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Preface

The literature on the corporate finance is so abundant that,
ever since the pioneering work of Fama, Fisher, Jesen and Roll
(1969), many research articles are published every year for
event studies. Although many new methodologies are devised,
empirical corporate finance is still struggling from controversies
of many issues such as proper data collection, time-horizon
decisions, event period determination, and robust statistical
procedures. These issues certainly are not easy tasks for any
researcher or an enthusiastic graduate student in economics and
finance to resolve them promptly. The aim of this book hence is
not set to provide answers to all these issues, either. Instead, the
intent is to reiterate the necessary cautions in analyses on the
event studies in corporate finance and to provide some alter-
natives. Therefore, this book aims to become a reference for
the researchers, graduate students, and professionals who are
interested in exploring the possible impacts of corporate finance
events rigorously.

Starting from data collection, researchers should be careful
in identifying the issues of interest and the representativeness
of data set. Before anything starts, one can’t be more cautious
than to investigate the intrinsic (time-series/cross-sectional)
properties of the data introduced either from the sampling
schemes or from the nature of the data themselves, particu-
larly associated with financial times series. More importantly,
although it is tempting to explore all different models or regula-
rities that possibly can explain the financial data, all models or
proposals for these data should provide sufficient verifications
from the foundation of financial economics. Or, even more
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pleasingly, these models should provide some better ones in
theories or rigors if possible.

The contents of the book starts from Chapter 1 that surveys
(a) the issues of event-oriented constructed data and (b) the
inclusion of firm-specific attributes as variables for empirical
asset pricing models and leads to the importance of model
search for the normal (or expected) returns. The task then is
continued in Chapter 2 where diagnostic tests for the nondiver-
sifiability of factor-oriented variables in empirical asset pricing
models (for normal returns) are covered. Although various
specification tests or model selection criteria have been applied
to the empirical asset pricing models, only a few of them
emphasize the pre-requisite that these included variables should
be nondiversifiable so that separation between normal (or
expected) returns versus abnormal returns can be well stated.
In essence, many empirical research results on corporate event
studies are questioned since the findings can either be the
outcomes of events or model specification errors (in normal
returns), or both. Criticism results since little justification in
(model search for) empirical asset pricing models is done prior
to applications of abnormal returns. Chapter 2 in this book
attempts to provide some alternatives.

For many studies in corporate finance or financial economics,
studies based on abnormal returns are applied in the verifi-
cations of events. Conventional studies either apply the
cumulative abnormal returns or perform the regressions of
abnormal returns on firm-specific attributes to obtain statistical
tests. Either way, the hypothesis of interest is to verify that
whether the mean of abnormal returns is nonzero within the
event window or not. This in turns, shows that the hypothesis is
equivalent to verification of structural changes of means parti-
cularly, in abnormal returns. If empirical asset pricing models
with regressions are applied to obtain both the normal and
abnormal returns, the hypothesis of interest is equivalent to a
structural change of parameter(s) in regressions over the event
window. Given so, it is not difficult to see that the conven-
tional tests such as cumulative abnormal returns (CARs) (with
normality or not) are similar to the CUSUM (cumulative sums)
tests for parameter changes—at least, from the perspective of
hypotheses.
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Although the asymptotic arguments of CUSUM tests are
mostly based on Brownian motion, the applications and
hypotheses of CUSUM tests coincide with those of CARs
tests in using the cumulative sums of abnormal returns or
residuals from regressions of empirical asset pricing models.
Chapter 3 argues that the deficiency of conventional CARs
tests in event studies is bound to appear since financial time
series almost always contain parameter changes even if there
is no significant event at all. Hence, using CARs tests is not
entirely robust to verify the impacts of events even though
the empirical asset pricing models for normal returns are
selected properly. The same critique applies to the CUSUM-
based (monitoring) tests for parameter changes of empirical
asset pricing models as well. It is hardly conclusive to consider
that parameter changes are solely the results of firm-specific
events. Many financial time series (and the proposed models
in using them) are usually subject to time-varying parametri-
zation. These arguments show that the tests simply base on the
mean changes of abnormal returns are not sufficient enough to
tell whether the impacts from the events are significant or not.
Some alternatives must be provided to investigate the strength
of impacts from events without incurring the similarity between
CARs tests and CUSUM tests for structural changes.

Chapter 4 is prepared as a prerequisite for Chapter 5.
Given the model identified in model search, the possible time-
varying coefficients are taken into account. The intuition is,
if the capital market adjustments are successfully efficient, the
updating mechanism should possibly incorporate concurrent
information into the normal (or expected) returns. Likewise,
in forming the normal (or expected) returns, the recursive
estimation should be introduced to accommodate the time-
changing expectations of the market. Notice that these
updating procedures apply only the systematic (nondiver-
sifiable) information provided from the model(s) identified
earlier. Therefore, the residuals resulted from the time-varying
coefficient models of normal (or expected) returns approximate
closer to the abnormal returns as planned. Loosely speaking,
this approach provides a better classification between normal
and abnormal returns. In addition, the recursive algorithms
applied do not assume some particular estimation periods or,
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event windows. Hence, less subjective classifications are intro-
duced into the statistics (and the functionals) of abnormal
returns.

Following from Chapter 4, Chapter 5 provides an alternative
methodology where the intensity of cumulative abnormal
returns is represented as the duration of the absolute values
of cumulative abnormal returns in crossing certain levels of
thresholds. In other words, instead of using the CARs tests
(or CUSUM tests), the interest of research is on the time
horizon that the absolute values of these cumulative abnormal
returns may surpass the thresholds. Under the assumption of
invariance principles where these cumulative abnormal returns
(after normalization) may converge to the Brownian motion,
these durations (of different thresholds) may converge (in
distribution) to the so-called occupation time (or sojourn time)
of reflected Brownian motion under the null. Hence, using
the asymptotic distribution (and moments) obtained by Takacs
(1998), the test statistics can be formed to identify if the
duration of level crossings of these cumulative abnormal returns
is significantly different from the occupation time of reflected
Brownian motion. This provides an alternative to consider the
event studies in corporate finance where tests over the possibly
time-varying coefficients in financial time series are not in need.
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Part I

Event Study Methodology I



Chapter 1

Data Collection in Long-Run or

Short-Run Format?

Introduction

In this chapter, a critical question is raised for the empirical
finance of corporate event studies. That is, what kind of data set
should one apply? Should the short-run data set such as daily
returns (or even high-frequency data) be applied? Or, should
one try with the longer horizon data? A painful browse through
all related literature shows that it is easy to find that there is
no definite rule applied to this issue. One question often asked
is whether the short-run returns contain more updated infor-
mation or, the longer horizon data that may provide more
insightful views since the impacts of corporate events may be
persistent over time.

For the issues of mergers and acquisitions in particular, the
controversies over the choices of data frequencies and study
horizons remain unresolved even after decades since the pione-
ering study of Fama et al. (1969) on corporate finance. Various
empirical findings of event studies in corporate finance can be
found in many leading finance journals and elsewhere. Yet,
these issues remain mainly unsettled. Throughout this chapter,
these differences in sampling and data frequencies are surveyed
and the related critiques are offered while using the event
studies of mergers and acquisitions as the examples to depict
the issues.

Some rules of thumb for the data selection issues are
provided although they remain preliminary. The intent is to
enlist some possible basic criteria to these empirical finance
issues together so that consistency in analyses among them
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can possibly be fetched. First of all, the determination of
sampled data frequencies should take into account the feasi-
bility of social-ecnonmic/financial data and the relevancy of
theoretical foundation of financial economics. In other words,
reasoning with economic/financial theoretical arguments must
take precedence when considering the search of data and
the statistical methods to apply. In addition, the modeling
for normal returns (especially for robust model specifica-
tions on empirical asset pricing models) should be cautiously
examined prior to the event studies in using the abnormal
returns. Lastly, stochastic properties of the data sampled (or
constructed) should be thoroughly investigated and checked
(using diagnostic tests or else) before any attempt to elaborate
the hypotheses of interest.

Not surprisingly, shovelling data series with current compu-
tational facilities (or techniques) seems trivial among the
empirical finance issues. Fabrication of intended results can be
obtained using skills in data manipulation. The essence of event
studies of corporate finance issues therefore, is not to present
some eye-catching representations in showing the startling
results of empirical finance. Instead, presenting the fact-related
discussions based on robust specification, and devising some
sound guidance for the finance professionals (academicians
or practitioners) in developing analyses and making proper
decisions are essentially needed in the future for empirical
corporate finance.

1.1 Samples, Data Formats and Variables Selection

For many event studies in corporate finance, data colle-
ction becomes one of the most formidable tasks to study
the hypotheses of interest. For instance, it is overwhelmingly
evident that in financial economics/econometrics literature on
mergers and acquisitions, many works endeavor to study the
stock returns from the events either for the acquirers or the
targets. While it is interesting, different data sets or freque-
ncies of data collected may cause various empirical results or
conclusions. Unfortunately, there is no definite rule to deter-
mining the length of sampled periods, event windows, data
frequencies, and the sampling criteria. A challenging task for
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empirical finance in event studies of corporate finance may
start from the decision of time horizon of the studies, the
frequency of data, and the collection for event study data.
Specifically, two major techniques for event studies in mergers
and acquisitions are commonly employed: short-horizon event
studies surrounding the merger announcements and long-
horizon market valuation studies that discuss the benefits and
consequences of the mergers and acquisitions. However, deter-
mining the time spans for these stock returns on corporate
event issues is never straightforward. Roughly classified, some
clarifications of the findings in these conventional event studies
(in mergers and acquisitions, for instance) can be shown as
follows:

1. the determination of time horizons and data frequencies
depends on the possible hypotheses on persistence of the
impact(s) and the feasibility of attributes/variables that are
applicable,

2. the constructed data streams (whether from simulated series
or from the raw data) for these hypotheses of interest may
have some particular stochastic or statistical properties that
can influence the statistical results of studies,

3. regardless of the time frames of studies, a correctly-specified
model for normal (or expected) returns with systematic attri-
butes or variables (based on capital market equilibrium)
should be devised so that robust assessments on abnormal
returns can be obtained for corporate event studies.

Although some statistical assumptions can be applied for
the normal returns (especially for the short-horizon returns),
incorporation with both statistical assumptions and economic
modeling provides the essential features and explanatory speci-
fication for the normal returns. Nevertheless, one common
understanding is that less attributes or variables may be feasible
for the short-horizon specification of normal (expected) returns
in event studies. Moreover, as pointed out in Mackinlay (1997),
difficulty arises in that even if there are (economic) attri-
butes/variables available to specify the normal returns, the
explanatory power of these variables (in empirical findings) is
not sufficient enough as to reduce an essential proportion of
variance of abnormal returns. Hence, the results in Brown and
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Warner (1980, 1985) show that even the simplest constant-
mean return model provides similar results for the event studies
when compared with more sophisticated models.

As stated in Bremer et al. (2011), “...In essence, short-term
event studies focus on the impact of new information on the
current expectation of future returns while long-term event
studies focus on the ultimate effect of the changes transmitted
in the information release on future returns.” Although inclu-
sively stated above, most criticism on corporate finance event
studies also raises the questions on the frequency of the data
stream applied. The issues on the frequencies of stock returns
such as daily, weekly, monthly, or else are still left unresolved.
The critical fact is that in either short-horizon or long-horizon
event studies, constructing the data series of stock returns
contains certain stochastic properties (for instance, serial/cross-
sectional dependence, heteroscedasticity, and skewness) that
some robust methods must be devised to obtain verifiable
results. In addition, one of the most formidable tasks in event
studies is to cleanly separate the expected and unexpected
components in stock returns as stated in Fama et al. (1969).
Hence, the conventional methods in corporate finance event
studies may (most likely) be criticized and denoted as joint
tests for both model specifications (for expected components in
stock returns) and the impacts of new information (presented
in the unexpected abnormal components in stock returns).

The difficulty in selecting the short-run stock returns
is that these returns are noisy and possibly contaminated
with information or feedback irrelevant with the event(s).
And that if the acquisition of abnormal returns is the
interest of study, some robust high-frequency adaptive filtering
(with asset-pricing models or else) must be devised to
capture the essential systematic components that represent
the market expectation (conditional on the available infor-
mation set or event dates) in these stock returns. More
dilemmas may appear if determination of event windows for
the impact of event(s) is considered. On the contrary, if
applications of long-run stock returns are applied, the diffi-
culty will lie on the data construction and on especially,
the available variables or methods to obtain the systematic
components in the long horizon. In brief, the sampling issues
in corporate event studies focus on (1) the hypothesis on
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effect(s)/impacts of interest, (2) the time horizon where
the impact may persist, and (3) the availability of economic
variables and the other (corporate) attributes for the horizon of
studies.

Bremer et al. (2011) propose the usage of non-overlapping
quarterly compounded stock returns for long-horizon event
studies. Even though their simulations are robust, the results
are based on the conventional test statistics where the above
data properties still influence the results. Hence, to obtain
a robust event study on corporate finance issue such as
mergers and acquisitions, two decisions must be made: the
horizon of event studies and data frequencies, and the
model specifications of the expected rates of returns. More
essentially, these two decisions are mutually related in most
studies.

Following the setting of Strong (1992), the conventional
event studies in corporate finance demonstrate that there exists
some impacts on the share prices when some firm-specific
events are disclosed. Specifically, under the null hypothesis that
there is no impact on the stock returns, it is shown that

f (rit |yi)− f (rit) = 0, (1.1.1)

where f (rit |yi) stands for the conditional distribution of rit
when the information signal yi is declared, f (rit) stands for
the marginal distribution of rit . If the events are essential,
the above hypothesis will be rejected statistically.1 However,
given the complexity in obtaining the conditional and marginal
distributions for stock returns, Strong (1992) re-denotes the
hypothesis as

E[rit |yi]−E[rit] = E[εit |yi] = 0. (1.1.2)

The intuition for Equation (1.1.2) is that, if the signal yi
stands for the event of interest and if the signal is observable
then, under the null hypothesis that the event is not essential,
the signal yi does not contribute any improvement of forecasts
on rates of return rit , where {εit }i=1,2,···n is considered the
abnormal return.

Notice that the presumption of the logic (in Strong’s
format), however, lies on the availability of yi and its proper
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representation (such as event windows, firm-specific attributes)
on the corporate finance events of interest. By assuming
that E[rit |yi] = gi(yi), it is easy to see that the first half of
Equation (1.1.2) implies gi(yi) − E[gi(yi)] = 0 since E[rit] =
E[E[rit |yi]] = E[gi(yi)] by the law of iterated expectations.
Yet, this part of Equation (1.1.2) does not necessarily imply
that E[rit |yi] = 0. In other words, the signal for the event(s)
of interest yi can still have predictability for rate of return
rit even though the (signal of) event is not essential at all.
Therefore, showing predictability of an event-related signal on
excess returns may not necessarily indicate the essentiality of
the corporate finance event(s) according to the first half of
Equation (1.1.2) unless the {εit }i=1,2,··· ,n is explicitly related
with {rit }i=1,2,··· ,n.

It is under the assumption of linear unconditional asset
pricing model that

rit = E[rit]+ εit

=
k∑

j=1

βijϕjt + εit ,
(1.1.3)

and if both the idiosyncratic risk {εit }t=1,2,··· and the signal
of event yi are orthogonal to the systematic (and possibly
unobservable) components

{
ϕjt
}

j=1,2,··· ,k, then under the null
hypothesis of no essential event,

E[rit |yi] =
k∑

j=1

βijE[ϕjt |yi]+E[εit |yi] = 0. (1.1.4)

An even more difficult reality is, however, these signals{
yi
}

i=1,2,··· ,n may either be unobservable or not entirely repre-
sentative for the event(s). However, if equation (1.1.4) holds
then, it would also imply that E[rit] = 0 for all securities by the
law of iterated expectations, for all i = 1,2, · · · ,n. Yet, if some
of
{
E[ϕjt |yi]

}
j=1,2,··· ,k are nonzero, then it would imply that the

firm-specific signal becomes systematic component also.
On the other hand, the condition E[εit |yi] = 0 may have

two implicit meanings as well. It implies either the signal{
yi
}

i=1,2,··· ,n for the event(s) of interest are not informative (or
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correct), or the specific event has no impact at all. Notice that
the signals

{
yi
}

i=1,2,··· ,n may be some indicators declaring for
the events or simply considering if the data fall in the even
windows or not. Since the classifications for the event windows
may be presumed subjectively, these signals could be uninfor-
mative. Hence, the implications from equation (1.1.2) may
require further elaboration for event studies.

Alternatively, if the conditional asset pricing model is applied
and conditioning information set is denoted as the filtration �t
at time t and the above null hypothesis can be re-denoted as
E[εit |�t] = 0. The conventional event studies emphasize the
specifications as equation (1.1.5) where the return of a selected
security i for a particular event interest is denoted as rit , and
this rate of return is decomposed into two components, namely

rit = E[rit |�t]+ εit , (1.1.5)

where E[rit |�t] represents the normal (expected) return
(or systematic component) based on available information
�t (which includes the event date if known), {εit } is the
abnormal returns for security i. Empirical event studies most
likely focus on the statistics formed by the abnormal returns
{εit }i=1,2,... around the preselected event windows across values
of null hypothesis Ho. Hence, the correctness of specification in
E[rit |�t] is crucial for the test statistics formed by {εit }i=1,2,... .
The short-run stock returns (such as daily returns), although
are of higher frequency and more concurrent information, are
still subject to this requirement.

Based on this setting, the conventional tests in event studies
may actually be joint tests for hypotheses that the mean of
abnormal returns is identical to zero over time and whether
the assumed model for expected rate of return E[rit |�t]
is correctly specified or not. Two issues hence are essential
here in developing the tests on event-study issues. One is
the correctness of model specification for E[rit |�t] in terms
of functional forms, parametrization, and/or distributional
properties. The other one is on the inclusion of essential expla-
natory variables for the specification of pricing kernel or core
of empirical asset pricing models. Specifically, the second issue
is on what variables in �t should be considered as essential.
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Neither one of these issues is easy for corporate finance event
studies.

Therefore, proper model specification of the normal (or
expected) returns determines the plausibility of statistical
inferences using abnormal returns.2 In other words, regardless
of long- or short-horizon event studies, model specification
errors and inclusion of irrelevant explanatory variables in the
expected rate of return will directly influence the validity of
event studies using abnormal returns. Various event studies
using short-run stock returns are provided through many
financial literature and publications. Morse (1984) discussed
the choice of monthly and daily stock returns for the event
studies. He suggested that the application of daily returns is
superior to the monthly returns when there is no uncertainty
over the precise announcement date for the event information.
This seems to support that applications of shorter measurement
intervals is more robust for the event studies. As stated in Fama
(1998), the short-horizon studies may be subject to less model
specification errors since the event windows are short and the
daily expected returns are closer to zero. Nevertheless, conven-
tional model verification on the normal (or expected) returns
when selecting the relevant variables for empirical asset pricing
models is still based on statistical relevancy (or predictability)
alone. Yet, it is not surprising to see that neither the predicta-
bility nor statistical relevancy may sustain or remain stable over
different time periods.

Specifically, empirical evidence surrounding mergers and
acquisitions using short-run stock returns are somewhat
inconclusive, for instance. While many studies find that the
bidder’s returns are indistinguishable from zero (Dodd and
Ruback 1977, Asquith et al. 1983, Dennis and McConnell
1986), many find that the shareholders of the bidding firm
lose significant value upon the announcement (Dodd 1980,
Draper and Paudyal 1999). The preselection preferences on the
sample periods and time spans for event windows may cause
the results of hypothesis tests less reliable as planned. Fama’s
(1998) criticism on the long-horizon event studies such as “...
Splashy results get more attention, and this creates an incentive
to find them” may apply to the short-run event studies as well
if the (time series) properties of selected data are not carefully
studied. In the worst scenario, the sampling or event horizon
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(and windows) are preselected so that the statistical results may
be in favor of the preferred hypotheses.

As the overreaction and underreaction hypotheses in the
long-horizon event studies may prescribe, the observed short-
horizon market reaction will not necessarily reflect the true
nature of the change in value when there are noisy infor-
mation or rumors surrounding the events. This seems plausible
if there is market inefficiency and the capital market cannot
suddenly become fully informed. One plausible argument is
that the acquiring management has yet full access on private
information of the target firm on the announcement date.
However, as declared by Fama (1998), the findings of long-
horizon event studies may not show market inefficiency if
the overreaction and underreaction reversals are equally likely
for pre-event and post-event periods. In addition, these long-
horizon results may disappear when different methodologies
applied. Hence, implied by the comments of Fama (1998),
choices on the horizons in event studies and different model
specifications (and their errors) may be possible causes for
various and controversial empirical results in mergers and acqui-
sitions, for instance. More discussions on the event window
selection will be covered in Chapter 3.

Providing various techniques dealing with the abovemen-
tioned issues, many short-run studies in mergers and acquisi-
tions such as Dodd and Ruback (1977), Bradley (1980), Jarrell
and Poulsen (1989) point out that target firms see a significant
and positive market reaction to the news, while the bidding
firm typically offers a premium to the target’s shareholders. The
evidence concerning the acquiring firm’s market performance
is less clear. Some simulation methodology of short-horizon
event studies with daily stock returns was provided in Brown
and Warner (1985). Similar studies are also presented in Dann
(1981) and Masulis (1980). Whatever the objectives that the
corporate finance event studies may focus on, the findings of
Brown and Warner (1985) indicate that both serial dependence
and changing variance of the data series prevail in these short-
run abnormal stock returns. Modifications in statistical proce-
dures for these time-series properties are necessary for more
powerful conclusions. In addition, the cross-sectional depen-
dence due to possibly industry clusters may also be influential
to the power of the statistical tests. Although cross-sectional
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dependence can be reduced in (weighted) portfolio returns for
the selected securities, it was criticized that the statistical signi-
ficance of the event may be overstated if the historical variability
of portfolio returns is applied for the test statistics. (Brown and
Warner 1980, 1985, Collins and Dent 1984).

The main controversy of the short-horizon event studies
is that they assume that the market quickly becomes aware
of information and seemingly had heretofore adapted to the
new information thoroughly. These shortcomings in short-
horizon research lead to the investigation of the long-horizon
performance of the merged firms. Several proofs are also
provided using the long-run abnormal stock returns or buy-
and-hold returns. For instance, it is shown that acquiring firms
experience long-horizon underperformance against the market
(Loughran and Vijh 1997) and against matched samples (Rau
and Vermaelen 1998). Short of dismissing the control method
used in this strand of research, one must realize that the
research is perhaps more fruitful if one can be more ascertain
on the model specifications, data construction, and statistical
methodologies. Therefore, while attractive as an alternative, the
method of using long-horizon assessment does not necessarily
improve the tractability of the mergers/acquisition or market
inefficiency. Many empirical studies with simulations provide
some evidence for this perspective.

According to Kothari and Warner (2007), their simula-
tions indicate that the long-horizon event studies are prone
to higher sensitivity of model specifications on (conditional)
expected returns. This is quite apparent that as the time span
expands, more influential schemes may affect the normal (or
expected) returns in addition to the events themselves. In other
words, as the time horizons for event studies expand, less
controllable model specification on (systematic) expectation
may result. This, in turn, may cause the abnormal returns to
contain the significant model specification errors so that the
underlying statistics for event studies become unreliable. This
shows another issue that the difficulty of determining event
window is linked with the data to be collected.

As stated in Kothari and Warner (2007), the short-horizon
study can be powerful only if the abnormal performance is
concentrated in the event window. In other words, if the impact
of the events are short and immediate where no spill-overs
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are shown after the event windows selected, the short-horizon
event studies seem more conclusive. However, the conven-
tional or robust estimates on the return variability (such as the
standard deviation of cross-sectional average abnormal returns)
are either based on pre-event historical time series or those of
post-event periods. This possibly makes the test statistics to
reject the null hypothesis more likely. On the other hand, the
possible increase in return variability during the presumed event
window was considered as a significant event even though the
increase may also be considered as normal since the uncertainty
increases due to noisy information or rumors. Furthermore, as
stated in Kothari and Warner (2007), the long-horizon event
studies may suffer from (1) poor specification on the systematic
components of stock returns and (2) sensitivity of test statistics
versus the assumption on return generating process. Hence, the
long-run event studies (either on mergers and acquisitions or
else) will have lower power to detect abnormal performance.

As a result, in verifying the importance of mergers and
acquisitions for the corporate finance perspectives, several
decision rules must be made. First of all, the decisions
must be made on the frequency of sampled data such
as stock returns. Should the short-run or the long-run
stock returns be sampled in the studies? Is the interest of
study on the short-horizon or long-horizon impact? Many
empirical studies have been provided when both the short-
run and long-run returns are applied. Unfortunately, no
unified decision rules are devised to investigate the corporate
event issues. Although the event studies in using long-run
returns are more consistent in different settings than the
short-term returns, the difficulty lies in the controversies of
necessary information or explanatory variables for the speci-
fications of fitted regressions or mechanisms in forming the
(conditional) expectations of stock returns over the event
periods.

It is not difficult to envision that, over the long-run
horizon (across the pre-event onto the after-event periods), the
presumed attributes in forming the systematic components for
the stock returns may not be sufficient due to various contin-
gencies of the capital markets or business cycles of economy.
However, it is critical for the correctness of the specifications
of systematic components in stock returns to enable robust
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conclusions of event studies in using the so-called abnormal
returns. The arguments on using long-run stock returns may
assert that if certain corporate information such as mergers and
acquisitions have initiated essential impacts, the effect could
be persistent and hence, resulted more vividly in the long-
run abnormal returns instead of the short-run noisy abnormal
returns. Even so, two additional questions should be considered
in performing event studies in corporate finance: (1) what is
the availability and frequency for the (economic) attributes that
may be applied to approximate the (systematic) expected rate
of return with acceptable accuracy? (2) what are the robust
statistical procedures that can be devised when considering the
possible (built-in) properties in the collected data?

Although applications of short-run stock returns enjoy more
frequent observations in capital markets and hence receive more
concurrent information that may be considered more infor-
mative, such noisy information may contain less tractability
since the short-run approximation of the expected rate of return
such as asset pricing models usually suffers from lower expla-
natory power. As such, it seems that the choices of short-run or
long-run stock returns also lie crucially on the availability (and
frequency) of economic/corporate data or any sensible attri-
butes in forming the (conditional) expectations to specify the
systematic components of stock returns.

In order to obtain the critical approximation for (condi-
tional) expectations that represent the systematic component
in stock returns, some filtering mechanism must be devised
for either short- or long-horizon event studies. Yet, for the
short-horizon studies, the filters must be robust to filter out the
critical components since the data are quite noisy. In addition,
the filters should be adaptive enough (in data frequency,
dynamic structures, or else) so that the concurrent market
information is taken into account efficiently. However, for the
long-horizon studies, robust filters may also be more difficult
to fetch since (a) the underlying systematic components are not
necessarily stable and the corporate-event related information
could be endogenous to the system that causes the systematic
components and structures to alternate over time, (b) the
included list of (economic) attributes may not be enough to
capture the underlying system across expanded time horizons.
As in Fama et al. (1969) where the separation of expected
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and unexpected components in stock returns is critical for the
soundness of testing empirical hypothesis in corporate finance,
any prudent attempt to search for the critical approximation
on the expected components (through some sensible asset-
pricing models or else) is essential in corporate finance event
studies. In other words, discussions of corporate event studies
must start with some thorough model specification search (or
filtering) for the expectations in stock returns for either short-
or long-horizon studies.

Nonetheless, since approximating expected components of
stock returns is subject to limited information in most cases,
even the best model (in statistical criteria or else) may still
contain approximation errors. Some robust devices or statistical
methods that may undertake certain acceptable approximation
errors and be capable of providing reliable hypothesis testings
are needed for the event studies in corporate finance. Hence,
a well-established event study in corporate finance based on
stock returns should at least contain two particular ingredients:
(1) a thorough model search and filtering for the (conditional)
expected rates of returns relating to the included (economic)
attributes and (2) a robust statistical procedure that allows
acceptable approximation errors and reduces the subjectivity
in sampling, choices of event windows, or time horizons of
interest. This is discussed more extensively in Part II of the
book.

Barber and Lyon (1997) and Kothari and Warner (1997)
both discovered that the long-run stock returns may lead to
misspecified test statistics due to biases such as new listing,
re-balancing, and skewness of the distribution of long-term
abnormal stock returns. Lyon et al. (1999) provided some
improved methods to correct those biases. However, as stated
in their research, “...The most serious problem with inference
in studies of long-run abnormal stock returns is the reliance
on a model of asset pricing. All tests of the null hypothesis
that long-run abnormal stock returns are zero are impli-
citly a joint test of (i) long-run abnormal returns are zero
and (ii) the asset pricing model used to estimate abnormal
returns is valid.” Specifically, the validity of statistical arguments
on long-term abnormal returns can be well-established only
when the underlying systematic components are thoroughly
clarified.
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In Barber and Lyon (1997), for instance, the calculation
of (post-event) buy-and-hold long-run abnormal returns is
formed as

∏T
t=1 [1+ rit] −∏T

t=1 [1+E[rit]] , where the first
term represents the buy-and-hold return on the security i, and
the second term represents expected buy-and-hold return on
some bottom-line benchmarks or attributes, where {rit }t=1,2,...,
are the short-run (say, monthly) returns for security i, and
E[rit] represents the expectation based on the benchmarks or
attributes. Hence, without the correct specification of E[rit],
the constructed buy-and-hold abnormal returns will possibly
contain the specification errors from the models. Another
important issue is that serial dependence may appear when
these buy-and-hold abnormal returns are constructed as the
presumed time span (say, a year or more) T expands, even
though the expected rates of returns E[rit] are correctly
formed.

Showing the deficiency in using the long-run abnormal
returns for corporate finance event studies is straightforward.
The following example assumes continuous compounding for
simplicity. The same conclusion will also hold even if discrete
compounding such as

∏T
t=1 [1+ rit] in the works of Jakobsen

and Voetmann (2005), Barber and Lyon (1997), and Lyon et
al. (1999) is applied.3

Let the buy-and-hold return for a selected security from the
announcement day with the pre-determined time span T be
determined as follows. For an initial investment Wit for security
i, and with the stochastic (monthly) returns rit for any starting
date t , the terminal wealth of this investment is equal to

W t
i,T = Wi,t e

∑t+T
t rit ., (1.1.6)

Hence, the buy-and-hold return for this security is equal to∑t+T
t rit .
Let the benchmark attributes (or so-called characteristic-

based matching firm’s returns) that can be applied to describe
the systematic components of all security returns be denoted as
{rmt }t=1,...,T for simplicity. 4

Assuming the similar accumulated wealth relative as in Ritter
(1991) and Loughran and Ritter (1995), or as the market-
adjusted returns denoted as long-run abnormal returns in
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Kothari and Warner (1997), we may find that if W t
m,T =

Wm,t e
∑t+T

t rmt ,(
W t

i,T /W
t
m,T

)
= (Wi,t/Wm,t)e

∑t+T
t (rit−rmt ). (1.1.7)

In other words, the buy-and-hold abnormal returns with the
presumed long-run time span T , can be denoted as

ln
(

W t
i,T /W

t
m,T

)
= ln(Wi,t/Wm,t)+

t+T∑
t

(rit − rmt). (1.1.8)

Let εit = rit − rmt be denoted as the interim (monthly)
abnormal returns for security i, and denoting the long-run
wealth-relative (abnormal) return (or so-called buy-and-hold
return) for security i as ari

t ,T = ln
(

W t
i,T /W

t
m,T

)
such that that

ari
t ,T = ln(Wi,t/Wm,t) +∑t+T

t εit . Let μi = ln(Wi,t/Wm,t) for

all t ′s for simplicity, it is easy to see that
{

ari
t ,T

}
t=1,2,...

will

be subject to serial dependence across t ′s, since E[(ari
t ,T −

μ)(ari
t+1,T −μ)] �= 0, in general.

More specifically, this serial dependence will possibly increase
with more lags when the presumed time span T becomes larger.
As a result, such built-in serial dependence in time series of
long-run abnormal returns can not be easily eliminated even
with the cross-sectionally weighted portfolio returns unless the
built-in serial dependence vanishes as the number of included
securities becomes relatively large. This is easy to verify if we
obtain the weighted average of the individual firm’s abnormal
returns or buy-and-hold returns,

arp
t ,T = 1

nt

nt∑
i=1

ari
t ,T = 1

nt

nt∑
i=1

[t+T∑
t
εit

]
. (1.1.9)

We may express the long-run abnormal return for security i in
terms of an autoregressive time series model such that

A(L)arp
t ,T = μp +νpt , (1.1.10)
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where A(L) is a polynomial of lag operator L, νpt is a zero-mean
random noise. For an over-simplified setting, we may simply
assume that there is only one lag in the A(L), so that A(L) =
1−ρL, where ρ > 0, for instance. Hence, the (long-run) mean
of the

{
arp

t ,T

}
t=1,2,...,T

will be equal to μp/(1−ρp). Since the

serial dependence for
{

arp
t ,T

}
t=1,2,...,

will become stronger, it

can be assumes that |ρ| will increase as T expands. This shows
that as μp �= 0, the absolute value of the mean of long-run
abnormal returns will become larger when the serial depen-
dence in

{
arp

t ,T

}
t=1,2,...,T

increases. As a result, if the presumed

long-run time span T increases where the lag coefficient |ρ| in
the autoregression Ap(L) increases, it is highly likely that the
mean of long-run abnormal returns for weighted portfolio will
become relatively large. This phenomenon is confirmed in the
simulation study of Kothari and Warner (1997).

This serial dependence is also shown in the empirical study
by Ritter (1991) for the long-run performance of initial public
offerings. In addition, Debont and Thaler (1985, 1987) also
presented that there is a negative relation between the past
and subsequent abnormal returns on individual securities using
holding periods of a year or more. Although their interpretation
considers this relation as the evidence of market overreaction,
this serial dependence can possibly be a result of data constru-
ction based on the above reasoning. Hence, in using the
long-run abnormal returns for corporate finance event studies,
one needs to be cautious on the possible consequence for
the built-in serial dependence from data construction. Similar
arguments can be found in Jegadesh and Karceski (2009) that
they also discover the long-horizon returns may exhibit positive
autocorrelation due to overlapping return data.

In other words, the attempt in using long-run abnormal
returns to avoid possibly autocorrelated and noisy short-
horizon abnormal returns will actually introduce serial depen-
dence due to the constructed data series. Hence, applications
in using the long-run cumulative abnormal returns over event
periods, the test statistics ought to take this property into
account. This built-in serial dependence, for example, repre-
sents an issue of statistical properties of abnormal returns
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that must be taken into account in forming test statistics for
empirical studies (Khotari and Warner 2007). More specifically,
Jegadeesh and Karceski (2009) modify the conventional test
on long-run abnormal returns by using robust estimates for
variance regarding the aforementioned serial correlation and
possible heteroskedasticity.

To consider the possible constructed serial dependence,
an example with Exxon-Mobil returns is included for the
above claim. The data set includes the Exxon-Mobil monthly
(dividend-adjusted) stock returns from January 1988 to
December 2013 accordingly. The time period covers the period
prior to merger of these two firms in 1989, and the after-
merge period. Following the construction in Equation (1.1.8)
(and use the market index returns for normal or benchmark
returns), the cumulative abnormal returns are formed. The
holding-time horizon T is set to be 3, 6, 12, and 18 months,
respectively. In addition, for the company Pfizer, the monthly
returns (dividend-adjusted) are collected from June 1989 unti
December 2013 for the sme holding-time horizon T. A Table
1.1 is included in the following where the first-lag coefficients
of autoregressive time series model and Ljung-Box Q-statistics
are both shown.

Not surprisingly, the data show some significant serial depen-
dence across different time lags assumed. In other words, if
constructed as the sample allows, the long-run serial depen-
dence will result. Therefore, claiming the long-run serial depen-
dence may not confirm or refute the hypotheses of interest. It
may simply result from the data constructed. Or, more techni-
cally instead, various choices over the benchmark returns in
equation (8) may cause the serial dependence, too. Notice that
the claim is not to say, there is no such serial dependence in the
long-run abnoraml returns at all. However, caution must be
applied to the data stream first, prior to further elaborations or
modellings. Table 1.1 provides the Ljung-Box Q test statistics
for the null hypothesis of white noise.

This shows that the constructed series are subject to signi-
ficant serial dependence. In particular, when the time span
expands, the serial dependence turns stronger. In other words,
whether the time horizon is long or short for the event studies,
additional cautions must be applied to the possible time series
properties of constructed data. Hence, one should be cautious
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Table 1.1 Ljung-Box Q-statistics and AR(1) coefficients for Exxon Mobil
and Pfizer Abnormal Returns

Exxon-Mobil

Lags 3 months 6 months 12 months 18 months

1 109.858* 185.032* 233.290* 248.555*
3 131.082* 329.788* 540.199* 625.898*
5 134.027* 346.582* 711.598* 873.989*
AR(1) 0.609* 0.794* 0.898* 0.920*

Pfizer

Lags 3 months 6 months 12 months 18 months

1 125.194* 192.796* 235.120* 250.423*
3 149.558* 384.452* 585.988* 663.766*
5 155.968* 428.392* 826.447* 986.029*
AR(1) 0.649* 0.810* 0.903* 0.944*

All the asterisk signs “*” in the table indicate that the statistics are significant at 1
percent level.

on whether the serial dependence is actually from the data set
constructed or is from the population of the sampled data.

As in Kothari and Warner (1997), and Lyon et al. (1999),
both studies applied (block) resampling bootstrapping methods
for the test statistics to reduce the biases of these long-run
abnormal returns. However, according to Corollary 2.1 of
Lahiri (2003), such serial dependence (for individual security)
can make the independent bootstrap method fail so that the
bootstrap estimator for the distribution of sample statistics
(such as the mean of individual security) is not consistent.
Hence, a more general resampling schemes (such as block
bootstrap method) on the long-run abnormal returns should
be applied for these test statistics instead.

Recent study of Bremer et al. (2011) applies a similar
block bootstrapping simulation for the long-term event
studies. They discover that the application of non-overlapping
quarterly abnormal returns (which are obtained based on
the characteristic-based matching firm’s returns) may provide
better power for the tests in long-run event studies. In parti-
cular, they also discover that in generating abnormal returns
of buy-and-hold returns, the application of equally weighted
portfolio of characteristic-based matching firm’s returns as
the benchmark returns is more superior than the individual
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characteristic-based matching firm. In fact, the result precisely
indicates that the choices of model specifications in forming the
expected components of the stock returns are essential for the
robustness of event studies in empirical corporate finance. A
better model specification for the expected components of the
stock returns (conditional on the aforementioned information
set �t), regardless of the frequency of data, will provide a more
robust statistical result in hypothesis testing.

For using high frequency news and data in event studies,
Bohn et al. (2013) provide an alternative method for corporate
finance issues. Instead of following conventional approach that
starts with identification for corporate event dates and news, the
alternative approach starts from verifications on the “jumps”
of stock returns. Namely, the approach applying the statistical
methods such as (bi)power variation to consider the jumps
of stock returns without reference to some particular news
or announcements. After identifying the jumps, the method
is then to associate the news data with the already-identified
jumps of stock returns. The advantage is that there is no need to
identify the event time in advance. In other words, the approach
avoids the subjective determination on the event period, event
dates through the researcher’s a priori judgment, especially on
the unscheduled news or announcements. In particular, high-
frequency data such as intraday observations are collected for
the studies.

Unfortunately, even though the approach is promising, the
high-frequency data may contain some microstructural noises,
which may not be associated with any event (or news) of
interest. Another difficulty is that, although identification of
jumps of stock returns is carried out, the association between
the news and the jumps seems arbitrary. In other words, even
though some jumps may be related with the news by associating
two time series, there is no particular robust statistical method
applied to verify these results.

