 1 — specificity. In this case, the true detection rate of the
abnormal situation is the same as the false detection rate. The best compromise
decision of sensitivity = specificity = 0.5 is then just as good as flipping a coin.

Table 6.10. Sensitivity and specificity in impulse detection (100 signal values).

Threshold Sensitivity Specificity
1 0.90 0.66
2 0.80 0.80
3 0.70 0.87
4 0.70 0.93

One of the uses of the ROC curve is related to the issue of choosing the best
decision threshold that can differentiate both situations; in the case of Example
6.10, the presence of the impulses from the presence of the noise alone. Let us
address this discriminating issue as a cost decision issue as we have done in section
6.3.1. Representing the sensitivity and specificity of the method for a threshold A
by s(A) and f(A) respectively, and using the same notation as in formula 6.20, we
can write the total risk as:

R =24 P(ADS(A) + Ay P(A(1=5(A)) + 4,,, P(N) £ (A) + 4, PIN)(1 = f(A)),
or, R = s(A) (A, P(A) = A, P(A))+ f(A)A,, P(N) = A, P(N))+ constant .

na nn
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In order to obtain the best threshold, we minimise the risk R by differentiating
and equalling to zero, obtaining then:

dS(A) _ (ﬂ’nn _/Ina )P(N)

. 6.29
df (A) - (Aag = Aan)P(A)

The point of the ROC curve where the slope has the value given by formula
6.29 represents the optimum operating point or, in other words, corresponds to the
best threshold for the two-class problem. Notice that this is a model-free technique
of choosing a feature threshold for discriminating two classes, with no assumptions
concerning the specific distributions of the cases.
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Figure 6.19. ROC curve (bold line), obtained with SPSS, for the signal + noise
data: (a) Eight threshold values (the values for A =2 and A = 3 are indicated); b) A
large number of threshold values (expected curve) with the 45° slope point.

Let us now assume that, in a given situation, we assign zero cost to correct
decisions, and a cost that is inversely proportional to the prevalences to a wrong
decision. Then, the slope of the optimum operating point is at 45°, as shown in
Figure 6.19b. For the impulse detection example, the best threshold would be
somewhere between 2 and 3.

Another application of the ROC curve is in the comparison of classification
performance, namely for feature selection purposes. We have already seen in 6.3.1
how prevalences influence classification decisions. As illustrated in Figure 6.9, for
a two-class situation, the decision threshold is displaced towards the class with the
smaller prevalence. Consider that the classifier is applied to a population where the
prevalence of the abnormal situation is low. Then, for the previously mentioned
reason, the decision maker should operate in the lower left part of the ROC curve
in order to keep FPR as small as possible. Otherwise, given the high prevalence of
the normal situation, a high rate of false alarms would be obtained. Conversely, if
the classifier is applied to a population with a high prevalence of the abnormal



252 6 Statistical Classification

situation, the decision-maker should adjust the decision threshold to operate on the
FPR high part of the curve.

Briefly, in order for our classification method to perform optimally for a large
range of prevalence situations, we would like to have an ROC curve very near the
perfect curve, i.e., with an underlying area of 1. It seems, therefore, reasonable to
select from among the candidate classification methods (or features) the one that
has an ROC curve with the highest underlying area.

The area under the ROC curve is computed by the SPSS with a 95% confidence
interval.

Despite some shortcomings, the ROC curve area method is a popular method of
assessing classifier or feature performance. This and an alternative method based
on information theory are described in Metz et al. (1973).

Commands 6.2. SPSS command used to perform ROC curve analysis.

SPSS Graphs; ROC Curve

Example 6.11

Q: Consider the FHR-Apgar dataset, containing several parameters computed
from foetal heart rate (FHR) tracings obtained previous to birth, as well as the so-
called Apgar index. This is a ranking index, measured on a one-to-ten scale, and
evaluated by obstetricians taking into account clinical observations of a newborn
baby. Consider the two FHR features, ALTV and ASTV, representing the
percentages of abnormal long term and abnormal short-term heart rate variability,
respectively. Use the ROC curve in order to elucidate which of these parameters is
better in the clinical practice for discriminating an Apgar > 6 (normal situation)
from an Apgar < 6 (abnormal or suspect situation).

000 | 1-Specificily
000 25 50 75 100
Figure 6.20. ROC curves for the FHR Apgar dataset, obtained with SPSS,
corresponding to features ALTV and ASTV.
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A: The ROC curves for ALTV and ASTV are shown in Figure 6.20. The areas
under the ROC curve, computed by SPSS with a 95% confidence interval, are
0.709 + 0.11 and 0.781 £ 0.10 for ALTV and ASTV, respectively. We, therefore,

select the ASTV parameter as the best diagnostic feature.
0

6.5 Feature Selection

As already discussed in section 6.3.3, great care must be exercised in reducing the
number of features used by a classifier, in order to maintain a high dimensionality
ratio and, therefore, reproducible performance, with error estimates sufficiently
near the theoretical value. For this purpose, one may use the hypothesis test
methods described in chapters 4 and 5 with the aim of discarding features that are
clearly non-useful at an initial stage of the classifier design. This feature
assessment task, while assuring that an information-carrying feature set is indeed
used in the classifier, does not guarantee it will need the whole set. Consider, for
instance, that we are presented with a classification problem described by 4
features, x1, x5, x3 and x4, with x; and x, perfectly discriminating the classes, and x;
and x, being linearly dependent of x| and x,. The hypothesis tests will then find that
all features contribute to class discrimination. However, this discrimination could
be performed equally well using the alternative sets {x;, x,} or {x;, x4}. Briefly,
discarding features with no aptitude for class discrimination is no guarantee against
redundant features.

There is abundant literature on the topic of feature selection (see References).
Feature selection uses a search procedure of a feature subset (model) obeying a
stipulated merit criterion. A possible choice for this criterion is minimising Pe,
with the disadvantage of the search process depending on the classifier type. More
often, a class separability criterion such as the Bhattacharyya distance or the
ANOVA F statistic is used. The Wilks’ lambda, defined as the ratio of the
determinant of the pooled covariance over the determinant of the total covariance,
is also a popular criterion. Physically, it can be interpreted as the ratio between the
average class volume and the total volume of all cases. Its value will range from 0
(complete class separation) to 1 (complete class fusion).

As for the search method, the following are popular ones and available in
STATISTICA and SPSS:

1. Sequential search (direct)

The direct sequential search corresponds to performing successive feature
additions or eliminations to the target set, based on a separability criterion.

In a forward search, one starts with the feature of most merit and, at each step,
all the features not yet included in the subset are revised; the one that contributes
the most to class discrimination is evaluated through the merit criterion. This
feature is then included in the subset and the procedure advances to the next search
step. The process goes on until the merit criterion for any candidate feature is
below a specified threshold.
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In a backward search, the process starts with the whole feature set and, at each
step, the feature that contributes the least to class discrimination is removed. The
process goes on until the merit criterion for any candidate feature is above a
specified threshold.

2. Sequential search (dynamic)

The problem with the previous search methods is the possible existence of “nested”
feature subsets that are not detected by direct sequential search. This problem is
tackled in a dynamic search by performing a combination of forward and backward
searches at each level, known as “plus /-take away 7’ selection.

Direct sequential search methods can be applied using STATISTICA and SPSS,
the latter affording a dynamic search procedure that is in fact a “plus 1-take away
17 selection. As merit criterion, STATISTICA uses the ANOVA F (for all selected
features at a given step) with default value of one. SPSS allows the use of other
merit criteria such as the squared Bhattacharyya distance (i.e., the squared
Mahalanobis distance of the means).

It is also common to set a lower limit to the so-called folerance level, T =1— 17,
which must be satisfied by all features, where 7 is the multiple correlation factor of
one candidate feature with all the others. Highly correlated features are therefore
removed. One must be quite conservative, however, in the specification of the
tolerance. A value at least as low as 1% is common practice.

Example 6.12

Q: Consider the first two classes of the Cork Stoppers’ dataset. Perform
forward and backward searches on the available 10-feature set, using default values
for the tolerance (0.01) and the ANOVA F (1.0). Evaluate the training set errors of
both solutions.

A: Figure 6.21 shows the summary listing of a forward search for the first two
classes of the cork-stopper data obtained with STATISTICA. Equal priors are
assumed. Note that variable ART, with the highest F, entered in the model in “Step 1.
The Wilk’s lambda, initially 1, decreased to 0.42 due to the contribution of
ART. Next, in “Step 27, the variable with highest F contribution for the model
containing ART, enters in the model, decreasing the Wilks’ lambda to 0.4. The
process continues until there are no variables with F contribution higher than 1. In
the listing an approximate F' for the model, based on the Wilk’s lambda, is also
indicated. Figure 6.21 shows that the selection process stopped with a highly
significant (p = 0) Wilks’ lambda. The four-feature solution {ART, PRM, NG,
RAAR} corresponds to the classification matrix shown before in Figure 6.14b.
Using a backward search, a solution with only two features (N and PRT) is
obtained. It has the performance presented in Example 6.2. Notice that the
backward search usually needs to start with a very low tolerance value (in the
present case T = 0.002 is sufficient). The dimensionality ratio of this solution is
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comfortably high: n/d = 25. One can therefore be confident that this classifier

performs in a nearly optimal way.
0

Example 6.13

Q: Redo the previous Example 6.12 for a three-class classifier, using dynamic
search.

A: Figure 6.22 shows the listing produced by SPSS in a dynamic search performed
on the cork-stopper data (three classes), using the squared Bhattacharyya distance
(D squared) of the two closest classes as a merit criterion. Furthermore, features
were only entered or removed from the selected set if they contributed significantly
to the ANOVA F. The solution corresponding to Figure 6.22 used a 5% level for
the statistical significance of a candidate feature to enter the model, and a 10%
level to remove it. Notice that PRT, which had entered at step 1, was later
removed, at step 5. The nested solution {PRM, N, ARTG, RAAR} would not have
been found by a direct forward search.

Stepwize Analysis - Step D

Number of wariables in the model: 0
Wilks' Lambda: 1.000000

Stepwise Analysis - Step 1

MNumber of wvariables in the model:
Last wvariable entered: ART 99) = 136.5565 p < .0000
Wilks' Lambda: .4178098 approx. F ( 1, 98) = 136.5565 p < .0000

e
=

.Stepwise Analysis - Step 2

‘Number of wariables in the model:
Last wvariable entered: PEM 98) = 3.880044 p < .0517
Wilks' Lambda: .4017400 approx. F [ 2, 97) = 72.22485 p < .0000

R
-

‘Stepwise Analysis - Step 3

.Number of wariables in the model: 3
Last wariable entered: NG Fi({ 1, 97) = 2.561449 p < 1128
Wilks' Lambda: .3912994 approx. F ( 3, 96) = 49.77880 p < .0000

Stepwize Analysis - Step 4

Number of wariables in the model: 4
Last wariable entered: RAAR F {
Wilks' Lambda: .3847401 approx. F |

1, 96) = 1.619636 p < .2062
4, 95} = 37.87989 p < .0000

Stepwise Analysis - Step 4 (Final Step)

Number of wariables in the model: 4
Last wariabhle entered: RALE Fi 1, 95) = .3201987 p < .5728

Figure 6.21. Feature selection listing, obtained with STATISTICA, using a
forward search for two classes of the cork-stopper data.
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Entered|Removed|Min. D Squared
Statistic|Between Exact F
Groups
Step Statistic|dfl|df2 Sig.
1 PRT 2.401 1.00and 2.00]60.015 1 147.000[1.176E-12
2 PRM 3.083 1.00and 2.00(38.279 2 146.000(4.330E-14
3 N 4.944 1.00and 2.00[40.638 3 |145.000/.000
4 ARTG 5.267 1.00and 2.00]32.248 4 144.000|7.438E-15
5 PRT 5.098 1.00and 2.00(41.903 3 [145.000].000
6 RAAR 6.473 1.00and 2.00[39.629 4 144.000]2.316E-22

Figure 6.22. Feature selection listing, obtained with SPSS (Stepwise Method;
Mahalanobis), using a dynamic search on the cork stopper data (three classes).

6.6 Classifier Evaluation

The determination of reliable estimates of a classifier error rate is obviously an
essential task in order to assess its usefulness and to compare it with alternative
solutions.

As explained in section 6.3.3, design set estimates are on average optimistic and
the same can be said about using an error formula such as 6.25, when true means
and covariance are replaced by their sample estimates. It is, therefore, mandatory
that the classifier be empirically tested, using a test set of independent cases. As
previously mentioned in section 6.3.3, these test set estimates are, on average,
pessimistic.

The influence of the finite sample sizes can be summarised as follows (for
details, consult Fukunaga K, 1990):

— The bias — deviation of the error estimate from the true error — is
predominantly influenced by the finiteness of the design set;

— The variance of the error estimate is predominantly influenced by the
finiteness of the test set.

In normal practice, we only have a data set S with n samples available. The
problem arises of how to divide the available cases into design set and test set.
Among a vast number of methods (see e.g. Fukunaga K, Hayes RR, 1989b) the
following ones are easily implemented in SPSS and/or STATISTICA:
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Resubstitution method

The whole set S is used for design, and for testing the classifier. As a consequence
of the non-independence of design and test sets, the method yields, on average, an
optimistic estimate of the error, E[ Pe, (n)], mentioned in section 6.3.3. For the
two-class linear discriminant with normal distributions an example of such an
estimate for various values of # is plotted in Figure 6.15 (lower curve).

Holdout method

The available n samples of S are randomly divided into two disjointed sets
(traditionally with 50% of the samples each), S, and S, used for design and test,
respectively. The error estimate is obtained from the test set, and therefore, suffers
from the bias and variance effects previously described. By taking the average over
many partitions of the same size, a reliable estimate of the test set error,
E[ ISet (n)], is obtained (see section 6.3.3). For the two-class linear discriminant
with normal distributions an example of such an estimate for various values of n is
plotted in Figure 6.15 (upper curve).

Partition methods

Partition methods, also called cross-validation methods divide the available set S
into a certain number of subsets, which rotate in their use of design and test, as
follows:

1. Divide S into k£ > 1 subsets of randomly chosen cases, with each subset
having n/k cases.

2. Design the classifier using the cases of k£ — 1 subsets and test it on the
remaining one. A test set estimate Pe;; is thereby obtained.

3. Repeat the previous step rotating the position of the test set, obtaining
thereby & estimates Pey;.

4. Compute the average test set estimate Pe, = Zf:l Pe,; /k and the variance
of the Pe,.

This is the so-called k-fold cross-validation. For k = 2, the method is similar to
the traditional holdout method. For £ = n, the method is called the leave-one-out
method, with the classifier designed with n — 1 samples and tested on the one
remaining sample. Since only one sample is being used for testing, the variance of
the error estimate is large. However, the samples are being used independently for
design in the best possible way. Therefore the average test set error estimate will
be a good estimate of the classifier error for sufficiently high n, since the bias
contributed by the finiteness of the design set will be low. For other values of &,
there is a compromise between the high bias-low variance of the holdout method,
and the low bias-high variance of the leave-one-out method, with less
computational effort.
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Statistical software products such as SPSS and STATISTICA allow the
selection of the cases used for training and for testing linear discriminant
classifiers. With SPSS, it is possible to use a selection variable, easing the task of
specifying randomly selected samples. SPSS also affords performing a leave-one-
out classification. With STATISTICA, one can initially select the cases used for
training (Selection Conditions option in the Tools menu), and once the
classifier is designed, specify test cases (Select Cases button in the
Classification tab of the command window). In MATLAB and R one may
create a case-selecting vector, called a filter, with random 0Os and 1s.

Example 6.14

Q: Consider the two-class cork-stopper classifier, with two features, presented in
section 6.2.2 (see classification matrix in Table 6.3). Evaluate the performance of
this classifier using the partition method with k£ = 3, and the leave-one-out method.

A: Using the partition method with & = 3, a test set estimate of Pe,= 9.9 % was
obtained, which is near the training set error estimate of 10%. The leave-one-out
method also produces Pe, = 10 % (see Table 6.11; the “Original” matrix is the
training set estimate, the “Cross-validated” matrix is the test set estimate). The
closeness of these figures is an indication of reliable error estimation for this high
dimensionality ratio classification problem (n/d = 25). Using formula 6.28 the 95%

confidence limits for these error estimates are: s = 0.03 = Pe = 10% + 5.9%.
a0

Table 6.11. Listing of the classification matrices obtained with SPSS, using the
leave-one-out method in the classification of the first two classes of the cork-
stopper data with two features.

Predicted Group Membership Total

C 1 2
Original Count 1 49 1 50
2 9 41 50
% 1 98.0 2.0 100
2 18.0 82.0 100
Cross-validated Count 1 49 1 50
2 9 41 50
% 1 98.0 2.0 100
2 18.0 82.0 100

Example 6.15

Q: Consider the three-class, cork-stopper classifier, with four features, determined
in Example 6.13. Evaluate the performance of this classifier using the leave-one-
out method.
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A: Table 6.12 shows the leave-one-out results, obtained with SPSS, in the
classification of the three cork-stopper classes, using the four features selected by
dynamic search in Example 6.13. The training set error is 10.7%; the test set error
estimate is 12%. Therefore, we still have a reliable error estimate of about (10.7 +
12)/2 = 11.4% for this classifier, which is not surprising since the dimensionality
ratio is high (n/d = 12.5). For the estimate Pe = 11.4% the 95% confidence interval
corresponds to an error tolerance of 5%. i

Table 6.12. Listing of the classification matrices obtained with SPSS, using the
leave-one-out method in the classification of the three classes of the cork-stopper
data with four features.

Predicted Group Membership Total

C 1 2 3
Original Count 1 43 7 0 50
2 5 45 0 50
3 0 4 46 50
% 1 86.0 14.0 0.0 100
2 10.0 90.0 .0 100
3 0.0 8.0 92.0 100
Cross-validated Count 1 43 7 0 50
2 5 44 1 50
3 0 5 45 50
% 1 86.0 14.0 0.0 100
2 10.0 88.0 2.0 100
3 0.0 10.0 90.0 100

6.7 Tree Classifiers

In multi-group classification, one is often confronted with the problem that
reasonable performances can only be achieved using a large number of features.
This requires a very large design set for proper training, probably much larger than
what we have available. Also, the feature subset that is the most discriminating set
for some classes can perform rather poorly for other classes. In an attempt to
overcome these difficulties, a “divide and conquer” principle using multistage
classification can be employed. This is the approach of decision tree classifiers,
also known as hierarchical classifiers, in which an unknown case is classified into
a class using decision functions in successive stages.
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At each stage of the tree classifier, a simpler problem with a smaller number of
features is solved. This is an additional benefit, namely in practical multi-class
problems where it is rather difficult to guarantee normal or even symmetric
distributions with similar covariance matrices for all classes, but it may be
possible, with the multistage approach, that those conditions are approximately met
at each stage, affording then optimal classifiers.

Example 6.16

Q: Consider the Breast Tissue dataset (electric impedance measurements of
freshly excised breast tissue) with 6 classes denoted CAR (carcinoma), FAD
(fibro-adenoma), GLA (glandular), MAS (mastopathy), CON (connective) and
ADI (adipose). Derive a decision tree solution for this classification problem.

A: Performing a Kruskal-Wallis analysis, it is readily seen that all the features have
discriminative capabilities, namely 10 and PAS500, and that it is practically
impossible to discriminate between classes GLA, FAD and MAS. The low
dimensionality ratio of this dataset for the individual classes (e.g. only 14 cases for
class CON) strongly recommends a decision tree approach, with the use of merged
classes and a greatly reduced number of features at each node.

As 10 and PA500 are promising features, it is worthwhile to look at the
respective scatter diagram shown in Figure 6.23. Two case clusters are visually
identified: one corresponding to {CON, ADI}, the other to {MAS, GLA, FAD,
CAR}. At the first stage of the tree we then use 10 alone, with a threshold of
10 = 600, achieving zero errors.

At stage two, we attempt the most useful discrimination from the medical point
of view: class CAR (carcinoma) vs. {FAD, MAS, GLA}. Using discriminant
analysis, this can be performed with an overall training set error of about 8%, using
features AREA DA and IPMAX, whose distributions are well modelled by the
normal distribution.
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Figure 6.23. Scatter plot of six classes of breast tissue with features 10 and PA500.
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Figure 6.24 shows the corresponding linear discriminant. Performing two
randomised runs using the partition method in halves (i.e., the 2-fold cross-
validation with half of the samples for design and the other half for testing), an
average test set error of 8.6% was obtained, quite near the design set error. At stage
two, the discrimination CON vs. ADI can also be performed with feature 10
(threshold 10 =1550), with zero errors for ADI and 14% errors for CON.

With these results, we can establish the decision tree shown in Figure 6.25. At
each level of the decision tree, a decision function is used, shown in Figure 6.25 as
a decision rule to be satisfied. The left descendent tree branch corresponds to
compliance with a rule, i.e., to a “Yes” answer; the right descendent tree branch
corresponds to a “No” answer.

Since a small number of features is used at each level, one for the first level and
two for the second level, respectively, we maintain a reasonably high
dimensionality ratio at both levels; therefore, we obtain reliable estimates of the
errors with narrow 95% confidence intervals (less than 2% for the first level and
about 3% for the CAR vs. {FAD, MAS, GLA} level).
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Figure 6.24. Scatter plot of breast tissue classes CAR and {MAS, GLA, FAD}
(denoted not car) using features AREA DA and IPMAX, showing the linear
discriminant separating the two classes.

For comparison purposes, the same four-class discrimination was carried out
with only one linear classifier using the same three features 10, AREA DA and
IPMAX as in the hierarchical approach. Figure 6.26 shows the classification
matrix. Given that the distributions are roughly symmetric, although with some
deviations in the covariance matrices, the optimal error achieved with linear
discriminants should be close to what is shown in the classification matrix. The
degraded performance compared with the decision tree approach is evident.

On the other hand, if our only interest is to discriminate class car from all other
ones, a linear classifier with only one feature can achieve this discrimination with a
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performance of about 86% (see Exercise 6.5). This is a comparable result to the

one obtained with the tree classifier.
1]

X (feature vector)

10 > 600

100 %

con+adi

0.246 AREA DA+
0.117 IPMAX > 10.6 06 %

10 < 1550
100 % 86 %

Figure 6.25. Hierarchical tree classifier for the breast tissue data with percentages
of correct classifications and decision functions used at each node. Left branch =
“Yes”; right branch = “No”.

DISCR . ([Rows: Observed classific.
ANAL . |Columns: Predicted classific.

car con adi fad+
p=.198|p=_132|p=_208|p=.462

11 0 0 10

con 64 3 0 9 2 3
adi 95§ 0 1 21 0
fad+ 93 .0 1 0 0 48
Total | 84.0 12 10 23 61

Figure 6.26. Classification matrix obtained with STATISTICA, of four classes of
breast tissue using three features and linear discriminants. Class fad+ is actually
the class set {FAD, MAS, GLA}.

The decision tree used for the Breast Tissue dataset is an example of a
binary tree: at each node, a dichotomic decision is made. Binary trees are the most
popular type of trees, namely when a single feature is used at each node, resulting
in linear discriminants that are parallel to the feature axes, and easily interpreted by
human experts. Binary trees also allow categorical features to be easily
incorporated with node splits based on a “yes/no” answer to the question whether
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or not a given case belongs to a set of categories. For instance, this type of trees is
frequently used in medical applications, and often built as a result of statistical
studies of the influence of individual health factors in a given population.

The design of decision trees can be automated in many ways, depending on the
split criterion used at each node, and the type of search used for best group
discrimination. A split criterion has the form:

d(x) > A,

where d(x) is a decision function of the feature vector x and A is a threshold.
Usually, linear decision functions are used. In many applications, the split criteria
are expressed in terms of the individual features alone (the so-called univariate
splits).

An important concept regarding split criteria is the concept of node impurity.
The node impurity is a function of the fraction of cases belonging to a specific
class at that node.

Consider the two-class situation shown in Figure 6.27. Initially, we have a node
with equal proportions of cases belonging to the two classes (white and black
circles). We say that its impurity is maximal. The right split results in nodes with
zero impurity, since they contain cases from only one of the classes. The left split,
on the contrary, increases the proportion of cases from one of the classes, therefore
decreasing the impurity, although some impurity remains present.

X, tl O l‘2 O

t11 0] t12 O. tzl t2
o® °

Figure 6.27. Splitting a node with maximum impurity. The left split (x; > A)
decreases the impurity, which is still non-zero; the right split (wix; + wyx, > A)
achieves pure nodes.

A popular measure of impurity, expressed in the [0, 1] interval, is the Gini index
of diversity:

i(t)= ;z‘_lp(m)p(k 1) 630

For the situation shown in Figure 6.27, we have:
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i(h) =i(t) =1x1=1;
i(t) = i(tn) = %% =§;
i(t21) = i(t2) = 1x0 = 0.

In the automatic generation of binary trees the tree starts at the root node, which
corresponds to the whole training set. Then, it progresses by searching for each
variable the threshold level achieving the maximum decrease of the impurity at
each node. The generation of splits stops when no significant decrease of the
impurity is achieved. It is common practice to use the individual feature values of
the training set cases as candidate threshold values. Sometimes, after generating a
tree automatically, some sort of tree pruning should be performed in order to
remove branches of no interest.

SPSS and STATISTICA have specific commands for designing tree classifiers,
based on univariate splits. The method of exhaustive search for the best univariate
splits is usually called the CRT (also CART or C&RT) method, pioneered by
Breiman, Friedman, Olshen and Stone (see Breiman ef al., 1993).

Example 6.17

Q: Use the CRT approach with univariate splits and the Gini index as splitting
criterion in order to derive a decision tree for the Breast Tissue dataset.
Assume equal priors of the classes.

A: Applying the commands for CRT univariate split with the Gini index, described
in Commands 6.3, the tree presented in Figure 6.28 was found with SPSS (same
solution with STATISTICA). The tree shows the split thresholds at each node as
well as the improvement achieved in the Gini index. For instance, the first split
variable PERIM was selected with a threshold level of 1563.84.

Table 6.13. Training set classification matrix, obtained with SPSS, corresponding
to the tree shown in Figure 6.28.

Observed Predicted
. Percent
car fad mas gla con adi Cf)rcrzc +
car 20 0 1 0 0 0 95.2%
fad 0 0 12 3 0 0 0.0%
mas 2 0 15 1 0 0 83.3%
gla 1 0 4 11 0 0 68.8%
con 0 0 0 0 14 0 100.0%
adi 0 0 0 0 1 21 95.5%
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The classification matrix corresponding to this classification tree is shown in
Table 6.13. The overall percent correct is 76.4% (overall error of 23.6%). Note the
good classification results for the classes CAR, CON and ADI and the difficult
splitting of {FAD,MAS,GLA} that we had already observed. Also note the gradual
error increase as one progresses through the tree. Node splitting stops when no
significant improvement is found.

0

Improvement=0,167

<= B00.62 > 60062

Node 1

I s
1 E

area perim
Improvement=0.125 Improvement=0.152

<= 171045 =1710.45 <= 1562.24 » 156224

Node 3 Node 4 Node § Node &

da
Improvement=0.057

Figure 6.28. CRT tree using the Gini index as impurity criterion, designed with
SPSS.

The CRT algorithm based on exhaustive search tends to be biased towards
selecting variables that afford more splits. It is also quite time consuming. Other
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approaches have been proposed in order to remedy these shortcomings, namely the
approach followed by the algorithm known as QUEST (“Quick, Unbiased,
Efficient Statistical Trees”), proposed by Loh, WY and Shih, YS (1997), that
employs a sort of recursive quadratic discriminant analysis for improving the
reliability and efficiency of the classification trees that it computes.

It is often interesting to compare the CRT and QUEST solutions, since they tend
to exhibit complementary characteristics. CRT, besides its shortcomings, is
guaranteed to find the splits producing the best classification (in the training set,
but not necessarily in test sets) because it employs an exhaustive search. QUEST is
fast and unbiased. The speed advantage of QUEST over CRT is particularly
dramatic when the predictor variables have dozens of levels (Loh, WY and Shih,
YS, 1997). QUEST’s lack of bias in variable selection for splits is also an
advantage when some independent variables have few levels and other variables
have many levels.

Example 6.18

Q: Redo Example 6.17 using the QUEST approach. Assume equal priors of the
classes.

A: Applying the commands for the QUEST algorithm, described in Commands
6.3, the tree presented in Figure 6.29 was found with STATISTICA (same solution
with SPSS).

—car
—fad U car

B=mas

Bola m
Bcon
i

70 36
I0==633.89

91 19 15 21

AREA DA«=23.122 PERIM<=1590 4
£ A / A

] fad 5 car 0 con 7 adi

A Uom w'y om

Figure 6.29. Tree plot, obtained with STATISTICA for the breast-tissue, using the
QUEST approach.
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The classification matrix corresponding to this classification tree is shown in
Table 6.14. The overall percent correct is 63.2% (overall error of 36.8%). Note the
good classification results for the classes CON and ADI and the splitting off of
{FAD,MAS,GLA} as a whole. This solution is similar to the solution we had

derived “manually” and represented in Figure 6.25.
0

Table 6.14. Training set classification matrix corresponding to the tree shown in
Figure 6.29.

Observed Predicted

. Percent

car fad mas gla con adi Correct
car 17 4 0 0 0 0 81.0%
fad 0 15 0 0 0 0 100.0%
mas 2 16 0 0 0 0 0.0%
gla 0 16 0 0 0 0 0.0%
con 0 0 0 0 14 0 100.0%
adi 0 0 0 0 1 21 95.5%

The tree solutions should be validated as with any other classifier type. SPSS
and STATISTICA afford the possibility of cross-validating the designed trees
using the partition method described in section 6.6. In the present case, since the
dimensionality ratios are small, one has to perform the cross-validation with very
small test samples. Using a 14-fold cross-validation for the CRT and QUEST
solutions of Examples 6.17 and 6.18 we obtained the results shown in Table 6.13.
We see that although CRT vyielded a lower training set error compared with
QUEST, this last method provided a solution with better generalization capability
(smaller difference between training set and test set errors). Note that 14-fold
cross-validation is equivalent to the leave-one-out method for the smaller sized
class of this dataset.

Table 6.15. Overall errors and respective standard deviations (obtained with
STATISTICA) in 14-fold cross-validation of the tree solutions found in Examples
6.17 and 6.18.

Method Overall Error Stand. Deviation
CRT 0.406 0.043

QUEST 0.349 0.040
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Commands 6.3. SPSS and STATISTICA commands used to design tree
classifiers.

SPSS Analyze; Classify; Tree...

Statistics; Multivariate Exploratory

STATISTICA Techniques; Classification Trees

When performing tree classification with SPSS it is advisable to first assign
appropriate labels to the categorical variable. This can be done in a “Define
Variable Properties...” window. The Tree window allows one to
specify the dependent (categorical) and independent variables and the type of
Output one wishes to obtain (usually, Chart — a display as in Figure 6.28 — and
Classification Table from Statistics). One then proceeds to
choosing a growing method (CRT, QUEST), the maximum number of cases per
node at input and output (in Criteria), the priors (in Options) and the cross-
validation method (in Validation).

In STATISTICA the independent variables are called “predictors”. Real-valued
variables as the ones used in the previous examples are called “ordered predictors”.
One must not forget to set the codes for the dependent variable. The CRT and
QUEST methods appear in the Methods window denominated as “CR&T-style
exhaustive search for univariate splits” and “Discriminant-based univariate splits
for categ. and ordered predictors”, respectively.

The classification matrices in STATISTICA have a different configuration of
the ones shown in Tables 6.13 and 6.14: the observations are along the columns
and the predictions along the rows. Cross-validation in STATISTICA provides the
average misclassification matrix which can be useful to individually analyse class
behaviour. ]

Exercises

6.1 Consider the first two classes of the Cork Stoppers’ dataset described by features

ART and PRT.

a) Determine the Euclidian and Mahalanobis classifiers using feature ART alone,
then using both ART and PRT.

b) Compute the Bayes error using a pooled covariance estimate as the true
covariance for both classes.

¢) Determine whether the Mahalanobis classifiers are expected to be near the optimal
Bayesian classifier.

d) Using SC Size, determine the average deviation of the training set error
estimate from the Bayes error, and the 95% confidence interval of the error
estimate.
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Repeat the previous exercise for the three classes of the Cork Stoppers’ dataset,
using features N, PRM and ARTG.

Consider the problem of classifying cardiotocograms (CTG dataset) into three classes:

N (normal), S (suspect) and P (pathological).

a) Determine which features are most discriminative and appropriate for a
Mahalanobis classifier approach for this problem.

b) Design the classifier and estimate its performance using a partition method for the
test set error estimation.

Repeat the previous exercise using the Rocks’ dataset and two classes: {granites} vs.
{limestones, marbles}.

A physician would like to have a very simple rule available for screening out
carcinoma situations from all other situations using the same diagnostic means and
measurements as in the Breast Tissue dataset.

a) Using the Breast Tissue dataset, find a linear Bayesian classifier with only
one feature for the discrimination of carcinoma versus all other cases (relax the
normality and equal variance requirements). Use forward and backward search
and estimate the priors from the training set sizes of the classes.

b) Obtain training set and test set error estimates of this classifier, and 95%
confidence intervals.

¢) Using the SC Size program, assess the deviation of the error estimate from the
true Bayesian error, assuming that the normality and equal variance requirements
were satisfied.

d) Suppose that the risk of missing a carcinoma is three times higher than the risk of
misclassifying a non-carcinoma. How should the classifying rule be reformulated
in order to reflect these risks, and what is the performance of the new rule?

Design a linear discriminant classifier for the three classes of the Clays’ dataset and
evaluate its performance.

Explain why all ROC curves start at (0,0) and finish at (1,1) by analysing what kind of
situations these points correspond to.

Consider the Breast Tissue dataset. Use the ROC curve approach to determine
single features that will discriminate carcinoma cases from all other cases. Compare the
alternative methods using the ROC curve areas.

Repeat the ROC curve experiments illustrated in Figure 6.20 for the FHR Apgar
dataset, using combinations of features.

6.10 Increase the amplitude of the signal impulses by 20% in the Signal & Noise

dataset. Consider the following impulse detection rule:
An impulse is detected at time » when s(n) is bigger than azli 1(s(n ) +s(n+ i)) .
Determine the ROC curve corresponding to several o values, and determine the best o

for the impulse/noise discrimination. How does this method compare with the
amplitude threshold method described in section 6.4?
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6.11 Consider the Infarct dataset, containing four continuous-type measurements of
physiological variables of the heart (EF, CK, IAD, GRD), and one ordinal-type variable
(SCR: 0 through 5) assessing the severity of left ventricle necrosis. Use ROC curves of
the four continuous-type measurements in order to determine the best threshold
discriminating “low” necrosis (SCR < 2) from “medium-high” necrosis (SCR > 2), as
well as the best discriminating measurement.

6.12 Repeat Exercises 6.3 and 6.4 performing sequential feature selection (direct and
dynamic).

6.13 Perform a resubstitution and leave-one-out estimation of the classification errors for the
three classes of cork stoppers, using the features obtained by dynamic selection
(Example 6.13). Comment on the reliability of these estimates.

6.14 Compute the 95% confidence interval of the error for the classifier designed in
Exercise 6.3 using the standard formula. Perform a partition method evaluation of the
classifier, with 10 partitions, obtaining another estimate of the 95% confidence interval
of the error.

6.15 Compute the decrease of impurity in the trees shown in Figure 6.25 and Figure 6.29,
using the Gini index.

6.16 Compute the classification matrix CAR vs. {MAS, GLA, FAD} for the Breast
Tissue dataset in the tree shown in Figure 6.25. Observe its dependence on the
prevalences. Compute the linear discriminant shown in the same figure.

6.17 Using the CRT and QUEST approaches, find decision trees that discriminate the three
classes of the CTG dataset, N, S and P, using several initial feature sets that contain the
four variability indexes ASTV, ALTV, MSTV, MLTV. Compare the classification
performances for the several initial feature sets.

6.18 Consider the four variability indexes of foetal heart rate (MLTV, MSTV, ALTV,
ASTV) included in the CTG dataset. Using the CRT approach, find a decision tree that
discriminates the pathological foetal state responsible for a “flat-sinusoidal” (FS)
tracing from all the other classes.

6.19 Design tree classifiers for the three classes of the Clays‘ dataset using the CRT and
QUEST approaches, and compare their performance with the classifier of Exercise 6.6.

6.20 Design a tree classifier for Exercise 6.11 and evaluate its performance comparatively.
6.21 Redesign the tree solutions found in Examples 6.17 and 6.18 using priors estimated

from the training set (empirical priors) instead of equal priors. Compare the solutions
with those obtained in the mentioned examples and comment the found differences.
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An important objective in scientific research and in more mundane data analysis
tasks concerns the possibility of predicting the value of a dependent random
variable based on the values of other independent variables, establishing a
functional relation of a statistical nature. The study of such functional relations,
known for historical reasons as regressions, goes back to pioneering works in
Statistics.

Let us consider a functional relation of one random variable Y depending on a
single predictor variable X, which may or may not be random:

Y =gX).

We study such a functional relation, based on a dataset of observed values
{Ger ), i), -.. (5uvn)}, by means of a regression model, Y = g(X), which is a
formal way of expressing the statistical nature of the unknown functional relation,
as illustrated in Figure 7.1. We see that for every predictor value x;, we must take
into account the probability distribution of Y as expressed by the density function
fr(v). Given certain conditions the stochastic means of these probability
distributions determine the sought for functional relation, as illustrated in Figure
7.1. In the following we always assume X to be a deterministic variable.
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Figure 7.1. Statistical functional model in single predictor regression. The y; are
the observations of the dependent variable for the predictor values x;.
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Correlation differs from regression since in correlation analysis all variables are
assumed to be random and play a symmetrical role, with no dependency
assignment. As it happens with correlation, one must also be cautious when trying
to infer causality relations from regression. As a matter of fact, the existence of a
statistical relation between the response Y and the predictor variable X does not
necessarily imply that ¥ depends causally on X (see also 4.4.1).

7.1 Simple Linear Regression

7.1.1 Simple Linear Regression Model

In simple linear regression, one has a single predictor variable, X, and the
functional relation is assumed to be linear. The only random variable is Y and the
regression model is expressed as:

Yi:ﬂ0+ﬂ1xi+gia 7.1
where:

i. The Y; are random variables representing the observed values y; for the
predictor values x;. The Y; are distributed as fy, (y). The linear regression
parameters, [ and [, are known as intercept and slope, respectively.

ii. The &; are random error terms (variables), with:
Elg]=0, Vlg]=0% Vlgg]=0, vizj.

Therefore, the errors are assumed to have zero mean, equal variance and to be
uncorrelated among them (see Figure 7.1). With these assumptions, the following
model features can be derived:

i. The errors are i.i.d. with:
Eg,]=0 = E[]=8,+8x = E[Y]=p8,+BX.

The last equation expresses the linear regression of Y dependent on X. The
linear regression parameters f and S, have to be estimated from the dataset.
The density of the observed values, fy, (v), is the density of the errors,
fe (&), with a translation of the means to E[Y; |.

i. vVlg]=c? = V[r]=0".

iii. The Y; and Y; are uncorrelated.
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7.1.2 Estimating the Regression Function

A popular method of estimating the regression function parameters is to use a least
square error (LSE) approach, by minimising the total sum of the squares of the
errors (deviations) between the observed values y; and the estimated values
bo + blx[:

E=Y¢l =

i=

(r; =by —byx;)* . 72

_
I [M=
L

1

where by and b; are estimates of S and f, respectively.
In order to apply the LSE method one starts by differentiating £ in order to b,
and b, and equalising to zero, obtaining the so-called normal equations:

Zyi:nb0+b12xi 73
inyizbOin+b12xi2’ '
where the summations, from now on, are always assumed to be for the n predictor

values. By solving the normal equations, the following parameter estimates, by and
by, are derived:

b = Z('xi -X)(»;—¥)
| = .
> (x-%)?

7.4

The least square estimates of the linear regression parameters enjoy a number of
desirable properties:

i. The parameters by and b, are unbiased estimates of the true parameters /3
and S (E[bo]: Lo, E[bl]: B1), and have minimum variance among all
unbiased linear estimates.

ii. The predicted (or fitted) values y; = b, + b, x, are point estimates of the true,
observed values, y;. The same is valid for the whole relationY = b, + b, X ,
which is the point estimate of the mean response E[Y].

iii. The regression line always goes through the point (x, » ).

iv. The computed errors e; = y; —y; = y; —by, —b,x;, called the residuals, are
point estimates of the error values &. The sum of the residuals is zero:

Z e; =0.

v. The residuals are uncorrelated with the predictor and the predicted values:
Dex; =0, Dley; =0.

Vii D yi=2y = y= 7, i.e., the predicted values have the same mean as
the observed values.
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These properties are a main reason of the popularity of the LSE method.
However, the reader must bear in mind that other error measures could be used.
For instance, instead of minimising the sum of the squares of the errors one could
minimise the sum of the absolute values of the errors: £ = Z|£i| . Another linear
regression would then be obtained with other properties. In the following we only
deal with the LSE method.

Example 7.1

Q: Consider the variables ART and PRT of the Cork Stoppers’ dataset.
Imagine that we wanted to predict the total area of the defects of a cork stopper
(ART) based on their total perimeter (PRT), using a linear regression approach.
Determine the regression parameters and represent the regression line.

A: Figure 7.2 shows the scatter plot obtained with STATISTICA of these two
variables with the linear regression fit (Linear Fit box in Scatterplot),
using equations 7.4 and 7.5. Figure 7.3 shows the summary of the regression
analysis obtained with STATISTICA (see Commands 7.1). Using the values of the
linear parameters (Column B in Figure 7.3) we conclude that the fitted regression
line is:

ART =—-64.5 + 0.547<PRT.

Note that the regression line passes through the point of the means of ART and
PRT: (ART,PRT )= (324, 710).
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900 | ART =-64.4902+0.5469"x
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700
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Figure 7.2. Scatter plot of variables ART and PRT (cork-stopper dataset), obtained
with STATISTICA, with the fitted regression line.
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R= 98114218 R*= 956263997 Adjusted R*= 96238754
F(1,148)=3813.5 p<0.0000 Std.Error of estimate: 39.050

Beta | Std.Emr B Std.Err. | t(148) | p-level
N=150 of Beta of B
Intercept | -64.4902 7.053354 1 -9.14320 0.000000
FRT [0.981142/0.015888  0.5469 0.008357 61.75316| 0.000000

Figure 7.3. Table obtained with STATISTICA containing the results of the simple
linear regression for the Example 7.1.

The value of Beta, mentioned in Figure 7.3, is related to the so-called
standardised regression model:

Y, =pix; +&;. 7.6

In equation 7.6 only one parameter is used, since Y,»* and x; are standardised
variables (mean = 0, standard deviation = 1) of the observed and predictor
variables, respectively. (By equation 7.5, S, = E[Y]- B,x implies (Y; —E[Y])/ oy
=B (x;=X) /sy +E& )

It can be shown that:

ﬂ1 = {O-_Y}Bl* . 7.7

Sy

The standardised ﬂl* is the so-called beta coefficient, which has the point
estimate value bl* = 0.98 in the table shown in Figure 7.3.

Figure 7.3 also mentions the values of R, R” and Adjusted R’. These are
measures of association useful to assess the goodness of fit of the model. In order
to understand their meanings we start with the estimation of the error variance, by
computing the error sum of squares or residual sum of squares (SSE)I, i.e. the
quantity £ in equation 7.2, as follows:

SSE=>(y;=3:) =D ¢ . 7.8

Note that the deviations are referred to each predicted value; therefore, SSE has
n — 2 degrees of freedom since two degrees of freedom are lost: by and b,. The
following quantities can also be computed:
SSE

— Mean square error: MSE = 5
n—

—  Root mean square error, or standard error: RMS =+/MSE .

' Note the analogy of SSE and SST with the corresponding ANOVA sums of squares,
formulas 4.25b and 4.22, respectively.
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This last quantity corresponds to the “Std. Error of estimate” in Figure 7.3.
The total variance of the observed values is related to the total sum of squares
(SST)":

SST=SSY=> (y;-¥)>. 7.9

The contribution of X to the prediction of Y can be evaluated using the following
association measure, known as coefficient of determination or R-square:

SST —SSE
rr=2222 ¢ o] 7.10
SST
Therefore, “R-square”, which can also be shown to be the square of the Pearson
correlation between x; and y;, measures the contribution of X in reducing the
variation of Y, i.e., in reducing the uncertainty in predicting Y. Notice that:

1. If all observations fall on the regression line (perfect regression, complete
certainty), then SSE =0, r=1.
2. [If the regression line is horizontal (no contribution of X in predicting Y),

then SSE = SST, »*= 0.

However, as we have seen in 2.3.4 when discussing the Pearson correlation,
“R-square” does not assess the appropriateness of the linear regression model.
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Figure 7.4. Scatter plot, obtained with STATISTICA, of the observed values
versus predicted values of the ART variable (cork-stopper data) with the fitted line
and the 95% confidence interval (dotted line).
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Often the value of “R-square” is found to be slightly optimistic. Several authors
propose using the following “Adjusted R-square” instead:

r2=r?=(1-r*)/(n-2). 7.11

For the cork-stopper example the value of the “R square” is quite high, 7> = 0.96,
as shown in Figure 7.3. STATISTICA highlights the summary table when this
value is found to be significant (same test as in 4.4.1), therefore showing evidence

of a tight fit. Figure 7.4 shows the observed versus predicted values for the
Example 7.1. A perfect model would correspond to a unit slope straight line.

Commands 7.1. SPSS, STATISTICA, MATLAB and R commands used to
perform simple linear regression.

SPSS Analyze; Regression; Linear

Statistics; Multiple regression |
STATISTICA Advanced Linear/Nonlinear Models;
General Linear Models

MATLAB [b,bint, r,rint, stats]=regress(y,X,alpha)

R Im(y~X)

SPSS and STATISTICA commands for regression analysis have a large number of
options that the reader should explore in the following examples. With SPSS and
STATISTICA, there is also the possibility of obtaining a variety of detailed listings
of predicted values and residuals as well as graphic help, such as specialised scatter
plots. For instance, Figure 7.4 shows the scatter plot of the observed versus the
predicted values of variable ART (cork-stopper example), together with the 95%
confidence interval for the linear fit.

Regression analysis is made in MATLAB with the regress function, which
computes the LSE coefficient estimates b of the equation y = Xb where y is the
dependent data vector and X is the matrix whose columns are the predictor data
vectors. We will use more than one predictor variable in section 7.3 and will then
adopt the matrix notation. The meaning of the other return values is as follows:

r: residuals; rint: alpha confidence intervals for r;
stats: #* and other statistics bint: alpha confidence interval for b;

Let us use Example 7.1 to illustrate the use of the regress function. We start
by defining the ART and PRT data vectors using the cork matrix containing the
whole dataset. These variables correspond to columns 2 and 4, respectively (see the
EXCEL data file):

>> ART = cork(:,2); PRT = cork(:,4);
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Next, we create the X matrix by binding a column of ones, corresponding to the
intercept term in equation 7.1, to the PRT vector:

>> X = [PRT ones(size(PRT,1),1)]

We are now ready to apply the regress function:

>> [b,bint,r,rint,stats] = regress(ART,X,0.05);
The values of b, bint and stats are as follows:

>> b
b:
0.5469
-64.4902

>> bint

bint =
0.5294 0.5644
-78.4285 -50.5519

>> gtats
stats =
1.0e+003 *
0.0010 3.8135 0

The values of b coincide with those in Figure 7.3. The intercept coefficient is
here the second element of b in correspondence with the (second) column of ones
of X. The values of bint are the 95% confidence intervals of b agreeing with the
values computed in Example 7.2 and Example 7.4, respectively. Finally, the first
value of stats is the R-square statistic; the second and third values are
respectively the ANOVA F and p discussed in section 7.1.4 and reported in Table
7.1. The exact value of the R-square statistic (without the four-digit rounding effect
of the above representation) can be obtained by previously issuing the format
long command.

Let us now illustrate the use of the R 1m function for the same problem as in
Example 7.1. We have already used the 1m function in Chapter 4 when computing
the ANOVA tests (see Commands 4.5 and 4.6). This function fits a linear model
describing the y data as a function of the X data. In chapter 4 the X data was a
categorical data vector (an R factor). Here, the X data correspond to the real-valued
predictors. Using the cork data frame we may run the 1m function as follows:

> load(“e:cork”)
> attach (cork)
> summary (1lm (ART~PRT) )

Call:
Im(formula = ART ~ PRT)
Residuals:
Min 10 Median 30 Max

-95.651 -22.727 -1.016 19.012 152.143
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -64.49021 7.05335 -9.143 4.38e-16 ***
PRT 0.54691 0.00885 61.753 < 2e-16 ***

Signif. codes: 0 ‘***7/ 0.001 ***’ 0.01 *" 0.05 ‘.-
0.1 v+ "1

Residual standard error: 39.05 on 148 degrees of
freedom

Multiple R-Squared: 0.9626,Adjusted R-squared: 0.9624

F-statistic: 3813 on 1 and 148 DF,p-value: < 2.2e-16

We thus obtain the same results published in Figure 7.3 and Table 7.1 plus some
information on the residuals. The 1m function returns an object of class “lm” with
several components, such as coefficients and residuals (for more details
use the help). Returning objects with components is a general feature of R. We
found it already when describing how to obtain the density estimate of a histogram
object in Commands 2.3 and the histogram of a bootstrap object in Commands 3.7.
The summary function when applied to an object produces a summary display of
the most important object components, as exemplified above. If one needs to
obtain a particular component one uses the “$” notation. For instance, the residuals
of the above regression model can be stored in a vector x with:

r <- 1m(ART~PRT)
X <- r$residuals

The fitted values can be obtained with r$fitted. u

7.1.3 Inferences in Regression Analysis

In order to make inferences about the regression model, the errors & are assumed
to be independent and normally distributed, Ny, This constitutes the so-called
normal regression model. It can then be shown that the unbiased estimate of o is
the RMS.

The inference tests described in the following sections continue to be valid in
the case of mild deviations from normality. Even if the distributions of Y; are far
from normal, the estimators of b, and b, have the property of asymptotic normality:
their distributions approach normality under very general conditions, as the sample
size increases.

7.1.3.1 Inferences About b,

The point estimate of b, is given by formula 7.4. This formula can also be
expressed as:
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=Y kv with k=) 7.12

EEDNESI LN

The sampling distribution of b; for the normal regression model is also normal
(since b is a linear combination of the y;), with:

—  Mean: E[bl]:E[zkiYi]:ﬁozki+/Blzkixi =p.

o2
Z(xi _37)2 .

