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Preface to the Second Edition 

Four years have passed since the first edition of this book. During this time I have 
had the opportunity to apply it in classes obtaining feedback from students and 
inspiration for improvements. I have also benefited from many comments by users 
of the book. For the present second edition large parts of the book have undergone 
major revision, although the basic concept – concise but sufficiently rigorous 
mathematical treatment with emphasis on computer applications to real datasets –, 
has been retained. 

The second edition improvements are as follows: 
 

• Inclusion of R as an application tool. As a matter of fact, R is a free 
software product which has nowadays reached a high level of maturity 
and is being increasingly used by many people as a statistical analysis 
tool. 

• Chapter 3 has an added section on bootstrap estimation methods, which 
have gained a large popularity in practical applications. 

• A revised explanation and treatment of tree classifiers in Chapter 6 with 
the inclusion of the QUEST approach. 

• Several improvements of Chapter 7 (regression), namely: details 
concerning the meaning and computation of multiple and partial 
correlation coefficients, with examples; a more thorough treatment and 
exemplification of the ridge regression topic; more attention dedicated to 
model evaluation. 

• Inclusion in the book CD of additional MATLAB functions as well as a 
set of R functions. 

• Extra examples and exercises have been added in several chapters. 

• The bibliography has been revised and new references added. 
 
I have also tried to improve the quality and clarity of the text as well as notation. 

Regarding notation I follow in this second edition the more widespread use of 
denoting random variables with italicised capital letters, instead of using small 
cursive font as in the first edition. Finally, I have also paid much attention to 
correcting errors, misprints and obscurities of the first edition. 

 
J.P. Marques de Sá 

Porto, 2007 



Preface to the First Edition 

This book is intended as a reference book for students, professionals and research 
workers who need to apply statistical analysis to a large variety of practical 
problems using STATISTICA, SPSS and MATLAB. The book chapters provide a 
comprehensive coverage of the main statistical analysis topics (data description, 
statistical inference, classification and regression, factor analysis, survival data, 
directional statistics) that one faces in practical problems, discussing their solutions 
with the mentioned software packages. 

The only prerequisite to use the book is an undergraduate knowledge level of 
mathematics. While it is expected that most readers employing the book will have 
already some knowledge of elementary statistics, no previous course in probability 
or statistics is needed in order to study and use the book. The first two chapters 
introduce the basic needed notions on probability and statistics. In addition, the 
first two Appendices provide a short survey on Probability Theory and 
Distributions for the reader needing further clarification on the theoretical 
foundations of the statistical methods described. 

The book is partly based on tutorial notes and materials used in data analysis 
disciplines taught at the Faculty of Engineering, Porto University. One of these 

management. The students in this course have a variety of educational backgrounds 
and professional interests, which generated and brought about datasets and analysis 
objectives which are quite challenging concerning the methods to be applied and 
the interpretation of the results. The datasets used in the book examples and 
exercises were collected from these courses as well as from research. They are 
included in the book CD and cover a broad spectrum of areas: engineering, 
medicine, biology, psychology, economy, geology, and astronomy. 

Every chapter explains the relevant notions and methods concisely, and is 
illustrated with practical examples using real data, presented with the distinct 
intention of clarifying sensible practical issues. The solutions presented in the 
examples are obtained with one of the software packages STATISTICA, SPSS or 
MATLAB; therefore, the reader has the opportunity to closely follow what is being 
done. The book is not intended as a substitute for the STATISTICA, SPSS and 
MATLAB user manuals. It does, however, provide the necessary guidance for 
applying the methods taught without having to delve into the manuals. This 
includes, for each topic explained in the book, a clear indication of which 
STATISTICA, SPSS or MATLAB tools to be applied. These indications appear in 

use the tools, whenever necessary. In this way, a comparative perspective of the 
specific “Commands” frames together with a complementary description on how to 

disciplines is attended by students of a Master’s Degree course on information 



xviii Preface to the First Edition  

capabilities of those software packages is also provided, which can be quite useful 
for practical purposes. 

STATISTICA, SPSS or MATLAB do not provide specific tools for some of the 
statistical topics described in the book. These range from such basic issues as the 
choice of the optimal number of histogram bins to more advanced topics such as 
directional statistics. The book CD provides these tools, including a set of 
MATLAB functions for directional statistics. 

I am grateful to many people who helped me during the preparation of the book. 
Professor Luís Alexandre provided help in reviewing the book contents. Professor 
Willem van Meurs provided constructive comments on several topics. Professor 
Joaquim Góis contributed with many interesting discussions and suggestions, 
namely on the topic of data structure analysis. Dr. Carlos Felgueiras and Paulo 
Sousa gave valuable assistance in several software issues and in the development 
of some software tools included in the book CD. My gratitude also to Professor 
Pimenta Monteiro for his support in elucidating some software tricks during the 
preparation of the text files. A lot of people contributed with datasets. Their names 
are mentioned in Appendix E. I express my deepest thanks to all of them. Finally, I 
would also like to thank Alan Weed for his thorough revision of the texts and the 
clarification of many editing issues. 

 
 

J.P. Marques de Sá 
Porto, 2003 



Symbols and Abbreviations 

Sample Sets 

 A event 

 A set (of events) 

{A1, A2,…} set constituted of events A1, A2,… 

A  complement of {A} 

BAU  union of {A} with {B} 

BAI  intersection of {A} with {B} 

E set of all events (universe) 

φ  empty set 

 

Functional Analysis 

∃ there is 

∀ for every 

∈ belongs to 

∉

≡ equivalent to 

||  || Euclidian norm (vector length) 

⇒  implies 

→  converges to 

ℜ  real number set 
+ℜ  [0, +∞ [ 

 [a, b] closed interval between and including a and b 

 ]a, b] interval between a and b, excluding a 

 [a, b[ interval between a and b, excluding b 

 doesn’t belong to 



xx Symbols and Abbreviations 

 
 ]a, b[ open interval between a and b (excluding a and b) 

∑ =
n
i 1  sum for index  i = 1,…, n 

∏
=

n

i 1
 product for index  i = 1,…, n 

∫
b

a
 integral from a to b 

k! factorial of k, k! = k(k−1)(k−2)...2.1 

( )n
k  combinations of n elements taken k at a time 

 | x | absolute value of x 

 x  largest integer smaller or equal to x 

gX(a) function g of variable X evaluated at a 

dX
dg

 derivative of function g with respect to X 

a

n

dX
gd
n

 derivative of order n of g evaluated at a 

ln(x) natural logarithm of x 

log(x) logarithm of x in base 10  

sgn(x) sign of x 

mod(x,y) remainder of the integer division of x by y 

 

Vectors and Matrices 

x vector (column vector), multidimensional random vector 

x' transpose vector (row vector) 

[x1 x2…xn] row vector whose components are x1, x2,…,xn 

xi i-th component of vector x 

xk,i i-th component of vector xk 

∆x vector x increment 

x'y inner (dot) product of x and y 

A matrix 

aij i-th row, j-th column element of matrix A 

A' transpose of matrix A 

A−1 inverse of matrix A 



 Symbols and Abbreviations xxi 

 
|A| determinant of matrix A 

tr(A) trace of A (sum of the diagonal elements) 

I unit matrix 

λi eigenvalue i 

 

Probabilities and Distributions 

X random variable (with value denoted by the same lower case letter, x) 

P(A) probability of event A 

P(A|B) probability of event A conditioned on B having occurred 

P(x) discrete probability of random vector x 

P(ωi|x) discrete conditional probability of ωi given x 

f(x) probability density function f evaluated at x 

f(x |ωi) conditional probability density function f evaluated at x given ωi 

X  ~ f  X  has probability density function  f 

X  ~ F X  has probability distribution function (is distributed as) F 

Pe probability of misclassification (error) 

Pc probability of correct classification 

df degrees of freedom 

xdf,α α-percentile of X distributed with df degrees of freedom 

bn,p binomial probability for n trials and probability p of success 

Bn,p binomial distribution for n trials and probability p of success 

u uniform probability or density function 

U uniform distribution 

gp geometric probability (Bernoulli trial with probability p) 

Gp geometric distribution (Bernoulli trial with probability p) 

hN,D,n hypergeometric probability (sample of n out of N with D items) 

HN,D,n hypergeometric distribution (sample of n out of N with D items) 

pλ Poisson probability with event rate λ 

Pλ Poisson distribution with event rate λ 

nµ,σ normal density with mean µ and standard deviation σ 



xxii Symbols and Abbreviations 

 
Nµ,σ normal distribution with mean µ and standard deviation σ 

ελ exponential density with spread factor λ 

Ελ exponential distribution with spread factor λ 

wα,β Weibull density with parameters α, β 

Wα,β Weibull distribution with parameters α, β 

γa,p Gamma density with parameters a, p 

Γa,p Gamma distribution with parameters a, p 

βp,q Beta density with parameters p, q 

Βp,q Beta distribution with parameters p, q 
2
dfχ  Chi-square density with df degrees of freedom 

2
dfΧ  Chi-square distribution with df degrees of freedom 

tdf 

Tdf 

21,dfdff  F density with df1,  df2 degrees of freedom 

21,dfdfF  F distribution with df1,  df2 degrees of freedom 

 

Statistics 

x̂  estimate of x 

[ ]XΕ  expected value (average, mean) of X 

[ ]XV  variance of X 

Ε[x | y] expected value of x given y (conditional expectation) 

km  central moment of order k 

 µ mean value 

 σ standard deviation 

XYσ  covariance of X and Y 

 ρ correlation coefficient 

µ  mean vector 

Student’s t density with df degrees of freedom 

Student’s t distribution with df degrees of freedom 



 Symbols and Abbreviations xxiii 

 
Σ  covariance matrix 

x  arithmetic mean 

 v sample variance 

 s sample standard deviation 

xα α-quantile of X  ( αα =)(xFX ) 

med(X) median of X  (same as x0.5) 

S sample covariance matrix 

α significance level (1−α is the confidence level) 

xα α-percentile of X 

ε tolerance 

 

Abbreviations 

FNR False Negative Ratio 

FPR  False Positive Ratio 

iff if an only if 

i.i.d. independent and identically distributed 

IRQ inter-quartile range 

pdf probability density function 

LSE Least Square Error 

ML Maximum Likelihood 

MSE Mean Square Error 

PDF probability distribution function 

RMS Root Mean Square Error 

r.v. Random variable 

ROC Receiver Operating Characteristic 

SSB Between-group Sum of Squares 

SSE Error Sum of Squares 

SSLF Lack of Fit Sum of Squares 

SSPE Pure Error Sum of Squares 

SSR Regression Sum of Squares 



xxiv Symbols and Abbreviations 

 
SST Total Sum of Squares 

SSW Within-group Sum of Squares 

TNR True Negative Ratio 

TPR  True Positive Ratio 

VIF Variance Inflation Factor 

 

Tradenames 

EXCEL Microsoft Corporation 

MATLAB  The MathWorks, Inc. 

SPSS SPSS, Inc. 

STATISTICA Statsoft, Inc. 

WINDOWS Microsoft Corporation 



1 Introduction 

 

1.1 Deterministic Data and Random Data 

Our daily experience teaches us that some data are generated in accordance to 
known and precise laws, while other data seem to occur in a purely haphazard way. 
Data generated in accordance to known and precise laws are called deterministic 

gravity. When the body is released at a height h, we can calculate precisely where 
the body stands at each time t. The physical law, assuming that the fall takes place 
in an empty space, is expressed as: 
 

2
0 ½gthh −= ,  

 
where h0 is the initial height and g is the Earth s gravity acceleration at the point 
where the body falls. 

Figure 1.1 shows the behaviour of h with t, assuming an initial height of 15 
meters. 
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1.20 7.94 

1.40 5.40 
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Figure 1.1. Body in free-fall, with height in meters and time in seconds, assuming 
g = 9.8 m/s2. The h column is an example of deterministic data. 

data. An example of such type of data is the fall of a body subject to the Earth’s 

’



2 1 Introduction  

In the case of the body fall there is a law that allows the exact computation of 
one of the variables h or t (for given h0 and g) as a function of the other one. 
Moreover, if we repeat the body-fall experiment under identical conditions, we 
consistently obtain the same results, within the precision of the measurements. 
These are the attributes of deterministic data: the same data will be obtained, 
within the precision of the measurements, under repeated experiments in well-
defined conditions. 

Imagine now that we were dealing with Stock Exchange data, such as, for 
instance, the daily share value throughout one year of a given company. For such 
data there is no known law to describe how the share value evolves along the year. 
Furthermore, the possibility of experiment repetition with identical results does not 
apply here. We are, thus, in presence of what is called random data. 

Classical examples of random data are: 
 
− Thermal noise generated in electrical resistances, antennae, etc.; 
− Brownian motion of tiny particles in a fluid; 
− Weather variables; 
− Financial variables such as Stock Exchange share values; 
− Gambling game outcomes (dice, cards, roulette, etc.); 
− Conscript height at military inspection. 
 
In none of these examples can a precise mathematical law describe the data. 

Also, there is no possibility of obtaining the same data in repeated experiments, 
performed under similar conditions. This is mainly due to the fact that several 
unforeseeable or immeasurable causes play a role in the generation of such data. 
For instance, in the case of the Brownian motion, we find that, after a certain time, 
the trajectories followed by several particles that have departed from exactly the 
same point, are completely different among them. Moreover it is found that such 
differences largely exceed the precision of the measurements.  

When dealing with a random dataset, especially if it relates to the temporal 
evolution of some variable, it is often convenient to consider such dataset as one 
realization (or one instance) of a set (or ensemble) consisting of a possibly infinite 
number of realizations of a generating process. This is the so-called random 

phenomenon composed of random parts). Thus: 
 
− The wandering voltage signal one can measure in an open electrical 

resistance is an instance of a thermal noise process (with an ensemble of 
infinitely many continuous signals); 

− The succession of face values when tossing n times a die is an instance of a 
die tossing process (with an ensemble of finitely many discrete sequences). 

− The trajectory of a tiny particle in a fluid is an instance of a Brownian 
process (with an ensemble of infinitely many continuous trajectories); 

 

process (or stochastic process, from the Greek “stochastikos” = method or 
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1.1, with measurement errors (random data components). The dotted line 
represents the theoretical curve (deterministic data component). The solid circles 
correspond to the measurements made. 

 

could probably find a deterministic description of the data. Furthermore, if we 
didn t know the mathematical law underlying a deterministic experiment, we might 
conclude that a random dataset were present. For example, imagine that we did not 

experiments in the same conditions as before, performing the respective 
measurement of the height h for several values of the time t, obtaining the results 
shown in Figure 1.2. The measurements of each single experiment display a 
random variability due to measurement errors. These are always present in any 
dataset that we collect, and we can only hope that by averaging out such errors we 

matter of fact, statistics were first used as a means of summarising data, namely 

Even now the deterministic vs. random  phenomenal characterization is subject 
to controversies and often statistical methods are applied to deterministic data. A 
good example of this is the so-called chaotic phenomena, which are described by a 
precise mathematical law, i.e., such phenomena are deterministic. However, the 
sensitivity of these phenomena on changes of causal variables is so large that the 

’

Figure 1.2. Three “body fall” experiments, under identical conditions as in Figure 

We might argue that if we knew all the causal variables of the “random data” we 

know the “body fall” law and attempted to describe it by running several 

get the “underlying law” of the data. This is a central idea in statistics: that certain 
quantities give the “big picture” of the data, averaging out random errors. As a 

social and state data (the word “statistics” coming from the “science of state”). 
Scientists’ attitude towards the “deterministic vs. random” dichotomy has 

undergone drastic historical changes, triggered by major scientific discoveries. 
Paramount of these changes in recent years has been the development of the 
quantum description of physical phenomena, which yields a granular-all-
connectedness picture of the universe. The well-known “uncertainty principle” of 
Heisenberg, which states a limit to our capability of ever decreasing the 
measurement errors of experiment related variables (e.g. position and velocity), 
also supports a critical attitude towards determinism.  

“ ”
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precision of the result cannot be properly controlled by the precision of the causes. 
To illustrate this, let us consider the following formula used as a model of 
population growth in ecology studies, where p(n) ∈ [0, 1] is the fraction of a 
limiting number of population of a species at instant n, and k is a constant that 
depends on ecological conditions, such as the amount of food present: 

 
))1(1(1 nnn pkpp −+=+ ,  k > 0. 

 
Imagine we start (n = 1) with a population percentage of 50% (p1 = 0.5) and 

wish to know the percentage of population at the following three time instants, 
with k = 1.9: 

 
p2 = p1(1+1.9 x (1− p1)) = 0.9750 
p3 = p2(1+1.9 x (1− p2)) = 1.0213 
p4 = p3(1+1.9 x (1− p3)) = 0.9800 
 
It seems that after an initial growth the population dwindles back. As a matter of 

fact, the evolution of pn shows some oscillation until stabilising at the value 1, the 
limiting number of population. However, things get drastically more complicated 
when k = 3, as shown in Figure 1.3. A mere deviation in the value of p1 of only 
10−6 has a drastic influence on pn. For practical purposes, for k around 3 we are 
unable to predict the value of the pn after some time, since it is so sensitive to very 
small changes of the initial condition p1. In other words, the deterministic pn 
process can be dealt with as a random process for some values of k. 
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Figure 1.3. Two instances of the population growth process for k = 3: a) p1 = 0.1; 
b) p1 = 0.100001. 

 
The random-like behaviour exhibited by some iterative series is also present in 

programs. One such routine iteratively generates xn as follows: 
 

mxx nn mod1 α=+ . 
 

the so-called “random number generator routine” used in many computer 
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computing the remainder of the integer division of α times the previous number by 

this purely deterministic sequence, when using numbers represented with p binary 
digits, one must use pm 2= and   32 2/ += pα , where  2/p  is the nearest integer 
smaller than p/2. The periodicity of the sequence is then 22 −p . Figure 1.4 
illustrates one such sequence.  
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Figure 1.4. p =10 binary digits with m = 2p = 
1024, α =35 and initial value x(0) = 2p – 3 = 1021.  

1.2 Population, Sample and Statistics 

When studying a collection of data as a random dataset, the basic assumption being 
that no law explains any individual value of the dataset, we attempt to study the 
data by means of some global measures, known as statistics, such as frequencies 
(of data occurrence in specified intervals), means, standard deviations, etc. 

Clearly, these same measures can be applied to a deterministic dataset, but, after 
all, the mean height value in a set of height measurements of a falling body, among 
other things, is irrelevant. 

Statistics had its beginnings and key developments during the last century, 
especially the last seventy years. The need to compare datasets and to infer from a 
dataset the process that generated it, were and still are important issues addressed 
by statisticians, who have made a definite contribution to forwarding scientific 
knowledge in many disciplines (see e.g. Salsburg D, 2001). In an inferential study, 
from a dataset to the process that generated it, the statistician considers the dataset 
as a sample from a vast, possibly infinite, collection of data called population. 
Each individual item of a sample is a case (or object). The sample itself is a list of 
values of one or more random variables. 

The population data is usually not available for study, since most often it is 
either infinite or finite but very costly to collect. The data sample, obtained from 
the population, should be randomly drawn, i.e., any individual in the population is 
supposed to have an equal chance of being part of the sample. Only by studying 

Therefore, the next number in the “random number” sequence is obtained by 

a suitable constant, m. In order to obtain a convenient “random-like” behaviour of 

 “Random number” sequence using 
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randomly drawn samples can one expect to arrive at legitimate conclusions, about 
the whole population, from the data analyses.  

Let us now consider the following three examples of datasets: 
 

Example 1.1 

The following Table 1.1 lists the number of firms that were established in town X 
during the year 2000, in each of three branches of activity.  
  

Table 1.1 

Branch of Activity No. of Firms Frequencies 
Commerce 56 56/109 = 51.4 % 
Industry 22 22/109 = 20.2 % 
Services 31 31/109 = 28.4 % 
Total 109 109/109 = 100 % 

 
 

Example 1.2 

The following Table 1.2 lists the classifications of a random sample of 50 students 
in the examination of a certain course, evaluated on a scale of 1 to 5.  
  

Table 1.2 

Classification No. of Occurrences Accumulated Frequencies 
1 3 3/50 = 6.0% 
2 10 13/50 = 26.0% 
3 12 25/50 = 50.0% 
4 15 40/50 = 80.0% 
5 10   50/50 = 100.0% 

Total 50 100.0% 
Mediana = 3   

a Value below which 50% of the cases are included. 

 

Example 1.3 

The following Table 1.3 lists the measurements performed in a random sample of 
10 electrical resistances, of nominal value 100 Ω (ohm), produced by a machine. 
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Table 1.3 

Case # Value (in Ω) 
  1 101.2 
  2 100.3 
  3 99.8 
  4 99.8 
  5 99.9 
  6 100.1 
  7 99.9 
  8 100.3 
  9 99.9 
10 100.1 

Mean (101.2+100.3+99.8+...)/10 = 100.13 
 
 
 

Population and sample are the same. In such a case, besides the summarization of 
the data by means of the frequencies of occurrence, not much more can be done.  It 
is clearly a situation of limited interest. In the other two examples, on the other 
hand, we are dealing with samples of a larger population (potentially infinite in the 
case of Example 1.3). It s these kinds of situations that really interest the 
statistician – those in which the whole population is characterised based on 
statistical values computed from samples, the so-called sample statistics, or just 
statistics for short. For instance, how much information is obtainable about the 
population mean in Example 1.3, knowing that the sample mean is 100.13 Ω? 

A statistic is a function, tn, of the n sample values, xi: 
 

),,,( 21 nn xxxt K . 
 
The sample mean computed in Table 1.3 is precisely one such function, 

expressed as: 
 

∑ ==≡ n
i inn nxxxxmx 121 /),,,( K . 

 
We usually intend to draw some conclusion about the population based on the 

statistics computed in the sample. For instance, we may want to infer about the 
population mean based on the sample mean. In order to achieve this goal the xi 
must be considered values of independent random variables having the same 
probabilistic distribution as the population, i.e., they constitute what is called a 
random sample. We sometimes encounter in the literature the expression 

conveys the idea that the composition of the sample must somehow mimic the 
composition of the population. This is not true. What must be achieved, in order to 
obtain a random sample, is to simply select elements of the population at random. 

’

In Example 1.1 the random variable is the “number of firms that were 
established in town X during the year 2000, in each of three branches of activity”. 

“representative sample of the population”. This is an incorrect term, since it 
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This can be done, for instance, with the help of a random number generator. In 

statistical studies in a human population). The sampling topic is discussed in 
several books, e.g. (Blom G, 1989) and (Anderson TW, Finn JD, 1996). Examples 
of statistical malpractice, namely by poor sampling, can be found in (Jaffe AJ, 
Spirer HF, 1987). The sampling issue is part of the planning phase of the statistical 
investigation. The reader can find a good explanation of this topic in (Montgomery 
DC, 1984) and (Blom G, 1989). 

In the case of temporal data a subtler point has to be addressed. Imagine that we 
are presented with a list (sequence) of voltage values originated by thermal noise in 
an electrical resistance. This sequence should be considered as an instance of a 
random process capable of producing an infinite number of such sequences. 
Statistics can then be computed either for the ensemble of instances or for the time 
sequence of the voltage values. For instance, one could compute a mean voltage 
value in two different ways: first, assuming one has available a sample of voltage 
sequences randomly drawn from the ensemble, one could compute the mean 
voltage value at, say, t = 3 seconds, for all sequences; and, secondly, assuming one 
such sequence lasting 10 seconds is available, one could compute the mean voltage 
value for the duration of the sequence. In the first case, the sample mean is an 
estimate of an ensemble mean (at t = 3 s); in the second case, the sample mean is 
an estimate of a temporal mean. Fortunately, in a vast number of situations, 
corresponding to what are called ergodic random processes, one can derive 
ensemble statistics from temporal statistics, i.e., one can limit the statistical study 
to the study of only one time sequence. This applies to the first two examples of 
random processes previously mentioned (as a matter of fact, thermal noise and dice 
tossing are ergodic processes; Brownian motion is not). 

1.3 Random Variables 

A random dataset presents the values of random variables. These establish a 
mapping between an event domain and some conveniently chosen value domain  
(often a subset of ℜ). A good understanding of what the random variables are and 
which mappings they represent is a preliminary essential condition in any 
statistical analysis. A rigorous definition of a random variable (sometimes 
abbreviated to r.v.) can be found in Appendix A.  

Usually the value domain of a random variable has a direct correspondence to 
the outcomes of a random experiment, but this is not compulsory. Table 1.4 lists 
random variables corresponding to the examples of the previous section. Italicised 
capital letters are used to represent random variables, sometimes with an 
identifying subscript. The Table 1.4 mappings between the event and the value 
domain are: 

 
XF:  {commerce, industry, services}  →  {1, 2, 3}. 
XE:  {bad, mediocre, fair, good, excellent}  →  {1, 2, 3, 4, 5}. 
XR:  [90 Ω, 110 Ω]  →  [90, 110]. 

practice this “simple” task might not be so simple after all (as when we conduct 
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Table 1.4 

Dataset Variable Value Domain Type 

Firms in town X, year 2000 XF {1, 2, 3}a Discrete, Nominal 

Classification of exams XE {1, 2, 3, 4, 5} Discrete, Ordinal 

Electrical resistances (100 Ω) XR [90, 110] Continuous 
a 1 ≡ Commerce, 2 ≡ Industry, 3 ≡ Services. 

 
 
One could also have, for instance: 
 
XF:  {commerce, industry, services}  →  {−1, 0, 1}. 
XE:  {bad, mediocre, fair, good, excellent}  →  {0, 1, 2, 3, 4}. 
XR:  [90 Ω, 110 Ω]  →  [−10, 10]. 
 
The value domains (or domains for short) of the variables XF and XE are 

discrete. These variables are discrete random variables. On the other hand, 
variable XR is a continuous random variable. 

The values of a nominal (or categorial) discrete variable are mere symbols (even 
if we use numbers) whose only purpose is to distinguish different categories (or 
classes). Their value domain is unique up to a biunivocal (one-to-one) 
transformation. For instance, the domain of XF could also be codified as {A, B, C} 
or {I, II, III}. 

Examples of nominal data are: 
 
– Class of animal: bird, mammal, reptile, etc.; 
– Automobile registration plates; 
– Taxpayer registration numbers. 
 
The only statistics that make sense to compute for nominal data are the ones that 

are invariable under a biunivocal transformation, namely: category counts; 
frequencies (of occurrence); mode (of the frequencies). 

The domain of ordinal discrete variables, as suggested by the name, supports a 

monotonic transformation (i.e., preserving the total order relation). That is why the 
domain of XE could be {0, 1, 2, 3, 4} or {0, 25, 50, 75, 100} as well. 

Examples of ordinal data are abundant, since the assignment of ranking scores 
to items is such a widespread practice. A few examples are: 

 

total order relation (“larger than” or “smaller than”). It is unique up to a strict 

– Consumer preference ranks: “like”, “accept”, “dislike”, “reject”, etc.; 
– Military ranks: private, corporal, sergeant, lieutenant, captain, etc.; 
– Certainty degrees: “unsure”, “possible”, “probable”, “sure”, etc. 
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Several statistics, whose only assumption is the existence of a total order 
relation, can be applied to ordinal data. One such statistic is the median, as shown 
in Example 1.2.  

Continuous variables have a real number interval (or a reunion of intervals) as 
domain, which is unique up to a linear transformation. One can further distinguish 
between ratio type variables, supporting linear transformations of the y = ax type, 
and interval type variables supporting linear transformations of the y = ax + b type. 
The domain of ratio type variables has a fixed zero. This is the most frequent type 
of continuous variables encountered, as in Example 1.3 (a zero ohm resistance is a 
zero resistance in whatever measurement scale we choose to elect). The whole 
panoply of statistics is supported by continuous ratio type variables. The less 
common interval type variables do not have a fixed zero. An example of interval 
type data is temperature data, which can either be measured in degrees Celsius (XC) 
or in degrees Fahrenheit (XF), satisfying the relation XF = 1.8XC + 32. There are 
only a few, less frequent statistics, requiring a fixed zero, not supported by this 
type of variables. 

Notice that, strictly speaking, there is no such thing as continuous data, since all 
data can only be measured with finite precision. If, for example, one is dealing 

     
1.82 m may be used. Of course, if the highest measurement precision is the 
millimetre, one is in fact dealing with integer numbers such as 182 mm, i.e., the 
height data is, in fact, ordinal data. In practice, however, one often assumes that 
there is a continuous domain underlying the ordinal data. For instance, one often 
assumes that the height data can be measured with arbitrarily high precision. Even 
for rank data such as the examination scores of Example 1.2, one often computes 
an average score, obtaining a value in the continuous interval [0, 5], i.e., one is 
implicitly assuming that the examination scores can be measured with a higher 
precision. 

1.4 Probabilities and Distributions 

The process of statistically analysing a dataset involves operating with an 
appropriate measure expressing the randomness exhibited by the dataset. This 
measure is the probability measure. In this section, we will introduce a few topics 
of Probability Theory that are needed for the understanding of the following 
material. The reader familiar with Probability Theory can skip this section. A more 
detailed survey (but still a brief one) on Probability Theory can be found in 
Appendix A. 

1.4.1 Discrete Variables 

The beginnings of Probability Theory can be traced far back in time to studies on 
chance games. The work of the Swiss mathematician Jacob Bernoulli (1654-1705), 
Ars Conjectandi, represented a keystone in the development of a Theory of 

with data representing people’s height in meters, “real-flavour” numbers such as 
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Probability, since for the first time, mathematical grounds were established and the 
application of probability to statistics was presented. The notion of probability is 
originally associated with the notion of frequency of occurrence of one out of k 
events in a sequence of trials, in which each of the events can occur by pure 
chance. 

Let us assume a sample dataset, of size n, described by a discrete variable, X. 
Assume further that there are k distinct values xi of X each one occurring ni times. 
We define: 

 
– Absolute frequency of xi:    ni ; 

– Relative frequency (or simply frequency of xi):    ∑
=

==
k

i
i

i
i nn

n
nf

1
with . 

In the classic frequency interpretation, probability is considered a limit, for large 
n, of the relative frequency of an event: [ ]1,0lim)( ∈==≡ ∞→ inii fxXPP . In 
Appendix A, a more rigorous definition of probability is presented, as well as 
properties of the convergence of such a limit to the probability of the event (Law of 
Large Numbers), and the justification for computing )( ixXP =  as the ratio of the 
number of favourable events over the number of possible events  when the event 
composition of the random experiment is known beforehand. For instance, the 
probability of obtaining two heads when tossing two coins is ¼ since only one out 
of the four possible events (head-head, head-tail, tail-head, tail-tail) is favourable. 
As exemplified in Appendix A, one often computes probabilities of events in this 
way, using enumerative and combinatorial techniques. 

The values of Pi constitute the probability function values of the random 
variable X, denoted P(X). In the case the discrete random variable is an ordinal 
variable the accumulated sum of Pi is called the distribution function, denoted 
F(X). Bar graphs are often used to display the values of probability and distribution 
functions of discrete variables. 

Let us again consider the classification data of Example 1.2, and assume that the 
frequencies of the classifications are correct estimates of the respective 
probabilities. We will then have the probability and distribution functions 
represented in Table 1.5 and Figure 1.5. Note that the probabilities add up to 1 
(total certainty) which is the largest value of the monotonic increasing function 
F(X). 

 

Table 1.5. Probability and distribution functions for Example 1.2, assuming that 
the frequencies are correct estimates of the probabilities. 

xi Probability Function P(X) Distribution Function F(X) 
1 0.06 0.06 
2 0.20 0.26 
3 0.24 0.50 
4 0.30 0.80 
5 0.20 1.00 

“
”



12 1 Introduction  

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

P(x)
F(x)

x

 
Figure 1.5. Probability and distribution functions for Example 1.2, assuming that 
the frequencies are correct estimates of the probabilities. 

 
 
Several discrete distributions are described in Appendix B. An important one, 

since it occurs frequently in statistical studies, is the binomial distribution. It 

trial is denoted p. The complementary probability of the failure is 1 – p, also 
denoted q. Details on this distribution can be found in Appendix B. The respective 
probability function is: 
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1.4.2 Continuous Variables 

We now consider a dataset involving a continuous random variable. Since the 
variable can assume an infinite number of possible values, the probability 
associated to each particular value is zero. Only probabilities associated to intervals 
of the variable domain can be non-zero. For instance, the probability that a gunshot 
hits a particular point in a target is zero (the variable domain is here two-

       .
For a continuous variable, X (with value denoted by the same lower case letter, 

x), one can assign infinitesimal probabilities ∆p(x) to infinitesimal intervals ∆x: 
 
 

xxfxp ∆=∆ )()( ,  1.2 
 

where f(x) is the probability density function, computed at point x. 
For a finite interval [a, b] we determine the corresponding probability by adding 

up the infinitesimal contributions, i.e., using: 
 

∫=≤<
b

a
dxxfbXaP )()( . 1.3 

describes the probability of occurrence of a “success” event k times, in n 
independent trials, performed in the same conditions. The complementary “failure” 
event occurs, therefore, n – k times. The probability of the “success” in a single 

dimensional). However, the probability that it hits the “bull’s-eye” area is non-zero
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Therefore, the probability density function, f(x), must be such that: 

∫ =
D

dxxf 1)( , where D is the domain of the random variable. 
 
Similarly to the discrete case, the distribution function, F(x), is now defined as: 
 

∫ ∞−
=≤=

u
dxxfuXPuF )()()( . 1.4 

 

Sometimes the notations fX(x) and FX(x) are used, explicitly indicating the 
random variable to which respect the density and distribution functions. 

The reader may wish to consult Appendix A in order to learn more about 
continuous density and distribution functions. Appendix B presents several 
important continuous distributions, including the most popular, the Gauss (or 
normal) distribution, with density function defined as:  
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This function uses two parameters, µ and σ, corresponding to the mean and 
standard deviation, respectively. In Appendices A and B the reader finds a 
description of the most important aspects of the normal distribution, including the 
reason of its broad applicability. 

1.5 Beyond a Reasonable Doubt... 

Consider, for instance, the dataset of Example 1.3 and the statement the 100 Ω 
electrical resistances, manufactured by the machine, have a (true) mean value in 
the interval [95, 105] . If one could measure all the resistances manufactured by 
the machine during its whole lifetime, one could compute the population mean 
(true mean) and assign a True or False value to that statement, i.e., a conclusion 
with entire certainty would then be established. However, one usually has only 
available a sample of the population; therefore, the best one can produce is a 
conclusion of the type … have a mean value in the interval [95, 105] with 
probability δ ; i.e., one has to deal not with total certainty but with a degree of 
certainty: 

 
P(mean ∈[95, 105]) = δ  = 1 – α . 
 
We call δ  (or 1–α ) the confidence level (α is the error or significance level) 

and will often present it in percentage (e.g. δ  = 95%). We will learn how to 
establish confidence intervals based on sample statistics (sample mean in the above 

We often see movies where the jury of a Court has to reach a verdict as to whether 
the accused is found “guilty” or “not guilty”. The verdict must be consensual and 
established beyond any reasonable doubt. And like the trial jury, the statistician has 
also to reach objectively based conclusions, “beyond any reasonable doubt”… 

“

”

”
“
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example) and on appropriate models and/or conditions that the datasets must 
satisfy. 

Let us now look in more detail what a confidence level really means. Imagine 
that in Example 1.2 we were dealing with a random sample extracted from a 
population of a very large number of students, attending the course and subject to 
an examination under the same conditions. Thus, only one random variable plays a 
role here: the student variability in the apprehension of knowledge. Consider, 

 

=
++

=
50

101512p̂ 0.74. 

 
The question is how reliable this estimate is. Since the random variable 

representing such an estimate (with random samples of 50 students) takes value in 
a continuum of values, we know that the probability that the true mean is exactly 
that particular value (0.74) is zero. We then loose a bit of our innate and candid 
faith in exact numbers, relax our exigency, and move forward to thinking in terms 
of intervals around p̂  (interval estimate). We now ask with which degree of 
certainty (confidence level) we can say that the true proportion p of students with 

deviation – or tolerance – of ε = ±0.02 from that estimated proportion? 
In order to answer this question one needs to know the so-called sampling 

distribution of the following random variable: 
 

nXP n
i in /)( 1∑ == , 

 

well approximated by the normal distribution with mean equal to p and standard 
deviation equal to npp /)1( − . This topic is discussed in detail in Appendices A 

moment, it will suffice to say that using the normal distribution approximation 
(model), one is able to compute confidence levels for several values of the 
tolerance, ε, and sample size, n, as shown in Table 1.6 and displayed in Figure 1.6. 

Two important aspects are illustrated in Table 1.6 and Figure 1.6: first, the 
confidence level always converges to 1 (absolute certainty) with increasing n; 
second, when we want to be more precise in our interval estimates by decreasing 
the tolerance, then, for fixed n, we have to lower the confidence levels, i.e., 
simultaneous and arbitrarily good precision and certainty are impossible (some 

said the degree of certainty increases with the number of evidential facts (tending 

further, that we wanted to statistically assess the statement “the student 
performance is 3 or above”. Denoting by p the probability of the event “the student 
performance is 3 or above” we derive from the dataset an estimate of p, known as 
point estimate and denoted p̂ , as follows: 

“performance 3 or above” is, for instance, between 0.72 and 0.76, i.e., with a 

where the Xi are n independent random variables whose values are 1 in case of 
“success” (student performance ≥ 3 in this example) and 0 in case of “failure”. 

When the np and n(1–p) quantities are “reasonably large” Pn has a distribution 

and B, where what is meant by “reasonably large” is also presented. For the 

trade-off is always necessary). In the “jury verdict” analogy it is the same as if one 



 1.5 Beyond a Reasonable Doubt... 15 

to absolute certainty if this number tends to infinite), and that if the jury wanted to 
increase the precision (details) of the verdict, it would then lose in degree of 
certainty.  

 

Table 1.6. Confidence levels (δ) for the interval estimation of a proportion, when 
p̂ = 0.74, for two different values of the tolerance (ε). 

n δ  for ε = 0.02 δ  for ε = 0.01 
50 0.25 0.13 
100 0.35 0.18 
1000 0.85 0.53 
10000 ≈ 1.00 0.98 
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Figure 1.6. Confidence levels for the interval estimation of a proportion, when   
p̂ = 0.74, for three different values of the tolerance. 

 
There is also another important and subtler point concerning confidence levels. 

Consider the value of δ  = 0.25 for a ε = ±0.02 tolerance in the n = 50 sample size 
situation (Table 1.6). When we say that the proportion of students with 
performance ≥ 3 lies somewhere in the interval p̂  ± 0.02, with the confidence 
level 0.25, it really means that if we were able to infinitely repeat the experiment of 
randomly drawing n = 50 sized samples from the population, we would then find 
that 25% of the times (in 25% of the samples) the true proportion p lies in the 
interval kp̂ ± 0.02, where the kp̂  (k = 1, 2,…) are the several sample estimates 
(from the ensemble of all possible samples). Of course, the “25%” figure looks too 
low to be reassuring. We would prefer a much higher degree of certainty; say 95% 
− a very popular value for the confidence level. We would then have the situation 
where 95% of the intervals kp̂ ± 0.02 would “intersect” the true value p, as shown 
in Figure 1.7. 
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to obtain the 95% confidence level, for an ε = ±0.02 tolerance. It turns out to be     
n ≈ 1800. We now have a sample of 1800 drawings of a ball from the urn, with an 
estimated proportion, say 0p̂ , of the success event. Does this mean that when 
dealing with a large number of samples of size n = 1800 with estimates kp̂  (k = 1, 
2,…), 95% of the kp̂ will lie somewhere in the interval 0p̂ ± 0.02? No. It means, 
as previously stated and illustrated in Figure 1.7, that 95% of the intervals kp̂ ± 
0.02 will contain p. As we are (usually) dealing with a single sample, we could be 

1.7. Now, it is clear that 95% of the time p does not fall in the 3p̂ ± 0.02 interval. 

lower the risk we run in basing our conclusions on atypical samples. Assuming we 
increased the confidence level to 0.99, while maintaining the sample size, we 
would then pay the price of a larger tolerance, ε = 0.025. We can figure this out by 
imagining in Figure 1.7 that the intervals would grow wider so that now only 1 out 
of 100 intervals does not contain p. 

The main ideas of this discussion around the interval estimation of a proportion 
can be carried over to other statistical analysis situations as well. As a rule, one has 
to fix a confidence level for the conclusions of the study. This confidence level is 
intimately related to the sample size and precision (tolerance) one wishes in the 
conclusions, and has the meaning of a risk incurred by dealing with a sampling 
process that can always yield some atypical dataset, not warranting the 
conclusions. After losing our innate and candid faith in exact numbers we now lose 
a bit of our certainty about intervals… 
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Figure 1.7. Interval estimation of a proportion. For a 95% confidence level only 
roughly 5 out of 100 samples, such as sample #3, are atypical, in the sense that the 
respective p̂ ± ε interval does not contain p. 

 
The choice of an appropriate confidence level depends on the problem. The 95% 

value became a popular figure, and will be largely used throughout the book, 

Imagine then that we were dealing with random samples from a random 
experiment in which we knew beforehand that a “success” event had a p = 0.75 
probability of occurring. It could be, for instance, randomly drawing balls with 
replacement from an urn containing 3 black balls and 1 white “failure” ball. Using 
the normal approximation of Pn, one can compute the needed sample size in order 

unfortunate and be dealing with an “atypical” sample, say as sample #3 in Figure 

The confidence level can then be interpreted as a risk (the risk incurred by “a 
reasonable doubt” in the jury verdict analogy). The higher the confidence level, the 
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ε  < 0.05) for a not too large sample size (say, n > 200), and it works well in many 
applications. For some problem types, where a high risk can have serious 
consequences, one would then choose a higher confidence level, 99% for example. 

either an infinitely large, useless, tolerance, or an infinitely large, prohibitive, 
sample. A compromise value achieving a useful tolerance with an affordable 
sample size has to be found. 

1.6 Statistical Significance and Other Significances 

Statistics is surely a recognised and powerful data analysis tool. Because of its 
recognised power and its pervasive influence in science and human affairs people 
tend to look to statistics as some sort of recipe book, from where one can pick up a 
recipe for the problem at hand. Things get worse when using statistical software 
and particularly in inferential data analysis. A lot of papers and publications are 

People tend to lose any critical sense even in such a risky endeavour as trying to 
reach a general conclusion (law) based on a data sample: the inferential or 
inductive reasoning. 

In the book of A. J. Jaffe and Herbert F. Spirer (Jaffe AJ, Spirer HF 1987) many 
misuses of statistics are presented and discussed in detail. These authors identify 
four common sources of misuse: incorrect or flawed data; lack of knowledge of the 
subject matter; faulty, misleading, or imprecise interpretation of the data and 
results; incorrect or inadequate analytical methodology. In the present book we 
concentrate on how to choose adequate analytical methodologies and give precise 
interpretation of the results. Besides theoretical explanations and words of caution 
the book includes a large number of examples that in our opinion help to solidify 
the notions of adequacy and of precise interpretation of the data and the results. 
The other two sources of misuse − flawed data and lack of knowledge of the 
subject matter – are the responsibility of the practitioner. 

In what concerns statistical inference the reader must exert extra care of not 
applying statistical methods in a mechanical and mindless way, taking or using the 
software results uncritically. Let us consider as an example the comparison of 
foetal heart rate baseline measurements proposed in Exercise 4.11. The heart rate 

minute, bpm), after discarding rhythm acceleration or deceleration episodes. The 
comparison proposed in Exercise 4.11 respects to measurements obtained in 1996 
against those obtained in other years (CTG dataset samples). Now, the popular 
two-sample t-test presented in chapter 4 does not detect a statiscally significant 
diference between the means of the measurements performed in 1996 and those 
performed in other years. If a statistically significant diference was detected did it 
mean that the 1996 foetal population was different, in that respect, from the 

because it usually achieves a “reasonable” tolerance in our conclusions (say,      

Notice that arbitrarily small risks (arbitrarily small “reasonable doubt”) are often 
impractical. As a matter of fact, a zero risk − no “doubt” at all − means, usually, 

plagued with the “computer dixit” syndrome when reporting statistical results. 

“baseline” is roughly the most stable heart rate value (expressed in beats per 
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population of other years? Common sense (and other senses as well) rejects such a 
claim. If a statistically significant difference was detected one should look 
carefully to the conditions presiding the data collection: can the samples be 
considered as being random?; maybe the 1996 sample was collected in at-risk 
foetuses with lower baseline measurements; and so on. As a matter of fact, when 
dealing with large samples even a small compositional difference may sometimes 
produce statistically significant results. For instance, for the sample sizes of the 
CTG dataset even a difference as small as 1 bpm produces a result usually 
considered as statistically significant (p = 0.02). However, obstetricians only attach 
practical meaning to rhythm differences above 5 bpm; i.e., the statistically 
significant difference of 1 bpm has no practical significance. 

Inferring causality from data is even a riskier endeavour than simple 
comparisons. An often encountered example is the inference of causality from a 
statistically significant but spurious correlation. We give more details on this issue 
in section 4.4.1. 

One must also be very careful when performing goodness of fit tests. A 
common example of this is the normality assessment of a data distribution. A vast 
quantity of papers can be found where the authors conclude the normality of data 
distributions based on very small samples. (We have found a paper presented in a 
congress where the authors claimed the normality of a data distribution based on a 
sample of four cases!) As explained in detail in section 5.1.6, even with 25-sized 
samples one would often be wrong when admitting that a data distribution is 
normal because a statistical test didn t reject that possibility at a 95% confidence 
level. More: one would often be accepting the normality of data generated with 
asymmetrical and even bimodal distributions! Data distribution modelling is a 
difficult problem that usually requires large samples and even so one must bear in 
mind that most of the times and beyond a reasonable doubt one only has evidence 
of a model; the true distribution remains unknown. 

Another misuse of inferential statistics arrives in the assessment of classification 
or regression models. Many people when designing a classification or regression 
model that performs very well in a training set (the set used in the design) suffer 
from a kind of love-at-first-sight syndrome that leads to neglecting or relaxing the 
evaluation of their models in test sets (independent of the training sets). Research 
literature is full with examples of improperly validated models that are later on 
dropped out when more data becomes available and the initial optimism plunges 
down. The love-at-first-sight is even stronger when using computer software that 
automatically searches for the best set of variables describing the model. The book 
of Chamont Wang (Wang C, 1993), where many illustrations and words of caution 
on the topic of inferential statistics can be found, mentions an experiment where 51 
data samples were generated with 100 random numbers each and a regression 

dependent variable) as a function of the other ones (playing the role of independent 
variables). The search finished by finding a regression model with a significant    
R-square and six significant coefficients at 95% confidence level. In other words, a 
functional model was found explaining a relationship between noise and noise! 
Such a model would collapse had proper validation been applied. In the present 

’

model was searched for “explaining” one of the data samples (playing the role of 
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book we will pay attention to the topic of model validation both in classification 
and regression. 

1.7 Datasets 

A statistical data analysis project starts, of course, by the data collection task. The 
quality with which this task is performed is a major determinant of the quality of 
the overall project. Issues such as reducing the number of missing data, recording 
the pertinent documentation on what the problem is and how the data was collected 
and inserting the appropriate description of the meaning of the variables involved 
must be adequately addressed. 

Missing data – failure to obtain for certain objects/cases the values of one or 
more variables – will always undermine the degree of certainty of the statistical 
conclusions. Many software products provide means to cope with missing data. 
These can be simply coding missing data by symbolic numbers or tags, such as 

operations. Another possibility is the substitution of missing data by average values 
of the respective variables. Yet another solution is to simply remove objects with 
missing data. Whatever method is used the quality of the project is always 
impaired. 

with the rows corresponding to objects and the columns corresponding to the 
variables. A spreadsheet such as the one provided by EXCEL (a popular 
application of the WINDOWS systems) constitutes an adequate data storing 
solution. An example is shown in Figure 2.1. It allows to easily performing simple 
calculations on the data and to store an accompanying data description sheet. It 
also simplifies data entry operations for many statistical software products. 

All the statistical methods explained in this book are illustrated with real-life 
problems. The real datasets used in the book examples and exercises are stored in 
EXCEL files. They are described in Appendix E and included in the book CD. 
Dataset names correspond to the respective EXCEL file names. Variable identifiers 
correspond to the column identifiers of the EXCEL files.  

There are also many datasets available through the Internet which the reader 
may find useful for practising the taught matters. We particularly recommend the 
datasets of the UCI Machine Learning Repository (http://www.ics.uci.edu/ 
~mlearn/MLRepository.html). In these (and other) datasets data is presented in text 
file format. Conversion to EXCEL format is usually straightforward since EXCEL 
provides means to read in text files with several types of column delimitation. 

1.8 Software Tools 

There are many software tools for statistical analysis, covering a broad spectrum of 

“na” (“not available”) which are neglected when performing statistical analysis 

The collected data should be stored in a tabular form (“data matrix”), usually 

possibilities. At one end we find “closed” products where the user can only 

Software Tools 
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This book explains how to apply SPSS, STATISTICA, MATLAB or R to 
solving statistical problems. The explanation is guided by solved examples where 
we usually use one of the software products and provide indications (in specific 

STATISTICA 7.0, MATLAB 7.1 with the Statistics Toolbox and R 2.2.1 for the 
Windows operating system; there is, usually, no significant difference when using 
another release of these products (especially if it is a more advanced one), or 
running these products in other non-Windows based platforms. All book figures 
obtained with these software products are presented in greyscale, therefore 
sacrificing some of the original display quality. 

The reader must bear in mind that the present book is not intended as a 
substitute of the user manuals or on-line helps of SPSS, STATISTICA, MATLAB 
and R. However, we do provide the really needed information and guidance on 
how to use these software products, so that the reader will be able to run the 
examples and follow the taught matters with a minimum effort. As a matter of fact, 
our experience using this book as a teaching aid is that usually those explanations 
are sufficient for solving most practical problems. Anyway, besides user manuals 
and on-line helps, the reader interested in deepening his/her knowledge of 
particular topics may also find it profitable to consult the specific bibliography on 
these software products mentioned in the References. In this section we limit 
ourselves to describing a few basic aspects that are essential as a first hands-on.  

1.8.1 SPSS and STATISTICA 

SPSS from SPSS Inc. and STATISTICA from StatSoft Inc. are important and 
popularised software products of the menu-driven type on window environments 
with user-friendly facilities of data edition, representation and graphical support in 
an interactive way. Both products require minimal time for familiarization and 
allow the user to easily perform statistical analyses using a spreadsheet-based 
philosophy for operating with the data. 

Both products reveal a lot of similarities, starting with the menu bars shown in 
Figures 1.8 and 1.9, namely the individual options to manage files, to edit the data 
spreadsheets, to manage graphs, to perform data operations and to apply statistical 
analysis procedures.  

Concerning flexibility, both SPSS and STATISTICA provide command 
language and macro construction facilities. As a matter of fact STATISTICA is 

 
such as the use of external code (DLLs) and application programming interfaces 
(API), as well as the possibility of developing specific routines in a Basic-like 
programming language. 

perform menu operations. SPSS and STATISTICA are examples of “closed” 
products. At the other end we find “open” products allowing the user to program 
any arbitrarily complex sequence of statistical analysis operations. MATLAB and 
R are examples of “open” products providing both a programming language and an 
environment for statistical and graphic operations. 

“Commands” frames) on how to use the other ones. We use the releases SPSS 

close to an “open” product type, since it provides advanced programming facilities 
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In the following we use courier type font for denoting SPSS and STATISTICA 
commands. 

1.8.1.1 SPSS 

The menu bar of the SPSS user interface is shown in Figure 1.8 (with the data file 
Meteo.sav in current operation). The contents of the menu options (besides the 
obvious Window and Help), are as follows: 

 
File:  Operations with data files (*.sav), syntax files (*.sps), 

output files (*.spo), print operations, etc. 
Edit: Spreadsheet edition. 
View: View configuration of spreadsheets, namely of value labels and 

gridlines. 
Data:  Insertion and deletion of variables and cases, and operations with 

the data, namely sorting and transposition. 
Transform: More operations with data, such as recoding and computation of 

new variables. 
Analyze: Statistical analysis tools. 
Graphs: Operations with graphs. 
Utilities: Variable definition reports, running scripts, etc. 

 
Besides the menu options there are alternative ways to perform some operations 

using icons. 
 

Figure 1.8. Menu bar of SPSS user interface (the dataset being currently operated 
is Meteo.sav). 
 

1.8.1.2 STATISTICA 

The menu bar of STATISTICA user interface is shown in Figure 1.9 (with the data 
file Meteo.sta in current operation). The contents of the menu options (besides 
the obvious Window and Help) are as follows: 

 
File:  Operations with data files (*.sta), scrollsheet files (*.scr), 

graphic files (*.stg), print operations, etc. 
Edit: Spreadsheet edition, screen catching. 
View: View configuration of spreadsheets, namely of headers, text 

labels and case names. 
Insert: Insertion and copy of variables and cases. 
Format: Format specifications of spreadsheet cells, variables and cases. 
Statistics: Statistical analysis tools and STATISTICA Visual Basic. 
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Graphs: Operations with graphs. 
Tools: Selection conditions, macros, user options, etc. 
Data:  Several operations with the data, namely sorting, recalculation 

and recoding of data. 
 
Besides the menu options there are alternative ways to perform a given 

operation using icons and key combinations (using underlined characters). 
 
 

Figure 1.9. Menu bar of STATISTICA user interface (the dataset being currently 
operated is Meteo.sta). 

1.8.2 MATLAB and R 

MATLAB, a mathematical software product from The MathWorks, Inc., and R (R: 
A Language and Environment for Statistical Computing) from the R Development 
Core Team (R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0), a free software product for statistical computing, are popular 

http://www.r-project.org/. This site explains the R history and indicates a set of 
URLs (the so-called CRAN mirrors) that can be used for downloading R. It also 
explains the relation of the R programming language to other statistical processing 
languages such as S and S-Plus. 

Performing statistical analysis with MATLAB and R gives the user complete 
freedom to implement specific algorithms and perform complex custom-tailored 
operations. MATLAB and R are also especially useful when the statistical 
operations are part of a larger project. For instance, when developing a signal or 
image classification project one may have to first compute signal or image features 
using specific MATLAB or R toolboxes, followed by the application of 
appropriate statistical classification procedures. The penalty to be paid for this 
flexibility is that the user must learn how to program with the MATLAB or R 
language. In this book we restrict ourselves to present the essentials of MATLAB 
and R command-driven operations and will not enter into programming topics. 

We use courier type font for denoting MATLAB and R commands. When 
needed, we will clarify the correspondence between the mathematical and the 
software symbols. For instance MATLAB or R matrix x will often correspond to 
the mathematical matrix X. 

1.8.2.1 MATAB 

MATLAB command lines are written with appropriate arguments following the 
prompt, », in a MATLAB console as shown in Figure 1.10. This same Figure 

examples of “open” products. R can be downloaded from the Internet URL 
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illustrates that after writing down the command help stats (ending with the 

(functions) of the MATLAB Statistical toolbox. One could go on and write, for 
instance, help betafit, getting help about the betafit function. 

 

Figure 1.10. The command window of MATLAB showing the list of available 
statistical functions (obtained with the help command). 

 
Note that MATLAB is case-sensitive. For instance, Betafit is not the same as 

betafit. 
The basic data type in MATLAB and the one that will use more often are 

matrices. Matrix values can be directly typed in the MATLAB console. For 
instance, the following command defines a 2×2 matrix x with the typed in values: 

 
» x=[1 2 
     3 4];  
 

identifier. Object identifiers in MATLAB can be arbitrary strings not starting by a 
digit; exception is made to reserved MATLAB words. 

Indexing in MATLB is straightforward using the parentheses as index qualifier. 
Thus, for example x(2,1) is the element of the second row and first column of x 
with value 3. 

A vector is just a special matrix that can be thought of as a 1×n (row vector) or 
as an n×1 (column vector) matrix. 

which is simply an object recipient array. Consider the following sequence of 
commands: 

 
>> c=cell(1,3); 

MATLAB allows the definition of character vectors (e.g. c=[‘abc’]) and 

>> c(1,1)={‘Pmax’}; 

“Return” or the “Enter” key), one obtains a list of all available commands 

The “=  symbol is an assignment operator. The symbol “x” is the matrix 

also of vectors of strings. In this last case one must use the so-called “cell array” 

”
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The first command uses function cell to define a cell array with 1×3 objects. 

printing the c values one gets the confirmation that c is a row vector with the three 

When specifying matrices in MATLAB one may use comma to separate column 
values and semicolon to separate row values as in: 

 
» x=[1, 2 ; 3, 4];  
 
Matrices can also be used to define other matrices. Thus, the previous matrix x 

could also be defined as: 
 
» x=[[1 2] ; [3 4]];  
» x=[[1; 3], [2; 4]];  
 
One can confirm that the matrix has been defined as intended, by typing x after 

the prompt, and obtaining: 
 
x = 
     1     2 
     3     4 

The same result could be obtained by removing the semicolon terminating the 
previous command. In MATLAB a semicolon inhibits the production of screen 
output. Also MATLAB commands can either be used in a procedure-like manner, 

producing a value assigned to a variable (considered to be a matrix). This is 
illustrated next, with the command that computes the mean of a sequence of values 
structured as a row vector: 

 
» v=[1 2 3 4 5 6]; 
» mean(v) 
ans = 
    3.5000 
» y=mean(v) 
y = 
    3.5000 
 
Whenever needed one may know which objects (e.g. matrices) are currently in 

the console environment by issuing who. Object removal is performed by writing 
clear followed by the name of the object. For instance, clear x removes 
matrix x from the environment; it will no longer be available. The use of clear 
without arguments removes all objects from the environment. 

>> c(1,2)={‘T80’}; 
>> c(1,3)={‘T82’}; 
>> c 
c =  
    ‘Pmax’    ‘T80’    ‘T82’ 

These are afterwards assigned some string values (delimited with ‘). When 

strings (e.g., c(1,2) is ‘T80’). 

producing output (as “answers”, denoted ans), or in a function-like manner 
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On-line help about general or specific topics of MATLAB can be obtained from 
the Help menu option. On-line help about a specific function can be obtained by 
just typing it after the help command, as seen above. 

1.8.2.2 R 

R command lines are written with appropriate arguments following the R prompt, 
>, in the R Gui interface (R console) as shown in Figure 1.11. As in MATLAB 

Data is represented in R by means of vectors, matrices and data frames. The 
basic data representation in R is a column vector but for statistical analyses one 
mostly uses data frames. Let us start with vectors. The command 

 
> x <- c(1,2,3,4,5,6) 
 

defines a column vector named x containing the list of values between parentheses. 

can be arbitrary strings not starting by a digit; exception is made to reserved R 
words. 
 
 

Figure 1.11. The R Gui showing the definition of a vector. 
 
 
We may list the contents of x just by issuing it as a command: 

command lines must be terminated with the “Return” or the “Enter” key.  

The “<-” symbol is the assignment operator. The “c” function fills the vector with 
the list of values. The symbol “x” is the vector identifier. Object identifiers in R 
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> x 
[1] 1 2 3 4 5 6 
 
The [1] means the first element of x. For instance, 
 
> y <- rnorm(12) 
> y 
 [1] -0.1354 -0.2519  0.5716  0.6845 -1.5148 -0.1190 
 [7]  0.7328 -1.0274  0.3319 -0.3468 -1.2619  0.7146 
 

generates and lists a vector with 12 normally distributed random numbers. The 1st 
and 7th elements are indicated. (The numbers are represented here with four digits 
after the decimal point because of page width constraints. In R the representation is 
with seven digits.) One could also obtain the previous list by just issuing: > 
rnorm(12). Most R functions also behave as procedures in that way, displaying 
lists of values in the R console. 

R also provides a function, named seq, to define evenly spaced number 
sequences, as in the following example: 

 
> seq(-1,1,0.2) 
 [1] -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
 
A matrix can be obtained in R by suitably transforming a vector. For instance, 
 
> dim(x) <- c(2,3) 
> x 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 

transforms (through the dim function) the previous vector x into a matrix of 2×3 
elements. Note the display of row and column numbers. 

One can also aggregate vectors into a matrix by using the function cbind 

 
> u <- c(1,2,3) 
> v <- c(-1,-2,-3) 
> m <- cbind(u,v) 
> m 
     u  v 
[1,] 1 -1 
[2,] 2 -2 
[3,] 3 -3 
 
Matrix indexing in R uses square brackets as index qualifier. As an example, 

m[2,2] has the value -2. 
Note that R is case-sensitive. For instance, Cbind cannot be used as a 

replacement for cbind. 

A vector can be filled with strings (delimited with “), as in v <- 
c(“Pmax”, T80”, T82”). Now v is a vector containing three strings. The 
second vector element, v[2], is “T80”

(“column binding”) or rbind (“row binding”) as in the following example: 

“ “
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An R data frame is a recipient for a list of objects. We mostly use data frames 

that are simply data matrices with appropriate column names, as in the above 
matrix m. 

Operations on data are obtained by using suitable R functions. For instance, 
 
> mean(x) 
[1] 3.5 
 

displays the mean value of the x vector on the console. Of course one could also 
assign this mean value to a new variable, say mu, by issuing the command           
mu <- mean(x). 

Whenever needed one may obtain the information on which objects are 

parentheses; otherwise R will interpret it as you wishing to obtain the ls function 

list of object identifiers. For instance, rm(x) removes matrix x from the 
environment; it will no longer be available. 

On-line help about general topics of R, namely command constructs and 
available functions, can be obtained from the Help menu option of the R Gui. On-
line help about a specific function can be obtained using the R help function as 
illustrated in Figure 1.12. 

 
 

Figure 1.12. An illustration of R on-line help of function mean. The “Help on 
‘mean’” is displayed in a specific window. 

currently in the console environment by using ls()(“list”). (Be sure to include the 

code.) Object removal is performed by applying the function rm (“remove”) to a 
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The functions available in R are collected in so-called packages (somehow 

resembling the MATLAB toolboxes; an important difference is that R packages 
may also include datasets). One can inspect which packages are currently loaded 
by issuing the search() command (with no arguments). Consider that you have 
done that and obtained: 

 
We will often use functions of the stats package. In order to get the 

information of which functions are available in the stats package one may issue 
the help.start() command. An Internet window pops up from where one 

Figure 1.13. 

available stats functions. The same procedure can be followed to obtain function  
(and dataset) lists of other packages. 

One of the listed packages is the boot package. In order to have it currently 
loaded one should issue library(boot). A following search() would 
display: 

 

The command library()issues a list of the packages installed at one’s site. 

Figure 1.13. A partial view of the R “Package Index”. 

> search() 
[1]”.GlobalEnv” “package:methods” “package:stats” 
[4]”package:graphics” “package:grDevices” “package:utils” 
[7]”package:datasets”  “Autoloads”        “package:base”      

clicks on “Packages” and obtains the “Package Index” window partially shown in 

By clicking on stats of the “Package Index” one obtains a complete list of the 

 > search() 
[1] “.GlobalEnv” “package:boot” “package:methods” 
[4] “package:stats”  “package:graphics” “package:grDevices” 
[7] “package:utils” “package:datasets”  “Autoloads”    
[10]”package:base”      



2 Presenting and Summarising the Data 

Presenting and summarising the data is certainly the introductory task in any 
statistical analysis project and comprehends a set of topics and techniques, 
collectively known as descriptive statistics. 

2.1 Preliminaries 

2.1.1 Reading in the Data 

Data is usually gathered and arranged in tables. The spreadsheet approach followed 
by numerous software products is a convenient tabular approach to deal with the 
data. Consider the meteorological dataset Meteo (see Appendix E for a 
description). It is provided in the book CD as an EXCEL file (Meteo.xls ) with 
the cases (meteorological stations) along the rows and the random variables 
(weather variables) along the columns, as shown in Figure 2.1. The first column is 
the cases column, containing numerical codes or, as in Figure 2.1, names of cases. 
The first row is usually a header row containing names of variables. This is a 
convenient way to store the data. 

Notice also the indispensable Description datasheet, where all the necessary 
information concerning the meaning of the data, the definitions of the variables and 
of the cases, as well as the source and possible authorship of the data should be 
supplied. 

 

Figure 2.1. The meteorological dataset presented as an EXCEL file. 
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Carrying out this dataset into SPSS, STATISTICA or MATLAB is an easy task. 
The basic thing to do is to select the data in the usual way (mouse dragging 
between two corners of the data speadsheet), copy the data (e.g., using the 
CTRL+C keys) and paste it (e.g., using the CTRL+V keys). In R data has to be 
read from a text file. One can also, of course, type in the data directly into the 
SPSS or STATISTICA spreadsheets or into the MATLAB command window or 
the R console. This is usually restricted to small datasets. In the following 
subsections we present the basics of data entry in SPSS, STATISTICA, MATLAB 
and R. 

2.1.1.1 SPSS Data Entry 

When first starting SPSS a file specification box may be displayed and the user 
asked whether a (last operated) data file should be opened. One can cancel this file 
specification box and proceed to define a new data file (File, New), where the 
data can be pasted (from EXCEL) or typed in. The SPSS data spreadsheet starts 
with a comfortably large number of variables and cases. Further variables and 
cases may be added when needed (use the Insert Variable or Insert 
Case options of the Data menu). One can then proceed to add specifications to 
the variables, either by double clicking with the mouse left button over the column 
heading or by clicking on the Variable View tab underneath (this is a toggle 
tab, toggling between the Variable View and the Data View). The 
Variable View and Data View spreadsheets for the meteorological data 
example are shown in Figure 2.2 and 2.3, respectively. Note that the variable 
identifiers in SPSS use only lower case letters. 

 

Figure 2.2. Data View spreadsheet of SPSS for the meteorological data. 
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The data can then be saved with Save As (File menu), specifying the data 
file name (Meteo.sav) which will appear in the title heading of the data 
spreadsheet. This file can then be comfortably opened in a following session with 
the Open option of the File menu. 

 

Figure 2.3. Variable View spreadsheet of SPSS for the meteorological data. 
Notice the fields for filling in variable labels and missing data codes. 

 

2.1.1.2 STATISTICA Data Entry 

With STATISTICA one starts by creating a new data file (File, New) with the 
desired number of variables and cases, before pasting or typing in the data. There is 
also the possibility of using any previous template data file and adjusting the 
number of variables and cases (click the right button of the mouse over the variable 
column(s) or case row(s) or, alternatively, use Insert). One may proceed to 
define the variables, by assigning them a specific name and declaring their type. 
This can be done by double clicking the mouse left button over the respective 
column heading. The specification box shown in Figure 2.4 is then displayed. Note 
the possibility of specifying a variable label (describing the variable meaning) or a 
formula (this last possibility will be used later). Missing data (MD) codes and text 
labels assigned to variable values can also be specified. Figure 2.5 shows the data 
spreadsheet corresponding to the Meteo.xls dataset. The similarity with Figure 
2.1 is evident. 

After building the data spreadsheet, it is advisable to save it using the Save As 
of the File menu. In this case we specify the filename Meteo, creating thus a 
Meteo.sta STATISTICA file that can be easily opened at another session with 
the Open option of File. Once the data filename is specified, it will appear in the 
title heading of the data spreadsheet and in this case, instead of “Data: 
Spreadsheet2*”, “Data: Meteo.sta” will appear. The notation 5v by 
25c indicates that the file is composed of 5 variables with 25 cases. 
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Figure 2.4. STATISTICA variable specification box. Note the variable label at the 
bottom, describing the meaning of the variable T82. 

Figure 2.5. STATISTICA spreadsheet corresponding to the meteorological data. 
 

2.1.1.3 MATLAB Data Entry 

In MATLAB, one can also directly paste data from an EXCEL file, inside a matrix 
definition typed in the MATLAB command window. For the meteorological data 

 
symbol denotes a MATLAB user comment): 

 

one would have (the “…” denotes part of the listing that is not shown; the %
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» meteo=[ 
181 143 36 39 37 % Pasting starts here 
114 132 35 39 36 
101 125 36 40 38 
... 
14 70 35 37 39 % and ends here. 
];      % Typed after the pasting. 
 

One would then proceed to save the meteo matrix with the save command. In 
order to save the data file (as well as other files) in a specific directory, it is 
advisable to change the directory with the cd command. For instance, imagine one 
wanted to save the data in a file named Meteodata, residing in the 
c:\experiments directory. One would then specify: 

 

» save Meteodata meteo; 
 

The MATLAB dir command would then list the presence of the MATLAB file 
Meteodata.mat in that directory. 

In a later session the user can retrieve the matrix variable meteo by simply 
using the load command: » load Meteodata. 

This will load the meteo matrix from the Meteodata.mat file as can be 
confirmed by displaying its contents with: » meteo. 

2.1.1.4 R Data Entry 

The tabular form of data in R is called data frame. A data frame is an aggregate of 
column vectors, corresponding to the variables related across the same objects 
(cases). In addition it has a unique set of row names. One can create an R data 
frame from a text file (direct data entry from an EXCEL file is not available). Let 
us illustrate the whole procedure using the meteo.xls file shown in Figure 2.1 
as an example. The first thing to do is to convert the numeric data area of 
meteo.xls to a tab-delimited text file, e:meteo.txt, say, from within 
EXCEL (with Save As). We now issue the following command in the R console: 

 

 
The argument of file is the path to the file we want to read in. As a result of 

read.table a data frame is created with the same numeric information as the 
meteo.xls file. We can see this with: 

 
> meteo 
    V1  V2 V3 V4 V5 
1  181 143 36 39 37 
2  114 132 35 39 36 
3  101 125 36 40 38 
... 
 

For future use we may now proceed to save this data frame in e:meteo, say, 

» cd(‘c:\experiments’); 

> meteo <- read.table(file(“e:meteo.txt”)) 

with save(meteo,file=“e:meteo”). At a later session we can immediately 
load in the data frame with load(“e:meteo”). 
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It is often convenient to have appropriate column names for the data, instead of 
the default V1, V2, etc. One way to do this is to first create a string vector and pass 
it to the read.table function as a col.names parameter value. For the 
meteo data we could have: 

 

> meteo 
   PMax RainDays T80 T81 T82 
1   181      143  36  39  37 
2   114      132  35  39  36 
3   101      125  36  40  38 
... 
 
Column names and row names1 can also be set or retrieved with the functions 

colnames and rownames, respectively. For instance, the following sequence of 
commands assigns row names to meteo corresponding to the names of the places 
where the meteorological data was collected (see Figure 2.1): 

 

> rownames(meteo) <- r 
> meteo 
            PMax RainDays T80 T81 T82 
V. Castelo   181      143  36  39  37 
Braga        114      132  35  39  36 
S. Tirso     101      125  36  40  38 
Montalegre    80      111  34  33  31 
Bragança      36      102  37  36  35 
Mirandela     24       98  40  40  38 
M. Douro      39       96  37  37  35 
Régua         31      109  41  41  40 
... 

2.1.2 Operating with the Data 

After having read in a data set, one is often confronted with the need of defining 
new variables, according to a certain formula. Sometimes one also needs to 
manage the data in specific ways; for instance, sorting cases according to the 
values of one or more variables, or transposing the data, i.e., exchanging the roles 
of columns and rows. In this section, we will present only the fundamentals of such 
operations, illustrated for the meteorological dataset. We further assume that we 

                                                           
1
 Column or row names should preferably not use reserved R words. 

> l <- c(“PMax”, RainDays”, T80”, T81”, T82”) 
> meteo<-read.table(file(“e:meteo.txt”),col.names=l) 

> r <- c(“V. Castelo”, “Braga”, “S. Tirso”, 
“Montalegre”, “Bragança”, “Mirandela”, “M. Douro”, 
“Régua”, “Viseu”, “Guarda”, “Coimbra”, “C. Branco”, 
“Pombal”, “Santarém”, “Dois Portos”, “Setúbal”, 
“Portalegre”, “Elvas”, “Évora”, “A. Sal”, “Beja”, 
“Amareleja”, “Alportel”, “Monchique”, “Tavira”); 

“ “ “ “
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are interested in defining a new variable, PClass, that categorises the maximum 
rain precipitation (variable PMax) into three categories: 

 
1. PMax ≤ 20 (low); 
2. 20 < PMax ≤ 80 (moderate); 
3. PMax > 80 (high). 
 
Variable PClass can be expressed as 
 
PClass = 1 + (PMax > 20) + (PMax > 80), 
 

are represented by the arithmetical values 0 and 1, coding False and True, 
respectively. That is precisely how SPSS, STATISTICA, MATLAB and R handle 
such expressions. The reader can easily check that PClass values are 1, 2 and 3 in 
correspondence with the low, moderate and high categories. 

In the following subsections we will learn the essentials of data operation with 
SPSS, STATISTICA, MATLAB and R.  

2.1.2.1 SPSS 

The addition of a new variable is made in SPSS by using the Insert 
Variable option of the Data menu. In the case of the previous categorisation 
variable, one would then proceed to compute its values by using the Compute 
option of the Transform menu. The Compute Variable window shown in 
Figure 2.6 will then be displayed, where one would fill in the above formula using 
the respective variable identifiers; in this case: 1+(pmax>20)+(pmax>80). 

Looking to Figure 2.6 one may rightly suspect that a large number of functions 
are available in SPSS for building arbitrarily complex formulas. 

Other data management operations such as sorting and transposing can be 
performed using specific options of the SPSS Data menu. 

2.1.2.2 STATISTICA 

The addition of a new variable in STATISTICA is made with the Add 
Variable option of the Insert menu. The variable specification window 
shown in Figure 2.7 will then be displayed, where one would fill in, namely, the 
number of variables to be added, their names and the formulas used to compute 
them. In this case, the formula is: 

 
1+(v1>20)+(v1>80). 
 
In STATISTICA variables are symbolically denoted by v followed by a number 

representing the position of the variable column in the spreadsheet. Since Pmax 
happens to be the first column, it is then denoted v1. The cases column is v0. It is 
also possible to use variable identifiers in formulas instead of v-notations.  

whenever logical values associated to relational expressions such as “PMax > 20” 
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Figure 2.6. Computing, in SPSS, the new variable PClass in terms of the variable 
pmax. 

 
 

Figure 2.7. Specification of a new (categorising) variable, PClass, inserted after 
PMax in STATISTICA. 

 
The presence of the equal sign, preceding the expression, indicates that one 

wants to compute a formula and not merely assign a text label to a variable. One 
can also build arbitrarily complex formulas in STATISTICA, using a large number 
of predefined functions (see button Functions in Figure 2.7). 
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Besides the insertion of new variables, one can also perform other operations 
such as sorting the entire spreadsheet based on column values, or transposing 
columns and cases, using the appropriate STATISTICA Data menu options.  

2.1.2.3 MATLAB 

In order to operate with the matrix data in MATLAB we need to first learn some 
basic ingredients. We have already mentioned that a matrix element is accessed 
through its indices, separated by comma, between parentheses. For instance, for the 
previous meteo matrix, one can find out the value of the maximum precipitation 
(1st column) for the 3rd case, by typing: 

 
» meteo(3,1) 
 
ans = 
   101 
 
If one wishes a list of the PMax values from the 3rd to the 5th cases, one would 

write: 
 
» meteo(3:5,1) 
 
ans = 
   101 
    80 
    36 
 
Therefore, a range in cases (or columns) is obtained using the range values 

separated by a colon. The use of the colon alone, without any range values, means 
the complete range, i.e., the complete column (or row). Thus, in order to extract the 
PMax column vector from the meteo matrix we need only specify: 

 
» pmax = meteo(:,1); 
 
We may now proceed to compute the new column vector, PClass: 
 
» pclass = 1+(pmax>20)+(pmax>80); 
 

and join it to the meteo matrix, with: 
 
» meteo = [meteo pclass] 
 
Transposition of a matrix in MATLAB is straightforward, using the apostrophe 

as the transposition operation. For the meteo matrix one would write: 
 

 
Sorting the rows of a matrix, as a group and in ascending order, is performed 

with the sortrows command: 
 
» meteo = sortrows(meteo); 

» meteotransp = meteo’; 
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2.1.2.4 R 

Let us consider the meteo data frame created in 2.1.1.4. Every data column can be 
extracted from this data frame using its name followed by the column name with 

 
> meteo$PMax 
 

lists the values of the PMax column. We may then proceed as follows: 
 
PClass <- 1 + (meteo$PMax>20) + (meteo$PMax>80) 
 

creating a vector for the needed new variable. The only thing remaining to be done 
is to bind this new vector to the data frame, as follows: 

 
> meteo <- cbind(meteo,PClass) 
> meteo 
   PMax RainDays T80 T81 T82 PClass 
1   181      143  36  39  37      3 
2   114      132  35  39  36      3 
... 
 
One can get rid of the clumsy $-notation to qualify data frame variables by 

using the attach command: 
 
> attach(meteo) 
 

In this way variable names always respect to the attached data frame. From now 
on we will always assume that an attach operation has been performed. (Whenever 
needed one may undo it with detach. ) 

Indexing data frames is straightforward. One just needs to specify the indices 
between square brackets. Some examples: meteo[2,5] and T82[2] mean the 
same thing: the value of T82, 36, for the second row (case); meteo[2,] is the 
whole second row; meteo[3:5,2] is the sub-vector containing the RainDays 
values for the cases 3 through 5, i.e., 125, 111 and 102. 

Sometimes one may need to transpose a data frame. R provides the t 

 
> meteo <- t(meteo) 
> meteo 
           1   2   3   4   5  6  7   8   9  10 11 12 

13 14 15 16 17 18 19 20 21 22 23 24 25 
PMax     181 114 101  80  36 24 39  31  49  57 72 60 

36 45 36 28 41 13 14 16  8 18 24 37 14 
RainDays 143 132 125 111 102 98 96 109 102 104 95 85 

92 90 83 81 79 77 75 80 72 72 71 71 70 
T80       36  35  36  34  37 40 37  41  38  32 36 39 

36 40 37 37 38 40 37 39 39 41 38 38 35 
... 
 

the “$” symbol in between. Thus: 

(“transpose”) function to do that: 
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Sorting a vector can be performed with the function sort. One often needs to 
sort data frame variables according to a certain ordering of one or more of its 
variables. Imagine that one wanted to get the sorted list of the maximum 
precipitation variable, PMax, of the meteo data frame. The procedure to follow 
for this purpose is to first use the order function: 

 
> order(PMax) 
 [1] 21 18 19 25 20 22  6 23 16  8  5 13 15 24  7 17 

14  9 10 12 11  4  3  2  1 
 
The order function supplies a permutation list of the indices corresponding to 

an increasing order of its argument(s). In the above example the 21st element of the 
PMax variable is the smallest one, followed by the 18th element and so on up to the 
1st element which is the largest. One may obtain a decreasing order sort and store 
the permutation list as follows: 

 
> o <- order(PMax, decreasing=TRUE) 
 
The permutation list can now be used to perform the sorting of PMax or any 

other variable of meteo: 
 
> PMax[o] 
 [1] 181 114 101  80  72  60  57  49  45  41  39  37  

36  36  36  31  28  24  24  18  16  14  14 
[24]  13   8 

2.2 Presenting the Data 

A general overview of the data in terms of the frequencies with which a certain 
interval of values occurs, both in tabular and in graphical form, is usually advisable 
as a preliminary step before proceeding to the computation of specific statistics and 
performing statistical analysis. As a matter of fact, one usually obtains some 
insight on what to compute and what to do with the data by first looking to 
frequency tables and graphs. For instance, if from the inspection of such a table 
and/or graph one gets a clear idea that an asymmetrical distribution is present, one 
may drop the intent of performing a normal distribution goodness-of-fit test. 

After the initial familiarisation with the software products provided by the 
previous sections, the present and following sections will no longer split 
explanations by software product but instead they will include specific frames, 
headed by a “Commands” caption and ending with “ , where we present which 
commands (or functions in the MATLAB and R cases) to use in order to perform 
the explained statistical operations. The MATLAB functions listed in “Commands” 
are, except otherwise stated, from the MATLAB Base or Statistics Toolbox. The R 
functions are, except otherwise stated, from the R Base, Graphics or Stats 
packages.  We also provide in the book CD many MATLAB and R implemented 
functions for specific tasks. They are listed in Appendix F and appear in italic in 

”
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In the following we also provide many examples illustrating the statistical 
analysis procedures. We assume that the datasets used throughout the examples are 
available as conveniently formatted data files (*.sav for SPSS, *.sta for 
STATISTICA, *.mat for MATLAB, files containing data frames for R). 

2.2.1 Counts and Bar Graphs 

Tables of counts and bar graphs are used to present discrete data. Denoting by X 
the discrete random variable associated to the data, the table of counts – also know 
as tally sheet – gives us: 
 
– The absolute frequencies (counts), nk; 
– The relative frequencies (or simply, frequencies) of occurrence fk = nk/n,  
 
for each discrete value (category), xk, of the random variable X (n is the total 
number of cases).  

Example 2.1 

Q: Consider the Meteo dataset (see Appendix E). We assume that this data has 
been already read in by SPSS, STATISTICA, MATLAB or R. Obtain a tally sheet 
showing the counts of maximum precipitation categories (discrete variable PClass). 
What is the category with higher frequency? 

A: The tally sheet can be obtained with the commands listed in Commands 2.1. 
Table 2.1 shows the results obtained with SPSS. The category with higher rate of 
occurrence is category 2 (64%). The Valid Percent column will differ from 
the Percent column, only in the case of missing data, with the Valid 
Percent removing the missing data from the computations. 

 

Table 2.1. Frequency table for the discrete variable PClass, obtained with SPSS. 

 Frequency Percent Valid Percent Cumulative 
Percent 

Valid 1.00 6 24.0 24.0 24.0 
2.00 16 64.0 64.0 88.0 
3.00 3 12.0 12.0 100.0 
Total 25 100.0 100.0  

 

the “Commands” frames. SPSS and STATISTICA commands are described in 
terms of menu options separated by “;” in the “Commands” frames. In this case 
one may read “,” as “followed by”. For MATLAB and R functions “;” is simply a 
separator. Alternative menu options or functions are separated by “|”. 

“Example” frames end with . 
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In Table 2.1 the counts are shown in the column headed by Frequency, and 
the frequencies, given in percentage, are in the column headed by Percent. 
These last ones are unbiased and consistent point estimates of the corresponding 
probability values pk. For more details see A.1 and the Appendix C. 

  
 

Commands 2.1. SPSS, STATISTICA, MATLAB and R commands used to obtain 
frequency tables. For SPSS and STATISTICA the semicolon separates menu 
options that must be used in sequence. 

SPSS Analyze; Descriptive Statistics; 
Frequencies 

STATISTICA Statistics; Basic Statistics and Tables; 
Descriptive Statistics; Frequency Tables 

MATLAB tabulate(x) 

R table(x); prop.table(x) 

 
 

When using SPSS or STATISTICA, one has to specify, in appropriate windows, 
the variables used in the statistical analysis. Figure 2.8 shows the windows used for 

With SPSS the variable specification window pops up immediately after 
choosing Frequencies in the menu Descriptive Statistics. Using a 
select button that toggles between select ( ) and remove ( ), one can specify 
which variables to use in the analysis. The frequency table is outputted into the 
output sheet, which constitutes a session logbook, that can be saved (*.spo file) 
and opened at a later session. From the output sheet the frequency table can be 
copied into the clipboard in the usual way (e.g., using the CTRL+C keys) by first 
selecting it with the mouse (just click the mouse left button over the table). 

 

Figure 2.8. Variable specification windows for descriptive statistics: a) SPSS;       
b) STATISTICA. 

that purpose in the present “Descriptive Statistics” case.  
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With STATISTICA, the variable specification window pops up when clicking 
the Variables tab in the Descriptive Statistics window. One can 
select variables with the mouse or edit their identification numbers in a text box. 

starting from variable v2 up to variable v4. There is also a Select All 
variables button. The frequency table is outputted into a specific scroll-sheet that is 
part of a session workbook file, which constitutes a session logbook that can be 
saved (*.stw file) and opened at a later session. The entire scroll-sheet (or any 
part of the screen) can be copied to the clipboard (from where it can be pasted into 
a document in the normal way), using the Screen Catcher tool of the Edit 
menu. As an alternative, one can also copy the contents of the table alone in the 
normal way. 

The MATLAB tabulate function computes a 3-column matrix, such that the 
first column contains the different values of the argument, the second column 
values are absolute frequencies (counts), and the third column are these frequencies 
in percentage. For the PClass example we have: 

 
» t=tabulate(PClass) 
t = 
     1     6    24 
     2    16    64 
     3     3    12 
 
Text output of MATLAB can be copied and pasted in the usual way. 
The R table function – table(PClass) for the example – computes the 

counts. The function prop.table(x) computes proportions of each vector x 
element. In order to obtain the information of the above last column one should use 
prop.table(table(PClass)). Text output of the R console can be copied 
and pasted in the usual way. 
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Figure 2.9. Bar graph, obtained with SPSS, representing the frequencies (in 
percentage values) of PClass.  

For instance, editing “2-4”, means that one wishes the analysis to be performed 
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With SPSS, STATISTICA, MATLAB and R one can also obtain a graphic 
representation of a tally sheet, which constitutes for the example at hand an 
estimate of the probability function of the associated random variable XPClass, in the 
form of a bar graph (see Commands 2.2). Figure 2.9 shows the bar graph obtained 
with SPSS for Example 2.1. The heights of the bars represent estimates of the 
discrete probabilities (see Appendix B for examples of bar graph representations of 
discrete probability functions). 

 
Commands 2.2. SPSS, STATISTICA, MATLAB and R commands used to obtain 

SPSS Graphs; Bar Charts 

STATISTICA Graphs; Histograms 

MATLAB bar(f) | hist(y,x) 

R barplot(x) | hist(x) 

 
With SPSS, after selecting the Simple option of Bar Charts one proceeds to 
choose the variable (or variables) to be represented graphically in the Define 
Simple Bar window by selecting it for the Category Axis, as shown in 

option in this window. The graph output appears in the SPSS output sheet in the 
form of a resizable object, which can be copied (select it first with the mouse) and 
pasted in the usual way. By double clicking over this object, the SPSS Chart 
Editor pops up (see Figure 2.11), with many options for the user to tailor the 
graph to his/her personal preferences. 

With STATISTICA one can obtain a bar graph using the Histograms option 
of the Graphs menu. A 2D Histograms window pops up, where the user must 
specify the variable (or variables) to be represented graphically (using the 
Variables button), and, in this case, the Regular type for the bar graph. The 
user must also select the Codes option, and specify the codes for the variable 
categories (clicking in the respective button), as shown in Figure 2.12. In this case, 
the Normal fit box is left unchecked. Figure 2.13 shows the bar graph obtained 
with STATISTICA for the PClass variable. 

Any graph in STATISTICA is a resizable object that can be copied (and pasted) 
in the usual way. One can also completely customise the graph by clicking over it 
and modifying the required specifications in the All Options window, shown 
in Figure 2.14. For instance, the bar graph of Figure 2.13 was obtained by: 
choosing the white background in the Graph Window sub-window; selecting 
black hatched fill in the Plot Bars sub-window; leaving the Gridlines box 
unchecked in the Axis Major Units sub-window (shown in Figure 2.14).  

MATLAB has a routine for drawing histograms (to be described in the 
following section) that can also be used for obtaining bar graphs. The routine, 

bar graphs. The “|” symbol separates alternative options or functions.

Figure 2.10. For the frequency bar graph one must check the “% of cases” 
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hist(y,x), plots a bar graph of the y frequencies, using a vector x with the 
categories. For the PClass variable one would have to write down the following 
commands: 

 
» cat=[1 2 3];  %vector with categories 
» hist(pclass,cat) 

 

Figure 2.10. SPSS Define Simple Bar window, for specifying bar charts. 

 

Figure 2.11. The SPSS Chart Editor, with which the user can configure the 
graphic output (in the present case, Figure 2.9). For instance, by using Color 
from the Format menu one can modify the bar colour.  
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Figure 2.12. Specification of a bar chart for variable PClass (Example 2.1) using 
STATISTICA. The category codes can be filled in directly or by clicking the All 
button. 

 

Figure 2.13. Bar graph, obtained with STATISTICA, representing the frequencies 
(counts) of variable PClass (Example 2.1). 

 
If one has available the vector with the counts, it is then also possible to use the 

bar command. In the present case, after obtaining the previously mentioned t 
vector (see Commands 2.1), one would proceed to obtain the bar graph 
corresponding to column 3 of t, with: 

 
» colormap([.5 .5 .5]); bar(t(:,3)) 
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Figure 2.14. The STATISTICA All Options window that allows the user to 
completely customise the graphic output. This window has several sub-windows 
that can be opened with the left tabs. The sub-window corresponding to the axis 
units is shown. 

 
 

The colormap command determines which colour will be used for the bars. 
Its argument is a vector containing the composition rates (between 0 and 1) of the 
red, green and blue colours. In the above example, as we are using equal 
composition of all the colours, the graph, therefore, appears grey in colour. 

Figures in MATLAB are displayed in specific windows, as exemplified in 
Figure 2.15. They can be customised using the available options in Tools. The 
user can copy a resizable figure using the Copy Figure option of the Edit 
menu. 

The R hist function when applied to a discrete variable plots its bar graph. 
Instead of providing graphical editing operations in the graphical window, as in the 
previous software products, R graphical functions have a whole series of 
configuration arguments. Figure 2.16a was obtained with hist(PClass, 
col=“gray”). The argument col determines the filling colour of the bars. 
There are arguments for specifying shading lines, the border colour of the bars, the 
labels, and so on. For instance, Figure 2.16b was obtained with hist(PClass, 
density = 10, angle = 30, border = “black”, col = 
“gray”, labels = TRUE). From now on we assume that the reader will 
browse through the on-line help of the graphical functions in order to obtain the 
proper guidance on how to set argument values. Graphical plots in R can be copied 
as bitmaps or metafiles using menu options popped up with the mouse right button. 
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Figure 2.15. MATLAB figure window, containing the bar graph of PClass. The 
graph itself can be copied to the clipboard using the Copy Figure option of the 
Edit menu. 

Figure 2.16. Bar graphs of PClass obtained with R: a) Using grey bars; b) Using 
dashed gray lines and count labels. 

2.2.2 Frequencies and Histograms 

Consider now a continuous variable. Instead of a tally sheet/bar graph, representing 
an estimate of a discrete probability function, we now want a tabular and graphical 
representation of an estimate of a probability density function. For this purpose, we 
establish a certain number of equal2 length intervals of the random variable and 
compute the frequency of occurrence in each of these intervals (also known as 
bins). In practice, one determines the lowest, xl, and highest, xh, sample values and 
divides the range, xh − xl, into r equal length bins, hk, k = 1, 2,…,r. The computed 
frequencies are now: 

                                                           
2
 Unequal length intervals are seldom used. 
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fk = nk/n, where nk is the number of sample values (observations) in bin hk. 
 
The tabular form of the fk is called a frequency table; the graphical form is 

known as a histogram. They are representations of estimates of the probability 
density function of the associated random variable. Usually the histogram range is 
chosen somewhat larger than xh − xl, and adjusted so that convenient limits for the 
bins are obtained. 

Let d = (xh − xl)/r denote the bin length. Then the probability density estimate 
for each of the intervals hk is: 

 

d
kf

kp =ˆ  
 
The areas of the hk intervals are therefore fk and they sum up to 1 as they should. 
 

Table 2.2. Frequency table of the cork stopper PRT variable using 10 bins (table 
obtained with STATISTICA). 

 Count Cumulative Percent Cumulative 
  Count  Percent 
20.22222<x<=187.7778 3 3 2.00000 2.0000 
187.7778<x<=355.3333 24 27 16.00000 18.0000 
355.3333<x<=522.8889 28 55 18.66667 36.6667 
522.8889<x<=690.4444 27 82 18.00000 54.6667 
690.4444<x<=858.0000 22 104 14.66667 69.3333 
858.0000<x<=1025.556 15 119 10.00000 79.3333 
1025.556<x<=1193.111 11 130 7.33333 86.6667 
1193.111<x<=1360.667 11 141 7.33333 94.0000 
1360.667<x<=1528.222 8 149 5.33333 99.3333 
1528.222<x<=1695.778 1 150 0.66667 100.0000 
Missing 0 150 0.00000 100.0000 
 

Example 2.2 

This variable measures the total perimeter of cork defects, and can be considered a 
continuous (ratio type) variable. Determine the frequency table and the histogram 
of this variable, using 10 and 6 bins, respectively.  

A: The frequency table and histogram can be obtained with the commands listed in 
Commands 2.1 and Commands 2.3, respectively.  

Table 2.2 shows the frequency table of PRT using 10 bins. Figure 2.17 shows 
the histogram of PRT, using 6 bins.  

  

Q: Consider the variable PRT of the  dataset (see Appendix E). Cork Stoppers’
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Let X denote the random variable associated to PRT. Then, the histogram of the 
frequency values represents an estimate, )(ˆ xf X , of the unknown probability 
density function )(xf X . 

The number of bins to use in a histogram (or in a frequency table) depends on 
its goodness of fit to the true density function )(xf X , in terms of bias and variance. 
In order to clarify this issue, let us consider the histograms of PRT using r = 3 and 
r = 50 bins as shown in Figure 2.18. Consider in both cases the )(ˆ xf X estimate 
represented by a polygonal line passing through the mid-point values of the 
histogram bars. Notice that in the first case (r = 3) the )(ˆ xf X estimate is quite 
smooth and lacks detail, corresponding to a large bias of the expected value 
of )(ˆ xf X – )(xf X ; i.e., in average terms (for an ensemble of similar histograms 
associated to X) the histogram will give a point estimate of the density that can be 
quite far from the true density. In the second case (r = 50) the )(ˆ xf X estimate is 
too rough; our polygonal line may pass quite near the true density values, but the 

)(ˆ xf X values vary widely (large variance) around the )(xf X curve (corresponding 
to an average of a large number of such histograms). 
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Figure 2.17. Histogram of variable PRT (cork stopper dataset) obtained with 
STATISTICA using r = 6 bins. 

 

off between large bias and large variance, have been divulged in the literature, 
namely: 

r = 1 + 3.3 log(n)   (Sturges, 1926); 2.1 

r = 1 + 2.2 log(n)   (Larson, 1975).  2.2 

Some formulas for selecting a “reasonable” number of bins, r, achieving a trade-
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The choice of an optimal value for r was studied by Scott (Scott DW, 1979), 
using as optimality criterion the minimisation of the global mean square error: 

 

∫ −Ε=
D XX dxxfxf ]))()(ˆ([MSE 2 , 

 
where D is the domain of the random variable. 

The MSE minimisation leads to a formula for the optimal choice of a bin width, 
h(n), which for the Gaussian density case is: 

 
h(n) = 3.49sn−1/3,  2.3 
 

where s is the sample standard deviation of the data. 
Although the h(n) formula was derived for the Gaussian density case, it was 

experimentally verified to work well for other densities too. With this h(n) one can 
compute the optimal number of bins using the data range: 

r = (xh − xl)/ h(n). 2.4 
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Figure 2.18. Histogram of variable PRT, obtained with STATISTICA, using:       
a) r = 3 bins (large bias); b) r = 50 bins (large variance). 

 
The Bins worksheet, of the EXCEL Tools.xls file (included in the book 

CD), allows the computation of the number of bins according to the three formulas 
2.1, 2.2 and 2.4. In the case of the PRT variable, we obtain the results of Table 2.3, 
legitimising the use of 6 bins as in Figure 2.17. 

 
Table 2.3. Recommended number of bins for the PRT data (n =150 cases, s = 361, 
range = 1508). 

Formula Number of Bins 
Sturges 8 
Larson 6 
Scott 6 
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Commands 2.3. SPSS, STATISTICA, MATLAB and R commands used to obtain 
histograms.  

SPSS Graphs; Histogram |Interactive; Histogram 

STATISTICA Graphs; Histograms 

MATLAB hist(y,x) 

R hist(x) 

 
 

The commands used to obtain histograms of continuous type data, are similar to 
the ones already described in Commands 2.2. 

In order to obtain a histogram with SPSS, one can use the Histogram option 
of Graphs, or preferably, use the sequence of commands Graphs; 
Interactive; Histogram. One can then select the appropriate number of 
bins, or alternatively, set the bin width. It is also possible to choose the starting 
point of the bins. 

With STATISTICA, one simply defines the bins in appropriate windows as 
previously mentioned. Besides setting the desired number of bins, there is instead 
also the possibility of defining the bin width (Step size) and the starting point 
of the bins. 

With MATLAB one obtains both the frequencies and the histogram with the 
hist command. Consider the following commands applied to the cork stopper 
data stored in the MATLAB cork matrix: 

 
» prt = cork(:,4) 
» [f,x] = hist(prt,6); 
 
In this case the hist command generates an f vector containing the 

frequencies counted in 6 bins and an x vector containing the bin locations. Listing 
the values of f one gets: 

 
» f 
f = 
    27    45    32    19    18     9 , 
 

which are precisely the values shown in Figure 2.17. One can also use the hist 
command with specifications of bins stored in a vector b, as hist(prt, b). 

With R one can use the hist function either for obtaining a histogram or for 
obtaining a frequency list. The frequency list is obtained by assigning the outcome 

 
> h <- hist(PRT) 
 

By listing the contents of h one gets among other things the information of the 
break points of the histogram bins, the counts and the densities. The densities 

of the function to a variable identifier, which then becomes a “histogram” object. 
Assuming that a data frame has been created (and attached) for cork stoppers we 
get a “histogram” object for PRT issuing the following command: 
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represent the probability density estimate for a given bin. We can list de densities 
of PRT as follows: 

 
> h$density 
[1] 1.333333e-04 1.033333e-03 1.166667e-03 
[4] 9.666667e-04 5.666667e-04 4.666667e-04 
[7] 4.333333e-04 2.000000e-04 3.333333e-05 
 
Thus, using the formula previously mentioned for the probability density 

estimates, we compute the relative frequencies using the bin length (200 in our 
case) as follows: 

 
> h$density*200 
[1] 0.026666661 0.206666667 0.233333333 0.193333333 
[5] 0.113333333 0.093333333 0.086666667 0.040000000 
[9] 0.006666667 
  

2.2.3 Multivariate Tables, Scatter Plots and 3D Plots  

Multivariate tables display the frequencies of multivariate data. Figure 2.19 shows 
the format of a bivariate table displaying the counts nij corresponding to the several 
combinations of categories of two random variables. Such a bivariate table is 
called a cross table or contingency table. 
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y1 r1
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.  .  .

.  .  .
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Figure 2.19. An r×c contingency table with the observed absolute frequencies 
(counts nij). The row and column totals are ri and cj, respectively. 

When dealing with continuous variables, one can also build cross tables using 
categories in accordance to the bins that would be assigned to a histogram 
representation of the variables. 

Example 2.3 

Q: Consider the variables SEX and Q4 (4th enquiry question) of the Freshmen 
dataset (see Appendix E). Determine the cross table for these two categorical 
variables. 
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A: The cross table can be obtained with the commands listed in Commands 2.4. 
Table 2.4 shows the counts and frequencies for each pair of values of the two 
categorical variables. Note that the variable Q4 can be considered an ordinal 

A cross table is an estimate of the respective bivariate probability or density 
function. Notice the total percentages across columns (last row in Table 2.4) and 
across rows (last column in Table 2.4), which are estimates of the respective 
marginal probability functions (see section A.8.1). 

  
 

Table 2.4. Cross table (obtained with SPSS) of variables SEX and Q4 of the 
Freshmen dataset. 

     Q4   Total 

   Fully 
disagree Disagree No 

comment Agree Fully 
agree  

SEX male Count 3 8 18 37 31 97 
  % of Total 2.3% 6.1% 13.6% 28.0% 23.5% 73.5% 
 female Count 1 2 4 13 15 35 
  % of Total .8% 1.5% 3.0% 9.8% 11.4% 26.5% 

Total  Count 4 10 22 50 46 132 
  % of Total 3.0% 7.6% 16.7% 37.9% 34.8% 100.0% 
 
 

Table 2.5. Trivariate cross table (obtained with SPSS) of variables SEX, LIKE and 
DISPL of the Freshmen dataset. 

     LIKE  Total 
DISPL    like dislike no comment  
yes SEX male Count 25   25 
   % of Total 67.6%   67.6% 
  female Count 10  2 12 
   % of Total 27.0%  5.4% 32.4% 
 Total  Count 35  2 37 
   % of Total 94.6%  5.4% 100.0% 
no SEX male Count 64 1 6 71 
   % of Total 68.1% 1.1% 6.4% 75.5% 
  female Count 21  2 23 
   % of Total 22.3%  2.1% 24.5% 
 Total  Count 85 1 8 94 
   % of Total 90.4% 1.1% 8.5% 100.0% 

variable if we assign ordered scores, e.g. from 1 till 5, from “fully disagree” 
through “fully agree”, respectively. 
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Example 2.4 

Q: Determine the trivariate table for the variables SEX, LIKE and DISPL of the 
Freshmen dataset. 

A: In order to represent cross tables for more than two variables, one builds sub-
tables for each value of one of the variables in excess of 2, as illustrated in Table 
2.5.  

 
 

Commands 2.4. SPSS, STATISTICA, MATLAB and R commands used to obtain 
cross tables.  

SPSS Analyze; Descriptive Statistics; Crosstabs 

STATISTICA 
Statistics; Basic Statistics and Tables; 
Descriptive Statistics; (Tables and 
banners | Multiple Response Tables) 

MATLAB crosstab(x,y) 

R table(x,y) | xtabs(~x+y) 

 
 

The MATLAB function crosstab and the R functions table and xtabs 
generate cross-tabulations of the variables passed as arguments. Supposing that the 
dataset Freshmen has been read into the R data frame freshmen, one would 
obtain Table 2.4 as follows (the ## symbol denotes an R user comment): 

 
> attach(freshmen) 
> table(SEX,Q4)  ## or xtabs(~SEX+Q4) 
     Q4 
SEX   1  2  3  4  5 
   1  3  8 18 37 31 
   2  1  2  4 13 15  
 
 

Commands 2.5. SPSS, STATISTICA, MATLAB and R commands used to obtain 
scatter plots and 3D plots. 

SPSS Graphs; Scatter; Simple 
Graphs; Scatter; 3-D 

STATISTICA Graphs; Scatterplots 
Graphs; 3D XYZ Graphs; Scatterplots 

MATLAB scatter(x,y,s,c) 
scatter3(x,y,z,s,c) 

R plot.default(x,y) 
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The s, c arguments of MATLAB scatter and scatter3 are the size and 
colour of the marks, respectively. 

The plot.default function is the x-y scatter plot function of R and has 
several configuration parameters available (colours, type of marks, etc.). The R 
Graphics package has no 3D plot available. 

  
 

Figure 2.20. Scatter plot (obtained with STATISTICA) of the variables ART and 
PRT of the cork stopper dataset. 

Figure 2.21. 3D plot (obtained with STATISTICA) of the variables ART, PRT and 
N of the cork stopper dataset. 

 
The most popular graphical tools for multivariate data are the scatter plots for 

bivariate data and the 3D plots for trivariate data. Examples of these plots, for the 
cork stopper data, are shown in Figures 2.20 and 2.21. As a matter of fact, the 3D 
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plot is often not so easy to interpret (as in Figure 2.21); therefore, in normal 
practice, one often inspects multivariate data graphically through scatter plots of 
the variables grouped in pairs. 

Besides scatter plots and 3D plots, it may be convenient to inspect bivariate 
histograms or bar plots (such as the one shown in Figure A.1, Appendix A). 
STATISTICA affords the possibility of obtaining such bivariate histograms from 
within the Frequency Tables window of the Descriptive Statistics 
menu.  