Another issue is that even though the association is
legitimate, there could be so many different news or events that
were identified and some of them may be mutually related also.
Thus, it is difficult to see (1) which news is the main cause
for the events or jumps since some jumps may be caused by
non-corporate-finance issues, (2) what theoretical/economical
reason(s) may be identified to explain the results. In addition,
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not all jumps can be explained by the feasible news data sources
or news time series. A question that should be clearly consi-
dered, however, is whether identification of jumps alone fulfills
the purpose of event studies or not. Regardless of the frequency
of data applied, a meaningful event study is to consider certain
social-economic/corporate finance issues where stock returns
data are applied to verify the hypotheses. In turns, these verified
hypotheses help to understand the functioning of capital market
equilibrium and the impacts of events on the corporates or
related institutions. While essential verification is provided by
robust methods, identifying jumps or else (such as cumulative
abnormal returns) is only applied as a tool for such purpose.

1.2 Variable Selection in Assessing the Probability

of an Event?

For a corporate event, both the impact of the event and the
informativeness of pre-event signals are essential in corporate
finance. Likewise, it is equally important to determine the
probability (of success) of the events. Many research works
have discussed the related issues, for instance, on the mergers
and acquisitions. Two areas of research can be shown as: (1)
the prediction of likelihood of being the target firm and (2)
the assessment of probability of successful takeovers. Either
approach requires assessments for the implicit information
(from stock returns or else) to infer the hypotheses of interest.
The implication is that for the issues such as mergers and acqui-
sitions, the management of both target and acquiring firms
may possess more informative sources in comparison with the
investors in public. The process of negotiation for the deals
and others may not be fully disclosed. The success or failure of
the events such as mergers and acquisitions requires inferences
of the hidden nondisclosed information to improve the asses-
sments. In particular, the emphasis is on how probable the
events may occur. However, the issues are much more compli-
cated than just model specification on how the market may
infer the underlying events to happen or not. A more essential
issue is that variable selection for the models of interest remains
challenging for the empirical finance.

For instance, Brown and Raymond (1986) investigate the so-
called risk arbitrage and the probability of successful corporate
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takeovers. Their arguments claim that although risk arbitrage
may cause investor to search for the best price spread between
the offered price and the market price for the target firms, the
competition in the market will eventually show that the success
of the deal can be inferred from the prices in the post-
announcement period. For example, let Pmt stand for the
prevailing market price for a target firm when there is a tender
offer at the price PTl . The purchase of the stock will have a
return as {PTl − Pmt}/Pmt if the merger is completed succes-
sfully. However, there is a chance of unsuccessful merger where
the target’s stock price may fall to the “fallback” price PF ,
where the return may fall to {PF − Pmt }/Pmt . Assuming that
the expected risk arbitrage payoff is zero, it can be shown that
at time t ,

E[π t] = xt

[
PTl −Pmt

Pmt

]
+ (1−xt)

[
PF −Pmt

Pmt

]
= 0, (1.2.1)

where xt stands for the period t merger probability, πt repre-
sents the risk arbitrage payoff. Thus,

xt =
1−

(
PF
Pmt

)
(

PTl
Pmt

)
−
(

PF
Pmt

) . (1.2.2)

Equivalently, the probability can be rewritten as

xt = (Pmt −PF )÷ (PTl −PF ) . (1.2.3)

In order to ensure Equation (1.2.3) represents a proper proba-
bility measure, Brown and Raymond (1986) introduce

xt = Min {[Max {(Pmt −PF ) ,0}÷ (PTl −PF )] ,1} . (1.2.4)

To measure the “fallback” price, Brown and Raymond
(1986) apply the target firm’s stock price four weeks prior to
the announcement date to approximate it. However, there are
two difficulties for this method of obtaining the probability of
event’s success of failure. There is no theoretical reasoning that
this measurement will represent the “failure” price closely. In
addition, the framework does not consider the occasions that
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some private firms could be the targets whose stock prices are
unavailable in public. Hutson (2000) extends their analysis to
Australian market. In particular, the “fallback” price is replaced
with the initial price PI , which is the initial price of the target
firm one month before the announcement of the bid. However,
there is no theoretical justification that such a sampling scheme
is well-suited for the analyses.

Alternatively, Acharya (1993) introduces the latent variable
model to infer the hidden information (and the probability) for
corporate events. The analysis also starts with the model such
as

rit = β ′
iWit + εit , (1.2.5)

where Wit includes a vector of firm-specific attributes as of
time t − 1 and market-wide factors as of time t, βi is a
vector of associated coefficients. 5 Notice that the condition
E[εit |Wit] = 0 holds in the period in which the event is impro-
bable.6Accordingly, the conventional event studies obtain the
event period residuals as

ε̂it = rit − β̂ ′
iWit , (1.2.6)

provided that time t lies in event period. In short, for any time
period that contains probable events (whether announced or
not), the model of Equation (1.2.5) can be rewritten in to an
alternative form such as

rit = β ′
iWit + δeiIeit + δniInit +ηit , (1.2.7)

where time t can be either in event or non-event periods, Ieit
is a dummy variable, which is equal to one when t is in the
event period, and is equal to zero otherwise, and Init = 1− Ieit .
{δei}i=1,2,··· ,n and {δni}i=1,2,··· ,n are expected returns conditional
on the event or the nonevent. For further analysis, Acharya
(1993) introduces a latent variable model such that

Ieit =
{

1, θ ′zit−1 + ξit > 0
0, θ ′zit−1 + ξit ≤ 0,

(1.2.8)

where xit = θ ′zit−1 + ξit , and xit stands for normalized
increment of net present value of a firm when announcing
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an event versus not announcing an event at time t, ξit is the
standardized latent information at time t for firm i, zit−1 is a
vector of firm-specific attributes included in the vector Wit . In
addition, a cross-sectional relationship is assumed that

εit = qξit +ηit . (1.2.9)

After substitution, it is feasible to express the conditional
expectation

E[εit |Ieit = 1,Wit] =qE[ξit |zit−1,ξit >−θ ′zit−1]

=q
φ
(
θ ′zit−1

)
�(θ ′zit−1)

, (1.2.10)

and accordingly,

E[εit |Init = 1,Wit] = −q
φ
(
θ ′zit−1

)
1−�(θ ′zit−1)

, (1.2.11)

if normality is assumed, where φ(.) and �(.) are the standard
normal density and cumulative distribution function, respe-
ctively. Using the notions of conditional expectations, Equation
(1.2.7) can be re-written into

rit =β ′
iWit +q

[
φ
(
θ ′zit−1

)
�(θ ′zit−1)

Ieit

]
−q

[
φ
(
θ ′zit−1

)
1−�(θ ′zit−1)

Init

]
+νit .

(1.2.12)

The difficulty of this model is that, similar to the conditional
expectations of the abnormal returns (denoted as {εit }i=1,2,··· ,n),
the conditional expectations in the “beta’s” incurs firm-specific
attributes as well. In other words, the abnormal returns are
then also related with the normal (expected) returns where
investors can infer both from the firm-specific attributes in
the past and concurrent information sets. In addition, the
model (in Equation (1.2.12) for instance) also assumes that
these past firm-specific attributes will contribute to the speci-
fication of expected abnormal returns when events happen. For
instance, Equation (1.2.12) for the time period where events
are probable is actually expressed as

rit = E[rit |Wit]+νit , (1.2.13)
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where here Wit includes a vector of firm-specific attributes as
of time t − 1 and market-wide factors as of time t . In this
case, is the specification of E[rit |Wit] in Equations (1.2.12)
and (1.2.13) the correct model for normal (expected) returns
or not? If the answer is yes, that would imply these firm-specific
attributes also contribute to the formation of market expecta-
tions on both the market-wise fluctuations and corporate
finance events, even though the corporate finance events are
considered idiosyncratic or diversifiable risks. For instance,
it seems straightforward to rewrite Equation (1.2.12) when
considering W �

it of marketwise factors as a subset of Wit that

excludes the sub-vector
{
zit−1

}
i=1,2,··· ,n where Wit =

[
W �

it
zit−1

]
,

and

rit = E[rit |W �
it]+g(zit−1)+νit

= E[rit |W �
it]+ ε�it

= β̃ ′
iW

�
it + ε�it ,

(1.2.14)

by setting g(zit−1) = β
′
izit−1 +q

[
φ(θ ′zit−1)
�(θ ′zit−1) Ieit

]
−q
[

φ(θ ′zit−1)
1−�(θ ′zit−1)

Init

]
, βi and β̃i are sub-vectors of βi such that βi =

[
β̃i

βi

]
.

Notice that in Equation (1.2.13), it is pre-supposed that the
essential variables for model specification have been identified.
In empirical finance, this is far more than a question of
model/variable selections or statistical tests of significance.
Additional justification must be provided to consider the
distinction between normal (expected) returns and abnormal
returns, accordingly. Furthermore, in Equation (1.2.14), it
shows that if these firm-specific attributes actually contribute
to the identification of probable corporate events of interest,
it seems more ideal to simply construct the normal (expected)
returns using the market-wise information set W �

it and leave the
rest to the abnormal returns ε�it per se. The abnormal returns
when properly constructed, will be informative enough to tell
the stories. Given so, the variable selection in the model of
Equation (1.2.7) is critical. In empirical finance, the choices
of variables are not immediately straightforward using model
specification tests or selection criteria such as AIC, BIC or
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else. Instead, specific economic properties of the normal and
abnormal returns should be considered first.

Although filtering out all possible non-related noises to
isolate the signal of event(s) explicitly seems straightforward,
it remains dubious for the presumption that inclusion of
additional firm-specific attributes (in the expression of normal
returns) may improve the tests for event studies. A critical issue
then, is whether it is optimal to include all perceived (or possibly
relevant) variables in the model(s) of normal (expected) returns
to analyze the corporate finance events or not. Furthermore,
as indicated in Branch and Yang (2003), some firm-specific
attributes are useful in identifying the likelihood of successful
takeovers for different payment methods/merger types. Since
mergers and acquisitions are considered as firm-specific events,
it seems more ideal to confine these variables to the model
specification for abnormal returns. This, in turn, leads to the
discussions in Chapter 2 where model search for the normal (or
expected) returns is essential prior to the studies on abnormal
returns in all cases whether the time periods are of probable
events or not. The event studies in empirical corporate finance
may become more reliable if the dichotomy of normal (or
expected) returns and abnormal returns can be better assumed
when variable selection is processed rigorously.



Chapter 2

Model Specifications for Normal

(or Expected) Returns

Introduction

For corporate finance event studies that look into abnormal
returns, robust model specifications for normal (expected)
returns are needed. However, to verify the model specifi-
cation, one needs to be cautious about the included explanatory
variables. Although many candidate variables seem useful in
forecasting the returns, they are not necessarily genuine syste-
matic variables that explain the capital market equilibrium.
Common-sense reasoning may be considered for filtering the
returns thoroughly with all seemingly significant variables to
provide cleaner abnormal returns. Yet, inclusion of nonsyste-
matic firm-specific variables in the expected rates of returns
may, in fact, result in incorrect conclusion due to possible over-
rejection in statistics applied. This chapter introduces some new
arguments for specification of normal returns.

In particular, it is shown that inclusion of redundant variables
for the specification of normal (or expected) returns may
become detrimental for the event studies especially when
the included (firm-specific) variables are associated with the
underlying events. The nondiversifiability of any included
variable is emphasized so that strong cross-sectional depen-
dence will result if the variable is indeed a systematic one. New
test statistics are introduced to verify this necessary condition
for nondiversifiability of included variables. The guidance for
model specification is simple. That is, (1) to verify the nondiver-
sifiability of included variables with the cross-sectional strong
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dependence, and (2) to avoid including the possibly diver-
sifiable (and known) variables or attributes in the expected
returns even though they may improve forecasts. Namely, the
purpose is to make the abnormal returns less “scrambled” with
unnecessary ad hoc information.

2.1 Model Search

As mentioned in Chapter 1 that model specification for the
normal (or expected) components in stock returns is essential
in the tests for event studies, this difficult task has been
discussed in many event studies of corporate finance literature.
Strong (1992), for instance, surveyed different methods of
modeling abnormal returns using various models for normal
(or expected) returns. One of the major issues in the model
specifications for expected components in stock returns is
the selection of (economic) attributes — either for short- or
long-horizon event studies. The main question is “what deter-
mines the normal (expected) returns?” Or specifically, “is it
legitimate to include all explanatory variables in the empirical
asset pricing models as long as they have statistical/time series
predictability?”

When short-horizon event studies are of interest, for
instance, the selection of (economic) attributes and determi-
nants is usually limited due to the availability and frequencies
of influential data for expected components of stock returns.
For the long-horizon event studies, the difficulty of data availa-
bility may become less severe, depending on the corporate
issues under studies. Nevertheless, the longer the horizon
of interest in the long-horizon studies, the more likely the
(unknown) external factors or else may become influential. In
other words, model specifications (based on the current and
past information of presumed variables) may become insuffi-
cient. Even if all relevant variables are available, a device for
variable selection must be provided to perform model search
for modeling the (systematic) expected components. One issue
then is that inclusion of all statistically relevant variables in
forming the expected returns may not necessarily be ideal at all.

Notice that the dichotomy of stock returns into expected
and unexpected components facilitates the analysis for both
expectations subject to market (systematic) risks and the
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abnormal returns (which are considered idiosyncratic). While it
is interesting enough to include all publicly available (economic
or firm-specific) attributes in modeling the expected compo-
nents, some of these variables are not necessarily of syste-
matic risks borne by the entire capital market. For instance,
some accounting measurements or corporate finance attributes
such as corporate controls or anti-takeover actions although
essential in corporate finance may not be identified as syste-
matic attributes for the entire market unless these variables are
hidden components for systematic risks. Not surprisingly, these
abnormal returns are denoted as “abnormal” is simply because
they are unexplained by the systematic components (or syste-
matic risks) of stock returns. Hence, determination on what
kind of financial/economic attributes are considered “syste-
matic” is critical for the classification of normal and abnormal
returns and, more importantly, on the validity of event studies
in corporate finance.

Although ideally the data processing of corporate event
studies may attempt to obtain the abnormal returns as
“thorough” as possible when stock returns are filtered through
all relevant variables, the search for the most representative
model that provides the genuinely nondiversifiable (economic)
attributes for normal (or expected) returns is necessary. A
critical question then, is what the normal (or expected) returns
should be. If the “normal” returns are considered as systema-
tically expected for the benchmarks when the capital market
equilibrium is achieved (or assumed), then concerns over the
declared firm-specific attributes may not be essential for their
specifications in normal returns. A well-known reason is, these
firm-specific attributes are only for the selected firms and not for
the systematic components of the entire capital market expecta-
tions. However, on the other hand, a dilemma also starts when
one needs to exhaust feasible model search as thoroughly as
possible so that no essential systematic information is dismissed.

For instance, due to the noisy data in the short run, some
robust and efficient filters must be devised to screen out the
systematic components of stock returns. More specifically, the
filtering should thoroughly identify the normal (or expected)
components of stock returns that may represent the bench-
marks in capital market equilibrium (at least, ideally or theore-
tically). Although there might be concerns that these filterings
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may filter out the essential information including those impacts
from the event(s), it is conceivable to consider that (for both
short- or long-horizon event studies) the impact(s) of event(s)
may become endogenous to the system since the market may
digest the information or rumor(s) prior to or surrounding the
event date(s). In other words, if such filtering in applications
can filter out the essential event impacts from the data already,
it is feasible to consider that the investors (individuals or insti-
tutions) in the entire capital market can trace out the same
regularity with similar technicalities in forming their expecta-
tions or forecasts as well. Therefore, applications of robust
and efficient filters (when thoroughly applied), in turn, will
result with some abnormal returns honestly representing the
unexpected components of stock returns.

In short, the model specifications for normal (or expected)
returns need to consider two steps:(1) to identify the essential
attributes (or factors) in expected returns via model search, and
(2) to apply possible filtering devices (algorithms, or statistical
methodologies) in filtering the expected returns from stock
returns. For brevity, the applications of robust filters for the
expected returns will be discussed in Part 2 of this book.

Many research papers had discussed the applications of
different model specifications for expected returns. For
instance, Thompson (1988) claimed that little difference is
found in using different methods for the benchmarks of stock
returns. In other words, the industry indices, return forms,
have little impact on the event studies when compared to the
conventional market model. However, it is also essential that
the dichotomy of rates of return into normal (or expected)
returns and the unexpected (abnormal) returns requires the
risks incurred to be considered as systematic (nondiversifiable)
or else.

In other words, if there is some firm-specific information
that is relevant to the presumed event(s) to study, this infor-
mation (or variable) if not systematic should not be included in
the expected components of stock returns. Hence, despite that
some so-called asset-pricing models may entail the statistically
significant variables or factors, the verification on the nondi-
versifiable property of these included or presumed variables is
essential for the construction of normal (expected) returns. On
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the other hand, if these information sets of presumed variables
(in forming the normal (or expected) returns) include the
statistically significant yet firm-specific variables that are diver-
sifiable, the abnormal returns thus-wise may be polluted with
additional noises.

For instance, let the true structural equation of the stock
returns i =1,2,...,N be shown as follows

rit = E[rit |�t]+ εit , (2.1.1)

where �t represents the information set of nondiversifiable (or
systematic) economic attributes or factors (including their past
history), εit is the genuine idiosyncratic risk that may contain
all firm-specific variables or signals and especially, the impact(s)
from the event(s) of interest. For simplicity, let E[rit |�t] =
β ′

iX̃t , where X̃t is a k-by-1 vector of economic attributes
that are considered non-diversifiable, βi is a k-by-1 vector of
parameters. In addition, let

εit = θ ′yit + vit , (2.1.2)

where yit is a p-by-1 (say, p > 1) vector of firm-specific diversi-
fiable risks that represent the impacts of event(s), θ is a p-by-1
non-null vector of unknown coefficients, vit is a pure random
noise such that E[vit |yit] = 0, and that Var(εit) = E[ε2

it] = σ 2
it =

θ ′E[yit y′
it]θ +E[v2

it] is the variance of the idiosyncratic risk.
Let E[yit] = 0, E[yity′

it] = �, and � is a p-by-p positive-
definite matrix under the null hypothesis of no essential
impact(s) from the event(s). Now suppose the empirical study
proposes to include some firm-specific diversifiable variables
(which may be a subvector of yit) and are denoted in a q-
by-1 (q < p) subvector zit where E[X̃t |zit] = 0, for simplicity.
Then, the extended model will become E[rit |�t ,zit] = β ′

iX̃t +
θ ′E[yit |zit], where E[yit |zit ] �= 0, and it is easy to see (under
iterated law of expectations) that E[rit |zit] = β ′

iE[X̃t |zit] +
θ ′E[yit |zit] = θ ′E[yit |zit] �= 0. Now that if equation (2.1.1) is
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the correct specification for systematic component of rit , it
follows that

rit = {β ′
iX̃t + θ ′E[yit |zit]}+ θ ′{yit −E[yit |zit ]}+ vit . (2.1.3)

In other words, even though zit is not a vector of systematic
components in equilibrium asset pricing kernel, it may appear
that these variables are useful to specify or predict the asset
returns. Hence, if Equation (2.1.3) is applied for the normal
(expected) returns, the presumed abnormal returns will become
η̃it = θ ′{yit − E[yit |zit]}+ vit = ξit + vit . Namely, the abnormal
returns are no longer the original idiosyncratic risks. In fact,
they now contain the projection errors where the impact(s)
of event(s) and other unobservable components are projected
onto the presumed firm-specific variables.

The event studies based on these presumed abnormal returns
will not necessarily represent the impacts of the events. Instead,
the studies are based on the residual effects of the event(s) after
projecting the stock returns on these firm-specific variables. In
other words, various empirical results may occur once different
firm-specific diversifiable variables are applied.

Although screening out irrelevant noises to purify the
abnormal returns may provide more reliable results for the
hypothesized impacts from event(s), filtering the stock returns
to obtain the abnormal returns must be handled with cares.
Applications of more extended models (with factors or else)
may not be more ideal unless the systematic components of
stock returns are correctly identified. Inclusion of variables
or attributes for normal (or expected) returns ought to take
the nondiversifiability of these included variables into account.
Overfitting the models with various firm-specific attributes for
expected returns may not improve the power of statistical tests
in the event studies.

In addition, there are numbers of research articles empha-
sizing either optimality or robustness in model selection criteria
or other statistical procedures. Yet, few of the studies focuses
on testing the essential nondiversifiable characteristics of the
selected attributes or proxies for factors. Specifically, identi-
fication of statistically significant attributes or variables does
not necessarily imply the selected ones are nondiversifiable or
systematic.
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More specifically, it is straightforward to find that even
though E[η̃it] = θ ′E[yit −E[yit |zit ]]+E[vit] = 0,

Var[η̃it] = E[η̃2
it] = E{θ ′[yit −E[yit |zit]][yit −E[yit |zit]′θ}

+E[v2
it], (2.1.4)

where E[yit − E[yit |zit]][yit − E[yit |zit]]′ = E[yity′
it − 2yitE[yit

|zit]′ + (E[yit |zit])(E[yit |zit])′] provided that E[yitE[yit |zit ]′] =
E[E[yit (E[yit |zit])′|zit] = E(E[yit |zit](E[yit |zit ])′.

This implies that σ 2
it ≥ Var[η̃it] as long as E[yit |zit] �= 0. In

other words, the variance of the presumed abnormal returns
will be less than the variance of genuine abnormal returns if
a redundant event-related variable is included in the empirical
asset pricing model for normal (expected) returns.

Hence, even if the null hypothesis is to claim that E[η̃it] = 0,
the reduced variance may make the test statistics tend to over-
reject the null. In fact, as shown in Equation (2.1.3), it is
easy to see that when E[rit |zit ] = β ′

iE[X̃t |zit] + θ ′E[yit |zit] =
θ ′E[yit |zit] �= 0, there exists a specification error that some
statistically significant variables (or attributes) are omitted in
the (conditionally) expected returns if one wants to build a
comprehensive model for stock returns. Namely, the variables
zit contribute some (in-sample) predictability for the stock
returns, indeed. And, in particular, in statistical sense, the model
simply based on the systematic attributes alone may become
insufficient since it omits some significant variables.

However, the myth is “are these variables essential for asset
pricing for capital market equilibrium?” May be not. The reason
is that these variables (although informative) may become
diversifiable by portfolios constructed with sufficiently large
number of assets when these variables or phenomena are well-
known to the investors. In other words, they may not be
the pricing kernel for stock returns in capital market equili-
brium. Therefore, model specification for asset pricing models
should not simply identify statistically significant variables that
may explain (or predict) the asset returns. Namely, verification
of empirical asset pricing models simply bases on (statistical)
predictability is not enough.

It is also common to see that the predictability (with finite
samples collected) of these statistically significant variables
may vary over different time periods. Some variables included
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may perform better than the others in certain time periods
indeed. Yet, this superiority does not prevail on all occasions.
Otherwise, the discussions over empirical asset pricing models
should end up with a prespecified set (or category) of expla-
natory variables already. This however, is not the case. Variables
that plausibly explain stock returns may change over time,
especially in financial time series. Therefore, verifications of
empirical asset pricing models should not limit the scope to
statistical (or time-series) predictability alone. Further verifi-
cation (perhaps, recursively if possible) on the nondiversifiabilty
or systematic essentiality of these included variables is needed.

On the other hand, if assuming that the corporate finance
event is relevant and within the time period (say, [T1,T2]), the
mean of yit is nonzero. That is, E[yit] �= 0, when t ∈ [T1,T2] ,
t ≤ T1 < T2 < T , [0,T ] is the entire time period sampled.
The property that E[η̃it] = θ ′E[yit − E[yit |zit]] + E[vit] = 0
still holds. Yet, the statistics (for event studies) based on
{η̃it }t=1,2,···will have a zero mean uniformly when the variable
{zit }t=1,2,··· is included in the model of normal (expected)
returns where E[εit] = θ ′E[yit] �= 0, when t ∈ [T1,T2] . In
that case, the statistics based on {η̃it }t=1,2,··· will have a bias
(for corporate finance events) within the time period [T1,T2] .
Based on the above arguments, a proposition can be easily
stated in the following.

Proposition 2.1.1: Given the setting in the equations (2.1.1)
and (2.1.2), σ 2

it ≥ Var[η̃it] as long as E[yit |zit] �= 0, whether
E[yit] = 0 or not. If, on the other hand, E[yit] �= 0, when
t ∈ [T1,T2] , t ≤ T1 < T2 < T , the abnormal returns η̃it (when
additional explanatory variable zit is included in the model
for normal (expected) returns) will have a bias for the actual
abnormal returns of corporate-finance events within the event
period [T1,T2].

From Proposition 2.1.1., it noticeable that inclusion of
redundant event-related explanatory variable(s) in the empirical
asset pricing model for normal (or expected) returns will not
only influence the power of hypothesis tests, but also introduce
bias in abnormal returns for the event period. For empirical
finance, it is easy to see that almost all model builders will
endeavor to search for some explanatory power from perceived
information. For instance, Saporoschenko (2011) studied the



M O D E L S P E C I F I C AT I O N S 37

effect of Santa Ana wind condition on the southern California
stock returns. Fortunately, there is no statistically significant
evidence in showing that the wind condition can predict
the individual stock returns. Otherwise, if there is such a
predictability, should one also include this variable as a syste-
matic component in the specification of expected returns?
Predictability of included variables does not necessarily imply
nondiversifiability.

Hence, conventional applications with model selection
criteria such as information criteria with prediction errors do
not necessarily identify the systematic components for the asset
pricing entirely unless additional criteria for nondiversifiability
of included variable(s) are attached. Identification for empirical
asset pricing models for excess returns is much more than
just the statistical significance or predictability of the plausible
explanatory variables. Although verifications of predictability
(with model selection or else) are still considered essential for
dynamic modeling of stock returns, the task for identification
of (system-wise) asset-pricing factors remain undone unless
nondiversifiability is also investigated.

This consequence of overfitting is confirmed by the empirical
study of Ang and Zhang (2004) when a Fama-French three-
factor model is applied with an additional momentum-related
factor to approximate the normal returns. The inclusion of
this additional (possibly firm-specific) variable tends to cause
over-rejection of the test statistics in event study. Furth-
ermore, the inclusion of additional factor(s) for the Fama-
French three-factor model was unnecessary as confirmed in
Jeng and Liu (2012) that no additional nondiversifiable risk
(or factor) is needed when recursive forecast errors from the
Fama-French three-factor model are applied in diagnostic tests
for hidden nondiversifiable factors. Although many analyses
(such as Collins and Dent 1984; Bernard 1987) had discussed
that cross-sectional dependence or event clustering among
the firm’s abnormal returns may provide reduced standard
deviation that causes over-rejecting t statistics, the above result
shows that overfitting the asset pricing models for normal
(expected) returns may also be equally distressful on empirical
event studies.

Kothari and Warner (2007) state that “...The search in
the Fama and French (1993) three-factor model, was further
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modified by Carhart (1997) to incorporate the momentum
factor. However, absent a sound economic rationale motivating
the inclusion of the size, book-to-market and momentum
factors, whether these factors represent equilibrium compen-
sation for risk or they are indication of market inefficiency has
not been satisfactorily resolved in the literature.” In fact, it is
clear that if one includes some factors or attributes that are
genuinely unsystematic or diversifiable in empirical asset pricing
models, the consequence will very possibly ruin the soundness
of the test statistics in verifying the hypotheses of event
studies.

While it is promising to increase the dimensionality of expla-
natory variables in forming asset pricing models, the fact
is that more complicated models are not always better. For
instance, Cable and Holland (1999) apply the general-to-
specific model selection framework to search for alternative
models of normal returns in event studies. Their findings
show that the market model is preferred to the capital asset
pricing model. Brown and Warner (1980) state that the market-
and mean-adjusted returns are more robust than the more
complex models. Pettengill and Clark (2001) instead consider
that market model provides biased results. Thompson (1988)
shows that the expansion of market model to market-industry
model, which may include industry indices, return form, and
individual firm extraneous events, has very little impact on event
study results. Yet, it is obvious that the ultimate determinant
for the inclusion of variables should rely on the “systematic”
or “nondiversifiable” property of the presumed explanatory
variables.

Justification on which model is more appropriate for the
normal returns should take us back to the concept or perspe-
ctive of systematic risk. The included variables should not be
based merely on statistical significance in either model selection
criteria or tests. More importantly, the verification should
be deeper in finding the nondiversifiability of these included
variables or attributes. In all these cases of model specification
for normal returns, the arguments may be more succinctly
solved by further investigation on the nondiversifiable or syste-
matic features of the included variables or attributes in empirical
asset pricing models for normal returns.
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Alternatively, Thompson (1989) discusses the so-called
difference-in-return (DIR) model to obtain the abnormal
returns. Specifically, the DIR model for an individual firm is
shown as

rit − rct = εit , (2.1.5)

where rit is the asset return for firm i and rct represents the
control firm’s rate of return. The control firm is selected as
the compatibility of systematic risk, features of operations and
industry, and in particular, their accounting variables (such as
book-to-market ratio, earning per share, total capitalization,
etc.) and other information. According to Thompson (1989),
the t-statistics for the DIR model the conventional simple linear
regression using the control firm’s rate of return (denoted as
tDIR and tm, respectively) can be shown for t in the event
window and [1,T ] as the estimation period,

tDIR = (rit − rct)√
1
T
∑T

τ=1 (riτ − rcτ )2
, (2.1.6)

tm = (rit − α̂i − β̂irct )
σ̂c

, (2.1.7)

where σ̂c = σ̂ε

(
1+ 1

T + (rct −rc)2∑T
τ=1 (rcτ−rc)2

) 1
2

, σ̂ε is the root mean

square error of the simple linear regression, α̂i and β̂i are
estimates based on estimation period. The simulation result of
Thompson (1989) shows that the DIR model does not improve
the power of the tests. In other words, the DIR model in
obtaining the abnormal returns may not be more ideal than
simple linear regression (such as market model) even though
the control firms are well chosen to fit the characteristics of the
firms of interest.

One of the difficulties is that the control firms must be
selected properly to reflect the essential (systematic) compo-
nents for the firms of interest. Selection of these firms may not
necessarily be easier than the model selection among all alterna-
tives for normal (or expected) returns. Nevertheless, the finding
in Thompson (1989) actually indicates that controversies in
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obtaining the abnormal returns through different methods of
specifying normal (or expected) returns must be resolved so
that certain principles are devised for consistency in empirical
findings of the corporate events. More specifically, although
a vast amount of literature and publications have discussed
the corporate finance events such as mergers and acquisitions,
confusion may still persist if the methods applied to obtain the
correct and systematic specification of normal returns remain
unclarified.

Some theoretical papers have discussed the factor structure
of asset returns. Bai (2003) provides an inferential theory of
factor structure of large dimension where both the dimensions
of cross-sectional data and time series can tend to infinity. In his
framework, the large-dimensional panel data can be expressed
as

Xit = λ′
iFt + eit , (2.1.8)

where i = 1,2, ...,N , t = 1,2, ...T , Xit is the ith dependent
variable, λi is also a r-by-1 vector of factor loadings, Ft is a r-by-
1 vector of true factors (observable or not). More compactly, it
can be expressed as

Xt =�Ft + et , (2.1.9)

where Xt = (X1t ,X2t , ...XNt)′ is a N -by-1 vector of dependent
variables, � = (λ1,λ2, ...λN )′ is a N -by-r matrix of (nonsto-
chastic) factor loadings, and et = (e1t ,e2t , ..., ent)′ is a N -by-1
vector of idiosyncratic risks. To identify that these factors
are fundamentally essential, Bai (2003) imposes the following
conditions for factors and factor loadings:

E||Ft ||4 ≤ M <∞, T −1
T∑

t=1

FtF ′
t

p−→�F

||λi|| ≤ λ <∞, || 1
N
�′�−��|| −→ 0,

where ||A|| = [tr(A′A)]
1
2 denotes the (Frobenius) norm of the

matrix A, �F and �� are both r-by-r positive-definite matrices
for factors and factor loadings, respectively.
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Notice that these conditions are simply to ensure that the
factors are not degenerating over time and the factor loadings
are somewhat converging toward a positive-definite full rank
matrix when equally weighted by N . Alternatively (although
not entirely equivalent), since the condition on factor loadings
is to ensure that the matrix 1

N �′� will converge to a positive
definite matrix �� (in Frobenius norm), a necessary condition
of these r essential factors (r ≥ 1) can be shown that for all
factor loadings {βij }i=1,2,...N , of the j-th factor in asset return i,
j = 1,2, ...,r, where λi = (βi1,βi2, ...,βir)′

1
N

(
N∑

i=1

β2
ij) −→ σr > 0.

In other words, the squared sum of factor loadings of
each factor is growing with number of assets N and with
a growth rate O(1). That is, these squared sums of factor
loadings will be growing with the same rate as number of
assets N . Loosely speaking, the factor loadings are not squared-
summable. Instead, they are (proportionally) growing with the
number of assets N .

This shows that the factor loadings of these essential factors
or attributes in the factor models of normal (or expected)
returns must exhibit certain properties so that they are not
degenerated as number of assets increases. Namely, the identi-
fication of variables or attributes (especially in the empirical
asset-pricing models) that bases merely on statistical significance
of parameters of these variables is not enough. Further justifi-
cation of the above essentiality should be included also. Hence,
statistical inferences on the empirical asset pricing models when
some observable (economic) variables or attributes are applied
should include the verification on the “systematic” property
of the variables or attributes. Otherwise, the empirical asset
pricing models may not represent genuine specification for the
normal (or expected) returns. In turn, these modeling errors
will cause incorrect assessments of abnormal returns and hence
reduce the power of statistical tests for the event studies. In
other words, choosing to have a conservative perspective to
verify the inclusion of these variables (in addition to statistical
significance in parametric or nonparametric factor analyses) will
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enhance reliability of event studies in corporate finance when
using the abnormal returns.

One difficulty in Bai’s (2003) work is that even though
the factors and their factor loadings are estimable, there is no
economic interpretation on these factors estimated. In parti-
cular, the factors are usually unobservable and hence are not
applicable to filter the normal (nondiversifiable) components
empirically from stock returns. However, many other applica-
tions of empirical asset pricing models also failed to justify that
the included attributes satisfy the condition of factor loadings
as shown above.

For instance, it is prevalent to discover that sizes, industry
indices, or so-called own-volatility measures that are related
with individual stock returns. However, they are not essentially
systematic so that the entire capital market will flutter on the
variation of these variables. Undoubtedly, these variables are
well-known to the public unless these institutions attempt
to conceal them. If available in the public domain, why are
the investors not making use of the firm-specific information
to diversify their portfolios? If they are called “firm-specific,”
why is it they are still systematic components of normal (or
expected) returns (in capital market equilibrium)? Or, is it
not true that these firm-specific signals are orthogonal to
the so called “systematic” variables (such as market index
return or variables included in earlier Fama-French three-factor
model)? If proper interpretation is attempted for these extended
asset pricing models, these models should be furthermore
verified with their nondiversifiable characteristics or factor-
loading conditions for these included attributes. Otherwise,
any empirical finding with statistically significant explanatory
variables can be applied to explain the normal (or expected)
returns, which in turn, must be based on equilibrium condition
of capital market.

Certainly, another alternative for model search is to consider
the model selection criteria such as AIC, or BIC, among others.
Unfortunately, model selection criteria are only to satisfy the
role as selecting statistically significant explanatory variables for
the regression models of interest. For model search in asset
pricing models or normal returns in stock returns, additional
properties with concerns on nondiversifiability for explanatory
variables must be considered. Otherwise, the dichotomy of
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stock returns into systematic (nondiversifiable) components
and nonsystematic firm-specific abnormal returns will not hold
empirically since some firm-specific variables may be identified
as statistically significant predictors included in the systematic
(nondiversifiable) components. In other words, this shows a
contradictory remark that the so-called firm-specific diversi-
fiable variables are considered as necessary explanatory variables
for the systematic components, which are instead nondiversi-
fiable. If so, the event studies that are based on the abnormal
returns will not be robust enough to provide convincing
evidence for the empirical findings.1

In the following, the analysis for model adequacy of empirical
asset pricing models with pre-specified (economic) variables
or attributes is discussed. The notion is that the identifi-
cation of nondiversifiability on included or hidden factor(s)
will result in cross-sectional strong dependence where long-
memory models may be applied. The purpose in the following
analysis is basically, diagnostic for the model specification when
the need for additional (economic) variables is considered.

Chudik et al. (2011) consider the cross-sectional weak and
strong dependence of large panels. Their framework defines
the weak and strong cross-sectional dependence using weight
sequences that satisfy the granularity condition where the vector
norms of these weights are bounded by the growth rate N 1/2,
where N represents the number of cross-sectional items in
panel data. In addition, the weak and strong cross-sectional
dependence is defined as whether the conditional variance of
the weighted sequence of panel data observations at a certain
point in time will converge to zero or not.

Although similar, the framework here differs from that of
Chudik et al. (2011) in the sense that the (diversifying) weight
sequences are subject to less restrictive conditions and applied
to the entire opportunity set of well-diversified (efficient)
portfolios. In contrast to their work, a stronger condition for
nondiversifiability (for factor(s)) is introduced. A formal proof
is also shown that the nondiversifiability of the (hidden) factor
will lead to the cross-sectional long dependence. In parti-
cular, the long memory tests such as cross-sectional KPSS test,
cross-sectional rescaled variance test, and assessments on Hurst
exponent are also introduced.



44 A N A LY Z I N G E V E N T S TAT I S T I C S I N C O R P O R AT E F I N A N C E

While Chudik et al. (2011) apply the conditional variance
assumption for cross-sectional dependence to consider the
dynamic factors, the analysis here focuses on the static factor
structure similar to that of Bai’s (2003). Even though differing
from these previous contributions, the intent here is to develop
an alternative method in searching for expansion of dimensio-
nality of model specifications for normal returns in empirical
asset-pricing models where interpretable economic attributes
are included. In addition, to avoid overfitting the model,
a sequential model search starting from the most primitive
stage is suggested. In other words, the model search is a
forward-looking, specific-to-general approach. At each stage
(for expansion of model dimensionality), a diagnostic test is
applied to see if there is a hidden nondiversifiable factor in the
presumed idiosyncratic risks that renders the need for model
expansion.

To develop the analysis, there are a few prerequisites.
Definition 2.D.1 describes a Hilbert space of (real) squared-
integrable random variables defined on the probability space .
The excess returns of assets forms a subset of this Hilbert space.
Definition 2.D.2. is to define the set of diversifying weights.
Definition 2.D.3. is for defining diversification. Assumption
2.A.1 shows the conditions of factors or pre-specified reference
variables applied as factors. The assumption allows different
choice sets of instrumental or reference variables applied to
specify the risk premium. These choice sets may be evolving
over time or different sample sizes. In particular, the reference
variables may be generated by the innovations from the multi-
variate time series models of prespecified economic variables
in a conditional expectation approach. Assumption 2.A.2 is to
describe the presumed multifactor model of the asset returns.
And, in particular, the assumption states that the initial stage of
model search (including the most primitive case where only a
drift is included) is already provided. Hence, the analysis is to
identify whether there is a need to expand the dimension of the
model for normal returns.

In fact, Assumption 2.A.2 may also apply to the studies that
some similar works such as Bai (2003), Chudik et al. (2011),
or Bailey et al. (2012) where their analyses are applied for
the initial stage of exploratory data analysis to identify cross-
sectional dependence among stock returns. Specifically, the
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following framework is to devise diagnostic statistics for model
search in explaining the expected returns and to overcome
overfittings in empirical finance. Assumption 2.A.3 shows the
possible hidden factor and idiosyncratic risk in the excess return
after projecting on the presumed explanatory variables. Assum-
ption 2.A.4 provides a condition for diversifying weights for
the infinite dimensional optimization problem. In addition, the
sample size N of all firms is growing asymptotically and much
larger than the sample size for selected firms of event studies.
More explicitly, the sample size N includes both event-related
and event-unrelated firms in identifying the model search for
systematic components of asset returns.

Definition 2.D.1: Let H = L2(�,F ,P) be a Hilbert space of
squared-integrable real-valued random variables (with respect
to probability measure P on a complete probability space
(�,F ,P), where H is endowed with L2- norm‖‖ such that
‖x‖ = (

∫ |x|2dx)1/2 for x ∈ H . Let the inner product of
H be denoted as < x,y >= E[xy] for all x, y ∈ H . Let
{rit }i=1,2,··· ,N ,,t=1,2,···T , represent a sequence of all assets’ excess
returns contained in H .

