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Preface 

The phenomenon of long memory had been known long before suit-
able stochastic models were developed. Scientists in diverse fields of 
statistical applications observed empirically that correlations be-
tween observations that are far apart (in time or space) decay to 
zero at a slower rate than one would expect from independent 
data or data following classic ARMA- or Markov-type models. As 
a result of Mandelbrot's pioneering work, self-similar and related 
stationary processes with long memory were later introduced to 
statistics, to provide a sound mathematical basis for statistical in-
ference. Since then, long memory (or long-range dependence) has 
become a rapidly developing subject. Because of the diversity of 
applications, the literature on the topic is broadly scattered in a 
large number of journals, including those in fields such as agron-
omy, astronomy, chemistry, economics, engineering, environmental 
sciences, geosciences, hydrology, mathematics, physics, and statis-
tics. This book grew out of an attempt to give a concise summary of 
the statistical methodology for data with long-range dependence, 
in a way that would be useful for those who need to analyze such 
data, as well as for those who would like to know more about the 
mathematical foundations of the area. To make the book readable, 
a selection of important topics was necessary. An extensive bibliog-
raphy given at the end of the book should provide help for studying 
topics not covered here or not covered in detail. 

For readezs familiar with the topic, the chapters can be read in 
arbitrary sequence. For those who are new to the area, the first 
three chapters give the basic knowledge required to read the rest 
of the book. Some elementary knowledge on time series analysis is 
helpful. The first chapter gives a simple introduction to the topic of 
long-range dependence, discusses data examples, and gives a short 
historic overview. In the second chapter, stochastic processes for 
modelling long-range dependence are introduced. Chapter 3 sum- 
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marizes some limit theorems needed in the chapters that follow. 
Estimation of the long-memory parameter (and other parameters 
characterizing the dependence) is discussed in Chapter 4 (simple 
heuristic methods), Chapters 5 and 6 (maximum likelihood esti-
mation) and Chapter 7 (robust estimation). Location and scale es-
timation, as well as forecasting are discussed in Chapter 8. Chap-
ter 9 covers regression and analysis of variance. Goodness-of-fit 
tests are treated in Chapter 10. Miscellaneous topics, including 
infinite variance processes, GARMA processes and simulation are 
discussed briefly in Chapter 11. Listings of a few Splus-programs 
and data sets are given in Chapter 12. The programs are simple 
straightforward implementations of selected methods discussed in 
the book. Instead of optimizing the programs in terms of fastest 
performance, the emphasis was put on simplicity and readability 
of the code. 

I would like to thank the editor, John Kimmel, for his continu-
ous support and encouragement. I am grateful to the following -col-
leagues for providing me with data sets and detailed information re-
garding their data: H. Heeke and H. Hundt (Siemens, Munich, Ger-
many), W. Willinger, W. Leland, D. Wilson, A. Tabatabai (Bell-
core, Morristown, USA), C. Croarkin, C. Hagwood, M. Pollak and 
R.N. Varner (NIST, Gaithersburg, USA), H.P. Graf (CIBA Geigy, 
Basel, Switzerland), K.R. Briffa and P.D. Jones (Climate Research 
Unit, University of East Anglia, Norwich, UK) and R.L. Smith 
(University of North Carolina, Chapel Hill, USA). I would also like 
to thank Raj Bhansali, Stamatis Cambanis, Andrey Feuerverger, 
Chris Field, Sucharita Ghosh, Hanspeter Graf, Frank Hampel, Cliff 
Hurvich, Hansruedi Kiinsch, Doug Martin, Emanuel Parzen, Bob 
Shumway, Richard Smith, Werner Stahel, Paul Switzer, Murad 
Taqqu, Norma Terrin, Yoshihiro Yajima, Victor Yohai, Ruben Za-
mar and Scott Zeger for many interesting discussions on time series 
and long memory in particular. Also, I would like to thank three 
anonymous referees and my colleagues at the University of Zurich, 
Ueli Helfenstein and Alois Tschopp, for their valuable remarks on 
the first version of the manuscript. Finally, I would like to thank 
my family, in particular my mother and my wife, for their support 
and my daughter for her cheerfulness, without which this book 
could not have been written. 

Jan Beran, 
Zurich, February 1994 



CHAPTER 1 

Introduction 

1.1 An elementary result in statistics 

One of the main results taught in an introductory course in statis-
tics is: The variance of the sample mean is equal to the variance 
of one observation divided by the sample size. In other words, 
if X 1 , X n  are observations with common mean p = E(X i ) 
and variance cr 2  = var(Xi) = E [(X i  — p) 2 ], then the variance of 
X = E in  Xi is equal to 

var(X) = cy 2 n -1 . 	 (1.1) 

A second elementary result one learns is: The population 
mean is estimated by X,  and for large enough samples the 
(1 — a)—confidence interval for 'I, is given by 

if cr 2  is known and 

X-  ± za a n -7  
2 

(1 .2) 

X ± 2  s  n 	 (1.3) 

if C7 2  has to be estimated. Here 3 2  = (n — 1) -1  Eni 1 (Xi — X) 2  is 
the sample variance and  z. is the upper (1 —) quantile of the 
standard normal distribution. 

Frequently, the assumptions that lead to (1.1), (1.2), and (1.3) 
are mentioned only briefly. The formulas are very simple and can 
even be calculated by hand. It is therefore tempting to use them in 
an automatic way, without checking the assumptions under which 
they were derived. How reliable are these formulas really in prac-
tical applications? In particular, is (1.1) always exact or at least a 
good approximation to the actual variance of X? Is the probability 
that (1.2) and (1.3) respectively contain the true value p, always 
equal to or at least approximately equal to 1 — a? 

In order to answer these questions one needs to analyze some 
typical data sets carefully under this aspect. Before doing that (in 
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Section 1.4), it is useful to think about the conditions that lead to 
(1.1), (1.2) and (1.3), and about why these rules might or might 
not be good approximations. 

Suppose that X1, X2, ..., X n, are observations sampled randomly 
from the same population at time points i = 1, 2, ..., n. Thus, 
Xi, ..., X n, are random variables with the same (marginal) distribu-
tion F. The index i does not necessarily denote time. More gener-
ally, i can denote any other natural ordering, such as for example, 
the position on a line in a plane. 

Consider first equation (1.1). A simple set of conditions under 
which (1.1) is true can be given as follows: 

1. The population mean p, = E (Xi) exists and is finite. 
2. The population variance a 2  = var(X i ) exists and is finite. 
3. X1, ..., X n, are uncorrelated, i.e., 

p(i, j) = 0 for ij, 

where 
7(i,j)  

P(i,i) = a2 

is the autocorrelation between Xi and X i , and 

(i, j) = ERX i — ii)(X1 — p)] 

is the autocovariance between X i  and  X. 

The questions one needs to answer are: 

1. How realistic are these assumptions? 

2. If one or more of these assumption does not hold, to what 
extent are (1.1), (1.2), and (1.3) wrong and how can they be 
corrected? 

The first two assumptions depend on the marginal population 
distribution F only. Here, our main concern is assumption 3. Un-
less specified otherwise, we therefore assume throughout the book 
that the first two assumptions hold. The situation involving infinite 
variance and/or mean is discussed briefly in Chapter 11. 

Let us now consider assumption 3. In some cases this assump-
tion is believed to be plausible a priori. In other cases, one tends to 
believe that the dependence between the observations is so weak 
that it is negligible for all practical purposes. In particular, in ex-
perimental situations one often hopes to force observations to be at 
least approximately independent, by planning the experiment very 
carefully. Unfortunately, there is ample practical evidence that this 
wish does not always become a reality (see, e.g., Sections 1.4 and 
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1.5). A typical example is the series of standard weight measure-
ments by the US National Bureau of Standards, which is discussed 
in Sections 1.4 and 7.3. This example illustrates that non-negligible 
persisting correlations may occur, in spite of all precautions. The 
reasons for such correlations are not always obvious. Some possi-
ble "physical" explanations are discussed in Section 1.3 (see also 
Section 1.5.5). 

Let us now consider the question of what happens to (1.1) 
when the observations are correlated. For X n  to be meaning-
ful, we assume that E(X t ) = p is constant. The variance of 
X = E in  Xi is equal to 

var(X) = n (i, j) = n 2  a 	ij). 	(1.4) 

If the correlations for  ij  add up to zero, then 

o- 2 = no- 2 . 
ihj=1 
	

i= 1 
	

i=1 

This means that, if 

P ( i, .1 ) = 0, 	 (1.5) 

then (1.1) holds. In particular this is the case if X i , 	X n  are 
mutually uncorrelated. Otherwise, if (1.5) does not hold, then the 
variance of X is equal to 

	

a 2 [1  + Sn (p)]n -1 	 (1.6) 

with the non-zero correction term 

n(p) = n-1 	P(i, 	 (1.7) 
iO3 

If the correlations p(i, j) depend only on the lag j  —  j , then (1.7) 
can be simplified to 

n-1 
1 	—

k 

)p(k). 

 

(1.8) 
k=1 

For simplicity we use the notation 7(i — j) = -y(j — i) = -y (i, j) and 
p(i — j) = p(j — i) = p(i, j). We will call a stochastic process with 
such correlations and a constant mean p, = E(Xi) stationary. 
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Table 1.1. Correction factor c(a) such that  var()  =-- a2 c(a)n-1  where 
Xi is an AR(1)-process Xi= aX j_i+ Ei. 

a -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
c(a) 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 

Consider, for example, an AR(1) process (first-order autoregres-
sive process): 

Xi = aXi_i Ei, a E (-1, 1) 	 (1.9) 

with independent increments ei that are normally distributed with 
zero mean and constant variance  a. E 

Pei )» 	P( i 	j) 	ali 	 (1.10) 

Combining (1.4), (1.8), and (1.10), 

var(X) = n-2 E 	n -2aL2r‘—` L 1 + 	al i—il] 

i,j=1 

n-1 
= a 2 n -1 ± 2 E(1 _ 

k=1 

This can be written as 

1=1 	i0j 

a 2 [1 6n (a)]n -1  = a 2 cn (a)n -1 	 (1.11) 

with 
2a 	 1 	--1  an  6 n  = 

1 — a 
[1 n -1 	 + n ' 

 — a 
]• 	(1.12) 

1 — a 

Thus for large samples, 

var() ;--.-ii cr 2 [1 + 6(a)]n -1  = a 2 c(a)n -1 , 	(1.13) 

with 
2a  

6(a) = 
1 — a

. 	 (1.14) 

The right-hand side of (1.1) has to be multiplied by the constant 
c(a) = 1 ± 6(a). How much the correction factor c(a) differs from 
1 depends on a. When a is close to 1, then c(a) is large. In the 
limit we obtain c(a) oo for a 1. On the other hand, c(a) 
0 for a 	—1. Table 1.1 displays c(a) for different values of a. 

The numbers in Table 1.1 illustrate that, if the dependence is 
very strong (la is close to 1), then cr 2 n -1  is a very poor approx-
imation of the variance of .k rt . In such a case it is important to 
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have a good estimate of c(a). Fortunately, a strong dependence 
between observations that are not far apart usually becomes quite 
obvious, by plotting the series against time. If a is very close to 
1, then successive observations will clearly tend to assume similar 
values. Similarily, if a is close to —1, then successive observations 
will clearly tend to alternate their position with respect to an over-
all mean. The danger of not noticing that 16(a) 1 is large is therefore 
not too extreme. 

It is important to note that, apart from the constant c(a), for-
mula (1.1) does not need any modification. The variance of X is 
still proportional to n -1 . The same is true for any sequence of 
observations for which 

S(p) = lim 6n (p) = lim n — 
 n--+oo 	ri—>oo P(i,i) 	(1.15) 

i0i 

exists, is finite, and is larger than —1. Asymptotically we then have 

var(X)R-----,' cr 2 [1 + 6(p)]n -1  = cr2  c(p)n -1 . 	(1.16) 

Most time series models known in the literature exhibit this behav-
ior. The best known are ARMA processes and Markov processes. 
For a thorough discussion of ARMA processes, their properties, 
and statistical applications, we refer the interested reader to stan-
dard time series books such as those by Box and Jenkins (1970), 
Priestley (1981), and Brockwell and Davis (1987). 

Equation (1.16) is a generalization of (1.1) in that it allows the 
constant c(p) to differ from 1. Is this generalization sufficient? In 
principle, the constant c(p) can assume any positive value. One 
might therefore think that, for all practical purposes, (1.16) is flex-
ible enough. It turns out however that for some data sets, the vari-
ance of X appears to differ from (1.1) not just by a constant factor 
but rather by the speed at which it converges to zero. Data exam-
ples that exhibit such behavior are discussed in Sections 1.4 and 
1.5. Naturally, since one has only a finite number of observations, it 
is not possible to prove with absolute certainty that var(X ) tends 
to zero slower than n -1 . For a given n there is always a constant 
c such that var(X) = c • n -1 . For instance, we always can find an 
ARMA model with a suitable value of c. If, however, the actual data 
generating process is indeed such that the variance of X n  decays 
to zero slower than n -1 , then c is not constant but is increasing 
with n. Fitting the "best" ARMA model (best in some mathemat-
ically defined sense) will then lead to using ARMA-models with 
many parameters. With increasing sample size, the number of pa- 
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rameters will tend to infinity. For many reasons, using an excessive 
number of parameters is undesirable, especially because it increases 
the uncertainty of the statistical inference, and the parameters are 
difficult to interpret. Therefore, if there is an indication of a slower 
decay of the variance of X, it is useful to model this decay explic-
itly. The simplest approach one can think of is a decay proportional 
to n for some a E (0, 1). In other words, 

	

var(X-  ) P,- o-2  c(p)n' 
	

(1.17) 

for some constant a E (0, 1) where c(p) is defined by 

c(p) = lim na-2  
n—oo 

  

(1.18) 

i0.i 

  

The connection between (1.17) and the correlation structure can 
be seen most easily by considering correlations that depend on the 
lag li — j I only. From (1.8) and (1.18) it follows that with increasing 
sample size n, the sum of all correlations with lags —n ± 1, -'L-n, ± 

2, ..., —1,0, 1, 2, ..., n — 2, n — 1 must be proportional to n 1 ', i.e., 

n-1 

E p(k)R-,- constant • n 1 ". 	(1.19) 
k=—(n-1) 

As a is less than 1, this implies that 

00 
E p(k) = oo. 

k=—oo 

(1.20) 

Thus the correlations decay to zero so slowly that they are not 
summable. More specifically, (1.19) holds if 

p(k)'-edi c p iki' 	 (1.21) 

as I k I tends to infinity and c p  is a finite positive constant. The intu-
itive interpretation of (1.21) is that the process has long memory. 
The dependence between events that are far apart diminishes very 
slowly with increasing distance. A stationary process with slowly 
decaying correlations (1.21) is therefore called a stationary process 
with long memory or long-range dependence or strong dependence 
(in contrast to processes with summable correlations which are also 
called processes with short memory or short-range correlations or 
weak dependence). We will see in Chapter 2 that equation (1.21) is 
essentially equivalent to the spectral density having a pole at zero. 
Recall that the spectral density f is defined by (see, e.g., Priestley 
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1981): 
0.2 

f(A) = —27r 	p(k)e ikA . 	 (1.22) 

	

=-00 	
1 

Then (1.21) implies 	
/ 

f PO ,c--- cfl kr-1, 	 (1.23) 

as A -- 0 where cf is a positive constant. Thus, for a < 1, f tends to 
infinity at the origin. In contrast to long-range dependence, (1.15) 
is finite for processes with correlations that decay so quickly to 
zero that 

00 

E p(k) = constant <  oc. 	 (1.24) 
k= —oo 

For example, for ARMA and Markov processes, the asymptotic 
decay of the correlations is exponential in the sense that there is 
an upper bound 

IP(k)I < bak 	 (1.25) 

where 0 < b <  oc,  0 < a < 1 are constants. Because the absolute 
value of a is less than 1, (1.24) holds. In the special case of an 
AR(1) process, this was previously illustrated explicitly. 

It is important to note that equation (1.21) determines only the 
decay of the correlations. It does not say that there are some spe-
cific lags for which p(k) is particularly large. This makes the detec-
tion of long-range dependence more difficult. We cannot just look 
at one or a few selected correlations to notice that (1.21) holds. We 
rather have to judge the way the correlations converge to zero with 
increasing lag. For statistical inference, it is the combined effect of 
all correlations that determines how accurate are the rules derived 
under independence. Therefore, in spite of being difficult to detect, 
long-range correlations are relevant for statistical inference, even if 
their individual values seem rather small. For instance, the effect 
of (1.21) on the variance of X can be extreme, even in the case 
of small individual correlations. What matters is that the sum of 
the correlations is large. In contrast to that, for short-range corre-
lations with (1.24), the correction Sri  is typically made large by a 
few individually large correlations. For example, the sum of corre-
lations of the form (1.10) can be only large when a is large. Because 
p(k) = a 1k1  , this implies that the lag-1 correlation is large. We are 
therefore likely to detect the dependence by estimating p(1) from 
the data. Strictly mathematically speaking, (1.25) also determines 
the asymptotic behavior of p(k) only. However, it gives an upper 
bound that decays to zero very fast. If (1.25) does not hold for 

00 
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Table 1.2. Comparison of v a  = crnA with vi = var(fG,) --&-  for p(k) = 
al k l and for p(k) = 7 ' 1k1—(12 (-y = 0.1, 0.5, 0.9). Listed are the ratios 

q91 = V1 /Vo. Also given are the maximal correlations pmax  = maxk p(k). 

Pmax n = 50 n = 100 n = 400 n = 1000 

0.1 1.108 1.107 1.106 1.106 
0.5 1.755 1.744 1.735 1.733 
0.9 4.752 4.561 4.410 4.380 

0.1 2.007 2.526 4.197 5.978 
0.5 4.018 5.283 9.169 13.218 
0.9 5.316 7.032 12.269 17.711 

p(k) = alk i 
a = 0.1 
a = 0.5 
a = 0.9 

p(k) = 0.1 • Ikl -œ2 
 p(k) = 0.5 • Ikr ° 2  

p(k) =  0.9V  Ikl -c) • 2  

small lags, then this means that some (or even all) correlations for 
small lags are larger than this upper bound. This would make it 
even easier to detect the correlations, if b and a are large. If, on the 
other hand, a and b are small and all correlations are smaller or 
at most slightly larger than the upper bound, then 6n (p) defined 
in (1.7) is small anyway. It is then practically not so important to 
detect the dependence. The effect of (1.21) and (1.25) on 6n (p) as 
compared to the size of the correlations for small lags is illustrated 
in Table 1.2. For statistical inference, standard deviations are the 
relevant quantities. As examples we compare the standard devia-
tion of Xn  under independence with that for the AR(1) model (1.9) 
and a process with slowly decaying correlations p(k) = 7 • 

( y = 0.1, 0.5, 0.9). A slow decay of the correlations at the approxi-
mate rate k -0.2  is not uncommon in practice. A comparison with 
the maximal autocorrelation shows that, for the AR(1) process, 

the standard deviation of Xn  differs substantially from art- 1 , only 
if the lag-1 correlation is large. On the other hand, for the slowly 
decaying correlations, the effect on the standard deviation of the 
sample mean is large even if p(k) never exceeds 0.1. 

The effect of dependence on coverage probabilities is illustrated 
in Table 1.3. The factor by which (1.2) needs to be stretched is the 
same as the ratio qn , namely 

en(p) = 0 + 6n(p), (1.26) 

where 6n (p) is defined by (1.7). Asymptotically this is equal to the 
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Table 1.3. Comparison of the coverage probability of (1.2) with (incor-
rect) nominal coverage probability 0.95. Observations are assumed to be 

normal with correlations as in Table 1.2. Also listed are the maximal 
correlations pmax  = maxkp(k). 

pmax n = 50 n = 100 n = 400 n = 1000 

0.1 0.923 0.924 0.924 0.924 
0.5 0.756 0.739 0.741 0.742 
0.9 0.320 0.333 0.343 0.346 

0.1 0.671 0.562 0.359 0.257 
0.5 0.374 0.289 0.169 0.118 
0.9 0.288 0.220 0.127 0.088 

p(k) = 
a = 0.1 
a = 0.5 
a = 0.9 

p(k) =  0.1.  1 k 1 -0.2, 

p(k) = 0.5 -1kr12 , 
p(k) = 0.9 -1k1 -°-2 , 

constant 

   

    

c(P) = 	± OP), 	 (1.27) 

where 8(p) is as in (1.15), provided that this limit exists. If instead 
the correlations decay so slowly that for large sample sizes the vari-
ance of )? is given by (1.17), then the situation is more dramatic. 
The confidence  interval given by (1.2) is still incorrect by the fac-
tor V1 + 6,(p). This time, however, n (p) does not converge to a 
constant but diverges to plus infinity at the rate 7/ 1-- '. Therefore, 
(1.23) has to be multiplied not just by a constant but by a constant 
times a positive power of  n,  

VCUO)) 
	 (1.28) 

where c(p) is defined by (1.18). The results in Table 1.3 illustrate 
that the effect of slowly decaying correlations is dramatic, even for 
relatively small sample sizes. As the sample size increases, (1.2) 
and (1.3) become more and more unreliable. 

An additional complication for correlated data is worth noting. 
Namely, 3 2  is a biased estimator of u 2 . The bias depends directly 
on the correlation structure by 

E(s 2 ) :F.--  a 2  [1 - (n — 1) -1 6n (p)], 	 (1.29) 

with 6n (p) defined by (1.7). If the observations are uncorrelated, 

then 6,(p) = 0 and we obtain the well-known result that 3 2  is un-
biased. If the correlations are predominantly positive, then 6,(p) 

is positive and the sample variance tends to underestimate u2. 
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Table 1.4. Relative bias Acr 2  = [E (8  2) ___ 

s 2 for the same models as in Table 1.2. 

INTRODUCTION 

0.110.2 of the sample variance 

pmax n = 50 n = 100 n = 400  n=1000  

p(k) = aik l 
a = 0.1 0.1 -0.0046 -0.0023 -0.0006 -0.0002 
a = 0.5 0.5 -0.0424 -0.0206 -0.0050 -0.0020 
a = 0.9 0.9 -0.4404 -0.2000 -0.0462 -0.0182 

p(k) = 0.1 • Ikr °.2 , 0.1 -0.0618 -0.0544 -0.0416 -0.0348 
p(k) = 0.5 • Ik1 -13 2 , 0.5 -0.3091 -0.2719 -0.2082 -0.1739 
p(k) =  0.9V  ikr12 , 0.9 0.5564 -0.4893 -0.3748 -0.3130 

Asymptotically the bias diappears. However, for small or moder-
ately large sample sizes the negative bias makes the already exist-
ing underestimation of the uncertainty by (1.3) even greater. This 
is illustrated in Table 1.4. If the correlations are predominantly 
negative, then Sn (p) is negative and the sample variance tends to 
overestimate a 2 . Again, the bias makes our error in assessing un-
certainty by (1.3) even greater, this time by overestimating the 
uncertainty. It should also be noted that, if a < then the vari-
ance of s 2  converges to zero slower than 1/n (See section 8.4). Thus, 
5 2  is much less precise than in the case of short-memory processes. 
Scale estimates that have the same rate of convergence as under 
short-range dependence can be obtained, however, by maximum 
likelihood estimation (see Chapters 5 and 6). 

Finally, it should be noted that, we implicitly assumed the sam-
ple mean, appropriately normalized, to be asymptotically normally 
distributed. In the presence of long-range correlations, this is not 
necessarily true in general, even if all moments of Xi exist (see 
Chapter 3). This complicates the issue of defining appropriate con-
fidence intervals based on Xn , though one might hope that in most 
cases, asymptotic normality holds. Conditions under which this is 
the case are discussed in chapter 3. 

In this introduction we discussed only the very simple case where 
X 1 , ..., X n  are identically distributed and we want to estimate 
the expected value ti, = E(X). We restricted attention to this 
case, in order to illustrate the problem of slowly decaying correla-
tions, without cluttering the exposition with cumbersome notation. 
The same problem has to be addressed, however, for many other 
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statistical methods. For example, in a standard regression model 

= 00 ± 01xi,1 02x , 2 ••• OkXj,k e i  the errors Ei are as-
sumed to be independent. What happens when they are correlated 
and the asymptotic decay of the correlations follows (1.20)? Again, 
similar remarks as presented earlier apply though the situation is 
more complicated due to the presence of the explanatory variables 

This is discussed in Chapter 9. 

1.2 Forecasting, an example 

As we saw in the previous section, slowly decaying correlations 
make the estimation of constants, such as the mean, more difficult. 
The opposite is true for predictions of future observations. The 
more dependence there is between a future observation X n+k and 
past values  X, X n_ i , Xn_ 2 , ..., the better X ri±k can be predicted, 
provided that the existing dependence structure is exploited ap-
propriately. To obtain good forecasts, it is important to use an 
appropriate model. Consider for instance Figure 1.1. 

It displays the yearly minimal water levels of the Nile River 
for the years 1007 to 1206, measured at the Roda Gauge near 
Cairo (Tousson, 1925, p. 366-385). This is a part of a longer 
series that is historically of particular interest. It is discussed 
in more detail in Section 1.4. In Figure 1.1, the series is split 
into two halves. Assuming that we observed the years 1007 to 
1106, we predict the next 100 years. On one hand, we give opti-
mal k-steps-ahead predictions based on an autoregressive process 

Xt = 01(Xt--1 —i2)+••• +0p(Xt—p —  1-0+ Et with ,u, = E (Xt ) and 
Et iid zero mean normal. The order p is obtained by Akaike's order 
selection criterion AIC (Akaike 1973a,b), using the Splus function 
ar.burg. The AIC is generally recommended when optimal predic-
tion is the aim of the statistical analysis (see, e.g., Shibata 1980). 
Here, the chosen order turns out to be 2. On the other hand, the 
optimal predictions based on a so-called fractional ARIMA(0, d, 0)- 
process are given. The exact definition of this model is given in 
Chapter 2. The essential point is that it is a very simple process 
with slowly decaying correlations that are asymptotically propor-
tional to k 2d-1 . Its correlations are described by one parameter 
only, namely d = H — 1/2. Figure 1.1 illustrates the typical dif-
ference between classic Box-Jenkins forecasts and forecasts based 
on processes with long memory. The forecasts based on the short-
memory process converge very fast, at an exponential rate, to the 
sample mean X n  of the past observations. Using the sample mean 
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Figure 1.1. Nile River minima: k-steps-ahead-forecasts based on the last 
100 observations (k =1, ...,100) 

corresponds to total ignorance about the future observations (ex-
cept for their unconditional expected value). On the other hand, 
the forecasts based on the process with slowly decaying corre-
lations converge rather slowly to _kn . This means that past ob-
servations influence the forecasts even far into the future. In the 
current example, this appears to be more appropriate. Also, the 
prediction intervals for the autoregressive process do not seem 
to have the desired coverage probability. Relatively many of the 
short-term forecasts are outside of the 95% prediction interval. 
This is also illustrated in Figures 1.2a and b, where we compare 
the absolute values of the observed k-steps-ahead prediction errors 

1k(i) = 1Xlio6+k — X (k, i)i (i = 1, 2), where X1106±k is the ob-
servation in the year 1106 + k, X (k,1) is its AR(2) forecast, and 
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k 
Figure 1.2a 

0 
	

50 
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200 

absolute prediction errors for fr.ARIMA 
Figure 1.2b 

Figure 1.2. Nile River minima: plot of  Lk(1)  —Lk(2) vs. k (Figure 1.2a) 

and Ak(1) vs.  Lk(2) (Figure 1.20, where  Lk(i)  is the absolute value of 

the observed k-steps-ahead prediction error for the ARM forecast (i = 1) 

and fr.ARIMA (0, d, 0) forecast (i = 2), respectively. 
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X (k, 2) its fractional ARIMA(0, d, 0) forecast. The plots of the dif-
ference Ak(1) — Ak(2) (Figure 1.2a) and of  Lk(1)  versus Ak(2) 
(Figure 1.2b) show that the observed forecasting error is almost 
always larger for the short-memory model. 

1.3 "Physical" models with long memory 

1.3.1 General remarks 

Stochastic processes may be used to model the behavior of an ob-
served time series in a purely statistical way, without a direct phys-
ical interpretation of the parameters. For instance, we may use a 
parametric model, which is characterized by a parameter vector 
0, to predict future observations or to obtain a confidence interval 
for the mean. For this purpose, it is not necessary to establish a 
direct link between the estimated parameter vector 0 and the ac-
tual data generating process. Nevertheless, a parsimonious model 
that can be explained by the "physical" mechanism that generates 
the data would be preferable for several reasons. It is justified by 
more than statistical analysis only and therefore more likely to be 
approximately correct. Estimated parameters have a direct physi-
cal interpretation. This makes it much easier to analyze observed 
data in a meaningful way and may give more useful insight to the 
applied scientist than would a purely descriptive model. Unfortu-
nately, cases where "physical" models are known seem to be the 
exception. In the next four sections, we discuss four approaches 
that grew out of the attempt to understand the occurrence of long 
memory in certain data sets in economics, physics, textile engi-
neering, and agronomy. 

1.3.2 Aggregation of short-memory models 

In some statistical applications, the observed time series is an ag-
gregate of many individual time series. For instance, many eco-
nomic data sets are generated in this way. Also the global tem-
perature series, which is discussed in Section 1.4, is obtained by 
(spatial) aggregation. 

The question arises as to whether aggregation has any relevant 
effect on the dependence structure. To be more specific, suppose 
that individual time series  X(j) (j = 1, 2, 3...) are summarized in 
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one single time series by 
00 

xt  , E xt (j ). 	 (1.30) 
j=1 

Assume further that each individual time series is stationary with 
short memory. Is it possible that the aggregated time series Xt  
exhibits long memory? There are at least two reasons why one is 
interested in this question: 

1. If long memory can be induced artificially by averaging, then it 
might be better to build a model for the collection of individual 
time series Xt  (j) instead of analyzing the aggregated time series 
directly. 

9 

2. If long memory can be induced artificially by averaging, then 
this provides a possible explanation for long memory in an ob-
served series. It might then be worth investigating whether one 
can find "physical" reasons for long memory other than aggre-
gation. 

This question was addressed by Granger (1980). It turns out that 
aggregation of short-memory processes can indeed lead to long 
memory. Granger considered the following aggregation model. Let 
X t (j), j = 1, 2, ... be independent AR(1) processes defined by 

X(j) = aiXt—i(j) + Et(i), 	 (1.31) 

where —1 < ai < 1, E 1  (j), €2(j), ... are independent zero mean 
random variables with variance aj and the processes [E t (1)] tE N, 

are independent from each other. The spectral density 
of each individual series Xt  (j) is equal to 

2 a; 	1 
f(s) = 

27r 1 1  — ceie —iA l 2.  
If we build the sum of N processes 

Xr )  = Xt (1) ± Xt (2) + ... ± X t (N), 

then Xr )  has the spectral density: 

N 

(1.32) 

(1.33) 

f ( N ) ( À ) 

 

fa  (A). (1.34) 

    

j=1 

Suppose now that the parameters ai and cq are independent re- 
alizations of random variables U and V, drawn randomly from the 
population distributions Fc, with mean a and F0. with mean u€2, 



16 	 INTRODUCTION 

.. and cr i2 , o-3, ... are in- 
(N) 

density of  x " 	be 

respectively. Also, assume that all al, a2, 
dependent. Then, for large N, the spectral 
approximated by the expected value 

E[fi(A)] = —27 E[V11 - Ue -iA 1 -2 1. 

Because V and U are independent, we obtain 

f (N)() 
27r 

N 9
ED. - Ue-iA1-2] 	

1 
= Tx 4 11 	- ue

_iÀ 
12 

dFa(u). 

(1.36) 
Granger showed that if Fe, is a beta distribution with suitable para-
rameters, then the right-hand side of (1.36) has an integrable pole 

at zero. Thus, the aggregated series V T)  approaches a limiting 
time series Xt  [equation (1.30)] that has long memory, although 
each individual time series from which it is built is a simple AR(1) 
process. More complicated models can be considered if necessary 
(see, e.g., Granger's remarks on dependent series, micro-models, 
feedback, etc.). The main message is that from observing long-
range dependence in an aggregated series (macro-level), one cannot 
necessarily conclude that this long memory is due to the genuine 
occurrence of long memory in the individual series (micro-level). 
It is possible that instead it is induced artificially by aggregation. 
To find the source of long memory, the behavior of the individual 
series needs to be examined. This might be possible in some cases, 
whereas in other cases individual series might not be available. 

1.3.3 Critical phenomena 

An introduction to the role of long memory in the context of crit-
ical phenomena in physics is given in Cassandro and Jona-Lasinio 
(1978). Thermodynamic systems can be studied by considering 
random fields on a finite but large d-dimensional lattice A C Z d . 
For instance, in the so-called Ising model, each point i E A is as-
sociated with a sign, 

Si E 	-11, 	 (1.37) 

representing the spin at this position in a ferromagnetic substance. 
In another interpretation, S i  could represent the presence of a gas 
molecule at location i of a "lattice gas"; Si = 1 stands for "molecule 
present" and Si = -1 stands for "molecule absent". The energy of 
a configuration, 

(1.35) 

S(A) = {Si  :  j G A}, 	 (1.38) 
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is given by the (finite volume) Hamiltonian 

	

HA(S) = — 	Jii SiS i  — h 	 (1.39) 
i0EA 	 iEA 

Here Jii are parameters determining the type of interaction be-
tween neighboring spins. For instance, if Ji3  = J1i _i1  and J1  > 0, 
then neighboring spins tend to be aligned in the same direction. 
Alignment in the same direction is typical for a ferromagnetic sub- 

= E iEA si stance. MA(S) 	 is called total magnetization; the prod- 
uct hMA(S) characterizes the interaction with an external mag-
netic field. Physical properties of the system are studied by con-
sidering the thermodynamic limit A —4  Z d . In particular, one needs 
to find a suitable normalization a (A) such that 

MA(S) — E[MA(S)] 

	

MX(S) = 	(A) 	 (1.40) 

converges to a nondegenerate random variable. Under "normal con-
ditions", the spins Si are at most weakly dependent variables, so 
that 

G (A ) 	c • 1A-1 	 (1.41) 

where I Al is equal to the number of elements in A and c > 0. 
However, there exists a critical temperature such that one observes 
correlations p(i — j) = corr(Si, Si) which decay slowly to zero as 
the Euclidian distance  li — jii tends to infinity (see Cassandro and 
Jona-Lasinio 1978). This implies that 

a(A) c • IV 	 (1.42) 

for some < a < 1,  e>  0. This situation is also called phase tran-
sition. For ferromagnetic substances it corresponds to spontaneous 
magnetization. For a gas, it is a model for the transition from a 
liquid phase to a gaseous phase. 

Other areas in physics where long-range dependence occurs in-
clude for example, turbulence theory, quantum field theory, and 
1/f noises (see, e.g., Cassandra and Jona-Lasinio 1978, Eberhard 
and Horn 1978, Marinari et al. 1983), in particular, the investiga-
tion of turbulences motivated Kolmogorov (1940) to define frac-
tional Brownian motion and some related processes. 

1.3.4 Hierarchical variation 

In an interlaboratory standardization experiment, Cox and 
Townsend (1947) considered the coefficient of variation of mass 
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per unit length of worsted yarn. Two hundred randomly chosen 
sections of lengths ranging from 1 to 104  cm were weighed. For 
lengths longer than the fiber length, the autocorrelations were es-
timated as a function of the distance k along the yarn. They were 
found to be proportional to k for some 0 < a < 1. 

Cox (1984) proposed a physical explanation for these correla-
tions, by constructing a model with hierarchical variation. The 
textile yarns are produced by a repeated process of thinning and 
pulling out. Each time this process is applied, the current one-
dimensional spatial scale is stretched due to the "pulling". In ad- 

dition, new short-term variation ("noise") is introduced. Let Xr )  
denote the weight per unit length of the yarn at location t, after 

N stages of processing. Also, denote by Ut(N)  the variation intro-
duced at the N-th stage and let a be a constant attenuation factor. 
The processes U (° ) (t), U (1) (t), ... are assumed to be independent. 

A plausible model for  X (N)  is 

N 
x (N) = E  a — (N — s)— sb- - (s) 

U (ta—(N  — s) ), 

t 	s=0 

where 0 < b < 1 is some constant. Under mild regularity conditions 
on the autocorrelations of U (N) (t), it can be shown that for large N 

the covariances of Xr )  at large lags k are proportional to k -2(1-1)) . 
Although this is an example in a very specific context, it is a 

special case of hierarchical models that are also useful in physics 
(see, e.g., Cassandro and Jona-Lasinio 1978). 

1.3.5 Partial differential equations 

Using stochastic partial differential equations, Whittle (1956, 1962) 
gave a partial "physical" explanation for empirical findings by 
Smith (1938; see Section 1.5), which suggest a slow hyperbolic de-
cay of spatial correlations in uniformity trials. Whittle considered 
a stochastic process Y,, with v =  (x, t)  = (xi, ...,x,„t) m > 1. The 
index t denotes time. More specifically, in the context of agricul-
tural uniformity trials, Yv  may represent "soil fertility". The soil 
is three dimensional, thus m = 3. There are two opposite effects 
on fertility. On one hand, there is a uniformizing effect due to dif-
fusion of nutrient salts. On the other hand, there is a "disturbing" 
effect E y  due to weather, cultivation, artificial fertilization, etc. Ul-
timately, a stationary equilibrium may be reached between these 
two effects. These considerations led Whittle to the stochastic par- 

(1.43) 
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tial differential equation: 

aYv 	 1 

at 
Here 

	

A2 	a2 
v2 _' + ... + 	 

	

ax 2 	aX 2  

	

1 	m 

(1.44) 

and 6 71  is a suitably chosen random field. The term V2 Yv  repre-
sents spreading of fertility through the soil and aY, stands for a 
"direct loss" of fertility. Under suitable conditions on the "disturb-
ing" process, Whittle showed that for m > 2, the solution of (1.44) 
is a stationary random field with spatial covariance function 

cov(Yx,t, Yx',t) = -Y(Ilx — x II) ,-,, e .  i Ix  — xii12-771, 	(1.45) 

as 11 x — x II --4 oo, where c > 0 and 11. 11 
 

denotes the Euclidian 
distance in  R.  Whittle also obtained several other power laws for 
the spatial covariance, by imposing various correlation structures 
on e v  and boundary conditions for Yv. 

Some remarks on how to model spatial long-memory models via 
partial differential equations are given in Gay and Heyde (1990). 
Renshaw (1994) obtained general power laws for a one-dimensional 
"space" time model Yv , (v = (i, t), i E Z, t > 0), space being one-
dimensional. The model is defined in an intuitive way by 

00 

Yi,t+dt — Yi,t — AYi, tdt ± 	ai(Yi, t  — Yi +i,t )dt ± dZi, t + o(dt), 

i=-00 
(1.46) 

with A > 0, E7__ ai  < oo, and dZi,t a white noise sequence of 
independent identically distributed random variables with mean 0 
and variance u 2 dt. The parameter A represents the average con-
stant growth rate of an individual at any given location i. The 
growth at location i is influenced by linear interactions of Xi, t  
with individuals at other locations. Renshaw showed that, for cer-
tain choices of the interaction parameters ai , the process reaches 
a stationary equilibrium with a spatial spectral density that has 
an integrable pole at the origin. Renshaw also obtained some spec-
tra with a nonintegrable pole at zero. Such spectra seem to occur 
frequently in engineering, geophysics, and physics (see, e.g., Kol-
mogorov 1940: turbulences in a fluid; Akaike 1960: measurements 
of the roughness of roads and runways; Sayles and Thomas 1978: 
surface topographies; Sarpkaya and Isaacson 1981: sea waves on off-
shore structures; Bretschneider 1959: wind-generated waves). For 
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Figure 1.3. Yearly minimum water levels of the Nile River at the Roda 
Gauge (622-1281 A.D.). 

a theoretical discussion of nonintegrable spectral densities see also 
Solo (1989a) and Matheron (1973). 

1.4 Some data examples 

We introduce five different data sets that will be used later to 
illustrate the theoretical results. Here, we briefly examine the de-
pendence structure of these time series by considering plots (in 
log-log coordinates) of the sample autocorrelations against the lag, 
the variance of against n, and the periodogram 

n-1 
1 

i(A) = 
271n

l>_:(Xt —21?n)eitAil2 _ i(k)e ikAi (1.47) 
t=1 	 k=-(n-1) 

at Fourier frequencies A i  = 27j/n (j = 1, n*; n* =integer part 
of n/2 — 1/2) against the frequency Aj. Here '5, (k) are the sample 
covariances 

1 n-lki  
i(k) = —

n 	
(Xt  — 	 — Xn) 

t=1 
(1.48) 
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Figure 1.4. Nile River minima: variance of sample mean vs. sample size 
on log-log-scale (figure 1.4a); sample autocorrelations (Figure 1.0; on 
log-log scale in Figure 1.4c); periodogram on log-log scale (Figure 1.4d). 
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for 1 kl < n — 1 and by 0 for I kl > n. The periodogram is the sample 
analogon of the spectral density (1.22) in that the covariances -y(k) 

are replaced i (k). 
Data set 1: Figure 1.3 displays the yearly minimal water levels 

of the Nile River for the years 622-1281, measured at the Roda 
Gauge near Cairo (Tousson, 1925, pp. 366-385). Historically, this 
data set is of particular interest. The analysis of this and several 
similar time series led to the discovery of the so-called Hurst effect 
(Hurst 1951). Motivated by Hurst's empirical findings, Mandel-
brot and co-workers later introduced fractional Gaussian noise as 
a statistical model with long memory (see, e.g., Mandelbrot and 
Wallis 1968a,b 1969a,b,c, Mandelbrot and van Ness 1968). The 
presence of long memory in the Nile River minima can be seen 
in Figure 1.4a. It indicates that the variance of X n  converges to 
zero at a slower rate than n -1 . The fitted least squares line is 
log[var(X n )1 = 8.82 — 0.27 log(n). The slope —0.27 is far from —1 
which is the theoretical value for summable correlations. Similarly, 
the plot of the autocorrelations in log-log coordinates suggests a 
slow decay of the correlations (Figure 1.4c). Further evidence for 
this type of long-range dependence is given by the log-log plot of the 
periodogram in Figure 1.4d. We will see later that, if the correla-
tions were summable, then near the origin the periodogram should 
be scattered randomly around a constant. Instead, the points in 
Figure 1.4d are scattered around a negative slope. This is typically 
the case for stationary processes with nonsummable correlations. 

Data set 2: Figure 1.5 displays the logarithm of the amount of 
coded information per frame for a certain video scene. This data 
set was provided by H. Heeke and E. Hundt (Siemens, Munich) 
through W. Willinger and A. Tabatabai (Bellcore, Morristown). 
The scene consists of a conversation among 3 people sitting at a 
table. There is no change in the background and no camera move-
ment. The data set in Figure 1.6a (1000 frames) is part of a longer 
series based on about 30 minutes of video film. About 25 frames 
per second are processed. Fast transmission of digitally coded video 
pictures is an important issue for telecommunications companies. 
The data set here was generated by engineers at Siemens, Munich 
(see Heeke 1991, Heyman et al. 1991). A so-called variable-bit-
rate (VBR) codec was used. This codec is especially designed for 
high-speed networks. The amount of information transmitted per 
time unit is adjusted to the momentary complexity of the pic-
ture. A characterization of the dependence structure of the infor-
mation per frame can be useful for the assessment of the capacity 
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Figure 1.5. VBR data: logarithm of the number of ATM cells per frame. 

a communication network has to have in order to guarantee re-
liable transmission. Figures 1.6a to 1.6c indicate that there are 
strong and long-lasting correlations. The estimated slope in Fig-
ure 1.6a is -0.53. The dependence structure, however, seems to be 
more complicated than for the Nile River data. Fitting a straight 
line in Figure 1.6c does not seem meaningful. The plot of the pe-
riodogram confirms the more complex nature of the dependence 
(Figure 1.6d). The slope around which the points in Figure 1.6d 
are scattered near the origin appears to be flatter than that for 
points farther away from the origin. 

Data set 3: This data set consists of the number of bytes per 
millisecond, transformed by log(x ± 1), which were sent through 
an Ethernet network (Figure 1.7). This is part of a large number 
of high-resolution Ethernet measurements for a local area network 
(LAN) at Bellcore, Morristown. The data were provided by W. 
Willinger, W. Leland, and D. Wilson (Bellcore, Morristown). Tech-
nical details are given in Leland and Wilson (1991); see also Fowler 
and Leland (1991) and Leland et al. (1993). The practical motiva-
tion for considering this type of data is essentially the same as for 
the VBR data above. Figure 1.7 is somewhat difficult to interpret, 
because of the partially discrete nature of the process. Figures 1.8b 
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Figure 1.6. VBR data: variance of sample mean vs. sample size on log-
log scale (Figure 1.6a); sample autocorrelations (Figure 1.6b; on log-log 
scale in figure 1.6c); periodogram on log-log-scale (Figure 1.6d). 
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Figure 1.7. Ethernet data: log(x + 1) where x = number of bytes. 
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Figure 1.8. Ethernet data: variance of sample mean vs. sample size on 
log-log-scale (Figure 1.8a); sample autocorrelations (Figure 1.8b; on log-
log scale in Figure 1.8c); periodogram on log-log scale (Figure 1.8d) 
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Figure 1.9. NBS precision measurements on a 1 kg check standard weight 
(difference from 1 kg). 

and 1.8c, however, indicate clearly that the correlations are strong 
even for large lags. The fitted least squares slope in Figure 1.8a 
is —0.31. This impression is confirmed by the log-log plot of the 
periodogram (Figure 1.8d). 

Data set 4: Figure 1.9 displays a series of high precision weight 
measurements of a lkg check standard weight performed at the 
National Institute of Standards and Technology (NIST; formerly 
NBS), Gaithersburg, USA (see Pollak, Croarkin, and Hagwood 
1993, Graf, Hampel, and Tacier 1984, Graf 1983). The data were 
provided by R.N. Varner (NIST). Additional information on the 
generation of the data was provided to me by C. Croarkin (NIST) 
and H.P. Graf (CIBA Geigy, Basel). The measurements were taken 
between June 24, 1963 and October 17, 1975, using the same 
weighing machine. The differences (in micrograms) from 1 kg were 
recorded. One difficulty with this data set is that the dates at 
which measurements were taken are not equidistant. This makes 
the analysis of short-term correlations problematic. However, the 
overall long-term dependence structure is likely to be almost un-
affected. The estimated slope in the plot of the variance of Xn, is 
—0.80 (Figure 1.10a). Based on this and Figures 1.10b and 1.10c, 
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log-log scale (Figure 1.10a); sample autocorrelations (Figure 1.10b); pe-
riodogram on log-log scale (Figure 1.10c) 
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one may or may not suspect the presence of slowly decaying cor-
relations. The decision is much less clear-cut than in the examples 
above. Nevertheless, we will see later (Section 7.3) that there is 
some evidence for a significant departure from the hypothesis of 
summable correlations. 

Data set 5: Figure 1.11a displays the monthly temperature for 

the northern hemisphere for the years 1854-1989, from the data 

base held at the Climate Research Unit of the University of East 
Anglia, Norwich, England (Jones and Briffa 1992). This data 

set was provided by P.D. Jones (University of East Anglia) and 
Richard Smith (University of North Carolina at Chapel Hill). The 
numbers consist of the temperature (degrees C) difference from 
the monthly average over the period 1950-1979. The plot of the 
time series suggests an increasing trend that may reflect a "global 
warming" during about the last 100 years. Figure 1.11b displays 
the data after subtraction of an estimated linear trend. Apart from 
a slightly larger variance at the beginnig, the residuals look more or 
less stationary. Figures 1.12a to 1.12c suggest that the correlations 
decay to zero rather slowly. The estimated slope in Figure 1.12a 
is —0.45 which is rather far from —1. Moreover, although the data 
were reportedly adjusted for seasonal effects, some seasonality still 
seems to be present. 

1.5 Other data examples, historic overview, discussion 

1.5.1 Two types of situations 

The examples discussed in the previous section can be divided into 
two categories. For the precision measurements of the check stan-
dard weight, the occurrence of dependence was rather unsuspected. 
For the other examples, dependence between the observations had 
to be expected. In general, we can distinguish between two situa-
tions: 

Situation 1: Due to the nature of the observed phenomenon 
and/or the way observations are taken, dependence beween the 
observations is expected a priori. 

Situation 2: The observations are expected to be (more or less) 
independent. 

Naturally, sometimes one is somewhere in between these two ex-
tremes, since one might simply not be sure whether dependence 
has to be expected or not. Typical examples for situation 1 are 
cases where one cannot plan an experiment but rather makes ob- 
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Figure 1.11. Global temperature for the northern hemisphere (1854-1989) 
(Figure 1.11a) and the residuals after subtraction of a linear trend (Fig-
ure 1.11b). 
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servations as they "come in". This is, for instance, often the case in 
areas like hydrology, geophysics, climatology, economics and agron-
omy. For example, the Nile River minima discussed in the previous 
section are not obtained from a controlled experiment. Instead, one 
observes the natural development of the river. A hydrologist would 
hardly expect successive observations to be independent. A com-
plicated physical mechanism creates dependence between the data. 
Many known and unknown factors affect the water level. In con-
trast to an experimental situation, all or most of these influences 
cannot be controlled. The same is true for the ethernet data and 
the global temperature data, whereas the situation is somewhat 
different for the video data. There, the setup was experimental in 
the sense that the type of recorded scene was specified a priori. 
However, apart from that, no attempt was made to obtain inde-
pendent observations. On the contrary, studying the dependence 
structure of the emerging code is one of the main aims. Typical ex-
amples for Situation 2 are experimental situations where one tries 
to eliminate any factor that could cause the observations to be de-
pendent. This is, for instance, the case for the NBS check standard 
weights, where, it was intended to create an ideal experimental 
situation where measurement errors are independent. 

The data sets in the previous section illustrated that correlations 
(expected or unexpected) not only occur, but they also may persist 
for a long time. This was recognized by many prominent applied 
statisticians and scientists many decades ago. In the following sec-
tions, we give a short overview on some of the important early 
references. This will also give rise to some principal considerations 
on the topic of long-range dependence, before going into the details 
of mathematical modelling. 

1.5.2 The Joseph effect and the Hurst effect 

Since ancient times, the Nile River has been known for its charac-
teristic long-term behavior. Long periods of dryness were followed 
by long periods of yearly returning floods. Floods had the effect of 
fertilizing the soil so that in flood years the yield of crop was par-
ticularly abundant. On a speculative basis, one may find an early 
qualitative account of this in the Bible (Genesis 41, 29-30): "Seven 
years of great abundance are coming throughout the land of Egypt, 
but seven years of famine will follow them." We do not have any 
records of the water level of the Nile from those times. However, 
there are reasonably reliable historical records going as far back as 
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622 A.D. A data set for the years 622-1281 was discussed in the 
previous section. It exhibits a long-term behavior that might give 
an "explanation" of the seven "good" years and seven "bad" years 
described in Genesis. There were long periods where the maximal 
level tended to stay high. On the other hand, there were long pe-
riods with low levels. Overall, the series looks stationary. When 
one only looks at short time periods, then there seem to be cycles 
or local trends. However, looking at the whole series, there is no 
apparent persisting cycle. It rather seems that cycles of (almost) 
all frequencies occur, superimposed and in random sequence. Also, 
there is no global trend. In reference to the biblical "seven years of 
great abundance" and "seven years of famine," Mandelbrot called 
this behavior the Joseph effect (Mandelbrot 1977, 1983a, Mandel-
brot and Wallis 1968a,b, Mandelbrot and van Ness, 1968). 

The famous hydrologist Hurst (1951) noticed these characteris-
tics when he was investigating the question of how to regularize 
the flow of the Nile River. More specifically, his discovery can be 
described as follows: Suppose we want to calculate the capacity of 
a reservoir such that it is ideal for the time span between t and 
t ± k. To simplify matters, assume that time is discrete and that 
there are no storage losses (caused by evaporation, leakage, etc.). 
By ideal capacity we mean that we want to achieve the following: 
that the outflow is uniform, that at time t+k the reservoir is as full 
as at time t, and that the reservoir never overflows. Let Xi  denote 
the inflow at time i and Yi = ELI  Xi the cumulative inflow up to 
time j. Then the ideal capacity can be shown to be equal to 

i 
R(t, k) = max [Yt+i — Yt — —k

( ft+k — Yt)] 
0<i<k 

i 
— min [Yt+i — Yt — —

k (Yt-fic — Yt)] 	(1.49) 
0<i<k 

R(t, k) is called the adjusted range. In order to study the properties 
that are independent of the scale, R(t, k) is standardized by 

td-k 

S (t, k) = k -1  E (x-i - xt,k)2, 

where X t,k = k -1  z_,it=+tk+1 X .  Note that S 2  (t, k) is equal to (k — 
1)/k times the usual sample variance of Xt+1, ••-, X t±k. The ratio 

R(t, k) 

(1.50) 

R/ S = 
S (t, k) 

(1.51) 
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is called the rescaled adjusted range or R/S-statistic. Hurst plotted 
the logarithm of RIS  against several values of k. He observed that, 
for large values of k, log R/S was scattered around a straight line 
with a slope that exceeded 1. In probabilistic terminology this 
means that for large k, 

1 
log E[R/S] ',:,-- a ± H log k, with H> (1.52) 

This empirical finding was in contradiction to results for Markov 
processes, mixing processes, and other stochastic processes that 
where usually considered at that time. For any stationary process 
with short-range dependence, R/ S should behave asymptotically 

like a constant times k. Therefore, for large values of k, log R/S 
should be randomly scattered around a straight line with slope 
1/2. Hurst's finding that for the Nile River data, and for many 
other hydrological, geophysical, and climatological records, R/ S 
behaves like a constant times k H  for some H > 1, is known under 
the name Hurst effect. Mandelbrot and co-workers showed that the 
Hurst effect can be modelled by so-called fractional Gaussian noise 
with self-similarity parameter H E (-1,1) (H for "Hurst"). We will 
see in Chapter 2 how this process is defined exactly, and why H is 
called a self-similarity parameter. For now, it is sufficient to state 
that this model is a stationary process for which (1.21) holds. 

1.5.3 Uniformity trials 

Although we will focus on time series, it is worth noting that there 
are interesting examples of long memory in spatial data. The re-
sults on uniformity trials obtained by Smith (1938) are famous. 
Uniformity trials are a common method in agronomy to determine 
the "best" size of a plot. By best we mean a size such that the 
efficiency of a field experiment is optimized. Smith's definition of 
efficiency incorporates cost and the average variability per unit 
area. Basically, the aim is to obtain maximal information for the 
lowest cost. In order to be able to assess the average variability, 
Smith investigated the behavior of the sample mean as a function 
of plot size. The following experiment was carried out: An experi-
mental area was planted uniformly with wheat, in 38 rows, 6 inches 
apart. Disregarding 4 rows at each side and 1 ft at each end of a 
row (to avoid border effects), the remaining area of 15 ft by 36 
ft (30 rows) was divided into 1080 elementary plots of square 
ft. For each elementary plot the yield was recorded. For k varying 
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between 1 and 120, adjacent elementary plots were combined into 
nonoverlapping rectangular plots. For each of the resulting plots, 
the average yield was calculated. Finally, the variance V (k) of the 
average yield for a plot of size k was estimated by the sample vari-
ance of the averages for plots of size k.  Plotting log V(k) versus 
log  k,  Smith found the relationship 

log V (k) = a ± b log k , 	 (1.53) 

with b around —0.749. This implies that V (k) converges to zero at 
a slower rate of convergence than if the observations were indepen-
dent or weakly dependent. Smith reported the same results for a 
large number of other uniformity trials. In fact, he found the same 
behavior for all data he could find at that time. 