2.2.4 Categorised Plots 

Statistical studies often address the problem of comparing random distributions of 
the same variables for different values of an extra grouping variable. For instance, 
in the case of the cork stopper dataset, one might be interested in comparing 
numbers of defects for the three different groups (or classes) of the cork stoppers.  
The cork stopper dataset, described in Appendix E, is an example of a grouped (or 
classified) dataset. When dealing with grouped data one needs to compare the data 
across the groups. For that purpose there is a multitude of graphic tools, known as 
categorised plots. For instance, with the cork stopper data, one may wish to 
compare the histograms of the first two classes of cork stoppers. This comparison 
is shown as a categorised histogram plot in Figure 2.22, for the variable ART. 
Instead of displaying the individual histograms, it is also possible to display all 
histograms overlaid in only one plot. 
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Figure 2.22. Categorised histogram plot obtained with STATISTICA for variable 
ART and the first two classes of cork stoppers. 

 
When the number of groups is high, the visual comparison of the histograms 

may be rather difficult. The situation usually worsens if one uses overlaid 
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histograms. A better alternative to comparing data distributions for several groups 
is to use the so-called box plot (or box-and-whiskers plot). As illustrated in Figure 
2.23, a box plot uses a distinct rectangular box for each group, where each box 
corresponds to the central 50% of the cases, the so-called inter-quartile range 
(IQR). A central mark or line inside the box indicates the median, i.e., the value 
below which 50% of the cases are included. The boxes are prolonged with lines 
(whiskers) covering the range of the non-outlier cases, i.e., cases that do not 
exceed, by a certain factor of the IQR, the above or below box limits. A usual IQR 
factor for outliers is 1.5. Sometimes box plots also indicate, with an appropriate 
mark, the extreme cases, similarly defined as the outliers, but using a larger IQR 
factor, usually 3. As an alternative to using the central 50% range of the cases 
around the median, one can also use the mean ± standard deviation.  

There is also the possibility of obtaining categorised scatter plots or categorised 
3D plots. Their real usefulness is however questionable. 
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Figure 2.23. Box plot of variable ART, obtained with R, for the three classes of 

exceeding the top of the box by more than 1.5×IQR. 

 
Commands 2.6. SPSS, STATISTICA, MATLAB and R commands used to obtain 
box plots. 

SPSS Graphs; Boxplot 

STATISTICA Graphs; 2D Graphs; Boxplots 

MATLAB boxplot(x) 

R boxplot(x~y); legend(x,y,label) 

 

the cork stoppers data. The “o” sign for Class 1 indicates an outlier, i.e., a case 
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2.3 Summarising the Data 

When analysing a dataset, one usually starts by determining some indices that give 
a global picture on where and how the data is concentrated and what is the shape of 
its distribution, i.e., indices that are useful for the purpose of summarising the data. 
These indices are known as descriptive statistics. 

2.3.1 Measures of Location 

Measures of location are used in order to determine where the data distribution is 
concentrated. The most usual measures of location are presented next. 

 
 

Commands 2.7. SPSS, STATISTICA, MATLAB and R commands used to obtain 
measures of location.  

SPSS Analyze; Descriptive Statistics 

STATISTICA Statistics; Basic Statistics/Tables; 
Descriptive Statistics 

MATLAB mean(x) ; trimmean(x,p) ; median(x) ; 
prctile(x,p) 

R mean(x, trim) ; median(x) ; summary(x); 
quantile(x,seq(...)) 

  

Let x1, …, xn be the data. The arithmetic mean (or simply mean) is: 
 

∑ == n
i ix

n
x 1

1 .  2.5 

 
The arithmetic mean is the sample estimate of the mean of the associated 

random variable (see Appendices B and C). If one has a tally sheet of a discrete 

The R boxplot function uses the so-called x~y “formula” to create a box plot of 
x grouped by y. The legend function places label as a legend at the (x,y) 
position of the plot. The graph of Figure 2.23 (CL is the Class variable) was 
obtained with: 
 
> boxplot(ART~CL) 
> legend(3.2,100,legend=“CL”) 
> legend(0.5,900,legend=“ART”)  

2.3.1.1 Arithmetic Mean 
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type data, one can also compute the mean using the absolute frequencies (counts), 
nk, of each distinct value xk: 
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If one has a frequency table of a continuous type data (also known in some 

literature as grouped data), with r bins, one can obtain an estimate of x , using the 
frequencies fj of the bins and the mid-bin values, jx& , as follows: 
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This mean estimate used to be presented as an expedite way of calculating the 

arithmetic mean for long tables of data. With the advent of statistical software the 
interest of such a method is at least questionable. We will proceed no further with 

Sometimes, when in presence of datasets exhibiting outliers and extreme cases 
(see 2.2.4) that can be suspected to be the result of rough measurement errors, one 
can use a trimmed mean by neglecting a certain percentage of the tail cases (e.g., 
5%). 

The arithmetic mean is a point estimate of the expected value (true mean) of the 
random variable associated to the data and has the same properties as the true mean 
(see A.6.1). Note that the expected value can be interpreted as the center of gravity 
of a weightless rod with probability mass-points, in the case of discrete variables, 
or of a rod whose mass-density corresponds to the probability density function, in 
the case of continuous variables. 

The median of a dataset is that value of the data below which lie 50% of the cases. 
It is an estimate of the median, med(X), of the random variable, X, associated to the 
data, defined as: 

 

)(med
2
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where )(xFX is the distribution function of X.  

Note that, using the previous rod analogy for the continuous variable case, the 
median divides the rod into equal mass halves corresponding to equal areas under 
the density curve: 
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such a “grouped data” approach. 

2.3.1.2 Median 
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The median satisfies the same linear property as the mean (see A.6.1), but not 
the other properties (e.g. additivity). Compared to the mean, the median has the 
advantage of being quite insensitive to outliers and extreme cases. 

Notice that, if we sort the dataset, the sample median is the central value if the 
number of the data values is odd; if it is even, it is computed as the average of the 
two most central values. 

The quantile of order α (0 < α  < 1) of a random variable distribution )(xFX  is 
defined as the root of the equation (see A.5.2): 

 
α=)(xFX .  2.9 

 
We denote the root as: xα. 
Likewise we compute the quantile of order α of a dataset as the value below 

which lies a percentage α of cases of the dataset. The median is therefore the 50% 
quantile, or x0.5. Often used quantiles are: 

 
– Quartiles, corresponding to multiples of 25% of the cases. The box plot 

mentioned in 2.2.4 uses the quartiles and the inter-quartile range (IQR) in 
order to determine the outliers of the dataset distribution. 

– Deciles, corresponding to multiples of 10% of the cases. 

– Percentiles, corresponding to multiples of 1% of the cases. We will often 
use the percentile p = 2.5% and its complement p = 97.5%. 

The mode of a dataset is its maximum value. It is an estimate of the probability or 
density function maximum.  

For continuous type data one should determine the midpoint of the modal bin of 
the data grouped into an appropriate number of bins.  

When a data distribution exhibits several relative maxima of almost equal value, 
we say that it is a multimodal distribution. 

 

Example 2.5 

of the variable PRT. Comment the results. Imagine that we had a new variable, 

A: Table 2.6 shows some measures of location of the variable PRT. Notice that as 
a mode estimate we can use the midpoint of the bin [355.3 606.7] as shown in 
Figure 2.17, i.e., 481. Notice also the values of the lower and upper quartiles 

Q: Consider the Cork Stoppers’ dataset. Determine the measures of location 

2.3.1.3 Quantiles 

2.3.1.4 Mode  

PRT1, obtained by the following linear transformation of PRT: PRT1 = 0.2 PRT + 5. 
Determine the mean and median of PRT1. 
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delimiting 50% of the cases. The large deviation of the 95% percentile from the 
upper quartile, when compared to the deviation of the 5% percentile from the lower 
quartile, is evidence of a right skewed asymmetrical distribution. 

By the linear properties of the mean and the median, we have: 
 
Mean(PRT1)    = 0.2 Mean(PRT) + 5    = 147; 
Median(PRT1) = 0.2 Median(PRT) + 5 = 131. 
  
 

Table 2.6. Location measures (computed with STATISTICA) for variable PRT of 
the cork stopper dataset (150 cases). 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Percentile 
5% 

Percentile 
95% 

710.3867 629.0000 410.0000 974.0000 246.0000 1400.000 

 
 
An important aspect to be considered, when using values computed with 

statistical software, is the precision of the results expressed by the number of 
significant digits. Almost every software product will produce results with a large 
number of digits, independent of whether or not they mean something. For 
instance, in the case of the PRT variable (Table 2.6) it would be foolish to publish 
that the mean of the total perimeter of the defects of the cork stoppers is 710.3867. 
First of all, the least significant digit is, in this case, the unit (no perimeter can be 
measured in fractions of the pixel unit; see Appendix E). Thus, one would have to 
publish a value rounded up to the units, in this case 710. Second, there are 
omnipresent measurement errors that must be accounted for. Assuming that the 
perimeter measurement error is of one unit, then the mean is 710 ± 13. As a matter 
of fact, even this one unit precision for the mean is somewhat misleading, as we 
will see in the following chapter. From now on the published results will take this 
issue into consideration and may, therefore, appropriately round the results 
obtained with the software products.  

The R functions also provide a large number of digits, as when calculating the 
mean of PRT: 

 
> mean(PRT) 
[1] 710.3867 
 
However, the summary function provides a reasonable rounding: 
 
> summary(PRT) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  104.0   412.0   629.0   710.4   968.5  1612.0 

                                                           
3
 Denoting by ∆x a single data measurement error, the mean of n measurements has an error 

of ±(n.abs(∆x))/n = ±∆x in the worst case. 
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2.3.2 Measures of Spread 

The measures of spread (or dispersion) give an indication of how concentrated a 
data distribution is. The most usual measures of spread are presented next. 

 
 

Commands 2.8. SPSS, STATISTICA, MATLAB and R commands used to obtain 
measures of spread and shape.  

SPSS Analyze; Descriptive Statistics 

STATISTICA Statistics; Basic Statistics/Tables; 
Descriptive Statistics 

MATLAB iqr(x) ;| range(x) ; std(x) ; var(x) ; 
skewness(x) ; kurtosis(x) 

R IQR(x) ; range(x) | sd(x) | var(x)| 
skewness(x) ; kurtosis(x) 

  

The range of a dataset is the difference between its maximum and its minimum, 
i.e.: 
 

R = xmax – xmin.   2.10 
 
The basic disadvantage of using the range as measure of spread is that it is 

dependent on the extreme cases of the dataset. It also tends to increase with the 
sample size, which is an additional disadvantage. 

The inter-quartile range is defined as (see also section 2.2.4): 
 

IQR = x0.75 − x0.25 .  2.11 
 

The IQR is less influenced than the range by outliers and extreme cases. It tends 
also to be less influenced by the sample size (and can either increase or decrease). 

The variance of a dataset x1, …, xn (sample variance) is defined as: 
 

)1/()(1
2 −−= ∑ = nxxv n

i i .  2.12 

2.3.2.1 Range 

2.3.2.2 Inter-quartile range 

2.3.2.3 Variance 
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The sample variance is the point estimate of the associated random variable 
variance (see Appendices B and C). It can be interpreted as the mean square 
deviation (or mean square error, MSE) of the sample values from their mean. The 
use of the n – 1 factor, instead of n as in the usual computation of a mean, is 
explained in C.2. Notice also that given x , only n – 1 cases can vary independently 
in order to achieve the same variance. We say that the variance has df = n – 1 
degrees of freedom. The mean, on the other hand, has n degrees of freedom. 

The standard deviation of a dataset is the root square of its variance. It is, therefore, 
a root mean square error (RMSE): 

 
2/1

1
2 ])1/()([ −−== ∑ = nxxvs n

i i .  2.13 
 
The standard deviation is preferable than the variance as a measure of spread, 

since it is expressed in the same units as the original data. Furthermore, many 
interesting results about the spread of a distribution are expressed in terms of the 
standard deviation. For instance, for any random variable X, the Chebyshev 
Theorem tall us that (see A.6.3): 

 

2
1)(

k
kXP ≤>− σµ . 

 
Using s as point estimate of σ, we can then expect that for any dataset 

distribution at least 75 % of the cases lie within 2 standard deviations of the mean. 
 

Example 2.6 

the variable PRT. Imagine that we had a new variable, PRT1, obtained by the 
following linear transformation of PRT: PRT1 = 0.2 PRT + 5. Determine the 
variance of PRT1. 

A: Table 2.7 shows measures of spread of the variable PRT. The sample variance 
enjoys the same linear transformation property as the true variance (see A.6.1). For 
the PRT1 variable we have: 

 
variance(PRT1) = (0.2)2 variance(PRT) = 5219. 
 
Note that the addition of a constant to PRT (i.e., a scale translation) has no 

effect on the variance. 
  
 

Q: Consider the Cork Stoppers’ dataset. Determine the measures of spread of 

2.3.2.4 Standard Deviation 
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Table 2.7. Spread measures (computed with STATISTICA) for variable PRT of 
the cork stopper dataset (150 cases). 

Range Inter-quartile range Variance Standard Deviation 

1508 564 130477 361 

2.3.3 Measures of Shape 

The most popular measures of shape, exemplified for the PRT variable of the 

A continuous symmetrical distribution around the mean, µ, is defined as a 
distribution satisfying: 
 

)()( xfxf XX −=+ µµ . 
 
This applies similarly for discrete distributions, substituting the density function 

by the probability function. 
A useful asymmetry measure around the mean is the coefficient of skewness, 

defined as: 
 

33 /])([ σµγ −Ε= X .  2.14 
 
This measure uses the fact that any central moment of odd order is zero for 

symmetrical distributions around the mean. For asymmetrical distributions γ 
reflects the unbalance of the density or probability values around the mean. The 
formula uses a  standardization factor, ensuring that the same value is obtained 
for the same unbalance, independently of the spread. Distributions that are skewed 
to the right (positively skewed distributions) tend to produce a positive value of γ, 
since the longer rightward tail will positively dominate the third order central 
moment; distributions skewed to the left (negatively skewed distributions) tend to 
produce a negative value of γ, since the longer leftward tail will negatively 
dominate the third order central moment (see Figure 2.24). The coefficient γ, 
however, has to be interpreted with caution, since it may produce a false 
impression of symmetry (or asymmetry) for some distributions. For instance, the 
probability function pk  = {0.1, 0.15, 0.4, 0.35}, k = {1, 2, 3, 4}, has γ = 0, although 
it is an asymmetrical distribution. 

The skewness of a dataset x1, …, xn is the point estimate of γ, defined as: 
 

∑ = −−−= n
i i snnxxng 1

33 ])2)(1([/)( .  2.15 
 

Cork Stoppers’ dataset (see Table 2.8), are presented next. 

2.3.3.1 Skewness 

3σ
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Note that: 
 
– For symmetrical distributions, if the mean exists, it will coincide with the 

median. Based on this property, one can also measure the skewness using          
g = (mean − median)/(standard deviation). It can be proved that –1 ≤ g  ≤ 1. 

– For asymmetrical distributions, with only one maximum (which is then the 
mode), the median is between the mode and the mean as shown in Figure 
2.24. 

 

a

x

f(x)

mode
median

mean
 b

x

f(x)

mode
median

mean
 

Figure 2.24. Two asymmetrical distributions: a) Skewed to the right (usually with 
γ > 0); b) Skewed to the left (usually with γ < 0). 

The degree of flatness of a probability or density function near its center, can be 
characterised by the so-called kurtosis, defined as: 

 

3/])([ 44 −−Ε= σµκ X .  2.16 
 
The factor 3 is introduced in order that κ = 0 for the normal distribution. As a 

matter of fact, the κ measure as it stands in formula 2.16, is often called coefficient 
of excess (excess compared to the normal distribution). Distributions flatter than 
the normal distribution have κ  < 0; distributions more peaked than the normal 
distribution have κ  > 0. 

The sample estimate of the kurtosis is computed as: 
 

])3)(2)(1([/])1(3)1([ 42
24 snnnMnMnnk −−−−−+= ,  2.17 

 

with: ∑ = −= n
i

j
ij xxM 1 )( . 

Note that the kurtosis measure has the same shortcomings as the skewness 
measure. It does not always measure what it is supposed to. 

The skewness and the kurtosis have been computed for the PRT variable of the 

positive skewness indicative of a rightward skewed distribution and a positive 
kurtosis indicative of a distribution more peaked than the normal one. 

Cork Stoppers’ dataset as shown in Table 2.8. The PRT variable exhibits a 

2.3.3.2 Kurtosis 
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There are no functions in the R stats package to compute the skewness and 
kurtosis. We provide, however, as stated in Commands 2.8, R functions for that 
purpose in text file format in the book CD (see Appendix F). The only thing to be 
done is to copy the function text from the file and paste it in the R console, as in 
the following example: 

 
> skewness <- function(x){ 
+ n <- length(x) 
+ y <- (x-mean(x))^3 
+ n*sum(y)/((n-1)*(n-2)*sd(x)^3) 
+ } 
> skewness(PRT) 
[1] 0.592342 
 
In order to appreciate the obtained skewness and kurtosis, the reader can refer to 

Figure 2.25 where these measures are plotted for several distributions (see 
Appendix B). For more details see (Dudewicz EJ, Mishra SN, 1988). 

 
Table 2.8. Skewness and kurtosis for the PRT variable of the cork stopper dataset. 

Skewness Kurtosis 
0.59 −0.63 
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Figure 2.25. Skewness and kurtosis coefficients for several distributions. 

2.3.4 Measures of Association for Continuous Variables 

The correlation coefficient is the most popular measure of association for 
continuous type data. For a dataset with two variables, X and Y, the sample 
estimate of the correlation coefficient ρXY  (see definition in A.8.2) is computed as: 

YX

XY
XY s

s
rr

s
=≡ ,  2.18 
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where sXY, the sample covariance of X and Y, is computed as: 
 

)1/()()(1 −−−= ∑ = nyyxxs i
n
i iXY .  2.19 

 
Note that the correlation coefficient (also known as Pearson correlation) is a 

dimensionless measure of the degree of linear association of two r.v., with value in 
the interval [−1, 1], with: 

 
 0 :  No linear association (X and Y are linearly uncorrelated); 
 1 :  Total linear association, with X and Y varying in the same direction; 
−1:  Total linear association, with X and Y varying in the opposite direction. 
 
Figure 2.26 shows scatter plots exemplifying several situations of correlation. 

Figure 2.26f illustrates a situation where, although there is an evident association 
between X and Y, the correlation coefficient fails to measure it since X and Y are 
not linearly associated. 

Note that, as described in Appendix A (section A.8.2), adding a constant or 
multiplying by a constant any or both variables does not change the magnitude of 
the correlation coefficient. Only a change of sign can occur if one of the 
multiplying constants is negative. 

The correlation coefficients can be arranged, in general, into a symmetrical 
correlation matrix, where each element is the correlation coefficient of the 
respective column and row variables.  

 

Table 2.9. Correlation matrix of five variables of the cork stopper dataset. 

 N ART PRT ARTG PRTG 
N 1.00 0.80 0.89 0.68 0.72 
ART 0.80 1.00 0.98 0.96 0.97 
PRT 0.89 0.98 1.00 0.91 0.93 
ARTG 0.68 0.96 0.91 1.00 0.99 
PRTG 0.72 0.97 0.93 0.99 1.00 

 

Example 2.7 

Q: Compute the correlation matrix of the following five variables of the Cork 

A: Table 2.9 shows the (symmetric) correlation matrix corresponding to the five 
variables of the cork stopper dataset (see Commands 2.9). Notice that the main 
diagonal elements (from the upper left corner to the right lower corner) are all 
equal to one. In a later chapter, we will learn how to correctly interpret the 
correlation values displayed. 

  

Stoppers’ dataset: N, ART, PRT, ARTG, PRTG. 
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In multivariate problems, concerning datasets described by n random variables, 
X1, X2, …, X n, one sometimes needs to assess what is the degree of association of 
two variables, say X1 and X2, under the hypothesis that they are linearly estimated 
by the remaining n – 2 variables. For this purpose, the correlation 21XXρ is defined 
in terms of the marginal distributions of X1 or X2 given the other variables, and is 
then called the partial correlation of X1 and X2 given the other variables. Details on 
partial correlations will be postponed to Chapter 7. 
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Figure 2.26.  Sample correlation values for different datasets: a) r = 1; b) r = –1;   
c) r = 0; d) r = 0.81; e) r = – 0.21; f) r = 0.04. 
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STATISTICA and SPSS afford the possibility of computing partial correlations 
as indicated in Commands 2.9. For the previous example, the partial correlation of 
PRTG and ARTG, given PRT and ART, is 0.79. We see, therefore, that PRT and 

Another measure of association for continuous variables is the multiple 
correlation coefficient, which measures the degree of association of one variable Y 

multiple correlation will be postponed to Chapter 7. 
 

Commands 2.9. SPSS, STATISTICA, MATLAB and R commands used to obtain 
measures of association for continuous variables. 

SPSS Analyze; Correlate; Bivariate | Partial 

STATISTICA 
Statistics; Basic Statistics/Tables; 
Correlation matrices (Quick |Advanced; 
Partial Correlations) 

MATLAB corrcoef(x) ; cov(x) 

R cor(x,y) ; cov(x,y) 
  

Partial correlations are computed in MATLAB and R as part of the regression 
functions (see Chapter 7).  

2.3.5 Measures of Association for Ordinal Variables 

When dealing with ordinal data the correlation coefficient, previously described, 
can be computed in a simplified way. Consider the ordinal variables X and Y with 
ranks between 1 and N. It seems natural to measure the lack of agreement between 
X and Y by means of the difference of the ranks di = xi − yi for each data pair (xi, yi). 
Using these differences we can express 2.18 as: 
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Assuming the values of xi and yi are ranked from 1 through N and that there are 
no tied ranks in any variable, we have: 
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known as rank correlation coefficient) is derived: 
Applying this result to 2.20, the following Spearman’s rank correlation (also 

ART can “explain” about 20% of the high correlation (0.99) of those two variables. 

in relation to a set of variables, X1, X2, …, X n, that linearly “predict” Y. Details on 

2.3.5.1 The Spearman Rank Correlation 
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When tied ranks occur − i.e., two or more cases receive the same rank on the 
same variable −, each of those cases is assigned the average of the ranks that would 
have been assigned had no ties occurred. When the proportion of tied ranks is 
small, formula 2.21 can still be used. Otherwise, the following correction factor is 
computed: 
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where g is the number of groupings of different tied ranks and ti is the number of 

tied ranks is now written as: 
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where Tx and Ty are the correction factors for the variables X and Y, respectively. 
 
 

Table 2.10. Contingency table obtained with SPSS of the NC, PRTGC variables 
(cork stopper dataset). 

     PRTGC Total 
     0 1 2 3  
NC 0 Count 25 9 4 1 39 
   % of Total 16.7% 6.0% 2.7% .7% 26.0% 
  1 Count 12 13 10 1 36 
   % of Total 8.0% 8.7% 6.7% .7% 24.0% 
  2 Count 1 13 15 9 38 
   % of Total .7% 8.7% 10.0% 6.0% 25.3% 
  3 Count 1 1 9 26 37 
   % of Total .7% .7% 6.0% 17.3% 24.7% 
Total  Count 39 36 38 37 150 
   % of Total 26.0% 24.0% 25.3% 24.7% 100.0% 

 
 

Example 2.8 

Q: Compute the rank correlation for the variables N and PRTG of the Cork 

PRTG into 4 categories, according to their value falling into the 1st, 2nd, 3rd or 4th 
quartile intervals.  

tied ranks in the ith grouping. The Spearman’s rank correlation with correction for 

Stopper’ dataset, using two new variables, NC and PRTGC, which rank N and 
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A: The new variables NC and PRTGC can be computed using formulas similar to 
the formula used in 2.1.6 for computing PClass. Specifically for NC, given the 
values of the three N quartiles, 59 (25%), 78.5 (50%) and 95 (75%), respectively, 
NC coded in {0, 1, 2, 3} is computed as: 

 
NC = (N>59)+(N>78.5)+(N>95) 
 
The corresponding contingency table is shown in Table 2.10. Note that NC and 

PRTGC are ordinal variables since their ranks do indeed satisfy an order relation. 
The rank correlation coefficient computed for this table (see Commands 2.10) is 

0.715 which agrees fairly well with the 0.72 correlation computed for the 
corresponding continuous variables, as shown in Table 2.9. 

  

Another measure of association for ordinal variables is based on a comparison of 
the values of both variables, X and Y, for all possible pairs of cases (x, y). Pairs of 
cases can be: 
 

– Concordant (in rank order): The values of both variables for one case are 
higher (or are both lower) than the corresponding values for the other case. 
For instance, in Table 2.10 (X = NC; Y = PRTGC), the pair {(0, 0), (2, 1)} is 
concordant. 

– Discordant (in rank order): The value of one variable for one case is higher 
than the corresponding value for the other case, and the direction is reversed 
for the other variable. For instance, in Table 2.10, the pair {(0, 2), (3, 1)} is 
discordant. 

– Tied (in rank order): The two cases have the same value on one or on both 
variables. For instance, in Table 2.10, the pair {(1, 2), (3, 2)} are tied. 

 
The following γ measure of association (gamma coefficient) is defined: 
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Let P and Q represent the total counts for the concordant and discordant cases, 
respectively. A point estimate of γ is then: 
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with P and Q computed from the counts nij (of table cell ij), of a contingency table 
with r rows and c columns, as follows: 
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2.3.5.2 The Gamma Statistic 
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where the +
ijN is the sum of all counts below and to the right of the ijth cell, and 

the −
ijN is the sum of all counts below and to the left of the ijth cell. 

The gamma measure varies, as does the correlation coefficient, in the interval   
[−1, 1]. It will be 1 if all the frequencies lie in the main diagonal of the table (from 
the upper left corner to the lower right corner), as for all cases where there are no 
discordant contributions (see Figure 2.27a). It will be –1 if all the frequencies lie in 
the other diagonal of the table, and also for all cases where there are no concordant 
contributions (see Figure 2.27b). Finally, it will be zero when the concordant 
contributions balance the discordant ones. 

The G value for the example of Table 2.10 is 0.785. We will see in Chapter 5 
the significance of the G statistic. 

There are other measures of association similar to the gamma coefficient that 
are applicable to ordinal data. For more details the reader can consult e.g. (Siegel S, 
Castellan Jr NJ, 1988). 

 
 

Commands 2.10. SPSS, STATISTICA, MATLAB and R commands used to 
obtain measures of association for ordinal variables.  

SPSS Analyze; Descriptive  
Statistics; Crosstabs 

STATISTICA Statistics; Basic Statistics/Tables; 
Tables and Banners; Options 

MATLAB corrcoef(x) ; gammacoef(t) 

R cor(x) ; gammacoef(t) 

 
 

Measures of association for ordinal variables are obtained in SPSS and 
STATISTICA as a result of applying contingency table analysis with the 
commands listed in Commands 5.7.  

MATLAB Statistics toolbox and R stats package do not provide a function for 
computing the gamma statistic. We provide, however, MATLAB and R functions 
for that purpose in the book CD (see Appendix F). 

  
 
  y1 y2 y3   y1 y2 y3 
 x1 x x   x1  x x 

 x2  x x  x2 x   

a x3   x b x3 x   

Figure 2.27. Examples of contingency table formats for: a) G = 1 ( −
ijN  cells are 

shaded gray); b) G = –1 ( +
ijN cells are shaded gray). 
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2.3.6 Measures of Association for Nominal Variables 

Assume we have a multivariate dataset whose variables are of nominal type and we 
intend to measure their level of association. In this case, the correlation coefficient 
approach cannot be applied, since covariance and standard deviations are not 
applicable to nominal data. We need another approach that uses the contingency 
table information in a similar way as when we computed the gamma coefficient for 
the ordinal data. 

 
 

Commands 2.11. SPSS, STATISTICA, MATLAB and R commands used to 
obtain measures of association for nominal variables.  

SPSS Analyze; Descriptive  
Statistics; Crosstabs 

STATISTICA Statistics; Basic Statistics/Tables; 
Tables and Banners; Options 

MATLAB kappa(x,alpha) 

R kappa(x,alpha) 

 
 

Measures of association for nominal variables are obtained in SPSS and 
STATISTICA as a result of applying contingency table analysis (see Commands 
5.7). 

The kappa statistic can be computed with SPSS only when the values of the first 
variable match the values of the second variable. STATISTICA does not provide 
the kappa statistic.  

MATLAB Statistics toolbox and R stats package do not provide a function for 
computing the kappa statistic. We provide, however, MATLAB and R functions 
for that purpose in the book CD (see Appendix F). 

  

Let us first consider a bivariate dataset with nominal variables that only have two 
values (dichotomous variables), as in the case of the 2×2 contingency table shown 
in Table 2.11. 

In the case of a full association of both variables one would obtain a 100% 
frequency for the values along the main diagonal of the table, and 0% otherwise. 
Based on this observation, the following index of association, φ  (phi coefficient), 
is defined: 
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2.3.6.1 The Phi Coefficient 
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Note that the denominator of φ will ensure a value in the interval [−1, 1] as with 
the correlation coefficient, with +1 representing a perfect positive association and  
–1 a perfect negative association. As a matter of fact the phi coefficient is a special 
case of the Pearson correlation.  
 

Table 2.11. A general cross table for the bivariate dichotomous case. 

 y1 y2 Total 

x1 a b a + b 

x2 c d c + d 

Total a + c b + d a + b + c + d 
 
 

Example 2.9 

Q: Consider the 2×2 contingency table for the variables SEX and INIT of the 
Freshmen dataset, shown in Table 2.12. Compute their phi coefficient. 

A: The computed value of phi using 2.26 is 0.15, suggesting a very low degree of 
association. The significance of the phi values will be discussed in Chapter 5. 

  
 

Table 2.12. Cross table (obtained with SPSS) of variables SEX and INIT of the 
freshmen dataset. 

      INIT Total 
      yes no  
SEX male Count 91 5 96 
    % of Total 69.5% 3.8% 73.3% 
  female Count 30 5 35 
    % of Total 22.9% 3.8% 26.7% 
Total   Count 121 10 131 
    % of Total 92.4% 7.6% 100.0% 

Another useful measure of association, for multivariate nominal data, attempts to 
evaluate how well one of the variables predicts the outcome of the other variable. 
This measure is applicable to any nominal variables, either dichotomous or not. We 
will explain it using Table 2.4, by attempting to estimate the contribution of 

that purpose, we first note that if nothing is known about the sex, the best 
variable SEX in lowering the prediction error of Q4 (“liking to be initiated”). For 

prediction of the Q4 outcome is the “agree” category, the so-called modal category, 

2.3.6.2 The Lambda Statistic 
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with the highest frequency of occurrence (37.9%). In choosing this modal category, 
we expect to be in error 62.1% of the times. On the other hand, if we know the sex 

Let us denote: 
 
i. Pec ≡ Percentage of errors using only the columns = 100 – percentage of 

modal column category. 
ii. Pecr ≡ Percentage of errors using also the rows = sum along the rows of (100 

– percentage of modal column category in each row). 
 
The λ measure (Goodman and Kruskal lambda) of proportional reduction of 

error, when using the columns depending from the rows, is defined as: 
 

c
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cr Pe
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=λ .  2.27 

 
Similarly, for the prediction of the rows depending from the columns, we have: 
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The coefficient of mutual association (also called symmetric lambda) is a 
weighted average of both lambdas, defined as: 
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The lambda measure always ranges between 0 and 1, with 0 meaning that the 

independent variable is of no help in predicting the dependent variable and 1 
meaning that the independent variable perfectly specifies the categories of the 
dependent variable. 

 

Example 2.10 

Q: Compute the lambda statistics for Table 2.4. 

A: Using formula 2.27 we find λcr = 0.024, suggesting a non-helpful contribution 
of the sex in determining the outcome of Q4. We also find λrc = 0 and λ = 0.017. 
The significance of the lambda statistic will be discussed in Chapter 5. 

  

The kappa statistic is used to measure the degree of agreement for categorical 
variables. Consider the cross table shown in Figure 2.19 where the r rows are 

(i.e., we know the full table), we would choose as prediction outcome the “agree” 
category if it is a male (expecting then 73.5 – 28 = 45.5% of errors), and the “fully 
agree” category if it is a female (expecting then 26.5 – 11.4 = 15.1% of errors). 

2.3.6.3 The Kappa Statistic 
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objects to be assigned to one of c categories (columns). Furthermore, assume that k 
judges assigned the objects to the categories, with nij representing the number of 
judges that assigned object i to category j.  

The sums of the counts along the rows totals k. Let cj denote the sum of the 
counts along the column j. If all the judges were in perfect agreement one would 
find a column filed in with k and the others with zeros, i.e., one of the cj would be 
rk and the others zero. The proportion of objects assigned to the jth category is: 

 

)/(rkcp jj = . 
 

If the judges make their assignments at random, the expected proportion of 
agreement for each category is 2

jp  and the total expected agreement for all 
categories is: 
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The extent of agreement, si, concerning the ith object, is the proportion of the 
number of pairs for which there is agreement to the possible pairs of agreement: 
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The total proportion of agreement is the average of these proportions across all 

objects:
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The κ (kappa) statistic, based on the formulas 2.30 and 2.31, is defined as: 
 

( ) ( )
( )EP

EPAP
−

−
=

1
κ .  2.32 

 
If there is complete agreement among the judges, then κ  = 1 (P(A) = 1,         

P(E) = 0). If there is no agreement among the judges other than what would be 
expected by chance, then κ  = 0 (P(A) = P(E)). 

 

Example 2.11 

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases, classified 
by three human experts (E1C, E2C, E3C) and an automatic diagnostic system 
(SPC) into three categories: normal (0), suspect (1) and pathologic (2). Determine 
the degree of agreement among all 4 classifiers (experts and automatic system). 
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A: We use the N, S and P variables, which contain the data in the adequate 
contingency table format, shown in Table 2.13. For instance, object #1 was 
classified N by one of the classifiers (judges) and S by three of the classifiers. 

Running the function kappa(x,0.05) in MATLAB or R, where x is the data 
matrix corresponding to the N-S-P columns of Table 2.13, we obtain κ = 0.213, 
which suggests some agreement among all 4 classifiers. The significance of the 
kappa values will be discussed in Chapter 5. 

  
 

Table 2.13. Contingency table for the N, S and P categories of the FHR dataset. 

Object # N S P Total 
1 1 3 0 4 
2 1 3 0 4 
3 1 3 0 4 
... ... ... ... ... 
51 1 2 1 4 

Exercises 

a) What type of data is it? Does it make sense to use the mean as location measure of 
this data? 

 
with and without the lowest score value. 

 
2.2 Does the median have the additive property of the mean (see A.6.1)? Explain why. 
 

ejected blood between diastole and systole) of the heart left ventricle, measured in a 
random sample of 64 patients with some symptom of myocardial infarction. 
a) Determine the histogram of the data using an appropriate number of bins. 
b) Determine the corresponding frequency table and use it to estimate the proportion 

of patients that are expected to have an ejection fraction below 50%. 
c) Determine the mean, median and standard deviation of the data. 

 
2.4 Consider the Freshmen dataset used in Example 2.3. 

a) What type of variables are Course and Exam 1? 
b) Determine the bar chart of Course. What category occurs most often? 
c) Determine the mean and median of Exam 1 and comment on the closeness of the 

values obtained. 
d) Based on the frequency table of Exam 1, estimate the number of flunking students. 
 

2.1 Consider the “Team Work” evaluation scores of the Metal Firms’ dataset: 

b) Compute the median value of “Evaluation of Competence” of the same dataset, 

2.3 Variable EF of the Infarct dataset contains “ejection fraction” values (proportion of 
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2.5 Determine the histograms of variables LB, ASTV, MSTV, ALTV and MLTV of the 

kurtosis of the variables and check the following statements: 
a) The distribution of LB is well modelled by the normal distribution. 
b) The distribution of ASTV is symmetric, bimodal and flatter than the normal 

distribution. 
c) The distribution of ALTV is left skewed and more peaked than the normal 

distribution. 
 
2.6 Taking into account the values of the skewness and kurtosis computed for variables 

ASTV and ALTV in the previous Exercise, which distributions should be selected as 
candidates for modelling these variables (see Figure 2.24)? 

 
2.7 Consider the bacterial counts in three organs – the spleen, liver and lungs - included in 

the Cells dataset (datasheet CFU). Using box plots, compare the cell counts in the 
three organs 2 weeks and 2 months after infection. Also, determine which organs have 
the lowest and highest spread of bacterial counts. 

 
2.8 The inter-quartile ranges of the bacterial counts in the spleen and in the liver after 2 

weeks have similar values. However, the range of the bacterial counts is much smaller 
in the spleen than in the liver. Explain what causes this discrepancy and comment on 
the value of the range as spread measure. 

 

variables SiO2 and Al2O3. Also, determine the correlation between both variables and 
comment on the results. 

 

methods. Determine the correlation matrix for the three methods before and after 
subtracting the nominal value of 34 mm and explain why the same correlation results 
are obtained. Also, express your judgement on the measurement methods taking into 
account their low correlation. 

 
2.11 The Culture dataset contains percentages of budget assigned to cultural activities in 

several Portuguese boroughs randomly sampled from three regions, coded 1, 2 and 3. 
Determine the correlations among the several cultural activities and consider them to be 
significant if they are higher than 0.4. Comment on the following statements: 

 

a) Determine the overall frequency table and histogram, starting at zero and with bin 
width 0.02. 

b) Determine the mean and median. Which of these statistics should be used as 
location measure and why? 

 

CTG dataset using Sturges’ rule for the number of bins. Compute the skewness and 

2.9 Determine the overlaid scatter plot of the three types of clays (Clays’ dataset), using 

2.10 The Moulds’ dataset contains measurements of bottle bottoms performed by three 

a) The high negative correlation between “Halls” and “Sport” is due to chance alone. 
b) Whenever there is a good investment in “Cine”, there is also a good investment 

either in “Music” or in “Fine Arts”. 
c) In the northern boroughs, a high investment in “Heritage” causes a low investment 

in “Sport”. 

2.12 Consider the “Halls” variable of the Culture dataset: 



 Exercises 79 

2.13 Determine the box plots of the Breast Tissue variables I0 through PERIM, for the 
6 classes of breast tissue. By visual inspection of the results, organise a table describing 
which class discriminations can be expected to be well accomplished by each variable. 

 

 
2.15 Determine the scatter plot and correlation coefficient of the MH and MI variables of the 

previous exercise. Comment on the results. 
 
2.16 Determine the histograms, skewness and kurtosis of the BPD, CP and AP variables of 

the Foetal Weight dataset. Which variable is better suited to normal modelling? 
Why? 

 
2.17 Determine the correlation matrix of the BPD, CP and AP variables of the previous 

exercise. Comment on the results. 
 
2.18 Determine the correlation between variables I0 and HFS of the Breast Tissue 

dataset. Check with the scatter plot that the very low correlation of those two variables 
does not mean that there is no relation between them. Compute the new variable I0S = 
(I0 – 1235)2 and show that there is a significant correlation between this new variable 
and HFS. 

a) Determine the histograms, skewness and kurtosis of the variables and categorise 
them into the following categories: left asymmetric; right asymmetric; symmetric; 
symmetric and almost normal. 

b) Compute the correlation matrix for the mechanical test variables and comment on 
the high correlations between RMCS and RCSG and between AAPN and PAOA. 

c) Compute the correlation matrix for the chemical composition variables and 
determine which variables have higher positive and negative correlation with 
silica (SiO2) and which variable has higher positive correlation with titanium 
oxide (TiO2). 

 
2.20 The student performance in a first-year university course on Programming can be partly 

explained by previous knowledge on such matter. In order to assess this statement, use 
the SCORE and PROG variables of the Programming dataset, where the first 
variable represents the final examination score on Programming (in [0, 20]) and the 
second variable categorises the previous knowledge. Using three SCORE categories     
– Poor, if SCORE<10, Fair if 10 ≤SCORE< 15, and Good if SCORE≥ 15 −, determine: 
a) The Spearman correlation between the two variables. 
b) The contingency table of the two variables. 
c) The gamma statistic. 
 

2.21 Show examples of 2×2 contingency tables for nominal data corresponding to φ  = 1, −1, 
0 and to λ, λrc and λcr = 1 and 0. 

 

2.19 Perform the following statistical analyses on the Rocks’ dataset: 

2.14 Consider the two variables MH = “neonatal mortality rate at home” and MI = “neonatal 
mortality rate at Health Centre” of the Neonatal dataset. Determine the histograms 
and compare both variables according to the skewness and kurtosis. 
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2.22 Consider the classifications of foetal heart rate performed by the human expert 3 
(variable E3C) and by an automatic system (variable SPC) contained in the FHR 
dataset.  
a) Determine two new variables, E3CB and SPCB, which dichotomise the 

classifications in {Normal} vs. {Suspect, Pathologic}. 
b) Determine the 2×2 contingency table of E3CB and SPCB. 
c) Determine appropriate association measures and assess whether knowing the 

automatic system classification helps predicting the human expert classification. 
 
2.23 Redo Example 2.9 and 2.10 for the variables Q1 and Q4 and comment on the results 

obtained. 
 
2.24 Consider the leadership evaluation of metallurgic firms, included in the Metal 

 
2.26 Determine the contingency table and degree of association between variable              

Firms’ dataset, performed by means of seven variables, from TW = “Team Work” 

AB = “Previous knowledge of Boole’s Algebra” and BA = “Previous knowledge of 
binary arithmetic” of the Programming dataset. 

through DC = “Dialogue with Collaborators”. Compute the coefficient of agreement of 
the seven variables, verifying that they do not agree in the assessment of leadership 
evaluation. 

2.25 Determine the contingency tables and degrees of association between variable          
TW = “Team Work” and all the other leadership evaluation variables of the Metal 
Firms’ dataset. 



3 Estimating Data Parameters 

Making inferences about a population based upon a random sample is a major task 
in statistical analysis. Statistical inference comprehends two inter-related 
problems: parameter estimation and test of hypotheses. In this chapter, we describe 
the estimation of several distribution parameters, using sample estimates that were 
presented as descriptive statistics in the preceding chapter. Because these 
descriptive statistics are single values, determined by appropriate formulas, they 
are called point estimates. Appendix C contains an introductory survey on how 
such point estimators may be derived and which desirable properties they should 
have. In this chapter, we also introduce the notion and methodology of interval 
estimation. In this and later chapters, we always assume that we are dealing with 
random samples. By definition, in a random sample x1, …, xn from a population 
with probability density function fX(x), the random variables associated with the 
sample values, X1, …, Xn, are i.i.d., hence the random sample has a joint density 
given by: 

 
)()...()(),...,,( 2121,...,2,1 nXXXnnXXX xfxfxfxxxf = . 

 
A similar result applies to the joint probability function when the variables are 

discrete. Therefore, we rule out sampling from a finite population without 
replacement since, then, the random variables X1, …, Xn  are not independent. 

Note, also, that in the applications one must often carefully distinguish between 
target population and sampled population. For instance, sometimes in the 
newspaper one finds estimation results concerning the proportion of votes on 
political parties. These results are usually presented as estimates for the whole 
population of a given country. However, careful reading discloses that the sample 
(hopefully a random one) was drawn using a telephone enquiry from the 
population residing in certain provinces. Although the target population is the 
population of the whole country, any inference made is only legitimate for the 
sampled population, i.e., the population residing in those provinces and that use 
telephones. 

3.1 Point Estimation and Interval Estimation 

Imagine that someone wanted to weigh a certain object using spring scales. The 
object has an unknown weight, ω. The weight measurement, performed with the 
scales, has usually two sources of error: a calibration error, because of the spring’s 
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loss of elasticity since the last calibration made at the factory, and exhibiting, 
therefore, a permanent deviation (bias) from the correct value; a random parallax 
error, corresponding to the evaluation of the gauge needle position, which can be 
considered normally distributed around the correct position (variance). The 
situation is depicted in Figure 3.1.  

bias, or systematic error, is a constant. The source of variance is a random error. 
 
 

wω
bias

w

σ

 
Figure 3.1. Measurement of an unknown quantity ω with a systematic error (bias) 
and a random error (variance σ 2). One measurement instance is w. 

 
 
Figure 3.1 also shows one weight measurement instance, w. Imagine that we 

performed a large number of weight measurements and came out with the average 
value of w . Then, the difference ω  − w  measures the bias or accuracy of the 
weighing device. On the other hand, the standard deviation, σ, measures the 
precision of the weighing device. Accurate scales will, on average, yield a 
measured weight that is in close agreement with the true weight. High precision 
scales yield weight measurements with very small random errors. 

Let us now turn to the problem of estimating a data parameter, i.e., a quantity θ 
characterising the distribution function of the random variable X, describing the 
data. For that purpose, we assume that there is available a random sample x = 
[ ]nxxx ,,, 21 K  − our dataset in vector format −, and determine a value tn(x), using 
an appropriate function tn. This single value is a point estimate of θ.  

The estimate tn(x) is a value of a random variable, that we denote T, called point 
estimator or statistic, T ≡ tn(X), where X denotes the n-dimensional random 
variable corresponding to the sampling process. The point estimator T is, therefore, 
a random variable function of X. Thus, tn(X) constitutes a sort of measurement 
device of θ. As with any measurement device, we want it to be simultaneously 
accurate and precise. In Appendix C, we introduce the topic of obtaining unbiased 
and consistent estimators. The unbiased property corresponds to the accuracy 
notion. The consistency corresponds to a growing precision for increasing sample 
sizes. 

The weight measurement can be considered as a “bias + variance” situation. The 

’
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When estimating a data parameter the point estimate is usually insufficient. In 
fact, in all the cases that the point estimator is characterised by a probability 
density function the probability that the point estimate actually equals the true 
value of the parameter is zero. Using the spring scales analogy, we see that no 
matter how accurate and precise the scales are, the probability of obtaining the 
exact weight (with arbitrary large number of digits) is zero. We need, therefore, to 
attach some measure of the possible error of the estimate to the point estimate. For 
that purpose, we attempt to determine an interval, called confidence interval, 
containing the true parameter value θ  with a given probability 1– α, the so-called 
confidence level:  

 
( ) αθ −=<< 1)()( 2,1, xx nn ttP ,  3.1 

 
where α is a confidence risk. 

The endpoints of the interval (also known as confidence limits), depend on the 
available sample and are determined taking into account the sampling distribution: 

 
)()( )( xx XntT FF ≡ . 

 
We have assumed that the interval endpoints are finite, the so-called two-sided 

(or two-tail) interval estimation. Sometimes we will also use one-sided (or one-
tail) interval estimation by setting −∞=)(1, xnt or +∞=)(2, xnt . 

Let us now apply these ideas to the spring scales example. Imagine that, as 
happens with unbiased point estimators, there were no systematic error and 
furthermore the measured errors follow a known normal distribution; therefore, the 
measurement error is a one-dimensional random variable distributed as N0,σ , with 
known σ. In other words, the distribution function of the random weight variable, 
W,  is )()()( , wNwFwFW σω=≡ . We are now able to determine the two-sided 
95% confidence interval of ω, given a measurement w, by first noticing, from the 
normal distribution tables, that the percentile 97.5% (i.e., 100–α/2, with α in 
percentage) corresponds to 1.96σ: 

Thus: 
 

σ96.1975.0)( 975.0 =⇒= wwF .  3.2 
 
Given the symmetry of the normal distribution, we have: 
 

95.0)96.196.1(975.0)96.1( =+<<−⇒=+< σωσωσω wPwP , 
 

leading to the following 95% confidence interval: 
 

σωσω 96.196.1 +<<− w .  3.3 
 
Hence, we expect that in a long run of measurements 95% of them will be inside 

the ω ± 1.96σ  interval, as shown in Figure 3.2a. 
Note that the inequalities 3.3 can also be written as: 
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σωσ 96.196.1 +<<− ww ,  3.4 
 

allowing us to define the 95% confidence interval for the unknown weight 
(parameter) ω given a particular measurement w. (Comparing with expression 3.1 
we see that in this case θ  is the parameter ω, t1,1 = w – 1.96σ and t1,2 = w + 1.96σ.) 
As shown in Figure 3.2b, the equivalent interpretation is that in a long run of 
measurements, 95% of the w ± 1.96σ  intervals will cover the true and unknown 
weight ω  and the remaining 5% will miss it. 
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Figure 3.2. Two interpretations of the confidence interval: a) A certain percentage 
of the w measurements (#1,…, #10) is inside the ω ± 1.96σ interval; b) A certain 
percentage of the w ± 1.96σ  intervals contains the true value ω. 

 
 
Note that when we say that the 95% confidence interval of ω is w ± 1.96σ, it 

does not mean that the probability that ω  falls in the confidence interval is 95% . 
This is a misleading formulation since ω is not a random variable but an unknown 
parameter. In fact, it is the confidence interval endpoints that are random variables. 

For an arbitrary risk, α, we compute from the standardised normal distribution 
the 1–α/2 percentile: 

 

2/11,0 2/1)( αα −⇒−= zzN .1  3.5 
 
We now use this percentile in order to establish the confidence interval: 
 

σωσ αα 2/12/1 −− +<<− zwzw .  3.6 
 
The factor σα 2/1−z is designated as tolerance, ε, and is often expressed as a 

percentage of the measured value w, i.e., ε = 100 σα 2/1−z / w %. 

                                                           
1
  It is customary to denote the values obtained with the standardised normal distribution by the letter z, 

the so called z-scores. 

“ ”
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In Chapter 1, section 1.5, we introduced the notions of confidence level and 
interval estimates, in order to illustrate the special nature of statistical statements 
and to advise taking precautions when interpreting them. We will now proceed to 
apply these concepts to several descriptive statistics that were presented in the 
previous chapter. 

3.2 Estimating a Mean 

We now estimate the mean of a random variable X using a confidence interval 
around the sample mean, instead of a single measurement as in the previous 
section. Let x = [ ]nxxx ,,, 21 K  be a random sample from a population, described 
by the random variable X with mean µ and standard deviation σ. Let x be the 
arithmetic mean: 

 

∑ == n
i i nxx 1 /  .  3.7 

 
Therefore, x  is a function tn(x) as in the general formulation of the previous 

section. The sampling distribution of X  (whose values are x ), taking into account 
the properties of a sum of i.i.d. random variables (see section A.8.4), has the same 
mean as X and a standard deviation given by: 
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Figure 3.3. Normal distribution of the arithmetic mean for several values of n and 
with µ = 0 (σ = 1 for n = 1). 

 
Assuming that X is normally distributed, i.e., σµ ,~ NX , then X  is also 

normally distributed with mean µ and standard deviation Xσ . The confidence 

’
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interval, following the procedure explained in the previous section, is now 
computed as: 

 

nzxnzx // 2/12/1 σµσ αα −− +<<− .  3.9 
 
As shown in Figure 3.3, with increasing n, the distribution of X  gets more 

peaked; therefore, the confidence intervals decrease with n (the precision of our 
estimates of the mean increase). This is precisely why computing averages is so 
popular! 

In normal practice one does not know the exact value of σ, using the previously 
mentioned (2.3.2) point estimate s instead. In this case, the sampling distribution is 
not the normal distribution any more. However, taking into account Property 3 
described in section B.2.8, the following random variable: 
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standard deviation of X , ns / , is known as the standard error of the 
statistic x and denoted SE. 

We now compute the 1−α/2 percentile for the Student s t distribution with         
df = n – 1degrees of freedom: 

 

2/1,1 2/1)( αα −− ⇒−= dfn ttT ,  3.10 
 

and use this percentile in order to establish the two-sided confidence interval: 
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or, equivalently: 
 

SEtxSEtx dfdf 2/1,2/1, αα µ −− +<<− .  3.12 
 
Since the Student s t distribution is less peaked than the normal distribution, one 

obtains larger intervals when using formula 3.12 than when using formula 3.9, 
reflecting the added uncertainty about the true value of the standard deviation. 

When applying these results one must note that: 
 
– For large n, the Central Limit theorem (see sections A.8.4 and A.8.5) 

legitimises the assumption of normal distribution of X even when X is not 
normally distributed (under very general conditions). 

– For large n, the Student s t distribution does not deviate significantly from 
the normal distribution, and one can then use, for unknown σ, the same 
percentiles derived from the normal distribution, as one would use in the 
case of known σ. 

has a Student’s t distribution with df = n – 1 degrees of freedom. The sample 

’

’

’
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from 20 to 30. In what concerns the normality assumption of X , the value n = 20 is 
usually enough. As to the deviation between z1−α/2 and t1−α/2 it is about 5% for         
n = 25 and α = 0.05. In the sequel, we will use the threshold n = 25 to distinguish 
small samples from large samples. Therefore, when estimating a mean we adopt 
the following procedure: 

 
1. Large sample (n ≥ 25): Use formulas 3.9 (substituting σ by s) or 3.12 (if 

improved accuracy is needed). No normality assumption of X is needed. 
2. Small sample (n < 25) and population distribution can be assumed to be 

normal: Use formula 3.12. 
 
For simplicity most of the software products use formula 3.12 irrespective of the 

values of n (for small n the normality assumption has to be checked using the 
goodness of fit tests described in section 5.1). 

 

Example 3.1 

Q: Consider the data relative to the variable PRT for the first class (CLASS=1) of 

mean. 

A: There are n = 50 cases. The sample mean and sample standard deviation are  
x = 365 and s = 110, respectively. The standard error is SE = ns / = 15.6. We 
apply formula 3.12, obtaining the confidence interval: 

 
x  ± 975.0,49t ×SE = x  ±  2.01×15.6 = 365 ± 31. 

 
Notice that this confidence interval corresponds to a tolerance of 31/365 ≈ 8%. 

If we used in this large sample situation the normal approximation formula 3.9 we 
would obtain a very close result. 

Given the interpretation of confidence interval (sections 3.1 and 1.5) we expect 
that in a large number of repetitions of 50 PRT measurements, in the same 
conditions used for the presented dataset, the respective confidence intervals such 
as the one we have derived will cover the true PRT mean 95% of the times. In 
other words, when presenting [334, 396] as a confidence interval for the PRT 
mean, we are incurring only on a 5% risk of being wrong by basing our estimate on 
an atypical dataset. 

  

Example 3.2 

Q: Consider the subset of the previous PRT data constituted by the first n = 20 
cases. Compute the 95% confidence interval of its mean. 

A: The sample mean and sample standard deviation are now x = 351 and s = 83, 
respectively. The standard error is SE = ns / = 18.56. Since n = 20, we apply the 
small sample estimate formula 3.12 assuming that the PRT distribution can be well 

the Cork Stoppers’ dataset. Compute the 95% confidence interval of its 

There are several values of n in the literature that are considered “large”, 
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approximated by the normal distribution. (This assumption should have to be 
checked with the methods described in section 5.1.) In these conditions the 
confidence interval is: 

 
x  ± t19,0.975 ×SE = x  ± 2.09×SE    ⇒   [312, 390]. 

 
If the 95% confidence interval were computed with the z percentile, one would 

wrongly obtain a narrower interval: [315, 387].   

Example 3.3 

Q: How many cases should one have of the PRT data in order to be able to 
establish a 95% confidence interval for its mean, with a tolerance of 3%? 

A: Since the tolerance is smaller than the one previously obtained in Example 3.1, 
we are clearly in a large sample situation. We have: 
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Using the previous sample mean and sample standard deviation and with      

z0.975 =1.96, one obtains: 
 
n ≥ 558. 
 
Note the growth of n with the square of 1/ε.  
  
 
The solutions of all the previous examples can be easily computed using 

Tools.xls (see Appendix F). 
An often used tool in Statistical Quality Control is the control chart for the 

sample mean, the so-called x-bar chart. The x-bar chart displays means, e.g. of 
measurements performed on equal-sized samples of manufactured items, randomly 
drawn along the time. The chart also shows the centre line (CL), corresponding to 
the nominal value or the grand mean in a large sequence of samples, and lines of 
the upper control limit (UCL) and lower control limit (LCL), computed as a ks 
deviation from the mean, usually with k = 3 and s the sample standard deviation. 
Items above UCL or below LCL are said to be out of control. Sometimes, lines 
corresponding to a smaller deviation of the grand mean, e.g. with k = 2, are also 
drawn, corresponding to the so-called upper warning line (UWL) and lower 
warning line (LWL). 

 

Example 3.4 

Q: Consider the first 48 measurements of total area of defects, for the first class of 
the Cork Stoppers dataset, as constituting 16 samples of 3 cork stoppers 
randomly drawn at successive times. Draw the respective x-bar chart with 3-sigma 
control lines and 2-sigma warning lines. 



 3.2 Estimating a Mean 89 

A: Using MATLAB command xbarplot (see Commands 3.1) the x-bar chart 
shown in Figure 3.4 is obtained. We see that a warning should be issued for sample 
#1 and sample #12. No sample is out of control. 
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Figure 3.4. Control chart of the sample mean obtained with MATLAB for variable 
ART of the first cork stopper class. 

 

Commands 3.1. SPSS, STATISTICA, MATLAB and R commands used to obtain 
confidence intervals of the mean. 

SPSS Analyze; Descriptive Statistics; Explore; 
Statistics; Confidence interval for mean 

STATISTICA Statistics; Descriptive Statistics; Conf. 
limits for means 

MATLAB [m s mi si]=normfit(x,delta) 
xbarplot(data,conf,specs) 

R t.test(x) ; cimean(x,alpha) 

 
 

SPSS, STATISTICA, MATLAB and R compute confidence intervals for the mean 

The MATLAB normfit command computes the mean, m, standard deviation, 
s, and respective confidence intervals, mi and si, of a data vector x, using 
confidence level delta (95%, by default). For instance, assuming that the PRT 
data was stored in vector prt, Example 3.2 would be solved as: 

 
» prt20 = prt(1:20); 
» [m s mi si] = normfit(prt20) 

using Student’s t distribution, even in the case of large samples. 
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m = 
  350.6000 
s = 
   82.7071 
mi = 
  311.8919 
  389.3081 
si = 
   62.8979 
  120.7996 
 

The MATLAB xbarplot command plots a control chart of the sample mean 
for the successive rows of data. Parameter conf specifies the percentile for the 
control limits (0.9973 for 3-sigma); parameter specs is a vector containing the 
values of extra specification lines. Figure 3.4 was obtained with: 

 
» y=[ART(1:3:48) ART(2:3:48) ART(3:3:48)]; 
» xbarplot(y,0.9973,[89 185]) 
 
Confidence intervals for the mean are computed in R when using t.test (to 

be described in the following chapter). A specific function for computing the 
confidence interval of the mean, cimean(x, alpha) is included in Tools (see 
Appendix F). 

  
 

Commands 3.2. SPSS, STATISTICA, MATLAB and R commands for case 
selection. 

SPSS Data; Select cases 

STATISTICA Tools; Selection Conditions; Edit 

MATLAB x(x(:,i) == a,:) 

R x[col == a,] 

 
 
In order to solve Examples 3.1 and 3.2 one needs to select the values of PRT for 
CLASS=1 and, inside this class, to select the first 20 cases. Selection of cases is an 
often-needed operation in statistical analysis. STATISTICA and SPSS make 
available specific windows where the user can fill in the needed conditions for case 
selection (see e.g. Figure 3.5a corresponding to Example 3.2). Selection can be 
accomplished by means of logical conditions applied to the variables and/or the 
cases, as well as through the use of especially defined filter variables. 

There is also the possibility of selecting random subsets of cases, as shown in 
Figures 3.5a (Subset/Random Sampling tab) and 3.5b (Random sample 
of cases option). 
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In MATLAB one may select a submatrix of matrix x based on a particular 

value, a, of a column i using the construction x(x(:,i)==a,:). For instance, 
assuming the first column of cork contains the classifications of the cork 
stoppers, c = cork(cork(:,1)==1,:) will retrieve the submatrix of cork 
corresponding to the first 50 cases of class 1. Other relational operators can be used 

an equality operator.) For instance, c = cork(cork(:,1)<2,:) will have the 
same effect. 

 The selection of cases in R is usually based on the construction x[col == 
a,], which selects the submatrix whose column col is equal to a certain value a. 
For instance, cork[CL == 1,] selects the first 50 cases of class 1 of the data 
frame cork. As in MATLAB other relational operators can be used instead of the 

Selection of random subsets in MATLAB and R can be performed through the 
generation of filter variables using random number generators. An example is 
shown in Table 3.1. First, a filter variable with 150 random 0s and 1s is created by 
rounding random numbers with uniform distribution in [0,1]. Next, the filter 
variable is used to select a subset of the 150 cases of the cork data. 

 

MATLAB >> filter = round(unifrnd(0,1,150,1)); 
>> fcork = cork(filter==1,:); 

R > filter <- round(runif(150,0,1)) 
> fcork <- cork[filter==1,] 

  
 

Table 3.1. Selecting a random subset of the cork stoppers  dataset. 

Figure 3.5. Selection of cases: a) Partial view of STATISTICA “Case Selection 
Conditions” window; b) Partial view of SPSS “Select Cases” window. 

instead of the equality operator “== . (Attention: “=  is an assignment operator, 

equality operator “== . 

””

”

’
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In parameter estimation one often needs to use percentiles of random 
distributions. We have seen that before, concerning the application of percentiles 

percentiles of the chi-square and F distributions. Statistical software usually 
provides a large panoply of probabilistic functions (density and cumulative 
distribution functions, quantile functions and random number generators with 
particular distributions). In Commands 3.3 we present some of the possibilities. 
Appendix D also provides tables of the most usual distributions. 

 
 

Commands 3.3. SPSS, STATISTICA, MATLAB and R commands for obtaining 
quantiles of distributions.  

SPSS Compute Variable 

STATISTICA Statistics; Probability Calculator 

MATLAB norminv(p,mu,sigma) ; tinv(p,df) ; 
chi2inv(p,df) ; finv(p,df1,df2) 

R qnorm(p,mean,sd) ; qt(p,df) ; 
qchisq(p,df) ; qf(p,df1,df2) 

 

The Compute Variable window of SPSS allows the use of functions to 
compute percentiles of distributions, namely the functions Idf.IGauss, Idf.T, 

distributions, respectively. 
STATISTICA provides a versatile Probability Calculator allowing 

among other things the computation of percentiles of many common distributions. 
The MATLAB and R functions allow the computation of quantiles of the 

normal, t, chi-square and F distributions, respectively. 
  

3.3 Estimating a Proportion 

Imagine that one wished to estimate the probability of occurrence, p
event in a series of n Bernoulli trials. A Bernoulli trial is a dichotomous outcome 
experiment (see B.1.1). Let k be the number of occurrences of the success event. 
Then, the unbiased and consistent point estimate of p is (see Appendix C): 
 

n
kp =ˆ . 

 
For instance, if there are k = 5 successes in n = 15 trials, the point estimate of p 

(estimation of a proportion) is 33.0ˆ =p . Let us now construct an interval 

of the normal and the Student’s t distribution. Later on we will need to apply 

Idf.Chisq and Idf.F for the normal, Student’s t, chi-square and F

, of a “success” 
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estimation for p. Remember that the sampling distribution of the number of 

binomial distribution, it may be impossible to find an interval which has exactly 
the desired confidence level. It is possible, however, to choose an interval which 
covers p with probability at least 1– α.  

 

Table 3.2. Cumulative binomial probabilities for n = 15, p = 0.33. 

k 0 1 2 3 4 5 6 7 8 9 10 

B(k) 0.002 0.021 0.083 0.217 0.415 0.629 0.805 0.916 0.971 0.992 0.998 

 
 
Consider the cumulative binomial probabilities for n = 15, p = 0.33, as shown in 

Table 3.2. Using the values of this table, we can compute the following 
probabilities for intervals centred at k = 5: 

 
P(4 ≤ k ≤ 6) = B(6) – B(3) = 0.59 
P(3 ≤ k ≤ 7) = B(7) – B(2) = 0.83 
P(2 ≤ k ≤ 8) = B(8) – B(1) = 0.95 
P(1 ≤ k ≤ 9) = B(9) – B(0) = 0.99 
 
Therefore, a 95% confidence interval corresponds to: 

2 ≤ k ≤ 8   53.013.0
15
8

15
2

≤≤⇒≤≤⇒ pp . 

This is too large an interval to be useful. This example shows the inherent high 
degree of uncertainty when performing an interval estimation of a proportion with 
small n. For large n (say n > 50), we use the normal approximation to the binomial 
distribution as described in section A.7.3. Therefore, the sampling distribution of 
p̂ is modelled as Nµ,σ  with:  

n
pq

p == σµ ;   (q =  p – 1; see A.7.3).  3.14 

Thus, the large sample confidence interval of a proportion is: 
 

npqzppnpqzp /ˆ/ˆ 2/12/1 αα −− +<<− .  3.15 
 
This is the formula already alluded to in Chapter 1, when describing the 

formula 3.15, one usually substitutes the true standard deviation by its point 
estimate, i.e., computing: 

 

nqpzppnqpzp /ˆˆˆ/ˆˆˆ 2/12/1 αα −− +<<− .  3.16 

“successes” is the binomial distribution (see B.1.5). Given the discreteness of the 

“uncertainties” about the estimation of a proportion. Note that when applying 
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The deviation of this formula from the exact formula is negligible for large n 
(see e.g. Spiegel MR, Schiller J, Srinivasan RA, 2000, for details).  

One can also assume a worst case situation for σ, corresponding to p = q = ½  
⇒ 1)2( −= nσ . The approximate 95% confidence level is now easy to remember: 

 

np /1ˆ ± . 
 
Also, note that if we decrease the tolerance while maintaining n, the confidence 

level decreases as already mentioned in Chapter 1 and shown in Figure 1.6. 
 

Example 3.5 

Q: Consider, for the Freshmen dataset, the estimation of the proportion of 
freshmen that are displaced from their home (variable DISPL). Compute the 95% 
confidence interval of this proportion. 

A: There are n = 132 cases, 37 of which are displaced, i.e., p̂ = 0.28. Applying 
formula 3.15, we have: 

 

p̂ − 1.96 nqp /ˆˆ  < p < p̂  + 1.96 nqp /ˆˆ     ⇒   0.20 < p  < 0.36. 
 
Note that this confidence interval is quite large. The following example will 

give some hint as to when we start obtaining reasonably useful confidence 
intervals. 

  

Example 3.6 

Q: Consider the interval estimation of a proportion in the same conditions as the 
previous example, i.e., with estimated proportion p̂ = 0.28 and α = 5%. How large 
should the sample size be for the confidence interval endpoints deviating less than 
ε = 2%? 

A: In general, we must apply the following condition: 
2

2/12/1 ˆˆˆˆ













≥⇒≤ −−

ε
ε αα qpz

n
n

qpz
.  3.17 

In the present case, we must have n > 1628. As with the estimation of a mean, n 
grows with the square of 1/ε. As a matter of fact, assuming the worst case situation 
for σ, as we did above, the following approximate formula for 95% confidence 
level holds: 2)/1(~ ε>n . 

  

Confidence intervals for proportions, and lower bounds on n achieving a desired 
deviation in proportion estimation, can be computed with Tools.xls. 

Interval estimation of a proportion can be carried out with SPSS, STATISTICA, 
MATLAB and R in the same way as we did with means. The only preliminary step 
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is to convert the variable being analysed into a Bernoulli type variable, i.e., a 

matter of fact, a dataset x1, …, xn, with k successes,  represented as a sequence of 
values of Bernoulli random variables (therefore, with k ones and n – k zeros), has 
the following sample mean and sample variance: 

 

∑ = ≡== n
i i pnknxx 1 .ˆ//  

qppp
n

n
n

kpkpn
n

px
v

n
i i ˆˆ)ˆˆ(

11
ˆ2ˆ

1
)ˆ( 2

2
1

2

≈−
−

=
−

+−
=

−

−
=

∑ = . 

 

to build the Bernoulli variables. This is especially useful if one wants to create 
Bernoulli variables from continuous type variables. SPSS and STATISTICA also 
have a Rank command that can be useful for the purpose of creating Bernoulli 
variables. 

 

Commands 3.4. MATLAB and R commands for obtaining confidence intervals of 
proportions. 

MATLAB ciprop(n0,n1,alpha) 

R ciprop(n0,n1,alpha) 

 
 
There are no specific functions to compute confidence intervals of proportions in 
MATLAB and R. However, we provide for MATLAB and R the function 
ciprop(n0,n1,alpha)for that purpose (see Appendix F).  For Example 3.5 
we obtain in R: 
> ciprop(95,37,0.05) 
 
          [,1] 
[1,] 0.2803030 
[2,] 0.2036817 
[3,] 0.3569244  

3.4 Estimating a Variance 

The point estimate of a variance was presented in section 2.3.2. This estimate is 
also discussed in some detail in Appendix C. We will address the problem of 

binary variable with 1 coding the “success” event, and 0 the “failure” event. As a 

In Example 3.5, variable DISPL with values 1 for “Yes” and 2 for “No” is 
converted into a Bernoulli type variable, DISPLB, e.g. by using the formula 
DISPLB = 2 – DISPL. Now, the “success” event (“Yes”) is coded 1, and the 
complement is coded 0. In SPSS and STATISTICA we can also use “if” constructs 
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establishing a confidence interval for the variance only in the case that the 
population distribution follows a normal law. Then, the sampling distribution of 
the variance follows a chi-square law, namely (see Property 4 of section B.2.7): 
 

2
12

~)1(
−

−
n

vn
χ

σ
 3.18 

 
The chi-square distribution is asymmetrical; therefore, in order to establish a 

two-sided confidence interval, we have to use two different values for the lower 
and upper percentiles. For the 95% confidence interval and df = n −1, we have: 

 

2
975.0,2

2
025.0, dfdf

vdf
χ

σ
χ ≤

×
≤  ,  3.19 

 
where 2

,αχ df means the α percentile of the chi-square distribution with df degrees 
of freedom. Therefore: 
 

2
025.0,

2
2

975.0, dfdf

vdfvdf
χ

σ
χ

×
≤≤

× .  3.20 

 

Example 3.7 

Q: Consider the distribution of the average perimeter of defects, variable PRM, of 

of its standard deviation. 

A: The assumption of normality for the PRM variable is acceptable, as will be 
explained in Chapter 5. There are, in class 2, n = 50 cases with sample standard 
variance v = 0.7168. The chi-square percentiles are: 

 

.22.70;56.31 2
975.0,49

2
025.0,49 == χχ  

 
Therefore: 
 

06.171.011.150.0
56.31

49
22.70

49 22 ≤≤⇒≤≤⇒
×

≤≤
× σσσ vv . 

  

Confidence intervals for the variance are computed by SPSS, STATISTICA, 
MATLAB and R as part of hypothesis tests presented in the following chapter. 
They can be computed, however, either using Tools.xls or, in the case of the 
variance alone, using the MATLAB command normfit mentioned in section 3.2. 
We also provide the MATLAB and R function civar(v,n,alpha) for 
computing confidence intervals of a variance (see Appendix F). 

 

class 2 in the Cork Stoppers’ dataset. Compute the 95% confidence interval 
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Commands 3.5. MATLAB and R commands for obtaining confidence intervals of 
a variance. 

MATLAB civar(v,n,alpha) 

R   civar(v,n,alpha) 

 
 
As an illustration we show the application of the R function civar to the Example 
3.7: 
 
> civar(0.7168,50,0.05) 
          [,1] 
[1,] 0.5001708 
[2,] 1.1130817  

3.5 Estimating a Variance Ratio 

In statistical tests of hypotheses, concerning more than one distribution, one often 
needs to compare the respective distribution variances. We now present the topic 
of estimating a confidence interval for the ratio of two variances, σ1

2 and σ2
2, based 

on sample variances, v1 and v2, computed on datasets of size n1 and n2, 
respectively. We assume normal distributions for the two populations from where 
the data samples were obtained. We use the sampling distribution of the ratio: 

 

2
22

2
11

/
/
σ
σ

v
v

,  3.21 

 
which has the 1,1 21 −− nnF distribution as mentioned in the section B.2.9 (Property 6). 

Thus, the 1–α two-sided confidence interval of the variance ratio can be 
computed as: 

 

2

1

2/
2
2

2
1

2

1

2/1
2/12

22

2
11

2/
11

/
/

v
v

Fv
v

F
F

v
v

F
αα

αα
σ
σ

σ
σ

≤≤⇒≤≤
−

− ,  3.22 

 
where we dropped the mention of the degrees of freedom from the F percentiles in 
order to simplify notation. Note that due to the asymmetry of the F distribution, 
one needs to compute two different percentiles in two-sided interval estimation. 

The confidence intervals for the variance ratio are computed by SPSS, 
STATISTICA, MATLAB and R as part of hypothesis tests presented in the 
following chapter. We also provide the MATLAB and R function 
civar2(v1,n1,v2,n2,alpha) for computing confidence intervals of a 
variance ratio (see Appendix F). 
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Example 3.8 

Q: Consider the distribution of variable ASTV (percentage of abnormal beat-to-
beat variability), for the first two classes of the cardiotocographic data (CTG). The 
respective dataset histograms are shown in Figure 3.6. Class 1 corresponds to 

normality for both distributions of ASTV is acceptable (to be discussed in Chapter 
5). Determine and interpret the 95% one-sided confidence interval, [r, ∞
ASTV standard deviation ratio for the two classes. 

standard deviations s1 = 15.14 and s2 = 13.58, respectively. The 95% F percentile, 
computed by any of the means explained in section 3.2, is:  

 
F383,578,0.95 = 1.164. 
 
Therefore: 

 

≥⇒≤⇒≤
−−− 2

1

2

1

2

1

95.0,578,383
2
2

2
1

2

1

1,1,1

11

21 σ

σ

σ

σ

σ
σ

α s
s

Fv
v

F nn
1.03. 

 
Thus, with 95% confidence level the standard deviation of class 1 is higher than 

the standard deviation of class 2 by at least 3%. 
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Figure 3.6.  Histograms obtained with STATISTICA of the variable ASTV 
(percentage of abnormal beat-to-beat variability), for the first two classes of the 
cardiotocographic data, with superimposed normal fit. 

 
When using F percentiles the following results can be useful: 

“calm sleep” and class 2 to “rapid-eye-movement sleep”. The assumption of 

A: There are n1 = 384 cases of class 1, and n2 = 579 cases of class 2, with sample 

[, of the 
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i. αα ,,1,, 2112
/1 dfdfdfdf FF =− . For instance, if in Example 3.8 we wished to 

compute a 95% one-sided confidence interval, [0, r], for σ2/σ1, we would 
then have to compute == 95.0,578,38305.0,383,578 /1 FF 0.859. 

ii. dfF dfdf /2
,,, αα χ=∞ . Note that, in formula 3.21, with n2 → ∞ the sample 

variance v2 converges to the true variance, s2
2, yielding, therefore, the 

single-variance situation described by the chi-square distribution. In this 
sense the chi-square distribution can be viewed as a limiting case of the F 
distribution.  

 

Commands 3.6. MATLAB and R commands for obtaining confidence intervals of 
a variance ratio. 

MATLAB civar2(v1,n1,v2,n2,alpha) 

R   civar2(v1,n1,v2,n2,alpha) 

  
 
The MATLAB and R function civar2 returns a vector with three elements. The 
first element is the variance ratio, the other two are the confidence interval limits. 
As an illustration we show the application of the R function civar2 to the 
Example 3.8: 

 
> civar2(15.14^2,384,13.58^2,579,0.10) 
         [,1] 
[1,] 1.242946 
[2,] 1.067629 
[3,] 1.451063 
 
Note that since we are computing a one-sided confidence interval we need to 

specify a double alpha value. The obtained lower limit, 1.068, is the square of 
1.033, therefore in close agreement to the value we found in Example 3.8. 

    

3.6 Bootstrap Estimation 

In the previous sections we made use of some assumptions regarding the sampling 
distributions of data parameters. For instance, we assumed the sample distribution 
of the variance to be a chi-square distribution in the case that the normal 
distribution assumption of the original data holds. Likewise for the F sampling 
distribution of the variance ratio. The exception is the distribution of the arithmetic 
mean which is always well approximated by the normal distribution, independently 
of the distribution law of the original data, whenever the data size is large enough. 
This is a result of the Central Limit theorem. However, no Central Limit theorem 
exists for parameters such as the variance, the median or the trimmed mean. 
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The bootstrap idea (Efron, 1979) is to mimic the sampling distribution of the 
statistic of interest through the use of many resamples with replacement of the 
original sample. In the present chapter we will restrict ourselves to illustrating the 
idea when applied to the computation of confidence intervals (bootstrap techniques 
cover a vaster area than merely confidence interval computation). Let us then 
illustrate the bootstrap computation of confidence intervals by referring it to the 
mean of the n = 50 PRT measurements for Class=1 of the  
dataset (as in Example 3.1). The histogram of these data is shown in Figure 3.7a.  

Denoting by X the associated random variable, we compute the sample mean of 
the data as x = 365.0. The sample standard deviation of X , the standard error, is 
SE = ns / =15.6. Since the dataset size, n, is not that large one may have some 
suspicion concerning the bias of this estimate and the accuracy of the confidence 
interval based on the normality assumption.  

Let us now consider extracting at random and with replacement m = 1000 
samples of size n = 50 from the original dataset. These resamples are called 
bootstrap samples. Let us further consider that for each bootstrap sample we 
compute its mean x . Figure 3.7b shows the histogram2 of the bootstrap distribution 
of the means. We see that this histogram looks similar to the normal distribution. 
As a matter of fact the bootstrap distribution of a statistic usually mimics the 
sample distribution of that statistic, which in this case happens to be normal. 

Let us denote each bootstrap mean by *x . The mean and standard deviation of 
the 1000 bootstrap means are computed as: 

 

∑∑ == **
boot 1000

11 xx
m

x = 365.1, 

( )∑ −
−

=
2

boot
*

boot, 1
1 xx

m
sx = 15.47, 

 
where the summations extend to the m = 1000 bootstrap samples. 

We see that the mean of the bootstrap distribution is quite close to the original 
sample mean. There is a bias of only bootx − x  = 0.1. It can be shown that this is 
usually the size of the bias that can be expected between x and the true population 
mean, µ. This property is not an exclusive of the bootstrap distribution of the mean. 
It applies to other statistics as well. 

The sample standard deviation of the bootstrap distribution, called bootstrap 
standard error and denoted SEboot, is also quite close to the theory-based estimate 
SE = ns / . We could now use SEboot to compute a confidence interval for the 
mean. In the case of the mean there is not much advantage in doing so (we should 
get practically the same result as in Example 3.1), since we have the Central Limit 
theorem in which to base our confidence interval computations. The good thing 

                                                           
2

possible depending on the resampling process. For n and m sufficiently large they are, 
however, close to each other. 

cork stoppers’

  We should more rigorously say “one possible histogram”, since different histograms are 
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about the bootstrap technique is that it also often works for other statistics for 
which no theory on sampling distribution is available. As a matter of fact, the 
bootstrap distribution usually – for a not too small original sample size, say n > 50 
− has the same shape and spread as the original sampling distribution, but is 
centred at the original statistic value rather than the true parameter value.  
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Figure 3.7.  a) Histogram of the PRT data; b) Histogram of the bootstrap means. 
 
 
Suppose that the bootstrap distribution of a statistic, w, is approximately normal 

and that the bootstrap estimate of bias is small. We then compute a two-sided 
bootstrap confidence interval at α risk, for the parameter that corresponds to the 
statistic, by the following formula: 

 
boot2/1,1 SEtw n α−−±  

 
 

distribution, whenever m is very large. 
The question naturally arises on how large must the number of bootstrap 

samples be in order to obtain a reliable bootstrap distribution with reliable values 
of SEboot? A good rule of thumb for m, based on theoretical and practical evidence, 
is to choose m  ≥ 200. 

The following examples illustrate the computation of confidence intervals using 
the bootstrap technique. 

 

Example 3.9 

Q: Consider the percentage of lime, CaO, in the composition of clays, a sample of 

level of the two-tail 5% trimmed mean and discuss the results. (The two-tail 5% 
trimmed mean disregards 10% of the cases, 5% at each of the tails.) 

We may use the percentiles of the normal distribution, instead of the Student’s t

which constitutes the Clays’ dataset. Compute the confidence interval at 95% 



102 3 Estimating Data Parameters   

A: The histogram and box plot of the CaO data (n = 94 cases) are shown in Figure 
3.8. Denoting the associated random variable by X we compute x = 0.28.  

to mistrust the sample mean as a location measure and to use the two-tail 5% 
trimmed mean computed as (see Commands 2.7):  05.0x ≡ w = 0.2755. 
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Figure 3.8. Histogram (a) and box plot (b) of the CaO data. 
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Figure 3.9. Histogram of the bootstrap distribution of the two-tail 5% trimmed 
mean of the CaO data (1000 resamples). 

 
We now proceed to computing the bootstrap distribution with m = 1000 

resamples. Figure 3.9 shows the histogram of the bootstrap distribution. It is 
clearly visible that it is well approximated by the normal distribution (methods not 
relying on visual inspection are described in section 5.1). From the bootstrap 
distribution we compute: 

 
wboot = 0.2764 
SEboot = 0.0093 

We observe in the box plot a considerable number of “outliers” which leads us 
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The bias wboot − w = 0.2764 – 0.2755 = 0.0009 is quite small (less than 10% of 
the standard deviation). We therefore compute the bootstrap confidence interval of 
the trimmed mean as: 

 
boot975.0,93 SEtw ± = 0.2755 ± 1.9858×0.0093 = 0.276 ± 0.018 

  

Example 3.10 

Q: Compute the confidence interval at 95% level of the standard deviation for the 
data of the previous example. 

A: The standard deviation of the original sample is s ≡ w = 0.086. The histogram of 
the bootstrap distribution of the standard deviation with m = 1000 resamples is 
shown in Figure 3.10. This empirical distribution is well approximated by the 
normal distribution. We compute: 

 
wboot = 0.0854 
SEboot = 0.0070 
 
The bias wboot  − w = 0.0854 – 0.086 = −0.0006 is quite small (less than 10% of 

the standard deviation). We therefore compute the bootstrap confidence interval of 
the standard deviation as: 

 
boot975.0,93 SEtw ± = 0.086 ± 1.9858×0.007 = 0.086 ± 0.014 
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Figure 3.10. Histogram of the bootstrap distribution of the standard deviation of 
the CaO data (1000 resamples). 

 

Example 3.11 

 
dataset. Using the bootstrap method compute the confidence interval at 95% level 
of its median. 

Q: Consider the variable ART (total area of defects) of the cork stoppers’



104 3 Estimating Data Parameters   

A: The histogram and box plot of the ART data (n = 150 cases) are shown in 
Figure 3.11. The sample median and sample mean of ART are med ≡ w = 263 and 
x = 324, respectively. The distribution of ART is clearly right skewed; hence, the 
mean is substantially larger than the median (almost one and half times the 
standard deviation). The histogram of the bootstrap distribution of the median with             
m = 1000 resamples is shown in Figure 3.12. We compute: 

 
wboot = 266.1210 
SEboot = 20.4335 
 
The bias wboot  − w = 266 – 263 = 3 is quite small (less than 7% of the standard 

deviation). We therefore compute the bootstrap confidence interval of the median 
as: 

 
boot975.0,149 SEtw ± = 263 ± 1.976×20.4335 = 263 ± 40 
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Figure 3.11.  Histogram (a) and box plot (b) of the ART data. 
 
 

180 200 220 240 260 280 300 320 340
0

50

100

150

200

250

300

350

400

450

500
n 

x* 

 
Figure 3.12. Histogram of the bootstrap distribution of the median of the ART data 
(1000 resamples). 
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look to be well approximated by the normal distribution. As a matter of fact any 
goodness of fit test described in section 5.1 will reject the normality hypothesis. 
This is a common difficulty when estimating bootstrap confidence intervals for the 
median. An explanation of the causes of this difficulty can be found e.g. in 
(Hesterberg T et al., 2003). This difficulty is even more severe when the data size n 
is small (see Exercise 3.20). Nevertheless, for data sizes larger then 100 cases, say, 
and for a large number of resamples, one can still rely on bootstrap estimates of the 
median as in Example 3.11. 
 

Example 3.12 

Using the bootstrap method compute the confidence interval at 5% level of their 
Pearson correlation. 

A: The sample Pearson correlation of Al2O3 and K2O is r ≡ w = 0.6922. The 
histogram of the bootstrap distribution of the Pearson correlation with m = 1000 
resamples is shown in Figure 3.13. It is well approximated by the normal 
distribution. From the bootstrap distribution we compute: 

 
wboot = 0.6950 
SEboot = 0.0719 
 
The bias wboot  − w = 0.6950 – 0.6922 = 0.0028 is quite small (about 0.4% of the 

correlation value). We therefore compute the bootstrap confidence interval of the 
Pearson correlation as: 

 

boot975.0,93 SEtw ± = 0.6922 ± 1.9858×0.0719 = 0.69 ± 0.14 
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Figure 3.13. Histogram of the bootstrap distribution of the Pearson correlation 

 

In the above Example 3.11 we observe in Figure 3.12 a histogram that doesn’t 

Q: Consider the variables Al2O3 and K2O of the Clays’ dataset (n = 94 cases). 

between the variables Al2O3 and K2O of the  dataset (1000 resamples). Clays’
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samples of associated variables, as in the above Example 3.12, these have to be 
generated by drawing cases at random with replacement (and not the variables 
individually), therefore preserving the association of the variables involved. 

 

Commands 3.7. MATLAB and R commands for obtaining bootstrap distributions. 

 

distributions (although SPSS has a bootstrap macro to be used in its Output 
Management System and STATISTICA has a bootstrapping facility built into its 
Structural Equation Modelling module). 

The bootstrap function of MATLAB can be used directly with one of 

 
Notice the name of the statistical function written as a string (the function 

trimmean is indicated in Commands 2.7). The function call returns the vector b 
with the 1000 bootstrap replicates of the trimmed mean from where one can obtain 
the histogram and other statistics.  

Let us now consider Example 3.12. Assuming that columns 7 and 13 of the 

 
The corrcoef function (mentioned in Commands 2.9) generates a correlation 

matrix. Specifically, corrcoef(clays(:,7), clays(:,13)) produces: 
 
ans = 
    1.0000    0.6922 
    0.6922    1.0000 
 
As a consequence each row of the b matrix contains in this case the correlation 

matrix values of one bootstrap sample. For instance: 
 
b = 
    1.0000    0.6956    0.6956    1.0000 
    1.0000    0.7019    0.7019    1.0000 
 ... 

 
Hence, one may obtain the histogram and the bootstrap statistics using b(:,2) 

or b(:,3).  

We draw the reader’s attention to the fact that when generating bootstrap 

MATLAB bootstrp(m,’statistic’, arg1, arg2,...) 

R   boot(x, statistic, m, stype=“i”,...) 

SPSS and STATISTICA don’t have menu options for obtaining bootstrap 

MATLAB’s statistical functions, followed by its arguments. For instance, the 
bootstrap distribution of Example 3.9 can be obtained with: 

 
>> b = bootstrp(1000,’trimmean’,cao,10); 

clays’ matrix represent the variables Al2O3 and K2O, respectively, one obtains 
the bootstrap distribution with: 

 
>> b=bootstrp(1000,’corrcoef’,clays(:,7),clays(:,13)) 
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In order to obtain bootstrap distributions with R one must first install the boot 
package with library(boot). One can check if the package is installed with 
the search() function (see section 1.7.2.2). 

The boot function of the boot package will generate m bootstrap replicates of 
a statistical function, denoted statistic, passed (its name) as argument. 
However, this function should have as second argument a vector of indices, 
frequencies or weights. In our applications we will use a vector of indices, which 

Anyway, the need to have the mentioned second argument obliges one to write the 
code of the statistical function. Let us consider Example 3.10. Supposing the 
clays data frame has been created and attached, it would be solved in R in the 
following way: 

 
> sdboot <- function(x,i)sd(x[i]) 
> b <- boot(CaO,sdboot,1000) 

 
The first line defines the function sdboot with two arguments. The first 

argument is the data. The second argument is the vector of indices which will be 
used to store the index information of the bootstrap samples. The function itself 
computes the standard deviation of those data elements whose indices are in the 
index vector i (see the last paragraph of section 2.1.2.4). 

The boot function returns a so-called bootstrap object, denoted above as b. By 
listing b one may obtain: 

 
Bootstrap Statistics : 
      original      bias    std. error 
t1* 0.08601075 -0.00082119 0.007099508 
 

which agrees fairly well with the values computed with MATLAB in Example 
3.10. One of the attributes of the bootstrap object is the vector with the bootstrap 
replicates, denoted t. The histogram of the bootstrap distribution can therefore be 
obtained with: 
 
> hist(b$t) 

  

Exercises 

3.1 Consider the 1−α1 and 1−α2 confidence intervals of a given statistic with 1−α1 > 1−α2. 
Why is the confidence interval for 1−α1 always larger than or equal to the interval for 
1−α2? 

 
3.2 Consider the measurements of bottle bottoms of the Moulds dataset. Determine the 

95% confidence interval of the mean and the x-charts of the three variables RC, CG 
and EG. Taking into account the x-chart, discuss whether the 95% confidence interval 
of the RC mean can be considered a reliable estimate. 

 

corresponds to setting the stype argument to its default value, stype=“i”. 
Since it is the default value we really don’t need to mention it when calling boot. 
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3.3 Compute the 95% confidence interval of the mean and of the standard deviation of the 
RC variable of the previous exercise, for the samples constituted by the first 50 cases 
and by the last 50 cases. Comment on the results. 

 
3.4 Consider the ASTV and ALTV variables of the CTG dataset. Assume that only a       

15-case random sample is available for these variables. Can one expect to obtain 
reliable estimates of the 95% confidence interval of the mean of these variables using 

 
3.5 Obtain a 15-case random sample of the ALTV variable of the previous exercise (see 

Commands 3.2). Compute the respective 95% confidence interval assuming a normal 
and an exponential fit to the data and compare the results. The exponential fit can be 
performed in MATLAB with the function expfit. 

 
3.6 Compute the 90% confidence interval of the ASTV and ALTV variables of the 

previous Exercise 3.4 for 10 random samples of 20 cases and determine how many 
times the confidence interval contains the mean value determined for the whole 2126 
case set. In a long run of these 20-case experiments, which variable is expected to yield 
a higher percentage of intervals containing the whole-set mean? 

 
3.7 Compute the mean with the 95% confidence interval of variable ART of the Cork 

Stoppers dataset. Perform the same calculations on variable LOGART = ln(ART). 

 
3.8 Consider the PERIM variable of the Breast Tissue dataset. What is the tolerance 

of the PERIM mean with 95% confidence for the carcinoma class? How many cases of 
the carcinoma class should one have available in order to reduce that tolerance to 2%? 

 
 

dataset, someone stated that the team-work is at least good (score 4) for 3/8 = 37.5% of 
the metallurgic firms. Does this statement deserve any credit? (Compute the 95% 
confidence interval of this estimate.) 

 
3.10 Consider the Culture dataset. Determine the 95% confidence interval of the 

proportion of boroughs spending more than 20% of the budget for musical activities. 
 
3.11 Using the CTG dataset, determine the percentage of foetal heart rate cases that have 

abnormal short term variability of the heart rate more than 50% of the time, during 
calm sleep (CLASS A). Also, determine the 95% confidence interval of that percentage 
and how many cases should be available in order to obtain an interval estimate with 1% 
tolerance. 

 
3.12 A proportion p̂ was estimated in 225 cases. What are the approximate worst-case 95% 

confidence interval limits of the proportion? 
 

3.13 Redo Exercises 3.2 and 3.3 for the 99% confidence interval of the standard deviation. 
 

the Student’s t distribution applied to those samples? Why? (Inspect the variable 
histograms.) 

Apply the Gauss’ approximation formula of A.6.1 in order to compare the results. 
Which point estimates and confidence intervals are more reliable? Why? 

3.9 Imagine that when analysing the TW=“Team Work” variable of the Metal Firms
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3.14 Consider the CTG dataset. Compute the 95% and 99% confidence intervals of the 
standard deviation of the ASTV variable. Are the confidence interval limits equally 
away from the sample mean? Why? 

 
3.15 Consider the computation of the confidence interval for the standard deviation 

performed in Example 3.6. How many cases should one have available in order to 
obtain confidence interval limits deviating less than 5% of the point estimate? 

 
3.16 In order to represent the area values of the cork defects in a convenient measurement 

unit, the ART values of the Cork Stoppers dataset have been multiplied by 5 and 
stored into variable ART5. Using the point estimates and 95% confidence intervals of 
the mean and the standard deviation of ART, determine the respective statistics for 
ART5. 

 

point estimates of the ART and N means? (See properties of the mean in A.6.1.) 
 
3.18 

the CTG dataset. 
 
3.19 Using the bootstrap technique compute confidence intervals at 95% level of the mean 

and standard deviation for the ART data of Example 3.11. 
 
3.20 Determine histograms of the bootstrap distribution of the median of the river Cávado 

flow rate (see Flow Rate dataset). Explain why it is unreasonable to set confidence 
intervals based on these histograms. 

 
3.21 Using the bootstrap technique compute confidence intervals at 95% level of the mean 

and the two-tail 5% trimmed mean for the BRISA data of the Stock Exchange 
dataset. Compare both results. 

 
3.22 Using the bootstrap technique compute confidence intervals at 95% level of the 

3.17 Consider the ART, ARM and N variables of the Cork Stoppers’ dataset. Since        
ARM = ART/N, why isn’t the point estimate of the ART mean equal to the ratio of the 

Pearson correlation between variables CaO and MgO of the Clays’ dataset. 

Redo Example 3.8 for the classes C = “calm vigilance” and D = “active vigilance” of 



4 Parametric Tests of Hypotheses 

In statistical data analysis an important objective is the capability of making 
decisions about population distributions and statistics based on samples. In order to 

hypotheses are an essential item in many scientific studies. In the present chapter 
we describe the most fundamental tests of hypotheses, assuming that the random 
variable distributions are known − the so-called parametric tests. We will first, 
however, present a few important notions in section 4.1 that apply to parametric 
and to non-parametric tests alike. 

4.1 Hypothesis Test Procedure 

Any hypothesis test procedure starts with the formulation of an interesting 
hypothesis concerning the distribution of a certain random variable in the 
population. As a result of the test we obtain a decision rule, which allows us to 
either reject or accept the hypothesis with a certain probability of error, referred to 
as the level of significance of the test. 

In order to illustrate the basic steps of the test procedure, let us consider the 
following example. Two methods of manufacturing a special type of drill, 
respectively A and B, are characterised by the following average lifetime (in 
continuous work without failure): µA = 1100 hours and µB = 1300 hours. Both 
methods have an equal standard deviation of the lifetime, σ = 270 hours. A new 
manufacturer of the same type of drills claims that his brand is of a quality 
identical to the best one, B, and with lower manufacture costs. In order to assess 
this claim, a sample of 12 drills of the new brand were tested and yielded an 
average lifetime of x  = 1260 hours. The interesting hypothesis to be analysed is 
that there is no difference between the new brand and the old brand B. We call it 
the null hypothesis and represent it by H0. Denoting by µ the average lifetime of 
the new brand, we then formalise the test as: 
 

H0:  µ =µB =1300. 
H1:  µ =µA =1100. 

 
Hypothesis H1 is a so-called alternative hypothesis. There can be many 

alternative hypotheses, corresponding to µ ≠µB. However, for the time being, we 
assume that µ =µA is the only interesting alternative hypothesis. We also assume 

make such decisions a hypothesis is formulated, e.g. “is one manufacture method 
better than another?”, and tested using an appropriate methodology. Tests of 
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that the lifetime of the drills, X, for all the brands, follows a normal distribution 
with the same standard deviation1. We know, therefore, that the sampling 
distribution of X  is also normal with the following standard error (see sections 3.2 
and A.8.4): 

 

94.77
12

==
σσ X . 

in Figure 4.1. We seek a procedure to decide whether the 12-drill-sample provides 
statistically significant evidence leading to the acceptance of the null hypothesis 

lead us to establish a decision threshold, αx , halfway between µA and µB, i.e. 
αx =1200 hours, and decide H0 if x >1200, decide H1 if x <1200, and arbitrarily if 

x =1200. 
 

 
H0H1

13001100
accept H0accept H1
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Figure 4.1. Sampling distribution (pdf) of X for the null and the alternative 
hypotheses. 

 
 

Let us consider the four possible situations according to the truth of the null 
hypothesis and the conclusion drawn from the test, as shown in Figure 4.2. For the 
decision threshold αx =1200 shown in Figure 4.1, we then have: 

 
10.0)283.1()94.77/)13001200(( 1,0 =−=−≤== NZPβα , 

 

where Z is a random varable with standardised normal distribution.  

                                                           
1
  Strictly speaking the lifetime of the drills cannot follow a normal distribution, since X > 0. 

Also, as discussed in chapter 9, lifetime distributions are usually skewed. We assume, 
however, in this example, the distribution to be well approximated by the normal law.

 

The sampling distributions (pdf’s) corresponding to both hypotheses are shown 

H0. Given the symmetry of the distributions, a “common sense” approach would 
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Values of a normal random variable, standardised by subtracting the mean and 
dividing by the standard deviation, are called z-scores. In this case, the test errors α 
and β are evaluated using the z-score, −1.283.  

In hypothesis tests, one is usually interested in that the probability of wrongly 
rejecting the null hypothesis is low; in other words, one wants to set a low value 
for the following Type I Error:  
 

Type I Error: α = P(H0 is true and, based on the test, we reject H0). 
 

This is the so-called level of significance of the test. The complement, 1–α, is 
the confidence level. A popular value for the level of significance that we will use 
throughout the book is α = 0.05, often given in percentage, α = 5%. Knowing the 
α percentile of the standard normal distribution, one can easily determine the 
decision threshold for this level of significance: 

 
2.117294.7764.1130064.1)05.0( =×−=⇒−=≤ αxZP . 
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Figure 4.2. Types of error in hypothesis testing according to the reality and the 
decision drawn from the test. 
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Figure 4.3. The critical region for a significance level of α =5%. 



114 4 Parametric Tests of Hypotheses 

Figure 4.3 shows the situation for this new decision threshold, which delimits 
the so-called critical region of the test, the region corresponding to a Type I Error. 
Since the computed sample mean for the new brand of drills, x  = 1260, falls in the 
non-critical region, we accept the null hypothesis at that level of significance (5%). 
In adopting this procedure, we expect that using it in a long run of sample-based 
tests, under identical conditions, we would be erroneously rejecting H0 about 5% of 
the times. 

In general, let us denote by C the critical region. If, as it happens in Figure 4.1 

Notice, however, that there is a non-null probability that a value as large as 
x could be obtained by type A drills, as expressed by the non-null β. Also, when 

we consider a wider range of alternative hypotheses, for instance µ <µB, there is 
always a possibility that a brand of drills with mean lifetime inferior to µB is, 
however, sufficiently close to yield with high probability sample means falling in 
the non-critical region. For these reasons, it is often advisable to adopt a 
conservative attitude stating that there is no evidence to reject the null hypothesis 
at the α level of significance . 

Any test procedure assessing whether or not H0 should be rejected can be 
summarised as follows: 

 
1. Choose a suitable test statistic tn(x), dependent on the n-dimensional sample      

x = [ ]nxxx ,,, 21 K , considered a value of a random variable, T ≡ tn(X), 
where X denotes the n-dimensional random variable associated to the 
sampling process. 

2. Choose a level of significance α and use it together with the sampling 
distribution of T in order to determine the critical region C for H0. 

3. Test decision: If tn(x)∈ C, then reject H0, otherwise do not reject H0. In the 
first case, the test is said to be significant (at level α); in the second case, the 
test is non-significant. 

 
Frequently, instead of determining the critical region, we may determine the 

probability of obtaining a deviation of the statistical value corresponding to H0 at 
least as large as the observed one, i.e., p = P(T ≥ tn(x)) or p = P(T ≤ tn(x)). The 
probability p is the so-called observed level of significance. The value of p is then 
compared with a pre-set level of significance. This is the procedure used by 
statistical software products. For the previous example, the test statistic is: 
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which, given the normality of X, has a sampling distribution identical to the 
standard normal distribution, i.e., T = Z ~ N0,1. A deviation at least as large as the 
observed one in the left tail of the distribution has the observed significance: 

or 4.3, x ∉ C, we may say that “we accept the null hypothesis at that level of 
significance”; otherwise, we reject it.  

“
”

’
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304.0)94.77/)13001260(()/)(( =−≤=−≤= ZPxZPp XB σµ . 
 
If we are basing our conclusions on a 5% level of significance, and since           

p > 0.05, we then have no evidence to reject the null hypothesis. 
Note that until now we have assumed that we knew the true value of the 

standard deviation. This, however, is seldom the case. As already discussed in the 
previous chapter, when using the sample standard deviation – maintaining the 

 
distribution. This is the usual procedure, also followed by statistical software 
products, where these parametric tests of means are called t tests. 

4.2 Test Errors and Test Power 

As described in the previous section, any decision derived from hypothesis testing 
has, in general, a certain degree of uncertainty. For instance, in the drill example 
there is always a chance that the null hypothesis is incorrectly rejected. Suppose 
that a sample from the good quality of drills has x =1190 hours. Then, as can be 
seen in Figure 4.1, we would incorrectly reject the null hypothesis at a 10% 
significance level. However, we would not reject the null hypothesis at a 5% level, 
as shown in Figure 4.3. In general, by lowering the chosen level of significance, 
typically 0.1, 0.05 or 0.01, we decrease the Type I Error: 
 

Type I Error: α = P(H0 is true and, based on the test, we reject H0). 
 
The price to be paid for the decrease of the Type I Error is the increase of the 

Type II Error, defined as: 
 
Type II Error: β = P(H0 is false and, based on the test, we accept H0). 
 
For instance, when in Figures 4.1 and 4.3 we decreased α from 0.10 to 0.05, the 

value of β increased from 0.10 to: 
 

177.0)94.77/)11008.1172(()/)(( =−≥=−≥= ZPxZP XA σµβ α . 
 
Note that a high value of β indicates that when the observed statistic does not 

fall in the critical region there is a good chance that this is due not to the 
verification of the null hypothesis itself but, instead, to the verification of a 
sufficiently close alternative hypothesis. Figure 4.4 shows that, for the same level 
of significance, α, as the alternative hypothesis approaches the null hypothesis, the 
value of β increases, reflecting a decreased protection against an alternative 
hypothesis. 

The degree of protection against alternative hypotheses is usually measured by 
the so-called power of the test, 1–β, which measures the probability of rejecting the 
null hypothesis when it is false (and thus should be rejected). The values of the 
power for several alternative values of µA, using the computed values of β as 

assumption of normality of the random variable − one must use the Student’s t
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shown above, are displayed in Table 4.1. The respective power curve, also called 
operational characteristic of the test, is shown with a solid line in Figure 4.5. Note 
that the power for the alternative hypothesis µA = 1100 is somewhat higher than 
80%. This is usually considered a lower limit of protection that one must have 
against alternative hypothesis. 
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Figure 4.4. Increase of the Type II Error, β, for fixed α, when the alternative 
hypothesis approaches the null hypothesis. 

 
 

Table 4.1. Type II Error and power for several alternative hypotheses of the drill 
example, with n = 12 and α = 0.05. 

µA z = (µA − 05.0x )/ Xσ  β 1−β 

1100.0   0.93 0.18 0.82 
1172.2   0.00 0.50 0.50 
1200.0 −0.36 0.64 0.36 
1250.0 −0.99 0.84 0.16 
1300.0 −1.64 0.95 0.05 

 
 
 
In general, for a given test and sample size, n, there is always a trade-off 

between either decreasing α or decreasing β. In order to increase the power of a 
test for a fixed level of significance, one is compelled to increase the sample size. 
For the drill example, let us assume that the sample size increased twofold, n = 24. 
We now have a reduction of 2 of the true standard deviation of the sample mean, 
i.e., Xσ  = 55.11. The distributions corresponding to the hypotheses are now more 
peaked; informally speaking, the hypotheses are better separated, allowing a 
smaller Type II Error for the same level of significance. Let us confirm this. The 
new decision threshold is now: 
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6.120911.5564.1130064.1 =×−=×−= XBx σµα , 

which, compared with the previous value, is less deviated from µB. The value of β 
for µA = 1100 is now: 

 
023.0)11.55/)11006.1209(()/)(( =−≥=−≥= ZPxZP XA σµβ α . 