Assumption 2.A.1: Let ft = (f1t , f2t , · · · , fpt)′ be a vector of p
proxies for factors in the information set �t , p ≥ 1, and E|fjt | =
0, where E|fjt |2 = σ 2

jt (defined in H ) at time t for the presumed
multi-factor pricing model, fjt is the j-th proxy for factor at time
t , for all j = 1,2, · · · ,p, t = 1,2, · · · ,T .

Assumption 2.A.2: Let the excess return rit of each asset i at
time t be regressed on the fitted k−factor structure (k ≥ 0) with
non-stochastic factor loadings as

rit = E [rit |�t]+ εit = μi +
k∑

j=1

βij f
(j)

t + εit , (2.1.10)

where i = 1,2, · · · ,N , as randomly assigned subindices for asset
returns, and t = 1,2, · · ·T , where�t represents the information
filtration (including lagged dependent variables and the proxies
for factors) up to time t , 0 ≤ k ≤ p, μi +∑k

j=1βij f
(j)

t stands
for the conditional expected excess return E [rit |�t], where
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the selected factor
{

f (j)
t

}
j=1,··· ,k ⊆ (f1t , f2t , · · · , fpt)′ is a subset

of known proxies for factors, and
{

f (j)
t

}
j=1,··· ,k don’t have to

follow the same order of designated sequence or indices for
proxies in ft = (f1t , f2t , · · · , fpt)′, εit stands for the projection
error (or so-called “presumed” idiosyncratic risk) for asset i at
time t with the assumed multifactor pricing model.2

Assumption 2.A.3: Let the projection error (if contains a
hidden factor) be expressed as a linear model such that εit =
ηit +νit = βh

i fht +νit , where fht represents a stationary stochastic
hidden factor with a nondegenerated distribution, E [fht] = 0,
fht ∈ H , such that fht is orthogonal to all selected proxies or
factors

{
f (j)
t

}
j=1,··· ,k, and fht is cross-sectional stationary for

all assets and inter-temporal independent over time.3 The βh
i

represents the real-valued nonstochastic unobservable factor
loading for asset i on the hidden factor fht for all i = 1,2, · · ·N .
νit is a mean-zero (diversifiable) random noise with finite
moments and independent of {ηit }i=1,2,··· ,N ,t=1,2,··· ,T at any
time t such that E [νitηit ] = 0 where E [εit |ft] = 0, E|νit |2 <
∞ for all i = 1,2, · · ·N . In addition, let sup

i
|βh

i |2 < ∞, i =
1,2, · · ·N , such that

{
βh

i
}

i=1,2,··· ∈ B, where B ⊆ �∞ is a proper
factor-loading subspace of �∞-space, and �∞-space contains all
sequences {xi}i=1,2,··· , such that sup

i
|xi|<∞.

Notice that Assumption 2.A.2 claims that the model
expressed in equation (2.1.10) is a close approximation for
the underlying data generating mechanism. Linearity here
only represents a presumed multifactor pricing model that
may closely approximate the conditional expectation for excess
returns for information set �t . In addition, Assumption
2.A.3 imposes an asymptotic condition for the absolute factor
loading(s) on the hidden factor. This is to ensure that as
the size of portfolio expands, the factor loadings won’t be
exploding—provided that the excess returns are in the Hilbert
space H . To apply the ideas of diversification, a few defini-
tions on the feasible weights in the factor pricing models are
introduced in the followings. Assumption 2.A.4 is to formulate
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the diversification in an infinite dimensional opportunity set
for sequence of feasible weights applied to each asset. The
tail condition is given to prevent the diversifying weight from
collapsing too soon. The definition of diversification functional
is provided in 2.D.2. The notation N → ∞ represents the
numbers of assets N will grow sufficiently large.

Assumption 2.A.4: Let W be a compact subspace of �2 space
endowed with the �2 norm that for any y = (y1, y2, · · · ) ∈ �2,∑∞

i=1 y2
i <∞, where W consists of all real bounded sequences

of nondegenerated deterministic feasible weights ω, such that
ω ≡ {ωi}i=1,2,··· ∈ �2 and ω /∈ �o

2, where �o
2 contains sequences

{ωi}i=1,2,···with finitely many nonzero weights. In particular, for
all ω ∈ W , and for arbitrarily small ε > 0, ε ∈ R, there exists
some γ > 0 (which may be distinctive for different ω’s) such
that

liminf
N→∞∑N
i=1ω

2
i <∞

{|ωi|}i=1,2,··· ,N L(N )N γ (2.1.11)

= sup
N→∞∑N
i=1ω

2
i <∞

{ inf
m≤N

(|ωi|)i=1,2,··· ,m}L(m)mγ ≥ ε,

where L(j) is slowly varying function of j such that lim
j→∞

L(λj)
L(j) =

1, for λ > 0, λ ∈ R. Also let limsup[
N→∞

N (� 2
N )] = 0, where �N =

sup(|ω1|, |ω2|, · · · , |ωN |) . Let the factor loadings of a hidden
factor be given as β = (βh

1,βh
2, · · · ,βh

N , · · ·) , β ∈ B, where B ⊆
�∞ is a proper factor-loading subspace endowed with �∞-norm
such that sup

i=1,2,··· ,∞
|βh

i |<∞.

In the following, the Assumption 2.A.5 is to provide the
objective functional for the diversification problem in the
infinite dimensional setting. Furthermore, the definition 2.D5
is to consider the well-diversified portfolios such that the
weighted sums of diversifiable random noises will converge to
zero. Notice that the weight sequences in Assumption 2.A.5
does not require the weights to follow or be bounded with a
particular exponential growth such as N −α, 0<α≤ 1 uniformly
for all N . Notice also that Assumption 2.A.4 does not state that
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these weight sequences are selected weights for the efficient,
well-diversified portfolios yet. Instead, Assumption 2.A.4 only
states the “tail” condition for the weight sequences and Assum-
ption 2.A.5 then confines the weight sequences to those that
can provide optimization for the diversification functional.

Assumption 2.A.5: There exists a W -continuous diversifi-
cation functional f

(
ω,β

)
: W ⊗ B → R, defined as f

(
ω,β

)
=

E
(∑∞

i=1ωiβ
h
i fht
)2

for any given β in B, where the non-null
solution for portfolio optimization as inf

ω∈W �
f (ω,β) exists, in

which W �is a closed non-null subset of W , for ω ∈ W �,∑∞
i=1ωi = 1,

∑∞
i=1ω

2
i <∞.

Definition 2.D.2: A portfolio with weight ω, ω≡ {ωi}i=1,2,··· ∈
W � in the diversification problem as inf

ω∈W �
f (ω,β) is denoted as

efficient (or well-diversified) if the weighted sum for all idiosy-

ncratic risks converges such that
∑∞

i=1ωiνi
L2−→ 0, ω ∈ W � as

N → ∞, where
L2−→ stands for convergence in L2−norm.

Given definition 2.D.2 and Assumption 2.A.5, and similar
to Chamberlain (1983), it is straightforward to verify that∑∞

i=1ω
2
i = lim

N→∞
∑N

i=1ω
2
i = 0 for all well-defined portfolios

in W �. For any given time t , the idiosyncratic variance of a
weighted portfolio with n numbers of assets and a hidden factor
such that E

[
f 2
ht
]= σ 2

ht can be expressed as

σ 2
pt =

N∑
i=1

(
ω2

i E
[
βh2

i

])
σ 2

ht +2
N∑

i=1

N∑
i �=j

ωiωjE
[
βh

i β
h
j

]
σ 2

ht

+
N∑

i=1

ω2
i σ

2
νit

. (2.1.12)

If {νit }i=1,2,··· are diversifiable, a well diversified portfolio has

lim
N→∞

∑N
i=1ω

2
i σ

2
νit

= 0. In other words, if inf
n→∞

{
σ 2
ν1t

,σ 2
ν2t

, · · ·σ 2
νNt

}
> 0, then

∑∞
i=1ω

2
i = lim

N→∞
∑N

i=1ω
2
i = 0. Suppose not. Let

lim
N→∞

∑N
i=1ω

2
i = δ > 0, and inf

n→∞
{
σ 2
ν1t

,σ 2
ν2t

, · · ·σ 2
νNt

}
= θ > 0.
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Then, lim
N→∞

∑N
i=1ω

2
i σ

2
νit

≥ θ
∑∞

i=1ω
2
i > 0. This will violate the

assumption that {ν1t ,ν2t , · · · } are diversifiable.
That is, the sum of infinite series of

{
ω2

i
}

i=1,2,··· in W � should

be nil. For instance, if ωi = 1
N , N is the number of assets, then

lim
N→∞

∑N
i=1ω

2
i = lim

N→∞
N
N 2 = 0 =∑∞

i=1ω
2
i . This does not imply

that all weights {ωi}i=1,2,··· are all identically equal to zero for
all i = 1,2, · · · , .

Therefore, the idea of diversifiable/nondiversifiable factor
focuses on the entire opportunity set of well-diversified
portfolios for the infinite dimensional optimization problem.
For the nondiversifiable factor, its hidden factor loadings should
not be eliminated by any possible sequences of weights of
the well-diversified portfolios in W � as N → ∞. Otherwise,
there exists a possibility that certain sequences of weights of
some well-diversified portfolios in W � will eliminate that risk
entirely.

In contrast, if the factor is diversifiable, then the factor
loadings of this factor should be eliminated by all possible
sequences of weights in the well-diversified portfolios. This is
straightforward since εit = ηit + νit = βh

i fht + νit and if fht is
diversifiable, then the entire εit can be denoted just as another
diversifiable idiosyncratic risk ν�it as well even though there
is a factor structure. If so, then any well-diversified portfolio
should diversify it away since the impact of this hidden factor
will become negligible as number of asset increases. Otherwise,
there is a contradiction to the idea of well-diversified portfolios
in Definition 2.D.2 since a well-diversified portfolio should
eliminate the idiosyncratic risks asymptotically.

Hence, definition of nondiversifiable factors is not based on
all possible weights for portfolios or on any weight sequence
that follows (or is bounded by) a particular (exponentially)
decaying rate(s) such as in Chudik et al. (2011). The logic
is simple. If a hidden factor is diversifiable then, any efficient
(well-diversified) portfolio (including the equally-weighted
one) will diversify it away. Yet, when the equally weighted
sequence (or a particular weight sequence) fails to eliminate the
hidden factor (and its factor loadings), it does not ensure there
exists a nondiversifiable factor in the idiosyncratic risks.
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Caution must be applied since a nondiversifiable factor
should not be eliminated by any weight sequence of all well-
diversified portfolios, not the weights that are simply either
bounded by or specified with a particular exponential rule such
as N −α, 0 < α ≤ 1 uniformly. In brief, diversifiability of the
factor(s) should be based only on all well-diversified (efficient)
portfolios, not known (or specific rules of) diversifying weights.

Definition 2.D.3: The hidden factor fht for the factor loading
β = (

βh
1,βh

2, · · · ,βh
n, · · ·) , β ∈ B, where B ⊆ �∞ is denoted as

W
�
-diversifiable if and only if inf

ω∈W �
f (ω,β) = 0 for all well-

diversified portfolios ω, ω ≡ {ωi}i=1,2,··· ∈ W �. On the other
hand, the hidden factor fht is nondiversifiable in W � if and only
if inf
ω∈W �

f (ω,β) �= 0 for all well-diversified portfolios in W �.

In Jeng and Tobing (2012), a similar framework is also
established with two panel CUSUM-based tests developed. The
study emphasizes the model search approach in applying the
tests to the empirical data. The present study differs slightly
from the previous one by focusing on the development on
intensity of diversifiability, which also leads to (cross-sectional)
memory conditions of the idiosyncratic risks. The intensity
of diversifiability emphasizes on the convergence condition of
the partial sums of CUSUMs of idiosyncratic risks—although
incidentally, it can be shown that if this exponent (or, intensity
of diversifiability) is set to zero, these partial sums will simply
conform with (the cross-sectional version of) KPSS and rescaled
variance test statistics (Giraitis et al. 2003).

In contrast, Chudik et al. (2011) define the intensity of cross-
sectional dependence in panel data with a stronger condition
by using conditional variance of weighted sums of random
variables. To identify the difference between the weak and
strong cross-sectional dependence in the panel data for their
study, the definition applies the “granularity condition” that all
weights are uniformly bounded by N 1/2 for the convergence
in conditional variance of weighted cross-sectional sums of
double-indexed processes. In particular, a strong dependence is
to consider that there exists a sequence of weights that will not
drive the conditional variance of weighted cross-sectional sums
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of double-indexed processes to zero. A strong or weak factor
in their study in particular is defined by whether the weighted
sums of factor loadings when using equal/exponential weights
will converge to zero or not.

In that case, a strong factor identified in their study may
not be a W �-nondiversifiable factor as defined in our study
since (1) the W �-nondiversifiable factors must not be diver-
sified away by weights of all well-diversified portfolios including
equal/exponential weights or else; (2) unlike the “granularity
condition” or bounds which applied uniformly to all weights
in Chudik et al. (2011), only the asymptotic tail conditions
of infinite sequences of diversifying weights are subject to the
convergence rate conditions stated in equation (2.1.11) of
Assumption 2.A.4.

The issue as whether the factor is nondiversifiable or not
must refer to all weight sequences for all well-diversified
portfolios. Specifically, the factor loadings of a nondiversi-
fiable or systematic factor must not be diversified away with
different weights available in the set of all well-diversified
portfolios, not with only one sequence of diversifying weights.
In contrast, the strong cross-sectional dependence (which may
result from the strong factor) in Chudik et al. (2011) only
refers to the existence of one sequence of weights that can
not drive the conditional variance of partial sums of weighted
variables to zero while this weight sequence may or may
not be in the set of well-diversified portfolios. Especially,
their definition of strong factor(s) refers only to “non-null”
convergence of equally (or exponentially) weighted sums of
factor loadings such as lim

N→∞
1

N α

∑N
i=1 |βh

i | = κ > 0, where

0< α ≤ 1.
In brief, a hidden nondiversifiable factor certainly may

become a strong factor in the framework of Chudik et al.
(2011). But, the converse does not necessarily hold. Hence,
the inference for nondiversifiable factor requires further elabo-
rations. Theorem 2.1.2. provides a condition that a hidden
nondiversifiable factor may cause cross-sectional long depen-
dence in the projection error of the fitted regression when
excess returns are regressed on a set of pre-selected proxies for
factors.
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Notice that Zhou and Taqqu (2006) show that a completely
random reordering on the data will not influence the sum of
covariances for the long-dependent time series. In other words,
the results from Theorem 2.1.2. will not change even with a
completely random orderings of excess returns cross-sectionally.
However, this does not imply that any reordering will not
change the dependence. Instead, it is only the complete rando-
mization that will not change the dependence. For that matter,
Theorem 2.1.2. and for the diagnostic tests in section 2.2, it
is assumed that the excess returns of all selected firms are of
completely random samples cross-sectionally.

Theorem 2.1.2: If there exists a fht as W �-nondiversifiable
hidden factor (or component) for all well-diversified portfolios
ω ≡ {ωi}i=1,2,..., ∈ W � in εit = ηh

it + νit = βh
i fht + νit , then

{εit }i=1,2,..., is a cross-sectional long dependent series at any
given time t such that

∑∞
j=0 |σit(j)| = ∞, for each i = 1,2, · · · ,

j = 0,1,2, · · · , where σ εit(j) = E[εitε(i+j),t ] is the cross-sectional
covariance of εit and εi+j ,t at time t . Conversely, if the idiosy-
ncratic risks are covariance-stationary and have a cross-sectional
long dependence such that

∑N
j=0σ

ε
it(j) = N 2H L(N ), H > 1

2 ,
uniformly for all well-diversified portfolios ω, ω≡ {ωi}i=1,2,..., ∈
W � , where L(N ) is slowly varying function of N such
that lim

N→∞
L(λN )
L(N ) = 1, for λ > 0, λ ∈ R, then there exists a

nondiversifiable hidden factor in {εit }i=1,2,..., .

Proof: The proof requires the following Lemma 1.a.

Lemma 1.a: Given the definition 2.D.1–2.D.3, there exists a
local optimum for the constrained minimization problem of the
diversification functional inf

ω∈W �
f (ω,β).

Proof of Lemma 1.a: It is straightforward to verify that
the functional f

(
ω,β

)
: W ⊗ B → R is weakly lower semi-

continuous such that for every sequence ω ≡ {ωi}i=1,2,··· ,that

converge weakly to some ω ∈ W �, where liminf
n→∞ f

(
ω,β

)
≥

f
(
ω,β

)
. Since the constrained set is closed such that every

sequence in W �contains a weakly convergent subsequence with
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limit belongs to W �, W �is also weakly sequentially compact.
Hence, by Theorem 2.3 in Jahn (2007), there exists a local
minimal solution for the constrained optimization problem.

Proof of Theorem 2.1.2: Given the model and Lemma 1.a,
for sufficiently large M <∞ and N → ∞, it can be shown that
for any well-diversified portfolio with N numbers of assets

σ 2
pt =

N∑
i=1

(
ω2

i

[
βh2

i

])
σ 2

ht +2
N∑

i=1,

N∑
i �=j ,j=1

ωiωj(βh
i β

h
j )σ 2

ht + op(1),

≤
N∑

i=1

(
ω2

i

[
βh2

i

])
σ 2

ht +2
N∑

i=1,

N∑
i �=j ,j=1

|ωi||ωj ||(βh
i β

h
j )|σ 2

ht ,

≤Mσ 2
ht

N∑
i=1

ω2
i +2

N∑
i=1,

N∑
i �=j ,j=1

|ωi||ωj ||(βh
i β

h
j )|σ 2

ht ,

≤Mσ 2
ht

N∑
i=1

ω2
i +2ω2

N

N∑
k=1

(N − k) |(βh
i β

h
j )|σ 2

ht ,

≈o(1)+2ω2
N

N∑
k=1

(N − k) |(βh
i β

h
j )|σ 2

ht ,

≤o(1)+2nω2
N

N∑
k=1

|(βh
i β

h
j )|σ 2

ht ,

≤o(1)+2(limsup
N→∞

[Nω2
N ])

N∑
k=1

|(βh
i β

h
j )|σ 2

ht .

If the hidden factor is nondiversifiable, it is conceivable
to have lim

N→∞
σ 2

p > 0. However, since limsup
n→∞

[Nω2
n(o)] =

o(1), if lim
N→∞

∑N
k=1 |(βh

i β
h
j )| < ∞, it implies that σ 2

p = o(1)

also. This will violate the assumption that the hidden
factor is nondiversifiable. Hence, lim

N→∞
∑N

k=1 |(βh
i β

h
j )| can not

be finite if the hidden factor is non-diversifiable. In fact,
lim

N→∞
∑N

k=1 |(βh
i β

h
j )| must grow with a rate no less than n.

Thus, lim
N→∞

∑N
k=1 |(βh

i β
h
j )| → ∞. This implies that, if E|fht |2 <
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∞.
{
βh

i fht
}

i=1,2,···are of strong cross-sectional dependence and
the idiosyncratic risks will have cross-sectional long memory.
Conversely, if idiosyncratic risks are of cross-sectional long
memory, they are W �-nondiversifiable.

Conversely, suppose the hidden factor is W �-diversifiable
when cross-sectional long memory prevails. Since the definition
of diversifiable factor(s) refers to all well-diversified weights
in W �, it follows that lim

N→∞
|∑N

i=1ωiβ
h
i |2 = 0 for all well-

diversified portfolios in W �. Choose a well-diversified portfolio
ω ∈ W � with all positive weights for included assets, where
0 < a(N ) ≤ ωi for all i = 1,2, · · ·N , · · · and let lim

N→∞
a(N ) = 0

such that a(N ) ≈ o(1). Then, for any N , given that {εit }i=1,2···
are of cross-sectional long memory, we have

|
N∑

i=1

ωiβ
h
i |2 ≥ a(N )2|

n∑
i=1

βh
i |2

≥ a(N )2N 2H L(N )2

≈ o(N o)O(N 2H ) ≈ o(N 2H ).

That is to say, the lower bound of the variance of weighted
hidden factor loadings does not converge to zero unless it was
multiplied by N −2H . This violates that lim

N→∞
|∑N

i=1ωiβ
h
i |2 =

0. Hence, the hidden factor with assumed cross-sectional long
memory should be W �-nondiversifiable.

Corollary 2.1.3: If the selected k proxies or explanatory
variables

{
f (j)
t

}
j=1,...,k

⊆ ft , k ≥ 1, ft = (f1t , f2t , · · · , fpt)′ in the

linear approximation ζit =μi +∑k
j=1βij f

(j)
t of equation (2.1.1)

for the excess returns {rit }i=1,2,...,N are of nondiversifiable
loadings, then {ζit }i=1,2,...,will also have cross-sectional long
dependence as stated in Theorem 2.1.2.

Proof of Corollary 2.1.3: Applying the result in Theorem
2.1.2, it is straightforward to see that for each included
non-diversifiable explanatory variables

{
f (j)
t

}
j=1,...,k

, the series{
βij f

(j)
t

}
j=1,2,··· ,k are also of cross-sectional long dependence.
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Since ζit = μi + ∑k
j=1βij f

(j)
t is a linear combination of{

f (j)
t

}
j=1,...,k

with non-null factor loadings
{
βij
}

i=1,2,··· ,N ,for

j = 1,2, · · · ,k, it will also be of cross-sectional long dependence.

Notice that in Bai’s (2003) assumption of factor loadings, the
Forbenius norm of factor loading matrix is shown as ||�′

o�o
N −

�N || → 0 when N → ∞, for some r ×r positive definite matrix
�N , where �o is an N × r matrix of factor loadings for N asset
returns of r factors. This implies that the factor loading matrix
�′

o�o
N converges to a positive definite matrix coordinate-wise

when N → ∞. Accordingly, if the number of hidden nondi-
versifiable factor is equal to one, the convergence of Frobenius

norm for factor loadings shows |
∑N

j=1 β
h2
j

N − σ̃ 2| → 0, for σ̃ 2 > 0
as N → ∞. This, in turn, shows that

∑N
j=1β

h2

j is growing

with the same rate as N and
∑N

j=1β
h2

j → ∞ when N → ∞.

Since
(∑N

j=1 |βh
j |
)
�
(∑N

j=1β
h2

j

) 1
2 for all N , and �1 ⊂ �2 where

the space of squared-summable real sequences encompasses the
space of absolute-summable sequences of real numbers, this
implies lim

N→∞
∑N

j=1 |βh
j | → ∞.

Pick an arbitrary asset and denote its factor loading as βh
o ,

where βh
o �= 0. It can be shown that lim

N→∞
∑N

j=1 |βh
o ||βh

j | =∑∞
j=1 |βh

o β
h
j | → ∞. Applying the definition of covariance in

Theorem 2.1.2, and denoting ρεot(j) = E
[
εotεjt

]= βh
o β

h
j σ

2
h , we

can see that Bai’s (2003) assumption on factor loadings will lead
to the cross-sectional long memory such that

∑∞
j=1 |ρεot(j)| =

σ 2
h
∑∞

j=1 |βh
o β

h
j | → ∞. Notice that our condition for nondiversi-

fiable factor loadings
∑N

j=1β
h2

j → ∞ is more general than Bai’s
assumption since there is no assumption for the growth rate of
factor loadings to be O(1).

Corollary 2.1.3 shows that the verification of nondiversifia-
bilty for included variables (or proxies) starts from the initial
stage of model search where k = 1 and on. This implies that the
model search should be sequentially implemented from k = 1
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and look for further expansions of dimensionality. Detailed
arguments are discussed in the latter sections after provision of
statistical tests. Based on the above results, it is conceivable to
apply the cross-sectional dependence to verify the existence of
some nondiversifiable (hidden) factor(s) in the empirical asset
pricing models.

Notice that the cross-sectional dependence here only shows
that the �1–norm of the (cross-sectional) covariances will grow
with the number of included assets at time t. Since the above
claim is based on cross-sectional dependence for any given time
t, this result holds even if the factor loadings are time-varying
and stochastic — as long as the factor loadings and factors
(included or hidden) are mutually independent. Although there
are many different definitions for long memory in time series
literature, the result here applies Parzen’s (1981) definition. In
addition, given various definitions of long memory (Guégan
2005, Heyde and Yang 1997), the existence of long memory
does not necessarily imply there exists a unit root (similar to
the time series models) for the cross-sectional dependence.

In brief, the conventional statistical tests or model selection
criteria when applied in expansion for model dimensionality
may not be robust enough to verify the asset pricing models if
no further identification on the nondiversifiability is considered.
Recall the earlier setting in equation (2.1.10), it is not difficult
to find that (based on the samples selected) some (economic)
attributes may be associated with the asset returns in empirical
findings as long as E[yit |zit] �= 0. Or, more specifically, it may
indicate that the variable zit contains certain predictability for
the excess returns. Yet, such a finding does not necessarily justify
that the inclusion of the variable(s) zit for the empirical asset
pricing models across all assets in the equity markets. Diagnostic
tests for the empirical asset pricing models with the verification
of nondiversifiability should be devised to obtain normal (or
expected) returns more explicitly so that the robust abnormal
returns may result for further applications in event studies.

Namely, predictability of some identified social-economic
variables or attributes for stock returns does not naturally
guarantee that these variables are the asset-pricing factors or
kernels. Instead, for each selected variable in empirical asset
pricing models, diagnostic tests to verify the needs of inclusion
should be applied together with model selection procedures.
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Ouysse (2006) extends Bai’s (2003) model selection approach
of asset pricing models to the case when factors are observable.
Based on the same framework in Bai (2003), the generali-
zation includes two steps: the estimation of number of factors,
and the identification of order when different factors are
chosen sequentially. In other words, the framework considers
the identification of essential factors needed for the asset
returns, and with the preorderings to determine the selection
of variables. However, assumption on factor loadings in Chudik
et al. (2011), and Bai’s (2003) is only a special case for
nondiversifiability in normal (or expected) returns according to
Assumption 2.A.5 and Definition 2.D.3.

In the following, a section is provided to consider an alter-
native method to identify the intensity of diversifiability of
the (hidden) factors when empirical asset pricing models are
provided. And in addition, a new model selection framework
with sequential hypothesis testing is shown. As a result, the
framework shows that the existence of nondiversifiable hidden
factor can be discovered in using the cross-sectional long
memory tests. Given the above results, and the vast amount
of literature discussing the long dependence, there are many
different approaches to analyze the cross-sectional dependence
due to the diversifiability of (hidden) factor(s).

A relative advantage of the cross-sectional long dependence,
however, is that it incurs fewer controversial issues such as the
distinction between long-memory and trend-stationary time
series. Nor is there a particular need to distinguish between
the long memory and the regime switching since the factor
loadings for the factor(s) are allowed to be different cross-
sectionally. Tentatively, for the interest of study, the discussions
here focus on the variance-type analyses and the associated
tests. More specifically, for simplicity, the factor loadings for the
hidden factor are assumed as nonstochastic and time-invariant
to develop the test statistics.

2.2 Diagnostic Tests and Model Search

Various statistical specification tests or model selection criteria
have been applied in many empirical asset pricing models
to verify the proposed models. Nevertheless, most research
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works emphasize on the verifications of statistical significance of
included variables, time series predictability, or practical impli-
cations. Unfortunately, to pursue further event studies based
on abnormal returns, it is necessary (if not too demanding)
that the empirical asset pricing models must possess the utmost
pricing kernel (or core) particularly for the system-wise normal
(or expected) returns when the capital market equilibrium
is presupposed. Noticeably, if this is emphasized, the usual
statistical properties such as out-of-sample predictability, time-
varying volatility or many others are not sufficient enough to
justify the presumed models for normal (or expected) returns.
Thus, studies based on abnormal returns may turn out to be
controversial given that the statistics provided may become
the results of joint hypotheses are from either the model
specification errors or the events of interest.

In this section, we apply the framework of cross-sectional
CUSUMs for the (hidden) factor of presumed idiosyncratic
risk in fitted multifactor pricing models. The analysis is to
provide some alternative methods to identify the essential
and nondiversifiable attributes or variables for empirical asset
pricing models. Differing from conventional specification tests
or model selection criteria applied on the empirical asset pricing
models, the alternative methods provide the sequential model
search with cross-sectional hypothesis testings. Following from
Theorem 2.1.2, the statistical tests are mainly to verify the
cross-sectional strong dependence for included and possibly
hidden nondiversifiable factor(s).

Assuming that model search starts with a preliminary specifi-
cation (for instance, only a drift is included), the model search
procedure will assess if there is a need to expand the dimen-
sionality by some diagnostic test statistics. The analysis states
that partial sums of the cross-sectional CUSUMs of equally
weighted idiosyncratic risks may become finite depending on
the underlying (hidden) factor’s diversifiability. Specifically,
these partial sums when multiplied with certain exponentially
decaying weight sequences will turn finite according to the
diversifiability of the hidden factor.

In particular, these partial sums (of equally weighted idiosy-
ncratic risks) will converge to a functional of fractional
Brownian motion where these decaying rates (of these weight
sequences) are related with the Hurst exponent in the fractional
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Brownian motion if fractional invariance principle is applied
for these CUSUMs. In brief, these exponents that represent
the intensity of diversifiability of (hidden) factor for equally
weighted portfolios may influence the cross-sectional memory
condition of idiosyncratic risks.

Although the finding confirms that the slow convergence
rates for these partial sums will lead to cross-sectional long
dependence, it may only demonstrates that certain decaying
rates for the equally weighted portfolios becomes a suffi-
cient (not necessary) condition for the cross-sectional long
dependence for presumed idiosyncratic risks. In other words,
with some specific assumptions for the decaying rates of these
sequences, the result shows that they will lead to cross-sectional
long dependence. Yet, the converse does not necessarily hold.

Therefore, the verification of cross-sectional long depen-
dence (while not necessarily base on the decaying rates of
equally weighted sequences) for hidden factor or included
variables is only a diagnostic test to identify the need for
expansion of dimensionality in empirical asset pricing models.

Assumption 2.A.6: Let lim
T →∞

1
T
∑T

t=1 Xtεit = õp(1), for each

asset i, i = 1,2, . . . ,N , . . . , as T → ∞, where õp(1) is a (k +
1) × 1 vector of zero’s, Xt =

(
1, f (1)

t , f (2)
t , · · · , f (k)

t

)′
represents

the (k + 1) × 1 vector of included known common factors at
time t . In addition, let lim

T →∞
1
T
∑T

t=1 XtX ′
t = M̃ , where M̃ is a

(k+1)× (k+1) nonsingular matrix. Also let lim
T →∞

1
T
∑T

t=1 εit =
op(1), lim

T →∞
1
T
∑T

t=1 f 2
ht <∞, and lim

T →∞
1
T
∑T

t=1 fhtνit = op(1) for

each asset i, i = 1,2, . . .N , . . . .

Notice that in Assumption 2.A.6, we consider the idiosy-
ncratic risks (including the hidden factor) are orthogonal to

the preselected common factors Xt =
(
1, f (1)

t , f (2)
t , . . . , f (k)

t

)′
for

simplicity. For further extensions, we may allow the chosen
factors be correlated with the idiosyncratic risk (or hidden
factor). However, in that case, the usual least-squared estimates
will be biased and inconsistent for the factor loadings for each
asset.
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In particular, it is easy to show that even the application
of common correlated effects (CCE) estimator proposed by
Pesaran (2006) may not provide consistent estimates for factor
loadings when the hidden factor is nondiversifiable and the
orthogonality condition fails. Hence, to reduce the complexity
in discussions, we assume the hidden factor is orthogonal to all
preselected factors. Notice that the assumption does not assume
the other proxies excluded from Xt are orthogonal to Xt , all
these proxies for factors can be mutually correlated. However,
the hidden or additional factor fht is assumed to be orthogonal
to Xt .

Given that the equally weighted portfolio also satisfies the
properties of well-diversified portfolios, it suffices to provide
an example for hidden factor using equally weighted portfolio,
according to Definition 2.D.2. Since under the null hypothesis
that there is no nondiversifiable hidden factor in {εit }i=1,2,··· ,
the equally weighted portfolio will also diversify all hidden
factors away.

Hence, for t = 1,2, ...,T , let σ 2
it be the variance of εit , where

E
[

1
N
∑N

i=1 εit

]2 → 0 as N → ∞, it is straightforward to see
that

lim
N→∞

E

[
1
N

n∑
i=1

εit

]2

= lim
N→∞

1
N 2

⎛⎜⎜⎝ N∑
i=1

σ 2
it +2

N∑
i=1

N∑
j=1
i �=j

Cov(εit ,εjt)

⎞⎟⎟⎠−→ 0.

(2.2.1)

In other words, under the null hypothesis, a diversifiable

factor implies that E
[

1
N
∑N

i=1 εit

]2
(which is the L2-norm of

1
N
∑N

i=1 εit) will converge to zero as the number of assets N
grows.

However, the convergence of the partial sums over these
m subseries (or so-called partial sums of cumulative sums) in
the equation (2.2.3) may depend on the growth rate(s) of the
cumulative sums of these covariances as N → ∞. 4 Likewise,
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it is feasible to define an intensity of diversifiability for equally
weighted portfolios using the growth rate of the partial sums
over these cumulative sums of m subseries.

We may use a simple example to demonstrate this intuition.
Let σ 2

it = σ 2
t , for all i = 1,2, · · · ,N , without loss of generality.

For N assets, the L2-norm of each m subseries, 1 ≤ m ≤ N will
be

E

[
1
N

m∑
i=1

εit

]2

= 1
N 2

⎛⎝mσ 2
t +2

m∑
i=1

m∑
j=i+1

σij

⎞⎠ . (2.2.2)

Since the hidden factor is diversifiable, we have lim
N→∞

1
N 2

(
mσ 2

t +
2
∑m

i=1
∑m

j=i+1σij

)
= 0, which implies that lim

N→∞
2

N 2

∑m
i=1∑m

j=i+1 σij = 0. However, the sums over these m subseries
across all m’s or so-called cumulative sums will become

N∑
m=1

E

[
1
N

m∑
i=1

εit

]2

= N (N +1)
2N 2 σ 2

t + 2
N 2

N∑
m=2

⎛⎝m−1∑
i=1

m∑
j=i+1

σij

⎞⎠ . (2.2.3)

It is easy to see that the firm term in equation (2.2.3) will be
finite as N −→ ∞. Hence, we may expand the second term in
equation (2.2.3) and show that

2
N 2

N∑
m=2

⎛⎝m−1∑
i=1

m∑
j=i+1

σij

⎞⎠ (2.2.4)

= 2
N 2

{ N∑
i=1

(N − i)σ1,i+1 +
N∑

i=2

(N − i)σ2,i+1 +·· ·+σN−1,N

}
.

Notice that in equation (2.2.3), if the hidden factor
is (strongly) diversifiable, partial sums of these covariances{
σij
}

i �=j ,i,j=1,2,... in equation (2.2.4) should decay fast enough
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so that partial sum of the L2–norm of equally weighted
cumulative sums 1

N
∑m

i=1 εit will become either zero or finite in
(2.2.3) as N → ∞. 5On the other hand, if the entire weighted
sum in (2.2.4) is growing with N also, the factor is less diver-
sifiable. Specifically, it could be growing with an exponential
growth rate such as N α, where 0 ≤ α < 1. In other words,
even though the factor is diversifiable with equally-weighted
portfolios, the intensity of diversifiability may differ, according
to the unknown factor loadings of hidden factor.

Therefore, the magnitude of growth rate α can be applied
as a regularity condition for diversifiability of the hidden factor
under equally weighted scheme. Specifically, if one identifies that
(with equally weighted sequence) there is no persistent cross-
sectional dependence among these presumed idiosyncratic risks,
it is safe to say that there is no hidden nondiversifiable factor for
normal returns in empirical asset pricing models. The reason
is that a diversifiable hidden factor should be diversified away
in weight sequence(s) applied in every efficient portfolio by
definition. Since equally weighted portfolio is also efficient
according to Definition 2.D.3, it is conceivable to accept that
the presumed idiosyncratic risks are diversifiable. Hence, no
further expansion of dimensionality is needed.

However, if the test statistic based solely on the exponent α
on the equally weighted portfolios rejects the null hypothesis
such as α = 0, the rejection of null hypothesis does not
necessarily guarantee that there is a nondiversifiable hidden
factor either—because the result is only verified by the
equally weighted portfolio(s). Specifically, if the test rejects the
exponent α = 0 in the above example, there is a modeling risk
that one may jump on the conclusion to claim there exists a
nondiversifiable factor in the presumed idiosyncratic risks.

In fact, the statistical test based on the exponent may
just verify that using only equally weighted portfolio can
not diversify the presumed idiosyncratic risks away, and
nothing more. Namely, the applications for the cross-sectional
exponents (on factor loadings) are for convenience to generate
feasible statistics. Yet, to the best extent, and for the investi-
gation of (hidden) non-diversifiable factor(s), these test stati-
stics with exponents can only be used for diagnostic purpose.
They are not for the model specifications in empirical asset
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pricing models—if one would emphasize the equilibrium
concept in asset pricing of capital markets.

The following analysis shows that the cross-sectional
exponent 0 ≤ α < 1 on the partial sum of CUSUMs of
presumed idiosyncratic risks and provides a sufficient condition
for the cross-sectional long dependence and certain statistics
in long memory time series modeling. In other words, with
certain assumptions for these cross-sectional exponents (on
factor loadings or on the partial of their CUSUMs), it will still
lead to the same weak convergence toward the functionals of
fractional Brownian motion.

For simplicity, the following analysis assumes there exists only
one hidden factor in the presume idiosyncratic risks. This is to
demonstrate the necessity of identification on the nondiversifia-
bility of included variables and the search for further expansion
of dimensionality must be cautiously pursued. Namely, the
expansion of the model(s) should start from the primitive
model(s) and expand it to identify the (systematic) nondiver-
sifiable components carefully.

If εit = ηit +νit = βh
i fht +νit , for finite samples we have

1
N 2

N∑
m=1

⎡⎣ 1
T

T∑
t=1

⎡⎣( m∑
i=1

εit

)2

−
(

E

( m∑
i=1

εit

))2
⎤⎦⎤⎦ ,

=
N∑

m=1

⎡⎣ 1
T

T∑
t=1

⎛⎝( 1
N

m∑
i=1

εit

)2

−
(

E

(
1
N

m∑
i=1

εit

))2
⎞⎠⎤⎦ ,

= 1
T

T∑
t=1

N∑
m=1

⎡⎣ 1
N 2

( m∑
i=1

βh
i

)2

[f 2
ht −

(
E[f 2

ht]
)

]

⎤⎦+ op(1),

=
⎛⎝ N∑

m=1

(
1
N

m∑
i=1

βh
i

)2
⎞⎠( 1

T

T∑
t=1

[f 2
ht −

(
E[f 2

ht]
)

]

)
, (2.2.5)

uniformly for all N ,T N ,T = 1,2, · · · . These equations hold
even if the hidden factor is nondiversifiable.

For instance, if
∑N

m=1

(
1
N
∑m

i=1β
h
i

)2 = O(N α), 0 < α < 1,

then
∑N

m=1

(
1
N
∑m

i=1β
h
i

)2
may not converge to a finite number

as N → ∞. Instead, we may need to multiply another N −α to
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make it converge. In particular, following from the equations
(2.2.3) and (2.2.4), this condition only applies to the partial
sums of squared cumulative sums of equally weighted factor
loadings, not directly on the factor loadings. Hence, no parti-
cular growth rate for the factor loadings is assumed. In fact, this
growth rate is related to the cumulative sums of covariances in
the equation (2.2.4).

Furthermore, due to the factor structure, the partial sums
of cumulative weighted sums for factor loadings is factored
out from the term, 1

T
∑T

t=1 (f 2
ht − (E[f 2

ht])). In other words,
the cross-sectional sample size N and the time series horizon
T may grow jointly, with or without any further conditions.
Specifically, these arguments still hold since both cross-sectional
sample size and that of the time series can increase jointly.

We may also see that these partial sums of the cross-
sectional CUSUMs of the equally weighted idiosyncratic risks
are subject to different exponential growth rate with respect to
N , such as N α, depending on the factor loadings associated
with the hidden factor. Notice that even though the weak law
of large numbers holds such that 1

T
∑T

t=1 (f 2
ht − (E[fht])2) =

op(1), if
∑N

m=1

(
1
N
∑m

i=1β
h
i

)2 = O(N α), it is obvious that(∑N
m=1

(
1
N
∑m

i=1β
h
i

)2
)(

1
T
∑T

t=1 E(f 2
ht − (E[fht])2)

)
= op(N α).