Which dependence structure can explain (1.30)? Here we are 
in a slightly more difficult situation than in 1.3.2. The observa-
tions Xt  are not ordered in time. The index t E NxN gives 
the position in the plane. In principle, for each pair of positions t, s 
there is a separate correlation p(t, s). In order to make the problem 
tractable, Whittle (1956) suggested assuming that p(t, s) depends 
on the Euclidian distance between t and s only. He showed that 

if P (t , s) = P (It — 
 s)  decays asymptotically like it —  8 14H-4  for 

some H E (1/2, 1), then V(k) converges to zero like a constant 
times k 2H-2 . On the other hand, if the observations for different 
plots are independent of each other or if the correlations decay 
fast, then V (k) asymptotically decays like a constant times k'. 
In a uniformity trial we would then expect to observe a value of b 
in the neighborhood of —1. Instead, in all uniformity trials consid-
ered by Smith, b was larger that —1. Clearly, dependence between 
neighboring plots has to be expected. It is the persistence of the de-
pendence that is remarkable. Long-range dependence seems to be 
the rule rather than the exception in uniformity trials, and thus in 
most agricultural experiments. Fortunately, we will see later that, 
up to a certain degree, the undesired effects of such dependence 
can be eliminated by appropriate randomization. 

1.5.4 Economic time series 

Apart from Mandelbrot's pioneering work on so-called self-similar 
processes and their diverse applications, the importance of long-
range dependence in ecomomic data was recognized by Granger 
(1966) in his article on "The typical spectral shape of an economic 
variable." Using different kinds of estimates of the spectral den- 
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sity, Granger observed that for economic time series, the typical 
shape of the spectral density is (at least in good approximation) 
a function with a pole at the origin. This is the case even after 
"known" business cycles and trends are removed. He formulated 
a qualitative "law": "The long-term fluctuations in economic vari-
ables, if decomposed into frequency components, are such that the 
amplitudes of the components decrease smoothly with decreasing 
period." Also, "the same basic shape is found regardless of the 
length of the data available." In a later article Granger (1980) 
suggested a "physical" explanation of how long-range dependence 
modelled by (1.21) may be caused by aggregation of many dynamic 
micro-relationships (see Section 1.3.2). 

1.5.5 Semisystematic errors, unsuspected slowly decaying 
correlations, the personal equation 

In the cases considered in Sections 1.5.2, 1.5.3 and 1.5.4, depen-
dence (though not necessarily long-range dependence) between the 
observations was expected a priori. In other situations, everything 
seems well "under control" so that one does not expect any (or al-
most any) correlations. An interesting reference is Student (1927). 
Student discussed the source and nature of errors of routine anal-
ysis, with particular emphasis on chemical measurements. One of 
the main issues is a "phenomenon which will be familiar to those 
who have had astronomical experience, namely that analyses made 
alongside one another tend to have similar errors; not only so 
but such errors, which I may call semi-constant, tend to persist 
throughout the day and some of them throughout the week or 
the month." By "semi-constant error" he does not mean any sys-
tematic error or trend that could be explained or corrected easily: 
"Why this is so is often quite obscure, though a statistical exam-
ination may enable the head of the laboratory to clear up large 
sources of error of this kind: it is not likely that he will eliminate 
all such errors." For the chemist he therefore has interesting prac-
tical advise: "The chemist who wishes to impress his clients will 
therefore arrange to do repetition analyses as nearly as possible 
at the same time, but if he wishes to diminish his real error he 
will separate them by as wide an interval of time as possible." Ac-
cording to Student, the occurrence of "semi-constant errors" is the 
rule rather than the exception. Often no apparent reason can be 
found even after detailed investigation. These statements are illus-
trated by several data examples from chemical practice. One is the 
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measurement of nitrogen in pure crystalline aspartic acid. Student 
described the experimental situation to be as much under control 
as one can possibly expect. The phenomenon of what Student calls 
"semi-constant errors" that "tend to persist throughout the day 
and some of them throughout the week or the month" is charac-
teristic for stationary processes with slowly decaying correlations 
(1.21). 

"Semi-constant errors" were known in astronomy before the pub-
lication of Student's article. The astronomer Newcombe (1895) ob-
served that in astronomy, "semi-systematic errors" affect whole 
groups of observations, or in other words, successive observations 
tend to be on the same level for a long time. He concluded that this 
drastically increases the "probable error," so that the traditional 
standard error a / \/ is clearly too small. 

K. Pearson carried out experiments to simulate astronomical 
observations. The results are described in detail in his remarkable 
article "On the Mathematical Theory of Errors of Judgement, with 
Special Reference to the Personal Equation" in the Proceedings of 
the Royal Philosophical Society (1902). It is interesting to look at 
his results in more detail. 

Two experiments were carried out: 
Experiment 1: The same set of 500 lines with varying lengths 

was given to three independent observers (including Karl Pearson 
himself). Each observer bisected each of the 500 lines with a pencil 
stroke at sight. The judgments were made in the same room under 
the same circumstances. 

Experiment 2: A second series of experiments was designed to 
"test simulataneously the eye, the ear and the hand, and thus give 
every opportunity for a variety of small causes to influence the 
errors of judgment." A machine was constructed such that the fol-
lowing experiment could be carried out: A very narrow beam of 
light traverses a white strip. At some instant a bell rings and the 
observer has to observe the position of the beam on the strip. Af-
terwards, he has to divide a strip of the same type (same length 
and color) with a pencil at the position corresponding to the ob-
served position of the beam. The complicated machine is described 
in great detail: "Mr. Darwin constructed for us a pendulum, con-
sisting of a bar swinging on knife edges from an axis through its 
middle point. At either end of the bar were weights, so that by their 
adjustment very slow or very quick swings could be obtained.... A 

beam of light from an electric lantern was intercepted by a screen 
having a thin horizontal slit placed in the slide groove; the selected 
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part of the beam reflected from the pendulum mirror was received 
on a black screen at some distance from the observers ...". Equally 
elaborate was the experimental setup. The experiments were car-
ried out within 1 week, in several sessions. Each session was no 
longer that 2 hours to avoid the effect of over-fatigue. All three 
individuals observed at the same time. They were separated from 
each other by a screen to avoid mutual influence. 

The analysis of both series of experiments showed that each of 
the three observers looked at the lines with a certain personal bias. 
Moreover, each of the individual measurement series showed strong 
and persisting serial correlations. Pearson summarized this under 
what he called "the personal equation." He concluded: "So long 
as the variations in the constants of an experimental series can be 
shown to be within the errors of random sampling we feel on safe 
ground; we know the number of experiments required to obtain a 
result with any required degree of accuracy. On the other hand, 
when we End significant fluctuations in the personal equation de-
pending on the influence of immediate atmosphere, it becomes all 
the more important to show in each individual investigation that 
the personal equation itself is insignificant... Note that by "random 
sampling" Pearson means that the observations are independent 
(or uncorrelated): A physicist makes twenty or thirty measure-
ments of a quantity, say by aid of a bright line moving across a 
scale. He gives the mean value m of the result and also what he 
terms its probable error e. Now the use of this probable error I take 
it to be this. If the same experiments were to be repeated by the 
same man the same number of times with the mean result m i  , then 
we would expect to End m /  — m not a large multiple of the probable 
error of the difference N/e 2  ± e 2  = .\/." The main message is that, 
in spite of laborious experimental precautions, successive observa-
tions may be (usually positively) correlated. The reasons that lead 
to this dependence are often impossible to discover, not to speak 
of describing them quantitatively. Usually, the best we can do is 
therefore to model the measurement errors, or deviations from an 
overall bias, by a stationary process. Which dependence structure 
is suitable has to be analyzed for each data set individually. As 
a general tendency one can conclude, however, that cases where 
errors exhibit long-range dependence may occur more often than 
one would expect a priori. A simple but important consequence 
is that the usual o- RF/ rule for the standard error of the sample 
mean needs to be checked each time. 

We conclude this section by quoting several other famous scien- 
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tists who observed the same phenomenon: 
Jeffreys (1939, 1948, 1961) discussed Pearson's experiments and 

the general problem of dependence in his book on probability the-
ory. He used the term "internal correlation" and concluded: "In-
ternal correlation habitually produces such large departures from 
the usual rule that the standard error of the mean is n - 1 times 
that of one observation that the rule should never be definitely 
adopted until it has been checked. In a series of observations made 
by the same observer, and arranged in order of time, internal cor-
relation is the normal thing, and at the present stage of knowledge 
hardly needs a significance test any longer. It practically reduces 
to a problem of estimation. The question of significance arises only 
when special measures have been taken to eliminate the correlation 
and we want to know whether they have been successful". 

Another discussion along this line can be found in Mosteller and 
Tukey (1977, p.119 if) in the chapter entitled "Hunting out the 
real uncertainty." In the subsection entitled "How 0-/V7i can mis-
lead" they discussed an example by Peirce (1873) that "exemplifies 
the history of the personal equation problem of astronomy." Their 
comments are analogous to Pearson's conclusions: "The hope had 
been that each observer's personal systematic errors could be first 
stabilized and then adjusted for, thus improving accuracy. Unfor-
tunately, attempts in this direction have failed repeatedly, as these 
data suggest they might... Wilson and Hilferty (1929) made it clear 
that Peirce's data illustrate `...that reliance on such formula as 
al\rn is not scientifically satisfactory in practice, even for estimat-
ing unreliability of means' ". Mosteller and Tukey conclude that 
"even in dealing with so simple a statistic as the arithmetic mean, 
it is often vital to use as direct an assessment of its internal uncer-
tainty as possible. Obtaining a valid measure of uncertainty is not 
just a matter of looking up a formula." 

1.5.6 Why stationary models? Some "philosophical" remarks 

A principal question may be asked at this point. From a scientific 
point of view, it is not always satisfactory to model an observed 
phenomenon by a stationary process. After all, there is a reason 
for everything (is there?). So, should one not try to find the ac-
tual cause of (long-range) correlations and construct a correspond-
ing "physical model" ? In particular, this seems most natural in 
cases where it is obvious that the dependence in the data is mainly 
caused by some physical mechanism that could be explained, for 
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instance, by a system of differential equations derived from physics 
(see Section 1.3). A process invented in some general context of the-
oretical statistics that has nothing to do with the specific problem 
at hand usually does not give a full physical explanation of why the 
series behaves like this and not in some other way. A simple model 
such as (1.9) still might allow a direct physical explanation. Yet, 
how about long memory? It seems rather strange that events that 
passed a long time ago should have any influence on events today. 
A possible view of the matter is the pragmatic approach. In the 
absence of any useful information that could help us, for example, 
to give an interval estimate for the expected value or a prediction 
interval for future observations, a suitable stationary model gives 
a useful description. If a realistic (and estimable) physical model 
is not available or cannot be determined with sufficient accuracy, 
then a simple stationary model is often sufficient, at least for the 
immediate practical purpose, as it allows us to assess all the essen-
tial quantities with reasonable accuracy. This does not mean that 
one should always stop at this point. On the contrary, it might be, 
for example, very interesting and practically rewarding to inves-
tigate the "personal equation" or to develop a physical theory of 
the flow of a river in more detail. Stationary processes are a useful 
tool, in the absence of a feasible physical model. Moreover they 
can provide valuable help in the search for physical explanations 
of the observed phenomena. They are, however, not a replacement 
for "physical" models. On the other hand, it also should be noted 
that sometimes careful consideration of physical models leads back 
again to stationary processes. 



CHAPTER 2 

Stationary processes with long 
memory 

2.1 Introduction 

In this chapter we introduce stochastic processes that can be used 
to model data with the properties discussed in chapter 1. We con-
sider only processes for which the first two moments exist. 

The data sets in Chapter 1 had the following common features: 

1. Qualitative features of a typical sample path: 

a) There are relatively long periods where the observations tend 
to stay at a high level, and on the other hand, there are long 
periods with low levels. 

b) When one looks only at short time periods, then there seem to 
be cycles or local trends. However, looking at the whole series, 
there is no apparent persisting trend or cycle. It rather seems 
that cycles of (almost) all frequencies occur, superimposed and 
in random sequence. 

c) Overall, the series looks stationary. 

In addition to these qualitative features, we also observed the fol-
lowing quantitative properties: 

2. The variance of the sample mean seems to decay to zero at a 
slower rate than n -1 . In good approximation, the rate is pro-
portional to n — a for some 0 < a < 1. 

3. The sample correlations /6(k) = i(k)/i(0) decay to zero at a 
rate that is in good approximation proportional to k for some 
0 < a < 1. 

4. Near the origin, the logarithm of the periodogram /(À) plotted 
against the logarithm of the frequency appears to be randomly 
scattered around a straight line with negative slope. 
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Point lc) implies that at least to a first approximation, it is 
reasonable to assume stationarity. Let us therefore assume that 
the data are a sample path of a stationary process X t . We can 
reformulate properties 2 to 4 as mathematical conditions on the 
stationary process: 

2. The variance of the sample mean var(X-  ) is asymptotically equal 
to a constant cvar  times rt — a for some 0 < a < 1. 

3. The correlations p(k) are asymptotically equal to a constant cp  
times k — a for some 0 < a < 1. 

4. The spectral density  f (À)  has a pole at zero that is equal to a 
constant Cf  times A — I@  for some 0 < 0 < 1. 

A slight generalization of these conditions may be obtained by 
replacing the proportionality constants c,, cp , and Cf  by so-called 
slowly varying functions, i.e., functions such that for any t E R, 
L (tx) / L (x) —> 1 as x —> oo (or x -- 0, respectively). For most prac-
tical purposes, this generalization is not needed, however. Through-
out the book, we therefore use conditions 2 to 4, though most of 
the results also hold for the more general case. Thus, we will use 
the following definition of a stationary process with long memory 
or long-range dependence: 

Definition 2.1 Let X t  be a stationary process for which the fol-
lowing holds. There exists a real number a E (0, 1) and a constant 

c > 0 such that P 
lim p(k)/[c p k — el = 1. 	 (2.1) 

k ---* oo 

Then X t  is called a stationary process with long memory or long-
range dependence or strong dependence, or a stationary process 
with slowly decaying or long-range correlations. 

For reasons, we will see later, the parameter H = 1 —  a/2 will 
also be used instead of a. In terms of this parameter, long mem-
ory occurs for < H < 1. Knowing the covariances (or correla-
tions and variance) is equivalent to knowing the spectral density f. 
Therefore, long-range dependence can also be defined by imposing 
a condition on the spectral density: 

Definition 2.2 Let X t  be a stationary process for which the fol-
lowing holds: There exists a real number 0 E (0, 1) and a constant 
Cf  > 0 such that 

lim f (A)/[cflAI —(3 ] =1. 	 (2.2) 
A->0 

Then X t  is called a stationary process with long memory or long-
range dependence or strong dependence. 
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These two definitions are equivalent in the following sense (Zyg-
mund 1959, Chapter V.2): 

Theorem 2.1 (i) Suppose (2.1) holds with 0 < a = 2 — 2H < 1. 
Then the spectral density f exists and 

lirn f (x) I [c f (H ) 	1-2111 = 1, 	(2.3) 

where 
Cf  = 0-2 7 -1 C pr (211 - 1) sin(7r — 71- H) 	(2.4) 

and o-2  = var(Xt). 

(ii) Suppose (2.2) holds with 0 <  3  = 2H — 1 < 1. Then 

lim p(k)/[c p k 2H-2 ] = 1, 	 (2.5) 
k---+oo 

where 

and 

C 
C p 	 (2.6) 

1 
= 2c fr (2 — 2H ) sin(7H — —

2 
). 	(2.7) 

It is important to note that the definition of long-range depen-
dence by (2.1) [or (2.2)] is an asymptotic definition. It only tells 
us something about the ultimate behavior of the correlations as 
the lag tends to infinity. In this generality, it does not specify the 
correlations for any fixed finite lag. Moreover, it determines only 
the rate of convergence, not the absolute size. Each individual cor-
relation can be arbitrarily small. Only the decay of the correlations 
is slow. This makes the detection of slowly decaying correlations 
more difficult. A standard method for checking for non-zero corre-
lations is, for example, to look at the  ±2//-confidence  band in 
the plot  of  ,(k) against k (see, e.g., Priestley 1981, p. 340). A sam-
ple correlation P(k) is considered significant if I/5(k)I > 2/ N/Ti. For 
slowly decaying correlations, it can easily happen that all '16(k)s are 
within this interval. An example illustrates this difficulty: Suppose 
that the correlations are given by p(k) = clk 1 2H-2  with c = 0.1 
and H = 0.9. Figure 2.1a displays p(k) together with the  ±2//-
bands for n = 100, 200, 400, and 1000. We see that even if our esti-
mated correlations were exactly equal to the correct correlations, 
we would not consider them significant unless n is at least 400. Nev-
ertheless, the effect on statistical inference is by far not negligible 
even for small sample sizes. The ratios [var(X)] 1 / 2 / [o-NT-/, ]  dis-
played in Figure 2.1b show that confidence intervals for ,a = E(X) 
based on the assumption of independence are too small by a factor 
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Figure 2.1. Autocorrelations 0.1 • k -° • 2  and 2n - 1 confidence bands (Fig- 

ure 2.1a); standard deviation of the sample mean compared to an- i 
(Figure 2.1b). 
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of about 2 for n = 100 and 4 for n = 400. This happens notwith-
standing the fact that each individual correlation is very small. It 
is the slow decay, and thus the joint effect of all correlations to-
gether, that increases the variance of the sample mean. Therefore, 
to detect such dependence, it is better to consider all correlations 
simultaneously, instead of considering individual correlations sep-
arately. Considering the speed at which the correlations converge 
to zero gives us a better idea about the order of magnitude of 
var(X n ). 

Let us now see if long-memory processes as defined above fulfill 
our postulated properties 1 to 4. It is clear that the definitions 
directly imply 3 and 4. How about la to lc and 2 ? The following 
result shows that condition 2 follows from definition 2.2 (or 2.3) 
(see, e.g., Beran 1989a): 

Theorem 2.2 Let X t  be a stationary process with long-range de-
pendence. Then 

1 
lim yar(E X i )l[a-rn2H] = 	. 	(2.8) 

H (2H — 1) 

It remains to be shown that the qualitative behavior of typical 
sample paths corresponds to la to lc. Figures 2.2 and 2.3 show 
typical sample paths of two different processes, with no memory 
and long memory of varying degrees. The processes displayed are 
fractional Gaussian noise and fractional ARIMA(0, H — , 0) with 
H = 0.5, 0.7, 0.9 (for the definitions see Sections 2.4 and 2.5). The 
plots exhibit the behavior we wanted to achieve. The characteristic 
features la and lb are the more prominent the higher the value of 
H is, i.e., the stronger the long-range dependence is. In the case of 
H = we have, in both cases (Figures 2.2a and 2.3a), independent 
identically distributed observations. 

Among the many possible models for which (2.1) holds, there 
are two classes of models that are of special interest, because they 
arise in a natural way from limit theorems and classic models, 
respectively: (1) stationary increments of self-similar processes, in 
particular fractional Gaussian noise, and (2) fractional ARIMA 
processes. We will now discuss these two classes. 

2.2 Self-similar processes 

Self-similar processes were introduced by Kolmogorov (1941) in a 
theoretical context. Statisticians do not seem to have been aware 

ri 

' 
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Figure 2.2. Simulated series of fractional Gaussian noise with H = 0.5 
(Figure 2.2a), H = 0.7 (Figure 2.2b), and H = 0.9 (Figure 2.2e). 
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Figure 2.3. Simulated series of a fractional ARIMA (0,d,O) process with 

H = 0.5 (Figure 2.3a), H = 0.7 (Figure 2.3b), and H = 0.9 (Figure 

2.3c). 
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of the existence or statistical relevance of such processes, until 
Mandelbrot and his co-workers (see, e.g., Mandelbrot and van 
Ness 1968, Mandelbrot and Wallis 1969a,b,c) introduced them into 
statistics. 

The basic idea of self-similarity is much older. Mandelbrot (1977, 
1983a) refered, for example, to Leonardo da Vinci's drawings of 
turbulent flows that exhibit coexistent "eddies" of all sizes and 
thus self-similarity. A geometric shape is called self-similar in a 
deterministic way if the same geometric structures are observed, 
independently of the distance from which one looks at the shape 
(for an exact mathematical definition see Mandelbrot 1977, 1983a). 
In the context of stochastic processes, self-similarity is defined in 
terms of the distribution of the process: 

Definition 2.3 Let Yt  be a stochastic process with continuous time 
parameter t. Yt  is called self-similar with self-similarity parameter 
H, if for any positive stretching factor c, the rescaled process with 
time scale ct, c - H Y -ct, is equal in distribution to the original process 

Yt. 

This means that, for any sequence of time points t 1 , ..., tk, and 
any positive constant c,c —  (Y H  \- Cti 5 Y2,  • • • 5 Yak) has the same dis- 
tribution as (Yt , , Yt2 , ..., Yt, ). Thus, typical sample paths of a self-
similar process look qualitatively the same, irrespective of the dis-
tance from which we look at them. In contrast to deterministic 
self-similarity, it does not mean that the same picture repeats it-
self exactly as we go closer. It is rather the general impression that 
remains the same. Figure 2.4 illustrates this on a typical sample 
path of fractional Brownian motion. A definition of this process is 
given below. 

What is the motivation behind stochastic self-similarity ? Apart 
from the aesthetic appeal and mathematical elegance, there is 
a more profound justification of self-similarity. Lamperti (1962) 
showed that self-similarity (he used the term "semi-stability" ) 
arises in a natural way from limit theorems for sums of random vari-
ables (see also Vervaat 1987). The following definition is needed. 

Definition 2.4 If for any k > 1 and any k time points t1, •••,t1c) 
the distribution of (Yti+, — Y -t i +c—i, •••,Yt k -d-c — Yt k +c—i) does not 
depend on c E R, then we say that Yt  has stationary increments. 

The theorem can now be stated as follows: 

Theorem 2.3 (i) Suppose that Yt  is a stochastic process such 
that Y10 with positive probability and Yt  is the limit in distri- 



lt) 

c' 	' 

C''? 	' 

LO • 

v- • 

SELF-SIMILAR PROCESSES 	 49 

o 2 4 6 8 10 
t 

Figure 2 4a 

o 1 2 3 4 5 
t 

Figure 2 4b 

00  05 10 1.5 20 25 
t 

Figure 2 4c 

Figure 2.4. Fractional Brownian motion with H = 0.7,0 < t < 10 (Fig-
ure 2.4a); normalized sample path as in Figure 2.4a for 0 < t < 5 
(Figure 2.4b); normalized sample path as in Figure 2.4a for 0 G t < 2.5 
(Figure 2.4c). 
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bution of the sequence of normalized partial sums 

[nt] 
—1 	—1 an  Snt = an E xi, n=  1, 2, ... 

Here [nt] denotes the integer part of nt, Xi, X2, ... is a station-

ary sequence of random variables, and a l , a2, ... is a sequence 

of positive normalizing constants such that logan  —> oo. Then 

there exists an H > 0 such that for any u > 0, 

,. 	anu 
iim — = u H , 

n---+00 a n  

and Yt  is self-similar with self-similarity parameter H, and has 

stationary increments. 

(ii) All self-similar processes with stationary increments and H > 
0 can be obtained by partial sums as given in (i). 

Part (i) of this theorem essentially says that whenever a pro-

cess is the limit of normalized partial sums of random variables, 
it is necessarily self-similar. Thus one can say that, as a result of 
Lamperti's limit theorem, the role of self-similar processes among 
stochastic processes is analogous to the central role of stable dis-
tributions among distributions. 

Self-similarity can be defined analogously for stochastic processes 
Yt  with a multidimensional "time"-parameter t. Multiplication by a 
constant is then replaced by affine transformations or, more gener-
ally, a group of transformations. Such processes play an important 
role in the study of critical phenomena in physics, in particular 
in the so-called "renormalization theory" (see Section 1.3.3). It is 
beyond the scope of this book to discuss this theory in detail. For 
probabilistic results in this context we refer, for example, to Ver-
vaat (1987), Laha and Rohatgi (1982), and Hudson and Mason 
(1982). 

2.3 Stationary increments of self-similar processes 

Suppose that Yt  is a self-similar process with self-similarity param-
eter H. The property 

Yt =d t H Y1 ( for t > 0), 	 (2.9) 

where =d is equality in distribution, implies the following limiting 
behavior of Yt  as t tends to infinity (see Vervaat 1987): 

1. If H < 0, then Yt  —>d 0 (where — > d is convergence in distribu- 
tion). 
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2. If H = 0, then Yt  =d Yi . 

3. If H > 0 and  YO, then lYt i —>d oo. 

Analogously, for t converging to zero, we have: 

1. If H < 0 and  YO, then lYt  I —>d oo• 

2. If H = 0, then Yt =d Yi.. 

3. If H > 0, then Yt —>d O. 

If we exclude the trivial case Yt  -. 0, then these properties imply 
that Yt  is not stationary unless H = O. The exception H = 0 is 
not interesting, as it implies that for all t > 0, Yt  is equal to Y1  
with probability 1. For the purpose of modelling data that look 
stationary, we need only to consider self-similar processes with 
stationary increments. The range of H can then be restricted to 
H > O. The reason is that if the increments of a self-similar process 
are stationary, then the process is mathematically pathological for 
negative values of H. More specifically, for H < 0, Yt is not a 
measurable process (Vervaat 1985, 1987). The only exception is 
the trivial case where Yt = Y1 = 0 with probability 1. A proof and 
more detailed mathematical explanations are given, for example, in 
Vervaat (1985, 1987). Thus, in the following, we consider positive 
values of H only, in particular, Yo  = 0 with probability 1. 

The form of the covariance function -yy (t, s) = cov(Yt , Y5 ) of 
a self-similar process Yt  with stationary increments follows from 
these two properties. To simplify notation, assume  E(Y) = O. Let 
s < t and denote by o- 2  = E[(Yt — Yt_i) 2] = E[Y12 ] the variance of 
the increment process Xt  = Yt  — Yt —i. Then 

E 
[(y

t  _ -17-5 )2] = E [(yt _ s  _ y-0 )2] = a 2(t  _ s )2H .  

On the other hand, 

E [ (yt—r5) 2] =
E [yt

2]
FE [ys2]_2E [ytys

] 
a  2 t 2H +a  2 s 2H_ 2 ,_yy ( t,  s ) .  

Hence, 
_1 0_242H _ ( t  _ 5 )2H . 2H, (2.10) 7y (t, s) = 	 ± s j . 
2 	' 

Similarly, the covariances of the increment sequence X i  = Yi  — 
Yi_ 1  (i = 1, 2, 3, ...) are obtained. The covariance between Xi and 
Xi+k (k > 0) is equal to 

7(k) = cov(Xi , X i+k) = cov(Xi, Xk+i ) 
k+1 	k 	k  

= 	
k+1 

1 (E xj )2 ( x  i ) 2 _ —
2
EKE Xj) 2  + 

j=2 
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1 
= {ERYk+i - Y0 ) 2] ± ERYk-1 - Y0) 2 ] -

2 
 

— E[(Yk —170) 2 ] — E[(Yk — Y 0 ) 2 ]}. 

Using self-similarity, we obtain the formula 

7(k) 	_1 0.2 r(k  ± 1) 2H _ 2k2H + (k — 1) 2H ] 
2 	' 

(2.11) 

for k > 0 and 7(k) = 7( — k) for k < O. The correlations are given 

by 
1 

p(k) = —

2 

[(k + 1) 2H  — 2k 2H  + (k — 1) 2H ] 	(2.12) 

for k > 0 and p(k) = p( — k) for k < O. 
The asymptotic behavior of p(k) follows by Taylor expansion: 

First note that p(k) = .. k 2.1-1 g c - 1 \ 
) /C 	where g(x) = (1+ x)211  — 2 + 

(1 — x) 2H . If 0 < H < 1 and H1/2, then the first non-zero term 
in the Taylor expansion of g(x), expanded at the origin, is equal to 
2H (2H — 1)x 2 . Therefore, as k tends to infinity, p(k) is equivalent 
to H (2H — 1)k 2H-2 , i.e., 

p(k)I[H (2H — 1)k 211-2 ] .— 1 	 (2.13) 

as k —> oo. For 1/2 < H < 1, this means that the correlations 
decay to zero so slowly that 

.0 

E p(k) = oo 
k=—oo 

(2.14) 

The process X i  (i = 1, 2, ...) has long memory. For H = 1/2, all 
correlations at non-zero lags are zero, i.e., the observations Xi  are 
uncorrelated. For 0 < H < 1/2, the correlations are summable. In 
fact a more specific equation holds, namely, 

00 

E p(k) = 0. 	 (2.15) 
k= —oc  

In practice, this case is rarely encountered (though it may occur 
after overdifferencing), mainly because condition (2.15) is very un-
stable. A simple example illustrates this: Suppose that (2.15) holds 
for Yt . Let 6t  be a process that is independent of Yt , with an arbi-
trarily small variance var(6 t ) and with autocorrelations that sum 
up to a positive (finite or infinite) constant c. Assume that instead 
of Yt , we observe the slightly disturbed process Yt  + 64. Then the 
sum of the correlations of the observed process Yt  + 6t  is equal 



STATIONARY INCREMENTS OF SELF-SIMILAR PROCESSES 	53 

to  cO.  Thus, an arbitrarily small disturbance destroys property 
(2.15). 

So far, we considered the cases 0 < H < H = and < H < 
1. What happens for H > 1? For H = 1, (2.9) implies p(k) 1. 
All correlations are equal to 1, no matter how far apart in time the 
observations are. This case is hardly of any practical importance. 
For H > 1, g(k -1- ) diverges to infinity. This contradicts the fact 
that p(k) must be between —1 and 1. We can conclude that if 
covariances exist and limk, p(k) = 0, then 

0 < H < 1. 	 (2.16) 

For  < H  < 1 the process has long-range dependence, for H = 
the observations are uncorrelated, and for 0 < H < the process 
has short-range dependence and the correlations sum up to zero. 

It should be stressed that here we consider only processes with 
finite second moments. There are well-defined self-similar processes 
with stationary increments, infinite second moments, and H > 1 
(see the references in Section 11.1). Also, one should add that, if 
the second moments do not exist, then HO1 does not necessarily 
imply that the increments X i  are dependent. For example there are 
so-called a-stable processes with 0 < a < 2 that are self-similar 
with self-similarity parameters H = 1/a and have independent 
increments, although H = 1/a > I (see, e.g., Samorodnitsky and 
Taqqu 1993). Unless specified otherwise, we will always assume 
that the second moments are finite, limk,,, p(k) = 0, and hence 
O  < H < 1. Under these assumptions, the spectral density of the 
increment process Xi can be derived from (2.7) (Sinai 1976): 

Proposition 2.1 The spectral density of Xi is given by 

00 

f (A) = 2c f(1 — cos A)  > 	127ri + I
-

2H_1, A E  [-71, 71]  (2.17) 
i=-00 

with c1  = cf(H,c1 2 ) — o-2 (27) -1  sin(R- H)F(21/ ± 1) and o-2  = 

var(Xi ). 

The behavior of f near the origin follows by Taylor expansion 
at zero: 

Corollary 2.1 Under the above assumptions 

f(A) 	fiAI 1-2H ± 	 (2.18) 

The approximation of f by cf I A I I-2H  is in fact very good even 
for relatively large frequencies. This is illustrated in Figure 2.5. 
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Figure 2.5. Spectral density of fractional Gaussian noise with H = 0.7 
(Figure 2.5a) and H = 0.9 (Figure 2.5b) and approximation by straight 
lines. 

There, log  f (À) and y = log cf ± (1 - 2H) log A, respectively, are 
plotted against log A. The logarithm of f deviates only very little 
from the corresponding straight line. 

We conclude this Section by noting an appealing property of 
stationary increments of self-similar processes: The sample mean 
can be written as 

Tl, 

x =  = 71 -1 (Yn  — Y0 ) =d n —i n H (Y1 Yo). 
i=1 

Therefore, instead of the asymptotic equality (2.8), we obtain for 
each sample size the exact equality 

var(X- )= a 2 n  2H-2 	 (2.19) 

For H = -1, this is the classic result var(X) = a 2 n -1 . Moreover, 
if Xi  is a Gaussian process with mean it and variance a 2 , then 

- ti,)/a is a standard normal random variable. This can 
be used to calculate tests and confidence intervals for ft. 
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2.4 Fractional Brownian motion and Gaussian noise 

Suppose that Yt  is a self-similar process with stationary incre-
ments. The expected value of the increment process X i  = Yi — 
(i = 1, 2, ...) is zero. The covariances of Xi are given by equation 
(2.11). In particular, suppose that Xt  is a Gaussian process. Then, 
the distribution of the process is fully specified by the mean and 
covariances. Therefore, for each value of H E (0, 1), there is ex-
actly one Gaussian process X i  that is the stationary increment of 
a self-similar process Yt . This process is called fractional Gaussian 

noise. The corresponding self-similar process Yt  is called fractional 

Brownian motion. We will denote it by B H (t) 
Let us first consider the case H = 	For H = 	Xi, X2, 

are independent normal variables. The corresponding self-similar 
process I 3 (t) turns out to be ordinary Brownian motion, which 

we will denote by B (t). This can be seen by deriving self-similarity 
with H = from the following standard definition of Brownian 
motion: 

Definition 2.5 Let B(t) be a stochastic process with continuous 

sample paths and such that 

(i) B(t) is Gaussian, 

(ii) B(0) = 0 almost surely (a.s.) 

(iii) B(t) has independent increments, 

(iv) E[B(t) — B(s)1 = 0 

(v) var[B(t) — B(s)) = o-2 it — si. 

Then B(t) is called Brownian motion. 

Self-similarity with H = follows directly from this definition: 
First note that, because B (t) is Gaussian, it is sufficient to look at 
the expected value and the covariances of B (t). From (ii) and (iv) 
we have 

E [B (ct)] = E [B (ct) — B (0)] = 0 = 	[B (0]. 

Consider now the covariance cov(B(t), B(s)) for t > s. Because 
B (t) — B (s) is independent of B (s) —  B(0)  = B (s), we can write 

cov(B(t),B(s)) = var(B(s) — B(0)) 

= o- 2 s = o- 2 min(t, s). 

Therefore, for any c>  0 

cov(B(ct), B (cs)) = co-2 min(t, s) 
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= cov(c 1I2 B(t), c 112 B(s)). 

Hence, B (t) is self-similar with self-similarity parameter H = 

Fractional Brownian motion with H assuming any value in the 
interval (0, 1) is defined by the covariance function (2.11). Alterna-
tively, it can be defined as a weighted average of ordinary Brownian 
motion over the infinite past. A mathematically stringent definition 
along this line can be given in terms of a stochastic integral: 

Definition 2.6 Let s > 0 be a positive scaling constant, and define 

the weight function w H by 

wH(t,u) ,  0 for t < u, 

1  
W 0,0 = (t - U)

H 
 -7  for 0 < u < t, 

and 
wH(t,u) = (t — u) HA" — (—u) H _ 1  for u < O. 

Also, let B(t) be standardized Brownian motion, i.e., B(t) is as in 
Definition 2.5 with a 2  = 1. For 0 < H < 1, let B H(t) be defined 
by the stochastic integral 

B H (t) = s f w H (t, u)dB(u), 	 (2.20) 

where the convergence of the integral is to be understood in the 
L 2 -norm with respect to the Lebesgue measure on the real num-
bers. Then B H(t) is called fractional Brownian motion with self-
similarity parameter H. 

For the exact mathematical definition of such stochastic integrals 
we refer the interested reader to Ash and Gardner (1975). A brief 
intuitive explanation can be given as follows: The function wH(t, .) 
is first approximated by a sequence of step functions: 

M, 

WH,m(t, U) = <u  < 
j.1 

where —oo < u o  <  ni.  < 	<  Urn  < oo. We choose a sequence of 
step functions wH, m  such that 

f [wH ( t , u) — w H,m (t, u)1 2 du —> 0 

as m —> oo. For wH, m (t, u), the stochastic integral with respect to 
Brownian motion is defined to be equal to 

Sm  = f wH, m (t, u)dB(u) = 
rn  

  

i [B (u i) — B (u _1)]. 
i=1 
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The integral (2.19) is then defined by 

J 	 Tri 
u)dB(u) 	lim f wH, m (t, u)dB(u) =  urn Sm .  

—+00 	 m-,00 

The limit is to be understood in the sense of L 2-convergence. This 
means that for a single path of B(u), the limit does not need to 
exist. However, Sm  converges in mean square, i.e., there exists a 
random variable S such that 

lim E[(Sm — S) 2] = O. 
m—* 00  

Self-similarity of the weighted integral (2.19), with self-similarity 
parameter H,  follows directly from self-similarity of B(t) and the 
definition of wH(t, u) : First note that 

w (ct, u) = cHA w (t, uc -1 ). 

Therefore, 

BH(ct) = f WH(Ct,U)dB(U) = C H-1. 	WH(t 1 IIC -1 )dB(U). 

Using the substitution y = uc -1 , we obtain 

f wH(t, y)dB(cy). 

By self-similarity of B (t), this is equal in distribution to 

H- 1  1  C 2 C 2  f WO, V)dB(V) = C
HBO). 

Thus, BH(t) defined by (2.19) is self-similar with self-similarity 
parameter H. 

It is informative to take a closer look at the weight function 
wH(t, u) : Figure 2.6 shows wH(t, u) as a function of u for t =  1 

and several values of  H.  For H = 

w H(t, u) = 1, for 0 < u < t 

and 

wH- (t, u) = 0, for u < 0 and for  u>  t. 

This means that BH(t) = B (t) and the increments are independent 
identically distributed normal random variables. 

If H is in the intervals (0, 1/2) or (1/2, 1), then the weight func-
tion is proportional to lui li-3 / 2  as u tends to —oo. For H > 1/2, 
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Figure 2.6. Weight function wH(t,u) for fractional Brownian motion 
with H = 0.5 (Figure 2.6a), H = 0.7 (Figure 2.6b), H = 0.9 (Figure 
2.6c), and t = 1. 
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1u1 H-3/ 2  tends to zero so slowly that 

f oo  WO , 	 = 00 
	

(2.21) 

for all t E R. For H < 1/2, U H-3/ 2  dies off very quickly and 

foc 
w H( t, u)du = 0. 	 ( 2 . 2 2 ) 

These properties are reflected in the corresponding properties of 
the correlations p(k) for the differenced process, (2.14) and (2.15). 

2.5 Fractional ARIMA models 

ARIMA models were introduced by Box and Jenkins (1970). Be-
cause of their simplicity and flexibility, they became very popular 
in applied time series analysis. The theory of statistical inference 
for these processes is well developed. A detailed account of statisti-
cal methods and references can be found in, for example, Box and 
Jenkins (1970), Priestley (1981), Abraham and Ledolter (1983), 
and Brockwell and Davis (1987). Fractional ARIMA models are a 
natural extension of the classic ARIMA models. 

Let us first recall the definition of ARMA and ARIMA processes. 
To simplify notation, we assume tt = E(X t ) = 0. Otherwise, Xt  
must be replaced by Xt  — ft in all formulas. In the following, B will 
denote the backshift operator B defined by BX t  = Xt_i, B 2 X t  = 

2 ... In particular, differences can be expressed in terms of the 
backshift operator as Xt  — Xt_ 1  = (1 — B)X t , (Xt  — Xt _ 1 ) — 
(Xt _1 — Xt_2) = (1 — B) 2 Xt , ... Let p and q be integers. Define the 
polynomials 

and 

rtp (x) = 1 ± 
J=1 

Assume that all solutions of q5 (x 0 ) = 0 and 0(x) = 0 are outside the 
unit circle. Furthermore, let Et (t = 1, 2, ...) be iid normal variables 
with zero expectation and variance af2 . An ARMA(p, q) model is 
defined to be the stationary solution of 

0 (B )x = '(B) f t . 	 (2.23) 



È(1—B)d,E(
d
) (-1) k  B k . 

k 
k=0 

(2.25) 
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If instead (2.23) holds for the dth difference (1 — B) dX t , then Xt  is 
called an ARIMA(p, d, q) process. The corresponding equation is 

((B)(1 — B) dX t  = 0(B)e t . 	 (2.24) 

Note that an ARMA(p, q) process is also an ARIMA(p, 0, q) pro-
cess. If d is larger than or equal to 1, then the original series Xt  is 
not stationary. To obtain a stationary process, Xt  must be differ-
enced d times. 

Equation (2.24) can be generalized in a natural way by allowing 
d to assume any real value. First note that if d is an integer (d > 0), 
then (1 — B) d  can also be written as 

d 

(1 — B) i  = E(cl
k
)(_1)kBk, 

with the binomial coefficients 

(d ..= 	d! . 	F(d  +1)  
1c) 	k!(d — k)! .= F(k + 1)F (d — k + 1) •  

Here, F(x) denotes the gamma function. As the gamma function 
is also defined for all real numbers, the above definition of the 
binomial coefficient can be extended to all real numbers d. Note 
that for negative integers the gamma function has poles so that the 
binomial coefficient is zero if k > d and d is an integer. Formally, 
we can define (1 — B) d  for any real number d by 

k=0 

For all positive integers, only the first d + 1 terms are non-zero 
and we obtain the original definition of the dth difference operator 
(1 — B) d . For non-integer values of d, the summation in (2.25) is 
genuinely over an infinite number of indices. Definition (2.24) can 
now be extended to non-integer values of d in the following way: 

Definition 2.7 Let X t  be a stationary process such that 

0(B)(1— B) d  X t  = 0(B)f t 	 (2.26) 

for some A < d < -1- . Then Xt is called a fractional 
ARIMA(p, d, q) process. 

This definition was proposed by Granger and Joyeux (1980) and 
Hosking (1981). The range that is interesting in the context of 
long-memory processes is 0 < d < 1. The upper bound d < 1 
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is needed, because for d > -1, the process is not stationary, at 
least not in the usual sense. In particular, the usual definition of 
the spectral density of Xt  would lead to a nonintegrable function 
[see (2.27) below]. For the range < d < 1, one can still define a 
"spectral density," by using a more general definition. It is however 
not integrable (see the remarks in Section 1.3.5). Also note that, 
the case d > can be reduced to the case A- < d < by taking 
appropriate differences. For instance, if (2.26) holds with d = 1.3, 
then the differenced process Xt  — X t_i is the stationary solution 

of (2.26) with d = 0.3. 
Equation (2.26) can be interpreted in several ways. For instance, 

it can be written as 

(1 — B) dX t  = kt , 	 (2.27) 

where Xt  is an ARMA process defined by 

= 0 -1 (B)0(B)ft 
	 (2.28) 

This means that, after passing Xt  through the fractional difference 
operator (or infinite linear filter) (1 — B) d , we obtain an ARMA 
process. On the other hand, we can write 

Xt  = 0(B) -1 7,b(B)X;, 	 (2.29) 

where X; is a fractional ARIMA(0, d, 0) process defined by 

X; = (1 — 
B)_ d et 	 (2.30) 

That is, Xt  is obtained by passing a fractional ARIMA(0, d, 0) pro-

cess through an ARMA filter. Figures 2.7a to c show sample paths 
of several fractional ARIMA processes. We can see that many dif-

ferent types of behavior can be obtained. The parameter d deter-

mines the long-term behavior, whereas p, q, and the corresponding 

parameters in 0(B) and 0(B) allow for more flexible modelling of 
short-range properties. 

The spectral density of a fractional ARIMA process follows di-

rectly from (2.26). Denote by 

0.2 10( e iA)12 
f ARM APO = f 	 

27r 10(eiÀ)1 2  

the spectral density of the ARMA process X. Recall that if Xt  is 

obtained from a process Yt  with spectral density fy by applying the 

linear filter E a(s)Yt _ s , then the spectral density of Xt  is equal to 

IA(A)1 2 fy(A), where A(A) = E a(s)e' (see, e.g., Priestley 1981, 
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Figure 2.7. Simulated series of a fractional ARIMA(1,0.3,0) process with 
AR parameter —0.7 (Figure 2.7a), a fractional ARIMA(0,0.3,0) process 
(Figure 2.7b), and a fractional ARIMA(1,0.3,0) process with AR param-
eter 0.7 (Figure 2.7c). 



FRACTIONAL ARIMA MODELS 	 63 

p. 266). From (2.26) we then obtain the spectral density of Xt  : 

f (A) = 11 — e iA l 2d  f ARmA(A)• (2.31) 

Note that '1 — e iÀ  I = 2 sin 1 A. Because lim),,0 A -1 (2 sin A) = 1, 
the behavior of the spectral density at the origin is given by 

f(A) , (3-  10( 1 )1 2  00 -2d = 
f ARmA(0) IAI -2d . 	(2.32) 

' 	27r 10(1)1 21  I   

Thus, for  d>  0, the spectral density has a pole at zero. Comparing 
this with our notation in the previous sections we see that 

1 

	

d = H — —

2

. 	 (2.33) 

For d = 0, Xt  is an ordinary ARMA(p, 0, q) process with bounded 
spectral density. Long-range dependence occurs for 

1 

	

0 < d < —

2

. 	 (2.34) 

In order to transform Xt  into a process with a bounded spectral 
density, one has to apply the linear filter (1—  B) d . For —1 < d < 0, 
f(0) = 0 so that the sum of all correlations is zero. For the reasons 
mentioned earlier, this case is of less practical importance. 

For 0 < d < 1-, asymptotic formulas for the covariances and 
correlations follow from Theorem 2.1 (ii): As lk 1 —> oo, 

7 (k) r.s.)  c..y (d ,  0 )  0) lki2d-1 ,  

where 

c,y (cl, 0, 0) = 01 l'P (1)12  r(i - 2d) sin 7rd 
71  10( 1 )1 2  

P(k) r‘) cp(cl, OM lki 2d-1  , 

where 
Cy (d, OOP)  
f7r7r  f ())dA .  

To obtain explicit formulas for all covariances is slightly more 
difficult, except in the case of a fractional ARIMA(0, d, 0) process. 
In this simple case, the form of the covariances follows directly 
from a formula in Gradshteyn and Ryzhik (1965, p. 372): 

7(k)  = 0.2 	(-1) k F(1 — 2d) 
E  F (k — d + 1)F (1  —k  — d) .  

and 

= 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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The correlations are equal to 

F(1 — d)F(k + d)  
p(k) = 	 (2.40) 

F(d)F(k + 1 — d) • 

Because F(k + a)/F(k + b) is approximately equal to ka —b  for large 
k,  the asymptotic behavior of p(k) is given by 

r(1 - d)  
p(k) ,,, 	iki 2 	Oki —> oo). 	(2.41) 

F(d) 

For a general fractional ARIMA(p, d, q) process, the covariances 
and correlations can be obtained as follows: As we remarked above, 
Xt  is obtained by passing a fractional ARIMA(0, d, 0) process X; 
through the linear filter 

00 

Oi B 3  =  
i=o 

Denote by 7*(k) the covariances of  X.  In a first step, we calcu-
late the coefficients Oi. This is done by matching the powers of 
0(B)0 -1 (B) with those of 0(B). For instance, if 

0(B) = 1 

and 
0 (B) = 1 + OB, 

then one obtains 

0(B)0 -1- (B) = 1 —1p.B .  + 02 B 2  - 

Thus, 
Oi  =  

In a second step, the covariances 7 (k) of the resulting fractional 
ARIMA(p, d, q) process Xt  are obtained from 0(B) and the covari-
ances -y* (k) by 

00 
-y(k) = 	13. 017 *  (k  +j  — 1). 	 (2.42) 

i,t.o 

We conclude this section by noting some other properties that 
follow easily from the definition: A fractional ARIMA(0, d, 0) pro-
cess can be represented as an infinite moving average or an infinite 
autoregressive process with coefficients that can be given explicitly 
(Hosking 1981): 

Proposition 2.2 Let X t  be a fractional ARIMA(0,d,0)-process 
with --1-  <d  <-.-. Then 
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(i) the following infinite autoregressive representation holds: 

E 7rkXt—k = Et) 
	 (2.43) 

k=0 

where c t  (t = 1, 2, ...) are independent identically distributed ran-
dom variables and 

For k oo we have 

F(k — d) 
7r k = F(k 1)F(—d) •  

1 dl  
7rk 

r(-d) 

(2.44) 

(2.45) 

(ii) The following infinite moving average represenation holds: 

00 

_K t  =Ea(k)et_k 	 (2.46) 
k=0 

where e t  (t = 1, 2, ...) are independent identically distributed ran-
dom variables and 

For k —> oo we have 

a(k) 
F(k + d)  

= 
F (k + 1)F (d) 

d 

a(k) 	
1 

 

(2.47) 

(2.48) 

These results are especially useful if we want to predict future 
observations from an (almost) infinite past. For predictions from 
a finite past, the following result gives an explicit formula for the 
best linear predictor (Hosking 1981): 

Proposition 2.3 Let X t  be a fractional ARIMA (0, d, 0) process 

with 	<d  < and let 

XL  =1:SkjXt-j 
j=1 

be the best linear predictor of X t  given Xt_i, 	Xt_k. This means 

that the coefficients Oik minimize the expected squared prediction 

error E[(Xt — 	 X t _k]. Then 

k)ru — cor(k  —  d — j 1) 

	

Skj = -(. 	 (2.49) 

	

3 	F(—d)F(k — d + 1) 	• 
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In particular the partial correlation coefficient likk is equal to 

d 
Okk = 

k — d
• (2.50) 

For j,k —> oo and j I k  —* 0  we have 

Ski ' F(—d) 3 	- 	 (2.51) 

Again it is slightly more complicated to obtain these results for 
fractional ARIMA(p, d, q) models with non-zero p or q. The prin-
ciple of how to obtain the coefficients of the best linear unbiased 
prediction, the infinite moving average, and the autoregressive rep-
resentations respectively, is, however, the same as for ARMA pro-
cesses. The partial correlation coefficients are obtained explicitly 
from the Durbin-Levison algorithm. To obtain ak (k = 1, 2, ...) in 
the infinite moving average represenation, we expand 

( 1  — B) d0 -1 (B)0(B) 

in a (formal) power series. 



CHAPTER 3 

Limit theorems 

3.1 Introduction 

In this chapter we discuss some limit theorems that are useful for 
statistical inference. There is an extensive literature on limit theo-
rems for long-memory processes. Here we mainly focus on results 
that will be needed later. 

3.2 Gaussian and non-gaussian time series with long 
memory 

The simplest time series models are Gaussian processes. Their dis-
tribution is fully determined by the expected value and the covari-
ances. Methods of inference can therefore be obtained by restricting 
attention to the first two moments only. 

In general, it is unlikely that an observed time series is exactly 
Gaussian. Good statistical inference procedures should therefore 
remain valid approximately, even if the actual process deviates 
from this ideal model. We will see later, at least partially, how such 
methods may be obtained (Chapter 7). A fully developed theory 
of robustness for long-memory processes is not known, however, at 
the present stage. Instead, several authors consider more general 
conditions under which limit theorems derived for the Gaussian 
case remain to hold. We consider two types of generalizations of 
Gaussian time series: 

1. One-dimensional transformations of a Gaussian time series: Let 
Xt  be a Gaussian process. We define a new process by 

Yt = G(Xt), 	 (3.1) 

where G is a sufficiently regular function. 

2. Linear processes: Let et , (t = ..., —2, —1, 0, 1, 2, ...) be a se-
quence of independent (not necessarily normal) variables and 



00 

k=0 

G(x) = 	 (3.7) 
1 , 

ak—Hk 
f
X). 

Ic! 
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let a(k), (k = ..., –2, –1, 0, 1, 2, ...) be a sequence of real num-
bers. We define a linear process by 

00 

Yt = 

 

a(k)Et—k• 	 (3.2) 

   

k= — 00 

Let us first look at generalization 1: In order that probabilites 
can be calculated, the function G must be sufficiently regular. In 
particular, G is assumed to be measurable. Also, we assume that 
the first two moments, E[G(X t )] and E[G2 (X t )], exist and are 
finite. Without loss of generality we can assume that E [G  (X i )]  = 0. 
This can always be achieved by subtracting the expected value 
E[G(Xt)] from G(Xt)• 

The limiting behavior of linear sums, quadratic forms, and higher 
order polynomial forms in  G(X) turns out to be essentially char-
acterized by the corresponding limiting behavior for Hermite poly-
nomials Hk(X t ). Hermite polynomials are defined by: 

Definition 3.1 The kth Hermite polynomial Hk(x) is equal to 

dk  
Hk(x) = (-1) k e x2 / 2 [ 	

k  e
— x 2  / 2 ]. 	 (3.3) 

dx 

For instance, the first three Hermite polynomials are  H 1  (x)  = x, 
H2(x) = X 2  — 1, and  H3(x) = x 3  — X. A useful property of Hermite 
polynomials is that they build an orthogonal basis in the following 
sense: Let X be a standard normal random variable. Let g be the 
set of functions G with E[G(X)] = 0, E[G2 (X)] < oo and define 
the scalar product 

< G,F >= E[G(X)F(X)]. 	 (3.4) 

Then 

< Hk, Hk >= k!, 	 (3.5) 

for all kr 

< Hk, II, >= 0, 	 (3.6) 

and every function G E g can be written as 

with Hermite coefficients 

ak =< G, Hk > • 
	 (3.8) 



1 
SK  =- E ak  —I-4(X) 

k! 

K 

(3.9) 
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Equality is to be understood in the sense that 

k=0 

converges to G (X) in the L 2  norm < ., . >, as K tends to infinity. 
In particular, (3.4), (3.5), and (3.6) imply 

°° a 2k  
k! • 

k=0 

We will see that in most limit theorems for long-memory pro-
cesses of the form G (X t ) (t = 1, 2, ...), the only contribution to the 
limiting distribution comes from the lowest order Hermite polyno-
mial in (3.7) for which the coefficient ak is not zero. We therefore 
define the so-called Hermite rank: 

Definition 3.2 G E g has Hermite rank m, if ak = 0 for k < m 
and a m,00. 

Let us now turn to the second generalization. We assume that 
the observed process Yt  can be written in the form (3.2). We will 
assume that Yt  has finite variance. This means that we assume 
o- E2  = var(e t ) < oo and 

E a 2 (k) < 00. 
	 (3.11) 

k=—oo 

Equation (3.2) means that Yt  is obtained by passing the sequence 
of independent observations e t  through the linear filter with co-
efficients a(k). In applications, it is usually not plausible that Yt  
should depend on future values of e t . The summation in (3.2) is 
therefore often restricted to k > O. That is, one assumes the process 
to be "causal" in the sense that a one-sided moving representation 

exists. 

Yt = (k)et—k 	 (3.12) 

3.3 Limit theorems for simple sums 

We consider the limiting distribution of appropriately normalized 

n 

var(G(X)) — (3.10) 

Sn  = 
	 (3.13) 
k=1 
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A general result on the limiting behavior of partial sums was given 
in Theorem 2.3. Essentially it says that the only limiting processes 
one can obtain by normalizing partial sums S n„ appropriately, are 
self-similar processes. For deriving most of the statistical inference 
procedures, it will be sufficient to consider the special case u = 1. 
We therefore restrict attention to (3.13). 

Suppose that Yt  = G (X t ), where Xt  is a stationary process with 
long-range correlations and G E  Ç. Without loss of generality, we 
may assume that X t  has a mean of zero and a standard deviation 
of 1. The following limit theorem follows from Taqqu (1975, 1979) 
and Breuer and Major (1983) (see also Dobrushin 1979, Dobrushin 
and Major 1979, Giraitis and Surgailis 1985): 

Theorem 3.1 Let G E g be of Hermite rank m. Then the follow-
ing holds: 

(i) If < H < 1 — 1/(2m), then 

2 = lim n 
72,00 

j,1=1 

exists and 

E[G(Xi )G(X 1 )] 	(3.14) 

Sn* =n— S n, 	S, 	 (3.15) 

where S is a normal random variable with zero mean and vari-
ance a 5,2  . 

(ii) If 1 — 1/(2m) < H < 1, then 

where 

sn* = n-1—m(H-1.) 	 am 
i--7 n cl VT77n 77

! 
Zm) (3.16) 

2cmm -Y 	• 

(1 — m(2 — 2H))(2 — m(2 — 2H)) 
and Z m  is a nondegenerate random variable. 

The exact distribution of Z m  is rather complicated in general. It 
is the marginal distribution of a so-called Hermite process Zm (u) 
of order m at time u = 1. For m = 1, Zm  is a standard normal 
random variable. A formula for the characteristic function of Zm 

 for m = 2 is given in Taqqu (1975). We will restrict attention 
mostly to the case m = 1. For probabilistic characterizations of 
the general case m > 1 and more technical details, we refer the 
interested reader to Taqqu (1975, 1979), Dobrushin (1979), and 
Dobrushin and Major (1979). 

Most important in Theorem 3.1 is the distinction of two types 
of behavior: For 1 — 1/(2m) < H < 1, Sn  has to be divided by 

Cm  = (3.17) 
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ril3  with /3 > 1/2, in order to obtain a nondegenerate limiting 
distribution. Moreover, the limiting distribution is not necessar-
ily normal. This is in contrast to sums of random variables with 
summable correlations. If the correlations are summable, then the 
normalizing factor is n1 and the limiting distribution is normal. 