 
Therefore, the power of the test improved substantially to 98%. Table 4.2 lists 

values of the power for several alternative hypotheses. The new power curve is 
shown with a dotted line in Figure 4.5. For increasing values of the sample size n, 
the power curve becomes steeper, allowing a higher degree of protection against 
alternative hypotheses for a small deviation from the null hypothesis. 
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Figure 4.5. Power curve for the drill example, with α = 0.05 and two values of the 
sample size n. 

 
Table 4.2. Type II Error and power for several alternative hypotheses of the drill 
example, with n = 24 and α = 0.05. 

µA z = (µA − 05.0x )/ Xσ  β 1−β 

1100   1.99 0.02 0.98 
1150   1.08 0.14 0.86 
1200   0.17 0.43 0.57 
1250 −0.73 0.77 0.23 
1300 −1.64 0.95 0.05 

 
 
STATISTICA and SPSS have specific modules − Power Analysis and 

SamplePower, respectively − for performing power analysis for several types of 
tests. The R stats package also has a few functions for power calculations. 
Figure 4.6 illustrates the power curve obtained with STATISTICA for the last 
example. The power is displayed in terms of the standardised effect, Es, which 
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measures the deviation of the alternative hypothesis from the null hypothesis, 
normalised by the standard deviation, as follows: 

 

σ
µµ AB

sE
−

= .  4.1 
 

For instance, for n = 24 the protection against µA = 1100 corresponds to a 
standardised effect of (1300 − 1100)/260 = 0.74 and the power graph of Figure 4.6 
indicates a value of about 0.94 for Es = 0.74. The difference from the previous 
value of 0.98 in Table 4.2 is due to the fact that, as already mentioned, 
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Figure 4.6. Power curve obtained with STATISTICA for the drill example with 
α = 0.05 and n = 24. 

 
In the work of Cohen (Cohen, 1983), some guidance is provided on how to 

qualify the standardised effect: 
 
Small effect size:  Es = 0.2. 
Medium effect size:  Es = 0.5. 
Large effect size:  Es = 0.8. 
 
In the example we have been discussing, we are in presence of a large effect 

size. As the effect size becomes smaller, one needs a larger sample size in order to 
obtain a reasonable power. For instance, imagine that the alternative hypothesis 
had precisely the same value as the sample mean, i.e., µA=1260. In this case, the 
standardised effect is very small, Es = 0.148. For this reason, we obtain very small 
values of the power for n = 12 and n = 24 (see the power for µA =1250 in Tables 

errors α and β, we need, of course, a much higher sample size. Figure 4.7 shows 
how the power evolves with the sample size in this example, for the fixed 

STATISTICA uses the Student’s t distribution.  

4.1 and 4.2). In order to “resolve” such close values (1260 and 1300) with low 
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standardised effect Es = −0.148 (the curve is independent of the sign of Es). As can 
be appreciated, in order for the power to increase higher than 80%, we need           
n > 350. 

Note that in the previous examples we have assumed alternative hypotheses that 
are always at one side of the null hypothesis: mean lifetime of the lower quality of 
drills. We then have a situation of one-sided or one-tail tests. We could as well 
contemplate alternative hypotheses of drills with better quality than the one 
corresponding to the null hypothesis. We would then have to deal with two-sided 
or two-tail tests. For the drill example a two-sided test is formalised as: 

 
H0:  µ =µB . 
H1:  µ ≠µB . 
 
We will deal with two-sided tests in the following sections. For two-sided tests 

the power curve is symmetric. For instance, for the drill example, the two-sided 
power curve would include the reflection of the curves of Figure 4.5, around the 
point corresponding to the null hypothesis, µB. 
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Figure 4.7. Evolution of the power with the sample size for the drill example, 
obtained with STATISTICA, with α = 0.05 and Es = −0.148. 

 

 
1. The reject-support (RS) data analysis situation 

 
This is by far the most common situation. The data analyst states H1 as his belief, 
i.e., he seeks to reject H0. In the drill example, the manufacturer of the new type of 
drills would formalise the test in a RS fashion if he wanted to claim that the new 
brand were better than brand A: 

A difficulty with tests of hypotheses is the selection of sensible values for α and β. 
In practice, there are two situations in which tests of hypotheses are applied:  
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H0:  µ  ≤ µA =1100. 
H1:  µ  > µA. 
 
Figure 4.8 illustrates this one-sided, single mean test. The manufacturer is 

interested in a high power. In other words, he is interested that when H1 is true (his 
belief) the probability of wrongly deciding H0 (against his belief) is very low. In 
the case of the drills, for a sample size n = 24 and α = 0.05, the power is 90% for 
the alternative µ = x , as illustrated in Figure 4.8. A power above 80% is often 
considered adequate to detect a reasonable departure from the null hypothesis. 

On the other hand, society is interested in a low Type I Error, i.e., it is interested 
in a low probability of wrongly accepting the claim of the manufacturer when it is 
false. As we can see from Figure 4.8, there is again a trade-off between a low α 
and a low β. A very low α could have as consequence the inability to detect a new 
useful manufacturing method based on samples of reasonable size. There is a wide 
consensus that α = 0.05 is an adequate value for most situations. When the sample 
sizes are very large (say, above 100 for most tests), trivial departures from H0 may 
be detectable with high power. In such cases, one can consider lowering the value 
of α (say, α  = 0.01). 
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Figure 4.8. One-sided, single mean RS test for the drill example, with α = 0.05 
and n = 24. The hatched area is the critical region. 

 
 

2. The accept-support (AS) data analysis situation 
 

In this situation, the data analyst states H0 as his belief, i.e., he seeks to accept H0. 
In the drill example, the manufacturer of the new type of drills could formalise the 
test in an AS fashion if his claim is that the new brand is at least better than brand 
B: 
 

H0:  µ  ≥ µB =1300. 
H1:  µ  < µB. 
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Figure 4.9 illustrates this one-sided, single mean test. In the AS situation, 
lowering the Type I Error favours the manufacturer. 

On the other hand, society is interested in a low Type II Error, i.e., it is 
interested in a low probability of wrongly accepting the claim of the manufacturer, 
H0, when it is false. In the case of the drills, for a sample size n = 24 and α = 0.05, 
the power is 17% for the alternative µ = x , as illustrated in Figure 4.9. This is an 
unacceptable low power. Even if we relax the Type I Error to α = 0.10, the power 
is still unacceptably low (29%). Therefore, in this case, although there is no 
evidence supporting the rejection of the null hypothesis, there is also no evidence 
to accept it either. 

In the AS situation, society should demand that the test be done with a 
sufficiently large sample size in order to obtain an adequate power. However, 
given the omnipresent trade-off between a low α and a low β, one should not 
impose a very high power because the corresponding α could then lead to the 
rejection of a hypothesis that explains the data almost perfectly. Again, a power 
value of at least 80% is generally adequate. 

Note that the AS test situation is usually more difficult to interpret than the RS 
test situation. For this reason, it is also less commonly used. 
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Figure 4.9. One-sided, single mean AS test for the drill example, with α = 0.05 
and n = 24. The hatched area is the critical region. 

4.3 Inference on One Population 

4.3.1 Testing a Mean 

The purpose of the test is to assess whether or not the mean of a population, from 
which the sample was randomly collected, has a certain value. This single mean 
test was exemplified in the previous section 4.2. The hypotheses are: 
 

H0: 0µµ = ,  H1: 0µµ ≠ ,   for a two-sided test; 
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H0: 0µµ ≤ ,     H1: 0µµ >   or 
H0: 0µµ ≥ ,     H1: 0µµ < ,   for a one-sided test. 
 
We assume that the random variable being tested has a normal distribution. We 

then recall from section 3.2 that when the null hypothesis is verified, the following 
random variable: 

 

ns

X
T

/
0µ−

= , 4.2 

 

statistic, tn(x), the following quantity: 
 

ns

x
t

/
0* µ−

=
2. 

 
When a statistic as t* is standardised using the estimated standard deviation 

instead of the true standard deviation, it is called a studentised statistic. 
For large samples, say n > 25, one could use the normal distribution instead, 

small samples, we can use the normal distribution if we know the true value of the 

Assume a two-sided t test. In order to determine the critical region for a level of 
significance α, we compute the 1–α/2 percentile of the Student s t distribution with 
df = n–1 degrees of freedom:  

 

2/1,2/1)( αα −⇒−= dfdf ttT , 4.3 
 

and use this percentile in order to establish the non-critical region C of the test: 
 

[ ]2/1,2/1, , αα −− +−= dfdf ttC . 4.4 
 
Thus, the two-sided probability of C is 2(α /2) = α. The non-critical region can 

also be expressed in terms of X , instead of T (formula 4.2): 
 

[ ]nstnstC dfdf /,/ 2/1,02/1,0 αα µµ −− +−= . 4.4a 
 
Notice how the test of a mean is similar to establishing a confidence interval for 

a mean.  
 

                                                           
2
 We use an asterisk to denote a test statistic. 

has a Student’s t distribution with n − 1 degrees of freedom. We then use as the test 

since it will yield a good approximation of the Student’s t distribution. Even with 

standard deviation. That’s precisely what we have done in the preceding sections. 
However, in normal practice, the true value of the standard deviation is unknown 
and the test relies then on the Student’s t distribution.  

’
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Example 4.1 

Q: Consider the Meteo (meteorological) dataset (see Appendix E). Perform the 
single mean test on the variable T81, representing the maximum temperature 
registered during 1981 at several weather stations in Portugal. Assume that, based 

temperature of 37.5º, which will be used as the test value. Also, assume that the 
Meteo dataset represents a random spatial sample and that the variable T81, for 
the population of an arbitrarily large number of measurements performed in the 
Portuguese territory, can be described by a normal distribution.  

regard to average maximum temperature. We then formalise the single mean test 
as: 

 

H0: 5.3781T =µ . 
H1: 5.3781T ≠µ . 
 
Table 4.3 lists the results that can be obtained either with SPSS or with 

STATISTICA. The probability of obtaining a deviation from the test value, at least 
as large as 39.8 – 37.5, is p ≈ 0. Therefore, the test is significant, i.e., the sample 
does provide enough evidence to reject the null hypothesis at a very low α.  

Notice that Table 4.3 also displays the values of t, the degrees of freedom,          
df = n – 1, and the standard error ns / = 0.548. 

  

Table 4.3. Results of the single mean t test for the T81 variable, obtained with 
SPSS or STATISTICA, with test value µ0 = 37.5. 

Mean Std. 
Dev. n Std. Err. Test 

Value t df p 

39.8 2.739 25 0.548 37.5 4.199 24 0.0003 

  

Example 4.2 

A: First we determine the t percentile for the set level of significance. In the 
present case, using α  = 0.05, we determine: 

 
06.2975.0,24 =t . 

 
This determination can be done by either using the t distribution Tables (see 

Appendix D), or the probability calculator of the STATISTICA and SPSS, or the 
appropriate MATLAB or R functions (see Commands 3.3). 

on a large number of yearly records, a “typical” year has an average maximum 

A: The purpose of the test is to assess whether or not 1981 was a “typical” year in 

Q: Redo previous Example 4.1, performing the test in its “canonical way”, i.e., 
determining the limits of the critical region.  
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Using the t percentile value and the standard error, the non-critical region is the 
interval [37.5 – 2.06×0.548, 37.5 + 2.06×0.548] = [36.4, 38.6]. As the sample mean 
x = 39.8 falls outside this interval, we also decide the rejection of the null 

hypothesis at that level of significance. 
  

Example 4.3 

Q: Redo previous Example 4.2 in order to assess whether 1981 was a year with an 
atypically large average maximum temperature. 

A: We now perform a one-sided test, using the alternative hypothesis: 
 
H1: 5.3781T >µ . 
 
The critical region for this one-sided test, expressed in terms of X , is: 
 

C = [ ∞+ − ,/1,0 nstdf αµ  
 
Since 71.195.0,24 =t , we have C = [37.5 + 1.71×0.548, ∞ [ = [38.4, ∞ [. Once 

again, the sample mean falls into the critical region leading to the rejection of the 
null hypothesis. Note that the alternative hypothesis µT81 = 39.8 in this Example 
4.3 corresponds to a large effect size, Es = 0.84, to which also corresponds a high 
power (larger than 95%; see Exercise 4.2). 

  
 

Commands 4.1. SPSS, STATISTICA, MATLAB and R commands used to 
perform the single mean t test. 

SPSS Analyze; Compare Means; One-Sample T Test 

STATISTICA Statistics; Basic Statistics and Tables; 
t-test, single sample 

MATLAB [h,sig,ci]=ttest(x,m,alpha,tail) 

R t.test(x, alternative = c("two.sided", 
"less", "greater"), mu, conf.level) 

 
 

When using a statistical software product one obtains the probability of observing a 
value at least as large as the computed test statistic tn(x) ≡ t*, assuming the null 
hypothesis. This probability is the so-called observed significance. The test 
decision is made comparing this observed significance with the chosen level of 
significance. Note that the published value of p corresponds to the two-sided 
observed significance. For instance, in the case of Table 4.3, the observed level of 
significance for the one-sided test is half of the published value, i.e., p = 0.00015. 

[ .
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When performing tests of hypotheses with MATLAB or R adequate percentiles 
for the critical region, the so-called critical values, are also computed. 

MATLAB has a specific function for the single mean t test, which is shown in 
its general form in Commands 4.1. The best way to understand the meaning of the 
arguments is to run the previous Example 4.3 for T81. We assume that the sample 
is saved in the array t81 and perform the test as follows: 

 
» [h,sig,ci]=ttest(t81,37.5,0.05,1) 
 
h = 
     1 
sig = 
  1.5907e-004 
ci = 
   38.8629   40.7371 
 
The parameter tail can have the values 0, 1, −1, corresponding respectively to 

the alternative hypotheses 0µµ ≠ , 0µµ > and 0µµ < . The value h = 1 informs 
us that the null hypothesis should be rejected (0 for not rejected). The variable sig 
is the observed significance; its value is practically the same as the above 
mentioned p. Finally, the vector ci is the 1 - alpha confidence interval for the 
true mean. 

The same example is solved in R with: 
 

 
        One Sample t-test 
 
data:  T81  
t = 4.1992, df = 24, p-value = 0.0001591 
alternative hypothesis: true mean is greater than 

37.5  
95 percent confidence interval: 
 38.86291      Inf  
sample estimates: 
mean of x  
     39.8 
 
The conf.level of t.test is 0.95 by default.   
  

4.3.2 Testing a Variance 

The assessment of whether a random variable of a certain population has 

task. Assuming that the random variable follows a normal distribution, this 
assessment can be performed by a test of a hypothesis involving a single variance, 

2
0σ , as test value. 

> t.test(T81,alternative=(“greater”),mu=37.5) 

dispersion smaller or higher than a given “typical” value is an often-encountered 
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Let the sample variance, computed in the n-sized sample, be s2. The test of a 
single variance is based on Property 5 of B.2.7, which states a chi-square sampling 
distribution for the ratio of the sample variance, )(22 Xss X ≡ , and the hypothesised 
variance: 

 

)1/(~/ 2
1

22 −− ns nX χσ  .  4.5 
 

Example 4.4 

Q: Consider the meteorological dataset and assume that a typical standard 
deviation for the yearly maximum temperature in the Portuguese territory is        
σ = 2.2º. This standard deviation reflects the spatial dispersion of maximum 
temperature in that territory. Also, consider the variable T81, representing the 1981 
sample of 25 measurements of maximum temperature. Is there enough evidence, 
supported by the 1981 sample, leading to the conclusion that the standard deviation 
in 1981 was atypically high?  

A: The test is formalised as: 
 

H0: 84.42
81T ≤σ . 

H1: 84.42
81T >σ . 

 
The sample variance in 1981 is s2 = 7.5. Since the sample size of the example is 

n = 25, for a 5% level of significance we determine the percentile: 
 

42.362
95.0,24 =χ . 

 
Thus, 52.124/2

95.0,24 =χ . 
This determination can be done in a variety of ways, as previously mentioned 

(in Commands 3.3): using the probability calculators of SPSS and STATISTICA, 
using MATLAB chi2inv function or R qchisq function, consulting tables (see 
D.4 for P(χ 2 > x) = 0.05), etc. 

Since 551.7.5 / 4.84/ 22 ==σs  lies in the critical region [1.52, +∞
conclude that the test is significant, i.e., there is evidence supporting the rejection 
of the null hypothesis at the 5% level of significance. 

  

4.4 Inference on Two Populations 

4.4.1 Testing a Correlation 

When analysing two associated sample variables, one is often interested in 
knowing whether the sample provides enough evidence that the respective random 
variables are correlated. For instance, in data classification, when two variables are 

[, we 
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correlated and their correlation is high, one may contemplate the possibility of 
discarding one of the variables, since a highly correlated variable only conveys 
redundant information.  

Let ρ represent the true value of the Pearson correlation mentioned in section 
2.3.4. The correlation test is formalised as: 

 
H0:  ρ = 0,     H1:  ρ ≠ 0, for a two-sided test. 
 
For a one-sided test the alternative hypothesis is: 
 
H1:  ρ > 0  or  ρ < 0. 
 
Let r represent the sample Pearson correlation when the null hypothesis is 

verified and the sample size is n. Furthermore, assume that the random variables 
are normally distributed. Then, the (r.v. corresponding to the) following test 
statistic: 

 

2
*

1
2

r
nrt
−

−
=  , 4.6 

 

The Pearson correlation test can be performed as part of the computation of 
correlations with SPSS and STATISTICA. It can also be performed using the 
Correlation Test sheet of Tools.xls (see Appendix F) or the 
Probability Calculator; Correlations of STATISTICA (see also 
Commands 4.2). 
 

Example 4.5 

Q: Consider the variables PMax and T80 of the meteorological dataset (Meteo) 

then have n = 16 measurements of the maximum precipitation and the maximum 
temperature during 1980, respectively. Is there evidence, at α = 0.05, of a negative 
correlation between these two variables? 

well approximated by the normal distribution (see section 5.1). The sample 
correlation is r = –0.53. Thus, the test statistic is:  

 
r = –0.53, n = 16     ⇒     t* = –2.33. 
 
Since 761.05.0,14 = −t , the value of t* falls in the critical region ] –∞, –1.76]; 

therefore, the null hypothesis is rejected, i.e., there is evidence of a negative 
correlation between PMax and T80 at that level of significance. Note that the 
observed significance of t* is 0.0176, below α. 

  

has a Student’s t distribution with n – 2 degrees of freedom. 

for the “moderate” category of precipitation (PClass = 2) as defined in 2.1.2. We 

A: The distributions of PMax and T80 for “moderate” precipitation are reasonably 
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Commands 4.2. SPSS, STATISTICA, MATLAB and R commands used to 
perform the correlation test. 

SPSS Analyze; Correlate; Bivariate 

STATISTICA 
Statistics; Basic Statistics and Tables; 
Correlation Matrices 
 

Probability Calculator; Correlations 

MATLAB [r,t,tcrit] = corrtest(x,y,alpha) 

R cor.test(x, y, conf.level = 0.95, ...) 

 
 
As mentioned above the Pearson correlation test can be performed as part of the 
computation of correlations with SPSS and STATISTICA. Also with the 
Correlations option of STATISTICA Probability Calculator. 

MATLAB does not have a correlation test function. We do provide, however, a 
function for that purpose, corrtest (see Appendix F). Assuming that we have 
available the vector columns pmax, t80 and pclass as described in 2.1.2.3, 
Example 4.5 would be solved as: 

 
>>[r,t,tcrit]=corrtest(pmax(pclass==2),t80(pclass==2)

,0.05) 
r = 
   -0.5281 
t = 
   -2.3268 
tcrit = 
   -1.7613 
 
The correlation test can be performed in R with the function cor.test. In 

Commands 4.2 we only show the main arguments of this function. As usual, by 
default conf.level=0.95. Example 4.5 would be solved as: 

 
> cor.test(T80[Pclass==2],Pmax[Pclass==2]) 

data:  T80[Pclass == 2] and Pmax[Pclass == 2]  
t = -2.3268, df = 14, p-value = 0.0355 
alternative hypothesis: true correlation is not equal 

to 0  
95 percent confidence interval: 
 -0.81138702 -0.04385491  
sample estimates: 
       cor  
-0.5280802   

        Pearson’s product-moment correlation 
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by no means synonymous with causality.  As a matter of fact, when two variables 
X and Y are correlated, one of the following situations can happen: 

 
– One of the variables is the cause and the other is the effect. For instance, if         

– The correlation is fortuitous and there is no causal link. For instance, one may 

4.4.2 Comparing Two Variances 

In some comparison problems to be described later, one needs to decide whether or 
not two independent data samples A and B, with sample variances 2

As  and 2
Bs  and 

sample sizes nA and nB, were obtained from normally distributed populations with 
the same variance. 

Using Property 6 of B.2.9, we know that: 

1,122

22
~

/
/
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s
s
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σ

.  4.7 

Under the null hypothesis H0: 22
BA σσ = , we then use the test statistic: 

1,1
22* ~/ −−= BnAnBA FssF .  4.8 

Note that given the asymmetry of the F distribution,  one needs to compute the 
two (1−α/2)-percentiles of F for a two-tailed test, and reject the null hypothesis if 
the observed F value is unusually large or unusually small. Note also that for 
applying the F test it is not necessary to assume that the populations have equal 
means. 

Example 4.6 

Q: Consider the two independent samples shown in Table 4.4 of normally 
distributed random variables. Test whether or not one should reject at a 5% 

As a final comment, we draw the reader’s attention to the fact that correlation is 

X = “nr of forest f ires per year” and Y = “area of burnt forest per year”, then 
one usually finds that X  is correlated with Y, since Y is the effect of X

– Both variables have an indirect cause. For instance, if X = “% of persons daily 
arriving at a Hospital with yellow-tainted fingers” and Y = “% of persons daily 
arriving at the same Hospital with pulmonary carcinoma”, one finds that X is 
correlated with Y, but neither is cause or effect. Instead, there is another variable 
that is the cause of both − volume of inhaled tobacco smoke. 

eventually find a correlation between X = “% of persons with blue eyes per 
household” and Y = “% of persons preferring radio to TV per household”. It 
would, however, be meaningless to infer causality between the two variables. 

“ ”

4.4.2.1 The F Test 
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significance level the hypothesis that the respective population variances are 
unequal. 

A: The sample variances are v1 = 1.680 and v2 = 0.482; therefore, F*= 3.49, with an 
observed one-sided significance of p = 0.027. The 0.025 and 0.975 percentiles of 
F9,11 are 0.26 and 3.59, respectively. Therefore, since the non-critical region   
[0.26, 3.59] contains p, we do not reject the null hypothesis at the 5% significance 
level.  

 

Table 4.4. Two independent and normally distributed samples.  

Case # 1 2 3 4 5 6 7 8 9 10 11 12 

Group 1 4.7 3.7 5.2 6.3 6.2 6.7 2.8 4.8 6.1 3.9   

Group 2 10.1 8.6 10.9 9.7 9.7 10 9.4 10.1 9.9 10 10.8 8.7 

 

Example 4.7 

Q: Consider the meteorological data and test the validity of the following null 
hypothesis at a 5% level of significance: 

 
H0:  σT81 = σT80 . 
 

A: We assume, as in previous examples, that both variables are normally 
distributed. We then have to determine the percentiles of F24,24 and the non-critical 
region: 

 

[ ] [ ]27.2,44.0975.0,025.0 == FFC  . 
 
Since F*= 2

80
2

81 / TT ss = 7.5/4.84 = 1.55 falls inside the non-critical region, the 
null hypothesis is not rejected at the 5% level of significance. 

  
 
SPSS, STATISTICA and MATLAB do not include the test of variances as an 

individual option. Rather, they include this test as part of other tests, as will be seen 
in later sections. R has a function, var.test, which performs the F test of two 
variances. Running var.test(T81,T80)for the Example 4.7 one obtains: 

 
F=1.5496, num df=24, denom df=24, p-value=0.2902 
 

confirming the above results. 

A problem with the previous F test is that it is rather sensitive to the assumption of 
normality. A less sensitive test to the normality assumption (a more robust test) is 

4.4.2.2 Levene’s Test 
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as follows: 
 
1. Compute the means in the two samples: Ax and Bx . 

2. Let AAA xxd ii −=  and BBB xxd ii −=  represent the absolute deviations 
of the sample values around the respective mean.  

3. Compute the sample means, Ad and Bd , and sample variances, vA and vB 
of the previous absolute deviations. 

4. Compute the pooled variance, vp, for the two samples, with nA and nB cases, 
as the following weighted average of the individual variances: 
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5. Finally, perform a t test with the test statistic: 
 

 2
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median instead of the mean (see section 7.3.3.2). 
 

Example 4.8 

A: The sample means are 1x = 5.04 and 2x = 9.825. Using these sample means, we 
compute the absolute deviations for the two groups shown in Table 4.5. 

The sample means and variances of these absolute deviations are: 1d = 1.06, 
2d = 0.492; v1 = 0.432, v2 = 0.235. Applying formula 4.9 we obtain a pooled 

variance vp = 0.324. Therefore, using formula 4.10, the observed test statistic is   
t*= 2.33 with a two-sided observed significance of 0.03.  

Thus, we reject the null hypothesis of equal variances at a 5% significance level. 
Notice that this conclusion is the opposite of the one reached in Example 4.7. 

  

Table 4.5.  Absolute deviations from the sample means, computed for the two 
samples of Table 4.4. 

Case # 1 2 3 4 5 6 7 8 9 10 11 12 

Group 1 0.34 1.34 0.16 1.26 1.16 1.66 2.24 0.24 1.06 1.14   

Group 2 0.15 1.35 0.95 0.25 0.25 0.05 0.55 0.15 0.05 0.05 0.85 1.25 

Levene’s test, which uses deviations from the sample means. The test is carried out 

There is a modification of the Levene’s test that uses the deviations from the 

Q: Redo the test of Example 4.7 using Levene’s test. 
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4.4.3 Comparing Two Means 

Deciding whether two samples came from normally distributed populations with 
the same or with different means, is an often-met requirement in many data 
analysis tasks. The test is formalised as: 

 
H0:  µΑ = µΒ  (or µΑ – µΒ  

H1:  µΑ ≠ µΒ ,   for a two-sided test; 
 
H0:  µΑ ≤ µΒ,    H1:  µΑ > µΒ ,       or   
H0:  µΑ ≥ µΒ,    H1:  µΑ < µΒ  ,  for a one-sided test. 

 
In tests of hypotheses involving two or more samples one must first clarify if the 

samples are independent or paired, since this will radically influence the methods 
used.  

Imagine that two measurement devices, A and B, performed repeated and 
normally distributed measurements on the same object: 

 
x1, x2, …, xn with device A; 
y1, y2, …, yn, with device B. 
 

generated according to 
AA ,σµN and 

BB ,σµN , respectively. Assuming that device B 
introduces a systematic deviation ∆, i.e., µB = µA + ∆, our statistical model has 4 
parameters: µA, ∆, σA  and σB. 

Now imagine that the n measurements were performed by A and B on a set of n 
different objects. We have a radically different situation, since now we must take 
into account the differences among the objects together with the systematic 
deviation ∆. For instance, the measurement of the object xi is described in 
probabilistic terms by 

AA ,σµ i
N when measured by A and by 

BA ,σµ ∆+i
N when 

measured by B. The statistical model now has n + 3 parameters: µA1, µA2, …, µAn, 
∆, σA  and σB. The first n parameters reflect, of course, the differences among the n 
objects. Since our interest is the systematic deviation ∆, we apply the following 
trick. We compute the paired differences: d1 = y1 – x1,  d2 = y2 – x2, …, dn = yn – xn. 
In this paired samples approach, we now may consider the measurements di as 
values of a random variable, D, described in probabilistic terms by DN σ,∆ . 
Therefore, the statistical model has now only two parameters. 

The measurement device example we have been describing is a simple one, 
since the objects are assumed to be characterised by only one variable. Often the 
situation is more complex because several variables − known as factors, effects or 

The sets x = [x1 x2 … xn]’ and y = [ y1 y2 … yn]’, constitute independent samples 

= 0, whence the name “null hypothesis”), 

grouping variables − influence the objects. The central idea in the “independent 
samples” study is that the cases are randomly drawn such that all the factors, 
except the one we are interested in, average out. For the “paired samples” study 

4.4.3.1 Independent Samples and Paired Samples 
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(also called dependent or matched samples study), the main precaution is that we 
pair truly comparable cases with respect to every important factor. Since this is an 
important topic, not only for the comparison of two means but for other tests as 
well, we present a few examples below. 

 
Independent Samples: 
 
i. We wish to compare the sugar content of two sugar-beet breeds, A and B. 

For that purpose we collect random samples in a field of sugar-beet A and in 
another field of sugar-beet B. Imagine that the fields were prepared in the 
same way (e.g. same fertilizer, etc.) and the sugar content can only be 
influenced by exposition to the sun. Then, in order for the samples to be 
independent, we must make sure that the beets are drawn in a completely 
random way in what concerns the sun exposition. We then perform an 

ii. We are assessing the possible health benefit of a drug against a placebo. 
Imagine that the possible benefit of the drug depends on sex and age. Then, 

iii. 

 
Paired Samples: 
 
i. The comparison of sugar content of two breeds of sugar-beet, A and B, 

would collect samples of beets A and B lying on nearby rows in the field, 
and would pair the neighbour beets. 

ii. The study of the possible health benefit of a drug against a placebo could 

same group of patients is evaluated after taking the placebo and after taking 
the drug. Therefore, each patient is his/her own control. Of course, in 
clinical studies, ethical considerations often determine which kind of study 
must be performed. 

“independent samples” test of variable “sugar content”, dependent on factor 
“sugar-beet breed” with two categories, A and B.  

in an “independent samples” study, we must make sure that the samples for 
the drug and for the placebo (the so-called control group) are indeed random 
in what concerns sex and age. We then perform an “independent samples” 
test of variable “health benefit”, dependent on factor “group” with two 
categories, “drug” and “placebo”. 

We want to study whether men and women rate a TV program differently. 
Firstly, in an “independent samples” study, we must make sure that the 
samples are really random in what concerns other influential factors such as 
degree of education, environment, family income, reading habits, etc. We 
then perform an “independent samples” test of variable “TV program rate”, 
dependent on factor “sex” with two categories, “man” and “woman”. 

could also be studied in a “paired samples” approach. For that purpose, we 

also be performed in a “paired samples” approach. For that purpose, the 
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iii. Studies of preference of a product, depending on sex, are sometimes 

results of the husband with those of the wife. The rationale being that 
husband and wife have similar ratings in what concerns influential factors 
such as degree of education, environment, age, reading habits, etc. 
Naturally, this assumption could be controversial. 

 
Note that when performing tests with SPSS or STATISTICA for independent 

samples, one must have a datasheet column for the grouping variable that 
distinguishes the independent samples (groups). The grouping variable uses 
nominal codes (e.g. natural numbers) for that distinction. For paired samples, such 
a column does not exist because the variables to be tested are paired for each case. 

When two independent random variables XA and XB are normally distributed, as 
AA ,σµN and 

BB ,σµN respectively, then the variable BA XX − has a normal 
distribution with mean µA – µB and variance given by: 

 

B

2
B

A

2
A2

nn
σσ

σ += . 4.11 

 
where nA and nB are the sizes of the samples with means Ax  and Bx , respectively. 
Thus, when the variances are known, one can perform a comparison of two means 
much in the same way as in sections 4.1 and 4.2. 

Usually the true values of the variances are unknown; therefore, one must apply 

MATLAB and R. 
Two situations must now be considered: 
 

1 – The variances σA and σB can be assumed to be equal.  
 

Then, the following test statistic: 
 

BA

BA*

n
v

n
v

xx
t

pp +

−
= , 4.12 

 

distribution with the following degrees of freedom: 
 

df = nA + nB – 2.  4.13 
 

2 – The variances σA and σB are unequal.  
 

a Student’s t distribution. This is exactly what is assumed by SPSS, STATISTICA, 

where v  is the pooled variance computed as in formula 4.9, has a Student’s tp

performed in a “paired samples” approach, e.g. by pairing the enquiry 

4.4.3.2 Testing Means on Independent Samples 
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Then, the following test statistic: 
 

B

2
B

A
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In order to decide which case to consider – equal or unequal variances – the F 

STATISTICA do precisely this. 
 

Example 4.9 

level of significance whether the variables ASP (aspartame content) and PHE 
(phenylalanine content) can distinguish white wines from red wines. The collected 
samples are assumed to be random. The distributions of ASP and PHE are well 
approximated by the normal distribution in both populations (white and red wines). 
The samples are described by the grouping variable TYPE (1 = white; 2 = red) and 
their sizes are  n1 = 30 and n2 = 37, respectively. 

A: Table 4.6 shows the results obtained with SPSS. In the interpretation of these 

variances can be assumed to be equal or unequal. 
 

Table 4.6. Partial table of results obtained with SPSS for the independent samples t 
test of the wine dataset. 

  

  F p t df p  
(2-tailed)

Mean 
Difference

Std. Error 
Difference 

ASP Equal 
variances 
assumed 

0.017 0.896 2.345 65 0.022 6.2032 2.6452 

 
Equal 
variances 
not assumed 

  2.356 63.16 0.022 6.2032 2.6331 

PHE Equal 
variances 
assumed 

11.243 0.001 3.567 65 0.001 20.5686 5.7660 

 
Equal 
variances 
not assumed 

3.383 44.21 0.002 20.5686 6.0803 

has a Student’s t distribution with the following degrees of freedom: 

test or Levene’s test, described in section 4.4.2, are performed. SPSS and 

Q: Consider the Wines’ dataset (see description in Appendix E). Test at a 5% 

results we start by looking to Levene’s test results, which will decide if the 

Levene’s Test t-test     
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For the variable ASP, we accept the null hypothesis of equal variances, since the 
observed significance is very high ( p = 0.896). We then look to the t test results in 
the top row, which are based on the formulas 4.12 and 4.13. Note, particularly, that 
the number of degrees of freedom is df = 30 + 37 – 2 = 65. According to the results 
in the top row, we reject the null hypothesis of equal means with the observed 
significance p = 0.022. As a matter of fact, we also reject the one-sided hypothesis 
that aspartame content in white wines (sample mean 27.1 mg/l) is smaller or equal 
to the content in red wines (sample mean 20.9 mg/l). Note that the means of the 
two groups are more than two times the standard error apart. 

For the variable PHE, we reject the hypothesis of equal variances; therefore, we 
look to the t test results in the bottom row, which are based on formulas 4.14 and 
4.15. The null hypothesis of equal means is also rejected, now with higher 
significance since p = 0.002. Note that the means of the two groups are more than 
three times the standard error apart. 
  

Figure 4.10. a) Window of STATISTICA Power Analysis module used for the 
specifications of Example 4.10; b) Results window for the previous specifications. 

 

Example 4.10 

Q: Compute the power for the ASP variable (aspartame content) of the previous 
Example 4.9, for a one-sided test at 5% level, assuming that as an alternative 
hypothesis white wines have more aspartame content than red wines. Determine 
what is the minimum distance between the population means that guarantees a 
power above 90% under the same conditions as the studied samples. 

A: The one-sided test for this RS situation (see section 4.2) is formalised as: 
 
H0:  µ1 ≤ µ2; 
H1:  µ1 > µ2 . (White wines have more aspartame than red wines.) 
 
The observed level of significance is half of the value shown in Table 4.6, i.e.,  

p = 0.011; therefore, the null hypothesis is rejected at the 5% level. When the data 
analyst investigated the ASP variable, he wanted to draw conclusions with 
protection against a Type II Error, i.e., he wanted a low probability of wrongly not 
detecting the alternative hypothesis when true. Figure 4.10a shows the 
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STATISTICA specification window needed for the power computation. Note the 
specification of the one-sided hypothesis. Figure 4.10b shows that the power is 
very high when the alternative hypothesis is formalised with population means 
having the same values as the sample means; i.e., in this case the probability of 
erroneously deciding H0 is negligible. Note the computed value of the standardised 
effect (µ1 – µ2)/s  = 2.27, which is very large (see section 4.2). 

Figure 4.11 shows the power curve depending on the standardised effect, from 
where we see that in order to have at least 90% power we need Es = 0.75, i.e., we 
are guaranteed to detect aspartame differences of about 2 mg/l apart (precisely, 
0.75×2.64 = 1.98).  
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Figure 4.11.  Power curve, obtained with STATISTICA, for the wine data 
Example 4.10. 

 

Commands 4.3. SPSS, STATISTICA, MATLAB and R commands used to 
perform the two independent samples t test. 

SPSS Analyze; Compare Means; Independent 
Samples T Test 

STATISTICA Statistics; Basic Statistics and Tables; 
t-test, independent, by groups 

MATLAB [h,sig,ci] = ttest2(x,y,alpha,tail] 

R t.test(formula, var.equal = FALSE) 

 
 
The MATLAB function ttest2 works in the same way as the function ttest 
described in 4.3.1, with x and y representing two independent sample vectors. The 
function ttest2 assumes that the variances of the samples are equal. 
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The R function t.test, already mentioned in Commands 4.1, can also be used to 
perform the two-sample t test. This function has several arguments the most 
important of which are mentioned above. Let us illustrate its use with Example 4.9. 
The first thing to do is to apply the two-variance F test with the var.test 
function mentioned in section 4.4.2.1. However, in this case we are analysing 
grouped data with a specific grouping (classification) variable: the wine type. For 
grouped data the function is applied as var.test(formula) where 
formula is written as var~group. In our Example 4.9, assuming variable CL 
represents the wine classification we would then test the equality of variances of 
variable Asp with: 

 
> var.test(Asp~CL) 
 
In the ensuing list a p value of 0.8194 is published leading to the acceptance of 

the null hypothesis.  We would then proceed with: 
 
> t.test(Asp~CL,var.equal=TRUE) 
 
Part of the ensuing list is: 
 
t = 2.3451, df = 65, p-value = 0.02208 
 

which is in agreement with the values published in Table 4.6. For 
var.test(Phe~CL) we get a p value of 0.002 leading to the rejection of the 
equality of variances and hence we would proceed with t.test(Phe~CL, 
var.equal=FALSE) obtaining 

 
t = 3.3828, df = 44.21, p-value = 0.001512 
 

also in agreement with the values published in Table 4.6. 
R stats package also has the following power.t.test function for 

performing power calculations of t tests: 

 
The arguments n, delta, sd are the number of cases, the difference of means 

and the standard deviation, respectively. The power calculation for the first part of 
Example 4.10 would then be performed with: 

 

 
A power of 1 is obtained. Note that the arguments of power.t.test have 

default values. For instance, in the above command we are assuming the default 
sig.level = 0.05. The power.t.test function also allows computing 
one parameter, passed as NULL, depending on the others. For instance, the second 
part of Example 4.10 would be solved with: 

 

power.t.test(n, delta, sd, sig.level, power, type = 
c(“two.sample”, “one.sample”, “paired”), alternative 
= c(“two.sided”, “one.sided”)) 

> power.t.test(30, 6, 2.64, type=c(“two.sample”), 
 alternative=c(“one.sided”)) 
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The result delta = 2 would be obtained exactly as we found out in Figure 

4.11.  

the xi, yi refer to objects that can be paired, we then compute the paired differences: 
d1 = y1 – x1,  d2 = y2 – x2, …, dn = yn – xn.  Therefore, the null hypothesis: 
 

H0:  µX = µY, 
 

is rewritten as: 
 

H0:  µD = 0  with  D = X – Y . 
 
The test is, therefore, converted into a single mean t test, using the studentised 

statistic: 
 

1
* ~

/
−= n

d

t
ns

dt , 4.16 

 
where sd is the sample estimate of the variance of D, computed with the differences 
di. Note that since X and Y are not independent the additive property of the 
variances does not apply (see formula A.58c). 

 

Example 4.11 

Q: Consider the meteorological dataset. Use an appropriate test in order to compare 
the maximum temperatures of the year 1980 with those of the years 1981 and 
1982.  

A: Since the measurements are performed at the same weather stations, we are in 
adequate conditions for performing a paired samples t test. Based on the results 
shown in Table 4.7, we reject the null hypothesis for the pair T80-T81 and accept it 
for the pair T80-T82. 

  
 

Table 4.7. Partial table of results, obtained with SPSS, in the paired samples t test 
for the meteorological dataset. 

  Mean Std. 
Deviation 

Std. Error 
Mean t df p (2-tailed) 

Pair 1 T80 - T81 −2.360 2.0591 0.4118 −5.731 24 0.000 

Pair 2 T80 - T82   0.000 1.6833 0.3367   0.000 24 1.000 

As explained in 4.4.3.1, given the sets x = [x1 x2 … xn]’ and y = [y1 y2 … yn]’, where 

> power.t.test(30, delta=NULL, 2.64, power=0.9, 
 type=c(“two.sample”),alternative=c(“one.sided”)) 

4.4.3.3 Testing Means on Paired Samples 
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Example 4.12 

Q: Study the power of the tests performed in Example 4.11. 

A: We use the STATISTICA Power Analysis module and the descriptive 
statistics shown in Table 4.8. 

For the pair T80-T81, the standardised effect is Es = (39.8−37.44)/2.059 =1.1 
(see Table 4.7 and 4.8). It is, therefore, a large effect − justifying a high power of 
the test.  

Let us now turn our attention to the pair T80-T82, whose variables happen to 
have the same mean. Looking at Figure 4.12, note that in order to have a power 
1−β = 0.8, one must have a standardised effect of about Es = 0.58. Since the 
standard deviation of the paired differences is 1.68, this corresponds to a deviation 
of the means computed as Es × 1.68 = 0.97 ≈ 1. Thus, although the test does not 
reject the null hypothesis, we only have a reasonable protection against alternative 
hypotheses for a deviation in average maximum temperature of at least one degree 
centigrade. 

  
 

Table 4.8. Descriptive statistics of the meteorological variables used in the paired 
samples t test. 

 n x  s 

T80 25 37.44 2.20 
T81 25 39.80 2.74 
T82 25 37.44 2.29 
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Figure 4.12. Power curve for the variable pair T80-T82 of Example 4.11. 
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Commands 4.4. SPSS, STATISTICA, MATLAB and R commands used to 
perform the paired samples t test. 

SPSS Analyze; Compare Means; Paired-Samples T 
Test 

STATISTICA Statistics; Basic Statistics and Tables; 
t-test, dependent samples 

MATLAB [h,sig,ci]=ttest(x,m,alpha,tail] 

R t.test(x,y,paired = TRUE) 

 
 

With MATLAB the paired samples t test is performed using the single t test 
function ttest, previously described. 

The R function t.test, already mentioned in Commands 4.1 and 4.3, is also 
used to perform the paired sample t test with the arguments mentioned above 
where x and y represent the paired data vectors. Thus, the comparison of T80 with 
T81 in Example  4.11 is solved with 

 
> t.test(T80,T81,paired=TRUE) 
 

obtaining the same values as in Table 4.7. The calculation of the difference of 
means for a power of 0.8 is performed with the power.t.test function (see 
Coomands 4.3) with:  

 
> power.t.test(25,delta=NULL,1.68,power=0.8, 

 
yielding delta = 0.98 in close agreement to the value found in Example 4.11 
  

4.5 Inference on More than Two Populations 

4.5.1 Introduction to the Analysis of Variance 

In section 4.4.3, the two-means tests for independent samples and for paired 
samples were described. One could assume that, in order to infer whether more 
than two populations have the same mean, all that had to be done was to repeat the 
two-means test as many times as necessary. But in fact, this is not a commendable 
practice for the reason explained below.  

Let us consider that we have c independent samples and we want to test whether 
the following null hypothesis is true: 

 
H0:  µ1 = µ2 = … = µc ;  4.17 

type=c(“paired”),alternative=c(“two.sided”)) 
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the alternative hypothesis being that there is at least one pair with unequal means,        
µi ≠ µj. 

We now assume that H0 is assessed using two-means tests for all ( )c
2  pairs of 

the c means. Moreover, we assume that every two-means test is performed at a 
95% confidence level, i.e., the probability of not rejecting the null hypothesis when 
true, for every two-means comparison, is 95%: 

 
95.0)H|( 0 == ijjiP µµ ,  4.18 

 
where H0ij is the null hypothesis for the two-means test referring to the i and j 
samples. 

The probability of rejecting the null hypothesis 4.17 for the c means, when it is 
true, is expressed as follows in terms of the two-means tests: 

 

)H|ororH|orH|(
)H|Hreject(
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.  4.19 

 
Assuming the two-means tests are independent, we rewrite 4.19 as: 
 

)H|()H|()H|(1 01031021 ccPPP µµµµµµα ===−= −K .  4.20 
 
Since H0 is more restrictive than any H0ij, as it implies conditions on more than 

two means, we have )H|( 0ijjiP µµ ≠  ≥ )H|( 0jiP µµ ≠ , or, equivalently, 
)H|( 0ijjiP µµ = ≤ )H|( 0jiP µµ = .  

Thus: 
 

)H|()H|()H|(1 ,1010133101221 ccccPPP −− ===−≥ µµµµµµα K .  4.21 
 
For instance, for c = 3, using 4.18 and 4.21, we obtain a Type I Error             

α  ≥ 1−0.953 = 0.14. For higher values of c the Type I Error degrades rapidly. 

way, instead of assessing it using individual two-means tests. 
In the following sections we describe the analysis of variance (ANOVA) 

hypothesis 4.17. We only describe the ANOVA approach for one or two grouping 

Therefore, we need an approach that assesses the null hypothesis 4.17 in a “global” 

approach, which provides a suitable methodology to test the “global” null 

variables (effects or factors). Moreover, we only consider the so-called “fixed 
factors” model, i.e., we only consider making inferences on several fixed 
categories of a factor, observed in the dataset, and do not approach the problem of 
having to infer to more categories than the observed ones (the so called “random 
factors” model). 
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4.5.2 One-Way ANOVA 

The one-way ANOVA test is applied when only one grouping variable is present in 
the dataset, i.e., one has available c independent samples, corresponding to c 
categories (or levels) of an effect and wants to assess whether or not the null 
hypothesis should be rejected. As an example, one may have three independent 
samples of scores obtained by students in a certain course, corresponding to three 
different teaching methods, and want to assess whether or not the hypothesis of 
equality of student performance should be rejected. In this case, we have an effect 
– teaching method – with three categories. 

A basic assumption for the variable X being tested is that the c independent 
samples are obtained from populations where X is normally distributed and with 
equal variance. Thus, the only possible difference among the populations refers to 
the means, µi. The equality of variance tests were already described in section 

one can resort to goodness of fit tests described in the following chapter. 
In order to understand the ANOVA approach, we start by considering a single 

sample of size n, subdivided in c subsets of sizes n1, n2, …, nc, with averages 
kxxx ,,, 21 K , and investigate how the total variance, v, can be expressed in terms 

of the subset variances, vi. Let any sample value be denoted xij, the first index 
referring to the subset, i = 1, 2, …, c, and the second index to the case number 
inside the subset, j = 1, 2, …, ni. The total variance is related to the total sum of 
squares, SST, of the deviations from the global sample mean, x : 
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Adding and subtracting ix  to the deviations, xxij − , we derive: 
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The last term can be proven to be zero. Let us now analyse the other two terms. 
The first term is called the within-group (or within-class) sum of squares, SSW, 
and represents the contribution to the total variance of the errors due to the random 
scattering of the cases around their group means. This also represents an error term 
due to the scattering of the cases, the so-called experimental error or error sum of 
squares, SSE. 

The second term is called the between-group (or between-class) sum of squares, 
SSB, and represents the contribution to the total variance of the deviations of the 
group means from the global mean.  

Thus: 
 
SST = SSW + SSB.  4.24 

4.4.2. As to the normality assumption, if there are no “a priori” reasons to accept it, 

4.5.2.1 Test Procedure 

4.5 Inference on More than Two Populations 
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Let us now express these sums of squares, related by 4.24, in terms of variances: 
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Note that: 
 
1. The within-group variance, vW, is the pooled variance and corresponds to 

the generalization of formula 4.9: 
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 This variance represents the stochastic behaviour of the cases around their 
group means. It is the point estimate of σ 2, the true variance of the 
population, and has  n – c degrees of freedom. 

2. The within-group variance vW represents a mean square error, MSE, of the 
observations: 

 
cn

vW −
=≡

SSEMSE .  4.27 

3. The between-group variance, vB, represents the stochastic behaviour of the 
group means around the global mean. It  is  the  point  estimate  of  σ 2  when the 
null hypothesis is true, and has c – 1 degrees of freedom.  

 When the number of cases per group is constant and equal to n, we get: 
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 which is the sample expression of formula 3.8, allowing us to estimate the 
population variance, using the variance of the means. 

4. The between-group variance, vB, can be interpreted as a mean between-
group or classification sum of squares, MSB: 

 
1

SSBMSB
−

=≡
c

vB .  4.29 

With the help of formula 4.24, we see that the total sample variance, v, can be 
broken down into two parts: 

 

BW vcvcnvn )1()()1( −+−=− , 4.30 
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the total number of degrees of freedom, n – 1, is also broken down into two parts:  
n – c and c – 1.  

Figure 4.13 illustrates examples for c = 3 of configurations for which the null 
hypothesis is true (a) and false (b). In the configuration of Figure 4.13a (null 
hypothesis is true) the three independent samples can be viewed as just one single 
sample, i.e., as if all cases were randomly extracted from a single population. The 
standard deviation of the population (shown in grey) can be estimated in two ways. 
One way of estimating the population variance is through the computation of the 
pooled variance, which assuming the samples are of equal size, n, is given by: 
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The second way of estimating the population variance uses the variance of the 

means: 

XB nvvv =≈≡2σ̂ .  4.32 

When the null hypothesis is true, we expect both estimates to be near each other; 
therefore, their ratio should be close to 1. (If they are exactly equal 4.30 becomes 
an obvious equality.) 
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Figure 4.13. Analysis of variance, showing the means, ix , and the standard 
deviations, si, of three equal-sized samples in two configurations: a) H0 is true;     
b) H0 is false. On the right are shown the within-group and the between-group 
standard deviations (sB is simply Xs  multiplied by n ). 

The ANOVA test uses precisely this “analysis of variance” property. Notice that 

4.5 Inference on More than Two Populations 
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In the configuration of Figure 4.13b (null hypothesis is false), the between-
group variance no longer represents an estimate of the population variance. In this 
case, we obtain a ratio vB/vW larger than 1. (In this case the contribution of vB to the 
final value of v in 4.30 is smaller than the contribution of vW.) 

The one-way ANOVA, assuming the test conditions are satisfied, uses the 
following test statistic (see properties of the F distribution in section B.2.9): 

 

cnc
W

B F
v
v

F −−== ,1
* ~

MSE
MSB  (under H0).  4.33 

 
If H0 is not true, then F* exceeds 1 in a statistically significant way. 
The F distribution can be used even when there are mild deviations from the 

assumptions of normality and equality of variances. The equality of variances can 

section 4.4.2.2. 
 

Table 4.9. Critical F values at α = 0.05 for n = 25 and several values of c. 

c 2 3 4 5 6 7 8 

Fc−1,n−c 4.26 3.42 3.05 2.84 2.71 2.63 2.58 
 
 
For c = 2, it can be proved that the ANOVA test is identical to the t test for two 

independent samples. As c increases, the 1 – α percentile of Fc−1,n−c decreases (see 

a certain level of confidence the probability of observing a given F* under H0 
decreases. In section 4.5.1, we have already made use of the fact that the null 

The previous sums of squares can be shown to be computable as follows:  
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where Ti and T are the totals along the columns and the grand total, respectively. 
These last formulas are useful for manual computation (or when using EXCEL). 

Example 4.13 

evidence, provided by the samples, that the three classes correspond to three 
different populations? 

be assessed using the ANOVA generalization of Levene’s test described in the 

Q: Consider the variable ART of the Cork Stoppers’ dataset. Is there 

Table 4.9), rendering the rejection of the null hypothesis “easier”. Equivalently, for 

hypothesis for  > 2 is more “restrictive” than for  = 2. c c
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A: We use the one-way ANOVA test for the variable ART, with c = 3. Note that 
we can accept that the variable ART is normally distributed in the three classes 
using specific tests to be explained in the following chapter. For the moment, the 
reader has to rely on visual inspection of the normal fit curve to the histograms of 
ART. 

Using MATLAB, one obtains the results shown in Figure 4.14. The box plot for 
the three classes, obtained with MATLAB, is shown in Figure 4.15. The MATLAB 
ANOVA results are obtained with the anova1 command (see Commands 4.5) 
applied to vectors representing independent samples: 

 
» x=[art(1:50),art(51:100),art(101:150)]; 
» p=anova1(x) 
 
Note that the results table shown in Figure 4.14 has the classic configuration of 

the ANOVA tests, with columns for the total sums of squares (SS), degrees of 
freedom (df) and mean sums of squares (MS). The source of variance can be a 
between effect due to the columns (vectors) or a within effect due to the 
experimental error, adding up to a total contribution. Note particularly that 
MSB is much larger than MSE, yielding a significant (high F ) test with the 
rejection of the null hypothesis of equality of means. 

One can also compute the 95% percentile of F2,147 = 3.06. Since F*= 273.03 falls 
within the critical region [3.06, +∞ [, we reject the null hypothesis at the 5% level. 

Visual inspection of Figure 4.15 suggests that the variances of ART in the three 
classes may not be equal. In order to assess the assumption of equality of variances 
when applying ANOVA tests, it is customary to use the one-way ANOVA version 
of either of the tests described in section 4.4.2. For instance, Table 4.10 shows the 
results of the Levene test for homogeneity of variances, which is built using the 
breakdown of the total variance of the absolute deviations of the sample values 
around the means. The test rejects the null hypothesis of variance homogeneity. 
This casts a reasonable doubt on the applicability of the ANOVA test.  

  
 

Figure 4.14. One-way ANOVA test results, obtained with MATLAB, for the cork-
stopper problem (variable ART). 

 

Levene Statistic df1 df2 Sig. 
27.388 2 147 0.000 

Table 4.10. Levene’s test results, obtained with SPSS, for the cork stopper 
problem (variable ART). 

4.5 Inference on More than Two Populations 
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Figure 4.15. Box plot, obtained with MATLAB, for variable ART (Example 4.13). 

 
As previously mentioned, a basic assumption of the ANOVA test is that the 

samples are independently collected. Another assumption, related to the use of the 
F distribution, is that the dependent variable being tested is normally distributed. 
When using large samples, say with the smallest sample size larger than 25, we can 
relax this assumption since the Central Limit Theorem will guarantee an 
approximately normal distribution of the sample means.  

Finally, the assumption of equal variances is crucial, especially if the sample 
sizes are unequal. As a matter of fact, if the variances are unequal, we are violating 
the basic assumptions of what MSE and MSB are estimating. Sometimes when the 
variances are unequal, one can resort to a transformation, e.g. using the logarithm 
function of the dependent variable to obtain approximately equal variances. If this 
fails, one must resort to a non-parametric test, described in Chapter 5. 

 

Table 4.11. Standard deviations of variables ART and ART1 = ln(ART) in the 
three classes of cork stoppers. 

 Class 1 Class 2 Class3  
ART 43.0 69.0 139.8  
ART1 0.368 0.288 0.276  

 
Example 4.14 

Q: Redo the previous example in order to guarantee the assumption of equality of 
variances. 

A: We use a new variable ART1 computed as: ART1 = ln(ART). The deviation of 
this new variable from the normality is moderate and the sample is large (50 cases 
per group), thereby allowing us to use the ANOVA test. As to the variances, Table 
4.11 compares the standard deviation values before and after the logarithmic 
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transformation. Notice how the transformation yielded approximate standard 
deviations, capitalising on the fact that the logarithm de-emphasises large values. 

Table 4.12 shows the result of the Levene test, which authorises us to accept the 
hypothesis of equality of variances. 

Applying the ANOVA test to ART1 the conclusions are identical to the ones 
reached in the previous example (see Table 4.13), namely we reject the equality of 
means hypothesis. 

  
 

Levene Statistic df1 df2 Sig. 
1.389 2 147 0.253 

 
 

Table 4.13. One-way ANOVA test results, obtained with SPSS, for the cork- 
stopper problem (variable ART1 = ln(ART)). 

Sum of 
Squares df Mean Square F Sig. 

Between Groups 51.732 2 25.866 263.151 0.000 
Within Groups 14.449 147 9.829E-02   
Total 66.181 149    

 
 

Commands 4.5. SPSS, STATISTICA, MATLAB and R commands used to 
perform the one-way ANOVA test. 

SPSS 
Analyze; Compare Means; Means|One-Way 
ANOVA 
Analyze; General Linear Model; Univariate 

STATISTICA 

Statistics; Basic Statistics and Tables; 
Breakdown & one-way ANOVA 
Statistics; ANOVA; One-way ANOVA 
Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; One-way 
ANOVA 

R anova(lm(X~f)) 

 
 

The easiest commands to perform the one-way ANOVA test with SPSS and 
STATISTICA are with Compare Means and ANOVA, respectively.  

Table 4.12. Levene’s test results, obtained with SPSS, for the cork-stopper 
problem (variable ART1 = ln(ART)). 

MATLAB [p,table,stats]=anova1(x,group,’dispopt’) 

4.5 Inference on More than Two Populations 
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section, are accessible using the Post-hoc tab in STATISTICA (click More 
Results) or clicking the Post Hoc button in SPSS. Contrasts can be performed 
using the Planned comps tab in STATISTICA (click More Results) or 
clicking the Contrasts button in SPSS. 

Note that the ANOVA commands are also used in regression analysis, as 
explained in Chapter 7. When performing regression analysis, one often considers 

meaningless. Be sure, therefore, to check the No intercept box in 
STATISTICA (Options tab) and uncheck Include intercept in the 
model in SPSS (General Linear Model). In STATISTICA the Sigma-
restricted box must also be unchecked. 

The meanings of the arguments and return values of MATLAB anova1 
command are as follows: 

 
p:  p value of the null hypothesis; 
table:  matrix for storing the returned ANOVA table; 
stats:  test statistics, useful for performing multiple comparison of means 

with the multcompare function; 
x:  data matrix with each column corresponding to an independent 

sample; 
group:  optional character array with group names in each row; 

displays plots of the results (including the ANOVA table). 
 
We now illustrate how to apply the one-way ANOVA test in R for the Example 

4.14. The first thing to do is to create the ART1 variable with ART1 <- 
log(ART). We then proceed to create a factor variable from the data frame 
classification variable denoted CL. The factor variable type in R is used to define a 
categorical variable with label values. The need of this step is that the ANOVA test 
can also be applied to continuous variables as we will see in Chapter 7. The 
creation of a factor variable from the numerical variable CL can be done with:  
 

 
Finally, we perform the one-way ANOVA with: 
 
> anova(lm(ART1~CLf)) 
 
The anova call returns the following table similar to Table 4.13:  
 
           Df Sum Sq Mean Sq F value    Pr(>F)     
CLf         2 51.732  25.866  263.15 < 2.2e-16 *** 
Residuals 147 14.449   0.098                       
--- 

  

dispopt:  display option with two values, ‘on’ and ‘off’. The default ‘on’ 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘  1 

“Post hoc” comparisons (e.g. Scheffé test), to be dealt with in the following 

an “intercept” factor in the model. When comparing means, this factor is 

> CLf <- factor(CL,labels=c(“I”, II”, III”)) “ “

’
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Frequently, when performing one-way ANOVA tests resulting in the rejection of 
the null hypothesis, we are interested in knowing which groups or classes can then 
be considered as distinct. This knowledge can be obtained by a multitude of tests, 
known as post-hoc comparisons, which take into account pair-wise combinations 
of groups. These comparisons can be performed on individual pairs, the so-called 
contrasts, or considering all possible pair-wise combinations of means with the aim 
of detecting homogeneous groups of classes. 

Software products such as SPSS and STATISTICA afford the possibility of 
analysing contrasts, using the t test. A contrast is specified by a linear combination 
of the population means: 

 
H0: a1µ1 + a2µ2 + … + akµk = 0. 4.35 
 
Imagine, for instance, that we wanted to compare the means of populations 1 

and 2. The comparison is expressed as whether or not µ1 = µ2, or, equivalently,      
µ1 −µ2 = 0; therefore, we would use a1 = 1 and a2 = −1. We can also use groups of 
classes in contrasts. For instance, the comparison µ1 = (µ3 + µ4)/2 in a 5 class 
problem would use the contrast coefficients: a1 = 1; a2 = 0; a3 = −0.5; a4 = −0.5;       
a5 = 0. We could also, equivalently, use the following integer coefficients: a1 = 2; 
a2 = 0; a3 = −1; a4 = −1; a5 = 0. 

Briefly, in order to specify a contrast (in SPSS or in STATISTICA), one assigns 
integer coefficients to the classes as follows: 

 
i. Classes omitted from the contrast have a coefficient of zero; 
ii. Classes merged in one group have equal coefficients; 
iii. Classes compared with each other are assigned positive or negative values, 

respectively; 
iv. The total sum of the coefficients must be zero. 
 
R has also the function pairwise.t.test that performs pair-wise 

comparisons of all levels of a factor with adjustment of the p significance for the 
multiple testing involved.  For instance, pairwise.t.test(ART1,CLf) 
would perform all possible pair-wise contrasts for the example described in 
Commands 4.5. 

It is possible to test a set of contrasts simultaneously based on the test statistic: 
 

ns

R
q

p

X

/
= ,  4.36 

 
where XR is the observed range of the means. Tables of the sampling distribution 
of q, when the null hypothesis of equal means is true, can be found in the literature.  

It can also be proven that the sampling distribution of q can be used to establish 
the following 1−α confidence intervals: 

 

4.5.2.2 Post Hoc Comparisons 

4.5 Inference on More than Two Populations 
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A popular test available in SPSS and STATISTICA, based on the result 4.37, is 
the Scheffé test. This test assesses simultaneously all possible pair-wise 
combinations of means with the aim of detecting homogeneous groups of classes.  

 

Example 4.15 

Q: Perform a one-way ANOVA on the Breast Tissue dataset, with post-hoc 
Scheffé test if applicable, using variable PA500. Discuss the results. 

A: Using the goodness of fit tests to be described in the following chapter, it is 
possible to show that variable PA500 distribution can be well approximated by the 

ANOVA test results are displayed in Tables 4.14 and 4.15.  
 

Levene Statistic df1 df2 Sig. 
1.747 5 100 0.131 

 
Table 4.15. One-way ANOVA test results obtained with SPSS for the breast tissue 
problem (variable PA500). 

Sum of 
Squares df Mean Square F Sig. 

Between 
Groups 0.301 5 6.018E-02 31.135 0.000 

Within 
Groups 0.193 100 1.933E-03   

Total 0.494 105    

 
 
We see in Table 4.14 that the hypothesis of homogeneity of variances is not 

rejected at a 5% level. Therefore, the assumptions for applying the ANOVA test 
are fulfilled.  

Table 4.15 justifies the rejection of the null hypothesis with high significance   
( p < 0.01). This result entitles us to proceed to a post-hoc comparison using the 
Scheffé test, whose results are displayed in Table 4.16. We see that the following 
groups of classes were found as distinct at a 5% significance level: 

normal distribution in the six classes of breast tissue. Levene’s test and one-way 

Table 4.14. Levene’s test results obtained with SPSS for the breast tissue problem 
(variable PA500). 
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{CON, ADI, FAD, GLA}; {ADI, FAD, GLA, MAS}; {CAR} 
 
These results show that variable PA500 can be helpful in the discrimination of 

carcinoma type tissues from other types. 
   

 
Table 4.16. Scheffé test results obtained with SPSS, for the breast tissue problem 

 

  Subset for alpha = 0.05 
CLASS N 1 2 3
CON 14 7.029E-02
ADI 22 7.355E-02 7.355E-02
FAD 15 9.533E-02 9.533E-02
GLA 16 0.1170 0.1170
MAS 18 0.1231
CAR 21 0.2199
Sig. 0.094 0.062 1.000

 
 

Example 4.16 

Q: Taking into account the results of the previous Example 4.15, it may be asked 
whether or not class {CON} can be distinguished from the three-class group {ADI, 
FAD, GLA}, using variable PA500. Perform a contrast test in order to elucidate 
this issue. 

A: We perform the contrast corresponding to the null hypothesis: 
 
H0:  µCON = (µFAD +  µGLA +  µADI)/3, 
 

i.e., we test whether or not the mean of class {CON} can be accepted equal to the 
mean of the joint class {FAD, GLA, ADI}. We therefore use the contrast 
coefficients shown in Table 4.17. Table 4.18 shows the t-test results for this 
contrast. The possibility of using variable PA500 for discrimination of class 
{CON} from the other three classes seems reasonable. 
   
 

Table 4.17.  Coefficients for the contrast {CON} vs. {FAD, GLA, ADI}. 

CAR FAD MAS GLA CON ADI 

0 −1 0 −1 3 −1 
 
 

(variable PA500). Values under columns “1”, “2” and “3” are group means.

4.5 Inference on More than Two Populations 
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Table 4.18. Results of the t test for the contrast specified in Table 4.17. 

Value of 
Contrast Std. Error t df Sig. (2-tailed) 

Assume equal 
variances −7.502E−02 3.975E−02 −1.887 100 0.062 

Does not assume 
equal variances −7.502E−02 2.801E−02 −2.678 31.79 0.012 

 

In the one-way ANOVA, the null hypothesis states the equality of the means of c 
populations, µ1 = µ2 = … = µc, which are assumed to have a common value σ 2 for 
the variance. Alternative hypothesies correspond to specifying different values for 
the population means. In this case, the spread of the means can be measured as: 
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It is convenient to standardise this quantity by dividing it by σ 2/n: 
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where n is the number of observations from each population. 
The square root of this quantity is known as the root mean square standardised 

effect, RMSSE ≡ φ. The sampling distribution of RMSSE when the basic 
assumptions hold is available in tables and used by SPSS and STATISTICA power 
modules. R has the following power.anova.test function: 

 
power.anova.test(g, n, between.var, within.var, 
sig.level, power) 
 
The parameters g and n are the number of groups and of cases per group, 

respectively. This functions works similarly to the power.t.test function 
described in Commands 4.4. 

 

Example 4.17 

Q: Determine the power of the one-way ANOVA test performed in Example 4.14 
(variable ART1) assuming as an alternative hypothesis that the population means 
are the sample means. 

A: Figure 4.16 shows the STATISTICA specification window for this power test. 
The RMSSE value can be specified using the Calc. Effects button and filling 

4.5.2.3 Power of the One-Way ANOVA 
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in the values of the sample means. The computed power is 1, therefore a good 
detection of the alternative hypothesis is expected. This same value is obtained in 
R issuing the command (see the between and within variance values in Table 4.13): 

 
 > power.anova.test(3, 50, between.var = 25.866, 
   within.var = 0.098). 
  
 

Figure 4.16. STATISTICA specification window for computing the power of the 
one-way ANOVA test of Example 4.17. 

 
 

Figure 4.17. Power curve obtained with STATISTICA showing the dependence on 
n, for Example 4.18. 

 

Example 4.18 

Q: Consider the one-way ANOVA test performed in Example 4.15 (breast tissue). 
Compute its power assuming population means equal to the sample means and 

4.5 Inference on More than Two Populations 
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determine the minimum value of n that will guarantee a power of at least 95% in 
the conditions of the test. 

A: We compute the power for the worst case of n: n = 14. Using the sample means 
as the means corresponding to the alternative hypothesis, and the estimate of the 
standard deviation s = 0.068, we obtain a standardised effect RMSSE = 0.6973. In 
these conditions, the power is 99.7%. 

Figure 4.17 shows the respective power curve. We see that a value of n ≥ 10 
guarantees a power higher than 95%. 

  

4.5.3 Two-Way ANOVA 

In the two-way ANOVA test we consider that the variable being tested, X, is 
categorised by two independent factors, say Factor 1 and Factor 2. We say that X  
depends on two factors: Factor 1 and Factor 2.  

Assuming that Factor 1 has c categories and Factor 2 has r categories, and that 
there is only one random observation for every combination of categories of the 
factors, we get the situation shown in Table 4.19. The means for the Factor 1 
categories are denoted .1x , .2x , ..., .cx . The means for the Factor 2 categories are 
denoted 1.x , 2.x , ..., rx. . The total mean for all observations is denoted ..x . 

Note that the situation shown in Table 4.19 constitutes a generalisation to 
multiple samples of the comparison of means for two paired samples described in 
section 4.4.3.3.  One can, for instance, view the cases as being paired according to 
Factor 2 and compare the means for Factor 1. The inverse situation is, of course, 
also possible. 
 

Table 4.19. Two-way ANOVA dataset showing the means along the columns, 
along the rows and the global mean. 

   Factor 1   

Factor 2 1 2 … c Mean 

1 x11 x21 ... xc1 1.x  

2 x12 x22 ... xc2 2.x  

... ... ... ... ... ... 

r x1r x2r ... xcr rx.  

Mean .1x  .2x  ... .cx  ..x  
 
 
Following the ANOVA approach of breaking down the total sum of squares (see 

formulas 4.22 through 4.30), we are now interested in reflecting the dispersion of 
the means along the rows and along the columns. This can be done as follows: 
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Besides the term SST described in the previous section, the sums of squares 

have the following interpretation: 
 
1. SSC represents the sum of squares or dispersion along the columns, as the 

previous SSB. The variance along the columns is vc = SSC/(c−1), has c−1 
degrees of freedom and is the point estimate of 22

crσσ + . 

2. SSR represents the dispersion along the rows, i.e., is the row version of the 
previous SSB. The variance along the rows is vr = SSR/(r−1), has r−1 
degrees of freedom and is the point estimate of 22

rcσσ + . 

3. SSE represents the residual dispersion or experimental error. The 
experimental variance associated to the randomness of the experiment is     
ve = SSE / [(c−1)(r−1)], has (c−1)(r−1) degrees of freedom and is the point 
estimate of 2σ . 

 
Note that formula 4.40 can only be obtained when c and r are constant along the 

rows and along the columns, respectively. This corresponds to the so-called 
orthogonal experiment. 

In the situation shown in Table 4.19, it is possible to consider every cell value as 
a random case from a population with mean µij, such that: 

 

µij = µ  + µi. + µ.j ,  with ∑
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i.e., the mean of the population corresponding to cell ij is obtained by adding to a 
global mean µ the means along the columns and along the rows. The sum of the 
means along the columns as well as the sum of the means along the rows, is zero. 
Therefore, when computing the mean of all cells we obtain the global mean µ. It is 
assumed that the variance for all cell populations is σ 2. 

In this single observation, additive effects model, one can, therefore, treat the 
effects along the columns and along the rows independently, testing the following 
null hypotheses: 

 
H01:  There are no column effects, µi. = 0. 
H02:  There are no row effects, µ.j  = 0. 
 
The null hypothesis H01 is tested using the ratio vc/ve, which, under the 

assumptions of independent sampling on normal distributions and with equal 

4.5 Inference on More than Two Populations 
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variances, follows the Fc−1,(c−1)(r−1) distribution. Similarly, and under the same 
assumptions, the null hypothesis H02 is tested using the ratio vr/ve and the             
Fr−1,(c−1)(r−1) distribution. 

Let us now consider the more general situation where for each combination of 
column and row categories, we have several values available. This repeated 
measurements experiment allows us to analyse the data more fully. We assume that 
the number of repeated measurements per table cell (combination of column and 
row categories) is constant, n, corresponding to the so-called factorial experiment. 
An example of this sort of experiment is shown in Figure 4.18. 

Now, the breakdown of the total sum of squares expressed by the equation 4.40, 
does not generally apply, and has to be rewritten as: 

 
SST = SSC + SSR + SSI + SSE,  4.42 
 

with: 
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 Total sum of squares computed for all n cases in every combination of the 
c×r categories, characterising the dispersion of all cases around the global 
mean. The cases are denoted xijk, where k is the case index in each ij cell 
(one of the c×r categories with n cases). 
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 Sum of the squares representing the dispersion along the columns. The 
variance along the columns is vc = SSC/(c – 1), has c – 1 degrees of freedom 
and is the point estimate of 22

crnσσ + . 

3. ∑
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 Sum of the squares representing the dispersion along the rows. The variance 
along the rows is vr = SSR/(r – 1), has r – 1 degrees of freedom and is the 
point estimate of 22

rcnσσ + . 

4. Besides the dispersion along the columns and along the rows, one must also 
consider the dispersion of the column-row combinations, i.e., one must 
consider the following sum of squares, known as subtotal or model sum of 
squares (similar to SSW in the one-way ANOVA): 
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5. SSE = SST –  SSS. 
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 Sum of the squares representing the experimental error. The experimental 
variance is ve = SSE/[rc(n – 1)], has rc(n – 1) degrees of freedom and is the 
point estimate of 2σ . 

6. SSI = SSS – (SSC + SSR) = SST –  SSC – SSR – SSE. 

The SSI term represents the influence on the experiment of the interaction 
of the column and the row effects. The variance of the interaction,               
vi = SSI/[(c – 1)(r – 1)] has (c – 1)(r – 1) degrees of freedom and is the point 
estimate of 22

Inσσ + . 
 
Therefore, in the repeated measurements model, one can no longer treat 

independently the column and row factors; usually, a term due to the interaction of 
the columns with the rows has to be taken into account. 

The ANOVA table for this experiment with additive and interaction effects is 

due to both effects, Factor 1 and Factor 2, and their interaction. The Residual  row 
is the experimental error. 
 

Table 4.20. Canonical table for the two-way ANOVA test. 

Variance 
Source Sum of Squares df Mean Square F 

Columns SSC c−1 vc = SSC/(c−1) vc / ve 

Rows SSR r−1 vr = SSR/(r−1) vr / ve 

Interaction SSI (c−1)(r−1) vi = SSI/[(c−1)(r−1)] vi / ve 

Subtotal SSS=SSC + SSR + SSI cr−1 vm = SSS/( cr−1) vm/ ve 

Residual SSE cr(n−1) ve = SSE/[cr(n−1)]  

Total SST crn−1   
 
 
The previous sums of squares can be shown to be computable as follows: 
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shown in Table 4.20. The “Subtotal” row corresponds to the explained variance 
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where Ti.., T.j., Tij. and T... are the totals along the columns, along the rows, in each 
cell and the grand total, respectively. These last formulas are useful for manual 
computation (or when using EXCEL). 
 

Example 4.19 

Q: Consider the 3×2 experiment shown in Figure 4.18, with n = 4 cases per cell. 
Determine all interesting sums of squares, variances and ANOVA results. 

A:  In order to analyse the data with SPSS and STATISTICA, one must first create 
a table with two variables corresponding to the columns and row factors and one 
variable corresponding to the data values (see Figure 4.18).  

Table 4.21 shows the results obtained with SPSS. We see that only Factor 2 is 
found to be significant at a 5% level. Notice also that the interaction effect is only 
slightly above the 5% level; therefore, it can be suspected to have some influence 
on the cell means. In order to elucidate this issue, we inspect Figure 4.19, which is 
a plot of the estimated marginal means for all combinations of categories. If no 
interaction exists, we expect that the evolution of both curves is similar. This is not 
the case, however, in this example. We see that the category value of Factor 2 has 
an influence on how the estimated means depend on Factor 1. 

The sums of squares can also be computed manually using the formulas 4.43. 
For instance, SSC is computed as:  

 
SSC = 3742/8 + 3422/8 + 3352/8 – 10512/24 = 108.0833. 
 

Figure 4.18. Dataset for Example 4.19 two-way ANOVA test (c=3, r=2, n=4). On 
the left, the original table is shown. On the right, a partial view of the 
corresponding SPSS datasheet (f1 and f2 are the factors). 
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Notice that in Table 4.21 the total sum of squares and the model sum of squares 
are computed using formulas 4.43a and 4.43b, respectively, without the last term of 
these formulas. Therefore, the degrees of freedom are crn and cr, respectively. 

  
 

Table 4.21. Two-way ANOVA test results, obtained with SPSS, for Example 4.19. 

Source Type III Sum of 
Squares df Mean Square F Sig. 

Model 46981.250 6 7830.208 220.311 0.000 
F1 108.083 2 54.042 1.521 0.245 
F2 630.375 1 630.375 17.736 0.001 
F1 * F2 a 217.750 2 108.875 3.063 0.072 
Error 639.750 18 35.542   
Total 47621.000 24    
a Interaction term. 
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Figure 4.19. Plot of estimated marginal means for Example 4.19. Factor 2 (F2) 
interacts with Factor 1 (F1). 

 

Example 4.20 

Q: Consider the FHR-Apgar dataset, relating variability indices of foetal heart 
rate (FHR, given in percentage) with the responsiveness of the new-born (Apgar) 
measured on a 0-10 scale (see Appendix E). The dataset includes observations 
collected in three hospitals. Perform a factorial model analysis on this dataset, for 
the variable ASTV (FHR variability index), using two factors: Hospital (3 
categories, HUC ≡ 1, HGSA ≡ 2 and HSJ ≡ 3); Apgar 1 class (2 categories: 0 ≡ [0, 8], 
1 ≡ [9,10]). In order to use an orthogonal model, select a random sample of n = 6 
cases for each combination of the categories. 

4.5 Inference on More than Two Populations 
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A: Using specific tests described in the following chapter, it is possible to show 
that variable ASTV can be assumed to approximately follow a normal distribution 
for most combinations of the factor levels. We use the subset of cases marked with 

observed significance of p = 0.48; therefore, the equality of variance assumption is 
not rejected. We are then entitled to apply the two-way ANOVA test to the dataset. 

The two-way ANOVA test results, obtained with SPSS, are shown in Table 4.22 
(factors HOSP ≡ Hospital; APCLASS ≡ Apgar 1 class). We see that the null 
hypothesis is rejected for the effects and their interaction (HOSP * APCLASS). 
Thus, the test provides evidence that the heart rate variability index ASTV has 
different means according to the Hospital and to the Apgar 1 category. 

Figure 4.20 illustrates the interaction effect on the means. Category 3 of HOSP 
has quite different means depending on the APCLASS category. 

  
 

Table 4.22. Two-way ANOVA test results, obtained with SPSS, for Example 4.20. 

Source Type III Sum of 
Squares df Mean Square F Sig. 

Model 111365.000 6 18560.833 420.881 0.000 
HOSP 3022.056 2 1511.028 34.264 0.000 
APCLASS 900.000 1 900.000 20.408 0.000 
HOSP * APCLASS 1601.167 2 800.583 18.154 0.000 
Error 1323.000 30 44.100   
Total 112688.000 36    
 

 

Example 4.21 

Q: In the previous example, the two categories of APCLASS were found to exhibit 
distinct behaviours (see Figure 4.20). Use an appropriate contrast analysis in order 
to elucidate this behaviour. Also analyse the following comparisons: hospital 2 vs. 3; 
hospital 3 vs. the others; all hospitals among them for category 1 of APCLASS. 

A: Contrasts in two-way ANOVA are carried out in a similar manner as to what 
was explained in section 4.5.2.2. The only difference is that in two-way ANOVA, 
one can specify contrast coefficients that do not sum up to zero. Table 4.23 shows 
the contrast coefficients used for the several comparisons: 

 
a. The comparison between both categories of APCLASS uses symmetric 

coefficients for this variable, as in 4.5.2.2. Since this comparison treats all levels 
of HOSP in the same way, we assign to this variable equal coefficients. 

b. The comparison between hospitals 2 and 3 uses symmetric coefficients for these 
categories. Hospital 1 is removed from the analysis by assigning a zero 
coefficient to it. 

yellow colour in the FHR-Apgar.xls file. For these cases Levene’s test yields an 
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c. The comparison between hospital 3 versus the others uses the assignment rule 
for merged groups already explained in 4.5.2.2.  

d. The comparison between all hospitals, for category 1 of APCLASS, uses two 
independent contrasts. These are tested simultaneously, representing an 
exhaustive set of contrasts that compare all levels of HOSP. Category 0 of 
APCLASS is removed from the analysis by assigning a zero coefficient to it. 

 
 

Table 4.23. Contrast coefficients and significance for the comparisons described in 
Example 4.21. 

Contrast (a) (b) (c) (d) 

Description 
APCLASS 0  

vs.  
APCLASS 1 

HOSP 2  
vs.  

HOSP 3 

HOSP 3  
vs.  

{HOSP 1, HOSP 2}

HOSP  
for  

APCLASS 1 

HOSP coef. 1      1      1 0      1    −1 1      1    −2 1      0    −1 
0      1    −1 

APCLASS coef. 1    −1 1     1 1     1 0     1 

 p 0.00 0.00 0.29 0.00 
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Figure 4.20. Plot of estimated marginal means for Example 4.20. 

 
 
SPSS and STATISTICA provide the possibility of testing contrasts in multi-way 

ANOVA analysis. With STATISTICA, the user fills in at will the contrast 
coefficients in a specific window (e.g. click Specify contrasts for LS 
means in the Planned comps tab of the ANOVA command, with 
HOSP*APCLASS interaction effect selected). SPSS follows the approach of 
computing an exhaustive set of contrasts. 

4.5 Inference on More than Two Populations 
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The observed significance values in the last row of Table 4.23 lead to the 
rejection of the null hypothesis for all contrasts except contrast (c).  

  

Example 4.22 

Q: Determine the power for the two-way ANOVA test of previous Example 4.20 
and the minimum number of cases per group that affords a row effect power above 
95%. 

A: Power computations for the two-way ANOVA follow the approach explained in 
section 4.5.2.3.  

First, one has to determine the cell statistics in order to be able to compute the 
standardised effects of the columns, rows and interaction. The cell statistics can be 
easily computed with SPSS, STATISTICA MATLAB or R. The values for this 
example are shown in Table 4.24. With STATISTICA one can fill in these values 
in order to compute the standardised effects as shown in Figure 4.21b. The other 
specifications are entered in the power specification window, as shown in Figure 
4.21a. 

 

Table 4.24. Cell statistics for the FHR-Apgar dataset used in Example 4.20. 

HOSP APCLASS N Mean Std. Dev. 
1 0 6 64.3 4.18 
1 1 6 64. 7 5.57 
2 0 6 43.0 6.81 
2 1 6 41.5 7.50 
3 0 6 70.3 5.75 
3 1 6 41.5 8.96 

 

Figure 4.21. Specifying the parameters for the power computation with 
STATISTICA in Example 4.22: a) Fixed parameters; b) Standardised effects 
computed with the values of Table 4.24. 
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Figure 4.22. Power curve for the row effect of Example 4.22. 

 
The power values computed by STATISTICA are 0.90, 1.00 and 0.97 for the 

rows, columns and interaction, respectively. 
The power curve for the row effects, dependent on n is shown in Figure 4.22. 

We see that we need at least 8 cases per cell in order to achieve a row effect power 
above 95%.  

 

Commands 4.6. SPSS, STATISTICA, MATLAB and R commands used to 
perform the two-way ANOVA test. 

SPSS Analyze; General Linear Model; 
Univariate|Multivariate 

STATISTICA 

Statistics; ANOVA; Factorial ANOVA 
Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; Main 
effects ANOVA | Factorial ANOVA 

 

R anova(lm(X~f1f*f2f)) 

 
 

The easiest commands to perform the two-way ANOVA test with SPSS and 
STATISTICA are General Linear Model; Univariate and ANOVA, 
respectively. Contrasts in STATISTICA can be specified using the Planned 
comps tab. 

MATLAB [p,table]=anova2(x,reps,’dispopt’)

4.5 Inference on More than Two Populations 
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As mentioned in Commands 4.5 be sure to check the No intercept box in 
STATISTICA (Options tab) and uncheck Include intercept in model 
in SPSS (General Linear Model, Model tab). In STATISTICA the 
Sigma-restricted box must also be unchecked; the model will then be the 
Type III orthogonal model. 

The meanings of most arguments and return values of anova2 MATLAB 
command are the same as in Commands 4.5. The argument reps indicates the 
number of observations per cell. For instance, the two-way ANOVA analysis of 
Example 4.19 would be performed in MATLAB using a matrix x containing 
exactly the data shown in Figure 4.18a, with the command: 

 
» anova2(x,4) 
 
The same results shown in Table 4.21 are obtained. 
Let us now illustrate how to use the R anova function in order to perform two-

way ANOVA tests. For this purpose we assume that a data frame with the data of 
Example 4.19 has been created with the column names f1, f2 and X as in the left 
picture of Figure 4.18. The first thing to do (as we did in Commands 4.5) is to 
convert f1 and f2 into factors with: 

 

 
We now obtain the two-way ANOVA similar to Table 4.21 using: 
 
> anova(lm(X~f1f*f2f)) 
 
A model without interaction effects can be obtained with anova(lm(X~ 

f1f+f2f)) (for details see the help on lm) 
  

Exercises 

4.1  Consider the meteorological dataset used in Example 4.1. Test whether 1980 and 1982 
were atypical years with respect to the average maximum temperature. Use the same 
test value as in Example 4.1. 

 
4.2  Show that the alternative hypothesis 8.3981 =Tµ  for Example 4.3 has a high power. 

Determine the smallest deviation from the test value that provides at least a 90% 
protection against Type II Errors. 

 
4.3  Perform the computations of the powers and critical region thresholds for the one-sided 

test examples used to illustrate the RS and AS situations in section 4.2. 
 
4.4 Compute the power curve corresponding to Example 4.3 and compare it with the curve 

obtained with STATISTICA or SPSS. Determine for which deviation of the null 

against alternative hypothesis. 

> f1f <- factor(f1,labels = c(“1”, 2”, 3”)) 
> f2f <- factor(f2,labels = c(“1”, 2”)) 

hypothesis “typical” temperature one obtains a reasonable protection (power > 80%) 

“ “
“
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4.5 Consider the Programming dataset containing student scores during the period 1986-
88. Test at 5% level of significance whether or not the mean score is 10. Study the 
power of the test. 

 
4.6 Determine, at 5% level of significance, whether the standard deviations of variables CG 

and EG of the Moulds dataset are larger than 0.005 mm. 
 
4.7 Check whether the correlations studied in Exercises 2.9, 2.10. 2.17, 2.18 and 2.19 are 

significant at 5% level. 
 
4.8 Study the correlation of HFS with I0A = |I0 − 1235| + 0.1, where HFS and I0 are 

variables of the Breast Tissue dataset. Is this correlation more significant than the one 
between HFS and I0S in Example 2.18? 

 
4.9 The CFU datasheet of the Cells dataset contains bacterial counts in three organs of 

sacrificed mice at three different times. Counts are performed in the same conditions in 
two groups of mice: a protein-deficient group (KO) and a normal, control group (C). 
Assess at 5% level whether the spleen bacterial count in the two groups are different 
after two weeks of infection. Which type of test must be used? 

 
4.10 Assume one wishes to compare the measurement sets CG and EG of the Moulds 

dataset. 
a) Which type of test must be used? 
b) Perform the two-sample mean test at 5% level and study the respective power. 
c) Assess the equality of variance of the sets. 

 
4.11 Consider the CTG dataset. Apply a two-sample mean test comparing the measurements 

of the foetal heart rate baseline (LB variable) performed in 1996 against those 
performed in other years. Discuss the results and pertinence of the test. 

 
4.12 Assume we want to discriminate carcinoma from other tissue types, using one of the 

characteristics of the Breast Tissue dataset. 
a) Assess, at 5% significance level, whether such discrimination can be achieved 

with one of the characteristics I0, AREA and PERIM. 
b) Assess the equality of variance issue. 
c) Assess whether the rejection of the alternative hypothesis corresponding to the 

sample means is made with a power over 80%. 
 
4.13 Consider the Infarct dataset containing the measurements EF, IAD and GRD and a 

score variable (SCR), categorising the severeness of left ventricle necrosis. Determine 
which of those three variables discriminates at 5% level of significance the score group 
2 from the group with scores 0 and 1. Discuss the methods used checking the equality 
of variance assumption. 

 
4.14 Consider the comparison between the mean neonatal mortality rate at home (MH) and 

in Health Centres (MI) based on the samples of the Neonatal dataset. What kind of 
test should be applied in order to assess this two-sample mean comparison and which 
conclusion is drawn from the test at 5% significance level? 
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4.15 The FHR-Apgar dataset contains measurements, ASTV, of the percentage of time that 
foetal heart rate tracings exhibit abnormal short-term variability. Use a two-sample t 
test in order to compare ASTV means for pairs of Hospitals HSJ, HGSA and HUC. 
State the conclusions at a 5% level of significance and study the power of the tests. 

 
4.16 The distinction between white and red wines was analysed in Example 4.9 using 

variables ASP and PHE from the Wines dataset. Perform the two-sample mean test for 
all variables of this dataset in order to obtain the list of the variables that are capable of 
achieving the white vs. red discrimination with 95% confidence level. Also determine 
the variables for which the equality of variance assumption can be accepted. 

 
4.17 For the variable with lowest p in the previous Exercise 4.15 check that the power of the 

test is 100% and that the test guarantees the discrimination of a 1.3 mg/l mean 
deviation with power at least 80%. 

 
4.18 Perform the comparison of white vs. red wines using the GLY variable of the Wines 

dataset. Also depict the situations of an RS and an AS test, computing the respective 
power for α = 0.05 and a deviation of the means as large as the sample mean deviation. 

 Hint: Represent the test as a single mean test with µ = µ1 – µ2 and pooled standard 
deviation. 

 
4.19 Determine how large the sample sizes in the previous exercise should be in order to 

reach a power of at least 80%. 
 
4.20 Using the Programming dataset, compare at 5% significance level the scores 

obtained by university freshmen in a programming course, for the following two 

 
4.21 Consider the comparison of the six tissue classes of the Breast Tissue dataset 

studied in Example 4.15. Perform the following analyses: 
a) Verify that PA500 is the only suitable variable to be used in one-way ANOVA, 

b) Use adequate contrasts in order to assess the following class discriminations: 
{car}, {con, adi}, {mas, fad, gla}; {car} vs. all other classes. 

 
4.22 Assuming that in the previous exercise one wanted to compare classes {fad}, {mas} 

and {con}, answer the following questions: 
a) Does the one-way ANOVA test reject the null hypothesis at α = 0.005 

significance level? 
b) Assuming that one would perform all possible two-sample t tests at the same α = 

0.005 significance level, would one reach the same conclusion as in a)? 
c) What value should one set for the significance level of the two-sample t tests in 

order to reject the null hypothesis in the same conditions as the one-way ANOVA 
does? 

 
4.23 Determine whether or not one should accept with 95% confidence that pre-university 

knowledge of programming has no influence on the scores obtained by university 

according to Levene’s test of equality of variance. 

groups: “No pre-university knowledge of programming”; “Some degree of pre-
university knowledge of programming”.  
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freshmen in a programming course (Porto University), based on the Programming 
dataset.  

 Use the Levene test to check the equality of variance assumption and determine the 
power of the test. 

 
4.24 Perform the following post-hoc comparisons for the previous exercise: 

a) Scheffé test. 
 

results with those obtained in Exercise 4.19 
 
4.25 Consider the comparison of the bacterial counts as described in the CFU datasheet of 

the Cells dataset (see Exercise 4.9) for the spleen and the liver at two weeks and at 

a) In what concerns the spleen, there are no significant differences at 5% level either 

interaction between both factors. 
b) For the liver there are significant differences at 5% level, both for the group 

interaction between these factors as can also be inferred from the respective 
marginal mean plot. 

c) The test power in this last case is above 80% for the main effects. 
 
4.26 The SPLEEN datasheet of the Cells dataset contains percent counts of bacterial load 

biochemical markers (CD4 and CD8). Using two-way ANOVA, check the following 
results: 
a) Percent counts after two weeks of bacterial infection exhibit significant 

differences at 5% level for the group categories, the biochemical marker 
categories and the interaction of these factors. However, these results are not 
reliable since the observed significance of the Levene test is low (p = 0.014). 

b) Percent counts after two months of bacterial infection exhibit a significant 
difference (p = 0) only for the biochemical marker. This is a reliable result since 
the observed significance of the Levene test is larger than 5% (p = 0.092). 

c) The power in this last case is very large (p ≈ 1). 
 
4.27 Using appropriate contrasts check the following results for the ANOVA study of 

Exercise 4.24 b: 
a) The difference of means for the group categories is significant with p = 0.006. 

b) “No previous knowledge” vs. “Some previous knowledge” contrast. Compare the 

one and two months (“time of count” categories). Using two-way ANOVA performed 
on the first 5 counts of each group (“knock-out” and “control”), check the following 
results: 

for the group categories or for the “time of count” categories. There is also no 

categories and for the “time of count” categories. There is also a significant 

in the spleen of two groups of mice (“knock-out” and “control”) measured by two 

b) The difference of means for “two weeks” vs “one or two months” is significant 
with p = 0.001. 

c) The difference of means of the time categories for the “knock-out” group alone is 
significant with p  = 0.027. 
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that is, they concerned parameters of distributions. In order to apply these tests, 
certain conditions about the distributions must be verified. In practice, these tests 
are applied when the sampling distributions of the data variables reasonably satisfy 
the normal model. 

Non-parametric tests make no assumptions regarding the distributions of the 
data variables; only a few mild conditions must be satisfied when using most of 
these tests. Since non-parametric tests make no assumptions about the distributions 
of the data variables, they are adequate to small samples, which would demand the 
distributions to be known precisely in order for a parametric test to be applied. 
Furthermore, non-parametric tests often concern different hypotheses about 
populations than do parametric tests. Finally, unlike parametric tests, there are non-
parametric tests that can be applied to ordinal and/or nominal data. 

The use of fewer or milder conditions imposed on the distributions comes with a 
price. The non-parametric tests are, in general, less powerful than their parametric 
counterparts, when such a counterpart exists and is applied in identical conditions. 
In order to compare the power of a test B with a test A, we can determine the 
sample size needed by B, nB, in order to attain the same power as test A, using 
sample size nA, and with the same level of significance. The following power-
efficiency measure of test B compared with A, ηBA, is then defined: 

 

B

A
BA n

n
=η .  5.1 

 
For many non-parametric tests (B) the power efficiency, BAη , relative to a 

parametric counterpart (A) has been studied and the respective results divulged in 
the literature. Surprisingly enough, the non-parametric tests often have a high 
power-efficiency when compared with their parametric counterparts. For instance, 
as we shall see in a later section, the Mann-Whitney test of central location, for two 
independent samples, has a power-efficiency that is usually larger than 95%, when 
compared with its parametric counterpart, the t test. This means that when applying 
the Mann-Whitney test we usually attain the same power as the t test using a 
sample size that is only 1/0.95 bigger (i.e., about 5% bigger). 

The tests of hypotheses presented in the previous chapter were “parametric tests”, 
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5.1 Inference on One Population 

5.1.1 The Runs Test 

The runs test assesses whether or not a sequence of observations can be accepted 
as a random sequence, that is, with independent successive observations. Note that 
most tests of hypotheses do not care about the order of the observations. Consider, 
for instance, the meteorological data used in Example 4.1. In this example, when 
testing the mean based on a sample of maximum temperatures, the order of the 
observations is immaterial. The maximum temperatures could be ordered by 
increasing or decreasing order, or could be randomly shuffled, still giving us 
exactly the same results. 

Sometimes, however, when analysing sequences of observations, one has to 
decide whether a given sequence of values can be assumed as exhibiting a random 
behaviour. 

Consider the following sequences of n = 12 trials of a dichotomous experiment, 
as one could possibly obtain when tossing a coin: 

 
Sequence 1: 0 0 0 0 0 0 1 1 1 1 1 1 

Sequence 2: 0 1 0 1 0 1 0 1 0 1 0 1 

Sequence 3: 0 0 1 0 1 1 1 0 1 1 0 0 
 
Sequences 1 and 2 would be rejected as random since a dependency pattern is 

clearly present1. Such sequences raise a reasonable suspicion concerning either the 

manipulation (e.g. sorting) of the experimental results. Sequence 3, on the other 
hand, seems a good candidate of a sequence with a random pattern.  

The runs test analyses the randomness of a sequence of dichotomous trials. Note 
that all the tests described in the previous chapter (and others to be described next 
as well) are insensitive to data sorting. For instance, when testing the mean of the 
three sequences above, with H0: µ = 6/12 = ½, one obtains the same results. 

 The test procedure uses the values of the number of occurrences of each 
category, say n1 and n2 for 1 and 0 respectively, and the number of runs, i.e., the 
number of occurrences of an equal value subsequence delimited by a different 
value. For sequence 3, the number of runs, r, is equal to 7, as seen below: 

 
Sequence 3: 0 0 1 0 1 1 1 0 1 1 0 0 

Runs: 1  2 3 4   5 6  7  
 

                                                           
1
 Note that we are assessing the randomness of the sequence, not of the process that generated it. 

“fairness” of the coin-tossing experiment or the absence of some kind of data 
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The runs test assesses the null hypothesis of sequence randomness, using the 
sampling distribution of r, given n1 and n2. Tables of this sampling distribution can 
be found in the literature. For large n1 or n2 (say above 20) the sampling 
distribution of r is well approximated by the normal distribution with the following 
parameters: 
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Notice that the number of runs always satisfies, 1 ≤ r ≤ n, with n = n1 + n2. The 
null hypothesis is rejected when there are either too few runs (as in Sequence 1) or 
too many runs (as in Sequence 2). For the previous sequences, at a 5% level the 
critical values of r for n1 = n2 = 6 are 3 and 11, i.e. the non-critical region of r is   
[4, 10]. We, therefore, reject at 5% level the null hypothesis of randomness for 
Sequence 1 (r = 2) and Sequence 2 (r = 12), and do not reject the null hypothesis 
for Sequence 3 (r = 7). 

The runs test can be used with any sequence of values and not necessarily 
dichotomous, if previously the values are dichotomised, e.g. using the mean or the 
median. 

 

Example 5.1 

Q: Consider the noise sequence in the Signal & Noise dataset (first column) 

The sequence has n = 100 noise values. Use the runs test to assess the randomness 
of the sequence. 

A: We apply the SPSS runs test command, using an imposed (Custom) 
dichotomization around zero, obtaining an observed two-tailed significance of       
p = 0.048. At a 5% level of significance the randomness of the sequence is not 
rejected. We may also use the MATLAB or R runs function. We obtain the 
values of Table 5.1. The interval [nlow, nup] represents the non critical region. We 
see that the observed number of runs coincides with one of the interval ends. 

 

Table 5.1. Results obtained with MATLAB or R runs test for the noise data. 

n1 n2 r nlow nup 

53 47 41 41 61 
 
  

Example 5.2 

Q: Consider the Forest Fires dataset (see Appendix E), which contains the 
area (ha) of burnt forest in Portugal during the period 1943-1978. Is there evidence 
from this sample, at a 5% significance level, that the area of burnt forest behaves as 
a random sequence? 

generated with the “normal random number” routine of EXCEL with zero mean. 
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A: The area of burnt forest depending on the year is shown in Figure 5.1. Notice 
that there is a clear trend we must remove before attempting the runs test. Figure 
5.1 also shows the regression line with a null intercept, i.e. passing through the 
point (0,0), obtained with the methods that will be explained later in Chapter 7. 

We now compute the deviations from the linear trend and use them for the runs 
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Figure 5.1. Area of burnt forest in Portugal during the years 1943-1978. The 
dotted line is a linear fit with null intercept. 

 

Commands 5.1.  SPSS, MATLAB and R commands used to perform the runs test. 

SPSS Analyze; Nonparametric Tests; Runs 

MATLAB runs(x,alpha) 

R runs(x,alpha=0.05) 

  
 

STATISTICA, MATLAB statistical toolbox and R stats package do not have 
the runs test. We provide the runs function for MATLAB and R (see appendix F) 
returning the values of Table 5.1. The function should only be used when n1 or n2 
are large (say, above 20). 

  

5.1.2 The Binomial Test 

The binomial or proportion test is used to assess whether there is evidence from 
the sample that one category of a dichotomised population occurs in a certain 

test. When analysed with SPSS, we find an observed two-tailed significance of  
p = 0.335. Therefore, we do not reject the null hypothesis that the area of burnt 
forest behaves as a random sequence superimposed on a linear trend. 



 5.1 Inference on One Population 175 

proportion of times. Let us denote the categories or classes of the population by ω, 
coded 1 for the category of interest and 0 for the complement. The two-tailed test 
can be then formalised as: 

 
H0:   P(ω =1) = p   ( and P(ω =0) = 1 − p = q ); 
H1:   P(ω =1) ≠ p   ( and P(ω =0) ≠ q ). 
 
Given a data sample with n i.i.d. cases, k of which correspond to ω =1, we know 

from Chapter 3 (see also Appendix C) that the point estimate of p is p̂ = k/n. In 
order to establish the critical region of the test, we take into account that the 
probability of obtaining k events of ω =1 in n trials is given by the binomial law. 
Let K denote the random variable associated to the number of times that ω = 1 
occurs in a sample of size n. We then have the binomial sampling distribution 
(section A.7.1): 

nkqp
k
n

kKP knk ,,1,0;)( K=



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


== − . 

When n is small (say, below 25), the non-critical region is usually quite large 
and the power of the test quite low. We have also found useless large confidence 
intervals for small samples in section 3.3, when estimating a proportion. The test 
yields useful results only for large samples (say, above 25). In this case (especially 
when np or nq are larger than 25, see A.7.3), we use the normal approximation of 
the standardised sampling distribution: 

 

1,0~ N
npq

npKZ −
=   5.3 

 
Notice that denoting by P the random variable corresponding to the proportion 

of successes in the sample (with observed value p̂  = k/n), we may write 5.3 as: 
 

npq
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The binomial test is then performed in the same manner as the test of a single 

mean described in section 4.3.1. The approximation to the normal distribution 
becomes better if a continuity correction is used, reducing by 0.5 the difference 
between the observed mean ( pnˆ ) and the expected mean (np). 

As shown in Commands 5.3, SPSS and R have a specific command for carrying 
out the binomial test. SPSS uses the normal approximation with continuity 
correction for  n > 25. R uses a similar procedure. In order to perform the binomial 
test with STATISTICA or MATLAB, one uses the single sample t test command. 
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Example 5.3 

peas should produce them in a proportion of three times more yellow peas than 
green peas. A cross breeding of yellow and green peas was performed and 
produced 176 yellow peas and 48 green peas. Are these experimental results 
explainable by the Theory? 

A: Given the theoretically expected values of the proportion of yellow peas, the 
test is formalised as: 

 
H0:   P(ω =1) = ¾ ; 
H1:   P(ω =1) ≠ ¾. 
 
In order to apply the binomial test to this example, using SPSS, we start by 

filling in a datasheet as shown in Table 5.2. 
Next, in order to specify that category 1 of pea-type occurs 176 times and the 

Commands 5.2. In the Weight Cases window we specify that the weight 
variable is n. 

Finally, with the binomial command of SPSS, we obtain the results shown in 

0.248, so therefore, we do not reject the null hypothesis P(ω =1) = 0.75. 
 

Table 5.2. Datasheet for Example 5.3. 

group pea-type n 
1 1 176 
2 0 48 

 

Table 5.3. Binomial test results obtained with SPSS for the Example 5.3. 

Category n Observed 
Prop. Test Prop. Asymp. Sig. 

(1-tailed) 
PEA_TYPE Group 1 1 176 0.79 0.75 0.124a 

 Group 2 0 48 0.21   
 Total  224 1.00   

a  Based on Z approximation. 
 