In other words, the product of partial sum of squared
CUSUMs of equally weighted (hidden) factor loadings{
βh

i
}

i=1,2,...,N and 1
T
∑T

t=1 (f 2
ht − (E[f 2

ht])) will become finite
only if multiplied with N −α as N −→ ∞ T −→ ∞. The
same argument can be established if the factor loadings for the
(hidden) factor are stochastic. In that case, the framework only

needs to state that
(∑N

m=1 E
(

1
N
∑m

i=1β
h
i

)2
)

= O(N α) and the

factor loadings and the hidden factor are mutually independent.
For instance, as α > 0, and 1

T
∑T

t=1 (f 2
ht − (E[f 2

ht])) =
op(1), these weighted CUSUMs do not converge since
1
T
∑T

t=1

(∑N
m=1 E

[(
1
N

∑m
i=1 εit

)2 −
(

E
(

1
N
∑m

i=1 εit

))2
])

�=
op(1) even when N → ∞, T → ∞. In particular, when α = 0,
then the partial sums of weighted CUSUMs of factor loadings
in the hidden factor are finite when N → ∞, without any
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additional weighting. That is,
∑N

m=1

(
1
N
∑m

i=1β
h
i

)2 = O(1).
This will imply that the hidden factor is well-diversifiable since
the partial sum of squared sub-series (or CUSUMs) of equally
weighted factor loadings converges.

In the following analysis, it is assumed that E[εit] = 0 for
all i = 1,2, ...,N , for simplicity and hence, E

(
1
N
∑m

i=1 εit

)
=

1
N
∑m

i=1 E[εit] = 0. Therefore, the second term in the equation
(2.2.3) can be ignored. Notice that this condition is different
from the “granularity” condition in Chudik et al. (2011). The
condition here is based on the sum of cumulative sums of factor
loadings, not partial sums of factor loadings. Also, the setting
is different from Bailey et al. (2012) where they apply certain
convergent rates for the cross-sectional factor loadings with
respect to the cross-sectional sample size N . Although related,
the current condition is weaker than the granularity condition.
6

Definition 2.D.4: Given the partial sum of cumulative
sums for equally weighted idiosyncratic risks denoted

as
∑N

m=1 E
(

1
N
∑m

i=1 εit

)2
, for any date t = 1,2, ...,T ,

there exists a coefficient α ∈ R, 0 ≤ α < 1, such that

N −α∑N
m=1 E

(
1
N
∑m

i=1 εit

)2
< ∞, as N → ∞. The coefficient

α is denoted as the intensity of diversifiability for equally
weighted portfolios on the hidden factor in idiosyncratic risks,
{εit }i=1,2, .

Definition 2.D.5: A random process X (τ ) is called “self-
similar” if and only if

X (λτ )
d≡ λH X (τ ), (2.2.6)

for λ > 0, τ ∈ R, τ ≥ 0, where H ≥ 0, is the Hurst exponent,

the notation
d≡ stands for the equivalence of distributions. In

addition, without loss of generality, we set the initial condition
X (0) = 0 almost surely. According to Embrechts and Maejima
(2002), for any self-similar process, H = 0 if and only if X (τ ) =
X (0),∀τ ≥ 0 almost surely. If H = 1, it implies that all auto-
correlations of X (τ ) are equal to one.
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Definition 2.D.6: Let 0 < H ≤ 1, a zero mean Gaussian
process

{
BH (τ ),τ > 0

}
is called “fractional Brownian motion”

if

E [BH (τ )BH (s)] = 1
2

{
τ2H + s2H −|τ − s|2H

}
E [BH (1)]2 .

(2.2.7)

In particular, when 1
2 < H < 1, the process will have long

dependence. When H = 1
2 ,
{
BH (τ ),τ > 0

}
will become the

usual Brownian motion with independent identically distri-
buted increments. If 0 < H < 1

2 , the process is called “anti-
persistent” with sum of auto-covariances being finite.

More extensively, we also discover that the intensity of
diversifiability of hidden factor (or convergence rate of the
partial sums of cross-sectional CUSUMs of idiosyncratic risks)
for equally weighted portfolios is then, related to the Hurst
exponent of a fractional Brownian motion if the following
invariance principle holds. Notice that the following invariance
principle actually follows from the cross-sectional long depen-
dence conclusion from Theorem 2.1.2 (even without the
specific assumption for decaying rate α of equally weighted
portfolios) and it includes the case when the cumulative sums
converge to a standard Brownian motion under various mixing
conditions when the Hurst exponent is equal to 1

2. The
following assumption is to consider that the partial sums of
idiosyncratic risk will converge in distribution of a fractional
Brownian motion, where the Hurst exponent H will depend
on the cross-sectional memory condition of the {εit }i=1,2,... .

Assumption 2.A.7: Assuming that the idiosyncratic risks
{εit }i=1,2,... for each time t (for sufficiently large sample size
N ) follow the fractional invariance principle such that

1
N HσH ,t

[Nz]∑
i=1

εit
d−→ BH (z), (2.2.8)

where 0 < z ≤ 1, [x] stands for the largest integer that is less
than x, x ∈ R†, BH (z) is a fractional Brownian motion with the
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Hurst exponent H , 0 ≤ H < 1, σ 2
H ,t = lim

N→∞
1
N E

(∑N
i=1 εit

)2
,

and the notation
d−→ stands for the convergence in distri-

bution. In particular, with the definition of fractional Brownian
motion, when 0 < H < 1

2 , the stochastic process is anti-
persistent, when H = 1

2 , it becomes the standard Brownian
motion, and when H > 1

2 , the stochastic process will have long
dependence.

Notice that Assumption 2.A.7 does not assume any particular
convergence rate for the weight sequences for any portfolios or
growth rates for factor loadings of interest. Assumption 2.A.7
only shows the weak convergence (or so-called convergence in
distribution) for the tests of cross-sectional long dependence
where the fractional Brownian motion is only an approximation
for the partial sums of idiosyncratic risks. In particular, the
assumption also includes the weak convergence in distribution
to conventional Brownian motion.

In addition, the equation σ 2
H ,t = lim

N→∞
1
N E

(∑N
i=1 εit

)2
,

where 0 ≤ H < 1, shows the long-run variance of {εit }i=1,2,··· for
each time t , as N → ∞. More specifically, this long-run variance
incurs the Hurst exponent H . Hence, the conventional hetero-
skedasticity and autocorrelation consistent (HAC) estimate for
the cross-sectional asymptotic variance can not apply. The Hurst
exponent can also be time-varying if more specific conditions
are provided.

Given Theorem 2.1.2, it is easy to see that the cross-sectional
long dependence condition will result if the hidden factor is
nondiversifiable with all weight sequences for well-diversified
portfolios. This in turns, shows that the diagnostic test for
nondiversifiability when there is no specific decaying rate or
exponent (assumed by the equally weighted portfolios) is more
in need. The result is shown in the Theorem 2.2.2.

Proposition 2.2.1 simply relates the statistics
∑N

m=1

(
1
N
∑m

i=1

(εit− εt)
)2 with the functionals of fractional Brownian motion

with the Hurst exponent. The arguments thereby shows
that the magnitude of intensity of diversifiability of equally
weighted portfolios will lead to the Hurst exponent of fractional
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Brownian motion. In other words, the intensity of diversifia-
bility (for equally weighted portfolios) on hidden factor will
lead to the cross-sectional memory of idiosyncratic risk.

Proposition 2.2.1: Given Theorem 2.2.1, Definitions 2.D.5,
2.D.6, Assumption 2.A.7, and εit = ηit + νit = βh

i fht + νit ,

the partial sum
∑N

m=1

(
1
N
∑m

i=1 (εit − εt)
)2

will converge to

the integral of squared fractional Brownian bridge BH (z) in
distribution such that for 0 ≤ H < 1,

N −(2H−1)
N∑

m=1

(
1
N

m∑
i=1

(εit − εt)

)2
d−→ σ 2

H ,t

∫ 1

o
(BH (z))2dz,

(2.2.9)

as N → ∞, for any date t , t = 1,2, ...,T . If in addition,

N −α∑N
m=1 E

(
1
N
∑m

i=1 εit

)2
<∞, 0 ≤ α < 1, H = α+1

2 ,

N −α
N∑

m=1

(
1
N

m∑
i=1

(εit − εt)

)2
d−→ σ 2

H ,t

∫ 1

o
(BH (z))2dz,

(2.2.10)

if N → ∞, where εt = 1
N
∑N

i=1 εit , BH (z) = BH (z)− zBH (1).

Proof of Proposition 2.2.1: It is easy to see that

N −(2H−1)
N∑

m=1

(
1
N

m∑
i=1

(εit − εt)

)2

= 1
N

N∑
m=1

(
N −H + 1

2
1√
N

m∑
i=1

(εit − εt)

)2

= 1
N

N∑
m=1

(
N −H + 1

2
1√
N

m∑
i=1

(εit − εt)

)2

= 1
N

N∑
m=1

(
N −H

m∑
i=1

(εit − εt)

)2
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= 1
N

N∑
m=1

(
N −H (

m∑
i=1

εit − m
N

N∑
i=1

εit)

)2

.

Apply Assumption 2.A.7, and set m = [Nz], where 0 ≤ z ≤ 1,
[x] stands for the largest integer less than x, and the continuous
mapping theorem of Pötscher (2004), it can be shown that as
N → ∞,

N −(2H−1)
N∑

m=1

(
1
N

m∑
i=1

(εit − εt)

)2
d−→ σ 2

H ,t

∫ 1

o
(BH (z))2dz.

Given that E
[(

1
N
∑m

i=1 εit

)]
=
(

1
N
∑m

i=1 E[εit]
)

= 0, it is easy
to set that

N −α
N∑

m=1

E

(
1
N

m∑
i=1

εit

)2

= N −α
( N∑

m=1

Var

(
1
N

m∑
i=1

εit

))
.

Set H = α+1
2 , the above result will give

N −α
N∑

m=1

(
1
N

m∑
i=1

(εit − εt)

)2
d−→ σ 2

H ,t

∫ 1

o
(BH (z))2dz.

Notice that the result in equation (20) does not require
any assumption for the cross-sectional exponent or (bounds
for) decaying rate of (hidden) factor loadings. Nevertheless,
it is easy to see that the intensity of diversifiability for hidden
factor is related to the Hurst exponent of a fractional Brownian
motion asymptotically when the number of included securities
increases. Apparently, the discussions of intensity of diversifia-
bility of the hidden factor (with equally weighted portfolios)
may lead to cross-sectional long dependence among the idiosy-
ncratic risks also. However, the discussions are only limited to
the equally weighted portfolios, not all efficient, well-diversified
portfolios.

More specifically, when the intensity of diversifiability α >
0, the Hurst exponent H will be greater than 1

2 , which
implies that the idiosyncratic risks {εit }i=1,2,... will be subject
to cross-sectional long dependence. In other words, the
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less equally weighted diversifiable the hidden factor is, the
stronger the cross-sectional dependence in the idiosyncratic
risks {εit }i=1,2,... as stated in Proposition 2.2.1. And thus,
as the the number of included securities increases, identifi-
cation of the extent of Hurst exponent of the asymptotic
distribution of the cumulative sums of idiosyncratic risks
{εit }i=1,2,... will encompass the study of nondiversifiability of
hidden factor(s) with equally weighted portfolios. If α = 0,

the statistic N −α∑N
m=1

(
1

NσH ,t

∑m
i=1 (εit − εt)

)2
will become

1
N 2

∑N
m=1

(
1

σH ,t

∑m
i=1 (εit − εt)

)2
, which is similar to a cross-

sectional version of KPSS test statistics at any given date t ,
where σ 2

Ht represents the long run variance of {εit }i=1,2,....
In other words, if the null hypothesis for the (hidden) factor

is diversifiable, Equation (2.2.9) will be similar to the KPSS
test for persistent long memory, and it can be applied to detect
the strong cross-sectional dependence in these asset pricing
models. By the same token, the weak convergence can also
be applied to developed the cross-sectional version of rescaled
variance test (Giraitis et al. 2003) whether the decaying rate
or cross-sectional exponent is assumed or not. More explicitly,
if cross-sectional exponent (for the factor loadings) is assumed
such that 0 ≤ α < 1, then it follows that

N −α
⎧⎪⎨⎪⎩ 1

N 2σ2
H ,t

⎡⎢⎣ N∑
m=1

⎛⎝ m∑
i=1

(εit − εt

⎞⎠2

−
(

1
N

)⎛⎝ N∑
m=1

m∑
i=1

(εit − εt )

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭

d−→
∫ 1

0

(
BH (z)

)2
dz −

(∫ 1

0
BH (z)dz

)2

. (2.2.11)

Therefore, if the underlying factor loadings for included
variables or hidden factor are diversifiable with equally weighted
sequences where α = 0, the above statistic will converge to
the well-known rescaled variance test under the null hypothesis
of short memory. In other words, under the null hypothesis
that the underlying (hidden) factor is diversifiable with equally
weighted sequences, the statistic in Equation (2.2.11) will
become the the cross-sectional version of rescaled variance test
at time t . This, in turn, may lead to similar empirical stati-
stics applied to verify the result of Proposition 2.2.1 that the
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nondiversifiability of the (hidden) factor will exhibit in their
cross-sectional long dependence. However, these test statistics
(in using cross-sectional exponents α) are based on the Assum-
ption 2.A.7 and only related to the arguments in Equation
(2.2.1) of equally weighted portfolio(s).

Independently, Bailey et al. (2012) also develop a similar
analysis with an exponent for cross-sectional dependence under
the presumed factor structure. Their analysis however, is based
on the partial sums and canonical factor analysis. Furthermore,
the factor loadings (although allowing to be random) are
separated into two categories: ones that are bounded away from
zero, and the other transitory ones that may decay to zero
exponentially. Specifically, the cross-sectional exponent in their
definition depends on the specific decaying rate of the cross-
sectional factor loadings. The test statistics for these exponents
are also established mainly to verify the cross-sectional depen-
dence, not to identify the essential nondiversifiable factor(s)
for empirical asset pricing models—although the CAPM is
under discussion in their work. However, as stated earlier, these
assumptions of cross-sectional exponents necessarily lead to
the extent of cross-sectional dependence. The range of these
exponents (similar to the above example) can be shown merely
as sufficient conditions that lead to the cross-sectional long
dependence.

In other words, there are many possible specifications that
may cause the cross-sectional long dependence. These assum-
ptions of cross-sectional exponents although explicit, do not
cover all possible cases for efficient portfolios in identifying
the nondiversifiable (systematic) factor(s). In particular, a
supremum for the growth rates among all possible factors is
applied for the verification of cross-sectional dependence in
their work. Although useful, the method may mislead the
analysis to an overfitted model with factor(s) or proxies that
do not relate to the nondiversifiability since the arguments are
based on the supremum of these cross-sectional exponents for
factor loadings of the equally weighted portfolio.

The framework of the model search in the current context
hence, does not include explicit assumptions for the decaying
rates of factor loadings when equally-weighted portfolios are
applied. Instead, following from Theorem 2.1.2, the cross-
sectional long dependence is a necessary condition for the
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existence of nondiversifiable factor—whether there are specific
assumptions for the cross-sectional exponents (for the growth
rate of factor loadings) or not. The cross-sectional long depen-
dence becomes sufficient condition for nondiversifiability only
when certain specific memory conditions are given. In that
case, assumptions for specific memory conditions will have to
sacrifice the more general definition of nondiversifiability in
factors.

Namely, the cross-sectional dependence (whether subject to
specific assumptions for convergence rates) can not be treated
as a sufficient condition in general, and applied for model speci-
fication tests. More specifically, the essence is to verify the
persistent cross-sectional long dependence in which the functi-
onals of fractional Brownian motion (with Hurst exponent) are
only the approximations for the asymptotic representations in
distribution. In other words, verification of cross-sectional long
dependence using the replicates or extensions of long-memory
tests in time series modeling is only a diagnostic tool without
explicitly considering the decaying rates or exponents for the
factor loadings (or else) across all asset returns. Therefore,
verification of cross-sectional long dependence is the main
interest of study for the existence of nondiversifiable (hidden)
factor—whether it is based on the cross-sectional exponent,
Hurst exponent, Allan variance, or others. Furthermore, more
advanced methodology or definitions for long dependence can
also be extended or applied here.

In addition, let lim
T →∞

1
T
∑T

t=1σ
2
H ,t −→ σ 2

H > 0 for all N , and

Assumption 2.A.7 holds (whether a cross-sectional exponent α
is assumed or not)⎡⎣ 1

T

T∑
t=1

⎛⎝ N∑
m=1

(
1
N

m∑
i=1

(εit − εt)

)2
⎞⎠⎤⎦ d−→ σ 2

H

∫ 1

0
(BH (z))2dz,

(2.2.12)

as N −→ ∞, T −→ ∞, where BH (z) = BH (z) − zBH (1) is
a fractional Brownian bridge, and H = 1

2 , if under the null
hypothesis that the hidden factor is diversifiable. In other
words, the test statistics in Equations (2.2.9), (2.2.10) can
still be applied if the condition lim

T →∞
1
T
∑T

t=1σ
2
H ,t −→ σ 2

H > 0
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holds, and the consistent estimate for σ 2
H ,t is available. Alterna-

tively, the analysis can be extended with a stronger condition.
If the hidden factor is diversifiable, the subseries for all equally
weighted idiosyncratic risk such as 1

m
∑m

i=1 εitwill converge to
zero in L2−norm as m → ∞.

Given suitable growth rates for both N and m, an alter-
native statistic can be devised. Assuming the weak law of large

numbers such that 1
T
∑T

t=1

(
1
m
∑m

i=1 εit

)2 p−→ E[ 1
m
∑m

i=1 εit]2

for all 1 ≤ m ≤ N , as T −→ ∞, then for any N , as T −→ ∞,

1
T

T∑
t=1

⎛⎝[N/m]∑
j=1

(
1
m

m∑
i=1

εit

)2
⎞⎠ p−→

[N/m]∑
j=1

E

(
1
m

m∑
i=1

εit

)2

.

(2.2.13)

Notice that the above results are based on the assum-
ption of the intensity of diversifiability α and the equally
weighted portfolios. The purpose is to link the cross-sectional
long dependence with the intensity of diversifiability under
equally weighted schemes. The argument shows that the less
diversifiable the hidden factor is (such that α > 1

2 and incre-
asing), the stronger the cross-sectional long dependence for
the (presumed) idiosyncratic risks. And hence, the cumulative
statistics will converge to a functional of fractional Brownian
bridge.

Theorem 2.2.2, instead, shows another form of panel
CUSUM statistic in using residuals for empirical asset
pricing models to verify (hidden) nondiversifiable factor (or
component) in projection errors under the null hypothesis that
the (hidden) factor is diversifiable. In addition, the tests apply
the residuals from the presumed model of normal (or expected)
returns and a sequential variable selection approach is suggested
for the model search in empirical asset pricing models.
Theorem 2.2.2: Under the null hypothesis that the projection
errors {εit }i=1,2,...do not contain a hidden non-diversifiable
factor so that H = 1

2 in Assumption, 2.A.7, let
{
ε̂it
}

i=1,2,...,N ,
be the residuals of fitted regressions for asset returns at time
t and {εit }i=1,2,...,N , follow the invariance principle of short-
memory stochastic processes. Also let ŝ2

N ,t = 1
N
∑N

i=1 ε̂
2
it +
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2
∑N−1

j=1 θ( j
q )γ̂t(j) be the heteroskedasticity and autocorrelation

consistent (HAC) estimate for the cross-sectional asymptotic
variance σ 2

t at time t , t = 1,2, · · · ,T , T → ∞,where γ̂t(j) =
1
N
∑N−j

i=1 ε̂it ε̂i+j ,t , and θ( · ) is the kernel function with
bandwidth q, q → ∞, q

N → 0, and assume that ŝN ,t = σt +
op(1) > 0, as N → ∞, ε̂t = 1

N
∑N

i=1 ε̂it , the panel CUSUM
statistic �̂ε

n,T such as

�̂ε
N ,T = 1

T

T∑
t=1

[
N −1

N∑
m=1

(
1√

N ŝN ,t
|

m∑
i=1

(ε̂it − ε̂t)|
)]

,

(2.2.14)

will show that

�̂ε
N ,T

d−→
∫ 1

o
|B(z)|dz, (2.2.15)

provided that
(

1√
N

∑m
i=1 εit

)
d−→ σtB(z), 0 < z ≤ 1, 1 ≤

m ≤ N , as N → ∞, where t = 1,2, ..,T , B(z)=B(z) − zB(∞)
is a Brownian bridge and B(z), is a standard Brownian

motion, where z ∈ [0,1]- provided that β̂i
p−→ β̂i where βi =

(βi1,βi2, · · · ,βik)
′ and β̂i =

(
β̂i1, β̂i2, · · · , β̂ik

)′
respectively, for all

i = 1,2, · · · ,N .
The statistic �̂ε

N ,T is consistent in the sense that �̂ε
N ,T →

∞ as N → ∞, T → ∞, when there is a hidden nondi-

versifiable factor in {εit }i=1,2,... such that N −H ∑[Nz]
i=1 εit

d−→
γBH (z), z ∈ [0,1], H > 1

2 , σ 2
Ht is the cross-sectional asymptotic

variance of {εit }i=1,2,...where {εit }i=1,2,... are of cross-sectional
long memory and BH (z) is a fractional Brownian motion.

The distribution for
∫ 1

o |B(z)|dz| is shown in Johnson and
Killeen (1983) as

Pr(
∫ 1

o
|B(z)|dz ≤ b) = (

π

2
)

1
2

∞∑
s=1

⎛⎝ 1

δ
3
2
s

⎞⎠ζ
⎛⎝ b

δ
3
2
s

⎞⎠ , (2.2.16)
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ζ (x) = 3
3
2 e

−2
27x2

x
1
3

Ai((3x)−
4
3 , (2.2.17)

δs = −a′
s

2
1
3

, (2.2.18)

where Ai is the Airy function, a′
s is the s-th zero of A′

i.

Proof of Theorem 2.2.2: Applying the results of Proposition
2.2.1, it suffices to see that for T → ∞,

�ε
N ,T = 1

T

T∑
t=1

[
N −1

N∑
m=1

(
1√
Nσt

|
m∑

i=1

(εit − εt )|
)]

d−→
∫ 1

o
|B(z)|dz.

Hence, the proof requires to show that (1) �̂ε
N ,T −�ε

N ,T =
op(1), and (2) s̃2

Nt is also a consistent estimator for σ 2
t . The first

part is easy to show since the factor structure is orthogonal to
the error terms, the consistency of estimates for factor loadings
is provided. Hence, the functionals of residuals will converge to
those of error terms under law of large numbers. For the second
part, the verification requires some works with matrix algebra.

Denote the fitted asset pricing model (at any time t where
the time index is suppressed, for simplicity) as

Rn = Bf̃ + ε,

where RN = (r1,r2, · · · rN )
′is a N -by-one vector of excess

returns in N assets, B is a N -by-p matrix of factor loadings
such that

{
βij
}j=1,··· ,p

i=1,··· ,N represents the elements on i-th row

and j-th column of B matrix, f̃ = (
1, f1, f2, · · · fp

)′ = (
1, f ′)′is

the (p + 1)-by-one vector of known factors in the presumed
model, ε = (ε1,ε2, · · · ,εN )

′is a N -by-one vector of idiosy-
ncratic risks, ε̂= (ε̂1, ε̂2, · · · , ε̂N

)′is a N -by-one vector of forecast
errors conditional on the factors included in the model. Let
εN = 1

N
∑N

i=1 εi, and ε̈N = 1
N
∑N

i=1 ε̂i, respectively. Also let
em = (1,1, · · · ,0,0, · · · ,0)′ be a N -by-one vector of m elements
of one’s and N −m elements of zero’s, m = 1,2, · · · ,N . Then,
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let B̂ be the matrix of consistently estimated factor loadings, it
can be shown with simple linear algebra that

ε̂− eN ε̈N = (ε− eN εN
)−(IN − 1

N
eN e′

N

)(
B̂ −B

)
f̃ ,

and the cumulative sums as m = 1,2, · · · ,N ,

m∑
i=1

(
ε̂i − ε̈N

)=e′
m

[(
ε− eN εN

)−MN

(
B̂ −B

)
f̃
]

=
m∑

i=1

(εi − εN )− e′
mMN

(
B̂ −B

)
f̃ ,

where MN = IN − 1
N eN e′

N and IN is N -by-N identity matrix.
Since B̂ −B → op (1) when estimated consistently, MN → IN as
N → ∞, it is easy to see that

∑m
i=1 (εi − ε̄N )=∑m

i=1
(
ε̂i − ε̈N

)+
op (1) . This, in turns shows that �̂ε

N ,T − �ε
N ,T = op(1).

Given that γ
(
j
) = 1

N
∑N−j

i=1 (εi − εN )
(
εi+j − εN

)
, let Aj =[

IN−j ,O(N−j),j
]
, Bj = [

O(N−j),j ,IN−j
]
, where O(N−j),j is a

(N − j)-by-j matrix of zeros. We have

γ̈
(
j
)= 1

N

[(
Aj
(
ε̂− eN ε̈N

))′ (Bj
(
ε̂− eN ε̈N

))]
= 1

N

[(
ε̂− eN ε̈N

)′ A′
j Bj
(
ε̂− eN ε̈N

)]
= 1

N

[(
ε̂− eN ε̈N

)′ N̈ (
j
)(
ε̂− eN ε̈N

)]
,

where N̈
(
j
)

is a N -by-N matrix. Hence, as N → ∞,

γ̈
(
j
)= 1

N

[((
ε− eN εN

)−MN

(
B̂ −B

)
f̃
)′

N̈
(
j
)((

ε− eN εN
)−MN

(
B̂ −B

)
f̃
)]

= γ̂
(
j
)− 2

N
(
ε̂− eN ε̈N

)′ N̈
(
j
)

MN

(
B̂ −B

)
f̃

+ 1
N

[̃
f ′ (B̂ −B

)′
MN N

(
j
)

MN

(
B̂ −B

)
f̃
]

= γ̂
(
j
)− op (1)+ 1

N
tr
[(

B̂ −B
)′

MN N̈
(
j
)

MN

(
B̂ −B

)
f̃ f̃ ′
]

= γ̂
(
j
)− op (1)+ 1

N
Vec
[(

B̂ −B
)′

MN N̈
(
j
)

MN

(
B̂ −B

)]′
Vec

(̃
f f̃ ′)
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= γ̂
(
j
)− op (1)+Vec

[(
B̂ −B

)′
MN N̈

(
j
)

MN

(
B̂ −B

)]′
Vec

(
1
N

f̃ f̃ ′
)

= γ̂
(
j
)− op (1) ,

provided that B̂ − B → op (1) and 1
N f̃ f̃ ′ p−→ �f , where

�f is a positive-definite matrix. Thus, given the consi-
stency of γ̈

(
j
)

and γ̂
(
j
)

in estimating the cross-sectional
covariances under the null hypothesis of cross-sectional
short memory in {εit }i=1,2,···, the estimate s̃2

Nt for long-
run cross-sectional variance σ 2

t is also consistent since s̃2
Nt −

ŝ2
Nt = op (1) . For consistency of the test, consider �ε

N ,T =
1
T
∑T

t=1

[
N −1∑N

m=1

(
1

N H |∑m
i=1 (εit − εt)|

)]
d−→ ...

σ H
∫ 1

o |BH

(z)|dz, where H > 1
2 as N → ∞, T → ∞, under the alternative

hypothesis. Notice that �̂ε
N ,T −�ε

N ,T = op(1), and assume that
1
T
∑T

t=1σHt + op(1)
p−→ ...

σ H , where H > 1
2 , then as N → ∞,

T → ∞,

�̂ε
N ,T ≈�ε

N ,T N H − 1
2 + op(1) −→ ∞.

In particular, Johnson and Killeen (1983) also provides a table
of probability distribution with respect to different critical value
for the distribution of L1–norm of Brownian bridge. Thus, we
may check to see if these statistics are significant or not. Another
interesting feature of the statistic is that it also the convergence
toward the area underneath the reflected Brownian bridge.

Following the reasoning of Theorem 2.1.1 and Corollary
2.1.2, we have an additional condition to ensure that the
selected proxies are of nondiversifiable factor loadings. An alter-
native method suggested in this paper is to perform a bottom-
up sequential model search by expanding the dimension of
model for nondiversifiability of selected proxies. The notion is
not only to obtain the most parsimonious model of relevant
variables. Instead, we need to identify the model that most
likely represents the non-diversifiable components of excess
returns. More specifically, it is necessary to pick up the variables
that ensure the nondiversifiability of their factor loadings to
specify the nondiversifiable or “systematic” components in
excess returns. Thus, a sequential model search is devised here
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to make certain the selected variables are of such property.
Moreover, given that model search with all different possible
permutations of variables may be too computationally intensive,
a sequential approach may reduce the number of search needed.

For instance, if we perform the model search with some
model selection criteria, this will require model search for all
2p possible models among p variables. Instead, the following
bottom-up sequential model search approach only needs to
check for p(p+1)

2 models.7

More specifically, even though the above �̂N ,T is
devised for projection errors, we may also introduce the
�̂N ,T statistics in Theorem 2.2.2 for the fitted values
to establish the sequential model search as �̂

f (j)
N ,T =

1
T
∑T

t=1

[
N −1∑N

m=1

(
1√

N ŝ(j)
N ,T

|∑m
i=1 (ĥ(j)

it − ĥ(kj
t )|

)]
, where ĥ(j)

it

= β̂
(j)
i f (j)

t = β
(j)
i f (j)

t + op(1), is the fitted value of the j-th proxy
in the empirical model, 1 ≤ j ≤ k. The intuition for sequential
model selection tests is simple. Following from Corollary 2.1.2,
if the k-th proxy is indeed needed and is with nondiversifiable
factor loadings, the �̂f (j)

N ,T for the fitted values of this proxy will
be statistical significant and increasing with N and T due to
cross-sectional long dependence.

In particular, the higher the �̂
f (j)
N ,T is, the more essential

the variable is for describing the nondiversifiable component
of excess returns. Many model selection tests or criteria are
to obtain the optimal model(s) of relevant variables. Unfortu-
nately, locating relevant variables for the model is not entirely
identical to searching for a model with nondiversifiable factors
(or proxies). Locating some models with statistically significant
diversifiable variables or proxies may not necessarily improve
the model specification since the findings may not necessarily
identify the “systematic” “nondiversifiable” components for
excess returns within finite samples. Thus, we may devise a
sequential search for the model of excess returns using the
above model selection test.

Corollary 2.2.3: Given Theorems 2.1.2 and 2.2.2, let the test
statistics of a candidate variable for the j-th proxy (where 1 ≤
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j ≤ k) �̂f (j)
N ,T be defined as

�̂
f (j)
N ,T = 1

T

T∑
t=1

⎡⎣N −1
N∑

m=1

⎛⎝ 1√
N ŝ(j)

N ,T

|
m∑

i=1

(ĥ(j)
it − ĥ(j)

t )|
⎞⎠⎤⎦ ,

(2.2.19)

where h(j)
it = β

(j)
i f (j)

t , and ĥ(j)
it = β̂

(j)
i f (j)

t = h(j)
it + op(1) is the

fitted value of the j-th proxy in the empirical asset pricing
model. Then if this candidate variable is of diversifiable
loadings, it follows that

�̂
f (j)
N ,T

d−→
∫ 1

o
|B(z)|dz, (2.2.20)

provided that
(

1√
N

∑m
i=1 h(j)

it

)
d−→ σtB(z), 0 < z ≤ 1, 1 ≤

m ≤ N , as N → ∞, where B(z)=B(z) − zB(∞) is a Brownian
bridge and B(z), is a standard Brownian motion defined on the
interval [0,1]. Let ŝ(j)2

N ,T = 1
N
∑N

i=1 ĥ(j)2
it + 2

∑N−1
τ=1 θ( τq )γ̂ (j)

t (τ )
be the heteroskedasticity and autocorrelation consistent (HAC)
estimate for the cross-sectional asymptotic variance σ

(j)2
t of{

h(j)
it

}
i=1,2,...

at time t , t = 1,2, · · · ,T , where γ̂
(j)
t (τ ) =

1
N
∑N−j

i=1 ĥ(j)
it ĥ(j)

i+τ ,t , and θ( · ) is the kernel function with

bandwidth q, q → ∞, q
N → 0, and assume that 1

T
∑T

t=1 ŝ(j)
N ,T =

1
T
∑T

t=1σ
(j)
t + op(1)

p−→ σ̈ > 0.

The statistic �̂
f (j)
N ,T is consistent that �̂f (j)

N ,T → ∞ as N →
∞, T → ∞ if

{
h(j)

it

}
i=1,2,...

follow the alternative hypothesis

such that N −H ∑[Nz]
i=1 h(j)

it
d−→ γBH (z), z ∈ [0,1], H > 1

2 ,

σ 2
Ht is the long-run variance of

{
h(j)

it

}
i=1,2,...

when
{

h(j)
it

}
i=1,2,...

are of cross-sectional long memory and BH (z) is a fractional
Brownian motion.

Proof of Corollary 2.2.3: Applying the results of Theorem
2.2.2, and set êit = ĥ(j)

it for each k-th proxy or identified variable,
1 ≤ j ≤ k, the claims will follow.
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For the arguments of (bottom-up) sequential model search,
Assumption 2.A.8 implies that (after the k-th stage of model
search, k ≥ 2) the modeler has (at least) already included some
k − 1 proxies that may partially approximate the nondiversi-
fiable components of excess returns. That is, at the k-th stage of
model search, some k−1 relevant proxies with nondiversifiable
factor loadings β̈j should have been identified. Applications
of the new model selection criteria are to verify if further
expansion of the model is needed. Otherwise, if β̈j is diver-
sifiable, it will imply the modeler has simply included some
irrelevant (diversifiable) proxies at first. For instance, suppose
that CAPM is valid for the first stage of model search, the best
candidate proxy will be some rates of returns of market indices.
The factor loadings of all excess returns projected on this proxy
should be non-diversifiable if these market indices are closely
associated with market portfolio.
Assumption 2.A.8: Let the loadings of the already-selected k−
1 proxies

{
f (j)
t

}
j=1,...,k

be non-diversifiable at the k-th stage of

model search that inf
ω∈W �

G(ω, β̈j) �= 0, β̈j =
(
β

j
1,β j

2, · · · ,β j
N , · · ·

)′
,

j = 1,2, ...,k − 1 for all well-diversified portfolios ω in W �,
where k ≥ 2.

The detailed algorithm is stated as follows;

• (1). Select one proxy variable fjt , j = 1,2, · · · ,p initially from{
fjt
}

j=1,2,...,p ∈ ft , where ft is the set of all presumed proxy
variables for factors at time t. . Run the univariate regres-
sions of {rit }i=1,2,...,N , on the fjt for each i = 1,2, ...,N to
obtain the factor loadings β̂ij . Select those proxies where

their �̂f (k)
N ,T ’s are statistically significant. Choose the proxy

variable among these significant proxies with maximum�̂f (k)
N ,T

and denote it as f (1)
t for the first stage of model search as

k = 1.
• (2). Pursue further model search at k-th step, where

k = 2, · · · , s, s ≤ p. Let ε̂
(k−1)
it = rit − α̂i − β̂i1f (1)

t − ·· · −
β̂i,(k)f

(k−1)
t , which represents the residual after (k − 1)-th

steps of search. Select and obtain orthogonalized kth-stage
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regressor λ̂
(k)
t , where λ̂

(k)
t is the residual after regressing

each candidate variable f ∗
t in �̂t = ft/

{
f (1)
t , f (2)

t , ..., f (k−1)
t

}
on the already selected proxies

{
f (1)
t , f (2)

t , · · · , f (k−1)
t

}
, and

�̂t = ft/
{

f (1)
t , f (2)

t , ..., f (k−1)
t

}
represents the subset of ft that

excludes the already chosen proxies
{

f (1)
t , f (2)

t , · · · , f (k−1)
t

}
.8

Perform univariate regressions of
{
ε̂

(k−1)
it

}
i=1,2,...

on λ̂
(k)
t to

get the factor loading
{
β̂i,(k)

}
i=1,2,...,

. Construct the new

residual as ε̂
(k)
it = rit − α̂ − β̂i1f (1)

t − ·· · − β̂i,(k−1)f
(k−1)

t −
β̂i,(k)λ̂

(k)
t for the k-th step, and choose the proxy λ̂(k)

t which

maximizes �̂f (k)
n,T and denote it as f (k)

t . Continue step 2.

• (3). If for some sufficiently small δ ∈ R, δ > 0, |�̂f (k)
n,T −

�̂
f (k−1)
n,T |< δ, check to see if �̂ε

n,T is significant in asymptotic

distribution of
∫ 1

o |B(z)|dz. If not, the search stops.

In other words, the procedures start with variables search
on the proxy variable(s) by fitting the returns with some
linear regressions that contain a constant term. Then, perform
model search by expanding the model with more proxies using
sequential model selection tests. The search will stop when
there is no indication of any possible hidden nondiversifiable
factor(s). Therefore, even if additional variable(s) that are diver-
sifiable and may still contribute to the predictability of the
model, the search will stop. Adding additional diversifiable
explanatory variables may perhaps improve the temporal predi-
ctability of empirical asset pricing models tentatively. Yet, this
inclusion will not necessarily improve the event studies in using
the abnormal returns.9 Perhaps, an easier way to say is “...let the
abnormal returns remain as abnormal, where the firms specific
information may still stay with them.”



Chapter 3

Cumulative Abnormal Returns or

Structural Change Tests?

Introduction

In this chapter, it is shown that if the impact of event(s) is
considered as permanent, the cumulative abnormal return stati-
stics in event studies coincides with the CUSUM statistics in
the tests for parameter changes of regressions such as market
models. Namely, the applications for the tests on abnormal
returns are closely related with the model specification of
normal returns, especially with the regression models assumed
for the normal (expected) returns. If the statistical approach is
reterospective (where the studies of interest are to identify the
possible (permanent) change in parameters within the given
history of stock returns), and if the presumed initial date
for event window is the correct time period where parameter
changes, the hypotheses testings of the conventional CARs and
CUSUM statistics are almost identical except for the asymptotic
distributions applied. The CARs tests apply the (asymptotic)
normality, while CUSUM tests are based on Brownian motion
or Brownian bridge.

For instance, the CARs in event studies usually assume
the length of estimation period to increase asymptotically for
validity of CARs statistics. The CUSUM reterospective tests
assume the entire time period of interest (i.e., estimation
period plus event window) to expand asymptotically, while the
monitoring tests assume the training period can be of sufficient
length. This compatibility is even vivid if the linear regression
models are applied to construct the normal and abnormal
returns. In the following, arguments on event window and
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CARs are provided. Extension for these studies using the
sequential approach for monitoring is also given. However,
under circumstances where similarity of CARs and CUSUM
tests established, it is questionable to verify that these two
schools of statistical tests really depicts the essential answer for
event studies. As well-known in corporate finance, the financial
time series models and their parameters change rapidly over
time—whether there is any significant event or not. These
parameters can undergo abrupt changes or jumps over time
even though there is no specific knowledge that leads to
hypotheses of some corporate events.

Therefore, if one is interested in applying CARs to investigate
the impacts of corporate events, caution should be applied
since verification of these parameter changes is only to concur
a possible impact or drift. A more thorough study on the
abnormal returns should be added to consider the market
adjustments and their durations. In particular, if the impacts
from events are only temporary, the hypotheses of interest
will then be identical to the epidemic changes in parameters.
Specifically, the parameter changes occur only in a so-called
event window. After the event window, the parameters will
return to their original levels if the event window is correctly
identified. For most event studies in corporate finance (since
firm-specific information is not systematic), these settings of
epidemic changes seem more closely fitted to the data when
impacts from corporate finance events are mostly temporary.
Yet, even with the multiple change points identified, it is
still difficult to link these changes with the events of interest
directly. Hence, given that the fluctuaions of security prices
in capital market are so intensive, conventional CARs tests
(and the CUSUM equivalents) are not entirely informative for
event studies of corporate finance. Alternative methodology is
needed.