The situation is very different for < H < 1- 11(2m). There, Sn  

has to be divided by the usual standardization n,  and we obtain 
a Gaussian limit. Thus, essentially we are in the same situation as 
under independence or short-range dependence. 

A simple heuristic consideration shows why there is such a dis-
tinct contrast between H < 1 — 1/(2m) and H > 1 — 1/(2m). 
The essential point is that if the covariance between X i  and X j±k 

is -y(k), then the corresponding covariance for the mth Hermite 
polynomial is given by (see, e.g., Rozanov 1967): 

-y m (k) = cov(H m (X i), H m (X i +k)) = mPy m  (k). 	(3.18) 

In order that S n  has rate of convergence n - 1, the sum of all co-
variances 7m (k) must be finite. Thus, we need 

00 

y m  (k) < CX) 

k=—oo 

This is the case if H < 1 — 1/(2m). On the other hand, for H > 
1 — 1/(2m), 

00 

so that the rate of convergence of S n  is slower than n - 1. The case 
H = 1 — 1/(2m) would have to be treated separately. We omit it 
here, as it is only of marginal interest. 

The second remarkable result in Theorem 3.1 is that for 1 — 
1/(2m) < H < 1, only the first non-zero term in the Hermite 
expansion 

00 

a 
G(X) = 	

k 
-

k!

H k(X)  
k=m 

determines the asymptotic distribution. The asymptotic distribu-
tion of n -1-- m(H-1) Sn  is exactly the same as the asymptotic dis-
tribution of n -1-7fl (H-1) Sm , n  where 

S m,n H (X i). 	 (3.19) 
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The reason is that for m' > m, 

n— 	, 	n-1 

lim 	L'Ym  (k)/  L -ym(k) = O. 
n,00 

k=—(n-1) 	 k=—(n-1) 

Therefore, the variance of 5771, ,n  diverges slower to infinity than 
i+m(H-1) n 	and n -1— m(H-1) Qm  , tends to zero in probability. "n 

A useful generalization of  Theorem 3.1 is obtained by considering 
transformations of X t  that depend on an index v, where v is in a 
compact interval. We define 

Then 

 

Yt = G(Xt,Y). 

 

n 

 

 

Sn (v) = 

 

G (X i , v), n = 1, 2, ... 

     

i= 1 

is a sequence of stochastic processes. Under certain additional reg-
ularity conditions on G, one can show that the stochastic process 
Sn  (y),  normalized appropriately, converges weakly to a well-defined 
limiting process. We will not need this result in its full generality. 
Instead, we consider two special cases that are of interest in sta-
tistical applications: 

1. "Well behaved" continuous functions G with v E [—V, V]; 

2. Indicator funtions G(X t , v) = 1{ô(X) < v}, with y E 

[— CO , 00] . 

The following is a consequence of the above theorem and Billings-
ley (1968, p. 97) (see Beran and Ghosh 1991): 

Theorem 3.2 Let 0 < V < oo , x E R and V E [—V, V]. Let G (x , v) 
be continuous and such that for each v E [—V, V], g(x) = G(x,v) 
is in g and of Hermite rank m > 1 with mth Hermite coefficient 
am (v). Suppose that there exists a constant -y > 1 and a nonde-
creasing continuous function 0 : [—V, V] —> R such that, for a 
standard normal random variable X, 

E (IC (X , v) — G (X , w)I 2 ) < 10 (v) — 0 (w)F 	(3.22) 

for all v, W E [—V, V]. Then the following holds: 

(i) If 1 < H  < 1 — 1/(2m), then 

n 

c(v, w) = lirn n 
n—+oo 

E [G (X i , v)G (X 1, w)] 	(3.23) 
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exists and 

S(v) = n — ISn (v) 	 (3.24) 

converges to a zero mean Gaussian process with covariance func-
tion c(v,w). The convergence is weak convergence in the space 

C[—V, V]  of continuous functions on  [—V, V], equipped with the 

supremum norm. 

(ii) If 1 — 1/(2m) < H < 1, then 

S(v) = n -1—m(1-11) S n (v) 	 (3.25) 

converges (in the same sense as above) to 

am  (v) 
N/7,72, 	Z m 	 (3.26) 

m! 

where cm  and Z m  are as in Theorem 3.1. 

The following theorem is a special case of a result by Dehling 
and Taqqu (1989): 

Theorem 3.3 Let G be a function in g and define G(x,v) = 
1{G(x) < v }  Assume that, for each 'I) E R, g(x) = G(x,v) is 
of Hermite rank m. Denote by D[—oo,c)o] the space of functions 

defined for all real numbers (including —co,  oc)  that are right-

continuous and for which limits from the left exist, equipped with 

the supremum norm. Let 1— 1/(2m) < H < 1. Then 

S;Ki (v) = n-1—m(H-1) 8n (v) 	 (3.27) 

converges weakly to 
a m (v) 

(3.28) 
m! 

Note that the limitng  processes in Theorems 3.2(ii) and 3.3 are 
a constant function .Vcm (v) times a random variable. Thus, once 
we observe one observation, we know the whole sample path. 

The results dicussed in this Section can be derived for more gen-
eral processes (Surgailis 1981a, Giraitis and Surgailis 1985, 1986, 
Avram and Taqqu 1987). In particular, Surgailis (1981a) derived 
analogous limit theorems for linear processes (3.12). 

3.4 Limit theorems for quadratic forms 

Quadratic forms play a central role in approximations of the Gaus- 
sian maximum likelihood. The likelihood function of a normally 
distributed random vector X = (X1, ...,  X)  with mean zero and 
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covariance matrix E = [7(i - 	 is given by 

g(Xi, 	Xn) = (27) -72-1 1E1 - e -°-tE-1x 	(3.29) 

Here, 1E1 denotes the determinant of E. In statistical applications, 
E is assumed to depend on an unknown parameter vector O. The 
likelihood function g is then a function of X and O. For instance, 
for fractional Gaussian noise with zero mean and variance o- 2 , one 
can define the parameter vector 0 = (o-2 , H) and the covariance 
matrix is of the form 

Eij  ( 69 ___ 2 0_ 2 ( 	11 2H 	21i 	i 1 2H 	j 	1 12H ). (3.30)  

The maximum likelihood estimator (MLE) of 0 is obtained by max-
imizing g (Xi, ..., X 0) with respect to O. To evaluate g, one needs 
to invert the n x n-matrix E. In an iterative maximization proce-
dure, many evaluations of g have to be performed. For long data 
sets, inversion of E can be time and space (computer memory) 
consuming. It is therefore often useful to replace E -1  by a ma-
trix that can be calculated directly without inversion. A simple 
approximation of E -1  is obtained by the matrix A with elements 

' 	1  
ai,/ = ai-i = (27)-

2 f f (A; 0)
e i(1-1)À  clA 	(3.31) 

where f is the spectral density (Whittle 1951, see also Bleher 1981). 
Based on this approximation, and a suitable parametrization 0 = 
(o- E2 /(27), n) (see Chapter 5), an approximate MLE of 0 is obtained 
by minimizing the quadratic form 

Q*()  = x'A(9*)x 	 (3.32) 

with respect to  ij ,  where 0* = (1, n) t , and setting 

27Q *(0 . 	 (3.33) 

This will be discussed in detail in Chapter 5. Under mild regularity 
conditions, minimizing Q* ( 7 ) is equivalent to finding the solution 
of 

1P` = 	a  Q*(n) = 0 (j = 1, 2, ...). 	(3.34) 

These considerations motivate the following probabilistic problem: 
Given a long-memory process and a symmetric Toeplitz matrix B, 
how do we need to standardize the quadratic form 

Q = X t  B X 	 (3.35) 
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in order to obtain a nondegenerate limiting distribution, and what 
is the resulting limit distribution? Recall that B is called a symmet-
ric Toeplitz matrix if B is symmetric with elements B ii = 

At first, suppose that Xi is a Gaussian process. The asymptotic 
distribution of Q follows from Fox and Taqqu (1987) and Avram 
(1988a). 

Theorem 3.4 Let X i  be a stationary Gaussian process with mean 
zero and spectral density f. Also, let B be the Toeplitz matrix whose 
elements bi_i are defined by 

7r 
bk  = 	

- 	

eikx g(x)dx 
7r 

for some g. Assume 
Ir 

-1 

 

T race(B) 2  —> (27) 3  f 	[f (x)g(x)] 2 dx < oo 
-7r 

and that there exists an a < 1 and f3 < 1 such that 

1 

f (x) 	cfIxi -13  as I xi  —4 0 

and 
g(x) 	cg ixra  as Ix' —4 0, 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

where cf and cg  are finite constants. Then, under mild additional 
regularity conditions on f and g, 

[Q — E (Q)] 	012Z 	 (3.41) 

where Z is a standard normal random variable and 

cr 2 	16 3 	[f (x)g(x)Pdx. 	 (3.42) Q  - — 7T 

Note that in the context of long-memory processes, we con- 
sider spectral densities with ,(3 in the range (0, 1). In our notation, 

= 2H — 1. Condition (3.38) determines the strength of the long 
memory. Similarly, (3.39) determines how fast the elements bi_i 
of the matrix B converge to zero as — ii tends to infinity. If 
0 < a < 1, then bk cbk' l  as lk oo, where 0 < cb < oo. 
For a < 0, Er__ oe  b k  = 0 and Ea_ oe  ibk i < 00. Condition (3.37) 
ensures that bk converges fast enough to zero in order to compen- 
sate for the long memory of Xi. If the long memory is strong (0 
large), then bk has to converge fast enough to zero in order that the 
variance of Q remains to be of the order 0(n). The mathematical 

7r 

f7r 



Suppose that 	p = 1, 2, 
Then, under the assumptions of 

, 
n 7 	EQn,li, •••,Qn,lp  

..., are distinct positive 
Theorem 3.5, 

EC2n,i,) —>d 42(Z1, Z2) 
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reason is that in order for the variance of Q to be of this order, 

(3.36) must hold. Finally, it should be noted that the same central 
limit theorem holds when the sample mean is subtracted from X i  
(Fox and Taqqu 1987, Theorem 4). Also note that a different be-
havior of Q is obtained if a ± > Terrin and Taqqu (1990a) 
showed that in this case, Q has to be divided by na+(3  and the 
limiting distribution is non-normal. 

A generalization to linear processes (3.6) is given in Giraitis and 
Surgailis (1990a): 

Theorem 3.5 Let Yt  be defined by (3.6). Denote by x4 the fourth 
cumulant of c o  and let f be the spectral density of Yt . Then under 

the same conditions on f as in Theorem 3.4, 

[Q — E (Q)] —> d 012Z , 	 (3.43) 

where Z is a standard normal random variable and 
7r 	 ir 

2   — 16 3  f ir [f (x)g(x)] 2 dx + x 4 [27 f f (x)g(x)dx1 2  . (3.44) Gr 	- 	71-  

In particular, if Yt  is Gaussian, then Theorem 3.4 follows as a 
special case. Again, for a +0 > , Q has to be divided by na+13  and 
the limiting distribution is non-normal (Terrin and Taqqu 1990a) 

Theorem 3.5 can be generalized to a multivariate limit theorem 
(Beran and Terrin 1994): 

Theorem 3.6 For l = 0, 1, 2, ..., let 

     

(1±1)n 

  

        

Qn,1 — 

 

—sYtd-lnYS±In — 

   

bt—sYtYs• (3.45) 

        

 

t,s=1 

      

integers. 

Zp ), 

(3.46) 
where Z1, ..., Z p  are independent standard normal random variables 
and a2  is defined in (3.44). 

The essential message of this theorem is that if we consider dis-
joint subseries, then the corresponding quadratic forms are inde-
pendent. 

Other generalizations include limit theorems for forms defined 
by Q = E37 1 =1  bj_kG(Xi, X1), where G is more general than the 
product XiX/ (see Giraitis and Surgailis 1986, Avram 1988c,  Ter-
Fin and  and Taqqu 1991b), and weak convergence results for partial 
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sums, with summation over i, j = 1, ..., [nt] where t is in a compact 
interval. 

3.5 Limit theorems for Fourier transforms 

In the previous section we mentioned an approximate MLE method 
for estimating an unknown parameter vector 0, based on quadratic 
forms. Another approach is to estimate 0 from the periodogram 
/(A). In this section, we discuss the asymptotic behavior of the 
periodogram for long-memory time series. We assume E (Xi) to be 
known and equal to zero. The results also hold when X i  is replaced 
by Xi  — X. 

For stationary time series with a bounded spectral density, it is 
well known that, for A#), 

/(A) —>d f(A), 	 (3.47) 

where is an exponential random variable with mean 1. Moreover, 
consider a finite number of frequencies Ari,i, •••, Art,k with 

A n  —> 	 (3.48) 

and 
Ai ± Ai3O27r1 (1 E Z) 	 (3.49) 

for jj'. Then 

[/(A,1), .•., I(A)] —>d [f (A1)6.5 • •7 f (A k)k], 	(3.50) 

where •]., Oc  are independent standard exponential random vari-
ables. These results can be used to estimate 0 via maximum likeli-
hood for independent exponential random variables:  9 is the max-
imum likelihood estimator based on the exponentially distributed 
independent random variables 

/(A,), j = 1, ..., 	— 1)/2] 

with means 

f (An,i; 0), j = 	..., [(n — 1)/2], 

where 
2j71-  

= n  (j = 1, •••,n*) 

are the Fourier frequencies and n* is the integer part of (n —1)/ 2. It 
should be noted, however, that for general (not necessarily Gaus-
sian) linear processes, (3.50) holds only for a fixed number of fre-

quencies, whereas 0 is a function of the periodogram at an increas-
ing number of frequencies. Nevertheless, 0 turns out to have the 
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same asymptotic distribution as if (3.50) were true for all Fourier 
frequencies (cf. Chapter 5). 

Yajima (1989a) showed that, under certain mild regularity con-
ditions, (3.50) remains to hold for long-memory processes: 

Theorem 3.7 Let X t  be a stationary process with spectral den-

sity f. Suppose that there is a positive continuous function f* : 
[ - 71- 1  7r] -> R +  such that the spectral density of e t  can be written as 

f (x) 	f * (x)11  _ 	 (3.51) 

with 1-  < H < 1. Also, assume that X t  has a one-sided infinite 

moving average representation (3.12) and that (3.48) and (3.49) 
hold. Then, under some conditions on the cumulants of e t , (3.50) 
holds. 

Note in particular that Xt  does not need to be Gaussian. More 
generally, Yajima (1989a) showed that, under the assumptions of 
Theorem 3.7, the limiting behavior of the tapered periodogram 

1 

ih ( A )  = 	Idn o )12  
is the same as for short-memory processes. Here, 

d(A) = 	h(tn —i )x te —im  

(3.52) 

(3.53) 

    

t=1 
and h is a sufficiently regular real-valued function. Tapering is a 
common technique to reduce the bias of spectral estimates due to 
leakage (see, e.g., Priestley 1981, p. 563). Note that, if h 1, then 
hi  is the usual periodogram. 

One of the crucial assumptions in Theorem 3.7 is that none of the 
frequencies converges to zero. For frequencies that tend to zero, the 
asymptotic behavior of the periodogram is quite different. Yajima 
also considered the case A ri ,i = 0 and obtained a different rate of 
convergence. For Fourier frequencies tending to zero, the following 
result holds (Kiinsch 1986a, Hurvich and Beltrao 1992, Robinson 
1992a): 

Theorem 3.8 Let X t  be a stationary process with long memory 
and a spectral density f as in Theorem 3.7. For a fixed integer 
j, let A i  = 2-xj/n be the jth Fourier frequency. Also, define the 
normalized periodogram 

I* (Ai ) = 
I(Ai) 	

(3.54) 

Then the following results hold. 



LIMIT THEOREMS FOR FOURIER TRANSFORMS 79 

(i) The asymptotic bias of  1*  (A) is equal to 

lirn E [I* (A )J = 2Ai  (H , —1), 	(3.55) 
n—+00  

where 

u) = f 	
sin2 x 

2 	X  1-2Hdx.  (3 . 56) 
7 _00  (2j  x)(27rj ux) 27r j 

(ii) The asymptotic variance of I(Ai) is of the order 

var[/(A i )] = 0(n4H-2 ). 	 (3.57) 

(iii) For 	, the normalized periodogram ordinates 

I* (A i ), PO 	are asymptotically correlated. 

(iv) If X t  is Gaussian, then 

d lJj , 	 (3.58) 

where ni  is defined by 

Tlj 	
1 	 1 

= 

(3.59) 
with independent standard normal random variables Z1, Z2. 

Numerical calculations in Hurvich and Beltrao (1992) show that, 

for H > -1, the asymptotic bias Ai (H, 1) is large for small values of 
j. For instance, for the first Fourier frequency and H = 0.99, one 
obtains A1(0.99, 1) = 1.14. On the other hand, the bias seems to 
approach 1 rather quickly as j increases. Also, the bias decreases 

as H approaches The second result in Theorem 3.8 means that, 

for frequencies tending to zero, the periodogram fluctuates much 
more than for short-memory processes, and needs to be normal-
ized accordingly. The third result is also in contrast to results for 
short-memory processes. There, periodogram ordinates at differ-

ent Fourier frequencies are asymptotically uncorrelated. Finally, 

for a Gaussian process, Theorem 3.8(iv) implies that, for H > 
the asymptotic distribution of the normalized peridogram is no 

longer exponential. Note that, for H = 	AM,1) = 1 and 

Ai (1, —1) = 0, so that the well-known result for short-memory 

processes follows. 
In contrast to the periodogram, the integrated periodogram 

Fn (A) = -22 1 
 rtx 

I(Ai ) 	 (3.60) 



80 	 LIMIT THEOREMS 

with n), = [nA/(27)] converges to its population counterpart FPO 
even if nA tends to zero. Robinson (1991f) proved the following 
result. 

Theorem 3.9 Let X t  be a linear process (3.12) with suitable reg-

ularity conditions on E t  and such that (2.2) holds. If 

1 
— —> 0 	 (3.61) 
m 

(3.62) 

(3.63) 

in probability. 

Assuming some additional regularity conditions, Robinson also 
gives a rate at which the asymptotic limit is achieved. 

and 

then 

m 
— —> 0 
n 

Pn (A m )  
—> 1  En (A m )  



CHAPTER 4 

Estimation of long memory: 
heuristic approaches 

4.1 Introduction 

The phenomenon of long memory was observed in applications long 
before appropriate stochastic models were known. Several heuris-
tic methods to estimate the long-memory parameter H were sug-
gested. Best known is the RIS statistic, which was first proposed 
by Hurst (1951) in a hydrological context. Other methods include 
the log-log correlogram, the log-log plot of var(X n ) versus n, the 
semivariogram, and least squares regression in the spectral domain. 
These methods are mainly useful as simple diagnostic tools. They 
are less suitable for statistical inference, as more efficient and more 
flexible methods exist. Also, for most of these methods, it is not 
easy to obtain simple confidence intervals. This makes it difficult to 
interpret results in an objective way. Nevertheless, as exploratory 
tools, these methods deserve to be discussed in some detail. 

4.2 The RIS statistic 

Let Q = Q(t,k) = R(t,k)IS(t,k) be the RIS statistic defined in 
Chapter 1. To estimate the long-memory parameter, the logarithm 
of Q is plotted against k. For each k, there are n — k replicates. 

For illustration, consider the following examples: (1) The Nile 
River minima (n = 660, see Chapter 1) and (2) 660 simulated 
independent standard normal observations. The logarithm of Q 
versus log k is displayed in Figures 4.1 and 4.2, respectively, for k = 
101 (1= 1,..., 20) and t = 60m ± 1 (m = 1, 2, ...). We observe that 
with increasing k, the values of the RIS statistic stabilize around 
a straight line with a slope approximately equal to 0.936. On the 
other hand, for the iid data, the R/S statistics is scattered around 
a straight line with a slope of about 0.543. These observations can 
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Figure 4.1. RI S plot for Nile River minima. 

be explained by the following theorems (Mandelbrot 1975): 

Theorem 4.1 Let  X, be such that X1 is ergodic and t–  Et X s.i 8 
converges weakly to Brownian motion as t tends to infinity. Then, 

as k —> oo, 
1 

k 2  Q —>cl) 	 (4.1) 

where is a nondegenerate random variable. 

The assumptions of Theorem 4.1 hold for most common short-
memory processes. In a simplified way one may say that whenever 
the central limit theorem holds, the statistic k –  i Q converges to a 
well-defined random variable. For statistical applications it means 
that in the plot of log Q against log k, the points should ultimately 
(for large values of k) be scattered randomly around a straight line 
with slope . In contrast, the following behavior is obtained for 
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Figure 4.2. R/S-plot for iid normal observations. 

long-memory processes: 

Theorem 4.2 Let X t  be such that Xi is ergodic and t —EI  E X, 
converges weakly to fractional Brownian motion as t tends to in-

finity. Then, as k —> cc, 

k -11  Q d 	 (4.2) 

where is a nondegenerate random variable. 

Thus, for long-memory processes, the points in the RI S plot 
should be scattered randomly around a straight line with slope 
H > 1, for sufficiently large lags k. Based on this result, Figure 
4.1 suggests that the Nile River data have strong long memory. 

A nice property of the RI S statistic is that its asymptotic be-
havior remains unaffected by long-tailed marginal distributions, in 
the following sense (Mandelbrot 1975): 



84 	ESTIMATION OF LONG MEMORY: HEURISTIC APPROACHES 

Theorem 4.3 Let X t  be iid random variables with  E(X) = co 
and such that they are in the domain of attraction of stable distri-
butions with index 0 < a < 2. Then the conclusion of Theorem 4.1 
holds. 

Thus, even if Xt  has a long-tailed marginal distribution, the RI S 
statistic still reflects the independence in that the asymptotic slope 
in the R/S plot remains to be 

Based on theorems 4.1 to 4.3, the RI S method can be summa-
rized as follows: 

1. Calculate Q for all possible (or for a sufficient number of dif-
ferent) values of t and k. 

2. Plot log Q against log k. 

3. Draw a straight line y = a ± b log k that corresponds to the 
"ultimate" behavior of the data. The coefficients a and b can 
be estimated, for instance, by least squares or "by eye". Set 
equal to g. 

The following difficulties arise: How do we decide from which k on 
the "ultimate behavior" starts? How uncertain is the estimate of 
H? In particular, for finite samples, the distribution of Q is neither 
normal nor symmetric. This makes estimation by eye more diffi-
cult. Also, it raises the question of whether least squares regression 
is appropriate. The exact distribution of Q seems to be difficult to 
derive and depends on the actual distribution of the data gener-
ating process. The values of Q for different time points t and lags 
k are not independent from each other. The exact description of 
the dependence would be very complicated and possibly model-
dependent. Finally, for large lags k, only very few values of Q can 
be calculated. Because of these problems, it seems difficult to de-
fine a fully "automatic" RI S methodology, and to derive results 
on statistical inference based on the method. 

Example: Consider the RI S plot of the Nile River data (Figure 
4.1). The difficulty of choosing the cut-off point is illustrated by the 
estimates of H obtained by fitting a least squares line for k > 10, 
k > 40, k > 50, and k = 100. The estimates are 0.856, 0.910, 
0.972, and 1.174 respectively. Note in particular that the last value 
is outside the range 0 < H < 1. 

The counterpart to Theorem 4.3 is the lack of robustness with re-
spect to the following departures from stationarity (Bhattacharya, 
Gupta, and Waymire 1983): 

Theorem 4.4 Let e t  be an ergodic stochastic process with zero 
mean, variance 1, summable correlations, and such that it is in the 
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domain of attraction of Brownian motion. Let p(t) be a determin-
istic function. Define 

     

(t) 

   

11(i) 	 (4.3) 

 

j= 1 

 

and 

Ak = 	[max pck (t) —  min  fik (t)]. 
V k t 

Suppose the observed process is given by 

X t  = p(t) ± Et. 

Then the following two statements are equivalent 

(i) There exists an  H> such that, as k —› oo, 

—>d e) 
where is almost surely not zero. 

(ii)  

(4.4) 

(4.5) 

(4.6) 

0 -11g Ak —> c > 0, 	 (4.7) 

as k —> c)o where H>  

Also, if (i) or (ii) holds, then 

k —  II  Q 	c 
	

(4.8) 

in probability. 

Theorem 4.5 Under the same assumptions as above, but 

Ak =  o(1), 	 (4.9) 

the asymptotic limit (in distribution) of the RI S statistic is given 

by 

k — 2 Q —>d 	 (4.10) 

where 0 < < oo with probability 1. 

Note that equation (4.17) implies that Lk  tends to infinity at the 

rate k Hg - 1. This happens for slowly decaying trends. In constrast, 
equation (4.18) means that Ak converges to zero. This is the case 
if the trend decays to zero fast. The results imply that the RI S 
estimate can be misleading if there is a slowly decaying trend. 
The values of Q are the same as if there were long memory in 
the data, whereas in reality the stationary part of Xt  has short 
memory only and the trend disappears asymptotically. This is in 
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Figure 4.3. Independent observations plus a slowly decaying trend. 

contrast to certain maximum likelihood based methods which we 
will discuss later. 

Example: Consider Xt  = 10n8  + e t  with 0 < ,(3 < 1 and et 
iid standard normal. Two cases can be distinguished: 0 < 1 and 
0 > 1. In the first case, (4.17) holds with Hti  =1 — 0. Thus, the 
R/S-based estimate of H will tend to the value Hi,=1 — 13 > 1. 
This "long memory" is caused by the slowly decaying trend pt(t) 

only. An illustration with 0 = 0.1 is given in Figures 4.3 and 4.4. In 
the second case, the trend decays sufficiently fast in order for (4.19) 
to hold. Therefore, the R/S-based estimate of the long-memory 
parameter of Xi  is asymptotically equal to 1. An illustration with 
0 = 0.9 is given in Figures 4.5 and 4.6. 

In spite of its deficiencies, the RIS plot is useful. It gives a first 
aproximate idea about the long-term behavior of the data. For 
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k (log-scale) 

Figure 4.4. RI S plot for independent observations plus a slowly decaying 
trend shown in Figure 4.3. 

more detailed results on the R I S —statistic we refer the interested 
reader to for example Feller (1951), Mandelbrot (1972, 1975), and 
Mandelbrot and Wallis (1969c). 

4.3 The correlogram and partial correlations 

The plot of the correlations (correlogram) 

;6(k) =  s(k) 	 (4.11) 

against the lag k, as well as the plot of partial correlations against 
k, are standard methods in time series analysis. As a simple rule of 
thumb one draws two horizontal lines at the levels ±2NT-t. Corre-
lations outside of this band are considered significant at the level 
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Figure 4.5. Independent observations plus a quickly decaying trend. 

of significance 0.05. The justification is given by the limiting dis-
tribution of the sample correlation at lag k. If the true correlations 
are zero (see, e.g., Priestley 1981, p. 340), then under mild regu-
larity conditions -\/7  (k) are asymptotically independent standard 
normal random variables. Note, however, that if Xt  is not uncor-
related, then the asymptotic variance of i6(k) depends on p(k) and 
possibly on higher moments of Xt  (see Priestley 1981, p. 332), 
and the sample correlations at different lags are not uncorrelated 
anymore. This makes it more difficult to interpret the correlogram 
correctly in practice. For example, often several neighbouring sam-
ple correlations may be large, although only one of them is non-
zero in reality. Nevertheless, the correlogram is a useful diagnostic 
plot for short-memory processes. For example, it can be used for a 
preliminary identification of the order q of a moving average pro- 
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k (log-scale) 

Figure 4.6. RI S plot for independent observations plus a quickly decaying 
trend shown in Figure 4.5. 

cess Xt = >j = 	+ ct , as the only non-zero correlations are 
Po, pi, ..•, p g . Analogously, partial correlations may be used to iden-
tify the order p of an autoregressive process. This is discussed in 
detail, for example, in Box and Jenkins (1970). 

How useful are the sample correlations and partial correlations 
for detecting long memory? Long memory is characterized by a 
slow decay of the correlations proportional to k 2W-2  for some 
- < H < 1. A plot of the sample correlations should therefore exhibit this slow decay. Figures 4.7a and 4.7c show the correlogram 
for simulated fractional ARIMA(0,d,0) series with H = d ± = 
0.6 and H = 0.9. For comparison, the correlograms for simulated 
series of the AR(1) processes with the same lag-1 correlation are 
given in Figures 4.8a and 4.8c. For H = 0.9, the slow decay of the 
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Figure 	4.7. 	Sample 	autocorrelations 	of 	a 	simulated 
fractional ARIMA(0,0.1,0) series (Figures 4.7a and b) and fractional 
ARIMA(0,04,0) series (Figures 4.7c and d) of length 1000. 

sample correlations is clearly visible. The slow decay is much less 
obvious for H = 0.6. It is difficult to tell whether ultimately the 
correlations follow a hyperbolic curve proportional to k 2E1-2  (for 
some < H < 1), or an exponential curve C k  (for some 0 < c < 1). 
Even more difficult would be to distinguish different values of H. A 
second difficulty is that the definition of long memory only implies 
that the decay of the correlations is slow. The absolute values of the 
correlations can be small. Therefore, ±2/' limits will often not 
recognize that there is dependence in the data. A third difficulty 
is that long memory is an asymptotic notion. We therefore have to 
look at the correlations at high lags, However, correlations at high 
lags can not be estimated reliably. 
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Figure 4.8. Sample autocorrelations of simulated AR(1) series of length 
1000 with the same lag-1 autocorrelation as the processes used for Fig-
ures 4.7a,b (Figures 4.8a,b) and Figures 4. 7c,d (Figures 4.8c,d) respec-
tively. 

A more suitable plot can be obtained by taking the logarithm 
on both sides, i.e., by plotting 

log I p (k) I against log k. 	 (4.12) 

If the asymptotic decay of the correlations is hyperbolic, then for 
large lags, the points in the plot should be scattered around a 
straight line with negative slope approximatley equal to 2H — 2. 
In contrast, for short-memory processes, the log-log correlogram 
should show divergence to minus infinity at a rate that is at 
least exponential. For illustration, Figures 4.7b and 4.7d as well as 
4.8b and d show the log-log correlogram for simulated fractional 
ARIMA(0,d,0) series with H = 0.6 and H = 0.9 and for AR(1) 
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series with the same lag-1 correlation respectively. The plots illus-
trate that the correlogram in log-log coordinates is mainly useful 
in cases where long-range dependence is strong or for very long 
time series. For relatively short series or if H is close to , it is 
very difficult to estimate the ultimate decay of p(k) and to decide 
whether there is long memory in the data, by looking at the log-
log correlogram only. Essentially, the same remarks as for the RI S 
plot apply here regarding the difficulties of interpreting the plot. 

Analogous comments also apply to the partial correlations. For 
long-memory processes, partial correlations decay at the hyperbolic 
rate k For short-memory processes, the partial correlations 
are bounded by an exponentially decaying bound. The log-log plot 
of partial correlations can be interpreted in an analogous way as 
the log-log correlogram. The difficulties remain the same. 

In conclusion, we can say that methods based on ordinary and 
partial correlation plots are useful for a first heuristic analysis of the 
data. Some caution is necessary, however, when interpreting such 
plots, because of the messy sampling properties. A considerable 
amount of skill and experience is needed to avoid potential pitfalls. 

4.4 Variance plot 

As we have seen in Chapter 1, one of the striking properties of 
long-memory processes is that the variance of the sample mean 
converges slower to zero than n -1- . From Theorem 2.2 we have 

var(X,,) 	cn2H-2 
	

(4.13) 

where c > O. This suggests the following method for estimating H: 

1. Let k be an integer. For different integers k in the range 2 < 
k < n/2, and a sufficient number (say mk) of subseries of length 
k, calculate the sample means X i  (k), X2(k), X mk (k) and the 
overall mean 

Mk 

 X(k) = m1
x3 (k). 

(4.14) 

3= 

2. For each k, calculate the sample variance of the sample means 
X(k) (j = 

Mk 

s 2 (k) = (mk — 1) —  (4.15) 
k=1 

3. Plot log s 2 (k) against log k. 
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Figure 4.9. Variance of sample mean vs. sample size (log-log scale) for 
the series used in Figures 4.7a,b (Figure 4.9a), Figures 4.7c,d (Figure 

4.90, Figures 4.8a,b (Figure 4.9c), and Figures 4.8c,d (Figure 4.9d). 

For large values of k, the points in this plot are expected to be 
scattered around a straight line with negative slope 2H — 2. In 
the case of short-range dependence or independence, the ultimate 
slope is 21 — 2 = —1. Thus, the slope is steeper (more negative) 
for short-memory processes. The problems in this method are in 
principle the same as for the RIS plot and the log-log correlogram. 

Figures 4.9a to 4.9d display the variance plot for several time 
series. It is convenient to draw a straight line with slope —1 as 
a reference line in the same picture. The figures illustrate that 
the variance plot gives us a rough idea about whether there is 
long memory in the data, provided that the long memory is strong 
enough. Slight departures from H = seem, however, rather diffi- 
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cult to distinguish from H = 1, even for rather large sample sizes. 
Compared to the log-log correlogram, the picture may be some-
what easier to interpret. 

4.5 Variogram 

The variogram (or semivariogram) is often used in geostatistics. In 
particular, for spatial processes it is frequently used together with 
a methodology known under the name of kriging (see, e.g., Journel 
and Huijbregts 1978). The variogram at lag k is defined by 

1 v ( k) = -- E [(X t - Xi-0 2 ]. (4.16) 

If Xt  is stationary with covariances -y(k) and correlations p(k), then 
V (k) converges to a finite value and 

V (k) = 7(0)(1 — p(k)) = V (oo)(1 — p(k)). 	(4.17) 

Thus, 

V (oo) . 

If we replace p(k) by the sample correlation )6(k), then a plot of 
V (k) against k is equivalent to the correlogram. As an alternative, 
a direct estimation method consists of plotting the squared differ-
ences (Xi  — Xj) 2  against Ii — j I for each pair i < j, (i, j = 1, ..., n). 
A smooth curve is then fitted to the scatterplot. 

The distinction between short and long memory poses essentially 
the same problems as the correlogram. This is illustrated by Fig-
ures 4.10a to 4.10d. Long memory appears to be visible in Figure 
4.10b. Due to the slow decay of the correlations, V (k) converges to 
its asymptotic value very slowly. On the other hand, the presence 
of long memory is much less obvious in Figure 4.10a. 

An advantage of the semivariogram as compared to the correlo-
gram is that it is also defined for certain nonstationary processes. 
It therefore allows one to distingish between stationary and cer-
tain nonstationary processes. For instance, for an ARIMA(0,1,0) 
process Xt  = Xt_i ± e t  with independent zero mean innovations 
Et, V (k) is equal to 1-ko- €2 . For a nonstationary process with linear 
trend Xt  = at ± €t  we have V(k) = _ a 2 k 2 ± al ,,,,,_, a2k2. 

V (k) 
p(k) = 1 (4.18) 
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Figure 4.10. Variogram (standardized by sample variance) for the se-
ries used in figures 4.7a,b (Figure 4.10a), figures 4.7c,d (Figure 4.10b), 
figures 4.8a,b (Figure 4.10c) and figures 4.8c,d (Figure 4.10d). 

4.6 Least squares regression in the spectral domain 

Least squares regression in the spectral domain exploits the simple 
form of the pole of the spectral density at the origin: 

	

f(A) 	cf pd i-2H- 	0). 	 (4.19) 

Equation (4.19) can be written as 

	

log f (A) 	log cf + (1 — 2H) log I I. 	(4.20) 

Recall that, for each fixed frequency AO, the periodogram /(A) is 
an asymptotically unbiased estimate of  f;  i.e., we have 

lim EV(A)] = f PO. 	 (4.21) 
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Usually, I7.) is calculated at the Fourier frequencies 

27k 
k = 1, ..., n*, 	 (4.22) 

where n* is the integer part of (n — 1)/2. For short-memory pro- 
cesses, it is well known that for a finite number of frequencies 

E (0, 7r), the corresponding periodogram ordinates /(Ai), 
..., /(4) are approximately independent exponential random vari-
ables with means f (Ai), • • • , f (A k) . For long-memory processes, this 
result was given in Theorem 3.7. This, together with (4.20), leads 
to the approximate equation 

log /(Ak, n ) P.,- log cf ± (1 — 2H) log Ak,n  ± log Oc , 	(4.23) 

where k are independent standard exponential random variables. 
Note that 

E(log 0,) = —C = —0.577215..., 	 (4.24) 

where C is the Euler constant (see Gradshteyn and Ryzhik 1965, 
Formula 4.331). Define 

Yk =  

xk = log  

So = log e f  — c, s i  = 1 2H, 

and the "error" terms 

ek = log ± C. 

Then (4.23) can be written as 

yk = 00 + Sixk + ek• 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

This is a regression equation with independent identically dis-
tributed errors ek with zero mean. The coefficients /30  and 01 may 
be estimated, for instance, by least squares regression (Geweke and 
Porter-Hudak 1983). The estimate of H is then set equal to 

H 	
2 
	 (4.30) 

Several problems arise with this approximate method: 

1. The notion of long memory is an asymptotic one. Often the 
spectral density might be proportional to A 1-211  in a small 
neighbourhood of zero only. By wrongly assuming that this pro-
portionality is correct in the whole interval [-71- , 7], the estimate 
of H can be highly biased. 
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2. It was shown in Theorem 3.8 that, for fixed kk i  , the peri-
odogram at the k ith Fourier frequency is no longer asymptoti-
cally unbiased. If ik, and ‘ i  are based on all Fourier frequencies, 
then this does not matter asymptotically (compare, e.g., Chap-
ter 6). It might, however, have an influence on the finite sample 
properties of ii, or it might matter if only a small number of 
the smallest frequencies is used. 

3. Theorem 3.8 states that, for a fixed k and  k',  the periodogram 
ordinates at A/c  and A k ,  are no longer uncorrelated. As in (2), 
this mainly matters for the finite sample properties of ii, or if 
only a small number of the smallest frequencies is used. 

4. A fourth, though less important, point is that the distribution 
of ek is highly skewed. A least squares estimator will therefore 
be inefficient compared to an estimator that uses this property. 

Point 1 can be solved, for example by estimating the least squares 
line from the periodogram ordinates at low frequencies only (see, 
e.g., Geweke and Porter-Hudak 1983, Robinson 1992a). Clearly, 
this can be done only at the cost of lower precision. Also, because 
only small frequencies are considered, problems 2 and 3 need to be 
taken more seriously. The fourth problem cannot be solved with-
out abandoning the ordinary least squares method. For parametric 
models, efficient maximum likelihood type methods can be defined 
(see Chapters 5 and 6). An improved least squares method can 
be obtained by applying weighted least squares with appropriate 
weights (Robinson 1992a). Finally note that, for certain parametric 
classes, an efficient estimator can also be defined via generalized 
linear regression (see Chapter 6). 

As estimation of Oo  and Ou based on all Fourier frequencies is of 
little practical importance (see points 1 and 4 above), we do not 
discuss it further here. The least squares method becomes attrac-
tive when we focus on estimating the pole (i.e., H and cf)  only, by 
considering a certain number of the smallest Fourier frequencies. 
The advantage of this method as compared to the heuristic meth-
ods described in the previous sections is that it is easier to derive 
the asymptotic distribution of such an estimator. In contrast to 
maximum likelihood estimation, almost no model assumptions are 
necessary. Geweke and Porter-Hudak (1983) obtained some results 
by heuristic arguments. A mathematical derivation of the asymp-
totic distribution of this semiparametric regression estimator is 
given in Robinson (1992a). In addition to discarding an increasing 
number of largest frequencies, Robinson's estimator also discards 
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an increasing number of smallest frequencies. Thus the problems 
observed in Theorem 3.8 can be avoided. We state a simplified 
version of the result given in Robinson (1992a): 

Theorem 4.6 Let X t  be a stationary Gaussian process with long 
memory. Let il-  be the least squares estimate of H based on the 
Fourier frequencies Ai, 1 < j < m. Let 1 and m be such that, as 
n —> cc 

, 

m, , / —> oo , 	 (4.31) 

m 5 	(log n) 2  
	 —> 0, 	 (4.32) 

n 4  —> 0 ' 	m 
and 

1 	.17-n log m 
— —> 0, 	 ---> 0. 	 (4.33) 
m 	1 

Then, under some mild regularity conditions on f, 

N/Tn,(1-1 — H) -->d Cir o Z, 	 (4.34) 

where Z is standard normal and 

71
-2 

(T
2 = — . 	 (4.35) 
° 	24 

In particular, this result means that the rate of convergence of H 
is slower than r?, — . We will see in Chapter 5 that, for parametric 
models, the rate ri, —  can be achieved. Thus, the above estimator 
has efficiency zero compared to an optimal parametric estimator. 
This is the price we pay for not assuming anything about f except 
the shape of the pole at zero. The efficiency loss can be rather 
extreme. For short series, semiparametric estimation might not be 
possible with reasonable accuracy. For instance, consider m = nl . 
Even if 1 is set to zero, this would mean that for a series of 200 
observations, ii is estimated from 10 periodogram ordinates only. 
The standard error of ii given by the above asymptotic result 
(if at all applicable for such a small value of m) is 0.203. The 
corresponding 95% confidence interval H ± 1.96.0.203 = H ± 0.397 
is almost as long as the long-memory range 1 < H < 1. Thus, it 
is practically impossible to distinguish long memory from short 
memory. 

Robinson also derived the joint distribution of the scale estimate 
log "ef = /3, ± C and H and considered the sum of peridodogram 
ordinates at a finite number of neighboring Fourier frequencies, 
instead of the raw periodogram. 

An important practical problem that remains unsolved is how to 
choose 1 and m for finite samples. Depending on the choice of 1 and 
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Table 4.1. Estimation of H by least squares regression, based on the 
Fourier frequencies Ai, Ai+i, ..., Am . 

1 m :/2/ 
_i 

rn 	2 cjo  

1 144 0.527 0.053 
1 100 0.591 0.064 
1 60 0.712 0.083 

10 144 0.446 0.053 
10 100 0.525 0.064 
10 60 0.786 0.083 

m, results can differ considerably. Increasing m reduces the vari-
ance of ii but increases the bias, unless (4.20) holds exactly. On 
the other hand, reducing m increases the variance but reduces the 
bias. A small study of the bias for finite samples can be found in 
Agiakloglou, Newbold, and Wohar (1993). An automatic criterion 
for choosing / and m may be derived, for instance, along the lines 
of Robinson (1991f). He considered nonparametric spectral den-
sity estimation and derived the bandwidth which minimizes the 
mean squared error of the estimated cumulative spectral distribu-
tion function. The optimal bandwidth turns out to depend on the 
unknown parameter H however. 

To illustrate the edffects of 1 and m on :4, we consider the NBS 
weight measurements in Chapter 1. Table 4.1 gives estimates of 
H and the corresponding approximate standard deviation as given 
by Theorem 4.6 for several values of / and m. Note that the value 
of H increases the more one concentrates on low frequencies only. 
This might be an indication for long memory. However, the se-
ries appears rather short in order to make reliable inference based 
on the semiparametric method. More informative conclusions are 
obtained in Chapter 7 by a more efficient robust method. 



CHAPTER 5 

Estimation of long memory: time 
domain MLE 

5.1 Introduction 

In the previous chapter, we discussed heuristic methods for esti-
mating the long-memory parameter H. They are useful as a first 
informal diagnostic tool for checking if H is larger than 1 or not. 
Often one is interested in more than just the question of whether 
there is long memory in the data. In fact, in many applications, 
long memory is mainly a nuisance one has to deal with rather than 
the actual objective of the statistical analysis. There are at least 
two additional types of information one might like to obtain: 

1. A scale parameter. This could be, for instance, the variance of 
Xt  or the parameter cf in (2.2); 

2. A characterization of the short-term behavior. This could be, 
for instance, the correlations up to a certain small lag, cyclic 
behavior etc. 

Depending on the question one wants to answer, one needs to know 
H and the scale parameter c1 only, or the whole correlation struc-
ture for all lags. For instance, to obtain a confidence interval for 
y = E(X), only H and cf are required (see Theorem 2.2). On 
the other hand, to calculate an optimal prediction and a predic-
tion interval for a future observation X n±k, based on Xi, ..., X„, all 
correlations p(1), ..., p(n ± k — 1) must be known or estimated. In 
the former case, the methods discussed in the previous chapter may 
be most useful. In particular, the regression method even yields ap-
proximate confidence intervals for H and cf. These methods, how-
ever, do not tell us anything about the short-term properties of the 
process. More refined methods, which model the whole correlation 
structure, or, equivalently, the whole spectral density at all fre-
quencies, have to be used to characterize the short-term behavior. 
One possible approach is to use parametric models and estimate 
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the parameters, for example, by maximizing the likelihood. This 
approach is discussed in the following sections. 

Apart from the necessity of modelling more than long-term prop-
erties, there are several other reasons for using parametric models 
and corresponding maximum likelihood type methods, instead of 
(or in addition to) the methods discussed in Chapter 4. Even if 
we need to know only the long-memory parameter H, the latter 
methods are less suitable for statistical inference. Correct statisti-
cal inference procedures are not known, except for the regression 
method. Also, the methods leave relevant questions open. For in-
stance, the choice of the cut-off point from which the "asymptotic 
behavior" starts is unclear but crucial for the estimation. More-
over, in cases where we are able to build a reasonable parametric 
model, maximum likelihood estimation (MLE) is clearly more effi-
cient (see Theorems 4.7 and 5.1). It should be noted, however, that 
from a more fundamental point of view, the question of the cut-off 
point is not fully solved by parametric estimation either. It is sim-
ply shifted to the problem of model choice. The question of where 
the "asymptotic behavior" starts is an intrinsic problem of the 
definition of long memory [equations (2.1), (2.2)]. Long memory is 
defined by an asymptotic property, namely the asymptotic decay of 
the correlations or the ultimate behavior of  the  spectral density as 
the frequency tends to zero. In principle, if we know H and cf, we 
do not know anything about the correlations p(1), ..., p(k 0 ) for any 
fixed lag k,. In the "worst" case, it could happen that we observe 
Xi, ..., Xko +i, all correlations p(1) , ... , p(k 0 ) are zero, and p(k) is 
proportional to k 211-2  (1/2  < H < 1) for k > k,„. Naturally, in this 
case, there is no way to guess that the data generating process has 
long memory unless we have some prior knowledge. For the estima-
tion of parameters, such as the expected value p = E (X t ), the slow 
decay of correlations beyond lag k, would actually not matter. The 
distribution of statistics based on Xi, ...., Xko +1 depends only on 

the first k, correlations. The ultimately slow decay would matter, 
however, for forecast intervals or if the sample size is increased. In 

practice, we are more likely to observe a gradual transition from 
an "arbitrary" correlation structure to a correlation structure of 
the form 

p(k) = cp. k2'2. 
	 (5.1) 

The exact form (5.1), however, may never be achieved exactly. It 
is to be understood mainly as a useful simple approximation. Two 
approaches to solve this problem are: 
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1. Estimation of the whole correlation structure using a suffi-
ciently flexible class of parametric models. 

2. Semiparametric estimation, i.e., estimation of c p  and H, by 
using only correlations at large lags k > k n . In order to ensure 
consistency, one chooses k r, such that, as n ---4 oo, 

lc, —* oo and knn -1  —> 0. 	 (5.2) 

In the frequency domain this means that we estimate 

Cf 
	limo [lAl2H — lf (A)] 	 (5.3) 

and H, by using only periodogram ordinates at small frequencies 
A. In order to ensure consistency, one restricts A to the interval 
0 < A < A n  such that, as n —> oo, 

A n  —> 0 and A n n —> oo. 	 (5.4) 

This approach is taken by the regression method described in 
Section 4.6. 

Approach 1 has the advantage that we are able to characterize 
all correlations, not just their asymptotic decay. In the spectral 
domain this means that we characterize the whole spectral density 
for all frequencies in [-7T, 7]. On the other hand, the approach is in 
some sense more difficult. To find a suitable parametric model that 
is not too complicated is not always an easy task. A poor model can 
lead to biased estimates of H. Analogously, choosing a wrong cut-
off point leads to a biased estimate of H. A third method that uses 
parametric models but robust estimation in the frequency domain, 
is discussed in Chapter 7. 

All methods considered in the following sections are based on 
the Gaussian likelihood function. This does not mean that they 
can be used only for Gaussian time series. At least for some of the 
methods, the same central limit theorems are known to hold for 
more general processes. Some caution is needed, however, when 
applying these methods to non-Gaussian processes (see Chapter 
7). The main reason why one first concentrates on Gaussian MLE 
is simplicity. A Gaussian process is fully characterized by its mean 
and its covariances (or the spectral density). MLEs can therefore 
be expressed in terms of the first two moments only. 

5.2 Some definitions and useful results 

Suppose that Xi, X2, ...,X, R, is a stationary process with mean A 
and variance o- 2 . We assume that (2.1) and (2.2) hold with 1/2 < 
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H < 1. Let the spectral density f be characterized by an unknown 
finite dimensional parameter vector 

0 0 _ (0. 02 ,  H-0 ,03,...,0 0 ). 	 (5.5) 

Thus, we assume that the spectral density comes from a parametric 
family of densities f (\) = f (A; 0), where 0 E CI c R m . Given the 
observations X1, ..., X n , one would like to estimate the unknown 
parameter vector 0 0 . We will use the following notation: 

X = (X i , X 2 , ..., X 7.,) t  , 

En(0) = ['YU — 	= covariance matrix of X, 
- 

II  = determinant of E n . 

Without loss of generality, we will assume li to be known and equal 
to zero. This is in particular justified by the fact that the asymp-
totic distribution of the Gaussian maximum likelihood estimator 
(MLE) of 0 turns out to be the same whether /2 is replaced by 
the sample mean or not. Furthermore, Xt  will be assumed to be 
a causal invertible linear process. That is, Xt can be expressed in 
two ways: 

and 

b(s)Xt—s + Et 	 (5.6) 

0. 

xt =Ea(s),_, 	 (5.7) 
s=o 

where the innovations e s  are uncorrelated random variables with 
zero mean and variance var(e s ) = al. Conditions (5.6) and (5.7) 
imply that a new observation Xt  depends only on the past, and it 
depends on the past in a linear way. The former (causality) is a 
natural assumption in most applications. The latter (linearity), is 
mathematically convenient, but does not need to hold in practise. 
For time series where Xt  depends on the past in a nonlinear way 
see, e.g., Tong (1993). Here we restrict attention to linear processes. 

Before discussing several estimation methods based on the Gaus-
sian likelihood function, we note some useful results. The first result 
gives the asymptotic behavior of the coefficients b(s) and a(s). 

Lemma 5.1 There exist constants 0 < cb < oo and 0 < c a  < oo 
such that, as k —> oo, 

b(S) r..) ebk—H—i 
	

(5.8) 
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and 
— 2  a(s) — c a k H  2  . (5.9) 

In particular, we have 

00 

 

and 

E b(s) < 0 
.9=1 

00 

(5.10) 

E a(s) = oo. 	 (5.11) 
s=1 

The second useful result refers to the connection between one-
step ahead prediction and the choice of the scale parameter. Sup-
pose we want to predict a future value of Xt  from the infinite past 
X 3 ,  s  <t  — 1. Denote by _kt  the prediction of  X. Among all linear 
predictions, the mean squared prediction error 

MSPE = E[(Xt — ÎL) 2 1X,s , s < t — 1] 	(5.12) 

is minimized by 

ît = E [X tiX s , s < t — 1] = b(s)Xt—s• 	(5.13) 

The minimal prediction error is given by (see, e.g., Priestley 1981, 
p. 741): 

Lemma 5.2 

MSPE = a ,2  = 27rexp[-1  f 7r  log f (A; 0 ° )dA]. 	(5.14) 
27r , 

In particular it follows that, for 

fi(A) = —122  f PO, 	 (5.15) 
o- E  

we have rr 
j_7r  log fi (A)dA = 0. (5.16) 

5.3 Exact Gaussian MLE 

Suppose that, in addition to (5.6) and (5.7), X t  is a Gaussian pro-
cess. Then the joint distribution function of X =  (X1,  X2, • • •, Xn) t  
is equal to 

h(x; 0 0 ) = (27r) — i- lE(0°)I — 1 
	

(5.17) 
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Here, x = (x 1 , ..., x n ) t  E R n  . The log-likelihood function is given 
by 

L n (x; 0°) = log h(x; 0°) 

1 	 1 
= --

2
log 27r — —

2 
log (9°) — —

2
xt E -1 (0 0 )x. 

Define the M-dimensional vector 

(5.18) 

a 

	

L n (x,e) = 	 aei  
a 

=
1 
—
a 

log IE(0)I — —x t [—E (0)]x (j = 1, 2, ..., M). (5.19) 
2 aei 	 2 aei  

The MLE of 0° is obtained by maximizing log h(x; 0) with respect 
to the M-dimensional parameter vector O.  Under mild regularity 
assumptions, this maximization problem can be reformulated in 
terms of the first partial derivatives. The MLE 0 is the solution of 
the system of M equations 

L n  (x; 0) = 0. 	 (5.20) 

The asymptotic distribution of can be derived by looking at the 
Taylor expansion of  L.  Denote by 

32 
L n (X; 0) = 	L n (x; 0)  (j,  1 = 1, ...,  M) 	(5.21) aei e t  

the matrix of second partial derivatives of  L.  From (5.20) we 
obtain 

L'n (x, 'é) = 0 = L in (x, 0 °) L n" (x; 0 ° )(Ô — 0 ° )  +r. 	(5.22) 

If one can show that rn  is asymptotically negligible, then the 
asymptotic distribution of é — 0 0  is equal to the asymptotic distri-
bution of 

— [Qx;0°)]-1 L In (x;0°). 	 (5.23) 

Yajima (1985) and Dahlhaus (1989) prove (5.23) and the follow-
ing limit theorem. Dahlhaus derives the result for general Gaus-
sian processes. Yajima assumes normal and non-normal fractional 
ARIMA (0,d,O) processes. 

Theorem 5.1 Let X t  be a Gaussian process with the properties 
given in Section 5.2 and let 0 be defined by (5.20). Define the M x 
M -matrix D = by 

a 
D ii (e°) = 	f -49-  log f (x) 803  log f (x)dxle=e° 

27r _„ aei 
(5.24) 
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and 
C(0 ° ) = 2D -1 (0°). 	 (5.25) 

Under a few additional regularity conditions on f, the following 
holds as n —> oo : 

O  _> 00 	 (5.26) 

almost surely, and 

(ii) 
(0 — 0 ° ) —>d (• 
	 (5.27) 

where C is an M -dimensional normal random vector with zero 
mean and covariance matrix C. 

In particular, the result implies that 0 has the same rate of 
convergence n - 2 as corresponding parameter estimates for short-
memory processes. This is in contrast to location estimators that 
have a slower rate of convergence, if long-range dependence is 
present (see section 1.1 and Chapter 8). 

The covariance matrix C is diagonal if the functions 

a 
fi = 	1°g f 	= 1 ' • *" m  

are orthogonal in the sense that 
fir 

f3  (A)f/(À)dA =  O 000. 

If in addition, fi  does not depend on the unknown 0, then the vari- 

ance of 0i  is the same for all 0. Consider, for example, a fractional 
ARIMA(0, d, 0) process. The spectral density is equal to 

a
= 

2 0- 2 

E
11-2H  (2 — 2 cos A)l —H . 

Define the parameter vector 
0. 2 

0  =(-,H).  

From Gradshteyn and Rhyzik (1965, Formulas 4.224 No. 9 and 7 
respectively) we have 

rr 

and 

[log(2 — 2 cos A)] 2 c/A = 
2
-
3

7 3 . 