 
Let us now carry out this test using the values of the standardised normal 

distribution. The important values to be computed are: 
 
np = 224×0.75 = 168; 

Q: According to Mendel’s Heredity Theory, a cross breeding of yellow and green 

category 0 occurs 48 times, we use the “weight cases” option of SPSS, as shown in 

Table 5.3, using 0.75 (¾)  as the tested proportion. Note the “Based on Z 
Approximation” foot message displayed by SPSS. The two-tailed significance is 
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=××== 25.075.0224npqs 6.48. 
 
Hence, using the continuity correction, we obtain z = (168 – 176 + 0.5)/6.48 = 

  

Example 5.4 

Q: Consider the Freshmen dataset, relative to the Porto Engineering College. 
Assume that this dataset represents a random sample of the population of freshmen 
in the College. Does this sample support the hypothesis that there is an even 
chance that a freshman in this College can be either male or female? 

A: We formalise the test as: 
 
H0:   P(ω =1) = ½; 
H1:   P(ω =1) ≠ ½. 
 
The results obtained with SPSS are shown in Table 5.4. Based on these results, 

we reject the null hypothesis with high confidence.  
Note that SPSS always computes a two-tailed significance for a test proportion 

of 0.5 and a one-tailed significance otherwise.  
 
 

Table 5.4. Binomial test results, obtained with SPSS, for the freshmen dataset. 

  Category n Observed 
Prop. Test Prop. Asymp. Sig. 

(2-tailed) 
SEX Group 1 female 35 0.27 0.50 0.000 
  Group 2 male 97 0.73   
  Total   132 1.00   

 
 

Commands 5.2. SPSS and STATISTICA commands used to specify case 
weighing. 

SPSS Data; Weight Cases 

STATISTICA Tools; Weight 

 
 
These commands pop up a window where one specifies which variable to use as 

commands also include a weight button ( ) in connection with the weight 
specification window. Case weighing is useful whenever the datasheet presents the 

weight variable and whether weighing is “On” or “Off”. Many STATISTICA 

−1.157, to which corresponds a one-tailed probability of 0.124 as reported in  
Table 5.3. 
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data in a compact way, with a specific column containing the number of 
occurrences of each case. 

  
 

Commands 5.3. SPSS, STATISTICA, MATLAB and R commands used to 
perform the binomial test. 

SPSS Analyze; Nonparametric Tests; Binomial 

STATISTICA Statistics; Basic Statistics and Tables; 
t-test, single sample 

MATLAB [h,sig,ci]=ttest(x,m,alpha,tail) 

R binom.test(x,n,p,conf.level=0.95) 

 
 

When performing the binomial test with STATISTICA or MATLAB using the 
single sample t test, a somewhat different value is obtained because no continuity 
correction is used and the standard deviation is estimated from p̂ . This difference 
is frequently of no importance. With MATLAB the test is performed as follows: 

 
» x = [ones(176,1); zeros(48,1)]; 
» [h, sig, ci]=ttest(x,0.75,0.05,0) 
h = 
     0 
sig = 
    0.195 
ci = 
    0.7316    0.8399 
 
Note that x is defined as a column vector filled in with 176 ones followed by 48 

zeros. The commands ones(m,n) and zeros(m,n) define matrices with m 
rows and n columns filled with ones and zeros, respectively. The notation [A; B] 
defines a matrix by juxtaposition of the matrices A and B side by side along the 
columns (along the rows when omitting the semicolon). 

The results of the test indicate that the null hypothesis cannot be rejected (h=0). 
The two-tailed significance is 0.195, somewhat lower than previously found 
(0.248), for the above mentioned reasons. 

The arguments x, n and p of the R binom.test function represent the 
number of successes, the number of trials and the tested value of p, respectively. 
Other details can be found with help(binom.test). For the Example 5.3 we 
run binom.test(176,176+48,0.75), obtaining a two-tailed significance of 
0.247, nearly the double of the value published in Table 5.3 as it should. A 95% 
confidence interval of [0.726, 0.838] is also published, containing the observed 
proportion of 0.786. 
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5.1.3 The Chi-Square Goodness of Fit Test  

The previous binomial test applied to a dichotomised population. When there are 
more than two categories, one often wishes to assess whether the observed 
frequencies of occurrence in each category are in accordance to what should be 
expected. Let us start with the random variable 5.4 and square it: 
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where X1 and X2 are the random variables associated with the number of 

derivation note that denoting Q = 1 − P we have (nP – np)2 = (nQ – nq)2. Formula 
5.5 conveniently expresses the fitting of X1 = nP and X2 = nQ to the theoretical 
values in terms of square deviations. Square deviation is a popular distance 
measure given its many useful properties, and will be extensively used in      
Chapter 7. 

Let us now consider k categories of events, each one represented by a random 
variable Xi, and, furthermore, let us denote by pi the probability of occurrence of 
each category. Note that the joint distribution of the Xi is a multinomial 
distribution, described in B.1.6. The result 5.5 is generalised for this multinomial 
distribution, as follows (see property 5 of B.2.7): 
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where the number of degrees of freedom, df = k – 1, is imposed by the restriction: 
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As a matter of fact, the chi-square law is only an approximation for the sampling 
distribution of χ∗2, given the dependency expressed by 5.7.  

In order to test the goodness of fit of the observed counts Oi to the expected 
counts Ei, that is, to test whether or not the following null hypothesis is rejected: 

 
H0: The population has absolute frequencies Ei for each of the i =1, .., k 

categories, 
 

we then use test the statistic: 
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“successes” and “failures” in the n-sized sample, respectively. In the above 
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which, according to formula 5.6, has approximately a chi-square distribution with 
df = k – 1 degrees of freedom. The approximation is considered acceptable if the 
following conditions are met: 
 

i. For df = 1, no Ei must be smaller than 5; 

ii. For df > 1, no Ei must be smaller than 1 and no more than 20% of the Ei 
must be smaller than 5. 

 
Expected absolute frequencies can sometimes be increased, in order to meet the 

above conditions, by merging adjacent categories. 
When the difference between observed (Oi) and expected counts (Ei) is large, 

the value of χ*2 will also be large and the respective tail probability small. For a 
0.95 confidence level, the critical region is above 2

95.0,1−kχ . 
 

Example 5.5 

Q: A die was thrown 40 times with the observed number of occurrences 8, 6, 3, 10, 
7, 6, respectively for the face value running from 1 through 6. Does this sample 
provide evidence that the die is not honest? 

A: Table 5.5 shows the chi-square test results obtained with SPSS. Based on the 
high value of the observed significance, we do not reject the null hypothesis that 
the die is honest. Applying the R function chisq.test(c(8,6,3,10,7,6)) 
one obtains the same results as in Table 5.5b. This function can have a second 
argument with a vector of expected probabilities, which when omitted, as we did, 
assigns equal probability to all categories.   

  
 

Table 5.5. Dataset (a) and results (b), obtained with SPSS, of the chi-square test 
for the die-throwing experiment (Example 5.5). The residual column represents the 
differences between observed and expected frequencies. 

a  

FACE Observed N Expected N Residual 
1 8 6.7   1.3 
2 6 6.7 −0.7 
3 3 6.7 −3.7 
4 10 6.7   3.3 
5 7 6.7   0.3 
6 6 6.7 −0.7   

b  

 FACE 

Chi-Square 4.100 

df 5 

Asymp. Sig. 0.535 

 
Example 5.6 

Q: It is a common belief that the best academic freshmen students usually 
participate in freshmen initiation rites only because they feel compelled to do so. 
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Does the Freshmen dataset confirm that belief for the Porto Engineering 
College? 

respective EXCEL file contains the computations of the frequencies of occurrence 
of each category and for each question, assuming a specified threshold for the 
average results in the examinations. Using, for instance, the threshold = 10, we see 

Under the null hypothesis, the answers to Question 6 have no relation with the 
freshmen performance and we would expect equal frequencies for all categories. 

The chi-square test results obtained with SPSS are shown in Table 5.6. Based on 
these results, we reject the null hypothesis: there is evidence that the answer to 
Question 6 of the freshmen enquiry bears some relation with the student 
performance.  

 

Table 5.6. Dataset (a) and results (b), obtained with SPSS, for Question 6 of the 
freshmen enquiry and 102 students with average score ≥10. 

a  

CAT Observed N Expected N Residual 
1 16 20.4   −4.4 
2 26 20.4     5.6 
3 39 20.4   18.6 
4 16 20.4   −4.4 
5 5 20.4 −15.4   

b  

 CAT 

Chi-Square 32.020 

df 4 

Asymp. Sig. 0.000 

 
Example 5.7 

Q: Consider the variable ART representing the total area of defects of the Cork 

provide evidence that this variable can be accepted as being normally distributed in 
that class? 

A: This example illustrates the application of the chi-square test for assessing the 
goodness of fit to a known distribution. In this case, the chi-square test uses the 
deviations of the observed absolute frequencies vs. the expected absolute 
frequencies under the condition of the stated null hypothesis, i.e., that the variable 
ART is normally distributed.  

In order to compute the absolute frequencies, we have to establish a set of 
intervals based on the percentiles of the normal distribution. Since the number of 
cases is n = 50, and we want the conditions for using the chi-square distribution to 
be fulfilled, we use intervals corresponding to 20% of the cases. Table 5.7 shows 

Stoppers’ dataset, for the class 1 (Super) of corks. Does the sample data 

A: We use the categories of answers obtained for Question 6, “I felt compelled to 
participate in the Initiation”, of the freshmen dataset (see Appendix E). The 

that there are 102 “best” students, with average examination score not less than the 
threshold. From these 102, there are varied counts for the five categories of 
Question 6, ranging from 16 students that “fully disagree” to 5 students that “fully 
agree”.  
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tables of the standard normal distribution or using software functions, such as the 
ones already described for SPSS, STATISTICA, MATLAB and R. 

The corresponding interval cutpoints, xcut, for the random variable under 
analysis, X, can now be easily determined, using: 

 
Xszxx cutcut += ,  5.9 

 
where we use the sample mean and standard deviation as well as the cutpoints 
determined for the normal distribution, zcut. In the present case, the mean and 
standard deviation are 137 and 43, respectively, which leads to the intervals under 

The absolute frequency columns are now easily computed. With SPSS, 
STATISTICA and R we now obtain the value of χ*2 = 2.2. We must be careful, 
however, when obtaining the corresponding significance in this application of the 
chi-square test. The problem is that now we do not have df = k – 1 degrees of 
freedom, but df = k – 1 –  np, where np is the number of parameters computed from 
the sample. In our case, we derived the interval boundaries using the sample mean 
and sample standard deviation, i.e., we lost two degrees of freedom. Therefore, we 
have to compute the probability using df = 5 – 1 – 2 = 2 degrees of freedom, or 
equivalently, compute the critical region boundary as: 

 
99.52

95.0,2 =χ . 
 
Since the computed value of the χ*2 is smaller than this critical region boundary, 

we do not reject at 5% significance level the null hypothesis of variable ART being 
normally distributed.  

 

Table 5.7. Observed and expected (under the normality assumption) absolute 
frequencies, for variable ART of the cork-stopper dataset. 

Cat. z-Interval Cumulative p ART-Interval Expected 
Frequencies

Observed 
Frequencies 

1  ∞, −0.8416] 0.20 [0, 101] 10 10 

2 0.8416, −0.2533] 0.40 ]101, 126] 10 8 

3 0.2533,  0.2533] 0.60 ]126, 148] 10 14 

4 ] 0.2533,  0.8416] 0.80 ]148, 173] 10 9 

5 ∞ [ 1.00 > 173 10 9 

 
 

these intervals, under the “z-Interval” heading, which can be obtained from the 

the “ART-Interval” heading. 

]−

]−

]−

] 0.8416, +
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Commands 5.4. SPSS, STATISTICA, MATLAB and R commands used to 
perform the chi-square goodness of fit test. 

SPSS Analyze; Nonparametric Tests; Chi-Square 

STATISTICA 
Statistics; Nonparametrics; Observed 
versus expected Χ2. 

MATLAB [c,df,sig] = chi2test(x) 

R chisq.test(x,p) 

  
MATLAB does not have a specific function for the chi-square test. We provide in 
the book CD the chi2test function for that purpose.  

5.1.4 The Kolmogorov-Smirnov Goodness of Fit Test  

The Kolmogorov-Smirnov goodness of fit test is a one-sample test designed to 
assess the goodness of fit of a data sample to a hypothesised continuous 
distribution, FX (x). The null hypothesis is formalised as: 
 

H0: Data variable X has a cumulative probability distribution FX(x) ≡ F(x). 
 
Let Sn(x) be the observed cumulative distribution of the random sample, x1, 

x2,…, xn, also called empirical distribution. Assuming the sample data is sorted in 
increasing order, the values of Sn(x) are obtained by adding the successive 
frequencies of occurrence, ki/n, for each distinct xi. 

Under the null hypothesis one expects to obtain small deviations of Sn(x) from 
F(x). The Kolmogorov-Smirnov test uses the largest of such deviations as a 
goodness of fit measure: 

 
Dn = max | F(x) − Sn(x) |, for every distinct xi.  5.10 
 
The sampling distribution of Dn is given in the literature. Unless n is very small 

the following asymptotic result can be used: 
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The Kolmogorov-Smirnov test rejects the null hypothesis at level α if              

Dn > α,nd , where α,nd  is such that: 
 

αα => )( ,H0 nn dDP . 5.12 
 
Using formula 5.11 the following critical points are obtained: 
 

ndndnd nnn /22.1;/36.1;/63.1 10.0,05.0,01.0, === .  5.13 
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Note that when applying the Kolmogorov-Smirnov test, one often uses the 
distribution parameters computed from the actual data. For instance, in the case of 
assessing the normality of an empirical distribution, one often uses the sample 
mean and sample standard deviation. This is a source of uncertainty in the 
interpretation of the results. 

 

Example 5.8 

Q: Redo the previous Example 5.7 (assessing the normality of ART for class 1 of 
the cork-stopper data), using the Kolmogorov-Smirnov test.  

A: Running the test with SPSS we obtain the results displayed in Table 5.8, 
showing no evidence (p = 0.8) supporting the rejection of the null hypothesis 
(normal distribution). In R the test would be run as: 

 
> x <- ART[1:50] 

 
The following results are obtained confirming the ones in Table 5.8: 
 
D = 0.0922, p-value = 0.7891  
 
 

Table 5.8. Kolmogorov-Smirnov test results for variable ART obtained with SPSS 
in the goodness of fit assessment of normal distribution. 

  ART  
N   50
Normal Parameters Mean 137.0000
  Std. Deviation 42.9969
Most Extreme Differences Absolute 0.092
  Positive 0.063
  Negative −0.092
Kolmogorov-Smirnov Z   0.652
Asymp. Sig. (2-tailed)   0.789

 
 
In the goodness of fit assessment of a normal distribution it may be convenient 

to inspect cumulative distribution plots and normal probability plots. Figure 5.2 
exemplifies these plots for the ART variable of Example 5.8. The cumulative 
distribution plot helps to detect the regions where the empirical distribution mostly 
deviates from the theoretical distribution, and can also be used to measure the 
statistic Dn (formula 5.10). The normal probability plot displays z-scores for the 
data and for the standard normal distribution along the vertical axis. These last 
ones lie on a straight line. Large deviations of the observed z-scores, from the 
straight line corresponding to the normal distribution, are a symptom of poor 
normal approximation. 

> ks.test(x, “pnorm”, mean(x), sd(x)) 
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Figure 5.2. Visually assessing the normality of the ART variable (cork stopper 
dataset) with MATLAB: a) Empirical cumulative distribution plot with 
superimposed normal distribution (smooth line); b) Normal probability plot. 

 

Commands 5.5. SPSS, STATISTICA, MATLAB and R commands used to 
perform goodness of fit tests. 

SPSS 
Analyze; Nonparametric Tests; 1-Sample K-S  
Analyze; Descriptive Statistics; Explore; 
Plots; Normality plots with tests 

STATISTICA 
Statistics; Basic Statistics/Tables; 
Histograms  
Graphs; Histograms 

MATLAB [h,p,ksstat,cv]= kstest(x,cdf,alpha,tail) 
[h,p,lstat,cv]= lillietest(x,alpha) 

R ks.test(x, y, ...) 

 
 

With STATISTICA the one-sample Kolmogorov-Smirnov test is not available as a 
separate test. It can, however, be performed together with other goodness of fit 
tests when displaying a histogram (Advanced option). SPSS also affords the 
goodness of fit tests with the normality plots that can be obtained with the 
Explore command. 

With the MATLAB commands kstest and lillietest, the meaning of the 
parameters and return values when testing the data sample x at level alpha, is as 
follows: 

 
cdf:  Two-column matrix, with the first column containing the random 

sample x and the second column containing the hypothesised 
cumulative distribution. 

tail:  Type of test with values 0, −1, 1 corresponding to the alternative 
hypothesis F(x) ≠ Sn(x), F(x) > Sn(x) and F(x) < Sn(x), respectively. 

h:  Test result, equal to 1 if H0 can be rejected, 0 otherwise. 
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p:  Observed significance. 
ksstat, lstat: Values of the Kolmogorov-Smirnov and Liliefors statistics, 

respectively. 
cv:  Critical value for significant test. 
 
Some of these parameters and return values can be omitted. For instance,           

h = kstest(x)only performs the normality test of x. 
The arguments of the R function ks.test are as follows: 
 
x: A numeric vector of data values. 
y: Either a numeric vector of expected data values or a character string 

naming a distribution function. 
... Parameters of the distribution specified by y. 
  
 

Commands 5.6. SPSS, STATISTICA, MATLAB and R commands used to obtain 
cumulative distribution plots and normal probability plots. 

SPSS 

Graphs; Interactive; Histogram; Cumulative 
histogram 
Analyze; Descriptive Statistics; Explore; 
Plots; Normality plots with tests  | 
Graphs; P-P 

STATISTICA 

Graphs; Histograms; Showing Type; 
Cumulative 
Graphs; 2D Graphs; Probability-Probability 
Plots 

MATLAB cdfplot(x) ; normplot(x) 

R plot.ecdf(x) ; qqnorm(x) 

 
 

The cumulative distribution plot shown in Figure 5.2a was obtained with 
MATLAB using the following sequence of commands: 

 
» art = corkstoppers(1:50,3); 
» cdfplot(art) 
» hold on 
» xaxis = 0:1:250; 
» plot(xaxis,normcdf(xaxis,mean(art),std(art))) 
 
Note the hold on command used to superimpose the standard normal 

distribution over the previous empirical distribution of the data. This facility is 
disabled with hold off. The normcdf command is used to obtain the normal 
cumulative distribution in the interval specified by xaxis with the mean and 
standard deviation also specified.  
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5.1.5 The Lilliefors Test for Normality 

The Lilliefors test resembles the Kolmogorov-Smirnov but it is especially tailored 
to assess the normality of a distribution, with the null hypothesis formalised as: 

 
H0:   )()( , xNxF σµ= . 5.14 
 
For this purpose, the test standardises the data using the sample estimates of µ 

and σ. Let Z represent the standardised data, i.e., sxxz ii /)( −=
test statistic is: 

 
Dn = max | F(z) − Sn(z) |.  5.15 
 
The test is, therefore, performed like the Kolmogorov-Smirnov test (see formula 

5.12), but with the advantage that the sampling distribution of Dn takes into 
account the fact that the sample mean and sample standard deviation are used. The 
asymptotic critical points are: 

 

ndndnd nnn /805.0;/886.0;/031.1 10.0,05.0,01.0, === .  5.16 
 
Critical values and extensive tables of the sampling distribution of Dn can be 

found in the literature (see e.g. Conover, 1980). 
The Liliefors test can be performed with SPSS and STATISTICA as described 

in Commands 5.5. When applied to Example 5.8 it produces a lower bound for the 
significance ( p = 0.2), therefore not providing evidence allowing us to reject the 
null hypothesis. 

5.1.6 The Shapiro-Wilk Test for Normality 

The Shapiro-Wilk test is also tailored to assess the goodness of fit to the normal 
distribution. It is based on the observed distance between symmetrically positioned 
data values. Let us assume that the sample size is n and the successive values x1, 
x2,…, xn, were preliminarily sorted by increasing value: 
 

x1 ≤ x2 ≤ … ≤ xn. 
 
The distance of symmetrically positioned data values, around the middle value, 

is measured by: 
 
( xn – i +1 − xi ),  for   i = 1, 2, ..., k, 
 

where k = (n + 1)/2 if n is odd and k = n/2 otherwise. 
The Shapiro-Wilk statistic is given by: 
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The coefficients ai in formula 5.17 and the critical values of the sampling 
distribution of W, for several confidence levels, can be obtained from table look-up 
(see e.g. Conover, 1980). 

The Shapiro-Wilk test is considered a better test than the previous ones, 
especially when the sample size is small. It is available in SPSS and STATISTICA 
as a complement of histograms and normality plots, respectively (see Commands 
5.5). It is also available in R as the function shapiro.test(x). When applied 
to Example 5.8, it produces an observed significance of p = 0.88. With this high 
significance, it is safe to accept the null hypothesis. 

 Table 5.9 illustrates the behaviour of the goodness of fit tests in an experiment 
using small to moderate sample sizes (n = 10, 25 and 50), generated according to a 
known law. The lognormal distribution corresponds to a random variable whose 
logarithm is normally distributed. The Bimodal  samples were generated using the 
sum of two Gaussian functions separated by 4σ. For each value of n a large 
number of samples were generated (see top of Table 5.9), and the percentage of 
correct decisions at a 5% level of significance was computed. 

 
Table 5.9. Percentages of correct decisions in the assessment at 5% level of the 
goodness of fit to the normal distribution, for several empirical distributions (see 
text). 

 n = 10 (200 samples) n = 25 (80 samples) n = 50 (40 samples) 

 KS L SW KS L SW KS L SW 

Normal, N0,1  100 95 98 100 100 98 100 100 100 

Lognormal 2 42 62 32 94 100 92 100 100 

Exponential, ε1  1 33 43 9 74 91 32 100 100 

Student t2 2 28 27 11 55 66 38 88 95 

Uniform, U0,1 0 8 6 0 6 24 0 32 88 

Bimodal 0 16 15 0 46 51 5 82 92 

KS: Kolmogorov-Smirnov; L: Lilliefors; SW: Shapiro-Wilk. 
 
 
As can be seen in Table 5.9, when the sample size is very small (n = 10), all the 

three tests make numerous mistakes. For larger sample sizes the Shapiro-Wilk test 
performs somewhat better than the Lilliefors test, which in turn, performs better 
than the Kolmogorov-Smirnov test. This test is only suitable for very large samples 
(say n >> 50). It also has the advantage of allowing an assessment of the goodness 
of fit to other distributions, whereas the Liliefors and Shapiro-Wilk tests can only 
assess the normality of a distribution. 

Also note that most of the test errors in the assessment of the normal distribution 
occurred for symmetric distributions (three last rows of Table 5.9). The tests made 

“ ”
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fewer mistakes when the data was generated by asymmetric distributions, namely 
the lognormal or exponential distribution. Taking into account these observations 

5.2 Contingency Tables 

Contingency tables were introduced in section 2.2.3 as a means of representing 
multivariate data. In sections 2.3.5 and 2.3.6, some measures of association 
computed from these tables were also presented. In this section, we describe tests 
of hypotheses concerning these tables. 

5.2.1 The 2×2 Contingency Table 

The 2×2 contingency table is a convenient formalism whenever one has two 
random and independent samples obtained from two distinct populations whose 
cases can be categorised into two classes, as shown in Figure 5.3. The sample sizes 
are n1 and n2 and the observed occurrence counts are the Oij. 

This formalism is used when one wants to assess whether, based on the samples, 
one can conclude that the probability of occurrence of one of the classes is 
different for the two populations. It is a quite useful formalism, namely in clinical 
research, when one wants to assess whether a specific treatment is beneficial; then, 

 
 

Class 1

Population 1

Population 2

Class 2

O11 O12

O21 O22

n1

n2
 

Figure 5.3. The 2×2 contingency table with the sample sizes (n1 and n2) and the 
observed absolute frequencies (counts Oij). 

 
Let p1 and p2 denote the probabilities of occurrence of one of the classes, e.g. 

class 1, for the populations 1 and 2, respectively. For the two-sided test, the 
hypotheses are: 

 
H0:  p1 = p2; 
H1:  p1 ≠ p2. 
 
The one-sided test is formalised as: 

the reader should keep in mind that the statements “a data sample can be well 
modelled by the normal distribution” and a “data sample comes from a population 
with a normal distribution” mean entirely different things. 

the populations correspond to “without” and “with” the treatment. 
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H0:  p1 ≤ p2,  H1:  p1 > p; or  
H0:  p1 ≥ p2;  H1:  p1 < p2. 
 
In order to assess the null hypothesis, we use the same goodness of fit measure 

as in formula 5.8, now reflecting the sum of the squared deviations for all four cells 
in the contingency table: 
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where the expected absolute frequencies Eij are estimated as: 
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with n = n1 + n2  (total number of cases). 
Thus, we estimate the expected counts in each cell as the ratio of the observed 

marginal counts. With these estimates, one can rewrite 5.18 as: 
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The sampling distribution of T, assuming that the null hypothesis is true,          

p1 = p2 = p, can be computed by first noticing that the probability of obtaining O11 
cases of class 1 in a sample of n1 cases from population 1, is given by the binomial 
law (see A.7): 
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Similarly, for the probability of obtaining O21 cases of class 1 in a sample of n2 
cases from population 2: 
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Because the two samples are independent the probability of the joint event is 
given by: 
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The exact values of P(O11, O21) are, however, very difficult to compute, except 
for very small n1 and n2 (see e.g. Conover, 1980). Fortunately, the asymptotic 
distribution of T is well approximated by the chi-square distribution with one 
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degree of freedom ( 2
1χ ). We then use the critical values of the chi-square 

distribution in order to test the null hypothesis in the usual way. When dealing with 
a one-sided test we face the difficulty that the T statistic does not reflect the 
direction of the deviation between observed and expected frequencies. In this 
situation, it is simpler to use the sampling distribution of the signed square root of 
T (with the sign of 21122211 OOOO − ), which is approximated by the standard 
normal distribution. Denoting by T1 the signed square root of T, the one-sided test 
is performed as: 

 
H0:  p1 ≤  p2:  reject at level α if T1 > z1 − α ;     
H0:  p1 ≥  p2:  reject at level α if T1 < zα . 
 

the chi-square test of 2×2 contingency tables. This correction attempts to 
compensate for the inaccuracy introduced by using the continuous chi-square 
distribution, instead of the discrete distribution of T, as follows: 
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Example 5.9 

Q: Consider the male and female populations related to the Freshmen dataset. 
Based on the evidence provided by the respective samples, is it possible to 

proportion of female students? 

A: We apply the chi-square test to the 2×2 contingency table whose rows are the 
populations (variable SEX) and whose columns are the counts of initiated 
freshmen (column INIT).  

The contingency table is shown in Table 5.10. The chi-square test results are 
shown in Table 5.11. Since the observed significance, with and without the 
continuity correction, is above the 5% significance level, we do not reject the null 
hypothesis at that level. 

  
 

Table 5.10. Contingency table obtained with SPSS for the SEX and INIT variables 
of the freshmen dataset. Note that a missing case for INIT (case #118) is not 
included. 

  INIT Total 
  yes no  
SEX male 91 5 96 
  female 30 5 35 
Total   121 10 131 

A “continuity correction”, known as “Yates’ correction”, is sometimes used in 

conclude that the proportion of male students that are “initiated” differs from the 
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Table 5.11. Partial list of the chi-square test results obtained with SPSS for the 
SEX and INIT variables of the freshmen dataset. 

 Value df Asymp. Sig. (2-sided) 

Chi-Square 2.997 1 0.083 

Continuity Correction 1.848 1 0.174 
 

Example 5.10 

A: We now perform a one-sided chi-square test. For this purpose we notice that the 
sign of 21122211 OOOO −  is positive, therefore 73.1997.21 =+=T . Since           
T1 > zα = −1.64, we also do not reject the null hypothesis for this one-sided test. 

  
 

Commands 5.7. SPSS, STATISTICA, MATLAB and R commands used to 
perform tests on contingency tables. 

SPSS Analyze; Descriptive Statistics; Crosstabs 

STATISTICA Statistics; Basic Statistics/Tables; 
Tables and banners 

MATLAB [table,chi2,p]=crosstab(col1,col2) 

R chisq.test(x, correct=TRUE) 

 
 
The meaning of the MATLAB crosstab parameters and return values is as 
follows: 

 
col1, col2:  vectors containing integer data used for the cross-tabulation. 
table:  cross-tabulation matrix. 
chi2, p:  value and significance of the chi-square test. 
 
The R function chisq.test can be applied to contingency tables. The x 

parameter represents then a matrix (the contingency table). The correct parameter 

with Example 5.9 data. The contingency table can be built as follows: 
  
> ct <- array(0,dim=c(2,2)) ## building the matrix 
> ct[1,1] <- sum(SEX==1 & INIT==1) ## & means AND 
> ct[1,2] <- sum(SEX==1 & INIT==2) 
> ct[2,1] <- sum(SEX==2 & INIT==1) 
> ct[2,2] <- sum(SEX==2 & INIT==2) 

Q: Redo the previous example assuming that the null hypothesis is “the proportion 
of male students that are ‘initiated’ is higher than that of female students”.  

corresponds to the Yates’ correction for 2×2 contingency tables. Let us illustrate 
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An alternative and easier way to build the contingency table is by using the table 
function mentioned in Commands 2.1: 

 
> ct <- table(SEX,INIT,exclude=c(9)) 
 

Note the exclude=c(9) argument which excludes non-valid data 
(corresponding to missing data) coded with 9. Finally, we apply: 

 
> chisq.test(ct,correct=FALSE) 
X-squared = 2.9323, df = 1, p-value = 0.08682 
 
These values agree quite well with those published in Table 5.11. 
In order to solve the Example 5.12 we first recode Q7 by merging the values 1 

and 2 as follows: 
 
> Q7_12<-as.numeric(Q7<=2)+as.numeric(Q7>2)*Q7 
 
This creates a new vector with only 4 categorical values: 1, 3, 4 and 5. The 

as.numeric function converts FALSE and TRUE into 0 and 1, respectively. We 
then proceed as above: 

 
> ct<-table(SEX,Q7_12,exclude=c(9)) 
> chisq.test(ct) 
X-squared = 5.3334, df = 3, p-value = 0.1490 
  

5.2.2 The rxc Contingency Table 

The r×c contingency table is an obvious extension of the 2×2 contingency table, 
when there are more than two categories of the nominal (or ordinal) variable 
involved. However, some aspects described in the previous section, namely the 

2×2 tables. 
 

Class 1

Population 1

Population 2

Class 2

n1

n2

.  .  .

.  .  .

.  .  .

.  .  ..  .  . .  .  . .  .  .

O11 O12

O21 O22

.  .  .
Population r

Class c

O1c

O2c

.  .  .Or1 Or2 Orc

.  .  .
nr

.  .  .c1 c2 cc  
Figure 5.4. The r×c contingency table with the sample sizes (ni) and the observed 
absolute frequencies (counts Oij). 

Yates’ correction and the computation of exact probabilities, are only applicable to 
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The r×c contingency table is shown in Figure 5.4. All samples from the r 
populations are assumed to be independent and randomly drawn. All observations 
are assumedly categorised into exactly one of c categories. The total number of 
cases is: 

 
n = n1 + n2 + ...+  nr = c1 + c2 + ... + cc , 
 

where the cj are the column counts, i.e., the total number of observations in the jth 
class: 

∑
=

=
r

i
ijj Oc

1
. 

Let pij denote the probability that a randomly selected case of population i is 
from class j. The hypotheses formalised for the r×c contingency table are a 
generalisation of the two-sided hypotheses for the 2×2 contingency table (see 
5.2.1): 

 
H0:  For any class, the probabilities are the same for all populations: p1j = p2j = 

… = prj, ∀j. 

H1:  There are at least two populations with different probabilities in one class:  
∃ i, j,  pij ≠ pkj. 

 
The test statistic is also a generalisation of 5.18: 
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If H0 is true, we expect the observed counts Oij to be near the expected counts 

Eij, estimated as in the above formula 5.23, using the row and column marginal 
counts. The asymptotic distribution of T is the chi-square distribution with            
df = (r − 1)(c – 1) degrees of freedom. As with the chi-square goodness of fit test 
described in section 5.1.3, the approximation is considered acceptable if the 
following conditions are met: 
 

i. For df = 1, i.e. for 2×2 contingency tables, no Eij must be smaller than 5; 
ii. For df > 1, no Eij must be smaller than 1 and no more than 20% of the Eij 

must be smaller than 5. 
 
The SPSS STATISTICA, MATLAB and R commands for testing r×c 

contingency tables are indicated in Commands 5.7. 
 

Example 5.11 

Q: Consider the male and female populations of the Freshmen dataset. Based on 
the evidence provided by the respective samples, is it possible to conclude that 



 5.2 Contingency Tables 195 

on their own will? 

A: Question 7 (column Q7) of the freshmen dataset addresses the issue of 
participating in the initiation on their own will. The 2×5 contingency table, using 
variables SEX and Q7, has more than 20% of the cells with expected counts below 
5 because of the reduced number of cases ranked 1 and 2. We, therefore, create a 
new variable Q7_12 where the ranks 1 and 2 are merged into a new rank, coded 12.  

The contingency table for the variables SEX and Q7_12 is shown in Table 5.11. 
The chi-square value for this table has an observed significance p = 0.15; therefore, 
we do not reject the null hypothesis of equal behaviour of male and female students 
at the 5% level. 

Since one of the variables, SEX, is nominal, we can determine the association 
measures suitable to nominal variables, as we did in section 2.3.6. In this example 
the phi and uncertainty coefficients both have significances (0.15 and 0.08, 
respectively) that do not support the rejection of the null hypothesis (no association 
between the variables) at the 5% level. 

  
 

Table 5.12. Contingency table obtained with SPSS for the SEX and Q7_12 
variables of the freshmen dataset. Q7_12 is created with the SPSS recode 
command, using Q7. Note that three missing cases are not included. 

    Q7_12  Total 
   3 4 5 12  

SEX male Count 18 36 29 12 95 

    Expected Count 14.0 36.8 30.9 13.3 95.0 

  female Count 1 14 13 6 34 

    Expected Count 5.0 13.2 11.1 4.7 34.0 

Total   Count 19 50 42 18 129 

    Expected Count 19.0 50.0 42.0 18.0 129.0 
 

5.2.3 The Chi-Square Test of Independence 

When performing tests of hypotheses one often faces the situation in which a 
decision must be made as to whether or not two or more variables pertaining to the 
same population can be considered independent. In order to assess the 
independency of two variables we use the contingency table formalism, which 
now, however, is applied to only one population whose variables can be 
categorised into two or more categories. The variables can either be discrete 

male and female students have different behaviour participating in the “initiation” 
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(nominal or ordinal) or continuous. In this latter case, one must choose suitable 
categorisations for the continuous variables. 

The r×c contingency table for this situation is the same as shown in Figure 5.4. 
The only differences being that whereas in the previous section the rows 
represented different populations and the row totals were assumed to be fixed, now 
the rows represent categories of a second variable and the row totals can vary 
arbitrarily, constrained only by the fact that their sum is the total number of cases.  

The test is formalised as: 
 

∃ i, j, P(row i, column j) ≠ P(row i) ×P(column j). 
 
Let ri denote the row totals as in Figure 2.18, such that: 
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As before, we use the test statistic: 
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which has the asymptotic chi-square distribution with df = (r – 1)(c – 1) degrees of 
freedom. Note, however, that since the row totals can vary in this situation, the 
exact probability associated to a certain value of T is even more difficult to 
compute than before because there are a greater number of possible tables with the 
same T. 

 

Example 5.12 

Q: Consider the Programming dataset, containing results of pedagogical 
enquiries made during the period 1986-1988, of freshmen attending the course  

H0:  The event “an observation is in row i” is independent of the event “the same 
observation is in column j”, i.e.: 

 
P(row i, column j) = P(row i) ×P(column j), ∀i, j. 

 
H1:  The events “an observation is in row i” and “the same observation is in 

column j”, are dependent, i.e.: 

“Programming and Computers” in the Electrotechnical Engineering Department of 
Porto University. Based on the evidence provided by the respective samples, is it 
possible to conclude that the performance obtained by the students at the final 
examination is independent of their previous knowledge on programming? 

A: Note that we have a single population with two attributes: “previous knowledge 
on programming” (variable PROG), and “final examination score” (variable 
SCORE). In order to test the independence hypothesis of these two attributes, we 
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first categorise the SCORE variable into four categories. These can be classified 

PERF (performance) this new categorised variable. 
The 3×4 contingency table, using variables PROG and PERF, is shown in Table 

5.13. Only two (16.7%) cells have expected counts below 5; therefore, the 
recommended conditions, mentioned in the previous section, for using the 
asymptotic distribution of T, are met. 

The value of T is 43.044. The asymptotic chi-square distribution of T has          
(3 – 1)(4 – 1) = 6 degrees of freedom. At a 5% level, the critical region is above 
12.59 and therefore the null hypothesis is rejected at that level. As a matter of fact, 
the observed significance of T is p ≈ 0. 

  

Table 5.13. The 3×4 contingency table obtained with SPSS for the independence 
test of Example 5.12. 

    PERF  Total 

   Poor Fair Good Very 
Good  

PROG 0 Count 76 78 16 7 177 
    Expected Count 63.4 73.8 21.6 18.3 177.0 
  1 Count 19 29 10 13 71 
    Expected Count 25.4 29.6 8.6 7.3 71.0 
  2 Count 2 6 7 8 23 
    Expected Count 8.2 9.6 2.8 2.4 23.0 
Total   Count 97 113 33 28 271 
    Expected Count 97.0 113.0 33.0 28.0 271.0 

 
 
 
The chi-square test of independence can also be applied to assess whether two 

or more groups of data are independent or can be considered as sampled from the 
same population. For instance, the results obtained for Example 5.7 can also be 
interpreted as supporting, at a 5% level, that the male and female groups are not 
independent for variable Q7; they can be considered samples from the same 
population. 

5.2.4 Measures of Association Revisited 

When analysing contingency tables, it is also convenient to assess the degree of 
association between the variables, using the ordinal and nominal association 
measures described in sections 2.3.5 and 2.3.6, respectively. As in 4.4.1, the 

as: “Poor” corresponding to a final examination score below 10; “Fair” 
corresponding to a score between 10 and 13; “Good” corresponding to a score 
between 14 and 16; “Very Good” corresponding to a score above 16. Let us call 
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hypotheses in a two-sided test concerning any measure of association γ are 
formalised as: 
 
H0:  γ = 0; 
H1:  γ ≠ 0. 

Let X and Y denote the variables whose association is being assessed. The exact 

true, can be derived if we note that for any given ranking of Y, any rank order of X 
is equally likely, and vice-versa. Therefore, any particular ranking has a probability 
of occurrence of 1/n!. As an example, let us consider the situation of n = 3, with X 
and Y having ranks 1, 2 and 3. As shown in Table 5.14, there are 3! = 6 possible 
permutations of the X ranks. Applying formula 2.21, one then obtains the rs values 
shown in the last row. Therefore, under H0, the ±1 values have a 1/6 probability 
and the ±½ values have a 1/3 probability. When n is large (say, above 20), the 
significance of rs under H0 can be obtained using the test statistic: 

 

1* −= nrz s ,  5.25 
 

which is approximately distributed as the standard normal distribution. 
 

 
Table 5.14. Possible rankings and Spearman correlation for n = 3. 

X  Y Y Y Y Y Y 

1  1 1 2 2 3 3 
2  2 3 1 3 1 2 
3  3 2 3 1 2 1 

rs  1 0.5 0.5 −0.5 −0.5 −1 

 
 
In order to test the significance of the gamma statistic a large sample (say, 

above 25) is required. We then use the test statistic: 
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which, under H0 (γ  = 0), is approximately distributed as the standard normal 
distribution. The values of P and Q were defined in section 2.3.5. 

The Spearman correlation and the gamma statistic were computed for Example 
5.12, with the results shown in Table 5.15. We see that the observed significance is 

values of the sampling distribution of the Spearman’s rank correlation, when H0 is 

5.2.4.1 Measures for Ordinal Data 
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very low, leading to the conclusion that there is an association between both 
variables (PERF, PROG).  

 
 

Table 5.15. Measures of association for ordinal data computed with SPSS for 
Example 5.12. 

 Value Asymp. Std. 
Error Approx. T Approx. Sig. 

Gamma 0.486 0.076 5.458 0.000 

Spearman Correlation 0.332 0.058 5.766 0.000 
 

In Chapter 2, the following measures of association were described: the index of 
association (phi coefficient), the proportional reduction of error (Goodman and 
Kruskal lambda), and the κ statistic for the degree of agreement.  

Note that taking into account formulas 2.24 and 5.20, the phi coefficient can be 
computed as: 

 

n

T
n
T 1==φ ,  5.27 

 
with the phi coefficient now lying in the interval [0, 1]. Since the asymptotic 
distribution of T1 is the standard normal distribution, one can then use this 
distribution in order to evaluate the significance of the signed phi coefficient (using 
the sign of 21122211 OOOO − ) multiplied by n . 

Table 5.16 displays the value and significance of the phi coefficient for Example 
5.9. The computed two-sided significance of phi is 0.083; therefore, at a 5% 
significance level, we do not reject the hypothesis that there is no association 
between SEX and INIT. 

 
 

Table 5.16. Phi coefficient computed with SPSS for the Example 5.9 with the two-
sided significance. 

 Value Approx. Sig. 
Phi 0.151 0.083 

 
 
The proportional reduction of error has a complex sampling distribution that we 

will not discuss. For Example 5.9 the only situation of interest for this measure of 
association is: INIT depending on SEX. Its value computed with SPSS is 0.038. 
This means that variable SEX will only reduce by about 4% the error of predicting 

5.2.4.2 Measures for Nominal Data 
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INIT. As a matter of fact, when using INIT alone, the prediction error is            
(131 – 121)/131 = 0.076. With the contribution of variable SEX, the prediction 
error is the same (5/131 + 5/131). However, since there is a tie in the row modes, 
the contribution of INIT is computed as half of the previous error.  

In order to test the significance of the κ statistic measuring the agreement 
among several variables, the following statistic, approximately normally 
distributed for large n with zero mean and unit standard deviation, is used: 
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As described in 2.3.6.3, the κ statistic can be computed with function kappa 

implemented in MATLAB or R; kappa(x,alpha)computes for a matrix x, 
(formatted as columns N, S and P in Table 2.13), the row vector denoted 
[ko,z,zc] in MATLAB containing the observed value of κ, ko, the z value of 
formula 5.28 and the respective critical value, zc, at alpha level. The meaning of 
the returned values for the R kappa function is the same. The results of the κ 
statistic significance for Example 2.11 are obtained as shown below. We see that 
the null hypothesis (disagreement among all four classifiers) is rejected at a 5% 
level of significance, since z > zc.  

  
[ko,z,zc]=kappa(x,0.05) 
ko = 
    0.2130 
z = 
    3.9436 
zc = 
    3.2897 

5.3 Inference on Two Populations 

In this section, we describe non-parametric tests that have parametric counterparts 
described in section 4.4.3. As discussed in 4.4.3.1, when testing two populations, 
one must first assess whether or not the available samples are independent. Tests 
for two paired or matched samples are used to assess whether two treatments are 
different or whether one treatment is better than the other. Either treatment is 

resort to tests for independent samples. Note that some of the tests described for 
contingency tables also apply to two independent samples. 

applied to the same group of cases (the “before” and “after” experiments), or 
applied to pairs of cases which are as much alike as possible, the so-called 
“matched pairs”. When it is impossible to design a study with paired samples, we 
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5.3.1 Tests for Two Independent Samples 

 

Commands 5.8. SPSS, STATISTICA, MATLAB and R commands used to 
perform non-parametric tests on two independent samples. 

SPSS Analyze; Nonparametric Tests;  
2 Independent Samples 

STATISTICA Statistics; Nonparametrics; Comparing two 
independent samples (groups) 

MATLAB [p,h,stats]=ranksum(x,y,alpha) 

R ks.test(x,y) ;  
wilcox.test(x,y) | wilcox.test(x~y) 

  

The Kolmogorov-Smirnov test is used to assess whether two independent samples 
were drawn from the same population or from populations with the same 
distribution, for the variable X being tested, which is assumed to be continuous. Let 
F(x) and G(x) represent the unknown distributions for the two independent 
samples. The null hypothesis is formalised as: 

 
H0: Data variable X has equal cumulative probability distributions for the two 

samples: F (x) = G(x). 
 
The test is conducted similarly to the way described in section 5.1.4. Let Sm(x) 

and Sn(x) represent the empirical distributions of the two samples, with sizes m and 
n, respectively. We then use as test statistic, the maximum deviation of these 
empirical distributions: 

 
Dm,n = max | Sn(x) – Sm(x) |.  5.29 
 
For large samples (say, m and n above 25) and two-tailed tests (the most usual), 

the significance of Dm,n can be evaluated using the critical values obtained with the 
expression: 

 

mn
nmc + ,  5.30 

 
where c is a coefficient that depends on the significance level, namely c = 1.36 for    
α  = 0.05 (for details, see e.g. Siegel S, Castellan Jr NJ, 1998). 

When compared with its parametric counterpart, the t test, the Kolmogorov-
Smirnov test has a high power-efficiency of about 95%, even for small samples. 

5.3.1.1 The Kolmogorov-Smirnov Two-Sample Test 
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Example 5.13 

Q: Consider the variable ART, the total area of defects, of the cork-stopper dataset. 
Can one assume that the distributions of ART for the first two classes of cork- 
stoppers are the same? 

A: Variable ART can be considered a continuous variable, and the samples are 
independent. Table 5.17 shows the Kolmogorov test results, from where we 
conclude that the null hypothesis is rejected, i.e., for variable ART, the first two 
classes have different distributions. The test is performed in R with ks.test 
(ART[1:50],ART[51:100]).   

  

Table 5.17. Two sample Kolmogorov-Smirnov test results obtained with SPSS for 
variable ART of the cork-stopper dataset. 

  ART 
Most Extreme Differences Absolute 0.800 
  Positive 0.800 
  Negative 0.000 
Kolmogorov-Smirnov Z   4.000 
Asymp. Sig. (2-tailed)   0.000 

 

The Mann-Whitney test, also known as Wilcoxon-Mann-Whitney or rank-sum test, 
is used like the previous test to assess whether two independent samples were 
drawn from the same population, or from populations with the same distribution, 
for the variable being tested, which is assumed to be at least ordinal.  

Let FX(x) and GY(x) represent the unknown distributions of the two independent 
populations, where we explicitly denote by X and Y the corresponding random 
variables. The null hypothesis can be formalised as in the previous section (FX(x) = 
GY(x)). However, when the distributions are different, it often happens that the 

equal distributions. Following this approach, the hypotheses for the Mann-Whitney 
test are formalised as: 

 
H0:  P(X  > Y ) = ½ ; 
H1:  P(X  > Y ) ≠ ½ ,  
 

for the two-sided test, and 
 
H0:  P(X  > Y) ≥ ½; H1:  P(X  > Y) < ½,     or 
H0:  P(X  > Y ) ≤ ½; H1:  P(X  > Y ) > ½, 
 

for the one-sided test. 

probability associated to the event “X  > Y ” is not ½, as should be expected for 

5.3.1.2 The Mann-Whitney Test 
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In order to assess these hypotheses, the Mann-Whitney test starts by assigning 
ranks to the samples. Let the samples be denoted x1, x2, …, xn and y1, y2, …, ym. 
The ranking of the xi and yi assigns ranks in 1, 2, …, n + m. As an example, let us 
consider the following situation: 

 
xi :   12   21   15   8 
yi :      9   13   19 
 
The ranking of xi and yi would then yield the result: 
 
Variable: X Y X Y X Y X 
Data: 8 9 12 13 15 19 21 
Rank: 1 2  3  4  5  6  7 
 
The test statistic is the sum of the ranks for one of the variables, say X: 
 

∑ == n
i iX xRW 1 )( ,  5.31 

 
where R(xi) are the ranks assigned to the xi. For the example above, WX = 16. 
Similarly, WY = 12 with: 

 

2
)1( +

=+
NNWW YX ,   total sum of the ranks from 1 through N = n + m. 

 
The rationale for using WX as a test statistic is that under the null hypothesis,     

P(X  > Y ) = ½, one expects the ranks to be randomly distributed between the xi and 
yi, therefore resulting in approximately equal average ranks in each of the two 
samples. For small samples, there are tables with the exact probabilities of WX. For 
large samples (say m or n above 10), the sampling distribution of WX rapidly 
approaches the normal distribution with the following parameters: 
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XWXW σµ .  5.32 

 
Therefore, for large samples, the following test statistic with standard normal 

distribution is used: 
 

XW

XWXW
z

σ

µ−±
=

5.0* .  5.33 

 
The 0.5 continuity correction factor is added when one wants to determine 

critical points in the left tail of the distribution, and subtracted to determine critical 
points in the right tail of the distribution. 

When compared with its parametric counterpart, the t test, the Mann-Whitney 
test has a high power-efficiency, of about 95.5%, for moderate to large n. In some 
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cases, it was even shown that the Mann-Whitney test is more powerful than the t 
test! There is also evidence that it should be preferred over the previous 
Kolmogorov-Smirnov test for large samples. 

 

Example 5.14 

Q: Consider the Programming dataset. Does this data support the hypothesis that 
freshmen and non-freshmen have different distributions of their scores? 

A: The Mann-Whitney test results are summarised in Table 5.18. From this table 
one concludes that the null hypothesis (equal distributions) cannot be rejected at 
the 5% level. In R this test would be solved with wilcox.test 

  
 

Table 5.18. Mann-Whitney test results obtained with SPSS for Example 5.14:      
a) Ranks; b) Test statistic and significance. F=1 for freshmen; 0, otherwise. 

a  

F N Mean 
Rank 

Sum of 
Ranks 

0 34 132.68 4511 

1 237 136.48 32345 

Total 271    
b 

 

 SCORE 
Mann-Whitney U   3916 

Wilcoxon W   4511 
Z −0.265 

Asymp. Sig.  
(2-tailed)    0.791 

 
 

Table 5.19.  Ranks for variables ASP and PHE (Example 5.15), obtained with 
SPSS. 

 

Example 5.15 

Q: Consider the t test performed in Example 4.9, for variables ASP and PHE of the 
wine dataset. Apply the Mann-Whitney test to these continuous variables and 
compare the results with those previously obtained.  

 TYPE N Mean Rank Sum of Ranks 
ASP 1 30 40.12 1203.5 
 2 37 29.04 1074.5 
 Total 67   
PHE 1 30 42.03 1261.0 
 2 37 27.49 1017.0 
 Total 67   

(Score~F)yielding the same results for the “Mann-Whitney U” and “Asymp. 
Sig.” as in Table 5.18. 
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A: Tables 5.19 and 5.20 show the results with identical conclusions (and p values!) 
to those presented in Example 4.9.  

Note that at a 1% level, we do not reject the null hypothesis for the ASP 
variable. This example constitutes a good illustration of the power-efficiency of the 
Mann-Whitney test when compared with its parametric counterpart, the t test. 

  
 

Table 5.20. Mann-Whitney test results for variables ASP and PHE (Example 5.15) 
with grouping variable TYPE, obtained with SPSS.   

 ASP    PHE 

Mann-Whitney U  371.5    314 

Wilcoxon W 1074.5   1017 

Z −2.314 −3.039 
Asymp. Sig. (2-tailed)    0.021   0.002 
 

5.3.2 Tests for Two Paired Samples 

 

Commands 5.9. SPSS, STATISTICA, MATLAB and R commands used to 
perform non-parametric tests on two paired samples. 

STATISTICA Statistics; Nonparametrics; Comparing two 
dependent samples (variables) 

SPSS Analyze; Nonparametric Tests; 2 Related 
Samples 

MATLAB [p,h,stats]=signrank(x,y,alpha) 
[p,h,stats]=signtest(x,y,alpha) 

R mcnemar.test(x) | mcnemar.test(x,y) 
wilcox.test(x,y,paired=TRUE) 

  

experiments, in which each case can be in either of two categories or responses and 
is used as its own control. The test addresses the issue of deciding whether or not 
the change of response is due to hazard. Let the responses be denoted by the + and 
– signs and a change denoted by an arrow, →. The test is formalised as: 

The McNemar change test is particularly suitable to “before and after” 

5.3.2.1 The McNemar Change Test 
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H0: After the treatment, P(+   →   –) = P(–   →   +); 
H1: After the treatment, P(+   →   –) ≠ P(–   →   +). 

 
Let us use a 2×2 table for recording the before and after situations, as shown in 

Figure 5.5. We see that a change occurs in situations A and D, i.e., the number of 
cases which change of response is A + D. If both changes of response are equally 
likely, the expected count in both cells is (A + D)/2.  

The McNemar test uses the following test statistic: 
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The sampling distribution of this test statistic, when the null hypothesis is true, 

is asymptotically the chi-square distribution with df = 1. A continuity correction is 
often used, especially for small absolute frequencies, in order to make the 
computation of significances more accurate. 

An alternative to using the chi-square test is to use the binomial test. One would 
then consider the sample with n = A + D cases, and assess the null hypothesis that 
the probabilities of both changes are equal to ½.  

 
 

Before

After

A B

C D

+

+

 
Figure 5.5. Table for the McNemar change test, where A, B, C and D are cell 
counts. 

 
Example 5.16 

Q: Consider that in an enquiry into consumer preferences of two products A and B, 
a group of 57 out of 160 persons preferred product A, before reading a study of a 
consumer protection organisation. After reading the study, 8 persons that had 
preferred product A and 21 persons that had preferred product B changed opinion. 
Is it possible to accept, at a 5% level, that the change of opinion was due to hazard? 

A: Table 5.21a shows the respective data in a convenient format for analysis with 
STATISTICA or SPSS. The column “Number” should be used for weighing the 
cases corresponding to the cells of Figure 5.5 with “1” denoting product A and “2” 
denoting product B. Case weighing was already used in section 5.1.2. 
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Table 5.21b shows the results of the test; at a 5% significance level, we reject 
the null hypothesis that the change of opinion was due to hazard. 

In R the test is run (with the same results) as follows: 
 
> x <- array(c(49,21,8,82),dim=c(2,2)) 
> mcnemar.test(x)  
 

Table 5.21. (a) Data of Example 5.16 in an adequate format for running the 
McNmear test with STATISTICA or SPSS, (b) Results of the test obtained with 
SPSS. 

a 
 

Before After Number 
1 1 49 
1 2 8 
2 2 82 
2 1 21 

b  

 
BEFORE & 

AFTER 
N 160 
Chi-Square 4.966 
Asymp. Sig. 0.026 

 

The sign test compares two paired samples (x1, y1), (x2, y2), … , (xn, yn), using the 
sign of the respective differences: (x1 – y1), (x2 – y2), … , (xn – yn), i.e., using a set 
of dichotomous values (+ and – signs), to which the binomial test described in 
section 5.1.2 can be applied in order to assess the truth of the null hypothesis: 

 
H0:  P(xi  > yi ) = P(xi  < yi ) = ½ .  5.35 
 
Note that the null hypothesis can also be stated in terms of the sign of the 

differences xi  –  yi, by setting their median to zero. 
Previous to applying the binomial test, all cases with tied decisions, xi = yi, are 

removed from the analysis, and the sample size, n, adjusted accordingly. The null 
hypothesis is rejected if too few differences of one sign occur. 

The power-efficiency of the test is about 95% for n = 6, decreasing towards 63% 
for very large n. Although there are more powerful tests for paired data, an 
important advantage of the sign test is its broad applicability to ordinal data. 
Namely, when the magnitude of the differences cannot be expressed as a number, 
the sign test is the only possible alternative. 

 

Example 5.17 

of a sample of eight metallurgic firms (see Appendix E). Use the sign test in order 
to analyse the following comparisons: a) leadership teamwork (TW) vs. leadership 
commitment to quality improvement (CI), b) management of critical processes 
(MC) vs. management of alterations (MA). Discuss the results. 

Q: Consider the Metal Firms’ dataset containing several performance indices 

5.3.2.2 The Sign Test 
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A: All variables are ordinal type, measured on a 1 to 5 scale. One must note, 
however, that the numeric values of the variables cannot be taken to the letter. One 

Running the test with STATISTICA, SPSS or MATLAB yields observed one-
tailed significances of 0.0625 and 0.5 for comparisons (a) and (b), respectively. 
Thus, at a 5% significance level, we do not reject the null hypothesis of 
comparable distributions for pair TW and CI nor for pair MC and MA. 

Let us analyse in detail the sign test results for the TW-CI pair of variables. The 
respective ranks are: 

 
TW:  4      4      3      2      4      3      3      3 
CI  :   3      2      3      2      4      3      2      2 
Difference: +      +      0      0      0      0      +     + 
 
We see that there are 4 ties (marked with 0) and 4 positive differences TW – CI. 

Figure 5.6a shows the binomial distribution of the number k of negative differences 
for n = 4 and p = ½. The probability of obtaining as few as zero negative 
differences TW – CI, under H0, is (½)4 = 0.0625. 

We now consider the MC-MA comparison. The respective ranks are: 
 
MC:  2      2      2      2      1      2      3      2 
MA:   1      3      1      1      1      4      2      4 
Difference: +      –      +      +     0       –      +     – 
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Figure 5.6. Binomial distributions for the sign tests in Example 5.18: a) TW-CI 
pair, under H0; b) MC-MA pair, under H0; c) MC-MA pair for the alternative 
hypothesis H1: P(MC < MA) = ¼. 

 
 
Figure 5.6b shows the binomial distribution of the number of negative 

differences for n = 7 and p = ½. The probability of obtaining at most 3 negative 
differences MC – MA, under H0, is ½, given the symmetry of the distribution. The 
critical value of the negative differences, k = 1, corresponds to a Type I Error of   
α = 0.0625. 

could as well use a scale of A to E or use “very poor”, “poor”, “fair”, “good” and 
“very good”. Thus, the sign test is the only two-sample comparison test appropriate 
here. 
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the distributions of MC and MA are not identical; the distribution of MC favours 
higher ranks than the distribution of MA. Figure 5.6c shows the binomial 
distribution for this situation, with p = P(MC < MA) = ¼. We clearly see that, in 
this case, the probability of obtaining at most 3 negative differences MC – MA 
increases. The Type II Error for the critical value k = 1 is the sum of all 
probabilities for k ≥ 2, which amounts to β = 0.56. Even if we relax the α level to 
0.23 for a critical value k = 2, we still obtain a high Type II Error, β = 0.24. This 
low power of the binomial test, already mentioned in 5.1.2, renders the conclusions 
for small sample sizes quite uncertain.  

  
 

Example 5.18 

Q: Consider the FHR dataset containing measurements of basal heart rate 
frequency (beats per minute) made on 51 foetuses (see Appendix E). Use the sign 
test in order to assess whether the measurements performed by an automatic 
system (SPB) are comparable to the computed average (denoted AEB) of the 
measurements performed by three human experts. 

A: There is a clear lack of fit of the distributions of SPB and AEB to the normal 
distribution. A non-parametric test has, therefore, to be used here. The sign test 
results, obtained with STATISTICA are shown in Table 5.22. At a 5% significance 
level, we do not reject the null hypothesis of equal measurement performance of 

 
 
 

Table 5.22. Sign test results obtained with STATISTICA for the SPB-AEB 
comparison (FHR dataset). 

No. of Non-Ties Percent v < V Z p-level 

49 63.26531 1.714286 0.086476 
 
 

The Wilcoxon signed ranks test uses the magnitude of the differences di = xi  –  yi, 
which the sign test disregards. One can, therefore, expect an enhanced power-
efficiency of this test, which is in fact asymptotically 95.5%, when compared with 

magnitude, assigning a rank of 1 to the di with smallest magnitude, the rank of 2 to 
the next smallest magnitude, etc. As with the sign test, xi and yi ties (di = 0) are 
removed from the dataset. If there are ties in the magnitude of the differences, 

its parametric counterpart, the t test. The test ranks the di’s according to their 

Let us now determine the Type II Error for the alternative hypothesis “positive 
differences occur three times more often than negative differences”. In this case, 

the automatic system and the “average” human expert. 

5.3.2.3 The Wilcoxon Signed Ranks Test 
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these are assigned the average of the ranks that would have been assigned without 
ties. Finally, each rank gets the sign of the respective difference. For the MC and 
MA variables of Example 5.17, the ranks are computed as: 
 

MC:    2      2      2      2      1      2       3      2 
MA:     1      3      1      1      1      4       2      4 
MC – MA: +1    –1    +1    +1     0     –2    +1    –2 
 
Ranks:   1      2      3       4              6      5      7 
Signed Ranks:   3    –3      3       3            –6.5   3    –6.5 

 
Note that all the magnitude 1 differences are tied; we, therefore, assign the 

average of the ranks from 1 to 5, i.e., 3. Magnitude 2 differences are assigned the 
average rank (6+7)/2 = 6.5. 

The Wilcoxon test uses the test statistic: 
 
T+  = sum of the ranks of the positive di.  5.36 
 
The rationale is that under the null hypothesis − samples are from the same 

population or from populations with the same median − one expects that the sum of 
the ranks for positive di will balance the sum of the ranks for negative di. Tables of 
the sampling distribution of T + for small samples can be found in the literature. For 
large samples (say, n > 15), the sampling distribution of T + converges 
asymptotically, under the null hypothesis, to a normal distribution with the 
following parameters: 
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A test procedure similar to the t test can then be applied in the large sample 

case. Note that instead of T + the test can also use T – the sum of the negative ranks. 
 
 

Table 5.23. Wilcoxon test results obtained with SPSS for the SPB-AEB 
comparison (FHR dataset) in Example 5.19: a) ranks, b) significance based on 
negative ranks. 

a 
 

 N Mean Rank Sum of Ranks

Negative Ranks 18 20.86 375.5 

Positive Ranks 31 27.40 849.5 

Ties 2   

Total 51   
b  

 AE − SP 

Z –2.358 

Asymp. Sig. 
(2-tailed)   0.018 
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Example 5.19 

Q: Redo the two-sample comparison of Example 5.18, using the Wilcoxon signed 
ranks test. 

A: The Wilcoxon test results obtained with SPSS are shown in Table 5.23. At a 5% 
significance level, we reject the null hypothesis of equal measurement performance 

is different from the one reached using the sign test in Example 5.18.  
In R the command wilcox.test(SPB, AEB, paired = TRUE) yields 

  
 

Example 5.20 

Q: Estimate the power of the Wilcoxon test performed in Example 5.19 and the 
needed value of n for reaching a power of at least 90%. 

A: We estimate the power of the Wilcoxon test using the concept of power-
efficiency (see formula 5.1). Since Example 5.19 involves a large sample (n = 51), 
the power-efficiency of the Wilcoxon test is of about 95.5%. 

Figure 5.7a shows the STATISTICA specification window for the dependent 
samples t test. The values filled in are the sample means and sample standard 
deviations of the two samples, as well as the correlation between them. The 

The value of n, using formula 5.1, is n = nA = 0.955×51 ≈ 49. STATISTICA 
computes a power of 76% for these specifications. 

The power curve shown in Figure 5.7b indicates that the parametric test reaches 
a power of 90% for nA = 70. Therefore, for the Wilcoxon test we need a number of 
samples of nB = 70/0.955 ≈ 73 for the same power. 

  
 

Figure 5.7. Determining the power for a two-paired samples t test, with 
STATISTICA: a) Specification window, b) Power curve dependent on n. 

 

of the automatic system and the “average” human expert. Note that the conclusion 

the same “p-value”. 

“Alpha” value is the previous two-tailed observed significance (see Table 5.22). 
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5.4 Inference on More Than Two Populations 

In the present section, we describe non-parametric tests that have parametric 
counterparts already described in section 4.5. Note that some of the tests described 
for contingency tables also apply to more than two independent samples. 

5.4.1 The Kruskal-Wallis Test for Independent Samples 

The Kruskal-Wallis test is the non-parametric counterpart of the one-way ANOVA 
test described in section 4.5.2. The test assesses whether c independent samples are 
from the same population or from populations with continuous distribution and the 
same median for the variable being tested. The variable being tested must be at 
least of ordinal type. The test procedure is a direct generalisation of the Mann-
Whitney rank sum test described in section 5.3.1.2. Thus, one starts by assigning 
natural ordered ranks to the sample values, from the smallest to the largest. Tied 
ranks are substituted by their average. 
 

Commands 5.10. SPSS, STATISTICA, MATLAB and R commands used to 
perform the Kruskal-Wallis test. 

SPSS Analyze; Nonparametric Tests; K 
Independent Samples 

STATISTICA Statistics; Nonparametrics; Comparing 
multiple indep. samples (groups) 

MATLAB p=kruskalwallis(x) 

R kruskal.test(X~CLASS) 

  
 

Let Ri denote the sum of ranks for sample i, with ni cases. Under the null 
hypothesis, we expect that each Ri will exhibit a small deviation from the average 
of all Ri, R . The test statistic is: 
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which, under the null hypothesis, has an asymptotic chi-square distribution with   
df = c – 1  degrees of freedom (when the number of observations in each group 
exceeds 5). 

When there are tied ranks, a correction is inserted in formula 5.38, dividing the 
KW value by: 
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where ti is the number of ties in group i of g tied groups, and N is the total number 
of cases in the c samples (sum of the ni). 

The power-efficiency of the Kruskal-Wallis test, referred to the one-way 
ANOVA, is asymptotically 95.5%. 

 

Example 5.21 

of the data collection process, only the first 15 cases were available and the 
Kruskal-Wallis test was used to assess which clay features best discriminated the 
three types of clays (variable AGE). Perform this test and analyse its results for the 
alumina content (Al2O3) measured with only 3 significant digits. 

A: Table 5.24 shows the 15 cases sorted and ranked. Notice the tied values for 
Al2O3 = 17.3, corresponding to ranks 6 and 7, which are assigned the mean rank 
(6+7)/2. 

The sum of the ranks is 57, 41 and 22 for the groups 1, 2 and 3, respectively; 
therefore, we obtain the mean ranks shown in Table 5.25. The asymptotic 
significance of 0.046 leads us to reject the null hypothesis of equality of medians 
for the three groups at a 5% level. 

  
 

AGE 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 

Al2O3 23.0 21.4 16.6 22.1 18.8 17.3 17.8 18.4 17.3 19.1 11.5 14.9 11.6 15.8 19.5 

Rank 15 13 5 14 10 6.5 8 9 6.5 11 1 3 2 4 12 

 
 
 

Table 5.25. Results, obtained with SPSS, for the Kruskal-Wallis test of alumina in 

a  

AGE N Mean Rank 
pliocenic good clay 5 11.40 
pliocenic bad clay 5 8.20 
holocenic clay 5 4.40 

Total 15  
b  

 AL2O3 

Chi-Square 6.151 

df 2 

Asymp. Sig. 0.046 

 
 

Q: Consider the Clays’ dataset (see Appendix E). Assume that at a certain stage 

Table 5.24. The first fifteen cases of the  dataset, sorted and ranked.

the Clays’ dataset: a) ranks, b) significance. 

Clays’
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Example 5.22 

Q: Consider the Freshmen dataset and use the Kruskal-Wallis test in order to 
assess whether the freshmen performance (EXAMAVG) differs according to their 
attitude towards skipping the Initiation (Question 8). 

A: The mean ranks and results of the test are shown in Table 5.26. Based on the 
observed asymptotic significance, we reject the null hypothesis at a 5% level, i.e., 
we have evidence that the freshmen answer Question 8 of the enquiry differently, 
depending on their average performance on the examinations. 

 

Table 5.26. Results, obtained with SPSS, for the Kruskal-Wallis test of average 
freshmen performance in 5 categories of answers to Question 8: a) ranks; b) 
significance. 

a  

Q8 N Mean Rank 
1 10 104.45 
2 22 75.16 
3 48 60.08 
4 39 59.04 
5 12 63.46 
Total 131  b  

 EXAMAVG 

Chi-Square 14.081 

df 4 

Asymp. Sig. 0.007 

 
  

Example 5.23 

4.5.2.1 using the one-way ANOVA test. Perform the same analysis using the 
Kruskal-Wallis test and estimate its power for the alternative hypothesis 
corresponding to the sample means. 

A: We saw in 4.5.2.1 that a logarithmic transformation of ART was needed in 
order to be able to apply the ANOVA test. This transformation is not needed with 
the Kruskal-Wallist test, whose only assumption is the independency of the 
samples.  

Table 5.27 shows the results, from which we conclude that the null hypothesis 
of median equality of the three populations is rejected at a 5% significance level 
(or even at a smaller level). 

In order to estimate the power of this Kruskal-Wallis test, we notice that the 
sample size is large, and therefore, we expect the power to be the same as for the 
one-way ANOVA test using a number of cases equal to n = 50×0.955 ≈ 48. The 
power of the one-way ANOVA, for the alternative hypothesis corresponding to the 
sample means and with n = 48, is 1. 

  
 

Q: The variable ART of the Cork Stoppers’ dataset was analysed in section 
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Table 5.27. Results, obtained with SPSS, for the Kruskal-Wallis test of variable 

a  

C N Mean Rank 

1 50 28.18 

2 50 74.35 

3 50 123.97 

Total 150  
b  

 ART 

Chi-Square 121.590 

df 2 
Asymp. 
Sig. 0.000 

 

5.4.2  The Friedmann Test for Paired Samples 

The Friedman test can be considered the non-parametric counterpart of the two-
way ANOVA test described in section 4.5.3. The test assesses whether c-paired 
samples, each with n cases, are from the same population or from populations with 
continuous distributions and the same median. The variable being tested must be at 
least of ordinal type. The test procedure starts by assigning natural ordered ranks 
from 1 to c to the matched case values in each row, from the smallest to the largest. 
Tied ranks are substituted by their average. 
 

Commands 5.11. SPSS, STATISTICA, MATLAB and R commands used to 
perform the Friedmann test. 

SPSS Analyze; Nonparametric Tests; K Related 
Samples 

STATISTICA Statistics; Nonparametrics; Comparing 
multiple dep. samples (groups) 

MATLAB [p,table,stats]=friedman(x,reps) 

R friedman.test(x, group) | 
friedman.test(x~group) 

  
 

Let Ri denote the sum of ranks for sample i. Under the null hypothesis, we 
expect that each Ri will exhibit a small deviation from the value that would be 
obtained by chance, i.e., n(c + 1)/2. The test statistic is: 
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ART of the Cork Stoppers’ dataset: a) ranks, b) significance. 
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Tables with the exact probabilities of Fr, under the null hypothesis, can be found 
in the literature. For c > 5 or for n > 15 Fr has an asymptotic chi-square distribution 
with   df = c – 1 degrees of freedom. 

When there are tied ranks, a correction is inserted in formula 5.40, subtracting 
from nc(c + 1) in the denominator the following term: 
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where ti.j is the number of ties in group j of gi tied groups in the ith row. 

The power-efficiency of the Friedman test, when compared with its parametric 
counterpart, the two-way ANOVA, is 64% for c = 2 and increases with c, namely 
to 80% for c = 5. 

 

Example 5.24 

Q: Consider the evaluation of a sample of eight metallurgic firms (Metal 

evidence at a 5% level that all variables have distributions with the same median? 
 

Metal Firms dataset (Example 5.24). 

 Data  Ranks 
 CEI IRM EMS CLC OEL  CEI IRM EMS CLC OEL 

Firm #1 2 1 1 1 2  4.5 2 2 2 4.5 
Firm #2 2 1 1 1 2  4.5 2 2 2 4.5 
Firm #3 2 1 1 2 2  4 1.5 1.5 4 4 
Firm #4 2 1 1 1 2  4.5 2 2 2 4.5 
Firm #5 2 2 1 1 1  4.5 4.5 2 2 2 
Firm #6 2 2 2 3 2  2.5 2.5 2.5 5 2.5 
Firm #7 2 1 1 2 2  4 1.5 1.5 4 4 
Firm #8 3 3 1 2 2 4.5 4.5 1 2.5 2.5 
Total  33 20.5 14.5 23.5 28.5 

 
 

A: Table 5.28 lists the scores assigned to the eight firms. From the scores, the ranks 
are computed as previously described. Note particularly how ranks are assigned in 
the case of ties. For instance, Firm #1 IRM, EMS and CLC are tied for rank 1 
through 3; thus they get the average rank 2. Firm #1 CEI and OEL are tied for 

Firms’ dataset), in what concerns social impact, with variables: CEI = 
“commitment to environmental issues”; IRM = “incentive towards using recyclable 
materials”; EMS = “environmental management system”; CLC = “co-operation 
with local community”; OEL = “obedience to environmental legislation”. Is there 

Table 5.28.  Scores and ranks of the variables related to “social impact” in the 
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ranks 4 and 5; thus they get the average rank 4.5. Table 5.29 lists the results of the 
Friedman test, obtained with SPSS. Based on these results, the null hypothesis is 
rejected at 5% level (or even at a smaller level). 

  
 

Table 5.29. Results obtained with SPSS for the Friedman test of social impact 

a  

 Mean Rank 
CEI 4.13 
IRM 2.56 
EMS 1.81 
CLC 2.94 
OEL 3.56 

b  

N 8 

Chi-Square 13.831 

df 4 

Asymp. 
Sig. 0.008 

 

5.4.3 The Cochran Q test 

The Cochran Q test is particularly suitable to dichotomous data of k related 
samples with n items, e.g., when k judges evaluate the presence or absence of an 
event in the same n cases. The null hypothesis is that there is no difference of 

hypothesis is true, the statistic: 
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is distributed approximately as χ 2 with df = k – 1,  for not too small n (n > 4 and   
nk > 24), where Gj is the total number of successes in the jth column, G is the 
mean of Gj and Li is the total number of successes in the ith row. 

 

Example 5.25 

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases classified by 
three human experts (E1C, E2C, E3C) and an automatic diagnostic system (SPC) 
into three categories: normal, suspect and pathologic. Apply the Cochran Q test for 
the dichotomy normal (0) vs. not normal (1). 

scores of the Metal Firms’ dataset: a) mean ranks, b) significance. 

probability of one of the events (say, a “success”) for the k judges. If the null 
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A: Table 5.30 shows the frequencies and the value and significance of the Q 
statistic. Based on these results, we reject with p ≈ 0 the null hypothesis of equal 

system. As a matter of fact, the same conclusion is obtained for the three human 
experts group (left as an exercise). 

  
 

Table 5.30. Frequencies (a) and Cochran Q test results (b) obtained with SPSS for 
the FHR dataset in the classification of the normal event. 

a  

 Value 
 0 1 

SPCB 41 10 
E1CB 20 31 
E2CB 12 39 
E3CB 35 16 

b  

N 51

df 3

Asymp. Sig. 0.000

 

Exercises 

5.1 Consider the three sets of measurements, RC, CG and EG, of the Moulds dataset. 
Assess their randomness with the Runs test, dichotomising the data with the mean, 
median and mode. Check with a data plot why the random hypothesis is always 
rejected for the RC measurements (see Exercise 3.2). 

 
5.2 In Statistical Quality Control a process variable is considered out of control if the 

respective data sequence exhibits a non-random pattern. Assuming that the Cork 
Stoppers dataset is a valid sample of a cork stopper manufacture process, apply the 
Runs test to Example 3.4 data, in order to verify that the process is not out of control. 

 
5.3 Consider the Culture dataset, containing a sample of budget expenditure in cultural 

and sport activities, given in percentage of the total budget. Based on this sample, one 
could state that more than 50% of the budget is spent on sport activities. Test the 
validity of this statement with 95% confidence. 

 
5.4 The Flow Rate dataset contains measurements of water flow rate at two dams, 

denoted AC and T. Assuming the data is a valid sample of the flow rates at those two 
dams, assess at a 5% level of significance whether or not the flow rate at AC is half of 
the time higher than at T. Compute the power of the test. 

 
5.5 Redo Example 5.5 for Questions Q1, Q4 and Q7 (Freshmen dataset). 
 
5.6 Redo Example 5.7 for variable PRT (Cork Stoppers dataset). 

Cochran’s Q 61.615

classification of the “normal” event for the three human experts and the automatic 
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5.7 Several previous Examples and Exercises assumed a normal distribution for the 
variables being tested. Using the Lilliefors and Shapiro-Wilk tests, check this 
assumption for variables used in: 
a) Examples 3.6, 3.7, 4.1, 4.5, 4.13, 4.14 and 4.20. 
b) Exercises  3.2, 3.8, 4.9, 4.12 and 4.13. 

 
5.8 The Signal & Noise dataset contains amplitude values of a noisy signal for 

above a specified threshold, ∆. For ∆ = 1, compute the number of time instants between 
successive detections and use the chi-square test to assess the goodness of fit of the 
geometric, Poisson and Gamma distributions to the empirical inter-detection time. The 
geometric, Poisson and Gamma distributions are described in Appendix B. 

 
5.9 Consider the temperature data, T, of the Weather dataset (Data 1) and assume that 

it is a valid sample of the yearly temperature at 12H00 in the respective locality. 
Determine whether one can, with 95% confidence, accept the Beta distribution model 
with p = q = 3 for the empirical distribution of T. The Beta distribution is described in 
Appendix B. 

 
5.10 Consider the ASTV measurement data sample of the FHR-Apgar dataset. Check the 

following statements: 
a) Variable ASTV cannot have a normal distribution. 
b) The distribution of ASTV in hospital HUC can be well modelled by the normal 

distribution. 
c) The distribution of ASTV in hospital HSJ cannot be modelled by the normal 

distribution. 
d) If variable ASTV has a normal distribution in the three hospitals, HUC, HGSA 

and HSJ, then ASTV has a normal distribution in the Portuguese population. 
e) If variable ASTV has a non-normal distribution in one of the three hospitals, 

HUC, HGSA and HSJ, then ASTV cannot be well modelled by a normal 
distribution in the Portuguese population. 

 

 

 
5.13 Redo the previous exercise using the original scores. Can one use the chi-square 

statistic in this case? 
 
5.14 Consider the data describing the number of students passing (SCORE ≥ 10) or flunking 

(SCORE < 10) the Programming examination in the Programming dataset. Assess 
whether or not one can be 95% confident that the pass/flunk variable is independent of 
previous knowledge in Programming (variable PROG). Also assess whether or not the 

5.11 Some authors consider Yates’ correction overly conservative. Using the Freshmen
dataset (see Example 5.9), assess whether or not “the proportion of male students that 
are ‘initiated’ is smaller than that of female students” with and without Yates’ 
correction and comment on the results. 

5.12 Consider the “Commitment to quality improvement” and “Time dedicated to 
improvement” variables of the Metal Firms’ dataset. Assume that they have binary 
ranks: 1 if the score is below 3, and 0 otherwise. Can one accept the association of 
these two variables with 95% confidence? 

consecutive time instants, and a “detection” variable indicating when the amplitude is 
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are independent. 
 
5.15 Redo Example 5.14 for the variable AB. 
 
5.16 The FHR dataset contains measurements of foetal heart rate baseline performed by 

three human experts and an automatic system. Is there evidence at the 5% level of 
significance that there is no difference among the four measurement methods? Is there 
evidence, at 5% level, of no agreement among the human experts? 

 
5.17 The Culture dataset contains budget percentages spent on promoting sport activities 

in samples of Portuguese boroughs randomly drawn from three regions. Based on the 
sample evidence is it possible to conclude that there are no significant differences 
among those three regions on how the respective boroughs assign budget percentages 
to sport activities? Also perform the budget percentage comparison for pairs of regions. 

 
5.18 Consider the flow rate data measured at Cávado and Toco Dams included in the Flow 

Rate dataset. Assume that the December samples are valid random samples for that 
period of the year and, furthermore, assume that one wishes to compare the flow rate 
distributions at the two samples. 
a) Can the comparison be performed using a parametric test? 
b) Show that the conclusions of the sign test and of the Wilcoxon signed ranks test 

are contradictory at 5% level of significance. 
c) Estimate the power of the Wilcoxon signed ranks test. 
d) Repeat the previous analyses for the January samples. 

 
5.19 Using the McNemar Change test compare the pre and post-functional class of patients 

having undergone heart valve implant using the data sample of the Heart Valve 
dataset. 

 
5.20 Determine which variables are important in the discrimination of carcinoma from other 

tissue types using the Breast Tissue dataset, as well as in the discrimination 
among all tissue types. 

 

the following statements: 
a) In general, the CD4 marker is more efficacious than the CD8 marker in the 

discrimination of the knock-out vs. the control group. 
b) However, in the first two weeks the CD8 marker is by far the most efficacious in 

the discrimination of the knock-out vs. the control group. 
c) Two months after the infection the biochemical markers CD4 and CD8 are unable 

to discriminate the knock-out from the control group. 
 

pliocenic clays according to the content of chemical oxides and show that the main 
difference is in terms of alumina, Al2O3. Estimate what is the needed difference in 
alumina that will correspond to an approximate power of 90%. 

 

variables describing the previous knowledge of Boole’s Algebra and binary arithmetic 

5.21 Consider the bacterial counts in the spleen contained in the Cells’ dataset and check 

5.22 Based on the sample data included in the Clays’ dataset, compare the holocenic with 



 Exercises 221 

5.23 Run the non-parametric counterparts of the tests used in Exercises 4.9, 4.10 and 4.20. 
Compare the results and the power of the tests with those obtained using parametric 
tests. 

 

dataset are most discriminative of the white from the red wines. 
 
5.25 The Neonatal dataset contains mortality data for delivery taking place at home (MH) 

and at a Health Centre (MI). Assess whether there are significant differences at 5% 
level between delivery conditions, using the sign and the Wilcoxon tests. 

 

Portuguese firms in four branches of activity (BRANCH). Study the dataset in order to: 
a) Assess with 5% level of significance whether there are significant differences 

among the productivity medians of the four branches. 
b) Assess with 1% level of significance whether Commerce and Industry have 

significantly different medians. 
 
5.27 Apply the appropriate non-parametric test in order to rank the discriminative capability 

of the features used to characterise the tissue types in the Breast Tissue dataset. 
 
5.28 Redo the previous Exercise 5.27 for the CTG dataset and the three-class discrimination 

expressed by the grouping variable NSP. 
 
5.29 Consider the discrimination of the three clay types based on the sample data of the 

types is: 
a) Rejected with more than 95% confidence for all grading variables (LG, MG, HG). 
b) Not rejected for the iron oxide features. 
c) Rejected with higher confidence for the lime (CaO) than for the silica (SiO2). 

 
5.30 The FHR dataset contains measurements of basal heart rate performed by three human 

experts and an automatic diagnostic system. Assess whether the null hypothesis of 
equal median measurements can be accepted with 5% significance for the three human 
experts and the automatic diagnostic system. 

 

be accepted at a 5% significance level. Compute the coefficient of agreement κ and 
discuss its significance. 

 
5.32 The Programming dataset contains results of an enquiry regarding freshman 

hypothesis that the four dichotomised variables essentially evaluate the same thing? 
 

5.24 Using appropriate non-parametric tests, determine which variables of the Wines’

5.26 Consider the Firms’ dataset containing productivity figures (P) for a sample of 

Clays’ dataset. Show that the null hypothesis of equal medians for the three clay 

previous knowledge on programming (PROG), Boole’s Algebra (AB), binary 
arithmetic (BA) and computer hardware (H). Consider the variables PROG, AB, BA 
and H dichotomised in a “yes/no” fashion. Can one reject with 99% confidence the 

5.31 When analysing the contents of questions Q4, Q5, Q6 and Q7, someone said that “these 
questions are essentially evaluating the same thing”. Assess whether this statement can 
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5.33 Consider the share values of the firms BRISA, CIMPOR, EDP and SONAE of the 
Stock Exchange dataset. Assess whether or not the distribution of the daily 
increase and decrease of the share values can be assumed to be similar for all the firms. 

appropriate test for this dichotomous information. 
 
 
 
 

Hint: Create new variables with the daily “increase/decrease” information and use an 



  

6 Statistical Classification 

Statistical classification deals with rules of case assignment to categories or 
classes. The classification, or decision rule, is expressed in terms of a set of 
random variables − the case features. In order to derive the decision rule, one 
assumes that a training set of pre-classified cases − the data sample − is available, 
and can be used to determine the sought after rule applicable to new cases. The 
decision rule can be derived in a model-based approach, whenever a joint 
distribution of the random variables can be assumed, or in a model-free approach, 
otherwise. 

6.1 Decision Regions and Functions  

Consider a data sample constituted by n cases, depending on d features. The central 
idea in statistical classification is to use the data sample, represented by vectors in 
an dℜ feature space, in order to derive a decision rule that partitions the feature 
space into regions assigned to the classification classes. These regions are called 
decision regions. If a feature vector falls into a certain decision region, the 
associated case is assigned to the corresponding class. 

Let us assume two classes, ω1 and ω 2, of cases described by two-dimensional 
feature vectors (coordinates x1 and x2) as shown in Figure 6.1. The features are 
random variables, X1 and X 2, respectively. 

Each case is represented by a vector [ ] 2
21 ℜ∈=x xx . In Figure 6.1, we 

used o  to denote class ω1 cases and ×  to denote class ω2 cases. In general, the 
cases of each class will be characterised by random distributions of the 
corresponding feature vectors, as illustrated in Figure 6.1, where the ellipses 
represent equal-probability density curves that enclose most of the cases.  

Figure 6.1 also shows a straight line separating the two classes. We can easily 
write the equation of the straight line in terms of the features X1, X2 using 
coefficients or weights w1, w2 and a bias term w0 as shown in equation 6.1. The 
weights determine the slope of the straight line; the bias determines the straight 
line intersect with the axes.  

 
0)()( 022112,1 =++=≡ wxwxwdd XX xx . 6.1 

 
Equation 6.1 also allows interpretation of the straight line as the root set of a 

linear function d(x). We say that d(x) is a linear decision function that divides 

’
“ ” “ ”
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(categorises) 2ℜ  into two decision regions: the upper half plane corresponding to 
d(x) > 0 where feature vectors are assigned to ω1; the lower half plane 
corresponding to d(x) < 0 where feature vectors are assigned to ω2. The 
classification is arbitrary for d(x) = 0. 
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Figure 6.1. Two classes of cases described by two-dimensional feature vectors 
(random variables X1 and X2). The black dots are class means. 

 
 
The generalisation of the linear decision function for a d-dimensional feature 

space in dℜ  is straightforward: 
 

0w)( += xwxd , 6.2 
 

where w x represents the dot product1 of the weight vector and the d-dimensional 
feature vector. 

The root set of d(x) = 0, the decision surface, or discriminant, is now a linear   
d-dimensional surface called a linear discriminant or hyperplane. 

Besides the simple linear discriminants, one can also consider using more 
complex decision functions. For instance, Figure 6.2 illustrates an example of       
two-dimensional classes separated by a decision boundary obtained with a 
quadratic decision function: 

 
.)( 01122213

2
24

2
15 wxwxwxxwxwxwd +++++=x  6.3 

 
Linear decision functions are quite popular, as they are easier to compute and 

have simpler statistical analysis. For this reason in the following we will only deal 
with linear discriminants. 

 
 
 

                                                           
1
  The dot product x y is obtained by adding the products of corresponding elements of the 

two vectors x and y. 

’

’

’
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Figure 6.2. Decision regions and boundary for a quadratic decision function. 

6.2 Linear Discriminants 

6.2.1 Minimum Euclidian Distance Discriminant 

The minimum Euclidian distance discriminant classifies cases according to their 
distance to class prototypes, represented by vectors mk. Usually, these prototypes 

For any d-dimensional feature vector x and any number of classes, ωk (k = 1, …, c), 
represented by their prototypes mk, the square of the Euclidian distance between 
the feature vector x and a prototype mk  is expressed as follows: 
 

∑
=
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1

22 )()(x .  6.4 

 
This can be written compactly in vector form, using the vector dot product: 
 

( ) ( ) kkkkkkkd mmmxxmxxmxmxx +−−=−−=)(2 . 6.5 
 
Grouping together the terms dependent on mk, we obtain: 
 

xxmmxmx +−−= )5.0(2)(2
kkkkd .  6.6a 

 

We choose class ωk, therefore the mk, which minimises )(2 xkd . Let us assume   
c = 2. The decision boundary between the two classes corresponds to: 

 
)()( 2

2
2
1 xx dd = . 6.6b 

 
Thus, using 6.6a, one obtains: 
 
( ) ( )[ ] 050 2121 =+−− mmxmm . .  6.6c 

’ ’ ’ ’ ’

’ ’ ’

’

are class means. We consider the distance taken in the “natural” Euclidian sense. 
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illustrated in Figure 6.1 for d = 2 (the hyperplane is then a straight line). 
For c classes, the minimum distance discriminant is piecewise linear, composed 

of segments of hyperplanes, as illustrated in Figure 6.3 with an example of a 
decision region for class ω1 in a situation of c = 4. 

 
 

Figure 6.3. Decision region for ω 1 (hatched area) showing linear discriminants 
relative to three other classes. 

 

Example 6.1 

evaluate a minimum Euclidian distance classifier for classes 1 (ω1) and 2 (ω 2), 
using only feature N (number of defects). 

A: In this case, a feature vector with only one element represents each case:           
x = [N]. Let us first inspect the case distributions in the feature space (d = 1) 
represented by the histograms of Figure 6.4. The distributions have a similar shape 
with some amount of overlap. The sample means are m1 = 55.3 for ω1 and m2 = 
79.7 for ω 2. 

Using equation 6.6c, the linear discriminant is the point at half distance from the 
means, i.e., the classification rule is: 

 

2121 elsethen5.672/)(If ωω ∈∈=+< xxx mm .  6.7 
 

(x = 68), the class assignment is arbitrary. 
The classifier performance evaluated in the whole dataset can be computed by 

counting the wrongly classified cases, i.e., falling into the wrong decision region 

  
                                                           
2
  We assume an underlying real domain for the ordinal feature N. Conversion to an ordinal 

is performed when needed. 

Equation 6.6c, linear in x, represents a hyperplane perpendicular to (m1 – m2)’ 
and passing through the point 0.5(m1 + m2)’ halfway between the means, as 

Q: Consider the Cork Stoppers’ dataset (see Appendix E). Design and 

The separating “hyperplane” is simply point 682. Note that in the equality case  

m1
m2

m3 m4

 

(a half-line in this case). This amounts to 23% of the cases. 
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Figure 6.4. Feature N histograms obtained with STATISTICA for the first two 
classes of the cork-stopper data. 

 

Figure 6.5. Scatter diagram, obtained with STATISTICA, for two classes of cork 
stoppers (features N, PRT10) with the linear discriminant (solid line) at half 
distance from the means (solid marks). 

 

Example 6.2 

Q: Redo the previous example, using one more feature: PRT10 = PRT/10.  

A: The feature vector is: 
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







=

10PRT
N

x   or  [ ]x PRT10N= .  6.8 

 
In this two-dimensional feature space, the minimum Euclidian distance 

classifier is implemented as follows (see Figure 6.5):  
 
1. Draw the straight line (decision surface) equidistant from the sample means, 

i.e., perpendicular to the segment linking the means and passing at half 
distance. 

2. Any case above the straight line is assigned to ω2. Any sample below is 
assigned to ω1. The assignment is arbitrary if the case falls on the straight-
line boundary. 

 
Note that using PRT10 instead of PRT in the scatter plot of Figure 6.5 eases the 

comparison of feature contribution, since the feature ranges are practically the 
same. 

Counting the number of wrongly classified cases, we notice that the overall 
error falls to 18%. The addition of PRT10 to the classifier seems beneficial. 

  

6.2.2 Minimum Mahalanobis Distance Discriminant  

In the previous section, we used the Euclidian distance in order to derive the 
minimum distance, classifier rule. Since the features are random variables, it seems 
a reasonable assumption that the distance of a feature vector to the class prototype 
(class sample mean) should reflect the multivariate distribution of the features. 
Many multivariate distributions have probability functions that depend on the joint 
covariance matrix. This is the case with the multivariate normal distribution, as 
described in section A.8.3 (see formula A.53). Let us assume that all classes have 
an identical covariance matrix Σ, reflecting a similar hyperellipsoidal shape of the 

density of the feature vectors relative to a sample mean vector mk correspond to a 
constant value of the following squared Mahalanobis distance: 
 

)()()( 12
kkkd mxΣmxx −−= − , 6.9 

 
When the covariance matrix is the unit matrix, we obtain: 
 

)()()()()( 12
kkkkkd mxmxmxImxx −−=−−= − , 

 
which is the squared Euclidian distance of formula 6.7.  

 

’

’

’ ’

corresponding feature vector distributions. The “surfaces” of equal probability 
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Figure 6.6. 3D plots of 1000 points with normal distribution: a) Uncorrelated 
variables with equal variance; b) Correlated variables with unequal variance. 

 
 
Let us now interpret these results. When all the features are uncorrelated and 

have equal variance, the covariance matrix is the unit matrix multiplied by the 
equal variance factor. In the three-dimensional space, the clouds of points are 
distributed as spheres, illustrated in Figure 6.6a, and the usual Euclidian distance to 
the mean is used in order to estimate the probability density at any point. The 
Mahalanobis distance is a generalisation of the Euclidian distance applicable to the 
general case of correlated features with unequal variance. In this case, the points of 
equal probability density lie on an ellipsoid and the data points cluster in the shape 
of an ellipsoid, as illustrated in Figure 6.6b. The orientations of the ellipsoid axes 
correspond to the correlations among the features. The lengths of straight lines 
passing through the centre and intersecting the ellipsoid correspond to the 
variances along the lines. The probability density is now estimated using the 
squared Mahalanobis distance 6.9. 

Formula 6.9 can also be written as: 
 

kkkkkd mΣmmΣxxΣmxΣxx 11112 )( −−−− +−−= . 6.10a 
 
Grouping, as we have done before, the terms dependent on mk, we obtain: 
 

( ) xΣxmΣmxmΣx 1112 5.0)(2)( −−− +−−= kkkkd .  6.10b 
 
Since xΣx 1− is independent of k, minimising dk(x) is equivalent to maximising 

the following decision functions: 
 

( ) 0,kkk wg += xwx , 6.10c 
 

with kk mΣw 1−= ; kkkw mΣm 1
0, 5.0 −−= . 6.10d 

Using these decision functions, we again obtain linear discriminant functions in 
the form of hyperplanes passing through the middle point of the line segment 

’ ’ ’ ’

’ ’ ’

’

’

’
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linking the means. The only difference from the results of the previous section is 
that the hyperplanes separating class ωi from class ωj are now orthogonal to the 
vector Σ-1(mi − mj). 

In practice, it is impossible to guarantee that all class covariance matrices are 
equal. Fortunately, the decision surfaces are usually not very sensitive to mild 
deviations from this condition; therefore, in normal practice, one uses an estimate 
of a pooled covariance matrix, computed as an average of the sample covariance 
matrices. This is the practice followed by SPSS and STATISTICA.  

 

Example 6.3 

Q: Redo Example 6.1, using a minimum Mahalanobis distance classifier. Check 
the computation of the discriminant parameters and determine to which class a 
cork with 65 defects is assigned. 

A: Given the similarity of both distributions, the Mahalanobis classifier produces 
the same classification results as the Euclidian classifier. Table 6.1 shows the 
classification matrix (obtained with SPSS) with the predicted classifications along 
the columns and the true (observed) classifications along the rows. We see that for 
this simple classifier, the overall percentage of correct classification in the data 
sample (training set) is 77%, or equivalently, the overall training set error is 23% 
(18% for ω1 and 28% for ω2). For the moment, we will not assess how the 
classifier performs with independent cases, i.e., we will not assess its test set error. 

computed by SPSS, are shown in Table 6.2. 
 
 

Table 6.1. Classification matrix obtained with SPSS of two classes of cork 
stoppers using only one feature, N. 

   Predicted Group Membership  Total 
  Class 1 2  

Original Count 1 41 9 50 
Group   2 14 36 50 
  % 1 82.0 18.0 100 
    2 28.0 72.0 100 
77.0% of original grouped cases correctly classified. 

 
 

Table 6.2. Decision function coefficients obtained with SPSS for two classes of 
cork stoppers and one feature, N. 

   Class 1    Class 2 
N   0.192     0.277 
(Constant) −6.005 −11.746 

The decision function coefficients (also known as Fisher’s coefficients), as 
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Let us check these results. The class means are m1 = [55.28] and m2 = [79.74]. 
The average variance is s2 = 287.63. Applying formula 6.10d we obtain: 

 

[ ] 005.6/5.0;192.0/ 22
10,1

2
11 −=−=== sws mmw . 6.11a 

[ ] 746.11/5.0;277.0/ 22
20,2

2
22 −=−=== sws mmw . 6.11b 

 

These results confirm the ones shown in Table 6.2. Let us determine the class 
assignment of a cork-stopper with 65 defects. As g1([65]) = 0.192×65 – 6.005 = 
6.48 is greater than g2([65]) = 0.227×65 – 11.746 = 6.26 it is assigned to class ω1. 

  

Example 6.4 

Q: Redo Example 6.2, using a minimum Mahalanobis distance classifier. Check 
the computation of the discriminant parameters and determine to which class a 
cork with 65 defects and with a total perimeter of 520 pixels (PRT10 = 52) is 
assigned. 

A: The training set classification matrix is shown in Table 6.3. A significant 
improvement was obtained in comparison with the Euclidian classifier results 
mentioned in section 6.2.1; namely, an overall training set error of 10% instead of 
18%. The Mahalanobis distance, taking into account the shape of the data clusters, 
not surprisingly, performed better. The decision function coefficients are shown in 
Table 6.4. Using these coefficients, we write the decision functions as: 

 
[ ] 138.609783.0262.0)( 0,111 −−=+= xxwx wg . 6.12a 
[ ] 817.122776.00803.0)( 0,222 −=+= xxwx wg . 6.12b 

 
The point estimate of the pooled covariance matrix of the data is: 
 









−

−
=⇒








= −

036.00255.0
0255.00216.0

553.172070.204
070.20463.287 1SS . 6.13 

 
Substituting S-1 in formula 6.10d, the results shown in Table 6.4 are obtained.  
 
 

Table 6.3. Classification matrix obtained with SPSS for two classes of cork 
stoppers with two features, N and PRT10. 

   Predicted Group Membership  Total 

  Class 1 2  
Original Count 1 49 1 50 
Group   2 9 41 50 
  % 1 98.0 2.0 100 
    2 18.0 82.0 100 
90.0% of original grouped cases correctly classified. 

’
’
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It is also straightforward to compute S-1(m1 − m2) = [0.18 −0.376] . The 
orthogonal line to this vector with slope 0.4787 and passing through the middle 
point between the means is shown with a solid line in Figure 6.7. As expected, the 

comparison). 

g2([65 52] ) = 6.86, it is assigned to class ω2. This cork stopper has a total 
perimeter of the defects that is too big to be assigned to class ω1.  

  
 

Table 6.4. Decision function coefficients, obtained with SPSS, for the two classes 
of cork stoppers with features N and PRT10. 

 Class 1 Class 2 
N 0.262 0.0803 
PRT10 -0.09783 0.278 
(Constant) -6.138 -12.817 
 
 
 

 
Figure 6.7. Mahalanobis linear discriminant (solid line) for the two classes of cork 
stoppers. Scatter plot obtained with STATISTICA. 

 
 
Notice that if the distributions of the feature vectors in the classes correspond to 

different hyperellipsoidal shapes, they will be characterised by unequal covariance 
matrices. The distance formula 6.10 will then be influenced by these different 
shapes in such a way that we obtain quadratic decision boundaries. Table 6.5 
summarises the different types of minimum distance classifiers, depending on the 
covariance matrix. 

’

As to the classification of x = [65 52]’, since g ([65 52]’) = 5.80 is smaller than 1
’

“hyperplane” leans along the regression direction of the features (see Figure 6.5 for 
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Table 6.5. Summary of minimum distance classifier types. 

Covariance Classifier Equal-density 
surfaces Discriminants 

Σi = s2I Linear, Euclidian Hyperspheres 
Hyperplanes orthogonal to the segment 

linking the means 

Σi = Σ Linear, Mahalanobis Hyperellipsoids 
Hyperplanes leaning along the 

regression lines 

Σi Quadratic, Mahalanobis Hyperellipsoids Quadratic surfaces 

 
 

Commands 6.1. SPSS, STATISTICA, MATLAB and R commands used to 
perform discriminant analysis. 

SPSS Analyze; Classify; Discriminant 

STATISTICA Statistics; Multivariate Exploratory 
Techniques; Discriminant Analysis 

MATLAB classify(sample,training,group) 
classmatrix(x,y) 

R classify(sample,training,group) 
classmatrix(x,y) 

 
 

A large number of statistical analyses are available with SPSS and STATISTICA 
discriminant analysis commands. For instance, the pooled covariance matrix 
exemplified in 6.13 can be obtained with SPSS by checking the Pooled 
Within-Groups Matrices of the Statistics tab. There is also the 
possibility of obtaining several types of results, such as listings of decision 
function coefficients, classification matrices, graphical plots illustrating the 
separability of the classes, etc. The discriminant classifier can also be configured 
and evaluated in several ways. Many of these possibilities are described in the 
following sections. 

The R stats package does not include discriminant analysis functions. 
However, it includes a function for computing Mahalanobis distances. We provide 
in the book CD two functions for performing discriminant analysis. The first 
function, classify(sample,training,group), returns a vector contain-
ing the integer classification labels of a sample matrix based on a training 
data matrix with a corresponding group vector of supervised classifications 
(integers starting from 1). The returned classification labels correspond to the 
minimum Mahalanobis distance using the pooled covariance matrix. The second 
function, classmatrix(x,y), generates a classification matrix based on two 
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vectors, x and y, of integer classification labels. The classification matrix of Table 
6.3 can be obtained as follows, assuming the cork data frame has been attached 
with columns ND, PRT and CL corresponding to variables N, PRT and CLASS, 
respectively: 

 
> y <- cbind(ND[1:100],PRT[1:100]/10) 
> co <- classify(y,y,CL[1:100]) 
> classmatrix(CL[1:100],co) 
 

MATLAB does not provide a function for obtaining the classification matrix. We 
include in the book CD the classmatrix function for this purpose, working in 
the same way as in R. 

We didn t obtain the same values in MATLAB as we did with the other software 
products. The reason may be attributed to the fact that MATLAB apparently does 
not use pooled covariances (therefore, is not providing linear discriminants). 

  

6.3 Bayesian Classification 

In the previous sections, we presented linear classifiers based solely on the notion 
of distance to class means. We did not assume anything specific regarding the data 
distributions. In this section, we will take into account the specific probability 
distributions of the cases in each class, thereby being able to adjust the classifier to 
the specific risks of a classification. 

6.3.1 Bayes Rule for Minimum Risk 

Let us again consider the cork stopper problem and imagine that factory production 
was restricted to the two classes we have been considering, denoted as: ω1 = Super 
and ω2 = Average. Let us assume further that the factory had a record of production 
stocks for a reasonably long period, summarised as: 

 
Number of produced cork stoppers of class ω 1: n1  =     901 420 
Number of produced cork stoppers of class ω 2: n2  =  1 352 130 
Total number of produced cork stoppers:  n   =  2 253 550 
 
With this information, we can readily obtain good estimates of the probabilities 

of producing a cork stopper from either of the two classes, the so-called prior 
probabilities or prevalences: 

 
P(ω1) = n1/n = 0.4;       P(ω2) = n2/n = 0.6. 6.14 
 

The meanings of MATLAB’s classify arguments are the same as in R. 

’
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Note that the prevalences are not entirely controlled by the factory, and that they 
depend mainly on the quality of the raw material. Just as, likewise, a cardiologist 
cannot control how prevalent myocardial infarction is in a given population. 