3.1 Event Window and Sampling Period

One of the difficulties in event studies of corporate finance is the
determination of event window and pre-event and post-event
periods. For various event studies with daily returns, the event
window usually covers a few days before the announcement
(or event) date and some days after the announcement (or
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event) date if the date of interest is known. Although deter-
mining the pre-and post- mergers (or acquisitions) performance
of either target or acquiring firms is essential to corporate
finance, arbitrariness in choices of event window may dilue the
soundness of the empirical findings.

For instance, various event studies when using daily returns
select these days or windows subjectively or apply some pretest
assumptions for the selection. As the conventional approach,
the estimation period (or window) is set as the time period
prior to this event window to estimate the coefficients of the
presumed model for normal (or expected) returns. The predi-
ction errors within the event window are collected for the tests
on hypotheses of interest. The asymptotic arguments for the
properties of statistical methods are based on the length of this
estimation period. As the length expands, the asymptotic distri-
butions for the estimates and the abnormal returns are then
obtained.

The difficulty is that most of these methods assume either
constant mean or constant coefficients on the presumed speci-
fication of normal (or expected) returns across event window
under the null hypothesis. One reason for that is, under the
null hypothesis where the firm-specific information such as
mergers and acquisitions, the systematic components should
not differ much even within the event window. The selection of
event window that covers some days (or months) prior to the
announcement (or event) date is to accommodate the possible
influence from the information/announcement to the market.
However, the choices on how extensive these days (or months)
prior to and after the event date are either arbitrarily determined
or dependent on selected samples.

For instance, the earlier study of Asquith et al. (1983) uses
a period of –20 days to +20 days to cover the entire period of
interest. Brown et al. (1985) show that the “beta’s” are subject
to structural change across the event periods where the number
of changes depends on the determinations of various pre- and
post- event periods. Brown and Warner (1989) apply monthly
stock returns and cover –89 months to +10 months for the
entire sample period (where month zero stands for the event
month). In addition, Davidson et al. (1989) apply data for
returns of failed mergers from –90 days before event to +250
days after the event day.
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In particular, once these event windows are determined, the
same length of event window (of various event dates) may usally
be applied to selected firms for the similar events of interest.
Given that capital market may adjust to new information of
different firms in various ways or paces, it is hard to see why
the length of event windows should be uniformly determined
a priori even though the event dates may be different across
all selected firms. Knowingly, even if these events are similar
across the selected firms, they may not happen in the same time
periods (or with the same length of event window). If, on the
other hand, the event windows are not of the same dates (or
length) across different firms, it is cumbersome to form some
convenient statistics such as the average of cumulative abnormal
returns using each firm’s abnormal returns since the lengths of
event windows or event dates all vary across selected firms.

Furthermore, across different time periods, the determi-
nation of pre-event period, event window, and post-event
period should ideally be based on the adjustment speed of the
capital market itself. Hence, an alternative for the selection
of estimation period or else (or even, to completely drop
the event window) is to let the data speak for themselves.
That is, a recursive adjustment and its mechanism can be
devised in tracking the normal (or expected) returns where
windows for these adjustments are adaptive to the data (and
time periods) so that the consequence of subjectivity in event-
window selection can be minimized, especially when the newly
available firm-specific information may leak out to influence
the market expectations. More extensively, given the identified
(market-wise) systematic determinants, the recursive estimation
or adaptive tracking of the parameters in normal (or expected)
returns may also allow other extraneous noises or infor-
mation around the event (or announcement) date under some
regularity conditions. Nevertheless, given the sliding windows
(which may be different for each firm’s returns) for tracking, the
conventional methods in using cumulative abnormal returns
that start from a specific date before the event date will no
longer be applicable. An alternative method in verifying the
impact of events must be devised. These methods then, are
considered in Chapters 4 and 5 in Part 2 of this book.
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While being arbitrary in setting the event windows, most
conventional event studies ignore the back-testing for the post-
event period. In fact, the quintessence of event studies is not
only to identify the immediate impact, but the follow-ups from
the events or announcements. Namely, how speedy the market
or firms may adjust afterward may be as equally critical as the
impacts of events. Unfortunately, conventional event studies
usally stop at the findings on the impacts of events. As usual,
the identification of impacts depends heavily on the known or
presumed date when the impacts may start. More surprisingly
enough, this setting is almost identical to the tests for structural
change with some a priori information when the change date
(or time) actually occurs within the presumed event window.

Alternatively, if the impacts from the events are considered
temporary (i.e., the impacts from events will diminish to nil
after the event windows per se), the hypothesis testing in this
setting is similar to the structural change tests with epidemic
change. That is (for instance), there are two possibly unknown
dates (or points in time) for structural change; namely, one is
for the drift when the parameter(s) differs from the pre-event
period, and the other point where the parameter(s) returns to
the level of pre-event period. These changes then may be consi-
dered as multiple change points in statistical inferences. The
difficulty, however, is how to link these changes with the events
of interest given that financial time series is notorious with the
reputation of time-varying parametrization.

For instance, let the (known) event window (in discrete time)
be denoted as (T1,T2], where T1 < T2, and let the variable of
interest (such as abnormal returns for firm i, i = 1,2, ...,n) be
denoted as εi

t , the usual event study can be formated as

rit =E[rit |Ft]+ εi
t , (3.1.1)

εi
t =E[εi

t]+ ξit , (3.1.2)

where Ft is the conditional information set for the specifi-
cation of normal (or expected) return, ξit is a random noise,
t = 1,2, ...,T , T � T2. Notice that the conditional expectation
E[rit |Ft] is not restricted to the linear functional form for
the conditioning variables. The means of idiosyncratic risks
across all firms will have E[εi

t] = 0 uniformly for all i’s and
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t’s under the null hypothesis such that the event has no signi-
ficant impact on stock returns for all t’s, or equivalently, εi

t = ξit
almost surely. In particular, if expressed in terms of cumulative
abnormal returns,

∑τ
t=T1+1 ε

i
t =∑τ

t=T1+1 ξit , τ >T1, if E[εi
t] =

0. However, alternatively, if the impact is essential, the mean
E[εi

t] �= 0 for almost all firm i’s in studies within the event
window. This is equivalent to say that E[εi

1] = E[εi
2] = ·· · =

E[εi
T1

] = E[εi
T2+1] = ·· · = 0, and E[εi

T1+1] = ·· · = E[εi
T2

] �= 0.
In other words, the alternative hypothesis simply states that

the mean of the abnormal returns are nonzero within the event
window across all firms.1 This is, in fact, a typical example of
epidemic change for the multivariate setting where identical
length of event window is applied to each firm’s returns.
Notice that the setting does not assume these nonzero means
are identical across all firms. Specifically, these means can be
different in signs and magnitudes. On the other hand, if the
impact is considered permanent, the alternative hypothesis will
become E[εi

1] = E[εi
2] = ·· · = E[εi

T1
] = 0, and E[εi

t] �= 0 for
all t ∈ (T1,∞). That is, the means of all abnormal returns
will deviate from zero even after the event windows. In this
case, the impacts of events may be considered as persistent and
the usual statistical tests for structural changes can be applied
also. To reduce the influence of cross-sectional dependence,
one can obtain the cross-sectional average of these abnormal
returns and denote it as ε̄t , where ε̄t=1

n
∑n

i=1 ε
i
t , n represents

the total number of firms with similar events. In this case, the
alternative hypothesis as epidemic change will become E[ε̄1] =
E[ε̄2] = ·· · = E[ε̄T1] = E[ε̄T2+1] = ·· · = 0, and E[ε̄T1+1] = ·· · =
E[ε̄T2] �= 0.

In the statistical methodologies for structural changes
however, the change point or date can be allowed as unknown
a priori. Yet, in most event studies of corporate finance, the
presumed event window is usually assumed and includes either
a few days prior to the event (announcement) date or starts
right on the event date itself according to the null hypotheses.
Namely, the tests on abnormal returns are similar to the tests
for structural changes with possibly presumed change point
within event window. In addition, as will be discussed in Section
3.2, both the CARs tests and the monitoring tests assume
some estimation periods where the starting time for CARs
tests or recursive on-line detection is available. To generalize
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the idea, it seems more reasonable to assume that for some
unknown dates T1 and T2, E[εi

1] = E[εi
2] = ·· · = E[εi

T1
] =

E[εi
T2+1] = ·· · = 0, and for some dates t’s within (T1,T2],

E[εi
t] �= 0. In this case, not all abnormal returns for dates t’s

within (T1,T2] will have their means equal to zero. Specifically,
there will be no particular cut-off date applied to determine
the estimation period, event window, or the starting time for
monitoing tests. However, in this case, there could be suffici-
ently many abnormal returns in the interval (T1,T2] that will
have E[εi

t] �= 0 where T1 and T2 are unknown.
The question, however, the conventional CARs tests or the

CUSUM tests (including monitoring tests) discussed in Section
3.2 all assume these changes are permanent afterward. These
tests, however, can not deal with the general version where
the changes are neither permanent afterward nor unanimous
across the time period of interest, whether the event window is
presumed or not.

In brief, regardless of the impacts of events are temporary
or permanent, some thorough investigations for event studies
should be extended to consider the entire sample period
including post-event window. One difficulty, however, in most
conventional event studies, is that subjective decision on the
ending date of event window introduces additional havoc for
robust conclusions. For instance, if the ending date is set
prematurely before the actual expiration of impacts, the stati-
stical results may ignore some residual effects from the events.
If the ending date is set too long after the actual expiration of
impacts, the statistical tests may include additional distinctives
or the other irrelevant noises.

Another issue related to the estimation period and event
window is the noisy information or unrelated events that may
appear in the estimation period or before/on the event window.
This is the so-called contamination problem in the estimation
period and event window. One difficulty in analyzing these
impacts is how knowledgeable the modeler can be to isolate
these impacts from the events of interest. Most of the contem-
poraneous analyses assume that these noisy information in
estimation period (which may be rumors in financial markets)
will cause higher variance in the abnormal returns and hence
most of the statistical tests (based on cumulative abnormal
returns) are not robust or powerful.
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Aktas et al. (2007) for instance, show that by specifi-
cally introducing the two-state switching market model for
the returns, the controlling for unrelated events during the
estimation period and on the event date (especially on the
increase of event-induced volatility) will make the tests more
powerful. For instance, in their study, the return-generating
process is denoted as

Ri = Xibi + εi = [1,Rm,Di]

⎡⎣ αi
βi
γi

⎤⎦+ εi, (3.1.3)

where Ri is a T �×1 vector of returns for firm i, Xi is a T �×3
matrix of explanatory variables for firm i′s returns including the
T � × 1 vecor of returns for a market portfolio proxy, denoted
as Rm, 1 is a T � × 1 vector of 1’s, Di is a T � × 1 vector of
dummy variable that is equal to 1 at the event date for firm i,
and equal to 0 otherwise, T � = T + TE, where T represents
the number of days in estimation period, and TE represents the
number of days in event window. If under the homoskedasticity,
the covariance matrix of OLS estimator can be shown as

�OLS = σ 2
i
(
X ′

i Xi
)−1 . (3.1.4)

However, if the residuals are assumed as state dependent, let
the state variable St = 1 stand for the low-variance regime, and
St = 2 stand for the high-variance regime, then the variance of
residuals for each state can be expressed as

E[εi,1ε
′
i,1] = σ 2

i,1I , St = 1
E[εi,2ε

′
i,2] = σ 2

i,2I , St = 2
(3.1.5)

where σ 2
i,2 > σ 2

i,1. In this case, if the null hypothesis is true, the
variance for residuals will all be equal to σ 2

i,1 regardless of the
dates. And by assuming the transition between two regimes is
following a Markov chain of order 1, the covariance matrix of
OLS estimator can be shown as

�OLS =p(St = 1)σ 2
i,1
(
X ′

i Xi
)−1 (3.1.6)

+p(St = 2)σ 2
i,2
(
X ′

i Xi
)−1 ,
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where p(St = 1) and p(St = 2) represent the probability of state
1 and state 2, respectively. Hence, given that σ 2

i,2 > σ 2
i,1, the

lower standard error of OLS estimates under the null hypothesis
of no event (that is, σ 2

i1
(
X ′

i Xi
)−1) will lead to higher rejection

frequency for the null especially for the abnormal return γi.
Although their findings support the importance of reducing

impact of unrelated events during the estimation period, the
question is that these noises prior to the events of interest
should already propagated through the media or spreaders in
financial markets. That is, these impacts should be mediated
over time when approaching (or passing) announcement dates
or events, which in turn, may reduce the spreadings of rumours.
In other words, if detailed specification is desired for the
switching states of the event-induced volatility in estimation
period and/or on event date, then the explanations for the
winding-down of volatility as time approaching and passing the
announcements (or events of interest) should also be provided.
For instance, if the event-induced volatility increases on/after
event date, a good question to ask then is how long this increase
may last after the event dates. In other words, provision of the
analyses for market adjustments (such as volatility) when appro-
aching (or after) the announcements or events should be as
essential as the analysis for the noise-induced and event-induced
increases in volatility for event window and estimation period,
respectively. Unfortunately, the switching model fails to explain
why the switching happens abruptly on that particular event
date and stays there for the entire event window without further
evolution. Although the two-stage market model performs
better than the other tests in their simulations, the result is
based on the assumption of event-induced increase of volatility
for the abnormal returns such that σ 2

i,2 > σ 2
i,1.

In particular, their simulations are done under the assum-
ption that the underlying data generation process is indeed
following the two-stage market model. To overcome the so-
called contamination problem, Aktas et al. (2007) introduce
additional variability by adding twice as the standard deviation
of the stock returns into abnormal returns for the estimation
period. Although this ad hoc setting for unrelated events
during estimation period alleviates the possible consequences
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of contamination problem, it still lacks of theoretical explana-
tions on the evolution of such symptom in the market. Under
the hypothesis that no event-induced abnormal returns and
no event-induced increase in variance, all the tests seem to
perform compatibly well in their simulations. However, when
there is a event-induced abnormal return and no event-induced
increase in variance (with or without contamination problem),
the Corrado’s (1989) rank test has more power than the
others. Yet, with the introduction of event-induced increase
of variance, the rank test performs poorly. In their simula-
tions, two-stage market model performs the best when there
is event-induced abnormal return and event-induced increase
in variance.

However, their simulations also confirm that the Corrado
(1989) rank test statistics, which take both the estimation
period and event window together as a single time series,
peform better than the other conventional test statistics if
there is no event-induced increase in return volatility. In other
words, the nonparametric test that does not presume the ad
hoc estimation period and event window has more power than
the other conventional statistical tests for corporate finance
events. This, in turn, suggests that the test statistics (especially
reterospective) that apply the entire time series are better than
the tests that apply the presumed event dates or windows.
The impact of event-induced increase in return volatility
can be reduced if one applies some heteroscedasticity-robust
estimators for the variance of abnormal returns even though
one does no assume any particular event or announcement date.

Karafiath and Spencer (1991) introduce the multiperiod
event studies in multivariate setting where the length of event
window is allowed to vary across different firms. In parti-
cular, the model specifications (for abnormal returns) in the
estimation period and in the event window are considered
together. The advantage is that the setting bring both the
dynamics of the estimation period and the event window simul-
taneously into the discussions, which is more informative for
analysis. However, the assumption for known initial dates for
event window is also applied.

To demonstrate the impacts of increased variance due to
events, Harrington and Shrider (2007) introduce the so-called
true abnormal returns (within the event window) in addition
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to the idiosyncratic noises for the market model of returns.
Their simulation results also indicate that increases in variance
within the event window will cause many conventional tests
on cumulative abnormal returns biased and prone to easier
rejection of the null hypothesis. However, their setting is to
intentionally introduce additional noises (the so-called true
abnormal returns) in the event window. The difficulty is that
such a setting fails to explain why the abnormal returns will
have such a clear-cut difference in specification before and
after the event dates. That is, there is no explanation that the
abnormal returns are completely idiosyncratic noises before the
event dates and become true abnormal returns plus noises after
the event dates. In other words, the setting does not allow
any possible evolving dynamics in the increases of variance.
Furthermore, these increases of variance seem permanent after
the event dates. They stay on the level and persist over time,
especially over the event windows. The increases of variance due
to events may possibly be observed empirically in a case-by-case
basis.

However, the setting fails to consider that these increases of
variance may dwindle down later on as the events become less
white-hot or the rumors are gradually resolved. In fact, it is
equally feasible to consider that the spreading of rumors before
the event dates may cause extra noises for the market volatility.
Announcements of these events (or event dates) may resolve
some suspicions or uncertainty so that the market volatility
may decline. As pointed out by Brown and Warner (1985),
the increase of variance at the time of events was hypothe-
sized as a possible cause for lower power of the conventional
tests on abnormal returns. Yet, this hypothesized explanation is
not the only possible cause for the deficiency of conventional
tests. Nor is it a doctrine that all event studies (in corporate
finance) should always introduce the event-induced variance
increase into the methodology. To resolve this change of
variance, and to devise a better methodology for event studies,
a robust method that allows the heteroscedasticity of abnormal
returns and the possible evolution of the market reaction
should be considered. In other words, a methodolgy that allows
various patterns of market resolutions (on the news or events)
is an alternative for event-study methodology. Furthermore,
although it is not necessarily considered as common sense in
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all cases, the time-varying parameters models are well known
in financial time series for empirical finance. Hence, simply
verifying or testing to see the parameter change (especially
for the mean change of abnormal returns) may not necessarily
certify the verification of impacts from the corporate events.

Alternatively, allowing the time-varying parameters in the
models for normal (or expected) returns, and then verifying the
abnormal returns afterward will provide perhaps some better
results for empirical finance. The arguments may be consi-
dered as (1) if the time-varying-parameter models suffice to
undertake the filterings such that all event-related information
are absorbed into the models, the capital market will seem to
have sufficient capacity to take advantage these event-related
signals and then statistical verifications using the abnormal
returns should show that no significant statistical results. In
other words, the capital market is efficient in processing newly
available information whether it is noisy or systematic. (2) In
addition, if the time-varying parameter models are allowed in
the expected returns, then conventional CARs tests or CUSUM
tests can not be applied here since their purpose of study is only
to identify the structural change in parameters. In the following
section, some similarities can be found that the conventional
CARs tests (using market model for stock returns) are related to
CUSUM tests for structural changes even though the statistics
are not entirely identical.

3.2 Applications with Cumulative Abnormal Returns (CARs)

For many event studies, applications with cumulative abnormal
returns may be considered conventional. However, the usual
hypothesis of interest is to consider that the mean of these
cumulative abnormal returns tends to zero (at least) asympto-
tically as numbers of assets and time period expands. However,
with the above discussions on event windows, it is likely to
consider these tests are similar to the structural change tests that
consider the difference in location parameter(s). For instance,
if given the following structural equation for the asset returns
i = 1,2, ...,n, so that the normal (or expected) returns for each
asset are expressed in some simple linear regressions such as the
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so-called market model

rit = αi +βirmt + εit , (3.2.1)

the conventional method in using cumulative abnormal returns
will be to obtain the estimates for the αi and βi and denoted
as α̂i and β̂i, respectively, according to the dates from To to
T1, where (To,T1] is the estimation window where the date
T1 may or may not be the actual event date in the time series
but chosen by the empiricist of event studies. For instance, one
may choose that T1 is (say) k days prior to the event window of
interest and k > 0. Notice that the model in Equation (3.1.2)
can reduced to the simple mean-deviation model if the “beta”
coefficients {βi}i=1,2,··· ,n are assumed to be zero. In this case,
the conventional tests for event studies are to considered if there
is a change in mean over the event window.

Then, calculate the abnormal returns in the event window
(say, from T1 +1 to T2) such as ε̂it = rit − α̂i − β̂irmt . Then, for
each asset with ending date τ , T1 +1 ≤ τ ≤ T2, the cumulative
abnormal return is obtained as

ε̃iτ =
τ∑

t=T1+1

ε̂it . (3.2.2)

The asymptotic arguments for the cumulative abnormal returns
are based on (1) the length of estimation period (To,T1] is suffi-
ciently large, (2) normality assumption for all εit ’s. Specifically,
the statistics in Equation (3.2.2) are calculated using the predi-
ction errors for the model in Equation (3.2.1) across the event
window (T1,T2] by using the estimates for αi and βi obtained
in estimation period. Hence, the statistics are also based on
the assumption that the parameters αi and βi are constant over
the event window under the null hypothesis that no significant
impact is present in the event window.

Namely, in the null hypothesis such that there is no impact
from the event(s), these cumulative abnormal returns should be
centered around zero within the event window. Specifically, if
the event is essential, the mean of these cumulative abnormal
returns may differ from zero. If the impact from event(s) is
permanent, the difference in means will persist after the event
window. In other words, the mean of these abnormal returns
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will be different from zero from the event date and on. If the
impact from these event(s) are only temporal within the event
window, these impacts will disappear or decay after the event
window (say after T2 +1). If so, and recalling from the statistical
hypothesis testing of structural changes, these discussions are
similar to the so-called epidemic changes in parameters.

That is, the parameters incur a rapid change within a certain
period (with possibly unknown initial time of this period),
and return to their original values after the period. In fact,
if the event(s) or announcements are only for firm-specific
information, it is conceivable to consider the impacts from
event(s) are only temporal since the information will not have
a permanent impact that all securities need to incorporate the
information (or event(s)) as a systematic determinant of their
pricings. Following from the setting in Equation (3.2.1), if
the alternative hypothesis is to consider that E[εi

1] = E[εi
2] =

·· · = E[εi
T1

] = 0, and E[εi
t] �= 0 for all t ∈ (T1,∞), where a

single point of permanent change in parameters is expected,
this represents that the intercept αi in Equation (3.2.1) has a
jump when t ∈ (T1,∞). For instance, the intercept in Equation
(3.2.1) will become αi + θi, where θi �= 0, when t ∈ (T1,∞).

If the alternative hypothesis is for epidemic change, then
the intercept in Equation (3.2.1) will become αi + θi, where
θi �= 0, only when t ∈ (T1,T2]. In either case, the cumulative
abnormal return as in Equation (3.2.2) is similar to the
cumulative sum (CUSUM) test for monitoring structural
change in parameter(s) of the regressions such as Equation
(3.2.1) in essence. That is to say, the CUSUM tests or similar
recursive statistics for monitoring the time-dependent drift
or the intercept αi are equivalently applicable to the event
studies, especially when the initial date for the event window
is unknown in advance.

For instance, according to MacKinlay (1997), the abnormal
return is formulated as

ε̂it = rit −E[rit |FT1], (3.2.3)

where FT1 represents the conditioning information for the
normal return model up to time T1, and t = T1 + 1, · · · ,T2.
If the market model is assumed, the asymptotic arguments for
the distribution of these abnormal returns are based on the
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expansion of the estimation period (T0,T1]. In other words,
the statistical properties of the estimated α̂i, β̂i and abnormal
returns depend on the sufficient length of estimation period
using the method such as ordinary least squares. For instance,
let L1 = T1 −T0,

β̂ =
∑T1

t=To+1 (rit − μ̂i)(rmt − μ̂m)∑T1
t=T0+1 (rmt − μ̂m)2

, (3.2.4)

α̂i = μ̂i − β̂iμ̂m, (3.2.5)

σ̂εi = 1
L1 −2

T1∑
t=T0+1

(rit − α̂i − β̂irmt)2, (3.2.6)

where

μ̂i = 1
L1

T1∑
t=T0+1

rit , (3.2.7)

μ̂m = 1
L1

T1∑
t=T0+1

rmt . (3.2.8)

The abnormal return will be denoted as ε̂it = rit − α̂i − β̂irmt ,
t = T1 +1, · · · ,T2.

Hence, the asymptotic arguments then are given under
the assumptions that the length of estimation period L1 will
expand and the normal joint distribution for all abnormal
returns is given. In other words, the statistics in using the
cumulative abnormal returns resemble the CUSUM-based
sequential detection tests for structural changes, except that
the sequential detection tests do not assume the change point
is known (or assumed) in advance and no normality assum-
ption for {εit }t=1,2,··· , is used. More specifically, if based on
asymptotic arguments, both methods apply sequential setting as
in Equation (3.2.10) where the cumulative sums for abnormal
returns are expanding through the event window while the
length of estimation period (denoted as L1 ) is sufficiently large.
Notice that under the normality assumption, the abnormal
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return in the event window where t = T1 +1, · · · ,T2, will have
the mean zero and the variance as

σ 2
εi t = σ 2

εi
+ 1

L1

[
1+ (rmt − μ̂m)2

σ̂ 2
m

]
. (3.2.9)

Therefore, as the length of estimation period L1 expands, the
cumulative abnormal return for asset i denoted as

ε̃iτ =
τ∑

t=T1+1

ε̂it , (3.2.10)

will also be distributed normally with mean zero and variance
as (τ −T1)σ 2

εi
, τ ≥ T1 +1.

The difficulty of this framework is that the normality assum-
ption is usually violated in the stock returns, especially for the
daily observations or data of higher frequencies. In addition,
the analysis is based on the constancy of coefficients αi and
βi over the estimation periods. Unfortunately, it is also well
known that the coefficients in the market model are mostly
time-varying in different time periods. Additional difficulty lies
in the interpretation of the statistical results in using Equation
(3.2.10) even though normality assumption is confirmed. The
test based on Equation (3.2.10) can not tell if the mean changes
are unanimous for the entire event window or, there are suffici-
ently many (but not all) abnormal returns are of mean changes
within the event window. Namely, they will show the changes
indeed. But, they can not show the intensity of the mean
changes. That is, under normality and if there are sufficiently
many ε̂it (and hence, εit) that have nonzero means, Equation
(3.2.10) will have the statistically significant result. However,
if Equation (3.2.10) is significant statistically, various scenarios
or frequencies (including the cases when mean changes concen-
trated either in early section or later section of event window (or
even simply as a spike) may happen for E[εit] �= 0 over selected
event window (T1,T2]. Therefore, the CARs or, especially the
following CUSUM monitoring tests, are only to be considered
if there is a structural change alone. No attention is given to
the intensity or duration of the impacts following from events.
Although the conventional CARs tests are based on normality,
and CUSUM monitoring tests are based on Brownian bridge
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respectively, they are so closely related with the hypotheses
of interest since either one applies the residuals of presumed
regression models.

Technically, the CUSUM-based sequential detection tests
assume the functional central limit theorem where the partial
sums of de-meaned abnormal returns (or de-meaned error
terms in regressions) will converge in distribution to the
Brownian bridge after normalization when the observations in
pre-change-point period (or so-called training sample) expands.
Recent theoretical works with robust estimation can be found
in Chochola et al. (2013) where the emphasis is on the change
point of the “beta’s.” Their analysis is basically sequential in
detecting the change point of the “beta’s” when additional
observations are available. In other words, the analysis is to
identify whether there is “going to be” a change point or not
as sample size increases sequentially.

Alternatively, there are also retrospective statistical tests for
the changes of interest. That is, the tests for the signifi-
cance of events are to check if there is a change in mean
for abnormal returns within the sampled time periods of
the observations already collected. However, the conventional
CARs tests (based on Equations (3.2.4)–(3.2.10)) are more
similar to the monitoring tests for structural change since they
both are based on (forward) forecast errors. In fact, the identi-
fication of change point(s) (single or multiple) is only to show
the instability of the system of interest in either reterospective
or sequential approach. More prominantly, whether applying
on-line detection tests to identify a change point sequentially
as number of observations increases gradually, or to check
with parameter changes retrospectively, the essential issue is the
setting of the hypotheses of interest. A more important issue
to ask is that how long these changes may last, especially for
financial data.

Unfortunately, the conventional approach in cumulative
abnormal returns assumes the length of event window in
advance, while the monitoring tests are only to identify the
change that may happen if sequentially additional observations
are available. None of them considers the duration of changes
or impacts. Not surprisingly, if the length of event window
(that is, T2 − T1) is so short that the impacts from events may
disappear promptly, the identification of the change point is
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relatively less important because that change point (especially
under the epidemic change) is possibly a resolution on the
noisy new information introduced (which may not be related
to the events of interest at all). Noticeably, if the actual (or
true) event window is so short that these impacts disappear
rapidly, it is hard to verify that the parameter change is actually
caused by the event(s) of interest or noisy tradings, or more
extremely, due to an outlier or a brief temporal drift even
though the length of estimation period L1 increases asympto-
tically. For compatibility with the CARs or CUSUM tests, the
discussions for tests on parameter changes will start with the
on-line detection or sequential approach first. Since there are
so many discussions exploring this field in the econometrics
literature, only a few related examples for this kind of structural
change tests are discussed here. Nevertheless, the similarity of
these tests and conventional CARs test is easy to discover.

For instance, the on-line monitoring of “beta” change
of capital asset pricing model (CAPM) in Chochola et al.
(2013) extends the methods to include robust M-estimates
and residuals. However, their work is to monitor the “beta”
change in the model. The framework is to assume that the daily
log-returns follow the following framework such that

rit = αi +βirMt + εit , (3.2.11)

where rit is the daily log-return for the asset i, i = 1,2, · · · ,n and
rMt is the log-return of the market portfolio at time t, εit is the
error term for asset i (or so-called idiosyncratic risk) at time t,
i = 1,2, · · · ,n, n is the total number of assets included. Suppose
there is a training sample of size m. Intuitively, this is similar
to the estimation period (with length denoted as L1 earlier) for
the tests based on CARs where the estimates for the parameters
in normal (expected) returns are obtained. As the setting in
CARs, the monitoring test assumes that the coefficients such as
intercepts and slope coefficients in Equation (3.2.11) are stable
within this period such that

αi1 = ·· · = αim,
βi1 = ·· · = βim, (3.2.12)

for asset i across the time period up to time m, where m is
sufficiently large . It is easy to see that these assumptions of
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stability of parameters resemble the conditions in corporate
event studies where the error terms in Equation (3.2.11) are
subject to the constant zero means over the entire estimation
period. The null hypothesis is then the parameter “beta” will
not change such that the beta’s will not change afterward where

Ho : βi1 = ·· · = βim = βim+1 = ·· · , (3.2.13)

where the alternative hypothesis is denotes as

Ha : βi1 = ·· · = βim+k∗ �= βim+k∗+1 = ·· · . (3.2.14)

More specifically, in Chochola et al. (2013), the stock returns
are denoted in a d-dimensional vector of daily log-returns. The
setting would imply that these d stock returns are subject to the
same (unknown) change point over time if there is a structural
change over subsequent time periods. However, according to
the setting in Equation (3.2.14), it can be seen that the alter-
native is to assume a permanent change for the parameter
after the (unknown) change point. Although the tests allow for
robust estimates of beta’s, and the M-residuals will be applied,
the setting only applies to the situations when the events such
as beta’s changes for all selected firms may occur simultane-
ously along the time frame accordingly. In empirical finance,
unless the event is noticeable and jointly shared by a number of
firms simultaneously, it is hard to obtain such kind of samples
in various cases of corporate finance. For instance, for some
particular events such as mergers and acquisitions, the samples
with simultaneous nature are difficult to obtain because these
restructurings may occur with different timing across firms.
What is interesting, however, is that this methodology allows
to perform the test for some structural changes in “beta’s” (or
in “alpha’s”) when certain similar events may happen to a group
of firms that have significant cross-sectional dependence.

Nevertheless, the assumptions in Equations (3.2.12) and
(3.2.13) seem somewhat far-fetched for financial time series
with the well-known yet notorious nature of time-changing
parameters. The occurence of these parameter changes may
also increase as the frequency of observed financial time series
becomes higher. One particular issue is that the asymptotic
arguments for these monitoring tests and those in CARs
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test all demand sufficiently long estimation period for the
training samples of size m ,where m → ∞. However, if such an
argument is applied, the setting actually assumes that Equation
(3.2.12) holds for a sufficiently long period of constancy or
stability of parameters. For the conventional CARs tests, this
equation is considered to hold within the estimation period.
For the monitoring tests, this condition is considered to hold
prior to the change point identified later on.

Unfortunately, such an assumption may be considered too
“luxurious” empirically in applying the CARs tests or CUSUM-
based monitoring tests for parameter changes on financial time
series. In fact, one can’t even be so sure that the parameters in
the so-called in-sample period or training period are actually
stable over time for financial time series or data. In other
words, the financial time series may have sufficiently many
change points even before the event(s) of interest occurs. Even
if the parameters for the model of interest are unchanged,
the time period for such stability may only be for a very
short while in financial time series. Namely, the asymptotic
arguments for the monitoring tests may not hold since there
is no assurance that such stability will last long enough for the
asymptotic properties (or arguments). One possible reason for
such a setting of in-sample stability is that the pre-change-point
stability of parameters precludes the applications of recursive
filtering that focuses on tracking instead of the asymptotic
statistical properties such as consistency, weak convergence, or
others. For the empirical applications in financial time series, a
more essential question to ask perhaps is on how to detect the
difference between time-varying nature and dramatic changes
in parameters for financial time series and how persistent
the difference may last. Unfortunately, these CUSUM-based
monitoring tests (or so-called generalized version of CARs test)
can not be directly applied to these issues of interest in event
studies of corporate finance.

Instead of comparing the estimated “beta’s” for the training
sample and the after-training-sample period, Chochola et al.
(2013) propose the use of functionals of robust M-residuals,
where φ(ε̂t) = (φ(ε̂1t), . . . ,φ(ε̂nt))′, ε̂it = rit − α̂im − β̂imrMt , ε̂t

stands for a n-by-1 vector of
{
ε̂it
}

i=1,2,··· ,n and α̂im, β̂im are
minimizers of the objective function ϑ(.) where its derivative
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ϑ ′(.) = φ(.) as its score function

m∑
t=1

ϑ(rit −αi −βirMt ), (3.2.15)

for all i = 1,2,...,n.
The test statistic based on the first m+k observations is defined
as

Q̂ (k,m) =
⎛⎝ 1√

m

m+k∑
t=m+1

r̃Mtφ(ε̂t)

⎞⎠′

�̂−1
m

⎛⎝ 1√
m

m+k∑
t=m+1

r̃Mtφ(ε̂t)

⎞⎠
(3.2.16)

where the matrix �̂m is an estimator (based on the first m
observations) for the asymptotic variance matrix

� = lim
m→∞var

{
1√
m

m∑
t=1

(rMt −E(rMt)φ(ε̂t)

}
. (3.2.17)

and r̃Mt = rMt −( 1
m
∑m

t=1 rMt ). Then, the test statistic will reject
the null hypothesis as

Q̂ (k,m)
qγ (k/m)

≥ c, (3.2.18)

for the first time with an appropriately chosen c = cγ (
...
α ), and

qγ (t), t ∈ (0,∞) is a boundary function. The stopping time is
given as

τm = τm(γ ) = inf

{
1 ≤ k ≤ [mT ] :

Q̂ (k,m)
qγ (k/m)

≥ c

}
, (3.2.19)

where qγ (t),= (1 + t)2
(

t
t+1

)2γ
, t ∈ (0,∞), γ is a tuning

parameter lies in [0, 1
2) and the critical value c is chosen such

that under the null hypothesis with
...
α ∈ (0,1)

lim
m→∞Pr(τm <∞) = ...

α , (3.2.20)
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and under the alternative hypothesis,

lim
m→∞Pr(τm <∞) = 1. (3.2.21)

In words, Equation (3.2.20) assumes that the false alarm rate is
equal to

...
α asymptotically, and the asymptotic power of the test

is equal to one. Again, the test statistics are still based on the
cumulative sums of residuals from robust estimation to perform
test of a single change point. In fact, if examing CARs tests
and the monitoring tests closely, they both assume that the
estimation period m or (To,T1] grows asymptotically large and,
the event window starts from m +1 (or T1 +1).

With the rigorous analytical framework given, one typical
question to ask is what this identified change (by using on-
line detection) may tell us about the impacts of corporate
finance event(s). Given that the monitoring test of Chochola
et al. (2013) identifies the change point of “beta’s,” this
monitoring test (although based on the robust version of
abnormal returns) may not be due to firm-specific event(s)
in corporate finance —unless these events are systematic and
prevail in the entire capital market. An important issue in
corporate finance, however, is what may cause the “beta’s” to
change over time and how fast or often these changes happen.
If indeed, the change happens when the first passage time of
test statistic is shown significantly (in a short while or else),
what next? Or, more specifically, while the monitoring test for
changes in “beta’s” provides some generalization of conven-
tional CARs tests, will these changes of “beta’s” tell us more
about corporate finance event(s)?

For the other monitoring or sequential detection tests on
parameter changes that include the change in constant term
of regression, there are lots of articles following this fashion.
For instance, following the notations and setting of Horváth et
al. (2004, 2007), the setting for monitoring test for parameter
changes in linear regression is shown as

rit = x′
itβit + εit , (3.2.22)

where xit is a k × 1 vector of explanatory variables (including a
constant term), βit is a k × 1 vector of parameters, εit is a error
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term for the regression in Equation (3.2.22). Assuming there is
no change in the historical sample of size m,

βit = βio,1 ≤ t ≤ m, (3.2.23)

Then, under null hypothesis, there is no change in the
parameters,

βit = βio, t = m +1,m +2, . . . , . (3.2.24)

Under the alternative hypothesis, there exists a k� ≥ 1 such that{
βit = βio, m < t < m + k�,
βit = βi� �= βio, t ≤ m + k�+1.

(3.2.25)

Horváth et al. (2004) uses the stopping time as

τ (m) =
{

inf{k ≥ 1 :  (m,k) ≥ g(m,k)
∞,  (m,k)< g(m,k)∀k = 1,2, · · · ,

(3.2.26)

where the detector  (m,k), is defined as

 (m,k) = 1
σ̂m

|
∑

m<t≤m+k

ε̂it |, (3.2.27)

σ̂ 2
m = (m − p)−1∑

1≤t≤m ε̂
2
it , ε̂it = rit − x′

it β̂im, β̂im = (∑1≤t≤m

xitx′
it
)−1 ∑

1≤t≤m xit rit , and the boundary function g(m,k) are
chosen so that under the null hypothesis

lim
m→∞Pr{τ (m)<∞} = α, (3.2.28)

0 < α < 1 is a prescribed number similar to the significance
level, and under the alternative

lim
m→∞Pr{τ (m)<∞} = 1. (3.2.29)

The boundary function is shown as

g(m,k) = cm
1
2

(
1+ k

m

)(
k

m + k

)γ
, 0 ≤ γ <

1
2

. (3.2.30)
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Notice that the detector or on-line statistic chosen in equation
(3.2.27) is similar to the CARs in event studies, except that the
cumulative sums are performed without a priori information on
the event dates. As shown by Horváth et al. (2004), under the
null hypothesis,

lim
m→∞P

{
 (m,k) ≤ g(m,k), ∀1 ≤ k <∞ }

=P

{
sup

0≤t≤1
|B(t)|/tγ ≤ c

}
, (3.2.31)

where
{
B(t), 0 ≤ t <∞ }

is a Wiener process (or so-called
Brownian motion). In other words, the normalized cumulative
sums of residuals from the presumed asset pricing model of
normal returns will converge weakly to the supremum of
Brownian motion.2

This, in turn, shows that the conventional CARs tests on
event studies are the special cases of the on-line monitoring
test for parameter change when the possible dates of parameter
change for the events of interest are within the assumed event
window. Or equivalently, if the unknown change point occurs
right inside the assumed event window, the CARs tests are
calculated similarly as the CUSUM-based monitoring tests.
However, intuitively speaking, the test in Equation (3.2.31)
denotes the possible parameter change when the cumulative
sums statistic in Equation (3.2.27) goes beyond the boundary
function in Equation (3.2.30).

In other words, it is considered there exists a parameter
change only when the statistics are beyond the boundary,
while allowing tentative fluctuations of parameters and accept
the null if otherwise. The question then is if the statistic
failed to reject the null, is it appropriate to accept that the
parameters are constant over time? What if the parameters are
indeed changing while the changes are insufficient to cross the
boundary function? Are we willing to accept that and leave our
portfolios un-rebalanced even if the parameters in financial time
series are mildly changing and do not go beyond the boundary?