/ 7,  log(2 — 2 cos A)c/A = 0 
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Therefore, i-s/ is asymptotically independent of al = 2741 with 
asymptotic variance 

47r 
	  — 762 	0.6079. f 7r7r  [log(2 — 2 cos A)] 2 c/A 

The estimator of al has the asymptotic variance 2o- e4 . 
It is well known that, under suitable regularity conditions, the 

MLE is asymptotically efficient in the sense of Fisher. This means 
that the Fisher information matrix 

	

rn,(6) 0 ) = E{ [L'n (x ;  "è)] [L'n (x ; 	 (5.28) 

converges to the inverse of the asymptotic covariance matrix of el . 
Recall that the inverse of 

	

F(0°) =  urn F(0°) 	 (5.29) 

is called the asymptotic Cramer-Rao bound. One of the usual reg-
ularity conditions for establishing efficiency of the MLE is that the 
spectral density is continuous everywhere in the interval [-7,7r]. 
In the case of long memory, this condition does not hold. A new 
proof is needed to establish efficiency of the MLE. This was done 
by Dahlhaus (1989). He showed that, for Gaussian processes with 
long memory, the Cramer-Rao bound is achieved by the MLE: 

Theorem 5.2 Under the assumptions of Theorem 5.1, 

	

lim F(0°) = C -1 (0 ° ). 	 (5.30) 
oo 

We conclude this section by discussing briefly a computational 
aspect. The calculation of the log-likelihood function L, or its 
derivative requires the inversion of the covariance matrix E n . For 
computational reasons, one might want to avoid this inversion (see 
the discussion in the next section). An alternative to calculating 
L n  via (5.18) directly isscale large bnewnew.asc to decompose the 
ndimensional Gaussian likelihood function into a product of one-
dimensional conditional distributions. The distribution h(x) can 
be written as 

h(x) = hi(xi)h2(x2Ixi) • • • h n (x n ix1,x2,....,x n ). 	(5.31) 

Here, hi(xi 'xi, 	xi_i) denotes the conditional distribution of X i  
given X1 = xi, ..., Xi_1 = xi_i. Because the probability densities 
h1, hn  are one-dimensional normal distribution functions, they 
are fully determined by their mean and variance. The mean and 
variance of hi are denoted by tti  and  cry.  The mean pi is equal to 
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the best linear prediction of Xi given X i , ..., Xi_i, 

 

—1 

 

= E(xi l x i, •••, X 3 -1 ) = 	= 

  

Oi-1,8Xi-8• 	(5.32) 

    

s.1 

The coefficients Oi_i, s  are the partial correlations. The variance of 

hi  is equal to the expected mean squared error of Xi, 

=  E[(Î  i  —  )2  X1, 	Xi_ i ]. 	(5.33) 

The coefficients 0i,, are given by (see, e.g., Durbin 1960) 

p(i) 
	

(5.34) 

Here, 

P(i) 	= 	(P( 1 ),..., 

= 
and 

Q(i) _ r„( Lpkr 
is the correlation matrix of X 1 , ...,  X i . Equation (5.34) can be 
solved by inverting the correlation matrix Q(i) : 

0 (i ) _ [Q(i)]—l p (i) . 	 (5.35) 

A more elegant and computationally faster solution is the Durbin-
Levinson algorithm (Durbin 1960, see also, e.g., Brockwell and 
Davis 1987, pp.162-163). 

5.4 Why do we need approximate MLE's? 

At first sight, the problem of estimating 0° by the maximum like-
lihood method seems to be solved by Theorem 5.1. However, the 
exact MLE poses computational problems. To obtain the solution 
of (5.20), (5.19) has to be evaluated for many trial values of  O.  This 
can be costly in terms of CPU time, in particular if the dimension of 
0 is high or if we have a long time series. Also, for long time series, 
storing the whole covariance matrix E (0) in its raw form requires 
excessive computer memory. Finally, evaluation of the inverse of 
the covariance matrix may be numerically unstable. In particular, 
if H is close to 1, the covariances change very slowly because of 
their slow decay to zero, so that E (0) can become almost singular. 
For instance, for n = 100, the determinant of the correlation ma-
trix of fractional Gaussian noise with H = 0.5, 0.6, 0.7, 0.8, and 0.9 
is equal to 1, 0.06, 2.2 .10 -6 , 2.7.10 -16 , and 5.0 • 10 -39 , respectively 
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(the numbers are rounded). Also, the ratio of the largest eigen-
value divided by the smallest eigenvalue is approximately equal to 
1, 3, 11, 43, and 222, respectively. 

The problem of inverting E n, can be avoided by the recursive 
calculation of the normal density function h via (5.31). However, 
this recursive algorithm needs to be run for each trial value of O. 
This may lead to long CPU times, in particular for long time series 
and/or for high dimensional parameter vectors O. For instance, for 
a series of length n = 6574, Haslett and Raftery (1989) reported 
a CPU time of about 45 hours on a VAX11/780 for the calcula-
tion of the exact MLE, based on this algorithm. An alternative 
to solving the exact maximum likelihood equations is to maximize 
an approximation to the likelihood function. In the following sec-
tions, we discuss several possible approaches to approximating the 
Gaussian likelihood function. 

5.5 Whittle's approximate MLE 

The two terms in (5.18) that depend on 0 are the logarithm of the 
determinant of the covariance matrix, 

log lEn(9 )1 	 (5.36) 

and the quadratic form 

x t E -1 (9)x. 	 (5.37) 

Let us look at each of these terms separately. 
1. Approximation of log 	(0)I : It was shown by Grenander 
and Szeg6 (1958) that 

1 	7r 

urn -
1 

log(0)I = —27r  I,  log f (A; 0)clA. 	(5.38) 
n 

Therefore, we replace log lEn (0)I by n(27) -1  E, log f (A; 0)c/A. 

2. Approximation of xt E -1 (9)x : The matrix E -1- (0) can be 
replaced by a matrix whose elements are easier to calculate. Define 

A(0) = [a(j -  

to be the n x n-matrix with elements 

cy(j 

 
- 1)  = (27)- 2 

f
7r
, f (A

l
; 0)e

dA. 	(5.40) 

The matrix A is asymptotically the inverse of En  in the following 

(5.39) 

sense: 
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Lemma 5.3 Let 

A œ (j,l) = a(j —1), j,1= 1, 2, ..., 	(5.41) 

E oe (j,1) 	= 'y(j —1), j,1= 1, 2, ... 	(5.42) 

and define the infinite dimensional identity matrix 1 00  by 

I oo (j , 1) =  6(j  — 1), 	 (5.43) 

where 6(s) = 1 for s = 0 and 6(s) = 0 otherwise. Also, define the 
products E„,,A 0c)  and A cc E,„ by 

00 
E 00 (k,j)A 00 (k,/) 	(5.44) 

A 00 (k,j)E 00 (k,/). 	(5.45) 

(5.46) 

[E,„A 00 ] (j, 1) = 
= - 00 

and 
00 

[A 00 E 00](j,/) = 
= - 00 

Then A oe  is the inverse of Eco  in the sense that 

A o,,E 0,-)  — E 00 A 0c, — 100 • 

Another interpretation of A can be given in terms of the best 
linear prediction of Xt  given the infinite past and the infinite future 
(see, e.g., Kiinsch 1981): 

Lemma 5.4 Consider the prediction of X t , given all past obser-

vations X s , s < t — 1, and all future observations X s , s > t +1. 
Among all linear predictors, the mean squared prediction error 
MSPE = E [(X t  — î t ) 2 IX s , st ]  is minimized by 

.k t  = 

 

a (s )Xt-Fs • 	 (5.47) 
sEZ ,s00 

Combining approximations 1 and 2, (5.22) is approximated by 

n 1 7 	 1 

	

L;`, = — —n  log 27r — 	f log f (A; 0)olA — —
2 

x t il (0)x. 	(5.48) 
2 	2 27r —7r 

Only the last two terms depend on the parameter vector O. An 
approximate MLE of 0 0  is obtained by minimizing the function 

	

Lw(0) = 	log f (A; 6)c1A 	 (5.49) 27r  
± 

x t A (0)x 

 n 

with respect to 0. The subscript W stands for Whittle, who pro- 
posed this approximation in the context of short-memory time se- 
ries (Whittle 1953). Under mild regularity conditions, minimizing 
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(5.49) is equivalent to solving the system of nonlinear equations 

a 
-Lw( 9 )10=e) = 

with j =  1, 2, ..., M. Written explicitly, (5.50) is of the form 

a fr 
at9i 

27r —7r log f (A; 0)clA + –
1 
—
a 

xtA(e)x = O. 
n aei 

A simplification of (5.50) can be achieved by choosing a special 
scale parameter. Define 

= ( 92, 03, 	em) 
	

(5.52) 

and 
0* = (1,0. 	 (5.53) 

Choose the scale parameter 01 such that 

	

f(A; 0) = 0 1 1 (À ; 0*) 	 (5.54) 

and 
7r 

log f (A; 0*)c/À = 0. 	 (5.55) 

Thus, 0 1  = 27.7,2  where cr,2  is the optimal one-step-ahead prediction 
error (see Lemma 5.2). We will use the following notation: 

a 
A i (e) = [Ceifr – 8; 60]7-,8=1,...,n =•5-;( ) A 0 (j = 1, ... 

Q ( 9) =-- X t  A(0)X =-- 

 

a(r – s;0)X rX, 

   

r,s=1 

(0) = X 	(0)X (j = 1, 2, 3, ...) 

and 

e2(0) =  
Also, Q will denote the M x M-matrix of all second partial deriva-
tives of  Q.  Finally, we set 

Q*(n) = Q
(

9 *) 

with corresponding first and second derivatives with respect to n , 

i*(71) and 4*(7/). Due to (5.55), the first term in (5.51) is equal to 
zero. Equation (5.51) therefore simplifies to the following steps: 

1. Obtain 7, by solving 

(5.50) 

(5.51) 

•()*( ii) = 0 - 
	 (5.56) 
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2. Set al = 27r0 1  equal to 

= 27Q*(7)). 	 (5.57) 

The same simplification could be achieved by setting the integral 
of log f equal to any arbitrary constant, not necessarily zero. How-
ever, letting the constant zero seems most natural, because then 
the scale parameter 0 1  has a nice intuitive interpretation. 

As in the previous chapter, a Taylor expansion can be applied 
to obtain the asymptotic distribution of Ô. First note that, (5.56) 
and (5.57) can also be written as the system of M equations 

(5.58) 

Because the components of e2 are quadratic forms, the limiting 
distribution of 0 follows by Taylor expansion from the results in 
Chapter 3. The following central limit theorem is a summary of re-
sults by Fox and Taqqu (1986), Beran (1986), and Dahlhaus (1989). 

Theorem 5.3 Let 0 be defined by (5.56) and (5.57). Then, under 
the conditions of Theorem 5.1, 

-4 	9 0 
	

(5.59) 

almost surely, and 

771(6 — 9 ° )  — *d 	 (5.60) 

where ( is defined in Theorem 5.1. 

Thus, Whittle's approximate MLE has the same asymptotic dis-
tribution as the exact MLE. It is therefore asymptotically effi-
cient for Gaussian processes. It should be noted that (5.55) im-
plies not only a simplification of (5.51), but also the asymptotic 
covariance matrix of  Ô has a simpler form. From (5.25) we obtain 
D li  =  D 1  = 0, (j1) and thus cov(0i, 0i) = 0 (j1). Thus, the 
scale estimate (5.57) is asymptotically independent of the other 
parameter estimates. This is a nice property, because u €2  is usually 
a nuisance parameter only. 

In analogy to the corresponding central limit theorem for 
quadratic forms, Theorem 5.3 can be generalized to linear (not 
necessarily Gaussian) processes, at least for i) (Giraitis and Sur-
gailis 1990a). 

Theorem 5.4 If X t  is a linear process with long memory defined 
by (3.12), then (under a few regularity conditions), the result of 
Theorem 5.3 follows for 7) (with 0 0  replaced by 77°). 
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A remark should be made about computational aspects. Ap-
proximation (5.51) replaces the inversion of the covariance matrix 
by the calculation of n Fourier coefficients (5.40) This calculation 
needs to be repeated for each trial value of  9.  For models where no 
explicit formula for (5.40) is available, numerical integration is nec-
essary. Depending on the efficiency of the program that performs 
this integration, and depending on the complexity of the function 

f ', repeated calculation of (5.40) may still require large CPU 
times. In first approximation, one may therefore consider replac-
ing the integral in (5.40) by a suitable Riemann sum. This leads 
to a fast algorithm. It is discussed in more detail in Section 6.1. 

5.6 An approximate MLE based on the AR 
representation 

5.6.1 Definition for stationary processes 

The idea of Whittle's approximate MLE is to replace the elements 
of the inverse covariance matrix En-1-  by the corresponding ele-
ments of the matrix A, which is a part of the two-sided infinite 
dimensional matrix 24 0,0 . As we saw in Lemma 5.4,  A œ  also gives 
rise to the best linear prediction of Xt , given all past and all fu-
ture observations. An alternative approximate MLE can be ob-
tained by using the best linear prediction of Xt given all past val-
ues Xt_i, Xt_2, ... only. This prediction follows directly from the 
infinite autoregressive representation (5.6) of Xt . If we knew the 
infinite past X 8  (s < t), then we could reconstruct the sequence of 
independent identically distributed innovations e s  (s < t) by 

00 

et = X t — 	b(8)Xt-8• 	 (5.61) 
8=1 

If X t  is Gaussian, then the log-likelihood function of El, ..., E n  is 
given by 

n 

L n, = -- 11  log 2 7r — 
n

log 0- — 1 ( t )2 	(5.62) 
t=1 f 

If instead of the infinite past, only a finite number of past values 
is observed, the innovations 62, ..., E n  can be estimated by 

t -1 

at = Xt — 

 

b(s)X t,, (t = 2, ...,n). 	(5.63) 

   

s= 



E Gr
2 

n 
(9). (5.70) 
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This amounts to assuming that X t  = 0 for t < O. An approxi-
mate log-likelihood function can be defined by replacing Et in (5.62) 
by u t . For a parametric model, the coefficients b(s) depend on a 
parameter vector 77 °. An approximate MLE of 0° = (o-,2 ,7) ) is ob-
tained by maximizing the approximate log-likelihood function with 
respect to 0. This can be written as follows. Define 

ut (77) 
rt(0) = 	, 	 (5.64) 

and 

a 	a 
= (—rt(0),..., 	 

ael 	aem  
(5.65) 

a 	a 
itt(n)= ( 	ut(n),..., 	ut(n)) t . 	(5.66) 

8711 	ar/m—i 

The approximate MLE 0 is obtained by minimizing the sum of the 
function 

n 

nlogO i  + (5.67) 
t=2 

with respect to O. Taking the first partial derivatives with respect 
to 0 leads approximately to the system of M nonlinear equations 

n 
Efrt (0)i' t (0) — E[r t (0)i- t (0)11  = 0. 	(5.68) 
t=2 

Because of the special role of the scale parameter, this can be split 
into two parts, 

n 

E it t(n) Ut( 77) = 0 
	

(5.69) 
t=2 

and 
1 

- 
- 

n — 1 
t=2 

The same central limit theorem as for Whittle's estimator holds 
(Beran 1993b): 

Theorem 5.5 Suppose that the assumpions of Theorem 5.3 hold. 
Let Ô be the solution of (5.68). Then the conclusion of Theorem 5.3 
follows. 

Equation (5.68) is analogous to the approximate maximum like-
lihood equations for finite-order autoregressive processes and to 
the normal equations in regression. The difference is that there is 



AN APPROXIMATE MLE BASED ON THE AR REPRESENTATION 115 

no finite lag s, such that b(s) is equal to zero for all s > s o . There-
fore, we cannot reconstruct any of the innovations Et exactly from 
the observations X 1 , ..., X,,,,,, even if we know the exact coefficients 
b(s), (s = 1, 2, ...). In particular, the variance of the approximate 
residuals ut  depends on t instead of being constant. Asymptotically, 
this effect is negligible. For small sample sizes, it might be worth-
while to replace the coefficients b(s) by the coefficients that give 
the best linear prediction of Xt given the finite past Xt_i, •••, Xi. 
These coefficients and the variance of the resulting residuals can be 
calculated recursively by the Durbin-Levinson algorithm (see also 
Haslett and Raftery 1989). 

5.6.2 Generalization to nonstationary processes; a unified 
approach to Box-Jenkins modelling 

To conclude this section, a few remarks on estimation for nonsta-
tionary ARIMA(p, d, g) models should be made. It was noted in 
Beran (1994) that the infinite AR representation is not restricted 
to the case where X t  is stationary (i.e. d < 1/2), but can be ex-
tended to any d > —1/2. The approximate MLE (5.68) is therefore 
defined for any, stationary or nonstationary, fractional or nonfrac-
tional, invertible ARIMA(p, d, g) process. In particular, this leads 
to a unified approach to Box-Jenkins time series modelling. Recall 
that in traditional time series modelling with ARIMA(p, d, g) mod-
els, d is assumed to be an integer. "Estimation" of d is usually done 
by "trial and error" accompanied by some diagnostic plots. Once d 
is found, the fact that d had to be estimated is ignored. Confidence 
intervals for the parameters are calculated as if d had been known 
a priori. In contrast, the method in Beran (1994) estimates d (and 
all other parameters) by maximizing the likelihood. Confidence in-
tervals for the parameters take into account that d is estimated. 
For a detailed discussion of asymptotic results, simulations, data 
examples and algorithms see Beran (1994). For related results in 
the frequency domain see also, e.g., Hurvich and Ray (1994). 



CHAPTER 6 

Estimation of long memory: 
frequency domain MLE 

6.1 A discrete version of Whittle's estimator 

Whittle's approximate maximum likelihood estimator (MLE) re-
quires the calculation of n integrals (5.44) for each trial value of  9.  
This can be a time consuming task, in particular for large sample 
sizes and if 0 has a high dimension. Note however that, in contrast 
to the spectral density f itself, the function 1/f is "well behaved" 
at the origin. A simple Riemann sum 

1 m 	1  
ii(k) = 2 

(27) 	f(Ai)
e-1,— —

27 771 	
(6.1) 

with 
7 

Ai , m, = 2j  —rn i  = 1, ..., m*) 	 (6.2) 

approximates the integral (5.40) reasonably well. Here, m* denotes 
the integer part of (m — 1)/2. The following estimator is then ob-
tained: Note first that (5.49) can be written in terms of the peri-
odogram /(A) as 

7r 	(A) 
L w (0) = 	f log f (A; 0)c/A ± 	clAl. 	(6.3) 

27r 	 f (À) 
 -7r 

From (6.2) one obtains the approximation 

Lw(0) = 2-1  [E log(Ai,m ; 0) 27  + 
	

f( 	0) 

27]• 
	(6.4) 

i=i 	 7n A i)m; m 

Because the periodogram can be calculated by the fast Fourier 
transform, Lw can be calculated very fast. Moreover, if 0 = (01 , 77) 
is such that (5.54) and (5.55) hold, the first term in (6.3) can be 
replaced by log 0 1 . Minimizing (6.3) amounts to minimizing the 
sum of the ratios /(Ai , m )f —1 (Ai , m ; 0*) with respect to 77, where 

Trt 
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0* = (1, 77), and setting 6- €2  = 270^*1 equal to this sum multiplied 
by 47/m. In particular, if we choose m = n, then Ai,n  are the 

Fourier frequencies and 0 is defined by the following two steps: 

1. Minimize 

I(Ai,n)  

f Pk i ,n ; 9 *) 

with respect to 77. 

2. Set 

= 27r0 i  =  

(6.5) 

(6.6) 

This approximation was suggested by Graf (1983) for fractional 
Gaussian noise. He derived it in a different way, by assuming that 
periodogram ordinates at distinct Fourier frequencies are approx-
imately independent exponential random variables with expected 
value equal to the spectral density. Strictly speaking, this deriva-
tion is not quite correct though, as consistency and independence 
are proven for a finite number of non-zero frequencies only (cf. 
Theorems 3.7 and 3.8). By heuristic arguments and simulations, 
Graf (1983) demonstrated that for fractional Gaussian noise, limit 

Theorem 5.3 holds for ê defined by (6.5) and (6.6). This is likely to 
hold for any linear process for which certain regularity conditions 
(such as those in Theorem 5.4) hold. A related consistency result 
is given in Theorem 3.9. 

Examples: 

1. We fit two models, fractional Gaussian noise and a fractional 
ARIMA(0,d,O) model, to the Nile River data, after subtracting 
the sample mean. First note that for fractional Gaussian noise 
with 0 = (o- 62 /(27), H), the spectral density can be written as 

a2 

f (A; 19) = - 7,-[c(H)fi(A; 

where 

MA; H) = 0- 2 7 -1 F(2H +1)sin(R- H)(1 — cos A) 
E7 00  1 27ri A 1-2H-1 ,  

0- 2  = var(X t ) and 

(6.7) 

(6.8) 

c(H) = exp[—(27) -1.  f log fi  PO O. 	(6.9) 
—7r 
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I 	I  
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	 0.50 

log frequency 

Figure 6.1. Nile River minima: periodogram and fated spectral densities 
(log-log coordinates). 

Then (5.55) holds for fi . For a fractional ARIMA(0, d, 0) pro-
cess, 

rr 2 
f (A; 0) = '2-tr  11 e  1-2.1/ 

and (5.55) holds for 

fi(À;H) = _ e 1'2 

(6.10) 

 (6.11) 

The estimates of H are equal to 0.84 and 0.90, respectively. The 
95% confidence intervals for H are [0.79, 0.89] and [0.84, 0.96], 
respectively. The plot of the periodogram and the fitted spectral 
densities shows a good agreement between data and both fitted 
models (Figure 6.1). 
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0.05 0.50 5.00 
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Figure 6.2. Ethernet data: periodogram and fitted spectral densities (log-
log coordinates). 

2. The same models are fitted to the Ethernet data. The esti-
mated values of  H are 0.82 and 0.77, with 95% confidence inter-
vals [0.79, 0.84] and [0.75, 0.79], respectively. Both fitted spectral 
densities agree well with the observed periodogram. It should be 
noted, however, that the spectral density characterizes a process 
fully (together with the mean) only if the process is Gaussian. 
While this might be the case in good approximation for the 
Nile River data (compare Figure 7.1), the Ethernet data are 
clearly non-Gaussian (see Figure 1 . 7 ) . A more refined analysis 
that takes into account the discrete nature of the observations 
would be needed. 
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6.2 Estimation by generalized linear models 

In general, the approximate method in the previous section is nu-
merically simple, if the only two parameters to be estimated are 
al and ri =  H.  For higher-dimensional parameter vectors 77, (6.5) 
is a system of nonlinear equations. Depending on the complexity 
of the model, finding the solution of (6.5) can be numerically diffi-
cult and might require long CPU times. This motivates the search 
for models where this task can be simplified. A class of models for 
which (6.5) reduces to the estimation of the parameters in a gener-
alized linear model was proposed by Beran (1993a). Methodology 
for generalized linear models is well developed and implemented in 
standard statistical software packages (e.g., SPLUS). 

In a generalized linear model we observe a random response y 

with mean j and distribution function F (McCullagh and Nelder 
1983). The mean p depends on explanatory variables  'u 1,  •••, uk 
through a link function u such that 

v Ca) = 00  ± Oini 	Okuk. 	 (6.12) 

Equations (6.5) and (6.6) and the central limit theorem 5.3 can 
also be obtained from the simplifying assumptions that 

/(Ai,) 	f (Ai,, 	j, 	 (6.13) 

where are independent exponential random variables with mean 
1. We therefore define 

Yj,n = 
	

(6.14) 

The expected value of yi,n  is equal to 

= f (Ai, n ; 0). 	 (6.15) 

Suppose now that there is a link function 7) such that v(p) is linear 
in the parameters 0 1 , ..., Om. Thus, assume that 

v(p,) = 0 1 u 1 7 ) + +02u 1 (A) + + Omum(A) 	(6.16) 

for suitably chosen functions 'a l , 7/ 2 , •.., um. We are then in the 
situation of generalized linear models with y equal to the peri-
odogram, exponential distribution function F, explanatory vari-
ables ui (A), u2(A), um(A), and link function v. 

Which link function is most natural to use? Long-memory pro-
cesses are characterized by the property that the spectral density 
is proportional to 

1-2H 	e  (1-2H) log 	 (6.17) 
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near the origin. A natural choice of the link function is therefore 

v(p,) = log p,. (6.18) 

This motivates the following class of models defined in Beran 
(1993a): 

Definition 6.1 Let g : [-7r, 7r] 	111 +  be a positive function such 
that 

g(A)  
lim 	= 1  
A-C:1 A 

and g(A) = g(— ). ). Define fo 	1, and let f i , f2 ,..., fp  be func- 
tions that are smooth in the whole interval [-7, 7]. Also, assume 
that fk(À) = fk(—A) and for any n, the n* x (p 1)—matrix 
H with column vectors ffk(271n), fk(272/n), fk(273/n), •••, 
hf(27n*/n)l t  (k = 0, 1,...,p) is nonsingular. Furthermore, let 
0 = (770 ,H, ni , rip)  be a real vector with 1/2 < H < 1. We call 
X t  a fractional EXP process (or an FEXP process) with short-
memory components f 1 , ..., fp  and long-memory component g, if 
its spectral density is given by 

f (A; 0) = g(A) 1-2Hexp{ 

 

njfi(A)}. (6.19) 

    

i=o 

Similarly to fractional ARIMA models, the class of FEXP processes 
is very flexible. Two classes of FEXP models are especially useful: 

1. g(A) =  1— e1,  fk(A) = cos kA (k = 0, 1, 	p) : If H = 	we 
obtain the model class proposed by Bloomfield (1973). The spec-
tral density is a product of factors of the form exp(,3i  cos kA). 
The logarithm of the spectral density is assumed to be decom-
posable into a finite number of cosines: 

log f =  rio  ±  in  cos A +  12  cos 2A + + np  cos pA. 	(6.20) 

Every sufficiently regular function can be expressed as a Fourier 
series 

00 

E 7,i cos jA. 
i=0 

(6.21) 

Therefore, in its generality, Bloomfield's class is comparable to 
ARMA models: any smooth spectral density can be approx-
imated with arbitrary accuracy. The question is mainly, how 
many parameters do we need to obtain a good approximation. 
Definition 6.1 extends these models by allowing H = 02 to as-
sume values above If Oi = 0 for j > 3, then we obtain a 
fractional ARIMA(0, d, 0) model with d = H — 1/2. 
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log frequency 

Figure 6.3. VBR data: periodogram and fitted spectrum of polynomial 
FEXP model (log-log coordinates) 

2. g(A) =  1— eiA l, hk(À) = Ak (k = 0, 1, ...,p). The logarithm 
of the spectral density is the sum of the long-memory compo-
nent (1 — 2H) log ,\ and a polynomial in A. A data example with 
H = 1 '  where a second-order polynomial (p = 2) makes sense 2 
intuitively, is given in Diggle (1990, p. 125 ff.). In addition, Dig-
gle multiplied the spectrum defined by (6.19) and H = 1/2 by 
an AR(1) spectrum 1/(1 — 2ce cos A + a 2 ). The same extension 
can be applied here. 

For illustration, we consider the VBR data. The periodogram 
in log-log coordinates (Figure 1.6c) has a negative slope near the 
origin and otherwise an essentially concave shape. A simple way 
to model this shape is to use the polynomial FEXP model (model 
2 above). One would expect that, a low-degree polynomial can 



Estimate Standard deviation z-statistic p value 

—1.343 0.249 —5.39 0.0000 
—0.783 0.107 —7.32 0.0000 
—2.856 0.303 —9.43 0.0000 
0.428 0.072 5.92 0.0000 

—1.209 0.425 —2.84 0.0045 
—0.741 0.150 —4.94 0.0000 
—3.124 0.776 —4.03 0.0001 
0.579 0.422 1.37 0.1698 

—0.027 0.076 —0.36 0.7218 

Parameter 

p = 2 

01 
02 
03 

P = 3 
 130  

01 
02 
03 
04 
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Table 6.1. Parameter estimates for the FEXP model with spectral density 
f (À ; 0) = _ eix 1-2Hexp  

0  nijAji) fitted to the first 1000 observa- 

tions of the VBR data by Heeke and Hundt (see Heeke 1991). Notation: 

00 = no, 01 = 1 — 2H, f3i.44 = 	j > 1. P values are given for testing 
= 0 against the two-sided alternative ,32:0. 

capture the concave shape. The results in table 6.1 and figure 6.3 
confirm this conjecture. A quadratic polynomial appears to be 

sufficient. There is good agreement between the observed and the 
fitted spectrum with p = 2. 

* Adapted from Table 1 of Jan Beran (1993) "Fitting long-memory models 
by generalized linear regression." Biometrika, Vol. 80, No. 4, 785-791, with 
the permission of the author and the Biometrika Trustees. 



CHAPTER 7 

Robust estimation of long 
memory 

7.1 Introduction 

The main assumptions in Chapters 5 and 6 were: 

Al. The observed process is stationary. 

A2. The observed process is Gaussian or at least a linear process. 

A3. The spectral density belongs to a known parametric class of 
densities f (x; 0). 

These assumptions are mathematically convenient. The first as-
sumption enables us to model the process in a parsimonious way 
and ensures that certain fundamental mathematical properties 
hold (e.g., ergodicity). The mean is constant and the covariances 
depend on the time lag between two time points only. Thus, for 
n observations Xi, ...,  X,  there are only n unknown covariances 
-y(k) = cov(Xt, X t+k), k = 0, ..., n — 1, instead of n 2  unknown 
covariances cov(X t ,  X 3 ),  t, s = 1, ...,n. The assumption of Gaus-
sianity implies that the process is fully determined by the first two 
moments. The likelihood function is a function of only the mean 
and the covariances. The same moment based estimation methods 
can be used for linear processes (under some moment conditions), 
though in general they are no longer efficient. The third assump-
tion reduces the estimation of the spectral density function (or the 
covariances) to the estimation of a finite-dimensional parameter 
vector 0. 

Mathematical convenience is useful, not only for purely theo-
retical considerations, but also for a straightforward intuitive un-
derstanding of the results of data analysis. Yet, in order for the 
above assumptions to be useful, one needs to answer the following 
questions: 
Ql. Do assumptions Al to A3 ever hold in practice, at least in 

good approximation? If not, what kind of deviations are usually 
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Quantiles of Standard Normal 

Figure 7.1a 
	

Figure 7.1 b 

Figure 7.1. Histogram and normal probability plot of the Nile River min-
ima. 

encountered? 

Q2. What happens when some of the assumptions are violated? 
How reliable are Gaussian maximum likelihood methods in such 
a case? 

Q3. Are there any methods that are less sensitive to deviations 
from the assumptions, without being too inefficient if the as-
sumptions hold? 

Let us first look at some examples. 
Example 1: Consider the Nile River data. The histogram and 

the normal probability plot (Figure 7.1) do not reveal any relevant 
deviation from (univariate) normality. In the log-log plot, the pe-
riodogram follows in good approximation a straight line (Figure 
6.1). Fractional Gaussian noise or a fractional ARIMA(0,d,0) pro-
cess therefore seems to be a good model. The maximum likelihood 
estimates (MLE) of H are 0.84 and 0.90, respectively. Figure 6.1 
shows a good agreement between the periodogram and the fitted 
spectral densities. The task of modelling these data seems to be 
accomplished. However, taking a closer look at the time series plot 
of the data there appears to be a slight difference in the behav-
ior between about the first 100 measurements and the rest of the 
series. The first 100 measurements seem to fluctuate around the 
mean in a more independent fashion. This impression is supported 
by a graphical comparison of the periodogram for the first 100 and 
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Figure 7.2. Nile River minima: periodogram for t = 1, ..., 100 (Figure 

7.2a) and t = 101, ..., 660 (Figure 7.2b) (in log-log coordinates). 
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Figure 7.3. Simulated series of a contaminated fractional 
ARIMA(0,0.3,0) process. 
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the last 560 data, respectively (Figure 7.2). The question arises 
therefore of whether the process is nonstationary in the sense that 
there is a change of the dependence structure at around t = 100, 
or whether the apparent difference is likely to occur by chance for 
a stationary process with H around 0.9. We will see in Section 10.3 
that there is indeed some evidence for a change of the long-memory 
parameter H. 

Example 2: Suppose that the process we would like to observe 
is a fractional ARIMA process X t  with H = 0.8 and innovation 
variance 1. Instead of X t , we observe 

Yt = (1 — Zt)Xt+ Zt(c•Vt). 	 (7.1) 

where Zt are independent Bernoulli variables,  P(Z) = 0.05, Vt 
are independent t2—distributed random variables, and c = 10. 
This means that X t  is contaminated by occasional isolated out-
liers. Figure 7.3 displays a typical realization of Yt . What effect do 
the outliers have on MLE of H? Suppose, for instance, that the 
innovation variance is known to be equal to 1 and we estimate H 
by the approximate MLE (5.68). For 100 simulated series of length 
1000, the average estimate of H turned out to be equal to 0.60, 
with sample standard deviation 0.044. The independent outliers Vt 
pull the estimate of H towards the value 0.5. Instead of estimating 
the dependence structure of the majority (about 95%) of the data, 
ii reflects the independence of the occasional outliers. 

Example 3: Consider the logarithm of the VBR data. Suppose 
that our class of models consists of fractional Gaussian noise only 
and we estimate H by Whittle's approximate estimator. For frac-
tional Gaussian noise, the logarithm of the spectral density is in 
good approximation a linear function of the logarithm of the fre-
quency (see Figure 2.5). Figure 6.3 shows a completely different 
behavior of the periodogram. Obviously, fractional Gaussian noise 
is not a suitable model. If we nevertheless fit fractional Gaussian 
noise to the data, the estimate of H is equal to 1.7 which is even 
outside the stationary range (0, 1). By using fractional Gaussian 
noise, we assume a priori that the shape of the spectral density 
in log-log coordinates is almost a straight line. Instead, we have 
a curved line with very low values for high frequencies. If we fit a 
straight line using the periodogram ordinates at all frequencies, the 
estimated slope is very steep because of the low values at high fre-
quencies. In contrast, consider the polynomial FEXP model with 
p = 2. Figure 6.3 shows a good agreement between observed peri-
odogram and fitted spectral density, even for low frequencies. This 
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good fit could be achieved by introducing onlytwo additional pa-
rameters. 

The examples illustrate some typical deviations from Al to A3. 
In the first case, the last two assumptions seem to hold in good 
approximation, whereas assumption Al is violated. The process is 
not stationary, in that it appears to be divided into two different 
stationary parts. The second example illustrates the influence of 
occasional outliers. The third example shows the lack of robust-
ness of the MLE with respect to misspecification of the model in 
the frequency domain. In these examples, the deviations from the 
original model are relatively easy to characterize. It is therefore 
possible to incorporate them in an improved parametric model. In 
other cases, this might not be possible so easily. For instance, if 
we observe only one outlier, the distribution of the outlier process 
can not be estimated. Many other kinds of deviations from Al to 
A3 may occur. In the case where we firmly believe (and do not 
question) that observations are sampled independently from the 
same population distribution, the situation is much simpler. The 
only possible way to deviate from the model is to deviate from 
the marginal distribution. There is a well-developed theory of ro-
bustness for this case (see, e.g., Huber 1981, Hampel et al. 1986, 
Rousseeuw and Leroy 1987, Morgenthaler and Tukey 1991). The 
situation changes once we accept the possibility of dependence be-
tween observations at different time points. The distribution of n 
observations Xi, X n  is not determined by the marginal distribu-
tion only. In general, it is fully determined only if we know all joint 
distributions of X ti , Xt, for all subsets {t 1 ,...,ti} E {1, ..., n}. 
Therefore, there are many more possibilities of deviating from a 
specified model. In particular, which effect a different marginal 
distribution has depends on whether, and in which way, other as-
sumptions are violated. For example, one extremely large observa-
tion can pull the sample correlation kk) arbitrarily close to zero. 
On the other hand, if outliers occur in patches of length k, /3(k) 
can be very close to 1. Also, "unusual" observations might be un-
usual in a more sophisticated way than just by being extremely 
large in absolute value. For example, a small portion of the data 
might consist of independent observations from a standard nor-
mal distribution, whereas the majority of the data are generated 
by fractional Gaussian noise with zero mean and variance 1. The 
outliers do not occur in the marginal distribution but rather in 
conditional distributions given past observations. In this case, it 
might be difficult to detect the unusual observations by looking at 
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the time series plot only. 
It might be unrealistic to expect that we can protect ourselves 

against all theoretically possible deviations from the model as-
sumptions. Instead, one therefore considers procedures that are 
robust against certain types of deviations that often occur in real 
data. For different types of deviations different methods are pro-
posed in the literature. None of the known methods is robust 
against all possible deviations. In the following sections, we give 
an overview of some of the known methods that focus on certain 
aspects of Al to A3. A somewhat related issue is whether "long 
memory" in a finite data series can be generated by short-memory 
processes. This leads to the question of whether one should indeed 
use long-memory processes, instead of traditional short-memory 
processes for which many more theoretical results and methods 
are available. This is discussed in Section 7.5. 

7.2 Robustness against additive outliers 

A fairly general approach to characterizing the robustness proper-
ties of estimators in the time series context was given by Martin 
and Yohai (1986). They considered an influence functional for the 
so-called general replacement model. Suppose that the nominal 
process X t  (i.e., the process we would ideally observe) is a sta-
tionary Gaussian process for which (2.1) and (2.2) hold. As in the 
previous chapters, we assume that the spectral density of X t  is 
characterized by a finite dimensional parameter vector O. Denote 
by W t  a contaminating process with distribution p,,, and by ZZ a 
0 — 1 process where 0 < -y < 1 and 

P(ZZ =1) = -y ± o(y). 	 (7.2) 

Martin and Yohai assume that the observed contaminated series is 
generated by the general replacement model 

Yj =- (1 — ZZ)X t  + ZZWt . 	 (7.3) 

The influence of the contamination Wt  on an estimator of 0 can be 
characterized by an influence functional. Denote by iq the distri- 

bution of the process Yt  and let 0 be an estimate of O. Asymptot- 
ically, 0 is a functional of the distribution tq. We therefore write 

'0 = kti,D. Denoting the asymptotic limit of '0(q) by '0„,o (q), the 
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influence functional is defined by 

êOE,(tto - 600 (p,60 
I F (p,, 0-  , 1.0,) = lim  	(7.4) 

-Y 

The influence functional measures the asymptotic influence of an 
infinitesimal contamination in the direction determined by z'tY and 
Wt . If IF is bounded for a certain class of contamination distri-
butions p, then the bias of 0s  is bounded within this class of con-
taminations, at least for sufficiently small values of -y. 

An important special case of the general replacement model, is 
the additive outliers (AO) model with independent ("isolated") 
outliers, 

(7.5) 

where Vt  = ZVt*, Z t  (t = 1, 2, ...) are independent Bernoulli ran-
dom variables with success probability -y and Vt* is an arbitrary 
stochastic process with marginal distribution Fu . Note that, in the 
above notation, Wt = Xt + Vt*. For more general outlier models, 
we refer the interested reader to Martin and Yohai (1986). Related 
approaches to robustness in time series are discussed, for example 
in Portnoy (1977) and Kiinsch (1984). 

Consider now the exact and approximate Gaussian MLEs dis-
cussed in the previous chapters. They are functions of the sample 
correlations /3(4 ..., /3(n — 1). This makes them sensitive to out-
liers and to other deviations from the normal marginal distribu-
tion. Example 2 in Section 7.1 illustrates this lack of robustness. 
To obtain a bounded influence functional for AO, Beran (1993b) 
considered the following class of estimators. Define Et(77) by (5.61), 
ti(0) = E t (n ) 1 ft17 and 

a 	a  
t(6)) = 	v t (e)it. 	(7.6) aei 	' aem  

Let V) = (01, ..., 0m) t  be a function from R x R m  x R m  to R m  
such that 

	

O i (x,y,0) = oi1 (x)O i2 (y ) — c(0), 	(7.7) 

where ci  is a constant depending on 0, x E R,y E R M , Oil (i = 
1, ..., M) are functions from R to R and 2Pi2 (i = 1, ..., M) are 
functions from R m  to R. Define 

et( 6 )  = 0(vt(9), /)t (0), 0) 	 (7.8) 

and let t(0) denote the derivative of WO) with respect to O. Note 
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that is an M x M-matrix. Assume that 0 is such that 

E[t(0° )] = 0 	 (7.9) 

and the matrices 

A = E[t(0°):(0° )] = E[W00)d.(00)] 	(7.10) 

and 

	

B = E[Ét(0° )] = E[6(0° )] 	 (7.11) 

are well defined. The estimator 6 is defined to be the solution of 
n 

	

= O. 	 (7.12) 
t=2 

This is a straightforward generalization of the approximate max-
imum likelihood equation (5.68). For 0 ii  =  x,  0i2(y) = y, c i  = 0 
(i > 2) and c i  = —11(20 1 ), we obtain (5.68). 

Whether the influence functional of gi is bounded for the AO 
model depends on the function L.  The following expression for the 
influence functional for the AO model follows from Martin and 
Yohai. Let 

G 0  = E[71) (61(9° ) ± V1 , 1 (9°), 9 ° )] 	(7.13) 

and 

Gi  = Ek P(Ei(9 ° ) ± bi(9° )V1, i( 0° ) ± i)i(9° )Vi, 0 0 )], j ?_ 1. (7.14) 

Then 
00 

IF ( p, w , gl , /1;) = — (7.15) 
i=o 

In general, the number of non-zero terms on the right-hand side of 
(7.15) is infinite. This implies that even a bounded 0-function does 
not guarantee robustness against all possible distributions tt y . For 
instance, let I', be a point mass ( 5, , , i.e., Vt  y. Ify tends to infinity 
and zp(x, y) does not converge to zero for Ix —> oc  or ly1 —>  oc,  then 
1/FI  tends to infinity. To obtain a bounded influence function, a 
redescending 7P-function must be used. For instance, in the simplest 
case with known scale 0 =  H,  we may define 

Orob(x, Y) = 
	

(7.16) 

where 

01(x) = u(x;a1,01), 0 < al 
	

(7.17) 

02(Y) = u(Y;a2,02), 0 < a2 
	

(7.18) 

U(X; 00) = ---2 ( —x; a,0) 
	

(7.19) 
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and for x > 0, 

u(x;a,0) = x1{x < a} + a(1 
x — a we,  
	 { < x < Of. 	(7.20) 
0 — a 	— 

The resulting influence function is then bounded as y tends to 
infinity, provided that ai, a2, 011 02 are finite numbers. 

Recall that the R/S-statistic is also robust against deviations 
from the marginal distribution (theorem 4.3). The distribution 
properties of the RI S —statistic seem, however, rather complicated. 
In contrast to that, it is relatively easy to derive the following cen-
tral limit theorem (Beran 1993b): 

Theorem 7.1 Suppose that X t  is a Gaussian process as defined 
above and 6 is defined by (7.12). Then the following holds. 

(i) There is a sequence of solutions ijn  of (7.12) such that, as n 
tends to infinity, 

—> 0 0 	 (7.21) 

almost surely. 

(ii) As n tends to infinity, 

1 - 
n -f (0 — 0 ° ) —> d(  (7.22) 

where ( is a normal random vector with mean zero and covari-
ance matrix 

V = /3 -1- AB -1 . 	 (7.23) 

Note in particular that for 7P i1 (x) = x and 7P i2 (y) = y, V is 
equal to the asymptotic covariance matrix of the MLE [equation 
(5.25)]. Using this theorem, one may find a suitable compromise 
between robustness against deviations from the ideal model and 
efficiency under this model, by defining a 7P-function for which the 
influence functional does not exceed a certain limit for a certain 
class of contaminations while the asymptotic efficiency under the 
ideal model is as high as possible. This is illustrated by simulations 
in Beran (1993b). There, the 7P —function defined by (7.16) through 
(7.20) is used with the tuning parameters al, 0 1 , a2, and 02 such 
that, for the uncontaminated model, the efficiency is equal to 0.9. If 
multiple roots occur, the highest value of H is accepted as solution. 
In spite of the high efficiency, the average estimate of H in 100 
simulated series (of length n = 1000) of the contaminated process 
(7.1) with c = 100 turned out to be 0.799 as compared to 0.499 for 
the MLE. 
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7.3 Robustness in the spectral domain 

Long memory is characterized by the behavior of the spectral den-
sity at the origin. If the slowly varying function in (2.2) converges 
to a constant cf at the origin, then 

log f (A)P--,- log cf ± (1— 2H) log A 	(7.24) 

for small frequencies A. For simple models such as fractional Gaus-
sian noise or a fractional ARIMA(0,d,O) process, this is a good ap-
proximation even for large frequencies. Fitting these models there-
fore basically amounts to fitting a straight line to the periodogram 
in log-log coordinates. Example 3 in Section 7.1 illustrates what 
may happen, if in contrast to our assumption, (7.24) holds in a 
small neighborhood of zero only. By fitting a straight line to the 
whole periodogram, we try to approximate a nonlinear function by 
a linear function. This leads to a biased estimate of H. Analogous 
comments apply to more complicated parametric models that do 
not contain the true spectral density. Misspecification of the model 
may lead to a serious bias in the estimate of H. There are at least 
three possible ways to solve this problem: 

1. Use a sufficiently flexible parametric class of models. Estimate 
the parameters by (exact or approximate) MLE. 

2. Estimate H and cf semiparametrically by considering a de-
creasing proportion of smallest frequencies. As an alternative, 
one may consider the periodogram at all frequencies for the ag-
gregated series 

Yt =- 

mt 

E x,, 

where m > 1 is sufficiently large. 

3. Use a simple parametric model. Estimate H and cf by a robus-
tified maximum likelihood method that bounds the influence of 
periodogram ordinates at high frequencies. 

The first method leads to consistent or approximately consistent 
estimation of the spectral density, provided that a suitable para-
metric class is chosen. "Suitable" means that either the true model 
is contained in the model class, or the true spectral density can be 
approximated with high accuracy by spectral densities in the model 
class. For instance, every piecewise continuous function can be ap-
proximated arbitrarily well by ratios of trigonometric polynomials. 
Therefore, fractional ARIMA(p, d, q) models can approximate the 
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spectral density of any long-memory process whose short-memory 
part of the spectral density is piecewise continuous. The approx-
imation can be arbitrarily accurate, provided that large enough 
values of p and q are chosen. The same is true for FEXP mod-
els with polynomial or trigonometric short-memory components. A 
question that needs to be answered for this approach is how large 
the dimension of the parameter vector 0 should be, or more gen-
erally, which of the considered models should be used. This may 
be done, for instance, by applying one of the model choice criteria 
known in the time series literature (see, e.g., Akaike 1969, 1973a,b, 
1978, 1979; Rissanen 1978, 1983; Schwarz 1978; Parzen 1974; Mal-
lows 1973; Hannan 1980), though they are usually derived either 
in the context of independence or short-memory dependence. For 
long-memory processes, a version of Akaike's criterion based on 
the Whittle estimator is derived in Beran (1989b). In practice, it is 
not always necessary to use automatic model selection procedures. 
Instead, it is often sufficient to fit several candidate models that 
may arise naturally from the given context. A reasonable model 
may then be found by comparing the significance, relevance, and 
interpretability of the parameters. For instance, for the VBR data 
we observed a concave shape of the log-log spectrum. This seems 
to be typical for many VBR data (see Beran, Sherman, Taqqu, and 
Willinger 1992). A polynomial FEXP model of degree 2 yields a 
good approximation to the observed spectrum. 

In situations where only H and ef are of interest, it seems rather 
wasteful to use complicated models with a high-dimensional pa-
rameter vector O. This leads to methods 2 and 3. A version of 
method 2 was discussed in Section 4.6. Compared to method 1, 
the advantages are that only two parameters need to be estimated 
and no model choice is necessary. On the other hand, the problem 
of model choice is replaced by the problem of choosing appropri-
ate lowest and highest frequencies, respectively, which are used 
for the estimation. Table 4.1 illustrates that quite different results 
may be obtained for different choices of the cut-off points. Also, 
disregarding most periodogram ordinates leads to considerable effi-
ciency losses. The method is therefore not applicable to time series 
of short or moderate length. The primary objective of the method 
is exact asymptotic consistency. This is achieved at the cost of 
efficiency. 

The aim of the third method is to achieve a compromise between 
bias (or consistency) and efficiency. At first, one considers a simple 
parametric model with a low-dimensional parameter vector O. This 
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model is used as a central model from which departures in the 
spectral domain are expected. To obtain estimates that will be 
meaningful even under deviations from the model, the parameters 
are estimated in a robust way. By robust we mean that deviations 
from the assumed spectral shape do not influence the estimates too 
much. The primary objective is to keep the bias of  H small, but not 
necessarily equal to zero, while retaining reasonable precision under 
the ideal model. This approach was investigated by Graf (1983) for 
fractional Gaussian noise as the central model. There is no reason 
to restrict attention to this model only. We therefore generalize it 
to arbitrary parametric models with an M-dimensional parameter 
vector 0, where M > 1. 

Graf considers the influence of one periodogram ordinate on 0. 
Suppose that 6 is a function of the periodogram ordinates 

n . /1  = /01,0,12 = /02,n), • • •, In* = i(A,,i ) 	(7.25) 

with 	= 27rjn -1  and n* equal to the integer part of ..(n — 1). 
We will use the notation 

= 	••• 	 (7.26) 

We then may write 
= 6(i) 	 (7.27) 

To investigate the influence of Ik on 6, define 

jk =  {1,  2, ..., n*1 — {k} 	 (7.28) 

to be the set of all integers between 1 and n* excluding k. Also, 
denote by 

/(k) 	 /in* -1) t (j E Jk) 	(7.29) 

the vector with components /i  excluding 1k  and by 

jj(k) _ 	 (7.30) 

the estimate obtained by omitting the kth periodogram ordinate 
Ik•  The normalized influence of Ik on 6 is defined by 

IFs(ik, )k,n) (7.31) 	 .

1/n* 

We will call IFS the (empirical) spectral influence function. Sup-
pose now that Ô is defined by an implicit equation 

	

Aim , 6) = 0, 	 (7.32) 
j=1 
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where = (0, 	m y is a function from RxRx R m  to R m . It is 
assumed that V) is chosen such that, under the assumed parametric 
model, 6 is consistent. The "one-leave-out estimate" 6 ( 1)  solves the 
equation 

= 0, 	 (7.33) 
jEJk 

Under suitable regularity conditions on , an approximate expres-
sion for  IFS  is obtained from (7.32) and (7.33) by the following 
Taylor expansion. By definition, 

0= 
	

Ai,n, Ô) + (Ik Ak,n, 6). 
jEg-k 

Expanding the first term around 6 (k)  leads to 

0 

 

V; (Ij 	j,n, 6(k) ) (Ô (k) 	6) ± 11)( 1-k ,  Ak,n ,  6). 	(7.34) 
jE,7k 

Here, denotes the matrix 

• 	a 
m• aei 	-•- 

From (7.34) we get 

(7.35) 

n * (0) _ 	_[n * 

  

 

(1 Àj , n , 0)] -1 0 (ik, Ak,n , 0). (7.36) 
j EJk 

For large n, 

 

n* 
jEg-k 

can be replaced by 

 

7.1* 
1 	■ •

•A = niLM00  —n* 	lib (13 , Ai,n , 0 ° ), 

jE 

(7.37) 

and 0(4, Ak,n, 6 ) can be replaced by 0(/k, )k,n , 0 0 ). The spectral 
influence function can therefore be approximated by 

/FS(/k, Ak,n ) 	A 1 7,b(4,Ak,n,0 ° )• 	(7.38) 

Thus, the influence of 1k on 0 is proportional to 0(/k, Ak, n , 9 0 ). 
For illustration, consider the discrete Whittle estimator (6.5), 

(6.6) with m = n*. Equations (6.5) and (6.6) can be written in the 
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form (7.32), with 0 defined by 

 	1), 
f (y; 6) 
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(7.39) 

where 
w(y, 0) = log f (y; 0) 	 (7.40) 

and 	is the vector of partial derivatives with respect to 9 .  Note 
that, if f (log f — log /906/A is assumed to be equal to zero, then 03 
(j > 2) may be simplified to 

0i(x, y; 0) = ti) (y; 0) 
f (y; 	

(7.41) 

The right-hand side of (7.41) is proportional to x and thus un-
bounded. This means that each periodogram ordinate has an un-
bounded influence on Ô. One extreme periodogram ordinate can 
distort the estimate of 0 by an arbitrary amount. 

To obtain an estimator that is reliable even if the true spectral 
density deviates from the ideal shape, a bounded 0-function must 
be used. Graf (1983) suggests that one "huberizes" the standard-
ized periodogram ordinates 

I 
=  	 (7.42) 

3 	f (Ai,n; 0°) 

For a given number u E [0,1), denote by qt, the (1 — u)-quantile 
of an exponential random variable with mean 1. This quantile is 
given by 

qu  = — log u. 	 (7.43) 

Because /3  is bounded from below by zero, but not bounded from 
above, it is mainly important to bound the influence of large pos-
itive deviations. This can be done by replacing all standardized 
periodogram ordinates 1; > qu  by qu . This is called "huberizing," 
or, to indicate which quantile we are using, 'u-huberizing'. Equa-
tion (7.32) is replaced by 

where 

Ô) = 0, (7.44) 

0 (u) 	Y; 60 = 0(x*  Y; 6 ) — 
	 (7.45) 

x* = min(x, f (y;9)q u ) 
	

(7.46) 

and 
= 

) 	E[0 (u)  (y; 06, y; 69], 	 (7.47) 
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where e is a standard exponential variable. The heuristic argument 
for defining the huberizing constant qu  via the standard exponen-
tial distribution is that under the ideal model most of the peri-
odogram ordinates Ii are approximately exponentially distributed 
with mean f (Ai; 0). This is at least true in the sense that the 
exponential limiting distribution is obtained for each individual 
frequency that converges to a value in (0, 7r) (see theorem 3.7). 
The probability of huberizing /I is then approximately equal to u. 
In the example of the discrete Whittle estimator, we obtain the 
huberized 7,1) -function: 

= 1i) (y ; 0) [min( 	
x

, qu ) —  (1—  u)]. 	(7.48) 
f (y; 19) 

For u = 0 (no huberizing), this coincides with (7.39). Note that for 
a standard exponential random variable e, 

E[min( - , qu )] = 1 — u. 	 (7.49) 

Therefore, 1—u instead of 1 has to be subtracted in order to achieve 
consistency under the ideal model. The spectral influence function 
is proportional to 

71)(4 ,n,; 9°)[min( 	
-1-k 	

, q)  —  (1—  u)]. 	(7.50) 
f (Ak,n; 0) 

For small frequencies  )k,,,,  the weight function tb is proportional 
to — log Akri  and is thus monotonically increasing to infinity. This 
means that the standardized periodogram ordinates 1 k f —1  (4 ,, 0) 
have an increasing influence as Ak, n  approaches zero. This corre-
sponds to the intuition that estimation of H should be mainly 
based on the behavior of the periodogram near the origin. 

The main purpose of designing estimators with a bounded IFS 
is to keep the bias small under deviations from the model, while 
keeping a reasonable efficiency if the model is true. Heuristic ar-
guments and simulations in Graf (1983) show indeed that this can 
be achieved. In contrast to semiparametric methods (see Section 
4.6), the rate of convergence of the huberized estimator is the same 
as for the MLE. Generalizing Graf's result to general parametric 
models, the asymptotic distribution of Ô is given by 

-1(9  — 0 ° ) — > d n(u)( 	 (7.51) 

as n —> co, where ( is defined in Theorem 5.3 and 

1 — u 2  + 2u log u 
(1 — u ± u log u) 2  . 

(7.52) 



ROBUSTNESS IN THE SPECTRAL DOMAIN 	 139 

This means that the standard deviation of each of the components 
of '6i is increased by the factor 

V1 — u 2  ± 2u log u 
1 — u ± u log u . 

The relative efficiency of  O as compared to the MLE can be ex-
pressed by 

(1 — u + u log u) 2  
ef f (u) = n -1-  (u) = 	 . 

1 — u 2  ± 2u log u 
(7.53) 

This is a monotonically decreasing function of u. Huberizing with 
u = 0 corresponds to the approximate MLE. Therefore eff (0) = 1. 
Even for relatively large values of u, the efficiency loss is within 
reasonable bounds. 