Suppose we are asked to make a blind decision as to which class a cork stopper 
belongs without looking at it. If the only available information is the prevalences, 
the sensible choice is class ω2. This way, we expect to be wrong only 40% of the 
times. 

Assume now that we were allowed to measure the feature vector x of the 
presented cork stopper. Let )|( xiP ω be the conditional probability of the cork 
stopper represented by x belonging to class ωi. If we are able to determine the 
probabilities )|( 1 xωP and )|( 2 xωP , the sensible decision is now: 

 
If   )|( 1 xωP  > )|( 2 xωP  we decide 1ω∈x ;  
If   )|( 1 xωP  < )|( 2 xωP  we decide 2ω∈x ; 6.15 
If   )|( 1 xωP  = )|( 2 xωP  the decision is arbitrary. 
 
We can condense 6.15 as: 
 
If   )|( 1 xωP  > )|( 2 xωP   then  1ω∈x    else  2ω∈x .  6.15a 
 
The posterior probabilities )|( xiP ω  can be computed if we know the pdfs of 

the distributions of the feature vectors in both classes, )|( ip ωx , the so-called 
likelihood of x. As a matter of fact, the Bayes law (see Appendix A) states that: 

 

)(
)()|(

)|(
x

x
x

p
Pp

P ii
i

ωω
ω = , 6.16 

with  ∑ == c
i ii Ppp 1 )()|()( ωωxx ,  the  total probability of x. 

Note that P(ωi) and P(ωi | x) are discrete probabilities (symbolised by a capital 
letter), whereas p(x |ωi) and p(x) are values of pdf functions. Note also that the 
term p(x) is a common term in the comparison expressed by 6.15a, therefore, we 
may rewrite for two classes: 

 
If   )()|( 11 ωω Pp x  > )()|( 22 ωω Pp x  then 1ω∈x  else 2ω∈x ,  6.17 
 

Example 6.5 

Q: Consider the classification of cork stoppers based on the number of defects, N, 

posterior probabilities and classification of a cork stopper with 65 defects, using 
prevalences 6.14. 

A: The feature vector is x = [N], and we seek the classification of x = [65]. Figure 
6.8 shows the histograms of both classes with a superimposed normal curve. 

 

Prevalences can, therefore, be regarded as “states of nature”. 

and restricted to the first two classes, “Super” and “Average”. Estimate the 
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Figure 6.8. Histograms of feature N for two classes of cork stoppers, obtained with 
STATISTICA. The threshold value N = 65 is marked with a vertical line. 

 
 
From this graphic display, we can estimate the likelihoods3 and the posterior 

probabilities: 
 

333.0833.04.0)|()(833.024/20)|( 111 =×=⇒== ωωω xx pPp ; 6.18a 

418.0696.06.0)|()(696.023/16)|( 222 =×=⇒== ωωω xx pPp . 6.18b 
 
We then decide class ω 2, although the likelihood of ω 1 is bigger than that of ω 2. 

Notice how the statistical model prevalences changed the conclusions derived by 
the minimum distance classification (see Example 6.3). 

  
 
Figure 6.9 illustrates the effect of adjusting the prevalence threshold assuming 

equal and normal pdfs: 
 
• Equal prevalences. With equal pdfs, the decision threshold is at half 

distance from the means. The number of cases incorrectly classified, 
proportional to the shaded areas, is equal for both classes. This situation is 
identical to the minimum distance classifier.  

• Prevalence of ω1 bigger than that of ω 2. The decision threshold is displaced 
towards the class with smaller prevalence, therefore decreasing the number 
of wrongly classified cases of the class with higher prevalence, as seems 
convenient. 

                                                           
3

 

importance and is neglected in the computations of 6.18. 

  The normal curve fitted by STATISTICA is multiplied by the factor “number of cases” ×
histogram interval width”, which is 1000 in the present case. This constant factor is of no “
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Figure 6.9. Influence of the prevalence threshold on the classification errors, 
represented by the shaded areas (dark grey represents the errors for class ω1). (a)  
Equal prevalences; (b) Unequal prevalences. 

 
 

Figure 6.10. Classification results, obtained with STATISTICA, of the cork 
stoppers with unequal prevalences: 0.4 for class ω1 and 0.6 for class ω2. 

 

Example 6.6 

Q: Compute the classification matrix for all the cork stoppers of Example 6.5 and 
comment the results. 

A: Figure 6.10 shows the classification matrix obtained with the prevalences 
computed in 6.14, which are indicated in the Group row. We see that indeed the 
decision threshold deviation led to a better performance for class ω2 than for class 
ω1. This seems reasonable since class ω2 now occurs more often. Since the overall 
error has increased, one may wonder if this influence of the prevalences was 
beneficial after all. The answer to this question is related to the topic of 
classification risks, presented below. 

  
 
Let us assume that the cost of a ω1

of a ω2  0.015 €. Suppose that the ω1 cork stoppers are 
to be used in special bottles whereas the ω2 cork stoppers are to be used in normal 
bottles.  

Let us further consider that the wrong classification of an average cork stopper 
leads to its rejection with a loss of 0.015 € and the wrong classification of a super 
quality cork stopper amounts to a loss of 0.025 − 0.015 = 0.01 € (see Figure 6.11).  

 (“super”) cork stopper is 0.025 € and the cost 
 (“average”) cork stopper is
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Special Bottles

Normal Bottles

0.010 €

0.015 €

0 €

0 €

ω1

ω2
 

Figure 6.11. Loss diagram for two classes of cork stoppers. Correct decisions have 
zero loss. 

 
Denote: 
 

 SB – Action of using a cork stopper in special bottles. 
 NB – Action of using a cork stopper in normal bottles.  
 ω1=S  (class super); ω 2=A (class average) 

 
Define: )|( jiij ωαλλ = as the loss associated with an action iα when the 

correct class is ωj. In the present case, { }NBSBi ,∈α . 
We can arrange the λij in a loss matrix Λ, which in the present case is: 
 
 









=

001.0
015.00

Λ . 6.19 

 
Therefore, the risk (expected value of the loss) associated with the action of 

using a cork, characterised by feature vector x, in special bottles, can be expressed 
as: 

 
( ) ( ) ( ) ( )xxxx |015.0|)|(|)|(| APAPMNBSPSSBSBR ×=+= λλ ; 6.20a 

 
And likewise for normal bottles: 
 

( ) ( ) ( ) ( )xxxx |01.0|)|(|)|(| SPAPANBSPSNBNBR ×=+= λλ ; 6.20b 
 
We are assuming that in the risk evaluation, the only influence is from wrong 

decisions. Therefore, correct decisions have zero loss, λii = 0, as in 6.19. If instead 
of two classes, we have c classes, the risk associated with a certain action αi is 
expressed as follows: 

 

∑
=

=
c

j
jjii PR

1
)|()|()|( xx ωωαλα . 6.21 

 
We are obviously interested in minimising an average risk computed for an 

arbitrarily large number of cork stoppers. The Bayes rule for minimum risk 
achieves this through the minimisation of the individual conditional risks R(αi | x). 
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Let us assume, first, that wrong decisions imply the same loss, which can be 
scaled to a unitary loss: 

 





≠
=

==
ji
ji

jiij if1
if0

)|( ωαλλ .   6.22a 

 
In this situation, since all posterior probabilities add up to one, we have to 

minimise: 
 

∑
≠

−==
ij

iji PPR )|(1)|()|( xxx ωωα .  6.22b 

 
This corresponds to maximising P(ωi | x), i.e., the Bayes decision rule for 

minimum risk corresponds to the generalised version of 6.15a: 
 
Decide   ijPP jii ≠∀> ),|()|(if xx ωωω .  6.22c 
 
Thus, the decision function for class ωi is the posterior probability,          

)(xig = )|( xiP ω , and the classification rule amounts to selecting the class with 
maximum posterior probability. 

Let us now consider the situation of different losses for wrong decisions, 
assuming, for the sake of simplicity, that c = 2. Taking into account expressions 
6.20a and 6.20b, it is readily concluded that we will decide ω1 if: 

 
)()|()()|()|()|( 21221211212121 ωλωωλωωλωλ PpPpPP xxxx >⇒> .   6.23 

 
This is equivalent to formula 6.17 using the following adjusted prevalences: 
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STATISTICA and SPSS allow specifying the priors as estimates of the sample 

composition (as in 6.14) or by user assignment of specific values. In the latter the 
user can adjust the priors in order to cope with specific classification risks. 

 

Example 6.7 

Q: Redo Example 6.6 using adjusted prevalences that take into account 6.14 and 
the loss matrix 6.19. Compare the classification risks with and without prevalence 
adjustment. 

A: The losses are λ12 = 0.015 and λ21 = 0.01. Using the prevalences 6.14, one 
obtains P*(ω1) = 0.308 and P*(ω2) = 0.692. The higher loss associated with a 
wrong classification of a ω2 cork stopper leads to an increase of P*( ω2) compared 
with P*( ω1). The consequence of this adjustment is the decrease of the number of 
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ω2 cork stoppers wrongly classified as ω1. This is shown in the classification matrix 
of Table 6.6. 

We can now compute the average risk for this two-class situation, as follows: 
 

21211212 PePeR λλ += , 
 

where Peij is the error probability of deciding class ωi when the true class is ω j.  
Using the training set estimates of these errors, Pe12 = 0.1 and Pe21 = 0.46  (see 

Table 6.6), the estimated average risk per cork stopper is computed as                    
R = 0.015×Pe12 + 0.01×Pe21 = 0.015×0.01 + 0.01×0.46 = 0.0061 €. If we had not 
used the adjusted prevalences, we would have obtained the higher risk estimate of 
0.0063 € (use the Peij estimates from Figure 6.10).  

 

Table 6.6. Classification matrix obtained with STATISTICA of two classes of 
cork stoppers with adjusted prevalences (Class 1 ≡ω1; Class 2 ≡ω2). The column 
values are the predicted classifications. 

 Percent Correct Class 1 Class 2 

Class 1 54 27 23 

Class 2 90 5 45 

Total 72 32 68 
 

6.3.2 Normal Bayesian Classification 

Up to now, we have assumed no particular distribution model for the likelihoods. 
Frequently, however, the normal distribution model is a reasonable assumption. 
SPSS and STATISTICA make this assumption when computing posterior 
probabilities. 

A normal likelihood for class ωi is expressed by the following pdf (see 
Appendix A): 
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ω , 6.24 

with: 
 

[ ]xµ ii E= , mean vector for class ωI  ; 6.24a 

( )( )[ ]µxµxΣ iiii E −−= , covariance for class ωi . 6.24b 
 
Since the likelihood 6.24 depends on the Mahalanobis distance of a feature 

vector to the respective class mean, we obtain the same types of classifiers shown 
in Table 6.5. 

’

’
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Note that even when the data distributions are not normal, as long as they are 
symmetric and in correspondence to ellipsoidal shaped clusters of points, we obtain 
the same decision surfaces as for a normal classifier, although with different error 
rates and posterior probabilities.  

As previously mentioned SPSS and STATISTICA use a pooled covariance 
matrix when performing linear discriminant analysis. The influence of this practice 
on the obtained error, compared with the theoretical optimal Bayesian error 
corresponding to a quadratic classifier, is discussed in detail in (Fukunaga, 1990). 
Experimental results show that when the covariance matrices exhibit mild 
deviations from the pooled covariance matrix, the designed classifier has a 
performance similar to the optimal performance with equal covariances. This 
makes sense since for covariance matrices that are not very distinct, the difference 
between the optimum quadratic solution and the sub-optimum linear solution 
should only be noticeable for cases that are far away from the prototypes, as 
illustrated in Figure 6.12. 

As already mentioned in section 6.2.3, using decision functions based on the 
individual covariance matrices, instead of a pooled covariance matrix, will produce 
quadratic decision boundaries. SPSS affords the possibility of computing such 
quadratic discriminants, using the Separate-groups option of the Classify 
tab. However, a quadratic classifier is less robust (more sensitive to parameter 
deviations) than a linear one, especially in high dimensional spaces, and needs a 
much larger training set for adequate design (see e.g. Fukunaga and Hayes, 1989). 

SPSS and STATISTICA provide complete listings of the posterior probabilities 
6.18 for the normal Bayesian classifier, i.e., using the likelihoods 6.24. 

 
 

x1

x2

 
 

Figure 6.12. Discrimination of two classes with optimum quadratic classifier (solid 
line) and sub-optimum linear classifier (dotted line). 

 

Example 6.8 

Q: Determine the posterior probabilities corresponding to the classification of two 
classes of cork stoppers with equal prevalences as in Example 6.4 and comment the 
results. 

A: Table 6.7 shows a partial listing of the computed posterior probabilities, 
obtained with SPSS. Notice that case #55 is marked with **, indicating a 
misclassified case, with a posterior probability that is higher for class 1 (0.782) 
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than for class 2 (0.218). Case #61 is also misclassified, but with a small difference 
of posterior probabilities. Borderline cases as case #61 could be re-analysed, e.g. 
using more features.   

 

Table 6.7. Partial listing of the posterior probabilities, obtained with SPSS, for the 
classification of two classes of cork stoppers with equal prevalences. The columns 

 Actual Group Highest Group Second Highest Group 

 Case 
Number  Predicted Group P(G=g | D=d) Group P(G=g | D=d) 

…      
50 1 1 0.964 2 0.036 
51 2 2 0.872 1 0.128 
52 2 2 0.728 1 0.272 
53 2 2 0.887 1 0.113 
54 2 2 0.843 1 0.157 
55 2 1** 0.782 2 0.218 
56 2 2 0.905 1 0.095 
57 2 2 0.935 1 0.065 
…      
61 2 1** 0.522 2 0.478 
…      
**  Misclassified case 

 

For a two-class discrimination with normal distributions and equal prevalences 
and covariance, there is a simple formula for the probability of error of the 
classifier (see e.g. Fukunaga, 1990): 

 
)2/(1 1,0 δNPe −= , 6.25 

 
with: 

 
( ) ( )21

1
21

2 µµΣµµ −−= −δ ,     6.25a 
 

the square of the so-called Bhattacharyya distance, a Mahalanobis distance of the 
means, reflecting the class separability. 

Figure 6.13 shows the behaviour of Pe with increasing squared Bhattacharyya 
distance. After an initial quick, exponential-like decay, Pe converges 
asymptotically to zero. It is, therefore, increasingly difficult to lower a classifier 
error when it is already small. 

’

headed by “P(G=g | D=d)” are posterior probabilities. 
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Figure 6.13. Error probability of a Bayesian two-class discrimination with normal 
distributions and equal prevalences and covariance. 

6.3.3 Dimensionality Ratio and Error Estimation 

The Mahalanobis and the Bhattacharyya distances can only increase when adding 
more features, since for every added feature a non-negative distance contribution is 
also added. This would certainly be the case if we had the true values of the means 
and the covariances available, which, in practical applications, we do not. 

When using a large number of features we get numeric difficulties in obtaining a 
good estimate of Σ-1, given the finiteness of the training set. Surprising results can 
then be expected; for instance, the performance of the classifier can degrade when 
more features are added, instead of improving. 

Figure 6.14 shows the classification matrix for the two-class, cork-stopper 
problem, using the whole ten-feature set and equal prevalences. The training set 
performance did not increase significantly compared with the two-feature solution 
presented previously, and is worse than the solution using the four-feature vector 

There are, however, further compelling reasons for not using a large number of 
features. In fact, when using estimates of means and covariance derived from a 
training set, we are designing a biased classifier, fitted to the training set. 
Therefore, we should expect that our training set error estimates are, on average, 
optimistic. On the other hand, error estimates obtained in independent test sets are 
expected to be, on average, pessimistic. It is only when the number of cases, n, is 
sufficiently larger than the number of features, d, that we can expect that our 
classifier will generalise, that is it will perform equally well when presented with 
new cases. The n/d ratio is called the dimensionality ratio. 

The choice of an adequate dimensionality ratio has been studied by several 
authors (see References). Here, we present some important results as an aid for the 
designer to choose sensible values for the n/d ratio. Later, when we discuss the 
topic of classifier evaluation, we will come back to this issue from another 
perspective. 

[ART  PRM  NG  RAAR]’, as shown in Figure 6.14b. 
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Figure 6.14. Classification results obtained with STATISTICA, of two classes of 
cork stoppers using: (a) Ten features; (b) Four features. 

 
 

Let us denote: 
 
Pe  –  Probability of error of a given classifier; 
Pe* – Probability of error of the optimum Bayesian classifier; 
Ped(n)  –  Training (design) set estimate of Pe based on a classifier 
   designed on n cases; 
Pet(n) –  Test set estimate of Pe based on a set of n test cases. 
 
The quantity Ped(n) represents an estimate of Pe influenced only by the finite 

size of the design set, i.e., the classifier error is measured exactly, and its deviation 
from Pe is due solely to the finiteness of the design set. The quantity Pet(n) 
represents an estimate of Pe influenced only by the finite size of the test set, i.e., it 
is the expected error of the classifier when evaluated using n-sized test sets. These 
quantities verify Ped(∞) = Pe  and Pet(∞) = Pe, i.e., they converge to the theoretical 
value Pe with increasing values of n. If the classifier happens to be designed as an 
optimum Bayesian classifier Ped and Pet converge to Pe*. 

In normal practice, these error probabilities are not known exactly. Instead, we 
compute estimates of these probabilities, td ePeP ˆandˆ , as percentages of 
misclassified cases, in exactly the same way as we have done in the classification 
matrices presented so far. The probability of obtaining k misclassified cases out of 
n for a classifier with a theoretical error Pe, is given by the binomial law: 

 

knk PePe
k
n

kP −−







= )1()( . 6.26 

 
The maximum likelihood estimation of Pe under this binomial law is precisely 

(see Appendix C): 
 

nkeP /ˆ = , 6.27 
 
with standard deviation: 

 

n
PePe )1( −

=σ . 6.28 
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Formula 6.28 allows the computation of confidence interval estimates for eP̂ , 
by substituting eP̂ in place of Pe and using the normal distribution approximation 
for sufficiently large n (say, n ≥ 25). Note that formula 6.28 yields zero for the 
extreme cases of  Pe = 0 or Pe = 1.  

In normal practice, we first compute deP̂ by designing and evaluating the 
classifier in the same set with n cases, ( )neP d

ˆ . This is what we have done so far. 
As for teP̂ , we may compute it using an independent set of n cases, ( )neP t

ˆ . In 
order to have some guidance on how to choose an appropriate dimensionality ratio, 
we would like to know the deviation of the expected values of these estimates from 
the Bayes error. Here the expectation is computed on a population of classifiers of 
the same type and trained in the same conditions. Formulas for these expectations, 
Ε[ ( )neP d

ˆ ] and Ε[ ( )neP t
ˆ ], are quite intricate and can only be computed 

numerically. Like formula 6.25, they depend on the Bhattacharyya distance. A 
software tool, SC Size, computing these formulas for two classes with normally 
distributed features and equal covariance matrices, separated by a linear 
discriminant, is included with on the book CD. SC Size also allows the 
computation of confidence intervals of these estimates, using formula 6.28. 

 

Figure 6.15. Two-class linear discriminant Ε[ ( )neP d
ˆ ] and Ε[ ( )neP t

ˆ ] curves, for  
d = 7 and δ 2= 3, below and above the dotted line, respectively. The dotted line 
represents the Bayes error (0.193). 

 
 
Figure 6.15 is obtained with SC Size and illustrates how the expected values 

of the error estimates evolve with the n/d ratio, where n is assumed to be the 
number of cases in each class. The feature set dimension id d = 7. Both curves have 
an asymptotic behaviour with ∞→n 4, with the average design set error estimate 
converging to the Bayes error from below and the average test set error estimate 
converging from above. 

 
 

                                                           
4
  Numerical approximations in the computation of the average test set error may sometimes 

result in a slight deviation from the asymptotic behaviour, for large n. 
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Both standard deviations, which can be inspected in text boxes for a selected 
value of n/d, are initially high for low values of n and converge slowly to zero with 

∞→n . For the situation shown in Figure 6.15, the standard deviation of ( )neP d
ˆ  

changes from 0.089 for n = d (14 cases, 7 per class) to 0.033 for n = 10d (140 
cases, 70 per class). 

Based on the behaviour of the Ε[ ( )neP d
ˆ ] and Ε[ ( )neP t

ˆ ] curves, some criteria 
can be established for the dimensionality ratio. As a general rule of thumb, using 
dimensionality ratios well above 3 is recommended. 

If the cases are not equally distributed by the classes, it is advisable to use the 
smaller number of cases per class as value of n. Notice also that a multi-class 
problem can be seen as a generalisation of a two-class problem if every class is 
well separated from all the others. Then, the total number of needed training 
samples for a given deviation of the expected error estimates from the Bayes error 
can be estimated as cn*, where n* is the particular value of n that achieves such a 
deviation in the most unfavourable, two-class dichotomy of the multi-class 
problem.  

6.4 The ROC Curve 

The classifiers presented in the previous sections assumed a certain model of the 
feature vector distributions in the feature space. Other model-free techniques to 
design classifiers do not make assumptions about the underlying data distributions. 
They are called non-parametric methods. One of these methods is based on the 
choice of appropriate feature thresholds by means of the ROC curve method (where 
ROC stands for Receiver Operating Characteristic).  

The ROC curve method  (available with SPSS; see Commands 6.2) appeared in 
the fifties as a means of selecting the best voltage threshold discriminating pure 
noise from signal plus noise, in signal detection applications such as radar. Since 
the seventies, the concept has been used in the areas of medicine and psychology, 
namely for test assessment purposes. 

The ROC curve is an interesting analysis tool for two-class problems, especially 
in situations where one wants to detect rarely occurring events such as a special 
signal, a disease, etc., based on the choice of feature thresholds. Let us call the 
absence of the event the normal situation (N) and the occurrence of the rare event 
the abnormal situation (A).  Figure 6.16 shows the classification matrix for this 
situation, based on a given decision rule, with true classes along the rows and 
decided (predicted) classifications along the columns5. 

 
 

                                                           
5
 The reader may notice the similarity of the canonical two-class classification matrix with the 

hypothesis decision matrix in chapter 4 (Figure 4.2). 



 6.4 The ROC Curve 247 

A

A

N

N

a b

c d

Decision

R
ea

lit
y

 
Figure 6.16. The canonical classification matrix for two-class discrimination of an 
abnormal event (A) from the normal event (N). 

 
 
From the classification matrix of Figure 6.16, the following parameters are 

defined: 
 

− True Positive Ratio ≡ TPR = a/(a+b). Also known as sensitivity, this 
parameter tells us how sensitive our decision method is in the detection of 
the abnormal event. A classification method with high sensitivity will rarely 
miss the abnormal event when it occurs. 

− True Negative Ratio ≡ TNR = d/(c+d). Also known as specificity, this 
parameter tells us how specific our decision method is in the detection of the 
abnormal event. A classification method with a high specificity will have a 
very low rate of false alarms, caused by classifying a normal event as 
abnormal. 

− False Positive Ratio  ≡ FPR  = c/(c+d) = 1 − specificity. 

− False Negative Ratio ≡ FNR = b/(a+b) = 1 − sensitivity. 
 
Both the sensitivity and specificity are usually given in percentages. A decision 

method is considered good if it simultaneously has a high sensitivity (rarely misses 
the abnormal event when it occurs) and a high specificity (has a low false alarm 
rate). The ROC curve depicts the sensitivity versus the FPR (complement of the 
specificity) for every possible decision threshold.  

 

Example 6.9 

Q: Consider the Programming dataset (see Appendix E). Determine whether a 
threshold-based decision rule using attribute AB, previous learning of Boolean 
Algebra , has a significant influence deciding the student passing (SCORE ≥ 10) or 
flunking (SCORE < 10) the Programming course, by visual inspection of the 
respective ROC curve. 

A: Using the Programming dataset we first establish the following Table 6.8. 
Next, we set the following decision rule for the attribute (feature) AB: 

“
”

Decide “Pass the Programming examination” if AB Δ.  ≥
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We then proceed to determine for every possible threshold value, ∆, the 
sensitivity and specificity of the decision rule in the classification of the students. 
These computations are summarised in Table 6.9.  

(these 195 students have AB ≥ 1). Likewise for other values of ∆ up to ∆ > 2 where 
the decision rule assigns all students to the flunk group since no students have       
∆ > 2. Based on the classification matrices for each value of ∆ the sensitivities and 
specificities are computed as shown in Table 6.9. 

The ROC curve can be directly drawn using these computations, or using SPSS 
as shown in Figure 6.17c. Figures 6.17a and 6.17b show how the data must be 
specified. From visual inspection, we see that the ROC curve is only moderately 
off the diagonal, corresponding to a non-informative decision rule (more details, 
later). 

  
 

examination for three categories of AB (see the Programming dataset). 

Previous learning of AB = Boolean Algebra 1 = Pass 0 = Flunk 
   0 = None 39 37 
   1 = Scarcely 86 46 
   2 = A lot 49 14 

Total 174 97 

 
 

Table 6.9. Computation of the sensitivity (TPR) and 1−specificity (FPR) for 
Example 6.9. 

Pass/Flunk Decision Based on AB ≥ ∆ 

∆ = 0 
 

0 < ∆ ≤ 1 
 

1 < ∆ ≤ 2 
 

∆ > 2 Pass / Flunk  
Reality 

Total 
Cases 

1 0 1 0 1 0 1 0 

1 174 174 0 135 39 49 125 0 174 

0   97   97 0   60 37 14   83 0   97 

TPR 1 0.78 0.28 0 

FPR 1 0.62 0.14 0 
 
 

Note that when Δ = 0 the decision rule assigns all students to the “Pass” group 
(all students have AB ≥ 0). For 0 < Δ ≤ 1 the decision rule assigns to the “Pass” 
group 135 students that have indeed “passed” and 60 students that have “flunked” 

Table 6.8. Number of students passing and flunking the “Programming” 
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Figure 6.17. ROC curve for Example 6.9, solved with SPSS: a) Datasheet with 

curve. 

 

 
Figure 6.18. One hundred samples of a signal consisting of noise plus signal 
impulses (bold lines) occurring at random times. 

 

Example 6.10 

Q: Consider the Signal & Noise dataset (see Appendix E). This set presents 
100 signal plus noise values s(n) (Signal+Noise variable), consisting of random 
noise plus signal impulses with random amplitude, occurring at random times 
according to the Poisson law. The Signal & Noise data is shown in Figure 
6.18. Determine the ROC curve corresponding to the detection of signal impulses 
using several threshold values to separate signal from noise. 

A: The signal plus noise amplitude shown in Figure 6.18 is often greater than the 
average noise amplitude, therefore revealing the presence of the signal impulses 
(e.g. at time instants 53 and 85). The discrimination between signal and noise is 

compute the sensitivity and specificity values. By varying the threshold (easily 
done in the Signal & Noise.xls file), the corresponding sensitivity and 
specificity values can be obtained, as shown in Table 6.10. 

value, it’s then possible to establish the signal vs. noise classification matrix and 

column “n” used as weight variable; b) ROC curve specification window; c) ROC 

made setting an amplitude threshold, Δ, such that we decide “impulse” (our rare 
event) if s(n) > Δ, and “noise” (the normal event) otherwise. For each threshold 
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There is a compromise to be made between sensitivity and specificity. This 
compromise is made more patent in the ROC curve, which was obtained with 
SPSS, and corresponds to eight different threshold values, as shown in Figure 
6.19a (using the Data worksheet of Signal & Noise.xls). Notice that 
given the limited number of threshold values, the ROC curve has a stepwise aspect, 
with different values of the FPR corresponding to the same sensitivity, as also 
appearing in Table 6.10 for the sensitivity value of 0.7. With a large number of 
signal samples and threshold values, one would obtain a smooth ROC curve, as 
represented in Figure 6.19b.  

 
Looking at the ROC curves shown in Figure 6.19 the following characteristic 

aspects are clearly visible: 
 
− The ROC curve graphically depicts the compromise between sensitivity and 

specificity. If the sensitivity increases, the specificity decreases, and vice-
versa. 

− All ROC curves start at (0,0) and end at (1,1) (see Exercise 6.7). 

− A perfectly discriminating method corresponds to the point (0,1). The ROC 
curve is then a horizontal line at a sensitivity =1. 

 
A non-informative ROC curve corresponds to the diagonal line of Figures 6.19, 

with sensitivity = 1 – specificity. In this case, the true detection rate of the 
abnormal situation is the same as the false detection rate. The best compromise 
decision of sensitivity = specificity = 0.5 is then just as good as f lipping a coin. 

 
 

Table 6.10.  Sensitivity and specificity in impulse detection (100 signal values). 

Threshold Sensitivity Specificity 
1 0.90 0.66 
2 0.80 0.80 
3 0.70 0.87 
4 0.70 0.93 

 
 
One of the uses of the ROC curve is related to the issue of choosing the best 

decision threshold that can differentiate both situations; in the case of Example 
6.10, the presence of the impulses from the presence of the noise alone. Let us 
address this discriminating issue as a cost decision issue as we have done in section 
6.3.1. Representing the sensitivity and specificity of the method for a threshold ∆ 
by s(∆) and f(∆) respectively, and using the same notation as in formula 6.20, we 
can write the total risk as: 

 
,))(1)(()()())(1)(()()( ∆−+∆+∆−+∆= fNPfNPsAPsAPR nnnaanaa λλλλ   

or, ( ) ( ) constant)()()()()()( +−∆+−∆= NPNPfAPAPsR nnnaanaa λλλλ . 
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In order to obtain the best threshold, we minimise the risk R by differentiating 
and equalling to zero, obtaining then: 
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−

=
∆
∆ . 6.29 

 
The point of the ROC curve where the slope has the value given by formula    

6.29 represents the optimum operating point or, in other words, corresponds to the 
best threshold for the two-class problem. Notice that this is a model-free technique 
of choosing a feature threshold for discriminating two classes, with no assumptions 
concerning the specific distributions of the cases.  

 

Figure 6.19. ROC curve (bold line), obtained with SPSS, for the signal + noise 
data: (a) Eight threshold values (the values for ∆ = 2 and ∆ = 3 are indicated); b) A 
large number of threshold values (expected curve) with the 45º slope point. 

 
 
Let us now assume that, in a given situation, we assign zero cost to correct 

decisions, and a cost that is inversely proportional to the prevalences to a wrong 
decision. Then, the slope of the optimum operating point is at 45º, as shown in 
Figure 6.19b. For the impulse detection example, the best threshold would be 
somewhere between 2 and 3. 

Another application of the ROC curve is in the comparison of classification 
performance, namely for feature selection purposes. We have already seen in 6.3.1 
how prevalences influence classification decisions. As illustrated in Figure 6.9, for 
a two-class situation, the decision threshold is displaced towards the class with the 
smaller prevalence. Consider that the classifier is applied to a population where the 
prevalence of the abnormal situation is low. Then, for the previously mentioned 
reason, the decision maker should operate in the lower left part of the ROC curve 
in order to keep FPR as small as possible. Otherwise, given the high prevalence of 
the normal situation, a high rate of false alarms would be obtained. Conversely, if 
the classifier is applied to a population with a high prevalence of the abnormal 
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situation, the decision-maker should adjust the decision threshold to operate on the 
FPR high part of the curve. 

Briefly, in order for our classification method to perform optimally for a large 
range of prevalence situations, we would like to have an ROC curve very near the 
perfect curve, i.e., with an underlying area of 1. It seems, therefore, reasonable to 
select from among the candidate classification methods (or features) the one that 
has an ROC curve with the highest underlying area. 

The area under the ROC curve is computed by the SPSS with a 95% confidence 
interval. 

Despite some shortcomings, the ROC curve area method is a popular method of 
assessing classifier or feature performance. This and an alternative method based 
on information theory are described in Metz et al. (1973). 

 
 

Commands 6.2. SPSS command used to perform ROC curve analysis. 

SPSS Graphs; ROC Curve 

  
 

Example 6.11 

Q: Consider the FHR-Apgar dataset, containing several parameters computed 
from foetal heart rate (FHR) tracings obtained previous to birth, as well as the so-
called Apgar index. This is a ranking index, measured on a one-to-ten scale, and 
evaluated by obstetricians taking into account clinical observations of a newborn 
baby. Consider the two FHR features, ALTV and ASTV, representing the 
percentages of abnormal long term and abnormal short-term heart rate variability, 
respectively. Use the ROC curve in order to elucidate which of these parameters is 
better in the clinical practice for discriminating an Apgar > 6 (normal situation) 
from an Apgar ≤ 6 (abnormal or suspect situation). 
 
 

 
Figure 6.20. ROC curves for the FHR Apgar dataset, obtained with SPSS, 
corresponding to features ALTV and ASTV. 
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A: The ROC curves for ALTV and ASTV are shown in Figure 6.20. The areas 
under the ROC curve, computed by SPSS with a 95% confidence interval, are 
0.709 ± 0.11 and 0.781 ± 0.10 for ALTV and ASTV, respectively. We, therefore, 
select the ASTV parameter as the best diagnostic feature. 

  

6.5 Feature Selection 

As already discussed in section 6.3.3, great care must be exercised in reducing the 
number of features used by a classifier, in order to maintain a high dimensionality 
ratio and, therefore, reproducible performance, with error estimates sufficiently 
near the theoretical value. For this purpose, one may use the hypothesis test 
methods described in chapters 4 and 5 with the aim of discarding features that are 
clearly non-useful at an initial stage of the classifier design. This feature 
assessment task, while assuring that an information-carrying feature set is indeed 
used in the classifier, does not guarantee it will need the whole set. Consider, for 
instance, that we are presented with a classification problem described by 4 
features, x1, x2, x3 and x4, with x1 and x2 perfectly discriminating the classes, and x3 
and x4 being linearly dependent of x1 and x2. The hypothesis tests will then find that 
all features contribute to class discrimination. However, this discrimination could 
be performed equally well using the alternative sets {x1, x2} or {x3, x4}. Briefly, 
discarding features with no aptitude for class discrimination is no guarantee against 
redundant features. 

There is abundant literature on the topic of feature selection (see References). 
Feature selection uses a search procedure of a feature subset (model) obeying a 
stipulated merit criterion. A possible choice for this criterion is minimising Pe, 
with the disadvantage of the search process depending on the classifier type. More 
often, a class separability criterion such as the Bhattacharyya distance or the 

determinant of the pooled covariance over the determinant of the total covariance, 
is also a popular criterion. Physically, it can be interpreted as the ratio between the 
average class volume and the total volume of all cases. Its value will range from 0 
(complete class separation) to 1 (complete class fusion). 

As for the search method, the following are popular ones and available in 
STATISTICA and SPSS: 

 
1. Sequential search (direct) 

The direct sequential search corresponds to performing successive feature 
additions or eliminations to the target set, based on a separability criterion.  

In a forward search, one starts with the feature of most merit and, at each step, 
all the features not yet included in the subset are revised; the one that contributes 
the most to class discrimination is evaluated through the merit criterion. This 
feature is then included in the subset and the procedure advances to the next search 
step. The process goes on until the merit criterion for any candidate feature is 
below a specified threshold.  

ANOVA F statistic is used. The Wilks’ lambda, defined as the ratio of the 
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In a backward search, the process starts with the whole feature set and, at each 
step, the feature that contributes the least to class discrimination is removed. The 
process goes on until the merit criterion for any candidate feature is above a 
specified threshold.  

 
2. Sequential search (dynamic) 

feature subsets that are not detected by direct sequential search. This problem is 
tackled in a dynamic search by performing a combination of forward and backward 

 
Direct sequential search methods can be applied using STATISTICA and SPSS, 

features at a given step) with default value of one. SPSS allows the use of other 
merit criteria such as the squared Bhattacharyya distance (i.e., the squared 
Mahalanobis distance of the means). 

It is also common to set a lower limit to the so-called tolerance level, T = 1 – r2, 
which must be satisfied by all features, where r is the multiple correlation factor of 
one candidate feature with all the others. Highly correlated features are therefore 
removed. One must be quite conservative, however, in the specification of the 
tolerance. A value at least as low as 1% is common practice. 

 
 

Example 6.12 

forward and backward searches on the available 10-feature set, using default values 
for the tolerance (0.01) and the ANOVA F (1.0). Evaluate the training set errors of 
both solutions. 

A: Figure 6.21 shows the summary listing of a forward search for the first two 
classes of the cork-stopper data obtained with STATISTICA. Equal priors are 

process continues until there are no variables with F contribution higher than 1. In 

indicated. Figure 6.21 shows that the selection process stopped with a highly 

RAAR} corresponds to the classification matrix shown before in Figure 6.14b. 
Using a backward search, a solution with only two features (N and PRT) is 

obtained. It has the performance presented in Example 6.2. Notice that the 
backward search usually needs to start with a very low tolerance value (in the 
present case T = 0.002 is sufficient). The dimensionality ratio of this solution is 

Q: Consider the first two classes of the Cork Stoppers’ dataset. Perform 

The Wilk’s lambda, initially 1, decreased to 0.42 due to the contribution of 
ART. Next, in 

“

Step 2”, the variable with highest F contribution for the model 
containing ART, enters in the model, decreasing the Wilks’ lambda to 0.4. The 

the listing an approximate F for the model, based on the Wilk’s lambda, is also 

significant ( p ≈ 0) Wilks’ lambda. The four-feature solution {ART, PRM, NG, 

The problem with the previous search methods is the possible existence of “nested” 

searches at each level, known as “plus l-take away r” selection. 

the latter affording a dynamic search procedure that is in fact a “plus 1-take away 
1” selection. As merit criterion, STATISTICA uses the ANOVA F (for all selected 

assumed. Note that variable ART, with the highest F, entered in the model in Step 1 . 

“

”
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comfortably high: n/d = 25. One can therefore be confident that this classifier 
performs in a nearly optimal way. 

  

Example 6.13 

Q: Redo the previous Example 6.12 for a three-class classifier, using dynamic 
search. 

A: Figure 6.22 shows the listing produced by SPSS in a dynamic search performed 
on the cork-stopper data (three classes), using the squared Bhattacharyya distance 
(D squared) of the two closest classes as a merit criterion. Furthermore, features 
were only entered or removed from the selected set if they contributed significantly 
to the ANOVA F. The solution corresponding to Figure 6.22 used a 5% level for 
the statistical significance of a candidate feature to enter the model, and a 10% 
level to remove it. Notice that PRT, which had entered at step 1, was later 
removed, at step 5. The nested solution {PRM, N, ARTG, RAAR} would not have 
been found by a direct forward search. 

 

Figure 6.21. Feature selection listing, obtained with STATISTICA, using a 
forward search for two classes of the cork-stopper data. 
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2.401

Entered Removed Min. D Squared

Statistic Between
Groups

Exact F

Statistic df1 df2 Sig.Step

PRT

PRM

N

ARTG

RAAR

1

2

3

4

5

6

1.00and 2.00

1.00and 2.00

1.00and 2.00

1.00and 2.00

1.00and 2.00

1.00and 2.00

PRT

1

2

3

4

4

3

147.000

146.000

145.000

145.000

144.000

144.000 2.316E-22

7.438E-15

.000

.000

4.330E-14

1.176E-1260.015

3.083 38.279

4.944 40.638

5.267 32.248

5.098 41.903

6.473 39.629
 

Figure 6.22. Feature selection listing, obtained with SPSS (Stepwise Method; 
Mahalanobis), using a dynamic search on the cork stopper data (three classes). 

6.6 Classifier Evaluation 

The determination of reliable estimates of a classifier error rate is obviously an 
essential task in order to assess its usefulness and to compare it with alternative 
solutions. 

As explained in section 6.3.3, design set estimates are on average optimistic and 
the same can be said about using an error formula such as 6.25, when true means 
and covariance are replaced by their sample estimates. It is, therefore, mandatory 
that the classifier be empirically tested, using a test set of independent cases. As 
previously mentioned in section 6.3.3, these test set estimates are, on average, 
pessimistic. 

The influence of the finite sample sizes can be summarised as follows (for 
details, consult Fukunaga K, 1990): 

 
− The bias − deviation of the error estimate from the true error − is 

predominantly influenced by the finiteness of the design set; 

− The variance of the error estimate is predominantly influenced by the 
finiteness of the test set. 

 
In normal practice, we only have a data set S with n samples available. The 

problem arises of how to divide the available cases into design set and test set. 
Among a vast number of methods (see e.g. Fukunaga K, Hayes RR, 1989b) the 
following ones are easily implemented in SPSS and/or STATISTICA: 
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Resubstitution method 

The whole set S is used for design, and for testing the classifier. As a consequence 
of the non-independence of design and test sets, the method yields, on average, an 
optimistic estimate of the error, E[ ( )neP d

ˆ ], mentioned in section 6.3.3. For the 
two-class linear discriminant with normal distributions an example of such an 
estimate for various values of n is plotted in Figure 6.15 (lower curve). 

 
Holdout method 

The available n samples of S are randomly divided into two disjointed sets 
(traditionally with 50% of the samples each), Sd and St used for design and test, 
respectively. The error estimate is obtained from the test set, and therefore, suffers 
from the bias and variance effects previously described. By taking the average over 
many partitions of the same size, a reliable estimate of the test set error, 
E[ ( )neP t

ˆ ], is obtained (see section 6.3.3). For the two-class linear discriminant 
with normal distributions an example of such an estimate for various values of n is 
plotted in Figure 6.15 (upper curve). 

 
Partition methods  

Partition methods, also called cross-validation methods divide the available set S 
into a certain number of subsets, which rotate in their use of design and test, as 
follows: 

 
1. Divide S into k > 1 subsets of randomly chosen cases, with each subset 

having n/k cases. 

2. Design the classifier using the cases of k – 1 subsets and test it on the 
remaining one. A test set estimate Peti is thereby obtained. 

3. Repeat the previous step rotating the position of the test set, obtaining 
thereby k estimates Peti. 

4. Compute the average test set estimate ∑ == k
i tit kPePe 1 /  and the variance 

of the Peti. 
 
This is the so-called k-fold cross-validation. For k = 2, the method is similar to 

the traditional holdout method. For k = n, the method is called the leave-one-out 
method, with the classifier designed with n – 1 samples and tested on the one 
remaining sample. Since only one sample is being used for testing, the variance of 
the error estimate is large. However, the samples are being used independently for 
design in the best possible way. Therefore the average test set error estimate will 
be a good estimate of the classifier error for sufficiently high n, since the bias 
contributed by the finiteness of the design set will be low.  For other values of k, 
there is a compromise between the high bias-low variance of the holdout method, 
and the low bias-high variance of the leave-one-out method, with less 
computational effort. 
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Statistical software products such as SPSS and STATISTICA allow the 
selection of the cases used for training and for testing linear discriminant 
classifiers. With SPSS, it is possible to use a selection variable, easing the task of 
specifying randomly selected samples. SPSS also affords performing a leave-one-
out classification. With STATISTICA, one can initially select the cases used for 
training (Selection Conditions option in the Tools menu), and once the 
classifier is designed, specify test cases (Select Cases button in the 
Classification tab of the command window). In MATLAB and R one may 
create a case-selecting vector, called a filter, with random 0s and 1s. 

 

Example 6.14 

Q: Consider the two-class cork-stopper classifier, with two features, presented in 
section 6.2.2 (see classification matrix in Table 6.3). Evaluate the performance of 
this classifier using the partition method with k = 3, and the leave-one-out method. 

A: Using the partition method with k = 3, a test set estimate of Pet = 9.9 % was 
obtained, which is near the training set error estimate of 10%. The leave-one-out 

closeness of these figures is an indication of reliable error estimation for this high 
dimensionality ratio classification problem (n/d = 25). Using formula 6.28 the 95% 
confidence limits for these error estimates are: s = 0.03 ⇒ Pe = 10% ± 5.9%. 
  

 

Table 6.11. Listing of the classification matrices obtained with SPSS, using the 
leave-one-out method in the classification of the first two classes of the cork- 
stopper data with two features. 

   Predicted Group Membership Total 
  C 1 2  

Original Count 1 49 1 50 
    2 9 41 50 
  % 1 98.0 2.0 100 
    2 18.0 82.0 100 
Cross-validated Count 1 49 1 50 
    2 9 41 50 
  % 1 98.0 2.0 100 
    2 18.0 82.0 100 

 

Example 6.15 

Q: Consider the three-class, cork-stopper classifier, with four features, determined 
in Example 6.13. Evaluate the performance of this classifier using the leave-one-
out method. 

method also produces Pet = 10 % (see Table 6.11; the “Original” matrix is the 
training set estimate, the “Cross-validated” matrix is the test set estimate). The 
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A: Table 6.12 shows the leave-one-out results, obtained with SPSS, in the 
classification of the three cork-stopper classes, using the four features selected by 
dynamic search in Example 6.13. The training set error is 10.7%; the test set error 
estimate is 12%. Therefore, we still have a reliable error estimate of about (10.7 + 
12)/2 = 11.4% for this classifier, which is not surprising since the dimensionality 
ratio is high (n/d = 12.5). For the estimate Pe = 11.4% the 95% confidence interval 
corresponds to an error tolerance of 5%.  

 
 

Table 6.12. Listing of the classification matrices obtained with SPSS, using the 
leave-one-out method in the classification of the three classes of the cork-stopper 
data with four features. 

   Predicted Group Membership Total 
  C 1 2 3  

Original Count 1 43 7 0 50 
    2 5 45 0 50 
    3 0 4 46 50 
  % 1 86.0 14.0 0.0 100 
    2 10.0 90.0 .0 100 
    3 0.0 8.0 92.0 100 
Cross-validated Count 1 43 7 0 50 
    2 5 44 1 50 
    3 0 5 45 50 
  % 1 86.0 14.0 0.0 100 
    2 10.0 88.0 2.0 100 
    3 0.0 10.0 90.0 100 

 

6.7 Tree Classifiers 

In multi-group classification, one is often confronted with the problem that 
reasonable performances can only be achieved using a large number of features. 
This requires a very large design set for proper training, probably much larger than 
what we have available. Also, the feature subset that is the most discriminating set 
for some classes can perform rather poorly for other classes. In an attempt to 

classification can be employed. This is the approach of decision tree classifiers, 
also known as hierarchical classifiers, in which an unknown case is classified into 
a class using decision functions in successive stages. 

overcome these difficulties, a “divide and conquer” principle using multistage 

6.7 Tree Classifiers
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At each stage of the tree classifier, a simpler problem with a smaller number of 
features is solved. This is an additional benefit, namely in practical multi-class 
problems where it is rather difficult to guarantee normal or even symmetric 
distributions with similar covariance matrices for all classes, but it may be 
possible, with the multistage approach, that those conditions are approximately met 
at each stage, affording then optimal classifiers. 

 

Example 6.16 

Q: Consider the Breast Tissue dataset (electric impedance measurements of 
freshly excised breast tissue) with 6 classes denoted CAR (carcinoma), FAD 
(fibro-adenoma), GLA (glandular), MAS (mastopathy), CON (connective) and 
ADI (adipose). Derive a decision tree solution for this classification problem. 

A: Performing a Kruskal-Wallis analysis, it is readily seen that all the features have 
discriminative capabilities, namely I0 and PA500, and that it is practically 
impossible to discriminate between classes GLA, FAD and MAS. The low 
dimensionality ratio of this dataset for the individual classes (e.g. only 14 cases for 
class CON) strongly recommends a decision tree approach, with the use of merged 
classes and a greatly reduced number of features at each node. 

As I0 and PA500 are promising features, it is worthwhile to look at the 
respective scatter diagram shown in Figure 6.23. Two case clusters are visually 
identified: one corresponding to {CON, ADI}, the other to {MAS, GLA, FAD, 
CAR}. At the first stage of the tree we then use I0 alone, with a threshold of         
I0 = 600, achieving zero errors. 

At stage two, we attempt the most useful discrimination from the medical point 
of view: class CAR (carcinoma) vs. {FAD, MAS, GLA}. Using discriminant 
analysis, this can be performed with an overall training set error of about 8%, using 
features AREA_DA and IPMAX, whose distributions are well modelled by the 
normal distribution.  
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Figure 6.23. Scatter plot of six classes of breast tissue with features I0 and PA500. 
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Figure 6.24 shows the corresponding linear discriminant. Performing two 
randomised runs using the partition method in halves (i.e., the 2-fold cross-
validation with half of the samples for design and the other half for testing), an 
average test set error of 8.6% was obtained, quite near the design set error. At stage 
two, the discrimination CON vs. ADI can also be performed with feature I0 
(threshold I0 =1550), with zero errors for ADI and 14% errors for CON. 

With these results, we can establish the decision tree shown in Figure 6.25. At 
each level of the decision tree, a decision function is used, shown in Figure 6.25 as 
a decision rule to be satisfied. The left descendent tree branch corresponds to 

Since a small number of features is used at each level, one for the first level and 
two for the second level, respectively, we maintain a reasonably high 
dimensionality ratio at both levels; therefore, we obtain reliable estimates of the 
errors with narrow 95% confidence intervals (less than 2% for the first level and 
about 3% for the CAR vs. {FAD, MAS, GLA} level). 
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Figure 6.24. Scatter plot of breast tissue classes CAR and {MAS, GLA, FAD} 
(denoted not car) using features AREA_DA and IPMAX, showing the linear 
discriminant separating the two classes. 

 
 
For comparison purposes, the same four-class discrimination was carried out 

with only one linear classifier using the same three features I0, AREA_DA and 
IPMAX as in the hierarchical approach. Figure 6.26 shows the classification 
matrix. Given that the distributions are roughly symmetric, although with some 
deviations in the covariance matrices, the optimal error achieved with linear 
discriminants should be close to what is shown in the classification matrix. The 
degraded performance compared with the decision tree approach is evident.  

On the other hand, if our only interest is to discriminate class car from all other 
ones, a linear classifier with only one feature can achieve this discrimination with a 

compliance with a rule, i.e., to a “Yes” answer; the right descendent tree branch 
corresponds to a “No” answer. 
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performance of about 86% (see Exercise 6.5). This is a comparable result to the 
one obtained with the tree classifier. 
   

Figure 6.25. Hierarchical tree classifier for the breast tissue data with percentages 
of correct classifications and decision functions used at each node. Left branch = 

 
 

Figure 6.26. Classification matrix obtained with STATISTICA, of four classes of 
breast tissue using three features and linear discriminants. Class fad+ is actually 
the class set {FAD, MAS, GLA}. 

 
 
The decision tree used for the Breast Tissue dataset is an example of a 

binary tree: at each node, a dichotomic decision is made. Binary trees are the most 
popular type of trees, namely when a single feature is used at each node, resulting 
in linear discriminants that are parallel to the feature axes, and easily interpreted by 
human experts. Binary trees also allow categorical features to be easily 

“Yes”; right branch = “No”. 

incorporated with node splits based on a “yes/no” answer to the question whether 
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or not a given case belongs to a set of categories. For instance, this type of trees is 
frequently used in medical applications, and often built as a result of statistical 
studies of the influence of individual health factors in a given population. 

The design of decision trees can be automated in many ways, depending on the 
split criterion used at each node, and the type of search used for best group 
discrimination. A split criterion has the form: 

 
d(x) ≥ ∆,  
 

where d(x) is a decision function of the feature vector x and ∆ is a threshold. 
Usually, linear decision functions are used. In many applications, the split criteria 
are expressed in terms of the individual features alone (the so-called univariate 
splits). 

An important concept regarding split criteria is the concept of node impurity. 
The node impurity is a function of the fraction of cases belonging to a specific 
class at that node. 

Consider the two-class situation shown in Figure 6.27. Initially, we have a node 
with equal proportions of cases belonging to the two classes (white and black 
circles). We say that its impurity is maximal. The right split results in nodes with 
zero impurity, since they contain cases from only one of the classes. The left split, 
on the contrary, increases the proportion of cases from one of the classes, therefore 
decreasing the impurity, although some impurity remains present.  
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Figure 6.27. Splitting a node with maximum impurity. The left split (x1 ≥ ∆) 
decreases the impurity, which is still non-zero; the right split (w1x1 + w2x2 ≥ ∆) 
achieves pure nodes. 

 
 
A popular measure of impurity, expressed in the [0, 1] interval, is the Gini index 

of diversity: 
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For the situation shown in Figure 6.27, we have: 
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i(t1) = i(t2) = 1×1= 1; 

i(t11) = i(t12) = 
9
2

3
1

3
2

= ; 

i(t21) = i(t22) = 1×0 = 0. 
 
In the automatic generation of binary trees the tree starts at the root node, which 

corresponds to the whole training set. Then, it progresses by searching for each 
variable the threshold level achieving the maximum decrease of the impurity at 
each node. The generation of splits stops when no significant decrease of the 
impurity is achieved. It is common practice to use the individual feature values of 
the training set cases as candidate threshold values. Sometimes, after generating a 
tree automatically, some sort of tree pruning should be performed in order to 
remove branches of no interest. 

SPSS and STATISTICA have specific commands for designing tree classifiers, 
based on univariate splits. The method of exhaustive search for the best univariate 
splits is usually called the CRT (also CART or C&RT) method, pioneered by 
Breiman, Friedman, Olshen and Stone (see Breiman et al., 1993). 

 

Example 6.17 

Q: Use the CRT approach with univariate splits and the Gini index as splitting 
criterion in order to derive a decision tree for the Breast Tissue dataset. 
Assume equal priors of the classes. 

A: Applying the commands for CRT univariate split with the Gini index, described 
in Commands 6.3, the tree presented in Figure 6.28 was found with SPSS (same 
solution with STATISTICA). The tree shows the split thresholds at each node as 
well as the improvement achieved in the Gini index. For instance, the first split 
variable PERIM was selected with a threshold level of 1563.84. 

 
 

Table 6.13. Training set classification matrix, obtained with SPSS, corresponding 
to the tree shown in Figure 6.28. 

Observed Predicted 

 car fad mas gla con adi Percent 
Correct 

car 20 0 1 0 0 0 95.2%
fad 0 0 12 3 0 0 0.0%
mas 2 0 15 1 0 0 83.3%
gla 1 0 4 11 0 0 68.8%
con 0 0 0 0 14 0 100.0%
adi 0 0 0 0 1 21 95.5%
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The classification matrix corresponding to this classification tree is shown in 
Table 6.13. The overall percent correct is 76.4% (overall error of 23.6%). Note the 
good classification results for the classes CAR, CON and ADI and the difficult 
splitting of {FAD,MAS,GLA} that we had already observed. Also note the gradual 
error increase as one progresses through the tree. Node splitting stops when no 
significant improvement is found.  

  

Figure 6.28. CRT tree using the Gini index as impurity criterion, designed with 
SPSS. 

 
 
The CRT algorithm based on exhaustive search tends to be biased towards 

selecting variables that afford more splits. It is also quite time consuming. Other 

6.7 Tree Classifiers
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approaches have been proposed in order to remedy these shortcomings, namely the 

employs a sort of recursive quadratic discriminant analysis for improving the 
reliability and efficiency of the classification trees that it computes. 

It is often interesting to compare the CRT and QUEST solutions, since they tend 
to exhibit complementary characteristics. CRT, besides its shortcomings, is 
guaranteed to find the splits producing the best classification (in the training set, 
but not necessarily in test sets) because it employs an exhaustive search. QUEST is 
fast and unbiased. The speed advantage of QUEST over CRT is particularly 
dramatic when the predictor variables have dozens of levels (Loh, WY and Shih, 

advantage when some independent variables have few levels and other variables 
have many levels. 

 

Example 6.18 

Q: Redo Example 6.17 using the QUEST approach. Assume equal priors of the 
classes. 

A: Applying the commands for the QUEST algorithm, described in Commands 
6.3, the tree presented in Figure 6.29 was found with STATISTICA (same solution 
with SPSS). 

 

Figure 6.29. Tree plot, obtained with STATISTICA for the breast-tissue, using the 
QUEST approach. 

YS, 1997). QUEST’s lack of bias in variable selection for splits is also an 

approach followed by the algorithm known as QUEST (“Quick, Unbiased, 
Efficient Statistical Trees”), proposed by Loh, WY and Shih, YS (1997), that 
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The classification matrix corresponding to this classification tree is shown in 
Table 6.14. The overall percent correct is 63.2% (overall error of 36.8%). Note the 
good classification results for the classes CON and ADI and the splitting off of 
{FAD,MAS,GLA} as a whole. This solution is similar to the solution we had 

  
 

Table 6.14. Training set classification matrix corresponding to the tree shown in 
Figure 6.29. 

Observed Predicted 

 car fad mas gla con adi Percent 
Correct 

car 17 4 0 0 0 0 81.0%
fad 0 15 0 0 0 0 100.0%
mas 2 16 0 0 0 0 0.0%
gla 0 16 0 0 0 0 0.0%
con 0 0 0 0 14 0 100.0%
adi 0 0 0 0 1 21 95.5%

  
 

 
The tree solutions should be validated as with any other classifier type. SPSS 

and STATISTICA afford the possibility of cross-validating the designed trees 
using the partition method described in section 6.6. In the present case, since the 
dimensionality ratios are small, one has to perform the cross-validation with very 
small test samples. Using a 14-fold cross-validation for the CRT and QUEST 
solutions of Examples 6.17 and 6.18 we obtained the results shown in Table 6.13. 
We see that although CRT yielded a lower training set error compared with 
QUEST, this last method provided a solution with better generalization capability 
(smaller difference between training set and test set errors). Note that 14-fold 
cross-validation is equivalent to the leave-one-out method for the smaller sized 
class of this dataset. 

 

Table 6.15. Overall errors and respective standard deviations (obtained with 
STATISTICA) in 14-fold cross-validation of the tree solutions found in Examples 
6.17 and 6.18. 

Method Overall Error Stand. Deviation 

CRT 0.406 0.043 

QUEST 0.349 0.040 

 

derived “manually” and represented in Figure 6.25. 
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Commands 6.3. SPSS and STATISTICA commands used to design tree 
classifiers. 

SPSS Analyze; Classify; Tree... 

STATISTICA Statistics; Multivariate Exploratory 
Techniques; Classification Trees 

 
 

When performing tree classification with SPSS it is advisable to first assign 

specify the dependent (categorical) and independent variables and the type of 
Output one wishes to obtain (usually, Chart − a display as in Figure 6.28 − and 
Classification Table from Statistics). One then proceeds to 
choosing a growing method (CRT, QUEST), the maximum number of cases per 
node at input and output (in Criteria), the priors (in Options) and the cross-
validation method (in Validation). 

The classification matrices in STATISTICA have a different configuration of 
the ones shown in Tables 6.13 and 6.14: the observations are along the columns 
and the predictions along the rows. Cross-validation in STATISTICA provides the 
average misclassification matrix which can be useful to individually analyse class 
behaviour.   
 

Exercises 

ART and PRT. 
a) Determine the Euclidian and Mahalanobis classifiers using feature ART alone, 

then using both ART and PRT. 
b) Compute the Bayes error using a pooled covariance estimate as the true 

covariance for both classes. 
c) Determine whether the Mahalanobis classifiers are expected to be near the optimal 

Bayesian classifier. 
d) Using SC Size, determine the average deviation of the training set error 

estimate from the Bayes error, and the 95% confidence interval of the error 
estimate. 

6.1 Consider the first two classes of the Cork Stoppers’ dataset described by features 

appropriate labels to the categorical variable. This can be done in a “Define 
Variable Properties...” window. The Tree window allows one to 

In STATISTICA the independent variables are called “predictors”. Real-valued 
variables as the ones used in the previous examples are called “ordered predictors”.  
One must not forget to set the codes for the dependent variable. The CRT and 
QUEST methods appear in the Methods window denominated as “CR&T-style 
exhaustive search for univariate splits” and “Discriminant-based univariate splits 
for categ. and ordered predictors”, respectively. 
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using features N, PRM and ARTG. 
 
6.3 Consider the problem of classifying cardiotocograms (CTG dataset) into three classes: 

N (normal), S (suspect) and P (pathological).  
a) Determine which features are most discriminative and appropriate for a 

Mahalanobis classifier approach for this problem. 
b) Design the classifier and estimate its performance using a partition method for the 

test set error estimation. 
 

{limestones, marbles}. 
 
6.5 A physician would like to have a very simple rule available for screening out 

carcinoma situations from all other situations using the same diagnostic means and 
measurements as in the Breast Tissue dataset.  
a) Using the Breast Tissue dataset, find a linear Bayesian classifier with only 

one feature for the discrimination of carcinoma versus all other cases (relax the 
normality and equal variance requirements). Use forward and backward search 
and estimate the priors from the training set sizes of the classes. 

b) Obtain training set and test set error estimates of this classifier, and 95% 
confidence intervals. 

c) Using the SC Size program, assess the deviation of the error estimate from the 
true Bayesian error, assuming that the normality and equal variance requirements 
were satisfied. 

d) Suppose that the risk of missing a carcinoma is three times higher than the risk of 
misclassifying a non-carcinoma. How should the classifying rule be reformulated 
in order to reflect these risks, and what is the performance of the new rule?  

evaluate its performance. 
 

6.7 Explain why all ROC curves start at (0,0) and finish at (1,1) by analysing what kind of 
situations these points correspond to. 

 
6.8 Consider the Breast Tissue dataset. Use the ROC curve approach to determine 

single features that will discriminate carcinoma cases from all other cases. Compare the 
alternative methods using the ROC curve areas. 

 
6.9 Repeat the ROC curve experiments illustrated in Figure 6.20 for the FHR Apgar 

dataset, using combinations of features. 
 

6.10 Increase the amplitude of the signal impulses by 20% in the Signal & Noise 
dataset. Consider the following impulse detection rule: 
An impulse is detected at time n when s(n) is bigger than ( )∑ = ++−2

1 )()(i insinsα . 

Determine the ROC curve corresponding to several α values, and determine the best α 
for the impulse/noise discrimination. How does this method compare with the 
amplitude threshold method described in section 6.4? 

 

6.2 Repeat the previous exercise for the three classes of the Cork Stoppers’ dataset, 

6.4 Repeat the previous exercise using the Rocks’ dataset and two classes: {granites} vs. 

6.6 Design a linear discriminant classifier for the three classes of the Clays’ dataset and 
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6.11 Consider the Infarct dataset, containing four continuous-type measurements of 
physiological variables of the heart (EF, CK, IAD, GRD), and one ordinal-type variable 
(SCR: 0 through 5) assessing the severity of left ventricle necrosis. Use ROC curves of 
the four continuous-type measurements in order to determine the best threshold 

well as the best discriminating measurement.  
 
6.12 Repeat Exercises 6.3 and 6.4 performing sequential feature selection (direct and 

dynamic). 
 
6.13 Perform a resubstitution and leave-one-out estimation of the classification errors for the 

three classes of cork stoppers, using the features obtained by dynamic selection 
(Example 6.13). Comment on the reliability of these estimates. 

 
6.14 Compute the 95% confidence interval of the error for the classifier designed in 

Exercise 6.3 using the standard formula. Perform a partition method evaluation of the 
classifier, with 10 partitions, obtaining another estimate of the 95% confidence interval 
of the error. 

 
6.15 Compute the decrease of impurity in the trees shown in Figure 6.25 and Figure 6.29, 

using the Gini index. 
 
6.16 Compute the classification matrix CAR vs. {MAS, GLA, FAD} for the Breast 

Tissue dataset in the tree shown in Figure 6.25. Observe its dependence on the 
prevalences. Compute the linear discriminant shown in the same figure. 

 
6.17 Using the CRT and QUEST approaches, find decision trees that discriminate the three 

classes of the CTG dataset, N, S and P, using several initial feature sets that contain the 
four variability indexes ASTV, ALTV, MSTV, MLTV. Compare the classification 
performances for the several initial feature sets. 

 
6.18 Consider the four variability indexes of foetal heart rate (MLTV, MSTV, ALTV, 

ASTV) included in the CTG dataset. Using the CRT approach, find a decision tree that 

QUEST approaches, and compare their performance with the classifier of Exercise 6.6. 
 
6.20 Design a tree classifier for Exercise 6.11 and evaluate its performance comparatively. 

 
6.21 Redesign the tree solutions found in Examples 6.17 and 6.18 using priors estimated 

from the training set (empirical priors) instead of equal priors. Compare the solutions 
with those obtained in the mentioned examples and comment the found differences. 

6.19 Design tree classifiers for the three classes of the Clays’ dataset using the CRT and 

discriminating “low” necrosis (SCR < 2) from “medium-high” necrosis (SCR  2), as ≥

discriminates the pathological foetal state responsible for a “flat-sinusoidal” (FS) 
tracing from all the other classes. 



7 Data Regression 

An important objective in scientific research and in more mundane data analysis 
tasks concerns the possibility of predicting the value of a dependent random 
variable based on the values of other independent variables, establishing a  
functional relation of a statistical nature. The study of such functional relations, 
known for historical reasons as regressions, goes back to pioneering works in 
Statistics. 

Let us consider a functional relation of one random variable Y depending on a 
single predictor variable X, which may or may not be random: 

 
Y  = g(X). 
 
We study such a functional relation, based on a dataset of observed values 

{(x1,y1), (x1,y1), …, (xn,yn)}, by means of a regression model, )(ˆˆ XgY = , which is a 
formal way of expressing the statistical nature of the unknown functional relation, 
as illustrated in Figure 7.1. We see that for every predictor value xi, we must take 
into account the probability distribution of Y as expressed by the density function 
fY (y). Given certain conditions the stochastic means of these probability 
distributions determine the sought for functional relation, as illustrated in Figure 
7.1. In the following we always assume X to be a deterministic variable. 
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Figure 7.1. Statistical functional model in single predictor regression. The yi are 
the observations of the dependent variable for the predictor values xi. 
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Correlation differs from regression since in correlation analysis all variables are 
assumed to be random and play a symmetrical role, with no dependency 
assignment. As it happens with correlation, one must also be cautious when trying 
to infer causality relations from regression. As a matter of fact, the existence of a 
statistical relation between the response Y and the predictor variable X does not 
necessarily imply that Y depends causally on X  (see also 4.4.1). 

7.1 Simple Linear Regression 

7.1.1 Simple Linear Regression Model  

In simple linear regression, one has a single predictor variable, X, and the 
functional relation is assumed to be linear. The only random variable is Y and the 
regression model is expressed as: 
 

iii xY εββ ++= 10 , 7.1 
 

where: 
 
i. The Yi are random variables representing the observed values yi for the 

predictor values xi. The Yi are distributed as )(yf iY . The linear regression 
parameters, β0 and β1, are known as intercept and slope, respectively. 

ii. The iε  are random error terms (variables), with: 

 [ ] [ ] [ ] .,0V;V;0 2 jijiii ≠∀===Ε εεεε σ  

Therefore, the errors are assumed to have zero mean, equal variance and to be 
uncorrelated among them (see Figure 7.1). With these assumptions, the following 
model features can be derived: 

 
i. The errors are i.i.d. with: 

 
 [ ] [ ] [ ] XYxY iii 1010 EE0E ββββε +=⇒+=⇒= .  
 
 The last equation expresses the linear regression of Y dependent on X. The 

linear regression parameters β0 and β1 have to be estimated from the dataset. 
The density of the observed values, )( yf iY , is the density of the errors, 

)(εεf , with a translation of the means to [ ]iYE . 

ii. [ ] [ ] 22 VV σσε =⇒= ii Y . 

iii. The Yi and Yj are uncorrelated. 
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7.1.2 Estimating the Regression Function 

A popular method of estimating the regression function parameters is to use a least 
square error (LSE) approach, by minimising the total sum of the squares of the 
errors (deviations) between the observed values yi and the estimated values            
b0 + b1xi: 
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where b0 and b1 are estimates of β0 and β1, respectively. 
In order to apply the LSE method one starts by differentiating E in order to b0 

and b1 and equalising to zero, obtaining the so-called normal equations: 
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where the summations, from now on, are always assumed to be for the n predictor 
values. By solving the normal equations, the following parameter estimates, b0 and 
b1, are derived: 
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The least square estimates of the linear regression parameters enjoy a number of 

desirable properties: 
 
i. The parameters b0 and b1 are unbiased estimates of the true parameters β0 

and β1 ( [ ] [ ] 1100 E,E ββ == bb ), and have minimum variance among all 
unbiased linear estimates. 

ii. The predicted (or fitted) values ii xbby 10ˆ += are point estimates of the true, 
observed values, yi. The same is valid for the whole relation XbbY 10

ˆ += , 
which is the point estimate of the mean response E[Y ]. 

iii. The regression line always goes through the point ( x , y ). 

iv. The computed errors iiiii xbbyyye 10ˆ −−=−= , called the residuals, are 
point estimates of the error values εi. The sum of the residuals is zero: 
∑ = 0ie . 

v. The residuals are uncorrelated with the predictor and the predicted values: 
∑∑ == 0ˆ;0 iiii yexe . 

vi. yyyy ii ˆˆ =⇒=∑∑ , i.e., the predicted values have the same mean as 
the observed values. 



274 7 Data Regression 

These properties are a main reason of the popularity of the LSE method. 
However, the reader must bear in mind that other error measures could be used. 
For instance, instead of minimising the sum of the squares of the errors one could 
minimise the sum of the absolute values of the errors: ∑= iE ε . Another linear 
regression would then be obtained with other properties. In the following we only 
deal with the LSE method. 

 

Example 7.1 

Imagine that we wanted to predict the total area of the defects of a cork stopper 
(ART) based on their total perimeter (PRT), using a linear regression approach. 
Determine the regression parameters and represent the regression line. 

A: Figure 7.2 shows the scatter plot obtained with STATISTICA of these two 
variables with the linear regression fit (Linear Fit box in Scatterplot), 
using equations 7.4 and 7.5. Figure 7.3 shows the summary of the regression 
analysis obtained with STATISTICA (see Commands 7.1). Using the values of the 
linear parameters (Column B in Figure 7.3) we conclude that the fitted regression 
line is: 

 
ART = −64.5 + 0.547×PRT. 
 
Note that the regression line passes through the point of the means of ART and 

PRT: ( PRT,ART ) = (324, 710). 
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Figure 7.2. Scatter plot of variables ART and PRT (cork-stopper dataset), obtained 
with STATISTICA, with the fitted regression line. 

 

Q: Consider the variables ART and PRT of the Cork Stoppers’ dataset. 
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Figure 7.3.  Table obtained with STATISTICA containing the results of the simple 
linear regression for the Example 7.1. 

 
The value of Beta, mentioned in Figure 7.3, is related to the so-called 

standardised regression model: 
 

iii xY εβ += **
1

* .  7.6 
 
In equation 7.6 only one parameter is used, since *

iY  and *
ix  are standardised 

variables (mean = 0, standard deviation = 1) of the observed and predictor 
variables, respectively. (By equation 7.5, xY 10 ]E[ ββ −= implies Yi YEY σ/)][( −  
= **

1 /)( iXi sxx εβ +− .) 
It can be shown that: 
 

*
11 β

σ
β 








=

X

Y

s
.  7.7 

 

The standardised *
1β  is the so-called beta coefficient, which has the point 

estimate value *
1b = 0.98 in the table shown in Figure 7.3. 

Figure 7.3 also mentions the values of R, R2 and Adjusted R2. These are 
measures of association useful to assess the goodness of fit of the model. In order 
to understand their meanings we start with the estimation of the error variance, by 
computing the error sum of squares or residual sum of squares (SSE)1, i.e. the 
quantity E in equation 7.2, as follows: 

 

∑∑ =−= 22)ˆ(SSE iii eyy . 7.8 
 
Note that the deviations are referred to each predicted value; therefore, SSE has 

n − 2 degrees of freedom since two degrees of freedom are lost: b0 and b1. The 
following quantities can also be computed: 

 

– Mean square error: 
2

SSEMSE
−

=
n

. 

– Root mean square error, or standard error: MSERMS = .  
 

                                                           
1
  Note the analogy of SSE and SST with the corresponding ANOVA sums of squares, 

formulas 4.25b and 4.22, respectively. 
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The total variance of the observed values is related to the total sum of squares 
(SST)1: 

 
∑ −=≡ 2)(SSYSST yyi .  7.9 

 
The contribution of X to the prediction of Y can be evaluated using the following 

association measure, known as coefficient of determination or R-square: 
 

[ ]1,0
SST

SSESST2 ∈
−

=r .  7.10 

 

correlation between xi and yi, measures the contribution of X in reducing the 
variation of Y, i.e., in reducing the uncertainty in predicting Y. Notice that: 

 
1. If all observations fall on the regression line (perfect regression, complete 

certainty), then SSE = 0, r2 = 1. 

2. If the regression line is horizontal (no contribution of X in predicting Y), 
then SSE = SST, r2 = 0. 

 

 

 

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

Predicted Values

O
bs

er
ve

d 
Va

lu
es

 
Figure 7.4.  Scatter plot, obtained with STATISTICA, of the observed values 
versus predicted values of the ART variable (cork-stopper data) with the fitted line 
and the 95% confidence interval (dotted line). 

 

This last quantity corresponds to the “Std. Error of estimate” in Figure 7.3. 

Therefore, “R-square”, which can also be shown to be the square of the Pearson 

However, as we have seen in 2.3.4 when discussing the Pearson correlation, 
“R-square” does not assess the appropriateness of the linear regression model.  
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)2/()1( 222 −−−= nrrra .  7.11 
 

r2 = 0.96, 
as shown in Figure 7.3. STATISTICA highlights the summary table when this 
value is found to be significant (same test as in 4.4.1), therefore showing evidence 
of a tight fit. Figure 7.4 shows the observed versus predicted values for the 
Example 7.1. A perfect model would correspond to a unit slope straight line. 

 
 

Commands 7.1. SPSS, STATISTICA, MATLAB and R commands used to 
perform simple linear regression. 

SPSS Analyze; Regression; Linear 

STATISTICA 
Statistics; Multiple regression | 
Advanced Linear/Nonlinear Models; 
General Linear Models 

MATLAB [b,bint,r,rint,stats]=regress(y,X,alpha) 

R lm(y~X) 

 
 
SPSS and STATISTICA commands for regression analysis have a large number of 
options that the reader should explore in the following examples. With SPSS and 
STATISTICA, there is also the possibility of obtaining a variety of detailed listings 
of predicted values and residuals as well as graphic help, such as specialised scatter 
plots. For instance, Figure 7.4 shows the scatter plot of the observed versus the 
predicted values of variable ART (cork-stopper example), together with the 95% 
confidence interval for the linear fit. 

Regression analysis is made in MATLAB with the regress function, which 
computes the LSE coefficient estimates b of the equation y = Xb where y is the 
dependent data vector and X is the matrix whose columns are the predictor data 
vectors. We will use more than one predictor variable in section 7.3 and will then 
adopt the matrix notation. The meaning of the other return values is as follows: 

 
r: residuals; rint: alpha confidence intervals for r; 
stats: r2 and other statistics bint: alpha confidence interval for b; 
 
Let us use Example 7.1 to illustrate the use of the regress function. We start 

by defining the ART and PRT data vectors using the cork matrix containing the 
whole dataset. These variables correspond to columns 2 and 4, respectively (see the 
EXCEL data file): 

 
>> ART = cork(:,2); PRT = cork(:,4); 

Often the value of “R-square” is found to be slightly optimistic. Several authors 
propose using the following “Adjusted R-square” instead: 

For the cork-stopper example the value of the “R square” is quite high, 
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Next, we create the X matrix by binding a column of ones, corresponding to the 
intercept term in equation 7.1, to the PRT vector: 

 
>> X = [PRT ones(size(PRT,1),1)] 
 
We are now ready to apply the regress function: 
 
>> [b,bint,r,rint,stats] = regress(ART,X,0.05); 
 
The values of b, bint and stats are as follows: 
 
>> b 
b = 
    0.5469 
  -64.4902 
 
>> bint 
bint = 
    0.5294    0.5644 
  -78.4285  -50.5519 
 
>> stats 
stats = 
  1.0e+003 * 
    0.0010    3.8135         0 
 
The values of b coincide with those in Figure 7.3. The intercept coefficient is 

here the second element of b in correspondence with the (second) column of ones 
of X. The values of bint are the 95% confidence intervals of b agreeing with the 
values computed in Example 7.2 and Example 7.4, respectively. Finally, the first 
value of stats is the R-square statistic; the second and third values are 
respectively the ANOVA F and p discussed in section 7.1.4 and reported in Table 
7.1. The exact value of the R-square statistic (without the four-digit rounding effect 
of the above representation) can be obtained by previously issuing the format 
long command. 

Let us now illustrate the use of the R lm function for the same problem as in 
Example 7.1. We have already used the lm function in Chapter 4 when computing 
the ANOVA tests (see Commands 4.5 and 4.6). This function fits a linear model 
describing the y data as a function of the X data. In chapter 4 the X data was a 
categorical data vector (an R factor). Here, the X data correspond to the real-valued 
predictors. Using the cork data frame we may run the lm function as follows: 

 

> attach(cork) 
> summary(lm(ART~PRT)) 
 
Call: 
lm(formula = ART ~ PRT) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-95.651 -22.727  -1.016  19.012 152.143  

> load(“e:cork”) 
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Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -64.49021   7.05335  -9.143 4.38e-16 *** 
PRT           0.54691   0.00885  61.753  < 2e-16 *** 
--- 

 
Residual standard error: 39.05 on 148 degrees of 

freedom 
Multiple R-Squared: 0.9626,Adjusted R-squared: 0.9624  
F-statistic:  3813 on 1 and 148 DF,p-value: < 2.2e-16 
  
We thus obtain the same results published in Figure 7.3 and Table 7.1 plus some 

several components, such as coefficients and residuals (for more details 
use the help). Returning objects with components is a general feature of R. We 
found it already when describing how to obtain the density estimate of a histogram 
object in Commands 2.3 and the histogram of a bootstrap object in Commands 3.7. 
The summary function when applied to an object produces a summary display of 
the most important object components, as exemplified above. If one needs to 

of the above regression model can be stored in a vector x with: 
 
r <- lm(ART~PRT) 
x <- r$residuals  
 
The fitted values can be obtained with r$fitted.  

7.1.3 Inferences in Regression Analysis 

In order to make inferences about the regression model, the errors εi are assumed 
to be independent and normally distributed, N0,σ. This constitutes the so-called 
normal regression model. It can then be shown that the unbiased estimate of σ is 
the RMS. 

The inference tests described in the following sections continue to be valid in 
the case of mild deviations from normality. Even if the distributions of Yi are far 
from normal, the estimators of b0 and b1 have the property of asymptotic normality: 
their distributions approach normality under very general conditions, as the sample 
size increases. 

The point estimate of b1 is given by formula 7.4. This formula can also be 
expressed as: 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘  1  

information on the residuals. The lm function returns an object of class “lm” with 

obtain a particular component one uses the “$” notation. For instance, the residuals 

’

7.1.3.1 Inferences About b1 
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The sampling distribution of b1 for the normal regression model is also normal 
(since b1 is a linear combination of the yi), with: 

 
– Mean:  [ ] [ ] 1101 EE βββ ∑ ∑∑ =+== iiiii xkkYkb . 

– Variance:  [ ] [ ] [ ]
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If instead of σ , we use its estimate RMS = MSE , we then have: 
 

∑ −= 2)( / MSE
1

xxs ib .  7.13 
 
Thus, in order to make inferences about b1, we take into account that: 
 

1

11*

bs
b

t
β−

=  ~  tn−2.  7.14 

 

The sampling distribution of the studentised statistic t* allows us to compute 
confidence intervals for β1 as well as to perform tests of hypotheses, in order to, for 
example, assess if there is no linear association: H0: β1 = 0.  

 

Example 7.2 

Q: Determine the 95% confidence interval of b1 for the ART(PRT) linear 
regression in Example 7.1. 

A: The MSE value can be found in the SPSS or STATISTICA ANOVA table (see 
Commands 7.2). The Model Summary of SPSS or STATISTICA also publishes 
the value of RMS (Standard Error of Estimate). When using 
MATLAB, the values of MSE and RMS can also be easily computed using the 
vector r of the residuals (see Commands 7.1). The value of ∑ − 2)( xxi is 
computed from the variance of the predictor values. Thus, in the present case we 
have: 

 

MSE = 1525, sPRT = 361.2   ⇒  ))1(( / MSE 2
PRT1 snsb −=  = 0.00886. 

 
Since t148,0.975 = 1.976 the 95% confidence interval of b1 is [0.5469 – 0.0175, 

0.5469 + 0.0175] = [0.5294, 0.5644], which agrees with the values published by 
SPSS (confidence intervals option), STATISTICA (Advanced 
Linear/Nonlinear Models), MATLAB and R. 
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Example 7.3 

Q: Consider the ART(PRT) linear regression in Example 7.1. Is it valid to reject 
the null hypothesis of no linear association, at a 5% level of significance? 

A: The results of the respective t test are shown in the last two columns of Figure 
7.3. Taking into account the value of p ( p ≈ 0 for t* = 61.8), the null hypothesis is 
rejected.  

The point estimate of b0 is given by formula 7.5. The sampling distribution of b0 
for the normal regression model is also normal (since b0 is a linear combination of 
the yi), with: 
 

– Mean: [ ] 00E β=b ; 

– Variance [ ]

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Since σ is usually unknown we use the point estimate of the variance: 
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Therefore, in order to make inferences about b0, we take into account that: 
 

0

00*

bs
b

t
β−

=   ~   tn−2.  7.16 

This allows us to compute confidence intervals for β0, as well as to perform tests 
of hypotheses, namely in order to assess whether or not the regression line passes 
through the origin: H0: β0 = 0.  

 

Example 7.4 

Q: Determine the 95% confidence interval of b0 for the ART(PRT) linear 
regression in Example 7.1. 

A: Using the MSE and sPRT values as described in Example 7.2, we obtain: 
 

( )∑ −+= 222 )(//1MSE
0

xxxns ib  = 49.76. 
 
Since t148,0.975 = 1.976 we thus have 

0bs ∈ [–64.49 – 13.9, –64.49 + 13.9] =       
[−78.39, −50.59] with 95% confidence level. This interval agrees with previously 
mentioned SPSS, STATISTICA, MATLAB and R results. 

  

7.1.3.2 Inferences About b0 
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Example 7.5 

Q: Consider the ART(PRT) linear regression in Example 7.1. Is it valid to reject 
the null hypothesis of a linear fit through the origin at a 5% level of significance? 

A: The results of the respective t test are shown in the last two columns of Figure 
7.3. Taking into account the value of p (p ≈ 0 for t* = −9.1), the null hypothesis is 
rejected. This is a somewhat strange result, since one expects a null area 
corresponding to a null perimeter. As a matter of fact an ART(PRT) linear 
regression without intercept is also a valid data model (see Exercise 7.3).   

Let us assume that one wants to derive interval estimators of ]ˆE[ kY , i.e., one wants 
to determine which value would be obtained, on average, for a predictor variable 
level xk, and if repeated samples (or trials) were used. 

The point estimate of ]ˆE[ kY , corresponding to a certain value xk, is the 
computed predicted value: 

 

kk xbby 10ˆ += . 
 
The kŷ value is a possible value of the random variable kŶ  which represents all 

possible predicted values. The sampling distribution for the normal regression 
model is also normal (since it is a linear combination of observations), with: 

 

– Mean: ]ˆE[ kY [ ] [ ] [ ] kkk xbxbxbb 101010 EEE ββ +=+=+= ; 

– Variance: 
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Note that the variance is affected by how far xk is from the sample mean x . This 
is a consequence of the fact that all regression estimates must pass through ),( yx . 
Therefore, values xk far away from the mean lead to higher variability in the 
estimates. 

Since σ is usually unknown we use the estimated variance: 
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Thus, in order to make inferences about kŶ , we use the studentised statistic: 
 

]ˆ[
]ˆ[ˆ*

k

kk

Ys
Yy

t
Ε−

=    ~   tn−2.  7.18 

 

7.1.3.3 Inferences About Predicted Values 
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This sampling distribution allows us to compute confidence intervals for the 
predicted values. Figure 7.4 shows with dotted lines the 95% confidence interval 
for the cork-stopper Example 7.1. Notice how the confidence interval widens as we 
move away from ),( yx . 

 
Example 7.6 

Q: The observed value of ART for PRT = 1612 is 882. Determine the 95% 
confidence interval of the predicted ART value using the ART(PRT) linear 
regression model derived in Example 7.1. 

A: Using the MSE and sPRT values as described in Example 7.2, and taking into 
account that PRT = 710.4, we compute: 

 
2)( xxk − = (1612–710.4)2 = 812882.6;  ∑ − 2)( xxi = 19439351; 


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Since t148,0.975 = 1.976 we obtain kŷ ∈ [882 – 17, 882 + 17] with 95% 

confidence level. This corresponds to the 95% confidence interval depicted in 
Figure 7.4.  

Imagine that we want to predict a new observation, that is an observation for new 
predictor values independent of the original n cases. The new observation on y is 
viewed as the result of a new trial. To stress this point we call it: 

 

)new(kY . 
 

If the regression parameters were perfectly known, one would easily find the 
confidence interval for the prediction of a new value. Since the parameters are 
usually unknown, we have to take into account two sources of variation: 

 
– The location of ]E[ )new(kY , i.e., where one would locate, on average, the 

new observation. This was discussed in the previous section. 

– The distribution of )new(kY , i.e., how to assess the expected deviation of the 
new observation from its average value. For the normal regression model, 
the variance of the prediction error for the new prediction can be obtained 
as follows, assuming that the new observation is independent of the original 
n cases: 

 

 ]ˆV[]ˆV[V 2
)new(pred kkk YYY +=−= σ . 

 

7.1.3.4 Prediction of New Observations 
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The sampling distribution of )new(kY  for the normal regression model takes into 
account the above sources of variation, as follows: 

 

pred

)new(*
ˆ

s
yy

t kk −
=   ~   tn−2, 7.19 

where 2
preds is the unbiased estimate of Vpred : 
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Thus, the 1 – α confidence interval for the new observation, )new(ky , is: 
 

pred2/1,2ˆ sty nk α−−± . 7.20a 
 

Example 7.7 

Q: Compute the estimate of the total area of defects of a cork stopper with a total 
perimeter of the defects of 800 pixels, using Example 7.1 regression model. 

A: Using formula 7.20 with the MSE, sPRT, PRT  and t148,0.975 values presented in 
Examples 7.2 and 7.6, as well as the coefficient values displayed in Figure 7.3, we 
compute: 

 

)new(ˆ ky ∈ [437.5 – 77.4, 437.5 + 77.4] ≈ [360, 515], with 95% confidence level. 
 
Figure 7.5 shows the table obtained with STATISTICA (using the Predict 

dependent variable button of the Multiple regression command), 
displaying the predicted value of variable ART for the predictor value PRT = 800, 
together with the 95% confidence interval. Notice that the 95% confidence interval 
is quite smaller than we have computed above, since STATISTICA is using 
formula 7.17 instead of formula 7.20, i.e., is considering the predictor value as 
making part of the dataset.  

In R the same results are obtained with: 
 
x <- c(800,0) ## 0 is just a dummy value 
z <- rbind(cork,x) 

 
The second command line adds the predictor value to the data frame. The 
predict function lists all the predicted values with the 95% confidence interval. 
In this case we are interested in the last listed values, which agree with those of 
Figure 7.5.  
  

predict(r,z,interval=c(“confidence”),type=c(“response
”)) 
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Figure 7.5. Prediction of the new observation of ART for PRT = 800 (cork- 
stopper dataset), using STATISTICA. 

7.1.4 ANOVA Tests 

The analysis of variance tests are quite popular in regression analysis since they 
can be used to evaluate the regression model in several aspects. We start with a 
basic ANOVA test for evaluating the following hypotheses: 
 

H0:   β1 = 0;  7.21a 
H1:   β1 ≠ 0. 7.21b 
 
For this purpose, we break down the total deviation of the observations around 

the mean, given in equation 7.9, into two components: 
 

∑∑∑ −+−=−= 222 )ˆ()ˆ()(SST iiii yyyyyy .  7.22 
 
The first component represents the deviations of the fitted values around the 

mean, and is known as regression sum of squares, SSR: 
 

∑ −= 2)ˆ(SSR yyi .  7.23 
 
The second component was presented previously as the error sum of squares, 

SSE (see equation 7.8). It represents the deviations of the observations around the 
regression line. We, therefore, have: 

 
SST = SSR + SSE.  7.24 
 
The number of degrees of freedom of SST is n − 1 and it breaks down into one 

degree of freedom for SSR and n − 2 for SSE. Thus, we define the regression mean 
square: 

 

SSR
1

SSRMSR == . 
 

The mean square error was already defined in section 7.1.2. In order to test the 
null hypothesis 7.21a, we then use the following ratio: 

 

2,1
* ~

MSE
MSR

−= nFF .  7.25 
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From the definitions of MSR and MSE we expect that large values of F support 
H1 and values of F near 1 support H0. Therefore, the appropriate test is an upper-
tail F test.  

 

Example 7.8 

Q: Apply the ANOVA test to the regression Example 7.1 and discuss its results. 

A: For the cork-stopper Example 7.1, the ANOVA array shown in Table 7.1 can be 
obtained using either SPSS or STATISTICA. The MATLAB and R functions listed 
in Commands 7.1 return the same F and p values as in Table 7.1. The complete 
ANOVA table can be obtained in R with the anova function (see Commands 7.2). 
Based on the observed significance of the test, we reject H0, i.e., we conclude the 
existence of the linear component  (β1 ≠ 0).  

 

Table 7.1. ANOVA test for the simple linear regression example of predicting 
ART based on the values of PRT (cork-stopper data). 

 Sum of 
Squares df Mean 

Squares F p 

SSR 5815203 1 5815203 3813.453 0.00 

SSE 225688 148 1525   

SST 6040891     
 
 

Commands 7.2. SPSS, STATISTICA, MATLAB and R commands used to 
perform the ANOVA test in simple linear regression. 

SPSS Analyze; Regression; Linear; Statistics; 
Model Fit 

STATISTICA Statistics; Multiple regression; Advanced; 
ANOVA 

MATLAB [b,bint,r,rint,stats]=regress(y,X,alpha) 

R anova(lm(y~X)) 

  
 
There are also specific ANOVA tests for assessing whether a certain regression 

observations at one or more X levels, the so-called replicates. 

function adequately fits the data. We will now describe the ANOVA test for lack of fit, 
which assumes that the observations of Y are independent, normally distributed and 
with the same variance. The test takes into account what happens to repeat 
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Let us assume that there are c distinct values of X, replicates or not, each with nj 
replicates: 

 

∑
=

=
c

j
jnn

1
.  7.26 

 

The ith replicate for the j level is denoted yij. Let us first assume that the 
replicate variables Yij are not constrained by the regression line; in other words, 
they obey the so-called full model, with: 

 

ijjijY εµ += ,   with i.i.d. εij  ~ N0,σ    ⇒   E[Yij] = µ j.  7.27 
 
The full model does not impose any restriction on the µ j, whereas in the linear 

regression model the mean responses are linearly related. 
To fit the full model to the data, we require: 
 

jj y=µ̂ .  7.28 
 
Thus, we have the following error sum of squares for the full model (F denotes 

the full model): 
 

∑∑ −=
j i

jij yy 2)(SSE(F) , with ∑ −=−=
j

j cnndf )1(F .  7.29 

 
In the above summations any X level with no replicates makes no contribution 

to SSE(F). SSE(F) is also called pure error sum of squares and denoted SSPE. 
Under the linear regression assumption, the µ j are linearly related with xj. They 

correspond to a reduced model, with: 
 
 ijjij xY εββ ++= 10 . 
 
The error sum of squares for the reduced model is the usual error sum (R 

denotes the reduced model): 
 
SSE(R) ≡ SSE, with 2R −= ndf . 
 

The difference SSLF = SSE − SSPE is called the lack of fit sum of squares and 
has (n – 2) – (n – c) = c – 2 degrees of freedom. The decomposition SSE = SSPE + 
SSLF corresponds to: 

 

deviationfitoflackdeviationerrorpuredeviationerror
)ˆ()(ˆ ijjjijijij yyyyyy −+−=− .  7.30 

 
If there is a lack of fit, SSLF will dominate SSE, compared with SSPE. 

Therefore, the ANOVA test, assuming that the null hypothesis is the lack of fit, is 
performed using the following statistic: 
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The test for lack of fit is formalised as: 
 
H0:   [ ] XY 10 ββ +=Ε .  7.31a 
H1:   [ ] XY 10 ββ +≠Ε . 7.31b 
 
Let F1−α represent the 1 − α percentile of Fc−2,n−c. Then, if  F* ≤ F1−α we accept 

the null hypothesis, otherwise (significant test), we conclude for the lack of fit. 
Repeat observations at only one or some levels of X are usually deemed 

sufficient for the test. When no replications are present in a data set, an 
approximate test for lack of fit can be conducted if there are some cases, at 
adjacent X levels, for which the mean responses are quite close to each other. 
These adjacent cases are grouped together and treated as pseudo-replicates. 

 

Example 7.9 

Q: Apply the ANOVA lack of fit test for the regression in Example 7.1 and discuss 
its results. 

A: First, we know from the previous results of Table 7.1, that: 
 
SSE = 225688;  df = n – 2 = 148;  MSE = 1525 . 7.32 
 
In order to obtain the value of SSPE, using STATISTICA, we must run the 

General Linear Models command and in the Options tab of Quick 
Specs Dialog, we must check the Lack of fit box. After conducting a 
Whole Model R (whole model regression) with the variable ART depending on 
PRT, the following results are obtained: 

 
SSPE = 65784.3;   df = n – c = 20;   MSPE = 3289.24 . 7.33 
 
Notice, from the value of df, that there are 130 distinct values of PRT. Using the 

results 7.32 and 7.33, we are now able to compute: 
 
SSLF = SSE − SSPE = 159903.7;   df = c – 2 = 128;   MSLF = 1249.25 . 
 
Therefore, F* = MSLF/MSPE = 0.38. For a 5% level of significance, we 

determine the 95% percentile of F128,20, which is F0.95 = 1.89. Since F* < F0.95, we 
then conclude for the goodness of fit of the simple linear model.  
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7.2 Multiple Regression 

7.2.1 General Linear Regression Model 

Assuming the existence of p − 1 predictor variables, the general linear regression 
model is the direct generalisation of 7.1: 

 

i

p

k
ikkipipiii xxxxY εε βββββ +=+++++= ∑

−

=
−−

1

0
1,122110 K , 7.34 

 

with 10 =ix . In the following we always consider normal regression models with 
i.i.d. errors εi ~ N0,σ. 

Note that: 
 

– The general linear regression model implies that the observations are 
independent normal variables. 

– When the xi represent values of different predictor variables the model is 
called a first-order model, in which there are no interaction effects between 
the predictor variables. 

– The general linear regression model encompasses also qualitative predictors. 
For example: 

 

iiii xxY εβββ +++= 22110 .  7.35 
 

1 =ix





=
malepatientif0
femalepatientif1

2ix  

 
Patient is male: iii xY εββ ++= 110 . 
 

Patient is female: iii xY εβββ +++= 1120 )( . 
 
Multiple linear regression can be performed with SPSS, STATISTICA, 

MATLAB and R with the same commands and functions listed in Commands 7.1. 

7.2.2 General Linear Regression in Matrix Terms 

In order to understand the computations performed to fit the general linear 
regression model to the data, it is convenient to study the normal equations 7.3 in 
matrix form. 

We start by expressing the general linear model (generalisation of 7.1) in matrix 
terms as: 

 

y = Xβ + ε, 7.36 

weightspatient  ’
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where: 
 

– y is an n×1 matrix (i.e., a column vector) of the predictions; 
– X is an n×p matrix of the p − 1 predictor values plus a bias (of value 1) for 

the n predictor levels; 
– β is a p×1 matrix of the coefficients; 
– ε is an n×1 matrix of the errors. 
 
For instance, the multiple regression expressed by formula 7.35 is represented as 

follows in matrix form, assuming n = 3 predictor levels: 
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We assume, as for the simple regression, that the errors are i.i.d. with zero mean 

and equal variance: 
 

[ ] [ ] Iεε 2V;0E σ== . 
 
Thus: [ ] βXy =E . 
The least square estimation of the coefficients starts by computing the total 

error: 
 

XbXbyXbby)(XyyXbyXbyεε +−−=−−=== ∑ )()(2
iE ε .  7.37 

 
Next, the error is minimised by setting to zero the derivatives in order to the 

coefficients, obtaining the normal equations in matrix terms: 
 

yXXbXXb2Xy2X =⇒=+−⇒=
∂
∂ 00

ib
E . 

 
Hence: 
 

yXyXX)(Xb *1 == − ,  7.38 
 
where X* is the so-called pseudo-inverse matrix of X. 

The fitted values can now be computed as: 
 

Xby =ˆ . 
 
Note that this formula, using the predictors and the estimated coefficients, can 

also be expressed in terms of the predictors and the observations, substituting the 
vector of the coefficients given in 7.38. 

Let us consider the normal equations: 
 

YXX)(Xb 1−= . 

’ ’ ’ ’ ’ ’ ’ ’

’’ ’ ’

’ ’

’ ’
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For the standardised model (i.e., using standardised variables) we have: 
 





















==

−−

−

−

1

1
1

2,11,1

1,221

1,112

K

KLKK

K

K

pp

p

p

rr

rr
rr

xxrXX ; 7.39 





















==

−1,

2

1

py

y

y

r

r
r

MyxrYX .  7.40 

Hence: 
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where b is the vector containing the point estimates of the beta coefficients 
(compare with formula 7.7 in section 7.1.2), rxx is the symmetric matrix of the 
predictor correlations (see A.8.2) and ryx is the vector of the correlations between 
Y and each of the predictor variables. 
 

Example 7.10 

Q: Consider the following six cases of the Foetal Weight dataset: 
 

Variable Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 
CP 30.1 31.1 32.4 32 32.4 35.9 
AP 28.8 31.3 33.1 34.4 32.8 39.3 
FW 2045 2505 3000 3520 4000 4515 
 
Determine the beta coefficients of the linear regression of FW (foetal weight in 

grams) depending on CP (cephalic perimeter in mm) and AP (abdominal perimeter 
in mm) and performing the computations expressed by formula 7.41. 

A: We can use MATLAB function corrcoef or appropriate SPSS, 
STATISTICA and R commands to compute the correlation coefficients. Using 
MATLAB and denoting by fw the matrix containing the above data with cases 
along the rows and variables along the columns, we obtain: 

 
» c=corrcoef(fw(:,:)) 
» c = 

’

’
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    1.0000    0.9692    0.8840 
    0.9692    1.0000    0.8880 
    0.8840    0.8880    1.0000 
 
We now apply formula 7.41 as follows: 
 
» rxx = c(1:2,1:2); ryx = c(1:2,3); 
» b = inv(rxx)*ryx 
b = 
    0.3847 
    0.5151 
 
These are also the values obtained with SPSS, STATISTICA and R. It is 

interesting to note that the beta coefficients for the 414 cases of the Foetal 
Weight dataset are 0.3 and 0.64 respectively.  

 

Example 7.11 

Q: Determine the multiple linear regression coefficients of the previous example. 

A: Since the beta coefficients are the regression coefficients of the standardised 
model, we have: 
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These computations can be easily carried out in MATLAB or R. For instance, in 

MATLAB b2 is computed as b2=0.5151*std(fw(:,3))/std(fw(:,2)). 
The same values can of course be obtained with the commands listed in 
Commands 7.1  

7.2.3 Multiple Correlation 

Let us go back to the R-square statistic described in section 7.1, which represented 
the square of the correlation between the independent and the dependent variables. 
It also happens that it represents the square of the correlation between the 
dependent and predicted variable, i.e., the square of: 
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In multiple regression this quantity represents the correlation between the 

dependent variable and the predicted variable explained by all the predictors; it is 
therefore appropriately called multiple correlation coefficient. For p−1 predictors 
we will denote this quantity as 1,,1| −pXXYr K . 
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Figure 7.6. The regression linear model (plane) describing FW as a function of 
(CP,AP) using the dataset of Example 7.10. The observations are the solid balls. 
The predicted values are the open balls (lying on the plane). The multiple 
correlation corresponds to the correlation between the observed and predicted 
values. 

 

Example 7.12 

Q: Compute the multiple correlation coefficient for the Example 7.10 regression, 
using formula 7.42. 

A: In MATLAB the computations can be carried out with the matrix fw of 
Example 7.10 as follows: 

 
» fw = [fw(:,1) ones(1,6) fw(:,2:3)]; 
» [b,bint,r,rint,stats] = regress(fw(:,1),fw(:,2:4)); 
» y = fw(:,1); ystar = y-r; 
» corrcoef(y,ytar) 
ans = 
    1.0000    0.8930 
    0.8930    1.0000 
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The first line includes the independent terms in the fw matrix in order to 
compute a linear regression model with intercept. The third line computes the 
predicted values in the ystar vector. The square of the multiple correlation 
coefficient, rFW|CP,AP = 0.893 computed in the fourth line coincides with the value 
of R-square computed in the second line (r) as it should be. Figure 7.6 illustrates 
this multiple correlation situation.  

  

7.2.4 Inferences on Regression Parameters 

Inferences on parameters in the general linear model are carried out similarly to the 
inferences in section 7.1.3. Here, we review the main results: 
 

– Interval estimation of βk: kbpnk stb 2/1, α−−± . 

– Confidence interval for E[Yk]: kypnk sty ˆ2/1,ˆ α−−± . 

– Confidence region for the regression hyperplane: kŷ  ± kysW ˆ , with W2 = 
α−− 1,, pnppF . 

 
Example 7.13 

Q: Consider the Foetal Weight dataset, containing foetal echographic 
measurements, such as the biparietal diameter (BPD), the cephalic perimeter (CP), 
the abdominal perimeter (AP), etc., and the respective weight-just-after-delivery, 
FW. Determine the linear regression model needed to predict the newborn weight, 
FW, using the three variables BPD, CP and AP. Discuss the results. 

A: Having filled in the three variables BPD, CP and AP as predictor or 
independent variables and the variable FW as the dependent variable, one can 
obtain with STATISTICA the result summary table shown in Figure 7.7. 

The standardised beta coefficients have the same meaning as in 7.1.2. Since 
these reflect the contribution of standardised variables, they are useful for 
comparing the relative contribution of each variable. In this case, variable AP has 
the highest contribution and variable CP the lowest. Notice the high coefficient of 
multiple determination, R2 and that in the last column of the table, all t tests are 
found significant. Similar results are obtained with the commands listed in 
Commands 7.1 for SPSS, MATLAB and R. 

Figure 7.8 shows line plots of the true (observed) values and predicted values of 
the foetal weight using the multiple linear regression model. The horizontal axis of 
these line plots is the case number. The true foetal weights were previously sorted 
by increasing order. Figure 7.9 shows the scatter plot of the observed and predicted 
values obtained with the Multiple Regression command of STATISTICA.  
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Figure 7.7. Estimation results obtained with STATISTICA of the trivariate linear 
regression of the foetal weight data. 

 
 

 
Figure 7.8. Plot obtained with STATISTICA of the predicted (dotted line) and 
observed (solid line) foetal weights with a trivariate (BPD, CP, AP) linear 
regression model. 

 
 

Figure 7.9. Plot obtained with STATISTICA of the observed versus predicted 
foetal weight values with fitted line and 95% confidence interval. 
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7.2.5 ANOVA and Extra Sums of Squares 

The simple ANOVA test presented in 7.1.4, corresponding to the decomposition of 
the total sum of squares as expressed by formula 7.24, can be generalised in a 
straightforward way to the multiple regression model.  

 

Example 7.14 

Q: Apply the simple ANOVA test to the foetal weight regression in Example 7.13. 

A: Table 7.2 lists the results of the simple ANOVA test, obtainable with SPSS 
STATISTICA, or R, for the foetal weight data, showing that the regression model 
is statistically significant ( p ≈ 0).  

  
 

Table 7.2. ANOVA test for Example 7.13. 