If instead of o, we use its estimate RMS =+/MSE , we then have:

—  Variance: V[bl]:V[ZkiYi]:ZkizV[Yi]:o-zzkl-z:

55 =MSE/ Y (x, -0)* . 7.13

Thus, in order to make inferences about b,, we take into account that:

* =b1 - b
Sp

t

n=2- 7.14

1

The sampling distribution of the studentised statistic # allows us to compute
confidence intervals for 5, as well as to perform tests of hypotheses, in order to, for
example, assess if there is no linear association: Hy: £, = 0.

Example 7.2

Q: Determine the 95% confidence interval of b, for the ART(PRT) linear
regression in Example 7.1.

A: The MSE value can be found in the SPSS or STATISTICA ANOVA table (see
Commands 7.2). The Model Summary of SPSS or STATISTICA also publishes
the value of RMS (Standard Error of Estimate). When using
MATLAB, the values of MSE and RMS can also be easily computed using the
vector r of the residuals (see Commands 7.1). The value of Z(xi -%)%is
computed from the variance of the predictor values. Thus, in the present case we
have:

MSE = 1525, sprer =361.2 = 5, = IMSE / (7~ 1)s3er) =0.00886.

Since 1450975 = 1.976 the 95% confidence interval of b, is [0.5469 — 0.0175,
0.5469 + 0.0175] = [0.5294, 0.5644], which agrees with the values published by
SPSS (confidence intervals option), STATISTICA (Advanced
Linear/Nonlinear Models), MATLAB andR.

i
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Example 7.3

Q: Consider the ART(PRT) linear regression in Example 7.1. Is it valid to reject
the null hypothesis of no linear association, at a 5% level of significance?

A: The results of the respective ¢ test are shown in the last two columns of Figure
7.3. Taking into account the value of p (p = 0 for £ = 61.8), the null hypothesis is
rejected. i

7.1.3.2 Inferences About b,
The point estimate of b, is given by formula 7.5. The sampling distribution of b,
for the normal regression model is also normal (since by is a linear combination of

the y;), with:

— Mean: E[b,|= Sy;

-2
— Variance V[bo]: 02{l+x—2}
n Z(xi_)?)

Since o is usually unknown we use the point estimate of the variance:

| -2
s =MSE| —+——"———1|. 7.15
n Z (x; —x)
Therefore, in order to make inferences about b, we take into account that:
« by —
poh 2 7.16
Sh

0

This allows us to compute confidence intervals for £, as well as to perform tests
of hypotheses, namely in order to assess whether or not the regression line passes
through the origin: Hy: = 0.

Example 7.4

Q: Determine the 95% confidence interval of b, for the ART(PRT) linear
regression in Example 7.1.

A: Using the MSE and spgt values as described in Example 7.2, we obtain:
52 =MSE(l/n+52 /Y (x, - %)) =49.76.

Since t1450975 = 1.976 we thus have Sp, € [-64.49 — 13.9, —64.49 + 13.9] =
[-78.39, —50.59] with 95% confidence level. This interval agrees with previously
mentioned SPSS, STATISTICA, MATLAB and R results.

i
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Example 7.5

Q: Consider the ART(PRT) linear regression in Example 7.1. Is it valid to reject
the null hypothesis of a linear fit through the origin at a 5% level of significance?

A: The results of the respective ¢ test are shown in the last two columns of Figure
7.3. Taking into account the value of p (p ~ 0 for £ = =9.1), the null hypothesis is
rejected. This is a somewhat strange result, since one expects a null area
corresponding to a null perimeter. As a matter of fact an ART(PRT) linear
regression without intercept is also a valid data model (see Exercise 7.3). 0

7.1.3.3 Inferences About Predicted Values

Let us assume that one wants to derive interval estimators of E[I} ], 1.e., one wants
to determine which value would be obtained, on average, for a predictor variable
level x;, and if repeated samples (or trials) were used.

The point estimate of E[Y,], corresponding to a certain value x;, is the
computed predicted value:

Vi =by+byx.

The J, value is a possible value of the random variable Y © Which represents all
possible predicted values. The sampling distribution for the normal regression
model is also normal (since it is a linear combination of observations), with:

=2
— Variance: V[fk]zaz[l+Lx)2J.
noY(x;—X)

Note that the variance is affected by how far x; is from the sample mean x . This
is a consequence of the fact that all regression estimates must pass through (X, ).
Therefore, values x; far away from the mean lead to higher variability in the
estimates.

Since o is usually unknown we use the estimated variance:

-2
s[?k]zMSE[l+Lx)2J. 7.17
n Z(xi - X)

Thus, in order to make inferences about )}k , we use the studentised statistic:

. 9. —E[Y,
PR S L3 B 7.18
S[Yk]
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This sampling distribution allows us to compute confidence intervals for the
predicted values. Figure 7.4 shows with dotted lines the 95% confidence interval
for the cork-stopper Example 7.1. Notice how the confidence interval widens as we
move away from (x, y) .

Example 7.6

Q: The observed value of ART for PRT = 1612 is 882. Determine the 95%
confidence interval of the predicted ART value using the ART(PRT) linear
regression model derived in Example 7.1.

A: Using the MSE and sprr values as described in Example 7.2, and taking into
account that PRT = 710.4, we compute:

(xp —%)2 = (1612-710.47 = 812882.6; 3 (x; —%)> = 19439351;

5 [1 (x —%)° J_
S[Yk] =MSE —+—_2 =73.94.
n Z(xi_x)

Since f450975 = 1.976 we obtain y, € [882 — 17, 882 + 17] with 95%
confidence level. This corresponds to the 95% confidence interval depicted in
Figure 7.4. i

7.1.3.4 Prediction of New Observations

Imagine that we want to predict a new observation, that is an observation for new
predictor values independent of the original n cases. The new observation on y is
viewed as the result of a new trial. To stress this point we call it:

Yk(new) .

If the regression parameters were perfectly known, one would easily find the
confidence interval for the prediction of a new value. Since the parameters are
usually unknown, we have to take into account two sources of variation:

The location of E[Y}(yey) ], 1-€., Where one would locate, on average, the
new observation. This was discussed in the previous section.

The distribution of Yy ey > i-€., how to assess the expected deviation of the
new observation from its average value. For the normal regression model,
the variance of the prediction error for the new prediction can be obtained
as follows, assuming that the new observation is independent of the original
n cases:

Vpred = V[Yk(new) _?k] = 0-2 +V[?k]
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The sampling distribution of Yy ., for the normal regression model takes into
account the above sources of variation, as follows:

* yk(new) _)’}k

t ~ tyo, 7.19

s pred

2 . . . .
where 5,4 s the unbiased estimate 0f Viyreq :

_ =2
52t = MSE+5°[7, 1= MSE 1+l+(x"—x)2 : 7.20
n Z(xi_)?)

Thus, the 1 — « confidence interval for the new observation, y; ey 1S:

Vit 21-0/2 Spred - 7.20a

Example 7.7

Q: Compute the estimate of the total area of defects of a cork stopper with a total
perimeter of the defects of 800 pixels, using Example 7.1 regression model.

A: Using formula 7.20 with the MSE, sprr, PRT and #,450.975 values presented in
Examples 7.2 and 7.6, as well as the coefficient values displayed in Figure 7.3, we
compute:

Vinew) € [437.5-77.4,437.5 + 77.4] = [360, 515], with 95% confidence level.

Figure 7.5 shows the table obtained with STATISTICA (using the Predict
dependent variable button of the Multiple regression command),
displaying the predicted value of variable ART for the predictor value PRT = 800,
together with the 95% confidence interval. Notice that the 95% confidence interval
is quite smaller than we have computed above, since STATISTICA is using
formula 7.17 instead of formula 7.20, i.e., is considering the predictor value as
making part of the dataset.

In R the same results are obtained with:

X <- c(800,0) ## 0 is just a dummy value
z <- rbind(cork, x)
predict (r, z, interval=c(“confidence”) , type=c(“response

II))

The second command line adds the predictor value to the data frame. The
predict function lists all the predicted values with the 95% confidence interval.
In this case we are interested in the last listed values, which agree with those of
Figure 7.5.

i
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B-Weight “alue | B-Weight
“arahle *\alue
PRT [ 05463180 800.0000 437 5347
Intercept -64.4902
Predicted 373.0445
-950%CL 3665515
+95.0%CL 3795375

Figure 7.5. Prediction of the new observation of ART for PRT = 800 (cork-
stopper dataset), using STATISTICA.

7.1.4 ANOVA Tests

The analysis of variance tests are quite popular in regression analysis since they
can be used to evaluate the regression model in several aspects. We start with a
basic ANOVA test for evaluating the following hypotheses:

Ho: pi=0; 7.21a
HI: ﬂ1¢0. 7.21b

For this purpose, we break down the total deviation of the observations around
the mean, given in equation 7.9, into two components:

SST= (v, =" =2 -+ =9 722

The first component represents the deviations of the fitted values around the
mean, and is known as regression sum of squares, SSR:

SSR =Y (3 -»)?. 723

The second component was presented previously as the error sum of squares,
SSE (see equation 7.8). It represents the deviations of the observations around the
regression line. We, therefore, have:

SST = SSR + SSE. 7.24

The number of degrees of freedom of SST is #n — 1 and it breaks down into one
degree of freedom for SSR and n — 2 for SSE. Thus, we define the regression mean
square:

MSstsTR=SSR.

The mean square error was already defined in section 7.1.2. In order to test the
null hypothesis 7.21a, we then use the following ratio:
Pt MSR

= Fiu. 7.25
MSE ’
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From the definitions of MSR and MSE we expect that large values of F support
H; and values of F near 1 support Hy. Therefore, the appropriate test is an upper-
tail F test.

Example 7.8
Q: Apply the ANOVA test to the regression Example 7.1 and discuss its results.

A: For the cork-stopper Example 7.1, the ANOVA array shown in Table 7.1 can be
obtained using either SPSS or STATISTICA. The MATLAB and R functions listed
in Commands 7.1 return the same F and p values as in Table 7.1. The complete
ANOVA table can be obtained in R with the anova function (see Commands 7.2).
Based on the observed significance of the test, we reject Hy, i.e., we conclude the
existence of the linear component (£ # 0). i

Table 7.1. ANOVA test for the simple linear regression example of predicting
ART based on the values of PRT (cork-stopper data).

Sscl]lgr(z:t; df SI;/{lea?rIel:s F P
SSR 5815203 1 5815203 3813.453 0.00
SSE 225688 148 1525
SST 6040891

Commands 7.2. SPSS, STATISTICA, MATLAB and R commands used to
perform the ANOVA test in simple linear regression.

Analyze; Regression; Linear; Statistics;

SPSS Model Fit

STATISTICA Statistics; Multiple regression; Advanced;

ANOVA
MATLAB [b,bint,r,rint, stats]=regress(y, X, alpha)
R anova (1m(y~X))

There are also specific ANOVA tests for assessing whether a certain regression
function adequately fits the data. We will now describe the ANOVA test for lack of fit,
which assumes that the observations of Y are independent, normally distributed and
with the same variance. The test takes into account what happens to repeat
observations at one or more X levels, the so-called replicates.
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Let us assume that there are ¢ distinct values of X, replicates or not, each with n;
replicates:

n;. 7.26

J
1

C
n=

J
The ith replicate for the j level is denoted y;. Let us first assume that the

replicate variables Yj; are not constrained by the regression line; in other words,
they obey the so-called fu/l model, with:

Y.

= +Ey, withiid & ~No, = E[Y]=u, 7.27

ij

The full model does not impose any restriction on the s ;, whereas in the linear
regression model the mean responses are linearly related.
To fit the full model to the data, we require:

iy =7, 7.28

Thus, we have the following error sum of squares for the full model (F denotes
the full model):

SSEF) =Y. 3 (v; —7,)% s with dfy =Y. (n, ~l)=n—c. 7.29
Joi J

In the above summations any X level with no replicates makes no contribution
to SSE(F). SSE(F) is also called pure error sum of squares and denoted SSPE.

Under the linear regression assumption, the y; are linearly related with x;. They
correspond to a reduced model, with:

Yy =PBo+Bix;+&;.

The error sum of squares for the reduced model is the usual error sum (R
denotes the reduced model):

SSE(R) = SSE, with dfy =n—2.

The difference SSLF = SSE — SSPE is called the lack of fit sum of squares and
has (n — 2) — (n — ¢) = ¢ — 2 degrees of freedom. The decomposition SSE = SSPE +
SSLF corresponds to:

y;’/'_j}ij = (yg'/'_yj) + (J_/J_JA’U) . 7.30

error deviation  pure error deviation lack of fit deviation

If there is a lack of fit, SSLF will dominate SSE, compared with SSPE.
Therefore, the ANOVA test, assuming that the null hypothesis is the lack of fit, is
performed using the following statistic:
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+ SSLF _SSPE _ MSLF

F : = ~F. 5. 7.30a
c—2 n—-c MSPE ’

The test for lack of fit is formalised as:

Hy: E[Y]=8,+8X. 7.31a

H;: E[Y]#p,+pX. 7.31b

Let F\_, represent the 1 — « percentile of F.,,_.. Then, if F <F,_,we accept
the null hypothesis, otherwise (significant test), we conclude for the lack of fit.

Repeat observations at only one or some levels of X are usually deemed
sufficient for the test. When no replications are present in a data set, an
approximate test for lack of fit can be conducted if there are some cases, at
adjacent X levels, for which the mean responses are quite close to each other.
These adjacent cases are grouped together and treated as pseudo-replicates.

Example 7.9

Q: Apply the ANOVA lack of fit test for the regression in Example 7.1 and discuss
its results.

A: First, we know from the previous results of Table 7.1, that:
SSE =225688; df=n—2=148; MSE =1525. 7.32

In order to obtain the value of SSPE, using STATISTICA, we must run the
General Linear Models command and in the Options tab of Quick
Specs Dialog, we must check the Lack of £fit box. After conducting a
Whole Model R (whole model regression) with the variable ART depending on
PRT, the following results are obtained:

SSPE = 65784.3; df=n—c=20; MSPE =3289.24. 7.33

Notice, from the value of df, that there are 130 distinct values of PRT. Using the
results 7.32 and 7.33, we are now able to compute:

SSLF = SSE — SSPE = 159903.7; df=c—2=128; MSLF=1249.25.
Therefore, F* = MSLF/MSPE = 0.38. For a 5% level of significance, we

determine the 95% percentile of Fa5,9, Which is Fipos = 1.89. Since F' < Fyos, we
then conclude for the goodness of fit of the simple linear model. i
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7.2 Multiple Regression

7.2.1 General Linear Regression Model

Assuming the existence of p — 1 predictor variables, the general linear regression
model is the direct generalisation of 7.1:

p-1
Yi=Po+Pixpy+Poxp+..+fpX 0 +E; = Z:kaik +&;, 7.34
k=0

with x;, =1. In the following we always consider normal regression models with
1.i.d. errors & ~ Ny
Note that:

— The general linear regression model implies that the observations are
independent normal variables.

— When the x; represent values of different predictor variables the model is
called a first-order model, in which there are no interaction effects between
the predictor variables.

— The general linear regression model encompasses also qualitative predictors.
For example:

Yi=PBo+Bixy+Prxpn+&;. 7.35

X; = patient’s weight
1 if patient female
Xip =

o if patient male
Patient is male: Y, =Bo+Lixq+E;.
Patient is female: Y, =(B, +f,)+ Bixy +&;.

Multiple linear regression can be performed with SPSS, STATISTICA,
MATLAB and R with the same commands and functions listed in Commands 7.1.

7.2.2 General Linear Regression in Matrix Terms

In order to understand the computations performed to fit the general linear
regression model to the data, it is convenient to study the normal equations 7.3 in
matrix form.

We start by expressing the general linear model (generalisation of 7.1) in matrix
terms as:

y=Xp g, 7.36
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where:

— yisan nx] matrix (i.e., a column vector) of the predictions;

— X is an nxp matrix of the p — 1 predictor values plus a bias (of value 1) for
the n predictor levels;

— P is a px] matrix of the coefficients;

— gis an nx1 matrix of the errors.

For instance, the multiple regression expressed by formula 7.35 is represented as
follows in matrix form, assuming n = 3 predictor levels:

N Loxy x| Bo €1
Yo =1 xy xpn || B |t &2
V3 1 x5 x5 |5 &3

We assume, as for the simple regression, that the errors are i.i.d. with zero mean
and equal variance:

Ele]=0; V[e]=0c1.
Thus: E[y]=X8.

The least square estimation of the coefficients starts by computing the total
error:

Ezzgi2 =g’e=(y—-Xb)’(y-Xb) =y y-Xyyb-b’X y+b’X’Xb. 7.37

Next, the error is minimised by setting to zero the derivatives in order to the
coefficients, obtaining the normal equations in matrix terms:

STE:O =  —2X’y+2X’Xb=0 = X’Xb=X’y.
Hence:
b=X’X)"'Xy=X"y, 7.38

where X is the so-called pseudo-inverse matrix of X.
The fitted values can now be computed as:

§=Xb.

Note that this formula, using the predictors and the estimated coefficients, can
also be expressed in terms of the predictors and the observations, substituting the
vector of the coefficients given in 7.38.

Let us consider the normal equations:

b=(X’X)"'X’Y.
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For the standardised model (i.e., using standardised variables) we have:

1 2 v T
XxX-r,-| ™! Rt 739
o1 Tp-12 1
_ -
XY=, =| 7. 7.40
L 7y.p-1
Hence
by
'
b= bf =Ty, 7.41
b,

where b is the vector containing the point estimates of the beta coefficients
(compare with formula 7.7 in section 7.1.2), ry is the symmetric matrix of the
predictor correlations (see A.8.2) and ry is the vector of the correlations between
Y and each of the predictor variables.

Example 7.10

Q: Consider the following six cases of the Foetal Weight dataset:

Variable Case #1 Case #2 Case #3 Case #4 Case #5  Case #6

CpP 30.1 31.1 324 32 324 359
AP 28.8 313 33.1 344 32.8 393
FW 2045 2505 3000 3520 4000 4515

Determine the beta coefficients of the linear regression of FW (foetal weight in
grams) depending on CP (cephalic perimeter in mm) and AP (abdominal perimeter
in mm) and performing the computations expressed by formula 7.41.

A: We can use MATLAB function corrcoef or appropriate SPSS,
STATISTICA and R commands to compute the correlation coefficients. Using
MATLAB and denoting by fw the matrix containing the above data with cases
along the rows and variables along the columns, we obtain:

» c=corrcoef (fw(:,:))
» C =
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1.0000 0.9692 0.8840

0.9692 1.0000 0.8880

0.8840 0.8880 1.0000
We now apply formula 7.41 as follows:

» rxx = c(1:2,1:2); ryx = c(1:2,3);

» b = inv(rxx) *ryx
b =

0.3847

0.5151

These are also the values obtained with SPSS, STATISTICA and R. It is
interesting to note that the beta coefficients for the 414 cases of the Foetal
Weight dataset are 0.3 and 0.64 respectively. 0

Example 7.11
Q: Determine the multiple linear regression coefficients of the previous example.

A: Since the beta coefficients are the regression coefficients of the standardised
model, we have:

M - 0‘3847M+0'5151M.
SFW Scp SAP
Thus:
by =FW + 55y [—0.38472—0.5151£J =-7125.7.
Scp SAP

by =0.3847 TV — 18] 44.
Scp

by =0.5151°% — 135.99.
S Ap

These computations can be easily carried out in MATLAB or R. For instance, in
MATLAB b, is computed as b2=0.5151*std (fw(:,3)) /std(fw(:,2)).
The same values can of course be obtained with the commands listed in
Commands 7.1 i

7.2.3 Multiple Correlation

Let us go back to the R-square statistic described in section 7.1, which represented
the square of the correlation between the independent and the dependent variables.
It also happens that it represents the square of the correlation between the
dependent and predicted variable, i.e., the square of:
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o D =@ - D) .

V-9 Y6, -5)

In multiple regression this quantity represents the correlation between the
dependent variable and the predicted variable explained by all the predictors; it is
therefore appropriately called multiple correlation coefficient. For p—1 predictors
we will denote this quantity as ryx, X,

_1'
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40

Figure 7.6. The regression linear model (plane) describing FW as a function of
(CP,AP) using the dataset of Example 7.10. The observations are the solid balls.
The predicted values are the open balls (lying on the plane). The multiple
correlation corresponds to the correlation between the observed and predicted
values.

Example 7.12

Q: Compute the multiple correlation coefficient for the Example 7.10 regression,
using formula 7.42.

A: In MATLAB the computations can be carried out with the matrix fw of
Example 7.10 as follows:

» fw = [fw(:,1) ones(1,6) fw(:,2:3)1;
» [b,bint,r,rint, stats] = regress(fw(:,1),fw(:,2:4));
» vy = fw(:,1); ystar = y-r;
» corrcoef (y,ytar)
ans =
1.0000 0.8930
0.8930 1.0000
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The first line includes the independent terms in the fw matrix in order to
compute a linear regression model with intercept. The third line computes the
predicted values in the ystar vector. The square of the multiple correlation
coefficient, rpwicp.ap = 0.893 computed in the fourth line coincides with the value
of R-square computed in the second line (r) as it should be. Figure 7.6 illustrates

this multiple correlation situation.
a

7.2.4 Inferences on Regression Parameters

Inferences on parameters in the general linear model are carried out similarly to the
inferences in section 7.1.3. Here, we review the main results:

— Interval estimation of fi: by +¢,_,,_ 42 Sp, -
— Confidence interval for E[¥;]: 7, a2, -

— Confidence region for the regression hyperplane: y, = W with W =

Py npia-

Sip

Example 7.13

Q: Consider the Foetal Weight dataset, containing foetal echographic
measurements, such as the biparietal diameter (BPD), the cephalic perimeter (CP),
the abdominal perimeter (AP), etc., and the respective weight-just-after-delivery,
FW. Determine the linear regression model needed to predict the newborn weight,
FW, using the three variables BPD, CP and AP. Discuss the results.

A: Having filled in the three variables BPD, CP and AP as predictor or
independent variables and the variable FW as the dependent variable, one can
obtain with STATISTICA the result summary table shown in Figure 7.7.

The standardised beta coefficients have the same meaning as in 7.1.2. Since
these reflect the contribution of standardised variables, they are useful for
comparing the relative contribution of each variable. In this case, variable AP has
the highest contribution and variable CP the lowest. Notice the high coefficient of
multiple determination, R? and that in the last column of the table, all ¢ tests are
found significant. Similar results are obtained with the commands listed in
Commands 7.1 for SPSS, MATLAB and R.

Figure 7.8 shows line plots of the true (observed) values and predicted values of
the foetal weight using the multiple linear regression model. The horizontal axis of
these line plots is the case number. The true foetal weights were previously sorted
by increasing order. Figure 7.9 shows the scatter plot of the observed and predicted
values obtained with the Multiple Regression command of STATISTICA.

a0
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R= 8BE55538 R%= 78558754 Adjusted R%= 78442160
F(3,410y=501.93 p<0.0000 Std.Error of estimate; 291.64
Beta | Std.Em. B Std.Err. | t(410) p-level

N=414 of Beta of B
[Intercept | -4765.66 261.9039| -18.1962 0,000000
BPD 02626600 0.040504 29228 450721 6.4348 0000000
CP 0.105382 0.043764 36.00 149485 24079 0.016483

0.60S055 0.031987 12472 ©6.5493| 19.0421 0.000000

Figure 7.7. Estimation results obtained with STATISTICA of the trivariate linear
regression of the foetal weight data.
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Figure 7.8. Plot obtained with STATISTICA
observed (solid line) foetal weights with a

regression model.
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Figure 7.9. Plot obtained with STATISTICA of the observed versus predicted
foetal weight values with fitted line and 95% confidence interval.
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7.2.5 ANOVA and Extra Sums of Squares

The simple ANOVA test presented in 7.1.4, corresponding to the decomposition of
the total sum of squares as expressed by formula 7.24, can be generalised in a
straightforward way to the multiple regression model.

Example 7.14
Q: Apply the simple ANOVA test to the foetal weight regression in Example 7.13.

A: Table 7.2 lists the results of the simple ANOVA test, obtainable with SPSS
STATISTICA, or R, for the foetal weight data, showing that the regression model
is statistically significant (p = 0).

a

Table 7.2. ANOVA test for Example 7.13.

Sum of Mean

Squares df Squares F P
SSR 128252147 3 42750716 501.9254 0.00
SSE 34921110 410 85173

SST 163173257

It is also possible to apply the ANOVA test for lack of fit in the same way as
was done in 7.1.4. However, when there are several predictor values playing their
influence in the regression model, it is useful to assess their contribution by means
of the so-called extra sums of squares. An extra sum of squares measures the
marginal reduction in the error sum of squares when one or several predictor
variables are added to the model.

We now illustrate this concept using the foetal weight data. Table 7.3 shows the
regression lines, SSE and SSR for models with one, two or three predictors. Notice
how the model with (BPD,CP) has a decreased error sum of squares, SSE, when
compared with either the model with BPD or CP alone, and has an increased
regression sum of squares. The same happens to the other models. As one adds
more predictors one expects the linear fit to improve. As a consequence, SSE and
SSR are monotonic decreasing and increasing functions, respectively, with the
number of variables in the model. Moreover, what SSE decreases is reflected by an
equal increase of SSR.

We now define the following extra sum of squares, SSR(X5|X}), which measures
the improvement obtained by adding a second variable X, to a model that has
already X;:

SSR(X; | X1) = SSE(X)) - SSE(X}, X2) = SSR(X), X>) - SSR(X)).
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Table 7.3. Computed models with SSE, SSR and respective degrees of freedom for
the foetal weight data (sums of squares divided by 10°).

Abstract Model Computed model SSE df SSR df
Y =g(X) FW(BPD) = -4229.1 + 813.3 BPD 76.0 412 87.1 1
Y =g(X3) FW(CP) = -5096.2 + 253.8 CP 73.1 412 90.1 1
Y =g(X3) FW(AP) =-2518.5 + 173.6 AP 46.2 412 117.1 1
Y = g(X, Xo) ngglg,cp):—5464.7+412.0 BPD+ oo a1l 974 2
Y =g Xy)  NBPDAPZ-MELIFSCTZBRDE 354 411 1278 2
Y =g Xy)  WERAPZMTOZHIRICPE g5 411 1247 2
Y = (X0 X0, Xo) f‘?éﬁpéﬁpﬁf_é " ;4765‘7 T2923BPD 349 410 1283 3

X, =BPD; X, = CP; X; = AP

For the data of Table 7.3 we have: SSR(CP | BPD) = SSE(BPD) - SSE(BPD,
CP) = 76 — 65.8 = 10.2, which is practically the same as SSR(BPD, CP) -
SSR(BPD) =97.4 —87.1 = 10.3 (difference only due to numerical roundings).

Similarly, one can define:

SSR(X; | X1, Xp) = SSE(X), X3) - SSE(X1, X5, X3)
= SSR(X,, X;, X3) - SSR(X}, X3).
SSR(XQ,X3 |X1) = SSE(X]) - SSE(Xl, Xz, X3) = SSR(XI, Xz,Xj,) — SSR(Xl)

The first extra sum of squares, SSR(X; | X}, X3), represents the improvement
obtained when adding a third variable, X;, to a model that has already two
variables, X; and X,. The second extra sum of squares, SSR(X;, X3 | X}), represents
the improvement obtained when adding two variables, X, and Xj;, to a model that
has only one variable, X.

The extra sums of squares are especially useful for performing tests on the
regression coefficients and for detecting multicollinearity situations, as explained
in the following sections.

With the extra sums of squares it is also possible to easily compute the so-called
partial correlations, measuring the degree of linear relationship between two
variables after including other variables in a regression model. Let us illustrate this
topic with the foetal weight data. Imagine that the only predictors were BPD, CP
and AP as in Table 7.3, and that we wanted to build a regression model of FW by
successively entering in the model the predictor which is most correlated with the
predicted variable. In the beginning there are no variables in the model and we
choose the predictor with higher correlation with the independent variable FW.
Looking at Table 7.4 we see that, based on this rule, AP enters the model. Now we
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must ask which of the remaining variables, BPD or CP, has a higher correlation
with the predicted variable of the model that has already AP. The answer to this
question amounts to computing the partial correlation of a candidate variable, say
X5, with the predicted variable of a model that has already X, ry y,x, . The
respective formula is:

2 _SSR(X, | X|) _ SSE(X,)-SSE(X,, X,)
ron SSE(X,) SSE(X,)

For the foetal weight dataset the computations with the values in Table 7.3 are
as follows:

SSR(BPD| AP)
rFZW,BPD\AP = T(AP) =0.305 5
SSR(CP| AP)
2
"W CPIAP = T(AP) =0.167,

resulting in the partial correlation values listed in Table 7.4. We therefore select
BPD as the next predictor to enter the model. This process could go on had we
more predictors. For instance, the partial correlation of the remaining variable CP
with the predicted variable of a model that has already AP and BPD is computed
as:

SSR(CP | BPD, AP)
SSE(BPD, AP)

=0.014.

2 _
"FW,CP|BPD,AP =

Further details on the meaning and statistical significance testing of partial
correlations can be found in (Kleinbaum DG et al., 1988).

Table 7.4. Correlations and partial correlations for the foetal weight dataset.

bemodel cotorhomodet  Comlaton sumple Value
(None) BPD TFW,BPD 0.731
(None) CP Frw.cp 0.743
(None) AP TFW,AP 0.847
AP BPD T'FW,BPD|AP 0.552
AP Cp TEW,CP|AP 0.408

AP, BPD CP FFW.CPIBPDAP 0.119
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7.2.5.1 Tests for Regression Coefficients

We will only present the test for a single coefficient, formalised as:

Ho: = 0;
H1: ﬁki 0.

The statistic appropriate for this test, is:
L =— ~ . 7.43

We may also use, as in section 7.1.4, the ANOVA test approach. As an
illustration, let us consider a model with three variables, X;, X,, X3, and,
furthermore, let us assume that we want to test whether “Hy: B3 = 0” can be

accepted or rejected. For this purpose, we first compute the error sum of squares
for the full model:

SSE(F) =SSE(X,, X,,X;), with dfy=n—4.

The reduced model, corresponding to H,, has the following error sum of
squares:

SSE(R) =SSE(X,X,), with dfg=n-3.

The ANOVA test assessing whether or not any benefit is derived from adding
X; to the model, is then based on the computation of:

o+ _ SSE(R)—SSE(F) SSE(F) _ SSR(X | X,,X;) SSE(X,.X,.X;)
df g —df df 1 n—4
_ MSR(X; | X}, X,)
~ MSE(X,,X,,X5)

In general, we have:

F* _ MSR(Xk |X1 "'Xk—le+1 "'Xp—l)
MSE

~ Fl,n—p . 7.44

The F test using this sampling distribution is equivalent to the ¢ test expressed
by 7.43. This F test is known as partial F test.

7.2.5.2 Multicollinearity and its Effects

If the predictor variables are uncorrelated, the regression coefficients remain
constant, irrespective of whether or not another predictor variable is added to the
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model. Similarly, the same applies for the sum of squares. For instance, for a
model with two uncorrelated predictor variables, the following should hold:

SSR(X; | X2) = SSE(X:) - SSE(X), X>) = SSR(X)); 7.45a
SSR(X; | X)) = SSE(X)) - SSE(X), X>) = SSR(X>). 7.45b

On the other hand, if there is a perfect correlation between X; and X, — in other
words, X, and X, are collinear — we would be able to determine an infinite number
of regression solutions (planes) intersecting at the straight line relating X; and X;.
Multicollinearity leads to imprecise determination coefficients, imprecise fitted
values and imprecise tests on the regression coefficients.

In practice, when predictor variables are correlated, the marginal contribution of
any predictor variable in reducing the error sum of squares varies, depending on
which variables are already in the regression model.

Example 7.15

Q: Consider the trivariate regression of the foetal weight in Example 7.13. Use
formulas 7.45 to assess the collinearity of CP given BPD and of AP given BPD and
BPD, CP.

A: Applying formulas 7.45 to the results displayed in Table 7.3, we obtain:

SSR(CP) = 90x10° .
SSR(CP | BPD) = SSE(BPD) — SSE(CP, BPD) = 76x10°— 66x10° = 10x10° .

We see that SSR(CP|BPD) is small compared with SSR(CP), which is a
symptom that BPD and CP are highly correlated. Thus, when BPD is already in the
model, the marginal contribution of CP in reducing the error sum of squares is
small because BPD contains much of the same information as CP.

In the same way, we compute:

SSR(AP) = 46x10° .
SSR(AP | BPD) = SSE(BPD) — SSE(BPD, AP) = 41x10° .
SSR(AP | BPD, CP) = SSE(BPD, CP) — SSE(BPD, CP, AP) = 31x10° .

We see that AP seems to bring a definite contribution to the regression model by
reducing the error sum of squares. i

7.2.6 Polynomial Regression and Other Models

Polynomial regression models may contain squared, cross-terms and higher order
terms of the predictor variables. These models can be viewed as a generalisation of
the multivariate linear model.

As an example, consider the following second order model:

Y, =By + Bix; + Box] + &, 7.46
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The Y; can also be linearly modelled as:

) ) 2
Y, = Bo+ Puy + Pyuy +&;  with Ujg =X;5 Up =X, .

As a matter of fact, many complex dependency models can be transformed into
the general linear model after suitable transformation of the variables. The general
linear model encompasses also the interaction effects, as in the following example:

Y, = Bo+ Bixy + Paxpn + Byxyxpn +&;, 747

which can be transformed into the linear model, using the extra
variable x;; = x,;x;, for the cross-term x;,x,,.

Frequently, when dealing with polynomial models, the predictor variables are
previously centred, replacing x; by x; —x. The reason is that, for instance, X and
X* will often be highly correlated. Using centred variables reduces multi-
collinearity and tends to avoid computational difficulties.

Note that in all the previous examples, the model is linear in the parameters /.
When this condition is not satisfied, we are dealing with a non-linear model, as in
the following example of the so-called exponential regression:

Y, = By exp(Byx;)+&;. 7.48

Unlike linear models, it is not generally possible to find analytical expressions
for the estimates of the coefficients of non-linear models, similar to the normal
equations 7.3. These have to be found using standard numerical search procedures.
The statistical analysis of these models is also a lot more complex. For instance, if
we linearise the model 7.48 using a logarithmic transformation, the errors will no
longer be normal and with equal variance.

Commands 7.3. SPSS, STATISTICA, MATLAB and R commands used to
perform polynomial and non-linear regression.

Analyze; Regression; Curve Estimation
SPSS , ;
Analyze; Regression; Nonlinear

Statistics; Advanced Linear/Nonlinear

Models; General Linear Models; Polynomial
STATISTICA Regression

Statistics; Advanced Linear/Nonlinear

Models; Non-Linear Estimation

[p,S] = polyfit(X,y,n)
MATLAB [v,delta] = polyconf (p,X,S)
[beta,r,J]= nlinfit(X,y,FUN, betal)

R Im(formula) | glm(formula)
nls (formula, start, algorithm, trace)
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The MATLAB polyfit function computes a polynomial fit of degree n using
the predictor matrix X and the observed data vector y. The function returns a vector
p with the polynomial coefficients and a matrix S to be used with the polyconf
function producing confidence intervals y + delta at alpha confidence level
(95% if alpha is omitted). The nlinfit returns the coefficients beta and
residuals r of a nonlinear fit y = f(X, beta), whose formula is specified by a
string FUN and whose initial coefficient estimates are beta0.

The R glm function operates much in the same way as the 1m function, with the
support of extra parameters. The parameter formula is used to express a
polynomial dependency of the independent variable with respect to the predictors,
suchasy ~ x + I(x"2), where the function I inhibits the interpretation of
“~” as a formula operator, so it is used as an arithmetical operator. The nls
function for nonlinear regression is used with a start vector of initial estimates,
an algorithm parameter specifying the algorithm to use and a trace logical
value indicating whether a trace of the iteration progress should be printed. An
example is: nls (y~1/(l+exp((a-log(x)) /b)), start=list(a=0,
b=1), alg=“plinear”, trace=TRUE). u

Example 7.16

Q: Consider the Stock Exchange dataset (see Appendix E). Design and
evaluate a second order polynomial model, without interaction effects, for the
SONAE share values depending on the predictors EURIBOR and USD.

A: Table 7.5 shows the estimated parameters of this second order model, along
with the results of ¢ tests. From these results, we conclude that all coefficients have
an important contribution to the designed model. The simple ANOVA test gives
also significant results. However, Figure 7.10 suggests that there is some trend of
the residuals as a function of the observed values. This is a symptom that some
lack of fit may be present. In order to investigate this issue we now perform the
ANOVA test for lack of fit. We may use STATISTICA for this purpose, in the
same way as in the example described in section 7.1.4.

Table 7.5. Results obtained with STATISTICA for a second order model, with
predictors EURIBOR and USD, in the regression of SONAE share values (Stock
Exchange dataset).

Effect SONAE SONAE ¢ P -95% +95%

Param. Std.Err Cnf.Lmt Cnf.Lmt
Intercept —283530 24151 -11.7 0.00 -331053 —236008
EURIBOR 13938 1056 13.2 0.00 11860 16015
EURIBOR? -1767 139.8 -12.6 0.00 -2042 —-1491
USD 560661 49041 11.4 0.00 464164 657159

UsD? —294445 24411 -12.1 0.00 —342479 —246412
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Figure 7.10. Residuals versus observed values in the Stock Exchange example.

First, note that there are p — 1 = 4 predictor variables in the model; therefore,
p =5. Secondly, in order to have enough replicates for STATISTICA to be able to
compute the pure error, we use two new variables derived from EURIBOR and
USD by rounding them to two and three significant digits, respectively. We then
obtain (removing a 10* factor):

SSE =345062; df=n-p=308; MSE =1120.
SSPE =87970; df=n—c=208; MSPE =423.

From these results we compute:

SSLF = SSE — SSPE =257092; df=c—p=100; MSLF =2571.
F"=MSLF/MSPE =6.1 .

The 95% percentile of Fgz0s is 1.3. Since F'> 1.3, we then conclude for the
lack of fit of the model. 1]

7.3 Building and Evaluating the Regression Model

7.3.1 Building the Model

When there are several variables that can be used as candidates for predictor
variables in a regression model, it would be fastidious having to try every possible
combination of variables. In such situations, one needs a search procedure
operating in the variable space in order to build up the regression model much in
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the same way as we performed feature selection in Chapter 6. The search
procedure has also to use an appropriate criterion for predictor selection. There are
many such criteria published in the literature. We indicate here just a few:

— SSE (minimisation)

— R square (maximisation)
— ¢ statistic (maximisation)
— F statistic (maximisation)

When building the model, these criteria can be used in a stepwise manner the
same way as we performed sequential feature selection in Chapter 6. That is, by
either adding consecutive variables to the model — the so-called forward search
method —, or by removing variables from an initial set — the so-called backward
search method.

For instance, a very popular method is to use forward stepwise building up the
model using the F statistic, as follows:

1. Initially enters the wvariable, say X, that has maximum F; =
MSR(X;)/MSE(X};), which must be above a certain specified level.

2. Next is added the variable with maximum F;, = MSR(X; | X;) / MSE(X;, X))
and above a certain specified level.

3. The Step 2 procedure goes on until no variable has a partial F" above the
specified level.

Example 7.17

Q: Apply the forward stepwise procedure to the foetal weight data (see Example
7.13), using as initial predictor sets {BPD, CP, AP} and {MW, MH, BPD, CP, AP,
FL}.

A: Figure 7.11 shows the evolution of the model using the forward stepwise
method to {BPD, CP, AP}. The first variable to be included, with higher F, is the
variable AP. The next variables that are included have a decreasing F' contribution
but still higher than the specified level of “F to Enter”, equal to 1. These results
confirm the findings on partial correlation coefficients discussed in section 7.2.5
(Table 7.4).

Step | Multiple | Multiple | R-square | F -to p-level | Variabls
Yariable | +in/-out R R-square | change | entrfrem included
AP [ 100 846657 0.716827 | 0.716827 | 1042.943| 0.000000 1
BFD 210884851 0.782961| 0.066134| 125.235|0.000000 2
CcP 30886559 0.785988 | 0.003027 5.798|0.016483 3

Figure 7.11. Forward stepwise regression (obtained with STATISTICA) for the
foetal weight example, using {BPD, CP, AP} as initial predictor set.
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Let us now assume that the initial set of predictors is {MW, MH, BPD, CP, AP,
FL}. Figure 7.12 shows the evolution of the model at each step. Notice that one of
the variables, MH, was not included in the model, and the last one, CP, has a non-
significant F test (p > 0.05), and therefore, should also be excluded.

1]

Step | Multiple | Multiple | R-square | F-to p-level | Variabls

‘ariable | +inf-out R R-sguare | change | entrfrem included
AP ( 140.846657 0.716827 | 0.716327 1042.543 0.000000 1
BPD 2083846851 0.782961| 0D0RB134 126235 0000000 2
FL 3 08976886 0.806193| 0.023237 49160 0.000000 3
Tty 4 09029358 0.815298 0005095  20.149 0.000005 4
CP £0.903231| 0.815827 | 0.000529 1.172|0.279681 g

Figure 7.12. Forward stepwise regression (obtained with STATISTICA) for the
foetal weight example, using {MW, MH, BPD, CP, AP, FL} as initial predictor
set.

Commands 7.4. SPSS, STATISTICA, MATLAB and R commands used to
perform stepwise linear regression.

SPSS Analyze; Regression; Linear; Method
Forward

Statistics; Multiple Regression;
STATISTICA Advanced; Forward Stepwise

MATLAB stepwise (X,v)

R step (object, direction = c(“both”,
“backward”, “forward”), trace)

With SPSS and STATISTICA the user can specify the level of F in order to enter
or remove variables.

The MATLAB stepwise function fits a regression model of y depending on
X, displaying figure windows for interactively controlling the stepwise addition
and removal of model terms.

The R step function allows the stepwise selection of a model, represented by
the parameter object and generated by R 1m or glm functions. The selection is
based on a more sophisticated criterion than the ANOVA F. The parameter
direction specifies the direction (forward, backward or a combination of both)
of the stepwise search. The parameter trace when left with its default value will
force step to generate information during its running.

[ ]
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7.3.2 Evaluating the Model

7.3.2.1 Identifying Outliers

Outliers correspond to cases exhibiting a strong deviation from the fitted regression
curve, which can have a harmful influence in the process of fitting the model to the
data. Identification of outliers, for their eventual removal from the dataset, is
usually carried out using the so-called semistudentised residuals (or standard
residuals), defined as:

« e —e e

e, =——— = ! 7.49

JMSE +MSE

Cases whose magnitude of the semistudentised residuals exceeds a certain
threshold (usually 2), are considered outliers and are candidates for removal.

Example 7.18

Q: Detect the outliers of the first model designed in Example 7.13, using
semistudentised residuals.

A: Figure 7.13 shows the partial listing, obtained with STATISTICA, of the 18
outliers for the foetal weight regression with the three predictors AP, BPD and CP.
Notice that the magnitudes of the Standard Residual column are all above 2.

1]

Standard Residual: FW (fetalweight. STA) —

Outliers —

Standard Residuals Residual | Standard |Mahalanobis| Deleted | Cook's

Case -4. -3. +2. 3. 4. Residual | Distance | Residual | Distance
62 *, 628 427 215329 0.24594 -630.325 0.003511
74 * 5 625597 -2.14360 0.15088 -627.342 0.003212
86 *, B07.796 276790 1859577 040028 0.100142
87 * 722,758 -2.47652 268339 -729.258 0.013913

139 * 892 949 203173 161768 -596.728 0.006618 —
174 * 610306 -209120 AB5717 617 263 0.012604
325 BE3 513 234204 056303 666.105 0.005221
329 0 O 699999 239853 090118 703.232 0,008673
358 .F B52.637 223580 0.88541 B55.526 0.005751
359 .® B639.499 219123 8.33510 654 284 0.028394
371 ¥ 679481 232823 0.04968 681.208 0.003454

377 . B43 622 222249 7.17145 B61.711 0.025423:‘
u »

Figure 7.13.
example.

Outlier list obtained with

STATISTICA for

the foetal weight
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There are other ways to detect outliers, such as:

— Use of deleted residuals: the residual is computed for the respective case,
assuming that it was not included in the regression analysis. If the deleted
residual differs greatly from the original residual (i.e., with the case
included) then the case is, possibly, an outlier. Note in Figure 7.13 how
case 86 has a deleted residual that exhibits a large difference from the
original residual, when compared with similar differences for cases with
smaller standard residual.

— Cook’s distance: measures the distance between beta values with and
without the respective case. If there are no outlier cases, these distances are
of approximately equal amplitude. Note in Figure 7.13 how the Cook’s
distance for case 86 is quite different from the distances of the other cases.

7.3.2.2 Assessing Multicollinearity

Besides the methods described in 7.2.5.2, multicollinearity can also be assessed
using the so-called variance inflation factors (VIF), which are defined for each
predictor variable as:

VIE, =(1-r8)7", 7.50

where rk2 is the coefficient of multiple determination when x; is regressed on the
p — 2 remaining variables in the model. An rk2 near 1, indicating significant
correlation with the remaining variables, will result in a large value of VIF. A VIF
larger than 10 is usually taken as an indicator of multicollinearity.

For assessing multicollinearity, the mean of the VIF values is also computed:

pp— -1
VIF=3""" VIF, /(p-1). 7.51

A mean VIF considerably larger than 1 is indicative of serious multicollinearity
problems.

Commands 7.5. SPSS, STATISTICA, MATLAB and R commands used to
evaluate regression models.

SPSS Analyze; Regression; Linear; Statistics;

Model Fit

Statistics; Multiple regression; Advanced;
STATISTICA ANOVA
MATLAB regstats (y, X)

R influence.measures
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The MATLAB regstats function generates a set of regression diagnostic
measures, such as the studentised residuals and the Cook’s distance. The function
creates a window with check boxes for each diagnostic measure and a
Calculate Now button. Clicking Calculate Now pops up another window
where the user can specify names of variables for storing the computed measures.
The R influence.measures is a suite of regression diagnostic functions,
including those diagnostics that we have described, such as deleted residuals and
Cook’s distance. u

7.3.3 Case Study

We have already used the foetal weight prediction task in order to illustrate
specific topics on regression. We will now consider this task in a more detailed
fashion so that the reader can appreciate the application of the several topics that
were previously described in a complete worked-out case study.

7.3.3.1 Determining a Linear Model

We start with the solution obtained by forward stepwise search, summarised in
Figure 7.11. Table 7.6 shows the coefficients of the model. The values of beta
indicate that their contributions are different. All ¢ tests are significant; therefore,
no coefficient is discarded at this phase. The ANOVA test, shown in Table 7.7
gives also a good prognostic of the goodness of fit of the model.

Table 7.6. Parameters and ¢ tests of the trivariate linear model for the foetal weight
example.

Beta  Std. Err. of Beta B Std. Err. of B 4y P
Intercept —4765.7 261.9 —-18.2 0.00
AP 0.609 0.032 124.7 6.5 19.0 0.00
BPD 0.263 0.041 2923 45.1 6.5 0.00
CP 0.105 0.044 36.0 15.0 2.4 0.02

Table 7.7. ANOVA test of the trivariate linear model for the foetal weight
example.

Sum of Squares df Mean Squares F P
Regress. 128252147 3 42750716 501.9254 0.00
Residual 34921110 410 85173

Total 163173257
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Figure 7.14. Distribution of the residuals for the foetal weight example: a) Normal
probability plot; b) Histogram.

7.3.3.2 Evaluating the Linear Model

Distribution of the Residuals

In order to assess whether the errors can be assumed normally distributed, one can
use graphical inspection, as in Figure 7.14, and also perform the distribution fitting
tests described in chapter 5. In the present case, the assumption of normal
distribution for the errors seems a reasonable one.

The constancy of the residual variance can be assessed using the following
modified Levene test:

1.

Divide the data set into two groups: one with the predictor values
comparatively low and the other with the predictor values comparatively
high. The objective is to compare the residual variance in the two groups. In
the present case, we divide the cases into the two groups corresponding to
observed weights below and above 3000 g. The sample sizes are n; = 118
and n, = 296, respectively.

Compute the medians of the residuals e; in the two groups: med; and med,.
In the present case med; = —182.32 and med, = 59.87.

Let d, =|e; —med,| and d;, =|e;, —med,| represent the absolute
deviations of the residuals around the medians in _each group. We now
compute the respective sample means, d;and d,, of these absolute
deviations, which in our study case are: d, =187.37, d, =221.42.

4. Compute:

=L 22 7.52
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s Ddy-d)’+Y(d,-d,)’

with s° =
n-2

In the present case the computed ¢ value is 7 =—1.83 and the 0.975 percentile of
t4121s 1.97. Since |t | < t4120.975, We accept that the residual variance is constant.

Test of Fit

We now proceed to evaluate the goodness of fit of the model, using the method
described in 7.1.4, based on the computation of the pure error sum of squares.
Using SPSS, STATISTICA, MATLAB or R, we determine:

n=414; ¢=381; n—-c=33; ¢-2=379.
SSPE = 1846345.8; MSPE=SSPE/(n—c)=155949.9 .
SSE =34921109 .

Based on these values, we now compute:
SSLF = SSE — SSPE = 33074763.2; MSLF = SSLF/(c —2) =87268.5 .

Thus, the computed F"is: F'= MSLF/MSPE = 1.56. On the other hand, the 95%
percentile of F379 331s 1.6. Since F' < F329. 33, we do not reject the goodness of fit
hypothesis.

Detecting Outliers

The detection of outliers was already performed in 7.3.2.1. Eighteen cases are
identified as being outliers. The evaluation of the model without including these
outlier cases is usually performed at a later phase. We leave as an exercise the
preceding evaluation steps after removing the outliers.

Assessing Multicollinearity

Multicollinearity can be assessed either using the extra sums of squares as
described in 7.2.5.2 or using the VIF factors described in 7.3.2.2. This last method
is particularly fast and easy to apply.

Using SPSS, STATISTICA, MATLAB or R, one can easily obtain the
coefficients of determination for each predictor variable regressed on the other
ones. Table 7.8 shows the values obtained for our case study.

Table 7.8. VIF factors obtained for the foetal weight data.

BPD(CP,AP) CP(BPD,AP) AP(BPD,CP)
”? 0.6818 0.7275 0.4998
VIF 3.14 3.67 2
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Although no single VIF is larger than 10, the mean VIF is 2.9, larger than 1 and,
therefore, indicative that some degree of multicollinearity may be present.

Cross-Validating the Linear Model

Until now we have assessed the regression performance using the same set that
was used for the design. Assessing the performance in the design (training) set
yields on average optimistic results, as we have already seen in Chapter 6, when
discussing data classification. We need to evaluate the ability of our model to
generalise when applied to an independent test set. For that purpose we apply a
cross-validation method along the same lines as in section 6.6.