A simulation study in Graf (1983) illustrates the behavior of 
the (approximate) MLE and its huberized version. He consid-
ered, for instance, 400 realizations of length 128 of the process 

Yt = Xt + Vt, where X t  and Vt  are independent processes, X t  is 
fractional Gaussian noise with H = 0.9, and Vt  is a second-order 
autoregressive process defined by Vt  = aiVt_i+a2Vt-2±Et with iid 
standard normal errors Et. The coefficients (ai,  a2) considered are 
(-1.83, —0.98) and (-1.70, —0.85), respectively. In both cases, the 
spectral density has a local maximum near the frequency -T-3-7r. In 
the first case, one has a sharp peak whereas in the second case the 
peak is rather broad. A broad peak is expected to cause more prob-
lems when one is estimating H, as more frequencies are affected. 
The results confirm the usefulness of the method. For instance, for 
model 1 and u = 0, 0.02 and 0.2, respectively, the average estimate 
of H turned out to be 0.734, 0.808, and 0.832 respectively, with 
sample standard deviations 0.091, 0.073, and 0.081. For model 2, 
the averages of the estimates were 0.725, 0.748, and 0.772, repec-
tively, with sample standard deviations 0.074, 0.073, and 0.083. 
In particular, these results illustrate how the bias decreases with 
increasing u. 

Even better results can be obtained by suitably defined 
frequency-dependent huberizing with a monotonically decreasing 
function u(A) and by also huberizing from below by a function 
v (A). Graf (1983) chooses, for instance, 

1 	3  
u(A) = min(-- + -g 71- A

_ i  7 
, --.) (7.54) 
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and 

    

 

v (A) = 0.6 max(—
A 

— 0.36, 0). 
7r 

(7.55) 

Assuming fractional Gaussian noise as the central model, he 
called this estimator the HUBINC estimator (which stands for 
HUBerizing INCreases with frequency) and obtained a similiar cen-
tral limit theorem as (7.51), as well as finite sample corrections 
for the variance of  H. The asymptotic variances under fractional 
Gaussian noise with H = 0.5, 0.6, 0.7, 0.8, and 0.9 are 0.519, 0.553, 
0.577, 0.594, and 0.607, respectively. Other refinements considered 
in Graf (1983) and Graf et al. (1984) include the replacement of 
f (Ai,k, e) by the finite sample expectation of Ik and the possibility 
of tapering. 

The refined robust analysis with the HUBINC estimator leads to 
an interesting result for the NBS data. The estimate of H turns out 
to be 0.602 with an approximate standard deviation of 0.044 (Graf 
1983). The one-sided P-value for testing H = versus H > is 
about 0.01. Thus, there appears to be evidence for long memory. 
The approach of analyzing the dependence structure by robust es-
timation of H (robust in the frequency domain) is particularly suit-
able for this data set, since the short-memory features are difficult 
to interpret in a meaningful way. The reason is that the measure-
ments were recorded at irregularly spaced time points. By treating 
the irregular spacing as a regular time grid, the long-term proper-
ties of the data are not destroyed. However, it is very likely that 
there is a considerable distortion of the short memory properties. 
The periodogram at higher frequencies is therefore less reliable. 

As a cautionary remark, it should be noted that robustification 
via the spectral influence function is designed to provide robustness 
against arbitrary departures at a relatively small number of fre-
quencies. The bulk of the periodogram ordinates are still expected 
to follow the central model. It can therefore not be expected that 
these methods work well if the model is grossly misspecified at the 
majority of the frequencies. For instance, in the case of the VBR 
data, the spectral density clearly has a nonlinear concave shape 
for most frequencies. If we use fractional Gaussian noise, whose 
spectral density is almost linear in log-log coordinates, none of the 
above methods can provide a good estimate of  H.  
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7.4 Nonstationarity 

One of the typical features of stationary long-memory processes is 
that there appear to be local trends and cycles, which are, how-
ever, spurious and disappear after some time. This property can 
make it rather difficult to distinguish a stationary process with 
long memory from a nonstationary process. For short time series, 
it might be almost impossible to decide this question. Consider, for 
example, the time series plots in Figures 7.4a through d. In 7.4a 
and 7.4c there is a clear trend downwards, whereas in 7.4b one 
observes a positive trend. Also, in Figure 7.4a the trend seems to 
be superimposed by a cyclic component. All three time series are 
part of the same simulated realization of fractional Gaussian noise 
(Figure 7.4d). The observed trends and cycles are therefore not 
real, but occurred "by chance." Naturally, our position here is far 
more comfortable than in practice - we know how the series were 
generated. In applications where only one of the series displayed 
in Figures 7.10a to 7.10c is observed, one would be led to the con-
clusion that the observed process is not stationary. Without any 
additional information, there would be no reason to believe in sta-
tionarity. Conclusions based on such short series should, however, 
be interpreted with caution. 

Sometimes, additional, possibly non-numerical, information is 
available that favors either nonstationarity or stationarity. For in-
stance, if we perform repeated measurements of the same quan-
tity, a monotonic unbounded trend is unlikely to occur, unless the 
measuring equipment gets completely out of control. A typical ex-
ample is the NBS data set. There, the measurements are spread 
over a time interval of several years. The measuring equipment 
was readjusted in much shorter time intervals, so that even local 
deterministic trends are unlikely. On the other hand, consider the 
temperature data given in Chapter 1. This is only one of several 
temperature series that indicate an increase of the temperature 
over about the last 100 years. Moreover, theoretical climatological 
models seem to support the conjecture of global warming. For the 
single temperature series, one might be rather uncertain of whether 
the apparent trend might have been generated accidentally by a 
stationary process (with long memory). In view of the additional 
scientific evidence and other temperature records, an actual trend 
seems to be more likely (see also the discussion in Section 9.2). 

Simple persisting trends can be distinguished from stationarity, 
if we only wait long enough. For instance, a linear trend can eas- 
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Figure 7.4. Simulated series of a fractional ARIMA(0,0.4,0) process 
(Figure 7.4a) and three seemingly nonstationary parts (Figures 7.4a,b,c) 

ily be distinguished from a stationary process, if the sample size 
is large. The situation becomes more difficult if we allow for local 
trends. If we try to distinguish stationarity from arbitrary trends 
that persist for arbitrarily short periods, the task becomes impos-
sible. Some restrictions need to be imposed on the nature of these 
trends. More generally speaking, there is a vast range of possible 
nonstationarities. In principle, it is therefore not possible to decide 
for sure whether the underlying process is indeed stationary. Ulti-
mately, this is rather a philosophical question that might not be 
of primary practical interest. From the practical point of view, the 
assumption of stationarity provides a simple framework for parsi-
monious modelling. Unless there is evidence against it, it tends to 
be more useful than complicated nonstationary models. 
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More subtle types of global trends that might be confused with 
long memory are trends that decay to zero asymptotically. That 
is, we consider 

Xt =--- I-L(t) ± Et, 
	 (7.56) 

where p(t) converges slowly to zero with increasing t and Xt  is a 
stationary process with spectral density f and H = 1. A simple 
example is 

X t  =  at  ± Et 	 (7.57) 

with 0 < 0 < 	We saw in Section 4.2 that in this case the RIS- 
estimate of H converges to a value larger than )2-. Thus, one may 
be led to the erroneous conclusion that Xt  is a stationary long-
memory process. In contrast, exact or approximate MLE leads to 
the asymptotic value 1. The reason is that the distribution of the 
periodogram is not influenced by the decaying trend, except in 
a diminishingly small neighborhood of the origin. More exactly, 
Kiinsch (1986a) shows the following result: 

Theorem 7.2 Let X t  be a Gaussian process defined by (7.56) with 
a bounded monotonic trend such that limt, A(t) = O. Then, for 
any  < -yi < 'T2 < 1, El > 0, E2 > 0 and Fourier frequencies Aj,n 
with 

Ein -yi < j  < E2n-y2, 	 (7.58) 

the periodogram ordinates I(Ai, n ) are asymptotically iid and up to 
a multiplicative constant x3-distributed. 

Thus, apart from a few of the lowest frequencies, near the origin 
the periodogram should resemble the periodogram of white noise. 
On the other hand, for a stationary process with spectrum (2.2), 
Kiinsch showed that for small frequencies bounded from below by 
the left-hand side of (7.58), the periodogram behaves like a con-
stant times a A-variable multiplied by À' 2'. Thus, in contrast 
to the model (7.56), the values of the periodogram tend to increase 
with decreasing frequency. More exactly, the result can be summa-
rized as follows: 

Theorem 7.3 Let X t  be a stationary Gaussian process with spec-
tral density (2.2). Also let jn (1) < j 1, (2) < ... < j(k) be k integer 
sequences such that, as n —> oo, 

in( 1 )  

—> oc 
	 (7.59)  

fr-i  

in(k)  _, O. 
 n 

and 

(7.60) 
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D efin e 
27rirt(i)  A in  (i) =- 

n 
and 

1(i)  = A  3n(Z) 	/ ( A in  (i) ). 

Then 1 - (1) , . . . , 1(k) are asymptotically independent and identically 

distributed like a constant times a A random variable. 

Note that A 1-211  may be replaced by the spectral density itself. A 
difficulty in applying these results is that no general guidelines for 
choosing the constants El, €2, 'Yi, 'Y2 are given. In some cases, how-
ever, the results can be applied qualitatively. Consider, for exam-
ple, the Nile River data, The log-log plot of the periodogram shows 
a clear increase of the periodogram as the frequency approaches 
zero, over a large range of frequencies. This excludes model (7.56). 

7.5 Long-range phenomena and other processes 

To conclude this chapter, we discuss the general question of 
whether apparent "long-memory features" in a finite data set can 
be generated by models other than stationary processes with long 
memory. This complements the discussion in Section 1.5.6. 

If we fix the sample size n, then the obvious answer to the above 
question is yes. For instance, a stationary Gaussian process with 
correlations p(k) = -12-(Ik ± 11 2H-2  - 2iki2H-2 1 i 

--r I 
k = —(n— 1) , — (n — 2), ..., n-1 and zero correlations for higher lags 
cannot be distinguished from fractional Gaussian noise. A less arti-
ficial example is an ARMA model with high correlation. Consider, 
for instance, an ARMA(1,0,1) process with 0 = 0.9 and 1/) = 0.8. 
Figures 7.5a to d display the spectral density and the periodogram 
for the first 200, 1000, and 5000 observations of a simulated series. 
For small samples it is difficult to distinguish the periodogram from 
the periodogram of a long-memory process. Only when we observe 
a long series does it become apparent that the spectral density (in 
log-log coordinates) flattens near the origin. 

As noted in the previous section, "long-memory" type behavior 
can also be caused by complicated global or local nonstationarities. 
In particular, a phenomenon that often occurs in physical sciences 
is that a system is initially in a nonstationary transient status and 
moves gradually into a stationary equilibrium. A simple example 
is process (7.57). It yields an alternative explanation of the Hurst 
effect. Fortunately, for this specific example the periodogram can 

k — 
1 12 H-2) ,  for  



pe
rio

do
g

ra
m

  (
lo

g
-s

ca
le

)  

sp
ec

tr
um

  (
lo

g
-s

ca
le

)  

— 

0 
ci 

c3 

- • • • • 

LONG-RANGE PHENOMENA AND OTHER PROCESSES 	 145 

pe
ri

od
og

  ra
m

  (
lo

g
-s

ca
le

)  

   

pe
rio

do
g

ra
m

  (
lo

g
-s

ca
le

)  

 

o o 
o 
,- 

ô o 
d 

 

.. 

 

 

• • 

0.05 	0.50 	 0.005 0.050 0.500 

frequency (log-scale) 
	

frequency (log-scale) 

Figure 7.5a 
	

Figure 7.5b 

T 

0. 00 1 
	

0.050 	1.000 
	

0 001 
	

0.050 	1.000 

	

frequency (log-scale) 
	

frequency (log-scale) 

Figure 7.5c 
	

Figure 7.5d 

Figure 7.5. Periodogram (in log-log-coordinates) of a simulated 
ARIMA (1,0,1) series with 0 = 0.9 and '0 = 0.8. The lengths of the series 
are n = 200 (Figure 7.5a), n = 1000 (Figure 7.5b) and n = 5000 (Figure 
7.5c). Figure 7.5d displays the spectral density (in log-log-coordinates). 

be used to distinguish the process from a stationary process with 
long memory. 

There are many other ways how certain "long-memory features" 
of a finite data set can be generated. As always in statistics, it is not 
possible to decide with certainty which model is correct. In fact, 
it is rather unlikely that any of our models is ever correct exactly. 
Given a finite data set, the aim can therefore hardly be to find 
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Figure 7.6. Simulated fractional ARIMA(0,0.4,0)-series. 

the exactly correct model. Instead, one aims to find a model that 
serves the intended purpose best. Criteria for choosing such mod-
els are, for example, satisfactory fit to the data, reliable prediction 
of future observations, sufficiently accurate parameter estimates, 
simplicity, and interpretability. In particular, an important crite-
rion is the principle of parsimony. If the number of parameters is 
relatively large compared to the number of observations, then pa-
rameter estimates and statistical inference based on the model are 
very inaccurate. Moreover, complicated models with many param-
eters are difficult to interpret. Consider, for instance, ARMA(p, q) 

models with unknown p and q. The dimensions p and q may be es-
timated by a suitable selection criterion that penalizes high values 
of p or q. The problem of parsimony shows in the following way. If 
the data generating process is a long-memory process, then with 
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increasing sample size, p and q tend to infinity. The reason is that 
we are trying to approximate the pole of the spectral density at 
zero by bounded continuous functions. Consider, for instance, the 
simulated series of a fractional ARIMA(0,d,0) process with d = 0.4 
displayed in Figure 7.6. Selecting suitable AR(p) models by esti-
mating p via Akaike's criterion, we obtain the estimated orders 
25 =2, 11, 18, 21, and 25 for the first 100, 500, 2000, 4000, and 
10000 observations, respectively. 

In summary, it is not possible to decide with certainty whether 
the spectral density has a pole at zero or not, if the only informa-
tion is that there is a negative slope in the log-log plot of the (finite 
sample) periodogram. From the applied point of view, this might 
be a rather philosophical question that is of secondary interest. At 
most one can hope that in situations where an increasing number 
of observations is available, one of the possibilities becomes more 
plausible than the other. One of the main practical arguments in 
favor of long-memory processes is the principle of parsimony. For 
finite sample sizes, the one additional parameter H allows one to 
model a phenomenon that would require many parameters when 
modeled by short-memory processes. Also, as the example of frac-
tional ARIMA models shows, traditional short-memory processes 
can be embedded in a natural way as special cases in a larger class 
of models that allows for long memory. 



CHAPTER 8 

Estimation of location and scale, 
forecasting 

8.1 Introduction 

In this chapter we consider the estimation of location and scale. 
We assume that the marginal distribution of the observed process 
Xt  belongs to a location scale family of distributions defined by 

F2 (x) = Fo ( x 	). 	 (8.1) 

There are two main questions one may first ask: 

1. What is the effect of long memory on point and interval es-
timates of p, and cr 2  that are used for iid data? In particular, 
which corrections of tests and confidence intervals are necessary 
in the presence of slowly decaying correlations ? 

2. What are the optimal estimates? 

In the following sections, questions 1 and 2 are discussed in detail. 
In particular, answers to (1) and (2) will tell us how much one loses 
by using simple standard estimates instead of more complicated 
optimal estimates that take the correlation structure into account. 

8.2 Efficiency of the sample mean 

Consider a  = E (X t ). A simple estimate of 11, is given by a weighted 
sum of X1, •••, Xn, 

w 
	wixi = w t X , 	 (8.2) 

j=1 

with 

E Wi = W t i = 1. 	 (8.3) 
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Table 8.1. Finite sample efficiency of .kn  for fractional Gaussian noise. 
The efficiency is defined as the ratio of  var()  divided by the variance 
of the BLUE. 

10 50 100 200 

n 10 50 100 200 
H = 0.5 1 1 1 1 
H = 0.7 0.9898 0.9872 0.9869 0.9867 
H = 0.9 0.9879 0.9853 0.9850 0.9848 

The notation here is X = (X 1 , ..., 	w = (w 1 , 	w n ) t , and 
1 = (1, 1, ..., 1) t . For example, the sample mean is given by (8.2) 
with wi  = n -1 . Clearly, ft,, is an unbiased estimate of p. The 
variance of  j is equal to 

var(ft) = 

 

Avi -Y0 —1) = w t Enw. 	(8.4) 

 

j , 1 =1  

 

Minimizing (8.4) under the constraint (8.3) yields 

w  =__ Ev iji t ar-: 1 —1 1 ] ,  

and thus the best linear unbiased estimator (BLUE): 

i‘t  =__ w tx  _ 

Its variance is equal to 

var(fi) = [1 t E,T 1 1] -1 . 

If Xt  is a Gaussian process, then the BLUE is also the maximum 
likelihood estimator of p. 

Equations (8.6) and (8.7) are simple in the sense that they pro-
vide an explicit formula for /1, and the variance of  1û respectively. 
However, one needs to know all covariances -y (0),  -y(1),  -y (n — 1). 
Usually, the covariances are unknown and have to be replaced by 
estimated values. This makes (8.6) rather complicated and (8.7) 
no longer holds exactly. One may therefore ask whether there are 
simple alternative estimators of p, which are almost as efficient as 
the BLUE but can be calculated without knowing E n . The sim-
plest estimator is the sample mean. How much do we lose if we 
use the sample mean instead of the  BLUE?  The variance of X n  is 
given by Theorem 2.2. The variance of the BLUE was derived by 
Adenstedt (1974) (see also Samarov and Taqqu 1988, Beran and 
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H 

Figure 8.1. Asymptotic efficiency of the sample mean as a function of 
H. 

Kiinsch 1985). The relative asymptotic efficiency of  X,  compared 
to the BLUE is given by the following theorem (Adenstedt 1974). 

Theorem 8.1 The ratio of (8.7) divided by  var()  is asymptot-
ically equal to 

ef f (X,  BLUE)   = 	
-H) 	

(8.8) 

Particularly interesting is that (8.8) depends only on the param-
eter H. That is, only the behavior of the spectral density at the 
origin, and not its whole shape, determines the efficiency of the 
sample mean. Figure 8.1 displays ef f (Xn, ABLuE) as a function 
of H. For H > .1, the asymptotic efficiency of X n, is always above 
98%. Therefore, it is sufficient to use the sample mean instead of 

2HF(H -DF(3 — 21) 
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the much more complicated BLUE. Table 8.1 illustrates that the 
finite sample efficiency of Xn  is high too. 

Another interesting property of the sample mean was noted by 
Percival (1985). He considered the question of what effect leaving 
out every kth observation has on estimation of p, by X n . If H > 
then the asymptotic variance of 

ik 

with m = [nlk], turns out to be independent of k. This is in sharp 
contrast to short-memory processes, where the variance of X(k) 
is proportional to m -1  and thus increases with k. The variance of 
X(k) differs aymptotically for different values of k only if a more 
refined comparison is made, namely via the so-called deficiency (see 
Hodges and Lehmann 1970). The asymptotic deficiency of X n (k) 
with k > 1 compared to X n (1) is zero. 

8.3 Robust estimation of the location parameter 

The sample mean is the optimal estimator for iid normal observa-
tions. The previous results show that, even if there is long memory 
in the data, the efficiency of X n, as compared to the BLUE is still 
very high. For normal observations, the BLUE is also the max-
imum likelihood estimator and is therefore optimal in the sense 
that, it has the smallest possible variance among all unbiased es-
timators. This implies that for Gaussian long-memory processes, 
the sample mean is almost optimal. In practice however, deviations 
from the normal distribution are expected. The sample mean is 
very sensitive to outliers and other deviations from normality. For 
instance, one single outlier can pull the sample mean to any arbi-
trary value. One therefore often considers other location estimators 
that are less sensitive to deviations from the ideal distribution. A 
large number of useful estimators can be defined as or approxi-
mated by M-estimators (see e.g. Huber 1981, Hampel et al. 1986). 
A definition in the context of location estimation can be given as 
follows. Assume that the standard deviation is known and equal to 
1. This assumption is not essential but simplifies the presentation. 
An M—estimator /2 of p, is defined by 

(8.9) 
i= 1 
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where 0 is a function such that, for the ideal model distribution 
Fo , 

f 0(x — p)dFii (x)  =0. 	 (8.10) 

For instance, the sample mean is defined by (8.9) with IL(x) = x. 

The median is obtained by setting 0 equal to the sign of x. Par-
ticularly interesting are bounded 0-functions, as the resulting es-
timates are not sensitive to deviations from the ideal (marginal) 
distribution (see, e.g., Hampel et al. 1986). In general, the price 
one has to pay for this security is an increased variance under the 
model distribution. For iid observations, N/7n(,Ct — p,) is asymptoti-
cally normally distributed with zero mean and variance 

E[02 (X — p,)] 
v (0) =  	 (8.11) 

E 2 [0/(X — p,)] 

(see, e.g., Huber, 1964, 1967, 1981, Serfling, 1980, Clarke, 1983, 
Hampel, 1971). Unless 0 is proportional to the score function, v(0) 
is always larger than the variance of the maximum likelihood es-
timator. For instance, for the normal distribution, the Huber esti-
mator has an asymptotic variance of 1.2625, 1.1073, 1.0371, and 1, 
when we set c equal to 0.5, 1.0, 1.5, and infinity, respectively. The 
value c =  oc corresponds to X. 

For dependent observations with a bounded spectral density, not 
only the function 0 but also the exact nature of the dependence 
determines how much efficiency is lost by robust estimation. Gast-
wirth and Rubin (1975b) consider, for example, a Gaussian AR(1) 
process 

X t  = 0Xt_ 1  + Et 	 (8.12) 

with —1 < 0 < 1. They show that the efficiency of the median 
tends to zero as 0 tends to —1. In contrast, they also show that, 
the asymptotic efficiency of the median can be arbitrarily close to 
one, though below one, for positively correlated processes. Related 
results are also given in Zamar (1990). 

In view of the latter result, one would expect that for Gaussian 
processes with long memory, robust M-estimators might not lose 
too much efficiency. It turns out that an even stronger result holds. 
Suppose that the observed process is defined by 

Xt  = p, + G(Z t ), 	 (8.13) 

where Z t  is a stationary Gaussian process with zero mean, variance 
1 and long-range dependence defined by (2.2). Furthermore, let Z 
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be standard normal random variable, G a real measurable function, 
Hk the kth Hermite polynomial, 

ak (0, G) = E[11)(G(Z))14(Z)] 	 (8.14) 

the kth Hermite coefficient of 71)(G), 

ak(G)= E[G(Z)Hk(Z)] 	 (8.15) 

the kth Hermite coefficient of G, and 

a0 (', G) = E[0' (G(Z))] 	 (8.16) 

the expected value of 7//(G(Z)). We assume that E[G(Z)] = 0, 
E[G(Z) 2 ] < oo, ai(G)00, a i (lp,G)00, and a0 (IP',G)00. Let 

ai(,  G)  
(8.17) 

a 0 (', G)'  
cl  

C2 (8.18) 
ai(G)' 

and 
C 

 0" = 	  

	

H (2 H — 1) 	
(8.19) 

Theorem 2.2 implies that the normalized sample mean 
n l _ Ha (X n  — p,) converges to a standard normal random vari- 
able. The limiting distribution for general M-estimators follows 
from Beran (1991): 

Theorem 8.2 Under mild regularity conditions on 0, the follow-
ing holds. 

(i) There exists a sequence an  for which (8.9) holds and, as n —> 

oc, 

 

(8.20) 

(8.21) 

almost surely. 

(ii) As n —> cc, 

— —>d Z 

where Z is a standard normal random variable. Moreover, 

n 1-11  o-  1,-1 [(f.t n  — 	— c2(X n  — p,)] —4 0 	(8.22) 

in probability. 

Theorem 8.2 implies that the relative asymptotic efficiency of r.t 
compared to the sample mean is equal to 

var(X) 	-2 
eff(i/' Xn) noo  var() 

 = c2  • (8.23) 
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In general, c 2-2  is not equal to 1 and both constants c l  and c2 

depend on the function 0. However, for the special case of Gaussian 
observations, i.e., G(x) 	x, the following corollary holds: 

Corollary 8.1 If G(x) x, then all M-estimators are asymptoti-

cally equivalent to the arithmetic mean X in the sense that 

C2 =  1 
	

(8.24) 

and 

	

n – H 	 (8.25) 

in probability. 

Thus, for Gaussian long-memory processes, no efficiency is lost 
by robustification. The reason is that asymptotically we can use 
the approximation 

Etn-1 1P(X t A) 	
(8.26) 

From the results in Chapter 3 we know that for H > the right-
hand side of (8.26) is asymptotically dominated by the first term 
in the Hermite polynomial expansion. For G(x) = x, this linear 
term is the sample mean. In contrast, for independent or weakly 
dependent processes, all terms in the expansion contribute. The 
asymptotic variance v(0) is equal to 

v (0 ) = at7, 2  / 

	

(0, G) 	 (8.27) 
a2k (0,G) 	E[02 (Z)]  

(02 	E2[0/(z)] .  

The asymptotic efficiency is then equal to 

E 2 [0'(Z)]  
= 	 (8.28) 

E[02 (Z)] 

This expression is smaller than 1, unless 0(x) is proportional to 
z.  For instance, for the Huber estimator defined above, v -1 (0) is 
monotonically decreasing in c, starting at the value of 1 for c =  oc,  
and approaching 2/7r for c —> O. 

Beran (1991) also considered the special case of short-memory 
processes where the sum of all correlations is zero. Although un-
der long-range dependence we do not lose any efficiency by using a 
robust estimator, exactly the opposite happens here. The asymp-
totic efficiency of all M-estimators with a nonlinear 0-function is 
zero. The reason is that the variance of the sample mean converges 
to zero at a faster rate than n -1 . This follows from the fact that 

k=1 
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Table 8.2. Variance of the median and the Huber-estimator with c = 1.5. 
The results are based on 20000 simulations of fractional Gaussian noise 
with mean zero and variance one. 

n=16 	 n=64 	 n=256 
Median Huber Median Huber Median Huber 

H  = 0.5  1.452 1.035 1.540 1.038 1.556 1.043 
H = 0.7 1.141 1.011 1.088 0.978 1.046 1.006 
H  = 0.9  1.040 1.006 1.013 0.996 1.010 0.998 

var()  is equal to the sum of covariances -y(i — j) (i, j = 1, ..., n) 
and the assumption that the sum of all covariances is zero. This 
link is destroyed when a nonlinear 0-function is used. The variance 
of the resulting estimator converges to zero at the rate n -1 . 

To illustrate the asymptotic results, Table 8.2 * gives simulated 
normalized variances for the median and the Huber estimator with 
c = 1.5. The simulated process is fractional Gaussian noise with 
p, = 0 and = 1. For H = 0.5, the asymptotic variance is equal 
to 1 for X, 1.037 for the Huber estimator, and 7r/2 1.571 for the 
median. For H > -1, the asymptotic variance of all three estimators 
is equal to 1. Note that for the sample mean, the normalized finite 
sample variance is also exactly equal to 1. The results indicate 
that, if the long-range dependence is very strong, the normalized 
variance stabilizes faster around the asymptotic value of 1, than 
for less strong dependence. The theoretical explanation is that the 
linear term in the expansion of fi, n  — p, is of the order n 11-1 . For 
high values of  H,  this term dominates the nonlinear terms faster. 
On the other hand, for H close to the nonlinear term becomes 
more important for finite samples. For 1/2 < H < 3/4, it can be 
shown by similar arguments as above that the nonlinear term is of 
the order 71, -4. For H = this is also the order of the linear term. 

* Adapted from Table 1 of Jan Beran (1991) "M-estimators of location for 
Gaussian and related processes with slowly decaying serial correlations." 
JASA, Vol. 86, No. 415, 704-708, with the permission of the author and the 
publisher. 
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8.4 Estimation of the scale parameter 

The most common estimator of variance 0-2  of a random variable 
X is the sample variance 

s 2 = 1 
n - 1 t=i 

In Section 1.1, we obtained the general expression 

E(8 2 ) = a 2 [1 — (n — 1) -1 6n (p)]. 

n 

(xt  — ) 2 . (8.29) 

(8.30) 

Table 1.4 illustrates that for large values of H, the bias term A n  = 
—(n — 1) -1 5n (p) converges to zero rather slowly, as n increases. If 
we are able to estimate the correlation structure, then an (almost) 
unbiased estimator of a 2  can be obtained by multiplying s 2  with 
the corresponding estimated correction factor 1 — 3.n . That is, we 
may define the new scale estimator 

_ (1 ____ 

For instance, for fractional Gaussian noise, this leads to 

8  n2ft-1  = 	
1 

-2 	n — 	s2 , 	 (8.32) 
n - 

where ii is a consistent estimate of H. This estimator is not exactly 
unbiased hpwever, because ii is estimated. 

One advantage of s 2  for iid normal observations is that the dis-
tributional properties of the sample variance are very simple. Mul-
tiplied by n — 1, s 2  is exactly distributed like a-2  times a x 2 — 
variable with n — 1 degrees of freedom. This simplicity does not 
carry over to the case of dependent observations. For long-memory 
processes with H > 3/4, even the rate at which s 2  converges to a 2  
is different. This can be seen by writing 

n 
(n  _ 1)(s 2 _ a 2 )  _ —

a2 y [ (X 	) 2  
o- 2 

t=1 

The first term is a sum of the second Hermite polynomial applied 
to (X1 — p,)/0- , ...,  (X 71.  — p,) I o-  respectively. The second term is of 
the order Op (n2H-1 ). For .-- < H < -1, the first term dominates and 
is asymptotically equal to N/T1, times a normal random variable (see 
Theorem 3.1). For i < H < 1, n 1-2H  times the first term converges 
to a non-normal random variable. The second term multiplied by a 
constant times n 1-2/I  converges to a x 2 —variable with one degree 
of freedom. Thus, although the bias of the sample variance can be 

(8.31) 

1]  -n( - ) 2 . 
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taken into account by (8.31), even the corrected estimator remains 
rather inaccurate and its distributional properties are complicated. 
This is in contrast to estimators obtained by maximum likelihood 
and related methods discussed in the previous chapters. They are 

consistent for all H E , 1) and asymptotically normal. 

8.5 Prediction of a future sample mean 

In some situations, it is of interest to predict the average value of 
the next m observations. The statistical problem can be formulated 
as follows. Given the past values X i_n , ...,  X 0 ,  predict the future 
mean 

X-f-m x t. 	 (8.33) 
t.1 

For the special case where the number of past observations is in-
finite, the asymptotic prediction error of the best unbiased linear 
predictor X_Fin  is given by (Beran 1989a): 

Theorem 8.3 Under assumption (2.2), 

c f 
lim ER 	 2 X +m  — +m) 1X 8, 	0] = 

2HF2 (H ± 
(8.34) 

n--4co 

The more general situation where the prediction is based on a 
finite number of observations is more diffcult to deal with. There 
are different kinds of limiting behaviors one can consider. For in-
stance, m and n can be assumed to tend to infinity such that the 
ratio mn -1  tends to a positive constant in the interval (0, 1). Other 
possibilities include mn -1  —> 0 and mn -1  —> 1. The resulting ex-
pressions may become rather messy. Also, a practical problem with 
the BLUE is that it depends on the unknown correlation structure. 
Instead of deriving theoretical results for the BLUE, we may there-
fore consider the simpler, though not necessarily exactly optimal 
predictor 

_pm  = E [X ±mIX fl]• 
	 (8.35) 

Thus, instead of conditioning on the individual observations X i , 
..., X n  we are conditioning on the observed sample mean X n . De-
note by al and .7 2  the variances of X n  and .k- ±rn , respectively, and 
by pn , m  the correlation between these two random variables. The 

mean square prediction error E [(X +m  — +m) 2 IX n ] is minimized 
by the conditional expectation 

E [X +mIX n] = 	Pn,m am  (Xn 	 (8.36) 
n 
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The mean square prediction error is then equal to the conditional 
variance 

	

ERX
-Fm -  E[X -F-miXn1) 2 1Xn1 = 	( 1  - 	• 

	(8.37) 

Note, however, that in (8.36) the expected value p, needs to be 
known. Replacing p, in (8.36) by X n  leads to the simple prediction 

	

= k- n• 	 (8.38) 

The prediction error is then equal to 

_k n) 2 1.k n i = am2 (1 pn2 ,m ) ±  (1 pm,n um)v n  _ 12) 2 .  
an 

(8.39) 
Because p, is unknown, the second term cannot be calculated explic-
itly. We therefore replace (X n  - p,) 2  by the unconditional expected 
value 

Egn 14 2] =  a,. (8.40) 

	

The uncertainty of the prediction 	= .kn  is therefore assessed 
by the unconditional variance 

ERX +m  xn )21 0.21 am2 	2pn,mo. mo. n. 	 (8.41) 

If the observed X n  is close to p, then this is larger than the condi-
tional prediction error (8.39). On the other hand, if Xn  is far from 
p, then (8.41) is smaller than (8.39). 

Expression (8.41) can be simplified by considering its asymptotic 
limit. Three situations can be distinguished: 

1. n —>  oc and mn -1  —> 0 : In practice, this is applicable if n 
is very large compared to m. Because, o- n  is converging to zero 
monotonically, we obtain 

	

E [(X +7n  -  k) 2 ]  P.-aa an22  . 	 (8.42) 

If m also tends to infinity, then 

ERX +m  - 	 2 2H-2 n ) 21 c iim 
	

(8.43) 

Using this kind of asymptotics means that .kn  can be considered 
to be almost equal to p. Prediction of the future sample mean 
X+, by X n  essentially amounts to prediction by p. 

2. m —> oc and mn -1  -4 cc : This is the opposite case with n 
small compared to m. Asymptotically, X +, can be considered 
to be equal to p, so that prediciton of the future mean reduces 
to estimation of p. By analogous arguments as above, 

2 ERX- 	- 	i2n2H-2 	 (8.44) 
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3. n —> oc,  m —>  oc  and mn -1  —> q E (0, 1) : In this case, all terms 
in (8.41) are of the same order of magnitude. The asymptotic 
limit of (8.41) is given by the following theorem (Beran 1989a). 

Theorem 8.4 Let 

q= lim -1.1- E (0, 1). 
n,m-- 0,0 n 

Then 
lim n2-2H (0.21  ± um2 _____ 2 pm,nanurn ) 

n, m-+00  

1 = ap,2 {1 ± q2H-2 _ - [( 0, ± 1)2H ____ ( q 2H ± 1 )] 1 .  
q 

(8.45) 

Consider, for instance, fractional Gaussian noise with mean p, 
and variance a-2 . The variance of X n  and X+7n , respectively, is 

-H- exactly equal to a 2 n2112  and a277122,  respectively. Thus, in case 
1: 

ERX+m _ .k 02] ,,,...e,  a  2m  2H-2 
5 

and in case 2, 

E  [(.-- ±m 	. k)2]  ‘_, a  2n2H-2 . 

For case 3, the asymptotic equation (8.45) even holds exactly for 
all m = qn where q or q - 1  is an integer. This is due to the self-
similarity of fractional Brownian motion. 

8.6 Confidence intervals for p, and a future mean 

8.6.1 Tests and confidence intervals for p, with known 

long-memory and scale parameters 

In Section 8.2 we saw that slowly decaying correlations do not have 
any major effect on the efficiency of the sample mean. The slow 
rate of convergence of .k- ri does, however, have a strong impact on 
tests and confidence intervals for p. The z-statistic 

- 

X n  — p, 
z= 	_1 

an 2 

diverges to infinity, in the sense that 

lim P (I z' > c) = 1 
n--400 

(8.46) 

(8.47) 

for any constant c. The same is true for Student's t-statistic 
- 

X n  — p, 
t= 	1 , (8.48) 

sn —  2  
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with s 2  denoting the sample variance. The asymptotic coverage 
probability of confidence intervals of the form 

8 
X-  

2/ 
 

(8.49) 

is therefore equal to zero, instead of (1 - a). Table 1.3 in Sec-
tion 1.1 illustrates that this effect of long memory is seen already 
for moderately large sample sizes. For tests of the null hypothesis 
Ho  : p, = po , this implies that the null hypothesis is rejected with 
asymptotic probability 1, even if Ho  is true. 

In view of Theorem 2.2, the statistic 
- 

z(,,c f,H) = Xn  - 11' n 1-H  p  
0- Pt 

, 
(8.50) 

with u p  defined by (8.19), should be used instead of (8.46). Asymp-
totically, z(p, Cf,   H) is standard normal. Confidence intervals for p, 
with asymptotic coverage probability 1 - a are given by 

X ± a n11-1 . 	 (8.51) A 

For fractional Gaussian noise, z(p, Cf,  H)  reduces to 

Xn - ii 
 n

1-H X rt — A  1  - H = 	1 n 2 	
7 

a 	 a- 71 ---  

where a2  = var(Xt). 

8.6.2 Tests and confidence intervals for a future mean, with 
known long-memory and scale parameters 

Comments analogous to those above, apply to prediction inter-
vals of a future sample mean X +„ based on the observed sample 
mean X n . If the observations are independent, then the variance 
of X+,„ - X y, is equal to the sum of the individual variances:  

- X n ) = var(X +,) ± var(k) = a 2 ( 1  ± -
1
). (8.52) 

m n 

A prediction interval for X +, is given by 

- 

X n  ± zao- 
2 

1 	1 
-+ —. 	 (8.53) 
n m 

This also defines the acceptance region for testing for equality of 
p i  = E(X) and p2 = E(X+,,) against the alternative pi Aa2. 
Under long-range dependence, the asymptotic coverage probability 
of (8.53) is zero. The asymptotic level of significance is 1. If m and n 



CONFIDENCE INTERVALS FOR tt AND A FUTURE MEAN 	161 

are of comparable orders of magnitude, then Theorem 8.4 suggests 
using the statistic 

where 

zn,m (cf , H ) = 
Xn  — X+ rn  

(Cf H;  O

nl—H (8.54) 

1 a pi 	(c f 	; 	att2{1 ±q21/-2 	[( q  1)2H ___ ( q 2H + 1)]} ,  (8 . 55) 

and q = mn -1 . Asymptotically, ,z,,,,(cf, H) is standard normal. 
An approximate (1 — a)-prediction interval is therefore given by 

rt Z 2 
 X Ai 4t2(c f , H ; —1 (8.56) 

8.6.3 Tests and confidence intervals for with unknown 
long-memory and scale parameters 

In practice, H and cf usually have to be estimated. Therefore, 
instead of z(ti, c f , H) one needs to consider z(pt, f , 	where 61 

and  ft are suitable estimates of cf and H (Beran 1986, 1989a). 

Suppose that ft and 'ef converge to the correct values H and cf, 

respectively. Then, for very large sample sizes, z(p,, 6f, is ap-
proximately standard normal and one can use the results in Sec-
tion 8.6.1. For moderate and small sample sizes, the additional 
variability introduced by estimating H and cf needs to be taken 
into account. In particular, because H occurs in the exponent of 
n, even relatively small changes of H can make a big difference. A 
simple approximation to the distribution of z can be obtained by 
Taylor expansion. At first we introduce the notation v = (cf, H) 

and define 
c(v; n) = cr 2 (c1 H)n 211-2 

	
(8.57) 

Then 

Cf, H) = Z(p,, = Xn  

and 

a 	 a 

	

zoi,, 	— z 	0(1)2  — u 2 ). (8.58) 
(91) 1 	 a v2 

The derivative of n 1-11  is equal to — log n n 1-11  and is thus of 
larger order than n 1-11 . The two leading terms in (8.58) are there-
fore 

	

z 	z(p,,c1,H)[1 — log n • (H — H)]. 	(8.59) 
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Table 8.3. Quantiles of 41)  , obtained from 10000 simulations of Z1 and 

Z2 (except for n =  oc). The quantiles q are such that P(IZ 1-) 1> q) = a. 

a = 0.1 a = 0.05 a = 0.01 

100 1.745 2.237 3.145 
200 1.707 2.154 2.967 
400 1.685 2.080 2.878 
1000 1.659 2.013 2.732 
5000 1.643 1.950 2.617 

oc  1.645 1.960 2.576 

Suppose that E is one of the  \/-consistent estimators discussed in 
the earlier chapters. In first approximation, X n, can be considered 
to be independent of  H,  as H is essentially a function of the second 
Hermite polynomials of X t  whereas X n, is n -1  times the sum of 
the first Hermite polynomial applied to Xt (Beran 1989a). The 
statistic z (1)  is therefore approximately distributed like 

	

= (1 + 
log n

aHZ2) 
	

(8.60) 

where Z 1 , Z2 are independent standard normal variables and a2H  is 

the asymptotic variance of  n. This approximation is particularly 
simple if cr 2H  does not depend on any unknown parameters. For 
instance, for a fractional ARIMA(0, d, 0) model, the asymptotic 
variance of the (approximate) MLE of H = d — is equal to 67r -2 . 

Thus, z(p,, Cf, 	is approximately distributed like 

41) z1(1  ± log n 	z  ) 

,V-77 7r 	2  • 

Table 8.3 gives some quantiles of 41)  for several values of n. As 
n increases, the quantiles approach those of the standard normal 
distribution. How well the desired coverage probabilities and lev-
els of significance respectively are approximated is illustrated in 
table 8.4. For 400 simulated series with H = 0.8 and n = 200, 
empirical probabilities of I z (p, f , 1:1)1 exceeding the standard nor-
mal quantiles and the quantiles based on (8.61), respectively, are 
given. The levels of significance are 0.1, 0.05, and 0.01. For com-
parison, also the corresponding probabilities for lz(p,, cf, H)I using 
standard normal quantiles are given. The quantiles for the case 
where cf and H are known are obviously very well approximated 

(8.61) 
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Table 8.4. Simulated rejection probabilities for testing Ho : ti = kto 
against Ho  : p0,u,o . The rejection regions are based on z(tt, CI', fi) with 
standard normal quantiles (method 1) and quantiles based on (8.61) 
(method 2), respectively. Also given are the corresponding rejection prob-
abilities for the case where cf and H are known and standard normal 
quantiles are used (method 3). The results are based on 400 series of a 
fractional ARIMA(0,0.3,0) process with n = 200. 

method a = 0.1 a  =0.05 a  =0.01 

1 0.168 0.120 0.053 
2 0.155 0.095 0.025 
3 0.103 0.053 0.008 

by those of the standard normal distribution. This is not the case 
if the parameters are estimated. Approximation (8.61) yields bet-
ter quantiles though they still appear to be too small. Depending 
on how exactly one needs to approximate the coverage or rejec-
tion probability, one may want to consider better approximations. 
For instance, instead of expanding c(i), n), Beran (1989a) suggested 
using the direct approximation 

1 	 1 
c(r) , n) ';-::" c(c f ± 	

- 
ac

f 
 Z3, H ± — crHZ2;n), 	(8.62) 

fn 	VT1 

where Z3, Z2 are standard normal, cr e2f  and 4 are the asymptotic 

variances of 6f and il, respectively, and the vector (0- cf  Z3, ci- HZ2) 

has the joint normal distribution given by the central limit theo-
rem for (6f, ii). This approximation is somewhat more tedious. A 
simplification that is more precise than (8.60) but less complicated 
than (8.62) can be obtained by taking into account the variability 

of H in the factor n 1-11  only, without simplifying the function nx 
any further. This means that we approximate the distribution of  

Cf,  H) by the distribution of 

	

42)  = Z1 • n z2 'H n- 	 (8.63) 

with independent standard normal random variables Z1, Z2. Note 
that (8.60) is obtained from (8.63) by considering the first two 
terms in the Taylor expansion of the function nx only. Table 8.5 
gives the resulting empirical rejection probabilities for the same 
simulated series as in Table 8.4. They are close to the desired 
probabilities. Quantiles for several sample sizes are given in Ta- 
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Table 8.5. Simulated rejection probabilities as defined in table 8.3 but 

based on approximation (8.63). 

a = 0.1 a = 0.05 a = 0.01 

0.138 
	

0.063 	0.005 

Table 8.6. Quantiles of the random variable Z,(,,2)  obtained from 10000 
simulations of Zi and Z2 (except for n = oo). The quantiles q are such 

that P(142) 1> q) = a. 

n a = 0.1 a = 0.05 a = 0.01 

100 1.963 2.592 4.250 
200 1.842 2.397 3.626 
400 1.766 2.243 3.255 
1000 1.707 2.126 2.925 
5000 1.661 1.993 2.676 

oc  1.645 1.960 2.576 

ble 8.6. Beran (1989a) also considered frequency-robust estimation 
of cf. and H (see Chapter 7). This is particularly appropriate in 
the given context, since  c f  and H are the only parameters of in-
terest. They need to be estimated in a reliable way, even if the 
assumed spectral shape is not quite correct at high frequencies. As 
another alternative, one might use fully consistent semiparametric 
estimation as discussed in Sections 4.6 and 7.3. Due to the large 
variability of such estimators, this is suitable for long series only. 

8.6.4 Tests and confidence intervals for a future mean, with 
unknown long-memory and scale parameters 

Prediction intervals for a future sample mean, with estimated cf 

and H, can be obtained in a manner analogous to that described 
above. The details are therefore left as an exercise. 

8.7 Forecasting 

In contrast to estimation of constants, forecasting becomes eas- 
ier the more future observations depend on the past (cf. remarks 
in Section 1.2). For long-memory processes, good short- and long- 
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term predictions can be obtained when a long record of past values 
is available. This is illustrated below (see also the example in sec-
tion 1.2). At first, we recall some standard results on prediction for 
linear processes. 

Suppose that X t  is a linear process (3.12) with long memory, 
mean zero, and variance o-2 . We assume that X t  can also be rep-
resented as an infinite autoregressive process (5.6). Thus, Xt  has 
the representations 

b(s) X_ 3  + Et 

and 

 

00 

 

 

Xt = 
8=o 

with zero mean identically distributed uncorrelated innovations Et. 

We will use the notation 

X (n)  = (Xi, ..., X n ) t 	 (8.64) 

for the vector of observed values and 

	

-y crl)  = [-y (n ± k — 1), -y (n ± k — 2), ..., -y(k)] t 	(8.65) 

for the vector of covariances between the components of X (n)  and 
a future observation X n+k. The simplest way to predict X n+k is 

to take a suitable linear combination of past values 

i n-1--k (0) = 
o t x  (n) 	 (8.66) 

where 

	

0 = (017 • • • ) 0n)t 	 (8.67) 

The mean squared prediction error is then equal to 

MSEk (0) = E[(Xn+k — )ni-k) 2 ] 

(7 2 ± 
	

20t 71(n) . 	(8.68) 

Here, En  denotes the covariance matrix of X (n)  . MSEk(f3) is min-
imized by 

0 opt = L--in ' Y k • 

	

\--1-1 (n) 	 (8.69) 

The best linear prediction is therefore given by 

[71(7-0 1 t1x  (n) .  
- k 71-1-k (0 opt) — 	 (8.70) 

For Gaussian processes, this is equal to the conditional expectation 
of X n+k given X (n)  and is therefore best among all possible (linear 
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Table 8.7. R( 130pt) for a fractional ARIMA(0, d, 0) process and the best 
linear prediction of X n+k based on the observations Xn, •••, X1. 

n =1 	 n=10 	 n=100 
k H = 0.6 H = 0.9 H = 0.6 H = 0.9 H = 0.6 H = 0.9 

1 0.0123 0.4444 0.0182 0.5092 0.0190 0.5162 
10 0.0003 0.1794 0.0013 0.2710 0.0021 0.3059 
20 0.0001 0.1360 0.0005 0.2164 0.0011 0.2609 
100 8 • 10 -6  0.0714  5.  10 -5  0.1202 0.0002 0.1702 

and nonlinear) predictions. The corresponding mean squared error 
is equal to 

	

MSEk(Oopt) = Gr 2  - ['Yen)M771-,1'Yen)• 	(8.71) 

Recursive algorithms are available for the calculation of f3 opt and 

MSEk(Oopt)• This is discussed in detail, for instance, in Brockwell 
and Davis (1987). A standardized measure of how well we predict 
Xn±k may be defined as 

GI- 2  - MSEk(f3) 	MSEk(0)  
R(fl) = 	 = 1 	 (8.72) 

0.2 	• 0- 2 

(see e.g. Granger and Joyeux 1980). For Oopt , this is the proportion 
of the variance of Xt  that is explained by the best prediction. For a 
perfect prediction, MSEk is zero and RZ is equal to 1. On the other 
hand, if X n±k does not depend on X (n)  , then the best prediction is 
the unconditional mean 0. Thus, no improvement can be achieved 
by using the observed values for prediction. Therefore, MSEk = (7 2  
and R i2, = 0. Also note that as k tends to infinity, ii i2c  tends to zero. 
This reflects the fact that forecasts of the remote future become 
more and more difficult. 

Numerical values of R 72,(00pt ) are given in Table 8.7 for the frac-
tional ARIMA(0, d, 0) process with d = H - -1 =-- 0.1 and 0.4 re-
spectively, k = 1,10,20,100, and n =  1, 10,  and 100. The results 
illustrate that the precision of forecasts can be improved consid-
erably by using all observed values. This is in particular true for 
long-term forecasts and when H is large. There the property of 
long memory can be used most effectively to improve the precision 
of forecasts. For instance, for H = 0.6, the value of  R  the 
best 20-steps-ahead forecast based on the last 100 observations is 
larger by a factor of about 10 and 2 than the corresponding values 
for the prediction based on the last and the last 10 observations, 
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respectively. Also note that for H = 0.9, R30  is about 237 times 
larger than for H = 0.6. 

In view of these results, it is also interesting to compare predic-
tions of X n,±k based on an infinite past X s  (s < n) with predictions 
that are based on a small fixed number of observations. For sim-
plicity, we focus on the comparison with the prediction based on 
the last observation X 7, only. Essentially the same comments carry 
over to comparisons with predictions based on an arbitrary fixed 
number of past observations. In extension of the above notation 
we write 

X (')  = (X s , s < n) t  = (Xn , Xn_i, Xn_2, ...) t 	(8.73) 

for the infinite dimensional vector of observations X s (s < n). 
Among all linear predictions of Xn+1 , 

00 

— E13, 00
) xn_f_l_ s = 	 x 	( 8. 74 ) 

8=1 
the mean squared error is minimized by 

icn-Fi = [o ,(9;7 ) ]tx ( °° ), 	 (8.75) 

with 
(00(; ) , s > 1) = (b(s), s > 1). 	 (8.76) 

Prediction for general k can be obtained recursively, by noting that 

E[X n+OX,,, s < n] = E{E[X n±kIX,, s < n +j]iX s , s < n}, j _> 0. 
(8.77) 

Due to the moving average representation (3.12), the mean squared 

prediction error of iCn±k(f5) is equal to 

k-1 

msEko
(00) 
opt ) = 0-  E a2  0). 

i=o 

A measure of k-step predictability of the process Xt may be defined 
as the proportion of (7 2  that is explained by the best prediction 

X n+k(0(°°)) opt 7 

\ 	a 2  — M SEk (00(;)) 	M SEk  (0((); ) )  
R 2k (0.(9; 1 ) = 2 	 1 	 2 	

• 	(8.79) 
0- Gr  

For 	illustration, 	consider 	,for 	in- 
stance, a fractional ARIMA(p, d, q) process. The above formulas 
are particularily simple for this process. The defining equation 

0(B)(1 — B) dX t  = 0(B)E t 	 (8.80) 

(8.78) 
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can be used directly to obtain the coefficients a(j) and b(j). On 
one hand, one may write 

	

— B) d  x t = Et 
	 (8.81) 

The coefficients b(j) are then obtained by matching powers in the 
formal expansion of lp --1-(B)0(B)(1-- B)d into a power series. In the 
same way, the coefficients a (j) are obtained from the representation 

Xt  = (1 — B) d 0 -1 (B)Ip(B)E t . (8.82) 

In the case of a fractional ARIMA(0, d, 0) process, we have the 
explicit formulas (see Proposition 2.2) 

F(j + d)  
a(j) = 

	

	 (8.83) 
FU +1)F(d) 

and 
F(j  — d)  

b(j) = 	 (8.84) 
FU ± 1)F(—d) •  

Table 8.8 illustrates how much predictions can be improved by 
using the entire past. For d = 0.1 and 0.4 respectively. R /2, is calcu-
lated for k =1, 10, 20, and 100. We compare the optimal prediction 
based on the infinite past with two predictions based on X n, only. 
The first is the best prediction of X n+k given X, 

E[Xt+kiXt] = P(k)Xt. 
	 (8.85) 

The second is 

pk (1)X t . 	 (8.86) 

This is the prediction we would obtain by using an AR(1) model, 
in spite of long memory. The average prediction errors are 

	

MSEk(p(k)) = u 2 (1— p 2 (k)) 	 (8.87) 

and 

MSEk(P k ( 1 )) = 0-2 ( 1  — 2P k ( 1 )P(k) + P2k(1)), 	(8.88) 

respectively. For comparison, Table 8.9 gives the values of RZ for 
the case where X t  is an AR(1) process and the optimal predic-
tion ijn±k = p k (1)X is used. The results show that prediction 
is much more precise in the presence of long memory, provided 
that we make proper use of the dependence structure. The size 
of prediction intervals can be reduced dramatically by using the 
whole past. Using simple forecasts based on one or only a few ob-
servations leads to large losses in precision. Tables 8.8 and 8.9 also 
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Table 8.8.  R 	three different predictions. The process is a fractional 

ARIMA(0,d, 0) process with d = H - 	= 0.1 and 0.4 respectively. 

The predictions are the best linear prediction based on the infinite past, 
p(k)X  and pk  (1)X t . 

k 	Rk(/3) 	 Rk(p(k)) 	 Rk(p k  (1)) 
H = 0.6 H = 0.9 H = 0.6 H = 0.9 H = 0.6 H = 0.9 

1 0.0191 0.4882 0.0123 0.4444 0.0123 0.4444 
10 0.0022 0.2706 0.0003 0.1794 10-" 0.0144 
20 0.0013 0.2270 0.0001 0.1360 0 0.0002 
100 0.0003 0.1475 7 • 10 -6  0.0714 0 0 

Table 8.9. R 12, (/30(;) ) for an AR(1)-process with p(1) = 1/9 and 2/3 re-

spectively. The lag-1 correlation is chosen such that it is the same as for 
a fractional ARIMA(0, d, 0) process with H = 0.6 and 0.9 respectively. 

k p(1) = 1/9 p(1) = 2/3 

1 0.0123 0.4444 
10 8 - 10 -20  0.0003 
20 7 • 10 -39  9 • 10-8  
100 0 6 • 10 -36  

illustrate that forecasts of the remote future are much more reli-
able in the presence of long-range dependence. Theoretically, this 
can be seen by considering the speed at which the optimal value 
of  R  to zero. For an AR(1) process with a = p(1), we 
have as k -› oo 

R 	const • a 2k . 	 (8.89) 

Thus, R 	to zero exponentially. On the other hand, for 
a fractional ARIMA(0, d, 0) process, 

00 

R 2k  ,-, const • 

 

J
.21-1-3 	L 2H-2 

r` 	 h, -' const •  (8.90) 
j=k 

Thus, R 2k  converges to zero hyperbolically. The ratio a2k/[k2H-2]  

converges to zero for any value of a E ( - 1, 1) and H >  1/2. 
The same applies to comparisons between more complicated short-
memory and long-memory models. 

We apply the results to the Nile River data. To examine the 
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year 

Figure 8.2. Nile River minima: k-steps-ahead forecasts based on the last 

n observations (n =1,10,100;k =1, ...,100). 

quality of the predictions and prediction intervals, we assume that 
the observations between the years 1007 and 1106 A.D. are known 
and compare predictions and 95%-prediction intervals for the next 
100 years (1107-1206) with the actually observed values. At first, 
a fractional ARIMA(0, d, 0) process is fitted to the observed series 
between 1007 and 1106. The estimates of H and af2  are 0.963 and 
4833, respectively. We compare the forecasts and forecast intervals 
for three methods: (1) Forecast based on the last observation (year 
1106) only, (2) forecast based on the last 10 observations (years 
1097 to 1106), and (3) forecast based on all the past 100 observa-
tions (years 1007-1106). Except for the first few lags, the predic-
tions based on the last 100 observations are closest to the actually 
observed "future" values. The level of the Nile River is at a local 
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Figure 8.3. Nile River minima - length of 95%-k-steps-ahead-forecast 
intervals based on the last n observations (n =1, 10, 100; k = 1, ..., 100). 

maximum around the year 1106. The predictions based on the last 
10 and on the last observation are therefore considerably higher. 
The forecast based on all 100 past observations takes into account 
that before the current local maximum, the values were much lower 
than now. Also, Figure 8.3 shows that the 95%-forecast interval is 
quite a bit shorter for the prediction based on all past observations. 
Nevertheless, this relatively narrow prediction interval seems to be 
realistic (see Figure 8.2). 
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CHAPTER 9 

Regression 

9.1 Introduction 

Suppose that we observe y = (y i , yn ) t  together with corre- 
sponding explanatory variables x1 = (xi , l, X1,2, • • • xl,p) t 7 X2 = 

(X2,1, X2,2, •••7 X2 , 23) t , ... 7  Xn = (Xn,17 Xn,27 	x n,p ) t . Define the de- 
sign matrix 

X = X (n) = n x p —matrix with rows x ti , x t2 , xtn . 	(9.1) 

We will use the notation 

X 	= x (j) (n) = (x Li  , X2,j, •••7 X 	) 
n,i )t 

for the columns of  X.  The standard regression model is given by 

yt = g(x) + Et = 	± Et) 	 (9.3) 

or in matrix notation 

(9.4) 

with c = (€, 	c ri ) t  . The explanatory variables x t ,i are either fixed 
or random. The "errors" Et are identically distributed with ex-
pected value zero and variance a c2 . Standard assumptions are also 
that El, ..., Et are independent and normally distributed. These as-
sumptions do not always hold exactly for real data. The effect of 
deviations from normality has been one of the main topics of robust 
statistics (see, e.g., Huber 1981, Hampel et al. 1986 and references 
therein). There is also an extended literature on deviations from 
independence, in the form of autoregressive processes and other 
short-memory models (see, e.g., Grenander and Rosenblatt 1957, 
Hannan 1970, Watson 1967, Lomnicki and Zaremba 1957). Here 
we consider the situation where Et is a stationary long-memory 
process. The index t denotes time. We will restrict attention to 
parametric linear regression (9.3). For some results on simple non-
parametric regression see Hall and Hart (1990). Nonparametric 

(9.2) 
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density estimation for long-memory processes is discussed briefly 
in Robinson (1991a). 