 Sum of 
Squares df Mean 

Squares F p 

SSR 128252147 3 42750716 501.9254 0.00 

SSE 34921110 410 85173   

SST 163173257     
 
 
It is also possible to apply the ANOVA test for lack of fit in the same way as 

was done in 7.1.4. However, when there are several predictor values playing their 
influence in the regression model, it is useful to assess their contribution by means 
of the so-called extra sums of squares. An extra sum of squares measures the 
marginal reduction in the error sum of squares when one or several predictor 
variables are added to the model. 

We now illustrate this concept using the foetal weight data. Table 7.3 shows the 
regression lines, SSE and SSR for models with one, two or three predictors. Notice 
how the model with (BPD,CP) has a decreased error sum of squares, SSE, when 
compared with either the model with BPD or CP alone, and has an increased 
regression sum of squares. The same happens to the other models. As one adds 
more predictors one expects the linear fit to improve. As a consequence, SSE and 
SSR are monotonic decreasing and increasing functions, respectively, with the 
number of variables in the model. Moreover, what SSE decreases is reflected by an 
equal increase of SSR. 

We now define the following extra sum of squares, SSR(X2|X1), which measures 
the improvement obtained by adding a second variable X2 to a model that has 
already X1: 

 
SSR(X2 | X1) = SSE(X1) − SSE(X1, X2) = SSR(X1, X2) − SSR(X1). 
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Table 7.3. Computed models with SSE, SSR and respective degrees of freedom for 
the foetal weight data (sums of squares divided by 106). 

Abstract Model Computed model SSE df SSR df 

Y  = g(X1) FW(BPD) = −4229.1 + 813.3 BPD 76.0 412 87.1 1 

Y  = g(X2) FW(CP) = −5096.2 + 253.8 CP 73.1 412 90.1 1 

Y  = g(X3) FW(AP) = −2518.5 + 173.6 AP 46.2 412 117.1 1 

Y  = g(X1, X2) FW(BPD,CP) = −5464.7 + 412.0 BPD + 
149.9 CP 65.8 411 97.4 2 

Y  = g(X1, X3) FW(BPD,AP) = −4481.1 + 367.2 BPD + 
131.0 AP 35.4 411 127.8 2 

Y  = g(X2, X3) FW(CP,AP) = −4476.2 + 102.9 CP + 
130.7 AP 38.5 411 124.7 2 

Y  = g(X1, X2, X3) FW(BPD,CP,AP) = −4765.7 + 292.3 BPD 
+ 36.0 CP + 127.7 AP 34.9 410 128.3 3 

X1 ≡ BPD; X2 ≡ CP; X3 ≡ AP 
 
 
For the data of Table 7.3 we have: SSR(CP | BPD) = SSE(BPD) − SSE(BPD, 

CP) = 76 − 65.8 = 10.2, which is practically the same as SSR(BPD, CP) − 
SSR(BPD) = 97.4 – 87.1 = 10.3 (difference only due to numerical roundings). 

Similarly, one can define: 
 
SSR(X3 | X1, X2)  = SSE(X1, X2) − SSE(X1, X2,  X3)  

  = SSR(X1, X2,  X3) − SSR(X1, X2). 
SSR(X2, X3 | X1) = SSE(X1) − SSE(X1, X2,  X3) = SSR(X1, X2, X3) − SSR(X1). 
 
The first extra sum of squares, SSR(X3 | X1, X2), represents the improvement 

obtained when adding a third variable, X3, to a model that has already two 
variables, X1 and X2. The second extra sum of squares, SSR(X2, X3 | X1), represents 
the improvement obtained when adding two variables, X2 and X3, to a model that 
has only one variable, X1. 

The extra sums of squares are especially useful for performing tests on the 
regression coefficients and for detecting multicollinearity situations, as explained 
in the following sections. 

With the extra sums of squares it is also possible to easily compute the so-called 
partial correlations, measuring the degree of linear relationship between two 
variables after including other variables in a regression model. Let us illustrate this 
topic with the foetal weight data. Imagine that the only predictors were BPD, CP 
and AP as in Table 7.3, and that we wanted to build a regression model of FW by 
successively entering in the model the predictor which is most correlated with the 
predicted variable. In the beginning there are no variables in the model and we 
choose the predictor with higher correlation with the independent variable FW. 
Looking at Table 7.4 we see that, based on this rule, AP enters the model. Now we 
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must ask which of the remaining variables, BPD or CP, has a higher correlation 
with the predicted variable of the model that has already AP. The answer to this 
question amounts to computing the partial correlation of a candidate variable, say 
X2, with the predicted variable of a model that has already X1, 1|2, XXYr . The 
respective formula is: 

 

)(SSE
),(SSE)(SSE

)(SSE
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XXX
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==  

 
For the foetal weight dataset the computations with the values in Table 7.3 are 

as follows: 
 

305.0
)AP(SSE

)AP|BPD(SSR2
AP|BPDFW, ==r , 

167.0
)AP(SSE

)AP|CP(SSR2
AP|CPFW, ==r , 

 
resulting in the partial correlation values listed in Table 7.4. We therefore select 
BPD as the next predictor to enter the model. This process could go on had we 
more predictors. For instance, the partial correlation of the remaining variable CP 
with the predicted variable of a model that has already AP and BPD is computed 
as: 

 

014.0
)AP,BPD(SSE

)AP,BPD|CP(SSR2
AP,BPD|CPFW, ==r . 

 
Further details on the meaning and statistical significance testing of partial 

correlations can be found in (Kleinbaum DG et al., 1988). 
 
 

Table 7.4. Correlations and partial correlations for the foetal weight dataset. 

Variables in 
the model 

Variables to 
enter the model Correlation Sample Value 

(None) BPD rFW,BPD 0.731 
(None) CP rFW,CP 0.743 
(None) AP rFW,AP 0.847 
AP BPD rFW,BPD|AP 0.552 
AP CP rFW,CP|AP 0.408 
AP, BPD CP rFW,CP|BPD,AP 0.119 
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We will only present the test for a single coefficient, formalised as: 
 
H0: βk = 0; 
H1: βk ≠ 0. 
 
The statistic appropriate for this test, is: 
 

pn
b

k t
s
b

t
k

−= ~* . 7.43 

 
We may also use, as in section 7.1.4, the ANOVA test approach. As an 

illustration, let us consider a model with three variables, X1, X2,  X3, and, 
furthermore, let us assume that we want to test whether H0: β3 = 0  can be 
accepted or rejected. For this purpose, we first compute the error sum of squares 
for the full model: 

 
),,(SSESSE(F) 321 XXX= ,    with    dfF  = n – 4. 

 
The reduced model, corresponding to H0, has the following error sum of 

squares: 
 

),(SSESSE(R) 21 XX= ,   with   dfR = n – 3. 
 
The ANOVA test assessing whether or not any benefit is derived from adding 

X3 to the model, is then based on the computation of: 
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In general, we have: 
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The F test using this sampling distribution is equivalent to the t test expressed 

by 7.43. This F test is known as partial F test. 

If the predictor variables are uncorrelated, the regression coefficients remain 
constant, irrespective of whether or not another predictor variable is added to the 

“ ”

7.2.5.1 Tests for Regression Coefficients 

7.2.5.2 Multicollinearity and its Effects 
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model. Similarly, the same applies for the sum of squares. For instance, for a 
model with two uncorrelated predictor variables, the following should hold: 

 
SSR(X1 | X2) = SSE(X2) − SSE(X1, X2) = SSR(X1);  7.45a 
SSR(X2 | X1) = SSE(X1) − SSE(X1, X2) = SSR(X2). 7.45b 
 
On the other hand, if there is a perfect correlation between X1 and X2 − in other 

words, X1 and X2 are collinear − we would be able to determine an infinite number 
of regression solutions (planes) intersecting at the straight line relating X1 and X2. 
Multicollinearity leads to imprecise determination coefficients, imprecise fitted 
values and imprecise tests on the regression coefficients. 

In practice, when predictor variables are correlated, the marginal contribution of 
any predictor variable in reducing the error sum of squares varies, depending on 
which variables are already in the regression model.  

 

Example 7.15 

Q: Consider the trivariate regression of the foetal weight in Example 7.13. Use 
formulas 7.45 to assess the collinearity of CP given BPD and of AP given BPD and 
BPD, CP. 

A: Applying formulas 7.45 to the results displayed in Table 7.3, we obtain: 
 
SSR(CP) = 90×106 . 
SSR(CP | BPD) = SSE(BPD) – SSE(CP, BPD) = 76×106 – 66×106 = 10×106 . 
 
We see that SSR(CP|BPD) is small compared with SSR(CP), which is a 

symptom that BPD and CP are highly correlated. Thus, when BPD is already in the 
model, the marginal contribution of CP in reducing the error sum of squares is 
small because BPD contains much of the same information as CP. 

In the same way, we compute: 
 
SSR(AP) = 46×106 . 
SSR(AP | BPD) = SSE(BPD) – SSE(BPD, AP) = 41×106 . 
SSR(AP | BPD, CP) = SSE(BPD, CP) – SSE(BPD, CP, AP) = 31×106 . 
 
We see that AP seems to bring a definite contribution to the regression model by 

reducing the error sum of squares.  

7.2.6 Polynomial Regression and Other Models 

Polynomial regression models may contain squared, cross-terms and higher order 
terms of the predictor variables. These models can be viewed as a generalisation of 
the multivariate linear model. 

As an example, consider the following second order model: 
 

iiii xxY εβββ +++= 2
210 . 7.46 
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The Yi can also be linearly modelled as: 
 

iiii uuY εβββ +++= 22110  with 2
21 ; iiii xuxu == . 

 
As a matter of fact, many complex dependency models can be transformed into 

the general linear model after suitable transformation of the variables. The general 
linear model encompasses also the interaction effects, as in the following example: 

 

iiiiii xxxxY εββββ ++++= 21322110 , 7.47 
 

which can be transformed into the linear model, using the extra 
variable 213 iii xxx =  for the cross-term 21 ii xx . 

Frequently, when dealing with polynomial models, the predictor variables are 
previously centred, replacing xi by xxi − . The reason is that, for instance, X and   
X2 will often be highly correlated. Using centred variables reduces multi-
collinearity and tends to avoid computational difficulties. 

Note that in all the previous examples, the model is linear in the parameters βk. 
When this condition is not satisfied, we are dealing with a non-linear model, as in 
the following example of the so-called exponential regression: 

 

iii xY εββ += )exp( 10 . 7.48 
 
Unlike linear models, it is not generally possible to find analytical expressions 

for the estimates of the coefficients of non-linear models, similar to the normal 
equations 7.3. These have to be found using standard numerical search procedures. 
The statistical analysis of these models is also a lot more complex. For instance, if 
we linearise the model 7.48 using a logarithmic transformation, the errors will no 
longer be normal and with equal variance. 

 
 

Commands 7.3. SPSS, STATISTICA, MATLAB and R commands used to 
perform polynomial and non-linear regression. 

SPSS Analyze; Regression; Curve Estimation 
Analyze; Regression; Nonlinear 

STATISTICA 

Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; Polynomial 
Regression 
Statistics; Advanced Linear/Nonlinear 
Models; Non-Linear Estimation 

MATLAB 
[p,S] = polyfit(X,y,n) 
[y,delta] = polyconf(p,X,S) 
[beta,r,J]= nlinfit(X,y,FUN,beta0) 

R lm(formula) | glm(formula) 
nls(formula, start, algorithm, trace) 
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The MATLAB polyfit function computes a polynomial fit of degree n using 
the predictor matrix X and the observed data vector y. The function returns a vector 
p with the polynomial coefficients and a matrix S to be used with the polyconf 
function producing confidence intervals y ± delta at alpha confidence level 
(95% if alpha is omitted). The nlinfit returns the coefficients beta and 
residuals r of a nonlinear fit y = f(X, beta), whose formula is specified by a 
string FUN and whose initial coefficient estimates are beta0. 

The R glm function operates much in the same way as the lm function, with the 
support of extra parameters. The parameter formula is used to express a 
polynomial dependency of the independent variable with respect to the predictors, 
such as y ~ x + I(x^2), where the function I inhibits the interpretation of 

function for nonlinear regression is used with a start vector of initial estimates, 
an algorithm parameter specifying the algorithm to use and a trace logical 
value indicating whether a trace of the iteration progress should be printed. An 
example is: nls(y~1/(1+exp((a-log(x))/b)), start=list(a=0, 

.  
 

Example 7.16 

Q: Consider the Stock Exchange dataset (see Appendix E). Design and 
evaluate a second order polynomial model, without interaction effects, for the 
SONAE share values depending on the predictors EURIBOR and USD.  

A: Table 7.5 shows the estimated parameters of this second order model, along 
with the results of t tests. From these results, we conclude that all coefficients have 
an important contribution to the designed model. The simple ANOVA test gives 
also significant results. However, Figure 7.10 suggests that there is some trend of 
the residuals as a function of the observed values. This is a symptom that some 
lack of fit may be present. In order to investigate this issue we now perform the 
ANOVA test for lack of fit. We may use STATISTICA for this purpose, in the 
same way as in the example described in section 7.1.4. 

 
 

Table 7.5. Results obtained with STATISTICA for a second order model, with 
predictors EURIBOR and USD, in the regression of SONAE share values (Stock 
Exchange dataset). 

Effect SONAE 
Param. 

SONAE 
Std.Err t p −95% 

Cnf.Lmt 
+95% 

Cnf.Lmt 
Intercept −283530 24151 −11.7 0.00 −331053 −236008 

EURIBOR 13938 1056 13.2 0.00 11860 16015 

EURIBOR2 −1767 139.8 −12.6 0.00 −2042 −1491 

USD 560661 49041 11.4 0.00 464164 657159 

USD2 −294445 24411 −12. 1 0.00 −342479 −246412 

” as a formula operator, so it is used as an arithmetical operator. The nls ^“

b=1), alg=“plinear”, trace=TRUE)



 7.3 Building and Evaluating the Regression Model 303 

5000 6000 7000 8000 9000 10000 11000 12000 13000

-2000

-1000

0

1000

2000

3000

Observed Values

R
aw

 R
es

id
ua

ls

 
Figure 7.10. Residuals versus observed values in the Stock Exchange example. 

 
 
First, note that there are p − 1 = 4 predictor variables in the model; therefore,      

p = 5. Secondly, in order to have enough replicates for STATISTICA to be able to 
compute the pure error, we use two new variables derived from EURIBOR and 
USD by rounding them to two and three significant digits, respectively. We then 
obtain (removing a 103 factor): 

 
SSE = 345062;   df = n − p = 308;   MSE = 1120. 
SSPE = 87970;   df = n − c = 208;   MSPE = 423. 
 
From these results we compute: 
 
SSLF = SSE – SSPE = 257092;   df = c – p = 100;   MSLF = 2571. 
F* = MSLF/MSPE = 6.1 . 
 
The 95% percentile of F100,208 is 1.3. Since F* > 1.3, we then conclude for the 

lack of fit of the model.  

7.3 Building and Evaluating the Regression Model 

7.3.1 Building the Model 

When there are several variables that can be used as candidates for predictor 
variables in a regression model, it would be fastidious having to try every possible 
combination of variables. In such situations, one needs a search procedure 
operating in the variable space in order to build up the regression model much in 



304 7 Data Regression 

the same way as we performed feature selection in Chapter 6. The search 
procedure has also to use an appropriate criterion for predictor selection. There are 
many such criteria published in the literature. We indicate here just a few: 

 
– SSE (minimisation) 
– R square (maximisation) 
– t statistic (maximisation) 
– F statistic (maximisation) 
 
When building the model, these criteria can be used in a stepwise manner the 

same way as we performed sequential feature selection in Chapter 6. That is, by 
either adding consecutive variables to the model − the so-called forward search 
method −, or by removing variables from an initial set − the so-called backward 
search method. 

For instance, a very popular method is to use forward stepwise building up the 
model using the F statistic, as follows:  

 
1. Initially enters the variable, say X1, that has maximum Fk = 

MSR(Xk)/MSE(Xk), which must be above a certain specified level. 
2. Next is added the variable with maximum Fk = MSR(Xk | X1) / MSE(Xk, X1) 

and above a certain specified level.  
3. The Step 2 procedure goes on until no variable has a partial F above the 

specified level. 
 

Example 7.17 

Q: Apply the forward stepwise procedure to the foetal weight data (see Example 
7.13), using as initial predictor sets {BPD, CP, AP} and {MW, MH, BPD, CP, AP, 
FL}.  

A: Figure 7.11 shows the evolution of the model using the forward stepwise 
method to {BPD, CP, AP}. The first variable to be included, with higher F, is the 
variable AP. The next variables that are included have a decreasing F contribution 

confirm the findings on partial correlation coefficients discussed in section 7.2.5 
(Table 7.4). 
 

Figure 7.11. Forward stepwise regression (obtained with STATISTICA) for the 
foetal weight example, using {BPD, CP, AP} as initial predictor set. 

 

but still higher than the specified level of “F to Enter”, equal to 1. These results 
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Let us now assume that the initial set of predictors is {MW, MH, BPD, CP, AP, 
FL}. Figure 7.12 shows the evolution of the model at each step. Notice that one of 
the variables, MH, was not included in the model, and the last one, CP, has a non-
significant F test (p > 0.05), and therefore, should also be excluded. 

  
 

Figure 7.12. Forward stepwise regression (obtained with STATISTICA) for the 
foetal weight example, using {MW, MH, BPD, CP, AP, FL} as initial predictor 
set. 

 
 

Commands 7.4. SPSS, STATISTICA, MATLAB and R commands used to 
perform stepwise linear regression. 

SPSS Analyze; Regression; Linear; Method 
Forward 

STATISTICA Statistics; Multiple Regression; 
Advanced; Forward Stepwise 

MATLAB stepwise(X,y) 

R 

 
 

With SPSS and STATISTICA the user can specify the level of F in order to enter 
or remove variables. 

The MATLAB stepwise function fits a regression model of y depending on 
X, displaying figure windows for interactively controlling the stepwise addition 
and removal of model terms. 

The R step function allows the stepwise selection of a model, represented by 
the parameter object and generated by R lm or glm functions. The selection is 
based on a more sophisticated criterion than the ANOVA F. The parameter 
direction specifies the direction (forward, backward or a combination of both) 
of the stepwise search. The parameter trace when left with its default value will 
force step to generate information during its running. 
  

 

step(object, direction = c(“both”, 
“backward”, “forward”), trace) 
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7.3.2 Evaluating the Model 

Outliers correspond to cases exhibiting a strong deviation from the fitted regression 
curve, which can have a harmful influence in the process of fitting the model to the 
data. Identification of outliers, for their eventual removal from the dataset, is 
usually carried out using the so-called semistudentised residuals (or standard 
residuals), defined as: 

 

MSEMSE
* ii
i

eee
e =

−
= .  7.49 

 
Cases whose magnitude of the semistudentised residuals exceeds a certain 

threshold (usually 2), are considered outliers and are candidates for removal.  
 

Example 7.18 

Q: Detect the outliers of the first model designed in Example 7.13, using 
semistudentised residuals. 

A: Figure 7.13 shows the partial listing, obtained with STATISTICA, of the 18 
outliers for the foetal weight regression with the three predictors AP, BPD and CP. 
Notice that the magnitudes of the Standard Residual column are all above 2.
  

 
 

Figure 7.13. Outlier list obtained with STATISTICA for the foetal weight 
example. 

 
 

7.3.2.1 Identifying Outliers 
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There are other ways to detect outliers, such as: 
 
– Use of deleted residuals: the residual is computed for the respective case, 

assuming that it was not included in the regression analysis. If the deleted 
residual differs greatly from the original residual (i.e., with the case 
included) then the case is, possibly, an outlier.  Note in Figure 7.13 how 
case 86 has a deleted residual that exhibits a large difference from the 
original residual, when compared with similar differences for cases with 
smaller standard residual. 

– 
without the respective case. If there are no outlier cases, these distances are 

distance for case 86 is quite different from the distances of the other cases. 

Besides the methods described in 7.2.5.2, multicollinearity can also be assessed 
using the so-called variance inflation factors (VIF), which are defined for each 
predictor variable as: 

 
12 )1(VIF −−= kk r ,  7.50 

 
where 2

kr is the coefficient of multiple determination when xk is regressed on the    
p − 2 remaining variables in the model. An 2

kr near 1, indicating significant 
correlation with the remaining variables, will result in a large value of VIF. A VIF 
larger than 10 is usually taken as an indicator of multicollinearity.  

For assessing multicollinearity, the mean of the VIF values is also computed: 
 

)1/(VIFVIF 1
1 −= ∑ −

= pp
k k .  7.51 

 
A mean VIF considerably larger than 1 is indicative of serious multicollinearity 

problems. 
 

Commands 7.5. SPSS, STATISTICA, MATLAB and R commands used to 
evaluate regression models. 

SPSS Analyze; Regression; Linear; Statistics; 
Model Fit 

STATISTICA Statistics; Multiple regression; Advanced; 
ANOVA 

MATLAB regstats(y,X) 

R influence.measures 

Cook’s distance: measures the distance between beta values with and 

of approximately equal amplitude. Note in Figure 7.13 how the Cook’s 

7.3.2.2 Assessing Multicollinearity 
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The MATLAB regstats function generates a set of regression diagnostic 

creates a window with check boxes for each diagnostic measure and a 
Calculate Now button. Clicking Calculate Now pops up another window 
where the user can specify names of variables for storing the computed measures. 

The R influence.measures is a suite of regression diagnostic functions, 
including those diagnostics that we have described, such as deleted residuals and 

 

7.3.3 Case Study 

We have already used the foetal weight prediction task in order to illustrate 
specific topics on regression. We will now consider this task in a more detailed 
fashion so that the reader can appreciate the application of the several topics that 
were previously described in a complete worked-out case study. 

We start with the solution obtained by forward stepwise search, summarised in 
Figure 7.11.  Table 7.6 shows the coefficients of the model. The values of beta 
indicate that their contributions are different. All t tests are significant; therefore, 
no coefficient is discarded at this phase. The ANOVA test, shown in Table 7.7 
gives also a good prognostic of the goodness of fit of the model. 
 
 

Table 7.6. Parameters and t tests of the trivariate linear model for the foetal weight 
example. 

 Beta Std. Err. of Beta B Std. Err. of B t410 p 
Intercept   −4765.7 261.9 −18.2 0.00 
AP 0.609 0.032 124.7 6.5 19.0 0.00 
BPD 0.263 0.041 292.3 45. 1 6.5 0.00 
CP 0.105 0.044 36.0 15.0 2.4 0.02 

 
 
 

Table 7.7. ANOVA test of the trivariate linear model for the foetal weight 
example. 

 Sum of Squares df Mean Squares F p 

Regress. 128252147 3 42750716 501.9254 0.00 

Residual 34921110 410 85173   

Total 163173257     
 
 

measures, such as the studentised residuals and the Cook’s distance. The function 

Cook’s distance. 

7.3.3.1 Determining a Linear Model 
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Figure 7.14. Distribution of the residuals for the foetal weight example: a) Normal 
probability plot; b) Histogram. 

 

Distribution of the Residuals 
 

In order to assess whether the errors can be assumed normally distributed, one can 
use graphical inspection, as in Figure 7.14, and also perform the distribution fitting 
tests described in chapter 5. In the present case, the assumption of normal 
distribution for the errors seems a reasonable one. 

The constancy of the residual variance can be assessed using the following 
modified Levene test: 

 
1. Divide the data set into two groups: one with the predictor values 

comparatively low and the other with the predictor values comparatively 
high. The objective is to compare the residual variance in the two groups. In 
the present case, we divide the cases into the two groups corresponding to 
observed weights below and above 3000 g. The sample sizes are n1 = 118 
and n2 = 296, respectively. 

2. Compute the medians of the residuals ei in the two groups: med1 and med2. 
In the present case med1 = −182.32 and med2 = 59.87. 

3. Let 111 med−= ii ed  and 222 med−= ii ed  represent the absolute 
deviations of the residuals around the medians in each group. We now 
compute the respective sample means, 1d and 2d , of these absolute 
deviations, which in our study case are: 37.1871 =d , 42.2212 =d . 

4. Compute: 
 

 2

21

21* ~
11

−

+

−
= nt

nn
s

dd
t ,  7.52 

7.3.3.2 Evaluating the Linear Model 
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In the present case the computed t value is t* = –1.83 and the 0.975 percentile of 

t412 is 1.97. Since |t*| < t412,0.975, we accept that the residual variance is constant. 
 

Test of Fit 
 

We now proceed to evaluate the goodness of fit of the model, using the method 
described in 7.1.4, based on the computation of the pure error sum of squares. 
Using SPSS, STATISTICA, MATLAB or R, we determine: 
 

n = 414;  c = 381;   n – c = 33;  c – 2 = 379 . 
SSPE = 1846345.8;   MSPE=SSPE/( n – c) = 55949.9 . 
SSE = 34921109 .     
 
Based on these values, we now compute: 
 
SSLF = SSE − SSPE = 33074763.2;   MSLF = SSLF/(c – 2) = 87268.5 . 
 
Thus, the computed F* is: F* = MSLF/MSPE = 1.56. On the other hand, the 95% 

percentile of F379, 33 is 1.6. Since F* < F379, 33, we do not reject the goodness of fit 
hypothesis. 
 
Detecting Outliers 

 
The detection of outliers was already performed in 7.3.2.1. Eighteen cases are 
identified as being outliers. The evaluation of the model without including these 
outlier cases is usually performed at a later phase. We leave as an exercise the 
preceding evaluation steps after removing the outliers. 

 
Assessing Multicollinearity 

 
Multicollinearity can be assessed either using the extra sums of squares as 
described in 7.2.5.2 or using the VIF factors described in 7.3.2.2. This last method 
is particularly fast and easy to apply. 

Using SPSS, STATISTICA, MATLAB or R, one can easily obtain the 
coefficients of determination for each predictor variable regressed on the other 
ones. Table 7.8 shows the values obtained for our case study.  

 

Table 7.8. VIF factors obtained for the foetal weight data. 

 BPD(CP,AP) CP(BPD,AP) AP(BPD,CP) 

r2 0.6818 0.7275 0.4998 

VIF 3.14 3.67 2 
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Although no single VIF is larger than 10, the mean VIF is 2.9, larger than 1 and, 
therefore, indicative that some degree of multicollinearity may be present. 

 
Cross-Validating the Linear Model 

 
Until now we have assessed the regression performance using the same set that 
was used for the design. Assessing the performance in the design (training) set 
yields on average optimistic results, as we have already seen in Chapter 6, when 
discussing data classification. We need to evaluate the ability of our model to 
generalise when applied to an independent test set. For that purpose we apply a 
cross-validation method along the same lines as in section 6.6. 

Let us illustrate this procedure by applying a two-fold cross-validation to our 
FW(AP,BPD,CP) model. For that purpose we randomly select approximately half 
of the cases for training and the other half for test, and then switch the roles. This 
can be implemented in SPSS, STATISTICA, MATLAB and R by setting up a filter 
variable with random 0s and 1s. Denoting the two sets by D0 and D1 we obtained 
the results in Table 7.9 in one experiment. Based on the F tests and on the 
proximity of the RMS values we conclude the good generalisation of the model. 

 
Table 7.9. Two-fold cross-validation results. The test set results are in italic. 

Design with D0 (204 cases) Design with D1 (210 cases) 

D0 RMS D1 RMS D1 F (p) D1 RMS D0 RMS D0 F (p) 

272.6 312.7 706 (0) 277.1 308.3 613 (0) 

 

We now proceed to determine a third order polynomial model for the foetal weight 
regressed by the same predictors but without interaction terms. As previously 
mentioned in 7.2.6, in order to avoid numerical problems, we use centred 
predictors by subtracting the respective mean. We then use the following predictor 
variables: 

 
3
1111

2
1111 ;BPD);(meanBPD XXXXX ==−= . 

3
2222

2
2222 ;CP);(meanCP XXXXX ==−= . 

3
3333

2
3333 ;AP);(meanAP XXXXX ==−= . 

 
With SPSS and STATISTICA, in order to perform the forward stepwise search, 

the predictor variables must first be created before applying the respective 
regression commands. Table 7.9 shows some results obtained with the forward 
stepwise search. Note that although six predictors were included in the model using 

7.3.3.3 Determining a Polynomial Model 
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significant F tests and the predictors X222 and X 11 also do not pass in the respective 
t tests (at 5% significance level). 

Let us now apply the backward search process. Figure 7.15 shows the summary 

removed consecutively by increasing order of their F contribution until reaching 
the end of the process with two included variables, X1 and X3. Notice, however, 
that variable X2 is found significant in the F test, and therefore, it should probably 
be included too.  

 
 

Table 7.10. Parameters of a third order polynomial regression model found with a 
forward stepwise search for the foetal weight data (using SPSS or STATISTICA). 

 Beta Std. Err. of Beta F to Enter p t410 p 
Intercept     181.7 0.00 

X3 0.6049 0.033 1043 0.00 18.45 0.00 

X1 0.2652 0.041 125.2 0.00 6.492 0.00 

X2 0.1399 0.047 5.798 0.02 2.999 0.00 

X222 −0.0942 0.056 1.860 0.17 −1.685 0.09 

X22 −0.1341 0.065 2.496 0.12 −2.064 0.04 

X11 0.0797 0.0600 1.761 0.185 1.327 0.19 
 
 

Figure 7.15. Parameters and tests obtained with STATISTICA for the third order 
polynomial regression model (foetal weight example) using the backward stepwise 
search procedure. 

 

We now evaluate the polynomial model found by forward search and including the 
six predictors X1, X2, X3, X11, X22, X222. This is done for illustration purposes only 

the threshold of 1 for the “F to enter”, the three last predictors do not have 

table of this search process, obtained with STATISTICA, using a threshold of  “F 
to remove” = 10 (one more than the number of initial predictors). The variables are 

7.3.3.4 Evaluating the Polynomial Model 
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since we saw in the previous section that the backward search procedure found a 
simpler linear model. Whenever a simpler (using less predictors) and similarly 
performing model is found, it should be preferred for the same generalisation 
reasons that were explained in the previous chapter. 

The distribution of the residuals is similar to what is displayed in Figure 7.14. 
Since the backward search cast some doubts as to whether some of these predictors 
have a valid contribution, we will now use the methods based on the extra sums of 
squares. This is done in order to evaluate whether each regression coefficient can 
be assumed to be zero, and to assess the multicollinearity of the model. As a final 
result of this evaluation, we will conclude that the polynomial model does not 
bring about any significant improvement compared to the previous linear model 
with three predictors. 

 
 

Table 7.11. Results of the test using extra sums of squares for assessing the 
contribution of each predictor in the polynomial model (foetal weight example). 

Variable X1 X2 X3 X11 X22 X222 
Coefficient b1 b2 b3 b11 b22 b222 

Variables in the 
Reduced Model 

X2, X3, X11, 
X22, X222 

X1, X3, X11,  
X22, X222 

X1, X2, X11,  
X22, X222 

X1, X2, X3,  
X22, X222 

X1, X2, X3,  
X11, X222 

X1, X2, X3,  
X11, X22 

SSE(R)   (/103) 37966 36163 36162 34552 347623 34643 

SSR = SSE(R) − 
SSE(F)   (/103) 3563 1760 1759 149 360 240 

F *= SSR/MSE 42.15 20.82 20.81 1.76 4.26 2.84 

Reject H0 Yes Yes Yes No Yes No 
 
 
Testing whether individual regression coefficients are zero 
 
We use the partial F test described in section 7.2.5.1 as expressed by formula 7.44. 
As a preliminary step, we determine with SPSS, STATISTICA, MATLAB or R the 
SSE and MSE of the model: 

 
SSE = 34402739;  MSE = 84528. 
 
We now use the 95% percentile of F1,407 = 3.86 to perform the individual tests as 

summarised in Table 7.11. According to these tests, variables X11 and X222 should 
be removed from the model. 

 
Assessing multicollinearity 
 
We use the test described in section 7.2.5.2 using the same SSE and MSE as 
before. Table 7.12 summarises the individual computations. According to Table 
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7.11, the larger differences between SSE(X) and SSE(X | R) occur for variables X11, 
X22 and X222. These variables have a strong influence in the multicollinearity of the 
model and should, therefore, be removed. In other words, we come up with the first 
model of Example 7.17. 
 

Table 7.12. Sums of squares for each predictor in the polynomial model (foetal 
weight example) using the full and reduced models. 

Variable X1 X2 X3 X11 X22 X222 

SSE(X)   (/103) 76001 73062 46206 131565 130642 124828 

Reduced Model X2, X3, X11, 
X22, X222 

X1, X3, X11, 
X22, X222 

X1, X2, X11, 
X22, X222 

X1, X2, X3,  
X22, X222 

X1, X2, X3,  
X11, X222 

X1, X2, X3,  
X11, X22 

SSE(R)   (/103) 37966 36163 36162 34552 34763 34643 

SSE(X | R) = SSE(R) 
− SSE   (/103) 

3563 1760 1759 149 360 240 

Larger Differences    ↑ ↑ ↑ 

 

7.4 Regression Through the Origin 

In some applications of regression models we may know beforehand that the 
regression function must pass through the origin. SPSS and STATISTICA have 

in/from the model. In MATLAB and R one only has to discard a column of ones 
from the independent data matrix in order to build a model without the intercept 
term. Let us discuss here the simple linear model with normal errors. Without the 

 

iii xY εβ += 1 .  7.53 
 
The point estimate of β1 is: 
 

∑
∑=

21
i

ii

x

yx
b .  7.54 

 

The unbiased estimate of the error variance is now: 
 

1
MSE

2

−
= ∑

n
ei ,   with n − 1 (instead of n − 2) degrees of freedom.  7.55 

options that allow the user to include or exclude the “intercept” or “constant” term 

“intercept” term the model is written as: 
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Example 7.19 

Q: Determine the simple linear regression model FW(AP) with and without 
intercept for the Foetal Weight dataset. Compare both solutions. 

A: Table 7.13 shows the results of fitting a single linear model to the regression 
FW(AP) with and without the intercept term. Note that in this last case the 
magnitude of t for b1 is much larger than with the intercept term. This would lead 
us to prefer the without-intercept model, which by the way seems to be the most 
reasonable model since one expects FW and AP tending jointly to zero. 

Figure 7.16 shows the observed versus the predicted cases in both situations. 
The difference between fitted lines is huge.  
 

Table 7.13. Parameters of single linear regression FW(AP), with and without the 
 

  b Std. Err. of b t p 

With Intercept b0 −1996.37 188.954 −10.565 0.00 

 b1 157.61 5.677 27.763 0.00 

Without Intercept b1 97.99 0.60164 162.874 0.00 
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Figure 7.16. Scatter plots of the observed vs. predicted values for the single linear 

 
An important aspect to be taken into consideration when regressing through the 

origin is that the sum of the residuals is not zero. The only constraint on the 
residuals is: 

 

∑ = 0ii ex .  7.56 
 
Another problem with this model is that SSE may exceed SST! This can occur 

when the data has an intercept away from the origin. Hence, the coefficient of 

“intercept” term.

regression FW(AP): a) with “intercept” term, b) without “intercept” term. 
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determination r2 may turn out to be negative. As a matter of fact, the coefficient of 
determination r2 has no clear meaning for the regression through the origin. 

7.5 Ridge Regression 

Imagine that we had the dataset shown in Figure 7.17a and that we knew to be the 
result of some process with an unknown polynomial response function plus some 
added zero mean and constant standard deviation normal noise. Let us further 

get the regression solution shown with dotted line in Figure 7.17a. The fit is quite 
good (the R-square is 0.99), but do we really need a 9th order fit? Does the 9th order 
fit, we have found for the data of Figure 7.17a, generalise for a new dataset 
generated in the same conditions? 

Chapter 6 when dealing with data classification. It is, therefore, a good idea to get a 
new dataset and try to fit the found polynomial to it. As an alternative we may also 
fit a new polynomial to the new dataset and compare both solutions. Figure 7.17b 
shows a possible instance of a new dataset, generated by the same process for the 
same predictor values, with the respective 9th order polynomial fit. Again the fit is 
quite good (R-square is 0.98) although the large downward peak at the right end 
looks quite suspicious. 

Table 7.14 shows the polynomial coefficients for both datasets. We note that 
with the exception of the first two coefficients there is a large discrepancy of the 
corresponding coefficient values in both solutions. This is an often encountered 
problem in regression with over-fitted models (roughly, with higher order than the 

model parameters and, therefore, of the predicted values. In Figure 7.17 the 
downward peak at the right end leads us to rightly suspect that we are in presence 
of an over-fitted model and consequently try a lower order. Visual clues, however, 
are more often the exception than the rule. 

One way to deal with the problem of over-fitted models is to add to the error 
function 7.37 an extra term that penalises the norm of the regression coefficients: 

 
RSSE)()( +=+−−= bbXbyXby rE .  7.57 

 

(called a regularizer) we are constraining the regression coefficients to be as small 
as possible driving the coefficients of unimportant terms towards zero. The 
parameter r controls the degree of penalisation of the square norm of b and is 
called the ridge factor. The new regression solution obtained by minimizing 7.57 is 
known as ridge regression and leads to the following ridge parameter vector bR:  

 

( ) ( ) YX
1

XX
1 rIryXIXXb −− +=+= rrR .  7.58 

 

that it didn’t exceed the 9th order. Searching for a 9th order polynomial fit we would 
assume that we didn’t know the order of the polynomial function; we only knew 

’ ’

When minimising the new error function 7.57 with the added term R = rb’b

’ ’

We find here again the same “training set”- test set” issue that we have found in 

data “justifies”): a small variation of the noise may produce a large variation of the 

“
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Figure 7.17. A set of 21 points (solid circles) with 9th order polynomial fits (dotted 
lines). In both cases the x values and the noise statistics are the same; only the y 
values correspond to different noise instances. 

 
 

Table 7.14. Coefficients of the polynomial fit of Figures 7.17a and 7.17b. 

Polynomyal 
coefficients a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

Figure 7.17a 3.21 −0.93 0.31 8.51 −3.27 −9.27 −0.47 3.05 0.94 0.03 

Figure 7.17b 3.72 −1.21 −6.98 20.87 19.98 −30.92 −31.57 6.18 12.48 2.96 
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Figure 7.18. Ridge regression solutions with r = 1for the Figure 7.17 datasets. 
 
 
Figure 7.18 shows the ridge regression solutions for the Figure 7.17 datasets 

using a ridge factor r = 1. We see that the solutions are similar to each other and 
with a smoother aspect. The downward peak of Figure 7.17 disappeared. Table 
7.15 shows the respective polynomial coefficients, where we observe a much 
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smaller discrepancy between both sets of coefficients as well as a decreasing 
influence of higher order terms. 

 
 

Table 7.15. Coefficients of the polynomial fit of Figures 7.18a and 7.18b. 

Polynomyal 
coefficients a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

Figure 7.18a 2.96 0.62 −0.43 0.79 −0.55 0.36 −0.17 −0.32 0.08 0.07 

Figure 7.18b 3.09 0.97 −0.53 0.52 −0.44 0.23 −0.21 −0.19 0.10 0.05 

 
 
One can also penalise selected coefficients by using in 7.58 an adequate 

diagonal matrix of penalties, P, instead of I, leading to: 
 

( ) yXPXXb 1−+= r .  7.59 
 
Figure 7.19 shows the regression solution of Figure 7.17b dataset, using as P a 

matrix with diagonal [1 1 1 1 10 10 1000 1000 1000 1000] and r = 1. Table 7.16 
shows the computed and the true coefficients. We have now almost retrieved the 

 
 

Table 7.16. Coefficients of the polynomial fit of Figure 7.19 and true coefficients. 

Polynomyal 
coefficients a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

Figure 7.19 2.990 0.704 −0.980 0.732 −0.180 0.025 −0.002 −0.001 −0.003 −0.002 

True 3.292 0.974 −1.601 0.721 0 0 0 0 0 0 

 
 

Let us now discuss how to choose the ridge factor when performing ridge 
regression with 7.58 (regression with 7.59 is much less popular). We can gain 
some insight into this issue by considering the very simple dataset shown in Figure 
7.20, constituted by only 3 points, to which we fit a least square linear model – the 
dotted line –, and a second-order model – the parabola represented with solid line – 
using a ridge factor. 

The regression line satisfies property iv of section 7.1.2: the sum of the residuals 
is zero. In Figure 7.20a the ridge factor is zero; therefore, the parabola passes 
exactly at the 3 points. This will always happen no matter where the observed 
values are positioned. In other words, the second-order solution is in this case an 

another independent set (think of an addition of i.i.d. noise to the observed values). 

true coefficients. The idea of “over-fitted” model is now clear. 

over-fitted solution tightly attached to the “training set” and unable to generalise to 

’ ’
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The b vector is in this case b = [0   3.5   −1.5] , with no independent term and a 
large second-order term. 
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Figure 7.19. Ridge regression solution of Figure 7.17b dataset, using a diagonal 
matrix of penalties (see text). 

 
 

Let us now add a regularizer. As we increase the ridge factor the second-order 
term decreases and the independent term increases. With r = 0.6 we get the 
solution shown in Figure 7.20b with b = [0.42  0.74  −0.16] . We are now quite 
near the regression line with a large independent term and a reduced second-order 
term. The addition of i.i.d. noise with small amplitude should not change, on 
average, this solution. On average we expect some compensation of the errors and 
a solution that somehow passes half way of the points. In Figure 7.20c the 
regularizer weighs as much as the classic least squares error. We get b = [0.38  

performing ridge regression we go as far as r = 1. If we go beyond this value the 
square norm of b is driven to small values and we may get strange solutions such 
as the one shown in Figure 7.20d for r = 50 corresponding to b = [0.020  0.057 
0.078] , i.e., a dominant second-order term. 

Figure 7.21 shows for r ∈ [0, 2] the SSE curve together with the curve of the 
following error: 

 

( )∑ −= 2ˆˆSSE(L) iLi yy , 
 

where the iŷ  are, as usual, the predicted values (second-order model) and the 
iLŷ are the predicted values of the linear model, which is the preferred model in 

this case. The minimum of SSE(L) (L from Linear) occurs at r = 0.6, where the 
SSE curve starts to saturate. 

We may, therefore choose the best r by graphical inspection of the estimated 
SSE (or MSE) and the estimated coefficients as functions of r, the so-called ridge 
traces. One usually selects the value of r that corresponds to the beginning of a 

’

’

’

0.53  −0.05]’ and “almost” a line passing below the “half way”. Usually, when 

“stable” evolution of the MSE and coefficients. 
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regression is also used as a remedy to decrease the effects of multicollinearity as 
illustrated in the following Example 7.20. In this application one must select a 
ridge factor corresponding to small values of the VIF factors. 
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Figure 7.20. Fitting a second-order model to a very simple dataset (3 points 
represented by solid circles) with ridge factor: a) 0; b) 0.6; c) 1; d) 50. 

 
 
 

 
Figure 7.21.  SSE (solid line) and SSE(L) (dotted line) curves for the ridge 
regression solutions of Figure 7.20 dataset. 

Besides its use in the selection of “smooth”, non-over-fitted models, ridge 
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Example 7.20 

Q: Determine the ridge regression solution for the foetal weight prediction model 
designed in Example 7.13. 

A: Table 7.17 shows the evolution with r of the MSE, coefficients and VIF for the 
linear regression model of the foetal weight data using the predictors BPD, AP and 
CP. The mean VIF is also included in Table 7.17. 

 
 

Table 7.17. Values of MSE, coefficients, VIF and mean VIF for several values of 
the ridge parameter in the multiple linear regression of the foetal weight data. 

r   0 0.10 0.20 0.30 0.40 0.50 0.60 

MSE   291.8 318.2 338.8 355.8 370.5 383.3 394.8 

BPD b  292.3 269.8 260.7 254.5 248.9 243.4 238.0 

 VIF  3.14 2.72 2.45 2.62 2.12 2.00 1.92 

CP b  36.00 54.76 62.58 66.19 67.76 68.21 68.00 

 VIF  3.67 3.14 2.80 2.55 3.09 1.82 2.16 

AP b  124.7 108.7 97.8 89.7 83.2 78.0 73.6 

 VIF  2.00 1.85 1.77 1.71 1.65 1.61 1.57 

Mean VIF  2.90 2.60 2.34 2.17 2.29 1.80 1.88 
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Figure 7.22.  a) Plot of the foetal weight regression MSE and coefficients for 
several values of the ridge parameter; b) Plot of the mean VIF factor for several 
values of the ridge parameter. 

 
Figure 7.22 shows the ridge traces for the MSE and three coefficients as well as 

the evolution of the Mean VIF factor. The ridge traces do not give, in this case, a 

corresponding to the intercept term since it is not informative. The evolution of the 
evolution starting at around r = 0.2. We don’t show the values and the curve 
clear indication of the best r value, although the CP curve suggests a “stable” 
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VIF and Mean VIF factors (the Mean VIF is shown in Figure 7.22b) suggest the 
solutions r = 0.3 and r = 0.5 as the most appropriate.  

Figure 7.23 shows the predicted FW values with r = 0 and r = 0.3. Both 
solutions are near each other. However, the ridge regression solution has decreased 
multicollinearity effects (reduced VIF factors) with only a small increase of the 
MSE.   
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Figure 7.23. Predicted versus observed FW values with r = 0 (solid circles) and     
r = 0.3 (open circles). 

 

Commands 7.6. SPSS, STATISTICA and MATLAB commands used to perform 
ridge regression. 

SPSS Ridge Regression Macro 

STATISTICA Statistics; Multiple Regression; 
Advanced; Ridge 

MATLAB b=ridge(y,X,k)    (k is the ridge parameter) 

  

7.6 Logit and Probit Models 

Logit and probit regression models are adequate for those situations where the 
dependent variable of the regression problem is binary, i.e., it has only two 

that these binary outcomes are coded as 1 and 0. The application of linear 
regression models to such problems would not be satisfactory since the fitted 
predicted response would ignore the restriction of binary values for the observed 
data.  

A simple regression model for this situation is: 
 

iii xgY ε+= )( ,  with { }1,0∈iy . 7.60 

possible outcomes, e.g., “success”/ failure” or “normal”/ abnormal”. We assume “ “
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Let us consider Yi to be a Bernoulli random variable with pi = P(Yi = 1). Then, as 
explained in Appendix A and presented in B.1.1, we have: 

 
[ ] ii pY =Ε .  7.61 

 
On the other hand, assuming that the errors have zero mean, we have from 7.60: 
 

[ ] )( ii xgY =Ε .  7.62 
 
Therefore, no matter which regression model we are using, the mean response 

for each predictor value represents the probability that the corresponding observed 
variable is one. 

In order to handle the binary valued response we apply a mapping from the 
predictor domain onto the [0, 1] interval. The logit and probit regression models 
are precisely popular examples of such a mapping. The logit model uses the so-
called logistic function, which is expressed as: 
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The probit model uses the normal probability distribution as mapping function: 
 

[ ] )( 111101,0 −−+++=Ε ippii xxNY βββ K .  7.64 
 
Note that both mappings are examples of S-shaped functions (see Figure 7.24 

and Figure A.7.b), also called sigmoidal functions. Both models are examples of 
non-linear regression. 

The logistic response enjoys the interesting property of simple linearization. As 
a matter of fact, denoting as before the mean response by the probability pi, and if 
we apply the logit transformation: 
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we obtain: 
 

11110
*

−−+++= ippii xxp βββ K .  7.66 
 
Since the mean binary responses can be interpreted as probabilities, a suitable 

method to estimate the coefficients for the logit and probit models, is the maximum 
likelihood method, explained in Appendix C, instead of the previously used least 
square method. Let us see how this method is applied in the case of the simple logit 
model. We start by assuming a Bernoulli random variable associated to each 
observation yi; therefore, the joint distribution of the n observations is (see B.1.1): 
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Taking the natural logarithm of this likelihood, we obtain: 
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Using formulas 7.62, 7.63 and 7.64, the logarithm of the likelihood (log-
likelihood), which is a function of the coefficients, L(β), can be expressed as: 

 
[ ]∑∑ ++−+= )exp(1ln)()( 1010 iii xxyL βββββ . 7.69 

 
The maximization of the L(β) function can now be carried out using one of 

many numerical optimisation methods, such as the quasi-Newton method, which 
iteratively improves current estimates of function maxima using estimates of its 
first and second order derivatives. 

The estimation of the probit model coefficients follows a similar approach. Both 
models tend to yield similar solutions, although the probit model is more complex 
to deal with, namely in what concerns inference procedures and multiple predictor 
handling. 

 

Example 7.21 

from a certain region of Portugal. The clays are categorised according to their 
geological age as being pliocenic ( yi = 1; 69 cases) or holocenic ( yi = 0; 25 cases). 
Imagine that one wishes to estimate the probability of a given clay (from that 
region) to be pliocenic, based on its content in high graded grains (variable HG). 
Design simple logit and probit models for that purpose. Compare both solutions. 

A: Let AgeB represent the binary dependent variable. Using STATISTICA or 
SPSS (see Commands 7.7), the fitted logistic and probit responses are: 

 

AgeB = exp(−2.646 + 0.23×HG) /[1 + exp(−2.646 + 0.23×HG)]; 
AgeB = N0,1(−1.54 + 0.138×HG). 
 
Figure 7.24 shows the fitted response for the logit model and the observed data.  

A similar figure is obtained for the probit model. Also shown is the 0.5 threshold 
line. Any response above this line is assigned the value 1, and below the line, the 
value 0. One can, therefore, establish a training-set classification matrix for the 
predicted versus the observed values, as shown in Table 7.18, which can be 
obtained using either the SPSS or STATISTICA commands. Incidentally, note how 
the logit and probit models afford a regression solution to classification problems 
and constitute an alternative to the statistical classification methods described in 
Chapter 6.  

 
When dealing with binary responses, we are confronted with the fact that the 

regression errors can no longer be assumed normal and as having equal variance. 
Therefore, the statistical tests for model evaluation, described in preceding 

Q: Consider the Clays’ dataset, which includes 94 samples of analysed clays 
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sections, are no longer applicable. For the logit and probit models, some sort of the 
chi-square test described in Chapter 5 is usually applied in order to assess the 
goodness of fit of the model. SPSS and STATISTICA afford another type of chi-
square test based on the log-likelihood of the model. Let L0 represent the log-
likelihood for the null model, i.e., where all slope parameters are zero, and L1 the 
log-likelihood of the fitted model. In the test used by STATISTICA, the following 
quantity is computed: 

 
L = −2(L0 − L1), 
 

which, under the null hypothesis that the null model perfectly fits the data, has a 
chi-square distribution with p − 1 degrees of freedom. The test used by SPSS is 
similar, using only the quantity –2 L1, which, under the null hypothesis, has a chi-
square distribution with n − p degrees of freedom. 

In Example 7.21, the chi-square test is significant for both the logit and probit 
models; therefore, we reject the null hypothesis that the null model fits the data 
perfectly. In other words, the estimated parameters b1 (0.23 and 0.138 for the logit 
and probit models, respectively) have a significant contribution for the fitted 
models. 
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Figure 7.24. Logistic response for the clay classification problem, using variable 
HG (obtained with STATISTICA). The circles represent the observed data. 

 
Table 7.18. Classification matrix for the clay dataset, using predictor HG in the 
logit or probit models. 

 Predicted Age = 1 Predicted Age = 0 Error rate 

Observed Age = 1 65 4 94.2 

Observed Age = 0 10 15 60.0 
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Example 7.22 

Q: Redo the previous example using forward search in the set of all original clay 
features. 

A: STATISTICA (Generalized Linear/Nonlinear Models) and SPSS 
afford forward and backward search in the predictor space when building a logit or 
probit model. Figure 7.25 shows the response function of a logit bivariate model 
built with the forward search procedure and using the predictors HG and TiO2.  

In order to derive the predicted Age values, one would have to determine the 
cases above and below the 0.5 plane. Table 7.19 displays the corresponding 
classification matrix, which shows some improvement, compared with the situation 
of using the predictor HG alone. The error rates of Table 7.19, however, are 
training set estimates. In order to evaluate the performance of the model one would 
have to compute test set estimates using the same methods as in section 7.3.3.2. 

  
 

Table 7.19. Classification matrix for the clay dataset, using predictors HG and 
TiO2 in the logit model. 

 Predicted Age = 1 Predicted Age = 0 Error rate 

Observed Age = 1 66 3 95.7 

Observed Age = 0 9 16 64.0 
 

Figure 7.25.  
solid circles are the observed values. 

3-D plot of the bivariate logit model for the Clays’ dataset. The 
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Commands 7.7. SPSS and STATISTICA commands used to perform logit and 
probit regression. 

SPSS Analyze; Regression; Binary Logistic | 
Probit 

STATISTICA 

 
Statistics; Advanced Linear/Nonlinear 
Models; Nonlinear Estimation; Quick Logit 
| Quick Probit  
 

Statistics; Advanced Linear/Nonlinear 
Models; Generalized Linear/Nonlinear 
Models; Logit | Probit 

  

Exercises 

7.1 The Flow Rate dataset contains daily measurements of flow rates in two Portuguese 
Dams, denoted AC and T. Consider the estimation of the flow rate at AC by linear 
regression of the flow rate at T: 
a) Estimate the regression parameters. 
b) Assess the normality of the residuals. 
c) Assess the goodness of fit of the model. 
d) Predict the flow rate at AC when the flow rate at T is 4 m3/s. 

 
7.2 Redo the previous Exercise 7.1 using quadratic regression confirming a better fit with 

higher R2. 
 
7.3 Redo Example 7.3 without the intercept term, proving the goodness of fit of the model. 
 
7.4 In Exercises 2.18 and 4.8 the correlations between HFS and a transformed variable of 

I0 were studied. Using polynomial regression, determine a transformed variable of I0 
with higher correlation with HFS. 

 

on their composition of K2O and Al2O3. Use for that purpose a stepwise regression 
approach with the chemical constituents as predictor candidates. Furthermore, perform 
the following analyses: 
a) Assess the contribution of the predictors using appropriate inference tests. 
b) Assess the goodness of fit of the model. 
c) Assess the degree of multicollinearity of the predictors. 

 

regression model estimating the capital revenue, CAPR, of the firms with the predictor 
candidates {GI, CA, NW, P, A/C, DEPR}, perform the following analyses: 
a) Show that the best predictor of CAPR is the apparent productivity, P.  
b) Check the goodness of fit of the model. 
c) Obtain the regression line plot with the 95% confidence interval. 

7.5 Using the  dataset, show that the percentage of low grading material depends 

7.6 Consider the Services’ firms of the Firms  dataset. Using stepwise search of a linear 

Clays’

’
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possible to predict the yearly AREA of burnt forest using the number of reported fires 
as predictor, with an r2 over 80%. Also, perform the following analyses: 
a) Use ridge regression in order to obtain better parameter estimates. 
b) Cross-validate the obtained model using a partition of even/odd years. 

 
7.8 The search of a prediction model for the foetal weight in section 7.3.3.3 contemplated a 

third order model. Perform a stepwise search contemplating the interaction effects     
X12 = X1X2, X13 = X1X3, X23 = X2X3, and show that these interactions have no valid 
contribution. 

 

log10FW = 1.2508 + 0.166BPD + 0.046AP − 0.002646(BPD)(AP). Try to obtain this 
formula using the Foetal Weight dataset and linear regression. 

 
7.10 Variable X22, was found to be a good predictor candidate in the forward search process 

in section 7.3.3.3. Study in detail the model with predictors X1, X2, X3, X22, assessing 
namely: the multicollinearity; the goodness of fit; and the detection of outliers. 

 

features ASP, GLU and PHE and logistic regression. Check if a better subset of 
features can be found. 

 
7.12 In Example 7.16, the second order regression of the SONAE share values (Stock 

Exchange dataset) was studied. Determine multiple linear regression solutions for the 
SONAE variable using the other variables of the dataset as predictors and forward and 
backward search methods. Perform the following analyses: 
a) Compare the goodness of fit of the forward and backward search solutions. 
b) For the best solution found in a), assess the multicollinearity and the contribution 

of the various predictors and determine an improved model. Test this model using 
a cross-validation scheme and identify the outliers. 

 
7.13 Determine a multiple linear regression solution that will allow forecasting the 

 
7.14 Determine and evaluate a logit model for the classification of the CTG dataset in 

normal vs. non-normal cases using forward and backward searches in the predictor set 
{LB, AC, UC, ASTV, MSTV, ALTV, MLTV, DL}. Note that variables AC, UC and 
DL must be converted into time rate (e.g. per minute) variables; for that purpose 
compute the signal duration based on the start and end instants given in the CTG 
dataset. 

7.7 Using the Forest Fires  dataset, show that, in the conditions of the sample, it is 

7.9  The following Shepard’s formula is sometimes used to estimate the foetal weight: 

7.11 Consider the Wines  dataset. Design a classifier for the white vs. red wines using 

temperature one day ahead in the Weather dataset (Data 1 worksheet). Use today’s 
temperature as one of the predictors and evaluate the model. 

’

’



8 Data Structure Analysis 

In the previous chapters, several methods of data classification and regression were 
presented. Reference was made to the dimensionality ratio problem, which led us 
to describe and use variable selection techniques. The problem with these 
techniques is that they cannot detect hidden variables in the data, responsible for 
interesting data variability. In the present chapter we describe techniques that allow 
us to analyse the data structure with the dual objective of dimensional reduction 
and improved data interpretation. 

8.1 Principal Components 

In order to illustrate the contribution of data variables to the data variability, let us 
inspect Figure 8.1 where three datasets with a bivariate normal distribution are 
shown. 

In Figure 8.1a, variables X and Y are uncorrelated and have the same variance,   
σ 2 = 1. The circle is the equal density curve for a 2σ deviation from the mean. Any 
linear combination of X and Y corresponds, in this case, to a radial direction 
exhibiting the same variance. Thus, in this situation, X and Y are as good in 
describing the data as any other orthogonal pair of variables. 
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Figure 8.1. Bivariate, normal distributed datasets showing the standard deviations 
along X and Y with dark grey bars: a) Equal standard deviations (1); b) Very small 
standard deviation along Y (0.15); and c) Correlated variables of equal standard 
deviations (1.31) with a light-grey bar showing the standard deviation of the main 
principal component (3.42). 
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In Figure 8.1b, X and Y are uncorrelated but have different variances, namely a 
very small variance along Y, 2

Yσ = 0.0225. The importance of Y in describing the 
data is tenuous. In the limit, with 2

Yσ → 0, Y would be discarded as an interesting 
variable and the equal density ellipsis would converge to a line segment. 

In Figure 8.1c, X and Y are correlated (ρ = 0.99) and have the same variance,     
σ 2 =1.72. In this case, as shown in the figure, any equal density ellipsis leans along 
the regression line at 45º. Based only on the variances of X and Y, we might be led 
to the idea that two variables are needed in order to explain the variability of the 
data. However, if we choose an orthogonal co-ordinate system with one axis along 
the regression line, we immediately see that we have a situation similar to Figure 
8.1b, that is, only one hidden variable (absent in the original data), say Z, with high 
standard deviation (3.42) is needed (light-grey bar in Figure 8.1c). The other 
orthogonal variable is responsible for only a residual standard deviation (0.02). A 
variable that maximises a data variance is called a principal component of the data. 
Using only one variable, Z, instead of the two variables X and Y, amounts to a 
dimensional reduction of the data. 

sample covariance matrix of the data (point estimate of the population covariance 
Σ), where each element sij is the covariance between variables Xi and Xj, estimated 
as follows for n cases (see A.8.2): 
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Notice that covariances are symmetric, sij = sji, and that sii is the usual estimate 

of the variance of Xi, 2
is . The covariance is related to the correlation, estimated as: 
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Therefore, the correlation can be interpreted as a standardised covariance.  
In order to obtain the principal components of a dataset, we search uncorrelated 

linear combinations of the original variables whose variances are as large as 
possible. The first principal component corresponds to the direction of maximum 
variance; the second principal component corresponds to an uncorrelated direction 
that maximises the remaining variance, and so on. Let us shift the co-ordinate 
system in order to bring the sample mean to the origin, xc = x – x . The 
maximisation process needed to determine the ith principal component as a linear 
combination of xc co-ordinates, zi = ui (x – x ), is expressed by the following 
equation (for details see e.g. Fukunaga K, 1990, or Jolliffe IT, 2002): 

 
(S – λiI) ui = 0,  8.3 
 

Consider a multivariate dataset, with x = [X1 X2 … Xd] , and let S denote the ’

’
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where I is the d×d unit matrix, λi is a scalar and ui is a d×1 column vector of the 
linear combination coefficients. 

In order to obtain non-trivial solutions of equation 8.3, one needs to solve the 
determinant equation |S – λ I| = 0. There are d scalar solutions λi of this equation 
called the eigenvalues or characteristic values of S, which represent the variances 
for the new variables zi. After solving the homogeneous system of equations for the 
different eigenvalues, one obtains a family of eigenvectors or characteristic 
vectors ui, such that ∀ i, j ui uj = 0 (orthogonal system of uncorrelated variables). 
Usually, one selects from the family of eigenvectors those that have unit length, 
ui ui = 1, ∀ i  (orthonormal system). 

We will now illustrate the process of the computation of eigenvalues and 
eigenvectors for the covariance matrix of Figure 8.1c: 
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The eigenvalues are computed as: 
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For λ1 the homogeneous system of equations is:      
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from where we derive the unit length eigenvector: u1 = [0.7071 0.7071]  ≡ [ 2/1  

2/1 ] .  For λ2, in the same way we derive the unit length eigenvector orthogonal 
to u1: u2 = [−0.7071 0.7071]  ≡ [− 2/1  2/1 ] . Thus, the principal components 
of the co-ordinates are Z1 = (X1 + X2)/ 2  and Z2 = (–X1 + X2)/ 2  with variances 
3.42 and 0.02, respectively. 

The unit length eigenvectors make up the column vectors of an orthonormal 
matrix U (i.e., U−1 = U ) used to determine the co-ordinates of an observation x in 
the new uncorrelated system of the principal components: 

 
z = U (x – x ).  8.4 
 

In order to avoid confusion with the previous meaning of z-scores – standardised 
data with zero mean and unit variance – we will use the term pc-scores instead. 

The extraction of principal components is basically a variance maximising 
rotation of the original variable space. Each principal component corresponds to a 
certain amount of variance of the whole dataset. For instance, in the example 

These co-ordinates in the principal component space are often called “z-scores”. 

’

’’

’

’
’

’

portrayed in Figure 8.1c, the first principal component represents λ1/(λ1+ λ2) = 99% 

’
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Let Λ represent the diagonal matrix of the eigenvalues: 
 



















=

dλ

λ
λ

K

KKKK

K

K

00

00
00

2

1

Λ .  8.5 

 
The following properties are verified: 
 
1. U  S U = Λ and S = U Λ U . 8.6 

2. The determinant of the covariance matrix, |S|, is: 
 
 |S | = |Λ | = λ1λ2… λd .  8.7 
 
 |S | is called the generalised variance and its square root is proportional to 

the area or volume of the data cluster since it is the product of the ellipsoid 
axes.  

3. The traces of S and Λ are equal to the sum of the variances of the variables: 
 

 tr(S) = tr(Λ) = 22
2

2
1 dsss +++ K .  8.8 

 
Based on this property, we measure the contribution of a variable Xk by              
e = λk /∑ λi = λk/( 22

2
2
1 dsss +++ K ), as we did previously. 

 
The contribution of each original variable Xj to each principal component Zi can 

be assessed by means of the corresponding sample correlation between Xj and Zi, 
often called the loading of Xj: 

 

jijiij sur /)( λ= . 8.9 
 
Function pccorr implemented in MATLAB and R and supplied in Tools (see 

Commands 8.1) allows computing the rij correlations. 
 

Example 8.1 

Compute the covariance matrix and their eigenvalues and engeivectors using the 
original variables ART and PRT. Determine the algebraic expression and 
contribution of the main principal component, its correlation with the original 
variables as well as the new co-ordinates of the first cork-stopper. 

A: We use MATLAB to perform the necessary computations (see Commands 8.1). 
Let cork represent the data matrix with all 10 features. We then use: 

about the data; the remaining u2 is residual “noise”. 

Q: Consider the best class of the Cork Stoppers’ dataset (first 50 cases). 

’’

of the total variance. In short, u1 alone contains practically all the information 
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» % Extract 1st class ART and PRT from cork 
» x = [cork(1:50,1) cork(1:50,3)];  
» S = cov(x);   % covariance matrix 
» [u,lambda,e] = pcacov(S); % principal components 
» r = pccorr(x);   % correlations 
 
The results S, u, lambda, e and r are shown in Table 8.1. The scatter plots of 

the data using the original variables and the principal components are shown in 
Figure 8.2. The pc-scores can be obtained with: 

 
» xc = x-ones(50,1)*mean(x); 
» z = (u *xc ) ; 
 
We see that the first principal component with algebraic expression,                    

−0.3501×ART−0.9367×PRT, highly correlated with the original variables, explains 
almost 99% of the total variance. The first cork-stopper, represented by [81 250]  
in the ART-PRT plane, maps into: 
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The eigenvector components are the cosines of the angles subtended by the 

principal components in the ART-PRT plane. In Figure 8.2a, this result can only be 
visually appreciated after giving equal scales to the axes.  

 
 

Table 8.1. Eigenvectors and eigenvalues obtained with MATLAB for the first 
class of cork-stoppers (variables ART and PRT). 

Covariance Eigenvectors Eigenvalues Explained 
variance  

Correlations 
for z1 

 S (×10−4) u1 u2 λ  (×10−4) e  (%) r1j 
0.1849 0.4482 −0.3501 −0.9367 1.3842 98.76 −0.9579 
0.4482 1.2168 −0.9367    0.3501 0.0174 1.24 −0.9991 
 
 
 
An interesting application of principal components is in statistical quality 

control. The possibility afforded by principal components of having a much- 
reduced set of variables explaining the whole data variability is an important 
advantage. Instead of controlling several variables, with the same type of Error 
Type I degradation as explained in 4.5.1, sometimes only one variable needs to be 
controlled. 

Furthermore, principal components afford an easy computation of the following 

 

Hotteling’s T2 measure of variability: 

’ ’ ’

’
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zΛzxxSxx 112 )()( −− =−−=T .  8.10 
 
Critical values of T2 are computed in terms of the F distribution as follows: 
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Figure 8.2. Scatter plots obtained with MATLAB of the cork-stopper data (first 
class) represented in the planes: a) ART-PRT with superimposed principal 
components; b) Principal components. The first cork is shown with a solid circle. 
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Figure 8.3. T 2 chart for the first class of the cork-stopper data. Case #20 is out of 
control. 

 

Example 8.2 

Q: Determine the  T 2 control chart for the previous Example 8.1 and find 
the corks that are  at a 95% confidence level. 

Hotteling’s
“out of control”

’ ’
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function. The 95% critical value for F2,48 is 3.19; hence, the 95% critical value for 

reclassified. Corks #34 and #39 are borderline cases. 
  
 

Commands 8.1. SPSS, STATISTICA, MATLAB and R commands used to 
perform principal component and factor analyses. 

SPSS Analyze; Data Reduction; Factor 

STATISTICA Statistics; Multivariate Exploratory 
Techniques; Factor Analysis 

MATLAB 

[u,l]=eig(C); [pc, lat, expl] = pcacov(C) 
[pc, score, lat, tsq]= princomp(x) 
residuals = pcares(x,ndim) 
[ndim,p,chisq] = barttest(x,alpha) 
r = pccorr(x) ; f=velcorr(x,icov) 

R 
eigen(C) ; prcomp(x) ; princomp(x) 
screeplot(p) 
factanal(x,factors,scores,rotation) 
pccorr(x) ; velcorr(x,icov) 

 
 

SPSS and STATISTICA commands are of straightforward use. SPSS and 
STATISTICA always use the correlation matrix instead of the covariance matrix 
for computing the principal components. Figure 8.4 shows STATISTICA 
specification window for the selection of the two most important components with 
eigenvalues above 1. If one wishes to obtain all principal components one should 
set the Min. eigenvalue to 0 and the Max. no. of factors to the data 
dimension. 

The MATLAB eig function returns the eigenvectors, u, and eigenvalues, l, of 
a covariance matrix C. The pcacov function determines the principal components 
of a covariance matrix C, which are returned in pc. The return vectors lat and 
expl store the variances and contributions of the principal components to the total 
variance, respectively. The princomp function returns the principal components 
and eigenvalues of a data matrix x in pc and lat, respectively. The pc-scores and 

T 2 are returned in score and tsq, respectively. The pcares function 
returns the residuals obtained by retaining the first ndim principal components of 
x. The barttest function returns the number of dimensions to retain together 
with the  test probabilities, p, and χ 2 scores, chisq (see section 8.2).  

The MATLAB implemented pccorr function computes the partial correlations 
between the original variables and the principal components of a data matrix x. 
The velcorr function computes the Velicer partial correlations (see section 8.2) 

A: The Hotteling’s T2 values can be determined with MATLAB princomp

the Hotteling’s T2, using formula 8.11, is computed as 6.51. Figure 8.3 shows the 
corresponding control chart. Cork #20 is clearly “out of control”, i.e., it should be 

Hotteling’s 

Bartlett’s
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using matrix x either as data matrix (icov ≠ 0) or as covariance matrix        
(icov = 0).  

The R eigen function behaves as the MATLAB eig function. For instance, 
the eigenvalues and eigenvectors of Table 8.1 can be obtained with 
eigen(cov(cbind(ART[1:50],PRT[1:50]))). The prcomp function 
computes among other things the principal components (curiously, called 

eigenvalues). For the dataset of Example 8.1 one would use: 
 
> p<-prcomp(cbind(ART[1:50],PRT[1:50])) 
> p 
Standard deviations: 
[1] 117.65407  13.18348 
 
Rotation: 
           PC1        PC2 
[1,] 0.3500541  0.9367295 
[2,] 0.9367295 -0.3500541 
 
We thus obtain the same eigenvectors (PC1 and PC2) as in Table 8.1 (with an 

unimportant change of sign). The standard deviations are the square roots of the 
eigenvalues listed in Table 8.1. With the R princomp function, besides the 
principal components and their standard deviations, one can also obtain the data 
projections onto the eigenvectors (the so-called scores in R).  

A scree plot (see section 8.2) can be obtained in R with the screeplot 
function using as argument an object returned by the princomp function. The R 
factanal function performs factor analysis (see section 8.4) of the data matrix x 
returning the number of factors specified by factors with the specified 

The R implemented functions pccorr and velcorr behave in the same way 
as their MATLAB counterparts.  

  
 
 
 

Figure 8.4. Partial view of STATISTICA specification window for principal 
component analysis with standardised data. 
 

“rotation” or “loadings” in R) and their standard deviations (square roots of the 

rotation method. Bartlett’s test scores can be specified with scores. 
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8.2 Dimensional Reduction 

When using principal component analysis for dimensional reduction, one must 
decide how many components (and corresponding variances) to retain. There are 
several criteria published in the literature to consider. The following are commonly 
used: 
 

1. Select the principal components that explain a certain percentage (say, 95%) 
of tr(Λ). This is a very simplistic criterion that is not recommended. 

2. The Guttman-Kaiser criterion discards eigenvalues below the average 
tr(Λ)/d (below 1 for standardised data), which amounts to retaining the 
components responsible for the variance contributed by one variable if the 
total variance was equally distributed.  

3. The so-called scree test uses a plot of the eigenvalues (scree plot), 
discarding those starting where the plot levels off. 

4. A more elaborate criterion is based on the so-called broken stick model. This 
criterion discards the eigenvalues whose proportion of explained variance is 
smaller than what should be the expected length lk of the kth longest 
segment of a unit length stick randomly broken into d segments: 
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 A table of lk values is given in Tools.xls. 

5. 
null hypothesis that the last p − q eigenvalues are equal, λq+1 = λq+2 = …      
= λp, can be accepted. The mathematics of this test are intricate (see Jolliffe 
IT, 2002, for a detailed discussion) and its results often unreliable. We pay 
no further attention to this procedure. 

6. The Velicer partial correlation procedure uses the partial correlations 
among the original variables when one or more principal components are 
removed. Let Sk represent the remaining covariance matrix when the 
covariance of the first k principal components is removed: 
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Using the diagonal matrix Dk of Sk, containing the variances, we compute 
the correlation matrix: 
 

2/12/1 −−= kkkk DSDR .  8.14 
 
Finally, with the elements rij(k) of Rk we compute the following quantity: 

The Bartlett’s test method is based on the assessment of whether or not the 

’
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The fk are the sum of squares of the partial correlations when the first k 
principal components are removed. As long as fk decreases, the partial 
covariances decline faster than the residual variances. Usually, after an 
initial decrease, fk will start to increase, reflecting the fact that with the 
removal of main principal components, we are obtaining increasingly 

used as the stopping rule. 
The Velicer procedure can be applied using the velcorr function 
implemented in MATLAB and R and available in Tools (see Appendix F). 

 

Example 8.3 

Q: Using all the previously described criteria, determine the number of principal 
components for the  dataset (150 cases, 10 variables) that 
should be retained and assess their contribution.  

A: Table 8.2 shows the computed eigenvalues of the cork-stopper dataset. Figure 

Finally, Table 8.3 compares the number of retained principal components for the 
several criteria and the respective percentage of explained variance. The highly 

principal components to retain. 
  
 

Table 8.2. Eigenvalues of the cork-stopper dataset computed with MATLAB (a 
scale factor of 104 has been removed). 

λ1 λ2 λ3 λ4 λ5 
1.1342 0.1453 0.0278 0.0202 0.0137 

λ6 λ7 λ8 λ9 λ10 
0.0087 0.0025 0.0016 0.0006 0.0001 

 
 

Table 8.3. Comparison of dimensional reduction criteria (Example 8.3). 

Criterion 95% 
variance 

Guttman-
Kaiser Scree test Broken stick Velicer 

k 3 1 3 1 3 

Explained 
variance 96.5% 83.7% 96.5% 83.7% 96.5% 

 

correlated “noise”. The k value corresponding to the first fk minimum is then 

8.5a shows the scree plot and Figure 8.5b shows the evolution of Velicer’s fk. 

Cork Stoppers’

recommended Velicer’s procedure indicates 3 as the appropriate number of 



 8.3 Principal Components of Correlation Matrices 339 

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000
eigenvalue 

k 
a 

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
fk 

k 
b  

Figure 8.5. Assessing the dimensional reduction to be performed in the cork 
stopper dataset with: a) Scree plot, b) Velicer partial correlation plot. Both plots 
obtained with MATLAB. 

 

8.3 Principal Components of Correlation Matrices 

Sometimes, instead of computing the principal components out of the original data, 
they are computed out of the standardised data, i.e., using the z-scores of the data. 
This is the procedure followed by SPSS and STATISTICA, which is related to the 
factor analysis approach described in the following section. Using the standardised 
data has the consequence of eigenvalues and eigenvectors computed from the 
correlation matrix instead of the covariance matrix (see formula 8.2). The R 
function princomp has a logical argument, cor, whose value controls the use of 
the data correlation or covariance matrix. The results obtained are, in general, 
different.  

Note that since all diagonal elements of a correlation matrix are 1, we have  
tr(Λ) = d. Thus, the Guttman-Kaiser criterion amounts, in this case, to selecting the 
eigenvalues which are greater than 1. 

Using standardised data has several benefits, namely imposing equal 
contribution of the original variables when they have different units or 
heterogeneous variances. 

 
Example 8.4 

Q: Compare the bivariate principal component analysis of the Rocks dataset (134 
cases, 18 variables), using covariance and correlation matrices. 

A: Table 8.4 shows the eigenvectors and correlations (called factor loadings in 
STATISTICA) computed with the original data and the standardised data. The first 
ones, u1 and u2, are computed with MATLAB or R using the covariance matrix; 
the second ones, f1 and f2, are computed with STATISTICA using the correlation 
matrix. Figure 8.6 shows the corresponding pc scores (called factor scores in 
STATISTICA), that is the data projections onto the principal components. 
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We see that by using the covariance matrix, only one eigenvector has dominant 

variables RMCS and RCSG. These variables are precisely the ones with highest 
variance. Note also the dominant values of the first two elements of u. When using 
the correlation matrix, the f elements are more balanced and express the 
contribution of several original features: f1 highly correlated with chemical 
features, and f2 highly correlated with density (MVAP), porosity (PAOA), and 
water absorption (AAPN). 

The scatter plot of Figure 8.6a shows that the pc scores obtained with the 
covariance matrix are unable to discriminate the several groups of rocks; u1 only 

groups. On the other hand, the scatter plot in Figure 8.6b shows that the pc scores 
obtained with the correlation matrix discriminate the rock classes, both in terms of 
chemical composition (f1 basically discriminates Ca vs. SiO2-rich rocks) and of 
density-porosity-water absorption features (f2). 

  
 
 

Table 8.4. Eigenvectors of the rock dataset computed from the covariance matrix 
(u1 and u2) and from the correlation matrix (f1 and f2) with the respective 
correlations. Correlations above 0.7 are shown in bold. 

 u1 u2 r1 r2 f1 f2 r1 r2 

RMCS -0.695 0.487 -0.983 0.136 -0.079 0.018 -0.569 0.057 

RCSG -0.714 -0.459 -0.984 -0.126 -0.069 0.034 -0.499 0.105 

RMFX -0.013 -0.489 -0.078 -0.606 -0.033 0.053 -0.237 0.163 

MVAP -0.015 -0.556 -0.089 -0.664 -0.034 0.271 -0.247 0.839 

AAPN 0.000 0.003 0.251 0.399 0.046 -0.293 0.331 -0.905 

PAOA 0.001 0.008 0.241 0.400 0.044 -0.294 0.318 -0.909 

CDLT 0.001 -0.005 0.240 -0.192 0.001 0.177 0.005 0.547 

RDES 0.002 -0.002 0.523 -0.116 0.070 -0.101 0.503 -0.313 

RCHQ -0.002 -0.028 -0.060 -0.200 -0.095 0.042 -0.689 0.131 

SiO2 -0.025 0.046 -0.455 0.169 -0.129 -0.074 -0.933 -0.229 

Al2O3 -0.004 0.001 -0.329 0.016 -0.129 -0.069 -0.932 -0.215 

Fe2O3 -0.001 -0.006 -0.296 -0.282 -0.111 -0.028 -0.798 -0.087 

MnO -0.000 -0.000 -0.252 -0.039 -0.090 -0.011 -0.647 -0.034 

CaO 0.020 -0.025 0.464 -0.113 0.132 0.073 0.955 0.225 

MgO -0.003 -0.007 -0.393 -0.226 -0.024 0.025 -0.175 0.078 

Na2O -0.001 0.004 -0.428 0.236 -0.119 -0.071 -0.856 -0.220 

K2O -0.001 0.005 -0.320 0.267 -0.117 -0.084 -0.845 -0.260 

TiO2 -0.000 -0.000 -0.152 -0.097 -0.088 -0.026 -0.633 -0.079 

 
 

correlations with the original variables, namely the “compression breaking load” 

discriminates the rock classes between high and low “compression breaking load” 
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Figure 8.6. The rock dataset analysed with principal components computed from 
the covariance matrix (a) and from the correlation matrix (b). 

 

Example 8.5 

Evaluate the training set error for linear discriminant classifiers using the 10 
original features and one or two principal components of the data correlation 
matrix. 

A: The classification matrices, using the linear discriminant procedure described in 

degrade the training set error significantly. The first principal component, F1, alone 
corresponds to more than 86% of the total variance. Adding the principal 
component F2, 94.5% of the total data variance is explained. Principal component 
F1 has a distribution that is well approximated by the normal distribution (Shapiro-Wilk

Q: Consider the three classes of the Cork Stoppers’ dataset (150 cases). 

Chapter 6, are shown in Table 8.5. We see that the dimensional reduction didn’t 
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p = 0.69, 0.67 and 0.33 for class 1, 2 and 3, respectively). For the principal 
component F2, the approximation is worse for the first class (Shapiro-Wilk p = 
0.09, 0.95 and 0.40 for class 1, 2 and 3, respectively). 

A classifier with only one or two features has, of course, a better dimensionality 
ratio and is capable of better generalisation. It is left as an exercise to compare the 
cross-validation results for the three feature sets. 

  
 

Table 8.5. Classification matrices for the cork stoppers dataset. Correct 
classifications are along the rows (50 cases per class). 

 10 Features  F1 and F2  F1 

 ω1 ω2 ω3  ω1 ω2 ω3  ω1 ω2 ω3 

ω1 45 5 0  46 4 0  47 3 0 

ω2 7 42 1  11 39 0  10 40 0 

ω3 0 4 46  0 5 45  0 5 45 
Pe 10% 16% 6%  8% 22% 10%  6% 20% 10% 

 

Example 8.6 

Q: Compute the main principal components for the two first classes of the Cork 

using the Guttman-Kaiser criterion. Determine the respective correlations with 
each original variable and interpret the results. 

A: Figure 8.7a shows the eigenvalues computed with STATISTICA. The first two 
eigenvalues comply with the Guttman-Kaiser criterion (take note that the sum of 
all eigenvalues is 10). 

The factor loadings of the two main principal components are shown in Figure 
8.8a. Significant values appear in bold. A plot of these factor loadings is shown in 
Figure 8.8b. It is clearly visible that the first principal component, F1, is highly 
correlated with all cork-stopper features except N and the opposite happens with 
F2. These observations suggest, therefore, that the description (or classification) of 
the two cork-stopper classes can be achieved either with F1 and F2, or with feature 
N and one of the other features, namely the highest correlated feature PRTG  (total 
perimeter of the big defects). 

 Furthermore, we see that the only significant correlation relative to F2 is smaller 
than any of the significant correlations relative to F1. Thus, F1 or PRTG alone 
describes most of the data, as suggested by the scatter plot of Figure 8.7b (pc 
scores).  

 
When analysing grouped data with principal components, as we did in the 

previous Examples 8.4 and 8.6, one often wants to determine the most important 

Stoppers’ dataset, using standardised data. Select the principal components 
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variables as well as the data groups that best reflect the behaviour of those 
variables. 

 

Figure 8.7. Dimensionality reduction of the first two classes of cork-stoppers:      
a) Eigenvalues; b) Principal component scatter plot (compare with Figure 6.5). 
(Both graphs obtained with STATISTICA.) 

 
Consider the means of variable F1 in Example 8.6: 0.71 for class 1 and −0.71 

for class 2 (see Figure 8.7b). As expected, given the translation y = x – x , the 
means are symmetrically located around F1 = 0. Moreover, by visual inspection, 
we see that the class 1 cases cluster on a high F1 region and class 2 cases cluster on 
a low F1 region. Notice that since the scatter plot 8.7b uses the projections of the 
standardised data onto the F1-F2 plane, the cases tend to cluster around the (1, 1) 
and (−1, −1) points in this plane. 

 

Figure 8.8. Factor loadings table (a) with significant correlations in bold and graph 
(b) for the first two classes of cork-stoppers, obtained with STATISTICA. 
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In order to analyse this issue in further detail, let us consider the simple dataset 
shown in Figure 8.9a, consisting of normally distributed bivariate data generated 
with (true) mean µo = [3   3]  and the following (true) covariance matrix: 

 









=

23
35

oΣ . 

 
Figure 8.9b shows this dataset after standardisation (subtraction of the mean and 

division by the standard deviation) with the new covariance matrix: 
 









=

19478.0
9478.01

Σ . 

 
The standardised data has unit variance along all variables with the new 

covariance: σ12 = σ21 = 3/( 25 ) = 0.9487. The eigenvalues and eigenvectors of Σ 
(computed with MATLAB function eig), are: 

 





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
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Note that tr(Λ) = 2, the total variance, and that the first principal component 

explains 97% of the total variance. 
Figure 8.9c shows the standardised data projected onto the new system of 

variables F1 and F2. 
Let us now consider a group of data with mean mo = [4   4]  and a one-standard-

deviation boundary corresponding to the ellipsis shown in Figure 8.9a, with sx 
= 5 /2 and sy = 2 /2, respectively. The mean vector maps onto m = mo – µo =    
[1  1] ; given the values of the standard deviation, the ellipsis maps onto a circle of 
radius 0.5 (Figure 8.9b). This same group of data is shown in the F1-F2 plane 
(Figure 8.9c) with mean: 
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Figure 8.9d shows the correlations of the principal components with the original 

variables, computed with formula 8.9: 
 

XFr 1   = YFr 1  = 0.987;     XFr 2   = − YFr 2  = 0.16 . 
 
These correlations always lie inside a unit-radius circle. Equal magnitude 

correlations occur when the original variables are perfectly correlated with           
λ1 = λ2 = 1. The correlations are then XFr 1  = YFr 1 =1/ 2  (apply formula 8.9). 

’

’

’

’
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In the case of Figure 8.9d, we see that F1 is highly correlated with the original 
variables, whereas F2 is weakly correlated. At the same time, a data group lying in 

projection of the standardised data. We may superimpose these two different 
graphs – the pc scores graph and the correlation graph – in order to facilitate the 
interpretation of the data groups that exhibit some degree of correspondence with 
high values of the variables involved. 
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Figure 8.9. Principal component transformation of a bivariate dataset: a) original 
data with a group delimited by an ellipsis; b) Standardised data with the same 
group (delimited by a circle); c) Standardised data projection onto the F1-F2 plane; 
d) Plot of the correlations (circles) of the original variables with F1 and F2. 

 

Example 8.7 

by 18 features (see Appendix E). Use the two main principal components of the 
data in order to interpret it. 

the “high region” of X and Y tends to cluster around the F1 = 1 value after 

(1=“granite”, 2=“diorite”, 3=“marble”, 4=“slate”, 5=“limestone”) and characterised 
Q: Consider the Rocks’ dataset, a sample of 134 rocks classified into five classes 
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A: Only the first four eigenvalues satisfy the Kaiser criterion. The first two 
eigenvalues are responsible for about 58% of the total variance; therefore, when 
discarding the remaining eigenvalues, we are discarding a substantial amount of 
the information from the dataset (see Exercise 8.12). 

We can conveniently interpret the data by using a graphic display of the 
standardised data projected onto the plane of the first two principal components, 
say F1 and F2, superimposed over the correlation plot. In STATISTICA, this 
overlaid graphic display can be obtained by first creating a datasheet with the 

and select Extract as stand alone window). Then, secondly, we join 
the factor loadings in the same F1 and F2 columns and create a grouping variable 
that labels the data classes and the original variables. Finally, a scatter plot with all 
the information, as shown in Figure 8.10, is obtained.  

By visual inspection of Figure 8.10, we see that F1 has high correlations with 
chemical features, i.e., reflects the chemical composition of the rocks. We see, 
namely, that F1 discriminates between the silica-rich rocks such as granites and 
diorites from the lime-rich rocks such as marbles and limestones. On the other 
hand, F2 reflects physical properties of the rocks, such as density (MVAP), 
porosity (PAOA) and water absorption (AAPN). F2 discriminates dense and 
compact rocks (e.g. marbles) from less dense and more porous counterparts (e.g. 
some limestones).  

 

Al2O3
Fe2O3

CaO

                Na2O

MVAP

                    AAPNPAOA

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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F1-type variable
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Figure 8.10. Partial view of the standardised rock dataset projected onto the F1-F2 
principal component plane, overlaid with the correlation plot. 

projections (“factor scores”) and the correlations (“factor loadings”). For this 
purpose, we first extract the scrollsheet of the “factor scores” (click with the right 
button of the mouse over the corresponding “factor scores” sheet in the workbook 
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8.4 Factor Analysis 

Let us again consider equation 8.4 which yields the pc-scores of the data using the 
d×d matrix U of the eigenvectors: 

 
z = U (x – x ).  8.16 
 
Reversely, with this equation we can obtain the original data from their principal 

components: 
 
x = x  + Uz.  8.17 
 
If we discard some principal components, using a reduced d×k matrix Uk, we no 

longer obtain the original data, but an estimate x̂ : 
 
x̂  = x  + Uk zk.  8.18 
 
Using 8.17 and 8.18, we can express the original data in terms of the estimation 

error e = x – x̂ , as: 
 
x = x  + Uk zk + (x – x̂ ) = x  + Uk zk + e.  8.19 
 
When all principal components are used, the covariance matrix satisfies             

S = U Λ U  (see formula 8.6 in the properties mentioned in section 8.1). Using the 
reduced eigenvector matrix Uk, and taking 8.19 into account, we can express S in 
terms of an approximate covariance matrix Sk and an error matrix E: 

 
S = Uk ΛUk  + E = Sk + E.  8.20 
 
In factor analysis, the retained principal components are called common factors. 

Their correlations with the original variables are called factor loadings. Each 
common factor uj is responsible by a communality, 2

ih , which is the variability 
associated with the original ith variable: 

 

∑
=

=
k

j
ijji uh

1

22 λ .  8.21 

 

The communalities are the diagonal elements of Sk and make up a diagonal 
communality matrix H. 

 

Example 8.8 

Q: Compute the approximate covariance, communality and error matrices for 
Example 8.1. 

A: Using MATLAB to carry out the computations, we obtain: 
 

’

’

’
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In the previous example, we can appreciate that the matrix of the diagonal 

elements of E is the difference between the matrix of the diagonal elements of S 
and H: 
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In factor analysis, one searches for a solution for the equation 8.20, such that E 

is a diagonal matrix, i.e., one tries to obtain uncorrelated errors from the 
component estimation process. In this case, representing by D the matrix of the 
diagonal elements of S, we have: 

 
S = Sk + (D – H). 8.22 
 
In order to cope with different units of the original variables, it is customary to 

carry out the factor analysis on correlation matrices: 
 
R = Rk + (I – H).  8.23 
 
There are several algorithms for finding factor analysis solutions which 

basically improve current estimates of communalities and factors according to a 
specific criterion (for details see e.g. Jackson JE, 1991). One such algorithm, 
known as principal factor analysis, starts with an initial estimate of the 
communalities, e.g. as the multiple R square of the respective variable with all 
other variables (see formula 7.10). It uses a principal component strategy in order 
to iteratively obtain improved estimates of communalities and factors. 

In principal component analysis, the principal components are directly 
computed from the data. In factor analysis, the common factors are estimates of 
unobservable variables, called latent variables, which model the data in such a way 
that the remaining errors are uncorrelated. Equation 8.19 then expresses the 
observations x in terms of the latent variables zk and uncorrelated errors e. The true 
values of the observations x, before any error has been added, are values of the so-
called manifest variables. 

’
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The main benefits of factor analysis when compared with principal component 
analysis are the non-correlation of the residuals and the invariance of the solutions 
with respect to scale change. 

After finding a factor analysis solution, it is still possible to perform a new 
transformation that rotates the factors in order to achieve special effects as, for 
example, to align the factors with maximum variability directions (varimax 
procedure). 

 

Example 8.9 

Q: Redo Example 8.8 using principal factor analysis with the communalities 
computed by the multiple R square method. 

A: The correlation matrix is: 
 









=

1945.0
945.01

R . 

 

Starting with communalities = multiple R2 square = 0.893, STATISTICA 
(Communalities = multiple R2) converges to solution: 
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For unit length eigenvectors, we have: 
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Thus: R1 + (I – H) = 







1919.0
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. 

 

We see that the residual cross-correlations are only 0.945 – 0.919 = 0.026.  
 

Example 8.10 

Q: Redo Example 8.7 using principal factor analysis and varimax rotation. 

A: Using STATISTICA with Communalities=Multiple R2 checked (see 
Figure 8.4) in order to apply formula 8.21, we obtain the solution shown in Figure 
8.11. The varimax procedure is selected in the Factor rotation box included 
in the Loadings tab (after clicking OK in the window shown in Figure 8.4). 

The rock dataset projected onto the factor plane shown in Figure 8.11 leads us to 
the same conclusions as in Example 8.7, stressing the opposition SiO2-CaO and 

structure.  
  

“aligning” the factors in such a way that facilitates the interpretation of the data 

’
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Figure 8.11. Partial view of the rock dataset projected onto the F1-F2 factor plane, 
after varimax rotation, overlaid with the factor loadings plot. 

Exercises 

8.1 Consider the standardised electrical impedance features of the Breast Tissue 
dataset and perform the following principal component analyses: 
a) Check that only two principal components are needed to explain the data 

according to the Guttman-Kaiser, broken stick and Velicer criteria. 
b) Determine which of the original features are highly correlated to the principal 

components found in a). 
c) Using a scatter plot of the pc-scores check that the {ADI, CON} class set is 

separated from all other classes by the first principal component only, whereas the 
discrimination of the carcinoma class requires the two principal components. 
(Compare with the results of Examples 6.17 and 6.18.) 

d) Redo Example 6.16 using the principal components as classifying features. 
Compare the classification results with those obtained previously. 

 
8.2 Perform a principal component analysis of the correlation matrix of the chemical and 

grading features of the Clays  dataset, showing that: 
a) The scree plot has a slow decay after the first eigenvalue. The Velicer criterion 

indicates that only the first two eigenvalues should be retained. 
b) The pc correlations show that the first principal component reflects the silica-

alumina content of the clays; the second principal component reflects the lime 
content; and the third principal component reflects the grading. 

’
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c) The scatter plot of the pc-scores of the first two principal components indicates a 
good discrimination of the two clay types (holocenic and pliocenic). 

 
8.3 Redo the previous Exercise 8.2 using principal factor analysis. Show that only the first 

factor has a high loading with the original features, namely the alumina content of the 
clays. 

 
8.4 Design a classifier for the first two classes of the Cork Stoppers  dataset using the 

main principal components of the data. Compare the classification results with those 
obtained in Example 6.4. 

 
8.5 Consider the CTG dataset with 2126 cases of foetal heart rate (FHR) features computed 

in normal, suspect and pathological FHR tracings (variable NSP). Perform a principal 
component analysis using the feature set {LB, ASTV, MSTV, ALTV, MLTV, 
WIDTH, MIN, MAX, MODE, MEAN, MEDIAN, V} containing continuous-type 
features.  
a) Show that the two main principal components computed for the standardised 

features satisfy the broken-stick criterion. 
b) Obtain a pc correlation plot superimposed onto the pc-scores plot and verify that: 

first, there is a quite good discrimination of the normal vs. pathological cases with 
the suspect cases blending in the normal and pathological clusters; and that there 
are two pathological clusters, one related to a variability feature (MSTV) and the 
other related to FHR histogram features. 

 
8.6 Using principal factor analysis, determine which original features are the most 

important explaining the variance of the Firms  dataset. Also compare the principal 
factor solution with the principal component solution of the standardised features and 
determine whether either solution is capable to conveniently describe the activity 
branch of the firms. 

 
8.7 Perform a principal component and a principal factor analysis of the standardised 

features BASELINE, ACELRATE, ASTV, ALTV, MSTV and MLTV of the FHR-
Apgar dataset checking the following results: 
a) The principal factor analysis affords a univariate explanation of the data variance 

related to the FHR variability features ASTV and ALTV, whereas the principal 
component analysis affords an explanation requiring three components. Also 
check the scree plots. 

b) The pc-score plots of the factor analysis solution afford an interpretation of the 
Apgar index. For this purpose, use the varimax rotation and plot the categorised 
data using three classes for the Apgar at 1 minute after birth (Apgar1: ≤5; >5 and 
≤8; >8) and two classes for the Apgar at 5 minutes after birth (Apgar5: ≤8; >8). 

 
8.8 Redo the previous Exercise 8.7 for the standardised features EF, CK, IAD and GRD of 

the Infarct dataset showing that the principal component solution affords an 
explanation of the data based on only one factor highly correlated with the ejection 
fraction, EF. Check the discrimination capability of this factor for the necrosis severity 
score SCR > 2 (high) and SCR < 2 (low). 

 

’

’
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8.9 Consider the Stock Exchange dataset. Using principal factor analysis, determine 
which economic variable best explains the variance of the whole data. 

 

for this fact taking into account the values of the variables highly correlated with the 
principal components. Use only variables without missing data for the computation of 
the principal components. 

 
8.11 Perform a principal factor analysis of the wine data studied in the previous Exercise 

8.10 showing that there are two main factors, one highly correlated to the GLU-THR 
variables and the other highly correlated to the PHE-LYS variables. Use varimax 
rotation and analyse the clustering of the white and red wines in the factor plane 
superimposed onto the factor loading plane. 

 
8.12 Redo the principal factor analysis of Example 8.10 using three factors and varimax 

rotation. With the help of a 3D plot interpret the results obtained checking that the three 
factors are related to the following original variables: SiO2-Al2O3-CaO (silica-lime 
factor), AAPN-AAOA (porosity factor) and RMCS-RCSG (resistance factor). 

which wines are “out of control” at 95% confidence level and present an explanation 
8.10 Using the Hotteling’s T2 control chart for the wines of the Wines  dataset, determine ’



9 Survival Analysis 

In medical studies one is often interested in studying the expected time until the 
death of a patient, undergoing a specific treatment. Similarly, in technological 
tests, one is often interested in studying the amount of time until a device subjected 
to specified conditions fails. Times until death and times until failure are examples 
of survival data. The statistical analysis of survival data is based on the use of 
specific data models and probability distributions. In this chapter, we present 
several introductory topics of survival analysis and their application to survival 
data using SPSS, STATISTICA, MATLAB and R (survival package). 

9.1 Survivor Function and Hazard Function 

Consider a random variable T ∈ ℜ+ representing the lifetime of a class of objects or 
individuals, and let f(t) denote the respective pdf. The distribution function of T is: 
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duuftTPtF
0

)()()( .  9.1 

 
In general, f(t) is a positively skewed function, with a long right tail. Continuous 

distributions such as the exponential or the Weibull distributions (see B.2.3 and 
B.2.4) are good candidate models for f(t). 

The survivor function or reliability function, S(t), is defined as the probability 
that the lifetime (survival time) of the object is greater than or equal to t: 

 
S(t) = P(T ≥ t) = 1 − F(t).  9.2 
 
The hazard function (or failure rate function) represents the probability that the 

object ends its lifetime (fails) at time t, conditional on having survived until that 
time. In order to compute this probability, we first consider the probability that the 
survival time T lies between t and t + ∆t, conditioned on T ≥ t: P(t ≤ T  < t + ∆t |    
T ≥ t). The hazard function is the limit of this probability when ∆t → 0: 
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Given the property A.7 of conditional probabilities, the numerator of 9.3 can be 

written as: 
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since f(t) is the derivative of F(t): dttdFtf /)()( = . 

9.2 Non-Parametric Analysis of Survival Data 

9.2.1 The Life Table Analysis 

In survival analysis, the survivor and hazard functions are estimated from the 
observed survival times. Consider a set of ordered survival times t1, t2, …, tk. One 
may then estimate any particular value of the survivor function, S(ti), in the 
following way: 

 
S(ti) = P(surviving to time ti)  =  

P(surviving to time t1) 
 ×P(surviving to time t1 | survived to time t2) 
  … 
 ×P(surviving to time ti | survived to time ti − 1).  9.6 
 
Let us denote by nj the number of individuals that are alive at the start of the 

interval [tj , tj+1[, and by dj the number of individuals that die during that interval. 
We then derive the following non-parametric estimate: 
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from where we estimate S(ti) using formula 9.6. 
 

Example 9.1 

Q: A car stand has a record of the sale date and the date that a complaint was first 
presented for three different cars (this is a subset of the Car Sale dataset in 
Appendix E). These dates are shown in Table 9.1. Compute the estimate of the 
time-to-complaint probability for t = 300 days. 

survival time. The computed times in days are shown in the last column of Table 
9.1. Since there are no complaints occurring between days 261 and 300, we may 
apply 9.6 and 9.7 as follows: 

A: In this example, the time-to-complaint, “Complaint Date” – “Sale Date”, is the 
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Alternatively, one could also compute this estimate as (3 – 2)/3, considering the 
[0, 261] interval.  

 

Table 9.1. Time-to-complaint data in car sales (3 cars). 

Car Sale Date Complaint Date Time-to-complaint 
(days) 

#1 1-Nov-00 29-Jun-01 240 
#2 22-Nov-00 10-Aug-01 261 
#3 16-Feb-01 30-Jan-02 348 

 
 

cases that entered the study is often not available either because the cases were 

These are the so-called censored cases1. 
The information of the censored cases must also be taken into consideration 

when estimating the survivor function. Let us denote by cj the number of cases 
censored in the interval [tj , tj+1 . The actuarial or life-table estimate of the survivor 
function is a non-parametric estimate that assumes that the censored survival times 
occur uniformly throughout that interval, so that the average number of individuals 
that are at risk of dying during [tj , tj+1  is: 
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Taking into account formulas 9.6 and 9.7, the life-table estimate of the survivor 

function is computed as: 
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The hazard function is an estimate of 9.5, given by: 
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where τ j is the length of the jth time interval. 

                                                           
1
 The type of censoring described here is the one most frequently encountered, known as right 

censoring. There are other, less frequent types of censoring. 

 In a survival study, information concerning the “death” times of one or more 

“lost” during the study or because they are still “alive” at the end of the study. 

[

[
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Example 9.2 

Q: Consider that the data records of the car stand (Car Sale dataset), presented 
in the previous example, was enlarged to 8 cars, as shown in Table 9.2. Determine 
the survivor and hazard functions using the life-table estimate. 

A: We now have two sources of censored data: the three cars that are known to 
have had no complaints at the end of the study, and one car whose owner could not 
be contacted at the end of the study, but whose car was known to have had no 
complaint at a previous date. We can summarise this information as shown in 
Table 9.3. 

Using SPSS, with the time-to-complaint and censored columns of Table 9.3 and 
a specification of displaying time intervals 0 through 600 days by 75 days, we 
obtain the life-table estimate results shown in Table 9.4. Figure 9.1 shows the 
survivor function plot. Note that it is a monotonic decreasing function. 

 
 

Table 9.2. Time-to-complaint data in car sales (8 cars). 

Car Sale  
Date 

Complaint 
Date 

Without Complaint at 
the End of the Study 

Last Date Known to be 
Without Complaint 

#1 12-Sep-00  31-Mar-02  
#2 26-Oct-00 31-Mar-02   
#3 01-Nov-00 29-Jun-01   
#4 22-Nov-00 10-Aug-01   
#5 18-Jan-01  31-Mar-02  
#6 02-Jul-01   24-Sep-01 
#7 16-Feb-01 30-Jan-02   
#8 03-May-01  31-Mar-02  

 
 
 

Table 9.3. Summary table of the time-to-complaint data in car sales (8 cars). 

Car Start Date Stop Date Censored Time-to-complaint 
(days) 

#1 12-Sep-00 31-Mar-02 TRUE 565 
#2 26-Oct-00 31-Mar-02 FALSE 521 
#3 01-Nov-00 29-Jun-01 FALSE 240 
#4 22-Nov-00 10-Aug-01 FALSE 261 
#5 18-Jan-01 31-Mar-02 TRUE 437 
#6 02-Jul-01 24-Sep-01 TRUE 84 
#7 16-Feb-01 30-Jan-02 FALSE 348 
#9 03-May-01 31-Mar-02 TRUE 332 
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Columns 2 through 5 of Table 9.4 list the successive values of nj, cj, *
jn , and dj, 

column lists the values of )(ˆ tS  obtained with formula 9.9. The 

the last two columns list the values of the probability density and hazard functions, 
computed with the finite difference approximation of f(t) = ∆F(t)/∆t and formula 
9.5, respectively.  

 
Table 9.4. Life-table of the time-to-complaint data, obtained with SPSS. 