Let us illustrate this procedure by applying a two-fold cross-validation to our
FW(AP,BPD,CP) model. For that purpose we randomly select approximately half
of the cases for training and the other half for test, and then switch the roles. This
can be implemented in SPSS, STATISTICA, MATLAB and R by setting up a filter
variable with random Os and 1s. Denoting the two sets by Dy and D; we obtained
the results in Table 7.9 in one experiment. Based on the F tests and on the
proximity of the RMS values we conclude the good generalisation of the model.

Table 7.9. Two-fold cross-validation results. The test set results are in italic.

Design with Dy (204 cases) Design with D; (210 cases)
Dy RMS Dy RMS D1 F (p) D; RMS Dy RMS Dy F (p)

272.6 312.7 706 (0) 277.1 308.3 613 (0)

7.3.3.3 Determining a Polynomial Model

We now proceed to determine a third order polynomial model for the foetal weight
regressed by the same predictors but without interaction terms. As previously
mentioned in 7.2.6, in order to avoid numerical problems, we use centred
predictors by subtracting the respective mean. We then use the following predictor
variables:

X, =BPD -mean(BPD); X, =X7; X;;;=X;.

X, =CP-mean(CP); X, =X7; X, =2X;.

X; = AP—mean(AP); X33 =X37; Xy =X;.

With SPSS and STATISTICA, in order to perform the forward stepwise search,
the predictor variables must first be created before applying the respective

regression commands. Table 7.9 shows some results obtained with the forward
stepwise search. Note that although six predictors were included in the model using
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the threshold of 1 for the “F to enter”, the three last predictors do not have
significant F tests and the predictors X5y, and X';; also do not pass in the respective
t tests (at 5% significance level).

Let us now apply the backward search process. Figure 7.15 shows the summary
table of this search process, obtained with STATISTICA, using a threshold of “F
to remove” = 10 (one more than the number of initial predictors). The variables are
removed consecutively by increasing order of their F contribution until reaching
the end of the process with two included variables, X, and X;. Notice, however,
that variable X; is found significant in the F test, and therefore, it should probably
be included too.

Table 7.10. Parameters of a third order polynomial regression model found with a
forward stepwise search for the foetal weight data (using SPSS or STATISTICA).

Beta Std. Err. of Beta  F to Enter p ta10 p
Intercept 181.7 0.00
X3 0.6049 0.033 1043 0.00 18.45 0.00
Xi 0.2652 0.041 125.2 0.00 6.492 0.00
X5 0.1399 0.047 5.798 0.02 2.999 0.00
Xom —0.0942 0.056 1.860 0.17  -1.685 0.09
X —-0.1341 0.065 2.496 0.12  -2.064 0.04
Xu 0.0797 0.0600 1.761 0.185  1.327 0.19

§tep Multiple | Multiple | R-square | F - to p-level | Varabls
“ariable | +inf-out R R-square | change | entr/rem included
%333 -110.888697 0.789783 -0.000000  0.000285 0.986540 g
X111 -2 0.888551 0789522 -0.000261 0.502880 0.478644 7
%33 -3'0.888349 0.789164 -0.000358 0.690113 0.406614 G
%11 -4 0.887836 0788252 -0.000912 1.761362 0.185139 5
x22 -5 0.887106 0.786957  -0.001295 2.495749 0.114929 4
X222 -6 0.856559 0.785958 -0.000969 1.860499 0.17/3317 3
X2 -7 0.884851 0782961 -0.003027 5.793130 0.0164583 2

Figure 7.15. Parameters and tests obtained with STATISTICA for the third order
polynomial regression model (foetal weight example) using the backward stepwise
search procedure.

7.3.3.4 Evaluating the Polynomial Model

We now evaluate the polynomial model found by forward search and including the
six predictors Xi, X5, X3, Xi1, X22, Xopn. This is done for illustration purposes only
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since we saw in the previous section that the backward search procedure found a
simpler linear model. Whenever a simpler (using less predictors) and similarly
performing model is found, it should be preferred for the same generalisation
reasons that were explained in the previous chapter.

The distribution of the residuals is similar to what is displayed in Figure 7.14.
Since the backward search cast some doubts as to whether some of these predictors
have a valid contribution, we will now use the methods based on the extra sums of
squares. This is done in order to evaluate whether each regression coefficient can
be assumed to be zero, and to assess the multicollinearity of the model. As a final
result of this evaluation, we will conclude that the polynomial model does not
bring about any significant improvement compared to the previous linear model
with three predictors.

Table 7.11. Results of the test using extra sums of squares for assessing the
contribution of each predictor in the polynomial model (foetal weight example).

Variable X X X3 X Xy Xom
Coefficient bl b2 b3 b1 1 bzz b222

Variables in the X, X3, X1y, X1, X3, X, X, X, Xy, X0, X, X, X0, X, X, X, X0, XG,
Reduced Model X2, Xozo Xog, Xpop Xop, Xozp X, X X111, Xomp X1, X22

SSE(R) (/10°) 37966 36163 36162 34552 347623 34643
SSR = SSE(R) —

SSE(F) (/10%) 3563 1760 1759 149 360 240
F"=SSR/MSE 42.15 20.82 20.81 1.76 4.26 2.84
Reject Hy Yes Yes Yes No Yes No

Testing whether individual regression coefficients are zero

We use the partial F test described in section 7.2.5.1 as expressed by formula 7.44.
As a preliminary step, we determine with SPSS, STATISTICA, MATLAB or R the
SSE and MSE of the model:

SSE =34402739; MSE = 84528.

We now use the 95% percentile of F 407 = 3.86 to perform the individual tests as
summarised in Table 7.11. According to these tests, variables X;; and Xy, should
be removed from the model.

Assessing multicollinearity

We use the test described in section 7.2.5.2 using the same SSE and MSE as
before. Table 7.12 summarises the individual computations. According to Table
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7.11, the larger differences between SSE(X) and SSE(X | R) occur for variables X,
X5, and Xy,,. These variables have a strong influence in the multicollinearity of the
model and should, therefore, be removed. In other words, we come up with the first
model of Example 7.17.

Table 7.12. Sums of squares for each predictor in the polynomial model (foetal
weight example) using the full and reduced models.

Variable X, X5 X; Xu X X

SSE(X) (/10%) 76001 73062 46206 131565 130642 124828

X23X3’X11, XI3X3’X11, XI3X2’X11, XlaXZ,X?n XlaXZ,X?n XI,X23X33

Reduced Model
ecuced Vode X Xom XXy X Xom X Xomy XinXom  Xi, X
SSE(R) (/10%) 37966 36163 36162 34552 34763 34643
SSE(X'| R) = SSE(R)
1 1 14 24
ZSSE (109 3563 760 759 9 360 0
Larger Differences 0 0 )

7.4 Regression Through the Origin

In some applications of regression models we may know beforehand that the
regression function must pass through the origin. SPSS and STATISTICA have
options that allow the user to include or exclude the “intercept” or “constant” term
in/from the model. In MATLAB and R one only has to discard a column of ones
from the independent data matrix in order to build a model without the intercept
term. Let us discuss here the simple linear model with normal errors. Without the
“intercept” term the model is written as:

Y= Fix; +&;. 7.53
The point estimate of £ is:

Y. 7.54

Y

The unbiased estimate of the error variance is now:

2
MSE = &, with n — 1 (instead of n — 2) degrees of freedom. 7.55

n-1
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Example 7.19

Q: Determine the simple linear regression model FW(AP) with and without
intercept for the Foetal Weight dataset. Compare both solutions.

A: Table 7.13 shows the results of fitting a single linear model to the regression
FW(AP) with and without the intercept term. Note that in this last case the
magnitude of ¢ for b; is much larger than with the intercept term. This would lead
us to prefer the without-intercept model, which by the way seems to be the most
reasonable model since one expects FW and AP tending jointly to zero.

Figure 7.16 shows the observed versus the predicted cases in both situations.
The difference between fitted lines is huge. i

Table 7.13. Parameters of single linear regression FW(AP), with and without the
“intercept” term.

b Std. Err. of b t p
With Intercept by —-1996.37 188.954 -10.565  0.00
b 157.61 5.677 27.763 0.00
Without Intercept b 97.99 0.60164 162.874 0.00
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Figure 7.16. Scatter plots of the observed vs. predicted values for the single linear
regression FW(AP): a) with “intercept” term, b) without “intercept” term.

An important aspect to be taken into consideration when regressing through the
origin is that the sum of the residuals is not zero. The only constraint on the
residuals is:

inei =0. 7.56

Another problem with this model is that SSE may exceed SST! This can occur
when the data has an intercept away from the origin. Hence, the coefficient of
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determination /> may turn out to be negative. As a matter of fact, the coefficient of
determination #* has no clear meaning for the regression through the origin.

7.5 Ridge Regression

Imagine that we had the dataset shown in Figure 7.17a and that we knew to be the
result of some process with an unknown polynomial response function plus some
added zero mean and constant standard deviation normal noise. Let us further
assume that we didn’t know the order of the polynomial function; we only knew
that it didn’t exceed the 9™ order. Searching for a 9™ order polynomial fit we would
get the regression solution shown with dotted line in Figure 7.17a. The fit is quite
good (the R-square is 0.99), but do we really need a 9™ order fit? Does the 9™ order
fit, we have found for the data of Figure 7.17a, generalise for a new dataset
generated in the same conditions?

We find here again the same “training set”-“test set” issue that we have found in
Chapter 6 when dealing with data classification. It is, therefore, a good idea to get a
new dataset and try to fit the found polynomial to it. As an alternative we may also
fit a new polynomial to the new dataset and compare both solutions. Figure 7.17b
shows a possible instance of a new dataset, generated by the same process for the
same predictor values, with the respective 9" order polynomial fit. Again the fit is
quite good (R-square is 0.98) although the large downward peak at the right end
looks quite suspicious.

Table 7.14 shows the polynomial coefficients for both datasets. We note that
with the exception of the first two coefficients there is a large discrepancy of the
corresponding coefficient values in both solutions. This is an often encountered
problem in regression with over-fitted models (roughly, with higher order than the
data “justifies”): a small variation of the noise may produce a large variation of the
model parameters and, therefore, of the predicted values. In Figure 7.17 the
downward peak at the right end leads us to rightly suspect that we are in presence
of an over-fitted model and consequently try a lower order. Visual clues, however,
are more often the exception than the rule.

One way to deal with the problem of over-fitted models is to add to the error
function 7.37 an extra term that penalises the norm of the regression coefficients:

E=(y—Xb)(y—Xb)+rb’b=SSE+R. 7.57

When minimising the new error function 7.57 with the added term R = rb’b
(called a regularizer) we are constraining the regression coefficients to be as small
as possible driving the coefficients of unimportant terms towards zero. The
parameter » controls the degree of penalisation of the square norm of b and is
called the ridge factor. The new regression solution obtained by minimizing 7.57 is
known as ridge regression and leads to the following ridge parameter vector bp:

b =(XX+)" X0y = (ryx +71) " ryx - 7.58
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Figure 7.17. A set of 21 points (solid circles) with 9™ order polynomial fits (dotted
lines). In both cases the x values and the noise statistics are the same; only the y
values correspond to different noise instances.

Table 7.14. Coefficients of the polynomial fit of Figures 7.17a and 7.17b.

Polynomyal

. a a a a a a a a a
coefficients 0 1 2 3 4 5 6 7 3 9

Figure 7.17a 321 -093 031 851 -327 -927 -047 3.05 094 0.03

Figure 7.17b  3.72 -121 -6.98 20.87 1998 -30.92 -31.57 6.18 12.48 2.96

]
4t . 4 o & j*7 o
0 eq® "o _ o We_ o
Seqg .‘f ® . e 2 °
2 ~ 2 _ e
- -
, , e
s L 7
of , 0 .
/. /
2 ’ 2 /
/ /
/ /
4 / -4 /
/ /
% ’ 6 .
/ /
y [
8 » 8 /
/ /
10 / 10 /
/ /
X X
12 P . , . . . . 12 . . . . . . .
a 25 2 15 1 0.5 0 05 1 15 b 25 2 1.5 Kl 0.5 0 0.5 1 1.5

Figure 7.18. Ridge regression solutions with » = 1for the Figure 7.17 datasets.

Figure 7.18 shows the ridge regression solutions for the Figure 7.17 datasets
using a ridge factor » = 1. We see that the solutions are similar to each other and
with a smoother aspect. The downward peak of Figure 7.17 disappeared. Table
7.15 shows the respective polynomial coefficients, where we observe a much
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smaller discrepancy between both sets of coefficients as well as a decreasing
influence of higher order terms.

Table 7.15. Coefficients of the polynomial fit of Figures 7.18a and 7.18b.

Polynomyal
coefficients

Figure 7.18a 296 0.62 -043 0.79 -0.55 036 -0.17 -0.32 0.08 0.07

ap a ap as ay as [273 ar ag ag

Figure 7.18b  3.09 097 -0.53 052 -044 023 -021 -0.19 0.10 0.05

One can also penalise selected coefficients by using in 7.58 an adequate
diagonal matrix of penalties, P, instead of I, leading to:

b=(X"X+P) ' Xy. 7.59
Figure 7.19 shows the regression solution of Figure 7.17b dataset, using as P a
matrix with diagonal [1 1 1 1 10 10 1000 1000 1000 1000] and » = 1. Table 7.16

shows the computed and the true coefficients. We have now almost retrieved the
true coefficients. The idea of “over-fitted” model is now clear.

Table 7.16. Coefficients of the polynomial fit of Figure 7.19 and true coefficients.

Polynomyal

) a a a a a a a a a a
coefficients 0 1 2 3 4 5 6 7 3 9

Figure 7.19  2.990 0.704 -0.980 0.732 -0.180 0.025 -0.002 —0.001 -0.003 -0.002

True 3292 0974 -1.601 0.721 0 0 0 0 0 0

Let us now discuss how to choose the ridge factor when performing ridge
regression with 7.58 (regression with 7.59 is much less popular). We can gain
some insight into this issue by considering the very simple dataset shown in Figure
7.20, constituted by only 3 points, to which we fit a least square linear model — the
dotted line —, and a second-order model — the parabola represented with solid line —
using a ridge factor.

The regression line satisfies property iv of section 7.1.2: the sum of the residuals
is zero. In Figure 7.20a the ridge factor is zero; therefore, the parabola passes
exactly at the 3 points. This will always happen no matter where the observed
values are positioned. In other words, the second-order solution is in this case an
over-fitted solution tightly attached to the “training set” and unable to generalise to
another independent set (think of an addition of i.i.d. noise to the observed values).
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The b vector is in this case b =[0 3.5 -1.5]’, with no independent term and a
large second-order term.
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Figure 7.19. Ridge regression solution of Figure 7.17b dataset, using a diagonal
matrix of penalties (see text).

Let us now add a regularizer. As we increase the ridge factor the second-order
term decreases and the independent term increases. With » = 0.6 we get the
solution shown in Figure 7.20b with b = [0.42 0.74 —-0.16]’. We are now quite
near the regression line with a large independent term and a reduced second-order
term. The addition of i.i.d. noise with small amplitude should not change, on
average, this solution. On average we expect some compensation of the errors and
a solution that somehow passes half way of the points. In Figure 7.20c the
regularizer weighs as much as the classic least squares error. We get b = [0.38
0.53 —0.05]’ and “almost” a line passing below the “half way”. Usually, when
performing ridge regression we go as far as » = 1. If we go beyond this value the
square norm of b is driven to small values and we may get strange solutions such
as the one shown in Figure 7.20d for » = 50 corresponding to b = [0.020 0.057
0.0787’, i.e., a dominant second-order term.

Figure 7.21 shows for r € [0, 2] the SSE curve together with the curve of the
following error:

SSE(L) =Y (7 -5 ),

where the y; are, as usual, the predicted values (second-order model) and the
v, are the predicted values of the linear model, which is the preferred model in
this case. The minimum of SSE(L) (L from Linear) occurs at » = 0.6, where the
SSE curve starts to saturate.

We may, therefore choose the best » by graphical inspection of the estimated
SSE (or MSE) and the estimated coefficients as functions of r, the so-called ridge
traces. One usually selects the value of » that corresponds to the beginning of a
“stable” evolution of the MSE and coefficients.
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Besides its use in the selection of “smooth”, non-over-fitted models, ridge
regression is also used as a remedy to decrease the effects of multicollinearity as
illustrated in the following Example 7.20. In this application one must select a
ridge factor corresponding to small values of the VIF factors.

b 0 020406 08 1 12 14 16 18 2

a
25 25
a(x) g(x)

R o o @
1.5 1.5

1 ® 1 ®
0.57/ 0-57-____

X _/x
0 @——m———————————— oo

I 0 02 04 06 08 1 12 14 16 18 2 d 0 0204 06 08 1 12 14 16 18 2

Figure 7.20. Fitting a second-order model to a very simple dataset (3 points
represented by solid circles) with ridge factor: a) 0; b) 0.6; ¢) 1; d) 50.
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Figure 7.21. SSE (solid line) and SSE(L) (dotted line) curves for the ridge
regression solutions of Figure 7.20 dataset.



7.5 Ridge Regression 321

Example 7.20

Q: Determine the ridge regression solution for the foetal weight prediction model
designed in Example 7.13.

A: Table 7.17 shows the evolution with » of the MSE, coefficients and VIF for the
linear regression model of the foetal weight data using the predictors BPD, AP and
CP. The mean VIF is also included in Table 7.17.

Table 7.17. Values of MSE, coefficients, VIF and mean VIF for several values of
the ridge parameter in the multiple linear regression of the foetal weight data.

r 0 0.10 0.20 0.30 0.40 0.50 0.60
MSE 291.8 3182 3388 3558 370.5 3833 3948
BPD b 2923 269.8 260.7 2545 2489 2434 238.0

VIF 3.14 2.72 2.45 2.62 2.12 2.00 1.92
CP b 36.00 54.76 6258 66.19 67.76 68.21 68.00
VIF 3.67 3.14 2.80 2.55 3.09 1.82 2.16
AP b 124.7  108.7 97.8 89.7 83.2 78.0 73.6
VIF 2.00 1.85 1.77 1.71 1.65 1.61 1.57
Mean VIF 2.90 2.60 2.34 2.17 2.29 1.80 1.88
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Figure 7.22. a) Plot of the foetal weight regression MSE and coefficients for
several values of the ridge parameter; b) Plot of the mean VIF factor for several
values of the ridge parameter.

Figure 7.22 shows the ridge traces for the MSE and three coefficients as well as
the evolution of the Mean VIF factor. The ridge traces do not give, in this case, a
clear indication of the best » value, although the CP curve suggests a “stable”
evolution starting at around » = 0.2. We don’t show the values and the curve
corresponding to the intercept term since it is not informative. The evolution of the
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VIF and Mean VIF factors (the Mean VIF is shown in Figure 7.22b) suggest the
solutions = 0.3 and » = 0.5 as the most appropriate.

Figure 7.23 shows the predicted FW values with » = 0 and » = 0.3. Both
solutions are near each other. However, the ridge regression solution has decreased

multicollinearity effects (reduced VIF factors) with only a small increase of the
MSE. i
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Figure 7.23. Predicted versus observed FW values with » = 0 (solid circles) and
r= 0.3 (open circles).

Commands 7.6. SPSS, STATISTICA and MATLAB commands used to perform
ridge regression.

SPSS Ridge Regression Macro

Statistics; Multiple Regression;
STATISTICA Advanced; Ridge

MATLAB b=ridge(y, X, k) (k is the ridge parameter)

7.6 Logit and Probit Models

Logit and probit regression models are adequate for those situations where the
dependent variable of the regression problem is binary, i.e., it has only two
possible outcomes, e.g., “success”/“failure” or “normal”/*abnormal”. We assume
that these binary outcomes are coded as 1 and 0. The application of linear
regression models to such problems would not be satisfactory since the fitted
predicted response would ignore the restriction of binary values for the observed
data.
A simple regression model for this situation is:

Y, = g(x;)+&;, with y, €{0,1}. 7.60
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Let us consider Y; to be a Bernoulli random variable with p; = P(Y; = 1). Then, as
explained in Appendix A and presented in B.1.1, we have:

E[Y;]=p;. 7.61
On the other hand, assuming that the errors have zero mean, we have from 7.60:
E[Y,]=g(x,). 7.62

Therefore, no matter which regression model we are using, the mean response
for each predictor value represents the probability that the corresponding observed
variable is one.

In order to handle the binary valued response we apply a mapping from the
predictor domain onto the [0, 1] interval. The logit and probit regression models
are precisely popular examples of such a mapping. The Jogit model uses the so-
called /ogistic function, which is expressed as:

exp(Bo + Bixy +.oot BpaXipor)

" 1+exp(By + Bix tot LX) '

7.63

The probit model uses the normal probability distribution as mapping function:
E[Yi]:No,l(ﬂo +hx+ o+ BpXip). 7.64

Note that both mappings are examples of S-shaped functions (see Figure 7.24
and Figure A.7.b), also called sigmoidal functions. Both models are examples of
non-linear regression.

The logistic response enjoys the interesting property of simple linearization. As
a matter of fact, denoting as before the mean response by the probability p;, and if
we apply the logit transformation:

pi =ln( bi J 7.65
1-p;
we obtain:
P; =Po+Pixp++ B, %, 7.66

Since the mean binary responses can be interpreted as probabilities, a suitable
method to estimate the coefficients for the logit and probit models, is the maximum
likelihood method, explained in Appendix C, instead of the previously used least
square method. Let us see how this method is applied in the case of the simple logit
model. We start by assuming a Bernoulli random variable associated to each
observation y;; therefore, the joint distribution of the n observations is (see B.1.1):

n
prsesy) =[P A=-p)' . 7.67
i=1



324 7 Data Regression

Taking the natural logarithm of this likelihood, we obtain:

lnp(yl,...,yn)=2yiln(l_p; J+Zln(l—pi). 7.68

Using formulas 7.62, 7.63 and 7.64, the logarithm of the likelihood (log-
likelihood), which is a function of the coefficients, L(B), can be expressed as:

LB) =Y v;(Bo + fix;)— > [l +exp(By + Bix;)]. 7.69

The maximization of the L(B) function can now be carried out using one of
many numerical optimisation methods, such as the quasi-Newton method, which
iteratively improves current estimates of function maxima using estimates of its
first and second order derivatives.

The estimation of the probit model coefficients follows a similar approach. Both
models tend to yield similar solutions, although the probit model is more complex
to deal with, namely in what concerns inference procedures and multiple predictor
handling.

Example 7.21

Q: Consider the Clays’ dataset, which includes 94 samples of analysed clays
from a certain region of Portugal. The clays are categorised according to their
geological age as being pliocenic (y; = 1; 69 cases) or holocenic (y; = 0; 25 cases).
Imagine that one wishes to estimate the probability of a given clay (from that
region) to be pliocenic, based on its content in high graded grains (variable HG).
Design simple logit and probit models for that purpose. Compare both solutions.

A: Let AgeB represent the binary dependent variable. Using STATISTICA or
SPSS (see Commands 7.7), the fitted logistic and probit responses are:

AgeB = exp(~2.646 + 0.23xHG) /[1 + exp(—2.646 + 0.23xHG)];
AgeB = Ny (=1.54 +0.138xHG).

Figure 7.24 shows the fitted response for the logit model and the observed data.
A similar figure is obtained for the probit model. Also shown is the 0.5 threshold
line. Any response above this line is assigned the value 1, and below the line, the
value 0. One can, therefore, establish a training-set classification matrix for the
predicted versus the observed values, as shown in Table 7.18, which can be
obtained using either the SPSS or STATISTICA commands. Incidentally, note how
the logit and probit models afford a regression solution to classification problems
and constitute an alternative to the statistical classification methods described in
Chapter 6. i

When dealing with binary responses, we are confronted with the fact that the
regression errors can no longer be assumed normal and as having equal variance.
Therefore, the statistical tests for model evaluation, described in preceding
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sections, are no longer applicable. For the logit and probit models, some sort of the
chi-square test described in Chapter 5 is usually applied in order to assess the
goodness of fit of the model. SPSS and STATISTICA afford another type of chi-
square test based on the log-likelihood of the model. Let L, represent the log-
likelihood for the null model, i.e., where all slope parameters are zero, and L; the
log-likelihood of the fitted model. In the test used by STATISTICA, the following
quantity is computed:

L=-2(Ly— L),

which, under the null hypothesis that the null model perfectly fits the data, has a
chi-square distribution with p — 1 degrees of freedom. The test used by SPSS is
similar, using only the quantity —2 L;, which, under the null hypothesis, has a chi-
square distribution with n — p degrees of freedom.

In Example 7.21, the chi-square test is significant for both the logit and probit
models; therefore, we reject the null hypothesis that the null model fits the data
perfectly. In other words, the estimated parameters b (0.23 and 0.138 for the logit
and probit models, respectively) have a significant contribution for the fitted
models.

HG

-5 0 5 10 15 20 25 30 35 40 45

Figure 7.24. Logistic response for the clay classification problem, using variable
HG (obtained with STATISTICA). The circles represent the observed data.

Table 7.18. Classification matrix for the clay dataset, using predictor HG in the
logit or probit models.

Predicted Age =1 Predicted Age =0 Error rate
Observed Age =1 65 4 94.2
Observed Age =0 10 15 60.0
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Example 7.22

Q: Redo the previous example using forward search in the set of all original clay
features.

A: STATISTICA (Generalized Linear/Nonlinear Models) and SPSS
afford forward and backward search in the predictor space when building a logit or
probit model. Figure 7.25 shows the response function of a logit bivariate model
built with the forward search procedure and using the predictors HG and TiO,.

In order to derive the predicted Age values, one would have to determine the
cases above and below the 0.5 plane. Table 7.19 displays the corresponding
classification matrix, which shows some improvement, compared with the situation
of using the predictor HG alone. The error rates of Table 7.19, however, are
training set estimates. In order to evaluate the performance of the model one would

have to compute test set estimates using the same methods as in section 7.3.3.2.
0

Table 7.19. Classification matrix for the clay dataset, using predictors HG and
TiO, in the logit model.

Predicted Age =1 Predicted Age =0 Error rate
Observed Age =1 66 3 95.7
Observed Age =0 9 16 64.0

@nty

Figure 7.25. 3-D plot of the bivariate logit model for the Clays’ dataset. The
solid circles are the observed values.
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Commands 7.7. SPSS and STATISTICA commands used to perform logit and
probit regression.

SPSS

STATISTICA

Analyze; Regression; Binary Logistic |
Probit

Statistics; Advanced Linear/Nonlinear
Models; Nonlinear Estimation; Quick Logit
Quick Probit

Statistics; Advanced Linear/Nonlinear
Models; Generalized Linear/Nonlinear
Models; Logit | Probit

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

The Flow Rate dataset contains daily measurements of flow rates in two Portuguese
Dams, denoted AC and T. Consider the estimation of the flow rate at AC by linear
regression of the flow rate at T:

a) Estimate the regression parameters.

b)  Assess the normality of the residuals.

c) Assess the goodness of fit of the model.

d) Predict the flow rate at AC when the flow rate at T is 4 m’/s.

Redo the previous Exercise 7.1 using quadratic regression confirming a better fit with
higher R*.

Redo Example 7.3 without the intercept term, proving the goodness of fit of the model.

In Exercises 2.18 and 4.8 the correlations between HFS and a transformed variable of
10 were studied. Using polynomial regression, determine a transformed variable of 10
with higher correlation with HFS.

Using the Clays’ dataset, show that the percentage of low grading material depends
on their composition of K,O and Al,O;. Use for that purpose a stepwise regression
approach with the chemical constituents as predictor candidates. Furthermore, perform
the following analyses:

a) Assess the contribution of the predictors using appropriate inference tests.

b) Assess the goodness of fit of the model.

c) Assess the degree of multicollinearity of the predictors.

Consider the Services’ firms of the Firms’ dataset. Using stepwise search of a linear
regression model estimating the capital revenue, CAPR, of the firms with the predictor
candidates {GI, CA, NW, P, A/C, DEPR}, perform the following analyses:

a) Show that the best predictor of CAPR is the apparent productivity, P.

b) Check the goodness of fit of the model.

¢) Obtain the regression line plot with the 95% confidence interval.
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7.7

7.8

7.9

Using the Forest Fires’ dataset, show that, in the conditions of the sample, it is
possible to predict the yearly AREA of burnt forest using the number of reported fires
as predictor, with an 72 over 80%. Also, perform the following analyses:

a) Use ridge regression in order to obtain better parameter estimates.

b) Cross-validate the obtained model using a partition of even/odd years.

The search of a prediction model for the foetal weight in section 7.3.3.3 contemplated a
third order model. Perform a stepwise search contemplating the interaction effects
X1, = X\ X,, X3 = XX, Xo3 = XoX5, and show that these interactions have no valid
contribution.

The following Shepard’s formula is sometimes used to estimate the foetal weight:
log;oFW = 1.2508 + 0.166BPD + 0.046AP — 0.002646(BPD)(AP). Try to obtain this
formula using the Foetal Weight dataset and linear regression.

7.10 Variable X,, was found to be a good predictor candidate in the forward search process

in section 7.3.3.3. Study in detail the model with predictors Xj, X5, X3, X5, assessing
namely: the multicollinearity; the goodness of fit; and the detection of outliers.

7.11 Consider the Wines’ dataset. Design a classifier for the white vs. red wines using

features ASP, GLU and PHE and logistic regression. Check if a better subset of
features can be found.

7.12 In Example 7.16, the second order regression of the SONAE share values (Stock

Exchange dataset) was studied. Determine multiple linear regression solutions for the

SONAE variable using the other variables of the dataset as predictors and forward and

backward search methods. Perform the following analyses:

a) Compare the goodness of fit of the forward and backward search solutions.

b) For the best solution found in a), assess the multicollinearity and the contribution
of the various predictors and determine an improved model. Test this model using
a cross-validation scheme and identify the outliers.

7.13 Determine a multiple linear regression solution that will allow forecasting the

temperature one day ahead in the Weather dataset (Data 1 worksheet). Use today’s
temperature as one of the predictors and evaluate the model.

7.14 Determine and evaluate a logit model for the classification of the CTG dataset in

normal vs. non-normal cases using forward and backward searches in the predictor set
{LB, AC, UC, ASTV, MSTV, ALTV, MLTV, DL}. Note that variables AC, UC and
DL must be converted into time rate (e.g. per minute) variables; for that purpose
compute the signal duration based on the start and end instants given in the CTG
dataset.



8 Data Structure Analysis

In the previous chapters, several methods of data classification and regression were
presented. Reference was made to the dimensionality ratio problem, which led us
to describe and use variable selection techniques. The problem with these
techniques is that they cannot detect hidden variables in the data, responsible for
interesting data variability. In the present chapter we describe techniques that allow
us to analyse the data structure with the dual objective of dimensional reduction
and improved data interpretation.

8.1 Principal Components

In order to illustrate the contribution of data variables to the data variability, let us
inspect Figure 8.1 where three datasets with a bivariate normal distribution are
shown.

In Figure 8.1a, variables X and Y are uncorrelated and have the same variance,
o’=1. The circle is the equal density curve for a 2o deviation from the mean. Any
linear combination of X and Y corresponds, in this case, to a radial direction
exhibiting the same variance. Thus, in this situation, X and Y are as good in
describing the data as any other orthogonal pair of variables.

6 6 6
y y .
54 54 5 ,.
o
»
4 44 4 >
.
. .. 52
] nl .o
! %
24 2 4 H 2 (Y
i o o
1 1 i 1
H 1]
X X * x
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a0 1 2 3 4 5 6 Ho 1 2 3 4 5 6 ¢0 1 2 3 4 5 6

Figure 8.1. Bivariate, normal distributed datasets showing the standard deviations
along X and Y with dark grey bars: a) Equal standard deviations (1); b) Very small
standard deviation along Y (0.15); and c) Correlated variables of equal standard
deviations (1.31) with a light-grey bar showing the standard deviation of the main
principal component (3.42).
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In Figure 8.1b, X and Y are uncorrelated but have different variances, namely a
very small variance along 7, 0')% = 0.0225. The importance of Y in describing the
data is tenuous. In the limit, with o-;% — 0, Y would be discarded as an interesting
variable and the equal density ellipsis would converge to a line segment.

In Figure 8.1c, X and Y are correlated (o = 0.99) and have the same variance,
o>=1.72. In this case, as shown in the figure, any equal density ellipsis leans along
the regression line at 45°. Based only on the variances of X and Y, we might be led
to the idea that two variables are needed in order to explain the variability of the
data. However, if we choose an orthogonal co-ordinate system with one axis along
the regression line, we immediately see that we have a situation similar to Figure
8.1b, that is, only one hidden variable (absent in the original data), say Z, with high
standard deviation (3.42) is needed (light-grey bar in Figure 8.1c). The other
orthogonal variable is responsible for only a residual standard deviation (0.02). A
variable that maximises a data variance is called a principal component of the data.
Using only one variable, Z, instead of the two variables X and Y, amounts to a
dimensional reduction of the data.

Consider a multivariate dataset, with x = [X; X; ... X;]’, and let S denote the
sample covariance matrix of the data (point estimate of the population covariance
), where each element s; is the covariance between variables X; and X, estimated
as follows for n cases (see A.8.2):

1

n—1

sy =

Z(xki —X)(xy —X;). 8.1
k=1

Notice that covariances are symmetric, s; = s;;, and that s;; is the usual estimate
of the variance of X, si2 . The covariance is related to the correlation, estimated as:

Z(xki_)_ci)(xkj_)?j) )
r, =%l = with r,e[-1,1]. 8.2

v (n_l)sisj - SiS !

Therefore, the correlation can be interpreted as a standardised covariance.

In order to obtain the principal components of a dataset, we search uncorrelated
linear combinations of the original variables whose variances are as large as
possible. The first principal component corresponds to the direction of maximum
variance; the second principal component corresponds to an uncorrelated direction
that maximises the remaining variance, and so on. Let us shift the co-ordinate
system in order to bring the sample mean to the origin, x, = x —X. The
maximisation process needed to determine the ith principal component as a linear
combination of x, co-ordinates, z; = u’(x —X), is expressed by the following
equation (for details see e.g. Fukunaga K, 1990, or Jolliffe IT, 2002):

S-ADu=0, 8.3
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where I is the dxd unit matrix, 4; is a scalar and u; is a dx1 column vector of the
linear combination coefficients.

In order to obtain non-trivial solutions of equation 8.3, one needs to solve the
determinant equation |[S — A4 I| = 0. There are d scalar solutions 4; of this equation
called the eigenvalues or characteristic values of S, which represent the variances
for the new variables z;. After solving the homogeneous system of equations for the
different eigenvalues, one obtains a family of eigenvectors or characteristic
vectors w;, such that V i, j u’w; = 0 (orthogonal system of uncorrelated variables).
Usually, one selects from the family of eigenvectors those that have unit length,
u’u; =1, Vi (orthonormal system).

We will now illustrate the process of the computation of eigenvalues and
eigenvectors for the covariance matrix of Figure 8.1c:

1.72 1.7
S= .
1.7 1.72
The eigenvalues are computed as:

1.72-4 1.7

|S—A1|=
1.7  1.72-2

‘:O = 1.72-1=%17 = 4,=3.42,4, =0.02.

For A, the homogeneous system of equations is:

=17 L7 |luy | 0
1.7 =17 \|u, |
from where we derive the unit length eigenvector: u; = [0.7071 0.7071] =[1/ V2
/2 ]’. For A, in the same way we derive the unit length eigenvector orthogonal
to u;: up, = [-0.7071 0.7071] = [—1/\/5 l/x/E]’. Thus, the principal components
of the co-ordinates are Z; = (X; + X3)/ \/5 and Z, = (-x; + Xp)/ ﬁ with variances
3.42 and 0.02, respectively.
The unit length eigenvectors make up the column vectors of an orthonormal

matrix U (i.e., U = U’) used to determine the co-ordinates of an observation x in
the new uncorrelated system of the principal components:

z=U(x— X). 8.4

These co-ordinates in the principal component space are often called “z-scores”.
In order to avoid confusion with the previous meaning of z-scores — standardised
data with zero mean and unit variance — we will use the term pc-scores instead.

The extraction of principal components is basically a variance maximising
rotation of the original variable space. Each principal component corresponds to a
certain amount of variance of the whole dataset. For instance, in the example
portrayed in Figure 8.1c, the first principal component represents A,/(4,+ 4,) = 99%
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of the total variance. In short, u; alone contains practically all the information
about the data; the remaining u, is residual “noise”.
Let A represent the diagonal matrix of the eigenvalues:

A 0 ... 0
0 A4, .. 0

A= . 8.5
0 0 ... A

The following properties are verified:

I. SU=AandS=UAU". 8.6

2. The determinant of the covariance matrix, [S|, is:
IS|=A|=4A... . 8.7

IS | is called the generalised variance and its square root is proportional to
the area or volume of the data cluster since it is the product of the ellipsoid
axes.

3. The traces of S and A are equal to the sum of the variances of the variables:
tr(S) = tr(A) = s% +53 +...+53. 8.8

Based on this property, we measure the contribution of a variable X; by
e=N /X A= M/(si +53 +...+525), as we did previously.

The contribution of each original variable X; to each principal component Z; can
be assessed by means of the corresponding sample correlation between X; and Z;,
often called the loading of X;:

rlj:(uﬂ\//i_l-)/sj. 8.9

Function pccorr implemented in MATLAB and R and supplied in Tools (see
Commands 8.1) allows computing the r;; correlations.

Example 8.1

Q: Consider the best class of the Cork Stoppers’ dataset (first 50 cases).
Compute the covariance matrix and their eigenvalues and engeivectors using the
original variables ART and PRT. Determine the algebraic expression and
contribution of the main principal component, its correlation with the original
variables as well as the new co-ordinates of the first cork-stopper.

A: We use MATLAB to perform the necessary computations (see Commands 8.1).
Let cork represent the data matrix with all 10 features. We then use:



8.1 Principal Components 333

Extract 1lst class ART and PRT from cork
[cork(1:50,1) cork(1:50,3)1;

cov (x) ; covariance matrix
,lambda,e] = pcacov(S); principal components
= pccorr (x) ; correlations

» %

» X

» S
[u

r

>

o° 0P o°

>

The results S, u, lambda, e and r are shown in Table 8.1. The scatter plots of
the data using the original variables and the principal components are shown in
Figure 8.2. The pc-scores can be obtained with:

» xc = x-ones(50,1) *mean (x) ;

» z = (u'*xc’)’;

We see that the first principal component with algebraic expression,
—0.3501xART-0.9367=PRT, highly correlated with the original variables, explains
almost 99% of the total variance. The first cork-stopper, represented by [81 2507
in the ART-PRT plane, maps into:

-0.3501 -0.9367| 81-137 | |127.3
-0.9367 0.3501 ||250-365| | 122 |
The eigenvector components are the cosines of the angles subtended by the

principal components in the ART-PRT plane. In Figure 8.2a, this result can only be
visually appreciated after giving equal scales to the axes. 0

Table 8.1. Eigenvectors and eigenvalues obtained with MATLAB for the first
class of cork-stoppers (variables ART and PRT).

. . . Explained  Correlations
Covariance Eigenvectors Eigenvalues P

variance for z;

S (x107 u U A (x107h e (%) ry
0.1849 0.4482 -0.3501 -0.9367 1.3842 98.76 —-0.9579
0.4482 1.2168 -0.9367  0.3501 0.0174 1.24 —-0.9991

An interesting application of principal components is in statistical quality
control. The possibility afforded by principal components of having a much-
reduced set of variables explaining the whole data variability is an important
advantage. Instead of controlling several variables, with the same type of Error
Type I degradation as explained in 4.5.1, sometimes only one variable needs to be
controlled.

Furthermore, principal components afford an easy computation of the following
Hotteling’s T* measure of variability:
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T2 =(x-xS'(x-X)=22A""z. 8.10
Critical values of T* are computed in terms of the F distribution as follows:

dn—1
dz,n,l—a = ( ) dn—dl-a* 8.11
n—d
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Figure 8.2. Scatter plots obtained with MATLAB of the cork-stopper data (first
class) represented in the planes: a) ART-PRT with superimposed principal
components; b) Principal components. The first cork is shown with a solid circle.
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Figure 8.3. T7 chart for the first class of the cork-stopper data. Case #20 is out of
control.

Example 8.2

Q: Determine the Hotteling’s 7 control chart for the previous Example 8.1 and find
the corks that are “out of control” at a 95% confidence level.
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A: The Hotteling’s 7> values can be determined with MATLAB princomp
function. The 95% critical value for F, 45 is 3.19; hence, the 95% critical value for
the Hotteling’s T2 using formula 8.11, is computed as 6.51. Figure 8.3 shows the
corresponding control chart. Cork #20 is clearly “out of control”, i.e., it should be

reclassified. Corks #34 and #39 are borderline cases.
1]

Commands 8.1. SPSS, STATISTICA, MATLAB and R commands used to
perform principal component and factor analyses.

SPSS Analyze; Data Reduction; Factor
STATISTICA Statlstlcs; Multivariate Exploratory
Techniques; Factor Analysis
[u,1l]=eig(C); I[pc, lat, expl] = pcacov(C)
[pc, score, lat, tsgl= princomp (x)
MATLAB residuals = pcares (x,ndim)
[ndim,p,chisqg] = barttest (x,alpha)
r = pccorr(x) ; f=velcorr(x,icov)
eigen(C) ; prcomp(x) ; princomp (x)
R screeplot (p)
factanal (x, factors, scores, rotation)
pccorr (x) ; velcorr(x,icov)

SPSS and STATISTICA commands are of straightforward use. SPSS and
STATISTICA always use the correlation matrix instead of the covariance matrix
for computing the principal components. Figure 8.4 shows STATISTICA
specification window for the selection of the two most important components with
eigenvalues above 1. If one wishes to obtain all principal components one should
set the Min. eigenvalue to 0 and the Max. no. of factors to the data
dimension.

The MATLAB eig function returns the eigenvectors, u, and eigenvalues, 1, of
a covariance matrix C. The pcacov function determines the principal components
of a covariance matrix C, which are returned in pc. The return vectors lat and
expl store the variances and contributions of the principal components to the total
variance, respectively. The princomp function returns the principal components
and eigenvalues of a data matrix x in pc and lat, respectively. The pc-scores and
Hotteling’s T 2 are returned in score and tsq, respectively. The pcares function
returns the residuals obtained by retaining the first ndim principal components of
x. The barttest function returns the number of dimensions to retain together
with the Bartlett’s test probabilities, p, and ;(2 scores, chisq (see section 8.2).

The MATLAB implemented pccorr function computes the partial correlations
between the original variables and the principal components of a data matrix x.
The velcorr function computes the Velicer partial correlations (see section 8.2)
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using matrix x either as data matrix (icov # 0) or as covariance matrix
(icov =0).

The R eigen function behaves as the MATLAB eig function. For instance,
the eigenvalues and eigenvectors of Table 8.1 can be obtained with
eigen(cov (cbind (ART[1:50],PRT[1:50]))). The prcomp function
computes among other things the principal components (curiously, called
“rotation” or “loadings” in R) and their standard deviations (square roots of the
eigenvalues). For the dataset of Example 8.1 one would use:

> p<-prcomp (cbind (ART[1:50],PRT[1:50]1))
> P

Standard deviations:

[1] 117.65407 13.18348

Rotation:

PC1 PC2
[1,]1 0.3500541 0.9367295
[2,] 0.9367295 -0.3500541

We thus obtain the same eigenvectors (PC1 and PC2) as in Table 8.1 (with an
unimportant change of sign). The standard deviations are the square roots of the
eigenvalues listed in Table 8.1. With the R princomp function, besides the
principal components and their standard deviations, one can also obtain the data
projections onto the eigenvectors (the so-called scores in R).

A scree plot (see section 8.2) can be obtained in R with the screeplot
function using as argument an object returned by the princomp function. The R
factanal function performs factor analysis (see section 8.4) of the data matrix x
returning the number of factors specified by factors with the specified
rotation method. Bartlett’s test scores can be specified with scores.

The R implemented functions pccorr and velcorr behave in the same way
as their MATLAB counterparts.

]

Quick  Advanced | Desciptives |

e 1 method Max. no. of factors: |2_
@ Principal components o I_
Principal factor analysis: e soe: 1000

‘s Communalties=multiple B2 - [terated communglities
" Iterated commun. (MINRES) '
€ Maximum likelihood factors
€ Centroid method

" Principal axis method

Figure 8.4. Partial view of STATISTICA specification window for principal
component analysis with standardised data.
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8.2 Dimensional Reduction

When using principal component analysis for dimensional reduction, one must
decide how many components (and corresponding variances) to retain. There are
several criteria published in the literature to consider. The following are commonly
used:

1. Select the principal components that explain a certain percentage (say, 95%)
of tr(A). This is a very simplistic criterion that is not recommended.

2. The Guttman-Kaiser criterion discards eigenvalues below the average
tr(A)/d (below 1 for standardised data), which amounts to retaining the
components responsible for the variance contributed by one variable if the
total variance was equally distributed.

3. The so-called scree test uses a plot of the eigenvalues (scree plot),
discarding those starting where the plot levels off.

4. A more elaborate criterion is based on the so-called broken stick model. This
criterion discards the eigenvalues whose proportion of explained variance is
smaller than what should be the expected length /, of the kth longest
segment of a unit length stick randomly broken into d segments:

! —lil 8.12
k dl_:kl" .

A table of /; values is given in Tools.x1s.

5. The Bartlett’s test method is based on the assessment of whether or not the
null hypothesis that the last p — ¢ eigenvalues are equal, 4,11 = A2 = ...
= Ap, can be accepted. The mathematics of this test are intricate (see Jolliffe
IT, 2002, for a detailed discussion) and its results often unreliable. We pay
no further attention to this procedure.

6. The Velicer partial correlation procedure uses the partial correlations
among the original variables when one or more principal components are
removed. Let S, represent the remaining covariance matrix when the
covariance of the first & principal components is removed:

k
Sy =S-> 4w’ k=0,1...d. 8.13
i1

Using the diagonal matrix D, of S, containing the variances, we compute
the correlation matrix:

R, =D,;"?s,D;"?. 8.14

Finally, with the elements r; of R, we compute the following quantity:
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fi =2 2 riw ld@-n]. 8.15

i j#i

The f; are the sum of squares of the partial correlations when the first £
principal components are removed. As long as f; decreases, the partial
covariances decline faster than the residual variances. Usually, after an
initial decrease, f; will start to increase, reflecting the fact that with the
removal of main principal components, we are obtaining increasingly
correlated “noise”. The k value corresponding to the first f; minimum is then
used as the stopping rule.

The Velicer procedure can be applied using the velcorr function
implemented in MATLAB and R and available in Tools (see Appendix F).

Example 8.3

Q: Using all the previously described criteria, determine the number of principal
components for the Cork Stoppers’ dataset (150 cases, 10 variables) that
should be retained and assess their contribution.

A: Table 8.2 shows the computed eigenvalues of the cork-stopper dataset. Figure
8.5a shows the scree plot and Figure 8.5b shows the evolution of Velicer’s f;.
Finally, Table 8.3 compares the number of retained principal components for the
several criteria and the respective percentage of explained variance. The highly
recommended Velicer’s procedure indicates 3 as the appropriate number of
principal components to retain.

0

Table 8.2. Eigenvalues of the cork-stopper dataset computed with MATLAB (a
scale factor of 10" has been removed).

/11 ﬂz 13 /14 }“5
1.1342 0.1453 0.0278 0.0202 0.0137
As % As Ao Ao
0.0087 0.0025 0.0016 0.0006 0.0001

Table 8.3. Comparison of dimensional reduction criteria (Example 8.3).

0, -
Criterion 9? o G““Tnan Scree test Broken stick Velicer
variance Kaiser
k 3 1 3 1 3
Explained 96.5% 83.7% 96.5% 83.7% 96.5%

variance
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Figure 8.5. Assessing the dimensional reduction to be performed in the cork
stopper dataset with: a) Scree plot, b) Velicer partial correlation plot. Both plots
obtained with MATLAB.

8.3 Principal Components of Correlation Matrices

Sometimes, instead of computing the principal components out of the original data,
they are computed out of the standardised data, i.e., using the z-scores of the data.
This is the procedure followed by SPSS and STATISTICA, which is related to the
factor analysis approach described in the following section. Using the standardised
data has the consequence of eigenvalues and eigenvectors computed from the
correlation matrix instead of the covariance matrix (see formula 8.2). The R
function princomp has a logical argument, cor, whose value controls the use of
the data correlation or covariance matrix. The results obtained are, in general,
different.

Note that since all diagonal elements of a correlation matrix are 1, we have
tr(A) = d. Thus, the Guttman-Kaiser criterion amounts, in this case, to selecting the
eigenvalues which are greater than 1.

Using standardised data has several benefits, namely imposing equal
contribution of the original variables when they have different units or
heterogeneous variances.

Example 8.4

Q: Compare the bivariate principal component analysis of the Rocks dataset (134
cases, 18 variables), using covariance and correlation matrices.

A: Table 8.4 shows the eigenvectors and correlations (called factor loadings in
STATISTICA) computed with the original data and the standardised data. The first
ones, u; and u,, are computed with MATLAB or R using the covariance matrix;
the second ones, f; and f,, are computed with STATISTICA using the correlation
matrix. Figure 8.6 shows the corresponding pc scores (called factor scores in
STATISTICA), that is the data projections onto the principal components.
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We see that by using the covariance matrix, only one eigenvector has dominant
correlations with the original variables, namely the “compression breaking load”
variables RMCS and RCSG. These variables are precisely the ones with highest
variance. Note also the dominant values of the first two elements of u. When using
the correlation matrix, the f elements are more balanced and express the
contribution of several original features: f; highly correlated with chemical
features, and f, highly correlated with density (MVAP), porosity (PAOA), and
water absorption (AAPN).