While examing financial time series, it is not surprising to
see that the parameters can be moderately time-changing in the
time period even when no particular events or issues occurred.
Time-varying ARCH as shown in Dahlhaus and Rao (2007)



C U M U L AT I V E A B N O R M A L R E T U R N S 107

can be seen as an example that even the conditional volatility
could also be of time-varying coefficients as well. The reason
is simple. Financial time series are famous of time-varying
parameters since all models applied to them can only be consi-
dered as temporal approximations. However, the statistic in
Equation (3.2.27) and its asymptotic distribution in Equation
(3.2.31) is derived under the null when no structual change of
parameters is considered. Yet, even with test confirming there is
a structural change, the question remains as whether the change
point(s) verifies the essentiality of event(s) or not. The issue is
not just the change. How intensive and how long the change
could be is perhaps a more important issue in event studies.

For the retrospective tests for structural change, the survey
article of Aue and Horváth (2011) provides the essential
concepts. For instance, in applying the signal-plus-noise model
similar to Equation (3.1.1) in Section 3.1 for stock returns
such as

rit = μit + εit , (3.2.32)

where the μit represents the expected (normal) return or signal,
and εit represents the abnormal return or idiosyncratic risk for
stock return i. Notice that the signal μit can be extended to the
linear regression model such that μit = β ′

itXt where βit and Xt
are d-dimensional vector of coefficients and attributes, respe-
ctively, when applied for the systematic components of stock
returns. Now that given the earlier discussions on Section 3.1,
it is easy to see when the null hypothesis is given that the
corporate event is not essential so that for all asset i’s and over
time period of interest, E[εit] = 0 across time uniformly, this
will imply that

μi1 = μi2 = ·· · = μiT ≡ μi, (3.2.33)

where [0,T ] is the entire time period of interest. And the
alternative hypothesis will become for t∗ ∈ [0,T ]

μi1 = μi2 = ·· · �= μit∗ = μit∗+1 = ·· · . (3.2.34)

If the linear regression model is assumed, this is equivalent
to set the intercept for the regression as constant over time.
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Starting from the simplest case in Equation (3.2.16), the retro-
spective approach of structural change tests using CUSUMs will
apply the statistics such as

ZT (k) = 1

σ̂ε
√

T

⎛⎝[kT ]∑
t=1

(εit − εi)

⎞⎠ , (3.2.35)

where εi = 1
T
∑T

t=1 εit , k ∈ [0,1] , σ̂ 2
εi is a consistent estimator

for the long-run variance σ 2
εi of {εit }t=1,2,···. The statistic applied

is similar to the CARs except that the normalization is different
and the asymptotic distribution also differs from the normality
assumption in CARs test. In particular, the change point time is
unknown a priori. However, the objectives of these two appro-
aches are identical - they all want to see if there’s a structural
change within the event window or over the time period of
interest. Given that functional central limit theorem as T → ∞,
the weak convergence for cumulative sums in equation (3.2.7)
will show that

ZT (k)
d−→ B(k) (3.2.36)

where B(k) is a standard Brownian bridge, k ∈ [0,1] . The
CUSUM test statistic however, is emphasizing on finding the
change point by setting k = t

T , where 1 ≤ t ≤ T ,

ψT = max
1≤t≤T

ZT (
t
T

), (3.2.37)

and when T → ∞

ψT
d−→ sup

0≤k≤1
B(k). (3.2.38)

Yet, both monitoring test and the CUSUM test for structural
change in Equations (3.2.16), (3.2.27), and (3.2.37) all assume
that the change is permanent. That is, once the parameter
changes, it will stay that way from then on (at least) hypotheti-
cally. However, for the event studies in corporate finance, it may
show that these changes are only temporary even if one accepts
that the parameters are stable before the change point. The
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reason is that the impacts from the events in corporate finance
are usually considered idiosyncratic if the events are not syste-
matic or influential toward the entire capital market. If so, these
changes of corporate events should only be temporary. Given
so, both the tests using CARs and CUSUM tests fail to consider
the necessary setting to verify the impacts of corporate finance
events regardless of how robust the statistical procedures are
applied.

Notice that if under the market model in asset returns, the
conventional tests with cumulative abnormal returns actually
assume that the coefficients βi’s are unchanged over the entire
sample period in this case. In particular, as shown in Equations
(3.2.3)–(3.2.5) of conventional CARs tests, the abnormal
returns are actually forecast errors based on the coefficients
estimated in the pre-event estimation period. Namely, the
hypothesis of interest is actually asking to see if the intercepts
may have a drift or jump within the preselected event window,
while assuming that the “beta’s” remain constant whenever
the time period is. To be more precise, this is only to ask if
the intercepts may fluctuate within the event window while
assuming the coefficients βi hold constant over time. In fact,
this appears as a very limited case for structural change in
parameters. More explicitly, according to Equations (3.1.1) and
(3.1.2), the hypothesis testing under the temporary parameter
change in (T1,T2] as epidemic change can be expressed as

H0 :

{
rit = αi +βirmt + ξit ,

t ∈ (0,∞)
(3.2.39)

Ha :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rit = αi +βirmt + ξit ,

t ∈ (0,T1]∪ (T2,∞)
rit = (αi + θi)+βirmt + ξit ,

t ∈ (T1,T2]

(3.2.40)

where H0 and Ha represent the null and alternative hypotheses,
respectively. If only the constant-mean model is applied to
obtain the abnormal returns, Equations (3.2.39) and (3.2.40)
can be replaced with the setting as βi = 0 for all i′s. And if the
change of parameter is permanent, and there is only one change
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point of parameter αi over time, then the alternative hypothesis
will become

H̃a :

{
rit = (αi + θi)+βirmt + ξit .

t ∈ (T1,∞)
(3.2.41)

The same reasoning applies also to the cross-sectional average
of abnormal returns because the set of Equation (3.1.2) across
all selected assets can be re-written as

r̄t = ᾱ+ β̄rmt + ε̄t , (3.2.42)

and denote that the cumulative average abnormal returns
as ε̄a

τ = ∑τ
t=T1+1 ε̄t , where ε̄t = 1

n
∑n

i=1 ε
i
t , ᾱ = 1

n
∑n

i=1αi,
β̄ = 1

n
∑n

i=1βi. Again, the conventional tests with cumulative
average abnormal returns show that if the cross-sectional
average intercept ᾱ (based on the estimates obtained in
estimation period) will have a change point or not within
event window given that 1

n
∑
θi �= 0 in the event windows.

This framework can be generalized to accommodate the cross-
sectional dependence possibly due to event dates clustering
among the selected firms’ abnormal returns by using the
weighted average of asset returns. For instance, define the
weighted average of asset returns as

r�t =
n∑

i=1

wirit , (3.2.43)

where the scheme of the (say, randomly generated) weights
satisfies the convergence condition that lim

n→∞wn = 0, and∑n
i=1 wi = 1 it is straightforward to re-write the set of Equation

(3.1.2) across all assets into n

r�t = α�+β�rmt + ε�t , (3.2.44)

setting α� =∑n
i=1 wiαi, β� =∑n

i=1 wiβi, and ε�t =∑n
i=1 wiεit ,

the hypothesis setting in Equation (3.2.12) also applies.
Given the assumption that the cross-correlations among these
abnormal returns can be alleviated using weighted series, the
issue of event-date clustering can be resolved. In other words,
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assuming that the “beta’s” are constant in the event windows,
the same setting for using the cumulative abnormal returns is
still valid such that the hypothesis of interest is to see if α�has a
change point in the event windows, accordingly. In this setting,
the test of whether α� has a change point or not is equivalent
to the tests using cumulative abnormal returns if the assum-
ption of known event dates is relaxed. The difficulty, however,
is that although the weighting schemes alleviate the cross-
sectional dependence among {εit }i=1,2,...,nwhen estimating the
parameters αi’s and βi’s in normal (or expected) returns,
some cross-sectional information may also be lost due to the
weighting schemes.

Hence, from this perspective, the conventional tests based on
CARs are equivalent to special cases of structural change tests
for unconstrained parameters (such as αi’s) within the assumed
event window provided that the “beta’s” are assumed to hold
constant over the entire estimation period. In essence, across
all selected firms, and if the event windows (T1,T2] are known
where the change points may actually locate within them, the
cumulative abnormal returns in Equation (3.2.10) are similar to
the CUSUM statistics applied to the structural change tests in
linear regressions of market model for each firm’s asset returns-
assuming that the change of parameters is permanent. From
the initiative of hypothesis of interest, the purpose of using the
cumulative abnormal returns is equivalent to that of the tests
on change point in intercepts for the set of Equation (3.2.27)
among all selected firms.

The arguments can be extended to more complicated asset
pricing models for normal (or expected) returns other than
the market model. Some may argue that the “beta’s” are
assumed constant since the systematic component for normal
(or expected) returns would not change given that the firm-
specific corporate events such as mergers and acquisitions are
only unsystematic and diversifiable. However, many empirical
studies show that the “beta’s” (of market model) may still
vary over time even though there is no specific corporate
event identified in the sample periods. In particular, the setting
assumes that the date where the parameters change is known
a priori. While it is reasonable to argue that some firm-specific
information may leak out to the market and cause some rumors
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in the market, it is hardly feasible to know when the impacts
may occur to the market and returns in advance.

The above discussions for the nonstochastic change in the
means of abnormal returns (and with respect to the market
model, for example) show that there are two categories of
studies: (a) a permanent change in the abnormal return’s
mean and (b) a temporal change in the abnormal return’s
mean. In either case, two methods can be devised: (1) retro-
spective methods and (2) sequential methods. The retrospe-
ctive methods are in search of any change point within the
sampled observations, and their asymptotic arguments depend
on the growth rate of the sample size. This perspective of
empirical studies is to prove or disprove (say) certain hypotheses
of interest using the historical observations collected.The
sequential methods, however, are to identify if there is any
change point when additional sequential observations are
available. Although the recursive identification on the change
point(s) is useful for system control, the monitoring scheme
usually assumes that the sample size of observations prior to
the change point is sufficiently large to apply the asymptotic
arguments. Besides, the parameters of interest are assumed
stable within the sample period of observations prior to the
unknown change point.

Unfortunately, for financial time series in particular, these
conditions are difficult to hold. In empirical finance, one can
easily find out that the coefficients in the models specified for
normal returns (say, market model for instance) are not stable
over various time periods and with different frequencies of
data selected. More ironically, it is difficult to consider that
the coefficients of interest are stable or constant within the
in-sample period for financial time series (especially in high
frequencies) before one can identify a change point when
sequential out-of-sample observations are collected. Sequential
identification of changes is essential indeed for many modelings
on financial time series. However, with the dramatic time-
varying parameters in financial time series, it may be considered
luxurious if such a rarity for in-sample stability (of parameters)
may appear.

Comparing the conventional CARs tests and robust
CUSUM-based monitoing tests, it is straightforward to
verify the similarity between traditional approach in using
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(cumulative) abnormal returns and the tests on the change
point(s) over the event window(s). In particular, these methods
of structural change although mostly equivalent to the tests
using cumulative abnormal returns (when the event dates
are known in advance) are all subject to the hypotheses of
finite numbers of change points, especially under the market-
model setting for normal returns. Given that there is no a
priori knowledge of the evolution of parameters within the
event windows (even when the event dates or length of event
windows are allowed to vary across different firms), justifica-
tions on change points do not suffice to prove the significance
of the events of interest.

The question remains, however, even if confirmation on
the parameter changes is granted, it is difficult to tell that
these parameter changes are indeed caused by the corporate-
specific events or instead, these are market adjustments for
newly available noisy information (such as spreading rumors
or conjectures) that are possibly unrelated with the particular
events of interest in financial time series. Even in the tests for
epidemic change, the studies are actually finding if there are
two change points: one is for the intercept to jump to αi + θi,
and another one when it returns to original level αi. In other
words, the tests for epidemic change are in fact, studies for
multiple change points. As a result, extensions toward more
than two change points seem to cope better with empirical
findings since the parameters αi’s and βi’s for market model
are likely to fluctuate over time even when there is no specific
corporate event incurred.

Another difficulty with these tests and conventional CARs
tests is that the models applied to specify the normal returns are
presumed to be correctly specified. For instance, the functional
forms and the inclusion of relevant explanatory variables are
assumed. Hence, the tests applied to verify if there is a change
in the mean of abnormal returns may result as the same
tests for structural change in the presumed models. In other
words, the tests are meaningful only if the models for normal
returns are correctly specified. Then, in that case, the parameter
changes will be interpreted properly as the impacts from the
(announcements) of the events. However, all these models
(for asset pricing models or else) applied to fit the normal
returns should at best be considered as filters to screen out
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the so-called systematic components of asset returns. Conse-
quently, the discussions for change point(s) here are only to
demonstrate the similarity between the CUSUM-like metho-
dology and the conventional event-study tests of cumulative
abnormal returns and to provide critiques that these tests are
relatively limited in applicability. In addition, hypotheses for
epidemic change are also introduced here when the impacts
from events may disappear as time span expands across the
so-called event windows. What is more important, however, is
that the similarity of the CUSUM-based monitoring tests and
the conventional CARs tests does not necessarily imply that
the verifications of change in parameters (say, the intercepts
or means) are equivalent to verification for the significance of
events of interest.

The hypothesis of significant events (where E[εi
t] �= 0 within

the event window) is only a sufficient condition for the
parameter changes. Hence, these tests can only be considered as
diagnostic, not specification tests. The statistical significance of
parameter changes can not justify that the cause of structural
changes are actually from the events of interest. The reason
is that there are too many possible reasons or scenarios for
the structural changes in the models for normal (or expected)
returns. To the best extent, the so-called on-line detection
or monitoring tests are only to confirm that the parameters
in the financial time series are possibly subject to structural
change of unknown change points. If tests of change in coeffi-
cients are of interest, the tests for epidemic change are possibly
more suitable for the corporate event studies. Yet, even with
epidemic changes, the tests will only result as confirmation
for multiple change points for models of financial time series.
Nothing more. In fact, a better way to consider impacts from
corporate events is perhaps on the duration between change
points (say, under the epidemic change scenarios) if changes
of parameters are concerned. Namely, if changes of parameters
are the emphases of study, then how long the changes may last
across different change points is more important in assessing
the impacts. Based on the above discussions, a few results can
be stated:

Result 1: The CARs tests and CUSUM tests are similar
in (a) hypotheses of interest since both will result in testing
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the change of coefficient(s) of the regression models assumed
for the empirical asset pricing models, (b) if the change point
indeed lies within the assumed event windows. In particular, the
CARs tests are similar to the restricted form of CUSUM tests
that normality assumption is applied to the abnormal returns,
typically.

Result 2: Both tests are to identify if there is only one change
point in the period of interest. When there is a possibility of
multiple change points, these tests may not suffice to identify
the underlying models.

Result 3: Since financial time series are almost always prone
to time-varying changes in parameters or models, the results
from both tests may still require verifications that the parameter
change indeed, is the consequence of the event(s)

Result 4: Both tests are incapable to describe the duration
of the impacts from events or structural changes.

Similarly, further detailed parametric specification that intro-
duces time-varying intercepts and gradually-changing “beta’s”
for market model, Cyree and Degennaro (2002) generalize
the event-study techniques to allow for parameter shifts (such
as both αi’s and βi’s), variance shifts, and firm-specific event
periods with different event dates and lengths. One of their
major arguments is that any robust event study in corporate
finance ought to consider the possible parameter changes
in model specification before applications of CARs analyses.
In particular, they allow the systematic risk such as βi’s to
gradually change over the event periods and with regime-
switching variance of the true abnormal returns. With various
settings given to the time-varying-coefficient market model
(which allows for multi-change points), part of their intent is to
verify the power of test with the cumulative average abnormal
returns (CAARs). In fact, their empirical findings show that
the CAARs for Day(–1) (that is, the impact on one day before
the event date) are only significant at 10 percent significance
level when consider all these possible scenarios of parameters
in specifying normal (expected) returns. More specifically, their
setting can be specified as follows. For a firm-specific event date
T1,i, i = 1,2, · · · ,n, and gradually-changing βit , the null and
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alternative hypotheses (denoted as H0 and Ha, respectively) are

H0 :

{
rit = αit +βit rmt + ξit ,

t ∈ (0,∞),
(3.2.45)

Ha :

{
rit = (αit + δi)+βit rmt + ξit ,

t ∈ (T1,i,∞).
(3.2.46)

In particular, the firm-specific random variable ξit in abnormal
returns may be subject to different schemes of variance such
that

Var(ξit) =
{
σ 2
ξ (i), t ∈ [0,T1,i]
σ ξ (i), t ∈ (T1,i,∞).

(3.2.47)

Namely, the setting simply assumes that (if the change is
permanent) the time-varying intercept αit should contain a
jump δi (which can also be stochastic) around the unknown
firm-specific event date T1,i , i = 1,2, · · · ,n, where the variance
of abnormal returns are of different schemes for estimation
period and event window, respectively.

However, with all these complexities, it would be more strai-
ghtforward to specify the setting as the switching model with
jump(s) across the firm-specific event dates. In other words,
instead of applying CAAR’s on the setting, model specification
with Equations (3.2.45), (3.2.46) and (3.2.47) when using
parametric methods to estimate and test the model will seem
more powerful. Nevertheless, the setting requires estimations
on the firm-specific event date T1,i , i = 1,2, · · · ,n given that no
a priori knowledge is applied. The question remains however,
with such complexities allow, whether the tests using CAAR’s
will provide additional evidence on event studies or not. In
particular, in Cyree and Degennaro (2002), the gradually
changing systematic risks βit are specified as

⎧⎪⎨⎪⎩
βit = [βi,1 +"Eβi,1D1,i,t +"Pβi,1D2,i,t

]
rmt + ξit ,

D1,i,t =
{

1, t ∈ (T1,i,T2,i)
0, t /∈ (T1,i,T2,i),

D2,i,t =
{

1, t ∈ (T2,i,∞)
0, t /∈ (T2,i,∞),

(3.2.48)
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where "Eβi,1 and "Pβi,1represent the change of systematic risk
during the event period, and post-event period, respectively.
In addition, the firm-specific random variable ξit also follows
equation (3.2.47) of different schemes of variance. To be more
specific, they even consider some ad hoc specification for the
gradual change in beta’s for these periods such that

"Eβi,1 = βi,2(T1,i −t)(t −T2,i)+βi,3(t −T1,i)+νit , (3.2.49)

"Pβi,1 = βi,3(T2,i −T1,i)+ηit , (3.2.50)

where νit , ηit are white noises. With all these parametrization
on the time-varying coefficients and event-induced volatility in
abnormal returns, it seems that the applications of CARs (or,
CAARs) are not entirely essential now.

Nevertheless, such a conclusion is only primitive since all
these time-varying coefficients are subject to presumed schemes
of variation over time. The schemes of time-varying “beta’s
are not necessarily smooth or gradual, especially across the
entire window of high-frequency observations. It is also suspi-
cious that these time-varying smoothing actually obscure the
impacts from the firm-specific information when Equations
(3.2.49) and (3.2.50) are introduced. For instance, by substi-
tuting these two equations into Equation (3.2.48), the authors
show that the abnormal return (say, denoted as ε�i,t ) will become
ξit + νit rmt when in the event period, and ξit + ηit rmt in the
post-event period. Assuming that νit and rmt , ηit and rmt , are all
mutually statistically independent, then it is easy to find that the
volatility in abnormal return will become Var(ξit) + σ 2

νiσ
2
mt or

Var(ξit)+σ 2
ηiσ

2
mt , respectively. Given that σ 2

mt is the volatility of
market index return that represents a proxy for market volatility,
the volatility of abnormal return may then include an argument
of market volatility, or so-called systematic component of asset
returns.

If this is the case, the separation between normal and
abnormal returns to perform event studies in corporate finance
seems weakened by these parametrization because the market
volatility will influence the variance of abnormal returns where
the latter ones are supposedly diversifiable. In other words, the
reduction of power in the CAARs tests can possibly be due to
overparametrization for smoothing in the models. What is more
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interesting however, is that their finding shows that (1) time-
varying-coefficient models are influential in the specifications
of normal (or expected) returns, (2) estimation of these time-
varying coefficients should be adaptive in the sense that less
subjective parametrization are applied, (3) some more robust
statistical tests such as extended functionals of CARs (instead of
CARs themselves) are needed for event studies. In other words,
testing parameter changes in financial time series does not
suffice to provide robust analysis for event studies in corporate
finance unless they are under some exceptional occasions.
Generalization for statistical tests beyond the CAR’s approach
for event studies in corporate finance is crucially needed.
Parameter changes may possibly be considered as common
knowledge in financial time series and hence tests (based on
the abnormal returns) that have already taken these parameter
changes into pre-filtering for the normal (or expected) returns
would become more applicable for corporate finance issues.



Part II

Event Study Methodology II



Chapter 4

Recursive Estimation for Normal

(or Expected) Returns

Introduction

Given that the updating information continue flowing into
the capital market, modification on the model specifications
of systematic components of normal returns are necessary for
further discussions on firm-specific abnormal returns. In this
chapter, since all models that approximate normal returns are
prone to time-varying parameters, some recursive estimation
methods are shown to cope with this nature. Given that the
systematic components of asset returns can be approximated
by proposed (time-varying coefficient) theoretical models of
nondiversifiable variables or proxies, all the model specifications
are similar to the adaptive filters for the data stream.

Although there are various methods for time-varying
parameters in regressions, the contents of this chapter focus
on the stochastic algorithm, recursive least squares, and system
identification methods applied in tracking discussed in the
literature of adaptive filtering. The intent is to introduce the
filtering methods to approximate the systematic components of
asset returns without overparametrization and to avoid ad-hoc
specifications in empirical asset pricing models of normal (or
expected) returns.

One advantage in the filtering with time-varying parameters
is that it may help to correct some pricing noises that are subject
to concurrent and diversifiable information in the market. In
addition, the tracking with adaptive filtering provides more
up-to-date adjustments for the normal (or expected) returns.
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Thus, event studies for corporate finance based on (the functi-
onals of) abnormal returns will be less contaminated with
possible time-varying drifts, temporal impulses, and irrelevant
noisy information. Another advantage is that no assumption of
change point(s) (or event window) is provided to the equation
of normal (or expected) returns. Hence, there is no need
to verify if the change points actually lie within the assumed
window or not.

Given that the purpose for the adaptive filters is to perform
tracking on the underlying systematic components of stock
returns, the emphasis is not on the (asymptotic) statistical
properties such as stochastic convergence, consistency, or others
for the specifications or parameters of interest. Instead, the
purpose is to obtain filtering for the systematic components
so that the tracking errors are as small as possible and the
system identification is stable. These emphases have been
discussed mainly as the recursive identification in engineering
or automatic control. Given that most corporate finance event-
study methodologies focus on the statistics of abnormal returns,
the identification of the systematic components of stock returns
is essential. In particular, since these methods can be applied
in tracking the systems of time-varying parameters, they are
useful in providing an alternative method for the estimation of
normal (or expected) returns when (unknown) change time(s)
for parameters prevail in most financial time series.

4.1 Why recursive?

Notice that the systematic components of stock returns
are prone to change over time when new information is
available, particularly upon receiving the market-wise infor-
mation. These changes that are caused by new information
may be well-approximated by the time-varying parameters in
the asset-pricing models for normal (or expected) returns.
To accomondate the changing expectations from the market,
updating the information and modifying the parameters (or
models) continuously over accessible tools or data is necessary.

Although updating normal (or expected) returns can be
obtained in using dynamic forecasts (say, in time series regres-
sions) when the parameters are constant, these forecasts are
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not robust enough to adjust for abrupt changes in expecta-
tions or in coefficients. Hence, in adjusting the normal (or
expected) returns for the changing environment in capital
market, recursive estimation for tracking these essential natures
of systematic components in stock returns is useful. Even if the
coefficients of underlying models are constant, such recursive
estimation will provide on-line updatings for the models and
forecasts where conventional statistical properties such as consi-
stency can be obtained.

Developed in the literature of system identification of
control theory for stochastic systems, these recursive estimation
methods are feasible for applications in the corporate finance as
well. Similar to the system identification for signal processing
when immediate tracking (say, for moving targets or objects)
must be done, financial market provides a rapidly changing
environment where speedy adjustments either for expectations
or for portfolio rebalancing are also in need. Hence, to provide
certain adjustment schemes for model specifications in coping
with new information, applications with recursive estimation
when receiving the updated signals become some vehicles for
adaptation in expectations.

As the information flow in the capital market, the tracking for
systematic components such as normal (or expected) returns
in financial securities is similar to the task in tracking a target
or object for remote sensing or control. Since the investors in
capital market are keen enough to update their information and
modify their expectations, it is reasonable to assume that such
analytical schemes can be applicable to the empirical modeling
for financial data. Specifically, if the investors will endeavor
to search for any tractable regularity in using all available
information when individual optimality is concerned, it is reaso-
nable to consider that the schemes of system identification for
adaptive control can be applicable for the estimation of normal
(or expected) returns.

Furthermore, the time-varying coefficient models for normal
(or expected) returns help to reduce the possible model
specification errors (such as drifts or jumps in parameters)
over different time horizons. More specifically, these recursive
algorithms do not impose subjective conditions such as
estimation periods, event windows, or after-event periods.
Temporal dependence or heteroskedasticity such as φ-mixing
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conditions of stochastic processes are also allowed in the data
stream.

In the following, the recursive estimation such as Kalman
filter, least mean squares and recursive least squares algorithms
are discussed. In particular, the asymptotic properties of these
algorithms are also covered in the general setting of identified
empirical asset pricing models with nondiversifiable variables.
There are vast amounts of research works for these properties.
Thecurrent contents only cover the contribution such as in Guo
(1990, 1994), Chen and Guo (1991), Guo et al. (1991) as
an introduction to this field of studies for empirical finance.
In particular, these recursive algorithms are available in various
statistical software programs nowadays.

Although only asymptotic stability conditions for these
tracking algorithms are presented here, their calculations can be
peformed conveniently in many software packages such as Stata,
R, or others. Given the technicalities, the extensions such as
stochastic approximation with adaptive step-size or with purtur-
bation method (Tang et al. (1999)), self-tuning recursive least
squares, and many others are left for references.

4.2 The algorithms

Assumption 4.A.1: Let the identified (linear) model for
normal (or expected) returns of security i at time t be denoted
as

rit = ψ ′
tθit + εit , (4.2.1)

where i = 1,2, · · · , θit is a k-by-1 vector of time-varying coeffi-
cients (including the constant term) in the identified model,
k ≥ 1, ψ ′

t is denoted as the transpose of ψt , ψt represents a
k-by-1 vector of nondiversifiable explanatory variables in the
model of systematic components,1 εit is the error term and
consequently, the abnormal return of interest for security i.

As stated in Chapter 2, these selected explanatory variables
are denoted as nondiversifiable to identify the normal returns.
The parameters for these explanatory variables may also be
time-varying, including the drifts. Hence, to obtain robust
abnormal returns for corporate finance events, some trackings
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or recursive estimations for the normal returns must be
applied first. Given the time-varying parameters in the model,
two issues are essential. One is the stability of the adaptive
algorithms and the other is the asymptotic convergence of
tracking errors when various recursive algorithms are applied.
A typical property for the models of time-varying parameters
is that since the parameter variation does not vanish, usual
recursive algorithms such as constant-step stochastic approxi-
mation for constant-coefficient model can not apply..

For instance, it is well-known that Kalman filter is usally
applied in this case if the dynamics for the time-varying
parameters is assumed. Given the linear regression model in
equation (1) and with the following Markov model for the
time-varying parameters θt such that for t ≥ 0,

θi,t+1 = Fθit +ωit+1, E|θio|2 <∞ (4.2.2)

where F is a k-by-k matrix for transition of θt and the eigenvalues
of F lie in or on the unit circle, these noises {εit } and
{ωit }are assumed as mutually independent and serially indepent
with zero mean and covariances E[ωit+1ω

′
i+1] = Qω ≥ 0, as

a positive-semidefinite matrix and E[ε2
i,t+1] = Rεi > 0, as a

positive-definite matrix.
The Kalman filter accordingly is stated as

θ̂it+1 = F θ̂it + FPtψt

R +ψ ′
tPtψt

(rit −ψ ′
t θ̂it)

Pt+1 = FPtF ′ − FPtψtψ
′
tPtF ′

R +ψ ′
tPtψt

+Q ,
(4.2.3)

where Po ≥ 0 as a positive semi-definite matrix and Q > 0,
R > 0 are considered as a priori estimates for Qω and Rεi ,
respectively. In particular, when {ωit ,εit} are Gaussian noises,
the above Kalman filter is the optimal estimator for θt in the
sense that for the sigma fileds {Ft−1}t=1,2,··· generated by the
past information of{rit ,ψt ,εit },

θ̂it =E[θit |Ft−1], Pt = E[θ̃it θ̃
′
it |Ft−1], (4.2.4)
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provided that Q = Qω, R = Rεi, θ̂io = E[θio], and Po = E[θ̃ioθ̃
′
io],

where θ̃it = θit − θ̂it represents the tracking errors for time-
varying parameters θit . In other words, if the underlying
variance or covariance of noises are known, the Kalman filter
will obtain the optimal tracking for the system of time-
varying parameters. Unfortunately, these matrices are usually
not known in advance.

For extending classicial results, Guo et al. (1991) generalize
the asymptotic arguments for tracking error bound of Kalman
filter where the time-varying parameters follow a Markov
model and without the normality assumption. Yet, the results,
although robust for nonnormal distributions, still require
explicit specification for dynamics of time-varying parameters.
Certainly there are many recursive algorithms for tracking the
time-varying parameters for system identification. However,
most of them require the specification of time series models
on these time-varying parameters. For instance, Brockett et
al.(1999) assumes the Markov-model dynamics for the time-
varying beta’s of market model. Their applications also include
specifications of GARCH model for the error terms in the
equations of stock returns.

In the following, the recursive algorithms are categorized
into two sections: (1) with dynamic specification of the time-
varying parameters and (2) without dynamic specification of
the time-varying parameters. As stated in Equation (4.2.2), the
extended Kalman filter algorithm can be applied here. Many
research studies have done for various extentions. Following
Guo (1994), the recursive algorithms, such as Kalman filter,
least mean squares, and recursive least squares are discussed
for tracking on time-varying parameters without the normality
assumption. For simplicity, let the matrix F = I as a k-by-k
identity matrix and let θ̃it = θit − θ̂it be the tracking error at time
t, where the dynamics of the time-varying parameters assumed
to follow a random-walk model such that

θit = θit−1 +"it , (4.2.5)

where "it represents the variation of θit at time t. By assuming
different models or properties of "it , various extenstions obtain
the bounds for tracking errors of recursive algorithms. For any
matrix X (including vector) heretofore, the norm of matrix X
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(denoted as ||X ||) is defined as
{
λmax

(
XX ′)}1/2, where λmax

represents the maximum eigenvalue of the matrix of interest.
The other recursive algorithms such as least mean squares and
recursive least squares are shown as

Least mean squares

θ̂it+1 = θ̂it +Lt(rit −ψ ′
t θ̂it), Lt = μ

ψt

1+||ψt ||2
(4.2.6)

where μ ∈ (0,1] is called the step size.
Recursive least squares

θ̂it+1 = θ̂it +Lt(rit −ψ ′
t θ̂it)

Lt = Ptψt

α+ψ ′
tPtψt

Pt+1 = 1
α

[
Pt − Ptψtψ

′
tPt

α+ψ ′
tPtψt

] (4.2.7)

where Po > 0, and α ∈ (0,1)is a forgetting factor.
In general, the recursive equations in (3), (6) and (7) can be

expressed as

θ̃i,t+1 = (I −Ltψ
′
t)θ̃it −Ltεit +"i,t+1. (4.2.8)

This, in turn, can be expressed as in the following stochastic
difference equation

xt+1 = (I −At)xt + ξt+1, (4.2.9)

where {At }t=0,1,··· is a sequence of k-by-k random matrices,
xt is the k-by-1 vector of tracking errors, and {ξt+1}t=0,1,···
is the disturbance. Given so, the emphasis of these recursive
algorithms is on the asymptotic stability of the stochastic diffe-
rence equation (9) of tracking errors. Apparently, due to the
time-varying parameters of the system, the adjustment matrix
Lt (and hence, At) needs to update with new information.
And hence, the stability of recursive algorithms requires analysis
of the sequence of random matrices {At }t≥0 . According to
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Guo (1994), the norm and stability of random matrix (or
vector) sequence is defined accordingly. Let ||At ||Lpbe defined
as the Lp−norm of matrix At , where ||At ||Lp≡ [E||At ||p]1/p .
The following definitions are to provide stability condition for
the sequence of random matrices and henceforth, applied to
the definition of stability for equation (9) for the recursive
algorithms.

Definition 4.D.1: A random matrix (or vector) sequence
{At }t≥0 is called Lp−stable (p > 0) if sup

t≥0
E||At ||p < ∞, where

||At || represents the matrix norm of At .

Definition 4.D.2: A sequence of random matrices {At }t≥0 (in
equation (9)) is denoted as stably exciting of order p, p ≥ 1,
with parameter λ ∈ [0,1), if it belongs to the following set that

Sp(λ) =
⎧⎨⎩{At } : ‖

t∏
j=i+1

(I −Aj )‖Lp ≤ Mλt−i ,∀t ≥ i,∀i ≥ 0,M > 0

⎫⎬⎭ . (4.2.10)

Definition 4.D.3: A scalar sequence {at }t≥0is denoted as So(λ)-
class if it belongs to the following set that

So(λ) =
⎧⎨⎩{at }t≥0 ,at ∈ [0,1], E

t∏
j=i+1

(1−aj ) ≤ Mλt−i ,∀t ≥ i,∀i ≥ 0, M > 0

⎫⎬⎭ .

(4.2.11)

It follows from Guo (1994) that these definitions help
to establish the stability of recursive algorithms applied to
equation (1). The following condition is denoted as excitation
condition for the model in equation (1). With this condition
given, the above definitions for stability of recursive algorithms
will be satisfied. Basically, since the system is of time-varying
parameters, the explanatory variables must be of certain suffi-
cient time-dependent variability to provide sufficient infor-
mation for tracking. In other words, the included explanatory
variables must provide sufficient fluctuations so that the time-
varying coefficients can be updated sequentially. Intuitively,
it appears that the applications of explanatory variables (for
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the empirical asset pricing models) for normal returns should
provide some time-dependent variability over time. Otherwise,
if the underlying parameters are time-varying, the recursive
algorithms will not necessarily be stable, and the tracking errors
can be unbounded.

Excitation condition (Guo (1994)): Let the regressors
{ψt ,F}be an adapted sequence of random vector (that is, ψt
is Ft−measurable for all t’s, where {F}is a sequence of non-
decreasing σ - algebras), and there exists an integer h > 0, such
that {λt } ∈ So(λ) for some λ ∈ (0,1) , where

λt ≡ λmin

⎧⎨⎩E

⎡⎣ 1
1+h

(t+1)h∑
i=th+1

ψiψ
′
i

1+||ψi||2 |F
⎤⎦⎫⎬⎭ , (4.2.12)

and λmin stands for the minimal eigenvalue of the random
matrix, E[xt+k|F]represents the conditional expectation of
random variable xt+k based on information set F .

In addition, Guo (1994) shows that if the vector of
explanatory variables follows a φ−mixing process, then the
necessary and sufficient conditions for the excitation condition
in equation (12) to hold is that there exist an integer h > 0,
such that

inf
t≥0λmin

⎧⎨⎩
(t+1)h∑
i=th+1

E
[

ψtψ
′
t

1+||ψt ||2
]⎫⎬⎭> 0. (4.2.13)

Specifically, if the sequences of explanatory variables follow
some mixing process, the excitation condition will require
the covariance matrices of these explanatory variables do not
become degenerated over time uniformly for any time interval
with length h, h > 0.

For a similar yet more restrictive condition, Zhang et al.
(1991) show it as ∀m ≥ 0,

E

⎛⎝ m+h∑
t=m+1

ψtψ
′
t

1+||ψt ||2

⎞⎠≥ 1
αm

I , a.s., (4.2.14)
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and {αm,Fm}is an adapted non-negative sequence satisfying
∀m ≥ 0,

αm+1 ≤ aαm +ηm+1, Mo ≡ Eα1+δ
o <∞, (4.2.15)

where {ηm,F}is an adapted non-negative sequence such that

sup
m≥0

E
[
η1+δ

m+1|F
]

≤ M , a.s., (4.2.16)

where a ∈ [0,1),0< δ <∞,0 ≤ M <∞, a.s. stands for almost
surely. A similar condition is applied in Chen and Guo (1991)
and denote it as conditional richness condition. Given the
settings, Guo (1994) shows that the tracking error bounds for
the recursive algorithms. Intuitively, the “richness” condition
such as Equation (4.2.12) is to ensure that the regressors are
informative enough so that the stability of stochastic difference
equation in equation (8) can be of asymptotic (exponential)
stability. And hence, the recursive algorithms can be feasible
to track down the time-varying coefficients. The following
theorem is from Guo (1994) by re-writing three theorems into
one and with additional sub-index i for a particular security of
interest in empirical studies.

Theorem 4.1.1: (Guo (1994)): Given the time-varying coeffi-
cient model in Equation (4.2.1), and suppose the condition
in Equation (4.2.12) is satisfied for all the following recursive
algorithms. In addition, for each security i, i = 1,2, · · · ,n, and
for some p ≥ 1, β > 2, and let

σ
(i)
p ≡ sup

t
||ξit logβ(e + ξit)||Lp <∞ (4.2.17)

and

||θ̃io||L2p <∞, (4.2.18)

where ξit = |εit | + ||�i,t+1||, θit = θit−1 +"it , θ̃io = θio − θ̂io.
Then for the Kalman filter in equation (3), the tracking error{
θit − θ̂it

}
t≥0

is Lp-stable and

limsup
t→∞

||θit − θ̂it ||Lp ≤ c
[
σ

(i)
p log1+β/2(e +σ

(i)−1

p )
]

, (4.2.19)
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where c is a constant depending on {ψt }t≥0, R, Q and p only.2

In addition, if least mean squares algorithm is applied, and
if for some p ≥ 1, β > 1, equations (17) and (18) hold, then{
θit − θ̂it

}
t≥0

is Lp-stable and

limsup
t→∞

||θit − θ̂it ||Lp ≤ c
[
σ

(i)
p log(e +σ

(i)−1

p )
]

, (4.2.20)

Furthermore, if recursive least squares algorithm is applied for
tracking, and if for some p ≥ 1

sup
(
||εit ||L3p +||�t ||L3p

)
≤ σ

(i)
3p ,

t

(4.2.21)

sup||ψt ||L6P
t

<∞, (4.2.22)

where the forgetting factor α satisfies that λ[48hk(2h−1)p]−1
<α<

1, k is the dimension of ψt , then there exists a constant c such
that

limsup
t→∞

||θit − θ̂it ||Lp ≤ cσ (i)
3p . (4.2.23)

In other words, Theorem 4.1.1 states that if given the
boundedness of the moments in the fluctuations of time-
varying parameters and error terms of regression, the tracking
errors of these recursive algorithms will also be bounded
asymptotically.3 This implies that if the smoother the time-
varying fluctuations of parameters, the smaller the tracking
errors of these recursive algorithms may be. For further
extended conditions, Guo and Ljung (1995a, 1995b) analyzes
the exponential stability of some well-known algorithms such as
extended Kalman filter, least mean squares, and recursive least
squares with the forgetting factor in more general settings. The
results simply identify that the tracking errors will be bounded if
the conditions such as equation (4.2.12) is satisfied and specific
conditions for each recursive algorithm are provided.