Intrvl 
Start 
Time 

Number 
Entrng this 

Intrvl 

Number 
Wdrawn 
During 
Intrvl 

Number 
Exposed 
to Risk 

Number of 
Termnl 
Events 

Propn 
Termi-
nating 

Propn 
Sur-

viving 

Cumul 
Propn 
Surv at 

End 

Proba-
bility 

Density 

Hazard 
Rate 

0 8 0 8 0 0 1 1 0 0 
75 8 1 7.5 0 0 1 1 0 0 

150 7 0 7 0 0 1 1 0 0 
225 7 0 7 2 0.2857 0.7143 0.7143 0.0038 0.0044 
300 5 1 4.5 1 0.2222 0.7778 0.5556 0.0021 0.0033 
375 3 1 2.5 0 0 1 0.5556 0 0 
450 2 0 2 1 0.5 0.5 0.2778 0.0037 0.0089 
525 1 1 0.5 0 0 1 0.2778 0 0 
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Figure 9.1. Life-table estimate of the survivor function for the time-to-complaint 
data (first eight cases of the Car Sale dataset) obtained with SPSS. 

 

Example 9.3 

Q: Consider the amount of time until breaking of iron specimens, submitted to low 
amplitude sinusoidal loads (Group 1) in fatigue tests, a sample of which is given in 

respectively. The “Propn Surviving” column is obtained by applying formula 9.7 
with correction for censored data (formula 9.8). The “Cumul Propn Surv at End” 

“Propn 
Terminating” column is the complement of the “Propn Surviving” column. Finally, 
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the Fatigue dataset. Determine the survivor, hazard and density functions using 
the life-table estimate procedure. What is the estimated percentage of specimens 
breaking beyond 2 million cycles? In addition determine the estimated percentage 
of specimens that will break at 500000 cycles. 

A: We first convert the time data, given in number of 20 Hz cycles, to a lower 
range of values by dividing it by 10000. Next, we use this data with SPSS, 
assigning the Break variable as a censored data indicator (Break = 1 if the 
specimen has broken), and obtain the plots of the requested functions between 0 
and 400 with steps of 20, shown in Figure 9.2. 

Note the right tailed, positively skewed aspect of the density function, shown in 
Figure 9.2b, typical of survival data. From Figure 9.2a, we see that the estimated 
percentage of specimens surviving beyond 2 million cycles (marked 200 in the t 
axis) is over 45%. From Figure 9.2c, we expect a break rate of about 0.4% at 
500000 cycles (marked 50 in the t axis).  
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Figure 9.2. Survival functions for the group 1 iron specimens of the Fatigue 
dataset, obtained with SPSS: a) Survivor function; b) Density function; c) Hazard 
function. The time scale is given in 104 cycles. 

 
Commands 9.1. SPSS, STATISTICA, MATLAB and R commands used to 
perform survival analysis. 

SPSS Analyze; Survival 

STATISTICA 
Statistics; Advanced Linear/Nonlinear 
Models; Survival Analysis; Life tables & 
Distributions | Kaplan & Meier | Comparing 
two samples | Regression models 

MATLAB [par, pci] = expfit(x,alpha) 
[par, pci] = weibfit(x,alpha) 

R 
Surv(time,event); survfit(survobject) 
survdif(survobject ~ group, rho) 
coxph(survobject ~ factor) 
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SPSS uses as input data in survival analysis the survival time (e.g. last column of 
Table 9.3) and a censoring variable (Status). STATISTICA allows, as an 
alternative, the specification of the start and stop dates (e.g., second and third 
columns of Table 9.3) either in date format or as separate columns for day, month 
and year. All the features described in the present chapter are easily found in SPSS 
or STATISTICA windows. 

MATLAB stats toolbox does not have specific functions for survival 
analysis. It has, however, the expfit and weibfit functions which can be used 
for parametric survival analysis (see section 9.4) since they compute the maximum 
likelihood estimates of the parameters of the exponential and Weibull distributions, 
respectively, fitting the data vector x. The parameter estimates are returned in par. 
The confidence intervals of the parameters, at alpha significance level, are 
returned in pci. 

A suite of R functions for survival analysis, together with functions for 
operating with dates, is available in the survival package. Be sure to load it first 
with library(survival). The Surv function is used as a preliminary 
operation to create an object (a Surv object) that serves as an argument for other 
functions. The arguments of Surv are a time and event vectors. The event 
vector contains the censored information. Let us illustrate the use of Surv for the 
Example 9.2 dataset. We assume that the last two columns of Table 9.3 are stored 

follows: 
 
> x <- Surv(t[1:8],ev[1:8]==0) 
> x 
[1] 565+ 521  240  261  437+  84+ 348  332+ 
 
The event argument of Surv must specify which value corresponds to the 

to create a Kaplan-Meier estimate of the data using survfit(x) (or, if preferred, 
survfit(Surv(t[1:8],ev[1:8]==0)).  

The survdiff function provides tests for comparing groups of survival data. 
The argument rho can be 0 or 1 depending on whether one wants the log-rank or 
the Peto-Wilcoxon test, respectively. 

The cosxph function fits a Cox regression model for a specified factor. 
  

9.2.2 The Kaplan-Meier Analysis 

The Kaplan-Meier estimate, also known as product-limit estimate of the survivor 
function is another type of non-parametric estimate, which uses intervals starting at 

in t and ev, respectively for “Time-to-complaint” and “Censored”, and that the ev
values are 1 for “censored” and 0 for “not censored”. We then apply Surv as 

“not censored”; hence, the specification ev[1:8]==0. In the list above the values 
marked with “+” are the censored observations (any observation with an event 
label different from 0 is deemed “censored”). We may next proceed, for instance, 
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similar to formula 9.9, using nj instead of *
jn : 

 

∏
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Since, by construction, there are nj individuals who are alive just before tj and dj 

deaths occurring at tj, the probability that an individual dies between tj – δ and tj is 
estimated by dj / nj. Thus, the probability of individuals surviving through [tj , tj+1  
is  estimated by (nj – dj )/ nj. 

The only influence of the censored data is in the computation of the number of 
individuals, nj , who are alive just before tj . If a censored survival time occurs 
simultaneously with one or more deaths, then the censored survival time is taken to 
occur immediately after the death time. 

The Kaplan-Meier estimate of the hazard function is given by: 
 

jj

j

n
d

th
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=)(ˆ ,   for   tj ≤ t < tj+1,  9.12 

 
where τ j is the length of the jth time interval. For details, see e.g. (Collet D, 1994) 
or (Kleinbaum DG, Klein M, 2005). 

 

Example 9.4 

Q: Redo Example 9.2 using the Kaplan-Meier estimate. 

A: Table 9.5 summarises the computations needed for obtaining the Kaplan-Meier 

function plot obtained with STATISTICA. The computed data in Table 9.5 agrees 
with the results obtained with either STATISTICA or SPSS. 

In R one uses the survfit function to obtain the Kaplan-Meier estimate. 
Assuming one has created the Surv object x as explained in Commands 9.1, one 

confidence interval (see section 9.2.3), can be obtained with 
plot(survfit(x)). Applying summary to survfit(x) the confidence 
intervals for S(t) are displayed as follows: 

 
time n.risk n.event survival std.err lower 95% CI upper 95% CI

240 7 1 0.857 0.132 0.6334 1

261 6 1 0.714 0.171 0.4471 1

348 4 1 0.536 0.201 0.2570 1

521  2 1 0.268 0.214 0.0558 1

 
  

proceeds to calling survfit(x). A plot as in Figure 9.3, with Greenwood’s 

“death” times. The formula for computing the estimate of the survivor function is 

estimate of the “time-to-complaint” data. Figure 9.3 shows the respective survivor 

[



 9.2 Non-Parametric Analysis of Survival Data 361 

Table 9.5. Kaplan-Meier estimate of the survivor function for the first eight cases 
of the Car Sale dataset. 

Interval 
Start Event nj dj pj Sj 

84 Censored 8 0 1 1 
240 7 1 0.8571 0.8571 
261 6 1 0.8333 0.7143 
332 Censored 5 0 1 0.7143 
348 4 1 0.75 0.5357 
437 Censored 3 0 1 0.5357 
521 2 1 0.5 0.2679 
565 Censored 1 0 1 0.2679 
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Figure 9.3. Kaplan-Meier estimate of the survivor function for the first eight cases 

 

Example 9.5 

Q: Consider the Heart Valve dataset containing operation dates for heart valve 
implants at São João Hospital, Porto, Portugal, and dates of subsequent event 
occurrences, namely death, re-operation and endocarditis. Compute the Kaplan-
Meier estimate for the event-free survival time, that is, survival time without 
occurrence of death, re-operation or endocarditis events. What is the percentage of 
patients surviving 5 years without any event occurring? 

“Death”
“Death”

“Death” 

“Death”

of the Car Sale dataset, obtained with STATISTICA. (The “Complete” cases 
are the “deaths”.) 
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A: The Heart Valve Survival datasheet contains the computed final date 
for the study (variable DATE_STOP). This is the date of the first occurring event, 
if it did occur, or otherwise, the last date the patient was known to be alive and 
well. The survivor function estimate shown in Figure 9.4 is obtained by using 
STATISTICA with DATE_OP and DATE_STOP as initial and final dates, and 
variable EVENT as censored data indicator. From this figure, one can estimate that 
about 85% of patients survive five years (1825 days) without any event occurring. 
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Figure 9.4. Kaplan-Meier estimate of the survivor function for the event-free 
survival of patients with heart valve implant, obtained with STATISTICA. 

 

9.2.3 Statistics for Non-Parametric Analysis 

The following statistics are often needed when analysing survival data: 
 

1. Confidence intervals for S(t). 

For the Kaplan-Meier estimate, the confidence interval is computed assuming that 
the estimate )(ˆ tS is normally distributed (say for a number of intervals above 30), 
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with mean S(t) and standard error given by the Greenwood’s formula: 
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2. Median and percentiles of survival time. 

Since the density function of the survival times, f(t), is usually a positively skewed 
function, the median survival time, t0.5, is the preferred location measure. The 
median can be obtained from the survivor function, namely:  

 
F(t0.5) = 0.5   ⇒   S(t0.5) = 1 – 0.5 = 0.5.  9.14 
 
When using non-parametric estimates of the survivor function, it is usually not 

possible to determine the exact value of t0.5, given the stepwise nature of the 
estimate )(ˆ tS . Instead, the following estimate is determined: 

 

{ }5.0)(ˆ;minˆ 5.0 ≤= ii tStt .  9.15 
 
Percentiles p of the survival time are computed in the same way: 
 

{ }ptStt iip −≤= 1)(ˆ;minˆ .  9.16 
 

3. Confidence intervals for the median and percentiles. 
 

Confidence intervals for the median and percentiles are usually determined 
assuming a normal distribution of these statistics for a sufficiently large number of 
cases (say, above 30), and using the following formula for the standard error of the 
percentile estimate (for details see e.g. Collet D, 1994 or Kleinbaum DG, Klein M, 
2005): 
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where the estimate of the probability density can be obtained by a finite difference 
approximation of the derivative of )(ˆ tS . 

 

Example 9.6 

Q: Determine the 95% confidence interval for the survivor function of Example 
9.3, as well as for the median and 60% percentile. 

A: SPSS produces an output containing the value of the median and the standard 
errors of the survivor function. The standard values of the survivor function can be 
used to determine the 95% confidence interval, assuming a normal distribution. 
The survivor function with the 95% confidence interval is shown in Figure 9.5. 

The median survival time of the specimens is 100×104 = 1 million cycles. The 
60% percentile survival time can be estimated as follows: 

 
{ }6.01)(ˆ;minˆ 6.0 −≤= ii tStt . 
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From Figure 9.5 (or from the life table), we then see that 6.0̂t = 280 ×104 cycles. 
Let us now compute the standard errors of these estimates: 
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001.0
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Thus, under the normality assumption, the 95% confidence intervals for the 
median and 60% percentile of the survival times are [0, 241.3] and [41.6, 418.4], 
respectively. We observe that the non-parametric confidence intervals are too large 
to be useful. Only for a much larger number of cases are the survival functions 
shown in Figure 9.2 smooth enough to produce more reliable estimates of the 
confidence intervals.  
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Figure 9.5. Survivor function of the group 1 iron specimens, of the Fatigue 
dataset with the 95% confidence interval (plot obtained with EXCEL using SPSS 
results). The time scale is given in 104 cycles. 

 

9.3 Comparing Two Groups of Survival Data 

Let h1(t) and h2(t) denote the hazard functions of two independent groups of 
survival data, often called the exposed and unexposed groups. Comparison of the 
two groups of survival data can be performed as a hypothesis test formalised in 
terms of the hazard ratio ψ = h1(t)/ h2(t), as follows: 

 
H0: ψ = 1 (survival curves are the same); 
H1: ψ ≠ 1 (one of the groups will consistently be at a greater risk). 
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1. The Log-Rank Test. 
 

Suppose that there are r distinct death times, t1, t2, …, tr, across the two groups, and 
that at each time tj, there are d1j, d2j individuals of groups 1 and 2 respectively, that 
die. Suppose further that just before time tj, there are n1j, n2j individuals of groups 1 
and 2 respectively, at risk of dying. Thus, at time tj there are dj = d1j + d2j deaths in 
a total of nj = n1j + n2j individuals at risk, as shown in Table 9.6. 
 
 
Table 9.6. Number of deaths and survivals at time tj in a two-group comparison. 

Group Deaths at tj Survivals beyond tj 
Individuals at risk 

before tj – δ  

1 d1j n1j – d1j n1j 

2 d2j n2j – d2j n2j 

Total dj nj – dj nj 
 
 
 If the marginal totals along the rows and columns in Table 9.6 are considered 
fixed, and the null hypothesis is true (survival time is independent of group), the 
remaining four cells in Table 9.6 only depend on one of the group deaths, say d1j. 
As described in section B.1.4, the probability of the associated random variable, 
D1j, taking value in [0, min(n1j, dj)], is given by the hypergeometric law: 
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The mean of D1j is the expected number of group 1 individuals who die at time tj  

(see B.1.4): 
 
e1j = n1j (dj / nj).  9.19 
 
The Log-Rank test combines the information of all 2×2 contingency tables, 

similar to Table 9.6 that one can establish for all tj, using a test based on the χ2 test 
(see 5.1.3). The method of combining the information of all 2×2 contingency tables 
is known as the Mantel-Haenszel procedure. The test statistic is: 
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Note that the numerator, besides the 0.5 continuity correction, is the absolute 
difference between observed and expected frequencies of deaths in group 1. The 

The following two non-parametric tests are of widespread use: 
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denominator is the sum of the variances of D1j, according to the hypergeometric 
law. 

 
2. The Peto-Wilcoxon test. 
 
The Peto-Wilcoxon test uses the following test statistic: 

 

( )
2
1

1
21

2
11 1

~

1
)(

)(
χ

∑

∑

=

=

−

−

−
=

r
j

j

jjjjj

j
r
j jj

n
dndnn

edn
W  (under H0).  9.21 

 
This statistic differs from 9.20 on the factor nj that weighs the differences 

between observed and expected group 1 deaths. 
 
The Log-Rank test is more appropriate then the Peto-Wilcoxon test when the 

alternative hypothesis is that the hazard of death for an individual in one group is 
proportional to the hazard at that time for a similar individual in the other group. 
The validity of this proportional hazard assumption can be elucidated by looking 
at the survivor functions of both groups. If they clearly do not cross each other then 
the proportional hazard assumption is quite probably true, and the Log-Rank test 
should be used. In other cases, the Peto-Wilcoxon test is used instead. 

 

Example 9.7 

Q: Consider the fatigue test results for iron and aluminium specimens, subject to 
low amplitude sinusoidal load (Group 1), given in the Fatigue dataset. Compare 
the survival times of the iron and aluminium specimens using the Log-Rank and 
the Peto-Wilcoxon tests. 

A: With SPSS or STATISTICA one must fill in a datasheet with columns for the 

Meier option and select the appropriate test in the Compare Factor window. 
Note that SPSS calls the Peto-Wilcoxon test as Breslow test. 

In R the survdiff function for the log-rank test (default value for rho,     
rho = 0), is applied as follows: 

 
> survdiff(Surv(cycles,break==1) ~ group) 
Call: 
survdiff(formula = Surv(cycles, cens == 1) ~ group) 
 

         N Observed Expected (O-E)^2/E (O-E)^2/V 
group=1 39       23     24.6    0.1046     0.190 
group=2 48       32     30.4    0.0847     0.190 
 

 Chisq= 0.2  on 1 degrees of freedom, p= 0.663  
 

“time”, censored and group data. In SPSS one must run the test within the Kaplan-
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The Peto-Wilcoxon test is performed by setting rho = 1. 
SPSS, STATISTICA and R report observed significances of 0.66 and 0.89 for 

the Log-Rank and Peto-Wilcoxon tests, respectively. 
Looking at the survivor functions shown in Figure 9.6, drawn with values 

computed with STATISTICA, we observe that they practically do not cross. 
Therefore, the proportional hazard assumption is probably true and the Log-Rank 
is more appropriate than the Peto-Wilcoxon test. With p = 0.66, the null hypothesis 
of equal hazard functions is not rejected.  
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Figure 9.6. Life-table estimates of the survivor functions for the iron and 
aluminium specimens (Group 1). (Plot obtained with EXCEL using SPSS results.) 

9.4 Models for Survival Data 

9.4.1 The Exponential Model 

The simplest distribution model for survival data is the exponential distribution 
(see B.2.3). It is an appropriate distribution when the hazard function is constant, 
h(t) = λ, i.e., the age of the object has no effect on its probability of surviving (lack 
of memory property). Using 9.2 one can write the hazard function 9.5 as: 
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Equivalently: 
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Thus, when h(t) = λ, we obtain the exponential distribution: 
 

tt etfetS λλ λ −− =⇒= )()( .   9.24 
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The exponential model can be fitted to the data using a maximum likelihood 
procedure (see Appendix C). Concretely, let the data consist of n survival times, t1, 
t2, …, tn, of which r are death times and n – r are censored times. Then, the 
likelihood function is: 
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Equivalently: 
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from where the following log-likelihood formula is derived: 
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The maximum log-likelihood is obtained by setting to zero the derivative of 

9.27, yielding the following estimate of the parameter λ: 
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The standard error of this estimate is ./ˆ rλ  The following statistics are easily 
derived from 9.24: 

 

λ̂/2lnˆ 5.0 =t .  9.29a 

λ̂/))1/(1ln(ˆ pt p −= . 9.29b 
 
The standard error of these estimates is rt p /ˆ . 
 

Example 9.8 

Q: Consider the survival data of Example 9.5 (Heart Valve dataset). Determine 
the exponential estimate of the survivor function and assess the validity of the 
model. What are the 95% confidence intervals of the parameter λ and of the 
median time until an event occurs? 

A: Using STATISTICA, we obtain the survival and hazard functions estimates 
shown in Figure 9.7. STATISTICA uses a weighted least square estimate of the 
model function instead of the log-likelihood procedure. The exponential model fit 
shown in Figure 9.7 is obtained using weights nihi, where ni is the number of 
observations at risk in interval i of width hi. Note that the life-table estimate of the 
hazard function is suggestive of a constant behaviour. The chi-square goodness of 
fit test yields an observed significance of 0.59; thus, there is no evidence leading to 
the rejection of the null, goodness of fit, hypothesis. 
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STATISTICA computes the estimated parameter as λ̂ = 9.8×10-5 (day−1), with 
standard error s = 1×10−5. Therefore, the 95% confidence interval, under the 
normality assumption, is [7.84 ×10−5, 11.76 ×10−5]. 

Applying formula 9.29, the median is estimated as ln2/ λ̂ = 3071 days = 8.4 
years. Since there are r = 106 events, the standard error of this estimate is 0.8 
years. Therefore, the 95% confidence interval of the median event-free time, under 
the normality assumption, is [6.8, 10] years.  
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Figure 9.7. Survivor function (a) and hazard function (b) for the Heart Valve 
dataset with the fitted exponential estimates shown with dotted lines. Plots 
obtained with STATISTICA 

 

9.4.2 The Weibull Model 

The Weibull distribution offers a more general model for describing survival data 
than the exponential model does. Instead of a constant hazard function, it uses the 
following parametric form, with positive parameters λ and γ, of the hazard 
function: 

 

 1)( −= γλγ tth .  9.30 
 
The exponential model corresponds to the particular case γ = 1. For γ > 1, the 

hazard increases monotonically with time, whereas for γ < 1, the hazard function 
decreases monotonically. Taking into account 9.23, one obtains: 

 
γλ tetS −=)( .   9.31 

 
The probability density function of the survival time is given by the derivative 

of F(t) = 1 – S(t). Thus: 
 

γλγλγ tettf −−= 1)( .   9.32 
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This is the Weibull density function with shape parameter γ and scale parameter 
γ λ/1 (see B.2.4): 

 
)()(

/1,
twtf γ λγ

= .  9.33 

 
Figure B.11 illustrates the influence of the shape and scale parameters of the 

Weibull distribution. Note that in all cases the distribution is positively skewed, 
i.e., the probability of survival in a given time interval always decreases with 
increasing time. 

The parameters of the distribution can be estimated from the data using a log-
likelihood approach, as described in the previous section, resulting in a system of 
two equations, which can only be solved by an iterative numerical procedure. An 
alternative method to fitting the distribution uses a weighted least squares 
approach, similar to the method described in section 7.1.2. From the estimates 
λ̂ and γ̂ , the following statistics are then derived: 

 

( ) γ
λ

ˆ/1
5.0

ˆ/2lnˆ =t .  9.34 

( ) γ
λ

ˆ/1ˆ/))1/(1ln(ˆ pt p −= .  
 
The standard error of these estimates has a complex expression (see e.g. Collet D, 

1994 or Kleinbaum DG, Klein M, 2005). 
In the assessment of the suitability of a particular distribution for modelling the 

data, one can resort to the comparison of the survivor function obtained from the 
data, using the Kaplan-Meier estimate, )(ˆ tS , with the survivor function prescribed 
by the model, S(t). From 9.31 we have: 

 
ln(−lnS(t)) = ln λ + γ ln t.  9.35 
 
If S(t) is close to )(ˆ tS , the log-cumulative hazard plot of ln(−ln )(ˆ tS ) against ln t 

will be almost a straight line. 
An alternative way to assessing the suitability of the model uses the χ2 goodness 

of fit test described in section 5.1.3. 
 

Example 9.9 

Q: Consider the amount of time until breaking of aluminium specimens submitted 
to high amplitude sinusoidal loads in fatigue tests, a sample of which is given in 
the Fatigue dataset. Determine the Weibull estimate of the survivor function and 
assess the validity of the model. What is the point estimate of the median time until 
breaking? 

A: Figure 9.8 shows the Weibull estimate of the survivor function, determined with 
STATISTICA (Life tables & Distributions, Number of 
intervals = 12), using a weighted least square approach similar to the one 
mentioned in Example 9.8 (Weight 3). Note that the t values are divided, as in 
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Example 9.3, by 104. The observed probability of the chi-square goodness of fit 
test is very high: p = 0.96. The model parameters computed by STATISTICA are: 

 

λ̂ l = 0.187; γ̂ = 0.703. 
 
Figure 9.7 also shows the log-cumulative hazard plot obtained with EXCEL and 

computed from the values of the Kaplan-Meier estimate. From the straight-line fit 
of this plot, one can compute another estimate of the parameter γ̂  = 0.639. 
Inspection of this plot and the previous chi-square test result are indicative of a 
good fit to the Weibull distribution. The point estimate of the median time until 
breaking is computed with formula 9.34: 

 

( )
42.1ˆ/1

5.0 1867.0
301.0ˆ/2lnˆ 






==

γ
λt = 1.97. 

 
Thus, taking into account the 104 scale factor used for the t axis, a median 

number of 1970020 cycles is estimated for the time until breaking of the 
aluminium specimens.  
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Figure 9.8. Fitting the Weibull model to the time until breaking of aluminium 
specimens submitted to high amplitude sinusoidal loads in fatigue tests: a) Life-
table estimate of the survivor function with Weibull estimate (solid line); b) Log-
cumulative hazard plot (solid line) with fitted regression line (dotted line). 

9.4.3 The Cox Regression Model 

When analysing survival data, one is often interested in elucidating the influence of 
explanatory variables in the survivor and hazard functions. For instance, when 
analysing the Heart Valve dataset, one is probably interested in knowing the 

Let h1(t) and h2(t) be the hazards of death at time t, for two groups: 1 and 2. The 
Cox regression model allows elucidating the influence of the group variable using 

influence of a patient’s age on chances of surviving.  
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the proportional hazards assumption, i.e., the assumption that the hazards can be 
expressed as: 

 
h1(t) = ψ h2(t),  9.36 
 

where the positive constant ψ is known as the hazard ratio, mentioned in 9.3. 
Let X be an indicator variable such that its value for the ith individual, xi, is 1 or 

0, according to the group membership of the individual. In order to impose a 
positive value to ψ, we rewrite formula 9.36 as: 

 

)()( 0 theth ix
i

β= .  9.37 
 
Thus h2(t) = h0(t) and ψ = eβ. This model can be generalised for p explanatory 

variables: 
 

)()( 0 theth i
i

η= ,  with  pipiii xxx βββη +++= K2211 ,  9.38 
 

where ηi is known as the risk score and h0(t) is the baseline hazard function, i.e., 
the hazard that one would obtain if all independent explanatory variables were 
zero. 

The Cox regression model is the most general of the regression models for 
survival data since it does not assume any particular underlying survival 
distribution. The model is fitted to the data by first estimating the risk score using a 
log-likelihood approach and finally computing the baseline hazard by an iterative 
procedure. As a result of the model fitting process, one can obtain parameter 
estimates and plots for specific values of the explanatory variables. 

 

Example 9.10 

Q: Determine the Cox regression solution for the Heart Valve dataset (event-
free survival time), using Age as the explanatory variable. Compare the survivor 
functions and determine the estimated percentages of an event-free 10-year post-
operative period for the mean age and for 20 and 60 years-old patients as well. 

A: STATISTICA determines the parameter βAge = 0.0214 for the Cox regression 

an observed p = 0.004. Therefore, variable Age is highly significant in the 
estimation of survival times, i.e., is an explanatory variable.  

Figure 9.9a shows the baseline survivor function. Figures 9.9b, c and d, show 
the survivor function plots for 20, 47.17 (mean age) and 60 years, respectively. As 
expected, the probability of a given post-operative event-free period decreases with 
age (survivor curves lower with age). From these plots, we see that the estimated 
percentages of patients with post-operative event-free 10-year periods are 80%, 
65% and 59% for 20, 47.17 (mean age) and 60 year-old patients, respectively. 

  
 

model. The chi-square test under the null hypothesis of “no Age influence” yields 
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Figure 9.9. Baseline survivor function (a) and survivor functions for different 
patient ages (b, c and d) submitted to heart valve implant (Heart Valve 
dataset), obtained by Cox regression in STATISTICA. The survival times are in 
days. The Age = 47.17 (years) corresponds to the sample mean age. 

Exercises 

9.1 Determine the probability of having no complaint in the first year for the Car Sale 
dataset using the life table and Kaplan-Meier estimates of the survivor function. 

 
9.2 Redo Example 9.3 for the iron specimens submitted to high loads using the Kaplan-

Meier estimate of the survivor function. 
 
9.3 Redo the previous Exercise 9.2 for the aluminium specimens submitted to low and high 

loads. Compare the results. 
 
9.4 Consider the Heart Valve dataset. Compute the Kaplan-Meier estimate for the 

following events: death after 1st operation, death after 1st or 2nd operations, re-operation 
and endocarditis occurrence. Compute the following statistics: 

 a) Percentage of patients surviving 5 years. 
 b) Percentage of patients without endocarditis in the first 5 years. 
 c) Median survival time with 95% confidence interval. 
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9.5 Compute the median time until breaking for all specimen types of the Fatigue 
dataset. 

  
9.6 Redo Example 9.7 for the high amplitude load groups of the Fatigue dataset. 

Compare the survival times of the iron and aluminium specimens using the Log-Rank 
or Peto-Wilcoxon tests. Discuss which of these tests is more appropriate. 

 
9.7 Consider the following two groups of patients submitted to heart valve implant (Heart 

Valve dataset), according to the pre-surgery heart functional class: 
 i. Patients with mild or no symptoms before the operation (PRE C < 3). 
 ii. Patients with severe symptoms before the operation (PRE C ≥ 3). 
 Compare the survival time until death of these two groups using the most appropriate 

of the Log-Rank or Peto-Wilcoxon tests. 
 
9.8 Determine the exponential and Weibull estimates of the survivor function for the Car 

Sale dataset. Verify that a Weibull model is more appropriate than the exponential 
model and compute the median time until complaint for that model. 

 
9.9   Redo Example 9.9 for all group specimens of the Fatigue dataset. Determine which 

groups are better modelled by the Weibull distribution.  
 
9.10 Consider the Weather dataset (Data 1) containing daily measurements of wind 

speed in m/s at 12H00. Assuming that a wind stroke at 12H00 was used to light an 
electric lamp by means of an electric dynamo, the time that the lamp would glow is 
proportional to the wind speed. The wind speed data can thus be interpreted as survival 
data. Fit a Weibull model to this data using n = 10, 20 and 30 time intervals. Compare 
the corresponding parameter estimates. 

 
9.11 Compare the survivor functions for the wind speed data of the previous Exercise 9.11 

for the groups corresponding to the two seasons: winter and summer. Use the most 
appropriate of the Log-Rank or Peto-Wilcoxon tests. 

 
9.1 Using the Heart Valve dataset, determine the Cox regression solution for the 

survival time until death of patients undergoing heart valve implant with Age as the 
explanatory variable. Determine the estimated percentage of a 10-year survival time 
after operation for 30 years-old patients. 

 
9.1 Using the Cox regression model for the time until breaking of the aluminium 

specimens of the Fatigue dataset, verify the following results: 
a) The load amplitude (AMP variable) is an explanatory variable, with chi-square     

p = 0. 
b) The probability of surviving 2 million cycles for amplitude loads of 80 and 100 

MPa is 0.6 and 0.17, respectively (point estimates). 
 
9.14 Using the Cox regression model, show that the load amplitude (AMP variable) cannot 

be accepted as an explanatory variable for the time until breaking of the iron specimens 
of the Fatigue dataset. Verify that the survivor functions are approximately the same 
for different values of AMP. 

2 

3 



10 Directional Data 

The analysis and interpretation of directional data requires specific data 
representations, descriptions and distributions. Directional data occurs in many 
areas, namely the Earth Sciences, Meteorology and Medicine. Note that directional 

usual statistics, such as the arithmetic mean and the standard deviation, do not have 
this rotational invariance, one must use other statistics. For example, the mean 
direction between 10º and 350º is not given by the arithmetic mean 180º. 

In this chapter, we describe the fundamentals of statistical analysis and the 
interpretation of directional data, for both the circle and the sphere. SPSS, 
STATISTICA, MATLAB and R do not provide specific tools for dealing with 
directional data; therefore, the needed software tools have to be built up from 
scratch. MATLAB and R offer an adequate environment for this purpose. In the 

MATLAB and R and included in the CD Tools −, and explain how to apply them 
to practical problems. 

10.1 Representing Directional Data 

Directional data is analysed by means of unit length vectors, i.e., by representing 
the angular observations as points on the unit radius circle or sphere. 

For circular data, the angle, φ, is usually specified in [−180º, 180º] or in          
[0º, 360º]. Spherical data is represented in polar form by specifying the azimuth (or 
declination) and the latitude (or inclination). The azimuth, φ, is given in [−180º, 
180º]. The latitude (also called elevation angle), θ, is specified in [−90º, 90º]. 
Instead of an azimuth and latitude,  a longitude angle in [0º, 360º] and a co-latitude 
angle in [0º, 180º] are often used.  

When dealing with directional data, one often needs, e.g. for representational 
purposes, to obtain the Cartesian co-ordinates of vectors with specified length and 
angular directions or, vice-versa, to convert Cartesian co-ordinates to angular, 
polar or spherical form. The conversion formulas for azimuths and latitudes are 
given in Table 10.1 with the angles expressed in radians through multiplication of 
the values in degrees by π /180. 

The MATLAB and R functions for performing these conversions, with the 
angles expressed in radians, are given in Commands 10.1. 

 
 

data is an “interval type” data: the position of the “zero degrees” is arbitrary. Since 

following sections, we present a set of “directional data”-functions − developed in 
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Example 10.1 

in degrees for several joint surfaces of a granite structure. What are the Cartesian 
co-ordinates of the unit length vector representing the first measurement? 

A: Since the pitch is a descent angle, we use the following MATLAB instructions 
(see Commands 10.1 for R instructions), where joints is the original data matrix 
(azimuth in the first column, pitch in the second column): 

 
» j = joints*pi/180;   % convert to radians 
» [x,y,z]=sph2cart(j(1,1),-j(1,2),1) 
x = 
    0.1162 
y = 
   -0.1290 
z = 
   -0.9848  

 

Table 10.1. Conversion formulas from Cartesian to polar or spherical co-ordinates 
(azimuths and latitudes) and vice-versa. 

 Polar to Cartesian Cartesian to Polar 

Circle (φ, ρ) → (x, y) (x, y)  →  (φ, ρ) 

 x =ρ cosφ ;   y =ρ sin φ φ = atan2(y,x)  a ;  ρ = (x2 +  y2)½ 

   

Sphere (φ, θ, ρ) → (x, y, z) (x, y, z)  →  (φ, θ, ρ) 

 x = ρ cosθ cosφ ;  y = ρ cosθ sinφ ;   
z =ρ sinθ 

  θ = arctan(z / (x2 +  y2) ½) ; 
φ = atan2(y,x) ; ρ = (x2 +  y2 +  z2) ½ 

a atan2(y,x) denotes the arc tangent of y/x with correction of the angle for x < 0 (see 
formula 10.4). 
 
 

Commands 10.1. MATLAB and R functions converting from Cartesian to polar or 
spherical co-ordinates and vice-versa. 

MATLAB 
[x,y]=pol2cart(phi,rho) 
[phi,rho]=cart2pol(x,y) 
[x,y,z]=sph2cart(phi,theta,rho) 
[phi,theta,rho]=cart2sph(x,y,z) 

R 
pol2cart(phi,rho) 
cart2pol(x,y) 
sph2cart(phi,theta,rho) 
cart2sph(x,y,z) 

 

Q: Consider the Joints’ dataset, containing measurements of azimuth and pitch 
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The R functions work in the same way as their MATLAB counterparts. They all 
return a matrix whose columns have the same information as the returned 
MATLAB vectors. For instance, the conversion to spherical co-ordinates in 
Example 10.1 can be obtained with: 

 
> m <- sph2cart(phi*pi/180,-pitch*pi/180,1) 
  

where phi and pitch are the columns of the attached joints data frame. The 
columns of matrix m are the vectors x, y and z.   

 
 
In the following sections we assume, unless stated otherwise, that circular data 

is specified in [0º, 360º] and spherical data is specified by the pair (longitude, co-
latitude). We will call these specifications the standard format for directional data. 
The MATLAB and R-implemented functions convazi and convlat (see 
Commands 10.3) perform the azimuth and latitude conversions to standard format.  

Also in all MATLAB and R functions described in the following sections, the 
directional data is represented by a matrix (often denoted as a), whose first column 
contains the circular or longitude data, and the second column, when it exists, the 
co-latitudes and both in degrees. 

Circular data is usually plotted in circular plots with a marker for each direction 
plotted over the corresponding point in the unit circle. Spherical data is 
conveniently represented in spherical plots, showing a projection of the unit sphere 
with markers over the points corresponding to the directions.  

For circular data, a popular histogram plot is the rose diagram, which shows 
circular slices whose height is proportional to the frequency of occurrence in a 
specified angular bin. 

Commands 10.2 lists the MATLAB and R functions used for obtaining these 
plots. 
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Figure 10.1. Circular plot (obtained in MATLAB) of the wind direction WDB 
sample included in the Weather dataset. 
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Example 10.2 

Q: Plot the March, 1999 wind direction WDB sample, included in the Weather 
dataset (datasheet Data 3). 

A: Figure 10.1 shows the circular plot of this data obtained with polar2d. Visual 
inspection of the plot suggests a multimodal distribution with dispersed data and a 
mean direction somewhere near 135º. 

  

Example 10.3 

city street in Porto, Portugal. Assume that the data is stored in the joints matrix 
whose first column is the azimuth and the second column is the pitch (descent 
angle)1. 

A: Figure 10.2 shows the spherical plot obtained in MATLAB with: 
 
» j=convlat([joints(:,1),-joints(:,2)]); 
» polar3d(j); 
  
Figure 10.2 suggests a unimodal distribution with the directions strongly 

concentrated around a modal co-latitude near 180º. We then expect the anti-mode 
(distribution minimum) to be situated near 0º. 

  

Y

Z

X

 
Figure 10.2. Spherical plot of the  dataset. Solid circles are visible 
points; open circles are occluded points. 

 
 

                                                           
1

between the symmetrical directions (φ, θ) and (φ +π,-θ). We will treat it, however, as spherical data. 

Q: Plot the Joints’ dataset consisting of azimuth and pitch of granite joints of a 

Joints’

  Note that strictly speaking the joints’ data is an example of axial data, since there is no difference 
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Example 10.4 

Q: Represent the rose diagram of the angular measurements H of the VCG dataset. 

A: Let vcg denote the data matrix whose first column contains the H 
measurements. Figure 10.3 shows the rose diagram using the MATLAB rose 
command: 

 
» rose(vcg(:,1) *pi/180,12) % twelve bins 
 
Using [t,r]=rose(vcg(:,1)*pi/180,12), one can confirm that 

70/120 = 58% of the measurements are in the [−60º, 60º] interval. The same results 
are obtained with R rose function. 
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Figure 10.3. Rose diagram (obtained with MATLAB) of the angular H 
measurements of the VCG dataset. 

 
 

Commands 10.2. MATLAB and R functions for representing and graphically 
assessing directional data. 

MATLAB 
[phi, r] = rose(a,n) 
polar2d(a, mark) ; polar3d(a) 
unifplot(a)  
h=colatplot(a,kl) ; h=longplot(a) 

R rose(a) 
polar2d(a) 
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The MATLAB function rose(a,n) plots the rose diagram of the circular data 
vector a (radians) with n bins; [phi, r]=rose(a,n)returns the vectors phi 
and r such that polar(phi, r) is the histogram (no plot is drawn in this case). 

The polar2d and polar3d functions are used to obtain circular and spherical 
plots, respectively. The argument a is, as previously mentioned, either a column 
vector for circular data or a matrix whose first column contains the longitudes, and 
the second column the co-latitudes (in degrees). 

The unifplot command draws a uniform probability plot of the circular data 
vector a (see section 10.4). The colatplot and longplot commands are used 
to assess the von Misesness of a spherical distribution (see section 10.4). The 
returned value h is 1 if the von Mises hypothesis is rejected at 1% significance 
level, and 0 otherwise. The parameter kl of colatplot must be 1 for assessing 
von Misesness with large concentration distributions and 0 for assessing uniformity 
with low concentration. 

The R functions behave much in the same way as their equivalent MATLAB 
functions. The only differences are: the rose function always uses 12 histogram 
bins; the polar2d function always uses open circles as marks.  

10.2 Descriptive Statistics 

Let us start by considering circular data, with data points represented by a unit 
length vector: 
 

x = [cosθ    sinθ ] .   10.1 
 
The mean direction of n observations can be obtained in Cartesian co-ordinates, 

in the usual way: 
 

nc n
i i /cos1∑ == θ ;   ns n

i i /sin1∑ == θ .  10.2 
 
The vector r = [ c  s ]  is the mean resultant vector of the n observations, with 

mean resultant length: 
 

22 scr += ∈ [0, 1], 10.3 
 

and mean direction (for r ≠ 0): 
 





<+
≥

=
.0if),sgn()/arctan(
;0if),/arctan(

cscs
ccs

π
θ   10.4 

 
Note that the arctangent function (MATLAB and R atan function) takes 

value in [−π/2, π/2], whereasθ takes value in [−π , π], the same as using the 
MATLAB and R function atan2(y,x) with y representing the vertical 

’

’
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component s  and x the horizontal component c . Also note that r and θ are 
invariant under rotation. 

The mean resultant vector can also be obtained by computing the resultant of 
the n unit length vectors. The resultant, r = [ cn  sn ] , has the same angle,θ , and a 
vector length of  r = n r ∈ [0, n]. The unit length vector representing the mean 
direction, called the mean direction vector, is 0x = [cosθ   sinθ ] . 

The mean resultant length r , point estimate of the population mean length ρ, 
can be used as a measure of distribution concentration. If the vector directions are 
uniformly distributed around the unit circle, then there is no preferred direction and 
the mean resultant length is zero. On the other extreme, if all the vectors are 
concentrated in the same direction, the mean resultant length is maximum and 
equal to 1. Based on these observations, the following sample circular variance is 
defined: 

 
v = 2(1 – r ) ∈ [0, 2].  10.5 
 
The sample circular standard deviation is defined as: 
 

rs ln2−= ,  10.6 
 

reducing to approximately v for small v. The justification for this definition lies in 
the analysis of the distribution of the wrapped random variable Xw: 

 

∑
∞

−∞=
+==⇒

k
ww kxnxwXXxnX )2()(~)2(mod)(~ ,,, ππ σµρµσµ .  10.7 

 

The wrapped normal density, wµ,ρ, has ρ given by: 
 

ρσσρ ln2)2/exp( 2 −=⇒−= .  10.8 
 
For spherical directions, we consider the data points represented by a unit length 

vector, with the x, y, z co-ordinates computed as in Table 10.1. 
The mean resultant vector co-ordinates are then computed in a similar way as in 

formula 10.2. The definitions of spherical mean direction, ),( φθ , and spherical 
variance are the direct generalisation to the sphere of the definitions for the circle, 
using the three-dimensional resultant vector. In particular, the mean direction 
vector is: 

 

0x  = [sinθ cosφ    sinθ sinφ     cosθ ] .  10.9 
 

Example 10.5 

longitude, co-latitude and length of the resultant, as well as the mean resultant 
length and the standard deviation. 

Q: Consider the data matrix j of Example 10.3 (Joints’ dataset). Compute the 

’

’

’
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A: We use the function resultant (see Commands 10.3) in MATLAB, as 
follows: 

 
» [x,y,z,f,t,r] = resultant(j) 
... 
f = 
   65.4200 % longitude 
t = 
  178.7780 % co-latitude 
r = 
   73.1305 % resultant length 
» rbar=r/size(j,1) 
rbar = 
    0.9376 % mean resultant length 
» s=sqrt(-2*log(rbar)) 
s = 
    0.3591 % standard deviation in radians 
 
Note that the mean co-latitude (178.8º) does indeed confirm the visual 

observations of Example 10.3. The data is highly concentrated ( r =0.94, near 1). 
The standard deviation corresponds to an angle of 20.6º. 
  
 

Commands 10.3.  MATLAB and R functions for computing descriptive statistics 
and performing simple operations with directional data. 

MATLAB 

as=convazi(a) ; as=convlat(a) 
[x,y,z,f,t,r] = resultant(a) 
m = meandir(a,alphal) 
[m,rw,rhow]=pooledmean(a) 
v=rotate(a); t=scattermx(a); d=dirdif(a,b) 

R convazi(a) ; convlat(a) 
resultant(a) ; dirdif(a,b) 

 
 

Functions convazi and convlat convert azimuth into longitude and latitude 
into co-latitude, respectively. 

Function resultant determines the resultant of unit vectors whose angles are 
the elements of a (in degrees). The Cartesian co-ordinates of the resultant are 
returned in x, y and z. The polar co-ordinates are returned in f (φ ), t (θ ) and r. 

Function meandir determines the mean direction of the observations a. The 
angles are returned in m(1) and m(2). The mean direction length r is returned in 
m(3). The standard deviation in degrees is returned in m(4). The deviation angle 
corresponding to a confidence level indicated by alphal, assuming a von Mises 
distribution (see section 10.3), is returned in m(5). The allowed values of 
alphal (alpha level) are 1, 2 3 and 4 for α = 0.001, 0.01, 0.05 and 0.1, 
respectively. 
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Function pooledmean computes the pooled mean (see section 10.6.2) of 
independent samples of circular or spherical observations, a. The last column of a 
contains the group codes, starting with 1. The mean resultant length and the 
weighted resultant length are returned through rw and rhow, respectively. 

Function rotate returns the spherical data matrix v (standard format), 
obtained by rotating a so that the mean direction maps onto the North Pole. 

Function scattermx returns the scatter matrix t of the spherical data a (see 
section 10.4.4).  

Function dirdif returns the directional data of the differences of the unit 
vectors corresponding to a and b (standard format). 

The R functions behave in the same way as their equivalent MATLAB 
functions. For instance, Example 10.5 is solved in R with: 

 
j <- convlat(cbind(j[,1],-j[,2])) 
> o <- resultant(j) 
> o 
[1]   0.6487324   1.4182647 -73.1138435  65.4200379 
[5] 178.7780083  73.1304754 
  

10.3 The von Mises Distributions 

The importance of the von Mises distributions (see B.2.10) for directional data is 
similar to the importance of the normal distribution for linear data. As mentioned 
in B.2.10, several physical phenomena originate von Mises distributions. These 
enjoy important properties, namely their proximity with the normal distribution as 
mentioned in properties 3, 4 and 5 of B.2.10. The convolution of von Mises 
distributions does not produce a von Mises distribution; however, it can be well 
approximated by a von Mises distribution. 

The generalised (p – 1)-dimensional von Mises density function, for a vector of 
observations x, can be written as: 

 
xµ

µ x κ
κ κ eCm pp )()(,, = ,  10.10 

 
where µ is the mean vector, κ is the concentration parameter, and Cp(κ) is a 
normalising factor with the following values: 

 
))(2/(1)( 02 κπκ IC =

2, for the circle (p = 2); 
))sinh(4/()(3 κπκκ =C , for the sphere (p = 3). 

 

                                                           
2
 Ip denotes the modified Bessel function of the first kind and order p (see B.2.10). 

’
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For p = 2, one obtains the circular distribution first studied by R. von Mises; for 
p = 3, one obtains the spherical distribution studied by R. Fisher (also called von 
Mises-Fisher or Langevin distribution). 

Note that for low concentration values, the von Mises distributions approximate 
the uniform distribution as illustrated in Figure 10.4 for the circle and in Figure 
10.5 for the sphere. The sample data used in these figures was generated with the 
vmises2rnd and vmises3rnd functions, respectively (see Commands 10.4). 
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Figure 10.4. Rose diagrams of 50-point samples of circular von Mises distribution 
around µ = 0, and κ = 0.1, 2, 10, from left to right, respectively. 
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Figure 10.5. Spherical plots of 150-point-samples with von Mises-Fisher 
distribution around [0  0  1] , and κ = 0.001, 2, 10, from left to right, respectively. 

 
 
Given a von Mises distribution Mµ,κ,p, the maximum likelihood estimation of µ 

is precisely the mean direction vector. On the other hand, the sample resultant 
mean length r is the maximum likelihood estimation of the population mean 
resultant length, a function of the concentration parameter, ρ = Ap(κ), given by: 

 
)(/)()( 012 κκρ IIkA == , for the circle; 

κκρ /1coth)(3 −== kA , for the sphere. 

’
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Thus, the maximum likelihood estimation of the concentration parameter κ is 
obtained by the inverse function of Ap: 

 

)(ˆ 1 rAp
−=κ .  10.11 

 
Values of )(ˆ 1 rAp

−=κ  for p = 2, 3 are given in tables in the literature (see e.g. 
Mardia KV, Jupp PE, 2000). The function ainv, built in MATLAB, implements 
10.11 (see Commands 10.4). The estimate of κ can also be derived from the 
sample variance, when it is low (large r ): 

 
vp /)1(ˆ −≅κ .  10.12 

 
As a matter of fact, it can be shown that the inflection points of mµ,κ,2 are given 

by: 
 

σ
κ

≅
1 ,  for large κ.  10.13 

 
Therefore, we see that 1/ κ influences the von Mises distribution in the same 

way as σ influences the linear normal distribution. 
Once the ML estimate of κ has been determined, the circular or spherical region 

around the mean, corresponding to a (1–α) probability of finding a random 
direction, can also be computed using tables of the von Mises distribution function. 
The MATLAB-implemented function vmisesinv gives the respective deviation 
angle, δ , for several values of α. Function vmises2cdf gives the left tail area of 
the distribution function of a circular von Mises distribution. These functions use 
exact-value tables and are listed and explained in Commands 10.4. 

Approximation formulas for estimating the concentration parameter, the 
deviation angles of von Mises distributions and the circular von Mises distribution 
function can also be found in the literature. 

 

Example 10.6 

Q: Assuming that the  dataset (Example 10.3) is well approximated by the 
von Mises-Fisher distribution, determine the concentration parameter and the 
region containing 95% of the directions. 

A: We use the following sequence of commands: 
 
» k=ainv(rbar,3)  %using rbar from Example 10.5 
k = 
   16.0885 
» delta=vmisesinv(k,3,3) %alphal=3 --> alpha=0.05 
delta = 
   35.7115 
 

Joints’
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Thus, the region containing 95% of the directions is a spherical cap with         
δ = 35.7º aperture from the mean (see Figure 10.6).  

Note that using formula 10.12, one obtains an estimate of κ̂ = 16.0181. For the 
linear normal distribution, this corresponds to σ̂ = 0.2499, using formula 10.13. 
For the equal variance bivariate normal distribution, the 95% percentile 
corresponds to 2.448σ ≈ 2.448 σ̂ = 0.1617 radians = 35.044 º .  The approximation 
to the previous value of δ is quite good. 

  
 
We will now consider the estimation of a confidence interval for the mean 

direction 0x , using a sample of n observations, x1, x2, …, xn, from a von Mises 
distribution. The joint distribution of x1, x2, …, xn is: 

 

( ) )exp()(),,,( 021 xµxxx rnCf n
pn κκ=K .  10.14 

 
From 10.10, it follows that the confidence interval of 0x , at α level, is obtained 

from the von Mises distribution with the concentration parameter nκ r . Function 
meandir (see Commands 10.3) uses precisely this result. 

 
 

δ

 
Figure 10.6. Spherical plot of the  dataset with the spherical cap around 
the mean direction (shaded area) enclosing 95% of the observations (δ  = 35.7º). 

 

Example 10.7 

Q: Compute the deviation angle of the mean direction of the  dataset for a 
95% confidence interval. 

A: Using the meandir command we obtain δ = 4.1º, reflecting the high 
concentration of the data. 

  

Joints’

Joints’

’
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Example 10.8 

Q: A circular distribution of angles follows the von Mises law with concentration 
κ =2. What is the probability of obtaining angles deviating more than 20º from the 
mean direction? 

A: Using 2*vmises2cdf(-20,2) we obtain a probability of 0.6539. 
  

 
 

Commands 10.4.  MATLAB functions for operating with von Mises distributions. 

MATLAB 
k=ainv(rbar,p) 
delta=vmisesinv(k, p, alphal) 
a=vmises2rnd(n,mu,k) ; a=vmises3rnd(n,k) 
f=vmises2cdf(a,k) 

  
 

Function ainv returns the concentration parameter, k, of a von Mises distribution 
of order p (2 or 3) and mean resultant length rbar. Function vmisesinv returns 
the deviation angle delta of a von Mises distribution corresponding to the α level 
indicated by alphal. The valid values of alphal are 1, 2, 3 and 4 for α = 0.001, 
0.01, 0.05 and 0.1, respectively. 

Functions vmises2rnd and vmises3rnd generate n random points with 
von Mises distributions with concentration k, for the circle and the sphere, 
respectively. For the circle, the distribution is around mu; for the sphere around     
[0  0  1] . These functions implement algorithms described in (Mardia JP, Jupp PE, 
2000) and (Wood, 1994), respectively. 

Function vmises2cdf(a,k) returns a vector, f, containing the left tail 
areas of a circular von Mises distribution, with concentration k, for the vector a 
angles in [−180º, 180º], using the algorithm described in (Hill GW, 1977). 

  

10.4 Assessing the Distribution of Directional Data 

10.4.1 Graphical Assessment of Uniformity 

An important step in the analysis of directional data is determining whether or not 
the hypothesis of uniform distribution of the data is significantly supported. As a 
matter of fact, if the data can be assumed uniformly distributed in the circle or in 
the sphere, there is no mean direction and the directional concentration is zero. 

It is usually convenient to start the assessment of uniformity by graphic 
inspection. For circular data, one can use a uniform probability plot, where the 
sorted observations θi/(2π) are plotted against i/(n+1), i = 1, 2, …, n. If the θi come 

’
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from a uniform distribution, then the points should lie near a unit slope straight line 
passing through the origin. 

 

Example 10.9 

Q: Use the uniform probability plot to assess the uniformity of the wind direction 
WDB sample of Example 10.2. 

A: Figure 10.7 shows the uniform probability plot of the data using command 
unifplot (see Commands 10.2). Visual inspection suggests a sensible departure 
from uniformity. 
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Figure 10.7. Uniform probability plot of the wind direction WDB data. 

 
 
Let us now turn to the spherical data. In a uniform distribution situation the 

longitudes are also uniformly distributed in [0, 2π , and their uniformity can be 
graphically assessed with the uniform probability plot. In what concerns the co-
latitudes, their distribution is not uniform. As a matter of fact, one can see the 
uniform distribution as the limit case of the von Mises-Fisher distribution. By 
property 6 of B.2.10, the co-latitude is independently distributed from the longitude 
and its density fκ(θ) will tend to the following density for κ → 0: 

 

)cos1(
2
1)(sin

2
1)()(

0
θθθθθ

κ
κ −=⇒=→

→
Fff .  10.15 

 
One can graphically assess this distribution by means of a co-latitude plot where 

the sorted observations θi are plotted against arccos(1−2(i/n)), i = 1, 2, …, n. In 
case of uniformity, one should obtain a unit slope straight line passing through the 
origin. 

[
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Example 10.10 

Q: Consider a spherical data sample as represented in Figure 10.5 with κ = 0.001. 
Assess its uniformity. 

A: Let a represent the data matrix. We use unifplot(a) and 
colatplot(a,0) (see Commands 10.2) to obtain the graphical plots shown in 
Figure 10.8. We see that both plots strongly suggest a uniform distribution on the 
sphere.  
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Figure 10.8. Longitude plot (a) and co-latitude plot (b) of the von Mises-Fisher 
distributed data of Figure 10.5 with κ = 0.001. 

 

10.4.2 The Rayleigh Test of Uniformity 

Let ρ denote the population mean resultant length, i.e., the population 
concentration, whose sample estimate is r . The null hypothesis, H0, for the 

 ρ = 0 (zero concentration). 
For circular data the Rayleigh test statistic is: 
 

z = n 2r = r2/n.  10.16 
 
Critical values of the sampling distribution of z can be computed using the 

following approximation (Wilkie D, 1983): 
 






 +−−++=≥ )21()(441exp)( 2 nnknnkzP .  10.17 

 
For spherical data, the Rayleigh test statistic is: 
 

z = 3n 2r = 3r2/n.  10.18 
 
Using the modified test statistic: 

Rayleigh’s test of uniformity is:
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)10/())2/(11( 2* nzznz +−= ,  10.19 
 

it can be proven that the distribution of z* is asymptotically 2
3χ with an error 

decreasing as 1/n (Mardia KV, Jupp PE, 2000). 
The Rayleigh test is implemented in MATLAB and R function rayleigh (see 

Commands 10.5) 
 

Example 10.11 

Q: Apply the Rayleigh test to the wind direction WDF data of the Weather 
dataset and to the measurement data M1 of the Soil Pollution dataset. 

A: Denoting by wdf and m1 the matrices for the datasets, the probability values 
under the null hypothesis are obtained in MATLAB as follows: 
 
» p=rayleigh(wdf) 
p = 
    0.1906 
 
» p=rayleigh(m1) 
p = 
     0 
 
Thus, we accept the null hypothesis of uniformity at the 5% level for the WDF 

data, and reject it for the soil pollution M1 data (see Figure 10.9). 
  
 

Y

Z

X

 
Figure 10.9. Measurement set M1 (negative gradient of Pb-tetraethyl concen-
tration in the soil) of the Soil Pollution dataset. 
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Commands 10.5. MATLAB and R functions for computing statistical tests of 
directional data. 

MATLAB 

p=rayleigh(a)  
[u2,uc]=watson(a,f,alphal) 
[u2,uc]=watsonvmises(a,alphal) 
[fo,fc,k1,k2]=watswill(a1,a2,alpha) 
[w,wc]=unifscores(a,alpha) 
[gw,gc]=watsongw(a,alpha) 

R rayleigh(a) 
unifscores(a,alpha) 

 
 

Function rayleigh(a) implements the Rayleigh test of uniformity for the data 
matrix a (circular or spherical data).  

Function watson implements the Watson goodness-of-fit test, returning the 
test statistic u2 and the critical value uc computed for the data vector a (circular 
data) with theoretical distribution values in f. Vector a must be previously sorted 
in ascending order (and f accordingly). The valid values of alphal are 1, 2, 3, 4 
and 5 for α  = 0.1, 0.05, 0.025, 0.01 and 0.005, respectively.  

The watsonvmises function implements the Watson test assessing von 
Misesness at alphal level. No previous sorting of the circular data a is 
necessary. 

Function watswill implements the Watson-Williams two-sample test for von 
Mises populations, using samples a1 and a2 (circular or spherical data), at a 
significance level alpha. The observed test statistic and theoretical value are 
returned in fo and fc, respectively; k1 and k2 are the estimated concentrations. 

Function unifscores implements the uniform scores test at alpha level, 
returning the observed statistic w and the critical value wc. The first column of 
input matrix a must contain the circular data of all independent groups; the second 
column must contain the group codes from 1 through the highest code number. 

Function watsongw implements the Watson test of equality of means for 
independent spherical data samples. The first two columns of input matrix a 
contain the longitudes and colatitudes. The last column of a contains group codes, 
starting with 1. The function returns the observed test statistic gw and the critical 
value gc at alpha significance value. 

The R functions behave in the same way as their equivalent MATLAB 
functions. For instance, Example 10.11 is solved in R with: 

 
> rayleigh(wdf) 
[1] 0.1906450 
 
> rayleigh(m1) 
[1] 1.242340e-13 
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10.4.3 The Watson Goodness of Fit Test 

U2 goodness of fit test for circular distributions is based on the 
computation of the mean square deviation between the empirical and the 
theoretical distribution. 

Consider the n angular values sorted by ascending order: θ1 ≤ θ2  ≤ … ≤ θn. Let 
Vi = F(θ i) represent the value of the theoretical distribution for the angle θ i, and 
V represent the average of the Vi. The test statistic is: 
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Critical values of 2

nU  can be found in tables (see e.g. Kanji GK, 1999). 
Function watson, implemented in MATLAB (see Commands 10.5), can be 

used to apply the Watson goodness of fit test to any circular distribution. It is 
particularly useful for assessing the goodness of fit to the von Mises distribution, 
using the mean direction and concentration factor estimated from the sample. 

 

Example 10.12 

Q: Assess, at the 5% significance level, the von Misesness of the data represented 
in Figure 10.4 with κ = 2 and the wind direction data WDB of the Weather 
dataset. 

A: The watson function assumes that the data has been previously sorted. Let us 
denote the data of Figure 10.4 with κ = 2 by a. We then use the following 
sequence of commands: 

 
» a = sort(a); 
» m = meandir(a); 
» k = ainv(m(3),2) 
k = 
    2.5192 
 
» f = vmises2cdf(a,k) 
» [u2,uc] = watson(a,f,2) 
u2 = 
    0.1484 
uc = 
    0.1860 
 
Therefore, we do not reject the null hypothesis, at the 5% level, that the data 

follows a von Mises distribution since the observed test statistic u2 is lower than 
the critical value uc.  

Note that the function vmises2cdf assumes a distribution with µ = 0. In 
general, one should therefore previously refer the data to the estimated mean. 

The Watson’s 
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Although data matrix a was generated with µ = 0, its estimated mean is not zero; 
using the data referred to the estimated mean, we obtain a smaller u2 = 0.1237. 

Also note that when using the function vmises2cdf, the input data a must be 
specified in the [−180º, 180º] interval.  

Function watsonvmises (see Commands 10.5) implements all the above 
operations taking care of all the necessary data recoding for an input data matrix in 
standard format. Applying watsonvmises to the WDB data, the von Mises 
hypothesis is not rejected at the 5% level (u2= 0.1042; uc= 0.185). This 
contradicts the suggestion obtained from visual inspection in Example 10.2 for this 
low concentrated data ( r = 0.358).  

10.4.4 Assessing the von Misesness of Spherical Distributions 

When analysing spherical data it is advisable to first obtain an approximate idea of 
the distribution shape. This can be done by analysing the eigenvalues of the 
following scatter matrix of the points about the origin: 
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1 .  10.21 

 
Let the eigenvalues be denoted by λ1, λ2 and λ3 and the eigenvectors by t1, t2 

and t3, respectively. The shape of the distribution can be inferred from the 
magnitudes of the eigenvalues as shown in Table 10.2 (for details, see Mardia KV, 
Jupp PE, 2000). The scatter matrix can be computed with the scattermx 
function implemented in MATLAB (see Commands 10.3). 

 
 

Table 10.2. Distribution shapes of spherical distributions according to the 
eigenvalues and mean resultant length, r . 

Magnitudes Type of Distribution 

λ1 ≈ λ2  ≈ λ3 Uniform 

λ1 large; λ2 ≠ λ3 small Unimodal if r ≈ 1, bimodal otherwise 

λ1 large; λ2 ≈λ3 small Unimodal if r ≈ 1, bimodal otherwise with 
rotational symmetry about t1 

λ1 ≠λ2 large; λ3 small Girdle concentrated about circle in plane of t1, t2 

λ1 ≈ λ2 large; λ3 small Girdle with rotational symmetry about t3 

’
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Example 10.13 

Q: Analyse the shape of the distribution of the gradient measurement set M1 of the 
Soil Pollution dataset (see Example 10.11 and Figure 10.9) using the scatter 
matrix. Assume that the data is stored in m1 in standard format. 

A: We first run the following sequence of commands: 
 
» m = meandir(m1); 
» rbar = m(3) 
rbar = 
    0.9165 
 
» t = scattermx(m1); 
» [v,lambda] = eig(t) 
 
v = 
   -0.3564   -0.8902    0.2837 
    0.0952   -0.3366   -0.9368 
    0.9295   -0.3069    0.2047 
 
lambda = 
    0.0047         0         0 
         0    0.1379         0 
         0         0    0.8574 
 
We thus conclude that the distribution is unimodal without rotational symmetry.  
  
 
The von Misesness of a distribution can be graphically assessed, after rotating 

the data so that the mean direction maps onto [0 0 1]  (using function rotate 
described in Commands 10.3), by the following plots: 

 
1. Co-latitude plot: plots the ordered values of 1 − cosθi against –ln(1−           

(i − 0.5)/n). For a von Mises distribution and a not too small κ (say, κ > 2), 
the plot should be a straight line through the origin and with slope 1/κ. 

2. Longitude plot: plots the ordered values of φi against (i − 0.5)/n. For a von 
Mises distribution, the plot should be a straight line through the origin with 
unit slope. 

 
The plots are implemented in MATLAB (see Commands 10.2) and denoted 
colatplot and longplot. These functions, which internally perform a 
rotation of the data, also return a value indicating whether or not the null 
hypothesis should be rejected at the 1% significance level, based on test statistics 
described in (Fisher NI, Best DJ, 1984).  

 

Example 10.14 

Q: Using the co-latitude and longitude plots, assess the von Misesness of the 
gradient measurement set M1 of the Soil Pollution dataset. 

’
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A: Figure 10.10 shows the respective plots obtained with MATLAB functions 
colatplot and longplot. Both plots suggest an important departure from von 
Misesness. The colatplot and longplot results also indicate the rejection of 
the null hypothesis for the co-latitude (h = 1) and the non-rejection for the 
longitude (h = 0).  
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Figure 10.10. Co-latitude plot (a) and longitude plot (b) for the gradient 
measurement set M1 of the soil pollution dataset. 

10.5 Tests on von Mises Distributions 

10.5.1 One-Sample Mean Test 

The most usual one-sample test is the mean direction test, which uses the same 
approach followed in the determination of confidence intervals for the mean 
direction, described in section 10.3. 

 

Example 10.15 

Q: Consider the  dataset, containing directions of granite joints measured 
from a city street in Porto, Portugal. The mean direction of the data was studied in 
Example 10.5; the 95% confidence interval for the mean was studied in Example 
10.7. Assume that a geotectonic theory predicts a 90º pitch for the granites in 
Porto. Does the  sample reject this theory at a 95% confidence level? 

A: The mean direction of the sample has a co-latitude θ  = 178.8º (see Example 
10.5). The 95% confidence interval of the mean direction corresponds to a 
deviation of 4.1º (see Example 10.7). Therefore, the  dataset does not 
reject the theory at 5% significance level, since the 90º pitch corresponds to a co-
latitude of 180º which falls inside the [178.8º − 4.1º, 178.8º + 4.1º] interval. 

  

Joints’

Joints’

Joints’
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10.5.2 Mean Test for Two Independent Samples 

The Watson-Williams test assesses whether or not the null hypothesis of equal 
mean directions of two von Mises populations must be rejected based on the 
evidence provided by two independent samples with n1 and n2 directions. The test 
assumes equal concentrations of the distributions and is based on the comparison 
of the resultant lengths. For large κ (say κ > 2) the test statistic is: 
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where r1 and r2 are the resultant lengths of each sample and r is the resultant length 
of the combined sample with n = n1 + n2 cases. For the sphere, the factor k is 1; for 
the circle, the factor k is estimated as 1+ 3/(8 κ̂ ). 

The Watson-Williams test is implemented in the MATLAB function 
watswill (see Commands 10.5). It is considered a robust test, suffering little 
influence from mild departures of the underlying assumptions. 

 

Example 10.16 

Q: Consider the wind direction WD data of the Weather dataset (Data 2 
datasheet), which represents the wind directions for several days in all seasons, 
during the years 1999 and 2000, measured at a location in Porto, Portugal. 
Compare the mean wind direction of Winter (SEASON = 1) vs. Summer 
(SEASON = 3) assuming that the WD data in every season follows a von Mises 
distribution, and that the sample is a valid random sample. 

A: Using the watswill function as shown below, we reject the hypothesis of 
equal mean wind directions during winter and summer, at the 5% significance 
level. Note that the estimated concentrations have close values. 

 
[fo,fc,k1,k2]=watswill(wd(1:25),wd(50:71),0.05) 
fo = 
   69.7865 
fc = 
    4.0670 
k1 = 
    1.4734 
k2 =  
 1.3581  
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10.6 Non-Parametric Tests 

The von Misessness of directional data distributions is difficult to guarantee in 
many practical cases3. Therefore, non-parametric tests, namely those based on 
ranking procedures similar to those described in Chapter 5, constitute an important 
tool when comparing directional data samples. 

10.6.1 The Uniform Scores Test for Circular Data 

Let us consider q independent samples of circular data, each with nk cases. The 
uniform scores test assesses the similarity of the q distributions based on scores of 
the ordered combined data. For that purpose, let us consider the combined dataset 
with n = ∑ =

q
k kn1  observations sorted by ascending order. Denoting the ith 

observation in the kth group by θik, we now substitute it by the uniform score: 
 

n
wik

ik
π

β
2

= ,  i = 1, …, nk,  10.23 

 
where the wik are linear ranks in [1, n]. Thus, the observations are replaced by 
equally spaced points in the unit circle, preserving their order. 

Let rk represent the resultant length of the kth sample corresponding to the 
uniform scores. Under the null hypothesis of equal distributions, we expect the βik 
to be uniformly distributed in the circle. Using the test statistic: 

 

∑
=

=
q

k k

k

n
r

W
1

2

2 ,  10.24 

 
we then reject the null hypothesis for significantly large values of W.  

The asymptotic distribution of W, adequate for n > 20, is 2
)1(2 −qχ . For further 

details see (Mardia KV, Jupp PE, 2000). The uniform scores test is implemented 
by function unifscores (see Commands 10.5). 

 

Example 10.17 

Q: Assess whether the distribution of the wind direction (WD) of the Weather 
dataset (Data 2 datasheet) can be considered the same for all four seasons. 

A: Denoting by wd the matrix whose first column is the wind direction data and 
whose second column is the season code, we apply the MATLAB unifscores 
function as shown below and conclude the rejection of equal distributions of the 
wind direction in all four seasons at the 5% significance level (w > wc).  

 

                                                           
3
 Unfortunately, there is no equivalent of the Central Limit Theorem for directional data. 
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Similar results are obtained with the R unifscores function. 
 
» [w,wc]=unifscores(wd,0.05) 
w = 
   35.0909 
wc = 
   12.5916  

10.6.2 The Watson Test for Spherical Data 

Let us consider q independent samples of spherical data, each with ni cases. The 
Watson test assesses the equality of the q mean directions, assuming that the 
distributions are rotationally symmetric. 

The test is based on the estimation of a pooled mean of the q samples, using 
appropriate weights, wk, summing up to unity. For not too different standard 
deviations, the weights can be computed as wk  = nk/n with n = ∑ =

q
k kn1 . More 

complex formulas have to be used in the computation of the pooled mean in the 
case of very different standard deviations. For details see (Fisher NI, Lewis T, 
Embleton BJJ (1987). Function pooledmean (see Commands 10.3) implements 
the computation of the pooled mean of q independent samples of circular or 
spherical data. 

Denoting by x0k = [x0k, y0k, z0k]  the mean direction of each group, the pooled 
mean projections are computed as: 

 

∑ == q
k kkkw xrwx 1 0 ; ∑ == q

k kkkw yrwy 1 0 ; ∑ == q
k kkkw zrwz 1 0 .  10.25 

 
The pooled mean resultant length is: 
 

222
wwww zyxr ++= .  10.26 

 
Under the null hypothesis of equality of means, we would obtain the same value 

of the pooled mean resultant length simply by weighting the group resultant 
lengths: 

 

∑ == q
k kkw rw1ρ̂ .  10.27 

 
The Watson test rejects the null hypothesis for large values of the following 

statistic: 
 

)ˆ(2 www rnG −= ρ .  10.28 
 
The asymptotic distribution of Gw is 2

22 −qχ (for nk ≥ 25). Function watsongw 
(see Commands 10.5) implements this test. 

 

’
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Example 10.18 

Q: Consider the measurements R4, R5 and R6 of the negative gradient of the Soil 
Pollution dataset, performed in similar conditions. Assess whether the mean 
gradients above and below 20 m are significantly different at 5% level. 

A: We establish two groups of measurements according to the value of variable z 
(depth) being above or below 20 m. The mean directions of these two groups are: 

 
Group 1:   (156.17º, 117.40º); 
Group 2: (316.99º, 116.25º). 
 
Assuming that the groups are rotationally symmetric and since the sizes are      

n1 = 45 and n2 = 30, we apply the Watson test at a significance level of 5%, 
obtaining an observed test statistic of 44.9. Since 2

2,95.0χ =5.99, we reject the null 
hypothesis of equality of means.  

10.6.3 Testing Two Paired Samples 

The previous two-sample tests assumed that the samples were independent. The 
two-paired-sample test can be reduced to a one-sample test using the same 
technique as in Chapter 4 (see section 4.4.3.1), i.e., employing the differences 
between pair members. If the distributions of the two samples are similar, we 
expect that the difference sample will be uniformly distributed. The function 
dirdif implemented in MATLAB (see Commands 10.3) computes the 
directional data of the difference set in standard format. 

 

Example 10.19 

Q: Consider the measurements M2 and M3 of the Soil Pollution dataset. 
Assess, at the 5% significance level, if one can accept that the two measurement 
methods yield similar distributions. 

A: Let soil denote the data matrix containing all measurements of the Soil 
Pollution dataset. Measurements M2 and M3 correspond to the column pairs  
3-4 and 5-6 of soil, respectively. We use the sequence of R commands shown 
below and do not reject the hypothesis of similar distributions at the 5% level of 
significance. 

 
> m2<-soil[,3:4] 
> m3<-soil[,5:6] 
> d<-dirdif(m2,m3) 
> p<-rayleigh(d) 
> p 
[1] 0.1772144 
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Exercises 

10.1 Compute the mean directions of the wind variable WD (Weather dataset, Data 2) 
for the four seasons and perform the following analyses: 
a) Assess the uniformity of the measurements both graphically and with the 

Rayleigh test. Comment on the relation between the uniform plot shape and the 
observed value of the test statistic. Which set(s) can be accepted as being 
uniformly distributed at a 1% level of significance? 

b) Assess the von Misesness of the measurements. 
 
10.2  Consider the three measurements sets, H, A and I, of the VCG dataset. Using a specific 

methodology, each of these measurement sets represents circular direction estimates 
of the maximum electrical heart vector in 97 patients. 
a) Inspect the circular plots of the three sets. 
b) Assess the uniformity of the measurements both graphically and with the 

Rayleigh test. Comment on the relation between the uniform plot shape and the 
observed value of the test statistic. Which set(s) can be accepted as being 
uniformly distributed at a 1% level of significance? 

c) Assess the von Misesness of the measurements. 
 

10.3 Which type of test is adequate for the comparison of any pair of measurement sets 
studied in the previous Exercise 10.2? Perform the respective pair-wise comparison of 
the distributions. 

 
10.4 Assuming a von Mises distribution, compute the 95% confidence intervals of the 

mean directions of the measurement sets studied in the previous Exercise 10.2. Plot 
the data in order to graphically interpret the results. 

 
10.5 In the von Misesness assessment of the WDB measurement set studied in Example 

10.12, an estimate of the concentration parameter κ was used. Show that if instead of 
this estimate we had used the value employed in the data generation (κ = 2), we still 
would not have rejected the null hypothesis.  

 
10.6 Compare the wind directions during March on two streets in Porto, using the 

Weather dataset (Data 3) and assuming that the datasets are valid random 
samples. 

 
10.7 Consider the Wave dataset containing angular measurements corresponding to 

minimal acoustic pressure in ultrasonic radiation fields. Perform the following 
analyses: 
a) Determine the mean directions of the TRa and TRb measurement sets. 
b) Show that both measurement sets support at a 5% significance level the 

hypothesis of a von Mises distribution. 
c) Compute the 95% confidence interval of the mean direction estimates. 
d) Compute the concentration parameter for both measurement sets. 
e) For the two transducers TRa and TRb, compute the angular sector spanning 95% 

of the measurements, according to a von Mises distribution. 
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10.8 Compare the two measurement sets, TRa and TRb, studied in the previous Exercise 
10.7, using appropriate parametric and non-parametric tests. 

 
10.9 The  data of the Stars  dataset contains measurements of the longitude 

photo-visual magnitude. Perform the following analyses: 
a) 

distribution. 
b) 

interval. 
c) 

above 12 with the mean direction of the remaining stars. 
 
10.10 The Praesepe data of the  dataset contains measurements of the longitude 

and co-latitude of the stars constituting the Praesepe constellation obtained by two 
researchers (Gould and Hall). 
a) Determine whether the Praesepe data can be modelled by a von Mises 

distribution. 
b) Determine the mean direction of the Praesepe data with the 95% confidence 

interval. 
c) Compare the mean directions of the Prasepe data obtained by the two 

researchers. 

Pleiades ’

Determine whether the Pleiades’ data can be modelled by a von Mises 

Compute the mean direction of the Pleiades’ data with the 95% confidence 

Compare the mean direction of the Pleiades’ stars with photo-visual magnitude 

Stars’

and co-latitude of the stars constituting the Pleiades’ constellation as well as their 



Appendix A - Short Survey on Probability Theory 

In Appendix A we present a short survey on Probability Theory, emphasising the 
most important results in this area in order to afford a better understanding of the 
statistical methods described in the book. We skip proofs of Theorems, which can 
be found in abundant references on the subject. 

A.1 Basic Notions 

A.1.1 Events and Frequencies 

Probability is a measure of uncertainty attached to the outcome of a random 

instance, be a thought experiment or the comprehension of a set of given data 
whose generation could be difficult to guess. The main requirement is being able to 
view the outcomes of the experiment as being composed of single events, such as 
A, B, … The measure of certainty must, however, satisfy some conditions, 
presented in section A.1.2.  

In the frequency approach to fixing the uncertainty measure, one uses the 
absolute frequencies of occurrence, nA, nB, …, of the single events in n independent 
outcomes of the experiment. We then measure, for instance, the uncertainty of A in 
n outcomes using the relative frequency (or frequency for short): 

n
n

f A
A = . A. 1 

In a long run of outcomes, i.e., with ∞→n , the relative frequency is expected 

will be a real number in [0, 1], with the value 0 corresponding to an event that 
never occurs (the impossible event) and the value 1 corresponding to an event that 
always occurs (the sure event). Other ways of obtaining probability measures in  

We will now proceed to describe the mathematical formalism for operating with 
probabilities. Let E denote the set constituted by the single events Ei of a random 
experiment, known as the sample space: 

{ }K,, 21 EE=E . A. 2 

Subsets of E correspond to events of the random experiment, with singleton 
subsets corresponding to single events. The empty subset, φ , denotes the 

experiment, the word “experiment” having a broad meaning, since it can, for 

to stabilise, “converging” to the uncertainty measure known as probability. This 

[0, 1], besides this classical “event frequency” approach have also been proposed. 
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impossible event. The usual operations of union (U ), intersection (I ) and 
complement ( ¯ ) can be applied to subsets of E. 

Consider a collection of events, A , defined on E, such that: 
 

i. If Α∈iA  then ΑE ∈−= ii AA . 
ii. Given the finite or denumerably infinite sequence K,, 21 AA , such that 

iAi ∀∈ ,Α , then U
i

iA Α∈ . 
 
Note that ΑE ∈ since AAU=E . In addition, using the well-known De 

 law ( jiji AAAA IU = ), it is verified that A∈I iA  as well as A∈φ . 
The collection A with the operations of union, intersection and complement 
constitutes what is known as a Borel algebra. 

A.1.2 Probability Axioms 

To every event A∈A , of a Borel algebra, we assign a real number P(A), satisfying 

 
1. 0 ≤ P(A) ≤1. 
2. Given the finite or denumerably infinite sequence K,, 21 AA , such that any 

two events are mutually exclusive, jiAA ji ,, ∀= φI , then  

 ( )∑=








i
i

i
i APAP U . 

3. 1)( =EP . 
 
The triplet (E, A, P) is called a probability space. 
Let us now enumerate some important consequences of the axioms: 
 
i. 0)(1)();(1)( =−=−= EPPAPAP φ . 
ii. )()( BPAPBA ≤⇒⊂ . 
iii. )()()()( BAPBPAPBAPBA IUI −+=⇒≠ φ . 

iv. ∑
==

≤






 n

i
i

n

i
i APAPP

11
)()(U . 

 
If the set { }kEEE ,,, 21 K=E  of all possible outcomes is finite, and if all 

outcomes are equally likely, pEP i =)( , then the triplet (E, A, P) constitutes a 
classical probability space. We then have: 

 

k
pkpEPEPP

k

i
i

k

i
i

1)()(1
11

=⇒==







== ∑

==
UE . A. 3 

 

Furthermore, if A is the union of m elementary events, one has: 

k
mAP =)( , A. 4 

Morgan’s

the following Kolmogorov’s axioms of probability: 
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corresponding to the classical approach of defining probability, also known as 
Laplace rule: ratio of the number of favourable events over the number of possible 
events, considered equiprobable. 

One often needs to use the main operations of combinatorial analysis in order to 
compute the number of favourable events and of possible events. 

 

Example A. 1 

Q: Two dice are thrown. What is the probability that the sum of their faces is four? 

A: When throwing two dice there are 6×6 equiprobable events. From these, only 
the events (1,3), (3,1), (2,2) are favourable. Therefore: 

083.0
36
3)( ==Ap . 

Thus, in the frequency interpretation of probability we expect to obtain four as 
sum of the faces roughly 8% of the times in a long run of two-dice tossing. 

  

Example A. 2 

Q: Two cards are drawn from a deck of 52 cards. Compute the probability of 
obtaining two aces, when drawing with and without replacement. 

A: When drawing a card from a deck, there are 4 possibilities of obtaining an ace 
out of the 52 cards. Therefore, with replacement, the number of possible events is 
52×52 and the number of favourable events is 4×4. Thus: 

0059.0
5252
44)( =

×
×

=AP . 

When drawing without replacement we are left, in the second drawing, with 51 
possibilities, only 3 of which are favourable. Thus: 

0045.0
5152
34)( =

×
×

=AP .  

 

Example A. 3 

Q: N letters are put randomly into N envelopes. What is the probability that the 
right letters get into the envelopes? 

A: There are N distinct ways to put one of the letters (the first) in the right 
envelope. The next (second) letter has now a choice of N – 1 free envelopes, and so 
on. We have, therefore, a total number of factorial of N, N! = N(N – 1)(N – 2)…1 
permutations of possibilities for the N letters. Thus: 
 

!/1)( NAP = .  
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A.2 Conditional Probability and Independence 

A.2.1 Conditional Probability and Intersection Rule 

If in n outcomes of an experiment, the event B has occurred nB times and among 
them the event A has occurred nAB times, we have: 

n
n

f
n

n
f AB

BA
B

B == I; . A. 5 

We define the conditional frequency of occurring A given that B has occurred    
as: 

B

BA

B

AB
BA f

f
n
n

f I==| . A. 6 

Likewise, we define the conditional probability of A given that B has occurred –  
denoted P(A | B) −, with P(B) > 0, as the ratio: 

)(
)()|(

BP
BAPBAP I

= . A. 7 

We have, similarly, for the conditional probability of B given A: 
 

)(
)()|(

AP
BAPABP I

= . A. 8 

From the definition of conditional probability, the following rule of compound 
probability results: 

 

)|()()|()()( BAPBPABPAPBAP ==I , A. 9 
 

which generalizes to the following rule of event intersection: 
 

.)|()|()|()(
)(

121213121

21

−

=

nn

n

AAAAPAAAPAAPAP
AAAP

IKIIKI

IKII
 A. 10 

A.2.2 Independent Events 

If the occurrence of B has no effect on the occurrence of A, both events are said to 
be independent, and we then have, for non-null probabilities of A and B: 

 

)()|(and)()|( BPABPAPBAP == . A. 11 
 

Therefore, using the intersection rule A.9, we define two events as being 
independent when the following multiplication rule holds: 

 

)()()( BPAPBAP =I . A. 12 
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Given a set of n events, they are jointly or mutually independent if the 
multiplication rule holds for:  

 
– Pairs: njiAPAPAAP jiji ≤≤= ,1),()()( I ; 
– Triplets: nkjiAPAPAPAAAP kjikji ≤≤= ,,1),()()()( II ; 
 and so on,  
– until n: )()()()( 2121 nn APAPAPAAAP KIKII = . 

 
If the independence is only verified for pairs of events, they are said to be 

pairwise independent. 
 

Example A. 4 

Q: What is the probability of winning the football lottery composed of 13 matches 

A: The outcomes of the 13 matches are jointly independent, therefore: 

13

times13
3
1

3
1

3
1.

3
1)( ==

43421
KAP .  

 

Example A. 5 

Q: An airplane has a probability of 1/3 to hit a railway with a bomb. What is the 
probability that the railway is destroyed when 3 bombs are dropped? 

A: The probability of not hitting the railway with one bomb is 2/3. Assuming that 
the events of not hitting the railway are independent, we have: 

7.01)(
3

3

2
=






−=AP .  

Example A. 6 

Q: What is the probability of obtaining 2 sixes when throwing a dice 6 times? 

A: For any sequence with 2 sixes out of 6 throws the probability of its occurrence 
is: 

42

6
5

6
1)( 














=AP . 

In order to compute how many such sequences exist we just notice that this is 
equivalent to choosing two positions of the sequence, out of six possible positions. 
This is given by 

15
2

56
!4!2

!6
2
6

=
×

==







; therefore, 2.0)(15)2,6( == APP .  

with three equiprobable outcomes: “win”, “loose”, or “even”? 
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A.3 Compound Experiments 

Let E1 and E2 be two sample spaces. We then form the space of the Cartesian 
product E1×E2, corresponding to the compound experiment whose elementary 
events are the pairs of elementary events of E1 and E2. 

We now have the triplet (E1×E2, A, P) with: 
 





=
∈∈=

otherwise.),|()(),(
t;independenare,if),()(),( 21

ijiji

jijiji

ABPAPBAP
BABPAPBAP EE

 
 

This is generalized in a straightforward way to a compound experiment 
corresponding to the Cartesian product of n sample spaces. 

 

Example A. 7 

Q: An experiment consists in drawing two cards from a deck, with replacement, 
and noting down if the cards are: ace, figure (king, queen, jack) or number (2 to 

A: Since the card drawing is made with replacement, the two card drawings are 
jointly independent and we have the representation of the compound experiment 
shown in Figure A.1.   

 
Notice that the sums along the rows and along the columns, the so-called 

marginal probabilities, yield the same value: the probabilities of the single 
experiment of drawing one card. We have: 

∑∑
==

==
k

j
ji

k

j
ijii BPAPABPAPAP

11
);()()|()()(    A. 13 

∑ ∑
= =

=
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j
ji BPAP

1 1
1)()( . 

 
 

ace
figure

number

ace

figure

number

0

0.1

0.2

0.3

0.4

0.5
 ace figure number 

ace 0.006 0.018 0.053 0.077 

figure 0.018 0.053 0.160 0.231 
number 0.053 0.160 0.479 0.692 

 0.077 0.231 0.692 1.000  

Figure A.1.  Sample space and probabilities corresponding to the compound card 
drawing experiment. 

10). Represent the sample space of the experiment composed of two “drawing one 
card” experiments, with the respective probabilities. 
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The first rule, A.13, is known as the total probability rule, which applies 
whenever one has a partition of the sample space into a finite or denumerably 
infinite sequence of events, C1, C2, …, with non-null probability, mutually disjoint 
and with 1)( =iCP U . 

Let C1, C2, … be a partition, to which we can apply the total probability rule as 

then be stated: 
 

K,2,1
)|()(

)|()(
)|( ==

∑
k

CAPCP
CAPCP

ACP

j
jj

kk
k     . A. 14 

Notice that  ∑ =
k

k ACP 1)|( . 

posterior probabilities. 

us then to infer the probability of the causes, as in the following example. 
 

Example A. 8 

Q: The probabilities of producing a defective item with three machines M1, M2, M3 
are 0.1, 0.08 and 0.09, respectively. At any instant, only one of the machines is 
being operated, in the following percentage of the daily work, respectively: 30%, 
30%, 40%. An item is randomly chosen and found to be defective. Which machine 
most probably produced it? 

A: Denoting the defective item by A, the total probability breaks down into:  
 

1.03.0)|()( 11 ×=MAPMP ;  
08.03.0)|()( 22 ×=MAPMP ;  
09.04.0)|()( 33 ×=MAPMP .  

 

33.0)|( 1 =AMP ; 27.0)|( 2 =AMP ; 4.0)|( 3 =AMP . The machine that most 
probably produced the defective item is M3. Notice that ∑ =

k
kMP 1)(  and 

∑ =
k

k AMP 1)|( .  
 

Example A. 9 

Q: An urn contains 4 balls that can either be white or black. Four extractions are 
made with replacement from the urn and found to be all white. What can be said 

In classification problems the probabilities )( kCP  are called the “a priori” 
probabilities, priors or prevalences, and the )|( ACP k the “a posteriori” or 

Often the Ck are the “causes” and A is the “effect”. The Bayes’ Theorem allows 

A.4 Bayes’ Theorem 

previously mentioned in A.13. From this rule, the following Bayes’ Theorem can 

Therefore, the total probability is 0.09 and using Bayes’ Theorem we obtain: 

4 Bayes  Theorem’
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about the composition of the urn if: a) all compositions are equally probable; b) the 
compositions are in accordance to the extraction with replacement of 4 balls from 
another urn, with an equal number of white and black balls? 

A: There are five possible compositions, Ci, for the urn: zero white balls (C0) , 1 

probable compositions. Denoting by )( kk CPP = the probability of each 
composition, we have: 5/1410 ==== PPP K . The probability of the event A, 
consisting in the extraction of 4 white balls, for each composition, is: 

1
4
4)|(,,

4
1)|(,0)|(

4

4

4

10 =





=






== CAPCAPCAP K . 

Applying Bayes Theorem, the probability that the urn contains 4 white balls is: 

=
+++

==
∑ 4444

4
44

4
4321

4
)|()(

)|()(
)|(

j
jj CAPCP

CAPCP
ACP 0.723. 

to the binomial probabilities of extracting 4 balls from the second urn. Since this 
urn has an equal number of white and black balls, the prevalences are therefore 
proportional to the binomial coefficients ( )4

k . For instance, the probability of C4 is: 

=
+++

==
∑ 4444

4
44

4
4.13.42.61.4

4
)|()(

)|()(
)|(

j
jj CAPCP

CAPCP
ACP 0.376. 

This is, however, smaller than the probability for C3: =)|( 3 ACP 0.476. 
Therefore, C3 is the most probable composition, illustrating the drastic effect of the 
prevalences.  

A.5 Random Variables and Distributions 

A.5.1 Definition of Random Variable 

A real function X ≡ X(Ei), defined on the sample space { }iE=E  of a random 
experiment, is a random variable for the probability space (E, A, P), if for every 
real number z, the subset: 

 
{ } { }zEXEzX ii ≤=≤ )(; , A. 15 
 

is a member of the collection of events A. Particularly, when z → ∞ , one obtains E 
and with z → −∞, one obtains φ. 

white ball (C1), …, 4 white balls (C4). Let us first solve situation “a”, equally 

This is the largest “a posteriori” probability one can obtain. Therefore, for 
situation “a”, the most probable composition is C4. 

In situation “b” the “a priori” probabilities of the composition are in accordance 
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From the definition, one determines the event corresponding to an interval         
a, b] as: 

 

{ } { } { }aEXEbEXEbXa iiii ≤−≤=≤< )(;)(; . A. 16 
 

Example A. 10 

Consider the random experiment of throwing two dice, with sample space E =   
{(a, b); 1 ≤ a, b ≤ 6} = {(1,1), (1,2), …, (6,6)} and the collection of events A that is 
a Borel algebra defined on { {(1,1)}, {(1,2), (2,1)}, {(1,3), (2,2), (3,1)}, {(1,4), 
(2,3), (3,2), (4,1)}, {(1,5), (2,4), (3,3), (4,2), (5,1)}, …, {(6,6)} }. The following 
variables X(E) can be defined: 

X (a, b) = a+b. This is a random variable for the probability space  (E, A, P). For 
instance, {X  ≤ 4.5}= {(1,1), (1,2), (2,1), (1,3), (2,2), (3,1)} ∈ A. 

X (a, b) = ab. This is not a random variable for the probability space  (E, A, P). For 
instance, {X  ≤ 3.5}= {(1,1), (1,2), (2,1), (1,3), (3,1)} ∉ A.  

A.5.2 Distribution and Density Functions 

The probability distribution function (PDF) of a random variable X is defined as: 
 

)()( xXPxFX ≤= . A. 17 
 

We usually simplify the notation, whenever no confusion can arise from its use, 
by writing )(xF instead of )(xFX . 

Figure A.2 shows the distribution function of the random variable X(a, b) =       
a + b of Example A.10. 

Until now we have only considered examples involving sample spaces with a 
finite number of elementary events, the so-called discrete sample spaces to which 
discrete random variables are associated. These can also represent a denumerably 
infinite number of elementary events. 

For discrete random variables, with probabilities pj assigned to the singleton 
events of A, the following holds: 

∑
≤

=
xx

j
j

pxF )( . A. 18 

For instance, in Example A.10, we have F(4.5) = p1 + p2 + p3 = 0.17 with          
p1 = P({(1,1)}, p2 = P({(1,2), (2,1)}) and p3 = P({(1,3), (2,2), (3,1)}). The pj 
sequence is called a probability distribution. 

When dealing with non-denumerable infinite sample spaces, one needs to resort 
to continuous random variables, characterized by a continuous distribution 
function FX(x), differentiable everywhere (except perhaps at a finite number of 
points). 

 

]
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Figure A.2. Distribution function of the random variable associated to the sum of 
the faces in the two-dice throwing experiment. The solid circles represent point 
inclusion. 

 
 
The function dxxdFxf XX /)()( = (or simply f(x)) is called the probability 

density function (pdf) of the continuous random variable X. The properties of the 
density function are as follows: 

 
i. )definedwhere(0)( ≥xf ; 

ii. ∫
∞

∞−
= 1)( dttf ; 

iii. ∫ ∞−
=

x
dttfxF )()( . 

 

The event corresponding to ] a, b] has the following probability: 
 

∫=−=≤−≤=≤<
b

a
dttfaFbFaXPbXPbXaP )()()()()()( .  A. 19 

 

This is the same as )( bXaP ≤≤ in the absence of a discontinuity at a. For an 
infinitesimal interval we have: 

 

,
)],[()()(

)(

)()()()(

a
aaaP

a
aFaaF

af

aafaFaaFaaXaP

∆
∆+

=
∆

−∆+
=

⇒∆=−∆+=∆+≤<
 A. 20 

corresponding to the interval ∆a, measured at a, per of the random 
variable (see Figure A.3a). 

The solution X = xα of the equation: 

α=)(xFX ,  A. 21 

is called the α-quantile of the random variable X. For α = 0.1 and 0.01, the 
quantiles are called deciles and percentiles. Especially important are also the 
quartiles (α = 0.25) and the median (α = 0.5) as shown in Figure A.3b. Quantiles 
are useful location measures; for instance, the inter-quartile range, x0.75 – x0.25, is 
often used to locate the central tendency of a distribution. 

which justifies the name density function, since it represents the “mass” probability 
“unit length”
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Figure A.3. a) A pdf example; the shaded area in [a, a+∆a] is an infinitesimal 
probability mass.  b) Interesting points of a pdf: lower quartile (25% of the total 
area); median (50% of the total area); upper quartile (75% of the total area). 
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Figure A.4. Uniform random variable: a) Density function (the circles indicate 
point inclusion); b) Distribution function. 

 
 

Figure A.4 shows the uniform density and distribution functions defined in      
[0, 1]. Note that wwaXaP =+≤< )(  for every a such that [ ]⊂+ waa, [0, 1], 
which justifies the name uniform distribution. 

A.5.3 Transformation of a Random Variable 

Let X be a random variable defined in the probability space (E, A, P), whose 
distribution function is: 

 

)()( xXPxFX ≤= . 
 

Consider the variable Y = g(X) such that every interval yY ≤<−∞ maps into an 
event Sy of the collection A. Then Y is a random variable whose distribution 
function is: 

)())(()()( yY SxPyXgPyYPyG ∈=≤=≤= . A. 22 
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Example A. 11 

Q: Given a random variable X determine the distribution and density functions of   
Y =g(X) = X 2. 
A: Whenever y ≥ 0 one has yXy ≤≤− . Therefore: 





≥≤
<

=
0if)(
0if0

)(
yyYP
y

yGY  . 

For y ≥ 0 we then have:  
 

)()()()()( yFyFyXyPyYPyG XXY −−=≤≤−=≤= . 
 

If FX(x) is continuous and differentiable, we obtain for y > 0: 
 

[ ])()(
2

1)( yfyf
y

yg XXY −+= .  

 
Whenever g(X) has a derivative and is strictly monotonic, the following result 

holds: 

dy
ydg

ygfyg XY
)(

))(()(
1

1
−

−=  

 
The reader may wish to redo Example A.11 by first considering the following 

strictly monotonic function: 
 





≥
<

=
0if
0if0

)( 2 XX
X

Xg  

A.6 Expectation, Variance and Moments 

A.6.1 Definitions and Properties 

Let X be a random variable and g(X) a new random variable resulting from 
transforming X with the function g. The expectation of g(X), denoted [ ])(XgΕ , is 
defined as: 

 
[ ] ∑ ==Ε

i
ii xXPxgXg )()()( ,  if X  is discrete (and the sum exists); A.23a 

[ ] ∫
∞

∞−
=Ε dxxfxgg )()()(X ,  if X  is continuous (and the integral exists). A.23b 
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Example A. 12 

Q: A gambler throws a dice and wins 1€ if the face is odd, loses 2.5€ if the face is 
2 or 4, and wins 3€ if the face is 6. What is the  expectation? 

A: We have: 









=
=−
=

=
.6if3

;42if5.2
;5,31if1

)(
X

,X
,X

g x  

Therefore: [ ]
6
1

6
3

6
5.22

6
13)( =+−=Ε Xg . 

expect to get close to winning 1/6 € in a long run of throws.  
 
The following cases are worth noting: 
 

1.   g(X) = X: Expected value, mean or average of X. 
 

[ ] ∑ ==Ε=
i

ii xXPxX )(µ ,  if X  is discrete (and the sum exists); A.24a 

[ ] ∫
∞

∞−
=Ε= dxxxfX )(µ ,  if X  is continuous (and the integral exists). A.24b 

 
The mean of a distribution is the probabilistic mass center (center of gravity) of 

the distribution. 
 

Example A. 13 

Q: Consider the Cauchy distribution, with: 
22

1)(
xa

axf X
+

=
π

,  x∈ℜ. What is its 

mean? 

A: We have: 

[ ] ∫
∞

∞− +
=Ε .

22
dx

xa
xaX

π
 But ∫ +=

+
)ln(

2
1 22

22
xadx

xa
x , therefore the 

integral diverges and the mean does not exist.  
 
Properties of the mean (for arbitrary real constants a, b): 
 
i. [ ] [ ] bXabaX +Ε=+Ε   (linearity); 

ii. [ ] [ ] [ ]YXYX Ε+Ε=+Ε   (additivity); 

iii. [ ] [ ] [ ]YXXY ΕΕ=Ε   if X and Y  are independent. 
 

values xi occurring with frequencies fi, the mean is estimated as (see A.24a): 

The word “expectation” is somewhat misleading since the gambler will only 

The mean reflects the “central tendency” of a distribution. For a data set with n 

gambler’s
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∑
=

=≡
n

i
ii fxx

1
µ̂ . A. 25 

 

This is the so-called sample mean. 

Example A. 14 

Q: Show that the random variable X −µ has zero mean. 

A. Applying the linear property to [ ]µ−Ε X  we have: 
 

[ ] [ ] 0=−=−Ε=−Ε µµµµ XX .  
 

2.  g(X) = X k: Moments of order k of  X. 
 

∑ ==Ε
i

i
k

i
k xXPxX )(][ ,  if X is discrete  (and the sum exists); A.26a 

∫
∞

∞−
−=Ε dxxfxX kk )()(][ µ , if X  is continuous  (and the integral exists).A.26b 

 

Especially important, as explained below, is the moment of order two: ][ 2XΕ . 
 

3.  g(X) = (X  − µ)k: Central moments of order k of  X. 
 

∑ =−=−Ε= i i
k

i
k

k xXPxXm )()(])([ µµ , 

 if X is discrete  (and the sum exists); A.27a 

∫
∞

∞−
−=−Ε= dxxfxXm kk

k )()(])([ µµ   

 if X is continuous (and the integral exists). A.27b 

Of particular importance is the central moment of order two, m2 (we often use 
V[X] instead), and known as variance. Its square root is the standard deviation: 

[ ]{ }½V XX =σ . 
Properties of the variance: 
 
i. [ ] 0V ≥X ; 

ii. [ ] 0V =X  iff X is a constant; 

iii. [ ] [ ]XabaX VV 2=+ ; 

iv. [ ] [ ] [ ]YXYX VVV +=+  if X and Y  are independent. 
 

values xi occurring with frequencies fi, and estimated mean x , the variance can be 
estimated (see A.27a) as: 

 

The variance reflects the “data spread” of a distribution. For a data set with n 
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[ ] ∑ = −=≡ n
i ii fxxXv 1

2)(V̂ . A. 28 
 

This is the so-called sample variance. The square root of v, s = v , is the 
sample standard deviation. In Appendix C we present a better estimate of v. 

The variance can be computed using the second order moment, observing that: 
 

[ ] [ ] 22222 ][2][])([V µµµµ −Ε=+Ε−Ε=−Ε= XXXXX . A. 29 
 

 
i. [ ] [ ])()( XgXg Ε≈Ε ; 

ii. [ ] [ ]
[ ]

2

V)(V











≈

Ε Xdx
dgXXg . 

A.6.2 Moment-Generating Function 

The moment-generating function of a random variable X, is defined as the 
expectation of tXe  (when it exists), i.e.: 

 

][)( tX
X et Ε=ψ . A. 30 

 
The importance of this function stems from the fact that one can derive all 

moments from it, using the result: 
 

[ ]
0

)(

=

=Ε
t

n
X

n
k

dt
td

X
ψ

. A. 31 

A distribution function is uniquely determined by its moments as well as by its 
moment-generating function. 

 

Example A. 15 

Q: Consider a random variable with the Poisson probability function 
!/)( kekXP kλλ−== , k ≥ 0. Determine its mean and variance using the moment-

generating function approach. 

A: The moment-generating function is: 
 

[ ] ∑∑ ∞
=

−∞
=

− ==Ε= 00 !/)(!/)( k
kt

k
ktktX

X keekeeet λλψ λλ  . 
 
Since the power series expansion of the exponential is ∑∞

== 0 !/k
kx kxe  one 

can write: 
)1()( −− ==

tete
X eeet λλλψ . 

4. Gauss’ approximation formulae: 
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Hence: λλ
ψ

µ λ ===
=

−

= 0

)1(

0

)(

t

tet

t

X ee
dt

td
; 

[ ] [ ] λλλλλ
ψ λ =⇒+=+==Ε

=

−

=

Xeee
dt

td
X

t

tett

t

X V)1(
)( 2

0

)1(

0
2

2
2 .  

A.6.3 Chebyshev Theorem 

The Chebyshev Theorem states that for any random variable X and any real 
constant k, the following holds: 

2
1)(

k
kXP ≤>− σµ . A. 32 

Since it is applicable to any probability distribution, it is instructive to see the 
proof (for continuous variables) of this surprising and very useful Theorem; from 
the definition of variance, and denoting by S the domain where (X – µ )2 > a, we 
have:  

[ ]
( ) .)()()()(

)()()(
2

2
2

∫∫
∫

>−=≥−

≥−=−Ε=
∞

∞−

ss
aXaPdxxfadxxfx

dxxfxX
2

2

µµ

µµµ
  

 

Taking a = k2σ2, we get: 

( )
2

222 1)(
k

kXP ≤>− σµ  , 

from where the above result is obtained. 

Example A. 16 

Q: A machine produces resistances of nominal value 100 Ω (ohm) with a standard 
deviation of 1 Ω. What is an upper bound for the probability of finding a resistance 
deviating more than 3 Ω from the mean? 

A: The 3 Ω tolerance corresponds to three standard deviations; therefore, the upper 
bound is 1/9 = 0.11.   

A.7 The Binomial and Normal Distributions 

A.7.1 The Binomial Distribution 

One often needs to compute the probability that a certain event occurs k times in a 
sequence of n events. Let the probability of the interesting event (the success) be p. 
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The probability of the complement (the failure) is, therefore, q = 1 – p. The random 
variable associated to the occurrence of k successes in n trials, Xn, has the binomial 
probability distribution (see Example A.6): 

 

nkqp
k
n

kXP knk
n ≤≤








== − 0,)( . A. 33 

 

By studying the )(/)1( kXPkXP nn =+=  ratios one can prove that the largest 
probability value occurs at the integer value close to np − q or np. Figure A.5 
shows the binomial probability function for two different values of n. 

For the binomial distribution, one has: 
 

Mean: np=µ ;    Variance: npq=2σ . 
 
Given the fast growth of the factorial function, it is often convenient to compute 

the binomial probabilities using the Stirling formula: 
 

)1(2! n
nn nenn επ += − . A. 34 

 
The quantity εn tends to zero with large n, with nεn tending to 1/12. The 

convergence is quite fast: for n = 20 the error of the approximation is already 
below 0.5%. 
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Figure A.5. Binomial probability functions for p = 0.3: a) n = 15 (np − q = 3.8);            
b) n = 50. 