The scatter plot of Figure 8.6a shows that the pc scores obtained with the
covariance matrix are unable to discriminate the several groups of rocks; u; only
discriminates the rock classes between high and low “compression breaking load”
groups. On the other hand, the scatter plot in Figure 8.6b shows that the pc scores
obtained with the correlation matrix discriminate the rock classes, both in terms of
chemical composition (f; basically discriminates Ca vs. SiO,-rich rocks) and of

density-porosity-water absorption features (f;).
0

Table 8.4. Eigenvectors of the rock dataset computed from the covariance matrix
(u; and uw,) and from the correlation matrix (f; and f,) with the respective
correlations. Correlations above 0.7 are shown in bold.

u up r Y] f) f, r r

RMCS -0.695 0.487 -0.983 0.136 -0.079 0.018 -0.569 0.057
RCSG -0.714 -0.459 -0.984 -0.126 -0.069 0.034 -0.499 0.105
RMFX -0.013 -0.489 -0.078 -0.606 -0.033 0.053 -0.237 0.163
MVAP -0.015 -0.556 -0.089 -0.664 -0.034 0.271 -0.247 0.839
AAPN 0.000 0.003 0.251 0.399 0.046 -0.293 0.331 -0.905
PAOA 0.001 0.008 0.241 0.400 0.044 -0.294 0.318 -0.909
CDLT 0.001 -0.005 0.240 -0.192 0.001 0.177 0.005 0.547
RDES 0.002 -0.002 0.523 -0.116 0.070 -0.101 0.503 -0.313
RCHQ -0.002 -0.028 -0.060 -0.200 -0.095 0.042 -0.689 0.131

Si0, -0.025 0.046 -0.455 0.169 -0.129 -0.074 -0.933 -0.229
Al,O3 -0.004 0.001 -0.329 0.016 -0.129 -0.069 -0.932 -0.215
Fe,0; -0.001 -0.006 -0.296 -0.282 -0.111 -0.028 -0.798 -0.087
MnO -0.000 -0.000 -0.252 -0.039 -0.090 -0.011 -0.647 -0.034
CaO 0.020 -0.025 0.464 -0.113 0.132 0.073 0.955 0.225
MgO -0.003 -0.007 -0.393 -0.226 -0.024 0.025 -0.175 0.078
Na,O -0.001 0.004 -0.428 0.236 -0.119 -0.071 -0.856 -0.220
K,0 -0.001 0.005 -0.320 0.267 -0.117 -0.084 -0.845 -0.260

TiO, -0.000 -0.000 -0.152 -0.097 -0.088 -0.026 -0.633 -0.079
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Figure 8.6. The rock dataset analysed with principal components computed from
the covariance matrix (a) and from the correlation matrix (b).

Example 8.5

Q: Consider the three classes of the Cork Stoppers’ dataset (150 cases).
Evaluate the training set error for linear discriminant classifiers using the 10
original features and one or two principal components of the data correlation
matrix.

A: The classification matrices, using the linear discriminant procedure described in
Chapter 6, are shown in Table 8.5. We see that the dimensional reduction didn’t
degrade the training set error significantly. The first principal component, F1, alone
corresponds to more than 86% of the total variance. Adding the principal
component F2, 94.5% of the total data variance is explained. Principal component
F1 has a distribution that is well approximated by the normal distribution (Shapiro-Wilk
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p =0.69, 0.67 and 0.33 for class 1, 2 and 3, respectively). For the principal
component F2, the approximation is worse for the first class (Shapiro-Wilk p =
0.09, 0.95 and 0.40 for class 1, 2 and 3, respectively).

A classifier with only one or two features has, of course, a better dimensionality
ratio and is capable of better generalisation. It is left as an exercise to compare the

cross-validation results for the three feature sets.
1]

Table 8.5. Classification matrices for the cork stoppers dataset. Correct
classifications are along the rows (50 cases per class).

10 Features F,and F, F,

] (%) 3 ] (%) 3 Wy (%) 3
w45 5 0 46 4 0 47 3 0
oy 7 42 1 11 39 0 10 40 0
w; 0 4 46 0 5 45 0 5 45
Pe  10% 16% 6% 8% 22% 10% 6% 20% 10%

Example 8.6

Q: Compute the main principal components for the two first classes of the Cork
Stoppers’ dataset, using standardised data. Select the principal components
using the Guttman-Kaiser criterion. Determine the respective correlations with
each original variable and interpret the results.

A: Figure 8.7a shows the eigenvalues computed with STATISTICA. The first two
eigenvalues comply with the Guttman-Kaiser criterion (take note that the sum of
all eigenvalues is 10).

The factor loadings of the two main principal components are shown in Figure
8.8a. Significant values appear in bold. A plot of these factor loadings is shown in
Figure 8.8b. It is clearly visible that the first principal component, F;, is highly
correlated with all cork-stopper features except N and the opposite happens with
F,. These observations suggest, therefore, that the description (or classification) of
the two cork-stopper classes can be achieved either with F; and F,, or with feature
N and one of the other features, namely the highest correlated feature PRTG (total
perimeter of the big defects).

Furthermore, we see that the only significant correlation relative to F, is smaller
than any of the significant correlations relative to F,. Thus, F; or PRTG alone
describes most of the data, as suggested by the scatter plot of Figure 8.7b (pc
scores). 0

When analysing grouped data with principal components, as we did in the
previous Examples 8.4 and 8.6, one often wants to determine the most important
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variables as well as the data groups that best reflect the behaviour of those
variables.

Eigervalue | Cumulative ' . on
Value % .
1 7672920 767231 p . e e
2 1235721 890804 | A PR
3 0725524 96.3356 St 8T e
4 0234507 908007 of mes o Tt e o SE o
5 0086185  99.5426 LW e e
B 0028511 998277 . ° e
7 0008689 999144 T 8%
g 0006342 999780 %
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a 10 0001035 1DDDDDE b -28 -20 15 -1.0 -05 00 05 10 15 20

Figure 8.7. Dimensionality reduction of the first two classes of cork-stoppers:
a) Eigenvalues; b) Principal component scatter plot (compare with Figure 6.5).
(Both graphs obtained with STATISTICA.)

Consider the means of variable F1 in Example 8.6: 0.71 for class 1 and —0.71
for class 2 (see Figure 8.7b). As expected, given the translation y = x — X, the
means are symmetrically located around F1 = 0. Moreover, by visual inspection,
we see that the class 1 cases cluster on a high F1 region and class 2 cases cluster on
a low F1 region. Notice that since the scatter plot 8.7b uses the projections of the
standardised data onto the F1-F2 plane, the cases tend to cluster around the (1, 1)
and (-1, —1) points in this plane.

Factor | Factor o8 N
Variable 1 2 F2x *
N 0692842 0.711276) °° ont |
ART 0.928675 0299179 .
PRT 0867473 0.473586) ART

ARM 0.814819| -0.365608
PRM 0.830937| -0.304390
ARTG 0.945471| -0.080143] 4 *’”ﬁ:'fa

02

NG 0943425 (0.011087

PRTG | 0969659 -0.045857| -2

RAAR | 0.843413 0297383 RAN RAMBRM
RAN 0.887361 -0.304314] 04 .

Expl.Var | 7.672320] 1.235721 e
a[PpTotl | 0767232 0123572y, °°+ os o083 o8 08  0m 07 06

Figure 8.8. Factor loadings table (a) with significant correlations in bold and graph
(b) for the first two classes of cork-stoppers, obtained with STATISTICA.
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In order to analyse this issue in further detail, let us consider the simple dataset
shown in Figure 8.9a, consisting of normally distributed bivariate data generated
with (true) mean p, =[3 3]’ and the following (true) covariance matrix:

53
x, = .

Figure 8.9b shows this dataset after standardisation (subtraction of the mean and
division by the standard deviation) with the new covariance matrix:

5 1 09478
10.9478 1|

The standardised data has unit variance along all variables with the new
covariance: oy, = 0> = 3/( V542 ) =0.9487. The eigenvalues and eigenvectors of £
(computed with MATLAB function eig), are:

{1.9487 0 } —1/2 1/42
A= ; U= .
0 00513 /72 1/42

Note that tr(A) = 2, the total variance, and that the first principal component
explains 97% of the total variance.

Figure 8.9c shows the standardised data projected onto the new system of
variables F1 and F2.

Let us now consider a group of data with mean m, =[4 4]’ and a one-standard-
deviation boundary corresponding to the ellipsis shown in Figure 8.9a, with s,
=+/5/2 and Sy =./2 /2, respectively. The mean vector maps onto m = m, — i, =
[1 1]°’; given the values of the standard deviation, the ellipsis maps onto a circle of

radius 0.5 (Figure 8.9b). This same group of data is shown in the F1-F2 plane
(Figure 8.9¢) with mean:

S it 5k

Figure 8.9d shows the correlations of the principal components with the original
variables, computed with formula 8.9:

rpx =rpy =0987,  rpy == rpy =0.16.

These correlations always lie inside a unit-radius circle. Equal magnitude
correlations occur when the original variables are perfectly correlated with
A1 = A = 1. The correlations are then ‘rFl X‘ :‘rFIY‘:l/ J2 (apply formula 8.9).



8.3 Principal Components of Correlation Matrices 345

In the case of Figure 8.9d, we see that F1 is highly correlated with the original
variables, whereas F2 is weakly correlated. At the same time, a data group lying in
the “high region” of X and Y tends to cluster around the F1 = 1 value after
projection of the standardised data. We may superimpose these two different
graphs — the pc scores graph and the correlation graph — in order to facilitate the
interpretation of the data groups that exhibit some degree of correspondence with
high values of the variables involved.

c -

Figure 8.9. Principal component transformation of a bivariate dataset: a) original
data with a group delimited by an ellipsis; b) Standardised data with the same
group (delimited by a circle); ¢) Standardised data projection onto the F1-F2 plane;
d) Plot of the correlations (circles) of the original variables with F1 and F2.

Example 8.7

Q: Consider the Rocks ’ dataset, a sample of 134 rocks classified into five classes
(1="granite”, 2="“diorite”, 3="marble”, 4="slate”, 5="“limestone”) and characterised
by 18 features (see Appendix E). Use the two main principal components of the
data in order to interpret it.
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A: Only the first four eigenvalues satisfy the Kaiser criterion. The first two
eigenvalues are responsible for about 58% of the total variance; therefore, when
discarding the remaining eigenvalues, we are discarding a substantial amount of
the information from the dataset (see Exercise 8.12).

We can conveniently interpret the data by using a graphic display of the
standardised data projected onto the plane of the first two principal components,
say F1 and F2, superimposed over the correlation plot. In STATISTICA, this
overlaid graphic display can be obtained by first creating a datasheet with the
projections (“factor scores”) and the correlations (“factor loadings”). For this
purpose, we first extract the scrollsheet of the “factor scores” (click with the right
button of the mouse over the corresponding “factor scores” sheet in the workbook
and select Extract as stand alone window). Then, secondly, we join
the factor loadings in the same F1 and F2 columns and create a grouping variable
that labels the data classes and the original variables. Finally, a scatter plot with all
the information, as shown in Figure 8.10, is obtained.

By visual inspection of Figure 8.10, we see that F1 has high correlations with
chemical features, i.e., reflects the chemical composition of the rocks. We see,
namely, that F1 discriminates between the silica-rich rocks such as granites and
diorites from the lime-rich rocks such as marbles and limestones. On the other
hand, F2 reflects physical properties of the rocks, such as density (MVAP),
porosity (PAOA) and water absorption (AAPN). F2 discriminates dense and
compact rocks (e.g. marbles) from less dense and more porous counterparts (e.g.

some limestones). 1]
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Figure 8.10. Partial view of the standardised rock dataset projected onto the FI-F2
principal component plane, overlaid with the correlation plot.
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8.4 Factor Analysis

Let us again consider equation 8.4 which yields the pc-scores of the data using the
dxd matrix U of the eigenvectors:

z=U(x - X). 8.16

Reversely, with this equation we can obtain the original data from their principal
components:

x=x + Uz 8.17

If we discard some principal components, using a reduced dxk matrix Uy, we no
longer obtain the original data, but an estimate x :

X =X +Uka. 8.18

Using 8.17 and 8.18, we can express the original data in terms of the estimation
errore =x —x , as:

X:i+Uka+(X—f():i+Uka+e. 8.19

When all principal components are used, the covariance matrix satisfies
S =U A U’ (see formula 8.6 in the properties mentioned in section 8.1). Using the
reduced eigenvector matrix Uy, and taking 8.19 into account, we can express S in
terms of an approximate covariance matrix S; and an error matrix E:

S=U,AU’+E=S,+E. 8.20

In factor analysis, the retained principal components are called common factors.
Their correlations with the original variables are called factor loadings. Each
common factor w; is responsible by a communality, hiz, which is the variability
associated with the original ith variable:

k
hl =% Au;. 8.21
j=1

The communalities are the diagonal elements of S; and make up a diagonal
communality matrix H.

Example 8.8

Q: Compute the approximate covariance, communality and error matrices for
Example 8.1.

A: Using MATLARB to carry out the computations, we obtain:
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0.1697 0.4539 0.1697 0
S, =U,AU /= ; H-= ;

0.4539 1.2145 0 12145
E_g_g |01849 04482] [01697 04539] [0.0152 -00057
B 17104482 1.2168| [0.4539 1.2145| |-0.0057 0.0023 |’

0

In the previous example, we can appreciate that the matrix of the diagonal
elements of E is the difference between the matrix of the diagonal elements of S
and H:

di IS) 0.1894 0
1agona =
g 0 12168
. 0.1697 0
diagonal(H) =
0 1.2145
0.0152 0

diagonal(E) = { 0 0.0023

} = diagonal(S) — diagonal(H)

In factor analysis, one searches for a solution for the equation 8.20, such that E
is a diagonal matrix, i.e., one tries to obtain wuncorrelated errors from the
component estimation process. In this case, representing by D the matrix of the
diagonal elements of S, we have:

S=S,+(D-H). 8.22

In order to cope with different units of the original variables, it is customary to
carry out the factor analysis on correlation matrices:

R=R,+(I- H). 8.23

There are several algorithms for finding factor analysis solutions which
basically improve current estimates of communalities and factors according to a
specific criterion (for details see e.g. Jackson JE, 1991). One such algorithm,
known as principal factor analysis, starts with an initial estimate of the
communalities, e.g. as the multiple R square of the respective variable with all
other variables (see formula 7.10). It uses a principal component strategy in order
to iteratively obtain improved estimates of communalities and factors.

In principal component analysis, the principal components are directly
computed from the data. In factor analysis, the common factors are estimates of
unobservable variables, called latent variables, which model the data in such a way
that the remaining errors are uncorrelated. Equation 8.19 then expresses the
observations X in terms of the latent variables z, and uncorrelated errors e. The true
values of the observations x, before any error has been added, are values of the so-
called manifest variables.
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The main benefits of factor analysis when compared with principal component
analysis are the non-correlation of the residuals and the invariance of the solutions
with respect to scale change.

After finding a factor analysis solution, it is still possible to perform a new
transformation that rotates the factors in order to achieve special effects as, for
example, to align the factors with maximum variability directions (varimax
procedure).

Example 8.9

Q: Redo Example 8.8 using principal factor analysis with the communalities
computed by the multiple R square method.

A: The correlation matrix is:

1 0.945
R= .
0.945 1

Starting with communalities = multiple R? square = 0.893, STATISTICA
(Communalities = multiple R’)converges to solution:

0919 0 1.838 0
H= ; A= .
0 0.919 0 0.162

For unit length eigenvectors, we have:

R U AU V2 ]88 0 Tz 142 _[0919 0919
R ol o oae2)l o 0 |T|o919 0919
10919
Thus: R, +(I-H) =
0919 1

We see that the residual cross-correlations are only 0.945 —0.919=0.026. [

Example 8.10
Q: Redo Example 8.7 using principal factor analysis and varimax rotation.

A: Using STATISTICA with Communalities=Multiple R’ checked (see
Figure 8.4) in order to apply formula 8.21, we obtain the solution shown in Figure
8.11. The varimax procedure is selected in the Factor rotation box included
in the Loadings tab (after clicking OK in the window shown in Figure 8.4).

The rock dataset projected onto the factor plane shown in Figure 8.11 leads us to
the same conclusions as in Example 8.7, stressing the opposition SiO,-CaO and
“aligning” the factors in such a way that facilitates the interpretation of the data
structure.

0
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Figure 8.11. Partial view of the rock dataset projected onto the F1-F2 factor plane,
after varimax rotation, overlaid with the factor loadings plot.

Exercises

8.1 Consider the standardised electrical impedance features of the Breast Tissue
dataset and perform the following principal component analyses:

8.2

a)
b)

<)

d)

Check that only two principal components are needed to explain the data
according to the Guttman-Kaiser, broken stick and Velicer criteria.

Determine which of the original features are highly correlated to the principal
components found in a).

Using a scatter plot of the pc-scores check that the {ADI, CON} class set is
separated from all other classes by the first principal component only, whereas the
discrimination of the carcinoma class requires the two principal components.
(Compare with the results of Examples 6.17 and 6.18.)

Redo Example 6.16 using the principal components as classifying features.
Compare the classification results with those obtained previously.

Perform a principal component analysis of the correlation matrix of the chemical and
grading features of the Clays’ dataset, showing that:

a)

b)

The scree plot has a slow decay after the first eigenvalue. The Velicer criterion
indicates that only the first two eigenvalues should be retained.
The pc correlations show that the first principal component reflects the silica-
alumina content of the clays; the second principal component reflects the lime
content; and the third principal component reflects the grading.
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8.3

8.4

8.5

8.6

8.7

8.8

c) The scatter plot of the pc-scores of the first two principal components indicates a
good discrimination of the two clay types (holocenic and pliocenic).

Redo the previous Exercise 8.2 using principal factor analysis. Show that only the first
factor has a high loading with the original features, namely the alumina content of the
clays.

Design a classifier for the first two classes of the Cork Stoppers’ dataset using the
main principal components of the data. Compare the classification results with those
obtained in Example 6.4.

Consider the CTG dataset with 2126 cases of foetal heart rate (FHR) features computed

in normal, suspect and pathological FHR tracings (variable NSP). Perform a principal

component analysis using the feature set {LB, ASTV, MSTV, ALTV, MLTV,

WIDTH, MIN, MAX, MODE, MEAN, MEDIAN, V} containing continuous-type

features.

a) Show that the two main principal components computed for the standardised
features satisfy the broken-stick criterion.

b) Obtain a pc correlation plot superimposed onto the pc-scores plot and verify that:
first, there is a quite good discrimination of the normal vs. pathological cases with
the suspect cases blending in the normal and pathological clusters; and that there
are two pathological clusters, one related to a variability feature (MSTV) and the
other related to FHR histogram features.

Using principal factor analysis, determine which original features are the most
important explaining the variance of the Firms’ dataset. Also compare the principal
factor solution with the principal component solution of the standardised features and
determine whether either solution is capable to conveniently describe the activity
branch of the firms.

Perform a principal component and a principal factor analysis of the standardised
features BASELINE, ACELRATE, ASTV, ALTV, MSTV and MLTV of the FHR-
Apgar dataset checking the following results:

a) The principal factor analysis affords a univariate explanation of the data variance
related to the FHR variability features ASTV and ALTV, whereas the principal
component analysis affords an explanation requiring three components. Also
check the scree plots.

b) The pc-score plots of the factor analysis solution afford an interpretation of the
Apgar index. For this purpose, use the varimax rotation and plot the categorised
data using three classes for the Apgar at 1 minute after birth (Apgarl: <5; >5 and
<8; >8) and two classes for the Apgar at 5 minutes after birth (Apgar5: <8; >8).

Redo the previous Exercise 8.7 for the standardised features EF, CK, IAD and GRD of
the Infarct dataset showing that the principal component solution affords an
explanation of the data based on only one factor highly correlated with the ejection
fraction, EF. Check the discrimination capability of this factor for the necrosis severity
score SCR > 2 (high) and SCR <2 (low).
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8.9 Consider the Stock Exchange dataset. Using principal factor analysis, determine
which economic variable best explains the variance of the whole data.

8.10 Using the Hotteling’s 7* control chart for the wines of the Wines’ dataset, determine
which wines are “out of control” at 95% confidence level and present an explanation
for this fact taking into account the values of the variables highly correlated with the
principal components. Use only variables without missing data for the computation of
the principal components.

8.11 Perform a principal factor analysis of the wine data studied in the previous Exercise
8.10 showing that there are two main factors, one highly correlated to the GLU-THR
variables and the other highly correlated to the PHE-LYS variables. Use varimax
rotation and analyse the clustering of the white and red wines in the factor plane
superimposed onto the factor loading plane.

8.12 Redo the principal factor analysis of Example 8.10 using three factors and varimax
rotation. With the help of a 3D plot interpret the results obtained checking that the three
factors are related to the following original variables: Si02-Al1203-CaO (silica-lime
factor), AAPN-AAOA (porosity factor) and RMCS-RCSG (resistance factor).



9 Survival Analysis

In medical studies one is often interested in studying the expected time until the
death of a patient, undergoing a specific treatment. Similarly, in technological
tests, one is often interested in studying the amount of time until a device subjected
to specified conditions fails. Times until death and times until failure are examples
of survival data. The statistical analysis of survival data is based on the use of
specific data models and probability distributions. In this chapter, we present
several introductory topics of survival analysis and their application to survival
data using SPSS, STATISTICA, MATLAB and R (survival package).

9.1 Survivor Function and Hazard Function

Consider a random variable T € ‘R" representing the /ifetime of a class of objects or
individuals, and let f{¢) denote the respective pdf. The distribution function of T is:

F(t)=P(T <t)=| f(u)du. 9.1

In general, f{¥) is a positively skewed function, with a long right tail. Continuous
distributions such as the exponential or the Weibull distributions (see B.2.3 and
B.2.4) are good candidate models for f{¥).

The survivor function or reliability function, S(f), is defined as the probability
that the lifetime (survival time) of the object is greater than or equal to :

S(t)=P(T>t) =1 - F(p). 9.2

The hazard function (or failure rate function) represents the probability that the
object ends its lifetime (fails) at time ¢, conditional on having survived until that
time. In order to compute this probability, we first consider the probability that the
survival time 7 lies between ¢ and ¢ + At, conditioned on T2 #: Pt < T <t + At |
T > f). The hazard function is the limit of this probability when At — 0:

< >
WO = lim PUST<t+M|T210)
At—0 At

9.3

Given the property A.7 of conditional probabilities, the numerator of 9.3 can be
written as:
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P(<T<t+A1) _ F(t+A)—F(1)

P <T<t+At|t=21)= 9.4
P(T >1) S(t)
Thus:
h(t) = lim Fi+A)-F(t) 1 _ f(t), 9.5
At—0 At S S@)

since f{¢) is the derivative of F(¢): f(¢t)=dF(¢)/ dt.

9.2 Non-Parametric Analysis of Survival Data

9.2.1 The Life Table Analysis

In survival analysis, the survivor and hazard functions are estimated from the
observed survival times. Consider a set of ordered survival times ¢, t,, ..., f;. One
may then estimate any particular value of the survivor function, S(z), in the
following way:

S(¢;)) =P(surviving to time #;) =
P(surviving to time ¢;)
xP(surviving to time ¢, | survived to time #,)

xP(surviving to time ¢; | survived to time # _1). 9.6

Let us denote by n; the number of individuals that are alive at the start of the
interval [¢# , t;1[, and by d; the number of individuals that die during that interval.
We then derive the following non-parametric estimate:

- . . n;—d;
P(surviving to ¢, [survived to ;) = , 9.7

n;

from where we estimate S(#;) using formula 9.6.

Example 9.1

Q: A car stand has a record of the sale date and the date that a complaint was first
presented for three different cars (this is a subset of the Car Sale dataset in
Appendix E). These dates are shown in Table 9.1. Compute the estimate of the
time-to-complaint probability for # =300 days.

A: In this example, the time-to-complaint, “Complaint Date” — “Sale Date”, is the
survival time. The computed times in days are shown in the last column of Table
9.1. Since there are no complaints occurring between days 261 and 300, we may
apply 9.6 and 9.7 as follows:
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S (300) = S (261) = f’(surviving to 240) Is(surviving to 261| survived to 240)
3-12-1 1

2 2 3

Alternatively, one could also compute this estimate as (3 — 2)/3, considering the
[0, 261] interval. 1]

Table 9.1. Time-to-complaint data in car sales (3 cars).

Time-to-complaint

Car Sale Date Complaint Date

(days)
#1 1-Nov-00 29-Jun-01 240
#2 22-Nov-00 10-Aug-01 261
#3 16-Feb-01 30-Jan-02 348

In a survival study, information concerning the “death” times of one or more
cases that entered the study is often not available either because the cases were
“lost” during the study or because they are still “alive” at the end of the study.
These are the so-called censored cases .

The information of the censored cases must also be taken into consideration
when estimating the survivor function. Let us denote by ¢; the number of cases
censored in the interval [#, ;1 [. The actuarial or life-table estimate of the survivor
function is a non-parametric estimate that assumes that the censored survival times
occur uniformly throughout that interval, so that the average number of individuals
that are at risk of dying during [¢ , £[ is:

*

nj

n; —cj/2. 9.8

Taking into account formulas 9.6 and 9.7, the life-table estimate of the survivor
function is computed as:

~ k n*.—d4
SO =11 L L, fort, <t <t 99
=l

n;

The hazard function is an estimate of 9.5, given by:

) d.
h(t)=——>——, for f;<t<tu, 9.10
(n—d; /2); ‘

where 7; is the length of the jth time interval.

1
The type of censoring described here is the one most frequently encountered, known as right
censoring. There are other, less frequent types of censoring.



356 9 Survival Analysis

Example 9.2

Q: Consider that the data records of the car stand (Car Sale dataset), presented
in the previous example, was enlarged to 8 cars, as shown in Table 9.2. Determine
the survivor and hazard functions using the life-table estimate.

A: We now have two sources of censored data: the three cars that are known to
have had no complaints at the end of the study, and one car whose owner could not
be contacted at the end of the study, but whose car was known to have had no
complaint at a previous date. We can summarise this information as shown in
Table 9.3.

Using SPSS, with the time-to-complaint and censored columns of Table 9.3 and
a specification of displaying time intervals O through 600 days by 75 days, we
obtain the life-table estimate results shown in Table 9.4. Figure 9.1 shows the
survivor function plot. Note that it is a monotonic decreasing function.

Table 9.2. Time-to-complaint data in car sales (8 cars).

Car Sale Complaint Without Complaint at Last Date Known to be
Date Date the End of the Study =~ Without Complaint
#1 12-Sep-00 31-Mar-02

#2 26-Oct-00 31-Mar-02
#3 01-Nov-00 29-Jun-01
#4 22-Nov-00  10-Aug-01

#5 18-Jan-01 31-Mar-02

#6 02-Jul-01 24-Sep-01
#7 16-Feb-01 30-Jan-02

#8 03-May-01 31-Mar-02

Table 9.3. Summary table of the time-to-complaint data in car sales (8 cars).

Time-to-complaint

Car Start Date Stop Date Censored

(days)
#1 12-Sep-00 31-Mar-02 TRUE 565
#2 26-Oct-00 31-Mar-02 FALSE 521
#3 01-Nov-00 29-Jun-01 FALSE 240
#4 22-Nov-00 10-Aug-01 FALSE 261
#5 18-Jan-01 31-Mar-02 TRUE 437
#6 02-Jul-01 24-Sep-01 TRUE 84
#7 16-Feb-01 30-Jan-02 FALSE 348

#9 03-May-01 31-Mar-02 TRUE 332
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Columns 2 through 5 of Table 9.4 list the successive values of n;, c;, nj , and d,
respectively. The “Propn Surviving” column is obtained by applying formula 9.7
with correction for censored data (formula 9.8). The “Cumul Propn Surv at End”
column lists the values of S(f) obtained with formula 9.9. The “Propn
Terminating” column is the complement of the “Propn Surviving” column. Finally,
the last two columns list the values of the probability density and hazard functions,
computed with the finite difference approximation of f{¢f) = AF(f)/At and formula
9.5, respectively. a

Table 9.4. Life-table of the time-to-complaint data, obtained with SPSS.

Number Cumul

Intrvl  Number Number Number of Propn  Propn Proba-
. Wdrawn . Propn . Hazard
Start Entrng this . Exposed Termnl Termi- Sur- bility
Time Intrvl During toRisk  Events nating viving Surv at Density Rate
Intrvl End
0 8 0 8 0 0 1 1 0 0
75 8 1 7.5 0 0 1 1 0 0
150 7 0 0 0 1 1 0 0
225 7 0 2 0.2857 0.7143  0.7143  0.0038  0.0044
300 5 1 4.5 1 02222 0.7778 0.5556 0.0021  0.0033
375 3 1 2.5 0 0 1 0.5556 0 0
450 2 0 2 1 0.5 0.5 0.2778 0.0037  0.0089
525 1 1 0.5 0 0 1 0.2778 0 0
1.2
1.0
8
6
g .
2
@
E TIVE
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Figure 9.1. Life-table estimate of the survivor function for the time-to-complaint
data (first eight cases of the Car Sale dataset) obtained with SPSS.

Example 9.3

Q: Consider the amount of time until breaking of iron specimens, submitted to low
amplitude sinusoidal loads (Group 1) in fatigue tests, a sample of which is given in
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the Fatigue dataset. Determine the survivor, hazard and density functions using
the life-table estimate procedure. What is the estimated percentage of specimens
breaking beyond 2 million cycles? In addition determine the estimated percentage
of specimens that will break at 500000 cycles.

A: We first convert the time data, given in number of 20 Hz cycles, to a lower
range of values by dividing it by 10000. Next, we use this data with SPSS,
assigning the Break variable as a censored data indicator (Break = 1 if the
specimen has broken), and obtain the plots of the requested functions between 0
and 400 with steps of 20, shown in Figure 9.2.

Note the right tailed, positively skewed aspect of the density function, shown in
Figure 9.2b, typical of survival data. From Figure 9.2a, we see that the estimated
percentage of specimens surviving beyond 2 million cycles (marked 200 in the #
axis) is over 45%. From Figure 9.2¢, we expect a break rate of about 0.4% at
500000 cycles (marked 50 in the ¢ axis). 0
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Figure 9.2. Survival functions for the group 1 iron specimens of the Fatigue
dataset, obtained with SPSS: a) Survivor function; b) Density function; c¢) Hazard
function. The time scale is given in 10* cycles.

Commands 9.1. SPSS, STATISTICA, MATLAB and R commands used to
perform survival analysis.

SPSS Analyze; Survival

Statistics; Advanced Linear/Nonlinear
Models; Survival Analysis; Life tables &

STATISTICA Distributions | Kaplan & Meier | Comparing
two samples | Regression models

expfit (x,alpha)

[par, pci]
MATLAB weibfit (x,alpha)

[par, pcil

Surv (time, event); survfit (survobject)
R survdif (survobject ~ group, rho)
coxph (survobject ~ factor)
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SPSS uses as input data in survival analysis the survival time (e.g. last column of
Table 9.3) and a censoring variable (Status). STATISTICA allows, as an
alternative, the specification of the start and stop dates (e.g., second and third
columns of Table 9.3) either in date format or as separate columns for day, month
and year. All the features described in the present chapter are easily found in SPSS
or STATISTICA windows.

MATLAB stats toolbox does not have specific functions for survival
analysis. It has, however, the expfit and weibfit functions which can be used
for parametric survival analysis (see section 9.4) since they compute the maximum
likelihood estimates of the parameters of the exponential and Weibull distributions,
respectively, fitting the data vector x. The parameter estimates are returned in par.
The confidence intervals of the parameters, at alpha significance level, are
returned in pci.

A suite of R functions for survival analysis, together with functions for
operating with dates, is available in the survival package. Be sure to load it first
with library (survival). The Surv function is used as a preliminary
operation to create an object (a Surv object) that serves as an argument for other
functions. The arguments of Surv are a time and event vectors. The event
vector contains the censored information. Let us illustrate the use of Surv for the
Example 9.2 dataset. We assume that the last two columns of Table 9.3 are stored
in t and ev, respectively for “Time-to-complaint” and “Censored”, and that the ev
values are 1 for “censored” and 0 for “not censored”. We then apply Surv as
follows:

> X <- Surv(t[l:8],ev[1:8]==0)
> X
[1] 565+ 521 240 261 437+ 84+ 348 332+

The event argument of Surv must specify which value corresponds to the
“not censored”; hence, the specification ev [1: 8] ==0. In the list above the values
marked with “+” are the censored observations (any observation with an event
label different from 0 is deemed “censored””). We may next proceed, for instance,
to create a Kaplan-Meier estimate of the data using survfit (x) (or, if preferred,
surviit (Surv(t[1l:8],ev[1:8]1==0)).

The survdiff function provides tests for comparing groups of survival data.
The argument rho can be 0 or 1 depending on whether one wants the log-rank or
the Peto-Wilcoxon test, respectively.

The cosxph function fits a Cox regression model for a specified factor.

9.2.2 The Kaplan-Meier Analysis

The Kaplan-Meier estimate, also known as product-limit estimate of the survivor
function is another type of non-parametric estimate, which uses intervals starting at
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“death” times. The formula for computing the estimate of the survivor function is
. . . . *
similar to formula 9.9, using n; instead of n :

n;

R kln. —d.

Sey=T]|—+—=|. for t<t<tr. 9.11

j=1

Since, by construction, there are »; individuals who are alive just before ¢ and d;
deaths occurring at #, the probability that an individual dies between # — o and ¢ is
estimated by d; / n;. Thus, the probability of individuals surviving through [¢ , #:1[
is estimated by (n; —d, )/ n;.

The only influence of the censored data is in the computation of the number of
individuals, n; , who are alive just before ¢ . If a censored survival time occurs
simultaneously with one or more deaths, then the censored survival time is taken to
occur immediately after the death time.

The Kaplan-Meier estimate of the hazard function is given by:

h(t)=—1—, for 4,<t<ty, 9.12

n;t;

where 7, is the length of the jth time interval. For details, see e.g. (Collet D, 1994)
or (Kleinbaum DG, Klein M, 2005).

Example 9.4
Q: Redo Example 9.2 using the Kaplan-Meier estimate.

A: Table 9.5 summarises the computations needed for obtaining the Kaplan-Meier
estimate of the “time-to-complaint™ data. Figure 9.3 shows the respective survivor
function plot obtained with STATISTICA. The computed data in Table 9.5 agrees
with the results obtained with either STATISTICA or SPSS.

In R one uses the survfit function to obtain the Kaplan-Meier estimate.
Assuming one has created the Surv object x as explained in Commands 9.1, one
proceeds to calling survfit (x). A plot as in Figure 9.3, with Greenwood’s
confidence interval (see section 9.2.3), can be obtained with
plot (survfit(x)). Applying summary to survfit (x) the confidence
intervals for S(¢) are displayed as follows:

time n.risk n.event survival std.err lower 95% CI upper 95% CI

240 7 1 0.857 0.132 0.6334 1
261 6 1 0.714 0.171 0.4471 1
348 4 1 0.536 0.201 0.2570 1
521 2 1 0.268 0.214 0.0558 1
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Table 9.5. Kaplan-Meier estimate of the survivor function for the first eight cases
of the Car Sale dataset.

Instf;';/tal Event n; d; D S;
84 Censored 8 0 1 1
240 “Death” 7 1 0.8571 0.8571
261 “Death” 6 1 0.8333 0.7143
332 Censored 5 0 1 0.7143
348 “Death” 4 1 0.75 0.5357
437 Censored 3 0 1 0.5357
521 “Death” 2 1 0.5 0.2679
565 Censored 1 0 1 0.2679
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Figure 9.3. Kaplan-Meier estimate of the survivor function for the first eight cases
of the Car Sale dataset, obtained with STATISTICA. (The “Complete” cases
are the “deaths”.)

Example 9.5

Q: Consider the Heart Valve dataset containing operation dates for heart valve
implants at S3o Jodo Hospital, Porto, Portugal, and dates of subsequent event
occurrences, namely death, re-operation and endocarditis. Compute the Kaplan-
Meier estimate for the event-free survival time, that is, survival time without
occurrence of death, re-operation or endocarditis events. What is the percentage of
patients surviving 5 years without any event occurring?
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A: The Heart Valve Survival datasheet contains the computed final date
for the study (variable DATE STOP). This is the date of the first occurring event,
if it did occur, or otherwise, the last date the patient was known to be alive and
well. The survivor function estimate shown in Figure 9.4 is obtained by using
STATISTICA with DATE OP and DATE STOP as initial and final dates, and
variable EVENT as censored data indicator. From this figure, one can estimate that

about 85% of patients survive five years (1825 days) without any event occurring.
0

95}
—~
—
=
L)

Complete = Censored

0.9

0.8

06 \\

0.5

t (days)
0.4

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 9.4. Kaplan-Meier estimate of the survivor function for the event-free
survival of patients with heart valve implant, obtained with STATISTICA.

9.2.3 Statistics for Non-Parametric Analysis
The following statistics are often needed when analysing survival data:

1. Confidence intervals for S(7).

For the Kaplan-Meier estimate, the confidence interval is computed assuming that
the estimate S(¢) is normally distributed (say for a number of intervals above 30),
with mean S(¢) and standard error given by the Greenwood’s formula:

2

A A d .

S[S(t)]zs(f){2§1m} , fore <t <t 9.13
J J J
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2. Median and percentiles of survival time.

Since the density function of the survival times, f{¥), is usually a positively skewed
function, the median survival time, #s, is the preferred location measure. The
median can be obtained from the survivor function, namely:

F(t().s) =05 = S(t().s) =1-05=0.5. 9.14

When using non-parametric estimates of the survivor function, it is usually not
possible to determine the exact value of #,s, given the stepwise nature of the
estimate S(¢) . Instead, the following estimate is determined:

fos = min{t,.; S(t;) < 0.5}. 9.15

Percentiles p of the survival time are computed in the same way:

i, =min{;: §()<1-pf. 9.16

3. Confidence intervals for the median and percentiles.

Confidence intervals for the median and percentiles are usually determined
assuming a normal distribution of these statistics for a sufficiently large number of
cases (say, above 30), and using the following formula for the standard error of the
percentile estimate (for details see e.g. Collet D, 1994 or Kleinbaum DG, Klein M,
2005):

sli, )= f(;,,) sfsé ). 9.17

where the estimate of the probability density can be obtained by a finite difference
approximation of the derivative of S(¢) .

Example 9.6

Q: Determine the 95% confidence interval for the survivor function of Example
9.3, as well as for the median and 60% percentile.

A: SPSS produces an output containing the value of the median and the standard
errors of the survivor function. The standard values of the survivor function can be
used to determine the 95% confidence interval, assuming a normal distribution.
The survivor function with the 95% confidence interval is shown in Figure 9.5.

The median survival time of the specimens is 100x10* = 1 million cycles. The
60% percentile survival time can be estimated as follows:

fog = min{ti; S’(ti) < 1—0.6}.
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From Figure 9.5 (or from the life table), we then see that 7, , = 280 x10* cycles.
Let us now compute the standard errors of these estimates:

1 0.0721

s[100]= 100) s[S(lOO) YT
1 s 0.0706
s[280]= 7080 s[S(zso)]_ oo = 06

Thus, under the normality assumption, the 95% confidence intervals for the
median and 60% percentile of the survival times are [0, 241.3] and [41.6, 418.4],
respectively. We observe that the non-parametric confidence intervals are too large
to be useful. Only for a much larger number of cases are the survival functions
shown in Figure 9.2 smooth enough to produce more reliable estimates of the
confidence intervals. a

Figure 9.5. Survivor function of the group 1 iron specimens, of the Fatigue
dataset with the 95% confidence interval (plot obtained with EXCEL using SPSS
results). The time scale is given in 10* cycles.

9.3 Comparing Two Groups of Survival Data

Let 4(f) and hy(f) denote the hazard functions of two independent groups of
survival data, often called the exposed and unexposed groups. Comparison of the
two groups of survival data can be performed as a hypothesis test formalised in
terms of the hazard ratio w= hi(t)/ hy(f), as follows:

Ho: w=1 (survival curves are the same);
H;: w# 1 (one of the groups will consistently be at a greater risk).
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The following two non-parametric tests are of widespread use:

1. The Log-Rank Test.

Suppose that there are r distinct death times, ¢, #,, ..., t,, across the two groups, and
that at each time #, there are d,;, dy; individuals of groups 1 and 2 respectively, that
die. Suppose further that just before time #, there are n,;, n,; individuals of groups 1
and 2 respectively, at risk of dying. Thus, at time # there are d; = d|; + d»; deaths in
a total of n; = ny; + ny; individuals at risk, as shown in Table 9.6.

Table 9.6. Number of deaths and survivals at time # in a two-group comparison.

Individuals at risk

Group Deaths at 1; Survivals beyond 4 before 1, — &
1 dy; mj = dy "
2 dy; Ny — d; 1y
Total d; n;—d; "

If the marginal totals along the rows and columns in Table 9.6 are considered
fixed, and the null hypothesis is true (survival time is independent of group), the
remaining four cells in Table 9.6 only depend on one of the group deaths, say dj;.
As described in section B.1.4, the probability of the associated random variable,
Dy, taking value in [0, min(n,;, d;)], is given by the hypergeometric law:

P(D,, =d,;)=h d, )= d;\(n;—d; / n; 0.18
=Ry njsdjomj L dyj \mj;—=dy; | \nm; ) ’

J

The mean of Dj; is the expected number of group 1 individuals who die at time ¢
(see B.1.4):

e = ny;(d;/ ny). 9.19

The Log-Rank test combines the information of all 2x2 contingency tables,
similar to Table 9.6 that one can establish for all #, using a test based on the 1 test
(see 5.1.3). The method of combining the information of all 2x2 contingency tables
is known as the Mantel-Haenszel procedure. The test statistic is:

2
OZ}:I dy; _ijl €1 _O'SJ
zr ”1j”2jdj("j _dj)
j=

nj(n; =1y

~ yi (under Hy). 9.20

17 =

Note that the numerator, besides the 0.5 continuity correction, is the absolute
difference between observed and expected frequencies of deaths in group 1. The
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denominator is the sum of the variances of Dy;, according to the hypergeometric
law.

2. The Peto-Wilcoxon test.

The Peto-Wilcoxon test uses the following test statistic:

2
(3 ndyy—er))
A e i ~ 2 (under Hy). 9.21
5 nnyd;(n; —d;) :
=1

nj—l

This statistic differs from 9.20 on the factor »; that weighs the differences
between observed and expected group 1 deaths.

The Log-Rank test is more appropriate then the Peto-Wilcoxon test when the
alternative hypothesis is that the hazard of death for an individual in one group is
proportional to the hazard at that time for a similar individual in the other group.
The validity of this proportional hazard assumption can be elucidated by looking
at the survivor functions of both groups. If they clearly do not cross each other then
the proportional hazard assumption is quite probably true, and the Log-Rank test
should be used. In other cases, the Peto-Wilcoxon test is used instead.

Example 9.7

Q: Consider the fatigue test results for iron and aluminium specimens, subject to
low amplitude sinusoidal load (Group 1), given in the Fat igue dataset. Compare
the survival times of the iron and aluminium specimens using the Log-Rank and
the Peto-Wilcoxon tests.

A: With SPSS or STATISTICA one must fill in a datasheet with columns for the
“time”, censored and group data. In SPSS one must run the test within the Kaplan-
Meier option and select the appropriate test in the Compare Factor window.
Note that SPSS calls the Peto-Wilcoxon test as Breslow test.

In R the survdiff function for the log-rank test (default value for rho,
rho = 0), is applied as follows:

> gsurvdiff (Surv(cycles,break==1) ~ group)
Call:
survdiff (formula = Surv(cycles, cens == 1) ~ group)

N Observed Expected (O-E)”"2/E (O-E)"2/V
group=1 39 23 24.6 0.1046 0.190
group=2 48 32 30.4 0.0847 0.190

Chisg= 0.2 on 1 degrees of freedom, p= 0.663
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The Peto-Wilcoxon test is performed by setting rho = 1.

SPSS, STATISTICA and R report observed significances of 0.66 and 0.89 for
the Log-Rank and Peto-Wilcoxon tests, respectively.

Looking at the survivor functions shown in Figure 9.6, drawn with values
computed with STATISTICA, we observe that they practically do not cross.
Therefore, the proportional hazard assumption is probably true and the Log-Rank
is more appropriate than the Peto-Wilcoxon test. With p = 0.66, the null hypothesis

of equal hazard functions is not rejected. a
1 S(t) Bliron
OAluminium
0.8
06 -
0.4
0.2
0

0 9091 181.8 272.7 363.6 454.5 5455 636.4 727.3 818.2 909.1 1000

Figure 9.6. Life-table estimates of the survivor functions for the iron and
aluminium specimens (Group 1). (Plot obtained with EXCEL using SPSS results.)

9.4 Models for Survival Data

9.4.1 The Exponential Model

The simplest distribution model for survival data is the exponential distribution
(see B.2.3). It is an appropriate distribution when the hazard function is constant,
h(f) = A, i.e., the age of the object has no effect on its probability of surviving (lack
of memory property). Using 9.2 one can write the hazard function 9.5 as:

~dS()/dt _ dInS()

h(t) = 9.22
© S(t) dt

Equivalently:

S(t) = exp[— | ;h(u)du} . 9.23

Thus, when A(f) = A, we obtain the exponential distribution:

SH=e ™ = f)=r" 9.24
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The exponential model can be fitted to the data using a maximum likelihood
procedure (see Appendix C). Concretely, let the data consist of n survival times, #,
t, ..., t,, of which r are death times and n — » are censored times. Then, the
likelihood function is:

L(A) = ﬁ (Ae=)% (¢~ ) with 5 - 0 ith indi.Vidual is censored 995
Pl 1 otherwise

Equivalently:

L) =[] 2%, 9.26

i=1

from where the following log-likelihood formula is derived:

log L(A)=).5;log A=A t; =rlog A-AY 1, . 9.27
i1 i1 i

The maximum log-likelihood is obtained by setting to zero the derivative of
9.27, yielding the following estimate of the parameter A:

A=ty 9.28

i=1"1
’ i=1

The standard error of this estimate is A/r. The following statistics are easily
derived from 9.24:

fos=In2/1. 9.29a
i, =In(l/(1-p))/ . 9.29b

The standard error of these estimates is 7 » / x/; .

Example 9.8

Q: Consider the survival data of Example 9.5 (Heart Valve dataset). Determine
the exponential estimate of the survivor function and assess the validity of the
model. What are the 95% confidence intervals of the parameter A and of the
median time until an event occurs?

A: Using STATISTICA, we obtain the survival and hazard functions estimates
shown in Figure 9.7. STATISTICA uses a weighted least square estimate of the
model function instead of the log-likelihood procedure. The exponential model fit
shown in Figure 9.7 is obtained using weights n4;, where n; is the number of
observations at risk in interval i of width /,. Note that the life-table estimate of the
hazard function is suggestive of a constant behaviour. The chi-square goodness of
fit test yields an observed significance of 0.59; thus, there is no evidence leading to
the rejection of the null, goodness of fit, hypothesis.
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STATISTICA computes the estimated parameter as A=9.8x10" (day™), with
standard error s = 1x107. Therefore, the 95% confidence interval, under the
normality assumption, is [7.84 x107°, 11.76 x107]. .

Applying formula 9.29, the median is estimated as In2/ 1= 3071 days = 8.4
years. Since there are r = 106 events, the standard error of this estimate is 0.8
years. Therefore, the 95% confidence interval of the median event-free time, under
the normality assumption, is [6.8, 10] years. 0
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a

Figure 9.7. Survivor function (a) and hazard function (b) for the Heart Valve
dataset with the fitted exponential estimates shown with dotted lines. Plots
obtained with STATISTICA

9.4.2 The Weibull Model

The Weibull distribution offers a more general model for describing survival data
than the exponential model does. Instead of a constant hazard function, it uses the
following parametric form, with positive parameters A and y of the hazard
function:

()= Ay ¢’ 9.30
The exponential model corresponds to the particular case y = 1. For y > 1, the

hazard increases monotonically with time, whereas for y < 1, the hazard function
decreases monotonically. Taking into account 9.23, one obtains:

S(t)=e . 9.31

The probability density function of the survival time is given by the derivative
of F(t) =1 - S(¢). Thus:

Ft)=Ayt7 e 9.32
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This is the Weibull density function with shape parameter y and scale parameter

N1/ 2 (see B.2.4):
f@) = W ). 9.33

Figure B.11 illustrates the influence of the shape and scale parameters of the
Weibull distribution. Note that in all cases the distribution is positively skewed,
i.e., the probability of survival in a given time interval always decreases with
increasing time.

The parameters of the distribution can be estimated from the data using a log-
likelihood approach, as described in the previous section, resulting in a system of
two equations, which can only be solved by an iterative numerical procedure. An
alternative method to fitting the distribution uses a weighted least squares
approach, similar to the method described in section 7.1.2. From the estimates
Aand 7, the following statistics are then derived:

fos =(m2s2)" 9.34

i, =(maa-pys i)’

The standard error of these estimates has a complex expression (see e.g. Collet D,
1994 or Kleinbaum DG, Klein M, 2005).

In the assessment of the suitability of a particular distribution for modelling the
data, one can resort to the comparison of the survivor function obtained from the
data, using the Kaplan-Meier estimate, S(¢) , with the survivor function prescribed
by the model, S(¥). From 9.31 we have:

In(-InS(®)) =In 1+ yIn ¢. 9.35

If S(?) is close to S (1), the log-cumulative hazard plot of In(-In S (¢)) against In ¢
will be almost a straight line.

An alternative way to assessing the suitability of the model uses the 7* goodness
of fit test described in section 5.1.3.

Example 9.9

Q: Consider the amount of time until breaking of aluminium specimens submitted
to high amplitude sinusoidal loads in fatigue tests, a sample of which is given in
the Fatigue dataset. Determine the Weibull estimate of the survivor function and
assess the validity of the model. What is the point estimate of the median time until
breaking?

A: Figure 9.8 shows the Weibull estimate of the survivor function, determined with
STATISTICA (Life tables & Distributions, Number of
intervals = 12), using a weighted least square approach similar to the one
mentioned in Example 9.8 (Weight 3). Note that the ¢ values are divided, as in
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Example 9.3, by 10*. The observed probability of the chi-square goodness of fit
test is very high: p = 0.96. The model parameters computed by STATISTICA are:

A,=0.187; 7=0.703.

Figure 9.7 also shows the log-cumulative hazard plot obtained with EXCEL and
computed from the values of the Kaplan-Meier estimate. From the straight-line fit
of this plot, one can compute another estimate of the parameter 7 = 0.639.
Inspection of this plot and the previous chi-square test result are indicative of a
good fit to the Weibull distribution. The point estimate of the median time until
breaking is computed with formula 9.34:

A 1.42
fos =(n2/4)"7 =( 0.301 j ~1.97.

0.1867

Thus, taking into account the 10* scale factor used for the ¢ axis, a median
number of 1970020 cycles is estimated for the time until breaking of the
aluminium specimens. 0

In(-InS (1))

Cumulative Proportion Surviving
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-0.70

00
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Figure 9.8. Fitting the Weibull model to the time until breaking of aluminium
specimens submitted to high amplitude sinusoidal loads in fatigue tests: a) Life-
table estimate of the survivor function with Weibull estimate (solid line); b) Log-
cumulative hazard plot (solid line) with fitted regression line (dotted line).

9.4.3 The Cox Regression Model

When analysing survival data, one is often interested in elucidating the influence of
explanatory variables in the survivor and hazard functions. For instance, when
analysing the Heart Valve dataset, one is probably interested in knowing the
influence of a patient’s age on chances of surviving.

Let 4(¢) and h,(¢) be the hazards of death at time ¢, for two groups: 1 and 2. The
Cox regression model allows elucidating the influence of the group variable using
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the proportional hazards assumption, i.c., the assumption that the hazards can be
expressed as:

h(®) = v hy(2), 9.36

where the positive constant yis known as the hazard ratio, mentioned in 9.3.