However, according to Grillenzoni (2000), when the
dynamics for the time-varying parameters θt in equation (4.2.1)
is unknown, the classical Kalman filter can not be applied for
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the estimation. Hence, if applying some functionals in appro-
ximating the time-varying coefficients, some more general
algorithms such as extended recursive least squares (with
forgetting factor) for the normal returns are needed. The
studies of Hastie and Tibshirani (1993), Mei et al. (2001),
Nielsen et al. (2000), Joensen et al. (2000), and Grillenzoni
(2008) are some examples for the studies in this field. Following
from Hastie and Tibshirani (1993), the time-varying coefficient
regression for empirical asset pricing model can be expressed as

rit = βio +
k∑

j=1

βij (xjt)ψjt + εit , (4.2.24)

where
{
xjt
}

j=1,··· ,k are explanatory variables for the time-
varying “beta’s”,

{
ψjt
}

j=1,··· ,k are the nondiversifiable variables
identified for the normal (expected) returns. For the specific
identification, one may assume that these variables

{
xjt
}

j=1,··· ,k
may be reduced to time variable t alone. To make the model
in (4.2.24) more applicable, some apprroximations for the
time-varying functions

{
βij(xjt)

}
j=1,··· ,k such as polynomials,

piece-wise constant, some smooth parametric functions or some
spline functions can be applied. Specifically, the framework
can be extended to include nonparametric setting. However,
for simplicity, the “beta” functions are assumed to be of
time variable t alone. The system in equation (4.2.24) is
certainly more general than the random walk assumption for
the transition of paramters. Neverthelss, to allow for applica-
tions of recursive estimation algorithms, more conditions are
needed.

In particular, Grillenzoni (2008) introduces the time-varying
coefficient model with slowly-varying parameters as

rit = ψ ′
tβi(t)+ εit , (4.2.25)

where the time-varying parameters βi(t) are considered as
some smooth deterministic functions of time. 4In addition to
equation (4.2.25), Grillenzoni (2008) introduces additional
assumptions for the system to allow for recursive estimation
such as recursive least squares with forgetting factor:
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Assumption 4.A.2. The noise process {εit }t=1,··· , is idependent
and identically distributed with mean zero and finite variance
σ 2

i , where {εit }t=1,··· , is independent of {ψt }t=1,··· ,, where ψt =⎡⎢⎢⎢⎢⎣
ψ1t

ψ2t

...
ψkt

⎤⎥⎥⎥⎥⎦.

Assumption 4.A.3. The explanatory variables
{
ψjt
}

j=1,··· ,k are

zero-mean, second-order stationary and ergodic with E
(
ψ4

jt

)
<

∞, j = 1, · · · ,k and E[ψtψ
′
t] is positive definite for all t’s.

Assumption 4.A.4. The system is stable if
{
ψjt
}

j=1,··· ,k incurs
lagged dependent variables in the sense that the roots of
polynomial for autoregression fall outside of unit circle.

Assumption 4.A.5. The βi(t) are deterministic functions and
are differentiable up to the second order in continuous time,
where the derivatives are rescaled as β̇i(t) = ∂βi(t)

∂t /T , β̈i(t) =
∂2βi(t)
∂t2 /T 2.

Given the setting, a weighted least squares method can be
applied for the estimation of equation (4.2.25)

β̂i(t) =
( t∑

h=1

ωh,tψtψ
′
t

)−1 t∑
h=1

ωh,tψt rit , (4.2.26)

where 0 < ωh−1,t ≤ ωh,t ≤ 1, h ≥ 1, ωh,t = λt−h, λ ∈ (0,1) .
Equation (4.2.26) can be re-stated in a recursive implemen-
tation such as5

Rt = λRt−1 +ψtψ
′
t + (1−λ)I

β̂i(t) = β̂i(t −1)+R−1
t (rit −ψ ′

tβi(t −1)),
(4.2.27)

where Rt is a matrix of weighted squared regressors.
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According to Grillenzoni (2008), the variance–covariance
matrix of tracking errors can be shown as

E
[(
β̂i(t)−βi(t)

)(
β̂i(t)−βi(t)

)′]
=
(

1−λ

1+λ

)
E
(
ψtψ

′
t
)−1

σ 2
i +O

(
(1−λ)1.5

)
+
(

λ

1−λ

)2( β̇i(t)
T

β̇i(t)′

T

)
+O

(
1

T 2 (1−λ)1.5

)
+O

(
1

T 3 (1−λ)3

)
.

(4.2.28)

Namely, the asymptotic variance–covariance matrix of
tracking errors depends on the matrices E

(
ψtψ

′
t
)

and
β̇i(t)β̇i(t)′. That is to say, the higher the “richness” of
the included explanatory variables, the smaller the norm of
variance–covariance matrix tracking errors. In other words, the
more informative the explanatory variables are, the less the
tracking errors will be. In addition, from equation (4.2.28),
it also shows that the less steeper the change of parameters is,
the smaller the tracking errors naturally. Hence, this allows the
situation when the parameters are time-varying mildly. What
is important though, the determination of the exponential
forgetting factor λ is also critical to this recursive algorithm for
time-varying coefficients.

In summary, these algorithms are devised to track the
possibly time-varying parameters associated with the empirical
asset pricing models of normal (or expected) returns. Basically,
the intent is to follow closely with the concurrent information
for system-wise nondiversifiable explanatory variables. As such,
the algorithms applied in the time-varying parameter models
will reduce the pricing errors in specifying the normal (or
expected) returns. Likewise, the abnormal returns {εit }t=1,2,···
in equation (4.2.1) can be more closely observed and hence,
event studies pursued thereby will be more robust in analyses.



Chapter 5

Time Will Tell! A Method with

Occupation Time Statistics

Introduction

In this chapter, an alternative method is introduced to assess
the impact of corporate events such as mergers and acquisitions
on the firms. The method differs from the conventional event
study tests in that, instead of testing the parameter changes
over time, the durability of the parameter changes and persi-
stence of the impacts is idscussed. In other words, the method
considers the intensitity of the impacts from announcements or
events may last over time. In terms of properties of stochastic
processes, this persistence over time can be represented by the
so-called occupation time (or sojourn time) of the underlying
stochastic processes constructed by the statistics of interest.

The advantage of this approach is that the method is
applicable particularly when the specifications for normal (or
expected) returns with time-varying parameters are not suffi-
cient to assess the impacts from events. Not surprisingly, it
is well known as an example of common knowledge that the
parameters fitted to the in-sample models for financial time
series are subject to changes over time. However, overfitting the
in-sample observations with ad hoc time-changing mechanisms
is not necessarily ideal since the system of parameterization
itself may also be subject to changes over time. Therefore, an
alternative is to allow the changes of underlying parameters,
and assess how persistent the impacts may last over time to
consider the intensity of impacts. Two statistical methods are
provided; one is with the Banach-space central limit theorem
to perform the test for cross-sectional average of the firms’
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occupation time statistics, the other is for the firm-by-firm stati-
stics of occupation time and application of false discovery rate
for the multi-hypothesis testing across all firms.

5.1 Intuition

As stated in earlier chapters, the conventional CARs tests and
the structural change tests are not entirely suitable for corproate
event studies. The time-varying coefficients models are usually
considered as common knowledge for most of financial time
series. Either using the in-sample or out-of-sample statistics, it
is difficult to accept that the parameters for the fitted models
for financial time series are time-invariant. If certain structural
changes are allowed, even if verifications of structural change
can be monitored or tracked with sequential on-line approach,
the results are not sufficient to justify that these changes are
indeed related to events of interest when the test statistics are
statistically significant. In fact, it is hardly conceivable that the
parameters (fitted or assumed) are stable in the a-priori (prede-
termined) time frame before (or after) the possible (unknown)
change point(s) in financial time series.

However, if time-varying parameters are considered as a
“norm” for model specifications of financial time series, an
alternative method that incorproates this “norm” for verifi-
cations on corporate-event issues is in need. In other words,
if allowing the time-varying parameters (over various time
frames) for financial time series, the conventional tests applied
to corporate events such as mergers or acquisitions will not be
appropriate. Namely, the conventional test based on CARs or
CUSUMs are not capable of providing convincing statistics if
time-varying coefficients are considered de facto for financial
time series modelings. In addition, the alternative must also
consider the stochastic properties of financial data particularly
without arbitrary choices on the length of event windows.

Consequently, an alternative method is proposed to address
these problems by focusing instead on the time spans of the
dynamics of stock returns. In other words, the sample period
can be chosen as the data set allows and there is no need to
determine the arbitrarily chosen event windows for the tests.
For instance, in Jeng et al. (2014), the sample period (of
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daily returns) spans from two years before the merger annou-
ncement to two years after the merger completion. However,
no arbitrary event windows for the announcements are selected.
A new test based on Takacs (1998) for occupation times of
reflected Brownian motion is provided. The method introduces
the statistics based on occupation time of reflected Brownian
motion and applies the theoretical results of Takacs (1998) to
analyze the durations of the impact from the new information.

A significant corporte finance event is redefined that an
event is significant when the duration of the impact from
the new information is significantly larger or lower than the
occupation time of a reflected Brownian motion. The results
in Jeng et al. (2014) shows that the durations of impact
from the new information based on the abnormal returns to
acquirers are significantly lower than the occupation times of a
reflected Brownian motion. In other words, the market adjusts
to the information faster than the speed of reflected Brownian
motion assumed in the null hypothesis and resolves the uncer-
tainty surrounding the mergers and acquisitions. In that article,
comparative studies versus conventional CARs tests are also
provided.

The alternative test strategy heretofore considers the
occupation time (or sojourn time) of the diffusion processes. In
particular, the counting measure for level crossings of absolute
values of cumulative abnormal returns is taken into account.
Intuitively speaking, if an event is essential, its impact will not
simply be a split-second burst or spike on the sample path of
asset returns. Instead, the fluctuations (including the spike) will
last a while when the market works to digest the new infor-
mation (or shock) and adjust itself before it settles. In other
words, the market needs a little more time to resolve the new
information from the event if the event or announcement is
really to everyone’s surprise. This time period to react will be
longer if the information is more essential.

Alternatively, situations occur when the cumulative abnormal
returns may be more volatile before and after the event than
close around the event. More specifically, it may not neces-
sarily lead to an increase of variance within the neighborhood
of the event time in contrast with the other time periods. In
such case, a conventional thought might consider that there is
no essential event occurred. Yet, the conventional event study
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could be wrong. Instead of the no-event scenario, it is possible
that the announcement (within the event window, if given)
simply resolves the uncertainty for the market. In other words,
an essential corporate event does not necessarily increase the
fluctuations of the markets at announcement. Instead, it may
dampen the fluctuations.

Hence, any method that aims to identify essential corporate
events should account for both cases of “volatile jitterings”
and “ tamed-downs” when the new information hits. The
new statistic therefore, considers the relative frequency of the
statistics for absolute cumulative abnormal returns that exceed
some thresholds over the entire sampled period. If the impact
causes “volatile jitterings”, the relative frequency will increase
significantly.

Conversely, if the event impact causes “ tamed-downs” of
the market, the relative frequency will then decrease signifi-
cantly. This statistic converges in distribution to the occupation
time of a reflected Brownian motion provided that there is no
essential event under the null hypothesis and the invariance
principle for the cumulative abnormal returns holds when
the sample period for each firm’s abnormal returns is suffici-
ently large. Instead of testing for structural changes (multiple
change points or epidemic change), the test statistic is to
study the length or duration of the possible impacts caused
by the shocks or corporate finance events. More specifically,
the intuition is to take the time-varying coefficients (in market
model or else) as a underlying phenomenon for stock returns
and consider the duration of these impacts as level crossings of
absolute cumulative abnormal returns as the statistic to verify
the intensity of the events.

Given the formula provided by Takacs (1998) for distri-
bution and moments of occupation time of Brownian motions,
two methods can be applied to perform tests on the hypotheses
of interest. First, the Banach-valued central limit theorem
is applied for the cross-sectional average of occupation time
functional across all firms. Under the null hypothesis, this
test statistic will converge to a normally distributed random
variable where the mean and variance of the occupation time of
reflected Brownian motion are given with the formula of Takacs
(1998). Second, the distribution of occupation time of reflected
Brownian motion can be applied to perform test on each
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firm’s abnormal returns individually across all firms. However,
since there are many firms in the studies, the entire study may
incur the mutiple hypotheses testings. This multiple hypothesis
testing if with identical significance levels assumed in frequ-
enist approach may incur overrejections across all hypotheses
of interest. In other words, for performing the simultaneous
inferences (across all selected firms over the null hypotheses of
interest), the control over false discovery rate (FDR) will be
applied to reduce the overrejection problems.

Notice that the test statistics allow for time-varying
parameters in the fitted models on asset pricings or normal
(or expected) returns by filtering the return series with
recursive estimators. Hence, the time-varying parameters that
are possibly subject to noise tradings and/or systematic
feedbacks from the new information in the market are already
filtered through the specifications of normal returns. In other
words, for the well-known fact such as structural change (that
is possibly of multiple change points) in financial time series
modeling on stock returns, the filters applied will absorb these
impacts first. The abnormal returns thereafter, will be “cleaner”
in the sense that these time-varying coefficients from possibly
systematic factorizations on stock returns are prefiltered before
applying to the statistical tests on corporate events.

5.2 The Alternative Test Methodology

In order to assess the return process, a time-varying coefficient
model is assumed for the empirical asset pricing models. Hence,
the recursive estimation algorithms discussed in Chapter 4 can
be applied here. Specifically, the following Assumption 5.A.1 is
for the model specification of conditional expectations of excess
returns in terms of presumed explanatory variables. Assumption
5.A.2 is the invariance principle for the cumulative sums of
abnormal returns.

Assumption 5.A.1: Let the excess return rit for each firm i and
time t be a stochastic process in a complete probability space
(�,F ,P) such that a k-factor model

rit = E[rit |Fit ]+ εit = αit +
k∑

j=1

βi
jtφjt + εit , (5.2.1)
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holds for the excess returns where Fit represents the infor-
mation filtration for firm i up to time t , αit is the drift for
the excess return, βi

jt represents the possibly nonstochastic j-th
time-varying coefficient with respect to nondiversifiable factor
φjt , j = 1,2, . . . ,k, εit is the so-called abnormal return for firm i
at time t .

Notice that Assumption 5.A.1 does not assume that
the model fitted in equation (1) has already included
all dynamic specifications. Hence, the abnormal returns
{εit }i=1,2,..,t=1,2,...,may be subject to some short memory condi-
tions such as mixing and heteroskedascity. However, the pricing
variables

{
φjt
}

j=1,...,k should already be identified as proxies for
nondiversifiable factors as discussed in Chapter 2.

Based on Assumption 5.A.1, a recursive estimation (such as
recursive least squares method or stochastic approximation) in
tracking can be applied to estimate the asset pricing models.
In other words, the recursive estimation itself is a (dynamic)
filter to retrieve possibly relevant impacts on the coefficients of
asset-pricing model in reponse to the corporate information or
event(s). Hence, the possible drifts or jumps (in the empirical
asset pricing models) that occur during the sampled period can
be tracked down so that the impacts from the time-varying
coefficients are considered.

Specifically, the first step of methodology is to trace the
possible market perception and impact when possible leakage
of corporate information prevails in the market as the event day
draws nearer. Thus, we filter the excess returns with adaptive
(recursive) filter to accommodate possible impacts on the asset-
pricing models before testing for corporate-finance events in
using the abnormal returns. If a simpler model is desired, the
conditional expectation E[rit |Fit ] can be assumed as a time-
varying drift over time if βjt = 0, j = 1,2, . . . ,k, uniformly for
all selected firms. More extensively, the conditional expectation
E[rit |Fit ] can also be approximated by some functionals of
explanatory variables in certain function spaces (with certain
regularity conditions). For instance, the pricing kernel can
also be extended to the generalized additive model where the
pricing variables

{
φjt
}

j=1,...,k are functionals of some known
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explanatory variables. However, the non-diversifiability of these
pricing kernels must be verified as claimed in Chapter 2 earlier.

The purpose to apply the time-varying coefficient models is
that the models may approximate the adjustments of market’s
expectations where optimal filtering or recursive estimation
can be applied for tracking of the normal (expected) returns.
In addition, the structural changes of parameters in syste-
matic components of asset pricing models where hypotheses
of corporate finance events in CARs tests (and/or CUSUM
tests) are included. In this case, the optimal filtering performs
tracking for the normal returns with possible sturctural changes
(due to various reasons such as noise trading, rumors, market
overreaction, or even pricing errors, for instance) are filtered
out and the error terms in equation (1) become “cleaner.”

As stated in Chapter 2, the conditional expectation
E[rit |Fit ] should be specified as comprensive as possible so that
the systematic nondiversifiable components for stock returns
are taken into account. However, given that the information
set Fit applied may not be entirely exhaustive, there is a possi-
bility that some pricing errors of asset returns may occur in
{εit }t=1,2,··· when using the empirical asset pricing models with
limited information for some time periods. For instance, if there
is a missing (unobservable) variable (say, ηt that should be
included in the model), and

{
φjt
}

j=1,2,···kare orthogonal to ηt ,
the correct specification should be stated as

rit = αit +
k∑

j=1

βi
jtφjt +ηit + εit ,

= α̈it +
k∑

j=1

βi
jtφjt + εit ,

(5.2.2)

where α̈it = αit + ηit , and ηit represents the pricing error due
to omitted explanatory variables. This, in turn, shows that the
pricing errors are simply absorbed in the time-varying drifts
of assumed pricing models.1 The recursive filterings based on
equation (5.2.1) can still apply to approximation of normal (or
expected) returns (as discussed in Chapter 4) and to obtain
the abnormal returns accordingly. The tracking of recursive
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estimation will pick up the bias or pricing errors of asset pricing
models through the intercept or drift.

Therefore, as long as the procedures for model search
is thoroughly applied, the pricing errors from asset pricing
models for normal (expected) returns should only be diver-
sifiable. In other words, there is only a possibility of some
negligible temporal drifts for the error terms of asset pricing
models. Yet, even so, through the time-varying coefficient
models in equation (1), these temporal drifts can be picked
up by the recursive schemes of estimation. In other words, the
abnormal returns are subject to much less pricing errors for the
corporate event studies if recursive estimation is applied onto
the time-varying coefficient models.

Brockett et al. (1999) apply a similar framework of time-
varying beta market model and CUSUM test of standardized
one-step-ahead forecast errors for the event study on California
Proposition 103. As they claimed and discussed in Chapter
3 of this book, the applications of CUSUM test can avoid
the arbitrary or subjective determination of width of event
windows and estimation period. In particular, Brockett et al.
(1999) apply the Kalman filter technique to estimate the fixed
parameters of the model and update the prediction using new
information available where no a priori assumption for event
dates is applied. In addition, the GARCH(1,1) is also intro-
duced to specify the possible fat-tailed distribution in error
terms of regressions.

However, the CUSUM test (based on the residuals) is
usually applied in the test for structural changes for parameters.
Although their empirical result shows that the test statistics
of the cumulative abnormal returns (based on the prediction
errors) are different from zero, it implies that either (a) the
constant term of the time-varying beta market model in their
applications is also a time-changing drift (according to the
discussions in Chapter 3), or (b) the assumption of AR(1)
(autoregression of beta’s with one lag) for the time-varying
beta is possibly incorrect. In this case, the CUSUM test using
the cumulative abnormal returns of prediction errors may not
necessarily be more robust than conventional methods.

A good question to ask then is whether the result shows that
the corporate event is indeed significant in influence or simply
the time-varying beta market model is not adequate to pick up



T I M E W I L L T E L L ! 143

the time-chaing patterns of normal returns. On the other hand,
if there are event-induced increases (or decreases) of excess
volatility when the event causes extreme movements of the
abnormal returns, GARCH(1,1) may not be sufficient to catch
up. This also shows that allowing the time-varying parameters
in model of normal returns must be accompained with an alter-
native methodology that is not based on the parametric or
nonparametric tests on the location (or scale) of cumulative
abnormal returns because these changes of location or scale are
typical in financial time series even though there is no significant
events. These changes of parameters, however, may or may not
be event-oriented.

The following assumptions are for the test based on
cumulative abnormal returns and provide the asymptotic
functional where explicit formulas for the asymptotic distri-
bution and moments are available. Assumption 5.A.2 is to
establish the statistic based on cumulative abnormal returns
under the null that there is no “essential” event in the data and
consider the relative frequency of occurrence when cumulative
abnormal returns exceeding some thresholds. Assumption
5.A.3 assumes that the occupation time functionals lie in
the proper Banach space such as L2-space equiped with the
L2-norm. Assumption 5.A.4. assumes strong law of large
number for occupation time functionals in the Banach space.
Assumption 5.A.5 provides the conditions that the de-meaned
occupation time functionals across all selected firms will not
explode asymptotically in their tails.

Assumption 5.A.2: Suppose under the null hypothesis that no
impacts from event(s) are significant, and let the cumulative
sums of abnormal returns {εit ,}t=1,2,..., for each firm i follow
the invariance principle such that as T → ∞

1√
T σεi

[λT ]∑
t=1

εit
d−→ B(λ), (5.2.3)

where 0 ≤ λ ≤ 1, and σ 2
εi

represents the long run variance of
{εit ,}t=1,2,...,, B(λ) is a standard Brownian motion defined on

interval [0,1], the notation
d−→ stands for the convergence in

distribution.2
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Notice that Assumption 5.A.2 states that the cumulative
sums of abnormal returns follow some invariance principles
such that when properly weighted, they will converge to the
Brownian motion in distribution. The assumption actually
allow the abnormal returns to contain different serial depen-
dence such as mixing condition or heteroscedasticity. Various
invariance principles have been devised in the econometrics and
statistics literature. Similar results that extend to almost sure
invariance principles can be found in Eberlein (1986), and Wu
(2007).

Many examples for the invariance principle of the error terms
in regression have been applied in the related literature. For
instance, under the null hypothesis that the drift and “beta” are
not time-varying in the linear regression of Equation (5.2.1),
Sen (1982) provides the invariance principle for recursive
residuals from the linear regression even though the error terms
{εit }i=1,2,...,t=1,2,...,do not follow normal distribution. In the
current context, Assumption 5.A.2 allows both serial depen-
dence and heteroskedasticity given possible (dynamic) model
misspecification.

Although Equation (5.2.3) incurs asymptotic normality
where Brownian motion is assumed for the weak conver-
gence of cumulative abnormal returns, the occupation time
defined in the following for diffusion processes (including
Brownian motion) is not normally distributed. In particular,
the asymptotic convergence is for the entire sample period, and
is not limited to the event windows or else. Specifically, with
Assumption 5.A.2, the intent in the following is to consider
whether the capital market under certain event(s) of interest
has responded significantly more (or less) than the frequencies
under the reflected Brownian motion. There is no need to
consider if the statistics are obtained through the estimation
period, event window, or post-event period since the invariance
principle holds for the entire period of interest. The study is
not based on the (asymptotic) normality assumption of stock
returns or abnormal returns. Nor does the test verify the
normality in asymptotic distribution of abnormal returns at all.

On the other hand, Assumption 5.A.2 is for the error terms
from the time-varying-coefficient model of Equation (5.2.1)
when the on-line recursive estimation will be applied to track
and update the normal (or expected) returns sequentially. These
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error terms are different from the abnormal returns obtained
from the conventional (say) market model (or else) estimated
based on the presumed estimation periods prior to the assumed
event window. More technically, the abnormal returns applied
in conventional CARs tests are out-of-sample forecast errors
of fitted regressions when using data from estimation period.
No recursive updating of information is considered in the
conventional approach. In addition, the asymptotic distri-
bution (including normality) in the conventional CARs tests
are obtained when number of observations in estimation period
prior to event window grows sufficiently large. In Equation
(5.2.3), the assumption does not assume that the estimation
period must grow sufficienly large prior to the event date for the
weak convergence to hold asymptotically. Instead, it assumes
that the entire sample period T grows sufficiently large.

Although the conventional CARs tests may apply asymptotic
normality in the cumulative sums of abnormal returns across
the event window, the event window is assumed to have
only finite number of dates or observations. The asymptotic
arguments for normality in CARs tests is based on the large
number of observations within the estimation period. Hence,
Assumption 5.A.2 applies even to the occasions where no
knowledge is feasible for the separation of estimation period
and event window. Furthermore, since the on-line recursive
estimation is applied, the estimation on normal (or expected)
returns is updated with new observations. Therefore, there is
no need to assume that the length of estimation period (prior
to event window) must be sufficiently long. Nor is there the
need to consider subjectively the number of days prior to and
after the event dates to determine the event window even when
the precise event date is known a priori.

However, an issue with applying structural change tests on
event studies is that these parametric or distributional changes
resolve gradually after certain time periods even if the event(s)
are essential or significant. Thus, even with possible changes
in parameters or distributions, the discussions on the essenti-
ality of the event(s) should focus on “how long the impact
may last.” An event that is significant must have some occur-
rences of statistics (such as the frequencies of cumulative sums
of abnormal returns that cross certain thresholds) persist over
some time horizons.
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In other words, similar to the assessments of earthquakes, the
magnitudes of changes, or fluctuations of parameters provide
only tentative estimates or partial information to the severity
of the event. The measurement such as frequencies or durations
of the impact (in time horizon) is a more valid method
to describe the severity or essentiality of the event(s). This
study provides an alternative method that allows for such a
measurement. In addition, the method also encompasses the
occurrence of permanent changes as special cases.

In the following, a general definition for occupation time
of a nondegenerated real-valued diffusion process is provided.
Furthermore, Assumption 5.A.2 serves only as an approxi-
mation for the weak convergence for the cumulative sums of
abnormal returns. Given that, the following occupation time
statistics are not to test whether these cumulative sums will
converge to Brownian motion or not. Nor does it rely on the
normality assumption for the increments of Browinan motion
to perform the tests. Instead, the test statistics is to consider
whether the hitting frequency or duration of impacts (for a
certain level of threshold) is distinct from that of the reflected
Brownian motion.

In other words, the purpose is to see if the duration of
impacts from events of interest is significantly different from
that of reflected Brownian motion. Although the cumulative
sums of abnormal returns are similar to the statistics applied
in the conventional CARs tests, the test statistics are not
based on the asymptotic distribution of the CARs (or so-called
cumulative abnormal returns). Instead, the statistical inference
is based on the asymptotic distribution of occupation time of
reflected Brownian motion.

In addition, the definition of occupation time for the
diffusion process in the following may include various stochastic
processes such as Lévy process where the jumps or discon-
tinuities on the sample path may happen. In other words,
the occupation time statistics can be extended to some jump
processes in financial time series. For instance, in Fatalov
(2009), the occupation time and its asymptotics are extended
to the Lp–functionals of the Ornstein-Uhlenbeck process.
Fitzsimmons and Getoor (1995) show the distribution for
occupation times of Lévy bridges and excursions. These exten-
sions can be applied to the following occupation time statistics
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when Assumption 5.A.2 is modified to different invariance
principles for weak convergence to various diffusion processes
of interest.
Definition 5.D.1: For a nondegenerated real-valued diffusion
process with stationary increments, Xt , t ∈ [0,1] and for a
threshold h, the occupation time for the process Xt is defined as∫ 1

0
δ(Xt > h)dz, (5.2.4)

where δ(x) is an indicator function for x to lie in a set A such
that δ(x) = 1 if x ∈ A, A ⊂ R, A = {x|x > h, x ∈ R+}, and δ(x) =
0, otherwise.

Notice that Definition 5.D.1 considers various nondegene-
rated real-valued diffusion processes that have the stationary
increments. In other words, the processes such as Brownian
meander, Brownian excursion, reflected Brownian motion,
Brownian bridge, Lévy bridges, and excursions are included.
Based on the above assumptions and Definition 5.D.1, we
develop an alternative test statistic using the absolute values
of the cumulative abnormal returns from the event study.
The advantage of our test is that it does not require testing
the differences in parameters or distributions across pre-event
and post-event periods. Hence, it avoids the arbitrary choices
of event window or pre-and post-event periods for statistical
verification. Furthermore, based on the formula for asymptotic
distribution and moments for the occupation time of reflected
Brownian motion provided by Takacs (1998), a statistical test
using the occupation times statistics across the entire sample
period can be devised.

In other words, following Assumptions 5.A.1, and 5.A.2,
and under the null hypothesis that the new (corporate finance)
information has no essential or significant impact on the capital
market, the underlying occupation time statistics defined in the
following will converge to the occupation time of reflected
Brownian motion in distribution asymptotically. Hence, the
test that examines the essentiality of the corporate events can
be formed as the test for significant difference between the
occupation time statistics defined in the following Theorem
5.1.1 and the occupation time of reflected Brownian motion.
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Theorem 5.1.1 is applicable to each individual firm selected.
Thus, to perform the hypothesis testings for the impacts from
event(s) of interest, two approaches are introduced hereon.

The first approach is to define the occupation time stati-
stics as an element of a suitable function space and apply
the central limit theorem for the function space to test the
hypothesis on the average of occupation time statistics across all
selected firms. The second one is based on the occupation time
statistics of individual firms selected and apply corrections for
over-rejection errors when multiple hypotheses are introduced.
The first approach is more convenient since weak convergence
of the average occupation time statistics (after normalization)
will provide the well-known standardized normal distribution
asymptotically under additional regularity conditions. In parti-
cular, if there is a pricing error that is hidden in the presumed
abnormal returns where the recursive estimation did not catch
up, the average statistics will reduce the errors in occupation
time statistics under certain regularity conditions. The second
approach is more informative since it takes all individual firm’s
responses into account and perform the tests over all firms
by treating the null hypothesis for each firm as a separate
hypothesis. And hence, the tests will require some adjustments
based on multiple-hypothesis testings when sequential stati-
stical inferences are applied.

Given the finite first and second moments of the test
statistics ψi,T (ω,h) under the null hypothesis for occupation
time of reflected Brownian motion , and using the Banach-
valued central limit theorem on L2 space, the test of the
first approach is to verify the relative frequencies for excee-
dance of absolute values of CARs (for any given level of
threshold) after normalization is significant or not with a
standard normal distribution. More specifically, if under the
null hypothesis that there is no significant impact from the
corporate event(s), the cross-sectional average of occupation
time from these abnormal returns when standardized using the
mean and variance provided by Takacs (1998), should converge
to a standardized normal random variable as the number of
firms grows sufficiently large. Notice that the test statistic does
not depend on the (asymptotic) normality in statistical distri-
bution of abnormal returns. Nor is there any need to assume
that there is no parameter change before the assumed event
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window or as the monitoring tests for structural changes. The
following theorem shows the weak convergence of occupation
time statistics for each firm’s cumulative abnormal returns.

Theorem 5.2.1: Given Assumptions 5.A.1 and 5.A.2, and
under the null hypothesis such that there is no essential
impact from the new information disclosed in the event(s),
let
{
ε̂it
}

i=1,2,··· be the residuals of fitted regressions for asset
returns at time t , and {εit }i=1,2,... follow the invariance principle
of short-memory stochastic processes as stated in Assum-
ption 5.A.2, and let σ̃ 2

εi
= 1

T
∑T

t=1 ε̂
2
it + 2

∑T −1
j=1 k( j

q )γ̂i(j) be
the heteroskedasticity and autocorrelation consistent (HAC)
estimate for the asymptotic variance σ 2

εi
for asset i, i =

1,2, · · · ,n, where γ̂i(j) = 1
T
∑T −j

t=1 ε̂it ε̂i,t+j , and k(.) is the
Bartlett-kernel function with bandwidth q, q → ∞, q

T → 0, let
the occupation time statistic ψi,T for all ω ∈ �, and for some
0 � h <∞, h ∈ R+ be defined as

ψi,T (ω,h) = 1
T

T∑
m=1

δ

[
1√

T σ̃εi

∣∣∣∣∣
m∑

t=1

ε̂it

∣∣∣∣∣> h

]
, (5.2.5)

where δ(x) is an indicator function for x to lie in a set A such
that δ(x) = 1 if x ∈ A, A ⊂ R, A = {x|x > h, x ∈ R+}, and δ(x) =
0, otherwise. Then, for any fixed n,

ψi,T (ω,h)
d−→
∫ 1

0
δ(
∣∣B(z)

∣∣> h)dz (5.2.6)

as T → ∞, under the null hypothesis when no signifi-
cantly essential events occur. In other words, when under the
null hypothesis where there is no significantly essential event,
the statistic ψi,T will converge to an occupation time for the
reflected Brownian motion (reflected at zero)

∣∣B(z)
∣∣ with some

thresholds h, h ∈ R+, where B(z) is a standard Brownian motion
defined on interval [0,1], σ̃ 2

εi
is the estimate for the long run

variance of{εit }t=1,2,··· ,for firm i’s abnormal returns.
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Proof of Theorem 5.2.1:
Given Assumptions 5.A.1, 5.A.2, and according to

Pötscher (2004), we only need to verify that the function
δ
[

1√
T σ̃εi

∣∣∑m
t=1 εit

∣∣> h
]

is locally integrable. Pötscher (2004)
defines that a real-valued function f (x) is locally integrable if
and only if for any 0< K <∞,∫ K

−K
|f (x)|dx<∞.

Since the indicator function δ(x) is bounded with values as zero
or one, we have sup

x∈R+
|δ(x > h)| ≤ 1. Hence, for any level of

threshold h, 0<K <∞,

∫ K

−K
sup

x∈R+
|δ(x > h)|dx

≤
∫ K

−K
dx

≤ 2K <∞.

Hence, the function as δ
[

1√
T σ̃εi

∣∣∑m
t=1 εit

∣∣> h
]

is also locally
integrable. Following Theorem 2.1 in Pötscher (2004), for
any fixed n, as T → ∞, it is straightforward to verify that
the weak convergence of ψi,T (ω,h) to an identically distri-
buted occupation time of reflected Brownian motion such that

ψi,T (ω,h)
d−→ ∫ 1

0 δ(
∣∣B(z)

∣∣> h)dz for all i = 1,2, ...,n.

Notice that, even though the above statistic is denoted as
occupation time statistic, it is actually a statistic of normalized
counting measure that considers the hitting frequency of the
impacts from events when represented by the absolute values of
cumulative abnormal returns. The cumulative abnormal returns
are similar to the conventional approach in event studies of
corporate finance. Yet, this cumulative sum of abnormal returns
is not solely across event windows. Instead, the cumulative
sums are obtained for the entire sample period without any a
prior determination of estimation period, event windows and
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post-event period. In other words, the test statistic for the
event(s) focuses on the frequency of the occurrence when the
absolute values of cumulative abnormal returns may cross some
thresholds. Intuitively, the higher the frequency, the more
intensive the impacts are. However, under the Assumption
5.A.2 and assuming the events have no essential impact, this
statistic will converge weakly to the occupation time of reflected
Brownian motion asymptotically where explicit formulas for its
moments and distribution are available. That is the reason why
it is denoted as the occupation time statistic, so to speak.

Hence, if an event is essential, then its impacts are noticeable
and therefore the frequency for such occurrence will either be
significantly higher or significantly lower than the occupation
time of reflected Brownian motion over the time horizon for
any given threshold. On the other hand, if the event is not
essential, this statistic will converge to the occupation time of
a reflected Brownian motion. That is, for any given level of
threshold, the occupation time statistic for the entire sample
period will converge in distribution to the occupation times
of reflected Brownian motion under the null hypothesis of no
essential event. The formula of distribution and moments for
the occupation times of a reflected Brownian motion versus
different thresholds is provided by Takacs (1998).

As a result, we consider that the occupation time statistics
ψi,T (ω,h) will converge weakly to

∫ 1
0 δ(

∣∣B(z)
∣∣ > h)dz and are

identically distributed for all firm i’s under the null. Hence, to
perform hypothesis testing across all selected firms, the average
of these occupation time statistics is considered. Given certain
regularity conditions and assume that the occupation time stati-
stics

{
ψi,T (ω,h)

}
i=1,2,... belong to some proper Banach spaces,

we may apply the Banach-valued central limit theorem and use
their moments under the null hypothesis. Detailed mathema-
tical arguments can be found in Ledoux and Talagrand (1991).
In the following, two sections are provided for the applica-
tions of occupation time statistics. Section 5.2.(i) discusses the
sample-average type test for occupation time statistics where
asymptotic normality in Banach function space is applied.
Section 5.2.(ii) applies the multiple hypothesis tests with
occupation time statistics of each individual firm. Both methods
can be applied to event studies in corporate finance.
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5.2.1 (i) Hypothesis testing based on

average occupation time statistics

Assumption 5.A.3: Let the occupation time statistics of
abnormal returns for each firm i, i = 1,2, ..., such as ψi,T (ω,h)
: (�,F ,P) → [0,1] for any threshold h, 0 � h < ∞, belong
to a type-2 separable Banach L2–space of all squared integrable
real-valued Borel-measurable functions g, where g :�→ R with
respect to the probability measure P and be equipped with the
L2–norm (denoted as ‖ . ‖ heretofore).3 A separable Banach
L2–space is of type 2 if and only if for a sequence of Rademacher
random variables {θi}i=1,2,...,defined on (�,F ,P) and for all
finite sequences of {xi}i=1,2,...,, xi ∈ L2–separable Banach space,
there exists a constant C > 0 such that

‖
n∑
i

θixi ‖≤ C

( n∑
i

‖ xi ‖2

) 1
2

. (5.2.7)

Assumption 5.A.4: Let the the occupation time functional{
ψi,T (ω,h)

}
i=1,2,..., follow the strong law of large numbers in

the L2–separable Banach space such that as n → ∞,

1
n

n∑
i=1

(ψi,T (ω,h)−E[ψi,T (ω,h)])
a.s.−→ 0, (5.2.8)

where E[ψi,T (ω,h)] denotes the Bochner integral of ψi,T (ω,h)
with respect to P , the notation

a.s.−→ stands for almost surely
convergence.

Assumption 5.A.5: The de-meaned occupation time functional{
ξi,T (ω,h)

}
i=1,2,..., satisfies the small ball criterion such that for

each ε > 0,

lim
τ→∞τ

2P
{||ξi,T (ω,h)||> τ

}= 0, (5.2.9)

α(ε) = liminf
n→∞ P

{
||

n∑
i=1

ξi,T (ω,h)/
√

n||< ε

}
> 0, (5.2.10)

where ξi,T (ω,h) = ψi,T (ω,h)−E[ψi,T (ω,h)].



T I M E W I L L T E L L ! 153

These equations in Assumption 5.A.5 follow the small
ball criterion in Ledoux and Talagrand (1991). Equation
(5.2.7) specifies the tail condition such that the second-
order moments of functionals

{
ξi,T (ω,h)

}
i=1,2,..., will not be

expanding too rapidly, while Equations (5.2.9) and (5.2.10)
ensure||∑n

i=1 ξi,T (ω,h)|| is bounded in probability. These
conditions are to ensure that the weak convergence of the
partial sums onto a tight probability measure in Banach space.
Given the above assumptions, we can establish the Banach-
valued central limit theorem for the occupation time statistics{
ψi,T (ω,h)

}
i=1,2,..., under the null hypothesis of no significant

impact from corporate finance event such as merger and acqui-
sition. Many extensions on the central limit theorem from real-
valued random variables to function spaces have been provided
in mathematical and statistical literature such as in Hoffmann-
Jorgensen and Pisier (1976), Araujo and Giné (1980), Ledoux
and Talagrand (1991), and on weakly dependent Banach-
valued random variables in Dehling (1983), and Ermakov and
Ostrovskii (1986).4

Theorem 5.2.2 Given the results of Theorem 5.2.1 and
Assumptions 5.A.3, 5.A.4, 5.A.5, if the null hypothesis holds
such that no significant event exists, then for any given
threshold h ∈ R+, 0 � h < ∞, the partial-sum statistic for
the occupation time functional will satistify the Banach-
valued Central Limit Theorem such that for Sn(h) =
1
n
∑n

i=1
(
ψi,T (ω,h)−M1(h)

)
, as n → ∞, T → ∞, with T grows

faster than the growth of n,5

Z (h) =
√

n
σ (h)

(
Sn(h)

) d−→ γ �, (5.2.11)

where M1(h), σ (h) are the mean and standard deviation of
the occupation time

∫ 1
0 δ(

∣∣B(z)
∣∣ > h)dz of reflected Brownian

motion
∣∣B(z)

∣∣ for any threshold h ∈ R, and 0 � h < ∞, γ ∗is
a random variable in the separable Banach space L2, with a
standard normal distribution N (0,1).

Proof of Theorem 5.2.2:
Given the independence among all the firms’ mergers and
acquisitons, it is easy to show that for any fixed n, and as T →



154 A N A LY Z I N G E V E N T S TAT I S T I C S I N C O R P O R AT E F I N A N C E

∞, when all
∫ 1

0 δ(
∣∣B(z)

∣∣> h)dz are of identical distribution, the
finite partial sum as

∑n
i=1ψi,T (ω,h) will also converge weakly

such that

n∑
i=1

ψi,T (ω,h)
d−→

n∑
i=1

∫ 1

0
δ(
∣∣B(z)

∣∣> h)dz.