A.7.2 The Laws of Large Numbers 

The following important result, known as Weak Law of Large Numbers, or 
Bernoulli Theorem, can be proved using the binomial distribution: 

 

n
pq

p
n
kP

2ε
ε ≤








≥−     or, equivalently,  

n
pq

p
n
kP

2
1

ε
ε −≥








<− . A. 35 
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Therefore, in order to obtain a certainty 1 – α  (confidence level) that a relative 
frequency deviates from the probability of an event less than ε (tolerance or error), 
one would need a sequence of n trials, with:  

 

αε 2
pq

n ≥ . A. 36 

Note that  0lim =







≥−

∞→
εp

n
kP

n
. 

A stronger result is provided by the Strong Law of Large Numbers, which states 
the convergence of k/n to p with probability one. 

These results clarify the assumption made in section A.1 of the convergence of 
the relative frequency of an event to its probability, in a long sequence of trials. 

 

Example A. 17 

Q: What is the tolerance of the percentage, p, of favourable votes on a certain 
market product, based on a sample enquiry of 2500 persons, with a confidence 
level of at least 95%? 

A: As we do not know the exact value of p, we assume the worst-case situation for 
A.36, occurring at p = q = ½. We then have:  

==
α

ε
n
pq

0.045.  

A.7.3 The Normal Distribution 

For increasing values of n and with fixed p, the probability function of the 
binomial distribution becomes flatter and the position of its maximum also grows 
(see Figure A.5). Consider the following random variable, which is obtained from 
the random variable with a binomial distribution by subtracting its mean and 
dividing by its standard deviation (the so-called standardised random variable or  
z-score): 

 

npq

npX
Z n −

= . A. 37 

 

It can be proved that for large n and not too small p and q (say, with np and nq 
greater than 5), the standardised discrete variable is well approximated by a 
continuous random variable having density function f(z), with the following 
asymptotic result: 

2/2

2
1)()( z

n
ezfZP −

∞→
=→

π
. A. 38 

 

Stirling formula A.34. The density function f(z) is called the standard normal (or 
This result, known as De Moivre’s Theorem, can be proved using the above 
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Gaussian) density and is represented in Figure A.7 together with the distribution 
function, also known as error function. Notice that, taking into account the 
properties of the mean and variance, this new random variable has zero mean and 
unit variance. 

The approximation between normal and binomial distributions is quite good 
even for not too large values of n. Figure A.6 shows the situation with n = 50,        
p = 0.5. The maximum deviation between binomial and normal approximation 
occurs at the middle of the distribution and is 0.056. For n = 1000, the deviation is 
0.013. In practice, when np or nq are larger than 25, it is reasonably safe to use the 
normal approximation of the binomial distribution.  

Note that: 

npqp
nn N

n
X

PN
npq

npX
Z /,1,0 ~ˆ~ =⇒

−
= , A. 39 

 

where Nµ, σ is the Gaussian distribution with mean µ and standard deviation σ, and 
the following density function: 

 

22 2/)(

2
1)( σµ

σπ
−−= xexf . A. 40 

 

Both binomial and normal distribution values are listed in tables (see Appendix 
D) and can also be obtained from software tools (such as EXCEL, SPSS, 
STATISTICA, MATLAB and R). 
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Figure A.6. Normal approximation (solid line) of the binomial distribution (grey 
bars) for n = 50, p = 0.5. 

 

Example A. 18 

Q: Compute the tolerance of the previous Example A.17 using the normal 
approximation. 

A: Like before, we consider the worst-case situation with p = q = ½. Since 
== np 4/1ˆσ 0.01, and the 95% confidence level corresponds to the interval      
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[−1.96σ, 1.96σ] (see normal distribution tables), we then have: ε = 1.96σ  = 0.0196 
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Figure A.7. The standard normal density (a) and distribution (b) functions. 
 

Example A. 19 

Q: Let X be a standard normal variable. Determine the density of Y = X 2 and its 
expectation. 

A: Using the previous result of Example A.11: 

[ ] 0
2
1)()(

2
1)( 2/ >=−+= − ye

y
yfyf

y
yg y

π
.

This is the density function of the so-called chi-square distribution with one 
degree of freedom. 

The expectation is: [ ] ( )∫ ∫
∞ ∞ −==Ε
0 0

2/2/1)( dyeydyyygY yπ . Substituting y 
by x2, it can be shown to be 1.  

A.8 Multivariate Distributions 

A.8.1 Definitions 

A sequence of random variables X1, X2,…, Xd, can be viewed as a vector 
[ ]dXXX K,, 21=x  with d components. The multivariate (or joint) distribution 

function is defined as: 
 

),,,(),,( 221121 ddd xXxXxXPxxxF ≤≤≤= KK . A. 41 
 

(smaller than the previous “model-free” estimate).  
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1. If for a fixed j, 1 ≤  j ≤ d, Xj → ∞, then ),,( 21 dxxxF K  converges to a 
function of d – 1 variables which is the distribution function  

),,,,,( 111 djj xxxxF KK +− , the so-called jth marginal distribution. 

2. If the d-fold partial derivative: 

   
d

d
d

d xxx
xxxF

xxxf
∂∂∂

∂
=

K

K
K

21

21
)(

21
),,,(

),,,( , A. 42 

 

 exists, then it is called the density function of x. We then have: 
 
 ( ) ddSd dxdxdxxxxfSXXXP KKKK 212121 ),,,(),,,( ∫ ∫ ∫=∈ . A. 43 

Example A. 20 

For the Example A.7, we defined the bivariate random vector { }21 , XX=x , where 
each Xj performs the mapping: Xj(ace)=0; Xj(figure)=1; Xj(number)=2. The joint 
distribution is shown in Figure A.8, computed from the probability function (see 
Figure A.1).   
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Figure A.8. Joint distribution of the bivariate random experiment of drawing two 
cards, with replacement from a deck, and categorising them as ace (0), figure (1) 
and number (2). 

 
 

Example A. 21 

Q: Consider the bivariate density function: 



 ≤≤≤

=
otherwise.0

;10if2
),( 21

21
xx

xxf  

 
Compute the marginal distributions and densities as well as the probability 

corresponding to x1, x2 ≤ ½. 

The following results are worth mentioning: 
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A: Note first that the domain where the density is non-null corresponds to a 
triangle of area ½. Therefore, the total volume under the density function is 1 as it 
should be. The marginal distributions and densities are computed as follows: 
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22),()( 11
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dx
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∞

∞−
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xfxdvdududvvufxF

x vx
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



== ∫ ∫∫ ∫

∞

∞− ∞−

 
The probability is computed as: 

¼22½)½,(
½

0

½
21 ===≤≤ ∫∫ ∫∞− ∞−

vdvdudvXXP
v

. 
 

The same result could be more simply obtained by noticing that the domain has 
an area of 1/8.  

 

x y

f(x,y)

 
Figure A.9. Bell-shaped surface of the bivariate normal density function. 

 
 
The bivariate normal density function has a bell-shaped surface as shown in 

Figure A.9. The equidensity curves in this surface are circles or ellipses (an 
example of which is also shown in Figure A.9). The probability of the event        
(x1 ≤ X < x2, y1 ≤ Y < y2) is computed as the volume under the surface in the 
mentioned interval of values for the random variables X and Y.  

The equidensity surfaces of a trivariate normal density function are spheres or 
ellipsoids, and in general, the equidensity hypersurfaces of a d-variate normal 
density function are hyperspheres or hyperellipsoids in the d-dimensional 
space, ℜd. 
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A.8.2 Moments 

The moments of multivariate random variables are a generalisation of the previous 
definition for single variables. In particular, for bivariate distributions, we have the 
central moments:  

])()([ j
y

k
xkj YXm µµ −−Ε= . A. 44 

The following central moments are worth noting: 
 

m20 = 2
Xσ :  variance of X;  m02 = 2

Yσ :   variance of Y; 
m11 ≡ σXY= σYX:  covariance of X and Y, with [ ] YXXYm µµ−Ε=11 . 
 
For multivariate d-dimensional distributions we have a symmetric positive 

definite covariance matrix: 
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




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
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ddd

d

d

σσσ

σσσ
σσσ

K

KKKK

K

K

Σ . A. 45 

The correlation coefficient, which is a measure of linear association between X 
and Y, is defined by the relation: 

YX

XY
XY σσ

σ
ρρ

.
=≡ .  A. 46 

Properties of the correlation coefficient: 
 
i. –1 ≤ ρ  ≤ 1; 
ii. YXXY ρρ = ; 
iii.  ρ  = ±1    iff   XXYY XY σµσµ /)(/)( −±=− ; 
iv. XYdb,cYaX ρρ =++ ,  ac > 0; XYdb,cYaX ρρ −=++ ,  ac < 0. 
 
If m11 = 0, the random variables are said to be uncorrelated. Since 

[ ] [ ] [ ]YXXY ΕΕ=Ε  if the variables are independent, then they are also 
uncorrelated. The converse statement is not generally true. However, it is true in 
the case of normal distributions, where uncorrelated variables are also independent. 

The definitions of covariance and correlation coefficient have a straightforward 
generalisation for the d-variate case. 

A.8.3 Conditional Densities and Independence 

Assume that the bivariate random vector [X, Y] has a density function f(x, y). Then, 
the conditional distribution of X  given Y is defined, whenever f(y) ≠ 0, as: 
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From the definition it can be proved that the following holds true: 
 

)()|(),( yfyxfyxf = . A. 48 
 

In the case of discrete Y, )|( yxF  can be computed directly. It can also be 
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Note the mixing of discrete prevalences with values of conditional density 
functions. 

A set of random variables dXXX ,,, 21 K are independent if the following 
applies: 

 

)()()(),,( 2121 dd xFxFxFxxxF KK = ; A.50a 
)()()(),,( 2121 dd xfxfxfxxxf KK = . A.50b 

 

For two independent variables, we then have: 

)()(),( yfxfyxf = ;  therefore, )()|();()|( yfxyfxfyxf == . A. 51 

Also: [ ] [ ] [ ]YXXY ΕΕ=Ε . A. 52 
 

It is readily seen that the random variables in correspondence with the bivariate 
density of Example A.21 are not independent since )()(),( 2121 xfxfxxf ≠ . 

Consider two independent random variables, 21, XX , with Gaussian densities 
and parameters (µ1,σ1), (µ2,σ2) respectively. The joint density is the product of the 
marginal Gaussian densities: 
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In this case it can be proved that ρ12 = 0, i.e., for Gaussian distributions, 
independent variables are also uncorrelated. In this case, the equidensity curves in 
the (X1, X 2) plane are ellipsis aligned with the axes. 

If the distributions are not independent (and are, therefore, correlated) one has: 
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proved the Bayes’ Theorem version for this case: 
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where Σ is the symmetric matrix of the covariances with determinant det(Σ) and    
x – µ is the difference vector between the d-variate random vector and the mean 
vector. The equidensity surfaces for the correlated normal variables are ellipsoids, 
whose axes are the eigenvectors of Σ. 

A.8.4 Sums of Random Variables 

Let X and Y be two independent random variables. Then, the distribution of their 
sum corresponds to: 
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)()()( ,  if they are discrete; A.56a 

∫
∞

∞−+ −= duuzfufzf YXYX )()()( ,  if they are continuous. A.56b 
 
The roles of )(uf X and )(ufY can be interchanged. The operation performed 

on the probability or density functions is called a convolution operation. By 
analysing the integral A.56b, it is readily seen that the convolution operation can be 
interpreted as multiplying one of the densities by the reflection of the other as it 
slides along the domain variable u. 

Figure A.10 illustrates the effect of the convolution operation when adding 
discrete random variables for both symmetrical and asymmetrical probability 
functions. Notice how successive convolutions will tend to produce a bell-shaped 
probability function, displacing towards the right, even when the initial probability 
function is asymmetrical. 

Consider the arithmetic mean, X , of n i.i.d. random variables with mean µ and 
standard deviation σ: 

 

∑ == n
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As can be expected the probability or density function of X will tend to a bell-
shaped curve for large n. Also, taking into account the properties of the mean and 
the variance, mentioned in A.6.1, it is clearly seen that the following holds: 

 

µ=Ε ][X ;    [ ] nX /V 2σ= . A.58a 
 

Therefore, the distribution of X will have the same mean as the distribution of X 
and a standard deviation (spread or dispersion) that decreases with n . Note that 
for any variables the additive property of the means is always verified but for the 
variance this is not true: 
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For the d-variate case, this generalises to: 
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A.8.5 Central Limit Theorem 

We have previously seen how multiple addition of the same random variable tends 
to produce a bell-shaped probability or density function. The Central Limit 
Theorem (also known as Levy-Lindeberg Theorem) states that the sum of n 
independent random variables, all with the same mean, µ, and the same standard 
deviation σ  ≠ 0 has a density that is asymptotically Gaussian, with mean nµ and 

nn σσ = . Equivalently, the random variable: 
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is such that ∫
∞

∞−
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∞→
= dxexF x

nXn
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2
1)(lim
π

.  

In particular the X 1,…, X n may be n independent copies of X . 
Let us now consider the sequence of n mutually independent variables X1,…, X n 

with means µk and variances 2
kσ . Then, the sum nXXS ++= K1  has mean and 

variance given by nµµµ ++= K1  and 22
1

2
nσσσ ++= K , respectively. 

We say that the sequence obeys the Central Limit Theorem if for every fixed     
α < β, the following holds: 
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As it turns out, a surprisingly large number of distributions satisfy the Central 
Limit Theorem. As a matter of fact, a necessary and sufficient condition for this 
result to hold is that the Xk are mutually independent and uniformly bounded, i.e., 

AX k <  (see Galambos, 1984, for details). In practice, many phenomena can be 
considered the result of the addition of many independent causes, yielding then, by 
the Central Limit Theorem, a distribution that closely approximates the normal 
distribution, even for a moderate number of additive causes (say above 5). 

Example A. 22 

Consider the following probability functions defined for the domain {1, 2, 3, 4, 5, 
6, 7} (zero outside): 
PX = {0.183, 0.270, 0.292, 0.146, 0.073, 0.029, 0.007}; 
PY = {0.2, 0.2, 0.2, 0.2, 0.2, 0, 0}; 
PZ = {0.007, 0.029, 0.073, 0.146, 0.292, 0.270, 0.183}. 
Figure A.11 shows the resulting probability function of the sum X + Y + Z. The 
resemblance with the normal density function is manifest.  
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Figure A.10. Probability function of the sum of k = 1,.., 4 i.i.d. discrete random 
variables: a) Equiprobable random variable (symmetrical); b) Asymmetrical 
random variable. The solid line shows the univariate probability function; all other 
curves correspond to probability functions with a coarser dotted line for growing k. 
The circles represent the probability values. 
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Figure A.11. a) Probability function (curve with stars) resulting from the addition 
of three random variables with distinct distributions; b) Comparison with the 
normal density function (dotted line) having the same mean and standard deviation 
(the peaked aspect is solely due to the low resolution used). 



Appendix B - Distributions 

B.1 Discrete Distributions 

B.1.1 Bernoulli Distribution 

Description: Success or failure in one trial. The probability of dichotomised events 
was studied by Jacob Bernoulli (1645-1705), hence the name. A dichotomous trial 
is also called a Bernoulli trial. 

Sample space: {0, 1}, with 0 ≡ failure (no success) and 1 ≡ success. 

Probability function: 
xx ppxXPxp −−==≡ 1)1()()( , or putting it more simply,  





=
==−

=
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0,1

)(
xp
xqp

xp    . B.1 

 
Mean:  µ = p. 

Variance:  σ2 = pq, 
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Figure B.1. Bernoulli probability function for p = 0.2. The double arrow 
corresponds to the µ ± σ  interval . 

 

Example B. 1 

Q: A train waits 5 minutes at the platform of a railway station, where it arrives at 
regular half-hour intervals. Someone unaware of the train timetable arrives 
randomly at the railway station. What is the probability that he will catch the train? 
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of time that the train waits at the platform in the inter-arrival period, i.e., p = 5/30 = 
0.17.   

B.1.2 Uniform Distribution 

Description: Probability of occurring one out of n equiprobable events. 

Sample space: {1, 2, …, n}. 

Probability function: 

n
kXPku 1)()( ==≡ ,    1≤ k ≤ n  . B. 2 

Distribution function: 
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i
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Mean:  µ = (n+1)/2. 

Variance:  σ2 = [(n+1) (2n+1)]/6. 
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Figure B.2. Uniform probability function for n=8. The double arrow corresponds 
to theµ ±σ  interval. 

 

Example B. 2 

Q: A card is randomly drawn out of a deck of 52 cards until it matches a previous 
choice. What is the probability function of the random variable representing the 
number of drawn cards until a match is obtained? 

A: The probability of a match at the first drawn card is 1/52. For the second drawn 
card it is (51/52)(1/51)=1/52. In general, for a match at the kth trial, we have: 

A: The probability of a success in the single “train-catching” trial is the percentage 
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Therefore the random variable follows a uniform law with n = 52.  

B.1.3 Geometric Distribution 

Description: Probability of an event occurring for the first time at the kth trial, in a 
sequence of independent Bernoulli trials, when it has a probability p of occurrence 
in one trial. 

Sample space: {1, 2, 3, …}. 

Probability function: 

ppkXPkg k
p

1)1()()( −−==≡ ,   x∈{1, 2, 3, …} (0, otherwise). B. 4 

Distribution function: 
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Mean:  1/p. 

Variance:  (1− p)/p2. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x

g p (x )

 
Figure B.3. Geometric probability function for p = 0.25. The mean occurs at x = 4. 

 

Example B. 3 

Q: What is the probability that one has to wait at least 6 trials before obtaining a 
certain face when tossing a dice? 
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A: The probability of obtaining a certain face is 1/6 and the occurrence of that face 
at the kth Bernoulli trial obeys the geometric distribution, therefore: =≥ )6(XP  

=− )5(1 6/1G 1 − 0.6 = 0.4.  

B.1.4 Hypergeometric Distribution 

Description: Probability of obtaining k items, of one out of two categories, in a 
sample of n items extracted without replacement from a population of N items that 
has D = pN items of that category (and (1−p)N = qN items from the other 
category). In quality control, the category of interest is usually one of the defective 
items. 
Sample space: {max(0, n − N + D), …, min(n,D)}. 

Probability function: 
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   k ∈{max(0, n−N+D), …, min(n,D)}. 
 

From the ( )N
n  possible samples of size n, extracted from the population of N 

items, their composition consists of k items from the interesting category and n − k  
items from the complement category. There are ( )( )DN

kn
D
k

−
− possibilities of such 

compositions; therefore, one obtains the previous formula. 
 

Distribution function: 
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Mean:  np. 

Variance:  







−
−

1N
nNnpq , with 

1−
−

N
nN called the finite population correction. 

Example B. 4 

Q: In order to study the wolf population in a certain region, 13 wolves were 
captured, tagged and released. After a sufficiently long time had elapsed for the 
tagged animals to mix with the untagged ones, 10 wolves were captured, 2 of 
which were found to be tagged. What is the most probable number of wolves in 
that region? 

A: Let N be the size of the population of wolves of which D = 13 are tagged. The 
number of tagged wolves in the second capture sample is distributed according to 
the hypergeometric law. By studying the hN,D,n / h(N-1),D,n ratio, it is found that the 
value of N that maximizes hN,D,n is: 

===
2

1013
k
nDN 65.   
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Figure B. 4.  Hypergeometric probability function for N = 1000 and n = 10, for: D =

 50 (p = 0.05) (light grey); D = 100 (p = 0.1) (dark grey); D = 500 (p = 0.5) 
(black). 

B.1.5 Binomial Distribution 

Description: Probability of k successes in n independent and constant probability 
Bernoulli trials. 

Sample space: {0, 1, …, n}. 

Probability function: 

knkknk
pn qp

k
n

pp
k
n

kXPkb −−








=−








==≡ )1()()(,  , B. 8 

with  k ∈{0, 1, …, n}.  

Distribution function:   ∑
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=
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i
pnpn ibkB

0
,, )()( . B. 9 

A binomial random variable can be considered as a sum of n Bernoulli random 
variables, and when sampling from a finite population, arises only when the 
sampling is done with replacement. The name comes from the fact that B.8 is the 
kth term of the binomial expansion of (p + q)n. 

For a sequence of k successes in n trials − since they are independent and the 
success in any trial has a constant probability p −, we have: 

 

P(k successes in n trials) = knk qp − .  
 
Since there are ( )n

k  such sequences, the formula above is obtained. 

Mean:  µ = np. 

Variance:  σ2 = npq  

Properties: 

1. )()(lim ,,, kbkh pnnDNN
=

∞→
.  
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For large N, sampling without replacement is similar to sampling with 
replacement. Notice the asymptotic behaviour of the finite population 
correction in the variance of the hypergeometric distribution. 

2. pnpn BXnBX −−⇒ 1,, ~~ . 

3. pnnpnpn BYXBYBX ,21,2,1 ~tindependen~and~ ++⇒ . 

4. The mode occurs at µ  (and at µ −1 if (n+1)p happens to be an integer). 
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Figure B.5. Binomial probability functions: B8, 0.5 (light grey); B20, 0.5 (dark grey); 
B20, 0.85 (black). The double arrow indicates the µ ±σ  interval for B20, 0.5. 

 

Example B. 5 

Q: The cardiology service of a Hospital screens patients for myocardial infarction. 
In the population with heart complaints arriving at the service, the probability of 
having that disease is 0.2. What is the probability that at least 5 out of 10 patients 
do not have myocardial infarction? 

A:  Let us denote by p the probability of not having myocardial infarction, i.e.,       
p = 0.8. The probability we want to compute is then: 

=−== ∑
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)4(1)( 8.0,10
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5
8.0,10 BkbP

k
0.9936.  

B.1.6 Multinomial Distribution 

Description: Generalisation of the binomial law when there are more than two 
categories of events in n independent trials with constant probability, pi (for i = 1, 
2, …, k categories), throughout the trials. 

Sample space: {0, 1, …, n}k. 
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Probability function: 
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Mean:  µi = npi 

Variance:  σi
2 = npiqi 

Properties: 
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Figure B.6.  Multinomial probability function for the card-hand problem of 
Example B.6. The mode is m(0, 2, 8) = 0.1265. 

 

Example B. 6 

Q: Consider a hand of 10 cards drawn randomly from a 52 cards deck. Compute 
the probability that the hand has at least one ace or two figures (king, dame or 
valet). 
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A: The probabilities of one single random draw of an ace (X1), a figure (X2) and a 
number (X3) are p1 = 4/52, p2 = 12/52 and p3 = 36/52, respectively. In order to 
compute the probability of getting at least one ace or two figures, in the 10-card 
hand, we use the multinomial probability function ),,( 321 nnnm  ≡ 

),,( 321,,,10 321
nnnm ppp , shown in Figure B.6, as follows:  

=−−=<∩<−=≥∪≥ )9,1,0()10,0,0(1)21(1)21( 2121 mmXXPXXP   
1− 0.025 − 0.084 = 0.89.  

B.1.7 Poisson Distribution 

Description: Probability of obtaining k events when the probability of an event is 
very small and occurs at an average rate of λ events per unit time or space 
(probability of rare events). The name comes from Siméon Poisson (1781-1840), 
who first studied this distribution. 

Sample space: [0, 1, 2, …, ∞ . 

Probability function: 
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The Poisson distribution can be considered an approximation of the binomial 
distribution for a sufficiently large sequence of Bernoulli trials. 

Let X represent a random occurrence of an event in time, such that: the 
probability of only one success in ∆t is asymptotically (i.e., with ∆t → 0) λ ∆t; the 
probability of two or more successes in ∆t is asymptotically zero; the number of 
successes in disjointed intervals are independent random variables. Then, the 
probability Pk(t) of k successes in time t is pλt(k). Therefore, λ is a measure of the 
density of events in the interval t. This same model applies to rare events in other 
domains, instead of time (e.g. bacteria in a Petri plate). 
 
Distribution function: 
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Mean:  λ. 

Variance:  λ. 

Properties: 

1. For small probability of the success event, assuming µ = np is constant, 
the binomial distribution converges to the Poisson distribution, i.e., 
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Figure B.7. Probability function of the Poisson distribution for λ = 1 (light grey), 
λ = 3 (dark grey) and λ = 5 (black). Note the asymmetry of the distributions. 

 

Example B. 7 

Q: A radioactive substance emits alpha particles at a constant rate of one particle 
every 2 seconds, in the conditions stated above for applying the Poisson 
distribution model. What is the probability of detecting at most 1 particle in a     
10-second interval? 

A: Assuming the second as the time unit, we have λ = 0.5. Therefore λ t = 5 and 
we have: 

=+=+=≤ − )
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55 eppXP 0.04.  

B.2 Continuous Distributions 

B.2.1 Uniform Distribution 

Description: Equiprobable equal-length sub-intervals of an interval. Approximation 
of discrete uniform distributions, an example of which is the random number 
generator routine of a computer. 

Sample space: ℜ . 

Density function:          
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Distribution function: 
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Mean:  µ = (a + b)/2.             

Variance:  σ2 = (b − a)2/12. 

Properties: 

1. u(x) ≡ u0,1(x) is the model of the typical random number generator routine 
in a computer. 

2. [ ] [ ]bawhhh
ab
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Example B. 8 

Q: In a cathode ray tube, the electronic beam sweeps a 10 cm line at constant high 
speed, from left to right. The return time of the beam from right to left is 
negligible. At random instants the beam is stopped by means of a switch. What is 
the most probable 2σ -interval to find the beam? 

A: Since for every equal length interval in the swept line there is an equal 
probability to find the beam, we use the uniform distribution and compute the most 
probable interval within one standard deviation as µ ±σ  = 5 ± 2.9 cm (see 
formulas above).   
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Figure B.8. The uniform distribution in [0, 1 , model of the usual random number 
generator routine in computers. The solid circle means point inclusion. 
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B.2.2 Normal Distribution 

Description: The normal distribution is an approximation of the binomial 
distribution for large n and not too small p and q and was first studied by Abraham 
de Moivre (1667-1754) and Pierre Simon de Laplace (1749-1855). It is also an 
approximation of large sums of random variables acting independently (Central 
Limit Theorem). Measurement errors often fall into this category. Sequences of 
measurements whose deviations from the mean satisfy this distribution law, the so-
called normal sequences, were studied by Karl F. Gauss (1777-1855). 

Sample space: ℜ . 

Density function: 
( )

2

2

2
,

2
1)( σ

µ

σµ
σπ

−
−

=
x

exn . B. 16 

Distribution function: 

dttnxN
x

∫ ∞−
= )()( ,, σµσµ . B. 17 

N0,1 (zero mean, unit variance) is called the standard normal distribution. Note 
that one can always compute )(, xN σµ  by referring it to the standard distribution: 

)(1,0, xNxN =






 −
σ

µ
σµ . 

Mean:  µ .           

Variance:  σ2.  

Properties: 

1. 1,0,, ~;~~ N
npq

nX
NXBX

nnpqnpnpn
∞→∞→

⇒
p-

. 

2. npqpnpn N
n
XBX /,, ~~

∞→
=⇒ f . 

3. X1, X2,…, Xn ~ nµ,σ, independent ⇒ 
n

n
i i nXX

/2,1 ~
σµ∑ ==  

4. N0,1(−x) = 1 − N0,1(x). 

5. N0,1(xα) = α  ⇒  N0,1(xα/2) − N0,1(−xα/2) = P(−xα/2 < X  ≤ xα/2 ) = 1−α 

6. The points µ  ± σ are inflexion points (points where the derivative 
changes of sign) of nµ,σ . 

7. n0,1(x)/x −  n0,1(x)/x3 < 1 − N0,1(x) < n0,1(x)/x,  for every x > 0. 

8. 1 − N0,1(x) 
∞→

≈
x

n0,1(x)/x. 

9. ε++
−

=
2
1

10
)4.4(

)(1,0
xx

xN  with 005.0≤ε . 



442 Appendix B - Distributions  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6x

n 0,1(x ) σ = 1

σ = 2

σ = 3

 
Figure B.9. Normal density function with zero mean for three different values of 
σ. 

 
 

Values of interest for αα => )( xXP with X ~ n0,1: 

α 0.0005 0.001 0.005 0.01 0.025 0.05 0.10 
xα 3.29 3.09 2.58 2.33 1.96 1.64 1.28 
 
 

Example B. 9 

Q: The length of screws produced by a machine follows a normal law with average 
value of 1 inch and standard deviation of 0.05 inch. In a large stock of screws, 
what is the percentage of screws one may expect to exceed 1.15 inches? 

A: Referring to the standard normal distribution we determine: 

( ) ≅>=





 −

> 3
05.0

115.1 XPXP 0.1%.  

B.2.3 Exponential Distribution 

Description: Distribution of decay phenomena, where the rate of decay is constant, 
such as in radioactivity phenomena. 

Sample space: ℜ +. 

Density function: 
xex λ

λ λε −=)(  ,  x ≥ 0    (0, otherwise). B. 18 

λ is the so-called spread factor. 



 B.2 Continuous Distributions 443 

Distribution function: 

∫ −−==
x xedttxE

0
1)()( λ

λλ ε   (if x ≥ 0; 0, otherwise) B. 19 

Mean:  µ = 1/λ. 

Variance:  σ2 = 1/λ2. 

Properties: 

1. Let X be a random variable with a Poisson distribution, describing the 
event of a success in time. The random variable associated to the event 
that the interval between consecutive successes is ≤ t follows an 
exponential distribution. 

2. Let the probability of an event lasting more than t + s seconds be 
represented by P(t + s) = P(t)P(s), i.e., the probability of lasting s seconds 
after t does not depend on t. Then P(t + s) follows an exponential 
distribution. 
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Figure B.10. Exponential density function for two values of λ. The double arrows 
indicate the µ ±σ  intervals. 

 

Example B. 10 

Q: The lifetime of a micro-organism in a certain culture follows an exponential law 
with an average lifetime of 1 hour. In a culture of such micro-organisms, how long 
must one wait until finding more than 80% of the micro-organisms dead? 

A: Let X represent the lifetime of the micro-organisms, modelled by the 
exponential law with λ = 1. We have: 

∫ =⇒=⇒=≤ −t x tdxetXP
0

8.08.0)( 1.6 hours.   
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B.2.4 Weibull Distribution 

Description: The Weibull distribution describes the failure rate of equipment and 
the wearing-out of materials. Named after W. Weibull, a Swedish physicist 
specialised in applied mechanics. 

Sample space: ℜ +. 

Density function: 

0,,)/()( )/(1
, >= −− βαβ

β
α αβα

βα
xexxw  (0, otherwise),  B. 20 

where α and β are known as the shape and scale parameters, respectively. 

Distribution function: 
αβ

βαβα
)/(

0 ,, 1)()( xx
edttwxW −−== ∫ . B. 21 

Mean:  µ = ( )ααβ /)1( +Γ  

Variance:  σ2 = ( ) ( )[ ]{ }22 /)1(/)2( ααααβ +Γ−+Γ  
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Figure B.11. Weibull density functions for fixed β =1 (a), β =2 (b), and three 
values of α. Note the scaling and shape effects. For α =1 the exponential density 
function is obtained. 
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Properties: 

1. w1,1/λ(x) ≡ ελ(x). 
2. w2,1/λ (x) is the so-called Rayleigh distribution. 

3. α λα
α

λε
/1,

~~ wXX ⇒ . 

4. λ
α

α λα
ε~~

/1,
XwX ⇒ . 

 

Example B. 11 

Q: Consider that the time in years that an implanted prosthesis survives without 
needing replacement follows a Weibull distribution with parameters α = 2, β =10. 
What is the expected percentage of patients needing a replacement of the prosthesis 
after 6 years? 

A: == )6(1,5.0WP 30.2%.  

B.2.5 Gamma Distribution 

Description: The Gamma distribution is a sort of generalisation of the exponential 
distribution, since the sum of independent random variables, each with the 
exponential distribution, follows the Gamma distribution. Several continuous 
distributions can be regarded as a generalisation of the Gamma distribution. 

Sample space: ℜ +. 

Density function: 

0,,
)(

1)( 1/
, >

Γ
= −− paxe

pa
x pax

ppaγ    (0, otherwise), B. 22 

with Γ(p), the gamma function, defined as ∫
∞ −−=Γ
0

1)( dxxep px , constituting a 
generalization of the notion of factorial, since Γ(1)=1 and Γ(p) = (p − 1) Γ(p − 1). 
Thus, for integer p, one has: Γ(p) = (p − 1)! 

Distribution function: 

dttx
x

papa ∫=Γ
0 ,, )()( γ . B. 23 

Mean:  µ = a p. 

Variance:  σ2 = a2p.  

Properties: 

1. γa,1(x) ≡ ε1/a(x). 
2. Let X1, X2,…, Xn be a set of n independent random variables, each with 

exponential distribution and spread factor λ. Then, X  = X1 + X2 +…+ Xn ~ 
γ1/λ,n. 
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Figure B.12. Gamma density functions for three different pairs of a, p. Notice that 
p works as a shape parameter and a as a scale parameter. 

 

Example B. 12 

Q: The lifetime in years of a certain model of cars, before a major motor repair is 
needed, follows a gamma distribution with a = 0.2, p = 3.5. In the first 6 years, 
what is the probability that a given car needs a major motor repair? 

A: Γ0.2,3.5(6) = 0.066.   

B.2.6 Beta Distribution 

Description: The Beta distribution is a continuous generalization of the binomial 
distribution. 

Sample space: [0, 1]. 

Density function: 

11
, )1(

),(
1)( −− −= qp

qp xx
qpB

xβ  ,  x∈[0, 1]    (0, otherwise),  B. 24 

with 0,,
)(
)()(),( >

+Γ
ΓΓ

= qp
qp
qpqpB , the so-called beta function. 

Distribution function: 

dttx
x

qpqp ∫ ∞−
=Β )()( ,, β  B. 25 

Mean:       )/( qpp +=µ . The sum c = p + q is called concentration parameter. 

Variance:  [ ] )1/()1()1()(/ 22 +−=+++= cqpqppq µµσ . 
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Properties: 

1. β1,1(x) ≡ u(x). 
2. )()()(~ 1,, paXPkBX anapn +−Β=≥⇒ . 

3. X  ~βp,q  ⇒  1/ X  ~ βq,p. 

4. 1,0large, ~
)1(

)(1~ nXcX
cqp

µµ
µ

β
−

−
+⇒ . 

Example B. 13 

Q: Assume that in a certain country the wine consumption in daily litres per capita 
(for the above 18 year old population) follows a beta distribution with p = 1.3,       
q = 0.6. Find the median value of this distribution. 

A: The median value of the wine consumption is computed as: 

P1.3, 0.6(X ≤ 0.5) = 0.26 litres.   
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Figure B.13. a) Beta density functions for different values of p, q; b) P(X ≥ a) 
assuming the binomial distribution with n = 8 and p = 0.5 (circles) and the beta 
distribution according to property 2 (solid line). 
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B.2.7 Chi-Square Distribution 

Description: The sum of squares of independent random variables, with standard 
normal distribution, follows the chi-square (χ2) distribution. The number n of 
added terms is the so-called number of degrees of freedom1, df = n (number of 
terms that can vary independently, achieving the same sum). 

Sample space: +ℜ . 

Density function: 

2/1)2/(
2/

2

)2/(2
1)( xdf

dfdf ex
df

x −−

Γ
=χ , x ≥ 0    (0, otherwise),  B. 26 

with  df degrees of freedom. 

All density functions are skew, but the larger df is, the more symmetric the 
distribution. 

 
Distribution function: 

dttx
x

dfdf ∫=Χ
0

22 )()( χ . B. 27 

Mean:  µ  = df.             

Variance:  σ2 =2 df.  
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Figure B.14. χ2 density functions for different values of the degrees of freedom, df. 
Note the particular cases for df =1 (hyperbolic behaviour) and  df= 2 (exponential). 

 

 

                                                           
1
 Also denoted υ in the literature. 
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Properties: 

1. )()( 2,2/
2 xx dfdf γχ = ; in particular, df = 2 yields the exponential 

distribution with λ = ½. 

2. 2
1,01

2 ~~tindependen, n
n
i i XnXXX χ⇒= ∑ = i  

3. 2
11,01

2 ~~tindependen,)( −= ⇒−= ∑ n
n
i XnXxXX χii  

4. 2
,1

2
2

~~tindependen,)(1
n

n
i XnXXX χµ

σ
σµ ⇒−= ∑ = ii  

5. 2
1,1

2
2

~~tindependen,)(1
−= ⇒−= ∑ n

n
i XnXxXX χ

σ
σµii  

6. 2
21

2
2

2
1 ~~,~ dfdfdfdf YXYX ++⇒ χχχ  (convolution of two χ2 

results in a χ2). 
 

Example B. 14 

Q: The electric current passing through a 10 Ω resistance shows random 
fluctuations around its nominal value that can be well modelled by n0,σ with       
σ  = 0.1 Ampere. What is the probability that the heat power generated in the 
resistance deviates more than 0.1 Watt from its nominal value? 

A: The heat power is p = 10 i2, where i is the current passing through the 10 Ω 
resistance. Therefore: 

)1100()1.010()1.0( 22 >=>=> iPiPpP . 

But: 2
1

22
21.0,0 ~1001 χ

σ
iin~i =⇒ . 

Hence: =>=> )1()1.0( 2
1χPpP 0.317.   

Description: 
the mean deviations over the sample standard deviation. It was derived by the 

20th century. 

Sample space: ℜ . 

Density function: 
2/)1(2

1
)2/(

)2/)1(()(
+−











+

Γ

+Γ
=

df

df df
x

dfdf
dfxt
π

 ,  with  df degrees of freedom.  B. 28 

 

English brewery chemist W.S. Gosset (pen-name “Student”) at the beginning of the 

B.2.8 Student’s t Distribution 

The Student’s t distribution is the distribution followed by the ratio of 
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Distribution function: 

dtttxT
x

dfdf ∫ ∞−
= )()( . B. 29 

Mean:  µ = 0.              

Variance:  σ2 =df /( df  − 2) for df >2.  

Properties: 

1. 1,0nt
df

df
∞→

→ . 

2. 2
1,0 ~,~ dfYnX χ ,    X and Y independent dft

dfY
X ~
/

⇒ . 

3. 

.~~tindependen

,
1

)(
,with

/
1,

1
2

21

−

==

⇒

−

−
==

−
=

∑∑

n

n
ii

tXnX
n

XX
s

n
X

X
ns

XX

σµ

µ

i

i
n

i

 

Example B. 15 

Q: A sugar factory introduced a new packaging machine for the production of 1Kg 
sugar packs. In order to assess the quality of the machine, 15 random packs were 
picked up and carefully weighted. The mean and standard deviation were 
computed and found to be m = 1.1 Kg and s = 0.08 Kg. What is the probability that 
the true mean value is at least 1Kg? 

A: =≤=







≤

−
=≤−=≥ )323.0(323.0

1508.0
)1.0()1( 14tP

m
PmPP

µ
µµ 0.62. 
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freedom, df. The dotted line corresponds to the standard normal density function. 
Figure B.15. Student’s t density functions for several values of the degrees of 
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B.2.9 F  Distribution 

Description: The F distribution was introduced by Ronald A. Fisher (1890-1962), 
in order to study the ratio of variances, and is named after him. The ratio of two 
independent Gamma-distributed random variables, each divided by its mean, also 
follows the F distribution. 

Sample space: ℜ +. 

Density function: 

2/)(
2

2

1

2/)2(

21

2/

2

121

, 21

1

1

21

1
)2/()2/(

2
)(

dfdf

df

df

dfdf

x
df
df

x
dfdf
df
dfdfdf

xf
+

−









+

ΓΓ
















 +
Γ

=   , x ≥ 0, 

with  df1,  df 2 degrees of freedom.  B. 30 

Distribution function: 

dttfxF
x

dfdfdfdf ∫=
0 ,, )()(

2121
. B. 31 

Mean:   µ = 
22

2

−df
df

,   df2 > 2.              

Variance:  σ2 = 
)4()2(

)2(2

2
2

21

21
2

2

−−

−+

dfdfdf
dfdfdf

,   for df2 > 4. 

Properties: 
1. 22,12

222

111
2,221,11 ~

)/(
)/(

~,~ aapapa f
paX
paX

XX ⇒γγ . 

2. baba f
X
X

bX
aXX 2,2, ~

)1/()1(
/

/)1(
/~

µ
µ

β
−−

=
−

⇒ . 

3. abba fXfX ,, ~/1~ ⇒ , as can be derived from the properties of the 
beta distribution. 

4. 2,1
2

12
2

2
1 ~tindependen,~,~ nnnn f

/nY
/nX

YXYX
 
 

, ⇒χχ . 

5. Let X1,…, Xn and Y1,…, Ym be n + m independent random variables such 
that 1,1~ σµnX i and 2,2~ σµnYi .  

Then ( )∑ = −n
i i nX1

2
1

2
1 )/()( σµ  / ( ) mn

m
i i fmY ,1

2
2

2
2 ~)/()(∑ = − σµ . 

6. Let X1,…, Xn and Y1,…, Ym be n + m independent random variables such 
that 1,1~ σµnX i and 2,2~ σµnYi .  

Then ( )∑ = −−n
i i nxX1

2
1

2 ))1/(()( σ / ( )∑ = −−m
i i myY1

2
2

2 ))1/(()( σ ~ fn−1,m−1, 
where x  and y are sample means. 
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Figure B. 16. F density functions for several values of the degrees of freedom, df1,  
df2. 

 

Example B. 16 

Q: A factory is using two machines, M1 and M2, for the production of rods with a 

produced by the two machines, a random sample of each machine was collected as 
follows: n1 = 15 rods produced by M1 and n2 = 21 rods produced by M2. The 
diameters were measured and the standard deviations computed and found to be: 
s1= 0.012 cm, s2= 0.01 cm. What is the probability that the variability of the rod 
diameters produced by M2 is smaller than the one referring to M1? 

A: Denote by σ1, σ2 the standard deviations corresponding to M1 and M2, 
respectively. We want to compute: 

( ) 







<=< 1

1

2
12 σ

σ
σσ PP . 

According to property 6, we have: 
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0.78.  

B.2.10 Von Mises Distributions 

Description: The von Mises distributions are the normal distribution equivalent for 
circular and spherical data. The von Mises distribution for circular data, also 
known as circular normal distribution, was introduced by R. von Mises (1918) in 
order to study the deviations of measured atomic weights from integer values. It 
also describes many other physical phenomena, e.g. diffusion processes on the 
circle, as well as in the plane, for particles with Brownian motion hitting the unit 

nominal diameter of 1 cm. In order to assess the variability of the rods’ diameters 
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circle. The von Mises-Fisher distribution is a generalization for a (p−1)-
dimensional unit-radius hypersphere S p−1 (x x = 1), embedded in pℜ .  

Sample space: S p−1 ⊂ pℜ . 

Density function: 

xµ
µ x κ

κ κ
κ e

Ip
m

p

p

p )()2/(
1

2
)(

12/

12/

,,
−

−

Γ






= , B. 32 

 

where µ is the unit length mean vector (also called polar vector), κ ≥ 0 is the 
concentration parameter and Iν is the modified Bessel function of the first kind and 
order ν. 

For p = 2 one obtains the original von Mises circular distribution: 
 

)cos(

0
, )(2

1)( µθκ
κµ κπ

θ −= e
I

m , B. 33 

 

where I0 denotes the modified Bessel function of the first kind and order 0, which 
can be computed by the following power series expansion: 

 

∑∞
= 






= 0

2

20 2)!(
1)( r

r

r
I κκ . B. 34 

 

For p = 3 one obtains the spherical Fisher distribution: 
 

xµ
µ x κ

κ κ
κ em

sinh2
)(3,, = . B. 35 

 

Mean:  µ . 

Circular Variance: 

 v = 1 −  I1(κ)/I0(κ) = 












+−+− K
3072
11

489
1

2

642 κκκκ . 

Spherical Variance:  
 

 v = 1 − coth κ − 1/κ.  
Properties: 

 
1. mµ,κ (θ + 2π) = mµ,κ (θ). 

2. Mµ,κ(θ +2π) − Mµ,κ(θ) =1, where Mµ,κ is the circular von Mises 
distribution function. 

3. 1,0, ~, NM ∞→κκµ  (approx.). 

4. )(/)()(with 01)(,, kIIAWNM A κκκµκµ =≅ , and WNµ,σ the wrapped 
normal distribution (wrapping around 2π). 

’

’

’
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5. Let x = r(cosθ, sinθ)  have a bivariate normal distribution with mean   µ = 
(cosµ, sinµ)  and equal variance 1/κ. Then, the conditional distribution of 
θ given r = 1 is Mµ,κ. 

6. Let the unit length vector x be expressed in polar co-ordinates in 3ℜ , i.e., 
x = (cosθ, sinθ cosφ, sinθ sinφ ) , with θ the co-latitude and φ  the 
azimuth. Then, θ  and φ are independently distributed, with: 

 

θ
κ

κθ θκ
κ sin

sinh2
)( cosef = ,   θ ∈[0, π ]; 

h(φ) = 1/(2π),  φ ∈ [0, 2π [, is the uniform distribution. 
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Example B. 17. a) Density function of the circular von Mises distribution for     
µ = 0 and several values of κ; b) Density function of the co-latitude of the spherical 
von Mises distribution for several values of κ. 
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Appendix C - Point Estimation 

In Appendix C, we present a few introductory concepts on point estimation and on 
results regarding the estimation of the mean and the variance. 

C.1 Definitions 

Let FX (x) be a distribution function of a random variable X, dependent on a certain 
parameter θ. We assume that there is available a random sample x = [x1, x2 ,…, xn]  
and build a function tn(x) that gives us an estimate of the parameter θ, a point 
estimate of θ. Note that, by definition, in a random sample from a population with 
a density function fX (x), the random variables associated with the values x1, …, xn, 
are i.i.d., i.e., the random sample has a joint density given by: 

 
)()...()(),...,,( 2121,...,2,1 nXXXnnXXX xfxfxfxxxf = . 

 
The estimate tn(x) is considered a value of a random variable, called a point 

estimator or statistic, Tn ≡ tn(Xn), where Xn denotes the n-dimensional random 
variable corresponding to the sampling process. 

The following properties are desirable for a point estimator: 
 
– Unbiased ness. A point estimator is said to be unbiased if its expectation is θ: 
 

Ε[ Tn ] ≡ Ε[tn(Xn)] = θ. 
 
– Consistency. A point estimator is said to be consistent if the following holds: 
 

( ) 0,0
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As illustrated in Figure C.1, a biased point estimator yields a mean value 

different from the true value of the distribution parameter. Figure C.1 also 
illustrates the notion of consistency. 

When comparing two unbiased and consistent point estimators Tn,1 and Tn,2, it is 
reasonable to prefer the one that has a smaller variance, say Tn,1: 

 
V[Tn,1] ≤ V[Tn,2]. 
 
The estimator Tn,1 is then said to be more efficient than Tn,2. 

’
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There are several methods to construct point estimator functions. A popular one 
is the maximum likelihood (ML) method, which is applied by first constructing for 
sample x, the following likelihood function: 

 

∏
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i
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where f(xi|θ) is the density function (probability function in the discrete case) 
evaluated at xi, given the value θ  of the parameter to be estimated.  

Next, the value that maximizes L(θ) (within the domain of values of θ) is 
obtained. The ML method will be applied in the next section. Its popularity derives 
from the fact that it will often yield a consistent point estimator, which, when 
biased, is easy to adjust by using a simple corrective factor. 

 
 
 

a θΕ[Tn ]  b Ε[Tn]=θ

n=10

n=20

 

Figure C.1.  a) Density function of a biased point estimator (expected mean is 
different from the true parameter value); b) Density functions of an unbiased and 
consistent estimator for two different values of n: the probability of a ± ε deviation 
from the true parameter value – shaded area − tends to zero with growing n. 

 

Example C. 1 

Q: A coin is tossed n times until head turns up for the first time. What is the 
maximum likelihood estimate of the probability of head turning up? 

A: Let us denote by p and q = 1 – p the probability of turning up head or tail, 
respectively. Denoting X1, …, Xn the random variables associated to the coin 
tossing sequence, the likelihood is given by: 

 

( ) ( ) ( ) pqpXPpXPpXPpL n
n

1
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The maximum likelihood estimate is therefore given by: 
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nppqnq
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This estimate is biased and inconsistent. We see that the ML method does not 

always provide good estimates.  
 

Example C. 2 

Q: Let us now modify the previous example assuming that in n tosses of the coin 
heads turned up k times. What is the maximum likelihood estimate of the 
probability of heads turning up? 

A: Using the same notation as before we now have: 
 

kkn pqpL −=)(  
Hence: 

[ ] nkpkqpknpq
dp

pdL kkn /ˆ0)()( 11 =⇒=+−−= −−−  (for p≠ 0, 1) 

 
This is the well-known unbiased and consistent estimate.  

C.2 Estimation of Mean and Variance 

Let X be a normal random variable with mean µ and variance v: 
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Assume that we were given a sample of size n from X and were asked to derive 

the ML point estimators of µ and variance v. We would then have: 
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Instead of maximizing L(x|θ) we may, equivalently, maximize its logarithm: 
 

∑ −−−= =
n
i i vxvnL 1

2 /)(
2
1)2ln()2/()|(ln µπθx . 

 
Therefore, we obtain: 
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Let us now comment on these results. The point estimate of the mean, given by 

the arithmetic mean, x , is unbiased and consistent. This is a general result, valid 
not only for normal random variables but for any random variables as well. As a 
matter of fact, from the properties of the arithmetic mean (see Appendix A) we 
know that it is unbiased (A.58a) and consistent, given the inequality of Chebyshev 
and the expression of the variance (A.58b). As a consequence, the unbiased and 
consistent point estimator of a proportion is readily seen to be: 

 

n
k

=p ,  

 

Bernoulli trials. This results from the fact that the summation of xi for the Bernoulli 
trials is precisely k. The reader can also try to obtain this same estimator by 
applying the ML method to a binomial random experiment. 

Let us now consider the point estimate of the variance. We have:  
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Therefore, the unbiased estimator of the variance is: 
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This corresponds to multiplying the previous ML estimator by the corrective 

factor n/(n – 1) (only noticeable for small n). The point estimator of the variance 
can also be proven to be consistent. 

 

where k is the number of times the “success” event has occurred in the n i.i.d. 



Appendix D - Tables 

D.1 Binomial Distribution 

The following table lists the values of Bn,p(k) (see B.1.2). 
  

      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 0 0.9500 0.9000 0.8500 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500
1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250
1 0.9928 0.9720 0.9393 0.8960 0.8438 0.7840 0.7183 0.6480 0.5748 0.5000
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625
1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125
2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875
3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0313
1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875
2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000
3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125
4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094
2 0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734
5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352
2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445
3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633
4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367
5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648
7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195
2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898
3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539
4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000
5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107
2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719
4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770
5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059
2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327
3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133
4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744
5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000
6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256
7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032
2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193
3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730
4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938
5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872
6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128
7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062
8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001
1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017
2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112
3 0.9969 0.9658 0.8820 0.7473 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461
4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334
5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905
6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000
7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095
8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001
1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009
2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065
3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287
4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898
5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120
6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953
7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047
8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005
2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037
3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176
4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592
5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509
6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036
7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000
8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964
9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003
2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021
3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106
4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384
5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051
6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272
7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018
8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982
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      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

16 9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728
10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000
1 0.7922 0.4818 0.2525 0.1182 0.0501 0.0193 0.0067 0.0021 0.0006 0.0001
2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012
3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064
4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245
5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717
6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662
7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000
9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001
2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038
4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154
5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481
6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403
8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073
9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597
11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 0.9942 0.9817 0.9519
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846
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      p      
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

18 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004
3 0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022
4 0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096
5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318
6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835
7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796
8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762
11 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000
2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013
4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059
5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577
7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316
8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517
9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881
11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793
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D.2 Normal Distribution 

The following table lists the values of N0,1(x) (see B.1.2). 
 

x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 0.5 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.5279 0.53188 0.53586

0.1 0.53983 0.5438 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.6293 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.6591 0.66276 0.6664 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.7054 0.70884 0.71226 0.71566 0.71904 0.7224

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.7549

0.7 0.75804 0.76115 0.76424 0.7673 0.77035 0.77337 0.77637 0.77935 0.7823 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.8665 0.86864 0.87076 0.87286 0.87493 0.87698 0.879 0.881 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.9032 0.9049 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.9222 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.9452 0.9463 0.94738 0.94845 0.9495 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.9608 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.9732 0.97381 0.97441 0.975 0.97558 0.97615 0.9767

2 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.9803 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.983 0.98341 0.98382 0.98422 0.98461 0.985 0.98537 0.98574

2.2 0.9861 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.9884 0.9887 0.98899

2.3 0.98928 0.98956 0.98983 0.9901 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.9918 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.9943 0.99446 0.99461 0.99477 0.99492 0.99506 0.9952

2.6 0.99534 0.99547 0.9956 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.9972 0.99728 0.99736

2.8 0.99744 0.99752 0.9976 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
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D.3 Student´s t Distribution 

The following table lists the values of (see B.1.2): ∫ ∞−
−=≤

x
dfdf dtttxtP )(1)( . 

 
       df       
x 1 3 5 7 9 11 13 15 17 19 21 23 25 

0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.1 0.532 0.537 0.538 0.538 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539 

0.2 0.563 0.573 0.575 0.576 0.577 0.577 0.578 0.578 0.578 0.578 0.578 0.578 0.578 

0.3 0.593 0.608 0.612 0.614 0.615 0.615 0.616 0.616 0.616 0.616 0.616 0.617 0.617 

0.4 0.621 0.642 0.647 0.649 0.651 0.652 0.652 0.653 0.653 0.653 0.653 0.654 0.654 

0.5 0.648 0.674 0.681 0.684 0.685 0.687 0.687 0.688 0.688 0.689 0.689 0.689 0.689 

0.6 0.672 0.705 0.713 0.716 0.718 0.72 0.721 0.721 0.722 0.722 0.723 0.723 0.723 

0.7 0.694 0.733 0.742 0.747 0.749 0.751 0.752 0.753 0.753 0.754 0.754 0.755 0.755 

0.8 0.715 0.759 0.77 0.775 0.778 0.78 0.781 0.782 0.783 0.783 0.784 0.784 0.784 

0.9 0.733 0.783 0.795 0.801 0.804 0.806 0.808 0.809 0.81 0.81 0.811 0.811 0.812 

1 0.75 0.804 0.818 0.825 0.828 0.831 0.832 0.833 0.834 0.835 0.836 0.836 0.837 

1.1 0.765 0.824 0.839 0.846 0.85 0.853 0.854 0.856 0.857 0.857 0.858 0.859 0.859 

1.2 0.779 0.842 0.858 0.865 0.87 0.872 0.874 0.876 0.877 0.878 0.878 0.879 0.879 

1.3 0.791 0.858 0.875 0.883 0.887 0.89 0.892 0.893 0.895 0.895 0.896 0.897 0.897 

1.4 0.803 0.872 0.89 0.898 0.902 0.905 0.908 0.909 0.91 0.911 0.912 0.913 0.913 

1.5 0.813 0.885 0.903 0.911 0.916 0.919 0.921 0.923 0.924 0.925 0.926 0.926 0.927 

1.6 0.822 0.896 0.915 0.923 0.928 0.931 0.933 0.935 0.936 0.937 0.938 0.938 0.939 

1.7 0.831 0.906 0.925 0.934 0.938 0.941 0.944 0.945 0.946 0.947 0.948 0.949 0.949 

1.8 0.839 0.915 0.934 0.943 0.947 0.95 0.952 0.954 0.955 0.956 0.957 0.958 0.958 

1.9 0.846 0.923 0.942 0.95 0.955 0.958 0.96 0.962 0.963 0.964 0.964 0.965 0.965 

2 0.852 0.93 0.949 0.957 0.962 0.965 0.967 0.968 0.969 0.97 0.971 0.971 0.972 

2.1 0.859 0.937 0.955 0.963 0.967 0.97 0.972 0.973 0.975 0.975 0.976 0.977 0.977 

2.2 0.864 0.942 0.96 0.968 0.972 0.975 0.977 0.978 0.979 0.98 0.98 0.981 0.981 

2.3 0.869 0.948 0.965 0.973 0.977 0.979 0.981 0.982 0.983 0.984 0.984 0.985 0.985 

2.4 0.874 0.952 0.969 0.976 0.98 0.982 0.984 0.985 0.986 0.987 0.987 0.988 0.988 

2.5 0.879 0.956 0.973 0.98 0.983 0.985 0.987 0.988 0.989 0.989 0.99 0.99 0.99 

2.6 0.883 0.96 0.976 0.982 0.986 0.988 0.989 0.99 0.991 0.991 0.992 0.992 0.992 

2.7 0.887 0.963 0.979 0.985 0.988 0.99 0.991 0.992 0.992 0.993 0.993 0.994 0.994 

2.8 0.891 0.966 0.981 0.987 0.99 0.991 0.992 0.993 0.994 0.994 0.995 0.995 0.995 

2.9 0.894 0.969 0.983 0.989 0.991 0.993 0.994 0.995 0.995 0.995 0.996 0.996 0.996 

3 0.898 0.971 0.985 0.99 0.993 0.994 0.995 0.996 0.996 0.996 0.997 0.997 0.997 

3.1 0.901 0.973 0.987 0.991 0.994 0.995 0.996 0.996 0.997 0.997 0.997 0.997 0.998 

3.2 0.904 0.975 0.988 0.992 0.995 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.998 

3.3 0.906 0.977 0.989 0.993 0.995 0.996 0.997 0.998 0.998 0.998 0.998 0.998 0.999 

3.4 0.909 0.979 0.99 0.994 0.996 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 

3.5 0.911 0.98 0.991 0.995 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 
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D.4 Chi-Square Distribution 

Table of the one-sided chi-square probability: ∫−=>
x

dfdf dttxP
0

22 )(1)( χχ . 

 
      df        
x 1 3 5 7 9 11 13 15 17 19 21 23 25 
1 0.317 0.801 0.963 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 0.157 0.572 0.849 0.960 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 0.083 0.392 0.700 0.885 0.964 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.046 0.261 0.549 0.780 0.911 0.970 0.991 0.998 0.999 1.000 1.000 1.000 1.000 

5 0.025 0.172 0.416 0.660 0.834 0.931 0.975 0.992 0.998 0.999 1.000 1.000 1.000 

6 0.014 0.112 0.306 0.540 0.740 0.873 0.946 0.980 0.993 0.998 0.999 1.000 1.000 

7 0.008 0.072 0.221 0.429 0.637 0.799 0.902 0.958 0.984 0.994 0.998 0.999 1.000 

8 0.005 0.046 0.156 0.333 0.534 0.713 0.844 0.924 0.967 0.987 0.995 0.998 0.999 

9 0.003 0.029 0.109 0.253 0.437 0.622 0.773 0.878 0.940 0.973 0.989 0.996 0.999 

10 0.002 0.019 0.075 0.189 0.350 0.530 0.694 0.820 0.904 0.953 0.979 0.991 0.997 

11 0.001 0.012 0.051 0.139 0.276 0.443 0.611 0.753 0.857 0.924 0.963 0.983 0.993 

12 0.001 0.007 0.035 0.101 0.213 0.364 0.528 0.679 0.800 0.886 0.940 0.970 0.987 

13 0.000 0.005 0.023 0.072 0.163 0.293 0.448 0.602 0.736 0.839 0.909 0.952 0.977 

14 0.000 0.003 0.016 0.051 0.122 0.233 0.374 0.526 0.667 0.784 0.870 0.927 0.962 

15 0.000 0.002 0.010 0.036 0.091 0.182 0.307 0.451 0.595 0.723 0.823 0.895 0.941 

16 0.000 0.001 0.007 0.025 0.067 0.141 0.249 0.382 0.524 0.657 0.770 0.855 0.915 

17 0.000 0.001 0.004 0.017 0.049 0.108 0.199 0.319 0.454 0.590 0.711 0.809 0.882 

18 0.000 0.000 0.003 0.012 0.035 0.082 0.158 0.263 0.389 0.522 0.649 0.757 0.842 

19 0.000 0.000 0.002 0.008 0.025 0.061 0.123 0.214 0.329 0.457 0.585 0.701 0.797 

20 0.000 0.000 0.001 0.006 0.018 0.045 0.095 0.172 0.274 0.395 0.521 0.642 0.747 

21 0.000 0.000 0.001 0.004 0.013 0.033 0.073 0.137 0.226 0.337 0.459 0.581 0.693 

22 0.000 0.000 0.001 0.003 0.009 0.024 0.055 0.108 0.185 0.284 0.400 0.520 0.636 

23 0.000 0.000 0.000 0.002 0.006 0.018 0.042 0.084 0.149 0.237 0.344 0.461 0.578 

24 0.000 0.000 0.000 0.001 0.004 0.013 0.031 0.065 0.119 0.196 0.293 0.404 0.519 

25 0.000 0.000 0.000 0.001 0.003 0.009 0.023 0.050 0.095 0.161 0.247 0.350 0.462 

26 0.000 0.000 0.000 0.001 0.002 0.006 0.017 0.038 0.074 0.130 0.206 0.301 0.408 

27 0.000 0.000 0.000 0.000 0.001 0.005 0.012 0.029 0.058 0.105 0.171 0.256 0.356 

28 0.000 0.000 0.000 0.000 0.001 0.003 0.009 0.022 0.045 0.083 0.140 0.216 0.308 

29 0.000 0.000 0.000 0.000 0.001 0.002 0.007 0.016 0.035 0.066 0.114 0.180 0.264 

30 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.012 0.026 0.052 0.092 0.149 0.224 

31 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.009 0.020 0.040 0.074 0.123 0.189 

32 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.015 0.031 0.059 0.100 0.158 

33 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.011 0.024 0.046 0.081 0.131 

34 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.036 0.065 0.108 

35 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.014 0.028 0.052 0.088 

36 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.011 0.022 0.041 0.072 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.017 0.033 0.058 
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D.5 Critical Values for the F Distribution 

For α = 0.99: 
 
      df1       

df2 1 2 3 4 6 8 10 15 20 30 40 50 
1 4052 4999 5404 5624 5859 5981 6056 6157 6209 6260 6286 6302 

2 98.50 99.00 99.16 99.25 99.33 99.38 99.40 99.43 99.45 99.47 99.48 99.48 

3 34.12 30.82 29.46 28.71 27.91 27.49 27.23 26.87 26.69 26.50 26.41 26.35 

4 21.20 18.00 16.69 15.98 15.21 14.80 14.55 14.20 14.02 13.84 13.75 13.69 

5 16.26 13.27 12.06 11.39 10.67 10.29 10.05 9.72 9.55 9.38 9.29 9.24 

6 13.75 10.92 9.78 9.15 8.47 8.10 7.87 7.56 7.40 7.23 7.14 7.09 

7 12.25 9.55 8.45 7.85 7.19 6.84 6.62 6.31 6.16 5.99 5.91 5.86 

8 11.26 8.65 7.59 7.01 6.37 6.03 5.81 5.52 5.36 5.20 5.12 5.07 

9 10.56 8.02 6.99 6.42 5.80 5.47 5.26 4.96 4.81 4.65 4.57 4.52 

10 10.04 7.56 6.55 5.99 5.39 5.06 4.85 4.56 4.41 4.25 4.17 4.12 

 
For α = 0.95: 
 

      df1       
df2 1 2 3 4 6 8 10 15 20 30 40 50 

1 161.45 199.50 215.71 224.58 233.99 238.88 241.88 245.95 248.02 250.10 251.14 251.77 

2 18.51 19.00 19.16 19.25 19.33 19.37 19.40 19.43 19.45 19.46 19.47 19.48 

3 10.13 9.55 9.28 9.12 8.94 8.85 8.79 8.70 8.66 8.62 8.59 8.58 

4 7.71 6.94 6.59 6.39 6.16 6.04 5.96 5.86 5.80 5.75 5.72 5.70 

5 6.61 5.79 5.41 5.19 4.95 4.82 4.74 4.62 4.56 4.50 4.46 4.44 

6 5.99 5.14 4.76 4.53 4.28 4.15 4.06 3.94 3.87 3.81 3.77 3.75 

7 5.59 4.74 4.35 4.12 3.87 3.73 3.64 3.51 3.44 3.38 3.34 3.32 

8 5.32 4.46 4.07 3.84 3.58 3.44 3.35 3.22 3.15 3.08 3.04 3.02 

9 5.12 4.26 3.86 3.63 3.37 3.23 3.14 3.01 2.94 2.86 2.83 2.80 

10 4.96 4.10 3.71 3.48 3.22 3.07 2.98 2.85 2.77 2.70 2.66 2.64 

11 4.84 3.98 3.59 3.36 3.09 2.95 2.85 2.72 2.65 2.57 2.53 2.51 

12 4.75 3.89 3.49 3.26 3.00 2.85 2.75 2.62 2.54 2.47 2.43 2.40 

13 4.67 3.81 3.41 3.18 2.92 2.77 2.67 2.53 2.46 2.38 2.34 2.31 

14 4.60 3.74 3.34 3.11 2.85 2.70 2.60 2.46 2.39 2.31 2.27 2.24 

15 4.54 3.68 3.29 3.06 2.79 2.64 2.54 2.40 2.33 2.25 2.20 2.18 

16 4.49 3.63 3.24 3.01 2.74 2.59 2.49 2.35 2.28 2.19 2.15 2.12 

17 4.45 3.59 3.20 2.96 2.70 2.55 2.45 2.31 2.23 2.15 2.10 2.08 

18 4.41 3.55 3.16 2.93 2.66 2.51 2.41 2.27 2.19 2.11 2.06 2.04 

19 4.38 3.52 3.13 2.90 2.63 2.48 2.38 2.23 2.16 2.07 2.03 2.00 

20 4.35 3.49 3.10 2.87 2.60 2.45 2.35 2.20 2.12 2.04 1.99 1.97 

30 4.17 3.32 2.92 2.69 2.42 2.27 2.16 2.01 1.93 1.84 1.79 1.76 

40 4.08 3.23 2.84 2.61 2.34 2.18 2.08 1.92 1.84 1.74 1.69 1.66 

60 4.00 3.15 2.76 2.53 2.25 2.10 1.99 1.84 1.75 1.65 1.59 1.56 
 



Appendix E - Datasets 

Datasets included in the book CD are presented in the form of Microsoft EXCEL 
files with a description worksheet. 

E.1 Breast Tissue 

The Breast Tissue.xls file contains 106 electrical impedance measurements 
performed on samples of freshly excised breast tissue. Six classes of tissue were 
studied: 

 
CAR:     Carcinoma (21 cases)  FAD:     Fibro-adenoma (15 cases) 
MAS:     Mastopathy (18 cases)  GLA:     Glandular (16 cases) 
CON:     Connective (14 cases)  ADI:      Adipose (22 cases) 
 
Impedance measurements were taken at seven frequencies and plotted in the 

real-imaginary plane, constituting the impedance spectrum from which the 
following features were computed: 

 
I0:  Impedance at zero frequency (Ohm) 
PA500: Phase angle at 500 KHz 
HFS:  High-frequency slope of the phase angle 
DA:  Impedance distance between spectral ends 
AREA: Area under the spectrum 
A/DA : Area normalised by DA 
MAX IP: Maximum amplitude of the spectrum 
DR: Distance between I0 and the real part of the maximum frequency 

point 
P:  Length of the spectral curve 
 

Source: J Jossinet, INSERM U.281, Lyon, France. 

E.2 Car Sale 

The Car Sale.xls file contains data on 22 cars that was collected between          
12 September, 2000 and 31 March, 2002. 
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Sale1: Date that a car was sold. 
Complaint: Date that a complaint about any type of malfunctioning was 

presented for the first time. 
Sale2:  Last date that a car accessory was purchased (unrelated to the 

complaint). 
Lost: Lost contact during the study? True = Yes; False = No. 
End: End date of the study. 
Time: Number of days until event (Sale2, Complaint or End). 
 

Source: New and Used Car Stand in Porto, Portugal. 

E.3 Cells 

The Cells.xls file has the following two datasheets: 
 

1. CFU Datasheet 
 

a mycobacterium. Bacterial load is studied at different time points in three target 
organs: the spleen, the liver and the lungs. 

After the mice are dissected, the target organs are homogenised and plated for 
bacterial counts (CFUs). 

There are two groups for each time point: 
 
1 Anti-inflammatory protein deficient group (knock-out group, KO). 
2 Normal control group (C). 
 
The two groups (1 and 2) dissected at different times are independent. 
 

2. SPLEEN Datasheet 
 

The data consists of stained cell counts from infected mice spleen, using two 
biochemical markers: CD4 and CD8. 

Cell counting is performed with a flow cytometry system. The two groups (K 
and C) dissected at different times are independent. 

 
Source: S Lousada, IBMC (Instituto de Biologia Molecular e Celular), Porto, 
Portugal. 

E.4 Clays 

The Clays.xls file contains the analysis results of 94 clay samples from probes 
collected in an area with two geological formations (in the region of Anadia, 
Portugal). The following variables characterise the dataset: 

The data consists of counts of “colony forming units”, CFUs, in mice infected with 

The variables are: 
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Age: Geological age: 1 - pliocenic (good quality clay); 2 - pliocenic 
(bad quality clay); 3 - holocenic. 

Level: Probe level (m). 
Grading: LG (%) - low grading: < 2 microns; 
 MG (%) - medium grading: ≥ 2 , < 62 microns; 
 HG (%) - high grading: ≥ 62 microns. 
Minerals: Ilite, pyrophyllite, caolinite, lepidolite, quartz, goethite, K-

feldspar, Na-feldspar, hematite (%). 
BS: Bending strength (Kg/cm2). 
Contraction: v/s (%) - volume contraction, 1st phase; 
 s/c (%) - volume contraction, 2nd phase; 
 tot (%) - volume contraction, total. 
Chemical analysis results: SiO2, Al2O3, Fe2O3, FeO, CaO, MgO, Na2O, K2O, 

TiO2 (%). 
 

Source: C Carvalho, IGM - Instituto Geológico-Mineiro, Porto, Portugal. 

E.5 Cork Stoppers 

The Cork Stoppers.xls file contains measurements of cork stopper defects. 
These were automatically obtained by an image processing system on 150 cork 
stoppers belonging to three classes.  

The first column of the Cork Stoppers.xls datasheet contains the class 
labels assigned by human experts: 

 
1:    Super Quality  (n1 = 50 cork stoppers) 
2:   Normal Quality  (n2 = 50 cork stoppers) 
3:   Poor Quality  (n3 = 50 cork stoppers) 
 
The following columns contain the measurements: 
 
N:  Total number of defects. 
PRT:  Total perimeter of the defects (in pixels). 
ART:  Total area of the defects (in pixels). 
PRM:  Average perimeter of the defects (in pixels) = PRT/N- 
ARM: Average area of the defects (in pixels) = ART/N. 
NG:  Number of big defects (area bigger than an adequate threshold). 
PRTG: Total perimeter of big defects (in pixels). 
ARTG: Total area of big defects (in pixels). 
RAAR: Area ratio of the defects = ARTG/ART. 
RAN:  Big defects ratio = NG/N. 
 

Source: A Campilho, Dep. Engenharia Electrotécnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 
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E.6 CTG 

The CTG.xls file contains measurements and classification results of 
cardiotocographic (CTG) examinations of 2126 foetuses. The examinations were 
performed at São João Hospital, Porto, Portugal. Cardiotocography is a popular 
diagnostic method in Obstetrics, consisting of the analysis and interpretation of the 
following signals: foetal heart rate; uterine contractions; foetal movements. 

The measurements included in the CTG.xls file correspond only to foetal heart 
rate (FHR) features (e.g., basal value, accelerative/decelerative events), computed 
by an automatic system on FHR signals. The classification corresponds to a 
diagnostic category assigned by expert obstetricians independently of the CTG. 

The following cardiotocographic features are available in the CTG.xls file: 
 
LBE Baseline value (medical expert) LB Baseline value (system) 
AC No. of accelerations FM No. of foetal movements 
UC No. of uterine contractions DL No. of light decelerations  
DS No. of severe decelerations DP No. of prolonged decelerations 
DR No. of repetitive decelerations MIN Low freq. of the histogram 
MAX High freq. of the histogram MEAN Histogram mean 
NZER Number of histogram zeros MODE Histogram mode  
NMAX Number of histogram peaks VAR Histogram variance 
MEDIAN  Histogram median WIDTH  Histogram width 
TEND Histogram tendency: −1= left assym.; 0 = symm.; 1 = right assym. 
ASTV Percentage of time with abnormal short term (beat-to-beat) variability  
MSTV Mean value of short term variability 
ALTV Percentage of time with abnormal long term (one minute) variability  
MLTV Mean value of long term variability 
 
Features AC, FM, UC, DL, DS, DP and DR should be converted to per unit time 

values (e.g. per minute) using the duration time of the analysed signal segment 
computed from start and end times given in columns B and E (in seconds). 

The data is classified in ten classes: 
 
A: Calm sleep 
B: Rapid-eye-movement sleep 
C: Calm vigilance 
D: Active vigilance 
SH: Shift pattern (A or SUSP with shifts) 
AD: Accelerative/decelerative pattern (stress situation) 
DE: Decelerative pattern (vagal stimulation) 
LD: Largely decelerative pattern 
FS: Flat-sinusoidal pattern (pathological state) 
SUSP: Suspect pattern 
 
A column containing the codes of Normal (1), Suspect (2) and Pathologic (3) 

classification is also included. 
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Source: J Bernardes, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.7 Culture 

different cultural activities in 165 Portuguese boroughs in 1995. 
The boroughs constitute a sample of 3 regions:    
 
Region: 1 - Alentejo province;  

 2 - Center provinces;   
 3 - Northern provinces. 

 
The cultural activities are: 
 
Cine:  Cinema and photography 
Halls:  Halls for cultural activities 
Sport:  Games and sport activities 
Music: Musical activities 
Literat: Literature  
Heritage: Cultural heritage (promotion, maintenance, etc.) 
Theatre: Performing Arts  
Fine Arts: Fine Arts (promotion, support, etc.) 
 
Source: INE - Instituto Nacional de Estatística, Portugal. 

E.8 Fatigue 

The Fatigue.xls file contains results of fatigue tests performed on aluminium 
and iron specimens for the car industry. The specimens were subject to a sinusoidal 
load (20 Hz) until breaking or until a maximum of 107 (ten million) cycles was 
reached. There are two datasheets, one for the aluminium specimens and the other 
for the iron specimens. 

The variables are: 
 
Ref:  Specimen reference. 
Amp:  Amplitude of the sinusoidal load in MPa. 
NC:  Number of cycles. 
DFT:  Defect type. 
Break: Yes/No according to specimen having broken or not. 
AmpG: Amplitude group: 1 - Low; 2 - High. 

 
Source: Laboratório de Ensaios Tecnológicos, Dep. Engenharia Mecânica, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 

The Culture.xls file contains percentages of the “culture budget” assigned to 
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E.9 FHR 

The FHR.xls file contains measurements and classifications performed on 51 
foetal heart rate (FHR) signals with 20-minute duration, and collected from 
pregnant women at intra-partum stage. 

All the signals were analysed by an automatic system (SP≡SisPorto system) and 
three human experts (E1≡Expert 1, E2≡Expert 2 and E3≡Expert 3). 

The analysis results correspond to the following variables: 
 

Baseline: The baseline value represents the stable value of the foetal heart 
rate (in beats per minute). The variables are SPB, E1B, E2B, E3B. 

Class: The classification columns (variables SPC, E1C, E2C, E3C) have 
the following values: 

 N (=0) - Normal; S (=1) - Suspect; P (=2) - Pathologic. 
 

Source: J Bernardes, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.10 FHR-Apgar 

The FHR-Apgar.xls file contains 227 measurements of foetal heart rate (FHR) 
tracings recorded just previous to birth, and the respective Apgar index, evaluated 
by obstetricians according to a standard clinical procedure one minute and five 
minutes after birth. All data was collected in Portuguese hospitals following a strict 
protocol. The Apgar index is a ranking index in the [0, 10] interval assessing the 
wellbeing of the newborn babies. Low values (below 5) are considered bad 
prognosis. Normal newborns have an Apgar above 6.  

The following measurements are available in the FHR-Apgar.xls file: 
 
Apgar1: Apgar measured at 1 minute after birth. 
Apgar5: Apgar measured at 5 minutes after birth. 
Duration: Duration in minutes of the FHR tracing. 
Baseline: Basal value of the FHR in beat/min. 
Acelnum: Number of FHR accelerations. 
Acelrate: Number of FHR accelerations per minute. 
ASTV: Percentage of time with abnormal short term variability.  
MSTV: Average duration of abnormal short term variability. 
ALTV: Percentage of time with abnormal long term variability. 
MLTV: Average duration of abnormal long term variability. 
 

Source: D Ayres de Campos, Faculdade de Medicina, Universidade do Porto,  
Porto, Portugal. 
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E.11 Firms 

The Firms.xls file contains values of the following economic indicators relative 
to 838 Portuguese firms during the year 1995: 

 
Branch: 1 = Services; 2 = Commerce; 3 = Industry; 4 = Construction. 
GI: Gross Income (millions of Portuguese Escudos). 
CAP: Invested Capital (millions of Portuguese Escudos). 
CA: Capital + Assets. 
NI: Net Income (millions of Portuguese Escudos) = GI − (wages + 

taxes). 
NW: Number of workers. 
P: Apparent Productivity = GI/NW. 
GIR: Gross Income Revenue = NI/GI. 
CAPR: Capital Revenue = NI/CAP. 
A/C: Assets share  = (CA−CAP)/CAP %. 
DEPR: Depreciations + provisions. 
 

Source: Jornal de Notícias - Suplemento, Nov. 1995, Porto, Portugal. 

E.12 Flow Rate 

The Flow Rate.xls file contains daily measurements of river flow (m3/s), 
during December 1985 and January 1986. Measurements were performed at two 
river sites in the North of Portugal: AC - Alto Cávado Dam; T - Toco Dam. 

 
Source: EDP - Electricidade de Portugal, Portugal. 

E.13 Foetal Weight 

The Foetal Weight.xls file contains echographic measurements obtained 
from 414 newborn babies shortly before delivery at four Portuguese hospitals. 
Obstetricians use such measurements in order to predict foetal weight and related 
delivery risk. 

The following measurements, all obtained under a strict protocol, are available: 
 
MW Mother s weight MH Mother s height 
GA Gestation age in weeks DBMB Days between meas. and birth 
BPD Biparietal diameter CP Cephalic perimeter 
AP Abdominal perimeter FL Femur length 
FTW Foetal weight at birth FTL Foetal length at birth 
CPB Cephalic perimeter at birth 

 
Source: A Matos, Hospital de São João, Porto, Portugal. 

’ ’
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E.14 Forest Fires 

The Forest Fires.xls file contains data on the number of fires and area of 
burnt forest in continental Portugal during the period 1943-1978. The variables are: 

 
Year:  1943 -1978. 
Nr:  Number of forest fires. 
Area:  Area of burnt forest in ha. 
 

Source: INE - Instituto Nacional de Estatística, Portugal. 

E.15 Freshmen 

The Freshmen.xls file summarises the results of an enquiry carried out at the 
Faculty of Engineering, Porto University, involving 132 freshmen. The enquiry 

The variables are: 
 
SEX:  1 = Male; 2 = Female. 
AGE: Freshman age in years. 
CS: Civil status: 1 = single; 2 = married. 
COURSE:  1 = civil engineering; 2 = electrical and computer engineering;  

3 = informatics; 4 = mechanical engineering; 5 = material 
engineering; 6 = mine engineering; 7 = industrial management 
engineering; 8 = chemical engineering. 

DISPL: Displacement from the local of origin: 1 = Yes; 2 = No. 
ORIGIN: 1 = Porto; 2 = North; 3 = South; 4 = Center; 5 = Islands; 6 = 

Foreign. 
WS:  Work status: 1 = Only studies; 2 = Part-time work; 3 = Full-time 

work. 
OPTION:  Preference rank when choosing the course: 1...4. 
LIKE: Attitude towards the course: 1 = Like; 2 = Dislike; 3 = No 

comment. 
EXAM 1-5: Scores in the first 5 course examinations, measured in [0, 20]. 
EXAMAVG: Average of the examination scores. 
INIT: Whether or not the freshman was initiated: 1 = Yes; 2 = No. 
 
Questions: 
Q1: Initiation makes it easier to integrate in the academic life. 
Q2: Initiation is associated to a political ideology. 
Q3: Initiation quality depends on who organises it. 
Q4: I liked to be initiated. 
Q5: Initiation is humiliating. 
Q6: I felt compelled to participate in the Initiation. 

intention was to evaluate the freshmen attitude towards the “freshmen initiation 
rites”. 
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Q7: I participated in the Initiation on my own will. 
Q8: Those that do not participate in the Initiation feel excluded. 
 
All the answers were scored as: 1 = Fully disagree; 2 = Disagree; 3 = No 

comment; 4 = Agree; 5 = Fully agree. The missing value is coded 9. 
The file contains extra variables in order to facilitate the data usage. These are: 
 
Positive average:  1, if the average is at least 10; 0, otherwise. 
Q1P, …, Q8P: The same as Q1, …, Q8 if the average is positive; 0, 

otherwise.  
 

Source: H Rebelo, Serviço de Apoio Psicológico, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. 

E.16 Heart Valve 

The Heart Valve.xls file contains data from a follow-up study of 526 
patients submitted to a heart valve implant at São João Hospital, Porto, Portugal. 

The variables are: 
 
VALVE: Valve type. 
SIZE:  Size of the prosthesis. 
AGE:  Patient age at time of surgery. 
EXCIRC: Extra body circulation in minutes. 
CLAMP: Time of aorta clamp. 
PRE_C: Pre-surgery functional class, according to NYHA (New York 

Heart Association): 0 = No symptoms; 1, 2 = Mild symptoms; 3, 
4 = Severe symptoms). 

POST_C: Post-surgery functional class, according to NYHA. 
ACT_C: Functional class at last consultation, according to NYHA. 
DATE_OP: Date of the operation. 
DDOP: Death during operation (TRUE, FALSE). 
DATE_DOP: Date of death due to operation complications. 
DCAR: Death by cardiac causes in the follow-up (TRUE, FALSE). 
DCARTYPE: Type of death for DCAR = TRUE: 1 - Sudden death; 2 – Cardiac 

failure; 3 -Death in the re-operation. 
NDISF: Normo-disfunctional valve (morbility factor): 1 = No; 2 = Yes. 
VALVESUB: Subject to valve substitution in the follow-up (TRUE, FALSE). 
LOST: Lost in the follow-up (not possible to contact). 
DATE_EC: Date of endocarditis (morbility factor). 
DATE_ECO: Date of last echocardiogram (usually the date used for follow-up 

when there is no morbility factor) or date of last consultation. 
DATE_LC: Date of the last consultation (usually date of follow-up when no 

morbility is present). 
DATE_FU: Date of death in the follow-up. 
REOP: Re-operation? (TRUE, FALSE). 
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DATE_REOP: Re-operation date. 
 

ones: 
 

EC: TRUE, if endocarditis has occurred; FALSE, otherwise. 
EVENT: True, if an event (re-operation, death, endocarditis) has occurred 
DATE_STOP: Final date for the study, computed either from the events 

(EVENT=TRUE) or as the maximum of the other dates (last 
consultation, etc.) (EVENT=FALSE). 

 
Source: Centro de Cirurgia Torácica, Hospital de São João, Porto, Portugal. 

E.17 Infarct 

The Infarct.xls file contains the following measurements performed on 64 
patients with myocardial infarction: 

 
EF: Ejection Fraction = (dyastolic volume - systolic volume)/dyastolic 

volume, evaluated on echocardiographic images. 
CK:  Maximum value of creatinokynase enzyme (measuring the degree of 

muscular necrosis of the heart). 
IAD:  Integral of the amplitude of the QRS spatial vector during abnormal 

depolarization, measured on the electrocardiogram. The QRS spatial 
vector is the electrical vector during the stimulation of the heart left 
ventricle. 

GRD: Ventricular gradient = integral of the amplitude of the QRST spatial 
vector. The QRST spatial vector is the electrical vector during the 
stimulation of the heart left ventricle, followed by its relaxation back 
down to the restful state. 

SCR: Score (0 to 5) of the necrosis severeness, based on the 
vectocardiogram. 

 
Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.18 Joints 

The Joints.xls file contains 78 measurements of joint surfaces in the granite 
structure of a Porto street. The variables are: 

 
Phi:  Azimuth (º) of the joint. 
Theta: Pitch (º) of the joint. 

The Survival Data worksheet contains the data needed for the “time-until-
event” study and includes the following variables computed from the previous 
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x, y, z: Cartesian co-ordinates corresponding to (Phi, Theta).  
 

Source: C Marques de Sá, Dep. Geologia, Faculdade de Ciências, Universidade do 
Porto, Porto, Portugal. 

E.19 Metal Firms 

The Metal Firms.xls file contains benchmarking study results concerning the 
Portuguese metallurgical industry. The sample is composed of eight firms 
considered representative of the industrial branch. The data includes scores, 
percentages and other enquiry results in the following topics: 

 
Leadership;  Process management; 
Policy and Strategy;  Client satisfaction; 
Social impact; 
People management - organizational structure;  
People management - policies; 
People management - evaluation and development of competence; 
Assets management - financial; 
Results (objectives, rentability, productivity, investment, growth). 
 

Source: L Ribeiro, Dep. Engenharia Metalúrgica e de Materiais, Faculdade de 
Engenharia, Universidade do Porto, Porto, Portugal. 

E.20 Meteo 

The Meteo.xls file contains data of weather variables reported by 25 
meteorological stations in the continental territory of Portugal. The variables are: 

 
Pmax: Maximum precipitation (mm) in 1980. 
RainDays: Number of rainy days. 
T80:  Maximum temperature (ºC) in the year 1980. 
T81:  Maximum temperature (ºC) in the year 1981. 
T82:  Maximum temperature (ºC) in the year 1982. 
 

Source: INE - Instituto Nacional de Estatística, Portugal. 

E.21 Moulds 

The Moulds.xls file contains paired measurements performed on 100 moulds of 
bottle bottoms using three methods: 
 

RC:  Ring calibre;  
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CG:  Conic gauge;  
EG:  End gauges. 

 
Source: J Rademaker, COVEFA, Leerdam, The Netherlands. 

E.22 Neonatal 

The Neonatal.xls file contains neonatal mortality rates in a sample of 29 
Portuguese localities (1980 data). The variables are: 

 
MORT-H: Neonatal mortality rate at home (in 1/1000) 
MORT-I: Neonatal mortality rate at Health Centre (in 1/1000) 
 

Source: INE - Instituto Nacional de Estatística, Portugal. 

E.23 Programming 

The Programming.xls file contains data collected for a pedagogical study 

Engineering students. As part of the study, 271 students were enquired during the 
years 1986-88. The results of the enquiry are summarised in the following 
variables: 

 
SCORE: Final score in the examinations ([0, 20]). 
F: Freshman? 0 = No, 1= Yes. 
O: Was Electrical Engineering your first option? 0 = no, 1 = yes. 
PROG: Did you learn programming at the secondary school? 0 = no; 1 = 

scarcely; 2 = a lot. 
AB: Did you learn Boole's Algebra in secondary school? 0 = no; 1 = 

scarcely; 2 = a lot. 
BA: Did you learn binary arithmetic in secondary school? 0 = no; 1 = 

scarcely; 2 = a lot. 
H: Did you learn digital systems in secondary school? 0 = no; 1 = 

scarcely; 2 = a lot. 
K: Knowledge factor: 1 if (Prog + AB + BA + H) ≥ 5; 0 otherwise. 
LANG: If you have learned programming in the secondary school, which 

language did you use? 0 = Pascal; 1 = Basic; 2 = other. 
 

Source: J Marques de Sá, Dep. Engenharia Electrotécnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 

concerning the teaching of “Programming in Pascal” to first year Electrical 
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E.24 Rocks 

The Rocks.xls file contains a table of 134 Portuguese rocks with names, 
classes, code numbers, values of oxide composition in percentages (SiO2, ..., TiO2) 
and measurements obtained from physical-mechanical tests: 

 
RMCS: Compression breaking load, DIN 52105/E226 standard (kg/cm2).  
RCSG: Compression breaking load after freezing/thawing tests, DIN 

52105/E226 standard (kg/cm2). 
RMFX: Bending strength, DIN 52112 standard (kg/cm2). 
MVAP: Volumetric weight, DIN 52102 standard (Kg/m3).  
AAPN: Water absorption at NP conditions, DIN 52103 standard (%).  
PAOA: Apparent porosity, LNEC E-216-1968 standard (%).  
CDLT: Thermal linear expansion coefficient (x 10-6/ºC).   
RDES: Abrasion test, NP-309 (mm).  
RCHQ: Impact test: minimum fall height (cm). 
 

Source: IGM - Instituto Geológico-Mineiro, Porto, Portugal, collected by J Góis, 
Dep. Engenharia de Minas, Faculdade de Engenharia, Universidade do Porto, 
Porto, Portugal. 

E.25 Signal & Noise 

The Signal+Noise worksheet of the Signal & Noise.xls file contains 
100 equally spaced values of a noise signal generated with a chi-square 
distribution, to which were added impulses with arrival times following a Poisson 
distribution. The amplitudes of the impulses were also generated with a chi-square 
distribution. The resulting signal with added noise is shown in the Signal+Noise 
variable. 

A threshold value (variable THRESHOLD) can be specified in order to detect 
the signal impulses. Changing the value of the threshold will change the number of 
true (Correct Detections variable) and false impulse detections. 

The computed sensibility and specificity are shown at the bottom of the 
Signal+Noise datasheet. 

The Data worksheet of the Signal & Noise.xls file contains the data 
used for ROC curve studies, with column A containing 8 times the signal + noise 
sequence and column B the true detections for 8 different thresholds (0.8, 1, 2, 3, 4, 
5, 6, 7). 

 
Source: J Marques de Sá, Dep. Engenharia Electrotécnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 
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E.26 Soil Pollution 

The Soil Pollution.xls file contains thirty measurements of Pb-tetraethyl 
concentrations in ppm (parts per million) collected at different points in the soil of 
a petrol processing plant in Portugal. The variables are: 

 
x, y, z: Space coordinates in metres (geo-references of Matosinhos Town 

Hall); z is a depth measurement. 
c:  Pb-tetraethyl concentration in ppm. 
xm, ym: x, y referred to the central (mean) point. 
 
The following computed variables were added to the datasheet: 
 
phi, theta: Longitude and co-latitude of the negative of the local gradient at 

each point, estimated by 6 methods (M1, M2, M3, R4, R5, R6): 
M1, M2 and M3 use the resultant of 1, 2 and 3 fastest descent 
vectors; R4, R5, R6: use linear interpolation of the concentration 
in 4, 5, and 6 nearest points. A zero value codes a missing value. 

 
Source: A Fiúza, Dep. Engenharia de Minas, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. The phi and theta angles were computed 
by J Marques de Sá, Dep. Engenharia Electrotécnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 

E.27 Stars 

The Stars.xls file contains measurements of star positions. The stars are from 
two constellations, Pleiades and Praesepe. To each constellation corresponds a 
datasheet: 

 
Pleiades (positions of the Pleiades  stars in 1969). Variables:   
 
Hertz  Hertzsprung catalog number 
PTV  Photo-visual magnitude 
RAh  Right Ascension (h)  
RAm  Right Ascension (min) 
RAs  Right Ascension (s)  
DEd  Declination (deg)  
DEm  Declination (arcmin)  
DEs  Declination (arcsec)  
PHI  Longitude (computed from RAh, RAm and RAs) 
THETA Latitude (computed from DEd, DEm and DEs) 
 
PTV is a dimensionless measure given by −2.5log(light energy) + constant. The 

higher PTV is the lower is the star shine. 
 

’
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Source: Warren Jr WH, US Naval Observatory Pleiades Catalog, 1969. 
 
Praesepe (positions of Praesepe stars measured by Gould BA and Hall A). 
Variables: 
 
Gah  Right Ascension (h) measured by Gould 
Gam  Right Ascension (min) measured by Gould 
Gas  Right Ascension (s) measured by Gould 
Hah  Right Ascension (h) measured by Hall 
Ham  Right Ascension (min) measured by Hall 
Has  Right Ascension (s) measured by Hall 
Gdh  Declination (deg) measured by Gould 
Gdm  Declination (min) measured by Gould 
Gds  Declination (s) measured by Gould 
Hdh  Declination (deg) measured by Hall 
Hdm  Declination (min) measured by Hall 
Hds  Declination (s) measured by Hall 
Gphi  Longitude according to Gould 
Gtheta  Latitude according to Gould 
Hphi  Longitude according to Hall 
Htheta  Latitude according to Hall 
 

Source: Chase EHS, The Astronomical Journal, 1889. 

E.28 Stock Exchange 

The Stock Exchange.xls file contains data from daily share values of 
Portuguese enterprises listed on the Lisbon Stock Exchange Bourse, together with 
important economic indicators, during the period of June 1, 1999 through August 
31, 2000. The variables are: 

 
Lisbor6M: Bank of Portugal Interest Rate for 6 months. 
Euribor6M: European Interest Rate for 6 months. 

BCP:  Banco Comercial Português. 
BESC: Banco Espírito Santo. 
BRISA: Road construction firm. 
CIMPOR: Cement firm. 
EDP:  Electricity of Portugal Utilities Company. 
SONAE: Large trade firm. 
PTEL : Portuguese telephones. 
CHF:  Swiss franc (exchange rate in Euros). 
JPY:  Japanese yen (exchange rate in Euros). 
USD:  US dollar (exchange rate in Euros). 
 

Source: Portuguese bank newsletter bulletins. 

BVL30: Lisbon Stock Exchange index (“Bolsa de Valores de Lisboa”). 
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E.29 VCG 

The VCG.xls file contains measurements of the mean QRS vector performed in a 
set of 120 vectocardiograms (VCG). 

QRS designates a sequence of electrocardiographic waves occurring during 
ventricular activation. As the electrical heart vector evolves in time, it describes a 
curve in a horizontal plane. The mean vector, during the QRS period, is commonly 
used for the diagnosis of right ventricular hypertrophy. 

The mean vector was measured in 120 patients by the following three methods: 
 
H: Half area: the vector that bisects the QRS loop into two equal areas. 
A: Amplitude: the vector computed with the maximum amplitudes in two 

orthogonal directions (x, y). 
I: Integral: The vector computed with the signal areas along  (x, y). 
 

Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.30 Wave 

The Wave.xls file contains eleven angular measurements corresponding to the 
direction of minimum acoustic pressure in an ultrasonic radiation field, using two 
types of transducers: TRa and TRb. 
 
Source: D Freitas, Dep. Engenharia Electrotécnica e de Computadores, Faculdade 
de Engenharia, Universidade do Porto, Porto, Portugal. 

E.31 Weather 

The Weather.xls file contains measurements of several meteorological 
variables made in Porto at 12H00 and grouped in the following datasheets: 

 
Data 1:  
Weather data refers to the period of January 1, 1999 through August 23, 2000. All 

Portugal. The variables are: 
 
T: Temperature (ºC);  
H: Humidity (%); 
WS: Wind speed (m/s), 
WD: Wind direction (anticlockwise, relative to North); 
NS: Projection of WD in the North-South direction; 
EW: Projection of WD in the East-West direction. 
 

measurements were made at 12H00, at “Rua dos Bragas” (Bragas Street), Porto, 
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Data 2: 

the period January 1, 1999 through August 23, 2000 (12H00). The variables are: 
 
WD: Wind direction (anticlockwise, relative to North); 
SEASON: 0 = Winter; 1 = Spring; 2 = Summer; 3 = Autumn. 

 
Data 3: 
Wind direction measured during March, 1999 at 12H00 in two locations in Porto, 
Portugal: 

 

 
Data 4: 

for the following months: January, February and July, 2000. The variables are: 
 
Tmax: Maximum temperature (ºC). 
Time: Time of occurrence of maximum temperature.  
TimeNr: Number codifying the time in [0, 1], with 0 = 0:00:00 (12:00:00 

AM) and 1 = 23:59:59 (11:59:59 P.M). 
 

Porto, Portugal. Compiled by J Góis, Dep. Engenharia de Minas, Faculdade de 
Engenharia, Universidade do Porto, Porto, Portugal. 

E.32 Wines 

The Wines.xls file contains the results of chemical analyses performed on 67 
Portuguese wines. The WINE column is a label, with the VB code for the white 
wines (30 cases) and the VT code for the red wines (37 cases). The data sheet gives 
the concentrations (mg/l) of: 

 
ASP: Aspartame; GLU: Glutamate; ASN: Asparagine; 
SER: Serine;  GLN: Glutamine; HIS: Histidine; 
GLY: Glycine;  THR: Threonine; CIT: Citruline; 
ARG: Arginine;  ALA: Alanine;  GABA: γ-aminobutyric acid; 
TYR: Tyrosine;  ETA: Ethanolamine; VAL: Valine; 
MET: Methionine; HISTA: Histamine; TRP: Tryptophan; 
METIL: Methylamine; PHE: Phenylalanine; ILE: Isoleucine; 
LEU: Leucine;  ORN: Ornithine; LYS: Lysine; 
ETIL: Ethylamine; TIRA: Thyramine; PUT: Putrescine; 
ISO: Isoamilamine; PRO: Proline;  
TRY+FEN: Tryptamine+β-phenylethylamine 
 

Source: P Herbert, Dep. Engenharia Química, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. 

Wind direction measured at “Rua dos Bragas”, Porto, Portugal, over several days in 

WDB: “Bragas” Street, Porto; WDF:      “Formosa” Street, Porto. 

Time of occurrence of the maximum daily temperature at “Rua dos Bragas”, Porto, 

Source: “Estação Meteorológica da FEUP” and “Direcção Regional do Ambiente”, 
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F.1 MATLAB Functions 

The functions below, implemented in MATLAB, are available in files with the 

MATLAB work directory. All function codes have an explanatory header. 
 

Function (used as) Described In 

k = ainv(rbar,p) Commands 10.4 
[c,df,sig]=chi2test(x) Commands 5.4 

[p,l,u]=ciprop(n0,n1,alpha) Commands 3.4 
[l,u]=civar(v,n,alpha) Commands 3.5 

[r,l,u]=civar2(v1,n1,v2,n2,alpha) Commands 3.6 
c=classmatrix(x,y) Commands 6.1 
h=colatplot(a,kl) Commands 10.2 
as=convazi(a) Commands 10.3 
as=convlat(a) Commands 10.3 

[r,t,tcrit]=corrtest(x,y,alpha) Commands 4.2 
d=dirdif(a,b) Commands 10.3 
g=gammacoef(t) Commands 2.10 

[ko,z,zc]=kappa(x,alpha) Commands 2.11 
h=longplot(a) Commands 10.2 

m = meandir(a,alphal) Commands 10.3 
c=pccorr(x) Commands 8.1 

polar2d(a,mark) Commands 10.2 
polar3d(a) Commands 10.2 

[m,rw,rhow]=pooledmean(a) Commands 10.2 
p=rayleigh(a) Commands 10.5 

[x,y,z,f,t,r] = resultant(a) Commands 10.3 
v=rotate(a) Commands 10.3 

[n1,n2,r,x1,x2]=runs(x,alpha) Commands 5.1 

same function name and suffix “.m”. Usually these files should be copied to the 
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t=scattermx(a) Commands 10.3 
unifplot(a) Commands 10.2 

[w,wc]=unifscores(a,alpha) Commands 10.5 
f=velcorr(x,icov) Commands 8.1 
f=vmises2cdf(a,k) Commands 10.4 

a=vmises2rnd(n,mu,k) Commands 10.4 
a=vmises3rnd(n,k) Commands 10.4 

delta=vmisesinv(k, p, alphal) Commands 10.4 
[u2,uc]=watson(a,f,alphal) Commands 10.5 
[gw,gc]=watsongw(a, alpha) Commands 10.5 

[u2,uc]=watsonvmises(a,alphal) Commands 10.5 
[fo,fc,k1,k2]=watswill(a1,a2,alpha) Commands 10.5 

F.2 R Functions 

The functions below, implemented in R, are available in text files with the same 

copy the respective text and paste it into the R console. All function codes have an 
explanatory header. 

 

Function (used as) Described In 

o<-cart2pol(x,y); o≡[phi,rho] Commands 10.1 
o<-cart2sph(x,y,z); o≡[phi,theta,rho] Commands 10.1 
o<-cimean(x,alpha=0.05); o≡[l, u] Commands 3.1 
o<-ciprop(n0,n1,alpha); o≡[p,l,u] Commands 3.4 
o<-civar(v,n,alpha=0.05); o≡[l, u] Commands 3.5 

o<-civar2(v1,n1,v2,n2,alpha); o≡[r,l,u] Commands 3.6 
o<-classify(sample,train,group) Commands 6.1 

cm<-classmatrix(x,y) Commands 6.1 
as<-convazi(a) Commands 10.3 
as<-convlat(a) Commands 10.3 
d<-dirdif(a,b) Commands 10.3 
g<-gammacoef(t) Commands 2.10 

o<-kappa(x,alpha); o≡[ko,z,zc] Commands 2.11 
k<-kurtosis(x) Commands 2.8 

function name and suffix “.txt”. An expedite way to use these functions is to 
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r<-pccorr(x) Commands 8.1 
o<-pol2cart(phi,rho); o≡[x, y, z] Commands 10.1 

polar2d(a) Commands 10.2 
p<-rayleigh(a)  

(resultant(a) must be loaded) Commands 10.5 

o<-resultant(a); o≡[x,y,z,f,t,r] Commands 10.3 
rose(a) Commands 10.2 

o<-runs(x,alpha); o≡[n1,n2,r,x1,x2] Commands 5.1 
s<-skewness(x) Commands 2.8 

o<-sph2cart(phi,theta,rho); o≡[x,y,z] Commands 10.1 
o<-unifscores(a,alpha); o≡[w,wc]  
(resultant(a) must be loaded) 

Commands 10.5 

f<-velcorr(x,icov) Commands 8.1 

F.3 Tools EXCEL File 

The Tools.xls file has the following data sheets: 
 
Nr of Bins  

Computes the number of histogram bins using the criteria of 
Sturges, Larson and Scott (see section 2.2.2, for details). 

Confidence Intervals  
Computes confidence intervals for a proportion and a variance 
(see sections 3.3 and 3.4, for details). 

Correlation Test  
Computes the 5% critical value for the correlation test (see 
section 4.4.1, for details). 

Broken Stick  
Computes the expected length percentage of the kth largest 
segment of a stick, with total length one, randomly broken into d 
segments (see section 8.2, for details). 

 
The Macros of the Tools.xls EXCEL file must be enabled in order to work 

adequately (use security level Medium in the Macro Security button of the 
EXCEL Options menu). 

F.4 SCSize Program 

The SCSize program displays a picture box containing graphics of the following 
variables, for a two-class linear classifier with specified Battacharrya distance 
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(Mahalanobis distance of the means) and for several values of the dimensionality 
ratio, n/d: 

 
Bayes error; 
Expected design set error (resubstitution method); 
Expected test set error (holdout method).  
 
Both classes are assumed to be represented by the same number of patterns per 

class, n. 
The user only has to specify the dimension d and the square of the Battacharrya 

distance (computable by several statistical software products).  
For any chosen value of n/d, the program also displays the standard deviations 

of the error estimates when the mouse is clicked over a selected point of the picture 
box. 

The expected design and test set errors are computed using the formulas 
presented in the work of Foley (Foley, 1972). The formula for the expected test set 
error is an approximation formula, which can produce slightly erroneous values, 
below the Bayes error, for certain n/d ratios. 

The program is installed in the Windows standard way. 
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