We will use the following notations. The complex conjugate of a 
complex number z is denoted by z*. For two n-dimensional complex 
valued vectors a = (al, ..., a n ) t

, b = (b1 , ..., bn ) t  , we denote by 

n 

< a, b >= at b* = 1: aib:` 
	

(9.5) 
i=1 

the Euclidian scalar product between a and b and by 

Hail = -V< a, a > 	 (9.6) 

the Euclidian norm of  a.  
As noted earlier, a characteristic feature of long-memory pro-

cesses is the occurrence of long excursions and local  "trends". It 
should therefore be expected that trends may be difficult to distin-
guish from the stationary error Et. One might have to wait quite 
long before an observed trend can be recognized as real and not 
just as an accidental increase generated by long memory. A typi-
cal example of a situation where the question of trend or no trend 
gave rise to controversial discussions is the global temperature. 
The question is whether a "global warming" of the atmosphere 
took place over about the last 100 years. Consider, for instance, 
the monthly temperature data for the northern hemishpere intro-
duced in Chapter 1. A thorough discussion of this and related data 
sets is given, for example in Smith (1993), Bloomfield (1992), and 
Bloomfield and Nychka (1992). If only this data series is given, the 
question of global warming amounts to giving a reliable confidence 
interval for an estimated trend. In first approximation, we may sub-
tract a linear trend. Apart from a slightly larger variability at the 
beginning, the resulting residuals look approximately stationary 
(figure 1.11). The periodogram of the residuals (in log-log coor-
dinates) exhibits a clear negative slope, suggesting long memory 
(Figure 1.12c). To obtain a confidence interval for the linear trend, 
one therefore needs to derive the distribution of trend estimates 
under the condition that the residual process Et has long memory. 
Theorem 9.1 in the next Section provides this result. It turns out 
that a polynomial trend is estimated with a precision that is asymp-
totically infinitely lower than in the iid case. On the other hand, 
one may ask the question of whether long memory in the residuals 
always implies that [3 is more difficult to estimate. The answer is 
no. The effect of long memory on estimation of the parameters in 
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(9.3) depends on the structure of the explanatory variables. Con-
sider, for instance, y = X t  (n) + E, where X (n) = (u l , un ) t  and 
u t  (t = 1, ..., n) are independent identically distributed random 
variables, independent of Et, E(Ut) = 0 and cr u2  = var(ut) < 00. 

The least squares estimator (LSE) of ,@ is equal to 

= Ent=:i  y t u t 	< y , u > 

Er  Li 

The unconditional variance of (-3 is approximately equal to 

n, 
— —2 n 2 o- u -y(t — 

where S o  = 1 and St —, = 0 for  t=/s. Thus var(0) 	n -1 010"; 2 , 

which is the same variance as if the errors were independent. An 
analogous result can be shown for the conditional variance of /& 
given ui, u2, ...,un . 

In the following sections, the interplay between the design matrix 
X,  long memory in the errors, and the distribution of regression 
estimates is discussed more generally. As in Chapter 8, two main 
questions need to be answered: 

1. What is the asymptotic distribution of the LSE and the BLUE, 
respectively ? 

2. How much do we lose asymptotically, if we use the LSE instead 
of the  BLUE?  

In order that asymptotic limits make sense, some conditions will 
have to be imposed on the limiting behavior of the design matrix 
X.  We will assume the following general conditions introduced by 
Grenander (1954): 

(1) For all j = 1, ...,p, 

liM IIX (i) ( 71 )11 n—>oo 
(9.7) 

(2) For all j = 1, ...,p, 

liM 
n—*co I lx (i ) (011 

1. 	 (9.8) 

(3) For integers u > 0, define the n x 1 vector 

n)= 	x2+u,i7.••, x n ,i, 	...,0) t . (xi+u,i, 



11x (i)  (n)11 2  =  
t=i 

n 2j-1 

2j  — 1 .  
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Then for each pair j, 1 and integers u > 0, the limit 

< x (3 )  (n) , x( 1)  (u , n) > 
R ,i(u) = lim  	(9.9) 

n-->cx) 

exists and is finite. The definition is extended to all integers 
u = 0, ±1, ±2, ... by defining 

x to  = 0 

for t < 0. 

(4) The matrix 

R (n ) = [Rj ,i 	 (9.10) 

is nonsingular. 

In the case of a random design matrix, (1) to (4) may be postu-
lated in some well defined probabilistic sense, such as, for instance, 
"almost surely." The first condition makes sure that there is no 
point t o  such that the contribution of x to , t > t 0  would be negli-
gible. The second conditon makes sure that the absolute value of 
x to  does not increase too fast. Condition 3 enables us to define a 
"correlation"  and to use similar techniques as for correlations of 
a stationary process. The last condition makes sure that the ex-
planatory variables are not linearly dependent in an asymptotic 
sense. 

Examples: 

1. polynomial trend: 

g(x) =  o  ± it 	. . . ± 13 q tq 

I l x (3)  (n ) 1111x (I ) (u, n)II 

Hence, (1) and (2) hold. The elements of the "correlation" ma-
trix R are given by 

Ri,/(U) = liM 
n-->oo 

ti (t + u) 1-1 

 11x(i)  (n)1111x (1) (u,n)11 

V(2j —  1)(2 1  — 1) 
+ / — 1 

 

(9.11) 

2. Harmonic model: Define 

   

g(xt) = OleiAlt  ± 2e0, 2 + + OpeiAP t . 

 



176 	 REGRESSION 

Then 

     

 

I lx i (n ) 11 2  e
iÀ t e -2À 3 t = n. 

t=i 

Obviously, conditions (1) and (2) hold. The correlation matrix 

R is given by 

R ii(u) = lim n -1  E e i(A3—At)t e —Ovu 
n,00 

t=1 

(9.12) 

where 6i1 = 1 if j = / and 0 otherwise. The same result is 
obtained asymptotically for "real versions" of g. For instance, if 

g(x) = 00  ± Oicos(Ait) 	Op  cos(A pt), 

then, as TI —> 00, 

lix (in) 11 	n 

and 

Rii(u) = 6j1cos(Ait). 	 (9.13) 

9.2 Regression with deterministic design 

9.2.1 Polynomial trend 

Polynomial regression is considered in Yajima (1988). Consider the 
model 

Yt = 0.0 ± Olt ± 02t2 	)3qtq ± Et, 	 (9.14) 

where Et is a stationary process with long memory. In matrix no-
tation, (9.14) can be written as 

with the design matrix X given by X = [x (1) , ..., x (q+l) ] and 

x (i )  = (1, 2i -1 , 	 j = 1,...,q ± 1. 

Denote by E n  the covariance matrix of E = (El, ..., E n ) t  . The BLUE 
of is given by 

(x tE 77, 1 x  )ix tE 77, 1 y. 	 (9.15) 

Replacing E n, by the identity matrix yields the least squares esti-
mator (LSE), 

= pc txr 'x ty. 
	 (9.16) 
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To obtain nondegenerate limit distributions for 0 and (3, the follow-
ing matrices are defined. Let D (n) be the diagonal (q +1) x (q 1)- 
matrix with diagonal elements 

Dii(n)= Ilx (3) (n)11. 	 (9.17) 

Define the normalized covariance matrices 

A n  = D(n)E0 - 0) (/  - 13) t]D(n) 	(9.18) 

and 

An  = D (n)E[(0 - 0)(0 - [3)11 (n). 	(9.19) 

Yajima proved the following result for  

Theorem 9.1 Suppose that there is a positive continuous function 
f* : 7r] R +  such that the spectral density of E t  can be written 
as 

f(s) 	f * ( )1 1 	e i,X11-2H ,  

with < H < 1. Then the limit 

lim  n i-2HAn 
 n-+oo 

(9.20) 

(9.21) 

exists and is equal to 

A(cf,H)=217 - cfP -1- QP-1 , 	 (9.22) 

where the matrices P = 	 and Q = Q (H) = 
are defined by 

(9.23) 

q3 / = 	
r(H — ) r ( . —H) 

(9.24) 

In particular, two points are worth noting. The variance of the 
LSE converges slower to zero than for independent or short-range 
dependent errors Et. In the case of short-range dependence, no 
other normalization is necessary apart from the normalizing ma-
trix D (n). In the case of long memory, the additional normalizing 
factor n 1-211  is needed. The second interesting point is that the 
asymptotic distribution of ij does not depend on the whole spectral 
density. It is fully determined by H and the value of f* at zero. 

-V(2j - 1)(2 1  - 1) 
13j1 = 	

j 	— 1 

and 

-\/(2j  -  1)(2/ -  1)r(2— 2H)  11 1 
x3 -1 y /-1 1x _yi 2H-2 dxdy,  

0 0 
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The shape of the spectrum outside of an arbitrarily small neigh-
borhood of the origin does not matter. This is a generalization of 
the corresponding result for the sample mean (Theorem 2.2). 

For the BLUE, the asymptotic covariance matrix is given by the 
following theorem in Yajima (1988): 

Theorem 9.2 Under the same assumptions as above, the limit 

exists and is equal to 

lim n1-2H 

n-+oo 

A.(cf, H) = 27refW 

(9.25) 

(9.26) 

j / — 2H 	ru + 1 - 2H)F(/ ± 1 — 2H)
. (9.27) 

Again, the rate of convergence of the covariance matrix is slower 
than under short-range dependence by the factor n211-1  and, the 
asymptotic covariance matrix depends only on H and cf. = f* (0). 

To calculate the BLUE, the covariances -y (0) , -y (1) , , -y (n — 1) 
must be known. The LSE is therefore much more convenient in 
practice. How much efficiency is lost by using the LSE instead of the 
BLUE ? The answer depends H and the degree q of the polynomial. 
A numerical measure for the efficiency of the LSE is the ratio of 
the determinants of the asymptotic covariance matrices, 

eff (7j ,  :j) 	det[11(cf,  H)] 

det[A(cf, n" )] • 

In particular, if 
lim AA 1  = 

n-*oo 
(9.29) 

where I is the identity matrix, then this ratio is 1 and the LSE is 
called asymtotically efficient. Note that, for fixed q, (9.28) depends 
on the value of H only. For q = 0, it is equal to the ratio of the two 
asymptotic variances of the sample mean and the BLUE for the 
expected value. For comparison, Table 9.1 gives numerical values of 
e f f ( 13, 0) for q = 0 and 1. It is quite high in both cases. In practice, 
one will therefore tend to use the LSE instead of the BLUE. 

For illustration, consider the temperature data for the northern 
hemisphere. We fit a linear trend g (x t ) = 0  ±  /3 1 t  to the data and 
a fractional ARIMA(0,d,O) model to the residuals. The Whittle 
estimate of H and  c1  is 0.87 and 0.0089, respectively. The standard 
deviation of il is 0.028 so that H appears to be clearly above 1. 

where the matrix W = W (H) = [wid i ,I =1,..., 1+1  is defined by 

(2j — 1)(2l — 1) F(j +  

(9.28) 
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Table 9.1. Relative efficiency of the LSE compared to the BLUE as a 
function of H. 

H = 0.5 H = 0.7 H = 0.9 

q = 0 1.000 0.987 0.985 
q =1 1.000 0.956 0.901 

The least squares estimates of 06, and /3 1  are —0.41238 and 0.00032 
respectively. To obtain explicit expressions for P [equation (9.23)] 
and Q [equation (9.24)], note first that for a < 1, 

	

1 	1 

I 
 fo lx — yl —a dxdy = 	

2 
(1 — a)(2 — a) 

	

1 	1 	 1  
jo  x fo  Ix — yr adxdy = 

(1 — a)(2 — a) 

and 
11  

I  fo x
2 1x—yr adxdy = 	

1 	 2 	4 	1  
[1 3 — a +  (3 — a)(4 — a) i•  

Setting a = 2 — 2ii yields 

( 1.610 1.394 
1.394 1.595 ) Q 

Also, 

and 

We then obtain 

( 1 0.866 
0.866 	1 

 ) 

( 40.398 0 
0 	38081.950 	' 

P 

D(n) = 

, 

( 

0.351 
—0.301 

—0.301 
0.347 ) ' 

In particular, the estimated standard deviation of /6 is equal to 

A22 ( e1 , fi) 
\ 	 =--- 0.000245. 

D22(n) 

In comparison, the standard deviation obtained under the assump- 
tion of independent errors is equal to 0.0000145, which is almost 
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17 times smaller. The 95%-confidence interval for 0 1  is [0.000293, 
0.000351] under the assumption of independence and [-0.000158, 
0.000802] if long memory is taken into account. As a consequence 
of long-range dependence, we no longer may reject the null hy-
pothesis of no trend. Even a one-sided test of Ho  : 01 = 0 against 
Ha  : 01 > 0 is not significant. The corresponding P-value is equal 
to 0.094. Further refinements may be obtained, for instance, by 
taking into account the apparent seasonal component in the resid-
uals (see Figure 1.12c) and the increased variance at the beginning 
of the observational period (see Figure 1.11). For instance, to re-
duce the influence of the seasonal peak in the periodogram on the 
estimate of H, we may estimate H from periodogram ordinates 
at frequencies that are not too close to 27/12 •--,- 0.52. This can 
be done easily in the context of FEXP models. Consider, for ex-
ample, all frequencies that are not in the interval [0.49, 0.55]. The 
FEXP estimate of H based on the fractional ARIMA(0,d,0) model 
is then 0.83. The approximate 95%-confidence interval for 0 1  is 
[0.000011, 000633]. It no longer contains zero, so that we would con-
clude that 01 is positive. On the other hand, the values of H and 
Cf  are estimated. Taking this additional uncertainty into account 
would again increase the size of the confidence interval. Overall one 
may therefore say that, although there is some indication for global 
warming, definite conclusions cannot be drawn based on this data 
set only. Taking into account several other data sets can provide 
more reliable results (see, e.g., Smith 1993, Bloomfield 1992, and 
Bloomfield and Nychka 1992). 

9.2.2 General regression with deterministic design 

A more general aproach to characterizing the limiting behavior 
of slope estimates in regression is to consider the so-called re-
gression spectrum (see, e.g., Priestley 1981, Chapter 7.7). Con-
sider the regression model (9.1) with the sequence of explanatory 
real or complex-valued vectors x i (n) = (x1,1, -- • , xl,p) t , X2 (n) =-- 
(x2 , i , ..., x2, p ) t  , ..., x n (n) = (x n , i ,...,x n , p ) t . Recall that a p x p-

matrix A with complex elements is called Hermitian if 

A = [Al t . 

Moreover, A is called positive semidefinite, if aAa* > 0 for any 
non-zero p —dimensional vector a. We will write A > 0 if A is a 
non-zero positive semidefinite matrix. Grenander and Rosenblatt 
(1957) show that, under assumptions (1) to (4) in Section 9.1, 
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the correlation matrix R(u) is a Hermitian positive semidefinite 
matrix. This implies that there exists a spectral representation of 
R(u). More specifically, there exists a matrix valued function M (A) 
such that for each A E 7], M (À) is a Hermitian matrix, the 
increments 

AM(Ai, A2) = M(A2) — M(A 1 ) 	 (9.30) 

are positive semidefinite for any A i  < A2 and 

Ri(u) = f e iuÀ dMii(u) 
—7r 

7r 

(9.31) 

The matrix valued function M is called spectral distribution func-
tion of X. The set S = {A E : AM (Ai, A2) > 0 for all A 2.  < 
A, A2 > AI is called the regression spectrum. The regression spec-
trum consists of all points where M increases. In other words, for 
all A E S, 

M(A-F) — M(A) > 0 for A E S, 

where 
M (A+) = lim M (v) 

vIA 

denotes the limit from the right. 
Examples: 

1. Polynomial trend:  R1(u) does not depend on u. In order that 
Ir 

Ri/ (U) = Ri1(0) = e iuA dMii (U) 
—7r 

for all u, dM (A) must be zero everywhere, except at the ori-
gin. This means that Mi1 has a jump (point mass) at zero and 
is constant otherwise. The regression spectrum consists of the 
point 0 only. 

2. Harmonic model: From 

(5i/e zAi u  = 
fir 

e ittA dMii (A) 

it follows that Mi1 	0 for j 	/. Moreover, dMi i (A) is not 
zero for A = Ai , and zero otherwise. This means that Mii has a 
jump at frequency A i  and is constant otherwise. The regression 
spectrum consists of the points Ai, ...,  À. 

The form of the spectral distribution function M determines 
the asymptotic distribution of 0 and i3. It is characterized by the 
following theorems. The first two results are due to Grenander and 
Rosenblatt (1957). They assume that the error process has short 
memory. 

- 71" 
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Theorem 9.3 Assume that (1) to (4) hold and the errors Et are 

stationary with a spectral density f. Furthermore, suppose that f 
is positive and piecewise continuous in the whole interval [-R- , 7]. 
Then the following holds. 

lirn An  = 27R(0) -1-  f 	f -1 (A)dM(A)R(0) -1 ; 	(9.32) 
n-> co 

1  
lim A n  = [-

27 

f 
f -1 (A)dM (A)] -1 	(9.33) 

n-+oo 

This result implies 

Theorem 9.4 Suppose that the assumptions of Theorem 9.3 hold. 
Then the LSE is asymptotically efficient if and only if M (A) in-
creases at no more than p frequencies A1,  ..., Ap (and the corre-
sponding symmetric values -A 1 , ..., -Ar ), and the sum of the ranks 

of the increases in M (A) is p. 

Examples: 

1. Polynomial trend: M„ has a jump (point mass) at zero. The 
regression spectrum consists of the number zero. The LSE of 
the polynomial trend is asymptotically efficient. 

2. Harmonic model: M has jumps in the diagonal at the frequen-
cies A1, ...,  A i,.  The LSE is asymptotically efficient. 

Both theorems assume the spectral density of the error process 
Et to be piecewise continuous. This condition is violated for long-
memory processes, as f is infinite at the origin. Using different 
techniques, Yajima (1991) gave a partial answer to the same ques-
tions, for this case. The following notation is needed. Define 

gn(i) (A) = 
itÀ tje 

t=1 

1 < gn 	n  
(A ) = 	I lx(i)(n)i I I lx (i) (n)li 

and 

MP(A) =- 
f 

mi(x) dx. 

The p x p-matrix 

Mn  = 
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is the finite sample version of the spectral distribution function M. 
Condition (3) implies that the measure Mn(A) (defined on [-7,7]) 
converges weakly to the measure M (À ). This means that, for any 
continuous function h on [-7,7], 

	

7r 	 Ir 

lirll f h(À)dM n (A) = I 7r  h(À)dM (A). 

	

-7r 	 - 

The difference to the situation with a short-memory error process 
Et is that the spectral density of Et has a pole at zero. The key 
issue is therefore how M n  and M behave at zero. Yajima (1991) 
considers the following situation: 

M(0-F) — Mii(0) > 0, 1 < j < m, 	(9.34) 

where 0<  m  < p  and 

M(0 -F) — Mii(0) = 0, j = m + 1, ...,p. 	(9.35) 

If necessary, the numbering of the explanatory variables has to be 
changed. If m = 0, then (9.34) and (9.35) have to be understood 
in the sense that none of the diagonal elements Mii  has a jump at 
the origin. 

Before stating the results, we define the following matrices. Let 
B =[bidi,i.i,...on  be the m x m-matrix with elements 

1-2H fir 1 1  _ e 1 2H 

J- 7r 	

0■ 11- 	n 

	

bi1= ef lim n 	 ii ,• 	(9.36) dM (A) 
n---oo 

Also define the (p — m) x (p — m)-matrix C = [cidi,/.1,...,p_., by 

cii = f,f (A)dM, ±ion+I(A) 	 (9.37) 

and the p x p—matrix 

(B 0 
V = 27r 

0 C ) ' 
(9.38) 

Finally, define the p x p diagonal matrix D (n, m) with diagonal 
elements 

and 

1 Dii(n,m)= Dii(n)nH—  2 , j=1,...,M (9.39) 

D ii(n, m) = D ii(n), j = m ± 1, ..., p, 	(9.40) 

where D(n) is defined by (9.17). The distribution of the LSE is 
given by: 

Theorem 9.5 Suppose that (1) to (4) hold. Then under the as-
sumptions of Theorem 9.1 the following holds. 

ir 



f ir 

71  
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(i) Suppose that m =0, i.e., the diagonal elements of M, do not 

have any jump at zero. Then (9.32) holds, if and only if for any 

6 > 0 there exists a constant c such that 

j
c 

f (A)dM ri (A) < 6, j = 1, ...,p 	(9.41) 

 all sample sizes n. 

(ii) Suppose that m > 0, (9.41) holds and B exists. Then 

lim D -1 (n,m)(X t X)E0— is3)( —i3) t](X tX)D -1 (n,m) =- V. 
n.-+oo 

(iii) Suppose that m > 0 and (9.41) holds. Then B exists if and 

only if the integrals 

11 — e iÀ  1 —1 211dMii  (j ,  1 = 1 ,  ..., m ) 

exist. 

As the spectral density of Et has a pole at zero, it is not un-
expected that the LSE has the usual rate of convergence only in 
the case where the regression spectrum does not have a jump at 
the origin. If zero is an element of the regression spectrum, then 
it is more difficult to separate the process Et from the effect of the 
explanatory variables. A typical example is a polynomial trend. In 
contrast, the regression spectrum of a seasonal or harmonic com-
ponent, as defined in the above examples, does not include zero. 
Therefore, the LSE has the same rate of convergence as for inde-
pendent errors. 

The derivation of the asymptotic distribution of the BLUE is 
more difficult. Yajima (1991) gave a partial solution. In addition 
to (1) to (4), he assumed the following conditions: 

(5) There exists a 6 > 2 — 2H such that 

,2 .A, ti  
max 	 = o(n -8 ), j = 1, ..., p. 

15..t5.n ilx(i)(n)112 

(6) The jumps of the regression spectrum at zero are limited from 
above by 1, i.e. 

0 <  M(0 -F) — Mii(0) < 1, 1  < j  < m. 

(7) The integral 

L 
is well defined and not equal to zero. 

1 
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Theorem 9.6 Under the assumptions of Theorem 9.4 and (1) 
through (7), 

lim A rt  = [1 —
27 I, 

f(ArldM(A)1-1. 

If (6) does not hold, then the integral in (7) is no longer well de-
fined. For instance, for polynomial regression, the regression spec-
trum has jumps Mii (0+) – Mii (0) = 1. It was already seen in 
the previous section that, in addition to the matrix D (n), the nor-
malizing factor n i-2H  must be included in order to obtain a finite 
limiting covariance matrix. 

Finally, for the case where the regression spectrum does not in-
clude zero, Yajima obtains from the above results conditions under 
which the LSE is asymptotically efficient. 

Theorem 9.7 Assume that m = 0 and (1) through (7) and (9.41) 
hold. Then the LSE is asymptotically efficient compared to the 
BLUE, if and only if M increases at not more than p (non-zero) 
frequencies and the sum of the ranks of the increases is p. 

The results are intuitively plausible, when we compare them with 
the results of Grenander and Rosenblatt. In Theorems 9.5 to 9.7, 
the spectral density is continuous outside of an arbitrarily small 
neighborhood of zero. Therefore, if the regression spectrum con-
tains non-zero frequencies only, one obtains the same result as 
for spectral densities which are continuous in the whole interval 
[-R-, 7]. On the other hand, if zero is an element of the regres-
sion spectrum, then the pole of the spectral density changes the 
efficiency of the LSE. 

Unfortunately, the conditions of Theorems 9.5 to 9.7 [in partic-
ular condition (9.41)] are not always easy to verify. The following 
examples are solved explicitly in Yajima (1991): 

1. Polynomial trend: The only element of the regression spectrum 
is zero. The LSE is not asymptotically efficient. The efficiency 
of the LSE can be obtained directly from Theorems 9.1 and 9.2. 

2. Seasonal model g (x t ) = 01 cos(A i t) 	/3p COS (A pt) M has 
jumps in the diagonal at the frequencies 1 , ..., Ap. The LSE 
is asymptotically efficient. The asymptotic covariance matrix is 
given by 

lim D (n)E0 –  

D (n)E – 0)(0 – OAD (n) 



0 	• • f (Ai)) ) 

27r 

 

  

0 
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9.3 Regression with random design; ANOVA 

9.3.1 The ANOVA model 

The results in Section 9.2 demonstrate that the asymptotic distri-
bution of the LSE and the BLUE depend on the regression design. 
Loosely speaking, it appears that the same rate of convergence as 
under independence is achieved for regressors that change their sign 
in a "balanced" way. For instance, a seasonal component cos A i t 
changes its sign in a completely symmetric way. In the example 
of a random explanatory variable u t  discussed in Section 9.1, the 
expected value of E(u t ) is zero. In this section, we discuss results 
for more general linear models with random designs. We consider 
the one-way analysis of variance (ANOVA) model: 

Yt = 	 Et) 
	 (9.42) 

j=1 

where E(Et) = 0, Gr 2  = var(E t ) <  oc,  xt ,  E {0, 1} and 

(9.43) 

The observations y t  are assumed to be taken at the time points 
t = 1, ...,n. In addition to time, t could also stand for any other 
ordered quantity. For instance, t could be the position on a line in 
the plane or the distance from a point in the plane, etc. In what 
follows, the restriction to a scalar index does not appear to be 
essential. Analogous results are expected to hold, e.g., for spatial 
data. Also, a generalization to multi-way ANOVA should not be 
difficult. To simplify the presentation, only the one-way ANOVA 
model is considered here. 

The jth parameter ,C3i  in (9.42) is usually associated with a cer-
tain "treatment" number j. Equation (9.43) means that exactly 
one treatment is assigned at each time point t. 
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9.3.2 Definition of contrasts 

Often one is not interested in knowing the treatment effects O i 
 themselves. Instead, one would like to compare the effects of the 

treatments with each other. For instance, one might be interested in 
individual differences between the effects of two treatment Oi — Ok. 

More generally, one might be interested in comparing a group of p 
treatments by defining contrasts 

P 

S (c) = E cjoi  = c t o ,  (9.44) 

where c = (c i , ..., cp ) t , 0 = (0 1 , ..•, /3) t  and 

P 
ci = 0 ' 
	 (9.45) 

.1=1 

Properties of estimates of c follow from the special form of (9.42). 
Equation (9.42) is a regression model with explanatory variables 

which assume only the two values zero and 1. The regression 
spectrum is fully determined by the sequence in which the treat-
ments are assigned. Usually, treatments are assigned randomly, ac-
cording to some specified procedure. The main motivation for ran-
domization is to avoid uncontrollable bias. Suppose, for instance, 
that treatment 1 is assigned a priori to the first k units and treat-
ment 2 to the next n — k units. If for some reason that has noth-
ing to do with the different treatments, the expected value of y t  
(t = 1, ..., k) differs from the expected value of y t  (t = k +1, ...,n), 
then this effect cannot be distinguished from a possible treatment 
effect. In the case of dependent errors Et, and in particular in the 
case of long-range dependence, there is another problem with this 
kind of deterministic assignment. Suppose that (9.42) holds with 
Et having long-range dependence. The least squares estimate of 

01 — 02 is the difference of the sample means, 

k 	 n 

E Yt 
t=1 	 t=k+1 

  

k 

 

E t — (n — kr E i  	Et• 	 (9.46) 
t=k+1 

=01 - 02+k— 

  

t=1 

From the results in Chapter 8 we know that as kn -1  tends to a 
positive constant, the variance of (9.46) is proportional to n 211-2 . 

, 
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Thus, due to the slowly decaying correlations, the contrast 0 1  — /32 
 is estimated with a much lower precision than under independence 

or short-range dependence. In contrast, results in Kiinsch, Beran, 
and Hampe! (1993) show that appropriate random assignment of 
the treatments results in retaining the same precision as under 
independence. The main part of these results is summarized in the 
following sections. It will be sufficient to consider the contrasts 

6jk = 13j - Ok. 	 (9.47) 

The variance of estimates of other contrasts can be derived from 
the results for C'Sik. The LSE of Sik is equal to 

6ik = 	— 13k7 	 (9.48) 

where :jj, / -jk, are least squares estimates of f3j and Ok respectively. 
The BLUE is given by 

6jk = 13j - 13k, 
	 (9.49) 

where j, Ok are the best linear unbiased estimates of /3i and Ok, 
respectively. 

9.3.3 The conditional variance of contrasts 

In the analysis of variance, one is usually interested in condi-
tional inference given the design. That is, inference about con-
trasts (and other parameters of interest) is done conditionally on 
x t ,i  (t = 1, n; j = 1, ..., p). The values of xt,i are obtained by 
randomization. However, once the randomization has been done, 
the design matrix is considered to be fixed. In this sense, the con-
ditional approach leads back to the situation of deterministic de-
signs. The randomization procedure determines which types of de-
sign matrices are likely to occur. The approach via probability 
distributions on design matrices uses the special structure of the 
explanatory variables in (9.42). The derivation of distributional re-
sults can be based on martingale theory (Kiinsch et al. 1993) and 
is therefore relatively simple. In contrast, it seems difficult to ver-
ify the conditions for deterministic designs given in the previous 
section, and to combine them with probabilistic statements about 
the conditional variance. 

Before stating the results, we write down the general formulas 
for the variance of i ik and Sik. The conditional variance of  5jk  and 



REGRESSION WITH RANDOM DESIGN; ANOVA 	 189 

S-ik given the design X is 

Vn (j,k1X) = varOi  — 

sk ) Xtk
)-y(t — s)(xsi 	

X 
— 	— 

ni 	nk 
(9.50) 

and 

klX) = var( ji — klX) 

	

= Ct (X t EIV X)_ 1 C, 	 (9.51) 

where ci  = 1, ck = —1 and c i  = 0 for 	For uncorrelated 
errors Et with variance o-2 , (9.50) and (9.51) simplify to 

1 

	

 
Vn (j,kIX) = 1-771,(j,k1X) =- 

a2(2( 	± 1). (9.52) 
nk 

Hence, if  92  is an unbiased estimator of (7 2 , then 

12n(j,k1X) = 	+ 	) 	 (9.53) 
ni nk 

is an unbiased estimator of both variances. 

9.3.4 Three standard randomizations 

Kiinsch, Beran, and Hampel (1993) consider three different ran-
domizations, which are used frequently in practice. 

1. Complete randomization: Let at E { 1 , •••,./3 } , t = 1, 	n, be a 
sequence of treatment allocations. This means that, if at  = j, 
then treatment j is applied to the experimental unit at time t. 
Define 

= 1, if at  = j, 

and 

= 0, if  at/=  j. 

The allocations a t  are iid with 

	

p (a t  = j) = 73. 
	 (9.54) 

In particular, the number of observations with treatment j, 

t 	 (9.55) 
t=1 

is random. 



ni  
(9.58) 7rj  = 	. 
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2. Restricted randomization: For each treatment j, the number 
ni of experimental units to which this treatment is allocated is 
fixed a priori. All 

 

n! 
(9.56) 

n 1 !n 2 ! • • • np ! 

possible allocations (ai, ..., a n ) with 

Xti = ni (j = 1, ...,p) 	 (9.57) 
t=i 

are equally likely. Note that, for large samples, restricted ran-
domization is almost the same as complete randomization, if we 
set 

3. Blockwise randomization: For a fixed block length 1, divide the 
time axis into blocks 

k = {(k — 1)1 ± 1, (k — 1)1 ± 2, ..., 	(k = 1, 	b), 	(9.59) 

where b = n/l. For simplicity, we may assume that b is an inte-
ger. The treatment allocations in different blocks are indepen-
dent from each other. In each block, restricted randomization is 
applied with 

E x ti  =li  (j  = 1, ..., p), 	 (9.60) 
tEBk 

where E /i  = 1. 

If the e t s are uncorrelated, then for the first two randomizations, 
an unbiased estimator of 0-2  is given by 

(9.61) 

For blockwise randomization, the estimated block effects 

(Y 	Oixti) 	 (9.62) Jak = 

tEBk 	i=i 

are taken into account in the estimation of a2 . For uncorrelated 
errors, 

 

1 

        

- 2 
a block = 

   

(y 

  

Si X ti — E Bk1) 2  n—p—b+1 t=1  

  

      

  

i= 

 

k=1 

 

(9.63) 
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is an unbiased estimator of 0- 2 . 
If the errors have long memory, the conditional variances 

Vn (j, k IX) and Vn (j, k IX) depend on the correlations p(k) (k = 
0, ...,n — 1) [see (9.50) and (9.51)] and are no longer exactly equal 
to (9.52). Also, in analogy to the results in Section 8.4, the ques-
tion arises how far 3-2  and qi„,k , and thus (9.53), are biased. In 
summary, the following questions are addressed in the subsequent 
sections: 

1. How much does Vn (j, klX) differ from cr 2 (n .T 1  ±  n 1 )  ? 

2. How large is the bias E[f/sn (j , kIX )] — E[V n (j, kIX)] ? 
3. How much does Vn (j, k IX) differ from the asymptotic value of 

Vn (j, k IX), and thus how efficient is the LSE compared to the 
BLUE? Are there simple ways of improving the efficiency of the 
LSE?  

The first two questions refer to the validity (i.e., the accuracy of 
the level of significance) of standard tests based on the LSE. The 
third question refers to the power of such tests. 

9.3.5 Results for complete randomization 

First note that, as n —> oo, 

for h-3-L-0 and 

,jxt+h,k —> 7i7rk (9.64) 

1 
_EXt,jXt,k —> 6j1e 71j 	 (9.65) 
n t.i. 

almost surely. If E t  is a stationary process with piecewise continuous 
spectral density f = o-2  fi such that 0 < c i  < f < c2 for some 
constants cl, c2, then the asymptotic values of Vn  and Vn  follow 
from Grenander and Rosenblatt (1957): 

Theorem 9.8 Under the above conditions the following holds. 

(i) As n —> oo, 

nVn (j,kIX) —> o-2 (7ri l  +7') 	(9.66) 

almost surely. 

(ii) As n —> oo, 
7, 

nfl-n(i, kIX ) —> 0-2 (7.T 1  ± 7rïc  1 ) [(20 7 -2  f fi (A) -1 dAl -1  (9.67) 
j 	--ir 

n 
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almost surely. 

The following extension to long-memory processes is derived in 
Kiinsch et al. (1993). 

Theorem 9.9 Suppose that the spectral density of Et is of the form 
f = 0-2  f i  with 

fi ( À)  _ A1-2Hr(;), 	 (9.68) 

where < H < 1, f* is continuous and there exists a constant c 
such that 0 < c < f* . Also assume that f* is of bounded variation, 
i.e., there is a constant n > 0 such that, for all partitions 0 = Ao < 

f*(Ai-1)1 
i= 

Then the conclusions of Theorem 9.8 hold. 

Two important conclusions follow from these results: 

1. Inference about contrasts in analysis of variance is usually done 
under the assumption of independent errors. P-values and con-
fidence intervals provided by standard statistical software pack-
ages are calculated under this assumption for the LSE. Theo-
rems 9.8 and 9.9 show that under complete randomization, these 
P-values and confidence intervals remain to be valid asymptot-
ically, even if the errors are dependent. 

2. The asymptotic efficiency of the LSE depends on the shape of 
the spectral density f via the equation 

ef f (LSE, BLUE) = [(27) -2 	fi (A) l dA] 	(9.69) 

For certain dependence structures, (9.69) can be rather small. 
This leads to a loss of power of the statistical tests. By using the 
LSE, one therefore tends to discover fewer effects than there may 
be in the data. For example, if Et is a fractional ARIM A(0, H 

, O)—process with H = 0.5, 0.6, 0.7, 0.8, and 0.9, then the 
asymptotic efficiency (9.69) is equal to 1, 0.97, 0.86, 0.69, and 
0.41 respectively. 

9.3.6 Restricted randomization 

Restricted randomization is slightly more complicated to deal with, 
since inference is conditional on the p-dimensional vector of inte- 
gers (n i , np ) t  . A proof of (9.66) with almost sure convergence 
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replaced by convergence in probability is given in Kiinschet al. 
(1993), under the assumption that nin -1 (j  = 1, p) converge to 
proportions  7r E  (0,1)  = 1, ..., p). Almost sure convergence and 
result (9.67) are likely to hold as well, as asymptotically there is 
no essential difference between full and restricted randomization. 
Thus, the same remarks on validity and efficiency as above apply 
here. The order of the bias and the variance of Vn  (j, kIX ) are given 
by the following theorem (Kiinsch et al. 1993): 

Theorem 9.10 Suppose that 

lim 	= 7ri E (0, 1) 	 (9.70) 
n—+oc n 

as in 

(9.71) 

var(nVn ) = O(c) (9.72) 

cn  = 0(n -1 ), if H < 

cn  = 0 (n' log n), if H = —34  

and 

 

cn  = 0 (n411-4 ), if  H>  —43 . 

In particular, for H > 	the standard deviation of Vn  is of the 
same order as the bias. It is also worth noting that the conditions 
on the error process can be relaxed. Theorem 9.10 holds for any 
stationary or nonstationary process Et for which the correlations 
p(s , t) = corr(E s , E t ) are bounded by 

	

Ip(s,t)1 < Cit — 81 211-2 	 (9.73) 

where 0 < C < oo is a constant. This generalization is useful for 
practical applications, as it might not always be possible to check 
the assumption of stationarity. 

The next question that needs to be answered is what happens if 
a2  is replaced by the estimate (9.61). The exact equation for the 
expected value of Vn  is 

E[V] = 	± nV)o-2 [1 p(t — s)]. 	(9.74) 

for j = 1, ...,p. Then, under the same assumptions on 
theorem 9.9, the  following holds: 

where 

E {n[V, r, — a-2  (n .T 1  nk-1 )]} — 0 (n 2-11-2 ) 

Et 
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The conditional expected value of 6-2  is equal to 

E[6.2 1x ] 	0.2( 1 	1 
 p 	

p(t 	) 	 (9.75) 
n - 	 ni t*s 	j.1 

Thus, conditionally on the design X, (n .T 1  + nk-1 )6-2  is a biased 
estimator of  V. However, putting combining (9.74) and (9.75), we 
see that 

E[Vn (j,kIX)] = (-
1 

+ —
1

)E[ri-
2 

. 	 (9.76) 
ni nk 

Thus unconditionally, the bias of 6-2  and the bias of o-2 (n .T 1  + 
ni')  compensate each other exactly. On the average (averaged 

over designs), 17n  is unbiased. Asymptotically, the conditional bias 
also disappears. This follows from Theorem 9.10 and consistency 
of 6- 2 . More specifically, the rate of convergence of 6-2  is given by 
the following result (Kiinsch et al. 1993): 

Theorem 9.11 Under the same assumptions as above, the follow-
ing holds. 

var(E[6- 2 1X]) = 0(cnn -2 ) 	 (9.77) 

where c, is defined in Theorem 9.1. 

(ii)  If Et is Gaussian, then 

var(6 2 1X) = O(c) 	 (9.78) 

uniformly in X. 

For illustration, consider the error process Et whose covariances 
are those of a fractional Gaussian noise with H = 0.5, 0.7 and 0.9 
respectively. Four hundred samples of restricted randomization for 
p = 2 treatments, sample sizes n = 16 and n = 64, and number of 
replicates ni = -I2-n were simulated. The average of the simulated 
exact variances Vn  is compared with the corresponding average of 
the Vns. The results in Table 9.2 * illustrate that the biases of 
6 2 (niln+nkln) and 6- 2  compensate each other. 

9.3.7 Blockwise randomization 

Randomized blocks are often used in practice when inhomo- 
geneities are expected owing to factors that are not of primary 

* Adapted from Kiinsch et al. (1993) with the permission of the author and 
the Institute of Mathematical Statistics. 
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Table 9.2. Ratio  m(V)/m(7) for the covariance structure of fractional 
Gaussian noise, where  m(V) and  m(V) are simulated average values 

of Vn  and Vn , respectively. 

H = 0.5 H = 0.7 H = 0.9 

n = 16 1.00 1.01 1.01 
n = 64 1.00 1.01 1.02 

interest. Stationary long-memory processes tend to exhibit local 
though spurious inhomogeneities that can be misinterpreted as 
non-stationarity. One might therefore suspect that blockwise ran-
domization can improve the accuracy of the LSE for contrasts. 
Blockwise randomization is very easy to carry out in practice. In 
contrast, the calculation of the BLUE requires knowledge or esti-
mation of the correlation structure of Et. It is therefore useful to 
find simple randomizations where the LSE is almost efficient. For 
blockwise randomization, the exact formula for the expected value 
and the variance of Vn  is given by the following result (Kiinsch et 
al. 1993): 

Theorem 9.12 Under the above assumptions but blockwise ran-

domization with block length 1, the following holds: 

(i
) 

2/n -1 
nk

1- E[Vn IX] = a/ i  ± 	), 	 (9.79) 

where 
1-1 

œt = a2r1 	
2 

L 	1 	
p(t)(1 — 	 (9.80) 

t.1 

(ii)  
var(nVn) = O (c) 
	

(9.81) 

(iii)  
nVn  —> 0-

2 ( 7ri 1 
 ± 7Ç-1) 	 (9.82) 

almost surely, where 

7ri = P(xti = 1) = /i //. 	 (9.83) 

Equations (9.79) and (9.80) imply that, if the correlations p(t) 
are strictly decreasing in t and positive, then  ci?  is strictly increas-
ing in 1 (for 1> 2.) Thus, small blocks improve the accuracy of the 
LSE. Asymptotically, i.e., with 1 tending to infinity, g? converges 

2 
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Table 9.3. Efficiency of the LSE for blockwise randomization with l = 2 
and 4. The error process has the covariance structure of a fractional 
ARIMA(0,H — - ,0) process. 

H = 0.5 H = 0.7 H = 0.9 

/ = 2 1.00 0.99 0.95 
/ = 4 1.00 0.98 0.91 

to a 2 , provided that limt, p(t) = 0. Finally note that, if a 2  is re-
placed by the least squares estimate aliock , analogous results hold 
as above. 

How efficient the LSE can become by blockwise randomization 
is illustrated in Table 9.3t The asymptotic efficiency of the LSE is 
given for / = 2 and / = 4, where Et is a fractional ARIMA process 
with H = 0.5, 0.7 and 0.9, respectively. The efficiency is very close 
to 1 in each of the cases. 

t Adapted from Kiinsch et al. (1993) with the permission of the author and 
the Institute of Mathematical Statistics. 



CHAPTER 10 

Goodness of fit tests and related 
topics 

10.1 Goodness of fit tests for the marginal distribution 

Let X 1 , ..., X n, be a sample of observations from a marginal dis-
tribution F. It is often of interest to test the hypothesis that F 
belongs to a certain class of distributions. For simplicity, we re-
strict attention to testing normality, i.e., testing the hypothesis 

	

x — p, ) = 
(I) 
	

(10.1) 
o- 

against 

Ha : F(x 	ii )(1)• 	 (10.2) 
°- 

Here, I. is the cumulative standard normal distribution, p = E(Xi) 
and a 2  = var(X i ). 

Many different methods for testing (10.1) exist in the litera-
ture (for an overview see, e.g., Mardia 1980 and D'Agostino and 
Stephens 1986). The common feature of most of these methods 
is that the observations are assumed to be independent. Criti-
cal values for test statistics are derived under this assumption. 
It was noted by Gleser and Moore (1983) and Moore (1982) in 
the context of short-memory processes that critical values and the 
corresponding nominal levels of significance can be grossly incor-
rect, when observations are dependent. To illustrate the effect of 
long memory, we carry out a small simulation study. Consider the 
Kolmogorov-Smirnov statistic for the simple hypothesis (p, and (7 2  
known) defined by 

Tics(ii, 0-2 ) = sup IF( x 	P ) 	(1)(x)I, 	(10.3) 
x 	a 

and for the composite hypothesis (p, and 0-2  estimated by X and 
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Table 10.1. Simulated rejection probabilities for the Kolmogorov-Smirnov 
test statistic in the simple hypothesis case, with critical values derived 

under independence for the level of significance 0.05. The results are 

based on 400 simulated series of fractional Gaussian noise. 

H = 0.5 H = 0.7 H = 0.9 

n = 20 0.051 0.219 0.668 
n = 250 0.059 0.464 0.898 

Table 10.2. Simulated rejection probabilities for the Kolmogorov-Smirnov 
test statistic in the composite hypothesis case, with critical values derived 

under independence for the level of significance 0.05. The results are 
based on 400 simulated series of fractional Gaussian noise. 

H = 0.5 H = 0.7 H = 0.9 

n = 20 0.052 0.078 0.061 
n = 250 0.043 0.106 0.110 

s 2 , respectively) defined by 

, 	x — x 
Txs(x,s 2 ) =- sup ITI 

, 
n 	) 	(1)(x)1 

X 	s 
(10.4) 

where Fn  denotes the empirical distribution function. Four hun-
dred series of fractional Gaussian noise of length n = 20 and 250 
are simulated. For each series, Tics(p,, (7 2 ) and Tics(, s 2 ) are cal-
culated. Tables 10.1 and 10.2 * give the simulated rejection prob-
abilites with critical regions at the level of significance a = 0.05, 
obtained from quantiles that are valid under independence. We see 
that the nominal level of significance is clearly incorrect. This is 
more pronounced the higher the value of H is. Also, there is a clear 
difference between testing the simple and the composite hypothe-
sis. In the composite hypothesis case, the results are less disastrous 
than in the simple hypothesis case. A theoretical explanation of 
these results is given in Beran and Ghosh (1990, 1991). For illus-
tration, we consider the following representative test statistics with 
z = (x — tz)la in the simple hypothesis case and z = (x — )/(3- in 

* Adapted from Tables 1 and 2 of Jan Beran and Sucharita Ghosh (1991) 
"Slowly decaying correlations, testing normality, nuisance parameters." 
JASA, Vol. 86, No. 415, 785-791, with the permission of the authors and 
the publisher. 



Theorem 10.1 Let X t  be a stationary Gaussian process with spec- 
tral density (2.2). Then the following holds: 

(ii) 

(10.9) 

1-2Hri, 	 2 
n 

	

AD —> d c2X1 	 (10.10) 

n 1-11  TKS —>d cllZl 
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the composite hypothesis case: 

(i) Kolmogorov-Smirnov (KS) test defined by (10.3) and (10.4) 
respectively; 

(ii) Anderson-Darling statistic 

TAD = n 	
(Fn(z) — (1)(z))2 

0(z)dz 
4)(z)(1 — 4)(z)) 

where 0(z) = 1/- z 2 );- exp(— 

(iii) Chi-square statistic 

P  [Fri (1k)  — F(1 k-1) — (4) (1k) —  

k=1 
	 4)(4 ) - (1)( 1 k- 1) 

where (l e , l i ], ....(lp _ lu], is a fixed number p of classes with 
—oo < /0 < /1 < 	< /p  < oo. 

(iv) Empirical characteristic function (ecf) (see, e.g., Ghosh 1987, 
1993, Ghosh and Ruymgaart 1992) 

itz , t E R 	 (10.7) 

and its real and imaginary parts, 71„(t) and Tim (t) respectively. 

For the simple hypothesis case, the following results follow from 
Theorems 3.2 and 3.3, and results by Dehling and Taqqu (1989) on 
the asymptotic behavior of U-statistics and empirical processes for 
long-memory processes (see Beran and Ghosh 1991). We denote by 
—4d convergence in distribution and by —>c,  weak convergence in the 
supremum norm in C [— a, a] where a > 0. Also, ci  (i = 1, ..., 5) are 
positive constants, and Z a standard normal random variable. x? 
a random variable with x?—distribution, Z2 the Rosenblatt pro-
cess at time t = 1, and ((t) a zero mean Gaussian process with 
covariance function: 

c(t , s) = E [( (t)( (8)] = 	[cosh(ts-y(k)) — 1]e -02 ±s2) . (10.8) 

T 2 = n 

(10.5) 

(10.6) 
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n 1-2HTx2 —>d c3X7 

(iv) 

a) If < H <1, then 

lt 2  n 1—H Tim (t) —>c c4 t e2 Z 

b) If -12- <H < 3/4,  then 

	

\Fn[71„(t) — 	—> c ((t) 

c) If  3/4<  H <1, then 

	

n2-2H [Tre (t) — e -02 ] 	c5t 2  e-t2  Z2. 

(1 0.1 2) 

(10.13) 

(10.14) 

These results have two main implications: 

1. For the simple hypothesis, goodness of fit statistics have a 
slower rate of convergence than under independence. If criti-
cal regions obtained under the assumption of independence are 
used, then the level of significance converges asymptotically to 1 
instead of the nominal level a. Thus, long memory has the effect 
that, even if the null hypothesis is true, it will be rejected for 
large samples. In order to obtain meaningful significance levels, 
the statistics have to be normalized by a higher power of n. 

2. Theorem 10.1(iv) illustrates that by applying a decompostition 
into Hermite polynomials, the statistics can be decomposed into 
an odd and an even part. The odd part has Hermite rank 1, 
whereas the even part has Hermite rank 2. The even part has 
a faster rate of convergence, which is even the same as under 
independence if < H < 

The first remark yields an additional explanation to the well-
known phenomenon that for large samples, goodness of fit tests 
always tend to reject the null hypothesis. The usual explanation 
is that no parametric model is ever correct. Theorem 10.1 shows 
that the same effect can be caused by long-range dependence. 

Analogous limit theorems can be derived for the case of compos-
ite hypothesis. The situation turns out to be less dramatic than 
for the simple hypothesis, as the asymptotic level is not necessar-
ily 1 anymore. Remark 2 above gives the key to understanding 
the difference from the simple hypothesis case. Note first that the 
statistics for testing the simple hypothesis are functionals of sums 



S = 
j=1 

G1( 
X — 

 
a- 

00 
a_(t) , 	, X — p, 

(2k — 1)! 
n 2k-1 

k=1 

(10.16) 

cr  2 °° 
f (A; 0) = 

271 
k=0 

(k; oe ikA l 2 ,  
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of random variables of the form 

(10.15) 

for a suitably chosen G.  The function G can be decomposed into 
an odd part G 1  and an even part G2, with Hermite expansions 

and 
a2k(t)  Tr I X - p , , 

G 2 ( 	) 	 n 2k 	)1 	(10.17) 
a 	 (2k)! 	a 

k=1 

respectively, with a l 	0 and a2 	0. If p, and o- 2  are replaced by 
X and 8 2 , then 

E Hi(  _ 
 X

) = 0 	 (10.18) 
s 

and 

H2( 
X — X 

) = 	. 	 (10.19) 

A consequence of (10.18) and (10.19) is that the variance of the 
test statistics is smaller in the composite hypothesis case. More 
specifically, Beran and Ghosh (1991) showed that for -12-- < H < 
5/6, the first two terms in the Hermite expansion of (10.15) with 
estimated p, and o- 2  vanish asymptotically. This implies that, the 
rate of convergence is not only better than in the case of the simple 
hypothesis, it is even the same as under independence. Therefore, 
the levels of the classic tests converge to some a < 1, whereas for 
the fully specified hypothesis they converge to 1. 

10.2 Goodness of fit tests for the spectral density 

Consider a stationary Gaussian process 

= A(B; )et 	(10.20) 

with iid zero mean normal random variables Et, var(E t ) = a €2 , and 
a parametric spectral density 

X — p, 
00 

(10.21) 



lo
g  

p
er

io
do

g
ra

m
  

- 

_I 
o 

 c5 
o , 

o 
T- 

1 
	

1 

0.50 

202 	 GOODNESS OF FIT TESTS AND RELATED TOPICS 

o o 
T- 

- fitted AR(1)-spectrum 
	 fitted fr G n spectrum 

1 	1 

0.05 

log frequency 

o  

Figure 10.1. Nile River minima: periodogram and fitted AR(1) and frac-
tional Gaussian noise spectral densities (log-log coordinates). 

where 0 = (0- ,2  / ( 270,77) E R M  and (2.2) holds for some H E 
(1/2, 1). Given a data set X 1 , ..., X,,, a question one may ask is 
whether the chosen parametric class of spectral densities f (A; 0) is 
appropriate for modeling the observed dependence structure. More 
specifically, one would like to test the null hypothesis 

Ho  : f(A) 	f(A; 9) 	 (10.22) 

for some 9,  against the alternative 

HA : f (A)#f (À;O) 	 (10.23) 

for all values of O. 
Example: The log-log periodogram of the Nile River data sug-

gests fitting a straight line to the plot. Mandelbrot (see, e.g., Man- 



n 
k= 

47r 	/(Ai)  
B(0) = — 

k=1 

i(Àj)  2  
[
f(Ai;t9)

I  

and 
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delbrot and Wallis 1968a, 1969a) proposed fractional Gaussian 
noise. This is a good model candidate as its spectral density in 
log-log coordinates is almost a straight line and its shape is fully 
determined by the parameter H only. On the other hand, consider 
an AR(1) model as an example of a short-memory process with 
only one parameter. The fitted spectra are displayed in Figure 
10.1. The AR(1) spectrum does not seem to capture the negative 
slope near the origin. However, graphically the deviation from the 
observed periodogram might not seem much greater than for the 
fractional Gaussian noise spectrum. The goodness-of-fit test below 
will answer this question formally. 

The following statistic for testing (10.22) is proposed in Beran 
(1992a). Let 

where Ai  = 27rj/n (j = 1, 2, ...,n*) are the Fourier frequencies, n* 
is the integer part of 1(n – 1), and /(A) is the periodogram. Note 
that A n, and B n  are the Riemann sums of the integrals 

9  
2 f [  " ] - c/A = 

0  f(A; 0) 1 ir WO  2 
_,

[ 
f (A; 0)

] c/A (10.26) 

and 
71-  

 2
1

1- 0)  

(A,O) 	
7r 	1-(A)  dA 

f
dA = 	 (10.27) J_  PAM ' 

respectively. Also, let 0 be Whittle's approximate MLE. Note that 
in terms of the notation here this means that 7, minimizes  B(0*) 
with respect to 77, where 0* = (1, n ), and the scale parameter is 
estimated by 01 = 'Ci 62 /(27) = (27r) -1 B n (0*). We then define the 
test statistic 

,, 	A n (0) 
T(ô) = 

B721(6)
. 	 (10.28) 

In the case of short-memory processes, this statistic was proposed 
by Milhoj (1981). Intuitively, Tn  is a standardized overall mea-
sure of the discrepancy between the periodogram and the fitted 
spectrum. The discrepancy at a specific frequency A is defined to 
be proportional to [1- (A)/ f (A; 0)] 2 . An interpretation in the time 



n-1 1 
= —

2 
E ( k).  (10.32) 
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domain is obtained in terms of the correlations of the estimated 
residual process 

E t (î) = A -1 (B; fi)X t . 	 (10.29) 

First note that the autocovariances of  Et(i)  can be estimated by 

47r 	/ (co  i)  
c (k) = — 	 [ 	„ ] cos(kwi ). 	(10.30) 

n J=1  f 	60') 

The autocorrelations of the residual process are estimated by 

€ (k)  
; Mk) = 	. 	 (10.31) 

-y ,(0) 

Then Tn  can be written as 

k=0 

Thus, Tr, is the sum of the squares of all estimable correlations of 
the residual process obtained by fitting the chosen model. If the 
parametric model is correct, then the residual process is uncorre-
lated, otherwise not all correlations are zero. Tr, is an extension of 
the portmanteau statistic based on a finite number of correlations 
of E t (71) (see e.g. Box and Pierce 1970; Davies, Triggs and Newbold 
1977; Box and Ljung 1978). The portmanteau statistic is of the 
form 

1 
Tp n  = — 

27r 

   

 

Pk ,  (10.33) 

   

k=0 

where p is a fixed integer. Instead of restricting attention to a fixed 
set of correlations, (10.32) takes into account all estimable corre-
lations simultaneously. On one hand, this is a disadvantage. The 
correlations at lags close to n are estimated very poorly. Thus, in-
cluding such correlations leads to more variability of Tn , even if H 
is true. On the other hand, in contrast to (10.33), Tr„ is a consis-
tent test. Deviations at any arbitrary lag can be detected. Including 
all correlations is particularly appropriate for long-memory spec-
tra. Suppose, for instance, that a slightly incorrect model leads to 
underestimation of  H.  The residual process will then be a long-
memory process. It was noted previously that single autocorrela-
tions of such a process need not be particularly large. It is rather 
the decay of the correlations that is unusually slow. Tr, will then 
tend to be more powerful than test statistics based on a small fixed 
number of correlations. 
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The distribution of Tn  under Ho  follows from the following result 
(see Milhoj 1981 for short-memory processes and Beran 1992a for 
long-memory processes). 