According to Assumptions 5.A.3, 5.A.4, 5.A.5, and by
Theorem 10.13 in Ledoux and Talagrand (1991), it is feasible
to have the central limit theorem for

{
ξi,T (ω,h)

}
i=1,2,..., such

that as n → ∞,

1√
n

n∑
i=1

ξi,T (ω,h)
d−→ γ ,

where γ is a random variable in the separable Banach space
L2with Gaussian measure. Under the null hypothesis that no
significant events appear and Theorem 5.2.1 holds, we can

have E[ψi,T (ω,h)]
p−→ M1(h) given that 1

n
∑n

i=1
∫ 1

0 δ(
∣∣B(z)

∣∣ >
h)dz

p−→ M1(h) when the weak law of large numbers holds as
n → ∞, for

∫ 1
0 δ(

∣∣B(z)
∣∣> h)dz, i = 1,2, ...,n.

Now since all
{
ψi(ω,h)

}
i=1,2,...,converge to an identically

distributed occupation time of reflected Brownian motion
denoted as

∫ 1
0 δ(

∣∣B(z)
∣∣> h)dz, for all i = 1,2, .... as T → ∞, by

assuming that T grows faster than n, we may also apply the the
σ 2(h) = M2(h) − M 2

1 (h) for normalization where M2(h) is the
second-order moment of

∫ 1
0 δ(

∣∣B(z)
∣∣> h)dz. Hence, as n → ∞,

we have

1√
nσ (h)

( n∑
i=1

(ψi,T (ω,h)−M1(h))

)
d−→ γ �,

under the null hypothesis, where γ � is a random variable
in separable Banach space L2 with a standardized Gaussian
measure as N (0,1). That is,

√
n

σ (h)

(
1
n

n∑
i=1

(ψi,T (ω,h)−M1(h))

)
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=
√

n
σ (h)

(
Sn(h)

) d−→ γ �.

Notice that, although Theorem 5.2.2 shows normality in
asymptotic distribution for the weak convergence of statistic
Z (h) =

√
n

σ (h)
(
Sn(h)

)
under the null hypothesis where σ 2(h) =

M2(h)−M 2
1 (h), the occupation time statistic ψi,T (ω,h)−M1(h)

does not assume normality in distribution for each selected firm
i. In particular, even the occupation time of reflected Brownian
motion

∫ 1
0 δ(

∣∣B(z)
∣∣> h)dz does not have a normal distribution

either. Therefore, given that the distribution of ψi,T (ω,h) −
M1(h) is unknown and possibly nonnormal, the test statistic
generalizes the conventional CARs tests and does not rely
on the (asymptotic) normality of the (cumulative) abnormal
returns. Also, given that the definition of the occupation time
statistic covers the entire sample period, there is no need to
distinguish (subjectively) the estimation period, event window,
and the post-event period.

Table 5.1 taken from Jeng et al. (2014) shows that the
average occupation time for testing if the mergers/acquisitions
are essential events for corporate finance in the collected sample
of 125 firms subject to successful mergers/acquisitions using
cash tender offers from year 2000–2006. The data are collected
from CRSP data bank. The average occupation time stati-
stics after normalization show that the events are statistically
significant under standard normal distribution.

More precisely, the statistics are mostly negative. This implies
that the market actually resolves the uncertainty over the
noisy information quickly. The occupation time statistics (for
mergers and acquisisionts) on average, are less than the mean of
occupation time of reflected Brownian motion. In this case, the
average occupation time statistics can be applied to assess the
significance of corporate-finance event(s) without using either
the change of parameters or distributions. Namely, one only
needs to calculate all occupation time statistics among the firms
of events and the compatible firms of no events. If the events
make the differences, these occupation time functionals will
show that they are subject to differences across these two sets
of firms. It is also noticeable that the average occupation time is
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Table 5.1 The Average Occupation Time Statistics Z (h)

Threshold h Average ψ(ω,h) M1(h) M2(h) σ (h) Z (h)

0.001 0.9977 0.9984 0.9968 0.0012 −6.7840
0.005 0.9891 0.9921 0.9842 0.0059 −5.6781
0.010 0.9785 0.9841 0.9687 0.0115 −5.4491
0.015 0.9676 0.9763 0.9534 0.0169 −5.7378
0.020 0.9570 0.9685 0.9384 0.0219 −5.8602
0.025 0.9467 0.9607 0.9237 0.0267 −5.8922
0.030 0.9368 0.9530 0.9092 0.0311 −5.8359
0.035 0.9271 0.9453 0.8949 0.0352 −5.7974
0.040 0.9168 0.9377 0.8808 0.0390 −5.9953
0.045 0.9071 0.9301 0.8669 0.0424 −6.0576
0.050 0.8969 0.9226 0.8532 0.0455 −6.3100
0.055 0.8869 0.9151 0.8397 0.0481 −6.5590
0.060 0.8770 0.9076 0.8263 0.0502 −6.8075
0.065 0.8670 0.9002 0.8131 0.0519 −7.1503
0.070 0.8574 0.8928 0.8000 0.0531 −7.4479
0.075 0.8482 0.8855 0.7870 0.0537 −7.7547
0.080 0.8393 0.8782 0.7741 0.0537 −8.1046
0.085 0.8295 0.8709 0.7613 0.0529 −8.7556
0.090 0.8210 0.8637 0.7486 0.0513 −9.3149
0.095 0.8115 0.8565 0.7360 0.0486 −10.3638
0.100 0.8026 0.8494 0.7234 0.0445 −11.7496
0.105 0.7935 0.8422 0.7109 0.0386 −14.1333
0.110 0.7841 0.8352 0.6983 0.0294 −19.4286

a decreasing function of thresholds. This leads to the conside-
ration that for each firm with event or without, the occupation
time statistic is in general, also a decreasing function of the
levels of thresholds.

Moreover, further extensions for the statistics based on
(say) Brownian motion can be devised. For instance, if the
intensity of cumulative abnormal returns is of concerned, one
can consider the statistics as

πi(ω) = 1
T

T∑
m=1

δ

⎧⎨⎩
⎡⎣ 1√

T σ̃εi
|

m∑
t=1

ε̂it −mε̂i |
⎤⎦> h

⎫⎬⎭ d−→
∫ 1

0
δ(|B(z)| > h)dz,

where ε̂i = 1
T
∑T

t=1 ε̂it and B(z) stands for the standard
Brownian bridge, as T → ∞. Or,

π�i (ω) = 1
T

T∑
m=1

[
1√

T σ̃εi

|
m∑

t=1

ε̂it |
]

d−→
∫ 1

0
|B(z)|dz,
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where |B(z)| is the reflected Brownian motion. In the first
case, it shows the occupation time statistic for mean devia-
tions of abnormal returns, and its convergence toward the
occupation time of Brownian bridge. And the second stati-
stics will coverge in distribution to the areas underneath the
sample path of reflected Brownian motion. Either one can
also be applied for assessments on intensity of events. Loosely
speaking, for the first extension, the occupation time statistic is
to consider the duration of mean deviations of these cumulative
abnormal returns. The second extension however, is provided
by the condition that reflected Brownian motion can be shown

that |B(z)| d= sup
0≤t≤z

B(t) − B(z), 0 ≤ z ≤ 1. The intensity of

cumulative abnormal returns (asymptotically as T → ∞) can
be approximated (under the null hypothesis) by the integral
of the difference between running maximum and the current
value of Brownian motion, which is similar to the drawdown
process in equation (13) in the following. In other words, the
area beneath the sample path of the drawdown process can be
used as a represenative for the intensity of cumulative abnormal
returns over the entire sample period.

In essence, the test statistic is not to verify (even asympto-
tically) the fittedness of reflected Brownian motion for the
absolute values of cumulative abnormal returns. Instead, it is
for the frequency of hitting the thresholds from the absolute
values of cumulative sums of abnormal returns. Besides, the
construction of statistics covers the entire sample period that
no distinction of estimation period, event window and post-
event window is needed. In addition, the above statistics πi(ω),
π�i (ω), and ψi,T (ω,h) can all be applied to consider monitoring
for significant events when on-line quickest detection is needed

Other time-based statistics for stochastic processes
There are a few similar time-based statistics for diffusion
processes such as Brownian motion, Brownian motion with
drift, and many others. For instance, Tanré and Vallois (2006)
provide the distribution for the range of Brownian motion with
drift where the range is defined as

R(t) = sup
0≤u≤t

Bδ(u)− inf
0≤u≤t

Bδ(u), (5.2.12)
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where Bδ(t) = B(t) + δt ,
{
B(t)

}
t≥0 is the standard Brownian

motion. Although the range statistic is interesting, it only shows
the extent of fluctuations for the underlying process such as
Brownian motion with drift. In other words, the statistic may
be applied to analyze the responsiveness of the underlying
diffusion process when some shocks may occur. In applications
to the financial time series, this statistic may serve as a proxy for
volatility over time. However, it does not show how persistent
the duration of the impacts. Namely, one may find out that an
event that has a strong but short-lived impact will have a higher
range than the other long-lived event that has less imminent
impact with yet more persistent duration. In that case, the event
that has a stronger but short-lived impact may resemble an
event-oriented noise. While fervent on the impact, the noise
quickly resolves itself to be negligible. On the contrary, the
event that has less powerful or immediate impact yet with more
persistent duration may become a more noticeable issue since
the consequence of the event may have more potential influence
for the system.

Zhang and Hadjiliadis (2012) introduce the drawdowns and
the speed of market crash to assess the extent of market crash.
The drawdown process for a one-dimensional diffusion process
on an interval (a,b) is set as

Dt = Xt −Xt , (5.2.13)

where Xt = sup
s∈[0,t]

Xs as the running maximum of Xt , t ≥ 0. In

addition, for a given level K , the first passage time of Dt to hit
the level K (that is, the first time when drawdown process hits
the assumed level) is defined as

τD
K = inf{t ≥ 0|Dt = K}. (5.2.14)

Also, the last visit time of maximum of the diffusion process Xt
before τD

K is defined as

ρ = sup{t ∈ [0,τD
K ]|Xt = Xt }. (5.2.15)

Zhang and Hadjiliadis (2012) thereby define the speed of
market crash as

S = τD
K −ρ. (5.2.16)
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Although the statistics are related with sample path and
time, the impacts from events are not known to be positive
or negative (or both) in advance. The same logic may apply
to the drawup process also. On the other hand, if the impacts
are negative, the shorter the time span between first passage
time of drawdown process Dt for the level K and the last visit
time of maximum of process Xt does imply that the impact lasts
only a short period of time. This implies how fast the negative
news causes the stock returns to fall. And hence, if the infor-
mation or event is known as negative, the statistic in Equation
(5.2.16) can be applied to see how soon the market responds
to the news. The diffulty, however, the analysis is based on
the diffusion processes assumed. Further extensions in constru-
cting suitable sampled statistics and their (asymptotic) statistical
properties are in need.

5.2.2 (ii) Multiple hypothesis tests with

statistics of individual firms

In this section, the hypothesis tests are applied to occupation
time statistics of each selected firm individually. An advantage
of the multiple hypothesis testing with individual test statistics
is that one will know which particular firm selected will accept
or reject the null hypothesis explicitly. This approach, in turn,
helps to identify how the firms may respond differently to the
similar event(s) individually. In terms of multiple hypothesis
testing, the idea is to perform tests on each and every firm
selected (for instance) such as for some arbitrarily small ã > 0,

H01 : |ψ1,T (ω,h)−ψ�(h)| ≤ ã, Ha1 :otherwise,

H02 : |ψ2,T (ω,h)−ψ�(h)| ≤ ã, Ha2 :otherwise,
...

H0n : |ψn,T (ω,h)−ψ�(h)| ≤ ã, Han :otherwise.

(5.2.17)

where ψ�(h) is defined in Equation (5.2.18).
Hence, the distribution function for the occupation time

of reflected Brownian motion will be applied. Notice that
the distribution is not normal. In particular, the moments of
the statistics also depend on the thresholds prespecified. In
other words, the critical values of the statistics depend on
the thresholds (the h′s) and the significance levels assumed.
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Therefore, it is not straightfoward to obtain the critical values
(for statistics) for any given level of significance. Neverth-
eless, for each given threshold h, the p-values of the statistics
can be obtained for all selected firms. The statistical tests can
be performed to see if these p-values are smaller than the
assumed level of significance or not. If so, the test statistic
will reject the null hypothesis that the event is not influential.
Takács (1998) developed explicit formulas for the distribution
function, density function, and the moments of the occupation
time for the reflected Brownian motion. Specifically, let the
threshold be denoted as h ≥ 0, the occupation time (or sojourn
time) of a reflected Brownian motion in the time interval (0,1)
is given as

ψ�(h) =
∫ 1

0
δ(|B(z)|> h)dz, (5.2.18)

where {B(z), z ≥ 0} is the standard Brownian motion. For
the distribution function Gh(x) of the occupation time ψ�(h),
Gh(x) = Pr{ψ�(h) ≤ x}, Takács (1998) shows that

Gh(x) = 2Fh(x)−1+2
∞∑

k=2

k∑
j=2

(−1)j j !
(k + j −1)!

(
k −2
j −2

)
dk−1xk−1[1−F(2j−1)h(x)]

dxk−1

(5.2.19)

where the notation dk−1

dxk−1 (.) represents the (k − 1)th derivative
of the function of interest, and

Fh(x) = 1− 1
π

∫ 1−x

0

e−h2/2u√
u(1−u)

du (5.2.20)

for 0 ≤ x ≤ 1, and h ≥ 0; and Fh(0) = 2�(h) − 1, for h ≥ 0,
where

�(h) = 1√
2π

∫ h

−∞
e−u2/2du. (5.2.21)

Therefore, for any given threshold level h, and for any
occupation time statistic ψi,T (ω,h), it is feasible to find out the
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p-value of the statistic based on the distribution function Gh(x)
– under the null hypothesis such that the corporate finance
event of interest is not influential, and under Assumptions
5.A.1 and 5.A.2. It appears that the distribution function for
occupation time (of reflectd Brownian motion) is not a normal
distribution even though the Brownian motion is with normally
distributed increments. Hence, the p-value of one-sided test for
the occupation time statistic (of selected firm i) under the null
hypothesis is shown as

pi = 1−Gh(ψi,T (ω,h)) = 1−Pr{ψ�(h) ≤ ψi,T (ω,h)},
(5.2.22)

where pi represents the p-value of the occupation time statistic
of selected firm i. The hypothesis testing then is to compare
the pi with the prespecified significance level α and reject the
null if pi <α. The advantage of this approach is that the specific
differences (for the strength of impact from event(s)) in the
selected individual firm’s occupation time statistics are taken
into account.

However, since this involves multiple hypotheses across all
different firms, the statistical inferences must consider the
possible overrejection rate when the statistics are applied repeti-
tively. Two concepts are usually discussed: family-wise error
rate (FWER) and false discovery rate (FDR). The definition of
family-wise error rate is defined as FWER = Pr{reject any true
Hoi}, for i = 1,2, · · · ,n.

Hence, according to Efron (2010), for selected n firms’
occupation time statistics and if the FWER control is applied,
the procedure is to have these p-values

(
p1,p2, · · · ,pn

)
that

produce the list of accepted and rejected hypotheses satisfying
the constraint

FWER ≤ α, (5.2.23)

for any preselected value α. For instance, Bonferroni’s
procedure for controlling the family-wise error rate is: reject
the null hypotheses for which

pi ≤ α

n
, (5.2.24)
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where n is the number of null hypotheses of interest. In other
words, the procedure actually provides the adjusted p-value as

p̃i = min[npi,1] , (5.2.25)

where min[x,1] stands for the lower value of x and 1, and
hence, reject the hypothesis H0i if the adjusted p-value p̃i ≤ α.

According to Benjamini and Hochberg (1995), the family-
wise error rate control of multiple hypothesis testing is with
lots of faults. One particular disadvantage of the FWER control
is that the procedure may lead to loss of power in hypothesis
testing. Hence, they provide a different control scheme using
false discovery rate. The idea of false discover rate is better
explained in the following table.

Actual Test Accepted Test Rejected Total

True null hypotheses U V mo
Non-true null hypotheses T S n −mo
Total n −R R n

Let the total number of hypotheses be n. Suppose there
are actually mo true null hypotheses and n − mo non-true
null hypotheses within the population. These numbers are
unknown. Now let the statistical tests show that there are U
accepted and V rejected under the actual information that
the null hypotheses are true. On the other hand, there are T
accepted and S rejected when the null hyptheses are not true.
The false discovery proportion then, is defined as FDP = V

R ,
and hence, the false discovery rate (FDR) is defined as

FDR = E[
V
R

]. (5.2.26)

In other words, the false discovery rate is the expected value
of the proportion of rejected hypotheses that are erroneously
rejected when the null hypotheses are true. Notice that this
false discovery propotion FDP is not equal to the proportion
of true null hypotheses that are erroneously rejected, which is
V
mo

instead. Hence, the procedure using FDR is to control the
erroneous rejection rate among the rejected hypotheses, not
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all true null hypotheses. The Benjamini and Hochberg (1995)
control procedure is shown as follows. Suppose the decision
rule for each hypothesis H0i provides the p-value for each
i = 1,2, · · · ,n such that pi has a uniform distribution when H0i
is true

H0i : pi ∼ U (0,1). (5.2.27)

where U (0,1) denotes as the uniform distribution in the
interval (0,1). Order the p-values by

p(1) ≤ p(2) ≤ ·· · ≤ p(n). (5.2.28)

Now, for any given (desired) level of significance α, α ∈ (0,1),
let imax be the larget index i such that

pi ≤ i
n
α, (5.2.29)

then, reject the null hypotheses Hoi for any i ≤ imax, and accept
H0i for the others.

According to Benjamini and Hochberg (1995), if the p-
values for the correct null hypotheses are independent of each
other, their control procedure will control the FDR such that

E[FDP] = FDR = πoα ≤ α, . (5.2.30)

where πo = m
n−mo

.
In other words, this actually implies that the procedure will

ensure the multiple hypothesis testing will have the error rate
of rejection less than or equal to the original (desired) level
of significance.6 For applications of false discovery rate control
in occupation time statistics, it is feasible to apply Equation
(5.2.19) to obtain the p-values of null hypotheses across all
firms of interest, and re-order these hypotheses together with
their p-values. Choose the highest indexed hypothesis such
that its p-values satisfies Equation (5.2.29). Then, reject all
hypotheses with lower indices while accept the null for those
with higher indices, instead.

The advantage of the tests is that individual differences from
various hypotheses are considered. It is probable to see that
the impacts from the same event may differ across selected
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firms. Firms that have the same announcement(s) or events
may not necessarily have the identical nature of their business.
For instance, the same type of mergers and acquisitions from
different firms may not result from idential operational chara-
cteristics, managerial concerns, or financial status. Although
average occupation time statistics across selected firms are
simpler to obtain, there exists possible loss of information
where individual differences are averaged out. The disadvantage
of multiple hypothesis testing, however, is that these repetitive
assessments for the p-values of applied statistics may become
demanding if the sample size is relatively large.

5.2.3 Further Extensions for the Occupation-time Statistics

Similar to the tests for comparing distributions, a new
occupation-time-based test for event studies can be devised.
The approach is that, instead of purposedly selecting all firms of
events of interest, all firms with events and without events are all
sampled into two groups. Intuitively, if the event is essential, the
occupation-time statistics of the firm with events and without
events will differ from each other within the same time period
sampled. A particular advantage is that if some econometric
models are applied, no selectivity bias (for event studies) will
be introduced. This gives us an alternative that one can choose
to select some benchmark firms of interest and compare their
occupation-time statistics versus the selected firms of events of
interest. Technically, as one stacks up the abnormal returns for
the firms of interest with the other firms together, and when
the occupation-time statistic of each firm can be treated as
a functional (of thresholds h within a compact support) in a
proper function space, the test for essential event(s) becomes
the test for differences in functional data. The advantage is that
the test is no longer for the structural change in parameters
of regression models alone. Instead, it is for the differences of
functionals as occupation time statistics. The studying interest
then, is for whether these functionals (of thresholds) differ
significantly among the event-related and non-event-related
firms.

If the event is essential, the occupation-time functionals for
the event-related firms will differ significantly from those of
the non-event-related firms. Notice that the occupation time
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statisitcs
{
ψi,T (ω,h)

}
i=1,2,··· ,n defined above are some random

(decreasing) functions of threshold h. Given certain regularity
conditions of these functionals in some function spaces, the
tests for event studies can be performed as comparing the diffe-
rences among these functionals

{
ψi,T (ω,h)

}
i=1,2,··· ,n where the

sample size n may contain some n1 firms of no events in the
first block, and n − n1 firms of events in the second block. If
the events are essential, then there exists a significant diffe-
rence over these occupation time functionals across all firms.
This setting then, will be similar to the hypothesis testing for
differences of functional data especially for the tests of mean
changes. In a sense, this is similar to a structural change test for
functional data where the change point is known in advance.
For the threshold h ∈ [0,1], let the occupation time functionals
for the sampled firms be donted as

ψi,T (ω,h) =μ1(h)1{1≤i≤n1} +μ2(h)1{n1<i≤n} (5.2.31)

+�i(h), E[�i(h)] = 0.

The null hypothesis for the occupation time statistics on event
studies will be shown as

H0 : E[ψi,T (ω,h)] = μ1(h), ∀i = 1,2, · · · ,n, (5.2.32)

and the alternative hypothesis is shown as

HA :

{
E[ψi,T (ω,h)] = μ1(h), 1 ≤ i ≤ n1,
E[ψi,T (ω,h)] = μ2(h), n1 < i ≤ n.

(5.2.33)

Alternatively, it can also be restated in the generalized two-
sample test such as

H0 : L (ψ1,T (ω,h)) = L (ψ2,T (ω,h)) = ·· · = L (ψn,T (ω,h)),
(5.2.34)

HA : L (ψ1,T (ω,h)) = L (ψ2,T (ω,h)) = ·· · �= L (ψn1,T (ω,h))
= ·· · = L (ψn,T (ω,h)), (5.2.35)

where the function L (.) stands for the distribution function.
For example, a two-sample test such as Ferger (2000) for
functional data can be applied to occupation time stati-
stics

{
ψi,T (ω,h)

}
i=1,2,··· ,n. The idea is to apply the difference
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between estimated change point versus the assumed change
point which is given by the samples. For instance, if the setting
is given in Equation (5.2.31), let n1 = [θn], 0 ≤ θ ≤ 1, [x]
represents the largest integer that is less than x. Since n1 is
known already, it is straightforward to obtain the parameter θ ,
accordingly. Hence, intuitively, if the estimated change point of
these stacked up

{
ψi,T (ω,h)

}
i=1,2,··· ,n differs little from the θ ,

the null hypothesis of no change will be rejected. Ferger (2000)
introduces a kernel-based estimator for θ as

θ
(+)
n = 1

n
argmax
1≤k≤n−1

w(
k
n

)
n∑

i=k+1

k∑
j=1

K (ψi,T (ω,h),ψj ,T (ω,h)),

(5.2.36)

where the weight function is chosen as w(t) = t−a(1− t)−b, 0<
t < 1, 0 ≤ a,b < 1

2 . The kernel function is set as antisymmetric
such that K (x, y) = −K (y,x). Then, under the other regularity
conditions,

θ
(+)
n − θ = O(n−1), n → ∞. (5.2.37)

Hence, the test statistic can be formed as

�
(+)
n = 1{|θ (+)

n − n1
n |≤c(+)

}, (5.2.38)

where 1(.) is an indicator function. Or more specifically, reject
the null hypothesis (that is, �(+)

n = 0) if the absolute diffe-
rence between θ

(+)
n and n1

n is greater than the critical value
c(+). Ferger (2000) in showing the weak convergence such as

θ
(+)
n

d−→ τ
(+)
w , where τ

(+)
w = argmax

0<t<1
w(t)B(t), B(t) represents

the standard Brownian bridge that provides the critical values
c(+)
α as the α−quantile of the process |τ (+)

w − θ |.
The extensions show that many applications of occupation

time statistics can be provided to analyze the event studies
in corporate finance. Given that the underlying financial time
series are subject to possible time-varying parameters, these
assessments of level crossings over the time period become
some functionals (of certain function spaces) instead. In
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contrast to relying on changes in parameters to verify the
impact of event, justification such as considering differences in
shapes, changes in distributions of functional data seems more
promising to analyze the event studies in corporate finance. On
the other hand, the monitoring test or on-line detection test
can also be provided by observing the change of shapes in these
occupation time functionals.

In particular, the monitoring (on-line) test for occupation
time functionals ψi,T (ω,h) is similar to the test using empirical
survival functions of h. For instance, given a particular firm i, it
is feasible to consider that if the training period is (say)[0,T ],
whereT → ∞, define the test statistic QT (k) as

QT (k) =
(

sup
0≤h≤1

|ψi,T +k(ω,h)−
∫ 1

0
δ(
∣∣� (z)

∣∣> h)dz|
)

,

where ψi,T +k(ω,h) = 1
T +k

∑T +k
m=1 δ

[
1

(
√

T +k)σ̃εi

∣∣∑m
t=1 ε̂it

∣∣> h
]
,

k ≥ 1, � (z) is the diffusion process under the null hypothesis,
such as standard Brownian motion.

In other words, the statistic QT (k) can be applied to see if
there is a significant difference between the occupation time
statistic (with additional k observations) and the occupation
time of reflected diffusion process under the null hypothesis
as additional observations flow in. The stopping time for
the QT (k) statistics is defined as k∗ = inf

(
k ≥ 1, |QT (k)> c�

)
,

where c�is the critical value. The advantage is that it does
not assume the coefficient(s) of the underlying processes{
ε̂it
}

t=1,2,··· ,T ,···are stable before the starting time k for
monitoring. Instead, it only assumed that the occupation time
statistic under the null does not differ much from that of
reflected diffusion process (such as reflected Brownian motion)
prior to the starting time k. These are left for elaborations in
further research.



Epilogue

Event studies in corporate finance are so critical for verification
on the capital market efficiency and the speed of adjustments
in stock returns. The contents of this book merely touch
the surface of this gigantic territory of intellectual expertise.
Although the issues in event studies of corporate finance
are not as spectacular as the space wonderment of galaxies,
their varieties and depths are enormous. For the purpose of
continuing research, certain extended works are required. For
instance, the model search procedures can be extended with
further works in statistics for long dependence. Given that the
concept of long (or strong) dependence in stochastic processes
(either for time series or cross-sectional observations) is more
extensive than the specification of unit root(s), developments of
robust statistics for long dependence is in need to elaborate the
model selection (or variable selection) in empirical asset pricing
models. Various definitions of strong dependence can be intro-
duced to provide better verifications on the essential feature
of nondiversifiable pricing kernels that describe the benchmark
normal (or expected) returns of risky securities.

Separation between normal (or expected) returns and
abnormal returns should be clearly defined (at least, theore-
tically) to make event studies in corporate finance with less
ambiguities. Further works for broader definitions of diver-
sification will also improve the rigors and thoroughness for
the asset-pricing kernels that clearly define this separation of
returns. In fact, with more general definitions on diversification
applied, the property as nondiversifiable systematic components
of stock returns will become even apparent. This, in turn, may
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provide another vehicle to prevent the joint hypothesis testing
problems in event studies of corporate finance.

For the developments of occupation time statistics, many
extensions can be provided in further elaborations. Currently,
the statistics are based on the invariance principle for Brownian
motion when cumulative sums of abnormal returns are applied.
The other diffusion processes such as Lévy processes, or jump
processes can be introduced to allow even broader possibilities
where the statistics can be applied. Specifically, the asymptotic
normality assumption will not become the limitation for the
occupation time statistics to analyze the duration of impacts
from events. The jump processes (or simply the Brownian
motion with random drift) will also reduce the possibility of
sporadic disturbances.

In addition, the intensity of these cumulative abnormal
returns (over the entire sample period) can be used as alter-
native measures for the event studies as well. Two alternative
statistics of diffusion process (in Chapter 5, for example) are
provided as

πi(ω) = 1
T

T∑
m=1

δ

{[
1√

T σ̃εi

|
m∑

t=1

ε̂it −mε̂i|
]
> h

}
d−→
∫ 1

0
δ(|B(z)|> h)dz,

or

π�i (ω) = 1
T

T∑
m=1

[
1√

T σ̃εi

|
m∑

t=1

ε̂it |2
]

d−→
∫ 1

0
|B(z)|2dz,

where they can also be applied to analyze the intensity of
cumulative abnormal returns in event studies.

Furthermore, the development of monitoring test(s) in using
occupation time statistics is more promising than the on-
line detection provided in many statistical and econometric
literature. Allowing stability of the occupation time statistics
under the null is less demanding than the monitoring tests
that require no contamination (for parametrization of models)
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in the estimation period, at least, in financial time series of
interest. Given the time-varying nature of financial time series,
the notion as testing structural change is perhaps less essential
than promptly accommodate the changes in tracking. The real
challenge, however, is “how long these impacts may last?”
Monitoring tests based on occupation time statistics are to
assess the essentiality (of forthcoming event(s)) based on the
intensity of the impacts may follow. All these works can be
elaborated for extension of event studies in corporate finance.



Notes

1 Data Collection in Long-Run or Short-Run Format?

1. For simplicity, the notation for information signal yi is not denoted with
the time index since the announcement time for the event(s) may not be
exact.

2. The correctness here means, the model specification is best-fitted with
respect to the systematic information set �t and, the inclusion of essential
(not just statistically significant) explanatory variables.

3. For instance, ln(
∏T

t=1 [1+ rit ]−∏T
t=1 [1+ rmt ])=

∑t+T
t (rit −rmt )+υit ,

since ln(1 + rit ) ≈ rit and ln(1 + rmt ) ≈ rmt , respectively, using Taylor
expansions around zero.

4. These attributes can be extended to multidimensional so that rmt can be a
k-dimensional stochastic process or, it can be the return of some non-event
compatible firms.

5. Notice that this setting has included some firm-specific attributes for the
conditional expectation of excess returns. However, these attributes may
not be the non-diversifiable factors of excess returns. In Chapter 2 later
on, it will be shown that inclusion of these attributes in the model(s) may
not improve the tests of event studies event when t lies in the event period
where announcement is available, if these included attributes are associated
with the events.

6. Implicitly, this setting implies that E[εit |Wit ] �= 0 when t lies in the
announced event period.

2 Model Specifications for Normal
(or Expected) Returns

1. Another limitation of Bai’s (2003) model is that it implicitly assumes the
growth rate for the sum of squared factor loadings is bounded by N . This
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implies that the factor loadings of each factor belong to the l2–space, which
contains all squared summable (infinite) sequences of real numbers. The
assumption, then, limits the scope for discussing the nondiversifiability of
the (hidden) factor(s).

2. Notice that when k = 0, the model in equation (7) may only consider a
drift or a constant term. In this case, the εit may be considered as the
mean-adjusted abnormal return for event studies.

3. The factor loadings of fitted model in equation (10) and the factor loading
βh

i can be stochastic and time-varying also. The extension, however,
may need to assume that the factors (included and hidden) and the
factor loadings are mutually independent. Nevertheless, the conclusion
of the nondiversifiability of hidden factor and its implication of strong
cross-sectional memory will still hold.

4. Notice that this growth rate is for the cumulative sums of the covariances,
not for the partial sums of covariances.

5. Notice that the condition is applied to L2-norm of the cumulative sums,
not just the sums themselves.

6. In fact, even if the mean E[εit ] �= 0, the following definition can be
modified to N −α (∑N

m=1 Var
(

1
N
∑m

i=1 εit

))
< ∞, .as N → ∞. And

the following assumption A7 will be modified to weak convergence to
fractional Brownian motion with drift. Yet, this will incur additional
technicality without improving the asymptotic arguments. Hence, this is
left for further studies.

7. Notice that the bottom-up sequential model search is not identical to
forward search proposed by Atkinson and Riani (2002). Their approach
is based on the increasing subsets of all observations to verify the model.

8. One reason for the orthogonalization is to obtain the estimate the factor
loadings of newly included proxy - given that these proxies are possibly
correlated. This approach is similar to Forsythe et al. (1973) or so-called
orthogonal least squares algorithm in system science.

9. It is not surprising to see that some empirical asset pricing models with
inclusion of diversifaible factor(s) may still enjoy tentative predictability.
Although promising, this predictability do not sustain over different time
horizons.

3 Cumulative Abnormal Returns or
Structural Change Tests?

1. Apparently, one can set that εi
t = λi + ξit ,where λi �= 0, when t ∈ (T1,T2].

2. For further extension that considers when γ = 1
2 , it is discussed in Huková

et al. (2007).
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4 Recursive Estimation for Normal
(or Expected) Returns

1. Certainly, these explanatory variables may include some lagged
dependent/ independent variables. In addition, ψt can also be extended
to include the functionals of known explanatory variables in some suitable
function spaces.

2. The notation logα(x) is denoted for (log(x))α for simplicity.
3. Notice that the notations ||.||L3p and ||.||L6p represent the L3p–norm and

L6p–norm of the variable of interest, respectively.
4. Although stochastic function is more general, it is far more difficult to

obtain asymptotic properties for the system.
5. Grillenzoni (2008) also considers the kernel version of the weighted

least squares method. However, since the recursive version for the kernel
version is not feasible, the discussions focus on the exponential version
only.

5 Time Will Tell! A Method with
Occupation Time Statistics

1. It is straightforward to verify that if ηit and some of
{
φjt

}
j=1,2,··· ,k are not

mutually orthogonal, the pricing error can still be absorbed by the time-
varying coefficient model. For instance, let ηit = δ̃i

(∑k
j=1φjt

)
, δ̃i �= 0, it

is convenient to combine this terms with the other
{
φjt

}
j=1,2,··· ,k and the

equation will change to rit = α̈it +∑k
j=1 β̈

i
jtφjt +εit .

2. Certainly, weak convergence to other diffusion processes such as Levy
process can be assumed to allow more generality where jumps and
asymptotic nonnormality are considered.

3. Given that there are many different definitions for the types of Banach
space, the definition of Ledoux and Talagrand (1991) is applied for
simplicity.

4. For simplicity, the Banach-valued central limit theorem for independent
Banach-valued random variables here assuming the occupation time
statistics are mutually independent. In addition, the occupation time
functionals will converge to some independent identically-distributed
occupation times of reflected Brownian motion under the null. Further
extensions can be obtained if applying the central limit theorem for
dependent Banach-valued random variables.

5. Here, by saying T → ∞ faster than n is to assume that the sample time
period expands faster than the numbers of selected firms concerning the
event(s) of interest. This seems reasonably feasible, especially for financial
time series.

6. The independence is assumed for simplicity in multiple hypothesis testing
for occupation time statistics. However, further extensions on allowing
dependence of these hypotheses are available in many references.
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Horváth, L., P. Kokoszka, and J. G. Steinebach, 2007, On sequential
detection of parameter changes in linear regression, Statistics and Proba-
bility Letters, 77, 885–895.

Hutson, E., 2000, Takeover targets and the probability of bid success:
evidence from the Australian market, International Review of Financial
Analysis, 9, 45–65.

Jahn, J., 2007, Introduction to the Theory of Nonlinear Optimization, 3rd ed.,
Springer Science & Business Media.

Jakobsen, J. B., and T. Voetmann, 2005, A new approach for interpreting
long-run returns, applied to IPO and SEO stocks, Annals of Economics
and Finance, 6, 337–363.

Jarrell, G. A., and A. B. Poulsen, 1989, The returns to acquiring firms
in tender offers: evidence from three decades, Financial Management,
Autumn, 18, 3–12.

Jegadeesh, N., and J. Karceski, 2009, Long-run performance evaluation:
correlation and heteroskedasticity-consistent tests, Journal of Empirical
Finance, 16, 101–111.

Jeng, J.-L., and W. Liu, 2012, Do idiosyncratic risks really contain a
hidden non-diversifiable factor? A diagnostic testing approach, Journal of
Mathematical Finance, 2, 251–263.

Jeng, J.-L, D. Park, and M. Dewally, 2014, On the occupation times of
mergers and acquisitions in event studies, working paper.

Jeng, J.-L., and E. Tobing, 2012, Finding empirical multifactor asset-pricing
models - A sequential model search approach, working paper.

Joensen, A. K., H. Madsen, H. A. Nielsen, and T. S. Nielsen, 2000,
Tracking time-varying parameters with local regression, Automatica, 36,
1199–1204.

Johnson, B. McK. and T. Killeen, 1983, An explicit formula for the C.D. F. of
the L1norm of the Brownian bridge, Annals of Probability, 11, 807–808.

Karafiath, I., and D. E. Spencer ,1991, Statistical inference in multi-
period event studies, Review of Quantitative Finance and Accounting, 1,
353–371.

Kothari, S.P., and J. B. Warner, 1997, Measuring long-horizon security price
performance, Journal of Financial Economics, 43, 301–339.

Khotari, S. P., and J. B. Warner, 2007, Econometrics of event studies,
Handbook of Corporate Finance: Empirical Corporate Finance, Vol. 1,
4–36.

Lahiri, S. N., 2003, Resampling Methods for Dependent Data, Springer-Verlag.



182 R E F E R E N C E S

Ledoux M., and M. Talagrand, 1991, Probability in Banach spaces,
Springer–Verlag.

Loughran, T., and J. R. Ritter, 1995, The new issue puzzle, Journal of
Finance, 50, 23–51.

Loughran, T., and A. M. Vijh, 1997, Do long-term shareholders benefit from
corporate acquisitions? Journal of Finance, 52, 1765–1790.

Lyon, J. D., B. M. Barber, and C.-L.Tsai, 1999, Improved methods for tests
of long-run abnormal stock returns, Journal of Finance, 54, 165–201.

Mackinlay, A. C., 1997, Event studies in economics and finance, Journal of
Economic Literature, 35, 13–39.

Masulis, R. W., 1980, The effects of capital structure change on security
prices: a study of exchange offers, Journal of Financial Economics, 8,
139–178.

Mei, C., W. Zhang, and Y., Leung, 2001, Statistical inferences for varying-
coefficient models based on locally weighted regression technique, Acta
Mathematicae Applicatae Sinica, 17, 407–417.

Morse, D., 1984, An econometric analysis of the choice of daily versus
monthly returns in test of information content, Journal of Accounting
Research, 22, 605–623.

Nielsen, H. K., T. S. Nielsen, A. K. Joensen, H. Madsen, and J. Holst,
2000, Tracking time-varying-coefficient functions, International Journal
of Adaptive Control and Signal Processing, 14, 813–828.

Ouysse, R., 2006, Consistent variable selection in large panels when factors
are observable, Journal of Multivariate Analysis, 97, 946–984.

Parzen, E., 1981, Time series model identification and prediction variance
horizon, in Applied Time Series Analysis II, 415–447.

Pesaran, M. H., 2006, Estimation and inference in large heterogeneous panels
with a multifactor error structure, Econometrica, 74, 967–1012.

Pettengill, G. N. and J. M. Clark, 2001, Estimating expected returns in an
event study framework: evidence from the Dartboard column, Quarterly
Journal of Business and Economics, 40, 3–21.

Pötscher, B. M., 2004, Nonlinear functions and convergence to Brownian
motion: beyond the continuous mapping theorem, Econometric Theory, 20,
1–22.

Rau, P. R., and T. Vermaelen, 1998, Glamour, value and the post-acquisition
performance of acquiring firms, Journal of Financial Economics, 49,
223–253.

Ritter, J. R., 1991, The long-run performance of initial public offerings,
Journal of Finance, 46, 3–27.

Saporoschenko, A., 2011, The effect of Santa Ana wind conditions and
cloudiness on Southern California stock returns, Applied Financial
Economics, 21, 683–694.

Sen, P. K., 1982, Invariance principles for recursive residuals, Annals of
Statistics, 10, 307–312.



R E F E R E N C E S 183

Strong, N., 1992, Modelling abnormal returns: a review article, Journal of
Business Finance and Accounting, 19, 533–553.

Takacs, L., 1998, Sojourn times for the Brownian motion, Journal of Applied
Mathematics and Stochastic Analysis, 11, 231–246.
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