Let X be an indicator variable such that its value for the ith individual, x;, is 1 or
0, according to the group membership of the individual. In order to impose a
positive value to y; we rewrite formula 9.36 as:

h,(t) = ™ hy (1) . 9.37

Thus /s(7) = ho(f) and w= ¢”. This model can be generalised for p explanatory
variables:

hi(t) =" hy (1), with 7, = fixy; + Byxg; +vot B 9.38

where 7; is known as the risk score and h(f) is the baseline hazard function, i.e.,
the hazard that one would obtain if all independent explanatory variables were
ZEero.

The Cox regression model is the most general of the regression models for
survival data since it does not assume any particular underlying survival
distribution. The model is fitted to the data by first estimating the risk score using a
log-likelihood approach and finally computing the baseline hazard by an iterative
procedure. As a result of the model fitting process, one can obtain parameter
estimates and plots for specific values of the explanatory variables.

Example 9.10

Q: Determine the Cox regression solution for the Heart Valve dataset (event-
free survival time), using Age as the explanatory variable. Compare the survivor
functions and determine the estimated percentages of an event-free 10-year post-
operative period for the mean age and for 20 and 60 years-old patients as well.

A: STATISTICA determines the parameter fBy,. = 0.0214 for the Cox regression
model. The chi-square test under the null hypothesis of “no Age influence” yields
an observed p = 0.004. Therefore, variable Age is highly significant in the
estimation of survival times, i.e., is an explanatory variable.

Figure 9.9a shows the baseline survivor function. Figures 9.9b, ¢ and d, show
the survivor function plots for 20, 47.17 (mean age) and 60 years, respectively. As
expected, the probability of a given post-operative event-free period decreases with
age (survivor curves lower with age). From these plots, we see that the estimated
percentages of patients with post-operative event-free 10-year periods are 80%,
65% and 59% for 20, 47.17 (mean age) and 60 year-old patients, respectively.
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Figure 9.9. Baseline survivor function (a) and survivor functions for different
patient ages (b, ¢ and d) submitted to heart valve implant (Heart Valve
dataset), obtained by Cox regression in STATISTICA. The survival times are in
days. The Age = 47.17 (years) corresponds to the sample mean age.

Exercises

9.1 Determine the probability of having no complaint in the first year for the Car Sale
dataset using the life table and Kaplan-Meier estimates of the survivor function.

9.2 Redo Example 9.3 for the iron specimens submitted to high loads using the Kaplan-
Meier estimate of the survivor function.

9.3 Redo the previous Exercise 9.2 for the aluminium specimens submitted to low and high
loads. Compare the results.

9.4 Consider the Heart Valve dataset. Compute the Kaplan-Meier estimate for the
following events: death after 13 operation, death after 1% or 2™ operations, re-operation
and endocarditis occurrence. Compute the following statistics:

a) Percentage of patients surviving 5 years.
b) Percentage of patients without endocarditis in the first 5 years.
¢) Median survival time with 95% confidence interval.
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9.5 Compute the median time until breaking for all specimen types of the Fatigue
dataset.

9.6 Redo Example 9.7 for the high amplitude load groups of the Fatigue dataset.
Compare the survival times of the iron and aluminium specimens using the Log-Rank
or Peto-Wilcoxon tests. Discuss which of these tests is more appropriate.

9.7 Consider the following two groups of patients submitted to heart valve implant (Heart
Valve dataset), according to the pre-surgery heart functional class:
i.  Patients with mild or no symptoms before the operation (PRE C < 3).
ii.  Patients with severe symptoms before the operation (PRE C > 3).
Compare the survival time until death of these two groups using the most appropriate
of the Log-Rank or Peto-Wilcoxon tests.

9.8 Determine the exponential and Weibull estimates of the survivor function for the Car
Sale dataset. Verify that a Weibull model is more appropriate than the exponential
model and compute the median time until complaint for that model.

9.9 Redo Example 9.9 for all group specimens of the Fatigue dataset. Determine which
groups are better modelled by the Weibull distribution.

9.10 Consider the Weather dataset (Data 1) containing daily measurements of wind
speed in m/s at 12H00. Assuming that a wind stroke at 12H00 was used to light an
electric lamp by means of an electric dynamo, the time that the lamp would glow is
proportional to the wind speed. The wind speed data can thus be interpreted as survival
data. Fit a Weibull model to this data using n» = 10, 20 and 30 time intervals. Compare
the corresponding parameter estimates.

9.11 Compare the survivor functions for the wind speed data of the previous Exercise 9.11
for the groups corresponding to the two seasons: winter and summer. Use the most
appropriate of the Log-Rank or Peto-Wilcoxon tests.

9.12 Using the Heart Valve dataset, determine the Cox regression solution for the
survival time until death of patients undergoing heart valve implant with Age as the
explanatory variable. Determine the estimated percentage of a 10-year survival time
after operation for 30 years-old patients.

9.13 Using the Cox regression model for the time until breaking of the aluminium
specimens of the Fatigue dataset, verify the following results:
a) The load amplitude (AMP variable) is an explanatory variable, with chi-square
p=0.
b) The probability of surviving 2 million cycles for amplitude loads of 80 and 100
MPa is 0.6 and 0.17, respectively (point estimates).

9.14 Using the Cox regression model, show that the load amplitude (AMP variable) cannot
be accepted as an explanatory variable for the time until breaking of the iron specimens
of the Fatigue dataset. Verify that the survivor functions are approximately the same
for different values of AMP.



10 Directional Data

The analysis and interpretation of directional data requires specific data
representations, descriptions and distributions. Directional data occurs in many
areas, namely the Earth Sciences, Meteorology and Medicine. Note that directional
data is an “interval type” data: the position of the “zero degrees” is arbitrary. Since
usual statistics, such as the arithmetic mean and the standard deviation, do not have
this rotational invariance, one must use other statistics. For example, the mean
direction between 10° and 350° is not given by the arithmetic mean 180°.

In this chapter, we describe the fundamentals of statistical analysis and the
interpretation of directional data, for both the circle and the sphere. SPSS,
STATISTICA, MATLAB and R do not provide specific tools for dealing with
directional data; therefore, the needed software tools have to be built up from
scratch. MATLAB and R offer an adequate environment for this purpose. In the
following sections, we present a set of “directional data”-functions — developed in
MATLAB and R and included in the CD Tools —, and explain how to apply them
to practical problems.

10.1 Representing Directional Data

Directional data is analysed by means of unit length vectors, i.e., by representing
the angular observations as points on the unit radius circle or sphere.

For circular data, the angle, ¢, is usually specified in [-180° 180°] or in
[0°, 360°]. Spherical data is represented in polar form by specifying the azimuth (or
declination) and the latitude (or inclination). The azimuth, ¢, is given in [-180°,
180°]. The latitude (also called elevation angle), 6, is specified in [-90°, 90°].
Instead of an azimuth and latitude, a longitude angle in [0°, 360°] and a co-latitude
angle in [0°, 180°] are often used.

When dealing with directional data, one often needs, e.g. for representational
purposes, to obtain the Cartesian co-ordinates of vectors with specified length and
angular directions or, vice-versa, to convert Cartesian co-ordinates to angular,
polar or spherical form. The conversion formulas for azimuths and latitudes are
given in Table 10.1 with the angles expressed in radians through multiplication of
the values in degrees by 7 /180.

The MATLAB and R functions for performing these conversions, with the
angles expressed in radians, are given in Commands 10.1.
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Example 10.1

Q: Consider the Joints’ dataset, containing measurements of azimuth and pitch
in degrees for several joint surfaces of a granite structure. What are the Cartesian
co-ordinates of the unit length vector representing the first measurement?

A: Since the pitch is a descent angle, we use the following MATLAB instructions
(see Commands 10.1 for R instructions), where joints is the original data matrix
(azimuth in the first column, pitch in the second column):

» j = joints*pi/180; % convert to radians
» [x,vy,z]=sph2cart(j(1,1),-3(1,2),1)
X =
0.1162
y' =
-0.1290
Z =
-0.9848 1]

Table 10.1. Conversion formulas from Cartesian to polar or spherical co-ordinates
(azimuths and latitudes) and vice-versa.

Polar to Cartesian Cartesian to Polar
Circle (4, p) > (x, ) (x,3) = (4 p)
x=pcosg; y=psin¢ p=atan2(y,x) *; p=02+ )7
x=pcosfcosg; y=pcosfsing; 0= arctan(z / (x2 + yz) l/2) ;
z=psinf) p=aan2(yx); p= (3 + y*+ )

* atan2(y,x) denotes the arc tangent of y/x with correction of the angle for x < 0 (see
formula 10.4).

Commands 10.1. MATLAB and R functions converting from Cartesian to polar or
spherical co-ordinates and vice-versa.

[x,yv]=pol2cart (phi, rho)
[phi, rho]l=cart2pol (x,Vy)

MATLAB [x,y,z]=sph2cart (phi, theta, rho)
[phi, theta,rho]=cart2sph(x,vy, z)
pol2cart (phi, rho)

R cart2pol (x,y)

sph2cart (phi, theta, rho)
cart2sph(x,y, z)
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The R functions work in the same way as their MATLAB counterparts. They all
return a matrix whose columns have the same information as the returned
MATLAB vectors. For instance, the conversion to spherical co-ordinates in
Example 10.1 can be obtained with:

> m <- sph2cart (phi*pi/180,-pitch*pi/180,1)

where phi and pitch are the columns of the attached joints data frame. The
columns of matrix m are the vectors x, y and z. |

In the following sections we assume, unless stated otherwise, that circular data
is specified in [0° 360°] and spherical data is specified by the pair (longitude, co-
latitude). We will call these specifications the standard format for directional data.
The MATLAB and R-implemented functions convazi and convlat (see
Commands 10.3) perform the azimuth and latitude conversions to standard format.

Also in all MATLAB and R functions described in the following sections, the
directional data is represented by a matrix (often denoted as a), whose first column
contains the circular or longitude data, and the second column, when it exists, the
co-latitudes and both in degrees.

Circular data is usually plotted in circular plots with a marker for each direction
plotted over the corresponding point in the unit circle. Spherical data is
conveniently represented in spherical plots, showing a projection of the unit sphere
with markers over the points corresponding to the directions.

For circular data, a popular histogram plot is the rose diagram, which shows
circular slices whose height is proportional to the frequency of occurrence in a
specified angular bin.

Commands 10.2 lists the MATLAB and R functions used for obtaining these
plots.

270

Figure 10.1. Circular plot (obtained in MATLAB) of the wind direction WDB
sample included in the Weather dataset.
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Example 10.2

Q: Plot the March, 1999 wind direction WDB sample, included in the Weather
dataset (datasheet Data 3).

A: Figure 10.1 shows the circular plot of this data obtained with polar2d. Visual
inspection of the plot suggests a multimodal distribution with dispersed data and a
mean direction somewhere near 135°.

i
Example 10.3

Q: Plot the Joints‘ dataset consisting of azimuth and pitch of granite joints of a

city street in Porto, Portugal. Assume that the data is stored in the joints matrix

whose first column is the azimuth and the second column is the pitch (descent
1

angle) .

A: Figure 10.2 shows the spherical plot obtained in MATLAB with:

» j=convlat ([joints(:,1),-joints(:,2)1]1);
» polar3d(j);

Figure 10.2 suggests a unimodal distribution with the directions strongly
concentrated around a modal co-latitude near 180°. We then expect the anti-mode

(distribution minimum) to be situated near 0°.
a

Figure 10.2. Spherical plot of the Joints’ dataset. Solid circles are visible
points; open circles are occluded points.

1
Note that strictly speaking the joints’ data is an example of axial data, since there is no difference
between the symmetrical directions (¢, 6) and (¢ +7,-6). We will treat it, however, as spherical data.
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Example 10.4
Q: Represent the rose diagram of the angular measurements H of the VCG dataset.

A: Let vcg denote the data matrix whose first column contains the H
measurements. Figure 10.3 shows the rose diagram using the MATLAB rose
command:

» rose(veg(:,1) *pi/180,12) % twelve bins

Using [t,r]l=rose(vcg(:,1)*pi/180,12), one can confirm that
70/120 = 58% of the measurements are in the [-60°, 60°] interval. The same results
are obtained with R rose function.

0

Figure 10.3. Rose diagram (obtained with MATLAB) of the angular H
measurements of the VCG dataset.

Commands 10.2. MATLAB and R functions for representing and graphically
assessing directional data.

[phi, r] = rose(a,n)

polar2d(a, mark) ; polar3d(a)
MATLAB unifplot (a)

h=colatplot(a,kl) ; h=longplot(a)
R rose(a)

polar2d(a)
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The MATLAB function rose (a,n) plots the rose diagram of the circular data
vector a (radians) with n bins; [phi, r]l=rose(a,n)returns the vectors phi
and r such that polar (phi, r) is the histogram (no plot is drawn in this case).

The polar2d and polar3d functions are used to obtain circular and spherical
plots, respectively. The argument a is, as previously mentioned, either a column
vector for circular data or a matrix whose first column contains the longitudes, and
the second column the co-latitudes (in degrees).

The unifplot command draws a uniform probability plot of the circular data
vector a (see section 10.4). The colatplot and longplot commands are used
to assess the von Misesness of a spherical distribution (see section 10.4). The
returned value h is 1 if the von Mises hypothesis is rejected at 1% significance
level, and 0 otherwise. The parameter k1 of colatplot must be 1 for assessing
von Misesness with large concentration distributions and 0 for assessing uniformity
with low concentration.

The R functions behave much in the same way as their equivalent MATLAB
functions. The only differences are: the rose function always uses 12 histogram
bins; the polar2d function always uses open circles as marks. u

10.2 Descriptive Statistics

Let us start by considering circular data, with data points represented by a unit
length vector:

X =[cosd sind]’. 10.1

The mean direction of n observations can be obtained in Cartesian co-ordinates,
in the usual way:

c=)" cosb; /n; 5= sin6/n. 10.2

The vector ¥ =[c¢ 5§ ]’ is the mean resultant vector of the n observations, with
mean resultant length:

F=vcl+s? e[o,1], 10.3

and mean direction (for r # 0):

— |arctan(s / ¢), if ¢>0;
o _ 10.4
c<0.

arctan(s / ¢ )+ sgn(s), if
Note that the arctangent function (MATLAB and R atan function) takes

value in [-7/2, n/2], whereas @ takes value in [-7, 7z], the same as using the
MATLAB and R function atan2 (y,x) with y representing the vertical
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component 5 and x the horizontal component ¢ . Also note that 7 and @ are
invariant under rotation.

The mean resultant vector can also be obtained by computing the resultant of
the n unit length vectors. The resultant, r = [ nc ns ]’, has the same angle, @ , and a
vector length of r = nr e [0, n]. The unit length vector representing the mean
direction, called the mean direction vector, isX,=[cos@ sin8 ]’.

The mean resultant length 7, point estimate of the population mean length p,
can be used as a measure of distribution concentration. If the vector directions are
uniformly distributed around the unit circle, then there is no preferred direction and
the mean resultant length is zero. On the other extreme, if all the vectors are
concentrated in the same direction, the mean resultant length is maximum and

equal to 1. Based on these observations, the following sample circular variance is
defined:

v=2(1-7)e][0,2]. 10.5

The sample circular standard deviation is defined as:

s=v-2In7, 10.6

reducing to approximately x/; for small v. The justification for this definition lies in
the analysis of the distribution of the wrapped random variable X,,:

X~n,,(x) = X, =X(mod2rz) ~ wﬂ,p(xw):anﬂ,g(x+27rk). 10.7

The wrapped normal density, w, ,, has p given by:

p=exp(-062/2) = o=4-2Inp. 10.8

For spherical directions, we consider the data points represented by a unit length
vector, with the x, y, z co-ordinates computed as in Table 10.1.

The mean resultant vector co-ordinates are then computed in a similar way as in
formula 10.2. The definitions of spherical mean direction, (6,¢), and spherical
variance are the direct generalisation to the sphere of the definitions for the circle,
using the three-dimensional resultant vector. In particular, the mean direction
vector is:

Xg = [sin @ cos;f? sin@ sin;f? cosd |’ 10.9

Example 10.5

Q: Consider the data matrix j of Example 10.3 (Joints’ dataset). Compute the
longitude, co-latitude and length of the resultant, as well as the mean resultant
length and the standard deviation.



382 10 Directional Data

A: We use the function resultant (see Commands 10.3) in MATLAB, as
follows:

» [x,y,z,f,t,r] = resultant(3j)

65.4200 % longitude
t =
178.7780 % co-latitude
r =
73.1305 % resultant length
» rbar=r/size(j,1)
rbar =
0.9376 % mean resultant length
» s=gsqgrt (-2*log(rbar))
S =
0.3591 % standard deviation in radians

Note that the mean co-latitude (178.8°) does indeed confirm the visual
observations of Example 10.3. The data is highly concentrated (7 =0.94, near 1).

The standard deviation corresponds to an angle of 20.6°.
0

Commands 10.3. MATLAB and R functions for computing descriptive statistics
and performing simple operations with directional data.

as=convazi(a) ; as=convlat (a)
[x,v,z,f,t,r] = resultant(a)
MATLAB m = meandir(a,alphal)
[m, rw, rhow] =pooledmean (a)
v=rotate(a); t=scattermx(a); d=dirdif (a,b)

convazi(a) ; convlat(a)
resultant(a) ; dirdif(a,b)

Functions convazi and convlat convert azimuth into longitude and latitude
into co-latitude, respectively.

Function resultant determines the resultant of unit vectors whose angles are
the elements of a (in degrees). The Cartesian co-ordinates of the resultant are
returned in x, y and z. The polar co-ordinates are returned in £ (¢), t (€) and r.

Function meandir determines the mean direction of the observations a. The
angles are returned inm (1) and m(2). The mean direction length 7 is returned in
m(3). The standard deviation in degrees is returned in m (4) . The deviation angle
corresponding to a confidence level indicated by alphal, assuming a von Mises
distribution (see section 10.3), is returned in m(5). The allowed values of
alphal (alpha level) are 1, 2 3 and 4 for o= 0.001, 0.01, 0.05 and 0.1,
respectively.
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Function pooledmean computes the pooled mean (see section 10.6.2) of
independent samples of circular or spherical observations, a. The last column of a
contains the group codes, starting with 1. The mean resultant length and the
weighted resultant length are returned through rw and rhow, respectively.

Function rotate returns the spherical data matrix v (standard format),
obtained by rotating a so that the mean direction maps onto the North Pole.

Function scattermx returns the scatter matrix t of the spherical data a (see
section 10.4.4).

Function dirdif returns the directional data of the differences of the unit
vectors corresponding to a and b (standard format).

The R functions behave in the same way as their equivalent MATLAB
functions. For instance, Example 10.5 is solved in R with:

j <- convlat(cbind(j[,11,-3[.,21))

> o0 <- resultant(3)

> o

[1] 0.6487324 1.4182647 -73.1138435 65.4200379
[5] 178.7780083 73.1304754

10.3 The von Mises Distributions

The importance of the von Mises distributions (see B.2.10) for directional data is
similar to the importance of the normal distribution for linear data. As mentioned
in B.2.10, several physical phenomena originate von Mises distributions. These
enjoy important properties, namely their proximity with the normal distribution as
mentioned in properties 3, 4 and 5 of B.2.10. The convolution of von Mises
distributions does not produce a von Mises distribution; however, it can be well
approximated by a von Mises distribution.

The generalised (p — 1)-dimensional von Mises density function, for a vector of
observations X, can be written as:

(x) =C , (k)" "™, 10.10

My xe,p

where p is the mean vector, x is the concentration parameter, and C,(x) is a
normalising factor with the following values:

C,(x)=1/2r 1,(x)) 2, for the circle (p = 2);
C5(x) =k /(4r sinh(x)) , for the sphere (p = 3).

2
1, denotes the modified Bessel function of the first kind and order p (see B.2.10).
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For p = 2, one obtains the circular distribution first studied by R. von Mises; for
p = 3, one obtains the spherical distribution studied by R. Fisher (also called von
Mises-Fisher or Langevin distribution).

Note that for low concentration values, the von Mises distributions approximate
the uniform distribution as illustrated in Figure 10.4 for the circle and in Figure
10.5 for the sphere. The sample data used in these figures was generated with the
vmises2rnd and vimises3rnd functions, respectively (see Commands 10.4).

Figure 10.4. Rose diagrams of 50-point samples of circular von Mises distribution
around x#= 0, and x=0.1, 2, 10, from left to right, respectively.

Figure 10.5. Spherical plots of 150-point-samples with von Mises-Fisher
distribution around [0 0 17°, and x=0.001, 2, 10, from left to right, respectively.

Given a von Mises distribution M,, .., the maximum likelihood estimation of p
is precisely the mean direction vector. On the other hand, the sample resultant
mean length 7 is the maximum likelihood estimation of the population mean
resultant length, a function of the concentration parameter, p = 4,(x), given by:

p=A4,k)=1,(x)/1,(x), for the circle;
p = A;(k)=cothx —1/x , for the sphere.
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Thus, the maximum likelihood estimation of the concentration parameter x is
obtained by the inverse function of 4,:

k=4, (7). 10.11

Values of K = A;l (r) for p =2, 3 are given in tables in the literature (see e.g.
Mardia KV, Jupp PE, 2000). The function ainv, built in MATLAB, implements
10.11 (see Commands 10.4). The estimate of x can also be derived from the
sample variance, when it is low (large » ):

k=(p-1/v. 10.12

As a matter of fact, it can be shown that the inflection points of m,, ., are given
by:

L50‘, for large . 10.13
Vi

Therefore, we see that 1/ \/; influences the von Mises distribution in the same
way as o influences the linear normal distribution.

Once the ML estimate of & has been determined, the circular or spherical region
around the mean, corresponding to a (1-a) probability of finding a random
direction, can also be computed using tables of the von Mises distribution function.
The MATLAB-implemented function vmisesinv gives the respective deviation
angle, 0, for several values of a. Function vimises2cdf gives the left tail area of
the distribution function of a circular von Mises distribution. These functions use
exact-value tables and are listed and explained in Commands 10.4.

Approximation formulas for estimating the concentration parameter, the
deviation angles of von Mises distributions and the circular von Mises distribution
function can also be found in the literature.

Example 10.6

Q: Assuming that the Joints’ dataset (Example 10.3) is well approximated by the
von Mises-Fisher distribution, determine the concentration parameter and the
region containing 95% of the directions.

A: We use the following sequence of commands:

» k=ainv (rbar, 3) %using rbar from Example 10.5
k:

16.0885
» delta=vmisesinv(k,3,3) %$alphal=3 --> alpha=0.05
delta =

35.7115
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Thus, the region containing 95% of the directions is a spherical cap with
0=35.7° aperture from the mean (see Figure 10.6).

Note that using formula 10.12, one obtains an estimate of £ = 16.0181. For the
linear normal distribution, this corresponds to & = 0.2499, using formula 10.13.
For the equal variance bivariate normal distribution, the 95% percentile
corresponds to 2.448¢c ~ 2.448 6 = 0.1617 radians = 35.044°. The approximation
to the previous value of Jis quite good.

a0

We will now consider the estimation of a confidence interval for the mean

directionX,,, using a sample of n observations, x;, X,, ..., X,, from a von Mises
distribution. The joint distribution of xy, x5, ..., X, is:

S0 %gse0%,) = (C, (1)) exp(ni FpX,) . 10.14

From 10.10, it follows that the confidence interval of X, at « level, is obtained
from the von Mises distribution with the concentration parameter nx7 . Function
meandir (see Commands 10.3) uses precisely this result.

Figure 10.6. Spherical plot of the Joints’ dataset with the spherical cap around
the mean direction (shaded area) enclosing 95% of the observations (5 = 35.7°).

Example 10.7

Q: Compute the deviation angle of the mean direction of the Joints’ dataset for a
95% confidence interval.

A: Using the meandir command we obtain & = 4.1° reflecting the high

concentration of the data.
O
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Example 10.8

Q: A circular distribution of angles follows the von Mises law with concentration
x=2. What is the probability of obtaining angles deviating more than 20° from the
mean direction?

A: Using 2*vmises2cdf (-20, 2) we obtain a probability of 0.6539.

Commands 10.4. MATLAB functions for operating with von Mises distributions.

k=ainv(rbar,p)

delta=vmisesinv(k, p, alphal)
a=vmises2rnd(n,mu,k) ; a=vmises3rnd(n,k)
f=vmises2cdf (a, k)

MATLAB

Function ainv returns the concentration parameter, k, of a von Mises distribution
of order p (2 or 3) and mean resultant length rbar. Function vimisesinv returns
the deviation angle delta of a von Mises distribution corresponding to the « level
indicated by alphal. The valid values of alphal are 1, 2, 3 and 4 for = 0.001,
0.01, 0.05 and 0.1, respectively.

Functions vmises2rnd and vmises3rnd generate n random points with
von Mises distributions with concentration k, for the circle and the sphere,
respectively. For the circle, the distribution is around mu; for the sphere around
[0 O 17. These functions implement algorithms described in (Mardia JP, Jupp PE,
2000) and (Wood, 1994), respectively.

Function vmises2cdf (a,k) returns a vector, £, containing the left tail
areas of a circular von Mises distribution, with concentration k, for the vector a

angles in [-180°, 180°], using the algorithm described in (Hill GW, 1977).
|

10.4 Assessing the Distribution of Directional Data

10.4.1 Graphical Assessment of Uniformity

An important step in the analysis of directional data is determining whether or not
the hypothesis of uniform distribution of the data is significantly supported. As a
matter of fact, if the data can be assumed uniformly distributed in the circle or in
the sphere, there is no mean direction and the directional concentration is zero.

It is usually convenient to start the assessment of uniformity by graphic
inspection. For circular data, one can use a uniform probability plot, where the
sorted observations /(2 7) are plotted against i/(n+1),i=1, 2, ..., n. If the 6, come
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from a uniform distribution, then the points should lie near a unit slope straight line
passing through the origin.

Example 10.9

Q: Use the uniform probability plot to assess the uniformity of the wind direction
WDB sample of Example 10.2.

A: Figure 10.7 shows the uniform probability plot of the data using command
unifplot (see Commands 10.2). Visual inspection suggests a sensible departure
from uniformity.
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Figure 10.7. Uniform probability plot of the wind direction WDB data.

o

Let us now turn to the spherical data. In a uniform distribution situation the
longitudes are also uniformly distributed in [0, 27z[, and their uniformity can be
graphically assessed with the uniform probability plot. In what concerns the co-
latitudes, their distribution is not uniform. As a matter of fact, one can see the
uniform distribution as the limit case of the von Mises-Fisher distribution. By
property 6 of B.2.10, the co-latitude is independently distributed from the longitude
and its density f,( ) will tend to the following density for x — 0:

| 1
fc@ —> f(@)==sind = F(@)=—(1-cosb). 10.15
K—0 2 2
One can graphically assess this distribution by means of a co-latitude plot where
the sorted observations &; are plotted against arccos(1-2(i/n)), i = 1, 2, ..., n. In
case of uniformity, one should obtain a unit slope straight line passing through the
origin.
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Example 10.10

Q: Consider a spherical data sample as represented in Figure 10.5 with x= 0.001.
Assess its uniformity.

A: Let a represent the data matrix. We use unifplot(a) and
colatplot(a,0) (see Commands 10.2) to obtain the graphical plots shown in
Figure 10.8. We see that both plots strongly suggest a uniform distribution on the
sphere. i
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Figure 10.8. Longitude plot (a) and co-latitude plot (b) of the von Mises-Fisher
distributed data of Figure 10.5 with x=0.001.

10.4.2 The Rayleigh Test of Uniformity

Let p denote the population mean resultant length, i.e., the population
concentration, whose sample estimate is 7. The null hypothesis, Hy, for the
Rayleigh’s test of uniformity is: p =0 (zero concentration).

For circular data the Rayleigh test statistic is:

z=nr’=rn. 10.16

Critical values of the sampling distribution of z can be computed using the
following approximation (Wilkie D, 1983):

P(sz):expw1+4n+4(n2—nk)—(1+zn)). 10.17

For spherical data, the Rayleigh test statistic is:

z=3n7%=3/n. 10.18

Using the modified test statistic:
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z =(1-1/2n))z+z*/(10n), 10.19

it can be proven that the distribution of z* is asymptotically ;[32 with an error
decreasing as 1/n (Mardia KV, Jupp PE, 2000).

The Rayleigh test is implemented in MATLAB and R function rayleigh (see
Commands 10.5)

Example 10.11

Q: Apply the Rayleigh test to the wind direction WDF data of the Weather
dataset and to the measurement data M1 of the Soi1l Pollution dataset.

A: Denoting by wdf and m1 the matrices for the datasets, the probability values
under the null hypothesis are obtained in MATLAB as follows:

» p=rayleigh (wdf)

0.1906

» p=rayleigh(ml)
p =
0

Thus, we accept the null hypothesis of uniformity at the 5% level for the WDF

data, and reject it for the soil pollution M1 data (see Figure 10.9).
0

Figure 10.9. Measurement set M1 (negative gradient of Pb-tetracthyl concen-
tration in the soil) of the Soil Pollution dataset.
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Commands 10.5. MATLAB and R functions for computing statistical tests of
directional data.

p=rayleigh(a)
[u2,uc]=watson (a, f,alphal)
[u2,uc]=watsonvmises (a,alphal)

MATLAB [fo, fc, k1,k2] =watswill (al,a2,alpha)
[w,wc]=unifscores (a,alpha)
[gw, gc]=watsongw (a,alpha)

R rayleigh(a)

unifscores (a,alpha)

Function rayleigh (a) implements the Rayleigh test of uniformity for the data
matrix a (circular or spherical data).

Function watson implements the Watson goodness-of-fit test, returning the
test statistic u2 and the critical value uc computed for the data vector a (circular
data) with theoretical distribution values in £. Vector a must be previously sorted
in ascending order (and f accordingly). The valid values of alphal are 1, 2, 3, 4
and 5 for ¢ =0.1, 0.05, 0.025, 0.01 and 0.005, respectively.

The watsonvmises function implements the Watson test assessing von
Misesness at alphal level. No previous sorting of the circular data a is
necessary.

Function watswill implements the Watson-Williams two-sample test for von
Mises populations, using samples al and a2 (circular or spherical data), at a
significance level alpha. The observed test statistic and theoretical value are
returned in fo and fc, respectively; k1 and k2 are the estimated concentrations.

Function unifscores implements the uniform scores test at alpha level,
returning the observed statistic w and the critical value wc. The first column of
input matrix a must contain the circular data of all independent groups; the second
column must contain the group codes from 1 through the highest code number.

Function watsongw implements the Watson test of equality of means for
independent spherical data samples. The first two columns of input matrix a
contain the longitudes and colatitudes. The last column of a contains group codes,
starting with 1. The function returns the observed test statistic gw and the critical
value gc at alpha significance value.

The R functions behave in the same way as their equivalent MATLAB
functions. For instance, Example 10.11 is solved in R with:

> rayleigh (wdf)
[1] 0.1906450

> rayleigh(ml)
[1] 1.242340e-13
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10.4.3 The Watson Goodness of Fit Test

The Watson’s U* goodness of fit test for circular distributions is based on the
computation of the mean square deviation between the empirical and the
theoretical distribution.

Consider the n angular values sorted by ascending order: 6, < 6 < ... < 6,. Let
V; = F(0;) represent the value of the theoretical distribution for the angle &;, and
V represent the average of the V;. The test statistic is:

! n (2i-1), _ 1)’
U,f :ZVI‘Z_Z&JF”E_[V_% } 10.20
i=1

i=l n 2

Critical values of U ,f can be found in tables (see e.g. Kanji GK, 1999).

Function watson, implemented in MATLAB (see Commands 10.5), can be
used to apply the Watson goodness of fit test to any circular distribution. It is
particularly useful for assessing the goodness of fit to the von Mises distribution,
using the mean direction and concentration factor estimated from the sample.

Example 10.12

Q: Assess, at the 5% significance level, the von Misesness of the data represented
in Figure 10.4 with x = 2 and the wind direction data WDB of the Weather
dataset.

A: The watson function assumes that the data has been previously sorted. Let us
denote the data of Figure 10.4 with x = 2 by a. We then use the following
sequence of commands:

» a = sort(a);
» m = meandir (a) ;
» k = ainv(m(3),2)
k =
2.5192
» f = vmises2cdf (a, k)
» [u2,uc] = watson(a,f,2)
u2 =
0.1484
uc =
0.1860

Therefore, we do not reject the null hypothesis, at the 5% level, that the data
follows a von Mises distribution since the observed test statistic u2 is lower than
the critical value uc.

Note that the function vmises2cdf assumes a distribution with ¢ = 0. In
general, one should therefore previously refer the data to the estimated mean.
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Although data matrix a was generated with x# = 0, its estimated mean is not zero;
using the data referred to the estimated mean, we obtain a smaller u2 = 0.1237.

Also note that when using the function vimises2cdf, the input data a must be
specified in the [-180°, 180°] interval.

Function watsonvmises (see Commands 10.5) implements all the above
operations taking care of all the necessary data recoding for an input data matrix in
standard format. Applying watsonvmises to the WDB data, the von Mises
hypothesis is not rejected at the 5% level (u2= 0.1042; uc= 0.185). This
contradicts the suggestion obtained from visual inspection in Example 10.2 for this
low concentrated data (7 = 0.358). 0

10.4.4 Assessing the von Misesness of Spherical Distributions

When analysing spherical data it is advisable to first obtain an approximate idea of
the distribution shape. This can be done by analysing the eigenvalues of the
following scatter matrix of the points about the origin:

T= XX, 10.21

1

I |~

n

1

Let the eigenvalues be denoted by A;, 4, and A; and the eigenvectors by ti, t,
and t;, respectively. The shape of the distribution can be inferred from the
magnitudes of the eigenvalues as shown in Table 10.2 (for details, see Mardia KV,
Jupp PE, 2000). The scatter matrix can be computed with the scattermx
function implemented in MATLAB (see Commands 10.3).

Table 10.2. Distribution shapes of spherical distributions according to the
eigenvalues and mean resultant length, 7.

Magnitudes Type of Distribution
ﬂ‘l ~ 22 ~ 13 Uniform
Ay large; A, # A; small Unimodal if 7 ~ 1, bimodal otherwise

Unimodal if 7 ~ 1, bimodal otherwise with

A large; 4, =45 small rotational symmetry about t;

Ay #4, large; A3 small Girdle concentrated about circle in plane of ti, t,

A = Ay large; A; small Girdle with rotational symmetry about t;
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Example 10.13

Q: Analyse the shape of the distribution of the gradient measurement set M1 of the
Soil Pollution dataset (see Example 10.11 and Figure 10.9) using the scatter
matrix. Assume that the data is stored in m1 in standard format.

A: We first run the following sequence of commands:

» m = meandir (ml) ;
» rbar = m(3)
rbar =

0.9165

» t = scattermx(ml) ;
» [v,lambdal = eig(t)

V:

-0.3564 -0.8902 0.2837
0.0952 -0.3366 -0.9368
0.9295 -0.3069 0.2047

lambda =
0.0047 0 0
0 0.1379 0
0 0 0.8574

We thus conclude that the distribution is unimodal without rotational symmetry.

The von Misesness of a distribution can be graphically assessed, after rotating
the data so that the mean direction maps onto [0 0 1]’ (using function rotate
described in Commands 10.3), by the following plots:

1. Co-latitude plot: plots the ordered values of 1 — cosé against —In(1-
(i — 0.5)/n). For a von Mises distribution and a not too small x (say, x> 2),
the plot should be a straight line through the origin and with slope 1/x.

2. Longitude plot: plots the ordered values of ¢ against (i — 0.5)/n. For a von
Mises distribution, the plot should be a straight line through the origin with
unit slope.

The plots are implemented in MATLAB (see Commands 10.2) and denoted
colatplot and longplot. These functions, which internally perform a
rotation of the data, also return a value indicating whether or not the null
hypothesis should be rejected at the 1% significance level, based on test statistics
described in (Fisher NI, Best DJ, 1984).

Example 10.14

Q: Using the co-latitude and longitude plots, assess the von Misesness of the
gradient measurement set M1 of the Soil Pollution dataset.
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A: Figure 10.10 shows the respective plots obtained with MATLAB functions
colatplot and longplot. Both plots suggest an important departure from von
Misesness. The colatplot and longplot results also indicate the rejection of
the null hypothesis for the co-latitude (h = 1) and the non-rejection for the

longitude (h = 0). 0
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Figure 10.10. Co-latitude plot (a) and longitude plot (b) for the gradient
measurement set M1 of the soil pollution dataset.

10.5 Tests on von Mises Distributions

10.5.1 One-Sample Mean Test

The most usual one-sample test is the mean direction test, which uses the same
approach followed in the determination of confidence intervals for the mean
direction, described in section 10.3.

Example 10.15

Q: Consider the Joints’ dataset, containing directions of granite joints measured
from a city street in Porto, Portugal. The mean direction of the data was studied in
Example 10.5; the 95% confidence interval for the mean was studied in Example
10.7. Assume that a geotectonic theory predicts a 90° pitch for the granites in
Porto. Does the Joints’ sample reject this theory at a 95% confidence level?

A: The mean direction of the sample has a co-latitude 8 = 178.8° (see Example
10.5). The 95% confidence interval of the mean direction corresponds to a
deviation of 4.1° (see Example 10.7). Therefore, the Joints’ dataset does not
reject the theory at 5% significance level, since the 90° pitch corresponds to a co-
latitude of 180° which falls inside the [178.8° — 4.1°, 178.8° + 4.1°] interval.

0
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10.5.2 Mean Test for Two Independent Samples

The Watson-Williams test assesses whether or not the null hypothesis of equal
mean directions of two von Mises populations must be rejected based on the
evidence provided by two independent samples with 7, and 7, directions. The test
assumes equal concentrations of the distributions and is based on the comparison
of the resultant lengths. For large x (say x> 2) the test statistic is:

% :k(n—Z)(rl +7,—7)
n—r —r

F

F p-L(p-D)(n-2) > 10.22

where 7| and r, are the resultant lengths of each sample and r is the resultant length
of the combined sample with n = n; + n, cases. For the sphere, the factor & is 1; for
the circle, the factor k is estimated as 1+ 3/(8 k).

The Watson-Williams test is implemented in the MATLAB function
watswill (see Commands 10.5). It is considered a robust test, suffering little
influence from mild departures of the underlying assumptions.

Example 10.16

Q: Consider the wind direction WD data of the Weather dataset (Data 2
datasheet), which represents the wind directions for several days in all seasons,
during the years 1999 and 2000, measured at a location in Porto, Portugal.
Compare the mean wind direction of Winter (SEASON = 1) vs. Summer
(SEASON = 3) assuming that the WD data in every season follows a von Mises
distribution, and that the sample is a valid random sample.

A: Using the watswill function as shown below, we reject the hypothesis of
equal mean wind directions during winter and summer, at the 5% significance
level. Note that the estimated concentrations have close values.

[fo,fc,kl,k2]=watswill (wd(1:25),wd(50:71),0.05)
fo =

69.7865
fc =

4.0670
k1l =

1.4734
k2 =

1.3581 i
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10.6 Non-Parametric Tests

The von Misessness of directional data distributions is difficult to guarantee in
many practical cases . Therefore, non-parametric tests, namely those based on
ranking procedures similar to those described in Chapter 5, constitute an important
tool when comparing directional data samples.

10.6.1 The Uniform Scores Test for Circular Data

Let us consider ¢ independent samples of circular data, each with n; cases. The
uniform scores test assesses the similarity of the g distributions based on scores of
the ordered combined data. For that purpose, let us consider the combined dataset
with n = Zz:l n; observations sorted by ascending order. Denoting the ith
observation in the kth group by 8;, we now substitute it by the uniform score:

27 wy,

Bix = s =1y, 10.23

n
where the wy are linear ranks in [1, n]. Thus, the observations are replaced by
equally spaced points in the unit circle, preserving their order.

Let r; represent the resultant length of the kth sample corresponding to the
uniform scores. Under the null hypothesis of equal distributions, we expect the S
to be uniformly distributed in the circle. Using the test statistic:

q 2
w=23" 10.24
k=11

we then reject the null hypothesis for significantly large values of .

The asymptotic distribution of W, adequate for n > 20, is ;(22( g-1) - For further
details see (Mardia KV, Jupp PE, 2000). The uniform scores test is implemented
by function unifscores (see Commands 10.5).

Example 10.17

Q: Assess whether the distribution of the wind direction (WD) of the Weather
dataset (Data 2 datasheet) can be considered the same for all four seasons.

A: Denoting by wd the matrix whose first column is the wind direction data and
whose second column is the season code, we apply the MATLAB unifscores
function as shown below and conclude the rejection of equal distributions of the
wind direction in all four seasons at the 5% significance level (w > wc).

3
Unfortunately, there is no equivalent of the Central Limit Theorem for directional data.
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Similar results are obtained with the R unifscores function.

» [w,wc]=unifscores(wd, 0.05)
w =
35.0909
we =
12.5916 a0

10.6.2 The Watson Test for Spherical Data

Let us consider g independent samples of spherical data, each with n; cases. The
Watson test assesses the equality of the ¢ mean directions, assuming that the
distributions are rotationally symmetric.

The test is based on the estimation of a pooled mean of the g samples, using
appropriate weights, w;, summing up to unity. For not too different standard
deviations, the weights can be computed as w;, = n/n with n =ZZ:1 n; . More
complex formulas have to be used in the computation of the pooled mean in the
case of very different standard deviations. For details see (Fisher NI, Lewis T,
Embleton BJJ (1987). Function pooledmean (see Commands 10.3) implements
the computation of the pooled mean of ¢ independent samples of circular or
spherical data.

Denoting by Xo; = [Xor, Yo Zox]” the mean direction of each group, the pooled
mean projections are computed as:

_ q = . _ q = . _ q =
Xy —Zkzlwk”k%k 5V _Zkzlwkrkyok 5 Zy —ZkZIWkaZOk . 10.25

The pooled mean resultant length is:

P =Xt Yotz 10.26

Under the null hypothesis of equality of means, we would obtain the same value
of the pooled mean resultant length simply by weighting the group resultant
lengths:

The Watson test rejects the null hypothesis for large values of the following
statistic:

G, =2n(p, —7,). 10.28

The asymptotic distribution of G,, is ;(qu_z (for n; > 25). Function watsongw
(see Commands 10.5) implements this test.
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Example 10.18

Q: Consider the measurements R4, R5 and R6 of the negative gradient of the Soil
Pollution dataset, performed in similar conditions. Assess whether the mean
gradients above and below 20 m are significantly different at 5% level.

A: We establish two groups of measurements according to the value of variable z
(depth) being above or below 20 m. The mean directions of these two groups are:

Group 1: (156.17°, 117.40°;
Group 2: (316.99°, 116.25°).

Assuming that the groups are rotationally symmetric and since the sizes are
ny = 45 and n, = 30, we apply the Watson test at a significance level of 5%,
obtaining an observed test statistic of 44.9. Since ;(3.95’2 =5.99, we reject the null
hypothesis of equality of means. a

10.6.3 Testing Two Paired Samples

The previous two-sample tests assumed that the samples were independent. The
two-paired-sample test can be reduced to a one-sample test using the same
technique as in Chapter 4 (see section 4.4.3.1), i.e., employing the differences
between pair members. If the distributions of the two samples are similar, we
expect that the difference sample will be uniformly distributed. The function
dirdif implemented in MATLAB (see Commands 10.3) computes the
directional data of the difference set in standard format.

Example 10.19

Q: Consider the measurements M2 and M3 of the Soil Pollution dataset.
Assess, at the 5% significance level, if one can accept that the two measurement
methods yield similar distributions.

A: Let soil denote the data matrix containing all measurements of the Soil
Pollution dataset. Measurements M2 and M3 correspond to the column pairs
3-4 and 5-6 of soil, respectively. We use the sequence of R commands shown
below and do not reject the hypothesis of similar distributions at the 5% level of
significance.

> m2<-so0il[,3:4]
> m3<-s01l1[,5:6]
> d<-dirdif (m2,m3)
> p<-rayleigh(d)
>
[1

o
1 0.1772144
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Exercises

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Compute the mean directions of the wind variable WD (Weather dataset, Data 2)

for the four seasons and perform the following analyses:

a) Assess the uniformity of the measurements both graphically and with the
Rayleigh test. Comment on the relation between the uniform plot shape and the
observed value of the test statistic. Which set(s) can be accepted as being
uniformly distributed at a 1% level of significance?

b)  Assess the von Misesness of the measurements.

Consider the three measurements sets, H, A and I, of the VCG dataset. Using a specific
methodology, each of these measurement sets represents circular direction estimates
of the maximum electrical heart vector in 97 patients.

a) Inspect the circular plots of the three sets.

b) Assess the uniformity of the measurements both graphically and with the
Rayleigh test. Comment on the relation between the uniform plot shape and the
observed value of the test statistic. Which set(s) can be accepted as being
uniformly distributed at a 1% level of significance?

c) Assess the von Misesness of the measurements.

Which type of test is adequate for the comparison of any pair of measurement sets
studied in the previous Exercise 10.2? Perform the respective pair-wise comparison of
the distributions.

Assuming a von Mises distribution, compute the 95% confidence intervals of the
mean directions of the measurement sets studied in the previous Exercise 10.2. Plot
the data in order to graphically interpret the results.

In the von Misesness assessment of the WDB measurement set studied in Example
10.12, an estimate of the concentration parameter x was used. Show that if instead of
this estimate we had used the value employed in the data generation (x = 2), we still
would not have rejected the null hypothesis.

Compare the wind directions during March on two streets in Porto, using the
Weather dataset (Data 3) and assuming that the datasets are valid random
samples.

Consider the Wave dataset containing angular measurements corresponding to

minimal acoustic pressure in ultrasonic radiation fields. Perform the following

analyses:

a)  Determine the mean directions of the TRa and TRb measurement sets.

b) Show that both measurement sets support at a 5% significance level the
hypothesis of a von Mises distribution.

c) Compute the 95% confidence interval of the mean direction estimates.

d) Compute the concentration parameter for both measurement sets.

e) For the two transducers TRa and TRb, compute the angular sector spanning 95%
of the measurements, according to a von Mises distribution.
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10.8 Compare the two measurement sets, TRa and TRb, studied in the previous Exercise
10.7, using appropriate parametric and non-parametric tests.

10.9 The Pleiades data of the Stars’ dataset contains measurements of the longitude
and co-latitude of the stars constituting the Pleiades’ constellation as well as their
photo-visual magnitude. Perform the following analyses:

a)
b)

©)

Determine whether the Pleiades’ data can be modelled by a von Mises
distribution.

Compute the mean direction of the Pleiades’ data with the 95% confidence
interval.

Compare the mean direction of the Pleiades’ stars with photo-visual magnitude
above 12 with the mean direction of the remaining stars.

10.10 The Praesepe data of the Stars’ dataset contains measurements of the longitude
and co-latitude of the stars constituting the Praesepe constellation obtained by two
researchers (Gould and Hall).

a)
b)

©)

Determine whether the Praesepe data can be modelled by a von Mises
distribution.

Determine the mean direction of the Praesepe data with the 95% confidence
interval.

Compare the mean directions of the Prasepe data obtained by the two
researchers.



Appendix A - Short Survey on Probability Theory

In Appendix A we present a short survey on Probability Theory, emphasising the
most important results in this area in order to afford a better understanding of the
statistical methods described in the book. We skip proofs of Theorems, which can
be found in abundant references on the subject.

A.1 Basic Notions

A.1.1 Events and Frequencies

Probability is a measure of uncertainty attached to the outcome of a random
experiment, the word “experiment” having a broad meaning, since it can, for
instance, be a thought experiment or the comprehension of a set of given data
whose generation could be difficult to guess. The main requirement is being able to
view the outcomes of the experiment as being composed of single events, such as
A, B, ... The measure of certainty must, however, satisfy some conditions,
presented in section A.1.2.

In the frequency approach to fixing the uncertainty measure, one uses the
absolute frequencies of occurrence, ny, ng, ..., of the single events in » independent
outcomes of the experiment. We then measure, for instance, the uncertainty of 4 in
n outcomes using the relative frequency (or frequency for short):

fo=la Al
n

In a long run of outcomes, i.e., with n — oo, the relative frequency is expected
to stabilise, “converging” to the uncertainty measure known as probability. This
will be a real number in [0, 1], with the value 0 corresponding to an event that
never occurs (the impossible event) and the value 1 corresponding to an event that
always occurs (the sure event). Other ways of obtaining probability measures in
[0, 17, besides this classical “event frequency” approach have also been proposed.

We will now proceed to describe the mathematical formalism for operating with
probabilities. Let £ denote the set constituted by the single events £; of a random
experiment, known as the sample space:

E={E, E,,...}. A2

Subsets of E correspond to events of the random experiment, with singleton
subsets corresponding to single events. The empty subset, ¢, denotes the
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impossible event. The usual operations of union (U), intersection ({1) and
complement () can be applied to subsets of .
Consider a collection of events, 4 , defined on &, such that:

i. If 4, edthen 4, =E—A; € 4.
ii. Given the finite or denumerably infinite sequence 4,,4,,..., such that
A; € A, Vi, then UA‘ eA.

Note that e ﬂsmce E=AUA . In addition, using the well-known De
Morgan’s law ( 4; U 4; = 4, ﬂA ), it is verified that (] 4; € 4 as well as ge 4.
The collection 4 w1th the operatlons of union, intersection and complement
constitutes what is known as a Borel algebra.

A.1.2 Probability Axioms

To every event 4 € A4, of a Borel algebra, we assign a real number P(A4), satisfying
the following Kolmogorov’s axioms of probability:

1. 0<PA)<L.
2. Given the finite or denumerably infinite sequence A4,,4,,..., such that any
two events are mutually exclusive, 4; () A L =¢,Vi, ], then

P(L)A[J:;P(Ai).
3. P(E)=1.

The triplet (£, A4, P) is called a probability space.
Let us now enumerate some important consequences of the axioms:

i.  P(A)=1-P(A); P($)=1-P(E)=0.

ii. A4cB= P(A)<P(B).

iii. ANB#¢= P(AUB)=P(A)+P(B)-P(ANB).
iv. P(UP(A )J<ZP(A)

i=l1 i=l1

If the setfz{El,Ez,...,Ek} of all possible outcomes is finite, and if all
outcomes are equally likely, P(E;)= p, then the triplet (£, 4, P) constitutes a
classical probability space. We then have:

k k 1
1:P(£)=P[UE,.j=ZP(E,.)=kp = p=o A3

i=1 i=1
Furthermore, if 4 is the union of m elementary events, one has:

m
P(A)=—, A. 4
(==
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corresponding to the classical approach of defining probability, also known as
Laplace rule: ratio of the number of favourable events over the number of possible
events, considered equiprobable.

One often needs to use the main operations of combinatorial analysis in order to
compute the number of favourable events and of possible events.

Example A. 1
Q: Two dice are thrown. What is the probability that the sum of their faces is four?