Theorem 10.2 Define p, = (p i , 0 2 ) by p i  = 47r, p 2  = 27r and 
= 1607 2 , Q = (wii)i,/ w11.1,2  by  w 	 wi2 = w2i = 327 2  and (.4)22 = 87 2 . 

Then, under Ho , the following holds. 

(i
) 

E[Art(6)] = Al ± o(n 112 ) 
	

(10.34) 

E[Bn(6)] =  1 2 ± 0(n -1/2 ) 
	

(10.35) 

V7n[A n (0) — p i ,  B(ö) — 1.1,2] —>d Z, 	(10.36) 

where Z is a bivariate Gaussian random variable with zero mean 
and covariance matrix a 

In particular, it follows that the distribution of Tn  does not de-
pend on the unknown parameter 0 and is the same, as if 0 were 
known (simple hypothesis). An analogous limit theorem can be ob-
tained under certain types of alternatives (Milhoj 1981 and Beran 
1992a). Critical values of Tn  are obtained from 

P(Tn  5_ e) = P (An (0)1 .E3(0) 5_ e) = P(A n (e) — c B n2  (0) _5_ 0) 

eNd f f x<cy2 
 0 n (x , y)dx dy,  , 	 (10.37) 

where On  is the bivariate normal distribution with mean p, and 
covariance matrix n —la A further simplification can be achieved 
by noting that Tn  itself is asymptotically normal with mean 7 -1  
and variance 27r -2n -1 . Hence 

P (Tr, < c) P-,-.,' 43( 	(c7r — 1)). 	 (10.38) 
2 

Numerical comparisons in Milhoj (1981) show that (10.38) is close 
to (10.37) for moderately large sample sizes (for example, n = 128). 

Example: The value of Tn  for the Nile River data and frac-
tional Gaussian noise as parametric model is 0.309. The data con-
sist of 660 measurements. The approximate P-value is P(Tn  > 
0.309)P.,- 1 —4)(-0.53) = 0.7019. On the other hand, for the AR(1) 
model, Tri  = 0.420 with a P-value of 1 — 4)(5.80) ,-----: 0. Thus, frac-
tional Gaussian noise appears to model the spectral shape very 
well, whereas the AR(1) spectrum clearly deviates from the ob-
served spectrum. Finally note that a test of independence yieds 
Tn  = 2.081 with a P-value of 1 — 4)(100.60) = 0! 
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A more specific question than the hypothesis (10.22) is whether 
or not H is larger than In the spectral domain this means that 
we are only interested in how to model the spectral density near the 
origin. A modification of the above test to testing Ho  for a certain 
range of frequencies 0 < A < -y < 7 is given in Beran (1992a). As 
an alternative, one may want to test directly the hypothesis 

Ho : H = —
1 

(10.39) 
2 

against the alternative 

    

1 
Ho, : H > 

2
. 

Suppose that H is estimated by Ê and that 

  

— H 

 

Zn, = 

   

   

   

is asymptotically standard normal. This is the case for the estima-
tors discussed Chapters 5-7 and Section 4.6. Under this assump-
tion, a critical region at the level of significance a is given by z > zo, 
where I(z) = 1 — a. 

Another procedure for testing (10.39) against (10.40) is given in 
Davies and Harte (1987) for the case of fractional Gaussian noise. 
They derive so-called locally optimal and beta-optimal tests. A test 
is called locally optimal if it maximizes the derivative of the power 
function with respect to H at H = The proposed tests assume 
however the specific correlation form of fractional Gaussian noise. 
They therefore seem to be of limited practical interest. 

10.3 Changes in the spectral domain 

The periodogram of the Nile River data is very well approximated 
by the spectral density of fractional Gaussian noise. However, a 
striking feature of the plot of the observations against time (Fig-
ure 1.3) is that about the first 100 observations seem to fluctuate 
much more independently than the subsequent 500 measurements. 
Whittle's MLE of H is equal to 0.54 and 0.88 for the first 100 and 
the next 500 observations, respectively. The natural question is: 
Can this discrepancy be explained by randomness that is due to 
estimation or does H actually change after the first 100 observa-
tions? The answer is not obvious a priori, because the estimate of 
H is rather uncertain when it is based on a short series only. 



v(i(i)) 	• 
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A partial answer is given by the following result which is a corol-
lary of Theorem 3.6 (Beran and Terrin 1994): 

Theorem 10.3 Let X t  be a linear process (3.12) with spectral den- 
sity (2.2). Let 0)  , ...,i) (k)  be the Whittle estimates of based on 
the subseries  (X0 , 

 .• • Xni )7 (Xn1+17 ••• xn2), ••• (Xnk--1 	• X nk) ,  

respectively, where n o  = 1 < n1 < 	< nk = n. Define the matrix 

= [i) (1 ) - 	i) ( k ) - 
	 (10.42) 

Suppose that there exist 0 < 	<1  (1 = 1, ...,k — 1) such nil n —> 
(1 = 1, ...,k — 1) as n —> oo. Then 

fiTE —>d  E, 	 (10.43) 

where E is a zero mean matrix with independent columns. Each 
column 1 (1 = 1, . , k) is asymptotically normal with covariance 
matrix 

C(71;7))  = 'Y/-1 C(07 	 (10.44) 

where C(n) is defined by (5.25). 

Consider now testing the hypothesis that X t  is stationary with 
a constant value of H against the alternative that H changes at 
some time points 1 < ni < 	< nk-1 < n. Denote by v()  the 
asymptotic variance of fr-i(H — H ) , evaluated at the estimated 
parameter value ij and let H be the sample mean of  H( 1 ), ..., 
If n 1 , ..., nk_ i  are known a priori, then a simple test statistic is 
given by 

(10.45) 

By the above theorem, an asymptotically correct rejection region 
at the level of significance a is given by T1,2,...,k > XL ia  where 
xL 1;0, is the upper (1 — a)-quantile of the x 2-distribution with 
k — 1 degrees of freedom. 

Applying this to the Nile River data, we obtain the following 
result. For simplicity, we consider the first 600 observations and 
divide them into 6 series, each of length 100. The estimates of H 
for the six subseries are 0.54,0.85, 0.86, 0.83, 0.84, and 0.93, respec-
tively.The variability of ii (i )  seems high; however, the estimates of 
H are based on 100 observations only so that, in principle, high 
variability has to be expected even if H is constant. The biggest 
jump occurs between j = 1 and j = 2. The test statistic T1,2,3,4,5,6 



1 
I2 ) ( A) = 	I 	

eitAxti2 

27rm 

771 

t=1 

(10.46) 

208 	 GOODNESS OF FIT TESTS AND RELATED TOPICS 

is equal to 

 

6 
(flu) - 11) 2  

100 T1,2,3,4,5,6 = 

 

 

    

i=1 
= 18.187 + 0.389 + 0.596 + 0.106 + 0.225 + 3.260 = 22.762. 

The P-value is 

P(T1,2,3,4,5,6 > 22.762) 	P (  d> 22.762) = 0.0004. 

Hence, there appears to be statistical evidence that H is not con-
stant. Clearly, the first term causes rejection of Ho . This corre-
sponds to the visual impression of the time series plot. It should 
be noted, however, that Theorem 10.3 assumes that the time points 
where H might change are known a priori. Instead, we first looked 
at the time series plot and then decided a posteriori that k might 
be equal to 2 and n i  is about 100. The given formal level of signif-
icance obtained from Theorem 10.3 is therefore not quite correct. 
In order to incorporate lack of knowledge about one 
would need to use a statistic that compares  H for many differ-
ent subseries simultaneously. A nonparametric method that makes 
such comparisons for the whole spectral density is given in Giraitis 
and Leipus (1991, 1992). It is an extension of results derived by Pi-
card (1985) for short-memory processes (see also Epps 1988). The 
method can be described as follows. Suppose that Xt  is a linear 
process (3.12), all moments of Et are finite and the spectral den-
sity f is of the form (2.2). Consider the null hypothesis that f is 
the same for the whole series against the alternative that there is 
a time point ni after which the spectral density is different. For 
0 < m < n, denote by 

the periodogram of X i , ..., X, and by 

1 
= 27(n — m) 	

eitAxti2 

t=m+1 

the periodogram of X, 44 , X. Also, let 

(10.47) 

and 

A 
PrT(A) = 	/2 ) (X)dX 

P (2)  (A)= 	 42)(x)dx n-m 
0 

(10.48) 

(10.49) 
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be the corresponding cumulative periodograms. For (t, A) E K = 
[0,1] x [0, 7], define 

[nt] 	nt] 	- (1) 
((t, A) = 	(1— 

 [ 
—)[Fr i  ,(A) — il(2) Lrntj ,(A)] ' 	(10.50) 

	

rnt 	n—  n 	n 

Picard (1985) proposes the test statistic 

Tin, = fi-1 sup l(n(t, A)i- 
(t,À)EK 

This test statistic measures the largest discrepancy between the cu-
mulative periodograms that one can achieve by splitting the series 
into two halves. It can be shown that, under the alternative, 

lim P(Tn  > c)= 0 
n.--oo 

(10.52) 

for any e>  0. This means that a test based on the rejection region 
Tn  > c is consistent. Moreover, Giraitis and Leipus obtained a 
formula for the asymptotic tail distribution of Tn  under the null 
hypothesis. 

Theorem 10.4 Let x4 be the fourth cumulant of et, 

A  F (À) = I f (x)dx, 	 (10.53)  

fo min(A,v) 
Cr (A, v) = 27r 	 f 2  (A)clA + x 4F(À)F(v) 	(10.54) 

T(t, A; s, v) = [min(t,$) — ts] • a(A, u) 	(10.55) 

where (t, A), (s, u)  E K. Suppose that the null hypothesis is true. 
Then, under the above conditions and some additional regularity 

as  

lim P (Tn  > c) = P(  sup  IZ (t, A)I > e), 	(10.56) 
n—>oo 	 (t,À)EK 

where Z(t, A) is a Gaussian process with two-dimensional index 

(t, A), zero mean, and covariance function T. 

Based on this result, Giraitis and Leipus also derived a method 
for estimating the time point where the change in the spectral 
density occurs and an estimator for the maximal jump in the cu-
mulative spectrum, 

sup IFi(A) — F2 (A)1 	 (10.57) 
AE [0,7r] 

(10.51) 

where F1, F2 are the cumulative spectral densities for the process 
before and after the change point, respectively. 
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To conclude this section, we note another application of The-
orem 10.3. In some situations, H has to be estimated for a very 
long time series. This occurs in particular in technical applica-
tions. For instance, the VBR and Ethernet data introduced in 
Chapter 1 are parts of series of several tens of thousands of mea-
surements. In these applications, one often needs quick (some-
times "real time" ) estimation of H (and possibly other parameters 
772 , ..., 77 /1/ ). Theorem 10.3 implies that, if the series is divided into 
sufficiently long subseries, then the estimates 7, 1 ,  based on the 
different subseries are approximately independent. Thus, instead 
of estimating n  from the whole series, one can divide the series 
into subseries (X 1 , ..., Xi), (Xi +1,...,X2i), ...,(X( k _ i )i+i, Xk i ), 
(j > 0, k = [ri I j]). The parameter estimate -7) may then be defined 
by 

(10.58) 
j=1 

By Theorem 10.3, as n 	oc  and jn -1  -4 -y > 0, N/777(73-77) has the 
same asymptotic distribution as the Whittle estimator based on the 
whole series. For Gaussian processes 74 is asymptotically efficient. 
Calculation of (10.46) is particularly fast on computers with several 
parallel processors. Moreover, as a byproduct, splitting the series 
provides the possibility of checking whether the parameters remain 
constant. 



CHAPTER 11 

Miscellaneous topics 

11.1 Processes with infinite variance 

In all previous chapters, a basic assumption was that the variance 
of Xt  is finite. In some areas of application this might be an un-
duly restrictive assumption. For example, Mandelbrot and Wallis 
(1968a) observed that models with infinite variance are more ap-
propriate for many hydrological series. In analogy to the "Joseph 
effect," they call the phenomenon of an infinite variance the "Noah 
effect." Other examples where processes with an infinite variance 
might be more appropriate are reported, for instance, in Stuck 
and Kleiner (1974; telephone signals), Fama (1965; stock market 
prices) and Mandelbrot (1969; economic data sets). For more ref-
erences, see, for instance, Davis and Resnick (1986a,b). Generally 
speaking, infinite variance processes are good model candidates 
for "bursty" phenomena, i.e., phenomena that exhibit occasional 
unusually large observations. 

There is an extensive literature on the probability theory for 
infinite variance processes (for references see Samorodnitsky and 
Taqqu 1993). Typical examples are linear processes (see Brockwell 
and Davis 1987, Chapter 12.5), stable self-similar processes (see, 
e.g., Kono and Maejima 1990, Cambanis and Maejima 1989, Cam-
banis et al. 1992, Samorodnitsky and Taqqu 1989, 1990, 1992), and 
ARIMA and fractional ARIMA processes with infinite variance in-
novations. A model that may be especially useful for statistical 
inference is the fractional ARIMA model with stable innovations 
discussed in Kokoszka and Taqqu (1993c). It is defined by 

0(B)(1 — B) dXt = 
	

(11.1) 

where the innovations Et are iid stable random variables. The case 
d = 0 and related linear processes with infinite variance are also 
considered, for instance, in Bhansali (1984, 1988), Hannan and 
Kanter (1977), Kliippelberg and Mikosh (1991, 1992), Gadrich and 
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Adler (1993) (see also references therein). The purpose of the ex-
tension to d > 0 is to obtain processes that have "long memory" 
in some sense. However, before starting to talk about "short" and 
"long" memory, one needs to define how dependence is measured 
when second moments do not exist. Autocovariances are no longer 
defined. 

Several measures of dependence are proposed in the literature. 
For instance, a direct extension of the usual autocorrelation is ob-
tained by considering the sample correlations 

gk) = L-1t=1  

En  t=1 X2  t 
(11.2) 

Because observations consist of finite numbers that are almost 
surely never all zero, (11.27) is always defined. Davis and Resnik 
(1986) consider linear processes 

00 

Xt (11.3) 
j=—oo 

with iid stable innovations E s , and prove that under certain summa-
bility conditions on the coefficients , f3 (k) converges almost surely 
to 

00 
3 ._ 0,0  zi) 	+k 

p(k) 	 (11.4) 2 	• 
j- 00 j  

Also, a limit theorem for the properly normalized variables  16(k) 

is obtained. In the case where the variance of E s  is finite with 
E  (X i )  = 0, p(k) coincides with the usual autocorrelation. Another 
measure of dependence is the so-called codifference: 

-7-  (u) = log E[ei(x t+u — A- t ) ] — log E [eix  t±u] — log E[ext]. 	(11.5) 

For a Gaussian process, T (u) coincides with the autocovariance 
-y ( u ) Kokoszka and Taqqu (1993a) showed that under suitable con-
ditions, the codifference of the fractional ARIMA process (11.27) 
has a hyperbolic decay. This allows for the distinction between long 
and short memory in terms of the summability of T. For other mea-
sures of dependence, more detailed results, and further references, 
we refer the interested reader, for instance, to Kokoszka and Taqqu 
(1992, 1993a,b,c). 
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11.2 Fractional GARMA processes 

Long memory is defined in terms of the spectral density by assum-
ing that f has a pole at the origin. Gray, Zhang, and Woodward 
(1989) generalize this definition by allowing the spectral density to 
have poles at any (zero or non-zero) frequency A o  E [0, r]. They 
say that a stationary process X t  has long memory if f has a pole 
at some frequency A o  E [0, 7]. If A °  then the correlations are 
summable, because they converge to zero and change their sign pe-
riodically. However, the absolute values of the correlations are not 
summable (see Theorem 11.2 below). The motivation for consider-
ing poles outside of the origin is to model persistent cyclic behavior. 
A pole of the spectrum at a frequency A 0 0 implies that the pro-
cess has a long-lasting nondeterministic periodic component. More 
specifically, Gray et al. consider the following generalization of a 
fractional ARIMA process. 

Definition 11.1 Let Et, t E Z be a sequence of independent zero 
mean random variables with variance cr f2 . Define X t  by 

X t  = (1— 2uB ± B 2 ) -4  E t 	 (11.6) 

for some lui < 1, dO.  Then X t  is called a Gegenbauer process with 
parameters u and A = d. 

In particular, for u = 1 one obtains the fractional ARIMA(0,d,O) 
process. The coefficients a(j; u) in the infinite moving average rep-
resentation 

= (1— 2uB + B 2 ) -4  c t  = 
00 

  

tt)Et—j 	(11.7) 
J=0 

are so-called Gegenbauer polynomials. They are of the form 

p(d 	•\ 2 3-2k 
Ct(i; U) = 	1)k 	  

(u)  

I() 	
(11.8) 

- 2k)! • 
k=0 

Stationarity and invertibility of X t  are established by the following 
result (Gray et al. 1989): 

Theorem 11.1 Let X t  be defined by (11.36). Then 

(i) X t  is stationary if either 

lui < I and d < 1 

or 
1 

u = ±1 and d < —• 
2 
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(ii) X t  is invertible, if either 

lul < 1 and d > —1 

or 
1 

u = ±1 and d > --
2

. 

In the stationary region, the spectral density of X t  is given by 

U 
2 

d 
f) = 	2 --  (cos .A — u ) d . 

27r 
(11.9) 

For A °  = arccos(u), f is infinite. In the case of a fractional 
ARIMA(0,d,0) process we have u = 1 so that A °  = 0. The correla-
tions of Xt  are given by 

Theorem 11.2 (i) For u =1 and 0 < d < 

, r(1—  d) F(k ± d)  

P(k j 	r(d) r(k +1— d) • 

In particular, for k —> oo, 

p(k) ,--k_>00  const • k 2d-1 . 

(ii) For u = —1 and 0 < d < , 

p(k) = (-1)
kF(1 — d) F(k ± d)  

F(cl) r(k +1— d)* 

In particular, for k —> oo, 

(_ i )k k 2d—i p(k) ,--ik,,,„ const - 

(iii) For lui < 1 and 0 < d < 1, 

p(k) r• d k, 0,0  const - k d—l sin(ld — kAo) 
2 

as k —> oc. 

Case (i) is long memory in the sense of the original definition in 
Chapter 2. Case (iii) is a new kind of long memory. The correlations 
decay slowly in the sense that the sharp asymptotic upper bound 

lp(k)I < const • k 2d-1  (11.15) 

converges slowly to zero. For large lags, the sign and the size of 
individual correlations change periodically. 

Equation (11.7) can be generalized to include autoregressive and 
moving average components. In analogy to a fractional 
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ARIMA(p, d, q) process, a GARMA(p, d, q) process is defined by 

0(B)(1 — 2uB ± B 2 ) 4  X t = 

where 0 and lp are suitably chosen polynomials. The asymptotic 
behavior of the correlations is essentially the same as above. The 
spectral density is given by 

4 kke zA )1 2  f (A) = 
27r 10(e,„.)912 

2 —d  (cos A — u) d . 	(11.17) 

11.3 Simulation of long-memory processes 

11.3.1 Introduction 

Many methods exist for simulating Gaussian processes. The most 
obvious method is to multiply a vector of iid standard normal ran-
dom variables by a suitable transformation matrix. More specifi-
cally, suppose that we want to simulate n observations of a station-
ary Gaussian process with zero mean and given autocovariances 
-y(k). This means that a vector X = (X1, ..., X ri ) t  has to be drawn 
randomly from an n-dimensional normal distribution with mean 0 
and covariance matrix 

n = [-Y(i —  

This can be achieved by the following steps: 

1. Write the covariance matrix as a product of a real lower trian-
gular matrix L and its transposed L t , 

E = LL t . 	 (11.19) 

This representation is called Cholesky decomposition. For a 
given model, this step has to be performed only once. 

2. Simulate a vector of independent standard normal random vari-
ables 

Z = (Z r ,..., Zn ) t . 	 (11.20) 

3. Define 
X =- (X1, ..., X n ) t  =- LZ 	 (11.21) 

The series X 1 , ..., X v, has the desired properties. In principle, this 
method is very easy to program. However, in the context of long 
memory one is mainly interested in generating rather long series. 
The covariance matrix is then very large. The Cholesky decomposi-
tion of En  may therefore need a large amount of computer memory 



2n-2 

gk = 
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which might not be available. Also numerical problems might oc-
cur. It is therefore worthwhile to consider methods that avoid such 
large matrices. We briefly discuss some of these methods in the 
following sections. 

11.3.2 Simulation of fractional Gaussian noise 

In chapter 2, we saw that fractional Brownian noise and hence 
fractional Gaussian noise can be written as a stochastic integral 
with respect to Brownian motion. This suggests simulating frac-
tional Gaussian noise by approximating this integral by a sum. As 
Brownian motion has independent increments, the only random 
numbers one needs to generate are iid standard normal variables. 
More details and several versions of this approximation are given 
in Mandelbrot (1971b) and Mandelbrot and Wallis (1969a). 

11.3.3 A method based on the fast Fourier transform 

Davies and Harte (1987) propose the following method for simu-
lating a stationary Gaussian time series of length n with autoco-
variances -y(0), -y(1), ...,-y(n — 1) : 

1. Define 
27(k — 1) 

Ak=  	 (11.22) 
2n — 2 

for k =- 1,...,2n — 2, and the finite Fourier transform gk of the 
sequence -y (0), -y (1), 	-y (n — 2), -y (n — 1) , (n — 2), ... , -y(1), 

-y(2n — j — 1) z (3-1-)Ak (11.23) 
i= 
	 i=n  

for k = 1, ..., 2n — 2. 

2. Check that gk > 0 for all k =1,...,2n — 2. 

3. Simulate two independent series of zero mean normal random 
variables, say U1 , U2, ..., Un, and V2, ..., Vn_1, such that 

var(UO = var(Un ) = 2 	 (11.24) 

and, for 

var(Uk) = var(Vk) = 1. 	 (11.25) 

Define V1  = Vn  = 0 and complex random variables Zk by 

Zk =- Uk 	iVk, k =- 1, ...,n 	 (11.26) 
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and 
Zk = U2n-k - iV2n—k 
	 (11.27) 

for k = n + 1, ..., 2n — 2. 

4. For t = 1, ..., n, define 

2n-2 

Xt =  	.vcei(t— k  zk. 	(11.28) 
2Vn — 1 

k--,--1 

The series X t  has the desired distribution. The advantage of this 
method is that the fast Fourier transform can be used to calculate 
(11.23) and (11.28). This makes the method computationally fast. 

11.3.4 Simulation by aggregation 

A compationally efficient way of simulating long-memory processes 
follows from the results in 13.2. In a first step, one simulates a suf-
ficient number of short-memory processes with parameters chosen 
randomly from a certain distribution. For instance, one may use 
AR(1) processes with coefficients ai  having a beta distribution 
(see Section 1.3.2). In a second step, the aggregated series (1.33) 
is obtained. In particular, this method is suitable for simulating 
extremely long time series. Because AR(1) processes can be calcu-
lated recursively, no numerical problems occur. 

11.3.5 Simulation of fractional ARIMA processes 

Fractional ARIMA (p, d, q) processes can be simulated in two steps, 
by using the representation (2.29). 

1. Simulate a fractional ARIMA(0,d,O) series Xi' , ..., X n* by one of 
the methods above. 

2. Apply a program for the simulation of an ARMA process, using 
Xi 1` as innovations. 

The only difference from the simulation of an ordinary ARMA 
process is that instead of iid innovations the innovations .X41` are 
used. 

1 



CHAPTER 12 

Programs and data sets 

12.1 Splus programs 

12.1.1 Simulation of fractional Gaussian noise 

##################### 
# 
#  Splus-functions for the simulation 
# of a series X(1),...,X(n) of 
# fractional Gaussian noise 

# 
##################### 

##################### 
# ckFGNO 
if  covariances of a fractional Gaussian process 
#  

  

 

-  

# INPUT: n = length of time series 
# H = self-similarity parameter 

# OUTPUT: covariances up to lag n-1 
# 
##################### 

ckFGNO < —function(n,H) 
{ 

k< —0:(n-1) 
H2< —2*H 
result< —(abs(k-1)**H2-2*abs(k)**H2+abs(k+1)**H2)/2 
drop (result)  
1 

##################### 
gkFGNO 
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# 	  
# A function to calculate gk=fft of V=(r(0),...,r(n-2), 
if  r(n-1), r(n-2),...,r(1), where r=the autocovariances 
# of a fractional Gaussian process with variance 1 
# 
# INPUT: n = length of time series 
# H = self-similarity parameter 

# OUTPUT: gk = Fourier transform of V at 
# Fourier frequencies 

# 
######################## 

gkFGNO < —function(n, H) 

{ 

gammak< —ckFGNO(n,H) 
ind < — c(0:(n - 2), (n - 1), (n - 2):1) 
gk < — gammak[ind+1] 
gk < — fft(c(gk), inverse = T) 
drop(gk) 
1 

##################  	 
# simFGNO 
# 
# Simulation of a series X(1),...,X(n) of 
# a fractional Gaussian process 
# 	  
if  INPUT: n = length of time series 
# H = self-similarity parameter 

# 
# OUTPUT: simulated series X(1),...,X(n) 
# 
######################## 

simFGNO < —function(n,H) 
{ 

z < - rnorm(2*n) 
zr < — z[c(1:n)] 
zi < — z[c((n+1):(2*n))] 
zic < — -zi 
zi[l] < — 0 
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zr[1] < — zr[1]*sqrt(2) 
zi[n] < — 0 
zr[n] < — zr[n]*sqrt(2) 
zr < — c(zr[c(1:n)],zr[c((n-1):2)]) 
zi < — c(zi[c(1:n)],zic[c((n-1):2)]) 
z < — complex(real=zr,imaginary=zi) 
cat r n=" " h=" ,H) 
gksqrt < — Re(gkFGNO(n,H)) 
if(all(gksqrt>0)) 

gksqrt < — sqrt(gksqrt) 
z < — z*gksqrt 
z < — fft(z,inverse ,T) 
z < — 0.5*(n-1)**(-0.5)*z 
z < — Re(z[c(1:n)]) 

}else 

gksqrt < — 0*gksqrt 
cat("  Re(gk)-vector not positive") 

drop(z) 

12.1.2 Simulation of fractional ARIMA (0, d, 0) 

################### 

• Splus-functions for the simulation 
# of a series X(1),...,X(n) of 
# a fractional ARIMA(0,d,O) process 
# (d=H-1/2). 

####  	 

################### 
ckARMAO 

# covariances of a fractional ARIMA(0,d,O) process 

# INPUT: n = length of time series 
# H = self-similarity parameter 
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# OUTPUT: covariances up to lag n-1 
# 
################### 

ckARMAO< —function(n,H) 
{ 

result< —(0:(n-1)) 
k< —1:(n-1) 
d< —H-0.5 
result[1]< —gamma(1-2*d)/gamma(1-d)**2 

result[k+11< —result[1]*(k**(2*11-2))*gamma(1-d)/gamma(d) 
k< —1:50 
result [k+11< —result [1] *gamma(k+d)* 

gamma(1-d)/(gamma(k- d+ 1)*gamma(d)) 
drop (result)  
1 

################### 
#  gkARMAO 
# 	  
# A function to calculate gk=fft of V=(r(0),...,r(n-2),r(n-1), 
# r(n-2),...,r(1)), where r=the autocovariances 
# of a fractional ARIMA with innovation variance 0 
#  
# INPUT: n = length of time series 
# H = self-similarity parameter 
# 
# OUTPUT: gk = Fourier transform of V at the 
# Fourier frequencies 

# 
################### 

gkARMAO< — function(n, H) 

{ 

gammak< —ckARMAO(n,H) 
ind < — c(0:(n - 2), (n - 1), (n - 2):1) 
gk < — gammak[ind+1] 
gk < — fft(c(gk), inverse = T) 
drop(gk) 
1 
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#################### 
# simARMAO 
# 
# Simulation of a series X(1),...,X(n) of 
# a fractional ARIMA(0,d,O) process (d=H-1/2) 
# 	  
# 
if  INPUT: n = length of time series 
# H = self-similarity parameter 

# 
# OUTPUT: simulated series X(1),...,X(n) 
# 
################## 

simARMAO < — function(n,H) 
{ 

z < — rnorm(2*n) 
zr < — z[c(1:n)] 
zi < — z[c((n+1):(2*n))] 
zic < — -zi 
zi[1] < — 0 
zr[1] < — zr[1]*sqrt(2) 
zi[n] < — 0 
zr[n] < — zr[n]*sqrt(2) 
zr < — c(zr[c(1:n)],zr[c((n-1):2)]) 
zi < — c(zi[c(1:n)],zic[c((n-1):2)]) 
z < — complex(real=zr,imaginary=zi) 

cat (" n=" ,n," h=" ,H) 
gksqrt < — Re(gkARMAO(n,H)) 

if(all(gksqrt> 0)) 
{ 

gksqrt < — sqrt(gksqrt) 
z < — z*gksqrt 
z < — fft(z,inverse=T) 
z < — 0.5*(n-1)**(-0.5)*z 
z < — Re(z[c(1:n)]) 

}else 
{ 
gksqrt < — 0*gksqrt 
cat("Re(gk)-vector not positive") 

1 
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drop(z) 
} 

12.1.3 Whittle estimator for fractional Gaussian noise and 
fractional ARIMA (p, d, q ) 

################### 
#  
# Splus-functions and program for 
# the calculation of Whittle's 
# estimator and the goodness of 
# fit statistic defined in Beran 
# (1992). The models are 
# fractional Gaussian noise or 
# fractional ARIMA. 
# The data series may be divided 
# into subseries for which the 
# parameters are fitted separately. 

#FFFFFFFFFFFFFFFFF 
# Functions 
#FFFFFFFFFFFFFFFFF 

################### 
# CetaFGN 
# 	  
# Covariance matrix of hatfetal 
#  for fGn. 
################### 

CetaFGN< —function(eta) 
{ 

M< —length(eta) 

# size of steps in Riemann sum: 2*pi/m 

m< —10000 
mhalfm < — trunc((m-1)/2) 

# size of delta for numerical calculation of derivative 

delta< —0.000000001 
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# partial derivatives of log f (at each Fourier frequency) 

lf< —matrix(1,ncol,M,nrow=mhalfm) 
f0< —fspecFGN(eta,m)Sfspec 
for(j in (1:M)) 

etaj< —eta 
etaj Di< —etaj [j] +delta 
fj< —fspecFGN(etaj,m)Sfspec 
lf[j]< —log(fj/f0)/delta 

# Calculate D 

Djl< —matrix(1,ncol,M,nrow=M) 
for(j in (1:M)) 

Ifor(1 in (1:M)) 
{Djl[j,1]< —2*2*pi/m*sum(lf[j]*lf[,1]) 

Result 

drop(matrix(4*pi*solve(Dj1),nco1=M,nrow=M,byrow=T)) 

################### 
# CetaARIMA 

if  Covariance matrix of hatfetal 
# for fractional ARIMA 

################### 

CetaARIMA< —function(eta,p,q) 

M< —length(eta) 

# size of steps in Riemann sum: 2*pi/m 

m< —10000 	mhalfm < — trunc((m-1)/2) 

# size of delta for numerical calculation of derivative 

delta< —0.000000001 

# partial derivatives of log f (at each Fourier frequency) 
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lf< —matrix(1,nco1=M,nrow=mhalfm) 
f0< —fspecARIMA(eta,p,q,m)Sfspec 
for(j in (1:M)) 

etaj< —eta 
etaj [j] < —etaj [j] +delta 
fj< —fspecARIMA(etaj,p,q,m)Sfspec 
lf[,j]< —log(fj/f0)/delta 

# Calculate D 

Djl< —matrix(1,nco1=M,nrow=M) 
for(j in (1:M)) 

{for(1 in (1:M)) 
{Dj1[j,1]< —2*2*pi/m*sum(lf[j]*14,1]) 

# Result 

drop(matrix(4*pi*solve(Dj1),nco1=M,nrow=M,byrow=T)) 

################### 
# Qeta 

if 	 
if Function for the calculation of A, B and 
//  Tn = A/B**2 
# where A = 2pi/n sum 2*[I(lambda< —j)/f(lambda< —j)], 

if B = 2pi/n sum 2*[I(lambda< —j)/f(lambda< 4]**2 and 

if  the sum is taken over all Fourier frequencies 
lambda< —j = 2pi*j/n 

if  f is the spectral density of fractional Gaussian 
# noise or fractional ARIMA(p,d,q) 
# with self-similarity parameter H=h. 
# cov(X(t),X(t+k))=integral(exp(iuk)f(u)du) 

if  NOTE: yper[1] must be the periodogram I(lambda< —1) at 
# --- the frequency 2pi/n (i.e. not the frequency zero !). 

# INPUT: h 
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# (n,nhalfm = trunc[(n-1)/2] and the 
# nhalfm-dimensional vector yper must 
# be defined.) 
# 
# 
# OUTPUT: list(n=n,h=h,A=A,B=B,Tn=Tn,z=z,pval=pval, 
# theta1=theta1,fspec=fspec) 
# 
# Tn is the goodness of fit test statistic 
# Tn=A/B**2 defined in Beran (1992), 
# z is the standardized test statistic, 
# pval the corresponding p-value P(w>z) 
# theta1 is the scale parameter such that 
# f=thetal*fspec and integral(log[fspec])=0. 

# 
#################### 

Qeta < — function(eta) 

{ 
cat("in function Qeta",fill=T) 
h < — eta[1] 

spectrum at Fourier frequencies 

if(imodel==1) 
{fspec < — fspecFGN(eta,n) 
thetal < — fspedthetal 
fspec < — fspedfspec} 

else 
{fspec < — fspecARIMA(eta,p,q,n) 
thetal < — fspedthetal 
fspec < — fspedfspec} 

# Tn=A/B**2 
yf < — yper/fspec 
yfyf < — yf**2 
A < — 2*(2*pi/n)*sum(yfyf) 
B < — 2*(2*pi/n)*sum(yf) 
Tn < — A/(B**2) 
z < — sqrt(n)*(pi*Tn-1)/sqrt(2) 
pval < — 1-pnorm(z) 
theta1 < — B/(2*pi) 
fspec < — fspec 
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Qresult< — list(n=n,h=h, 
eta=eta,A=A,B=B,Tn=Tn,z=z,pval=pval, 
theta1=theta1,fspec=fspec) 

drop(Qresult) 

1 

#################### 
# calculation of the spectral density f of 
# normalized fractional Gaussian noise 
# with self-similarity parameter H=h 
#  at the Fourier frequencies 2*pi*j/m  (j=1,.. .,(m-1)). 

 # 
# Remarks: 
# - 
# 1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du I 
# 2. f=thetal*fspec and integral[log(fspec)]=0. 
# 
# INPUT: m = sample size 

h = self-similarity parameter 
# 
# OUTPUT: list(fspec=fspec,theta1=thetal) 

# 
##################### 

fspecFGN < — function (eta,m) 

{ 

# parameters for the calculation of f 
h < — eta[1] 
nsum < — 200 
hh < — -2*h-1 
const < — 1/pi*sin(pi*h)*gamma(-hh) 
j < — 2*pi*c(0:nsum) 

II 	x = 2*pi*(j-1)/m (j=1,2,...,(n-1)/2) 
	 Fourier frequencies 	 - 

mhalfm < — trunc((m-1)/2) 
x < — 1:mhalfm 
x < — 2*pi/m*x 

# calculation of f at Fourier frequencies 

fspec < — matrix(0,mhalfm) 

-  
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for(i in seq(1:mhalfm)) 

lambda < — x[i] 
fi < — matrix(lambda,(nsum+1)) 
fi < — abs(j+fi)**hh+abs(j-fi)**hh 
fi[l] < — fi[1]/2 
fi < — (1-cos(lambda))*const*fi 
fspec[i] < — sum(fi) 

	 - adjusted spectrum (such that int(log(fspec))=0 

logfspec < — log(fspec) 
fint < — 2/(m)*sum(logfspec) 
theta1 < — exp(fint) 
fspec < — fspec/thetal 
drop(list(fspec=fspec,thetal=thetal)) 

#################### 
# calculation of the spectral density of 
# fractional ARMA with standard normal innovations 
# and self-similarity parameter H=h 
# at the Fourier frequencies 2*pi*j/n (j=1,...,(n-1)). 
# cov(X(t),X(t+k)) = (sigma/ (2*pi) )*integral(exp (iuk)g(u)du) 

Remarks: 

# 1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du 
# 2. f=thetal*fspec and integral[log(fspec)]=0. 

# INPUT: m = sample size 
# h = theta[1] = self-similarity parameter 
# phi = theta[2:(p+1)] = AR(p)-parameters 
# psi = thetaRp+2):(p+q+1)] = MA(q)-parameters 

# OUTPUT: list(fspec=fspec,thetal=theta1) 

### 	II 	################# 

fspecARIMA < — function (eta,p,q,m) 
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# 	 parameters for the calculation of f 	 

cat(" in  fspecARIMA",fill=T) 
h < — eta[1] 
phi < — c() 
psi < — c() 

# 	x = 2*pi*(j-1)/m (j=1,2,...,(n-1)/2) 	 
7Y- 	 = Fourier frequencies 	  

mhalfm < — trunc((m-1)/2) 
x < — 1:mhalfm 
x < — 2*pi/m*x 

	 calculation of f at Fourier frequencies 

far < — (1:mhalfm)/(1:mhalfm) 
fma < — (1:mhalfm)/(1:mhalfm) 
if(p>0) 

{phi < — cbind(eta[2:(p+1)]) 
cosar < — cos(cbind(x)%*%rbind(1:p)) 
sinar < — sin(cbind(x)%*%rbind(1:p)) 
Rar < — cosar%*%phi 
Jar  < — sinar%*%phi 
far < — (1-Rar)**2 + Iar**2 

1 
cat("far calculated",fill=T) 

if(q>0) 
{psi < — cbind(eta[(p+2):(p+q+1)]) 
cosar < — cos(cbind(x)%*%rbind(1:q)) 
sinar < — sin(cbind(x)%*%rbind(1:q)) 
Rar < — cosar%*%psi 
Jar  < — sinar%*%psi 
fma < — (1+Rar)**2 + Iar**2 

1 
cat("fma calculated",fill=T) 

fspec < — fma/far*sqrt((1-cos(x))**2 + sin(x)**2)**(1-2*h) 
theta1 < — 1/(2*pi) 
cat(" end of fspecARIMA",fill=T) 
drop(list(fspec=fspec,thetal=theta1)) 

1 
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################### 
# definition of the periodogram 
################# 

per < — function (z) 
{n< —length(z) 
(Mod(fft(z))**2/(2*pi*n)) [1:(n %/% 2 + 1)] 

################### 
# definition of function to be minimized 

################### 

Qmin < — function (etatry) 

result < — Qeta(etatry)$B 
cat("  etatry=" ,etatry,"B=" ,result,sep=" " ,fill= T) 
drop (result)  

#MMMMMMMMMMMMM 
# Main program 
#MMMMMMMMMMMMM 

# read data 

cat(" in which file are the data ?") 
filedata < — readline() 

cat(" total number of observations ?") 
nmax < — scan(n=1) 

cat("first and last observation to be considered (istart, iend) 

startend < — c(scan(n=2)) # 	> we only look at 
istart < — startend[1] # observations 
iend < — startend[2] # istart,istart+1,...,end 

cat("into how many subseries do you divide the data ?") 
nloop < — scan(n=1) 
n < — trunc((iend-istart+1)/nloop) 
nhalfm < — trunc((n-1)/2) 

# choose model 
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cat("model: fr.G.noise (1) or fractional ARIMA(p,d,q) (2) 
?") 

imodel < — scan(n=1) 
p < — 0 
q < — 0 

if(imodel==2) 
{ 

cat(" order of AR ?") # 
p < — scan(n=1) 
cat(" order of MA ?") # 
q < — scan(n=1) 
1 

# initialize h 

cat("  initial estimate of h=?") 
h < — scan(n=1) 
eta < — c(h) 

# initialize AR parameter 

if(p>0) 
{ 

cat("  initial estimates of AR parameters=?") 
eta[2:(p+1)] < — scan(n=-p) 
1 

# initialize MA parameter 

if(q>0) 
{ 

cat("  initial estimates of MA parameters=?") 
etaRp+2):(p+q+1)] < — scan(n=q) 
1 
M< —length(eta) 

# loop 

thetavector < — c() 
i0 < — istart 
for(iloop in (1:nloop)) 

{ 

h < — max(0.2,min(h,0.9)) # avoid extreme initial values 
eta[1] < — h 
i1 < — i0+n-1 



232 	 PROGRAMS AND DATA SETS 

y < — c(scan(filedata,n=nmax))[i0:i1] # read only y[i0:i1] 

# standardize data 

vary< —var(y) 
y< —(y-mean(y))/sqrt(var(y)) 

# periodogram of data 

yper < — per(y)[2:(nhalfm+1)] 

# find estimate 

s < — 2*(1.-h) 
etatry < — eta 
result 	 < 

nlmin(Qmin,etatry,xc.to1=0.0000001,init.step=s) 
eta < — result$x 
thetal < — Qeta(eta)$thetal 
theta < — c(thetal,eta) 
thetavector < — c(thetavector,theta) 

# calculate goodness of fit statistic 

Qresult < — Qeta(eta) 

# output 

M< —length(eta) 
if(imodel==1) 

{SD< —CetaFGN(eta) 
SD< —matrix(SD,nco1=M,nrow=M,byrow=T)/n 

}else 
{SD< —CetaARIMA(eta,p,q) 
SD< —matrix(SD,nco1=M,nrow ,M,byrow=T)/n} 

Hlow< —eta[1]-1.96*sqrt(SD[1,1]) 
Hup< —eta[1]+1.96*sqrt(SD[1,1]) 
cat(" theta=",theta,fill=T) 
cat("H=",eta[1],fill=T) 
cat("  95%-C.I. for H: [",Hlow,",",Hup,"]",fill=T) 

etalow< —c() 
etaup< —c() 
for(i in (1:length(eta))) 

{ 

etalow< —c(etalow,eta[i]-1.96*sqrt(SD[i,i])) 
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etaup< —c(etaup,eta[i]+1.96*sqrt(SD[i,i])) 
} 

cat r 95%-C.I.:" ,fill=T) 
print(cbind(etalow,etaup),fill=T) 
cat("periodogram is in yper",fill=T) 
fest < — QresultStheta1*Qresult$fspec 
cat(" spectral density is in fest",fill=T) 

# next subseries 

i0 < — i0+n 
1 

12.1.4 Approximate MLE for FEX P models 

# 	########## 	#### 	## 
# Estimation of the parameters of a 
# polynomial FEXP model as defined 
# in Beran (1993). 
# The order of the polynomial is 
# increased until no significant 
# improvement is achieved. 
# The data series may be divided 
# into subseries for which the 
# parameters are fitted separatly. 
# 
#################### 

#FFFFFFFFFFFFFFFFFF 
# Functions 
#FFFFFFFFFFFFFFFFFF 

####### 	## 	######## 
# definition of periodogram 
################ 	### 

per < — function (z) 
{n< —length(z) 
(Mod(fft(z))**2/(2*pi*n)) [1:(n %/% 2 + 1)] 
} 

###################il 
# functions for plotting spectrum 
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#################### 

llplot < — function(yper,fspec) 
{plot(fglim,yper,log="xy") 
lines(fglim,fspec,col=4) 

1 
lxplot < — function(yper,fspec) 

{plot (fglim,yper,log="  y")  
lines (fglim , fspec,col= 4) 

} 

#MMMMMMMMMMMMMMMMM 
# MAIN PROGRAM 
#MMMMMMMMMMMMMMMMM 

# read data 

cat(" in which file are the data ?") 
filedata < — readline() 

cat("  total number of observations ?") 
nmax < — scan(n=1) 

cat(" first  and last observation to be considered (istart, iend) ?") 
startend < — c(scan(n=2)) # -- > estimate for x[istart] to 

x[iend] 
istart < — startend[1] 
iend < — startend[2] 

cat("into how many subseries do you divide the data ?") 
nloop < — scan(n=1) 
n < — trunc((iend-istart+1)/nloop) 

nhalfm < — trunc((n-1)/2) 

cat("  maximal order of polynomial ?") 
p < — scan(n=1) 

cat("P-value for entering new polynomial terms ?",fill=T) 
pvalmax < — scan(n=1) 

# Fourier frequencies 

fglim< —(1:nhalfm)*2*pi/n 
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# loop (initialize) 

thetamatrix < — matrix(0,ncol=p+2,nrow=nloop) 
Hvector < — c() 
fspecmatrix < — matrix(0,ncol=nhalfm,nrow=nloop) 
ypermatrix < — matrix(0,ncol=nhalfm,nrow=nloop) 
zero < — (1:(p+2))*0 
i0 < — istart 

# loop (start) 

for(iloop in (1:nloop)) 

{ 

il < - i0+n-1 
y < — c(scan(filedata,n=nmax))[i0:i1] 

# periodogram 

yper < — per(y)[2:(nhalfm+1)] 

# long-memory component 

xlong< —log(sqrt((1-cos(fglim))**2 + sin(fglim)**2)) 

if  fit with no polynomial 

xglim< —xlong 

# generalized regression 

result< 
— glim(xglim,yper,link=" log" ,error=" gamma" ,scale=0.5,resid="  d") 

glim.print (result) 

estimate of theta 

theta< —resultScoef 
eta< —theta[c(-1)] 

7Y- estimate of SD of theta 

SD< —resultSvar 
SD< —sqrt(SD[col(SD)==- row(SD)1) 
SD< —SD[c(-1)] 

# estimated P-values 

pval< —2*(1-pnorm(abs(eta/SD))) 
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# estimate with no polynomials 
theta0< —theta 
xglim0< —xglim 

# loop for choosing polynomial 

if(p>0){ 
stopyesno< —"no" 
for(j in (1:p)) 

{ 

if(stopyesno=="no") 

{ 

# x-variables for long-memory and polynomial component 

xglim< —c() 
for(i in (1:j)){xglim< —cbind(xglim,fglim**0} 
xglim< —cbind(xlong,xglim) 

If generalized regression 

result < — glim(xglim,yper,link=" log" ,error=" gamma" ,scale=0. 5, 
resid=" d" ) 

glim.print(result) 

estimate of theta 

theta< —resultScoef 
eta< —theta[c(-1)] 

estimate of SD of theta 

SD< —resultSvar 
SD< — sqrt (SD [col (SD)==row (SD)] ) 
SD< —SD[c(-1)] 

estimated P-values 

pval< —2*(1-pnorm(abs(eta/SD))) 

condition for stopping 

if(max (pval) > pvalmax){stopyesno<  —"yes" } 
else{theta0< —theta 

xglim0< —xglim} 

1 
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# loop for choosing polynomial (end) 

1 
1 

# length of parameter vector 

jmodel< —length(theta0) 

# estimate of theta for iloop'th subseries 

thetamatrix[iloop,1:jmodel]< —theta() 

# estimate of H for iloop'th subseries 

Hvector< —c(Hvector,(1-theta0[2])/2) 

# estimated spectral density 

fspec < — exp(cbind(1,xglim0)%*%theta0) 

# estimated spectral density for iloop'th subseries 

fspecmatrix[iloopd< —c(fspec) 

# periodogram for iloop'th subseries 

ypermatrix[iloop,]< —yper 

# output 

cat(" H=",Hvector[iloop],fill=T) 
# loop (end) 

i0 < — i0+n 

1 

cat(" estimates are in thetamatrix, Hvector, ypermatrix, fspec-
matrix",fill=T) 

cat("For a plot of spectrum type",fill=T) 
cat (" 11plot(yper,fspec) for log-log-plot",fill=T) 
cat (" lxplot(yper,fspec) for log-x-plot",fill=T) 

12.2 Data sets 

12.2.1 Nile River minima 

Yearly minimal water levels of the Nile River for the years 622- 
1281, measured at the Roda Gauge near Cairo (Tousson, 1925, p. 
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366-385). The data are listed in chronological sequence by row. 

1157 1088 1169 1169 984 1322 1178 1103 1211 1292 
1124 1171 1133 1227 1142 1216 1259 1299 1232 1117 
1155 1232 1083 1020 1394 1196 1148 1083 1189 1133 
1034 1157 1034 1097 1299 1157 1130 1155 1349 1232 
1103 1103 1083 1027 1166 1148 1250 1155 1047 1054 
1018 1189 1126 1250 1297 1178 1043 1103 1250 1272 
1169 1004 1083 1164 1124 1027 995 1169 1270 1011 
1247 1101 1004 1004 1065 1223 1184 1216 1180 1142 
1277 1206 1076 1076 1189 1121 1178 1031 1076 1178 
1209 1022 1220 1070 1126 1058 1216 1358 1184 1083 
1097 1119 1097 1097 1153 1153 1151 1151 1151 1184 
1097 1043 1043 1002 1152 1097 1034 1002 989 1092 
1115 1115 1047 1040 1038 1085 1126 1058 1067 1115 
1263 1124 1110 1097 1097 1157 1000 991 995 1013 
1007 971 971 980 993 1043 1097 982 971 971 
1065 1022 1029 989 1029 995 982 1090 980 971 
957 989 966 989 1022 1074 1110 1110 1061 1151 
1128 1074 1043 1034 1074 966 1027 1029 1034 1065 
989 1034 1002 1128 1178 1097 1142 1466 1097 1137 
1097 1259 1313 1173 1169 1173 1088 1191 1146 1160 
1142 1128 1169 1162 1115 1164 1088 1079 1083 1043 
1110 1092 1110 1047 1076 1110 1043 1103 1034 1074 
1052 1011 1097 1092 1110 1115 1097 1196 1115 1162 
1151 1142 1126 1108 1187 1191 1153 1254 1187 1196 
1331 1412 1349 1290 1211 1232 1166 1124 1146 1079 
1108 1097 1106 1072 1065 1128 1340 959 959 1137 
1133 1137 1151 1117 1157 1157 1133 1110 1155 1189 
1260 1189 1151 1097 1209 1130 1295 1308 1250 1205 
1310 1250 1155 1101 1100 1103 1121 1121 1097 1106 
1259 1261 1124 1196 1205 1205 1119 1088 1250 1094 
1198 1121 1164 1211 1153 1146 1126 1288 1175 1171 
1081 1133 1164 1155 1155 1155 1160 1094 1054 1067 
1044 948 1099 1016 1065 1067 1072 1076 1081 1196 
1196 1151 1088 1128 1151 1236 1216 1288 1297 1182 
1306 1043 1184 1054 1169 1043 980 1072 1189 1151 
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1142 1193 1151 1097 1144 1097 1094 1153 1108 935 
1081 1081 1097 1146 1250 1151 1043 1043 1043 1070 
1124 1137 1146 1099 1054 1045 1070 1142 1074 1101 
1220 1196 1097 1207 1119 1160 1151 1025 1097 1137 
1007 1034 1043 1043 980 1079 1169 1250 1324 1209 
1142 1061 1000 1088 1128 1142 1259 1142 1148 1088 
1142 1119 1130 1088 1250 1137 1108 1110 1173 1173 
1196 1189 1200 1351 1274 1227 1310 1148 1151 1151 
1182 1182 1151 1133 1130 1151 1166 1070 1200 1074 
1110 1292 1178 1128 1097 1304 1103 1259 1119 1119 
1119 1081 1196 1085 1101 1103 1146 1211 1169 1144 
1191 1189 1182 1243 1243 1227 1189 1191 1155 1209 
1218 1211 1209 1164 1135 1121 1137 1254 1457 1299 
1277 1277 1178 1270 1313 1333 1270 1245 1245 1211 
1265 1346 1346 1290 1295 1286 1259 1254 1421 1268 
1263 1335 1313 1265 1319 1351 1277 1317 1268 1263 
1112 1207 1292 1205 1223 1205 1153 1182 1245 1205 
1151 1079 1151 1081 1128 1209 1157 1277 1259 1209 
1220 1184 1220 1193 1247 1252 1259 1299 1173 1182 
1180 1180 1331 1207 1236 1151 1182 1142 1191 1259 
1166 1196 1241 1252 1241 1252 1157 1126 1164 1088 
1173 1252 1288 1301 1286 1223 1232 1184 1207 1250 
1256 1211 1216 1209 1209 1207 1151 1097 1097 989 
966 1047 1056 1110 1290 1151 1166 1196 1196 1110 
1110 1119 1119 1074 1106 1128 1218 1098 1044 1056 
1058 1098 1043 1038 1142 1142 1193 1103 989 936 
1142 1142 1151 1151 1180 1259 1196 1142 1169 1196 
1142 1128 1043 1097 1142 1205 1205 1164 1160 1196 
1112 1169 1110 1178 1133 1153 1139 1155 1187 1196 
1220 1166 1128 1101 1157 1175 1142 1187 1254 1198 
1263 1283 1252 1160 1234 1234 1232 1306 1205 1054 
1151 1108 1097 
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12.2.2 VBR data 

VBR data (Heeke 1991, Heyman et al. 1991): original data (without 
log transformation). The data are listed in chronological sequence 
by row. 

170 169 157 139 136 149 131 100 92 94 
108 125 119 94 90 101 135 121 95 85 
81 103 133 154 170 173 178 171 178 193 
194 195 173 180 153 145 198 207 193 155 
131 118 120 145 144 120 121 117 103 96 
89 80 87 81 89 101 113 118 122 113 
119 103 85 69 73 69 72 58 43 41 
51 70 73 83 76 64 79 88 91 101 
94 94 109 110 119 130 122 120 102 84 
79 83 96 79 66 68 77 78 68 57 
59 58 58 58 70 84 75 70 70 68 
68 64 60 56 52 54 61 74 77 77 
78 72 66 61 56 56 74 96 101 107 
106 122 118 104 106 103 107 103 88 82 
78 62 62 65 59 53 54 52 52 49 
41 41 42 39 41 51 60 54 46 50 
70 115 158 161 172 123 111 134 135 153 
132 112 136 146 159 138 112 92 94 115 
127 132 125 126 160 218 268 253 216 172 
161 163 164 215 217 196 170 176 160 154 
185 205 196 186 174 223 278 281 252 227 
247 279 289 250 220 239 267 291 289 296 
271 236 216 215 268 267 280 265 273 222 
172 146 169 199 213 209 169 137 142 132 
133 171 177 175 189 229 218 170 183 224 
251 198 161 188 216 185 151 115 97 98 
96 121 132 154 167 174 153 144 130 116 
109 119 116 126 108 94 78 70 68 78 
83 81 85 92 68 55 56 57 63 64 
68 83 79 79 74 69 58 58 50 45 
49 68 79 89 100 103 90 85 62 61 
60 51 59 56 55 56 69 82 88 79 
60 60 66 66 55 47 68 68 63 55 
50 62 81 71 61 49 57 58 53 59 
50 40 38 38 44 52 56 66 59 60 
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57 64 57 49 49 46 38 41 45 32 
42 47 45 41 44 60 118 161 186 191 
215 242 226 215 248 225 212 198 218 265 
284 296 288 266 241 165 171 148 145 129 
138 153 147 121 113 107 125 125 125 121 
121 122 133 144 137 104 74 68 78 68 
58 65 58 68 81 65 62 73 64 61 
54 60 59 76 81 78 81 72 72 57 
68 62 50 49 63 62 61 76 99 95 
119 103 99 109 120 118 102 77 75 62 
54 51 46 49 56 70 78 91 110 114 
101 101 97 113 128 136 159 209 203 169 
156 133 114 98 85 82 109 107 87 74 
71 63 66 81 97 103 107 97 89 77 
87 71 58 62 79 91 96 77 76 85 
83 97 128 130 118 120 136 136 110 88 
71 68 79 81 75 66 59 68 78 78 
75 98 87 77 68 62 58 61 80 95 
98 125 115 99 93 97 109 114 137 133 
131 127 113 110 109 97 101 83 82 73 
82 92 89 79 83 108 109 145 185 188 

210 237 255 292 334 331 342 368 372 342 
375 328 272 253 232 278 312 349 388 389 
370 324 231 215 207 221 222 194 173 171 
157 141 131 127 121 128 107 94 110 184 
267 307 302 250 255 266 285 285 222 166 
173 198 195 153 160 166 134 119 104 94 
95 114 122 158 123 98 83 79 64 69 
88 90 119 158 197 225 241 270 298 274 

215 183 165 175 216 227 264 231 246 277 
274 236 187 174 163 136 99 85 81 108 

112 113 99 107 130 146 164 153 159 172 
182 174 172 179 179 186 156 140 129 139 

126 112 167 115 127 141 133 140 99 102 

103 89 91 76 70 61 69 64 83 89 

241 
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98 89 92 81 69 59 57 69 78 65 
68 66 65 61 66 68 93 118 145 183 
195 230 251 281 290 283 301 303 278 254 

240 217 216 193 178 169 182 187 189 180 
163 142 118 96 81 76 78 76 68 74 
90 107 98 99 92 96 96 115 116 118 
117 120 107 103 102 114 100 70 62 53 
58 65 73 70 73 77 68 58 54 60 
68 65 58 51 40 52 58 68 82 112 
104 104 102 103 84 76 80 94 97 106 
90 93 95 110 126 128 128 132 127 120 
108 101 110 91 83 91 73 62 73 82 
95 89 87 91 81 92 157 178 168 159 
138 121 98 87 103 137 146 115 100 87 
81 98 98 92 64 64 62 50 60 51 
52 66 76 69 82 92 106 97 98 91 
62 78 88 91 94 90 93 100 95 94 
89 82 74 70 63 64 56 54 49 52 
78 71 62 89 80 60 72 72 66 62 
54 72 95 134 158 186 188 163 155 136 
84 77 92 103 126 145 173 193 205 223 

217 203 187 153 171 184 150 137 100 76 
82 132 175 193 209 211 190 165 128 78 
68 100 148 178 192 193 202 198 176 169 
133 119 92 80 79 115 165 197 189 161 
134 93 84 85 99 102 121 149 167 185 
179 174 187 179 170 133 107 89 64 63 
98 104 104 91 78 66 65 63 74 80 
97 121 126 114 103 114 134 122 106 99 
102 101 101 97 85 76 63 83 133 144 
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12.2.3 Ethernet data 

Ethernet data from a LAN at Bellcore, Morristown (Leland et al. 
1993, Leland and Wilson 1991). The data are listed in chronological 
sequence by row. 

4858 5020 562 726 466 516 832 470 600 4076 
5986 670 726 3978 6190 450 762 742 446 580 
644 446 644 696 502 568 640 7128 2748 692 
664 830 3630 10290 5132 438 796 466 568 6978 

5982 6246 618 6738 2684 5974 7876 8004 5650 5820 
5256 134 2356 308 198 302 302 220 1258 5748 
2374 170 426 588 308 1368 232 194 102 232 
130 102 232 130 228 114 592 248 1380 308 
198 309 308 470 438 568 628 470 600 568 
466 676 568 5916 4000 568 466 808 502 632 
628 664 1196 832 713 2056 7756 672 648 900 

2041 7480 696 9248 790 694 644 644 9038 802 
534 672 2466 7552 734 2426 7318 9156 8836 806 

6510 2922 660 374 130 4462 4658 272 168 232 
608 232 6320 3000 512 232 4684 4076 402 4688 

7140 5642 8642 770 296 1518 244 8662 264 450 
198 110 390 300 110 244 8958 422 1498 194 
236 3138 5724 588 778 568 628 5888 7694 5204 
630 628 406 2118 7578 1038 524 754 4780 4796 
750 632 446 9108 636 612 466 9148 822 9010 

8028 1522 8994 2772 1082 1860 434 1004 568 1620 
10442 6590 894 568 6344 9532 4984 9316 10822 12380 
11200 6258 7332 11488 7191 8544 1208 650 '110 588 
270 7862 1600 366 308 7764 1238 252 236 6202 

2558 398 8722 102 462 266 232 166 232 194 
8630 130 360 166 228 130 98 244 134 114 
244 134 174 3514 4560 1200 352 200 244 102 
296 356 422 394 130 102 360 258 102 296 
258 232 178 267 312 110 244 198 146 308 
134 110 272 130 166 292 194 296 102 232 
322 166 296 194 102 232 130 232 102 5746 

3559 102 362 764 138 244 134 528 338 134 
110 244 198 110 556 198 244 523 1196 624 
502 794 8994 482 588 8662 272 308 134 3146 

5736 292 9282 8370 714 1786 7318 478 238 372 
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198 5572 3584 4684 4142 232 284 406 394 472 
1432 296 194 102 232 7720 1056 320 652 442 
1510 134 178 312 134 110 244 470 612 580 
470 942 668 470 672 644 470 620 636 530 
794 502 568 5916 3948 634 692 502 568 640 
690 820 692 596 438 742 466 438 794 594 
434 768 584 612 584 470 450 470 754 450 
644 696 510 580 644 110 308 262 110 308 
134 102 232 194 568 5616 3530 272 106 448 
626 612 604 420 354 322 130 98 750 194 
1364 292 130 114 304 134 178 248 134 110 
244 430 534 1440 244 264 110 244 134 446 
580 296 620 580 696 502 568 6090 3774 640 
694 438 632 640 438 820 718 600 568 466 
676 674 692 438 568 640 632 438 628 568 
434 768 712 514 746 470 446 818 534 778 
580 470 620 580 470 742 470 418 134 5616 

3568 130 168 232 194 166 480 782 484 178 
248 134 110 248 198 174 308 198 110 244 
352 706 166 130 1498 102 540 356 422 438 
374 166 360 284 434 260 1396 248 2294 4738 
2442 238 710 470 672 644 534 936 832 632 
510 744 545 498 742 466 794 566 568 704 
502 568 692 758 696 748 760 494 794 594 
434 818 470 612 584 470 620 580 470 608 
644 534 446 6030 3970 620 726 632 514 708 
470 512 488 258 102 232 130 296 264 368 
466 102 296 194 166 530 194 102 356 194 
166 578 434 1432 228 130 114 248 231 244 
110 198 520 174 308 6008 3672 1530 308 110 
308 194 766 982 466 438 742 466 568 600 
568 466 566 564 705 450 810 1290 506 584 
644 648 608 580 470 620 580 534 600 636 
530 568 676 568 594 1036 1152 6920 6396 7670 
724 695 940 470 466 758 858 4306 450 998 
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308 264 308 490 552 244 134 174 534 372 
176 300 4490 3588 620 130 1192 5682 2478 130 
263 664 584 102 1638 832 178 727 733 252 
342 134 174 396 300 5708 3798 460 1396 227 
360 130 328 296 782 664 808 8244 1668 510 
1399 594 676 564 1164 1180 858 1108 612 584 
598 514 648 644 446 572 632 824 566 806 
466 664 568 530 566 806 466 5892 4066 466 
696 787 632 '756 438 730 530 826 918 466 
750 708 662 450 904 434 248 110 244 3170 

5602 402 662 1628 7374 356 102 232 8658 102 
390 194 4740 4246 288 398 3490 7080 292 210 
64 64 128 128 5612 5514 3402 0 884 226 

1330 128 638 0 346 970 1154 400 510 336 
400 626 464 336 510 402 464 528 '720 802 
858 780 400 400 498 648 648 810 502 572 
400 464 534 336 574 528 562 4696 4826 400 
702 530 498 336 514 510 626 528 668 528 
400 826 464 552 0 0 0 0 222 428 

0 64 400 106 64 64 64 0 0 0 
128 64 222 338 458 296 430 1340 64 0 

0 64 64 64 192 5579 3336 0 362 162 
1266 64 162 0 158 500 848 576 426 574 
584 336 498 336 336 510 336 336 336 464 
400 601 592 738 766 494 1016 668 732 602 
248 498 510 162 336 336 635 400 498 336 
400 400 400 5960 3672 336 628 400 336 510 
336 652 814 400 400 510 0 0 192 253 
256 64 192 64 64 162 174 0 64 64 
406 478 240 64 64 0 64 64 64 424 
162 1266 128 64 64 5450 3336 0 600 479 
244 64 296 640 1420 189 0 66 0 336 
336 498 464 400 336 510 336 562 400 400 
510 400 464 810 806 668 584 336 1160 878 
832 814 700 674 822 640 400 2755 4826 2580 
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464 692 428 336 336 510 588 588 498 410 
478 400 646 604 2556 742 778 640 174 406 
390 2244 74 158 402 628 414 0 248 440 
388 665 202 548 414 240 0 0 154 4728 

4426 1266 138 130 142 74 0 162 316 218 
192 64 522 0 1266 189 64 64 0 336 
400 464 562 336 336 510 400 562 336 336 
510 924 474 464 138 324 128 256 446 0 
142 5514 3584 64 0 130 138 142 0 236 
128 154 226 90 0 0 0 0 0 0 

0 0 248 0 0 0 0 0 256 315 
166 0 206 0 0 64 352 364 64 142 

0 64 128 8528 2338 5516 1154 7654 1004 0 
0 0 213 290 64 252 0 154 128 64 
0 192 192 304 129 206 0 0 0 0 
0 0 128 0 0 0 64 248 64 0 
0 64 0 64 0 0 0 0 64 64 
0 5450 3400 0 0 66 0 0 64 226 
0 316 712 336 426 574 400 336 562 336 

336 510 400 336 498 336 336 510 400 498 
336 400 400 510 336 336 498 336 336 510 
336 336 498 336 410 510 336 0 0 5450 
3336 64 194 0 0 0 498 0 154 162 
227 64 64 0 192 166 0 142 64 296 
162 1393 0 64 192 358 202 142 0 64 
64 64 64 458 0 1266 74 142 64 0 
0 400 562 336 410 510 336 5786 3834 592 

594 640 652 400 498 498 336 588 510 426 
336 498 400 464 822 336 336 498 336 400 
411 510 336 498 336 400 336 510 336 336 
498 461 336 336 584 510 336 498 336 238 

0 0 0 0 81 5450 3336 226 304 0 
0 64 64 162 0 252 0 90 0 0 

218 304 1266 0 64 0 0 74 142 0 
64 128 64 154 368 1266 0 0 0 74 
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0 336 400 562 336 461 336 336 830 656 
738 542 400 5786 3672 510 400 402 562 336 
336 746 400 652 498 426 574 464 464 464 
754 592 585 336 550 638 400 498 400 400 
574 400 400 648 464 336 510 400 562 174 

0 64 0 0 0 0 0 64 400 64 
0 5450 3400 66 0 64 0 128 456 64 

446 466 1356 0 0 0 0 0 0 0 
0 0 64 360 162 1266 0 64 67 124 
0 400 400 498 336 336 336 510 336 498 

336 336 400 5960 3736 562 336 466 336 510 
336 498 562 426 498 920 490 400 562 336 
336 574 336 562 400 400 336 510 336 562 
336 336 336 510 400 464 746 400 336 174 

0 64 192 190 64 0 336 0 64 128 
64 5578 3400 0 130 64 248 0 438 64 
154 290 154 64 1830 7034 64 458 0 1266 
64 128 0 72 0 0 0 0 142 0 

296 162 1266 64 0 0 0 0 336 562 
336 336 336 510 336 464 498 455 336 5960 
3672 400 722 400 336 510 336 2016 7508 746 
336 490 574 8864 494 336 498 336 8864 494 
400 574 336 8864 494 498 336 400 9001 732 
562 464 464 528 6408 2966 494 128 71 3036 
5492 222 64 1742 7244 332 0 3334 7590 6710 
224 64 64 8592 350 226 64 698 4708 4368 
1424 128 192 3036 5556 158 128 128 0 4682 
3974 360 290 1266 128 128 0 64 464 535 
498 238 698 400 336 510 400 464 498 336 
336 574 419 626 336 5916 4288 736 974 708 
174 562 400 747 336 426 660 336 426 336 
336 633 336 498 400 336 464 574 336 562 
336 400 400 336 574 400 562 174 0 64 

0 72 270 0 128 128 0 0 584 0 
0 64 64 5450 3464 194 64 64 0 64 
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0 522 316 1492 90 0 64 64 248 0 
0 0 64 64 522 64 1266 0 64 64 

64 226 336 510 336 336 498 336 336 336 
510 400 400 689 336 336 668 336 400 6472 

2792 6106 3800 0 8658 64 0 0 64 226 
128 380 64 154 0 128 64 64 0 64 

0 205 0 0 0 0 0 0 192 64 
0 64 64 64 64 0 0 64 64 246 

128 405 1992 1090 5514 2438 0 208 0 0 
158 288 725 226 316 0 0 0 1582 7074 
162 90 128 0 0 0 8528 0 64 0 
130 64 64 1240 434 454 0 99 7654 938 

0 64 64 226 0 0 8528 162 6072 2520 
0 162 6200 2520 64 64 1751 11522 4274 128 

162 6264 2584 0 0 3424 5628 64 0 162 
8528 252 226 464 672 1854 7346 336 660 400 
426 464 498 510 400 7990 7346 2954 336 336 
336 672 4954 2804 162 308 64 64 64 0 

0 0 0 64 71 150 0 0 0 240 
248 5450 3644 434 430 300 66 0 0 3626 
72 377 0 3334 5580 6630 2246 64 1156 1090 

248 66 201 64 2244 64 3336 5516 64 128 
1156 6606 1218 1156 1090 0 216 90 214 64 
308 567 978 240 244 0 0 0 0 5450 
3336 64 0 66 0 0 0 162 0 154 
162 238 64 64 128 123 0 0 0 634 

0 64 64 0 0 0 0 278 434 236 
0 441 64 215 209 182 0 182 241 310 
0 0 64 486 336 0 0 5774 3559 66 
0 206 0 64 252 576 0 64 206 246 
0 142 310 64 0 324 0 129 142 306 
0 0 388 0 0 388 0 0 142 246 
0 0 457 0 0 142 64 0 0 5450 

3336 0 128 194 0 0 0 162 3522 5670 
4360 5580 4360 2246 66 66 0 0 66 64 
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128 64 64 0 288 146 90 288 240 352 
288 130 288 154 224 292 304 510 562 574 
290 4360 4490 0 66 124 0 0 0 252 
316 128 64 0 64 0 0 0 0 64 

0 0 312 128 336 336 562 421 400 574 
0 64 0 0 0 0 0 0 336 0 

1090 5450 2558 0 66 0 0 0 0 226 
342 296 162 1266 0 0 64 0 0 0 

0 0 0 0 154 0 304 0 1394 64 
0 0 0 162 0 0 0 128 132 0 
0 0 0 0 64 5450 3336 0 66 0 
0 64 376 702 284 0 67 64 530 3290 
0 0 0 64 142 528 64 0 0 0 

64 192 0 150 322 0 0 0 0 0 
236 0 0 0 0 64 0 3270 4613 1394 
134 288 0 196 0 570 252 822 0 0 
64 350 0 0 64 0 0 0 0 64 
0 64 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 64 0 0 5450 

3336 66 0 0 0 0 252 316 0 0 
0 0 0 226 400 424 0 510 336 400 

336 380 336 442 336 174 290 400 336 0 
510 336 336 162 510 336 336 162 400 464 
336 5786 3672 336 336 402 174 336 336 498 
588 252 174 498 422 162 64 336 0 400 
174 162 174 310 336 336 336 336 336 174 
498 174 498 336 248 510 336 336 400 64 
64 64 187 5578 3464 64 130 400 0 0 
0 252 252 64 0 0 64 64 64 64 
0 360 162 0 1266 0 0 0 0 0 
0 0 0 64 64 296 162 1266 64 0 

128 166 4700 3998 64 5786 3672 336 628 238 
454 562 400 588 762 640 336 336 510 336 
336 400 562 336 336 510 336 336 498 336 
336 510 464 690 336 400 510 336 336 562 
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336 400 510 336 1426 6014 2516 336 640 336 
498 64 400 762 252 0 0 0 0 0 
64 64 336 315 0 0 0 64 64 0 
71 0 64 64 64 296 162 1330 64 64 
0 192 64 0 0 0 0 0 296 5612 

4602 0 130 0 0 162 498 852 336 498 
336 400 510 400 336 498 336 336 510 336 
336 498 336 336 510 336 562 400 400 510 
336 336 498 336 336 336 510 336 400 753 
408 5786 3910 402 626 336 762 174 626 794 
652 400 528 400 238 0 0 0 162 530 
128 64 226 238 64 0 248 0 0 192 
64 64 0 64 135 154 368 1266 0 0 
64 73 64 5450 3400 360 226 66 1404 72 
119 226 380 380 409 336 336 510 400 626 
336 336 400 336 510 336 498 336 336 574 
336 464 336 498 336 336 336 400 0 510 
336 336 162 174 336 5786 3834 336 466 574 
336 336 498 498 900 510 401 498 3372 5828 
622 464 574 1854 7346 158 0 64 0 4554 
3974 600 304 430 8528 158 0 0 0 8528 

0 558 0 3120 5556 222 0 5450 11864 0 
288 64 64 8528 158 548 414 9794 222 0 

0 8528 286 192 0 3332 5654 1424 0 64 
0 8592 64 286 0 1808 7248 498 336 336 

336 510 400 562 336 336 336 510 336 6012 
3672 336 466 636 411 336 336 912 400 400 
336 664 400 336 498 336 336 510 336 336 
562 400 400 336 510 336 498 400 336 510 
336 336 562 408 174 0 64 128 385 64 

0 3398 5825 238 64 64 0 128 71 0 
66 128 136 0 64 162 296 542 248 1420 

828 270 128 0 8528 158 0 128 64 8528 
616 0 1330 6136 2622 648 526 684 6308 2920 
622 336 336 6408 2915 494 464 400 4890 4392 



DATA SETS 251 

668 336 1744 7184 494 5786 6772 5956 320 66 
64 2020 7074 320 426 426 162 7590 1096 146 
154 304 9284 732 464 336 7926 1436 494 464 
510 400 336 498 6408 2792 336 668 336 498 

8864 336 336 574 400 460 336 3768 4762 1490 
304 0 203 0 0 252 252 162 174 0 
64 128 135 128 128 0 0 0 0 64 
0 64 0 0 0 0 4350 296 162 0 
0 64 1394 0 0 0 0 128 64 5592 

3336 0 1584 2976 0 64 0 394 4687 0 
142 4554 4086 64 214 452 64 64 0 64 
0 128 128 0 0 0 0 0 0 0 
0 0 458 64 1266 0 0 64 0 0 
0 5578 3631 336 576 400 626 400 626 762 

426 336 498 336 400 800 336 574 916 64 
746 238 832 400 400 510 464 400 632 464 
336 336 400 574 400 336 562 400 336 640 
712 685 400 5786 3672 336 576 336 498 336 
562 916 64 64 128 64 0 64 0 0 

0 64 226 174 0 0 0 0 0 0 
0 0 0 64 64 154 304 1266 0 0 
0 64 0 128 236 5450 3336 130 0 296 

226 0 1617 446 0 303 0 0 336 464 
410 400 400 336 336 510 336 336 400 498 
402 464 0 336 574 336 231 174 162 174 
162 64 0 400 5786 3400 0 402 336 336 
336 464 652 762 400 400 498 502 174 498 
336 400 592 510 336 336 498 656 336 510 
336 400 626 400 400 574 336 128 64 128 

0 64 64 64 0 64 400 192 128 5450 
3336 64 472 376 128 0 192 290 406 256 

64 296 226 1512 0 364 248 334 192 64 
64 190 128 64 64 522 0 1394 64 192 
74 64 128 192 400 400 336 562 400 400 

510 5786 3736 562 466 400 336 702 336 716 
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878 400 648 574 336 498 336 528 400 510 
400 562 464 464 336 510 336 528 498 400 
400 336 886 336 336 648 523 464 574 336 
498 336 366 5450 3467 0 130 192 64 64 

0 814 218 64 0 0 0 64 0 309 
192 128 128 140 360 290 1266 64 0 64 
64 256 0 0 64 0 64 128 128 154 

368 3574 64 128 130 6540 3596 290 2180 6164 
4760 10210 9186 4828 576 402 2434 402 628 1044 
400 336 704 400 400 336 336 510 336 498 
336 400 336 510 336 336 562 400 439 510 
336 336 498 336 336 336 510 336 498 400 
336 638 464 5786 3898 336 336 174 66 0 

0 0 64 414 252 174 134 64 127 64 
64 0 128 0 0 128 0 360 162 1330 
0 0 64 64 134 0 0 64 64 107 

296 226 1347 64 64 5514 3336 162 402 336 
336 510 562 588 795 336 336 510 786 464 
498 400 528 336 574 336 336 498 336 336 
510 336 336 498 400 336 336 574 336 562 
400 336 400 510 3854 4826 1588 336 402 574 
336 498 498 588 426 510 0 191 0 0 
64 128 64 64 474 174 0 0 64 64 
0 64 64 64 0 0 0 218 368 1330 
0 128 64 0 0 0 0 64 0 5450 

3336 524 418 1330 64 64 380 380 336 498 
336 336 336 574 528 886 563 4554 4516 2282 

3136 2108 3200 498 464 400 414 574 336 690 
400 400 528 574 400 336 498 336 336 510 
482 5876 4074 400 564 466 510 636 576 652 
824 554 746 482 720 628 400 174 64 64 

0 64 128 242 226 174 0 64 0 0 
0 64 64 0 256 65 0 0 296 162 

1330 0 64 5450 3400 64 66 64 0 64 
0 612 414 1266 0 0 64 0 400 562 
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400 400 574 414 400 562 336 464 746 576 
498 564 336 510 400 400 498 464 465 510 
336 336 498 526 336 5960 3672 400 402 562 
336 336 638 750 588 336 336 612 336 336 
498 336 336 336 510 400 0 0 0 0 
128 64 0 400 0 64 377 64 0 0 

0 64 0 64 64 64 522 5514 4679 64 
130 64 0 0 162 252 634 162 0 1266 

0 64 64 209 158 0 226 8928 494 510 
336 8864 784 336 464 6310 2954 494 336 1854 

7346 732 464 565 6536 2856 2012 7426 1854 10768 
4610 940 336 336 498 8864 656 678 510 3372 
5828 494 562 654 1918 7346 494 174 400 9572 
7410 1274 1825 3326 304 574 162 1692 11490 336 
558 238 0 7716 938 158 190 64 9770 5364 

2372 4544 558 128 248 0 226 4660 318 64 
0 0 4318 190 128 64 0 3036 1536 64 

143 64 0 0 64 4318 1748 7442 146 64 
206 162 3100 2802 0 0 142 128 64 4382 
438 0 64 5450 3400 1772 2928 256 0 0 

0 4608 571 90 4446 550 162 1266 0 4440 
190 0 128 0 0 1646 2962 428 226 1692 

3026 364 336 1518 3390 64 4390 752 4492 400 
162 4654 671 526 336 5960 3562 174 3566 1746 
400 464 162 4906 968 716 336 302 336 4480 
590 574 354 174 4480 364 336 498 260 498 
64 8754 364 64 4544 590 3274 1698 3210 1872 
336 162 238 4544 364 1518 2962 5734 3920 336 
650 464 290 4654 703 750 264 4608 174 400 
400 464 464 128 64 4318 190 0 4318 190 

0 1518 2990 0 235 1518 2800 254 0 4382 
648 64 354 4556 190 64 0 4318 190 5450 
3464 0 322 192 4618 190 226 4698 344 0 
1582 2990 0 0 3036 1661 0 0 0 4318 
254 0 1710 2864 545 1646 3096 1836 3026 1584 
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4318 384 64 0 0 1518 2990 93 1518 2990 
0 5450 3400 200 1698 2800 190 4318 352 342 
0 1582 2800 486 162 1266 4318 190 0 1696 

3374 0 64 1632 3293 0 0 4382 254 192 
4446 318 64 128 1582 2990 336 0 4480 364 
336 4318 352 5752 7721 4720 190 416 464 510 
414 238 4480 526 494 174 1854 3388 4744 4136 
4650 526 0 9098 4466 158 1854 3136 7780 2614 
7280 780 464 10284 2128 4654 174 8811 336 336 
336 8782 1854 3326 336 640 238 542 5472 6106 

2516 400 530 400 1518 3200 2044 3376 854 4544 
838 238 64 336 4480 526 400 400 174 4480 
526 336 400 238 336 4608 492 0 1582 7186 
312 4382 318 0 64 142 3036 5604 128 4318 
376 128 0 5592 7954 4088 64 4318 254 336 



DATA SETS 	 255 

12.2.4 NBS data 

NBS weight measurements: deviation from 1 kg in micrograms 
(Pollak, Croarkin, and Hagwood 1993, Graf, Hampe!, and Tacier 
1984, Graf 1983). The data are listed in chronological sequence by 
row. 

-19.48538 -19.58856 -19.35354 -19.41966 -19.51106 
-19.46748 -19.42028 -19.474 -19.50776 -19.58184 
-19.57892 -19.51508 -19.4894 -19.48844 -19.48178 
-19.53168 -19.46304 -19.49595 -19.54338 -19.58635 
-19.55626 -19.52787 -19.43625 -19.45378 -19.48934 
-19.47218 -19.40403 -19.46627 -19.60931 -19.41321 
-19.49616 -19.51869 -19.53728 -19.43859 -19.59881 
-19.37827 -19.604 -19.53468 -19.47115 -19.61757 
-19.44954 -19.44553 -19.46061 -19.41242 -19.42501 
-19.374 -19.45432 -19.45692 -19.47184 -19.45627 

-19.53346 -19.4675 -19.40454 -19.41526 -19.47652 
-19.53466 -19.50872 -19.52944 -19.48906 -19.3921 
-19.43192 -19.36784 -19.44396 -19.41736 -19.43518 
-19.47676 -19.47532 -19.4663 -19.41172 -19.47366 
-19.44744 -19.36256 -19.51832 -19.40878 -19.40388 
-19.5131 -19.44582 -19.48936 -19.40668 -19.49002 
-19.4771 -19.46216 -19.4966 -19.39358 -19.416 
-19.54786 -19.44132 -19.56234 -19.43746 -19.51266 
-19.35616 -19.40927 -19.39552 -19.3944 -19.41338 
-19.42944 -19.40228 -19.47862 -19.4063 -19.53626 
-19.45826 -19.5018 -19.48724 -19.451 -19.5628 
-19.5234 -19.53438 -19.4892 -19.4438 -19.469 
-19.4934 -19.4782 -19.4484 -19.53012 -19.4183 
-19.49386 -19.41994 -19.44492 -19.42571 -19.48004 
-19.37956 -19.47598 -19.4971 -19.42662 -19.53578 
-19.5168 -19.52162 -19.45136 -19.53806 -19.4837 
-19.45558 -19.51481 -19.50821 -19.52751 -19.45881 
-19.50971 -19.4153 -19.59076 -19.48092 -19.49896 
-19.43574 -19.4736 -19.44408 -19.44484 -19.45722 
-19.45942 -19.36262 -19.48184 -19.5202 -19.42576 
-19.4513 -19.47798 -19.41494 -19.47802 -19.4572 
-19.5116 -19.4092 -19.5264 -19.50254 -19.49536 
-19.4592 -19.4464 -19.3918 -19.5494 -19.55704 
-19.48862 -19.38798 -19.58312 -19.469 -19.39354 
-19.4856 -19.42142 -19.494 -19.3354 -19.446 
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-19.517 -19.473 -19.4778 -19.47672 -19.51816 
-19.50724 -19.45304 -19.46672 -19.40318 -19.4835 
-19.49608 -19.46312 -19.39336 -19.5266 -19.562 
-19.4898 -19.545 -19.3722 -19.4404 -19.5264 
-19.4176 -19.5116 -19.50038 -19.479 -19.4654 
-19.5026 -19.5268 -19.4538 -19.48714 -19.49678 
-19.50454 -19.50426 -19.5398 -19.50282 -19.47218 
-19.46478 -19.5022 -19.47776 -19.45264 -19.47816 
-19.46688 -19.43628 -19.52698 -19.41876 -19.51138 
-19.4735 -19.47058 -19.4733 -19.4516 -19.5149 
-19.5019 -19.5335 -19.5031 -19.4318 -19.5292 

-19.5 -19.4751 -19.47329 -19.45363 -19.53239 
-19.61721 -19.41739 -19.47822 -19.39572 -19.4928 
-19.47579 -19.46452 -19.5128 -19.45849 -19.41639 
-19.52435 -19.46989 -19.4668 -19.43825 -19.56234 
-19.44987 -19.45597 -19.42954 -19.49172 -19.48178 
-19.50401 -19.48206 -19.48174 -19.46688 -19.4653 
-19.44681 -19.43597 -19.4793 -19.45009 -19.48532 
-19.40451 -19.4398 -19.48486 -19.43898 -19.44598 
-19.49492 -19.5402 -19.38595 -19.46289 -19.58291 
-19.58791 -19.5579 -19.61791 -19.64791 -19.50789 
-19.63291 -19.45465 -19.43605 -19.44945 -19.50779 
-19.46674 -19.50868 -19.53614 -19.49073 
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12.2.5 Northern hemisphere temperature data 

Monthly temperature for the northern hemisphere for the years 
1854-1989, from the data base held at the Climate Research Unit 
of the University of East Anglia, Norwich, England (Jones and 
Briffa 1992). The numbers consist of the temperature (degrees C) 
difference from the monthly average over the period 1950-1979. 
The data are listed in chronological sequence by row. 

-0.88 -0.34 -0.07 -0.63 0.05 -0.54 0.54 0.02 -0.3 0.28 
-0.53 0.51 -0 28 -0.79 -0.51 0.24 -0.13 -0.16 -0.13 -0.13 
-0.41 -0.09 -0.78 -1.54 0.08 -0.51 -0.97 -0.62 -0.3 0.18 
-0.13 -0.23 -0.23 -0.58 -0.92 -0.24 -0.52 -0 36 -0.27 -0.7 
-0.76 -0.34 -0.18 0 -0.51 -0.64 -0.79 0.08 -0.33 -1.04 
-0.65 -0.08 -0.16 -0.01 -0.11 -0.25 -0.21 0.11 -0.71 -0.55 
-0.21 0.23 0.14 0.05 -0 01 -0.25 -0.21 0.01 -0.32 -0.03 
-0.14 -0.51 -0.27 -0.72 -1.08 -0.45 -0.15 0.09 -0.08 -0.21 
-0.18 -0.1 -1.08 -1.55 -1.62 -0.55 -0.04 -0.51 -0.53 -0.08 
0.34 0.11 -0.13 -0.3 -0 22 -0.48 -1.33 -1.31 -0.49 -0.51 

-0.44 -0.52 -0.42 -0.57 -0.32 -0.46 -1.17 -1.58 0.69 0.2 
-0.15 -0.21 0 -0.3 -0.23 -0.28 -0.03 -0.44 -0.43 -0.34 
-1.11 -0.52 -0.26 -0.46 -0.36 0.25 0 18 0.1 -0.46 -0.66 
-0.67 -1.25 0.1 -0.96 -0.81 -0.44 -0.12 0.09 0.18 -0.11 
0.27 -0.14 -0.04 -0.62 0.24 -0.24 -0.36 -0.18 -0.6 0.24 
0.14 -0.21 -0.12 -0.62 -0.33 -0.27 -0.37 0.16 -0.55 -0.12 

-0.75 -0.17 -0.2 -0.17 -0 14 -0.12 -0.11 -0.74 -0.69 -0 95 
-0.07 -0.12 0.17 0.26 0.59 0.19 -0.33 -0.25 -0.68 -0.03 
-0.29 0.69 -0.57 -0.26 0 0.17 0.17 0.33 0.12 -0.24 
-0.39 -0 63 0.02 -0.68 -0.2 -0 13 0 12 0.28 0.12 -0.04 
-0.12 -0.52 -0.06 -1.39 -0.81  -119  0.19 0.05 -0.25 -0.21 
0.22 0.06 -0.53 -0.29 -0.78 -0.72 -0.58 -0.71 -0.31 -0.12 
0.12 -0.03 0.12 0.11 0.03 -0.1 -0.49 -0.58 -0.19 -0.25 

-0.37 -0.61 -0.39 -0.19 -0.08 -0.05 -0 25 -0.24 -0.36 -0.06 
0.27 -0.28 -0.76 -0.42 -0 11 0 -0.13 -0.27 -0.08 -0.45 

-0 58 -0.53 -0.87 -0.95 -0.92 -0.62 -0.18 0.09 -0.28 -0.15 
-0.51 -0.58 -1.03 -0.83 -0.3 -0.23 -0.33 -0.25 -0.63 0 
0.08 -0.18 -0.19 -0.47 -0.76 -1.18 -0.21 -0.22 -0 26 -0.45 

-0.37 0.11 0.15 0.19 0.15 -0.09 0 21 0.06 -0.2 0.33 
0.56 0.55 0.08 0.47 0.07 0.25 0.1 0.07 0.17 -0.37 

-0.09 -0.02 -0.17 -0.33 0 -0.26 -0.2 -0.28 -0 35 -0.07 
-0.72 -0.9 -0.18 -0.61 -0.33 -0.25 -0.17 -0.28 -0.24 -0.1 
-0.32 -0.51 -0.63 -0.66 -0.54 -0.35 -0 37 -0 2 -0.01 -0.36 
-0.2 -0.1 -0.34 -0.63 -0 7 -0.43 0 34 -0.06 0 01 -0.51 
-0.52 -0.48 -0.32 -0.09 -0.17 -0 6 -0.59 -0.85 -0.84 -0.85 
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-0.49 -0.36 -0.41 -0.12 -0.17 -0.11 -0.42 -0.45 -0.58 -0.26 
-0.27 -0.34 -0.67 -0.8 -0.5 -0.39 -0.42 -0.56 -0.61 -0.34 
-0.91 -0.58 -0.87 -0.63 -0.28 -0 61 -0.62 -0.47 -0 25 -0 39 
-0.34 -0.35 -0.43 -0.03 -0.65 -0.83 -0.47 -0.28 -0.18 -0.24 
-0.14 -0.21 -0.22 -0.42 -0.57 -0.2 -0.82 -0.52 -0.26 -0.32 
-0.25 -0.3 -0.13 -0 37 -0.22 -0 43 -0.19 -0.23 -0.55 -0.68 
-0.48 -0.06 -0.2 -0.15 -0.17 -0.24 -0.23 -0.05 -0.17 -0.33 
-0.48 -0.11 -0.04 0.13 -0.05 -0.03 -0.17 -0.18 -0.36 -0.41 
-0.71 -0.35 -0.31 -0.32 -0.38 -0.21 -0.43 -0.32 -0.36 -0.43 
-0.36 -0.36 -0.6 -0.44 -0.68 -0.74 -0.32 -0.4 -0 19 -0.18 
-0.18 -0.19 -0.03 -0.26 -0.67 0.05 -0.53 -0.13 -0.6 -0.51 
-0.37 -0.22 -0.38 -0.31 -0.16 -0.31 -0.78 -1.05 -1.71 -1.25 
-0.36 -0.39 -0.68 -0.23 -0.06 -0.32 -0.23 -0.18 -0.29 -0.4 
-0.7 -0.21 -0.15 -0.34 -0.32 -0.34 -0.26 -0.23 -0.34 -0.36 
-0.51 -0.52 -0.93 -1.04 -0.62 -0.31 -0.31 -0.32 -0.26 -0.29 
-0.08 -0.23 -0.21 -0.3 -0.25 -0.31 -0.61 -0.51 -0.04 0.06 
-0.03 -0.01 -0.02 -0.05 -0.37 -0.14 -0.37 -0.33 -0.49 -0.01 

0.1 -0.05 0.12 0.06 0.12 -0 05 -0.32 -0.57 0.23 -0.42 
-1.11 -0.49 -0.33 -0.15 -0.18 -0.14 -0.14 -0.31 -0.15 -0.17 
-0.01 -0.48 -0.45 -0.21 -0.15 -0.36 -0.08 -0.04 -0.06 0.07 
0.36 -0.51 -0.44 -0.27 0.04 -0.13 -0.08 -0.06 -0.14 0.05 
0.01 0.35 -0.11 0.08 -0.11 -0.04 0.18 0.16 -0.04 -0.05 
0.04 0.07 -0.22 -0.21 -0.13 -0.48 -0.02 -0.05 -0.23 -0.46 

-0.46 -0.37 -0.38 -0.22 -0.22 -0.35 -0.44 -0.53 0.09 0.25 
-0.16 -0.46 -0.41 -0.52 -0.49 -0.49 -0.44 -0.5 -0.47 -0.58 
-0.61 -0.44 -0.53 -0.58 -0.51 -0.51 -0.53 -0.39 -0.54 -0.38 
-0.05 -0.24 -0.3 -0.86 -0.49 -0.62 -0.24 -0.33 -0.13 -0.19 
-0.13 -0.2 0.12 -0.03 -0.19 -0.47 -0.13 0.01 -0.16 -0.13 
-0.23 -0.11 -0.21 -0.23 -0.5 0.1 -0.44 -0.7 -0.36 -0.57 
-0.65 -0.64 -0.37 -0.47 -0.34 -0.17 -0.6 -0.44 -0.32 -0.36 
-0.74 -0.49 -0.47 -0.3 -0.4 -0 44 -0.32 -0.53 -0.55 -0.42 
-0.63 -0.45 -0.62 -0.54 -0.45 -0.41 -0.39 -0.22 -0.21 -0.22 
-0.03 -0.45 -0.16 -0.35 -0.29 -0.37 -0.41 -0.47 -0.32 -0.34 
-0.42 -0.34 -0.55 -0.64 -0.54 -0.6 -0.56 -0.56 -0 48 -0.39 
-0.34 -0.35 -0.24 -0.3 -0.19 -0.29 -0.3 -0.13 -0 46 -0.25 
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-0.22 -0.16 -0.47 -0.67 -0.66 -0.79 -0.6 -0.58 -0 45 -0.61 
-0.41 -0.46 -0.63 -0.59 -0.62 -0.44 -0.44 -0.53 -0.13 0.03 
0.19 -0 12 -0.26 -0.37 -0.2 -0.37 -0.35 -0.3 -0.26 0.06 

-0.25 -0 27 -0.03 0.06 -0 25 0 -0.01 0 -0.03 -0.03 
-0.02 -0.25 0.13 0 0.03 -0.17 -0.52 -0.24 -0.41 -0.37 
-0.14 -0.25 -0.33 -0.3 -0.37 -0.87 -0.47 -0.87 -0.93 -0.55 
-0.84 -0.35 -0.22 -0.21 -0 19 -0.5 -0.21 -1.26 -0.35 -0.4 
-0.36 -0.74 -0.64 -0.54 -0 34 -0.4 -0.23 0 -0.3 -0.67 
-0.29 -0.21 -0.5 -0.1 -0.5 -0.32 -0 33 -0.24 -0.16 -0.2 
-0 71 -0.61 -0.03 -0.39 -0.03 -0.32 -0.17 -0 22 -0.23 -0.12 
-0.23 -0 28 -0.59 -0.73 0.12 -0.23 -0.1 -0.11 -0.2 -0.07 
-0.02 -0.22 -0.26 -0.19 -0.53 -0.24 -0.44 -0.45 -0.22 -0.32 
-0.23 -0 16 -0.21 -0.2 -0.34 -0.25 -0.25 -0.24 -0.11 -0 67 
-0.43 -0.62 -0.21 -0.29 -0.31 -0.32 -0.11 0.03 0.3 0.1 
-0.35 -0.27 -0.23 -0.37 -0.15 -0.17 -0 18 -0.22 -0.16 -0.2 
-0.17 -0.52 -0.27 -0.29 -0.15 -0.17 -0 17 -0.17 -0.12 -0.07 
0.02 -0.18 0.02 0.24 0.51 0.25 0.24 -0.17 -0.12 -0.08 

-0 06 -0.01 -0.02 0.06 0.14 -0.19 -0.09 0.02 -0.24 -0.21 
-0.17 0 0.07 0.09 0.07 0.17 0.02 -0.47 0 23 0.04 
-0.3 -0.29 -0.11 -0.2 -0.01 -0.12 -0.1 0.02 0.03 -0.09 
-0.51 -0.97 -0.28 -0.36 -0.28 -0.24 -0.26 -0.12 -0.16 0.03 
-0.01 -0.62 -0.3 -0.13 0.04 -0.12 -0.18 -0.17 0.08 0.16 
-0.03 0.02 0.27 0.09 0.13 -0.33 0 -0.07 -0.11 0.15 

0.1 0.16 0.15 0.23 0.03 0.05 0.45 -0.36 -0.28 0.02 
-0.12 -0.01 -0.09 0.05 0.1 0.18 -0.23 -0.14 -0.4 -0.41 
-0.36 -0.2 -0.27 -0.25 -0.02 -0.08 -0.15 -0.13 -0.24 -0.61 
-0.25 0.09 -0.42 -0.24 -0.06 -0.07 -0.07 -0.14 -0.14 0.03 
0.17 0.05 -0.41 0.52 -0.05 -0.29 -0.33 -0.12 -0.06 -0.06 

-0.05 0.13 -0.42 -0.26 -0.25 -0.54 -0.15 -0.23 -0.06 0.02 
0.14 0.05 0.02 -0.06 0.05 0.17 -0.12 0.08 -0.16 -0.06 
0.01 0.13 0.17 0.22 0.3 0.38 0.18 -0.07 0.22 0.23 
0.31 0.22 0.09 -0.03 0.08 0.2 0.3 0.36 0.21 -0.18 
0.12 -0.08 -0.27 -0.09 -0.02 -0.03 0.09 0.1 0.02 -0.13 
0.16 0.64 -0.34 0.01 -0.05 0.08 -0.11 -0.05 0.05 -0.09 
0.16 0.02 0.05 0.19 0.01 0.33 0.03 0.05 -0.06 -0.08 
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0.05 -0.02 -0.17 0.18 -0 03 0.06 0.08 -0.11 0.21 0.1 
0.05 0.06 0.01 -0.07 0.09 0.3 0 15 0.06 -0.22 0.22 

-0.17 0.06 0.06 -0.15 0.08 0.11 0.08 0.38 0.27 0.44 
0.6 0.4 0.26 0.07 0 21 0.15 0.08 0 08 0.31 0.36 

0.09 -0.09 0.07 -0.09 0 18 0.06 -0 08 -0.06 -0.03 0.18 
0.11 0 18 0.05 -0.33 0.49 0.28 0.15 0.26 -0.09 0.01 
0.11 -0.04 0.12 -0.02 0 02 -0.4 -0 21 -0.03 0 21 0.12 

-0.04 -0.05 0.06 0.05 0.01 0.27 0.19 -0.05 0 37 -0.12 
-0.27 0.06 0.18 0 17 0 07 0.18 0.07 0.15 -0.04 -0.23 
0.36 -0.14 -0.06 0 02 0.07 -0.08 -0.04 0.08 0 0.11 
0.16 -0.18 -0.45 -0.29 0.07 -0.08 0.03 -0.06 -0.1 -0.14 
0.03 -0.06 -0.32 0.01 -0.3 -0.51 -0.15 0.11 0 17 0.01 
0.11 0.27 0.3 0.24 0.13 0.38 0.23 0.14 -0.14 0.19 
0.14 0.2 0.18 0.13 0.16 0.03 -0.2 0.05 0.22 0.4 
0.33 0.4 0.22 0.21 0.22 0.23 0.21 0.23 0.06 0.15 

-0.35 -0.02 -0.1 -0.11 -0.08 0.01 -0.05 0.06 0.11 0.1 
0.26 -0.17 0 43 -0.06 -0 43 -0.17 -0.01 0.01 0.03 0.12 

-0.01 0.11 -0.14 -0.19 -0.01 -0.34 -0.32 -0.21 -0.26 -0.23 
-0.18 -0.22 -0.28 -0.21 -0.28 -0.27 -0.12 -0.11 -0.09 -0.07 
-0.05 0.07 0.08 0.16 0.14 0.04 0.17 0.35 0.59 0.33 
0.27 0.11 0.1 0.02 0.05 0.12 0.07 0.07 0.1 0.22 
0.32 0.19 0.27 0.17 0.03 0.15 0.08 0.07 0.16 -0.05 

-0 14 0.02 0.1 0.54 -0.35 -0.13 0 0.17 0.1 0.1 
0.12 0.05 -0.09 0.37 0.17 0.28 0.27 0.14 0.1 0.26 
0.09 0.13 -0.02 -0.04 0.11 -0.05 0.32 0.43 0.24 0.21 
0.12 -0.02 0.17 0.16 0.08 0 25 0.14 0.22 0.19 0.6 

-0.09 0.04 0.01 -0.01 0.17 0.21 0.2 0.48 0.49 0.17 
0.13 -0.09 -0.3 -0.26 -0.04 -0.05 -0.06 -0.21 -0.26 -0.25 

-0.12 -0.3 -0.04 -0.41 -0.07 -0 29 -0.14 -0.19 -0.15 -0.25 
-0.16 -0.02 -0.04 0 -0.09 0.06 0.05 -0.16 -0 04 0.07 
0.13 0.15 0.12 0 -0.07 -0.2 -0.12 -0.24 0.15 0.05 
0.16 -0.01 0.05 0.11 0 01 0.31 0.04 0.08 -0.26 -0.05 
0.34 -0.02 0 -0.02 -0.08 -0.07 0.02 0.08 -0 06 -0.19 
-0.3 -0.36 -0.05 0.1 0.02 -0.06 0.05 0.03 0.01 0.01 
0.17 0.36 0.07 0.32 -0.03 0.09 0.01 0.02 -0 05 -0.03 



DATA SETS 261 

-0.04 -0.15 0.03 -0.29 0.02 -0.26 -0.23 -0.18 -0.11 -0.18 
-0.07 -0.19 -0.15 -0.13 0.06 -0.12 -0.61 -0.52 -0.14 -0.06 
-0.13 -0.07 -0.05 -0.03 -0.27 -0.1 -0.18 -0.11 0.16 0.42 
0.29 0 2 0 19 0.13 0.02 -0.01 -0.09 -0.05 -0.04 0.03 
-0 44 -0.43 -0.11 -0.14 -0.21 -0.18 -0.04 -0.16 -0.16 -0.25 
-0 17 -0.33 0.04 0 08 0.12 0.03 -0.03 -0.13 -0.12 -0.19 
-0.1 -0.2 -0.31 -0.29 -0.02 -0.29 -0.48 -0.08 -0.29 -0.28 
-0.31 -0.28 -0.22 -0.54 -0.3 -0.36 -0.24 0.07 0 26 0.23 
0.17 0.16 0.01 -0.02 0.12 0.01 0.29 -0.05 0.18 0.15 
0.16 0.07 -0.1 -0.18 -0.12 -0.16 -0.04 -0.02 0.21 -0.03 
0.04 -0.3 0.16 -0.14 0.03 0.1 0.01 0.02 0.13 0.18 
0.15 0 52 0.2 0.21 0.02 0.19 0.23 0.16 0.09 0.09 
0 04 0.08 0.27 0.06 0.82 0.6 0.64 0.31 0.16 0.22 
0.08 0.17 0.13 0.12 0.26 0.47 -0.11 0.19 -0.01 0.13 
0.07 0.01 0.01 -0.07 0.02 0.01 -0.13 0.35 0.58 0.41 
0.39 0.13 0.01 0.1 0.14 0.21 0 23 0.12 0.55 0.13 
0.24 0.08 0.2 0 0.2 0.04 0.03 0.07 -0.07 -0.05 

-0.21 -0.54 0.1 -0.29 0 -0.04 0.06 -0.06 -0.09 -0.04 

-0.01 -0.02 -0.04 0.12 0.36 0.29 0.21 0.19 0.11 0.11 
0 0.02 -0.02 0.04 -0.11 0.12 0.26 0.5 0.03 0.03 

0.17 0.09 0.24 0.25 0.39 0.15 0.12 0.55 0.52 0.28 
0.47 0.48 0.34 0.34 0.33 0.22 0.3 0.19 0.13 0.42 
0.18 0.48 0.36 0.26 0.17 0.15 0.29 0.21 0.19 0.28 
0.09 0.35 
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172, 276 
nonparametric regression 172, 276 
nonstationarity 141-2, 174, 195 
nonstationary process 94, 115, 

127, 193, 280, 294 
northern hemisphere temperature 

data 14, 29-32, 141, 173, 
178-80, 257 

observer 37-9 
one-step-ahead prediction 104, 

111 
order selection 11 
orthogonal basis, Hermite 

polynomials as 68 
outlier 127-30, 151, 301 

parallel processors 210 
parametric family of spectral 

densities 103 
parametric model 14, 97-8, 100-2, 

114, 128, 200, 204-5, 292, 300 
parsimonious model 14, 124, 142 
parsimony 124, 146-7 
partial correlation'66, 87, 89, 92, 

108 
partial differential equation 18-9, 

40 
periodogram 22-3, 98, 102, 116, 

120, 134-5, 137, 140, 143, 180, 
203, 206, 208-9, 225, 230, 
232-3, 235, 237, 264, 277, 279, 
291, 297, 299 

asymptotic behavior 77-80, 
95-7, 117, 138 

behavior near the origin 41, 
78-80, 96-7, 138 

definition 20 
log-log plot 21, 23-4, 26-8, 31, 

118-9, 122, 125-7, 133, 
144-5, 147, 173, 202 

persisting correlations 3, 38 
persisting cycle 33, 41 
persisting trend 41, 141 
personal bias 38 
personal equation 36, 38-40, 290 
phase transition 17, 269, 288 
physical explanation 18, 40 
physical mechanism 32, 39 
physical model 14, 39-40 
physics ix, 16-9, 40, 50, 273 
pole of the spectral density 

at nonzero frequencies 213 
at zero 6, 16, 19, 36, 42, 60, 63, 

95, 97-8, 147, 183-5, 213 
polynomial FEXP model 122, 

127, 134, 233 
polynomial trend 173, 175-6, 

181-2, 184-5 
portmanteau statistic 204 
power law 19, 294, 300 
precautions to prevent 

dependence 3, 38 
prediction 11-3, 40, 65-6, 100, 

104, 108, 110-1, 113, 115, 146, 
157-8, 160-1, 164-71, 262, 265, 
269, 271, 290, 291 

probable error 37-8 
process with infinite variance, see 

infinite variance 

quadratic form 68, 73-4, 76-7, 
109, 112 

qualitative features 41 
quantitative properties 41 
quantum field theory 17 

RIS statistic 34, 81, 83-5, 132 
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random design 175, 186 
randomization 35, 187-8, 264 

blockwise 190, 194-6 
complete 189, 191-2 
restricted 190, 192-4 

recursive calculation of the 
Gaussian likelihood function 
109 

redescending zi) function 131 
regression 

BLUE, see BLUE 
LSE, see LSE 

regression model 11, 172, 180, 
187, 270, 300 

regression spectrum 180-2, 184-5, 
187 

renormalization theory 50 
restricted randomization 190, 

192-4, 264 
robustness 67, 84, 128-33, 140, 

276-7, 282, 286, 301 
robust estimation x, 102, 124, 

140, 151-2, 154, 164, 274, 277, 
279, 291 

Roda Gauge 11, 22, 237 
Rosenblatt process 199, 296 
Royal Philosophical Society 37 
routine analysis 36, 296 

sample correlation 41, 43, 88-90, 
94, 128, 130, 140, 121, 271 

sample covariance 20, 271 
sample mean 1, 11, 34, 76, 103, 

117, 152-5, 157-8, 178, 187, 
207 
confidence interval 1, 10, 

159-64 
efficiency 148-51, 159, 293 
standard deviation 8, 38, 44, 

92-3, 290 
variance 1, 21, 24, 26, 28, 31, 

41, 42, 45, 54, 155 
sample variance 1, 9-10, 33, 35, 

92, 95, 155-6, 160 
scalar product 68, 173 

scale parameter 100, 104, 111-2, 
114, 156, 159-61, 164, 203, 226 

seasonal model 185, 269, 284 
seasonality 29 
second order stationary process, 

see stationary process 
self-similar 

geometric shape 48 
process ix, 35, 45, 48, 50-1, 

53-6, 70, 211, 263-5, 268, 
270, 274-9, 281-2, 284-5, 
287-9, 293, 296-9 

self-similarity 34, 48, 57, 159, 210, 
219-222, 225, 227-8, 269, 273 

self similarity parameter 34, 48, 
50, 53, 56-7, 218-222, 225, 
227-8, 275 

semi-constant error 36-7 
semi-systematic error 36-7 
semiparametric estimation of H 

97-9, 102, 133, 138, 164, 269, 
280, 291-2 

semivariogram, see variogram 
serial correlations, see correlation 
short-range correlations, see 

correlation 
short-range dependence, see 

dependence 
short-term behavior 100 
simple hypothesis 197-201, 205 
simulation of 

fractional ARIMA processes 

220 
fractional Gaussian noise 218 

long-memory processes 215-7 

slow rate of convergence 159 
slowly decaying correlations, see 

correlation 
slowly decaying trend 85-7 
slowly varying function 42 

soil fertility 18 
space-time model 19 
spatial data 34, 186 
spatial correlations 18, 287 

spatial process 94 
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spectral density 
definition 7 
nonintegrable 61 
of an aggregated process 15-6 
of an ARMA process 61 
of a fractional ARIMA process 

63 
of fractional Gaussian noise 54 
of an FEXP process 121 
of the increment of a 

self-similar process 53 
spatial 19 

spectral distribution function 99, 
181, 183 

spectral influence function 135-6, 
138, 140 

spectrum, see spectral density 
spin 16-7 
spurious 

cycles 141 
inhomogeneities 195 
trends 141 

stable distribution 50, 84 
stable innovations 212, 273 
stable process 53, 211, 268, 277, 

281, 287, 293, 296 
stationary 

equilibrium 18-9 
process, definition 3 
random field 19 
solution 59, 61 

stochastic 
integral 56-7 
self-similarity 48 

storage loss 33 
strong dependence, see 

dependence 
systematic error 39 

tapered periodogram 78 
telecommunications 22 
temperature for northern 

hemisphere, see northern 
hemisphere temperature data 

test 

for changepoint 206-210 
for future sample mean 160-1, 

164 
for the mean 159-4 
goodness-of-fit 197-205 

thermodynamic limit 16-7 
thermodynamic system 16 
Toeplitz matrix 74-5, 263, 266 
total magnetization 16-7 
transformation of a Gaussian 

process/time series 
67, 72, 215, 274 
transient status 144 
transmission of video pictures 

22-3 
treatment 186-90, 194, 281 
treatment allocation 189-90 
treatment effect 187 
trend 29-30, 33, 36, 41, 85-9, 94, 

141-44, 173, 175-82, 184-5, 
266, 277, 282 

t-test, see test for the mean 
turbulence 17, 19, 264, 273, 278, 

282, 297 
typical sample paths with long 

memory 41, 45-8 

U-statistic 199, 271 
uniformity trial 18, 34-5 
University of East Anglia x, 29, 

257 
University of North Carolina x, 29 
unsuspected correlations, see 

correlations 

VBR/video data 22, 24, 32, 
122-3, 127-34, 140, 210, 240 

variable bit rate codec 22 
variance plot 21, 24, 26, 28, 31, 

81, 92-3 
variogram 81, 94-5 
video 22, 32, 265, 273, 278 

weak dependence 6 
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Whittle's approximate MLE, see 
approximate MLE 

Whittle approximation, see 
approximate MLE 

yield 32, 34-5, 295, 299-300 
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