A: When throwing two dice there are 6x6 equiprobable events. From these, only
the events (1,3), (3,1), (2,2) are favourable. Therefore:

3
A)=—=0.083.
p(A) 36

Thus, in the frequency interpretation of probability we expect to obtain four as
sum of the faces roughly 8% of the times in a long run of two-dice tossing.

a0
Example A. 2

Q: Two cards are drawn from a deck of 52 cards. Compute the probability of
obtaining two aces, when drawing with and without replacement.

A: When drawing a card from a deck, there are 4 possibilities of obtaining an ace
out of the 52 cards. Therefore, with replacement, the number of possible events is
52x52 and the number of favourable events is 4x4. Thus:

4x4

52x52
When drawing without replacement we are left, in the second drawing, with 51
possibilities, only 3 of which are favourable. Thus:
4x3

P(A4) = =0.0045 . 0
52%51

P(4) = =0.0059 .

Example A. 3

Q: N letters are put randomly into N envelopes. What is the probability that the
right letters get into the envelopes?

A: There are N distinct ways to put one of the letters (the first) in the right
envelope. The next (second) letter has now a choice of N— 1 free envelopes, and so
on. We have, therefore, a total number of factorial of N, N! = N(N — 1)(N — 2)...1
permutations of possibilities for the N letters. Thus:

P(A)=1/N!. 0
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A.2 Conditional Probability and Independence

A.2.1 Conditional Probability and Intersection Rule
If in n outcomes of an experiment, the event B has occurred np times and among
them the event 4 has occurred n,p times, we have:

np . " 4B
Je=—"5 fap="- A5
n n

We define the conditional frequency of occurring A given that B has occurred
as:

f _ nyp _ fA NB
Jap =" = :
| np /B

Likewise, we define the conditional probability of A given that B has occurred —
denoted P(4 | B) —, with P(B) > 0, as the ratio:

_P(ANB)

A6

P(4]|B) A7
P(B)
We have, similarly, for the conditional probability of B given 4:
P(ANB
P(B|A)= w A.8
P(4)

From the definition of conditional probability, the following rule of compound
probability results:

P(ANB)=P(A)P(B| A)=P(B)P(A|B), A.9
which generalizes to the following rule of event intersection:

P(4, ﬂA2 ﬂ...ﬂAn)=
P(A)P(Ay | A)P(As | A N Ay) ... P(A4, | 4N A N0 4, ).

A.2.2Independent Events

If the occurrence of B has no effect on the occurrence of 4, both events are said to
be independent, and we then have, for non-null probabilities of 4 and B:

P(A|B)=P(4) and P(B|A)=P(B). A 11

Therefore, using the intersection rule A.9, we define two events as being
independent when the following multiplication rule holds:

P(AN B) = P(A)P(B). A 12
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Given a set of n events, they are jointly or mutually independent if the
multiplication rule holds for:

—  Pairs: P(4;NA4;)=P(4)P(4;), 1<i,j<n;

— Triplets:  P(4; N A4;NA4,)=P(4,)P(4;)P(4;), 1<i,j,k<n;
and so on,

~ untilm: P(4,NAyN...NA,)= P(4)P(4,)...P(4,).

If the independence is only verified for pairs of events, they are said to be
pairwise independent.

Example A. 4

Q: What is the probability of winning the football lottery composed of 13 matches
with three equiprobable outcomes: “win”, “loose”, or “even”?

A: The outcomes of the 13 matches are jointly independent, therefore:

11 1 1
PA)y=——...—=—. 0
4 33 3 3B
13 times
Example A. S

Q: An airplane has a probability of 1/3 to hit a railway with a bomb. What is the
probability that the railway is destroyed when 3 bombs are dropped?

A: The probability of not hitting the railway with one bomb is 2/3. Assuming that
the events of not hitting the railway are independent, we have:

2

3
P(A) =1—[gj =0.7. 0

Example A. 6
Q: What is the probability of obtaining 2 sixes when throwing a dice 6 times?

A: For any sequence with 2 sixes out of 6 throws the probability of its occurrence
is:

(42

In order to compute how many such sequences exist we just notice that this is
equivalent to choosing two positions of the sequence, out of six possible positions.
This is given by

6 !
= & _5%5 15 therefore, P(6.2) = 15P(4) = 0.2. 0
2) a4 2
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A.3 Compound Experiments

Let & and &, be two sample spaces. We then form the space of the Cartesian
product E;xE,, corresponding to the compound experiment whose elementary
events are the pairs of elementary events of & and ,.

We now have the triplet (E,x%,, 4, P) with:

P(4;,B;)=P(4;,)P(B;), if 4; €E|,B; €E, areindependent;
P(4;,B;)=P(4;)P(B; | 4;), otherwise.

This is generalized in a straightforward way to a compound experiment
corresponding to the Cartesian product of n sample spaces.

Example A. 7

Q: An experiment consists in drawing two cards from a deck, with replacement,
and noting down if the cards are: ace, figure (king, queen, jack) or number (2 to
10). Represent the sample space of the experiment composed of two “drawing one
card” experiments, with the respective probabilities.

A: Since the card drawing is made with replacement, the two card drawings are
jointly independent and we have the representation of the compound experiment
shown in Figure A.1. i

Notice that the sums along the rows and along the columns, the so-called
marginal probabilities, yield the same value: the probabilities of the single
experiment of drawing one card. We have:

k k
P(4;) =Y P(4)P(B; | 4;) =" P(4;)P(B)); A 13

j=1 j=1

k k
ZZP(Ai)P(Bj)zl.

0.5
ace figure number

ace 0.006 0018 0.053 | 0.077
figure | 0.018 0.053  0.160 | 0.231
number | 0.053 0160  0.479 | 0.692

0077 0231 0692 1.000

0.4

0.3

0.2

0.1

number
figure

number

Figure A.1. Sample space and probabilities corresponding to the compound card
drawing experiment.
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The first rule, A.13, is known as the fotal probability rule, which applies
whenever one has a partition of the sample space into a finite or denumerably
infinite sequence of events, C;, C,, ..., with non-null probability, mutually disjoint
and with P(UC,)=1.

A.4 Bayes’ Theorem

Let C}, C,, ... be a partition, to which we can apply the total probability rule as
previously mentioned in A.13. From this rule, the following Bayes’ Theorem can
then be stated:

P(C)P(A]Cy)

PG 1= ZP(C )P(A|C,)

=L2,... . A. 14

Notice that Z P(C,14)=1.

In class1ﬁcat10n problems the probabilities P(C,) are called the “a priori”
probabilities, priors or prevalences, and the P(C, |A)the “a posteriori” or
posterior probabilities.

Often the C; are the “causes” and A4 is the “effect”. The Bayes’ Theorem allows
us then to infer the probability of the causes, as in the following example.

Example A. 8

Q: The probabilities of producing a defective item with three machines M, M,, M;
are 0.1, 0.08 and 0.09, respectively. At any instant, only one of the machines is
being operated, in the following percentage of the daily work, respectively: 30%,
30%, 40%. An item is randomly chosen and found to be defective. Which machine
most probably produced it?

A: Denoting the defective item by 4, the total probability breaks down into:

P(M)P(A| M,)=03x0.1;
P(M,)P(A| M,)=03x0.08;
P(M{)P(A| My)=0.4%0.09 .

Therefore, the total probability is 0.09 and using Bayes’ Theorem we obtain:
P(M,|A4)=033; P(M,|A4)=0.27; P(M;|A)=0.4. The machine that most
probably produced the defective item is M;. Notice that ZP(M ¢)=1 and
ZP(M lA=1. a

Example A. 9

Q: An urn contains 4 balls that can either be white or black. Four extractions are
made with replacement from the urn and found to be all white. What can be said
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about the composition of the urn if: a) all compositions are equally probable; b) the
compositions are in accordance to the extraction with replacement of 4 balls from
another urn, with an equal number of white and black balls?

A: There are five possible compositions, C;, for the urn: zero white balls (C) , 1
white ball (C)), ..., 4 white balls (C,). Let us first solve situation “a”, equally
probable compositions. Denoting by P, =P(C;)the probability of each
composition, we have: Py =P =...=P, =1/5. The probability of the event 4,
consisting in the extraction of 4 white balls, for each composition, is:

0N AV
P(4|Cy)=0, P(ACl):[Zj ,...,P(A|C4):[Zj =1.
Applying Bayes Theorem, the probability that the urn contains 4 white balls is:

P(Cy)P(A|Cy) 44

= =0.723.
S PCHPAIC;) 17 +2% +3% +4°
J

P(Cy|A) =

This is the largest “a posteriori” probability one can obtain. Therefore, for
situation “a”, the most probable composition is Cy.

In situation “b” the “a priori” probabilities of the composition are in accordance
to the binomial probabilities of extracting 4 balls from the second urn. Since this
urn has an equal number of white and black balls, the prevalences are therefore
proportional to the binomial coefficients (2 . For instance, the probability of Cyis:

P(CHPA[Cy) 4

P(C, | A)= =
! S P(CHP(A|C;) 41*+62% 143% +14°
J

=0.376.

This is, however, smaller than the probability for C5: P(C;|A4)=0.476.
Therefore, C; is the most probable composition, illustrating the drastic effect of the
prevalences. a

A.5 Random Variables and Distributions

A.5.1 Definition of Random Variable

A real function X = X(£)), defined on the sample space E = {El} of a random
experiment, is a random variable for the probability space (E, A, P), if for every
real number z, the subset:

(x<z}={E; X(E)<z}, A 15

is a member of the collection of events 4. Particularly, when z — oo, one obtains &
and with z — —o0, one obtains ¢.
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From the definition, one determines the event corresponding to an interval
la, b] as:

la<X <b}={E,;; X(E,)<b}-{E,; X(E,)<a}. A. 16

Example A. 10

Consider the random experiment of throwing two dice, with sample space & =
{(a,b); 1 <a,b<6}={(1,1),(L,2), ..., (6,6)} and the collection of events 1 that is
a Borel algebra defined on { {(1,1)}, {(1,2), 2,1)}, {(1,3), (2,2), (3,1)}, {(1,4),
(2,3), (3,2), (4,1)}, {(1,5), (2,4, (3,3), (4,2), (5,1)}, ..., {(6,6)} }. The following
variables X(E) can be defined:

X (a, b) = a+b. This is a random variable for the probability space (E, A4, P). For
instance, {X <4.5}= {(1,1), (1,2), 2,1, (1,3), (2.2), 3,1)} € A,

X (a, b) = ab. This is not a random variable for the probability space (Z, 4, P). For
instance, {X <3.5}= {(1,1), (1,2), (2,1), (1,3), (3,1)} ¢ A. 1]

A.5.2 Distribution and Density Functions

The probability distribution function (PDF) of a random variable X'is defined as:
Fy(x)=P(X <x). A. 17

We usually simplify the notation, whenever no confusion can arise from its use,
by writing F(x) instead of F (x).

Figure A.2 shows the distribution function of the random variable X(a, b) =
a + b of Example A.10.

Until now we have only considered examples involving sample spaces with a
finite number of elementary events, the so-called discrete sample spaces to which
discrete random variables are associated. These can also represent a denumerably
infinite number of elementary events.

For discrete random variables, with probabilities p; assigned to the singleton
events of 4, the following holds:

F(x)= ij . A. 18

-<
xj_x

For instance, in Example A.10, we have F(4.5) = p; + p, + p; = 0.17 with
pr = PU(LDY, pr = P({(1.2), (2.1)}) and ps = P({(13), (2.2), 3,1)}). The p,
sequence is called a probability distribution.

When dealing with non-denumerable infinite sample spaces, one needs to resort
to continuous random variables, characterized by a continuous distribution
function Fx(x), differentiable everywhere (except perhaps at a finite number of
points).
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1.2

F(x)

14 -
0.8 -
0.6 - -—

0.4 4 —

0.2 -—
X

0 — — —

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure A.2. Distribution function of the random variable associated to the sum of
the faces in the two-dice throwing experiment. The solid circles represent point
inclusion.

The function [ (x)=dFy (x)/dx (or simply f(x)) is called the probability
density function (pdf) of the continuous random variable X. The properties of the
density function are as follows:

i.  f(x)=0 (where defined);

i. [*f@de=1;

iii. F(x)= Lo F(@b)dt .

The event corresponding to | a, b] has the following probability:

Pla< X <b)=P(X <b)~P(X <a)=F(b)-F(a)= [ f(d1. A 19

This is the same as P(a < X <b) in the absence of a discontinuity at a. For an
infinitesimal interval we have:

Pla<X<a+Aa)=F(a+Aa)-F(a)= f(a)Aa =
F(a+Aa)—F(a) _P(a,a+Ad]) AL 20

= Aa Aa

which justifies the name density function, since it represents the “mass” probability
corresponding to the interval Aa, measured at a, per “unit length” of the random
variable (see Figure A.3a).

The solution X = x,, of the equation:

Fy(x)=a, A.21

is called the o-quantile of the random variable X. For ¢= 0.1 and 0.01, the
quantiles are called deciles and percentiles. Especially important are also the
quartiles (o= 0.25) and the median (a= 0.5) as shown in Figure A.3b. Quantiles
are useful location measures; for instance, the inter-quartile range, xy75s — Xo2s, 1S
often used to locate the central tendency of a distribution.
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0.5 0.5
f(x) fx)

0.4 0.4
03 1 0.3 E
0.2 0.2 E ' !
0.1 0.1 E E E

. o , ! ,

a a a+Aa x b 25% 50%  75% x

Figure A.3. a) A pdf example; the shaded area in [a, a+Ad] is an infinitesimal
probability mass. b) Interesting points of a pdf: lower quartile (25% of the total
area); median (50% of the total area); upper quartile (75% of the total area).

12 12
f(x) F(x)
11 * . 11
' \
: 1
0.8 1 ! ! 0.8
: i
0.6 1 i 0.6 -
1 1
: :
0.4 1 ' ! 0.4
: :
: 1
0.2 : i 0.2
: :
H lox
0 ; * 0
1

a -0.2 0 02 04 06 08 12 b -0.2 0 02 04 06 038 1 12

Figure A.4. Uniform random variable: a) Density function (the circles indicate
point inclusion); b) Distribution function.

Figure A.4 shows the uniform density and distribution functions defined in
[0, 1]. Note that P(a< X <a+w)=w for every a such that [a, a+w]c [0, 1],
which justifies the name uniform distribution.

A.5.3 Transformation of a Random Variable

Let X be a random variable defined in the probability space (E, 4, P), whose
distribution function is:

Fy(x)=P(X <x).

Consider the variable Y = g(X) such that every interval —co <Y < y maps into an
event S, of the collection 4. Then Y is a random variable whose distribution
function is:

Gy(M)=PY <y)=P(gX)<y)=P(xeS,). A 22
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Example A. 11

Q: Given a random variable X determine the distribution and density functions of
Y =g(X) = X"
A: Whenever y > 0 one has — ﬁ <X< \/; . Therefore:

0 if y<0

Gy(y):{P(YSy) it y>0°

For y > 0 we then have:

Gy(D) =P <y)=P(—[y <X < y)=Fy Jy)-Fy (=)

If F(x) is continuous and differentiable, we obtain for y > 0:

gY(y):ﬁ[fx(\/;)Jffx(—\/;)]' 0

Whenever g(X) has a derivative and is strictly monotonic, the following result
holds:

-1
gy (M =rfr( ) dg_(7)

dy

The reader may wish to redo Example A.11 by first considering the following
strictly monotonic function:

0 if X<0

X:
g(X) {XZ it X>0

A.6 Expectation, Variance and Moments

A.6.1 Definitions and Properties

Let X be a random variable and g(X) a new random variable resulting from
transforming X with the function g. The expectation of g(X), denoted E[g(X )], is

defined as:

E[g(X)] = Z g(x;)P(X =x;), if X is discrete (and the sum exists); A.23a

E[g(X )] = _[io 2(x)f(x)dx, if X is continuous (and the integral exists). A.23b
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Example A. 12

Q: A gambler throws a dice and wins 1€ if the face is odd, loses 2.5€ if the face is
2 or 4, and wins 3€ if the face is 6. What is the gambler’s expectation?

A: We have:
1 if X=13,5
g(x)=4-25 if X=24

3 if X=6.
1 25 3 1
Therefore: E|g(X)|=3—-2—+—=—.
lg(0]=32-27=+2 =1
The word “expectation” is somewhat misleading since the gambler will only
expect to get close to winning 1/6 € in a long run of throws. a

The following cases are worth noting:

1. g(X) =X: Expected value, mean or average of X.
H= E[X] = Z x;P(X =x;), if X is discrete (and the sum exists); A.24a
e E[X ] = fw xf(x)dx, if X is continuous (and the integral exists). A.24b

The mean of a distribution is the probabilistic mass center (center of gravity) of
the distribution.

Example A. 13

Q: Consider the Cauchy distribution, with: f (x) = 4 — > xeR. What is its
T a”+x
mean?
A: We have:
o 1
E[X]:i 5 al S-dx. But I T dx =—In(a® +x?), therefore the
T a% +x a”+x 2
integral diverges and the mean does not exist. 0

Properties of the mean (for arbitrary real constants a, b):

i.  E[aX +b]=aE[X]+b (linearity);
ii. E[X+Y]=E[x]+E[r] (additivity);
iii. E[XY ] = E[X ]E[Y ] if Xand Y are independent.

The mean reflects the “central tendency” of a distribution. For a data set with n
values x; occurring with frequencies f;, the mean is estimated as (see A.24a):
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=¥=3 %/ A.25
i=1

This is the so-called sample mean.

Example A. 14
Q: Show that the random variable X —u has zero mean.

A. Applying the linear property to E[X - ,u] we have:
E[X - u]=E[X]-p=pu-u=0. 0
2. g(X) =X": Moments of order k of X.
E[X*]= z xikP(X =x;), if Xis discrete (and the sum exists); A.26a
i
E[X*]= J.i (x— ,u)k f(x)dx , if X is continuous (and the integral exists).A.26b
Especially important, as explained below, is the moment of order two: E[X 2] .

3. g(X)=(X — w)": Central moments of order k of X.

my =E[(X )" 1=, (x, - )" P(X =x,),

if X'is discrete (and the sum exists); A27a
my =E(X =) 1= [7 (x= )" f(x)dx

if X is continuous (and the integral exists). A.27b

Of particular importance is the central moment of order two, m, (we often use

V[X] instead), and known as variance. Its square root is the standard deviation:
A

Ox = {V[X ]} .

Properties of the variance:

i Vv[x]xo0;

ii. V[X]=0 iff Xis a constant;

iii. V[aX +b]=a’V[x];

iv. V[x+r]=V[x]+V[r] ifXandY areindependent.

The variance reflects the “data spread” of a distribution. For a data set with »
values x; occurring with frequencies f;, and estimated mean x , the variance can be
estimated (see A.27a) as:
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veVX]=Y" (-0 A.28

This is the so-called sample variance. The square root of v, s = NG , is the
sample standard deviation. In Appendix C we present a better estimate of v.

The variance can be computed using the second order moment, observing that:

V[X]=E[(X — 2)* 1= B[ X ? |- 2uB[X |+ u? = E[X ?]— p?. A.29
4. Gauss’ approximation formulae:

i.  Elen]~gElx):

. d,

i. V[g(x)]~V[x] {—g

2
dx E[XJ '

A.6.2 Moment-Generating Function

The moment-generating function of a random variable X, is defined as the
expectation of e (when it exists), i.e.:

vy () =E[e™]. A. 30

The importance of this function stems from the fact that one can derive all
moments from it, using the result:

P IEAZ10) A3l

dt 20

A distribution function is uniquely determined by its moments as well as by its
moment-generating function.

Example A. 15

Q: Consider a random variable with the Poisson probability function
P(X =k)= e *A¥ / k!, k> 0. Determine its mean and variance using the moment-
generating function approach.

A: The moment-generating function is:
Wy ()= E[e’X ]: Yo ete A Ik=et YT (A k.

. . . . . 0
Since the power series expansion of the exponential is e* = zkzoxk / k! one
can write:

t t
Wy ()= e te® =MD
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d t
Hence: u = vr@OF  _ Je'ed I 2,
da |, (=0
d*w . (t
E[X2]=Z—§U =(le' +Die' D =24 = V[x]=1. T
t =0
1=0

A.6.3 Chebyshev Theorem

The Chebyshev Theorem states that for any random variable X and any real
constant k, the following holds:

P(|X—y|>ka)skl2. A. 32

Since it is applicable to any probability distribution, it is instructive to see the
proof (for continuous variables) of this surprising and very useful Theorem; from
the definition of variance, and denoting by S the domain where (X — i )* > a, we
have:

s =E[X — 0’| [ (e ) f () 2
L (x—p)? f(x)dx > aL F(x)dx = aP((X—,u)Z > a) .
Taking a = k&%, we get:
1
P((X—,u)z > kzaz)sk—z ,
from where the above result is obtained.
Example A. 16

Q: A machine produces resistances of nominal value 100 Q2 (ohm) with a standard
deviation of 1 Q. What is an upper bound for the probability of finding a resistance
deviating more than 3 Q from the mean?

A: The 3 Q tolerance corresponds to three standard deviations; therefore, the upper
bound is 1/9 =0.11. a0

A.7 The Binomial and Normal Distributions

A.7.1 The Binomial Distribution

One often needs to compute the probability that a certain event occurs £ times in a
sequence of n events. Let the probability of the interesting event (the success) be p.
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The probability of the complement (the failure) is, therefore, ¢ = 1 — p. The random
variable associated to the occurrence of k successes in n trials, X, has the binomial
probability distribution (see Example A.6):

n

P(X, =k)= (k

jpkq"k, 0<k<n. A. 33

By studying the P(X, =k+1)/ P(X, = k) ratios one can prove that the largest
probability value occurs at the integer value close to np — g or np. Figure A.5
shows the binomial probability function for two different values of n.

For the binomial distribution, one has:

Mean: x=np; Variance: o =npq.

Given the fast growth of the factorial function, it is often convenient to compute
the binomial probabilities using the Stirling formula:

nl=n"e"\2m(+¢,). A. 34
The quantity ¢, tends to zero with large n, with ng, tending to 1/,. The

convergence is quite fast: for n = 20 the error of the approximation is already
below 0.5%.

0.25 0.25
P(X=k) P (X=k)
021 0.2 1
0.15 4 0.15 4
0.1 0.1 1
0.05 4 0.05 4
k k
0- 0-
a 01 2 3 45 6 7 8 9 1 11 12 13 14 15 b 4 9 14 19 24 29 34 39 44 49

Figure A.5. Binomial probability functions for p = 0.3: a) n = 15 (np — g = 3.8);
b) n =50.

A.7.2 The Laws of Large Numbers

The following important result, known as Weak Law of Large Numbers, or
Bernoulli Theorem, can be proved using the binomial distribution:

k
P[—— p
n

> gj < % or, equivalently, P UE -p
&°n n

<gjz1—%. A.35
ENn
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Therefore, in order to obtain a certainty 1 — « (confidence level) that a relative
frequency deviates from the probability of an event less than ¢ (folerance or error),
one would need a sequence of  trials, with:

nz-—-. A. 36

25}20.

A stronger result is provided by the Strong Law of Large Numbers, which states
the convergence of k/n to p with probability one.

These results clarify the assumption made in section A.l of the convergence of
the relative frequency of an event to its probability, in a long sequence of trials.

k
—— P
n

n—o0

Note that lim P(

Example A. 17

Q: What is the tolerance of the percentage, p, of favourable votes on a certain
market product, based on a sample enquiry of 2500 persons, with a confidence
level of at least 95%?

A: As we do not know the exact value of p, we assume the worst-case situation for
A.36, occurring at p = g = %. We then have:

£= ‘/ﬂ = 0.045. 0
no

A.7.3 The Normal Distribution

For increasing values of n and with fixed p, the probability function of the
binomial distribution becomes flatter and the position of its maximum also grows
(see Figure A.5). Consider the following random variable, which is obtained from
the random variable with a binomial distribution by subtracting its mean and
dividing by its standard deviation (the so-called standardised random variable or
z-score):

Xn —np
VIpq

It can be proved that for large » and not too small p and ¢ (say, with np and ng
greater than 5), the standardised discrete variable is well approximated by a
continuous random variable having density function f{z), with the following
asymptotic result:

PZ) > f@)=

7 = A. 37

2

1 22 A.38
N2z

This result, known as De Moivre’s Theorem, can be proved using the above

Stirling formula A.34. The density function f{z) is called the standard normal (or
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Gaussian) density and is represented in Figure A.7 together with the distribution
function, also known as error function. Notice that, taking into account the
properties of the mean and variance, this new random variable has zero mean and
unit variance.

The approximation between normal and binomial distributions is quite good
even for not too large values of n. Figure A.6 shows the situation with n = 50,
p = 0.5. The maximum deviation between binomial and normal approximation
occurs at the middle of the distribution and is 0.056. For » = 1000, the deviation is
0.013. In practice, when np or nq are larger than 25, it is reasonably safe to use the
normal approximation of the binomial distribution.

Note that:

z=Xuz N o poEe Ly , A.39

npq > n P Pg/n

where N, . is the Gaussian distribution with mean 4 and standard deviation o, and
the following density function:

F() = 1207 A. 40
2ro

Both binomial and normal distribution values are listed in tables (see Appendix
D) and can also be obtained from software tools (such as EXCEL, SPSS,
STATISTICA, MATLAB and R).

1 =
09 F(x) {
0.8 |
07 |
06 |
05 |
04 |
0.3 |
0.2 |

0.1 1 I/I
0 T T T T X

0 5 10 15 20 25 30 35 40 45 50
Figure A.6. Normal approximation (solid line) of the binomial distribution (grey
bars) for n =50, p =0.5.

Example A. 18

Q: Compute the tolerance of the previous Example A.17 using the normal
approximation.

A: Like before, we consider the worst-case situation with p = ¢ = %. Since

0, =+1/4n=0.01, and the 95% confidence level corresponds to the interval
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[-1.960, 1.960] (see normal distribution tables), we then have: €= 1.960 = 0.0196

(smaller than the previous “model-free” estimate). i
0.5 1
f(x) 09 | £

0.4 0.8
0.7 1

0.3 06
0.5

0.2 0.4
0.3

0.1 4 0.2
0.1 4

0 ; ; ; ; ; 0 ‘ ; ; ; ;
a 3 2 0 1 2 Y3 p 3 2 A 0 1 2 Y3

Figure A.7. The standard normal density (a) and distribution (b) functions.

Example A. 19

Q: Let X be a standard normal variable. Determine the density of ¥ = X * and its
expectation.

A: Using the previous result of Example A.11:
1 1 _
e =—=[rm ) = 0.
2y V2

This is the density function of the so-called chi-square distribution with one
degree of freedom.

The expectation is: E[Y _[ yg(y)dy = (1/ V2 )_[ J_ e 2dy. Substituting y
by x%, it can be shown to be 1. 0

A.8 Multivariate Distributions

A.8.1 Definitions

A sequence of random variables X, X,..., X, can be viewed as a vector
X= [X Xy, X d] with d components. The multivariate (or joint) distribution
function is defined as:

F(x;,x9,..x)=P(X, Sx, X5 <x5,..., X, <x,). A. 41
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The following results are worth mentioning:

1. If for a fixed j, 1 < j<d, X; > oo, then F(x;,x,,...x;) converges to a
function of d — 1 wvariables which is the distribution function
F(X{500sX 15X j415-0,Xq) , the so-called jth marginal distribution.

2. Ifthe d-fold partial derivative:

O DF(x,,x,,...,
f(x,%0,.0,x5)= (1, x5 xd), A. 42
0x,0x, ...0x,

exists, then it is called the density function of x. We then have:
P((X,,Xz,...,Xd)eS)zJ'I....[Sf(xl,xz,...,xd)dxldxz odxy. A 43

Example A. 20

For the Example A.7, we defined the bivariate random vector x = {X 1 X, } , where
each X; performs the mapping: X(ace)=0; X(figure)=1; X(number)=2. The joint
distribution is shown in Figure A.8, computed from the probability function (see
Figure A.1). i

Figure A.8. Joint distribution of the bivariate random experiment of drawing two
cards, with replacement from a deck, and categorising them as ace (0), figure (1)
and number (2).

Example A. 21
Q: Consider the bivariate density function:

if 0<x <x,<]

otherwise.

B 2
Sx,xp) = 0

Compute the marginal distributions and densities as well as the probability
corresponding to xi, x, < V5.
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A: Note first that the domain where the density is non-null corresponds to a
triangle of area . Therefore, the total volume under the density function is 1 as it
should be. The marginal distributions and densities are computed as follows:

Fe)=[" 7 fuvdudy =] ( [l 2dvjdu = 2%, —x?

= f1(x1)=@=2—2x1
X1
© (X2 xp (v dF
Fy(xy) = J.—oo .[_oo J(u, v)dudy :Io (Io Zd”) dv :x22 = fr(x;y) = # =2x,
2

The probability is computed as:
P, <%, X, <) = [ " 2dudv=[ 2vdv="4.

The same result could be more simply obtained by noticing that the domain has
an area of 1/8. a0

Figure A.9. Bell-shaped surface of the bivariate normal density function.

The bivariate normal density function has a bell-shaped surface as shown in
Figure A.9. The equidensity curves in this surface are circles or ellipses (an
example of which is also shown in Figure A.9). The probability of the event
(x1 £ X < 2xp, y1 £ Y <y, is computed as the volume under the surface in the
mentioned interval of values for the random variables X and Y.

The equidensity surfaces of a trivariate normal density function are spheres or
ellipsoids, and in general, the equidensity hypersurfaces of a d-variate normal
density function are hyperspheres or hyperellipsoids in the d-dimensional
space, R
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A.8.2 Moments

The moments of multivariate random variables are a generalisation of the previous
definition for single variables. In particular, for bivariate distributions, we have the
central moments:

My =E[(X_ﬂx)k(Y—ﬂy)‘j]~ A. 44

The following central moments are worth noting:

2 . 2 .
My =0y : variance of X; my=0y: variance of ¥,

my; = Oxy= Oyy: covariance of X and Y, with m, = E[XY]—,uX,uy.

For multivariate d-dimensional distributions we have a symmetric positive
definite covariance matrix:

2
O-l 0-12 e ald
2
o o .. O
=2 72 2 A. 45
2
Udl O-d2 e Gd

The correlation coefficient, which is a measure of linear association between X
and 7Y, is defined by the relation:
O xy

P=EPyy =—. A. 46
O-X.O-Y

Properties of the correlation coefficient:

. -1<p<l;
i pyy = Pyxs
. p==x1 iff Y-pyy) oy=x(X—-puy)/ oy;

V. Paxibersa = Pxys A= 05 Puyipeyia =—Pxy» ac<0.

If m;; = 0, the random variables are said to be wuncorrelated. Since
E[XY ] = E[X ]E[Y ] if the wvariables are independent, then they are also
uncorrelated. The converse statement is not generally true. However, it is true in
the case of normal distributions, where uncorrelated variables are also independent.

The definitions of covariance and correlation coefficient have a straightforward
generalisation for the d-variate case.

A.8.3 Conditional Densities and Independence

Assume that the bivariate random vector [X, Y] has a density function f{x, y). Then,
the conditional distribution of X given Y is defined, whenever f{y) # 0, as:
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F(x|y)=P(XSx|Y=y)=Alyi§0P(X£x|y<YSy—i—Ay). A. 47

From the definition it can be proved that the following holds true:

S, y)=fxInf(). A. 48

In the case of discrete ¥, F(x|y) can be computed directly. It can also be
proved the Bayes’ Theorem version for this case:

P(y.)f(x]y;) A. 49

P(y, | x) = )
S TR YTETE!
k

Note the mixing of discrete prevalences with values of conditional density
functions.

A set of random variables X, X,,..., X are independent if the following
applies:

F(xp,x5,...x5)=F(x))F(x3)...F(x;); A.50a

S eeg) = S S () ee f () A.50b

For two independent variables, we then have:

S »)=f()f(); therefore, f(x|y)=f(x); f(yIx)=[(y). A.51
Also: E[xY]=E[X]E[r]. A. 52

It is readily seen that the random variables in correspondence with the bivariate
density of Example A.21 are not independent since f'(x;,x,) # f(x;)f(x,) .

Consider two independent random variables, X, X, , with Gaussian densities
and parameters (u,01), (1p,0,) respectively. The joint density is the product of the
marginal Gaussian densities:

~ { (o= ) (- ) }

2 + 2
RS - 2of 20} A 53

2rno,0,

In this case it can be proved that p;, = 0, i.e., for Gaussian distributions,
independent variables are also uncorrelated. In this case, the equidensity curves in
the (Xj, X,) plane are ellipsis aligned with the axes.

If the distributions are not independent (and are, therefore, correlated) one has:

1 [(ﬂ—m)i(xz—#z)z72PX1X2

1 2(1-p?%) { 20} 203 o102
e

270 ,0,4/1— p?

Sf(x,x,) = A. 54
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For the d-variate case, this generalises to:

JCTRE P ES TS S—— Xp(—l(x—u)’Zl (X—u)jsA- 55

) @r)4"? Jdet(T) © 2

where X is the symmetric matrix of the covariances with determinant det(X) and
x — p is the difference vector between the d-variate random vector and the mean
vector. The equidensity surfaces for the correlated normal variables are ellipsoids,
whose axes are the eigenvectors of .

A.8.4 Sums of Random Variables

Let X and Y be two independent random variables. Then, the distribution of their
sum corresponds to:

P(X+Y=s)= z P(X =x;)P(Y =y,;), if they are discrete; A.56a
J(l'erj =S
fxy (@)= Ji: fx @) fy(z—u)du , if they are continuous. A.56b

The roles of fy(u)and fy(u)can be interchanged. The operation performed
on the probability or density functions is called a convolution operation. By
analysing the integral A.56b, it is readily seen that the convolution operation can be
interpreted as multiplying one of the densities by the reflection of the other as it
slides along the domain variable u.

Figure A.10 illustrates the effect of the convolution operation when adding
discrete random variables for both symmetrical and asymmetrical probability
functions. Notice how successive convolutions will tend to produce a bell-shaped
probability function, displacing towards the right, even when the initial probability
function is asymmetrical.

Consider the arithmetic mean, X , of n i.i.d. random variables with mean z and
standard deviation o:

X=%" X /n A.57

As can be expected the probability or density function of X will tend to a bell-
shaped curve for large n. Also, taking into account the properties of the mean and
the variance, mentioned in A.6.1, it is clearly seen that the following holds:

E[X]=u; V[X]=62/n. A58a

Therefore, the distribution of X will have the same mean as the distribution of X
and a standard deviation (spread or dispersion) that decreases with /% . Note that
for any variables the additive property of the means is always verified but for the
variance this is not true:

V{Z ciXI} =Y VX 42 ¢ie O, A.58b

i<j
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A.8.5 Central Limit Theorem

We have previously seen how multiple addition of the same random variable tends
to produce a bell-shaped probability or density function. The Central Limit
Theorem (also known as Levy-Lindeberg Theorem) states that the sum of n
independent random variables, all with the same mean, z, and the same standard
deviation o # 0 has a density that is asymptotically Gaussian, with mean ny and
o, = O'\/; . Equivalently, the random variable:

Xyt X, X -

! on ; ovn ’

1 oo 20
—| e dx .
V27 L”

In particular the X y,..., X,, may be n independent copies of X .

Let us now consider the sequence of » mutually independent variables X,..., X,
with means 24 and variances o7 . Then, the sum § = X +...+ X, has mean and
variance given by u1 = u1, +...+ u, ando? =o{ +...+ 0, respectively.

We say that the sequence obeys the Central Limit Theorem if for every fixed
a < f, the following holds:

X A.59

is such that lim F X, (x)=
n—o0

P(a 3 ;” < ,Bj = Noy(B) =Ny (@). A. 60

As it turns out, a surprisingly large number of distributions satisfy the Central
Limit Theorem. As a matter of fact, a necessary and sufficient condition for this
result to hold is that the X; are mutually independent and uniformly bounded, i.e.,
|X k| < A (see Galambos, 1984, for details). In practice, many phenomena can be
considered the result of the addition of many independent causes, yielding then, by
the Central Limit Theorem, a distribution that closely approximates the normal
distribution, even for a moderate number of additive causes (say above 5).

Example A. 22
Consider the following probability functions defined for the domain {1, 2, 3, 4, 5,
6, 7} (zero outside):

Py={0.183, 0.270, 0.292, 0.146, 0.073, 0.029, 0.007};
Py=1{0.2,02,0.2,0.2,0.2,0,0};

P,={0.007, 0.029, 0.073, 0.146, 0.292, 0.270, 0.183}.

Figure A.11 shows the resulting probability function of the sum X + Y + Z. The
resemblance with the normal density function is manifest. 0
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0.25

p(x)

a
o}
0 N-o-o-S < SES =ws\ & 555 -6
b -1.5 -1 -0.5 0 0. 1 1.5

Figure A.10. Probability function of the sum of k& = 1,.., 4 i.i.d. discrete random
variables: a) Equiprobable random variable (symmetrical); b) Asymmetrical
random variable. The solid line shows the univariate probability function; all other
curves correspond to probability functions with a coarser dotted line for growing .
The circles represent the probability values.

p(x) px)

05

a %5 A 205 0 05 $ x1.s b % 05 0 05 1
Figure A.11. a) Probability function (curve with stars) resulting from the addition
of three random variables with distinct distributions; b) Comparison with the
normal density function (dotted line) having the same mean and standard deviation
(the peaked aspect is solely due to the low resolution used).
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B.1 Discrete Distributions

B.1.1 Bernoulli Distribution

Description: Success or failure in one trial. The probability of dichotomised events
was studied by Jacob Bernoulli (1645-1705), hence the name. A dichotomous trial
is also called a Bernoulli trial.

Sample space: {0, 1}, with 0 = failure (no success) and 1 = success.

Probability function:

p(x)=P(X =x)= p“(1- p)'™, or putting it more simply,

1—p=g, -0
p(x)z{ p=4 =0 B.1
Ds x=1

Mean: H=D.
Variance: o = pq,

0.9
08P —
0.7
0.6
0.5
0.4
0.3
0.2
* ]
0 £
0 1 x
Figure B.1. Bernoulli probability function for p = 0.2. The double arrow
corresponds to the ¢+ o interval .

Example B. 1

Q: A train waits 5 minutes at the platform of a railway station, where it arrives at
regular half-hour intervals. Someone unaware of the train timetable arrives
randomly at the railway station. What is the probability that he will catch the train?
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A: The probability of a success in the single “train-catching” trial is the percentage
of time that the train waits at the platform in the inter-arrival period, i.e., p = 5/30 =
0.17. i

B.1.2 Uniform Distribution

Description: Probability of occurring one out of n equiprobable events.

Sample space: {1, 2, ..., n}.

Probability function:
u(k)EP(sz)=l, 1<k<n . B.2
n
Distribution function:
k
U(k):Zu(i). B.3
i=1
Mean: u=(nt+1)/2.

Variance: o = [(n+1) (2n+1)/6.

0.15

ux)

0.125
0.1 4
0.075
0.05
0.025 -
0 x
1 2 3 4 5 6 7 8

Figure B.2. Uniform probability function for n=8. The double arrow corresponds
to they £o interval.

Example B. 2

Q: A card is randomly drawn out of a deck of 52 cards until it matches a previous
choice. What is the probability function of the random variable representing the
number of drawn cards until a match is obtained?

A: The probability of a match at the first drawn card is 1/52. For the second drawn
card it is (51/52)(1/51)=1/52. In general, for a match at the kth trial, we have:
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_ 5150 s2—(k-1) 1 1

(k)= ——...——— L =
5251 52—(k-2) 52 52
wrong card in the first k1 trials
Therefore the random variable follows a uniform law with n = 52. 1

B.1.3 Geometric Distribution

Description: Probability of an event occurring for the first time at the kth trial, in a
sequence of independent Bernoulli trials, when it has a probability p of occurrence
in one trial.

Sample space: {1, 2, 3, ...}.
Probability function:

g,()=P(X=k)=01-p)""p, xe{1,2,3, ...} (0, otherwise). B. 4

Distribution function:

k
Gp(k):ng(i). B.5
i=1
Mean: 1/p.

Variance:  (1-p)/p*.

0.3

g,x)

0.2 {
0.15
0.1

0.05

0+ X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure B.3. Geometric probability function for p = 0.25. The mean occurs at x = 4.

Example B. 3

Q: What is the probability that one has to wait at least 6 trials before obtaining a
certain face when tossing a dice?
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A: The probability of obtaining a certain face is 1/6 and the occurrence of that face
at the kth Bernoulli trial obeys the geometric distribution, therefore: P(X > 6) =
1-G,6(5)=1-0.6=04. i

B.1.4 Hypergeometric Distribution

Description: Probability of obtaining £ items, of one out of two categories, in a
sample of n items extracted without replacement from a population of N items that
has D = pN items of that category (and (1-p)N = gN items from the other
category). In quality control, the category of interest is usually one of the defective
items.

Sample space: {max(0, n — N+ D), ..., min(n,D)}.

Probability function:

hy p (k)= P(X =k :(f)(iv—_fc])):(fp)(n]vﬁ’k)
~.o.a (k) =P( ) (nN) (f:’) ,

k € {max(0, n—N=+D), ..., min(n,D)}.

B.6

From the (,,N ) possible samples of size n, extracted from the population of N
items, their composition consists of & items from the interesting category and n — k
items from the complement category. There are (kD V=P )possibilities of such

compositions; therefore, one obtains the previous formula.

Distribution function:

k
Hy p,k)= Z hy pn(). B.7
i=max(0,n—N+D)

Mean: np.

. N - . N
Variance:  npq a-n , with
N-1 N

n
1 called the finite population correction.

Example B. 4

Q: In order to study the wolf population in a certain region, 13 wolves were
captured, tagged and released. After a sufficiently long time had elapsed for the
tagged animals to mix with the untagged ones, 10 wolves were captured, 2 of
which were found to be tagged. What is the most probable number of wolves in
that region?

A: Let N be the size of the population of wolves of which D = 13 are tagged. The
number of tagged wolves in the second capture sample is distributed according to
the hypergeometric law. By studying the Ay, / hv.1y.p, 1atio, it is found that the
value of N that maximizes /iy p,, is:

N=p"-131% s 0
k2
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Figure B. 4. Hypergeometric probability function for N = 1000 and n = 10, for: D =

50 (p = 0.05) (light grey); D = 100 (p = 0.1) (dark grey); D = 500 (p = 0.5)

(black).

B.1.5 Binomial Distribution

Description: Probability of & successes in n independent and constant probability
Bernoulli trials.

Sample space: {0, 1, ..., n}.
Probability function:

b, ,(k)=P(X =k)= (Z]pk (1-p)" "= (Z]pkq”‘k , B.8

with k£ €{0, 1, ..., n}.

k
Distribution function: B, , (k)= b, ,(i). B.9
i=0

A binomial random variable can be considered as a sum of #n Bernoulli random
variables, and when sampling from a finite population, arises only when the
sampling is done with replacement. The name comes from the fact that B.8 is the
kth term of the binomial expansion of (p + ¢)".

For a sequence of k successes in # trials — since they are independent and the
success in any trial has a constant probability p —, we have:

P(k successes in n trials) = p*g" 7.

Since there are (Z) such sequences, the formula above is obtained.
Mean: H=np.
Variance: o = npq
Properties:
. lim A k)y=»b, ,(k).
Nesoo N,D,n( ) n,p( )
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For large N, sampling without replacement is similar to sampling with
replacement. Notice the asymptotic behaviour of the finite population
correction in the variance of the hypergeometric distribution.

2. X~B,, = n-X~B,,,.

3. X~B and Y~B independent = X +Y~B

ny,p np.,p n1+nz,p °

4. The mode occurs at x# (and at -1 if (n+1)p happens to be an integer).

0.3

005 | £0P)

0.2
0.15
0.1 4
0.05 -

OBT _

0 2 4 6 8 10 12 14 16 18 20 k

Figure B.S. Binomial probability functions: Bg s (light grey); Bao o5 (dark grey);
By, 085 (black). The double arrow indicates the ¢ +o interval for By os.

Example B. 5

Q: The cardiology service of a Hospital screens patients for myocardial infarction.
In the population with heart complaints arriving at the service, the probability of
having that disease is 0.2. What is the probability that at least 5 out of 10 patients
do not have myocardial infarction?

A: Let us denote by p the probability of not having myocardial infarction, i.e.,
p = 0.8. The probability we want to compute is then:

10
P= Z blO, 0.8 (k) =1- Blo, 0.8 (4) =0.9936. O
k=5

B.1.6 Multinomial Distribution

Description: Generalisation of the binomial law when there are more than two
categories of events in n independent trials with constant probability, p; (for i = 1,
2, ..., k categories), throughout the trials.

Sample space: {0, 1, ..., n}k.
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Probability function:

n!
Moy g pp sees ) = P(X =1y, X =nk)=ﬁp1"1 ik
nl....nk.
with le;lpi =1; ne{0,1,...,n}, le;lnizn. B.10
Distribution function:
g & . . k
Mn,m,m,pk (N Z...Zmn’p]“._’pk Fyseenip)s Zi:lni =n. B. 11
Mean: L= np;
Variance: o7 = npiq;
Properties:
L X ~m,, , = X~b,,.
2. p(Xisz)_ =

A\ d-p-p))

Figure B.6. Multinomial probability function for the card-hand problem of
Example B.6. The mode is m(0, 2, 8) = 0.1265.

Example B. 6

Q: Consider a hand of 10 cards drawn randomly from a 52 cards deck. Compute
the probability that the hand has at least one ace or two figures (king, dame or
valet).
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A: The probabilities of one single random draw of an ace (X), a figure (X;) and a
number (X3) are p; = 4/52, p, = 12/52 and p; = 36/52, respectively. In order to
compute the probability of getting at least one ace or two figures, in the 10-card
hand, we wuse the multinomial probability function m(n;,n,,n;) =
M0 1 py.ps (1512, 113) , shown in Figure B.6, as follows:

P(X, 210X, 22)=1-P(X, <1nX, <2)=1-m(0,0,10)—m(0,1,9) =
1-0.025 — 0.084 = 0.89. 0

B.1.7 Poisson Distribution

Description: Probability of obtaining k events when the probability of an event is
very small and occurs at an average rate of A events per unit time or space
(probability of rare events). The name comes from Siméon Poisson (1781-1840),
who first studied this distribution.

Sample space: 0, 1,2, ..., .
Probability function:

X

pﬂ(k):e_ﬂ%, k>0. B. 12

The Poisson distribution can be considered an approximation of the binomial
distribution for a sufficiently large sequence of Bernoulli trials.

Let X represent a random occurrence of an event in time, such that: the
probability of only one success in Af is asymptotically (i.e., with At —> 0) A At; the
probability of two or more successes in At is asymptotically zero; the number of
successes in disjointed intervals are independent random variables. Then, the
probability Pi(f) of k successes in time ¢ is p,(k). Therefore, A is a measure of the
density of events in the interval ¢. This same model applies to rare events in other
domains, instead of time (e.g. bacteria in a Petri plate).

Distribution function:

k
Pl(k)=2pﬂ(i). B. 13
i=0
Mean: A.

Variance: A

Properties:

1. For small probability of the success event, assuming g = np is constant,
the binomial distribution converges to the Poisson distribution, i.e.,
b - P, A=np.

n
P n—w; np<S
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)
2. b, (k)b (k=) >

n—w; np<5 k
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Figure B.7. Probability function of the Poisson distribution for 1= 1 (light grey),
A =3 (dark grey) and A =5 (black). Note the asymmetry of the distributions.

Example B. 7

Q: A radioactive substance emits alpha particles at a constant rate of one particle
every 2 seconds, in the conditions stated above for applying the Poisson
distribution model. What is the probability of detecting at most 1 particle in a
10-second interval?

A: Assuming the second as the time unit, we have A = 0.5. Therefore A7 =5 and
we have:

P(X <1)=ps(0)+ps(N=e(1 +%) =0.04. 0

B.2 Continuous Distributions

B.2.1 Uniform Distribution

Description: Equiprobable equal-length sub-intervals of an interval. Approximation
of discrete uniform distributions, an example of which is the random number
generator routine of a computer.

Sample space: R .
1
Density function: U, p(X)=1p-q’

0, otherwise

asx<b B. 14
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Distribution function:

0 if x<a
Upy@ =" u@dr =4 if a<x<b; B. 15
’ —© b-a
1 if x>b.

Mean: u=(a+b)2.
Variance: o = (b —a)¥/12.
Properties:

1. u(x) = up,(x) is the model of the typical random number generator routine
in a computer.

w

20 X~ugy = PEX<h+w)=o—, Vh, [h h+w]c[a,b].

—a

Example B. 8

Q: In a cathode ray tube, the electronic beam sweeps a 10 cm line at constant high
speed, from left to right. The return time of the beam from right to left is
negligible. At random instants the beam is stopped by means of a switch. What is
the most probable 2 o -interval to find the beam?

A: Since for every equal length interval in the swept line there is an equal
probability to find the beam, we use the uniform distribution and compute the most
probable interval within one standard deviation as x £t =5 £ 2.9 cm (see
formulas above). I

1.2

u(x)
I «
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Figure B.8. The uniform distribution in [0, 1[, model of the usual random number
generator routine in computers. The solid circle means point inclusion.
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B.2.2 Normal Distribution

Description: The normal distribution is an approximation of the binomial
distribution for large n and not too small p and ¢ and was first studied by Abraham
de Moivre (1667-1754) and Pierre Simon de Laplace (1749-1855). It is also an
approximation of large sums of random variables acting independently (Central
Limit Theorem). Measurement errors often fall into this category. Sequences of
measurements whose deviations from the mean satisfy this distribution law, the so-
called normal sequences, were studied by Karl F. Gauss (1777-1855).

Sample space: R .

Density function:
(x-pe)?
2

e 207 . B. 16

n,,(x)=
e 2ro

Distribution function:

Nyo@=["n,,@®dt. B.17

No1 (zero mean, unit variance) is called the standard normal distribution. Note
that one can always compute N , , (x) by referring it to the standard distribution:

xX—H
N,u,o‘( j: NO,] (x)
o

Mean: 7R

U,

Variance: .

Properties:
L X~B, = X ~ N o AN,
n—); , Mﬂ—)o@
2 X~B,, = f=" -~ N, oo

3. X, X,...,X,~n,qindependent = X =" X, ~n

w2 /n
4. Noi(=x)=1—-Np,(x).
5. Noi(xe) = a = Noi(Xa2) = Noi(—Xa2) = P(Xop <X <xpp) = 1-a
6. The points u + o are inflexion points (points where the derivative
changes of sign) of n,, .
7. no(x)/x - no,l(x)/x3 <1 — Noy.i(x) <ng,(x)/x, for every x> 0.

8. 1- N()’I(X) ~ no’l(x)/x.
X—>0
4.4
9. Ny, (x)= %+%+ & with ¢ <0.005.
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Figure B.9. Normal density function with zero mean for three different values of
o.

Values of interest for P(X > x,)=a with X~ ng;:

a 0.0005 0.001 0.005 0.01 0.025 0.05 0.10
Xg 3.29 3.09 2.58 233 1.96 1.64 1.28

Example B. 9

Q: The length of screws produced by a machine follows a normal law with average
value of 1 inch and standard deviation of 0.05 inch. In a large stock of screws,
what is the percentage of screws one may expect to exceed 1.15 inches?

A: Referring to the standard normal distribution we determine:

plx>113-1 = P(X >3)=0.1%. i
0.05

B.2.3 Exponential Distribution

Description: Distribution of decay phenomena, where the rate of decay is constant,
such as in radioactivity phenomena.

Sample space: R .
Density function:
g,(x)=2e™ , x>0 (0, otherwise). B. 18

A is the so-called spread factor.
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Distribution function:

E,(x)= J'ggﬂ (Hdt =1 —e M (if x > 0; 0, otherwise) B. 19

Mean: u=1/1
Variance: o = /A%
Properties:

1. Let X be a random variable with a Poisson distribution, describing the
event of a success in time. The random variable associated to the event
that the interval between consecutive successes is < ¢ follows an
exponential distribution.

2. Let the probability of an event lasting more than ¢ + s seconds be
represented by P(¢ + s) = P(f)P(s), i.e., the probability of lasting s seconds
after ¢ does not depend on ¢. Then P(¢ + s) follows an exponential

distribution.
25
&)(x)
2 4
=2
1.5

0 0.4 0.8 1.2 1.6 2 2.4 28 ¥
Figure B.10. Exponential density function for two values of A. The double arrows
indicate the 4 o intervals.

Example B. 10

Q: The lifetime of a micro-organism in a certain culture follows an exponential law
with an average lifetime of 1 hour. In a culture of such micro-organisms, how long
must one wait until finding more than 80% of the micro-organisms dead?

A: Let X represent the lifetime of the micro-organisms, modelled by the
exponential law with 4 =1. We have:

P(X<£)=08 = j;e*)‘dxzo.g — ¢=1.6 hours. 0
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B.2.4 Weibull Distribution

Description: The Weibull distribution describes the failure rate of equipment and
the wearing-out of materials. Named after W. Weibull, a Swedish physicist
specialised in applied mechanics.

Sample space: R .

Density function:

Wy 5 (%) = %(x/ﬂ)“_l e IP% g B> 0 (0, otherwise), B.20

where « and [ are known as the shape and scale parameters, respectively.

Distribution function:

Wop ()= [ We s (t)dt =1—e /P B.21

Mean: U= ﬂF((1+a)/a)
Variance:  o* = ﬁ2{F((2+a)/a)—[F((l+a)/a)]2}

181 Wa1lx)

0.2 A a=0.5

12 9] wyax)

0.8

0.6
a=2
0.4
=1
0.2
a=0.5

b 0 04 08 12 16 2 24 28 32 36 4 44 48
Figure B.11. Weibull density functions for fixed g=1 (a), =2 (b), and three
values of a. Note the scaling and shape effects. For =1 the exponential density
function is obtained.
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Properties:

Lo wpax) = &(x).

2. way, (x) is the so-called Rayleigh distribution.
a,

3. X~¢; = gx W

4,

X~w = X%~¢g,.
%12 4

Example B. 11

Q: Consider that the time in years that an implanted prosthesis survives without
needing replacement follows a Weibull distribution with parameters o= 2, f=10.
What is the expected percentage of patients needing a replacement of the prosthesis
after 6 years?

A P=W,5,(6) =30.2%. 0

B.2.5 Gamma Distribution

Description: The Gamma distribution is a sort of generalisation of the exponential
distribution, since the sum of independent random variables, each with the
exponential distribution, follows the Gamma distribution. Several continuous
distributions can be regarded as a generalisation of the Gamma distribution.

+

Sample space: R .

Density function:

1 _ _ .
VapX)=—-—e *axpl g, p>0 (0, otherwise), B.22

a’T'(p)

with T'(p), the gamma function, defined as T'(p) =J':je_xxp “ldx , constituting a
generalization of the notion of factorial, since I'(1)=1 and T'(p) = — 1) T'(p —1).
Thus, for integer p, one has: I'(p) =(p —1)!

Distribution function:

Loy (¥) = [ 7 (1)1 B.23

Mean: H=ap.
Variance: o = d’p.
Properties:

Va1 (X) = €1/4().
2. Let Xj, Xb..., X, be a set of n independent random variables, each with
exponential distribution and spread factor A. Then, X = X; + X; +...+ X, ~

N/an-
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1.2

Ya p (X)

a=1,p=1
0.8

06 7 a=1.5p=2
0.4

0.2 a=1,p=2

Figure B.12. Gamma density functions for three different pairs of a, p. Notice that
p works as a shape parameter and a as a scale parameter.

Example B. 12

Q: The lifetime in years of a certain model of cars, before a major motor repair is
needed, follows a gamma distribution with @ = 0.2, p = 3.5. In the first 6 years,
what is the probability that a given car needs a major motor repair?

A: 1"0‘2!35(6) =0.066. O

B.2.6 Beta Distribution

Description: The Beta distribution is a continuous generalization of the binomial
distribution.

Sample space: [0, 1].
Density function:

B, (x)= xPT1-x)7" | xe[0,1] (0, otherwise), B. 24
o B(p,q)
. I'(p)r
with B(p,q) = M, p>q >0, the so-called beta function.
F'(p+q)

Distribution function:

B,,0=["B,, 0 B.25
Mean: 1=pl(p+q). The sum c =p + q is called concentration parameter.

Variance: o2 = pq/[ (p+¢)*(p+q+1) |= u(l— ) (c+1).
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Properties:

Prax) = u(x).
X~ Bn,p (k) = P(X 2 a) = Ba,n—aﬂ (p) .

1.
2.
3. X~y = VX ~f,
4,

Example B. 13

Q: Assume that in a certain country the wine consumption in daily litres per capita
(for the above 18 year old population) follows a beta distribution with p = 1.3,
g = 0.6. Find the median value of this distribution.

A: The median value of the wine consumption is computed as:

P1A3,0A6(XS 05) = (.26 litres. O

1.6

ﬁp‘q(x)
p=1.5,9=2

1.4
o p=2,q-15
12 p=1.5,g9=1

14
0.8 1
0.6 1
0.4
0.2 1

0 T — T T T T T T T T T T T T T T T
a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

Ba ,8-a +l(05)
14 J

0.8
0.6
0.4

0.2
a

b 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 05 0
Figure B.13. a) Beta density functions for different values of p, ¢; b) P(X > a)

assuming the binomial distribution with n = 8 and p = 0.5 (circles) and the beta
distribution according to property 2 (solid line).
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B.2.7 Chi-Square Distribution

Description: The sum of squares of independent random variables, with standard
normal distribution, follows the chi-square (x”) distribution. The number n of
added terms is the so-called number of degrees of freedom , df = n (number of
terms that can vary independently, achieving the same sum).

Sample space: R™ .
Density function:
1

2Y721(df 1 2)
with df degrees of freedom.

ij (x) = x W D=2 >0 (0, otherwise), B. 26

All density functions are skew, but the larger df is, the more symmetric the
distribution.

Distribution function:

Xg(x) = j;‘;(jf (t)dt . B.27

Mean: u=df.
Variance:  o* =2 df.

05
0.45 | L)

04 -
0.35 - df=1

0.3 | df=2
0.25 - // df=3

0.2 -
Kd£=4

0.15 -
0.1 -
0.05 -

(O o e o e e L L e e e e A B s e s e e
0 1 2 3 4 5 6 7 8 9 x 10

Figure B.14. 7* density functions for different values of the degrees of freedom, df.
Note the particular cases for df =1 (hyperbolic behaviour) and df= 2 (exponential).

1
Also denoted v in the literature.
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Properties:

1. ;(dzf (¥)=¥4/22(x); in particular, df = 2 yields the exponential
distribution with 4 =%,

2. X 22?21 X}, X, independent ~ nyy, = X~ 22

3. x=)" (X, -¥)?, X, independent ~ny = X~z
 [— .

4. X:_zzizl(Xi —,u)2 , X, independent ~n, , = X~;(,%
o

1 n - :
5. X=;Z[=1(Xi -¥)*, X, independent~n,, = X~ .,

6. X~ ;[jfl , Y~;(§f2 = X+Y~ Zﬁfﬁdfz (convolution of two #*
results in a 1.

Example B. 14

Q: The electric current passing through a 10 Q resistance shows random
fluctuations around its nominal value that can be well modelled by ng, with
o = 0.1 Ampere. What is the probability that the heat power generated in the
resistance deviates more than 0.1 Watt from its nominal value?

A: The heat power is p = 10 i, where i is the current passing through the 10 Q
resistance. Therefore:

P(p>0.1)=P10i* >0.1)= P(100i* >1).
. 1 .
But: i~ngo, = ?12 =100i* ~;(12.

Hence: P(p >0.1)= P(y{ >1)=0.317. i

B.2.8 Student’s t Distribution

Description: The Student’s ¢ distribution is the distribution followed by the ratio of
the mean deviations over the sample standard deviation. It was derived by the
English brewery chemist W.S. Gosset (pen-name “Student”) at the beginning of the
20" century.

Sample space: R .
Density function:

2\ D2
{1 +2 J , with dfdegrees of freedom. B. 28

_Tdr+n/2) [, «*
df

O a1

t
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Distribution function:

Ty () ="ty ()t B.29

Mean: #=0.
Variance: o =df /( df —2) for df >2.
Properties:

1. ¢ — .

oy, Ml
2. X~ny, ,Y~;(§f, X and Yindependent = L~tdf.
JY/dr oo
)_(—/1 7=1Xi 2?1()(1' _)?)2

with X =2 0 2=t © 7
3. s/\/; n n-—1

X, independent ~n, , = X~t¢,,.
Example B. 15

Q: A sugar factory introduced a new packaging machine for the production of 1Kg
sugar packs. In order to assess the quality of the machine, 15 random packs were
picked up and carefully weighted. The mean and standard deviation were
computed and found to be m = 1.1 Kg and s = 0.08 Kg. What is the probability that
the true mean value is at least 1Kg?

m—p

0.08y15

A: P(u=1)=P(m—pu<0.1)= P[ < 0.323J = P(t,, <0.323) =0.62.

0.45
04 Lar®) ek

0.35
0.3
0.25
0.2 1
0.15 1
0.1 1
0.05
0

-3 -2 -1 0 1 2 x 3
Figure B.15. Student’s ¢ density functions for several values of the degrees of
freedom, df. The dotted line corresponds to the standard normal density function.
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B.2.9 F Distribution

Description: The F distribution was introduced by Ronald A. Fisher (1890-1962),
in order to study the ratio of variances, and is named after him. The ratio of two
independent Gamma-distributed random variables, each divided by its mean, also
follows the F' distribution.

+

Sample space: R .
Density function:

o))

Foypay = A L x>
df1.df> T(df, 1 2)T(df, /2) df, (dh+df)i2 2T
[1 + }xZJ
if>
with df;, df, degrees of freedom. B. 30
Distribution function:
Fopsay 0= [ ap, O B.31
d
Mean: H= 2 , dfh>2.
dfy -2
2df 2 (dfy, +dfy -2
Variance: o = /2 (df, +2 /=2 , fordf,>4.
df\(df, —=2)"(df, —4)
Properties: X, i pr)
1. X~7a 9X ~Va A'vfa ay *
1 1,P1 2 2:P2 X, aypy) 2a1,2a
X/a X/
2. X~PBus = = ~ 206

A-X)/b  (1-X)/(1-p)
3. X~fu,p = 1/X~f,,,ascan be derived from the properties of the
beta distribution.

4. XNZfl, Y~;(,32, X, Y independent =

X /n
! anl,nz .
Y /n,

5. LetX,..., X, and Y},..., ¥,, be n + m independent random variables such
that X, ~ and Y; ~

Mupoy -
Then (37, X, — ) 100 d) 1 (X0 (% =102 kmoD)) = £,
6. LetX,...,X,and Y),..., ¥,, be n + m independent random variables such
that X; ~n, , and ¥; ~n,

n,ul ,01

1,01 2,02 "

Then (37, (X, )2 (-1 ) ) (27, (% =5 Km =10 D))~ froipr

where x and y are sample means.
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1
0.9
0.8 - df1:2> df2:2
0.7 1 df\=8, df =10

0.6 1
05 - df =8, df =4

0.4 -
0.3
0.2
01 1) dfi=2,df=8

0

f ‘d/’l,dj 2(x)

0 04 08 12 16 2 24 28 32 36 4 44 48x
Figure B. 16. F density functions for several values of the degrees of freedom, dfj,

dp.

Example B. 16

Q: A factory is using two machines, M1 and M2, for the production of rods with a
nominal diameter of 1 cm. In order to assess the variability of the rods’ diameters
produced by the two machines, a random sample of each machine was collected as
follows: n; = 15 rods produced by M1 and n, = 21 rods produced by M2. The
diameters were measured and the standard deviations computed and found to be:
51= 0.012 cm, s,= 0.01 cm. What is the probability that the variability of the rod
diameters produced by M2 is smaller than the one referring to M1?

A: Denote by oy, o the standard deviations corresponding to M1 and M2,
respectively. We want to compute:

Po, <al)=P(2<1j.

o

According to property 6, we have:

2 2 2 2 2 2
o si /o K si /o
P{—2<1J=P[—12 > <—12}=P(—12 > <1.44J=Fl4,20(1.44)=0.78. i

B.2.10 Von Mises Distributions

Description: The von Mises distributions are the normal distribution equivalent for
circular and spherical data. The von Mises distribution for circular data, also
known as circular normal distribution, was introduced by R. von Mises (1918) in
order to study the deviations of measured atomic weights from integer values. It
also describes many other physical phenomena, e.g. diffusion processes on the
circle, as well as in the plane, for particles with Brownian motion hitting the unit
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circle. The von Mises-Fisher distribution is a generalization for a (p—1)-
dimensional unit-radius hypersphere S*' (x’x = 1), embedded in R” .

Sample space: S”' < R”.
Density function:

P p/2-1 1
My (x)=(—j ety B. 32
2 L(p/ 21,5 (k)

where p is the unit length mean vector (also called polar vector), k > 0 is the
concentration parameter and /, is the modified Bessel function of the first kind and
order v.

For p = 2 one obtains the original von Mises circular distribution:

m,ulc(e) :;excos(ﬁ—,u), B. 33
’ 27 Iy(K)

where [, denotes the modified Bessel function of the first kind and order 0, which

can be computed by the following power series expansion:

Y 1 2r
Ly(k)=2", e (%J : B. 34

For p = 3 one obtains the spherical Fisher distribution:

My e 3(X) = 2si';hK e mx B. 35
Mean: B
Circular Variance:
v=1— L(R/(K) = 5{1—ﬁ+ﬁ—“"6 +}
2 9 48 3072

Spherical Variance:

y=1-coth x— 1/x.
Properties:

1. my,(0+2rn) =m,, (0.

2. M, (0+2n) — M, (6 =1, where M, , is the circular von Mises
distribution function.

3. My, k—>® ~ Ny (approx.).

4. M, =WN, 44 with A(x)=1,(x)/1y(k), and WN,, the wrapped
normal distribution (wrapping around 2 7).
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5. Let x =r(cos6, sind)’ have a bivariate normal distribution with mean p =
(cosu, sing)’ and equal variance 1/x. Then, the conditional distribution of
Ogivenr=11is M, ,.

6. Let the unit length vector x be expressed in polar co-ordinates in R, ie.,
x = (cos@, sinfcos¢g, sindsing)’, with @ the co-latitude and ¢ the
azimuth. Then, 6 and ¢ are independently distributed, with:

0)==——e""sin0, Oel0, ]
o 2sinh
smh x

h(g)=1/2n), ¢ < [0,2x], is the uniform distribution.

06 0.9 )
m . {0) k=2 08 "

| x=2

K®=1

x=0.5

)

‘4‘0‘ ‘ ‘8‘0‘ ‘ ‘1;0‘ ‘ ‘16‘30‘
Example B. 17. a) Density function of the circular von Mises distribution for

4= 0 and several values of «; b) Density function of the co-latitude of the spherical
von Mises distribution for several values of «.
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In Appendix C, we present a few introductory concepts on point estimation and on
results regarding the estimation of the mean and the variance.

C.1 Definitions

Let Fy (x) be a distribution function of a random variable X, dependent on a certain
parameter . We assume that there is available a random sample x = [x}, x5 ,..., X,,]’
and build a function #,(x) that gives us an estimate of the parameter &, a point
estimate of 6. Note that, by definition, in a random sample from a population with
a density function fy (x), the random variables associated with the values x;, ..., x,,
are i.i.d., i.e., the random sample has a joint density given by:

The estimate #,(x) is considered a value of a random variable, called a point
estimator or statistic, T, = t,(X,), where X, denotes the n-dimensional random
variable corresponding to the sampling process.

The following properties are desirable for a point estimator:

— Unbiased ness. A point estimator is said to be unbiased if its expectation is &
E[ T, ]=E[n(X)] = 6.
— Consistency. A point estimator is said to be consistent if the following holds:

Ve>0, P(|T,-6>¢) > 0.

n—>0

As illustrated in Figure C.1, a biased point estimator yields a mean value
different from the true value of the distribution parameter. Figure C.1 also
illustrates the notion of consistency.

When comparing two unbiased and consistent point estimators 7, and 7,,», it is
reasonable to prefer the one that has a smaller variance, say 7, ;:

V[Tn,l] < V[TWZ]

The estimator T}, is then said to be more efficient than T,,,.
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There are several methods to construct point estimator functions. A popular one
is the maximum likelihood (ML) method, which is applied by first constructing for
sample x, the following likelihood function:

L(x[0)=f(x110)f (x5 [0)... [ (x5 \49)=l£[f(x,» 10),
i=1

where f(x;|0) is the density function (probability function in the discrete case)
evaluated at x;, given the value @ of the parameter to be estimated.

Next, the value that maximizes L(6) (within the domain of values of 6) is
obtained. The ML method will be applied in the next section. Its popularity derives
from the fact that it will often yield a consistent point estimator, which, when
biased, is easy to adjust by using a simple corrective factor.

n=10

o .
. ET,] ¢ b E[7,]=0

Figure C.1. a) Density function of a biased point estimator (expected mean is
different from the true parameter value); b) Density functions of an unbiased and
consistent estimator for two different values of n: the probability of a + ¢ deviation
from the true parameter value — shaded area — tends to zero with growing #.

Example C. 1

Q: A coin is tossed n times until head turns up for the first time. What is the
maximum likelihood estimate of the probability of head turning up?

A: Let us denote by p and ¢ = 1 — p the probability of turning up head or tail,
respectively. Denoting X, ..., X, the random variables associated to the coin
tossing sequence, the likelihood is given by:

L(p)=P(X, =tail | p)P(X, =tail | p)..P(X, =head | p)=¢"'p

The maximum likelihood estimate is therefore given by:
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dL R
ﬂ=qn_l ~(n-g"2p=0 = p=1/n
dp
This estimate is biased and inconsistent. We see that the ML method does not
always provide good estimates. 0
Example C. 2

Q: Let us now modify the previous example assuming that in » tosses of the coin
heads turned up & times. What is the maximum likelihood estimate of the
probability of heads turning up?

A: Using the same notation as before we now have:

L(p)=q""p*
Hence:
@: ¢ e(-k)p+kgl=0 = p=k/n (forp=0,1)
p
This is the well-known unbiased and consistent estimate. 1]

C.2 Estimation of Mean and Variance

Let X be a normal random variable with mean x and variance v:

1 2v

V2

Assume that we were given a sample of size n from X and were asked to derive
the ML point estimators of x and variance v. We would then have:

f(x) =

e

1
n w2y D i
L(x|0)=[]/(x; 10)= Q)" ?e 25 :
i=l

Instead of maximizing L(x|6) we may, equivalently, maximize its logarithm:
InL(x|6)=—(n/2)In(27nv) —% i (x; —ﬂ)z /v.

Therefore, we obtain:
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MLy L iy
ou :

LI Ly 2o e
\4

Let us now comment on these results. The point estimate of the mean, given by
the arithmetic mean, x, is unbiased and consistent. This is a general result, valid
not only for normal random variables but for any random variables as well. As a
matter of fact, from the properties of the arithmetic mean (see Appendix A) we
know that it is unbiased (A.58a) and consistent, given the inequality of Chebyshev
and the expression of the variance (A.58b). As a consequence, the unbiased and
consistent point estimator of a proportion is readily seen to be:

p=—>

where £ is the number of times the “success” event has occurred in the » i.i.d.
Bernoulli trials. This results from the fact that the summation of x; for the Bernoulli
trials is precisely k. The reader can also try to obtain this same estimator by
applying the ML method to a binomial random experiment.

Let us now consider the point estimate of the variance. We have:

E[Y (x; —m)*1=E[Y. (x; — 1) 1-nE[(m — 11)*]
2 .
= nV[X]—nV[)?]z no®-nZ—= (n-No*
n

Therefore, the unbiased estimator of the variance is:
S SR ) -2
s = Ezizl ()Ci —x) .

This corresponds to multiplying the previous ML estimator by the corrective
factor n/(n — 1) (only noticeable for small 7). The point estimator of the variance
can also be proven to be consistent.
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D.1 Binomial Distribution

The following table lists the values of B, ,(k) (see B.1.2).

0.05

0.10

0.15

0.20

p
0.25

0.30

0.35

0.40

0.45

0.50

A U R WD = O R WD = O R WD =IO WD~ O N~ O~ O

0.9500
1.0000
0.9025
0.9975
1.0000
0.8574
0.9928
0.9999
1.0000
0.8145
0.9860
0.9995
1.0000
1.0000
0.7738
0.9774
0.9988
1.0000
1.0000
1.0000
0.7351
0.9672
0.9978
0.9999
1.0000
1.0000
1.0000

0.9000
1.0000
0.8100
0.9900
1.0000
0.7290
0.9720
0.9990
1.0000
0.6561
0.9477
0.9963
0.9999
1.0000
0.5905
0.9185
0.9914
0.9995
1.0000
1.0000
0.5314
0.8857
0.9842
0.9987
0.9999
1.0000
1.0000

0.8500
1.0000
0.7225
0.9775
1.0000
0.6141
0.9393
0.9966
1.0000
0.5220
0.8905
0.9880
0.9995
1.0000
0.4437
0.8352
0.9734
0.9978
0.9999
1.0000
0.3771
0.7765
0.9527
0.9941
0.9996
1.0000
1.0000

0.8000
1.0000
0.6400
0.9600
1.0000
0.5120
0.8960
0.9920
1.0000
0.4096
0.8192
0.9728
0.9984
1.0000
0.3277
0.7373
0.9421
0.9933
0.9997
1.0000
0.2621
0.6554
0.9011
0.9830
0.9984
0.9999
1.0000

0.7500
1.0000
0.5625
0.9375
1.0000
0.4219
0.8438
0.9844
1.0000
0.3164
0.7383
0.9492
0.9961
1.0000
0.2373
0.6328
0.8965
0.9844
0.9990
1.0000
0.1780
0.5339
0.8306
0.9624
0.9954
0.9998
1.0000

0.7000
1.0000
0.4900
0.9100
1.0000
0.3430
0.7840
0.9730
1.0000
0.2401
0.6517
0.9163
0.9919
1.0000
0.1681
0.5282
0.8369
0.9692
0.9976
1.0000
0.1176
0.4202
0.7443
0.9295
0.9891
0.9993
1.0000

0.6500
1.0000
0.4225
0.8775
1.0000
0.2746
0.7183
0.9571
1.0000
0.1785
0.5630
0.8735
0.9850
1.0000
0.1160
0.4284
0.7648
0.9460
0.9947
1.0000
0.0754
0.3191
0.6471
0.8826
0.9777
0.9982
1.0000

0.6000
1.0000
0.3600
0.8400
1.0000
0.2160
0.6480
0.9360
1.0000
0.1296
0.4752
0.8208
0.9744
1.0000
0.0778
0.3370
0.6826
0.9130
0.9898
1.0000
0.0467
0.2333
0.5443
0.8208
0.9590
0.9959
1.0000

0.5500
1.0000
0.3025
0.7975
1.0000
0.1664
0.5748
0.9089
1.0000
0.0915
0.3910
0.7585
0.9590
1.0000
0.0503
0.2562
0.5931
0.8688
0.9815
1.0000
0.0277
0.1636
0.4415
0.7447
0.9308
0.9917
1.0000

0.5000
1.0000
0.2500
0.7500
1.0000
0.1250
0.5000
0.8750
1.0000
0.0625
0.3125
0.6875
0.9375
1.0000
0.0313
0.1875
0.5000
0.8125
0.9688
1.0000
0.0156
0.1094
0.3438
0.6563
0.8906
0.9844
1.0000
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p
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
7 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078

0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
0.9962 09743 09262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266
0.9998 0.9973 09879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000
1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734
1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375
1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352
0.9942 09619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445
0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633
1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367
1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648
1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195
0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898
0.9994 09917 09661 09144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539
1.0000 0.9991 0.9944 0.9804 09511 0.9012 0.8283 0.7334 0.6214 0.5000
1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102
1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
09139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107
0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719
0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770
1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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n

k

0.05

0.10

0.15

0.20

p
0.25
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0.35

0.40

0.45
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0.5688
0.8981
0.9848
0.9984
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5404
0.8816
0.9804
0.9978
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5133
0.8646
0.9755
0.9969
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.3138
0.6974
0.9104
0.9815
0.9972
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.2824
0.6590
0.8891
0.9744
0.9957
0.9995
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.2542
0.6213
0.8661
0.9658
0.9935
0.9991
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.1673
0.4922
0.7788
0.9306
0.9841
0.9973
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
0.1422
0.4435
0.7358
0.9078
0.9761
0.9954
0.9993
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
0.1209
0.3983
0.6920
0.8820
0.9658
0.9925
0.9987
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0859
0.3221
0.6174
0.8389
0.9496
0.9883
0.9980
0.9998
1.0000
1.0000
1.0000
1.0000
0.0687
0.2749
0.5583
0.7946
0.9274
0.9806
0.9961
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
0.0550
0.2336
0.5017
0.7473
0.9009
0.9700
0.9930
0.9988
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000

0.0422
0.1971
0.4552
0.7133
0.8854
0.9657
0.9924
0.9988
0.9999
1.0000
1.0000
1.0000
0.0317
0.1584
0.3907
0.6488
0.8424
0.9456
0.9857
0.9972
0.9996
1.0000
1.0000
1.0000
1.0000
0.0238
0.1267
0.3326
0.5843
0.7940
0.9198
0.9757
0.9944
0.9990
0.9999
1.0000
1.0000
1.0000
1.0000

0.0198
0.1130
0.3127
0.5696
0.7897
0.9218
0.9784
0.9957
0.9994
1.0000
1.0000
1.0000
0.0138
0.0850
0.2528
0.4925
0.7237
0.8822
0.9614
0.9905
0.9983
0.9998
1.0000
1.0000
1.0000
0.0097
0.0637
0.2025
0.4206
0.6543
0.8346
0.9376
0.9818
0.9960
0.9993
0.9999
1.0000
1.0000
1.0000

0.0088
0.0606
0.2001
0.4256
0.6683
0.8513
0.9499
0.9878
0.9980
0.9998
1.0000
1.0000
0.0057
0.0424
0.1513
0.3467
0.5833
0.7873
0.9154
0.9745
0.9944
0.9992
0.9999
1.0000
1.0000
0.0037
0.0296
0.1132
0.2783
0.5005
0.7159
0.8705
0.9538
0.9874
0.9975
0.9997
1.0000
1.0000
1.0000

0.0036
0.0302
0.1189
0.2963
0.5328
0.7535
0.9006
0.9707
0.9941
0.9993
1.0000
1.0000
0.0022
0.0196
0.0834
0.2253
0.4382
0.6652
0.8418
0.9427
0.9847
0.9972
0.9997
1.0000
1.0000
0.0013
0.0126
0.0579
0.1686
0.3530
0.5744
0.7712
0.9023
0.9679
0.9922
0.9987
0.9999
1.0000
1.0000

0.0014
0.0139
0.0652
0.1911
0.3971
0.6331
0.8262
0.9390
0.9852
0.9978
0.9998
1.0000
0.0008
0.0083
0.0421
0.1345
0.3044
0.5269
0.7393
0.8883
0.9644
0.9921
0.9989
0.9999
1.0000
0.0004
0.0049
0.0269
0.0929
0.2279
0.4268
0.6437
0.8212
0.9302
0.9797
0.9959
0.9995
1.0000
1.0000

0.0005
0.0059
0.0327
0.1133
0.2744
0.5000
0.7256
0.8867
0.9673
0.9941
0.9995
1.0000
0.0002
0.0032
0.0193
0.0730
0.1938
0.3872
0.6128
0.8062
0.9270
0.9807
0.9968
0.9998
1.0000
0.0001
0.0017
0.0112
0.0461
0.1334
0.2905
0.5000
0.7095
0.8666
0.9539
0.9888
0.9983
0.9999
1.0000
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0.4877
0.8470
0.9699
0.9958
0.9996
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.4633
0.8290
0.9638
0.9945
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.4401
0.8108
0.9571
0.9930
0.9991
0.9999
1.0000
1.0000
1.0000

0.2288
0.5846
0.8416
0.9559
0.9908
0.9985
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.2059
0.5490
0.8159
0.9444
0.9873
0.9978
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.1853
0.5147
0.7892
0.9316
0.9830
0.9967
0.9995
0.9999
1.0000

0.1028
0.3567
0.6479
0.8535
0.9533
0.9885
0.9978
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0874
0.3186
0.6042
0.8227
0.9383
0.9832
0.9964
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0743
0.2839
0.5614
0.7899
0.9209
0.9765
0.9944
0.9989
0.9998

0.0440
0.1979
0.4481
0.6982
0.8702
0.9561
0.9884
0.9976
0.9996
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0352
0.1671
0.3980
0.6482
0.8358
0.9389
0.9819
0.9958
0.9992
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0281
0.1407
0.3518
0.5981
0.7982
0.9183
0.9733
0.9930
0.9985

0.0178
0.1010
0.2811
0.5213
0.7415
0.8883
0.9617
0.9897
0.9978
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
0.0134
0.0802
0.2361
0.4613
0.6865
0.8516
0.9434
0.9827
0.9958
0.9992
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
0.0100
0.0635
0.1971
0.4050
0.6302
0.8103
0.9204
0.9729
0.9925

0.0068
0.0475
0.1608
0.3552
0.5842
0.7805
0.9067
0.9685
0.9917
0.9983
0.9998
1.0000
1.0000
1.0000
1.0000
0.0047
0.0353
0.1268
0.2969
0.5155
0.7216
0.8689
0.9500
0.9848
0.9963
0.9993
0.9999
1.0000
1.0000
1.0000
1.0000
0.0033
0.0261
0.0994
0.2459
0.4499
0.6598
0.8247
0.9256
0.9743

0.0024
0.0205
0.0839
0.2205
0.4227
0.6405
0.8164
0.9247
0.9757
0.9940
0.9989
0.9999
1.0000
1.0000
1.0000
0.0016
0.0142
0.0617
0.1727
0.3519
0.5643
0.7548
0.8868
0.9578
0.9876
0.9972
0.9995
0.9999
1.0000
1.0000
1.0000
0.0010
0.0098
0.0451
0.1339
0.2892
0.4900
0.6881
0.8406
0.9329

0.0008
0.0081
0.0398
0.1243
0.2793
0.4859
0.6925
0.8499
0.9417
0.9825
0.9961
0.9994
0.9999
1.0000
1.0000
0.0005
0.0052
0.0271
0.0905
0.2173
0.4032
0.6098
0.7869
0.9050
0.9662
0.9907
0.9981
0.9997
1.0000
1.0000
1.0000
0.0003
0.0033
0.0183
0.0651
0.1666
0.3288
0.5272
0.7161
0.8577

0.0002
0.0029
0.0170
0.0632
0.1672
0.3373
0.5461
0.7414
0.8811
0.9574
0.9886
0.9978
0.9997
1.0000
1.0000
0.0001
0.0017
0.0107
0.0424
0.1204
0.2608
0.4522
0.6535
0.8182
0.9231
0.9745
0.9937
0.9989
0.9999
1.0000
1.0000
0.0001
0.0010
0.0066
0.0281
0.0853
0.1976
0.3660
0.5629
0.7441

0.0001
0.0009
0.0065
0.0287
0.0898
0.2120
0.3953
0.6047
0.7880
0.9102
0.9713
0.9935
0.9991
0.9999
1.0000
0.0000
0.0005
0.0037
0.0176
0.0592
0.1509
0.3036
0.5000
0.6964
0.8491
0.9408
0.9824
0.9963
0.9995
1.0000
1.0000
0.0000
0.0003
0.0021
0.0106
0.0384
0.1051
0.2272
0.4018
0.5982
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n

k

0.05

0.10

0.15

0.20

p
0.25

0.30

0.35

0.40

0.45

0.50
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1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.4181
0.7922
0.9497
0.9912
0.9988
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.3972
0.7735
0.9419
0.9891
0.9985
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.1668
0.4818
0.7618
0.9174
0.9779
0.9953
0.9992
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.1501
0.4503
0.7338
0.9018
0.9718
0.9936
0.9988
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0631
0.2525
0.5198
0.7556
0.9013
0.9681
0.9917
0.9983
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0536
0.2241
0.4797
0.7202
0.8794
0.9581
0.9882
0.9973
0.9995
0.9999
1.0000
1.0000
1.0000
1.0000

0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0225
0.1182
0.3096
0.5489
0.7582
0.8943
0.9623
0.9891
0.9974
0.9995
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0180
0.0991
0.2713
0.5010
0.7164
0.8671
0.9487
0.9837
0.9957
0.9991
0.9998
1.0000
1.0000
1.0000

0.9984
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0075
0.0501
0.1637
0.3530
0.5739
0.7653
0.8929
0.9598
0.9876
0.9969
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0056
0.0395
0.1353
0.3057
0.5187
0.7175
0.8610
0.9431
0.9807
0.9946
0.9988
0.9998
1.0000
1.0000

0.9929
0.9984
0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
0.0023
0.0193
0.0774
0.2019
0.3887
0.5968
0.7752
0.8954
0.9597
0.9873
0.9968
0.9993
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
0.0016
0.0142
0.0600
0.1646
0.3327
0.5344
0.7217
0.8593
0.9404
0.9790
0.9939
0.9986
0.9997
1.0000

0.9771
0.9938
0.9987
0.9998
1.0000
1.0000
1.0000
1.0000
0.0007
0.0067
0.0327
0.1028
0.2348
0.4197
0.6188
0.7872
0.9006
0.9617
0.9880
0.9970
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
0.0004
0.0046
0.0236
0.0783
0.1886
0.3550
0.5491
0.7283
0.8609
0.9403
0.9788
0.9938
0.9986
0.9997

0.9417
0.9809
0.9951
0.9991
0.9999
1.0000
1.0000
1.0000
0.0002
0.0021
0.0123
0.0464
0.1260
0.2639
0.4478
0.6405
0.8011
0.9081
0.9652
0.9894
0.9975
0.9995
0.9999
1.0000
1.0000
1.0000
0.0001
0.0013
0.0082
0.0328
0.0942
0.2088
0.3743
0.5634
0.7368
0.8653
0.9424
0.9797
0.9942
0.9987

0.8759
0.9514
0.9851
0.9965
0.9994
0.9999
1.0000
1.0000
0.0000
0.0006
0.0041
0.0184
0.0596
0.1471
0.2902
0.4743
0.6626
0.8166
0.9174
0.9699
0.9914
0.9981
0.9997
1.0000
1.0000
1.0000
0.0000
0.0003
0.0025
0.0120
0.0411
0.1077
0.2258
0.3915
0.5778
0.7473
0.8720
0.9463
0.9817
0.9951

0.7728
0.8949
0.9616
0.9894
0.9979
0.9997
1.0000
1.0000
0.0000
0.0001
0.0012
0.0064
0.0245
0.0717
0.1662
0.3145
0.5000
0.6855
0.8338
0.9283
0.9755
0.9936
0.9988
0.9999
1.0000
1.0000
0.0000
0.0001
0.0007
0.0038
0.0154
0.0481
0.1189
0.2403
0.4073
0.5927
0.7597
0.8811
0.9519
0.9846
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p
n k 005 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

18 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000

0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000

0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004

0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022

0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096

0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318

1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835

1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796

1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238

1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 09125 0.8139 0.6710 0.5000

1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762

1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204

12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165

13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000

0.7358 03917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000

0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002

0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013

0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059

0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207

1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577

1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316

1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517

1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881

1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483

1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684

1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793
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D.2 Normal Distribution

The following table lists the values of Ny ;(x) (see B.1.2).

X

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
22
2.3
2.4
2.5
2.6
2.7
2.8
29

0.5
0.53983
0.57926
0.61791
0.65542
0.69146
0.72575
0.75804
0.78814
0.81594
0.84134
0.86433
0.88493

0.9032
0.91924
0.93319

0.9452
0.95543
0.96407
0.97128
0.97725
0.98214

0.9861
0.98928

0.9918
0.99379
0.99534
0.99653
0.99744
0.99813

0.50399

0.5438
0.58317
0.62172

0.6591
0.69497
0.72907
0.76115
0.79103
0.81859
0.84375

0.8665
0.88686

0.9049
0.92073
0.93448

0.9463
0.95637
0.96485
0.97193
0.97778
0.98257
0.98645
0.98956
0.99202
0.99396
0.99547
0.99664
0.99752
0.99819

0.50798
0.54776
0.58706
0.62552
0.66276
0.69847
0.73237
0.76424
0.79389
0.82121
0.84614
0.86864
0.88877
0.90658
0.9222
0.93574
0.94738
0.95728
0.96562
0.97257
0.97831
0.983
0.98679
0.98983
0.99224
0.99413
0.9956
0.99674
0.9976
0.99825

0.51197
0.55172
0.59095

0.6293

0.6664
0.70194
0.73565

0.7673
0.79673
0.82381
0.84849
0.87076
0.89065
0.90824
0.92364
0.93699
0.94845
0.95818
0.96638

0.9732
0.97882
0.98341
0.98713

0.9901
0.99245

0.9943
0.99573
0.99683
0.99767
0.99831

0.51595
0.55567
0.59483
0.63307
0.67003

0.7054
0.73891
0.77035
0.79955
0.82639
0.85083
0.87286
0.89251
0.90988
0.92507
0.93822

0.9495
0.95907
0.96712
0.97381
0.97932
0.98382
0.98745
0.99036
0.99266
0.99446
0.99585
0.99693
0.99774
0.99836

0.51994
0.55962
0.59871
0.63683
0.67364
0.70884
0.74215
0.77337
0.80234
0.82894
0.85314
0.87493
0.89435
0.91149
0.92647
0.93943
0.95053
0.95994
0.96784
0.97441
0.97982
0.98422
0.98778
0.99061
0.99286
0.99461
0.99598
0.99702
0.99781
0.99841

0.52392
0.56356
0.60257
0.64058
0.67724
0.71226
0.74537
0.77637
0.80511
0.83147
0.85543
0.87698
0.89617
0.91308
0.92785
0.94062
0.95154
0.9608
0.96856
0.975
0.9803
0.98461
0.98809
0.99086
0.99305
0.99477
0.99609
0.99711
0.99788
0.99846

0.5279
0.56749
0.60642
0.64431
0.68082
0.71566
0.74857
0.77935
0.80785
0.83398
0.85769

0.879
0.89796
0.91466
0.92922
0.94179
0.95254
0.96164
0.96926
0.97558
0.98077

0.985

0.9884
0.99111
0.99324
0.99492
0.99621

0.9972
0.99795
0.99851

0.53188
0.57142
0.61026
0.64803
0.68439
0.71904
0.75175
0.7823
0.81057
0.83646
0.85993
0.881
0.89973
0.91621
0.93056
0.94295
0.95352
0.96246
0.96995
0.97615
0.98124
0.98537
0.9887
0.99134
0.99343
0.99506
0.99632
0.99728
0.99801
0.99856

0.53586
0.57535
0.61409
0.65173
0.68793

0.7224

0.7549
0.78524
0.81327
0.83891
0.86214
0.88298
0.90147
0.91774
0.93189
0.94408
0.95449
0.96327
0.97062

0.9767
0.98169
0.98574
0.98899
0.99158
0.99361

0.9952
0.99643
0.99736
0.99807
0.99861
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D.3 Student’s t Distribution

The following table lists the values of (see B.1.2): P(¢ g $X)= l—f_xw Ly (t)dt.

af
x o1 3 s 7 9 11 13 15 17 19 21 23 25

0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.1 0.532 0537 0.538 0.538 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539
0.2 0563 0573 0575 0576 0.577 0.577 0578 0.578 0.578 0.578 0.578 0.578 0.578
0.3 0593 0.608 0.612 0.614 0.615 0.615 0616 0.616 0.616 0.616 0.616 0.617 0.617
0.4 0621 0.642 0.647 0.649 0.651 0.652 0.652 0.653 0.653 0.653 0.653 0.654 0.654
0.5 0.648 0.674 0.681 0.684 0.685 0.687 0.687 0.688 0.688 0.689 0.689 0.689 0.689
0.6 0.672 0.705 0.713 0.716 0.718 072 0.721 0.721 0.722 0.722 0.723 0.723 0.723
0.7 0.694 0.733 0.742 0.747 0.749 0.751 0.752 0.753 0.753 0.754 0.754 0.755 0.755
0.8 0.715 0759 077 0.775 0.778 0.78 0.781 0.782 0.783 0.783 0.784 0.784 0.784
0.9 0.733 0.783 0.795 0.801 0.804 0.806 0.808 0.809  0.81 0.81 0.811 0.811 0.812

1 0.75 0.804 0.818 0.825 0.828 0.831 0.832 0.833 0.834 0.835 0.836 0.836 0.837
1.1 0765 0.824 0.839 0846 085 0.853 0.854 0.856 0.857 0.857 0.858 0.859 0.859
1.2 0779 0.842 0858 0.865 0.87 0872 0.874 0.876 0877 0.878 0.878 0.879 0.879
1.3 0791 0.858 0.875 0.883 0.887 0.89 0.892 0.893 0.895 0.895 0.896 0.897 0.897
1.4 0803 0.872 0.89 0.898 0.902 0.905 0908 0.909 091 0911 0912 0913 0913
1.5 0813 0.885 0903 0911 0916 0919 0921 0923 0.924 0925 0926 0.926 0.927
1.6 0822 0.896 0915 0923 0.928 0931 0933 0.935 0.936 0937 0938 0.938 0.939
1.7 0831 0.906 0925 0934 0.938 0941 0.944 0945 0946 0.947 0.948 0.949 0.949
1.8 0839 0915 0934 0943 0947 095 0952 0954 0955 0.956 0.957 0.958 0.958
1.9 0846 0.923 0942 095 0955 0958 096 0962 0963 0.964 0964 0.965 0.965

2 0852 093 0949 0.957 0.962 0965 0.967 0968 0969 097 0971 0971 0.972
2.1 0.859 0937 0955 0.963 0967 097 0972 0973 0975 0975 0976 0.977 0977
22 0864 0942 096 0968 0972 0975 0977 0978 0979 098 098 0.981 0.981
2.3 0.869 0948 0965 0.973 0977 0979 0.981 00982 0.983 0984 0984 0.985 0.985
2.4 0.874 0952 0969 0976 098 0982 0.984 00985 0.986 0.987 0.987 0.988 0.988
2.5 0879 0956 0973 098 0983 0.985 0.987 0988 0.989 0989 099 099 0.99
2.6 0.883 096 0976 0.982 0986 0988 0.989 0.99 0991 0991 0.992 0.992 0.992
2.7 0887 0963 0979 0985 0.988 0.99 0991 0.992 0.992 0993 0.993 0.994 0.994
2.8 0891 0966 0981 0987 099 0991 0992 0.993 0.994 0994 0.995 0.995 0.995
2.9 0.894 0969 0983 0.989 0991 0.993 0.994 0995 0.995 0.995 0.996 0.996 0.996

3 0898 0971 0985 099 0.993 0994 0995 0.996 0.996 0.996 0.997 0.997 0.997
3.1 0901 0.973 0987 0991 0.994 0995 0.996 0.996 0997 0.997 0.997 0.997 0.998
32 0904 0.975 00988 0.992 0.995 0996 0.997 0.997 0997 0.998 0.998 0.998 0.998
3.3 0906 0.977 0989 0.993 0.995 0996 0.997 0.998 0998 0.998 0.998 0.998 0.999
34 0909 0979 099 0994 0.996 0997 0.998 0.998 0998 0.998 0.999 0.999 0.999
3.5 0911 098 0991 0.995 0.997 0998 0.998 0.998 0.999 0.999 0.999 0.999 0.999
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D.4 Chi-Square Distribution

Table of the one-sided chi-square probability: P( ;(2,,- >x)=1- L;C 4 jf (t)dt .

=

7

9

daf

11

13

15

17

19

21

23

25

O 0 9 N LA WD~

0.317
0.157
0.083
0.046
0.025
0.014
0.008
0.005
0.003
0.002
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.801
0.572
0.392
0.261
0.172
0.112
0.072
0.046
0.029
0.019
0.012
0.007
0.005
0.003
0.002
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.963
0.849
0.700
0.549
0.416
0.306
0.221
0.156
0.109
0.075
0.051
0.035
0.023
0.016
0.010
0.007
0.004
0.003
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.995
0.960
0.885
0.780
0.660
0.540
0.429
0.333
0.253
0.189
0.139
0.101
0.072
0.051
0.036
0.025
0.017
0.012
0.008
0.006
0.004
0.003
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.999
0.991
0.964
0911
0.834
0.740
0.637
0.534
0.437
0.350
0.276
0.213
0.163
0.122
0.091
0.067
0.049
0.035
0.025
0.018
0.013
0.009
0.006
0.004
0.003
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1.000
0.998
0.991
0.970
0.931
0.873
0.799
0.713
0.622
0.530
0.443
0.364
0.293
0.233
0.182
0.141
0.108
0.082
0.061
0.045
0.033
0.024
0.018
0.013
0.009
0.006
0.005
0.003
0.002
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000

1.000
1.000
0.998
0.991
0.975
0.946
0.902
0.844
0.773
0.694
0.611
0.528
0.448
0.374
0.307
0.249
0.199
0.158
0.123
0.095
0.073
0.055
0.042
0.031
0.023
0.017
0.012
0.009
0.007
0.005
0.003
0.002
0.002
0.001
0.001
0.001
0.000

1.000
1.000
1.000
0.998
0.992
0.980
0.958
0.924
0.878
0.820
0.753
0.679
0.602
0.526
0.451
0.382
0.319
0.263
0.214
0.172
0.137
0.108
0.084
0.065
0.050
0.038
0.029
0.022
0.016
0.012
0.009
0.006
0.005
0.003
0.002
0.002
0.001

1.000
1.000
1.000
0.999
0.998
0.993
0.984
0.967
0.940
0.904
0.857
0.800
0.736
0.667
0.595
0.524
0.454
0.389
0.329
0.274
0.226
0.185
0.149
0.119
0.095
0.074
0.058
0.045
0.035
0.026
0.020
0.015
0.011
0.008
0.006
0.005
0.003

1.000
1.000
1.000
1.000
0.999
0.998
0.994
0.987
0.973
0.953
0.924
0.886
0.839
0.784
0.723
0.657
0.590
0.522
0.457
0.395
0.337
0.284
0.237
0.196
0.161
0.130
0.105
0.083
0.066
0.052
0.040
0.031
0.024
0.018
0.014
0.011
0.008

1.000
1.000
1.000
1.000
1.000
0.999
0.998
0.995
0.989
0.979
0.963
0.940
0.909
0.870
0.823
0.770
0.711
0.649
0.585
0.521
0.459
0.400
0.344
0.293
0.247
0.206
0.171
0.140
0.114
0.092
0.074
0.059
0.046
0.036
0.028
0.022
0.017

1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.998
0.996
0.991
0.983
0.970
0.952
0.927
0.895
0.855
0.809
0.757
0.701
0.642
0.581
0.520
0.461
0.404
0.350
0.301
0.256
0.216
0.180
0.149
0.123
0.100
0.081
0.065
0.052
0.041
0.033

1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.997
0.993
0.987
0.977
0.962
0.941
0.915
0.882
0.842
0.797
0.747
0.693
0.636
0.578
0.519
0.462
0.408
0.356
0.308
0.264
0.224
0.189
0.158
0.131
0.108
0.088
0.072
0.058




468

Appendix D - Tables

D.5 Critical Values for the F Distribution

For a=0.99:
dfy

df, 1 2 3 4 6 8 10 15 20 30 40 50
1 4052 4999 5404 5624 5859 5981 6056 6157 6209 6260 6286 6302
2 9850 99.00 99.16 99.25 99.33 99.38 99.40 99.43 99.45 99.47 99.48 99.48
3 3412 30.82 2946 2871 27.91 2749 2723 2687 2669 2650 2641 26.35
4 2120 1800 1669 1598 1521 14.80 1455 1420 1402 1384 1375 13.69
5 1626 13.27 12.06 1139 1067 1029 10.05 972 955 938 929 924
6 1375 1092 978 915 847 810 7.87 756 740 723 714 7.9
7 1225 955 845 785 719 684 662 631 616 599 591 586
8 1126 865 759 7.01 637 6.03 581 552 536 520 512 507
9 1056 802 699 642 580 547 526 496 481 465 457 452
10 1004 756 655 599 539 506 485 456 441 425 417 412

For = 0.95:

dfy

df, 1 2 3 4 6 8 10 15 20 30 40 50
1 161.45 199.50 215.71 224.58 233.99 238.88 241.88 24595 248.02 250.10 251.14 251.77
2 1851 19.00 1916 1925 19.33 19.37 1940 1943 1945 1946 19.47 19.48
3 1013 955 928 912 894 885 879 870 866 862 859 858
4 771 694 659 639 616 604 59 586 580 575 572 570
5 661 579 541 519 495 482 474 462 456 450 446 444
6 599 514 476 453 428 415 406 3.94 387 381 377 375
7 559 474 435 412 387 373 364 351 344 338 334 332
8 532 446 407 384 358 344 335 322 315 308 3.04 3.02
9 512 426 386 363 337 323 314 301 294 286 283 280
10 496 410 371 348 322 307 298 285 277 270 266 2.64
11 484 398 359 336 3.09 295 285 272 265 257 253 251
12 475 389 349 326 3.00 285 275 262 254 247 243 240
13 467 381 341 318 292 277 267 253 246 238 234 231
14 460 374 334 311 285 270 260 246 239 231 227 224
15 454 368 329 306 279 264 254 240 233 225 220 218
16 449 363 324 301 274 259 249 235 228 219 215 212
17 445 359 320 296 270 255 245 231 223 215 210 2.08
18 441 355 316 293 266 251 241 227 219 211 206 2.04
19 438 352 313 290 263 248 238 223 216 207 203 2.00
20 435 349 310 287 260 245 235 220 212 204 199 1.97
30 417 332 292 269 242 227 216 201 193 184 179 176
40 408 323 284 261 234 218 208 192 184 174 169 1.66
60 4.00 315 276 253 225 210 199 184 175 165 159 1.56
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Datasets included in the book CD are presented in the form of Microsoft EXCEL
files with a description worksheet.

E.1 Breast Tissue

The Breast Tissue.x1s file contains 106 electrical impedance measurements
performed on samples of freshly excised breast tissue. Six classes of tissue were
studied:

CAR: Carcinoma (21 cases) FAD: Fibro-adenoma (15 cases)
MAS: Mastopathy (18 cases) GLA: Glandular (16 cases)
CON: Connective (14 cases) ADI:  Adipose (22 cases)

Impedance measurements were taken at seven frequencies and plotted in the
real-imaginary plane, constituting the impedance spectrum from which the
following features were computed:

10: Impedance at zero frequency (Ohm)

PAS500: Phase angle at 500 KHz

HFS: High-frequency slope of the phase angle

DA: Impedance distance between spectral ends

AREA: Area under the spectrum

A/DA: Area normalised by DA

MAX IP: Maximum amplitude of the spectrum

DR: Distance between 10 and the real part of the maximum frequency
point

P: Length of the spectral curve

Source: J Jossinet, INSERM U.281, Lyon, France.

E.2 Car Sale

The Car Sale.xls file contains data on 22 cars that was collected between
12 September, 2000 and 31 March, 2002.
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The variables are:

Salel: Date that a car was sold.
Complaint: Date that a complaint about any type of malfunctioning was
presented for the first time.

Sale2: Last date that a car accessory was purchased (unrelated to the
complaint).

Lost: Lost contact during the study? True = Yes; False = No.

End: End date of the study.

Time: Number of days until event (Sale2, Complaint or End).

Source: New and Used Car Stand in Porto, Portugal.

E.3 Cells

The Cells.x1s file has the following two datasheets:
1. CFU Datasheet

The data consists of counts of “colony forming units”, CFUs, in mice infected with
a mycobacterium. Bacterial load is studied at different time points in three target
organs: the spleen, the liver and the lungs.

After the mice are dissected, the target organs are homogenised and plated for
bacterial counts (CFUs).

There are two groups for each time point:

| Anti-inflammatory protein deficient group (knock-out group, KO).
2 Normal control group (C).

The two groups (1 and 2) dissected at different times are independent.

2. SPLEEN Datasheet

The data consists of stained cell counts from infected mice spleen, using two
biochemical markers: CD4 and CD8.

Cell counting is performed with a flow cytometry system. The two groups (K
and C) dissected at different times are independent.

Source: S Lousada, IBMC (Instituto de Biologia Molecular e Celular), Porto,
Portugal.

E.4 Clays

The Clays.x1s file contains the analysis results of 94 clay samples from probes
collected in an area with two geological formations (in the region of Anadia,
Portugal). The following variables characterise the dataset:
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Age:
Level:
Grading:
Minerals:

BS:
Contraction:

Geological age: 1 - pliocenic (good quality clay); 2 - pliocenic
(bad quality clay); 3 - holocenic.

Probe level (m).

LG (%) - low grading: <2 microns;

MG (%) - medium grading: > 2 , < 62 microns;

HG (%) - high grading: > 62 microns.

Ilite, pyrophyllite, caolinite, lepidolite, quartz, goethite, K-
feldspar, Na-feldspar, hematite (%).

Bending strength (Kg/cm?2).

v/s (%) - volume contraction, 1st phase;

s/c (%) - volume contraction, 2nd phase;

tot (%) - volume contraction, total.

Chemical analysis results: SiO,, Al,O;, Fe,O;, FeO, CaO, MgO, Na,O, KO,

TiO, (%).

Source: C Carvalho, IGM - Instituto Geoldgico-Mineiro, Porto, Portugal.

E.5 Cork Stoppers

The Cork Stoppers.xls file contains measurements of cork stopper defects.
These were automatically obtained by an image processing system on 150 cork
stoppers belonging to three classes.

The first column of the Cork Stoppers.xls datasheet contains the class
labels assigned by human experts:

1:  Super Quality (ny= 50 cork stoppers)
2:  Normal Quality (n,= 50 cork stoppers)
3:  Poor Quality (n3= 50 cork stoppers)

The following columns contain the measurements:

N:
PRT:
ART:
PRM:
ARM:
NG:
PRTG:
ARTG:
RAAR:
RAN:

Total number of defects.

Total perimeter of the defects (in pixels).

Total area of the defects (in pixels).

Average perimeter of the defects (in pixels) = PRT/N-

Average area of the defects (in pixels) = ART/N.

Number of big defects (area bigger than an adequate threshold).
Total perimeter of big defects (in pixels).

Total area of big defects (in pixels).

Area ratio of the defects = ARTG/ART.

Big defects ratio = NG/N.

Source: A Campilho, Dep. Engenharia Electrotécnica e de Computadores,
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
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E.6 CTG

The CTG.x1ls file contains measurements and classification results of
cardiotocographic (CTG) examinations of 2126 foetuses. The examinations were
performed at S3o Jodo Hospital, Porto, Portugal. Cardiotocography is a popular
diagnostic method in Obstetrics, consisting of the analysis and interpretation of the
following signals: foetal heart rate; uterine contractions; foetal movements.

The measurements included in the CTG. x1s file correspond only to foetal heart
rate (FHR) features (e.g., basal value, accelerative/decelerative events), computed
by an automatic system on FHR signals. The classification corresponds to a
diagnostic category assigned by expert obstetricians independently of the CTG.

The following cardiotocographic features are available in the CTG . x1s file:

LBE Baseline value (medical expert) LB Baseline value (system)

AC No. of accelerations FM No. of foetal movements

uc No. of uterine contractions DL No. of light decelerations

DS No. of severe decelerations DP No. of prolonged decelerations
DR No. of repetitive decelerations ~ MIN  Low freq. of the histogram
MAX High freq. of the histogram MEAN Histogram mean

NZER Number of histogram zeros MODE Histogram mode

NMAX Number of histogram peaks VAR  Histogram variance

MEDIAN Histogram median WIDTH Histogram width

TEND Histogram tendency: —1= left assym.; 0 = symm.; 1 = right assym.
ASTV percentage of time with abnormal short term (beat-to-beat) variability
MSTV Mean value of short term variability

ALTV percentage of time with abnormal long term (one minute) variability

MLTV Mean value of long term variability

Features AC, FM, UC, DL, DS, DP and DR should be converted to per unit time
values (e.g. per minute) using the duration time of the analysed signal segment
computed from start and end times given in columns B and E (in seconds).

The data is classified in ten classes:

A:  calm sleep

B:  Rapid-eye-movement sleep

C calm vigilance

D:  Active vigilance

SH:  shift pattern (A or SUSP with shifts)

AD:  Accelerative/decelerative pattern (stress situation)
DE: Decelerative pattern (vagal stimulation)

LD: Largely decelerative pattern

FS:  Flat-sinusoidal pattern (pathological state)

SUSP: Suspect pattern

A column containing the codes of Normal (1), Suspect (2) and Pathologic (3)
classification is also included.
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Source: J Bernardes, Faculdade de Medicina, Universidade do Porto, Porto,
Portugal.

E.7 Culture

The Culture.xls file contains percentages of the “culture budget” assigned to
different cultural activities in 165 Portuguese boroughs in 1995.
The boroughs constitute a sample of 3 regions:

Region: 1 - Alentejo province;
2 - Center provinces;
3 - Northern provinces.

The cultural activities are:

Cine: Cinema and photography

Halls: Halls for cultural activities

Sport: Games and sport activities

Music: Musical activities

Literat: Literature

Heritage: Cultural heritage (promotion, maintenance, etc.)
Theatre: Performing Arts

Fine Arts: Fine Arts (promotion, support, etc.)

Source: INE - Instituto Nacional de Estatistica, Portugal.

E.8 Fatigue

The Fatigue.xls file contains results of fatigue tests performed on aluminium
and iron specimens for the car industry. The specimens were subject to a sinusoidal
load (20 Hz) until breaking or until a maximum of 10’ (ten million) cycles was
reached. There are two datasheets, one for the aluminium specimens and the other
for the iron specimens.

The variables are:

Ref: Specimen reference.

Amp: Amplitude of the sinusoidal load in MPa.

NC: Number of cycles.

DFT: Defect type.

Break: Yes/No according to specimen having broken or not.
AmpG: Amplitude group: 1 - Low; 2 - High.

Source: Laboratorio de Ensaios Tecnologicos, Dep. Engenharia Mecanica,
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
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E.9 FHR

The FHR.x1s file contains measurements and classifications performed on 51
foetal heart rate (FHR) signals with 20-minute duration, and collected from
pregnant women at intra-partum stage.

All the signals were analysed by an automatic system (SP=SisPorto system) and
three human experts (E1=Expert 1, E2=Expert 2 and E3=Expert 3).

The analysis results correspond to the following variables:

Baseline:  The baseline value represents the stable value of the foetal heart
rate (in beats per minute). The variables are SPB, E1B, E2B, E3B.
Class: The classification columns (variables SPC, E1C, E2C, E3C) have
the following values:
N (=0) - Normal; S (=1) - Suspect; P (=2) - Pathologic.

Source: J Bernardes, Faculdade de Medicina, Universidade do Porto, Porto,
Portugal.

E.10 FHR-Apgar

The FHR-Apgar .x1s file contains 227 measurements of foetal heart rate (FHR)
tracings recorded just previous to birth, and the respective Apgar index, evaluated
by obstetricians according to a standard clinical procedure one minute and five
minutes after birth. All data was collected in Portuguese hospitals following a strict
protocol. The Apgar index is a ranking index in the [0, 10] interval assessing the
wellbeing of the newborn babies. Low values (below 5) are considered bad
prognosis. Normal newborns have an Apgar above 6.
The following measurements are available in the FHR-Apgar . x1s file:

Apgarl: Apgar measured at 1 minute after birth.

Apgar5: Apgar measured at 5 minutes after birth.

Duration: Duration in minutes of the FHR tracing.

Baseline: Basal value of the FHR in beat/min.

Acelnum: Number of FHR accelerations.

Acelrate: Number of FHR accelerations per minute.

ASTV: Percentage of time with abnormal short term variability.
MSTV: Average duration of abnormal short term variability.
ALTV: Percentage of time with abnormal long term variability.
MLTV: Average duration of abnormal long term variability.

Source: D Ayres de Campos, Faculdade de Medicina, Universidade do Porto,
Porto, Portugal.
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E.11 Firms

The Firms.x1s file contains values of the following economic indicators relative
to 838 Portuguese firms during the year 1995:

Branch:
GI:
CAP:
CA:

NI:

NW:
P:
GIR:
CAPR:
A/C:
DEPR:

1 = Services; 2 = Commerce; 3 = Industry; 4 = Construction.
Gross Income (millions of Portuguese Escudos).

Invested Capital (millions of Portuguese Escudos).

Capital + Assets.

Net Income (millions of Portuguese Escudos) = GI — (wages +
taxes).

Number of workers.

Apparent Productivity = GI/NW.

Gross Income Revenue = NI/GI.

Capital Revenue = NI/CAP.

Assets share = (CA-CAP)/CAP %.

Depreciations + provisions.

Source: Jornal de Noticias - Suplemento, Nov. 1995, Porto, Portugal.

E.12 Flow Rate

The Flow Rate.xls file contains daily measurements of river flow (m’/s),
during December 1985 and January 1986. Measurements were performed at two
river sites in the North of Portugal: AC - Alto Cavado Dam; T - Toco Dam.

Source: EDP - Electricidade de Portugal, Portugal.

E.13 Foetal Weight

The Foetal Weight.xls file contains echographic measurements obtained
from 414 newborn babies shortly before delivery at four Portuguese hospitals.
Obstetricians use such measurements in order to predict foetal weight and related
delivery risk.

The following measurements, all obtained under a strict protocol, are available:

MW
GA
BPD
AP
FTW
CPB

Mother’s weight MH Mother’s height

Gestation age in weeks ~DBMB Days between meas. and birth
Biparietal diameter CP Cephalic perimeter
Abdominal perimeter FL Femur length

Foetal weight at birth FTL  Foetal length at birth
Cephalic perimeter at birth

Source: A Matos, Hospital de Sdo Jodo, Porto, Portugal.
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E.14 Forest Fires

The Forest Fires.xls file contains data on the number of fires and area of
burnt forest in continental Portugal during the period 1943-1978. The variables are:

Year: 1943 -1978.
Nr: Number of forest fires.
Area: Area of burnt forest in ha.

Source: INE - Instituto Nacional de Estatistica, Portugal.

E.15 Freshmen

The Freshmen .x1s file summarises the results of an enquiry carried out at the
Faculty of Engineering, Porto University, involving 132 freshmen. The enquiry
intention was to evaluate the freshmen attitude towards the “freshmen initiation
rites”.

The variables are:

SEX: 1 = Male; 2 = Female.

AGE: Freshman age in years.

CS: Civil status: 1 = single; 2 = married.

COURSE: 1 = civil engineering; 2 = electrical and computer engineering;

3 = informatics; 4 = mechanical engineering; 5 = material
engineering; 6 = mine engineering; 7 = industrial management
engineering; 8 = chemical engineering.

DISPL: Displacement from the local of origin: 1 = Yes; 2 = No.

ORIGIN: 1 = Porto; 2 = North; 3 = South; 4 = Center; 5 = Islands; 6 =
Foreign.

WS: Work status: 1 = Only studies; 2 = Part-time work; 3 = Full-time
work.

OPTION: Preference rank when choosing the course: 1...4.

LIKE: Attitude towards the course: 1 = Like; 2 = Dislike; 3 = No
comment.

EXAM 1-5:  Scores in the first 5 course examinations, measured in [0, 20].
EXAMAVG: Average of the examination scores.
INIT: Whether or not the freshman was initiated: 1 = Yes; 2 = No.

Questions:

QIl: Initiation makes it easier to integrate in the academic life.
Q2: Initiation is associated to a political ideology.

Q3: Initiation quality depends on who organises it.

Q4: 1 liked to be initiated.

Q5:  [Initiation is humiliating.

Q6: 1 felt compelled to participate in the Initiation.
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Q7: I participated in the Initiation on my own will.
Q8: Those that do not participate in the Initiation feel excluded.

All the answers were scored as: 1 = Fully disagree; 2 = Disagree; 3 = No
comment; 4 = Agree; 5 = Fully agree. The missing value is coded 9.
The file contains extra variables in order to facilitate the data usage. These are:

Positive average: 1, if the average is at least 10; 0, otherwise.
QI1P, ..., Q8P: The same as Ql1, ..., Q8 if the average is positive; 0,
otherwise.

Source: H Rebelo, Servico de Apoio Psicologico, Faculdade de Engenharia,
Universidade do Porto, Porto, Portugal.

E.16 Heart Valve

The Heart Valve.xls file contains data from a follow-up study of 526
patients submitted to a heart valve implant at Sdo Jodo Hospital, Porto, Portugal.
The variables are:

VALVE: Valve type.

SIZE: Size of the prosthesis.

AGE: Patient age at time of surgery.

EXCIRC: Extra body circulation in minutes.

CLAMP: Time of aorta clamp.

PRE C: Pre-surgery functional class, according to NYHA (New York

Heart Association): 0 = No symptoms; 1, 2 = Mild symptoms; 3,
4 = Severe symptoms).
POST _C: Post-surgery functional class, according to NYHA.

ACT C: Functional class at last consultation, according to NYHA.
DATE OP: Date of the operation.

DDOP: Death during operation (TRUE, FALSE).

DATE DOP: Date of death due to operation complications.

DCAR: Death by cardiac causes in the follow-up (TRUE, FALSE).

DCARTYPE: Type of death for DCAR = TRUE: 1 - Sudden death; 2 — Cardiac
failure; 3 -Death in the re-operation.

NDISF: Normo-disfunctional valve (morbility factor): 1 = No; 2 = Yes.
VALVESUB: Subject to valve substitution in the follow-up (TRUE, FALSE).
LOST: Lost in the follow-up (not possible to contact).

DATE EC: Date of endocarditis (morbility factor).

DATE ECO: Date of last echocardiogram (usually the date used for follow-up
when there is no morbility factor) or date of last consultation.

DATE LC: Date of the last consultation (usually date of follow-up when no
morbility is present).

DATE FU: Date of death in the follow-up.

REOP: Re-operation? (TRUE, FALSE).
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DATE REOP:Re-operation date.

The Survival Data worksheet contains the data needed for the “time-until-
event” study and includes the following variables computed from the previous

ones:

EC:

EVENT:

TRUE, if endocarditis has occurred; FALSE, otherwise.
True, if an event (re-operation, death, endocarditis) has occurred

DATE _STOP: Final date for the study, computed either from the events

(EVENT=TRUE) or as the maximum of the other dates (last
consultation, etc.) (EVENT=FALSE).

Source: Centro de Cirurgia Toracica, Hospital de Sdo Jodo, Porto, Portugal.

E.17 Infarct

The Infarct.xls file contains the following measurements performed on 64
patients with myocardial infarction:

EF:

CK:

TIAD:

Ejection Fraction = (dyastolic volume - systolic volume)/dyastolic
volume, evaluated on echocardiographic images.

Maximum value of creatinokynase enzyme (measuring the degree of
muscular necrosis of the heart).

Integral of the amplitude of the QRS spatial vector during abnormal
depolarization, measured on the electrocardiogram. The QRS spatial
vector is the electrical vector during the stimulation of the heart left
ventricle.

GRD: Ventricular gradient = integral of the amplitude of the QRST spatial

SCR:

vector. The QRST spatial vector is the electrical vector during the
stimulation of the heart left ventricle, followed by its relaxation back
down to the restful state.

Score (0 to 5) of the necrosis severeness, based on the
vectocardiogram.

Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto,

Portugal.

E.18 Joints

The Joints.x1s file contains 78 measurements of joint surfaces in the granite
structure of a Porto street. The variables are:

Phi:
Theta:

Azimuth (°) of the joint.
Pitch (°) of the joint.
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X, Y, Z: Cartesian co-ordinates corresponding to (Phi, Theta).

Source: C Marques de S4, Dep. Geologia, Faculdade de Ciéncias, Universidade do
Porto, Porto, Portugal.

E.19 Metal Firms

The Metal Firms.x1s file contains benchmarking study results concerning the
Portuguese metallurgical industry. The sample is composed of eight firms
considered representative of the industrial branch. The data includes scores,
percentages and other enquiry results in the following topics:

Leadership; Process management;
Policy and Strategy; Client satisfaction;

Social impact;

People management - organizational structure;

People management - policies;

People management - evaluation and development of competence;
Assets management - financial;

Results (objectives, rentability, productivity, investment, growth).

Source: L Ribeiro, Dep. Engenharia Metalurgica e de Materiais, Faculdade de
Engenharia, Universidade do Porto, Porto, Portugal.

E.20 Meteo

The Meteo.xls file contains data of weather variables reported by 25
meteorological stations in the continental territory of Portugal. The variables are:

Pmax: Maximum precipitation (mm) in 1980.
RainDays: Number of rainy days.

T80: Maximum temperature (°C) in the year 1980.
T81: Maximum temperature (°C) in the year 1981.
T82: Maximum temperature (°C) in the year 1982.

Source: INE - Instituto Nacional de Estatistica, Portugal.

E.21 Moulds

The Moulds.x1s file contains paired measurements performed on 100 moulds of
bottle bottoms using three methods:

RC: Ring calibre;
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CG: Conic gauge;
EG: End gauges.

Source: J Rademaker, COVEFA, Leerdam, The Netherlands.

E.22 Neonatal

The Neonatal.xls file contains neonatal mortality rates in a sample of 29
Portuguese localities (1980 data). The variables are:

MORT-H: Neonatal mortality rate at home (in 1/1000)
MORT-I: Neonatal mortality rate at Health Centre (in 1/1000)

Source: INE - Instituto Nacional de Estatistica, Portugal.

E.23 Programming

The Programming.xls file contains data collected for a pedagogical study
concerning the teaching of “Programming in Pascal” to first year Electrical
Engineering students. As part of the study, 271 students were enquired during the
years 1986-88. The results of the enquiry are summarised in the following
variables:

SCORE: Final score in the examinations ([0, 20]).

F: Freshman? 0 = No, 1= Yes.

O: Was Electrical Engineering your first option? 0 = no, 1 = yes.

PROG: Did you learn programming at the secondary school? 0 = no; 1
scarcely; 2 =a lot.

AB: Did you learn Boole's Algebra in secondary school? 0 = no; 1 =
scarcely; 2 =a lot.

BA: Did you learn binary arithmetic in secondary school? 0 = no; 1 =
scarcely; 2 =a lot.

H: Did you learn digital systems in secondary school? 0 = no; 1 =
scarcely; 2 =a lot.

K: Knowledge factor: 1 if (Prog + AB + BA + H) > 5; 0 otherwise.

LANG: If you have learned programming in the secondary school, which
language did you use? 0 = Pascal; 1 = Basic; 2 = other.

Source: J Marques de Sa, Dep. Engenharia Electrotécnica e de Computadores,
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
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E.24 Rocks

The Rocks.xls file contains a table of 134 Portuguese rocks with names,
classes, code numbers, values of oxide composition in percentages (SiO,, ..., TiO,)
and measurements obtained from physical-mechanical tests:

RMCS:  Compression breaking load, DIN 52105/E226 standard (kg/cm2).

RCSG:  Compression breaking load after freezing/thawing tests, DIN
52105/E226 standard (kg/cm?2).

RMFX: Bending strength, DIN 52112 standard (kg/cm?2).

MVAP:  Volumetric weight, DIN 52102 standard (Kg/m3).

AAPN:  Water absorption at NP conditions, DIN 52103 standard (%).

PAOA:  Apparent porosity, LNEC E-216-1968 standard (%).

CDLT:  Thermal linear expansion coefficient (x 10°%/°C).

RDES:  Abrasion test, NP-309 (mm).

RCHQ: Impact test: minimum fall height (cm).

Source: IGM - Instituto Geoldgico-Mineiro, Porto, Portugal, collected by J Gdis,
Dep. Engenharia de Minas, Faculdade de Engenharia, Universidade do Porto,
Porto, Portugal.

E.25 Signal & Noise

The Signal+Noise worksheet of the Signal & Noise.xls file contains
100 equally spaced values of a noise signal generated with a chi-square
distribution, to which were added impulses with arrival times following a Poisson
distribution. The amplitudes of the impulses were also generated with a chi-square
distribution. The resulting signal with added noise is shown in the Signal+Noise
variable.

A threshold value (variable THRESHOLD) can be specified in order to detect
the signal impulses. Changing the value of the threshold will change the number of
true (Correct Detections variable) and false impulse detections.

The computed sensibility and specificity are shown at the bottom of the
Signal+Noise datasheet.

The Data worksheet of the Signal & Noise.xls file contains the data
used for ROC curve studies, with column A containing 8 times the signal + noise
sequence and column B the true detections for 8 different thresholds (0.8, 1, 2, 3, 4,
5,6,7).

Source: J Marques de Sa, Dep. Engenharia Electrotécnica e de Computadores,
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
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E.26 Soil Pollution

The Soil Pollution.xls file contains thirty measurements of Pb-tetracthyl
concentrations in ppm (parts per million) collected at different points in the soil of
a petrol processing plant in Portugal. The variables are:

X,V, Z Space coordinates in metres (geo-references of Matosinhos Town
Hall); z is a depth measurement.

c: Pb-tetraethyl concentration in ppm.

Xm, ym: x, y referred to the central (mean) point.

The following computed variables were added to the datasheet:

phi, theta: Longitude and co-latitude of the negative of the local gradient at
each point, estimated by 6 methods (M1, M2, M3, R4, RS, R6):
M1, M2 and M3 use the resultant of 1, 2 and 3 fastest descent
vectors; R4, RS, R6: use linear interpolation of the concentration
in 4, 5, and 6 nearest points. A zero value codes a missing value.

Source: A Fitza, Dep. Engenharia de Minas, Faculdade de Engenharia,
Universidade do Porto, Porto, Portugal. The phi and theta angles were computed
by J Marques de Sa, Dep. Engenharia Electrotécnica e de Computadores,
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.

E.27 Stars

The Stars.x1s file contains measurements of star positions. The stars are from
two constellations, Pleiades and Praesepe. To each constellation corresponds a
datasheet:

Pleiades (positions of the Pleiades’ stars in 1969). Variables:

Hertz Hertzsprung catalog number

PTV Photo-visual magnitude

RAh Right Ascension (h)

RAm Right Ascension (min)

RAs Right Ascension (s)

DEd Declination (deg)

DEm Declination (arcmin)

DEs Declination (arcsec)

PHI Longitude (computed from RAh, RAm and RAs)
THETA Latitude (computed from DEd, DEm and DEs)

PTV is a dimensionless measure given by —2.5log(light energy) + constant. The
higher PTV is the lower is the star shine.
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Source: Warren Jr WH, US Naval Observatory Pleiades Catalog, 1969.

Praesepe (positions of Praesepe stars measured by Gould BA and Hall A).

Variables:

Gah
Gam
Gas
Hah
Ham
Has
Gdh
Gdm
Gds
Hdh
Hdm
Hds
Gphi
Gtheta
Hphi
Htheta

Right Ascension (h) measured by Gould
Right Ascension (min) measured by Gould
Right Ascension (s) measured by Gould
Right Ascension (h) measured by Hall
Right Ascension (min) measured by Hall
Right Ascension (s) measured by Hall
Declination (deg) measured by Gould
Declination (min) measured by Gould
Declination (s) measured by Gould
Declination (deg) measured by Hall
Declination (min) measured by Hall
Declination (s) measured by Hall
Longitude according to Gould

Latitude according to Gould

Longitude according to Hall

Latitude according to Hall

Source: Chase EHS, The Astronomical Journal, 1889.

E.28 Stock Exchange

The Stock Exchange.xls file contains data from daily share values of
Portuguese enterprises listed on the Lisbon Stock Exchange Bourse, together with
important economic indicators, during the period of June 1, 1999 through August
31, 2000. The variables are:

Lisbor6M:
Euribor6M:
BVL30:
BCP:
BESC:
BRISA:
CIMPOR:
EDP:
SONAE:
PTEL:
CHF:
JPY:
USD:

Bank of Portugal Interest Rate for 6 months.
European Interest Rate for 6 months.
Lisbon Stock Exchange index (“Bolsa de Valores de Lisboa”).
Banco Comercial Portugués.

Banco Espirito Santo.

Road construction firm.

Cement firm.

Electricity of Portugal Utilities Company.
Large trade firm.

Portuguese telephones.

Swiss franc (exchange rate in Euros).
Japanese yen (exchange rate in Euros).

US dollar (exchange rate in Euros).

Source: Portuguese bank newsletter bulletins.
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E.29 VCG

The VCG.x1s file contains measurements of the mean QRS vector performed in a
set of 120 vectocardiograms (VCG).

QRS designates a sequence of electrocardiographic waves occurring during
ventricular activation. As the electrical heart vector evolves in time, it describes a
curve in a horizontal plane. The mean vector, during the QRS period, is commonly
used for the diagnosis of right ventricular hypertrophy.

The mean vector was measured in 120 patients by the following three methods:

H: Half area: the vector that bisects the QRS loop into two equal areas.

A: Amplitude: the vector computed with the maximum amplitudes in two
orthogonal directions (X, y).
I: Integral: The vector computed with the signal areas along (X, y).

Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto,
Portugal.

E.30 Wave

The Wave.x1s file contains eleven angular measurements corresponding to the
direction of minimum acoustic pressure in an ultrasonic radiation field, using two
types of transducers: TRa and TRb.

Source: D Freitas, Dep. Engenharia Electrotécnica e de Computadores, Faculdade
de Engenharia, Universidade do Porto, Porto, Portugal.

E.31 Weather

The Weather.xls file contains measurements of several meteorological
variables made in Porto at 12H00 and grouped in the following datasheets:

Data 1:

Weather data refers to the period of January 1, 1999 through August 23, 2000. All
measurements were made at 12H00, at “Rua dos Bragas” (Bragas Street), Porto,
Portugal. The variables are:

T: Temperature (°C);

H:  Humidity (%);

WS: Wind speed (m/s),

WD: Wind direction (anticlockwise, relative to North);
NS: Projection of WD in the North-South direction;
EW: Projection of WD in the East-West direction.
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Data 2:
Wind direction measured at “Rua dos Bragas”, Porto, Portugal, over several days in
the period January 1, 1999 through August 23, 2000 (12H00). The variables are:

WD: Wind direction (anticlockwise, relative to North);
SEASON: 0= Winter; 1 = Spring; 2 = Summer; 3 = Autumn.

Data 3:
Wind direction measured during March, 1999 at 12H00 in two locations in Porto,
Portugal:

WDB: “Bragas” Street, Porto; WDF: “Formosa” Street, Porto.

Data 4:
Time of occurrence of the maximum daily temperature at “Rua dos Bragas”, Porto,
for the following months: January, February and July, 2000. The variables are:

Tmax: Maximum temperature (°C).

Time: Time of occurrence of maximum temperature.

TimeNr: Number codifying the time in [0, 1], with 0 = 0:00:00 (12:00:00
AM) and 1 =23:59:59 (11:59:59 P.M).

Source: “Estacdo Meteorologica da FEUP” and “Direc¢do Regional do Ambiente”,
Porto, Portugal. Compiled by J Géis, Dep. Engenharia de Minas, Faculdade de
Engenharia, Universidade do Porto, Porto, Portugal.

E.32 Wines

The Wines.x1s file contains the results of chemical analyses performed on 67
Portuguese wines. The WINE column is a label, with the VB code for the white
wines (30 cases) and the VT code for the red wines (37 cases). The data sheet gives
the concentrations (mg/1) of:

ASP: Aspartame; GLU:  Glutamate; ASN: Asparagine;

SER: Serine; GLN: Glutamine; HIS: Histidine;

GLY: Glycine; THR: Threonine; CIT: Citruline;

ARG: Arginine; ALA:  Alanine; GABA: y-aminobutyric acid;
TYR: Tyrosine; ETA: Ethanolamine; VAL: Valine;

MET: Methionine; HISTA: Histamine; TRP: Tryptophan;
METIL: Methylamine; = PHE: Phenylalanine; ILE: Isoleucine;

LEU: Leucine; ORN: Ornithine; LYS: Lysine;

ETIL: Ethylamine; TIRA: Thyramine; PUT: Putrescine;

ISO: Isoamilamine; PRO: Proline;

TRY+FEN: Tryptamine+-phenylethylamine

Source: P Herbert, Dep. Engenharia Quimica, Faculdade de Engenharia,
Universidade do Porto, Porto, Portugal.
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F.1 MATLAB Functions

The functions below, implemented in MATLAB, are available in files with the
same function name and suffix “.m”. Usually these files should be copied to the
MATLAB work directory. All function codes have an explanatory header.

Function (used as)

Described In

k = ainv(rbar,p)
[c,df,sig]l=chi2test (x)
[p,1,u]l=ciprop (n0,nl,alpha)

[1,ul=civar(v,n,alpha)

[r,1,u]l=civar2(vl,nl,v2,n2,alpha)

c=classmatrix(x,y)

h=colatplot(a,kl)
as=convazi (a)
as=convlat (a)

[r,t,tcrit]l=corrtest(x,y,alpha)
d=dirdif (a,b)
g=gammacoef (t)
[ko, z, zc]=kappa (x,alpha)

h=longplot (a)

m = meandir (a,alphal)
c=pccorr (x)
polar2d(a,mark)
polar3d(a)

[m, rw, rhow] =pooledmean (a)
p=rayleigh(a)
[x,v,z,f,t,r] = resultant(a)
v=rotate(a)

[nl,n2,r,x1,x2]=runs (x,alpha)

Commands 10.4
Commands 5.4
Commands 3.4
Commands 3.5
Commands 3.6
Commands 6.1
Commands 10.2
Commands 10.3
Commands 10.3
Commands 4.2
Commands 10.3
Commands 2.10
Commands 2.11
Commands 10.2
Commands 10.3
Commands 8.1
Commands 10.2
Commands 10.2
Commands 10.2
Commands 10.5
Commands 10.3
Commands 10.3
Commands 5.1
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t=scattermx(a)
unifplot (a)
[w,wc]=unifscores (a,alpha)
f=velcorr(x, icov)
f=vmises2cdf (a, k)
a=vmises2rnd (n,mu, k)
a=vmises3rnd(n, k)
delta=vmisesinv(k, p, alphal)
[u2,uc]=watson(a, £f,alphal)
[gw,gc]=watsongw(a, alpha)
[u2,uc]=watsonvmises (a,alphal)
[fo,fc,kl,k2]=watswill (al,a2,alpha)

Commands 10.3
Commands 10.2
Commands 10.5
Commands 8.1
Commands 10.4
Commands 10.4
Commands 10.4
Commands 10.4
Commands 10.5
Commands 10.5
Commands 10.5
Commands 10.5

F.2 R Functions

The functions below, implemented in R, are available in text files with the same
function name and suffix “. txt”. An expedite way to use these functions is to
copy the respective text and paste it into the R console. All function codes have an

explanatory header.

Function (used as)

Described In

o<-cart2pol (x,y); o=[phi, rho]
o<-cartl2sph(x,y,z); o=[phi, theta,rho]
o<-cimean(x,alpha=0.05); o=[1l, ul
o<-ciprop (n0,nl,alpha); o=[p,1,ul]
o<-civar(v,n,alpha=0.05); o=[1l, ul
o<-civar2(vl,nl,v2,n2,alpha); o=[r,1,u]
o<-classify(sample, train, group)
cm<-classmatrix(x,y)
as<-convazi (a)
as<-convlat (a)
d<-dirdif (a,b)
g<-gammacoef (t)
o<-kappa (x,alpha); o=[ko, z,zc]
k<-kurtosis (x)

Commands 10.1
Commands 10.1
Commands 3.1
Commands 3.4
Commands 3.5
Commands 3.6
Commands 6.1
Commands 6.1
Commands 10.3
Commands 10.3
Commands 10.3
Commands 2.10
Commands 2.11
Commands 2.8
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r<-pccorr (x) Commands 8.1
o<-pol2cart (phi,rho); o=[x, v, z] Commands 10.1
polar2d(a) Commands 10.2

p<-rayleigh(a)

(resultant (a) must be loaded) Commands 10.5

o<-resultant(a); o=[x,y,z,f,t,r] Commands 10.3
rose(a) Commands 10.2

o<-runs (x,alpha); o=[nl,n2,r,x1,x2] Commands 5.1
s<-skewness (x) Commands 2.8

o<-sph2cart (phi, theta,rho); o=[x,vy, z] Commands 10.1
o<(_ruensluflstcaorlrte(sa()a ,matllspthalt:))e, loo:aE;tNeld‘f])C] Commands 10.5
f<-velcorr (x,icov) Commands 8.1

F.3 Tools EXCEL File

The Tools.x1s file has the following data sheets:

Nr of Bins
Computes the number of histogram bins using the criteria of
Sturges, Larson and Scott (see section 2.2.2, for details).

Confidence Intervals
Computes confidence intervals for a proportion and a variance
(see sections 3.3 and 3.4, for details).

Correlation Test
Computes the 5% critical value for the correlation test (see
section 4.4.1, for details).

Broken Stick
Computes the expected length percentage of the kth largest
segment of a stick, with total length one, randomly broken into d
segments (see section 8.2, for details).

The Macros of the Tools.xls EXCEL file must be enabled in order to work
adequately (use security level Medium in the Macro Security button of the
EXCEL Options menu).

F.4 SCSize Program

The SCSize program displays a picture box containing graphics of the following
variables, for a two-class linear classifier with specified Battacharrya distance
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(Mahalanobis distance of the means) and for several values of the dimensionality
ratio, n/d:

Bayes error;
Expected design set error (resubstitution method);
Expected test set error (holdout method).

Both classes are assumed to be represented by the same number of patterns per
class, n.

The user only has to specify the dimension d and the square of the Battacharrya
distance (computable by several statistical software products).

For any chosen value of n/d, the program also displays the standard deviations
of the error estimates when the mouse is clicked over a selected point of the picture
box.

The expected design and test set errors are computed using the formulas
presented in the work of Foley (Foley, 1972). The formula for the expected test set
error is an approximation formula, which can produce slightly erroneous values,
below the Bayes error, for certain n/d ratios.

The program is installed in the Windows standard way.
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co-latitude, 375
plot, 388, 394
Commands
2.1 (freq. tables), 41
2.2 (bar graphs), 43
2.3 (histograms), 51
2.4 (cross tables), 54
2.5 (scatter plots), 54
2.6 (box plot), 57
2.7 (measures of location), 58
2.8 (spread and shape), 62
2.9 (association), 69
2.10 (assoc. of ordinal var.), 72
2.11 (assoc. of nominal var.), 73
3.1 (conf. int. of mean), 89
3.2 (case selection), 90
3.3 (quantiles), 92
3.4 (conf. int. prop.), 95
3.5 (conf. int. variance), 97
3.6 (conf. int. var. ratio), 99
3.7 (bootstrap), 106
4.1 (single mean t test), 124
4.2 (correlation test), 128

4.3 (independent samples t test), 137

4.4 (paired samples t test), 141
4.5 (one-way ANOVA), 149
4.6 (two-way ANOVA), 165
5.1 (runs test), 174

5.2 (case weighing), 177

5.3 (binomial test), 178

5.4 (chi-square test), 183

5.5 (goodness of fit), 185

5.6 (distribution plots), 186
5.7 (contingency table tests), 192

5.8 (two indep. samples tests), 201
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5.9 (two paired samples tests), 205
5.10 (Kruskal-Wallis test), 212
5.11 (Friedmann test), 215
6.1 (discriminant analysis), 233
6.2 (ROC curve), 252
6.3 (tree classifiers), 268
7.1 (simple linear regression), 277
7.2 (ANOVA test), 286
7.3 (polynomial, non-linear regr.), 301
7.4 (stepwise regression), 305
7.5 (regression diagnostics), 307
7.6 (ridge regression), 322
7.7 (logit, probit regression), 327
8.1 (pc and factor analysis), 335
9.1 (survival analysis), 358
10.1 (direct. data conversion), 376
10.2 (directional data plots), 379
10.3 (direct. data descriptives), 382
10.4 (von Mises distributions), 387
10.5 (directional data tests), 391
common factors, 347
communality, 347
compound experiment, 408
concentration parameter, 381, 446, 453
concordant pair, 71
conditional distribution, 425
conditional probability, 406
confidence
interval, 83
level, 13, 83, 113, 420
limits, 83
risk, 83
consistency, 455
contingency table, 52, 189
continuity correction, 175
continuous random variable, 411
contrasts, 151, 162
control chart, 88
control group, 133
convolution, 427
Cook’s distance, 307
correlation, 66, 425
coefficient, 66
matrix, 67
Pearson, 127
rank, 69
Spearman, 69, 198
covariance, 330, 425
matrix, 228, 425
Cox regression, 371
critical
region, 114
value, 125

cross table, 52, 54
cross-validation, 257, 258
cumulative distribution, 184

D

data

deterministic, 1

discrete, 40

grouped, 56

missing, 31, 40

random, 2

rank, 10

sorting, 35

spreadsheet, 29

transposing, 37

dataset

Breast Tissue, 152, 260, 469

Car Sale, 354, 469

Cells, 470

Clays, 213, 324, 470

Cork Stoppers, 48, 60, 63, 67, 70, 87,
88, 96, 146, 181, 214, 226, 254,
274,332, 341, 471

CTG, 98, 472

Culture, 473

Fatigue, 358, 366, 473

FHR, 76, 209, 217, 474

FHR-Apgar, 161, 252, 474

Firms, 475

Flow Rate, 475

Foetal Weight, 291, 304, 315, 475

Forest Fires, 173, 476

Freshmen, 52, 74, 94, 177, 181, 191,
194, 214, 476

Heart Valve, 361, 368, 477

Infarct, 478

Joints, 376, 378, 385, 395, 478

Metal Firms, 207, 216, 479

Meteo, 29, 40, 123, 126, 127, 479

Moulds, 479

Neonatal, 480

Programming, 196, 204, 247, 480
247, 480

Rocks, 339, 345, 481

Signal & Noise, 249, 481

Soil Pollution, 394, 399, 482

Stars, 482

Stock Exchange, 302, 483

VCG, 379, 484

Wave, 484

Weather, 378, 390, 396, 484

Wines, 135, 204, 485
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De Moivre’s Theorem, 420
decile, 60
decision
function, 223
region, 223
rule, 223, 261
threshold, 112
tree, 259
declination, 375
degrees of freedom, 63, 96, 448, 451
deleted residuals, 307
density function, 13, 412
dependent samples, 133
dimensional reduction, 330, 337
dimensionality ratio, 243
discordant pair, 71
discrete random variable, 411
distribution
Bernoulli, 431
Beta, 446
binomial, 12, 93, 419, 435
chi-square, 96, 180, 448
circular normal, 452
exponential, 353, 367, 442
F, 97,129, 146, 451
function, 11, 13, 411
Gamma, 445
Gauss, 13, 420, 441
geometric, 433
hypergeometric, 365, 434
multimodal, 60
multinomial, 179, 436
normal, 13, 420, 441
Poisson, 438
Rayleigh, 445
Student’s t, 86, 118, 122, 449
uniform, 413, 432, 439
von Mises, 383, 452
von Mises-Fisher, 383, 453
Weibull, 353, 369, 444
dynamic search, 254

E

effects, 132, 142
additive, 157
interaction, 159
eigenvalue, 331, 393
eigenvector, 331, 393
elevation, 375
empirical distribution, 183
equality of variance, 143

ergodic process, 8
error, 272
bias, 256
experimental, 143, 157, 159
function, 421
mean square, 144
probability, 242
proportional reduction of, 75
root mean square, 63
standard deviation, 244
sum of squares, 143, 275
test set, 243
training set, 230, 243
type I, 113
type 11, 115
variance, 256
expectation, 414
explanatory variable, 371
exponential regression, 301
exposed group, 364
extra sums of squares, 296

F

factor (R), 150
factor loadings, 339, 347
factorial experiment, 158
factors, 132, 142, 156
failure rate, 353
feature selection, 253
Fisher coefficients, 230
fixed factors, 142
forward search, 253, 304
frequency, 7
absolute, 11, 40, 59, 403
relative, 11, 40, 403
table, 48
full model, 287, 299

G

gamma function, 445

gamma statistic, 198

Gauss’ approximation formulae, 417
Gaussian distribution, 420
generalised variance, 332

Gini index, 263

Goodman and Kruskal lambda, 199
goodness of fit, 179, 183, 187
grand total, 160

Greenwood’s formula, 362

group variable, 132
Guttman-Kaiser criterion, 337
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H

hazard function, 353
hazard ratio, 372
hierarchical classifier, 259
histogram, 48, 51

holdout method, 257
Hotteling’s T2, 333
hyperellisoid, 228
hyperplane, 224, 226

I

inclination, 375
independent events, 406
independent samples, 132
index of association, 199
intercept, 272

inter-quartile range, 57, 60, 62, 412

interval estimate, 14, 81

interval estimation
one-sided, 83
two-sided, 83

J

joint distribution, 422

K

Kaiser criterion, 337
Kaplan-Meier estimate, 359
kappa statistic, 200
Kolmogorov axioms, 404
Kruskal-Wallis test, 212
kurtosis, 65

L

lack of fit sum of squares, 287
Laplace rule, 405
large sample, 87
Larson’s formula, 49
latent variable, 348
Law of Large Numbers, 419
least square error, 273
leave-one-out method, 257
life table, 355
likelihood, 235
likelihood function, 456
linear
classifier, 232
discriminant, 224
regression, 272

log-cumulative hazard, 370
logit model, 322
log-likelihood, 324
longitude plot, 394

loss matrix, 238

lower control limit, 88
LSE, 273

M

Mabhalanobis distance, 228
manifest variables, 348
Mantel-Haenszel procedure, 365
marginal distribution, 423
matched samples, 133
maximum likelihood estimate, 456
mean, 13, 58, 415

direction, 380

ensemble, 8

estimate, 85

global, 158

population, 7

response, 273

resultant, 380

sample, 7

temporal, 8

trimmed, 59
median, 57, 59, 60, 412
merit criterion, 253
minimum risk, 238
ML estimate, 456
mode, 60
modified Levene test, 309
moment generating function, 417
moments, 416, 425
MSE, 275
MSR, 285
multicollinearity, 300, 307
multiple

correlation, 254, 293

R square, 276

regression, 289
multivariate distribution, 422

N

new observations, 283
node impurity, 263
node splitting, 265
non-linear regression, 301
normal
distribution, 420
equations, 273
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probability plot, 184
regression, 279
sequences, 441

null hypothesis, 111

(0]

observed significance, 114, 124
orthogonal experiment, 157
orthonormal matrix, 331
outliers, 306

P

paired differences, 139
paired samples, 132
parameter estimation, 81
partial correlations, 297
partial F test, 299
partition, 409
partition method, 257
pc scores, 331
pdf, 412
PDF, 411
Pearson correlation, 276
percentile, 60, 122
phi coefficient, 199
plot
3D plot, 54, 55
box plot, 57
box-and-whiskers plot, 57
categorized, 56
scatter plot, 54, 55
point estimate, 14, 81, 82, 455
point estimator, 82, 455
polar vector, 453
polynomial regression, 300
pooled
covariance, 241
mean, 398
variance, 131
posterior probability, 239, 409
post-hoc comparison, 150, 151
power, 115
curve, 116
one-way ANOVA, 154
two-way ANOVA, 164
power-efficiency, 171
predicted values, 273
predictor, 271
predictor correlations, 291
prevalence, 234, 409

principal component, 330
principal factor, 348
prior probability, 409
probability, 404

density, 12

function, 11

space, 404

distribution, 411
probit model, 322
product-limit estimate, 359
proportion estimate, 92
proportion reduction of error, 199
proportional hazard, 366, 371
prototype, 225
pure error sum of squares, 287

Q

quadratic classifier, 232, 241
quality control, 333
quantile, 60, 412

quartile, 60, 412

R

random
data, 2
error, 82
number, 4
process, 2
sample, 7, 81
variable, 5, 8, 410
experiment, 403
range, 62
rank correlation, 69
reduced model, 287, 299
regression, 271
regression sum of squares, 285
reliability function, 353
repeated measurements, 158
repeated samples, 282
replicates, 286
residuals, 273
response, 205
resubstitution method, 257
risk, 238
ROC
curve, 246, 250
threshold, 251
rose diagram, 377
RS analysis, 119
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S

sample, 5
mean, 416
size, 14
space, 403
standard deviation, 417
variance, 417
sample mean
global, 143
sampled population, 81
samples
independent, 132
paired, 132
sampling distribution, 14, 83, 114
correlation, 127
gamma, 198
kappa statistic, 200
Mann-Whitney W, 203
mean, 86, 122
phi coefficient, 199
proportion, 175
range of means, 151
Spearman’s correlation, 198
two independent samples, 134
two paired samples, 139
variance, 96, 126
variance ratio, 97, 129
scale parameter, 444
scatter matrix, 393
Scott’s formula, 49
scree test, 337
semistudentised residuals, 306
sensibility, 247
sequential search, 253
shape parameter, 444
sigmoidal functions, 323
significance level, 13, 111, 114
significant digits, 61
skewness, 64
negative, 64
positive, 64
slope, 272
small sample, 87
Spearman’s correlation, 69, 198
specificity, 247
spherical mean direction, 381
spherical plot, 377
spherical variance, 381, 453
split criterion, 263
SSE, 275
SSPE, 287

SSR, 285
SST, 276
standard
deviation, 13, 57, 63, 416
error, 86, 123, 275
normal distribution, 441
residuals, 306
standardised
effect, 117, 154
model, 275, 291
random variable, 420
statistic, 5, 7, 82, 455
descriptive, 29, 58
gamma, 71
kappa, 75
lambda, 75
statistical inference, 81
Statistical Quality Control, 88
Stirling formula, 419
studentised statistic, 122, 280
Sturges’ formula, 49
sum of squares
between-class, 143
between-group, 143
columns, 157
error, 143
mean between-group, 144
mean classification, 144
model, 158
residual, 157
rows, 157
subtotal, 158
total, 143
within-class, 143
within-group, 143
survival data, 353
survivor function, 353
systematic error, 82

T

target population, 81
test
binomial, 174
Cochran Q, 217
correlation, 127
equality of variance, 129
error, 115
Friedman, 215
Kolmogorov-Smirnov one-sample,
183
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Kolmogorov-Smirnov two-sample,
201
lack of fit, 286

U

unbiased estimates, 273

Levene, 130 unexposed group, 364
Lilliefors, 187 uniform probability plot, 387
log-rank, 365 univariate split, 263

Mann-Whitney, 202
McNemar, 205
non-parametric, 171
one-sided, 119
one-tail, 119

one-way ANOVA, 143
operational characteristic, 116
parametric, 111
Peto-Wilcoxon, 366
power, 115
proportion, 174
rank-sum, 202
Rayleigh, 389

upper control limit, 88

\%

variable
continuous, 9, 12
creating, 34
dependent, 271
discrete, 9, 10
grouping, 56, 132
hidden, 329
independent, 271
interval-type, 10

robust, 130 '
runs, 172 nomlnal, 9
Scheffé, 150, 152 ordinal, 9

set, 230 ran.dom, 29
Shapiro-Wilk, 187 ratio-type, 10
sign, 207 variance, 62, 416

single variance, 125

t, 115, 122, 131, 135, 139, 146, 175
two means (indep. samples), 134
two means (paired samples), 139
two-sided, 119

two-tail, 119

uniform scores, 397

variance ratio, 129

Watson, 398

Watson U?, 392
Watson-Williams, 396
Wilcoxon, 209

4 2x2 contingency table, 191

4 goodness of fit, 180

4 of independence, 195

4 rxc contingency table, 194

test of hypotheses, 81, 111

single mean, 121

tolerance, 14, 84, 420

level, 254

analysis, 142, 145
between-group, 144
estimate, 95
inflation factors, 307
of the means, 145
pooled, 131, 144
ratio, 97
total, 143
within-group, 144
varimax procedure, 349
Velicer partial correlation, 337
VIF, 307

W

warning line, 88
weights, 223

Wilks’ lambda, 253
workbook, 42
wrapped normal, 381

Tools, 127
total probability, 235, 409 Y
total sum of squares, 276
training set, 223
tree
branch, 261 Z
classifier, 259
pruning, 264

Yates’ correction, 191

z score, 113, 420
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